REMEDIAL INVESTIGATION REPORT

for

45 COMMERCIAL STREET
BROOKLYN, NY 11222

NYSDEC BCP Site No.: C224304

Prepared for:

GPL Development LLC 535 Madison Avenue New York, NY 10022

Prepared by:

Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology, D.P.C.
21 Penn Plaza
360 West 31st Street, 8th Floor
New York, New York 10001

October 29, 2020

Langan Project No.: 170229024

21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001

T: 212.479.5400

F: 212.479.5444

www.langan.com

CERTIFICATION

I, Michael D. Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Michael D. Burke, PG, CHMM

Hichael D. Bruke

TABLE OF CONTENTS

LIST	OF ACRONYMS	vi
1.0	INTRODUCTION	1
2.0	SITE PHYSICAL CHARACTERISTICS	2
2.1	1 Site Description	2
	2.1.1 Description of Surrounding Properties	
	2.1.2 Topography	
	2.1.3 Stormwater Runoff and Drainage	
2.2	2.1.4 Wetlands 2 Geology and Hydrogeology	
	2.2.1 Regional and Site Geology	
	2.2.2 Regional and Site Hydrogeology	
3.0	SITE BACKGROUND	
3.1	1 Historical Site Use	6
3.2	2 Redevelopment Plan	6
3.3	3 Previous Environmental Reports	6
3.4	Summary of Areas of Concern	9
4.0	FIELD INVESTIGATION	11
4.1	1 Geophysical Investigation and Utility Location	11
4.2	Soil Investigation	11
	4.2.1 Soil Boring Investigation	11
	4.2.2 Soil Sampling and Analysis	
4.3		
	4.3.1 Monitoring Well Installation and Development	
4.4	4.3.2 Groundwater Sampling and Analysis4 Soil Vapor Investigation	
	4.4.1 Soil Vapor Point Installation	
	4.4.2 Soil Vapor Sampling and Analysis	
4.5	Quality Assurance/Quality Control Sampling	16
4.6	6 Data Validation	17
	4.6.1 Data Usability Summary Report Preparation	
4.7	7 Field Equipment Decontamination	18
4.8	3	
4.9	3 13	
5.0	FIELD OBSERVATIONS AND ANALYTICAL RESULTS	20
5.1	1 Geophysical Investigation Findings	20
5.2	2 Geology and Hydrogeology	20
	5.2.1 Historic Fill	
	5.2.2 Native Soil Layers	
	5.2.3 Bedrock	20

5.2	P.4 Hydrogeology	20
5.3	Soil Findings	21
5.3	3.1 Field Observations	21
5.3	3.2 Analytical Results	21
5.4	Groundwater Findings	25
5.4	1.1 Field Observations	25
	1.2 Analytical Results	
5.5		
5.5	5.1 Field Observations	27
	5.2 Analytical Results	
5.6	QA/QC Sample Results	
5.7	Data Usability	28
5.8	Evaluation of Areas of Concern	
5.8	3.1 AOC 1: Prior Site Use	
	3.2 AOC 2: Petroleum-Impacted Soil	
	B.3 AOC 3: Historic Fill	
	3.4 AOC 4: Historical Use of Surrounding Properties	
	QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	
6.1	Current Conditions	34
6.2	Post Redevelopment Conditions	
6.3	Conceptual Site Model	
	3.1 Potential Sources of Contamination	
	3.2 Exposure Media	
	3.3 Receptor Populations	
6.4	Potential Exposure Pathways – On-Site	
6.4	1.1 Current Conditions	
	1.2 Construction/Remediation Condition	
	1.3 Proposed Future Conditions	
6.5	•	
6.5	5.1 Current Conditions	36
	5.2 Construction/Remediation Condition	
6.5	5.3 Proposed Future Conditions	
6.6	Evaluation of Human Health Exposure	37
6.6	6.1 Current Conditions	37
6.6	S.2 Construction/Remediation Activities	37
6.6	6.3 Planned Future Conditions	38
	3.4 Human Health Exposure Assessment Conclusions	
7.0 I	NATURE AND EXTENT OF CONTAMINATION	40
7.1	Soil Contamination	40
	1.1 Historic Fill	
	1.2 Petroleum-impacted soil	
7.2	Groundwater Contamination	41
	P.1 CVOC-Impacted Groundwater	
7.2	P.2 Metals-Impacted Groundwater	41

7.	7.2.3 Emerging Contaminants in Groundwater	41
	Soil Vapor Contamination	
8.0	CONCLUSIONS	42
9.0	REFERENCES	44

FIGURES

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 7A Figure 8 Figure 9 Figure 10 Figure 11	Site Location Map Site Plan Adjoining Properties and Surrounding Land Use Map Groundwater Elevation Contour Map AOC and Sample Location Map Previous Soil Sample Analytical Results Map Soil Sample Analytical Results Map Soil Sample Analytical Results Map – TCLP Metals Groundwater Sample Analytical Results Map Soil Vapor Sample Analytical Results Map Area of Concern and Conceptual Site Model Map Subsurface Cross Section A-A'
TABLES	
Table 1 Table 2 Table 3 Table 4	Sample Collection Summary Groundwater Elevation Summary Soil Sample Analytical Results Summary – VOCs & SVOCs Soil Sample Analytical Results Summary – PCBs, Pesticides, Herbicides,
Table 5 Table 6 Table 7	Inorganics Soil Sample Analytical Results Summary – Emerging Contaminants Groundwater Sample Analytical Results Summary – VOCs & SVOCs Groundwater Sample Analytical Results Summary – PCBs, Pesticides,
Table 8	Herbicides, Inorganics Groundwater Sample Analytical Results Summary – Emerging Contaminants

APPENDICES

Table 9

Appendix A	Previous Environmental Reports
Appendix B	Photograph Log
Appendix C	Geophysical Survey Report
Appendix D	Soil Boring Logs
Appendix E	Monitoring Well Construction and Groundwater Sampling Logs
Appendix F	Soil Vapor Construction and Sampling Logs
Appendix G	Data Usability Summary Report
Appendix H	Community Air Monitoring Program Summary Data
Appendix I	Laboratory Analytical Reports
Appendix J	Completed Fish and Wildlife Resources Impact Analysis Decision Key

Soil Vapor Sample Analytical Results Summary

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AGV	Air Guidance Value
ASP	Analytical Services Protocol
ASTM	ASTM International
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
bgs	Below grade surface
CAMP	Community Air Monitoring Program
CHASP	Construction Health and Safety Program
COC	Contaminant of Concern
CSM	Conceptual Site Model
CU	Commercial Use
CVOC	Chlorinated Volatile Organic Compounds
DER	Division of Environmental Remediation
DER-10	Technical Guidance for Site Investigation and Remediation
DO	Dissolved Oxygen
DUSR	Data Usability Summary Report
el.	Elevation (NAVD88)
ELAP	Environmental Laboratory Approval Program
ESA	Environmental Site Assessment
Eurofins	Eurofins Lancaster Laboratories
eV	Electron volt
FWRIA	Fish and Wildlife Resources Impact Analysis
GPR	Ground Penetrating Radar
HASP	Health and Safety Plan
IDW	Investigation Derived Waste
Langan	Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology, D.P.C.
mg/kg	Milligram per kilogram
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NAVD88	North American Vertical Datum of 1988
ng/kg	Nanograms per kilogram
ng/L	Nanograms per liter
NOVA	NOVA Geophysical Engineering
NYC	New York City
NYSDEC	New York State Department of Environmental Conservation
NYSDEC SGVs	NYSDEC TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA water
NYSDOH	New York State Department of Health

Acronym	Definition
OER	NYC Mayor's Office of Environmental Remediation
ORP	Oxidation-reduction potential
PCB	Polychlorinated Biphenyl
PCE	Tetrachloroethene
PFAS	Perfluoroalkyl Substances
PFHxA	Perfluorohexanoic Acid
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorooctanesulfonic acid
PFPeA	Perfluoropentanoic Acid
PID	Photoionization Detector
PM10	10 micrometers
PPE	Personal Protective Equipment
ppm	Parts per million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
RL	Reporting limit
RURR	Restricted Use Restricted-Residential Use
SCO	Soil Cleanup Objective
SMD	Sub-Membrane Depressurization
SMMP	Soil Materials/Management Plan
SMP	Site Management Plan
SVOC	Semivolatile organic compound
TAL	Target Analyte List
TCE	Trichloroethene
TCL	Target Compound List
TOGS	Technical and Operational Guidance Series
UN/DOT	United Nations/Department of Transportation
USEPA	United State Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tanks
UU	Unrestricted Use
VOC	Volatile Organic Compound
Volunteers	GPL Development LLC and its affiliate Volunteer Applicants
μg/L	Micrograms per liter
μg/m³	Micrograms per cubic meter
NYCRR	New York Codes, Rules, and Regulations

1.0 INTRODUCTION

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) prepared this Remedial Investigation Report (RIR) on behalf of GPL Development LLC and its affiliate Volunteer Applicants (collectively, the Volunteers) for the property located at 45 Commercial Street in the Greenpoint neighborhood of Brooklyn, New York (the site). The Volunteer entered into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) to remediate the site, pursuant to a Brownfield Cleanup Agreement (BCA), dated April 17, 2020, for Site No. C224304.

This RIR presents environmental data and findings from the Remedial Investigation (RI) that was implemented by Langan in May 2020. The objective of the RI was to investigate and characterize the nature and extent of environmental impacts at and emanating from the site and to provide sufficient information to evaluate remedial alternatives.

This RIR is organized as follows:

- Section 2.0 describes the setting and physical characteristics of the site.
- Section 3.0 describes the site background, including results of previous investigations and identified areas of concern (AOCs).
- Section 4.0 presents the investigation field procedures.
- Section 5.0 describes the field observations and analytical results.
- Section 6.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors.
- Section 7.0 presents the nature and extent of contamination in site media as determined through the field investigation and analysis of environmental samples.
- Section 8.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results.
- Section 9.0 presents the references used in preparation of this report.

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The site is located at 45 Commercial Street in the Greenpoint neighborhood of Brooklyn, New York and is identified as Block 2472, Lot 70 on the Borough of Brooklyn Tax Map. The site encompasses an area of about 44,600 square feet, the western portion of which is currently used as a staging area for construction trailers and equipment for the redevelopment of the adjoining Parcel H3. A site location map is presented as Figure 1. The site plan is presented as Figure 2.

In addition to being a BCP site, the site is currently under the regulatory oversight of the New York City (NYC) Office of Environmental Remediation (OER) pursuant to the Revised Negative Declaration dated November 6, 2013 (CEQR No. 14DCP004K), which placed E-Designations for Hazardous Materials, Noise, and Air Quality (E-317) on the tax lot comprising the site, and the NYSDEC, following execution of the BCA, dated April 17, 2020. The E-Designation (E-317) supersedes the E-Designation (E-138) that was previously assigned to the site in connection with the May 11, 2005 Greenpoint-Williamsburg Rezoning (CEQR No. 04DPC0003K). The E-Designation includes environmental restrictions during development for hazardous materials, air quality (i.e., HVAC fuel and exhaust stack location requirements), and noise (i.e., window wall attenuation and alternate means of ventilation requirements).

The site is bound by an active construction site, 1 Bell Slip (a/k/a, Parcel H3 [Block 2472, Lots 200 and 475]) to the north, an active NYC transit authority parking lot, 65 Commercial Street (Block 2472, Lot 425) to the east, Commercial Street to the south, and Bell Slip followed by a new 37-story mixed used residential and commercial building with associated site improvements, 37 Blue Slip (a/k/a, Parcel G1 [Block 2472, Lots 80, 90, and part of Lot 100]) and 21 Commercial Street (a/k/a, Parcel G2 [Block 2472, Lots 50, 60, part of Lot 100]) to the west.

2.1.1 Description of Surrounding Properties

According to the New York City Department of City Planning (NYCDCP) Zoning Map 12c, dated August 8, 2018, the site is currently located in an R6/R8/C2-4 mixed-use residential and commercial district. The following is a summary of surrounding property usage:

Direction	Adjoining and Adjacent Properties			Surrounding Properties
	Block No.	Lot No.	Description	- Consolitating Free position
North	2472	200 & 475	Active construction site, 1 Bell Slip (Parcel H3)	Newtown Creek

Direction	Adjoining and Adjacent Properties			Surrounding Properties
Bircotion	Block No.	Lot No.	Description	Carrounding Froperates
East	2472	425	NYC Transit Authority Parking Lot 65 Commercial Street	Vacant lot, mixed-use residential and commercial buildings, residential buildings
South	Commercial Street			Vacant lots, mixed-use residential and commercial buildings, industrial and manufacturing buildings,
West	Bell Slip			Mixed-use residential and commercial buildings 21 Commercial Street and 7 Bell Slip

Public infrastructure (storm drains, sewers, and underground utility lines) exists or is being built within Commercial Street and Bell Slip.

Land use within a half-mile radius includes multi-story residential buildings, some with ground-level retail stores and restaurants; parking lots; office buildings; small-scale industrial and manufacturing facilities; and park land owned and operated by the New York City Department of Parks and Recreation (NYCDPR). The East River and Newtown Creek are the two closest ecological receptors. The property located southwest of the site, across Commercial Street, is the former NuHart Plastics Manufacturing facility located at 280 Franklin Street, Brooklyn, NY (Lots 1, 10, and 78 of Block 2487), which is listed as an NYSDEC inactive hazardous waste disposal site (State Superfund Site No. 224136). No schools or day care facilities are on the site. Sensitive receptors, as defined in DER-10, within a half mile of the site include those listed below:

Number (Approximate distance from site)		Address
1	Newtown Barge Playground (approximately 0.12 miles southwest of the site)	3 Commercial Street, Brooklyn NY 11222
2	Greenpoint Playground (approximately 0.10 miles southwest of the site)	243 Franklin Street, Brooklyn NY 11222
3	Dupont Street Senior Housing (approximately 0.13 miles south of the site)	80 Dupont St, Brooklyn, NY 11222

A map showing the surrounding land uses with descriptions of the adjoining properties is included as Figure 3.

2.1.2 Topography

According to survey data, most of the site is at an elevation (el.) of about el. 11 to 14 feet¹; the high point of the site is el. 13.91 feet proximate to Commercial Street in the southern part of the site.

2.1.3 Stormwater Runoff and Drainage

The site footprint is covered by impervious concrete and/or asphalt. Stormwater runoff from the site is expected to drain to the city sewers via catch basins located along the street curbs to the south of the site along Commercial Street or may temporarily pond on site because elevations of adjoining properties (Parcels G1, H3) were raised as part of construction.

2.1.4 Wetlands

Wetlands on and near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands map. There are no wetlands on the site. The nearest wetland is Newtown Creek, which is located about 400 feet north of the site.

According to the Effective National Flood Insurance Rate map for the City of New York published by the Federal Emergency Management Agency (Community Panel No. 3604970202F, dated September 05, 2007), the site falls within Zone AE, which is subject to inundation by the 1% annual chance flood.

2.2 Geology and Hydrogeology

2.2.1 Regional and Site Geology

The surficial geology in the vicinity of the site generally consists of glacial and fluvial soil deposits, as well as manmade fill. The glacial deposits, commonly referred to as ground moraine or till, are a widespread dense layer typically consisting of heterogeneous mixtures of clay, silt, sand, gravel, and boulders.

According to United States Geological Survey (USGS) "Bedrock and Engineering Geology Maps of New York County, and parts of Kings and Queens Counties, New York, and parts of Bergen and Hudson Counties, New Jersey", bedrock stratigraphy in the area consists of Ravenswood Granodiorite of the Middle Ordovician to Middle Cambrian Age and Hartland Formation of the Middle Ordovician to Lower Cambrian Age. Ravenswood Granodiorite typically consists of medium- to dark-gray, sillimanite-garnet-pink microcline-plagioclase-biotite-muscovite-quartz and biotite-hornblende-orthoclase layered gneiss. The Hartland formation typically consists of gray

¹ Datum refers to the North American Vertical Datum of 1988 which is approximately 1.1 feet above mean sea level datum at Sandy Hook, New Jersey as defined by the United States Geologic Survey (USGS NGVD 1929).

sillimanite-garnet-microcline gneiss and fine-grained biotite-muscovite-quartz schist interlayered with quartz-plagioclase-muscovite pegmatite, hornblende amphibolite, and coarse granoblastic-textured amphibolite gneiss. Bedrock was not encountered during the investigation or previous environmental investigations conducted at the site. Bedrock was encountered during a geotechnical investigation at the site at about 50 to 65 feet bgs.

Based on RI observations, the subsurface profile generally consists of historic fill overlying light-to dark-gray clay with varying amounts of silt, peat, sand, and shells. Historic fill thickness was generally measured to vary between 13 and 20 feet. The fill generally consists of gray to black fine-grained sand with varying amounts of gravel, silt, clay, brick, concrete, glass, coal ash, slag, wood, and coal.

2.2.2 Regional and Site Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeological network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks.

Infiltration of precipitation to the water table is likely minimal due to the presence of impervious surfaces throughout the site. Stormwater runoff from the site and surrounding area is expected to drain to the city sewers via catch basins located along the street curbs along Commercial Street or may temporarily pond on site because elevations of adjoining properties (Parcels G1, H3) were raised as part of construction. Groundwater in New York City is not used as a potable water source. Potable water provided to New York City is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

Groundwater was observed at depths between 8.55 and 10.54 feet below grade surface (bgs) with elevations ranging from el. 2.82 to 3.28 feet during synoptic groundwater level measurements collected from six wells during the RI. Groundwater at the site and on adjoining and surrounding properties generally flows to the west towards the confluence of Newtown Creek and the East River. A groundwater elevation contour map is presented as Figure 4.

3.0 SITE BACKGROUND

3.1 Historical Site Use

Coal and lumber storage were the primary uses of the site for more than 100 years from the late 1800s until about 1980, when the lumber yard operations were phased out and the owner (Lumber Exchange Terminal, Inc.) began to lease portions of the site to tenants for heavy construction equipment, materials, and machinery storage.

3.2 Redevelopment Plan

The redevelopment project includes the removal of contaminated soil/fill and construction of one mixed-use residential and commercial building with 374 residential units (100% affordable housing for families earning under 90% of the annual median income) and ground floor retail. The building will comprise a 6-story podium (no cellar) with a 22-story tower set back from Commercial Street. The building footprint is about 32,000 square feet and the remainder of the tax lot (12,600 square feet) will be open space with a mixture of hardscape and landscaped areas.

3.3 Previous Environmental Reports

Environmental reports prepared for the site include the following:

- 1. Phase I Environmental Site Assessment Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated July 2001
- 2. Supplemental Subsurface (Phase II) Investigation Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated April 2004
- 3. Remedial Investigation Report Parcels D1, D2, E3, F, G, and H, prepared by Langan, dated May 19, 2014
- 4. Subsurface Investigation 45 Commercial Street, performed by Langan, dated September 2019

Reports are summarized below and available reports are included in Appendix A.

<u>Phase I Environmental Site Assessment Report – Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. (July 2001)</u>

AKRF, Inc. was retained by Park Tower Realty Corporation to perform an Environmental Site Assessment (ESA) of a 21-acre former lumber yard (including lands underwater) in the Greenpoint neighborhood of Brooklyn, New York. The site is included in the upland acres that comprise the former lumber yard.

The Phase I ESA concluded that releases of petroleum or hazardous substances may be present on the former lumber yard (including the site) as the result of historical uses of the site and surrounding area. Several 55-gallon drums of lube oil and car maintenance activities (minor

auto repairs, truck washing, and tire changes) were observed at the site during the site reconnaissance.

Supplemental Subsurface (Phase II) Investigation Report – Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. (April 2004)

This investigation included the completion of two soil borings (B15 and MW15A) and one groundwater monitoring well (MW15A), and collection of four soil samples and one groundwater sample within the site boundary. Soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and target analyte list (TAL) metals. Groundwater samples were analyzed for VOCs, SVOCs, pesticides, PCBs, and TAL metals.

- Historic fill was identified in both borings completed at the site and was composed of varying amounts of sand, silt, and gravel with brick, coal, concrete, slag, and wood.
 Historic fill was observed immediately below the asphalt and concrete cap to boring termination depths of about 15 feet bgs in boring B15 and about 10 feet bgs in MW15A.
- No VOCs exceeded the New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(b) Unrestricted Use (UU) or NYSDEC Part 375-6.8(b) Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCOs).
- Seven semivolatile organic compounds (SVOCs) (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and ideno(1,2-c,d)pyrene) exceeded the UU and/or RURR SCOs in soil samples collected from boring MW15A. Total SVOCs were detected at a maximum concentration of 49.55 milligrams per kilogram (mg/kg). Total PCBs exceeded the UU SCO in a soil sample collected from the 0.5- to 2-foot interval in boring B15. Two pesticides, 4,4'-DDD and 4,4'-DDE, exceeded the UU SCOs in soil samples collected from the 0.5- to 2-foot interval in MW15. Metals (including copper, lead, mercury, nickel, and/or zinc) exceeded the UU and/or RURR SCOs in all soil samples with the exception of one soil sample collected from the 8- to 9-foot interval in boring B15. VOCs, SVOCs, PCBs, and pesticides were not detected in the groundwater sample collected from MW15A.
- Three metals (iron, manganese, and sodium) exceeded the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA water at total and dissolved concentrations in MW15.

The data collected from the AKRF Phase II investigation is not included in the analysis of this RIR because samples the data was not validated and samples were collected over 15 years ago and, thus, no longer represents site conditions.

Remedial Investigation Report – Parcels D1, D2, E3, F, G, and H, Brooklyn, NY, prepared by Langan (May 19th, 2014)

This investigation was prepared in consultation with the OER to satisfy E-Designation requirements for six parcels of the Greenpoint Landing Development Property and included the completion of one soil boring and groundwater monitoring well (SB20/MW20) and one soil vapor point (SV-9), and collection of three soil samples, one groundwater sample, and one soil vapor sample within the site boundary. Additional data were collected on other parcels that comprise Greenpoint Landing development property. Soil samples were analyzed for VOCs, SVOCs, PCBs, pesticides, and TAL metals. Groundwater samples were analyzed for VOCs, SVOCs, pesticides, PCBs, and TAL metals.

Historic fill identified in the soil boring was composed of varying amounts of sand, silt, gravel, and clay with ash, coal, and concrete and was observed directly below the concrete and asphalt cap to a depth of about 10 feet bgs. Historic fill was underlain by native soil composed of varying amounts of sand, silt, and clay to a boring termination depth of about 15 feet bgs.

- No VOCs were detected above the UU or RURR SCOs. Eight SVOCs (3-methylphenol/4-methylphenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and/or ideno(1,2,3-cd)pyrene) exceeded the UU and/or RURR SCOs in one or more soil samples. Total SVOCs were detected at a maximum concentration of 219.16 mg/kg in a sample collected from the 0- to 2-foot interval in boring SB-20. Five metals (arsenic, copper, lead, mercury, and zinc) exceeded the UU SCOs in one or more soil samples; lead also exceeded the RURR SCO in soil collected from the 3- to 5-foot depth interval in boring SB20. Pesticides and herbicides were not detected in soil samples.
- VOCs and SVOCs were not detected above the NYSDEC SGVs. PCBs, pesticides, and herbicides were not detected in groundwater. Four metals (iron, magnesium, manganese, and sodium) exceeded the NYSDEC SGVs at total and dissolved concentrations in MW20.
- Thirteen petroleum, ketone, and/or solvent-related VOCs (including 2,2,4-trimethylpentane, 2-butanone, acetone, benzene, carbon disulfide, chloromethane, cyclohexane, heptane, n-hexane, p- & m-xylene, propylene, toluene, and trichlorofluoromethane) were detected in soil vapor collected from SV-9; however, no NYSDOH standards or guidance values exist for these compounds.
- Soil vapor sample SV-9 was evaluated using the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion. The NYSDOH Guidance document contains Decision Matrices that evaluate eight VOCs – carbon tetrachloride, trichloroethene (TCE), cis-1,2-dichloroethene, 1,1-dichloroethene, tetrachloroethene (PCE), 1,1,1-trichloroethane, methylene chloride, and vinyl chloride. None of the 8 VOCs

NYSDEC BCP Site No. C224304

were detected in soil vapor sample SV-9. The NYSDOH Guidance also include Air Guideline Values (AGVs) for three VOCs (methylene chloride, PCE, and TCE); none of the compounds with 3 VOCs were detected in soil vapor sample SV-9.

September 2019 Subsurface Investigation – 45 Commercial Street, performed by Langan

This investigation was performed on the site only (no other Greenpoint Landing development parcel) for the purpose of BCP eligibility and included the completion of 15 soil borings (LB01 through LB15) and collection of 32 soil samples (including quality assurance/quality control [QA/QC] samples). Soil samples were analyzed for VOCs, SVOCs, and TAL metals.

- Historic fill identified in the soil borings was composed of varying amounts of sand, silt
 and gravel, with ash, asphalt, coal, concrete, wood, and slag and was observed directly
 below the concrete and asphalt cap to a depths ranging from about 6 to 15 feet bgs
 (deepest soil boring termination depth). Native soil, composed of grayish brown to tan
 fine sand with trace silt, was encountered at depths between about 6 to 13.5 feet bgs
 in four of the twelve soil borings. Native material was not encountered in eight soil
 borings.
- Two VOCs (acetone and total xylenes) exceeded the UU but not the RURR SCOs in one or more soil samples.
- Nine SVOCs (3- and 4-methylphenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and naphthalene) exceeded the UU and/or RURR SCOs in one or more soil samples. With the exception of 3- and 4-methylphenol and naphthalene, all SVOCs were detected in at least one boring at concentrations exceeding the RURR SCOs.
- Seven inorganics (including arsenic, trivalent chromium, copper, lead, mercury, nickel, and zinc) exceeded the UU and/or RURR SCOs in one or more soil samples. Of these inorganics, arsenic, copper, lead, and mercury were detected at concentrations exceeding the RURR SCOs in one or more soil samples.
- Based on field observations and analytical data that identified staining, odors and PID readings and the detection of petroleum related compounds (total xylenes and naphthalene) in soil, a spill was reported to NYSDEC (Spill No. 1906491).

3.4 Summary of Areas of Concern

The following areas of concern (AOC) represent portions of the site that required further investigation and were developed based on site observations, the site development history, and the findings of the previous environmental reports. The AOCs that were investigated include the following:

AOC 1: Prior Site Use

Historical operations at the site include coal and lumber storage for more than 100 years from the late 1800s until about 1980; heavy construction equipment, machinery, and materials storage starting in 1980; and truck/vehicle parking and scaffolding materials storage until the 2000s.

AOC 2: Petroleum-Impacted Soil

The 2019 Subsurface Investigation identified petroleum-impacted soil in one soil boring located in the northeastern portion of the site. Spill No. 19-06491 was reported on September 25, 2019 based on field observations and subsequent analytical data review.

AOC 3: Historic Fill

Historical maps from the mid to late 1800s show the original shoreline of Newtown Creek to be present-day Commercial Street, indicating the site lies entirely on reclaimed land as the result of historical filling activities.

AOC 4: Historical Use of Surrounding Properties

The former NuHart Plastic Manufacturing facility, an NYSDEC inactive hazardous waste disposal site (State Superfund Site #224136), is located about 100 feet south of the site. The NuHart Plastic Manufacturing facility operated from 1950 until about 2004, and was primarily used for the production, storage, and shipping of plastic and vinyl products. Previous investigations performed at the former NuHart Plastic Manufacturing facility found phthalates, paraffinic oil/mineral oil, and trichloroethylene (TCE) in soil, groundwater, and soil vapor. Historical use of surrounding properties also includes light commercial and industrial use such as large item storage and transport areas, and cargo truck repair.

4.0 FIELD INVESTIGATION

The RI was conducted between May 6 and 20, 2020 in accordance with the NYSDEC-approved Remedial Investigation Work Plan (RIWP), dated April 24, 2020; Title 6 NYCRR Part 375; the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010); and the NYSDEC Draft BCP Guide (May 2004). A photograph log documenting this investigation is included as Appendix B.

The RI consisted of the following:

- Geophysical survey to identify subsurface anomalies consistent with utilities, substructures, physical obstructions, and underground storage tanks (USTs), and to preclear soil boring locations;
- Advancement of 17 soil borings (LB13N, LB13S, LB13W, LB13, and LB16 through LB28) and collection of 36 soil samples plus quality assurance/quality control (QA/QC) samples;
- Installation of six groundwater monitoring wells and collection of six groundwater samples plus QA/QC samples;
- Installation of five soil vapor points and collection of five soil vapor samples plus QA/QC samples;
- Implementation of a Community Air Monitoring Program (CAMP); and
- Survey and synoptic groundwater gauging of newly installed monitoring wells to evaluate the elevation and flow of site groundwater.

A summary of the samples collected for laboratory analysis is provided as Table 1. Sample locations are shown on Figure 5. Each RI component is further described in the following sections.

4.1 Geophysical Investigation and Utility Location

On May 9, 2019, prior to intrusive field activities, NOVA Geophysical Engineering (NOVA) of Douglaston, New York conducted a geophysical survey. The survey used ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities and subsurface structures in the vicinity of each boring location. Borings were relocated as necessary to avoid subsurface utilities and other subsurface impediments. A copy of the geophysical survey report is included in Appendix C.

4.2 Soil Investigation

4.2.1 Soil Boring Investigation

A total of 17 soil borings (LB13N, LB13S, LB13W,LB13, and LB16 through LB28) were advanced by Eastern Environmental Solutions, Inc. (Eastern) between May 6 and 16, 2020.

Boring locations were selected to provide sufficient site coverage and to evaluate the AOCs listed in Section 3.4. Geoprobe® 6610 and Geoprobe® 7822 drilling rigs were used to advance borings to 20 feet bgs.

Soil was collected continuously from surface grade to the final depth of each soil boring into 5-foot-long acetate liners using a 2-inch diameter open-point or a closed-point MacroCore® sampler. Recovered soil was screened for visual, olfactory, and instrumental evidence of environmental impacts and was visually classified for soil type, grain size, color, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a photoionization detector (PID) equipped with a 10.6 electron volt (eV) lamp. Soil boring logs are included in Appendix D.

Non-disposable, down-hole drilling equipment and sampling apparatuses were decontaminated between locations with Alconox® and water. After sample collection, soil borings were either backfilled with clean sand or soil cuttings, or converted to groundwater monitoring wells. Excess soil cuttings were placed into sealed and labeled 55-gallon drums for disposal.

4.2.2 Soil Sampling and Analysis

Thirty-six soil samples (plus QA/QC samples) were collected from the soil borings for laboratory analysis in general accordance with the RIWP. Soil samples were collected as follows:

- One to three representative historic fill samples were collected above the groundwater table in borings LB16, LB17, LB18, LB19, LB20, LB21, and LB22. Historic fill samples targeted intervals where metals were detected above RURR SCOs in nearby Phase II borings.
- In borings LB16, LB18, and LB22, one soil sample was collected from native soil.
- One sample was collected from the interval exhibiting the greatest degree of petroleum contamination, where observed (based on the presence of staining, odor, and/or PID readings above background) in borings LB13, LB13N, LB13S, LB16, LB17, LB20, LB21 and LB22.
- In borings LB13, LB13W, LB26 and LB28, one sample was collected from clean soil below the interval exhibiting the greatest degree of contamination in petroleumimpacted soil borings (based on lack of staining, odor, and/or PID readings above background).

Soil borings LB25 and LB27 were installed to visually delineate petroleum impacts based on field observations; soil samples were not collected.

The table below identifies the borings associated with each AOC.

Area of Concern	Associated Soil Borings
AOC 1 – Prior Site Use	LB13N, LB13S, LB13W, LB13, and LB16 through LB28
AOC 2 – Petroleum-Impacted Soil	LB13, LB13N, LB13W, LB13S, LB16, LB17, and LB20 through LB28
AOC 3 – Historic Fill	LB13N, LB13S, LB13W, LB13, and LB16 through LB28
AOC 4 – Historical Use of Surrounding Properties	LB19, LB20, LB24

Grab samples submitted for VOC analysis were collected directly from the acetate sleeves via laboratory-supplied Terra Core® soil sample kits. The remaining sample volume was homogenized and placed into laboratory-supplied glassware. The sample containers were labeled, placed in a laboratory-supplied cooler, and packed with ice (to maintain a temperature of 4 ±2°C). The samples were relinquished, under standard chain-of-custody protocol, to a courier for delivery to Eurofins Lancaster Laboratories Environmental, LLC (Eurofins), a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory (ID No. 10670) in Lancaster, Pennsylvania. Soil samples were analyzed using one or more of the following United States Environmental Protection Agency (USEPA) methods for NYSDEC Part 375 list and USEPA Target Compound List (TCL)/Target Analyte List (TAL) parameters:

- TCL VOCs by USEPA methods 8260C
- TCL SVOCs by USEPA method 8270D
- Pesticides by USEPA method 8081B
- Herbicides by USEPA method 8151A
- PCBs by USEPA method 8082A
- TAL Part 375-list metals by USEPA methods 6010D/7471B
- Toxicity Characteristic Leaching Procedure (TCLP) Arsenic, Lead, and Mercury by USEPA method 1311
- Hexavalent/trivalent chromium by USEPA method 7196A
- Total cyanide by USEPA method 9010C
- NYSDEC per- and poly-fluoroalkyl substances (PFAS) (21-compound list) by USEPA method 537 Rev. 1.15
- 1,4-Dioxane by USEPA method 8270 with SIM isotope dilution

A soil sample collection summary is included in Table 1.

4.3 Groundwater Investigation

Groundwater monitoring wells were installed and sampled to characterize groundwater conditions and to investigate potential impacts to groundwater associated with the identified AOCs.

4.3.1 Monitoring Well Installation and Development

Six soil borings were converted into permanent groundwater monitoring wells (LB13, LB13N, LB16, LB18, LB19, and LB22 were converted to MW13, MW13N, MW16, MW18, MW19, and MW22, respectively). The wells were installed with 2-inch-diameter, threaded, flush-joint, polyvinyl chloride (PVC) casing and 0.01-inch-slot well screens set to straddle the groundwater table. The screens were set between 5 to 17 feet bgs or 5 to 20 feet bgs; solid PVC risers were installed above the screens to extend the well to grade. The annulus of each well was filled with No. 2 sand to about 2 feet above the top of the screen. Hydrated bentonite well seals were installed above the filter sand, and the wells were finished with flush-mount access covers. Monitoring well construction logs are included in Appendix E.

Following installation, each well was developed by surging using a surge block and purging at least 3 well volumes with a peristaltic pump. Development water was containerized into one United Nations/Department of Transportation (UN/DOT)-approved 55-gallon drum, labeled, and staged for off-site disposal. The top of casing for each monitoring well was surveyed by Langan on May 18, 2020.

4.3.2 Groundwater Sampling and Analysis

Groundwater samples were collected from each newly installed well in accordance with NYSDEC DER-10, USEPA's Low Flow Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells (EQASOP-GW4 Revised Sep. 2017) and NYSDEC's January 2020 Guidelines for Sampling and Analysis of PFAS. Before the groundwater samples were collected, wells were continuously purged until groundwater quality parameters (pH, conductivity, turbidity, dissolved oxygen, temperature, and oxidation-reduction potential) stabilized, to the extent practical, in accordance with the USEPA low-flow guidance. A multi-parameter water-quality system was used to monitor the groundwater-quality parameters during sampling. Samples were collected with a peristaltic pump and dedicated polyethylene tubing. The pump was decontaminated with Alconox® and water between each sample location. Purge water was containerized into one UN/DOT-approved 55-gallon drum, labeled, and staged for off-site disposal.

Six groundwater samples plus QA/QC samples were collected (one from each of the six newly installed wells [MW13, MW13N, MW16, MW18, MW19, and MW22]). Samples were collected into laboratory-supplied glassware and delivered via courier service to Eurofins for analysis of one or more of the following USEPA methods for NYSDEC Part 375 list and USEPA TCL/TAL:

- TCL VOCs by USEPA method 8260C
- TCL SVOCs (field-filtered) by USEPA method 8270D
- PCBs (lab-filtered in MW13N) by USEPA method 8082A
- Metals (field-filtered and unfiltered) by USEPA method 6010C/7470
- Pesticides by USEPA method 8081B
- Herbicides by USEPA method 8151A
- NYSDEC per- and poly-fluoroalkyl substances (PFAS) (21-compound list) by USEPA method 537 Rev. 1.15
- 1,4-Dioxane by USEPA method 8270 with SIM isotope dilution

A groundwater sample collection summary is included in Table 1. Groundwater elevations are presented in Table 2. A groundwater elevation contour map is presented as Figure 4. Groundwater sampling logs are included in Appendix E.

4.4 Soil Vapor Investigation

4.4.1 Soil Vapor Point Installation

Five soil vapor points (SV01 through SV05) were installed with a Geoprobe® 6610 or Geoprobe® 7822 DT drilling rig to about 6 feet bgs within the footprint of the proposed building (about 2 feet above the groundwater table) in accordance with the NYSDOH's *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006). The soil vapor points were constructed with a dedicated 1-7/8-inch polyethylene implant threaded into polyethylene tubing that extended to surface grade. A clean sand filter pack was placed around the screen implant and the remaining annular space was sealed with hydrated bentonite.

4.4.2 Soil Vapor Sampling and Analysis

On May 8, 2020, six soil vapor samples (one from each of the five newly installed soil vapor points, including one duplicate) were collected in general accordance with the NYSDOH's Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The vapor samples are summarized in Table 1. Before collecting vapor samples, three soil vapor point volumes were purged from each sample location at a rate of less than 0.2 liters per minute using a RAE Systems MultiRAE® meter set at a low flow setting. The purged soil vapor was monitored for VOCs with the MultiRAE® during purging.

A helium tracer gas was used in accordance with the NYSDOH guidance to serve as a QA/QC technique to document the integrity of each soil vapor point seal before and after sampling. The tracer gas was introduced into a container, which shrouded the soil vapor point and seal. Helium was measured from the sampling tube and inside the container. Direct readings of less than 10% helium in the sampling tube were considered sufficient to verify a tight seal at each sample point.

One ambient air sample (designated AA01_050820) was collected concurrently with the soil vapor samples. Soil vapor and ambient air samples were collected using laboratory-provided, batch-certified clean, 1-liter air canisters equipped with 2-hour sample interval flow controllers. Soil vapor and ambient air samples were sealed, labeled, and transported via courier service to Eurofins to be analyzed. The samples were analyzed for VOCs by USEPA Method TO-15.

A soil vapor sample collection summary is included in Table 1. Soil vapor point construction and sampling logs are included as Appendix F.

4.5 Quality Assurance/Quality Control Sampling

Trip blanks, field blanks, field duplicate samples, and matrix spike/matrix spike duplicate (MS/MSD) samples were collected and submitted for laboratory analysis for QA/QC purposes. A QA/QC sample collection summary is included in Table 1. Matrix-specific QA/QC samples that were collected for the RI are summarized below:

Soil QA/QC Samples

- One field duplicate sample;
- One MS/MSD sample;
- One field blank sample;
- Four field blank samples for PFAS and 1,4-dioxane; and
- Six trip blanks.

Groundwater QA/QC Samples

- One field duplicate sample;
- One MS/MSD sample;
- One field blank sample;
- One field blank sample for PFAS and 1,4-dioxane; and
- Two trip blanks.

Soil Vapor QA/QC Samples

- One ambient air sample; and
- One field duplicate sample.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes.

Field duplicate samples were collected to assess the precision of the analytical methods relative to the sample matrix. The soil duplicates were collected from the same material as the

primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

Trip blank samples were collected to assess the potential for contamination of the sample containers and samples during transport from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) that is prepared and sealed by the laboratory when the empty sample containers are shipped to the field, and then unsealed and analyzed for VOCs by the laboratory when the sample shipment is received from the field.

Field blanks were collected to determine the effectiveness of the decontamination procedures for the groundwater sampling equipment train and the cleanliness of unused neoprene gloves and acetate liners used to collect soil samples. Field blank samples consisted of deionized, distilled water provided by the laboratory that passed through/over decontaminated sampling equipment. Field blank samples were analyzed for the same list of analytes as the corresponding sampling event and sample matrix.

4.6 Data Validation

Analytical data was validated by a Langan validator in accordance with USEPA and NYSDEC validation protocols. Copies of the data usability summary reports (DUSR) and the data validator's credentials are provided in Appendix G.

4.6.1 Data Usability Summary Report Preparation

A DUSR was prepared for each sampling matrix. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.

For the soil and groundwater samples, the following items were assessed:

- Hold times
- Sample preservation
- Sample extraction and digestion
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- MS/MSD recoveries
- Field duplicate, trip blank, and field blank sample results

For the soil vapor samples, the following items were assessed:

Holding times

- Canister certification
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- Target compound identification and qualification

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- "U" The analyte was analyzed for but was not detected at a level greater than or equal to the reporting limit (RL) or the sample concentration or the sample concentration for results impacted by blank contamination.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "R" The sample results are not useable due to quality of the data generated because certain criteria were not met. The analyte may and may not be present in the sample.
- "B" Analyte was found in the associated analysis batch blank.
- "D" Result is from an analysis that required dilution.

After data validation activities were complete, validated data was used to prepare the tables and figures included in this report.

4.7 Field Equipment Decontamination

Handheld sampling equipment, including oil/water interface probes and water quality meters were decontaminated using an Alconox®-based solution and triple rinsed with distilled water. Down-hole drilling equipment was decontaminated between each boring by rinsing with an Alconox®-based solution. Decontamination wastewater was placed into 55-gallon drums for future off-site disposal.

4.8 Investigation-Derived Waste Management

Investigation derived waste (IDW) generated during the RI was properly handled and containerized. Groundwater from monitoring well development and purging, decontamination water, and excess soil cuttings were placed into 55-gallon steel drums with sealed tops. Soil from the soil borings exhibiting no evidence of chemical or petroleum impacts was used to backfill the soil borings. One drum containing groundwater and one drum containing soil were staged in a secured area on-site pending transport by a licensed waste hauler for disposal at an approved facility.

4.9 Community Air Monitoring Program

A CAMP was implemented during each day of environmental drilling on May 6, 7, 8, 11, 13, and 16, 2020. The CAMP was developed to monitor potential exposure to off-site receptors, including residences and businesses, from potential airborne contaminant releases during intrusive field activities. The CAMP consisted of real-time monitoring for VOCs and particulates (i.e., dust) at upwind and downwind locations to the work.

Instruments

Continuous dust and VOC monitoring was conducted using one upwind and one downwind monitoring station at the site perimeter. Each monitoring station included a TSI DustTrak II aerosol monitor for measuring particulates with an aerodynamic diameter less than 10 micrometers (PM10) and a MiniRAE® 3000 PID for measuring total VOCs. The work zone and site perimeter were visually monitored for fugitive dust emissions.

Action Levels

Action levels used to monitor community and visitor exposure were set forth in the CAMP included in the HASP (Appendix B in the RIWP) and are summarized as:

- Particulate Action Level: 100 μg/m³ of air above background for a 15-minute average.
- VOC Action Level: 25 parts per million (ppm) for instantaneous readings above background or 5 ppm above background for a 15-minute average.

Aerosol monitors and PIDs recorded measurements on a continuous basis during remediation and construction activities. Fifteen-minute running averages were calculated from the recorded data, and averages were compared to the action levels specified above. Action levels established in the Health and Safety Plan (HASP) were not exceeded during the RI. CAMP summary data is included as Appendix H.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

5.1 Geophysical Investigation Findings

NOVA identified anomalies suspected to be foundation elements from previous site uses. No anomalies consistent with USTs were identified during the geophysical investigation. A copy of the May 2020 geophysical report is included in Appendix C.

5.2 Geology and Hydrogeology

Provided below is a description of the geologic and hydrogeologic observations made during the RI. A groundwater elevation contour map is included as Figure 4 and soil boring logs are provided in Appendix D.

5.2.1 Historic Fill

The site is underlain by a layer of historic fill ranging in depth from about 13 feet (LB26) to 20 feet bgs (LB28). The layer is predominately characterized as gray to black fine-grained sand with varying amounts of gravel, silt, clay, brick, concrete, glass, coal ash, slag, wood, and coal.

5.2.2 Native Soil Layers

The fill layer is underlain by light- to dark-gray clay with varying amounts of silt, peat, sand, and shells. This stratigraphic unit was generally consistent across the site. The 1 to 7 foot-thick clay layer was encountered at the bottom of each boring (about 20 feet bgs) except LB28.

5.2.3 Bedrock

The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock consists of Ravenswood Garnodiorite and parts of the Hartland Formation overlain by glacial and fluvial soil deposits. Bedrock was not encountered during this RI or during previous environmental site investigations. Bedrock was encountered during a Langan geotechnical investigation at about 50 to 65 feet bgs.

5.2.4 Hydrogeology

Groundwater was observed at depths between 8.55 and 10.54 feet bgs with elevations ranging from el. 2.82 to 3.28 feet during synoptic groundwater level measurements collected from six wells during the RI. Groundwater flow was evaluated and determined to generally flow to the west towards the confluence of Newtown Creek and the East River, consistent with groundwater flow at adjoining and surrounding properties. Groundwater elevations are shown in Table 2. A map showing groundwater elevation contours and flow direction is provided as Figure 4.

5.3 Soil Findings

5.3.1 Field Observations

NYSDEC BCP Site No. C224304

Residual petroleum impacts, evidenced by odors, staining, and/or PID readings above background levels, were observed in the borings summarized in the table below.

Boring	Depth of Observed Impacts (ft bgs)	Highest Recorded PID Reading
LB13	14 to 17	178 ppm at 16.5 ft bgs
LB13S	13.5 to 14	27.5 ppm at 14 ft bgs
LB16	14 to 16	255 ppm at 14.5 ft bgs
LB17	15 to 16	9.0 ppm at 16 ft bgs
LB20	14.5 to 16	256 ppm at 14.5 ft bgs
LB21	15 to 16	41.0 ppm at 16 ft bgs
LB22	12.5 to 13.5	501 ppm at 13 ft bgs
LB24	14 to 16	145 ppm at 15 ft bgs
LB25	14.5 to 16	39.8 ppm at 15.5 ft bgs
LB27	14.5 to 18	388 ppm at 17 ft bgs

Petroleum or chemical impacts were not observed in the other RI borings. No non-aqueous phase liquid (NAPL) was observed in soil recovered from completed borings. PID readings above background are associated with weathered petroleum from a historical release, as petroleum-related VOCs were not detected above UU SCOs in these borings, with the exception of isolated detections above UU SCOs of total xylenes in LB13 and LB20, and 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in LB20. The vertical endpoint of the residual petroleum contamination was found in each boring at the top of the clay layer.

5.3.2 Analytical Results

A summary of laboratory detections for RI soil samples, with comparisons to NYSDEC Part 375 UU and RURR SCOs, is provided in Tables 3, 4, and 5. Soil sample results that exceed UU and RURR SCOs for samples collected during the RI are shown on Figures 7 and 7A. Comparison to the NYSDEC Part 375 Protection of Groundwater (PGW) SCOs is not warranted because PGW SCOs are only applicable to analytes that also exceed groundwater regulatory standards in groundwater samples collected from the site. Only 1,2-dichloroethane and manganese were detected above the NYSDEC SGVs and these same compounds were not detected in soil above the PGW SCOs. Laboratory analytical data reports are included in Appendix I.

The following sections present summaries of RI soil sample results that exceeded UU, and/or RURR SCOs and are organized by analytical parameter.

VOCs

Acetone was detected at concentrations above the UU SCOs in 12 soil samples collected from soil borings LB13, LB13N, LB16, LB18, LB19, LB20, LB21, and LB22. One or more of up to three VOCs were detected at concentrations above the UU SCOs in soil samples collected from 14 to 16 feet bgs in soil boring LB20 and from 15.5 to 17.5 feet bgs in soil boring LB13. VOCs present in soil samples were not detected at concentrations above the RURR SCOs. The table below provides concentration ranges of VOCs that were detected above the UU SCOs.

Parameter	Range of Concentrations Detected above UU SCO		UU and RURR SCOs
	Low	High	
1,2,4-Trimethylbenzene	21 mg/kg in LB20_14-16		UU: 3.6 mg/kg RURR: 52 mg/kg
1,3,5-Trimethylbenzene	8.9 mg/kg in		UU: 8.4 mg/kg
(Mesitylene)	LB20_14-16		RURR:52 mg/kg
Acetone*	0.057 mg/kg in	0.18 mg/kg in	UU: 0.05 mg/kg
	LB18_18-20	LB22_12-14	RURR:100 mg/kg
Total Xylenes	0.4 mg/kg in	3.8 mg/kg in	UU: 0.26 mg/kg
	LB13_15.5-17.5	LB20_14-16	RURR: 100 mg/kg

^{*}Acetone was not present in laboratory batch blanks, but is a common laboratory contaminant and therefore, its presence in soil results is not likely representative of site conditions.

SVOCs

One or more of up to fourteen SVOCs were detected at concentrations above UU and RURR SCOs in 13 soil samples collected from depths ranging from 1 to 17.5 feet bgs in soil borings LB13, LB13N, LB13W, LB16, LB17, LB18, LB19, LB20, LB21, LB22, LB23, LB24, and LB28. The table below provides concentration ranges of SVOCs that were detected above the UU SCOs. SVOC concentrations that were also detected above the RURR SCOs are shown in **bold**. All detections of SVOCs above SCOs were identified within the historic fill layer.

Parameter	Range of Concentrations Detected above UU SCO		UU and RURR SCOs
	Low	High	
2-Methylphenol (o-Cresol)	0.5 mg/kg in LB13W_15-17	0.57 mg/kg in LB13N_15-17	UU: 0.33 mg/kg RURR: 100 mg/kg
4-Methylphenol (P-Cresol)	1.2 mg/kg in LB13W_15-17	1.3 mg/kg in LB13N_15-17	UU: 0.33 mg/kg RURR: 100 mg/kg
1,4-Dioxane	0.14 mg/kg in LB20_14-16		UU: 0.1 mg/kg RURR: 13 mg/kg

Parameter	Range of Concentrations Detected above UU SCO		UU and RURR SCOs
	Low	High	
Benzo(a)Anthracene	1.3 mg/kg in LB28_14.5-15.5	45 mg/kg in LB16_3-5	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(a)Pyrene	1.2 mg/kg in LB17_3-5	45 mg/kg in LB16_3-5	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(b)Fluoranthene	1.5 mg/kg in LB28_14.5-15.5	53 mg/kg in LB16_3-5	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(k)Fluoranthene	0.86 mg/kg in LB16_8-10	23 mg/kg in LB16_3-5	UU: 0.8 mg/kg RURR: 3.9 mg/kg
Chrysene	1.1 mg/kg in LB28_14.5-15.5	43 mg/kg in LB16_3-5	UU: 1 mg/kg RURR: 3.9 mg/kg
Dibenz(a,h)Anthracene	0.46 mg/kg in LB24_10-12	7.5 mg/kg in LB16_3-5	UU: 0.33 mg/kg RURR: 0.33 mg/kg
Dibenzofuran	9.5 mg/kg in SODUP01_05062020 (duplicate of LB17_3- 5)	14 mg/kg in LB16_3-5	UU: 7 mg/kg RURR: 59 mg/kg
Fluoranthene	140 mg/kg in LB16_3-5		UU: 100 mg/kg RURR: 100 mg/kg
Indeno(1,2,3-c,d)Pyrene	0.67 mg/kg in LB28_14.5-15.5	26 mg/kg in LB16_3-5	UU: 0.5 mg/kg RURR: 0.5 mg/kg
Naphthalene	16 mg/kg in LB13W_15-17		UU: 12 mg/kg RURR: 100 mg/kg
Phenanthrene	160 mg/kg in LB16_3-5		UU: 100 mg/kg RURR: 100 mg/kg
Phenol	0.7 mg/kg in LB13W_15-17	0.76 mg/kg in LB13N_15-17	UU: 0.33 mg/kg RURR: 100 mg/kg

^{*}SODUP01_050620 is a duplicate of the parent sample LB17_3-5.

Pesticides

One pesticide was detected at concentrations above the UU SCOs in a soil sample collected from 8 to 10 feet bgs in soil boring LB16. The table below provides the concentration of the pesticide that was detected above the UU SCOs. Pesticides were not detected above RURR SCOs.

Parameter	Concentration Detected above UU SCO	UU and RURR SCOs
4,4'-DDD	0.028 mg/kg in LB16_8-10	UU: 0.0033 mg/kg RURR: 13 mg/kg

Herbicides and PCBs

NYSDEC BCP Site No. C224304

Herbicides and PCBs were not detected at concentrations above the UU, or RURR SCOs in RI soil samples.

Metals

One or more of nine metals were detected at concentrations above the UU and/or RURR SCOs in soil samples ranging from 1 to 20 feet bgs in soil borings LB16, LB17, LB18, LB19, LB20, LB21, and LB22. Metals in soil detected at concentrations above the RURR SCOs were identified in soil borings LB16, LB17, LB18, LB20, and LB22. The table below provides concentration ranges of metals that were detected above the UU and RURR SCOs. Metals concentrations that were also detected above the RURR SCOs are shown in **bold**.

Parameter	Range of Concentrations Detected above UU SCO		UU and RURR SCOs
	Low	High	
Arsenic	13.9 mg/kg in	16.5 mg/kg in	UU: 13 mg/kg
Arsenic	LB21_15-17	LB18_4-6	RURR: 16 mg/kg
Barium	484 mg/kg in LB18_4-6		UU: 350 mg/kg RURR: 400 mg/kg
Chromium, Hexavalent	1.1 mg/kg in LB16_3-5	2.4 mg/kg in LB16_8-10 and LB18_18-20	UU: 1 mg/kg RURR: 110 mg/kg
Copper	50.7 mg/kg in	164 mg/kg in	UU: 50 mg/kg
Сорреі	LB19_6-8	LB17_3-5	RURR: 270 mg/kg
Lead	71.5 mg/kg in	10,900 mg/kg in	UU: 63 mg/kg
Lead	LB19_6-8	LB18_2-4	RURR: 400 mg/kg
Mercury	0.282 mg/kg in	4.97 mg/kg in	UU: 0.18 mg/kg
iviercury	LB16_6-8	LB17_8-10	RURR: 0.81 mg/kg
Nickel	32.8 mg/kg in	43.8 mg/kg in	UU: 30 mg/kg
	LB21_15-17	LB16_15-17	RURR: 310 mg/kg
Selenium	4.27 mg/kg in LB22_12-14		UU: 3.9 mg/kg
			RURR: 180 mg/kg
Zinc	115 mg/kg in	531 mg/kg in	UU: 109 mg/kg
	LB21_15-17	LB17_15-16	RURR: 10,000 mg/kg

TCLP Metals

Concentrations of TCLP arsenic and mercury were not detected above their maximum concentrations for the toxicity characteristic. Concentrations of TCLP lead above the maximum concentration for the toxicity characteristic of 5 milligrams per liter (mg/L) was detected in LB17 from 1 to 3 feet bgs (8 mg/L), LB18 from 2 to 4 feet bgs (8.17 mg/L), and LB22 from 4 to 6 feet bgs (9.01 mg/L). All three samples were collected from the historic fill interval.

PFAS

Perflourooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were detected in 3 of the 18 analyzed soil samples.

Parameter	Range of Concentrations Detected		
Parameter	Low	High	
PFOS	490 nanograms per kilogram (ng/kg) in LB21_1-3	590 ng/kg in LB16_8-10	
PFOA	1,700 ng/kg in LB18_4-6		

5.4 Groundwater Findings

5.4.1 Field Observations

Prior to sampling, monitoring well headspaces were measured with a PID. Monitoring well headspace PID measurements ranged from 0.0 to 23.1 ppm (highest reading in MW13) during sampling. A petroleum-like odor was observed in monitoring well MW13.

5.4.2 Analytical Results

A summary of laboratory detections for RI groundwater samples, with comparisons to NYSDEC SGVs, is presented in Tables 6, 7, and 8. Groundwater sample results that exceeded NYSDEC SGVs for RI samples are shown on Figure 8. Groundwater sampling logs are included in Appendix E. Laboratory analytical data reports are included in Appendix I.

The following sections present summaries of RI groundwater sample results that exceeded NYSDEC SGVs and are organized by analytical parameter.

VOCs

1,2-dichloroethane was detected at a concentration of 1 μ g/L above the NYSDEC SGV of 0.6 μ g/L in the groundwater sample collected from monitoring well MW16. No other VOCs exceeded the NYSDEC SGVs.

SVOCs and 1,4-Dioxane

SVOCs were not detected at concentrations above NYSDEC SGVs in RI groundwater samples.

There is currently no groundwater standard for 1,4-dioxane in New York State. The 1,4-dioxane results were compared to the screening value (350 ng/L) provided in NYSDEC's Sampling for 1,4-Dioxane and PFAS Under NYSDEC's Part 375 Remedial Programs (June 2019). 1,4-dioxane was detected below the screening value at a concentration of 100 ng/L in groundwater samples from monitoring wells MW13 and MW22.

Total Metals

Total manganese was detected at concentrations above the NYSDEC SGV of 300 μ g/L in groundwater samples collected from monitoring wells MW13, MW13N, MW16, MW18, and MW22. The highest concentration of total manganese was 924 micrograms per liter (μ g/L) in GWDUP01_052020, which is a duplicate of parent sample MW18_052020. No other total metals exceeded the NYSDEC SGVs.

Dissolved Metals

Dissolved manganese was detected at concentrations above its NYSDEC SGV of 300 μ g/L in groundwater samples collected from monitoring wells MW13, MW13N, MW18, and MW22. The highest concentration of dissolved manganese was 934 μ g/L in GWDUP01_052020, which is a duplicate of parent sample MW18_052020. No other dissolved metals exceeded the NYSDEC SGVs.

PCBs

Total PCBs were detected at a concentration of 1.5 μ g/L in MW13N_051620, exceeding the NYSDEC SGV of 0.09 μ g/L. The detection of PCBs in this groundwater sample was suspected to be a result of suspended/entrained sediment in the groundwater sample as turbidity levels were detected above 100 NTU at the time of sampling. The sample was reanalyzed after lab filtration and no PCBs were detected in the sample.

Pesticides and Herbicides

Pesticides and herbicides were not detected at concentrations exceeding the NYSDEC SGVs in RI groundwater samples.

PFAS

There are currently no groundwater standards for PFAS compounds in New York State. PFAS results were compared to screening values provided in the NYSDEC's Guidelines for Sampling and Analysis of PFAS (January 2020). The NYSDEC has a recommended guidance of 10 nanograms per liter (ng/L) for PFOA and PFOS, 100 ng/L for other PFAS, and 500 ng/L for total PFAS. PFOA was detected above the recommended guidance of 10 ng/L in monitoring wells MW13, MW13N, MW16, MW18, MW19, and MW22 with a maximum detected concentration of 170 ng/L in monitoring well MW18. PFOS was detected above the recommended guidance of 10 ng/L in monitoring wells (PFPeA) was detected above the recommended guidance of 100 ng/L in monitoring wells MW18 and MW19 with a maximum detected concentration of 190 ng/L in monitoring well MW19. Perfluorohexanoic Acid (PFHxA) was detected above the recommended guidance of 100 ng/L in monitoring well MW19. Total PFAS were detected above the recommended guidance of 100 ng/L in MW19 only; the detected concentration of

total PFAS in this well is 505 ng/L. Groundwater sample analytical results for emerging contaminants are summarized in Table 8.

5.5 Soil Vapor Findings

NYSDEC BCP Site No. C224304

5.5.1 Field Observations

Post-purge PID readings ranged from 0.1 ppm (SV03) to 1.2 ppm (SV05).

5.5.2 Analytical Results

Soil vapor samples are summarized in Table 9 and shown on Figure 9. No standard currently exists for soil vapor in New York State. The samples were evaluated using the NYSDOH Air Guidance Values (AGVs) and Decision Matrices published in the 2006 NYSDOH Soil Vapor Intrusion Guidance (updated in 2017).

Soil vapor and ambient air findings are summarized below:

- A total of 25 petroleum, chlorinated, or ketone VOCs were detected in soil vapor samples. Total VOC concentrations ranged from 54.2 micrograms per cubic meter (μg/m³) in SV01 to 1,450 μg/m³ in SV05.
- The predominant VOC contributing to the elevated total VOC counts is acetone.
 Acetone was not present in laboratory batch blanks, but is a common laboratory
 contaminant and therefore, its presence in soil results is not likely representative of site
 conditions.
- Total concentrations of petroleum-related VOCs, including benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, and MTBE, are under 100 $\mu g/m^3$ and considered incidental and not indicative of a petroleum release.
- Chlorinated VOCs, including 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, chlorobenzene, chloroform, dichlorodifluoromethane, PCE, and trichlorofluoromethane, were detected in soil vapor samples and may be related to an off-site source. The highest total concentrations of chlorinated VOCs were located in the southern part of the site.

Soil vapor samples do not have a direct comparison criteria. In the absence of indoor air samples, soil vapor sample results were applied to the lowest concentration for which monitoring or mitigation is recommended in Matrices A, B, and C of the NYSDOH Guidance for Evaluating Soil Vapor in the State of New York. The Matrices provide guidance on eight VOCs: carbon tetrachloride, 1,1-dichloroethene, cis-1,2-dichloroethene, trichloroethene (TCE), methylene chloride, tetrachloroethene (PCE),1,1,1-trichloroethane, and vinyl chloride. Seven of the eight VOCs evaluated under the Matrices were not detected in soil vapor samples. PCE was detected in soil vapor sample SV05 at a concentration (1.8 µg/m³) below the minimum concentration requiring mitigation. The recommended action based on soil vapor

concentrations at the site is "no further action." No VOCs, including PCE exceeded the NYSDOH AGVs in SV05.

5.6 QA/QC Sample Results

Duplicate, field blank, emerging contaminant field blank, MS/MSD, and trip blank samples collected during the RI are detailed in Table 1. Duplicate, field blank, and MS/MSD samples were generally collected at a frequency of 1 per 20 primary samples. Trip blank samples were generally collected at a frequency of 1 per day of VOC sampling. Emerging contaminant field blanks were generally collected at a frequency of 1 per day of emerging contaminant sampling. QA/QC sample results were also evaluated as part of data validation.

5.7 Data Usability

New York Analytical Services Protocols (ASP) Category B laboratory reports for the soil, groundwater, and soil vapor samples collected during the September 2019 Subsurface Investigation and RI were provided by Eurofins and were reviewed by a Langan data validator. Completeness, defined as the percentage of analytical results that are judged to be valid, is 100% for each sample set. Copies of the DUSRs are provided in Appendix G.

5.8 Evaluation of Areas of Concern

This section discusses the results of the September 2019 Subsurface Investigation and the RI with respect to the AOCs described in Section 3.4. The RURR SCOs are the applicable soil standards for comparison, based on the anticipated use of the site as a mixed-use residential and commercial building. The results were compared to UU SCOs to evaluate whether unrestricted land use is practical. TCLP metals results were compared to the United States Environmental Protection Agency (USEPA) Resource Conservation and Recovery Act (RCRA) Code of Federal Regulations (CFR) Part 261 Maximum Concentration of Contaminants for the Toxicity Characteristic to evaluate the presence of hazardous waste.

5.8.1 AOC 1: Prior Site Use

Historical operations at the site include coal and lumber storage for more than 100 years from the late 1800s until about 1980; heavy construction equipment, machinery, and materials storage starting in 1980; and truck/vehicle parking and scaffolding materials storage until the 2000s.

AOC 1 Findings Summary

Investigation of AOC 1 included the completion of all soil borings and monitoring wells. Contaminants of concern associated with AOC 1 include polyaromatic hydrocarbons (PAHs) and metals, specifically arsenic and copper.

Fourteen SVOCs were detected above UU SCOs in soil samples from across the site. Nine SVOCs, specifically PAHs were detected above RURR SCOs in borings at depths ranging from

1 to 17.5 feet bgs. All detections of SVOCs above UU and/or RURR SCOs were identified within the historic fill layer. Total SVOCs were detected at a maximum concentration of 789 mg/kg in a sample collected from LB16 from 3 to 5 feet bgs. Ten metals (arsenic, barium, hexavalent chromium, copper, lead, mercury, nickel, selenium, and/or zinc) were detected above UU SCOs in soil borings across the site. Five metals (arsenic, copper, barium, lead, and/or mercury) were detected above RURR SCOs in borings LB01, LB02, LB13, LB16, LB17, LB18, LB20, and LB22 from depths ranging from 1 to 17.5 feet bgs.

PAHs, arsenic, copper, barium, lead, or mercury were not detected in groundwater samples above the NYSDEC SGVs.

AOC 1 Conclusions

Based on the analytical results, prior site use-related impacts appear across the site from depths ranging from 1 to 17.5 feet bgs (top of clay layer).

Arsenic and copper were historically used in preservative mixtures to protect lumber from weathering, microbes and insects. Concentrations of these metals detected above RURR SCOs in borings across the site are likely related to long-term site use as a lumber storage yard from the late 1800s to 1980s. The presence of barium, lead, and mercury detected above RURR SCOs are more likely related to historic fill.

PAHs are commonly found in the presence of coal and coal byproducts. Coal, coal ash, and slag were observed in borings across the site. Nine PAHs were detected above RURR SCOs across the site. The presence of PAHs detected above RURR SCOs and coal, coal ash, and slag in borings across the site are likely related to prior site use as a coal storage yard and/or historic fill material from the late 1800s to 1950s. The presence of PAHs and metals in soil is not considered a source of groundwater contamination because PAHs and metals were not detected above NYSDEC SGVs in groundwater (with exception to manganese, which is naturally occurring).

5.8.2 AOC 2: Petroleum-Impacted Soil

The September 2019 Subsurface Investigation identified petroleum-impacted soil in one soil boring (LB13) located in the northeastern portion of the site. Spill No. 19-06491 was reported on September 25, 2019 based on field observations and subsequent analytical data review. Contaminants of concern associated with AOC 2 include petroleum-related VOCs, specifically total xylenes, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.

<u>AOC 2 Findings Summary</u>

Investigation of AOC 2 included the completion of soil borings LB02, LB03, LB05, LB06, LB08, LB07, LB13, LB13N, LB13W, LB13S, LB16, LB17, and LB20 through LB28, and monitoring wells MW13, MW13N, MW16, and MW22. AOC 2 did not include soil borings LB18, LB19, LB23, LB26, and LB28 because of the lack of petroleum impacts in these borings.

Petroleum-like odors, staining, and/or elevated PID readings were observed in ten soil borings (LB13, LB13S, LB16, LB17, LB20, LB21, LB22, LB24, LB25, and LB27) from 12.5 to 18 feet bgs. The highest PID reading observed was 501 ppm at 13 feet bgs in LB22 located near the center of the site. The vertical extent of petroleum impacts were encountered in each boring at the top of a clay layer. Three VOCs (total xylenes, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene) were detected at concentrations above the UU SCOs, but below the RURR SCOs, in soil samples collected from 14 to 16 feet bgs in LB20, and from 4 to 6 feet bgs and 15.5 to 17.5 feet bgs in LB13. One petroleum-related SVOC (naphthalene) was detected above its UU SCO, but below its RURR SCO in LB07 and LB13W from 6 to 8 feet bgs and 15 to 17 feet bgs, respectively. Petroleum-related VOCs were not identified in groundwater above the NYSDEC SGVs, therefore, the residual petroleum impacts have not impaired groundwater quality.

Petroleum-like odors and a PID reading of 23.1 ppm was observed in the monitoring well headspace of MW13. Petroleum-related VOCs and naphthalene were not detected above SGVs in MW13. Monitoring well MW16 exhibited a chemical-like odor during the sampling event.

Total concentrations of petroleum-related VOCs, including benzene, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, and MTBE, were detected in soil vapor samples. Total VOC petroleum-related VOC concentrations and are under 100 μ g/m³ and considered incidental and not indicative of a petroleum release.

AOC 2 Conclusions

Based on the analytical results and field observations, subsurface, residual petroleum impacts encompass a 24,000-square foot area and were present from 12.5 to 18 feet bgs (top of clay layer), with exception of two borings LB07 and LB13 where petroleum impacts were identified above the groundwater table from 6 to 8 feet bgs and 4 to 6 feet bgs, respectively. Petroleum impacts, as evidenced by staining, odors, PID readings above background, and/or analytical data were identified in borings LB07, LB13, LB13S, LB16, LB17, LB20, LB21, LB22, LB24, LB25, and LB27. The bottom of petroleum impacts were identified at the top of the clay layer in each soil boring where petroleum impacts were observed. The horizontal extent of petroleum impacts was delineated by the absence of petroleum impacts in soil borings LB18, LB19, LB23, LB26, and LB28.

The source of petroleum impacts at the site is likely related to a historical petroleum release. Odors, staining, and PID readings above background were identified above the groundwater table at LB13. Petroleum-related VOCs were not identified in soil or groundwater above the NYSDEC SGVs, therefore, the residual petroleum impacts have not impaired groundwater quality.

5.8.3 AOC 3: Historic Fill

Historical maps from the mid to late 1800s show the original shoreline of Newtown Creek to be present-day Commercial Street, indicating the site lies entirely on reclaimed land as the result of historical filling activities. Contaminants of concern associated with AOC 3 include SVOCs, metals.

AOC 3 Findings Summary

Investigation of AOC 3 included the completion of all soil borings and monitoring wells. Historic fill was identified from surface grade to depths between 13 to 20 feet bgs (boring termination depth or top of clay layer) and is composed of gray to black fine-grained sand with varying amounts of gravel, silt, clay, brick, concrete, glass, coal ash, slag, wood, and coal.

Fourteen SVOCs were detected above the UU SCOs in soil samples from across the site. Nine SVOCs were detected above the RURR SCOs in borings across the site from depths ranging from 1 to 17.5 feet bgs. Ten metals were detected above the UU SCOs in soil borings across the site. Five metals, arsenic, copper, barium, lead, and/or mercury were detected above the RURR SCOs in borings LB01, LB02, LB13, LB16, LB17, LB18, LB20, and LB22 from depths ranging from 1 to 17.5 feet bgs. SVOCs and metals above the RURR SCOs were confined to the historic fill layer.

Based on selective sampling for TCLP lead, hazardous concentrations of lead are present in the northeastern (LB17 from 1 to 3 feet bgs), central (LB22 from 4 to 6 feet bgs), and southern (LB18 from 2 to 4 feet bgs) parts of the site.

Dissolved lead concentrations did not exceed the NYSDEC SGVs in any groundwater samples, including at MW18 and MW22 (located in borings LB18 and LB22, respectively); therefore, the hazardous concentrations of lead in these localized area do not appear to be impacting groundwater quality.

Total and/or dissolved manganese were detected above the NYSDEC SGVs in five of six monitoring wells.

AOC 3 Conclusions

Based on the analytical results and field observations, historic fill was identified from surface grade to depths between 13 to 20 feet bgs. Field observations of coal, coal ash, concrete, wood, glass, and slag are consistent with historic fill identified at adjoining and surrounding properties. SVOCs and metals above SCOs were identified within the historic fill interval site wide. SVOCs and metals were not identified within the native soil. Hazardous concentrations of lead was identified in historic fill in three borings (LB17, LB18, and LB22) up to 6 feet bgs. Additional delineation sampling at these three areas is anticipated in conjunction with the remedy.

Manganese is characteristic of brackish groundwater conditions, considered naturally-occurring, and related to the proximity of the site to the East River and Newtown Creek.

5.8.4 AOC 4: Historical Use of Surrounding Properties

The former NuHart Plastic Manufacturing facility, an NYSDEC inactive hazardous waste disposal site (State Superfund Site #224136), is located about 100 feet south of the site. The NuHart Plastic Manufacturing facility operated from 1950 until about 2004, and was primarily used for the production, storage, and shipping of plastic and vinyl products. Previous investigations performed at the former NuHart Plastic Manufacturing facility found phthalates, paraffinic oil/mineral oil, and TCE in soil, groundwater, and soil vapor. Historic use of surrounding properties also includes light commercial and industrial use such as large item storage and transport areas, and cargo truck repair. Contaminants of concern associated with AOC 4 include chlorinated VOCs.

AOC 4 Findings Summary

Investigation of AOC 4 included the completion of all soil borings, monitoring wells, and vapor points.

Chlorinated VOCs were not detected in soil samples above SCOs. One chlorinated VOC, 1,2-dichloroethane, was detected in groundwater above SGVs. Chlorinated VOCs including 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, chlorobenzene, chloroform, dichlorodifluoromethane, PCE, and trichlorofluoromethane, were detected in soil vapor samples with the highest total concentrations in SV03 (29.8 μ g/m³) , located in the southern part of the site. PCE was detected in soil vapor sample SV05 at a concentration of 1.8 μ g/m³.

The July 2015 Remedial Investigation Report prepared by Ecosystem Strategies, Inc. for the NuHart site reported the presence of an on-site source area of TCE in soil that has adversely impacted groundwater and soil vapor quality, conditions which have also migrated off-site in the direction of the 45 Commercial Street site. The July 2015 RIR reported TCE concentrations in groundwater and soil vapor at the NuHart site as high as 33,000 μ g/L and 43,000 μ g/m³. The edge of the TCE groundwater plume (with concentrations between 100 and 1,000 μ g/L) in groundwater emanating from the NuHart site is located less than 100 feet hydraulically upgradient of the site, and was not fully delineated at Commercial Street. In fact, TCE was detected in groundwater at two wells above the NYSDEC SGV on the western side of Commercial Street opposite the NuHart site. The TCE source at the NuHart site also affected soil vapor quality on the same block (Block 2484, bound by Commercial and Clay Streets) that adjoins the NuHart site and the 45 Commercial Street site; TCE concentrations in soil vapor on this block were detected as high as 6,130 μ g/m³.

AOC 4 Conclusions

The detection of 1,2-dichloroethane in a groundwater sample from monitoring well MW16 may be related to the NuHart Site, which identified 1,2-dichloroethane above SGVs in groundwater. 1,2-dichloroethane was not identified in site soil and may not be from an on-site source.

While chlorinated VOCs were not detected in soil vapor at the site at concentrations for which mitigation is recommended, subsurface conditions are variable. The edge of the TCE groundwater plume in groundwater emanating from the NuHart site is located less than 100 feet hydraulically up-gradient of the site, and was not delineated at Commercial Street; therefore, the TCE groundwater plume may have the potential to impact soil vapor quality. The extents of the TCE contamination in groundwater and soil vapor related to the NuHart site (including on-site and off-site areas) are shown on Figure 10. Although an NYSDEC Record of Decision was issued for the NuHart site, there is no established schedule for implementation of the remedy. Chlorinated VOCs, including TCE, PCE, cis-1,2-DCE, and 1,1-dichloroethane) were also identified in soil vapor at surrounding Greenpoint Landing development sites (Parcel G1 at 37 Blue Slip, Parcel G2 at 21 Commercial Street, Parcel H3 at 1 Bell Slip) (Figure 10) at which remediation was completed under the New York City Office of Environmental Remediation [NYCOER] E-Designation or Voluntary Cleanup Programs [VCP]); the presence of chlorinated VOCs in soil vapor is an area-wide concern.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site. A completed copy of the DER-10 Appendix 3C decision key is included as Appendix J.

6.1 Current Conditions

The site encompasses an area of about 44,600 square feet, the western portion of which is currently used as a staging area for construction trailers and equipment for the redevelopment of the adjoining Parcel H3. The eastern portion is currently a vacant lot.

6.2 Post Redevelopment Conditions

The planned redevelopment project includes the construction of one mixed-use residential and commercial building with 374 residential units (100% affordable housing for families earning under 90% of the annual median income) and ground floor retail. The building will comprise a 6-story podium (no cellar) with a 22-story tower set back from Commercial Street. The building footprint is about 32,000 square feet in area and the remainder of the tax lot (12,600 square feet) will be open space with a mixture of hardscape and landscaped areas.

6.3 Conceptual Site Model

A conceptual site model (CSM) was developed based on the RI findings and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways.

6.3.1 Potential Sources of Contamination

Potential sources of contamination include historic fill, prior site use, a historical release of petroleum and historical off-site uses.

<u>Historic Fill</u> - The site-wide presence of historic fill was established as a source of SVOCs and metals in soil, including detections of hazardous lead concentrations.

<u>Prior Site Usage</u>- Historical site use as a coal and lumber storage yard was established as a source of SVOCs and metals in soil.

<u>Petroleum-Impacted Soil</u> - A historical petroleum release was established as a source of SVOCs and VOCs in soil, groundwater and soil vapor. Physical indicators of petroleum impacts (staining, odors, PID readings) in soil also support this conclusion.

<u>Historical Off-site Uses</u> – The NuHart Plastic Manufacturing facility was established as a source of chlorinated VOCs in soil vapor and groundwater.

6.3.2 Exposure Media

Impacted media include soil, groundwater and soil vapor. Soil contains VOCs, SVOCs and metals at concentrations above regulatory standards. VOCs and emerging contaminants were identified in groundwater. VOCs, including petroleum-related and CVOCs were detected in soil vapor at the site.

6.3.3 Receptor Populations

Site access is currently limited to authorized construction personnel in the staging area and authorized visitors in the vacant part of the site. Under future construction conditions, human receptors may include construction and remediation workers, authorized guests, and the public adjacent to the site. Under future use conditions, human receptors include residents, visitors and customers at the residential/commercial building and the public adjacent to the site.

6.4 Potential Exposure Pathways – On-Site

6.4.1 Current Conditions

The site footprint is covered by an impervious concrete and/or asphalt-paved lot; therefore, exposure to contaminated soil/fill and soil vapor is not anticipated except through cracks or holes in asphalt or concrete via dermal absorption, inhalation, and/or ingestion pathways. Groundwater in this area of New York City is not used as a potable water source.

There is a potential exposure pathway to contaminated soil/fill, groundwater and soil vapor during site investigation through dermal absorption, inhalation, and/or ingestion. Activity is limited to trained investigation personnel and is performed under a site-specific Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) with provisions to minimize exposure risk, including vapor and dust suppression techniques.

6.4.2 Construction/Remediation Condition

Construction and remediation may result in potential exposures to contaminated soil, groundwater or soil vapor. The implementation of a HASP and CAMP, as well as vapor and dust suppression techniques, will limit the exposure pathways presented by potential dermal absorption, ingestion, and inhalation.

6.4.3 Proposed Future Conditions

Exposure pathways to residual soil contamination will be incomplete unless the composite cover system is disturbed. The potential for soil vapor exposure risk will be mitigated through

an active sub-membrane depressurization (SMD) system beneath the proposed building foundation.

There is no pathway for ingesting groundwater since the site and surrounding areas obtain their drinking water supply from surface water reservoirs located upstate. The site will have an easement/deed restriction for groundwater use to prevent exposure to any residual contamination remaining after the completion of the remedy.

6.5 Potential Exposure Pathways – Off-Site

6.5.1 Current Conditions

The site is covered with impervious, concrete and/or asphalt surface cover, thus it is unlikely that contaminated site soil will be exposed and disturbed and will migrate off-site in particulate form. Contaminated soil vapor that may migrate through concrete and asphalt cracks would be expected to dissipate readily in ambient air and not present an exposure risk to off-site receptors. The limited groundwater impacts identified on-site could potentially migrate off-site, but since groundwater in the surrounding area is not used as a potable water source, no complete exposure pathway exists.

6.5.2 Construction/Remediation Condition

Contaminated soil has the potential to be transported off-site by wind in the form of dust or by the tires of vehicles or equipment leaving the site during development, and create an exposure risk to the public adjacent to the site during construction. Contaminated soil vapor would be expected to dissipate readily in ambient air and not present an exposure risk to off-site receptors. Nonetheless, air monitoring will be conducted for particulates (i.e., dust) and VOCs during all intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit the potential for off-site migration of soil and vapors. Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site. A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.

The limited groundwater impacts identified on-site could potentially migrate off-site, but since groundwater in the area is not used as a potable water source, no complete exposure pathway exists.

6.5.3 Proposed Future Conditions

The potential off-site migration of site contaminants in soil, groundwater and soil vapor is not expected to result in a complete exposure pathway for future conditions because the site will be covered with a building and capping system that will prevent exposure to off-site receptors of soil and soil vapor. Further, groundwater in the area is not used as a potable water source, therefore, no complete exposure pathway exists to impacted groundwater.

6.6 Evaluation of Human Health Exposure

Based on the CSM and the review of environmental data, complete on-site and off-site exposure pathways appear to be present, in the absence of institutional and engineering controls, under current, construction and remediation, and future conditions. The complete exposure pathways indicate there is a risk of exposure to humans from site contaminants via exposure to soil, groundwater and potentially to soil vapor if institutional and engineering controls are not implemented.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the site is provided below.

6.6.1 Current Conditions

Contaminant sources include 1) historic fill with varying levels of VOCs, PAHs and metals; 2) historical site uses that may have contributed to presence of VOCs, PAHs and metals in historic fill; 3) residual petroleum contamination in soil, groundwater and soil vapor; and 4) historical offsite sources that contributed to emerging contaminants in groundwater and VOCs in soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), contaminated groundwater flow (dermal contact), and volatilization of contaminants from the soil and groundwater matrices to the soil vapor phase (inhalation).

Under current conditions, the likelihood of soil, groundwater or soil vapor exposure to on-site and off-site humans is limited, as the site is capped with impervious surface cover and no buildings are currently present on-site. Exposure to contaminants in soil, groundwater and soil vapor via dermal contact, ingestion or inhalation during site investigation is minimized, as these activities would occur under a HASP with CAMP to limit exposure to site workers and the community. In addition, groundwater is not used as potable water source, precluding any complete exposure pathway to impacted groundwater.

6.6.2 Construction/Remediation Activities

During development and remediation, points of exposure will include disturbed and exposed historic fill during excavation and dust and organic vapors generated during excavation. Groundwater is not expected to be encountered during excavation operations based on foundation designs. Potential routes of exposure will include ingestion and dermal absorption of historic fill, inhalation of organic vapors arising from contaminated soil and groundwater, and inhalation of dust derived from historic fill. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety

measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to prevent off-site soil tracking, maintaining site security, and site workers wearing the appropriate personal protective equipment (PPE).

In accordance with a Remedial Action Work Plan (RAWP), which will include a HASP, a Soil/Materials Management Plan (SMMP), and a CAMP, measures such as conducting an airmonitoring program, donning PPE, covering soil stockpiles, altering work sequencing, maintaining a secure construction entrance, proper housekeeping, and applying vapor and dust suppression measures to prevent off-site migration of contaminants during construction will be implemented to prevent completion of these potential exposure pathways to both on- and off-site receptor populations.

6.6.3 Planned Future Conditions

For the planned future conditions, residual contamination will likely remain on-site in soil, groundwater and soil vapor. Institutional and engineering controls will be included as elements of the site remedy, including an engineered site-wide composite cover system and an active SMD system. These controls will be maintained in perpetuity under a Site Management Plan (SMP) and will preclude exposure to on- and off-site receptor populations.

6.6.4 Human Health Exposure Assessment Conclusions

- 1. Under current conditions, there is a marginal risk for human exposure to site contaminants. The primary exposure pathways are for dermal contact, ingestion, and inhalation of soil, soil vapor, or groundwater by site investigation workers. The exposure risks would be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures outlined in the site-specific HASP and CAMP during investigation activities.
- 2. In the absence of a HASP and CAMP, there is a moderate risk of exposure during construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion, and inhalation of contaminated soil/fill, groundwater and soil vapor by construction workers.
 - b. Dermal contact, ingestion, and inhalation of soil/fill (airborne dust) and organic vapors by the community in the vicinity of the site.

These exposure risks would be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression, and site security measures outlined in a site-specific HASP.

3. The existence of a complete exposure pathway for site contaminants to human receptors during planned future conditions is unlikely, as sources of contamination will be addressed during the construction/remediation phase and residual contamination will

be managed with an engineered composite cover system, an active SMD system and an SMP.

- 4. Regional groundwater is not used as a potable water in Kings County so there is no complete exposure to regional groundwater contaminants.
- 5. It is possible that complete exposure pathways exist for the migration of site contaminants to off-site human receptors for current, construction/remediation phase, or future conditions. Monitoring and control measures have been and will continue to be used during investigation and construction to prevent completion of this pathway. Under future conditions, the site will be remediated and engineering and institutional controls will be implemented, if necessary, to prevent completion of this pathway.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater, and soil vapor contamination as derived from a combination of field observations and analytical data that were discussed in Section 5.0.

7.1 Soil Contamination

Soil contamination is divided into the following classifications:

- 1. Historic fill
- 2. Petroleum-impacted soil

7.1.1 Historic Fill

Historic fill contains several SVOCs, mainly PAHs (including 2-methylphenol (o-cresol), 4methylphenol (p-cresol), benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, dibenzofuran, fluoranthene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene, and phenol), and metals (arsenic, barium, hexavalent chromium, copper, lead, mercury, nickel, selenium, and zinc) at concentrations above the UU and/or RURR SCOs. Hazardous concentrations of lead were in detected in three soil borings up to 6 feet bgs. Additional delineation sampling at these three areas is anticipated in conjunction with the remedy. Historic fill was identified site-wide and ranges in depth from about 13 feet to 20 feet bgs based on visual observations and analytical results. SVOCs and metals above the RURR SCOs were confined to the historic fill layer and SVOCs and metals above standards were not identified in native soil.

7.1.2 Petroleum-impacted soil

Residual petroleum contamination (as evidenced by PID readings above background, odors, staining, and/or analytical data) were observed in soil boring LB07 from 6 to 8 feet bgs, LB13 from 4 to 6 feet bgs, and in 10 soil borings (LB13, LB13S, LB16, LB17, LB20, LB21, LB22, LB24, LB25, and LB27) from 12.5 to 18 feet bgs across the site. The maximum PID reading, 501 ppm, was recorded in LB22 at 13 feet bgs. Analytical results for soil samples collected from 4 to 6 feet and 14 to 16 feet bgs in LB13 and 15.5 to 17.5 in LB20 exhibited petroleum-related VOCs at concentrations above the UU SCOs. Analytical results for the soil samples collected from LB07 from 6 to 8 feet bgs and LB13W from 15 to 17 feet bgs exhibited a petroleum-related SVOC (naphthalene) at a concentration above the UU SCOs. Based on the analytical results and field observations, subsurface, residual petroleum impacts encompass a 24,000 square foot area. A historical petroleum release is the likely source of the residual petroleum contamination in the lower part of the historic fill layer.

Petroleum-related VOCs were not identified above the NYSDEC SGVs and are not affecting groundwater quality.

7.2 Groundwater Contamination

Groundwater contamination is divided into the following classifications:

- 1. CVOC-impacted groundwater
- 2. Metals-impacted groundwater
- 3. Emerging contaminants in groundwater

7.2.1 CVOC-Impacted Groundwater

Petroleum-related VOCs were not identified in soil and not above the NYSDEC SGVs in groundwater. One chlorinated VOC, 1,2-dichloroethane, was detected at a concentration of 1 μ g/L above the NYSDEC SGV of 0.6 μ g/L in well MW16 and may be attributed to the former NuHart Plastic Manufacturing facility.

7.2.2 Metals-Impacted Groundwater

Dissolved manganese was detected in samples collected from four of six monitoring wells at concentrations above the NYSDEC SGVs. The presence of manganese in groundwater is attributed to naturally occurring, brackish groundwater conditions.

7.2.3 Emerging Contaminants in Groundwater

PFOA was detected above the recommended guidance of 10 ng/L in groundwater samples from monitoring wells MW13, MW13N, MW16, MW18, MW19, and MW22. PFOS was detected above the recommended guidance of 10 ng/L in monitoring well MW18. PFPeA was detected above the recommended guidance of 100 ng/L in monitoring wells MW18 and MW19. PFHxA was detected was detected above the recommended guidance of 100 ng/L in monitoring well MW19. Total PFAS were detected above the recommended guidance of 500 ng/L in MW19.

1,4-dioxane was detected below the screening value of 350 ng/L at a concentration of 100 ng/L in groundwater samples from monitoring wells MW13 and MW22.

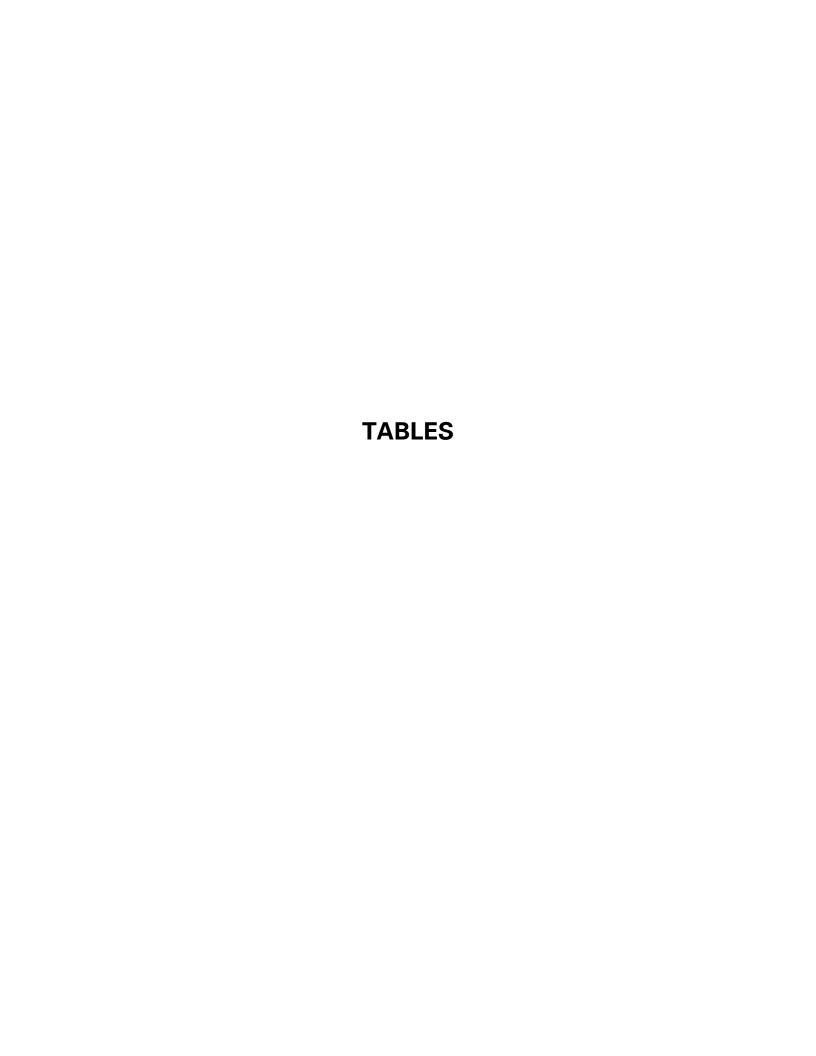
No source areas of PFAS and 1,4-dioxane were identified on-site. The source of PFAS and 1,4-dioxane is unknown.

7.3 Soil Vapor Contamination

Petroleum-related and chlorinated VOCs were identified in soil vapor samples across the site. VOCs were not identified above NYSDOH AGVs or minimum concentration requiring mitigation. The source of petroleum-related VOCs may be related to an on-site source. The source of chlorinated VOCs may be related to the former NuHart Plastic Manufacturing facility.

8.0 CONCLUSIONS

The RI was completed in May 2020. The findings summarized herein are based on both qualitative data (field observations and instrumental readings) and soil, groundwater, and vapor laboratory analytical results. Findings and conclusions are as follows:


- 1. <u>Stratigraphy</u>: A historic fill layer was observed from surface grade to depths ranging from about 13 to 20 feet bgs (deepest sample collected), and consisted of gray to black fine-grained sand with varying amounts of gravel, silt, clay, brick, concrete, glass, coal ash, slag, wood, and coal. The fill layer is underlain by native soils consisting of light- to dark-gray clay with varying amounts of silt, peat, sand, and shells. Bedrock was not encountered during the RI or previous environmental investigation conducted at the site. Bedrock was encountered on the site during a geotechnical investigation at about 50 to 65 feet bgs.
- Hydrogeology: Groundwater was observed at depths between 8.55 and 10.54 feet bgs
 with elevations ranging from el. 2.82 to 3.28 feet during synoptic groundwater level
 measurements collected from six wells during the RI. Groundwater was calculated to
 flow to the west towards the confluence of Newtown Creek and the East River.
- 3. <u>Historic Fill Quality</u>: Historic fill contains contaminants including SVOCs and metals above the UU and/or RURR SCOs, including hazardous concentrations of lead. The presence of these compounds in soil may be related to historic fill or to historical site uses as a lumber yard and for storage of treated wood.
- 4. Petroleum-Impacted Soil and Groundwater:
 - a. <u>Soil</u> Petroleum impacts, evidenced by odors, staining, PID readings above background levels, and/or analytical data, was identified in soil borings LB07 and LB13 above the groundwater table (6 to 8 feet bgs and 4 to 6 feet bgs, respectively) and in ten soil borings from below the groundwater table to a clay confining layer (about 12.5 and 18 feet bgs) in the northern part of the site.
 - b. <u>Groundwater</u> No petroleum-related VOCs were identified above SGVs in groundwater.
 - c. The residual petroleum contamination identified in the lower parts of the historic fill layer across about half of the site is attributed to a historic petroleum release and associated with Spill No. 1906491
- 5. <u>CVOCs in Groundwater</u> One detection of chlorinated VOC, 1,2-dichloroethane identified above SGVs may be related to the former NuHart Plastic Manufacturing facility.
- 6. <u>Emerging Contaminants in Groundwater:</u> PFAS in groundwater were detected above the recommended guidance. 1,4-dioxane was detected below its screening value. No

source of PFAS or 1,4-dioxane was identified on site. The source of PFAS and 1,4-dioxane is unknown.

- 7. <u>Soil Vapor Impacts:</u> Petroleum-related and chlorinated VOCs were identified in soil vapor samples across the site. The source of petroleum-related VOCs may be related to an on-site source. The source of chlorinated VOCs may be related to the former NuHart Plastic Manufacturing facility.
- 8. Sufficient analytical data were gathered during the RI to establish site-specific soil cleanup levels and to develop a remedy for the site. The final remedy will be described and evaluated in a RAWP to be prepared in accordance with BCP guidelines. The remedy will address historic fill and petroleum-impacted soil, and soil vapor.

9.0 REFERENCES

- 1. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006 and applicable revisions (May 2017).
- 2. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004.
- 3. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010.
- 4. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998.
- 5. United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, September 19, 2017.
- 6. United States Geological Survey "Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey", dated 1994.
- 7. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006.
- 8. Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C, Remedial Investigation Work Plan, dated April 24, 2020.
- 9. Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C, Remedial Investigation Report Parcels D1, D2, E3, F, G, and H, prepared by Langan, dated May 19, 2014.
- Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology,
 D.P.C Subsurface Investigation 45 Commercial Street, performed by Langan, dated
 September 2019.
- 11. AKRF Inc., Phase I Environmental Site Assessment Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated July 2001.
- 12. AKRF Inc., Supplemental Subsurface (Phase II) Investigation Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated April 2004.

Table 1 Remedial Investigation Report Sample Collection Summary

No.	Sample Name	Location	Depth Interval	Date Collected	AOCs Investigated	Rationale	Analysis
					SOIL		
1	LB13_15.5-17.5		15.5-17.5 ft. bgs	5/6/2020		Interval exhibiting greatest degree of contamination	
2	LB13_18-20	1040	18-20 ft. bgs	5/6/2020	4000	Clean interval below impacts	
3	LB13N_15-17	- LB13	15-17 ft. bgs	5/7/2020	AOC 2	Interval exhibiting greatest degree of contamination	TCL VOCs, TCL SVOCs
4	LB13W_15-17]	15-17 ft. bgs	5/7/2020		Clean interval to delineate petroleum impacts at LB13 to the west	
5	LB16_3-5		3-5 ft. bgs	5/13/2020	AOCs 1 & 3	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
6	LB16_6-8		6-8 ft. bgs	5/13/2020	AOC 3	Metal exceedances near LB05 and LB11	TCLP arsenic, lead, mercury
7	LB16_8-10	LB16	8-10 ft. bgs	5/13/2020	AOCs 1 & 3	Historic fill deeper than 8 feet bgs (to delineate PAHs)	
8	LB16_15-17		15-17 ft. bgs	5/13/2020	AOCS T & 3	Interval exhibiting greatest degree of contamination	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
9	LB16_18-20		18-20 ft. bgs	5/13/2020	AOC 3	Native Soil Conditions	
10	LB17_1-3		1-3 ft. bgs	5/6/2020	AOC 3	Metal exceedances near LB02 and LB13	TCLP arsenic, lead, mercury
11	LB17_3-5		3-5 ft. bgs	5/6/2020	AOCs 1, 2 & 3	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
12	LB17_6-8	LB17	6-8 ft. bgs	5/6/2020	AOC 3	Metal exceedances near LB02 and LB13	TCLP arsenic, lead, mercury
13	LB17_8-10		8-10 ft. bgs	5/7/2020	7.000	Wetar exceedances near EB92 and EB76	Total arsenic, lead, mercury
14	LB17_15-16		15-16 ft. bgs	5/7/2020	AOCs 1, 2 & 3	Interval exhibiting greatest degree of contamination	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
15	LB18_2-4		2-4 ft. bgs	5/8/2020	AOC 3	Metal exceedances near LB04 and LB12	TCLP arsenic, lead, mercury
16	LB18_4-6		4-6 ft. bgs	5/8/2020	AOCs 1 & 3	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
17	LB18_6-8	LB18	6-8 ft. bgs	5/8/2020	AOC 3	Metal exceedances near LB04 and LB12	TCLP arsenic, lead, mercury
18	LB18_10-12		10-12 ft. bgs	5/8/2020	AOCs 1 & 3	Historic fill deeper than 6 feet bgs (to delineate PAHs)	TCL SVOCs
19	LB18_18-20		18-20 ft. bgs	5/8/2020	AOC 3	Native Soil Conditions	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
20	LB19_0.5-2.5		0.5-2.5 ft. bgs	5/13/2020	AOC 3	Metal exceedances near LB01 and LB07	TCLP arsenic, lead, mercury
21	LB19_6-8	LB19	6-8 ft. bgs	5/13/2020	AOCs 1, 3 & 4	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and
22	LB19_14-16		14-16 ft. bgs	5/13/2020	7,6 56 1,7 5 6.1	Historic fill deeper than 8 feet bgs (to delineate PAHs and the NuHart Plastic Manufacturing)	trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
23	LB20_1-3		1-3 ft. bgs	5/13/2020	AOC 3	Metal exceedances near LB06, LB08, LB09	TCLP arsenic, lead, mercury
24	LB20_3-5	1,000	3-5 ft. bgs	5/13/2020	AOCs 1 & 3	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
25	LB20_6-8	LB20	6-8 ft. bgs	5/13/2020	AOC 3	Metal exceedances near LB06, LB08, LB09	TCLP arsenic, lead, mercury
26	LB20_14-16		14-16 ft. bgs	5/13/2020	AOCs 1 & 3	Interval exhibiting greatest degree of contamination	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
27	LB21_1-3	:	1-3 ft. bgs	5/7/2020	100 155	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and
28	LB21_15-17	- LB21	15-17 ft. bgs	5/7/2020	AOCs 1 & 3	Interval exhibiting greatest degree of contamination	trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
29	LB22_2-4		2-4 ft. bgs	5/8/2020	AOCs 1 & 3	Historic fill above the groundwater table	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
30	LB22_4-6	1,500	4-6 ft. bgs	5/8/2020	AOC 3	Metal exceedances near LB03	TCLP arsenic, lead, mercury
31	LB22_12-14	LB22	12-14 ft. bgs	5/8/2020	AOCs 1 & 3	Interval exhibiting greatest degree of contamination	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals (including hexavalent and
32	LB22_18-20	1	18-20 ft. bgs	5/8/2020	AOC 3	Native Soil Conditions	trivalent chromium), cyanide, PFAS, and 1,4-dioxane.
33	LB23_10-12	LB23	10-12 ft. bgs	5/13/2020	AOCs 1 & 3	Historic fill deeper than 8 feet bgs (to delineate PAHs)	TCL SVOCs
34	LB24_10-12	LB24	10-12 ft. bgs	5/13/2020	AOCs 1 & 3	Historic fill deeper than 8 feet bgs (to delineate PAHs)	TCL SVOCs
35	LB26_12-13	LB26	12-13 ft. bgs	5/11/2020	AOC 2	Clean interval above confining layer	TCL VOCs, TCL SVOCs
36	LB28_14.5-15.5	LB28	14.5-15.5 ft. bgs	5/16/2020	AOC 2	Clean interval above confining layer	TCL VOCs, TCL SVOCs

Table 1 **Remedial Investigation Report Sample Collection Summary**

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

No.	Sample Name	Location	Depth Interval	Date Collected	AOCs Investigated	Rationale	Analysis
					SOIL QA/QC		
1	SODUP01_050620	LB17	3-5 ft. bgs	5/6/2020		3-5 ft. bgs interval	TCL VOCa TCL CVOCa pastisidas harbisidas DCDs TAL sastals including have releated
2	SOMS01/SOMSD01_051320	LB20	3-5 ft. bgs	5/13/2020	1	3-5 ft. bgs interval	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals including hexavalent and trivalent chromium, cyanide, PFAS, and 1,4-dioxane.
3	SOFB01_050620	N/A	-	5/6/2020	1	N/A	PFAS
4	SOFB02_050720	N/A	-	5/7/2020		N/A	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals including hexavalent and trivalent chromium, cyanide, PFAS, and 1,4-dioxane.
5	SOFB03_050820	N/A	-	5/8/2020		N/A	PFAS, 1,4-Dioxane
6	SOFB05_051320	N/A	-	5/13/2020	0.1/0.0	N/A	PFAS, 1,4-Dioxane
7	SOTB01_050620	N/A	-	5/6/2020	QA/QC	N/A	TCL VOCs
8	SOTB02_050720	N/A	-	5/7/2020]	N/A	TCL VOCs
9	SOTB03_050820	N/A	-	5/8/2020		N/A	TCL VOCs
10	SOTB04_051120	N/A	-	5/11/2020		N/A N/A N/A N/A N/A N/A	TCL VOCs
11	SOTB05_051320	N/A	-	5/13/2020			TCL VOCs
12	SOTB06_051620	N/A	-	5/16/2020			TCL VOCs
					GROUNDWATER		
1	MW13_051620		-	5/16/2020		N/A	
2	MW13N_051620		-	5/16/2020		N/A	
3	MW16_052020	AOCs 1, 2, 3 & 4	-	5/20/2020	AOCs 1, 2, 3 & 4	N/A	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals including hexavalent and
4	MW18_052020	A003 1, 2, 3 & 4	-	5/20/2020	A0C3 1, 2, 3 & 4	N/A	trivalent chromium, cyanide, PFAS, and 1,4-dioxane.
5	MW19_052020		-	5/20/2020		N/A	
6	MW22_051620		-	5/16/2020		N/A	
					GROUNDWATER QA/Q	C	
1	GWDUP01_052020		-	5/20/2020		N/A	
2	GWMS01/GWMSD01_051620		-	5/16/2020		N/A	TCL VOCs, TCL SVOCs, pesticides, herbicides, PCBs, TAL metals including hexavalent and trivalent chromium, cyanide, PFAS, and 1,4-dioxane.
3	GWFB01_051620	QA/QC	-	5/16/2020	QA/QC	N/A	
4	GWTB01_051620		-	5/16/2020		N/A	TCL VOCs
5	GWTB02_052020		-	5/20/2020		N/A	TCL VOCs
					SOIL VAPOR		
1	SV01_050820		6 ft. bgs	5/8/2020]		
2	SV02_050820		6 ft. bgs	5/8/2020			
3	SV03_050820	AOCs 1, 2, 3 & 4	6 ft. bgs	5/8/2020	AOCs 1, 2, 3 & 4	About 2 feet above the groundwater table	TO-15 VOCs
4	SV04_050820		6 ft. bgs	5/8/2020			
5	SV05_050820		6 ft. bgs	5/8/2020			
					SOIL VAPOR		
1	SVDUP01_050820	QA/QC	-	5/8/2020	QA/QC	N/A	TO-15 VOCs
2	AA01_050820		-	5/8/2020		N/A	

Notes:

- 1. Area of Concern (AOC) 1 = Prior Site Use
- 2. AOC 2 = Petroleum Impacts 3. AOC 3 = Historic Fill
- 4. AOC 4 = Historical Use of Surrounding Properties
- 5. TBD = To be determined
- 6. VOC = Volatile organic compounds 7. SVOC = Semivolatile organic compounds
- 8. PCBs = Polychlorinated biphenyls 9. TCL = Target compound list
- 10. TAL = Target analyte list 11. PFAS = per- and poly-fluoroalkyl substances
- 12. QA/QC = Quality assurance/quality control
- 13. N/A = Not applicable
- 14. MS/MSD = matrix spike/matrix spike duplicate
- 15. PAHs = Polyaromatic hydrocarbons
- 16. bgs = below grade surface

Table 2 Remedial Investigation Report Groundwater Elevation Summary

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Date Gauged	Well Location	Well Diameter (in.)	Screened Interval (feet bTOC)	Approximate Elevation of TOC (NAVD88)	Depth to Groundwater (feet bTOC)	Groundwater Elevation (NAVD88)	Bottom of Well Depth (ft bTOC)	Bottom of Well Elevation (NAVD88)
5/20/2020	MW13	2	5 to 17	11.91	8.92	2.99	17	-5.09
5/20/2020	MW13N	2	5 to 17	11.81	8.79	3.02	17	-5.19
5/20/2020	MW16	2	5 to 17	11.39	8.55	2.84	17	-5.61
5/20/2020	MW18	2	5 to 20	13.55	10.54	3.01	20	-6.45
5/20/2020	MW19	2	5 to 17	11.97	9.15	2.82	17	-5.03
5/20/2020	MW22	2	5 to 20	12.97	9.69	3.28	20	-7.03

Notes:

- 1. NAVD88 North American Vertical Datum of 1988
- 2. bTOC = below top of casing
- 3. Grade surface elevations are referenced to the North American Vertical Datum of 1988, and were surveyed by Langan on 5/18/20.
- 4. Depth to groundwater was measured in feet below the top of well casing.

	_			-						_		
Location		NYSDEC Part 375	LB13	LB13	LB13N	LB13W	LB16	LB16	LB16	LB16	LB17	LB17
Sample ID	NYSDEC Part 375	Restricted Use	LB13_15.5-17.5	LB13_18-20	LB13N_15-17	LB13W_15-17	LB16_3-5	LB16_8-10	LB16_15-17	LB16_18-20	LB17_3-5	SODUP01_050620
Laboratory ID	Unrestricted Use	Restricted-	1310324	1310325	1310912	1310913	1314144	1314143	1314145	1314146	1310328	1310329
Sample Date	SCOs	Residential SCOs	5/6/2020	5/6/2020	5/7/2020	5/7/2020	5/13/2020	5/13/2020	5/13/2020	5/13/2020	5/6/2020	5/6/2020
Sample Depth (feet bgs) Volatile Organic Compounds (mg/kg)			15.5-17.5	18-20	15-17	15-17	3-5	8-10	15-17	18-20	3-5	3-5
1,2,4-Trimethylbenzene	3.6	52	0.12 J	0.0006 U	0.0005 U	0.003 J	0.0005 U	0.0005 U	0.0006 U	0.0005 U	0.0005 U	0.0005 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52 52	0.056 J	0.0006 U	0.0005 U	0.003 J	0.0005 U	0.0005 U	0.0006 U	0.0005 U	0.0005 U	
Acetone	0.05	100	0.39 U	0.064	0.11	0.045	0.046	0.0003 J	0.084	0.072	0.041	0.066
Benzene	0.06	4.8	0.043 J	0.0006 U	0.0008 J	0.0006 U	0.0005 U	0.0005 U	0.0006 U	0.0005 U	0.0005 U	0.0005 U
Carbon Disulfide	~	~	0.05 J	0.0007 U	0.0006 U	0.001 J	0.001 J	0.0006 U	0.004 J	0.002 J	0.0006 U	0.0006 U
Ethylbenzene	1	41	0.05 J	0.0005 U	0.0004 U	0.0007 J	0.0004 U	0.0004 U	0.0005 U	0.0004 U	0.0004 U	0.0004 U
Methyl Acetate	~	~	0.17 J	0.001 U	0.001 J	0.001 U	0.0009 U	0.001 U	0.001 U	0.001 U	0.0009 U	0.001 J
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.13 U	0.012 U	0.005 J	0.005 J	0.005 J	0.002 U	0.006 J	0.007 J	0.009 U	0.01 U
n-Butylbenzene	12	100	0.2 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.004 U	0.003 U	0.003 U	0.003 U
n-Propylbenzene	3.9	100	0.037 J	0.0005 U	0.0004 U	0.002 J	0.0004 U	0.0004 U	0.0005 U	0.0004 U	0.0004 U	0.0004 U
Sec-Butylbenzene	11	100	0.21 J	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
T-Butylbenzene	5.9	100	0.13 J	0.0009 U	0.0007 U	0.0009 U	0.0007 U	0.0008 U	0.0009 U	0.0008 U	0.0008 U	0.0008 U
Tert-Butyl Alcohol	~	~	0.98 U	0.034 J	0.03 J	0.017 U	0.015 J	0.03 J	0.018 U	0.044 J	0.014 U	0.015 J
Tert-Butyl Methyl Ether	0.93	100	0.033 U	0.0007 J	0.0005 U	0.0006 U	0.0005 U	0.0005 U	0.0006 U	0.0005 U	0.0005 U	0.0005 U
Toluene	0.7	100	0.33 U	0.0007 U	0.0006 U	0.0009 J	0.0005 U	0.0006 U	0.0007 U	0.0006 U	0.0006 U	0.0006 U
Total Xylenes	0.26	100	0.4 J	0.002 U	0.001 U	0.005 J	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.001 U
Total VOCs	~	~	1.27	0.0987	0.147	0.0636	0.067	0.107	0.094	0.125	0.041	0.082
Semivolatile Organic Compounds (mg	T U.	1		l	I			I	0.00	I 0.000 II	0.010	1 0010
1,4-Dichlorobenzene	1.8	13	0.021 U	0.022 U	0.041 U	0.041 U	0.37 U	0.034 J	0.02 UJ	0.022 U	0.018 U	
1,4-Dioxane (P-Dioxane)	0.1	13	NA 0.000	NA 0.04	NA 0.55	NA 0.77	0.007 U	0.007 UJ	0.011 J	0.009 U	0.007 U	0.007 U
2,4-Dimethylphenol	~	~	0.038 U	0.04 U	0.55	0.77 0.016 U	0.67 U 0.15 U	0.034 U	0.035 U	0.039 U	0.032 U	0.032 U
2-Chloronaphthalene	~	~	0.008 U 1.1	0.009 U 0.004 U	0.016 U 4.3	0.016 U 5.6	0.15 U 5.3	0.007 U 0.43	0.008 UJ 0.007 J	0.009 U 0.004 U	0.007 U 0.18 J	0.007 U
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	0.33	100	0.021 U	0.004 U	0.57	0.5	0.37 U	0.43 0.019 U	0.007 J	0.004 U	0.18 J 0.018 U	5.3 J 0.018 U
4-Methylphenol (P-Cresol)	0.33	100	0.19	0.022 U	1.3	1.2	0.37 U	0.019 U	0.02 U	0.022 U	0.018 U	0.033 J
Acenaphthene	20	100	1	0.022 U	4.5	12	15	0.46	0.02 J	0.022 U	0.34 J	17 J
Acenaphthylene	100	100	0.27	0.004 U	0.36	0.97	0.56	0.14	0.005 J	0.004 U	0.11 J	2.8 J
Acetophenone	~	~	0.021 U	0.022 U	0.041 U	0.041 U	0.37 U	0.019 U	0.082 J	0.022 U	0.018 U	0.018 U
Anthracene	100	100	1.1	0.004 U	7.2	15	29	0.97	0.03 J	0.006 J	0.55 J	24 J
Benzaldehyde	~	~	0.083 U	0.088 U	0.16 U	0.16 U	1.5 U	0.075 U	0.68 J	0.087 U	0.072 U	0.071 U
Benzo(a)Anthracene	1	1	3.9	0.009 U	12	19	45	1.9	0.062 J	0.009 U	1.4 J	25 J
Benzo(a)Pyrene	1	1	3.1	0.004 U	9.9	16	45	1.7	0.059 J	0.006 J	1.2 J	14 J
Benzo(b)Fluoranthene	1	1	2.2	0.004 U	12	19	53	2.5	0.066 J	0.009 J	1.6 J	20 J
Benzo(g,h,i)Perylene	100	100	3.3	0.004 U	4.7	8.2	28	1.2	0.047 J	0.007 J	0.77 J	5.5 J
Benzo(k)Fluoranthene	0.8	3.9	0.6	0.004 U	4.5	6.2	23	0.86	0.034 J	0.005 J	0.54 J	8.3 J
Biphenyl (Diphenyl)	~	~	0.15	0.022 U	0.76	0.67	1.6	0.1	0.02 UJ	0.022 U	0.058 J	0.48 J
Bis(2-Ethylhexyl) Phthalate	~	~	0.083 U	0.088 U	0.16 U	0.16 U	1.5 U	0.55	0.078 UJ	0.087 U	0.072 U	0.071 U
Carbazole	~	~	0.45	0.022 U	3.7	11	22	0.45	0.02 UJ	0.022 U	0.25 J	3.9 J
Chrysene	1	3.9	3.6	0.004 U	11	17	43	1.8	0.065 J	0.008 J	1.4 J	22 J
Dibenz(a,h)Anthracene	0.33	0.33	0.78	0.009 U	1.7	2.5	7.5	0.33	0.011 J	0.009 U	0.23 J	2.1 J
Dibenzofuran	/	59	0.4	0.022 U	3.6	11	14	0.46	0.02 J	0.022 U	0.32 J	9.5 J
Di-N-Butyl Phthalate	~	~	0.083 U	0.088 U	0.16 U	0.16 U	1.5 U	0.078 J	0.078 UJ	0.087 U	0.072 U	0.071 U
Fluoranthene	100	100	2.5	0.008 J	25	47	140	4.3	0.12 J	0.017 J	3.1 J	71 J
Fluorene Hexachlorobenzene	30 0.33	100	0.86 0.008 U	0.004 U 0.009 U	5.4 0.016 U	14 0.016 U	20 0.15	0.59 0.007 U	0.02 J	0.004 U 0.009 U	0.48 J 0.007 U	26 J 0.007 U
Indeno(1,2,3-c,d)Pyrene	0.33	1.2 0.5	0.008 U	0.009 U 0.004 U	4.4	0.016 U 7.7	0.15 U 26	1.1	0.008 UJ 0.04 J	0.009 U 0.007 J	0.00 7 U	5.5 J
Naphthalene	12	100	2.8	0.004 U	12	16	26 11	0.63	0.04 J	0.007 J	0.68 J	0.68 J
n-Nitrosodiphenylamine	~	100	2.8 0.021 U	0.009 U	0.041 U	0.041 U	0.37 U	0.03	0.018 J	0.009 U	0.2 J 0.018 U	0.08 J 0.018 U
Phenanthrene	100	100	3.4	0.022 U	29	73	160	4.2	0.02 US	0.022 0 0.013 J	2.7 J	92 J
Phenol	0.33	100	0.021 U	0.000 J	0.76	0.7	0.37 U	0.019 U	0.12 J	0.013 J	0.018 U	0.018 U
Pyrene	100	100	4.2	0.022 J	22	39	100	3.3	0.02 J	0.022 J	2.6 J	50 J
Total SVOCs	~	~	37.3	0.024	181	344	789	28.2	1.61	0.095	18.7	405

Location		NYSDEC Part 375	LB17	LB18	LB18	LB18	LB19	LB19	LB20	LB20	LB21	LB21
Sample ID	NYSDEC Part 375	Restricted Use	LB17_15-16	LB18_4-6	LB18_10-12	LB18_18-20	LB19_6-8	LB19_14-16	LB20_3-5	LB20_14-16	LB21_1-3	LB21_15-17
Laboratory ID	Unrestricted Use	Restricted-	1310911	1311688	1311689	1311690	1314149	1314150	1314155	1314162	1310914	1310915
Sample Date	SCOs	Residential SCOs	5/7/2020	5/8/2020	5/8/2020	5/8/2020	5/13/2020	5/13/2020	5/13/2020	5/13/2020	5/7/2020	5/7/2020
Sample Depth (feet bgs)			15-16	4-6	10-12	18-20	6-8	14-16	3-5	14-16	1-3	15-17
Volatile Organic Compounds (mg/kg)			0.0000	0.0007	NIA	0.0005	0.0000	0.0007	0.0005	04	1 0 0005	0.0000
1,2,4-Trimethylbenzene	3.6	52	0.0006 J	0.0007 U	NA	0.0005 U	0.0009 U	0.0007 U	0.0005 U	21	0.0005 U	0.0008 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	0.0006 U	0.0007 U	NA	0.0005 U	0.0009 U	0.0007 U	0.0005 U	8.9	0.0005 U	0.0008 U
Acetone	0.05	100	0.044	0.086	NA	0.057	0.011 U	0.079	0.043	0.29 UJ		0.071
Benzene	0.06	4.8	0.0006 U	0.0007 U	NA	0.0005 U	0.0009 U	0.0007 U	0.0005 U	0.024 U	0.0005 U	0.0008 U
Carbon Disulfide	~	~	0.0008 J	0.0009 U	NA	0.0006 U	0.001 U	0.0008 U	0.0006 U	0.029 UJ		0.004 J
Ethylbenzene	1	41	0.0005 U	0.0006 U	NA	0.0004 U	0.0007 U	0.0005 U	0.0004 U	0.019 U	0.0004 U	0.0007 U
Methyl Acetate	~	~	0.001 U	0.001 U	NA	0.0009 U	0.002 U	0.001 U	0.0009 U	0.048 UJ	0.0009 U	0.002 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.01 J	0.003 U	NA	0.004 J	0.004 U	0.009 J	0.002 U	0.095 U	0.002 U	0.013 J
n-Butylbenzene	12	100	0.003 U	0.004 U	NA	0.003 U	0.005 U	0.004 U	0.003 U	0.35 J	0.003 U	0.005 U
n-Propylbenzene	3.9	100	0.0005 U	0.0006 U	NA	0.0004 U	0.0007 U	0.0005 U	0.0004 U	1.1	0.0004 U	0.0007 U
Sec-Butylbenzene	11	100	0.002 U	0.003 U	NA	0.002 U	0.004 U	0.003 U	0.002 U	0.54	0.002 U	0.003 U
T-Butylbenzene	5.9	100	0.0009 U	0.001 U	NA	0.0008 U	0.001 U	0.001 U	0.0007 U	0.038 U	0.0007 U	0.001 U
Tert-Butyl Alcohol	~	~	0.017 U	0.021 J	NA	0.014 U	0.026 U	0.02 U	0.014 U	0.71 U	0.014 U	0.025 U
Tert-Butyl Methyl Ether	0.93	100	0.0006 U	0.0007 U	NA	0.0007 J	0.0009 U	0.0007 U	0.0005 U	0.024 U	0.0005 U	0.0008 U
Toluene	0.7	100	0.0007 U	0.0009 U	NA	0.0006 U	0.001 U	0.0008 U	0.0006 U	0.029 U	0.0005 U	0.001 U
Total Xylenes	0.26	100	0.002 U	0.002 U	NA	0.001 U	0.002 U	0.002 U	0.001 U	3.8	0.001 U	0.002 U
Total VOCs	~	~	0.0554	0.107	NA	0.0617	ND	0.088	0.043	35.7	0.014	0.088
Semivolatile Organic Compounds (mg/		_				1					T	
1,4-Dichlorobenzene	1.8	13	0.04 U	0.019 U	0.02 U	0.021 U	0.018 U	0.02 U	0.018 U		0.019 U	0.029 U
1,4-Dioxane (P-Dioxane)	0.1	13	0.008 U	0.008 U	NA	0.008 U	0.007 U	0.008 UJ	0.007 UJ	0.14	0.007 U	0.011 U
2,4-Dimethylphenol	~	~	0.073 U	0.035 J	0.035 U	0.037 U	0.032 U	0.036 U	0.032 U	0.11 U	0.039 J	0.052 U
2-Chloronaphthalene	~	~	0.016 U	0.008 U	0.008 U	0.008 U	0.019 J	0.008 U	0.007 U	0.024 U	0.008 U	0.011 U
2-Methylnaphthalene	~	~	1.2	1.5	0.023 J	0.004 U	0.25	0.047	0.35	0.59	2.2	0.062
2-Methylphenol (o-Cresol)	0.33	100	0.057 J	0.021 J	0.02 U	0.021 U	0.025 J	0.02 U	0.018 U	0.06 U		0.029 U
4-Methylphenol (P-Cresol)	0.33	100	0.18	0.062	0.02 U	0.021 U	0.069	0.02 U	0.037 J	0.06 U	0.074	0.15
Acenaphthene	20	100	3.5	3.9	0.065	0.004 U	0.67	0.051	1.1	1.4	9.9	0.072
Acenaphthylene	100	100	0.35	0.27	0.038	0.005 J	1.4	0.023	0.22	0.63	0.23	0.026 J
Acetophenone	~	~	0.04 U	0.046 J	0.02 U	0.021 U	0.018 U	0.02 U	0.018 U	0.06 U		0.029 U
Anthracene	100	100	6.5	7.4	0.2	0.01 J	6.3	0.13	2.6	3.4	19	0.17
Benzaldehyde	~	~	0.16 U	0.078 U	0.079 U	0.082 U	0.07 U	0.08 U	0.071 U	0.24 U		0.11 U
Benzo(a)Anthracene	1	1	11	18	0.47	0.026	14	0.18	7.6	6.3	30	0.34
Benzo(a)Pyrene	1	1	9.1	15	0.41	0.015 J	9.6	0.14	6.3	5	27	0.3
Benzo(b)Fluoranthene	1	1 [9.4	20	0.52	0.017 J	12	0.19	7.7	6.1	33	0.39
Benzo(g,h,i)Perylene	100	100	4.5	10	0.26	0.007 J	2.8	0.084	2.9	2.7	16	0.2
Benzo(k)Fluoranthene	0.8	3.9	3.9	4.5	0.19	0.009 J	2.8	0.067	2.2	2.4	0.004 U	0.12
Biphenyl (Diphenyl)	~	~	0.31	0.45	0.02 U	0.021 U	0.14	0.02 U	0.12	0.13 J	0.72	0.029 U
Bis(2-Ethylhexyl) Phthalate	~	~	0.16 U	0.078 U	0.079 U	0.082 U	0.07 U	0.08 U	0.071 U	0.24 U	0.076 U	0.11 U
Carbazole	~	~	2.9	5.6	0.08	0.021 U	0.38	0.044	1.2	0.95	5.6	0.061 J
Chrysene	1	3.9	9.7	18	0.47	0.025	12	0.16	6.4	5	27	0.3
Dibenz(a,h)Anthracene	0.33	0.33	1.5	3.1	0.075	0.008 U	0.99	0.022	0.77	0.78	3.2	0.061
Dibenzofuran	7	59	2.3	3.3	0.045	0.021 U	0.6	0.046	0.76	1.2	5.2	0.077
Di-N-Butyl Phthalate	~	~	0.16 U	0.078 U	0.079 U	0.082 U	0.07 U	0.08 U	0.071 U	0.24 U	0.076 U	0.11 U
Fluoranthene	100	100	25	49	0.98	0.053	30	0.45	17	14	75	0.73
Fluorene	30	100	3.9	4	0.073	0.006 J	1	0.06	0.94	1.9	9.5	0.093
Hexachlorobenzene	0.33	1.2	0.016 U	0.008 U	0.008 U	0.008 U	0.007 U	0.008 U	0.007 U	0.024 U	0.008 U	0.011 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	4.4	9.2	0.23	0.008 J	3.1	0.075	2.7	2.5	15	0.17
Naphthalene	12	100	3.4	3	0.049	0.008 U	0.62	0.096	0.72	0.64	2.7	0.14
n-Nitrosodiphenylamine	~	~	0.04 U	0.019 U	0.02 U	0.021 U	0.018 U	0.02 U	0.018 U	0.06 U	0.019 U	0.029 U
Phenanthrene	100	100	27	54	0.99	0.034	21	0.38	14	18	80	0.49
Phenol	0.33	100	0.12	0.019 U	0.02 U	0.021 U	0.018 U	0.02 U	0.018 U	0.06 U		0.035 J
Pyrene	100	100	21	40	1	0.056	24	0.37	14	11	63	0.54
Total SVOCs	~	~	151	270	6.17	0.271	144	2.62	89.6	84.8	424	4.53

Location Sample ID Laboratory ID	NYSDEC Part 375 Unrestricted Use	NYSDEC Part 375 Restricted Use Restricted-	LB22 LB22_2-4 1311691		LB22 LB22_12-1 1311693	4	LB22 LB22_18-20 1311694	0	LB23 LB23_10-12 1314163	I	LB24 LB24_10-12 1314164	2	LB26 LB26_12-13 1312796	3	LB28 LB28_14.5-1 1316563	
Sample Date	SCOs	Residential SCOs	5/8/2020		5/8/2020		5/8/2020		5/13/2020		5/13/2020		5/11/2020		5/16/202	.0
Sample Depth (feet bgs)		Residential SCOs	2-4		12-14		18-20		10-12		10-12		12-13		14.5-15.5	5
Volatile Organic Compounds (mg/kg)						•					<u> </u>				
1,2,4-Trimethylbenzene	3.6	52	0.0006	U	0.0007	U	0.0005	U	NA		NA		0.0009	U	0.0005	U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	0.0006	U	0.0007	U	0.0005	U	NA		NA		0.0009	U	0.0005	U
Acetone	0.05	100	0.09		0.18		0.039		NA		NA		0.035	J	0.042	
Benzene	0.06	4.8	0.0006	U	0.0007	U	0.0005	U	NA		NA		0.0009	U	0.0005	U
Carbon Disulfide	~	~	0.0008	U	0.0008	Ü	0.0007	Ü	NA		NA		0.001	Ü	0.0006	Ü
Ethylbenzene	1	41	0.0005	U	0.0006	U	0.0004	Ü	NA		NA		0.0007	Ü	0.0004	Ü
Methyl Acetate	~	~	0.001	U	0.001	U	0.001	U	NA		NA		0.002	U	0.001	U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.005	J	0.003	U	0.004	J	NA		NA		0.004	Ü	0.004	J
n-Butylbenzene	12	100	0.004	U	0.004	Ü	0.003	U	NA		NA		0.006	Ü	0.003	Ü
n-Propylbenzene	3.9	100	0.0005	U	0.0006	Ü	0.0004	Ü	NA		NA		0.0007	Ü	0.0004	U
Sec-Butylbenzene	11	100	0.003	U	0.003	U	0.002	Ü	NA		NA		0.004	Ü	0.002	U
T-Butylbenzene	5.9	100	0.001	U	0.001	U	0.0009	U	NA		NA		0.001	Ü	0.0008	U
Tert-Butyl Alcohol	~	~	0.019	U	0.051	J		U	NA NA		NA		0.028	U	0.015	U
Tert-Butyl Methyl Ether	0.93	100	0.0006	U	0.0007	U	0.0005	U	NA NA		NA		0.0009	U	0.0005	U
Toluene	0.53	100	0.0008	U	0.0007	U	0.0003	U	NA NA		NA		0.0003	U	0.0006	IJ
Total Xylenes	0.26	100	0.002	U	0.000	U	0.0007	IJ	NA NA		NA		0.003	U	0.000	IJ
Total VOCs	0.20	~	0.095	0	0.231	U	0.002	J	NA NA		NA		0.003	٦	0.046	U
Semivolatile Organic Compounds (m		<u> </u>	0.000		0.201		0.040		14/1		14/ (-	0.000	ı	0.0-10	
1,4-Dichlorobenzene	1.8	13	0.019	U	0.02	U	0.022	U	0.023	υĪ	0.019	U	0.026	U	0.021	U
1,4-Dioxane (P-Dioxane)	0.1	13	0.007	U	0.008	U	0.009	U	NA	~	NA	Ŭ	NA		NA	O
2,4-Dimethylphenol	~	~	0.033	U	0.037	U	0.04	U		υ	0.034	U	0.047	U	0.037	U
2-Chloronaphthalene	~	~	0.007	U	0.008	U	0.009	U		Ü	0.008	υl	0.047	U	0.008	IJ
2-Methylnaphthalene	~	~ ~	0.007	U	0.012	J	0.003	U		J	0.24	٥	0.007	J	0.096	U
2-Methylphenol (o-Cresol)	0.33	100	0.019	U	0.012	U	0.022	U		Ü	0.019	U	0.007	U	0.030	U
4-Methylphenol (P-Cresol)	0.33	100	0.019	U	0.02	U	0.022	U		Ŭ l	0.045	1	0.026	U	0.021	ı
Acenaphthene	20	100	0.36	U	0.005	ı	0.002	U	0.023	٩	0.77	٦	0.026	U	0.31	J
Acenaphthylene	100	100	0.1		0.005	J	0.004	11	0.062		0.36		0.005	U	0.086	
Acetophenone			0.019	U	0.003	U	0.004	U		J	0.019	U	0.005	U	0.000	U
Anthracene	100	~ 100	0.82	U	0.002	ı	0.002	U	0.33	٦	1.4	١	0.020	J	0.021	U
Benzaldehyde	100	100	0.074	U	0.082	U	0.088	U		υl	0.077	υl	0.012	U	0.082	U
Benzo(a)Anthracene	1	1	2.5		0.082	ı	0.015	ı	1.6	٠ ا	2.9	_ '	0.035	٠	1.3	
Benzo(a) Pyrene	1	1 1	2.8		0.012	J	0.015	J	7.1		2.6		0.035	- 1	1.3	
Benzo(b)Fluoranthene	1	1 1	3.1		0.009	J	0.012	J	8.1		3.1		0.054	- 1	1.5 1.5	
Benzo(g,h,i)Perylene	100	100	2		0.005	J	0.008	J	27		1.8		0.032	- 1	0.79	
Benzo(k)Fluoranthene			2 1.3			J		J	3. 2		1. 3			,	0.79	
	0.8	3.9	0.047		0.006 0.02	U	0.008 0.022	U		υ	0.086		0.02 0.026	J U	0.036	
Biphenyl (Diphenyl)	~	~		U		_		_		U						J
Bis(2-Ethylhexyl) Phthalate	~	~	0.074	U	0.082	U	0.088	U		٠ I	0.077	U	0.1	U U	0.082	U
Carbazole	~	~	0.36		0.02	U	0.022	U	0.037	١	0.61		0.026	U	0.22	
Chrysene	1	3.9	2.4		0.013	J	0.016	J	1.6	- 1	2.6		0.048		1.1	
Dibenz(a,h)Anthracene	0.33	0.33	0.56		0.008	U	0.009	U	3		0.46		0.01	U	0.22	
Dibenzofuran	/	59	0.24		0.02	U	0.022	U	0.05	J	0.46	_ , [0.026	U	0.21	
Di-N-Butyl Phthalate	~	~	0.074	U	0.082	U	0.088	U		U	0.077	U	0.1	U	0.082	U
Fluoranthene	100	100	5.5		0.022		0.02	J , .	1.7		8.3		0.066	.	2.6	
Fluorene	30	100	0.3		0.006	J 	0.004	U	0.044		0.64		0.007	J	0.27	
Hexachlorobenzene	0.33	1.2	0.007	U	0.008	U	0.009	U	0.018	J	0.008	U	0.01	U	0.008	U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	1.8		0.004	J	0.008	J 	19		1.6		0.025	J	0.67	
Naphthalene	12	100	0.21		0.016	J 	0.009	U	0.091		0.49		0.016	J	0.19	
n-Nitrosodiphenylamine	~	~	0.019	U	0.02	U	0.022	U		U	0.019	U	0.026	U	0.021	U
Phenanthrene	100	100	3.1		0.017	J	0.009	J	0.88		7.6		0.04		2.5	
Phenol	0.33	100	0.019	U	0.02	U	0.022	U		U	0.019	U	0.026	U	0.023	J
Pyrene	100	100	4.4		0.022		0.021	J	2		6.7		0.054		2.2	
Total SVOCs	~	~	32		0.172		0.133		75.9		44.1		0.443		16.9	

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Restricted-Residential.
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above Unrestricted Use SCOs are bolded.
- 4. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.
- 5. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 6. Sample SODUP01_05062020 is a duplicate sample of LB17_3-5.
- 7. ~ = Regulatory limit for this analyte does not exist
- 8. bgs = below grade surface
- 9. mg/kg = milligrams per kilogram
- 10. NA = Not analyzed
- 11. ND = Not detected

- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

D				1.040	1240	1.040	1540	1.040	1.047	1047	1047	1847
Location		NYSDEC Part 375	USEPA RCRA CFR Part	LB16	LB16	LB16	LB16	LB16	LB17	LB17	LB17	LB17
Sample ID	NYSDEC Part 375	Restricted Use	261 Maximum	LB16_3-5	LB16_6-8	LB16_8-10	LB16_15-17	LB16_18-20	LB17_1-3	LB17_3-5	SODUP01_050620	LB17_6-8
Laboratory ID	Unrestricted Use	Restricted-	Concentration of	1314144	1314141	1314143	1314145	1314146	1310326	1310328	1310329	1310327
Sample Date	SCOs	Residential SCOs	Contaminants for the	5/13/2020	5/13/2020	5/13/2020	5/13/2020	5/13/2020	5/6/2020	5/6/2020	5/6/2020	5/6/2020
Sample Depth (feet bgs)		Tioolaontiai 0000	Toxicity Characteristic	3-5	6-8	8-10	15-17	18-20	1-3	3-5	3-5	6-8
Pesticides (mg/kg)												
4,4'-DDD	0.0033	13	~	<i>0.0073</i> U	NA	0.028 J	0.0019 UJ	0.0022 U	NA	0.00036 U	0.00036 U	NA
4,4'-DDE	0.0033	8.9	~	<i>0.0073</i> U	NA	<i>0.018</i> U	0.0019 U	0.0022 U	NA	0.00067 J	0.00044 J	NA
4,4'-DDT	0.0033	7.9	~	<i>0.018</i> U	NA	<i>0.044</i> U	<i>0.0047</i> UJ	<i>0.0052</i> U	NA	0.0019 J	0.0013 J	NA
Aldrin	0.005	0.097	~	0.0038 U	NA	<i>0.0095</i> U	0.001 UJ	0.0011 U	NA	0.002 U	0.00025 J	NA
Alpha BHC (Alpha Hexachlorocyclohexane)	0.02	0.48	~	0.0038 U	NA	0.0095 U	0.001 U	0.0011 U	NA	0.00027 J	0.00018 U	NA
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.0098 U	NA	0.025 U	0.0026 U	0.0029 U	NA	0.00057 J	0.00047 U	NA
Beta Endosulfan	2.4	24	~	0.024 U	NA	0.061 U	0.0065 UJ	0.0072 U	NA	0.0012 U	0.0012 U	NA
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~	0.01 U	NA	0.025 U	0.0027 U	0.003 U	NA	0.00049 U	0.00049 U	NA
Dieldrin	0.005	0.2	~	<i>0.0073</i> U	NA	0.018 U	0.0019 UJ	0.0022 U	NA	0.00036 U	0.00036 U	NA
Endosulfan Sulfate	2.4	24	~	0.0073 U	NA	0.018 U	0.0019 UJ		NA	0.00036 U	0.00036 U	NA
Endrin	0.014	11	~	<i>0.015</i> UJ	NA	<i>0.038</i> UJ	0.004 UJ		NA	0.00073 U	0.00073 U	NA
Gamma Bhc (Lindane)	0.1	1.3	~	0.0047 U	NA	0.012 U	0.0012 U	0.0014 U	NA	0.00023 U	0.0078 J	NA
Heptachlor	0.042	2.1	~	0.0069 U	NA	0.017 U	0.0018 UJ		NA	0.00033 U	0.00033 U	NA
Herbicides (mg/kg)	~	~	~	ND ND	NA	ND	ND	ND	NA	ND ND	ND ND	NA
2,4,5-T (Trichlorophenoxyacetic Acid)	~	~	~	0.00091 U	NA	0.00092 U	0.00097 U	0.0011 U	NA	0.00088 U	0.00089 U	NA
2,4-D (Dichlorophenoxyacetic Acid)	~	~	~	0.013 U	NA	0.013 U	0.014 U	0.016 U	NA	0.013 U	0.013 U	NA
Silvex (2,4,5-Tp)	3.8	100	~	0.00083 U	NA	0.00084 U	0.00088 U	0.00098 U	NA	0.00081 U	0.00081 U	NA
Polychlorinated Biphenyls (mg/kg)	0.0	100	·	0.00000	147 (0.0000+ 0	0.00000	0.00000	14/ (1 0.00001 0	0.00001	1 47 (
PCB-1016 (Aroclor 1016)	~	~	~	0.004 U	NA	0.004 U	0.0042 UJ	0.0047 U	NA	0.0039 U.	J 0.0039 U	NA
PCB-1221 (Aroclor 1221)	~	~	~	0.0051 U	NA	0.0052 U	0.0054 UJ		NA	0.005 U.		NA
PCB-1232 (Aroclor 1232)	~	~	~	0.0089 U	NA	0.009 U	0.0094 UJ		NA	0.0086 U.		NA
PCB-1242 (Aroclor 1242)		~	~	0.0033 U	NA NA	0.0037 U	0.0034 UJ	0.0043 U	NA	0.0036 U.		NA
PCB-1248 (Aroclor 1242)	~	~	~	0.0037 U	NA NA	0.0037 U	0.0039 UJ		NA NA	0.0036 U.		NA
PCB-1254 (Aroclor 1254)		~	~	0.0037 U	NA NA	0.0037 U	0.0039 UJ		NA	0.0036 U.		NA
PCB-1260 (Aroclor 1260)			,-	0.0037 O	NA NA	0.0037 J	0.0059 UJ		NA NA	0.0053 U.		NA
Total PCBs	0.1	1	~	0.02	NA NA	0.017 J	0.0038 UJ	0.0004 U	NA NA	0.0033 U.		NA
	0.1	I	~	0.02	IVA	0.017	0.0039 03	0.0043	IVA	0.0030 0.	0.0030 0	IVA
Inorganics (mg/kg)	10	16		6.20	NA	8.26	0.00	7.50	NA	15.7 J	7.18 J	NA
Arsenic	13		~	6.28 44.6	NA NA		8.23 34.8	7.59 37.5				
Barium	350	400	~			180			NA NA	86.2 J	156 J	NA
Beryllium	7.2	72	~	0.824	NA	0.564	0.408	0.793	NA	0.824 J	0.339 J	NA
Cadmium	2.5	4.3	~	0.475	NA	0.332	0.118	0.0812 J	NA	0.792 J	0.379 J	NA
Chromium, Hexavalent	I	110	~	1.1	NA	2.4	0.17 U	0.18 U	NA	0.15 U	0.15 U	NA
Chromium, Total	~	~	~	11.5	NA NA	28.9	6.31	28.8	NA NA	10.4	14.8	NA
Chromium, Trivalent	30	180	~	10.4	NA	26.5	6.3	28.8	NA	10.4	14.8	NA
Copper	50	270	~	25.9	NA	136	24.2	10.4	NA	164	124 J	NA
Cyanide	27	27	~	0.2 U	NA	0.2 U	0.21 U	0.23 U	NA	0.22 J	0.2 U	NA
Lead	63	400	~	41.5	269	232	51.3	9.81	8,960	278	211	174
Manganese	1,600	2,000	~	116	NA	340	83.7	387	NA 2.2=2	229	152 J	NA 1.50
Mercury	0.18	0.81	~	0.0701 U	0.282	0.171 U	1.99	0.0187 U	0.672	1.2	1.57	1.52
Nickel	30	310	~	15	NA	16.3	43.8	25	NA	23.5	16.4	NA
Selenium	3.9	180	~	0.311 J	NA	0.456	0.649	0.436	NA	1.25	0.496 J	NA
Silver	2	180	~	0.0411 U	NA	0.115	0.0557 J	0.331	NA	0.165 J	0.447 J	NA
Zinc	109	10,000	~	65.1	NA	502	173	62.6	NA	312	230 J	NA
TCLP - Inorganics (mg/L)									,			
Arsenic	~	~	5	NA	0.016 U	NA	NA	NA	0.016 U	NA	NA	0.016 U
			*									
Lead	~	~	5 0.2	NA NA	1.15 0.000079 U	NA NA	NA NA	NA NA	8 0.00005 U	NA NA	NA NA	0.0673 0.000079 U

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Pesticides (mg/kg)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	USEPA RCRA CFR Part 261 Maximum Concentration of Contaminants for the Toxicity Characteristic	LB17 LB17_8-10 1310910 5/7/2020 8-10	LB17 LB17_15-16 1310911 5/7/2020 15-16	LB18 LB18_2-4 1311686 5/8/2020 2-4	LB18 LB18_4-6 1311688 5/8/2020 4-6	LB18 LB18_6-8 1311687 5/8/2020 6-8	LB18 LB18_18-20 1311690 5/8/2020 18-20	LB19 LB19_0.5-2.5 1314147 5/13/2020 0.5-2.5	LB19 LB19_6-8 1314149 5/13/2020 6-8	LB19 LB19_14-16 1314150 5/13/2020 14-16	LB20 LB20_1-3 1314151 5/13/2020 1-3	LB20 LB20_3-5 1314155 5/13/2020 3-5
4,4'-DDD	0.0033	13	~	NA	0.0078 U	NA	0.077 U	NA	0.00041 U	NA	0.0035 U	J 0.0039 U	NA	<i>0.0035</i> U
4,4'-DDE	0.0033	8.9	~	NA NA	0.0078 U	NA NA	0.077 U	NA NA	0.00041 U	NA NA	0.0035 U	0.0039 U	NA NA	0.0035 U
4,4'-DDT	0.0033	7.9	~	NA NA	0.0078 U	NA NA	0.19 U	NA	0.00041 U	NA NA	0.0039 U	J 0.0039 U	NA NA	0.0035 U
Aldrin	0.005	0.097	~	NA NA	0.004 U	NA NA	0.19 U	NA NA	0.00098 U	NA NA	0.0084 U	J 0.002 U	NA NA	0.0089 U
Alpha BHC (Alpha Hexachlorocyclohexane)	0.003	0.48	~	NA	0.0092 J	NA	0.04 U	NA	0.00021 0 0.0011 P	NA NA	0.0018 U	J 0.002 U	NA NA	0.0018 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	NA	0.0032 3	NA	0.04 U	NA	0.00054 U	NA NA	0.0047 U	0.002 U	NA NA	0.0013 U
Beta Endosulfan	2.4	24	~	NA	0.026 U	NA	0.7 U	NA	0.00034 U	NA NA	0.012 U	J 0.013 U	NA NA	0.012 U
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~	NA	0.020 U	NA	0.20 U	NA	0.00056 U	NA NA	0.0048 U	0.0054 U	NA NA	0.0048 U
Dieldrin	0.005	0.2	~	NA	0.0078 U	NA	0.77 U	NA	0.00030 U	NA NA	0.0045 U	0.0034 U	ΝΔ	0.0048 U
Endosulfan Sulfate	2.4	24	~	NA	0.0078 U	NA	0.077 U	NA	0.00041 U	NA NA	0.0035 U	0.0039 U	NA	0.0035 U
Endrin	0.014	11	~	NA	0.016 U	NA	0.16 UJ	NA	0.00041 UJ	NA NA	0.0072 U.			0.0073 UJ
Gamma Bhc (Lindane)	0.014	1.3	~	NA	0.005 U	NA	0.049 U	NA	0.00004 U	NA NA	0.0072 U	J 0.0025 U	NA	0.0073 U
Heptachlor	0.042	2.1	~	NA	0.0074 U	NA	0.073 U	NA	0.00020 U	NA NA	0.0022 U	0.0023 U	NA	0.0022 U
Herbicides (mg/kg)	~	~	~	NA	ND	NA	ND	NA	ND ND	NA	ND	ND	NA	ND
2,4,5-T (Trichlorophenoxyacetic Acid)	~	~	~	NA	0.00099 U	NA	0.00096 U	NA	0.001 U	NA	0.00087 U	J 0.00098 U	NA	0.00087 U
2,4-D (Dichlorophenoxyacetic Acid)	~	~	~	NA	0.014 U	NA	0.014 U	NA	0.015 U	NA	0.013 U	J 0.014 U	NA	0.013 U
Silvex (2,4,5-Tp)	3.8	100	~	NA	0.0012 U	NA	0.00088 U	NA	0.00093 U	NA	0.0008 U	0.0009 U	NA	0.0008 U
Polychlorinated Biphenyls (mg/kg)						·				· · · · · · · · · · · · · · · · · · ·				
PCB-1016 (Aroclor 1016)	~	~	~	NA	0.0085 U	NA	0.0042 U	NA	0.0044 UJ	NA	0.0038 U	J 0.0043 U	NA	0.0039 U
PCB-1221 (Aroclor 1221)	~	~	~	NA	0.011 U	NA	0.0054 U	NA	0.0057 UJ	NA	0.0049 U	J 0.0055 U	NA	0.0049 U
PCB-1232 (Aroclor 1232)	~	~	~	NA	0.019 U	NA	0.0094 U	NA	0.0099 UJ	NA	0.0085 U	J 0.0095 U	NA	0.0086 U
PCB-1242 (Aroclor 1242)	~	~	~	NA	0.0078 U	NA	0.0039 U	NA	0.0041 UJ	NA	0.0035 U	J 0.0039 U	NA	0.0035 U
PCB-1248 (Aroclor 1248)	~	~	~	NA	0.0078 U	NA	0.0039 U	NA	0.0041 UJ	NA	0.0035 U	J 0.0039 U	NA	0.0035 U
PCB-1254 (Aroclor 1254)	~	~	~	NA	0.0078 U	NA	0.0039 U	NA	0.0041 UJ	NA	0.0035 U	J 0.0039 U	NA	0.0035 U
PCB-1260 (Aroclor 1260)	~	~	~	NA	0.012 U	NA	0.0058 U	NA	0.0061 UJ	NA	0.0052 U	J 0.0058 U	NA	0.0052 U
Total PCBs	0.1	1	~	NA	0.0078 U	NA	0.0039 U	NA	0.0041 UJ	NA	0.0035 U	J 0.0039 U	NA	0.0035 U
Inorganics (mg/kg)														
Arsenic	13	16	~	16	10.4	NA	16.5	NA	5.37	NA	4.64	4.54	NA	10.4
Barium	350	400	~	NA	61.9	NA	484	NA	30.3	NA	37.6	21.8	NA	117
Beryllium	7.2	72	~	NA	0.474	NA	0.325	NA	0.426	NA	0.545	0.387	NA	0.523 J
Cadmium	2.5	4.3	~	NA	0.28	NA	0.185	NA	0.361	NA	0.263	0.0587 U	NA	0.677 J
Chromium, Hexavalent	1	110	~	NA	0.17 U	NA	0.85	NA	2.4	NA	0.28 J	0.17 U	NA	0.15 U
Chromium, Total	~	~	~	NA	16.9	NA	25	NA	14	NA	7.83	10.3	NA	18.6 J
Chromium, Trivalent	30	180	~	NA	16.9	NA	24.1	NA	11.5	NA	7.5	10.3	NA	18.6
Copper	50	270	~	NA	68.1	NA	54.9	NA	14.7	NA	50.7	8.84	NA	59.3
Cyanide	27	27	~	NA	0.42 J	NA	0.43 J	NA	0.23 U	NA	0.19 U	J 0.21 U	NA	0.19 U
Lead	63	400	~	766	1,490	10,900	591	75.2	10.9	21	71.5	8.93	98.2	580 J
Manganese	1,600	2,000	~	NA	239	NA	206	NA	207	NA	65.2	103	NA	311
Mercury	0.18	0.81	~	4.97	0.458	0.373	1.15	0.0217	J 0.077 U	0.0752 U	0.141 U	J 0.0807 U	0.116 U	0.292 J
Nickel	30	310	~	NA	34	NA	20	NA	16.1	NA	10.3	10.1	NA	23.7 J
Selenium	3.9	180	~	NA	0.479	NA	1.39	NA	0.156 J	NA	1.36	0.191 J	NA	0.688 J
Silver	2	180	~	NA	0.244	NA	0.13	NA	0.0466 U	NA	0.0519 J	0.0473 U	NA	0.133
Zinc	109	10,000	~	NA	531	NA	152	NA	167	NA	45.5	29.5	NA	249 J
TCLP - Inorganics (mg/L)	_	1		N 1 A	l NIA I	0.040		0.040	11 818	I 0.040 ::	l NIA	N1A	0.010	N 1 A
Arsenic	~	~	b -	NA	NA NA	0.016 U	NA NA	0.016	U NA	0.016 U	NA NA	NA NA	0.016 U	NA NA
Lead	~	~	5	NA NA	NA NA	8.17	NA NA	0.0083	J NA	0.473	NA NA	NA NA	0.247	NA NA
Mercury	~	~	0.2	NA	NA	0.000079 U	NA	0.000079	U NA	0.000079 U	NA	NA	0.000079 U	NA

Lacation			USEPA RCRA CFR Part	LB20	LB20	LB21		LB21	LB22	LB22	LB22	LB22
Location Sample ID	NYSDEC Part 375	NYSDEC Part 375	261 Maximum	LB20_6-8	LB20 14-16	LB21_1-3		.B21_15-17	LB22_2-4	LB22_4-6	LB22_12-14	LB22_18-20
Laboratory ID	Unrestricted Use	Restricted Use	Concentration of	1314153	1314162	1310914		1310915	1311691	1311692	1311693	1311694
Sample Date	SCOs	Restricted-	Contaminants for the	5/13/2020	5/13/2020	5/7/2020		5/7/2020	5/8/2020	5/8/2020	5/8/2020	5/8/2020
Sample Date Sample Depth (feet bgs)	3005	Residential SCOs	Toxicity Characteristic	6-8	14-16	1-3		15-17	2-4	4-6	12-14	18-20
Pesticides (mg/kg)			Toxicity Onaracteristic	0-0	14-10	1-3		13-17	2-4	T-0	12-14	10-20
4,4'-DDD	0.0033	13		NA	0.008 U	0.00038 U	1 1	<i>0.057</i> U	0.0005 L	J NA	0.002 U	0.0022 U
4,4'-DDE	0.0033	8.9	~	NA	0.008 U	0.00038 U		0.057 U	0.0003 C	J NA	0.002 U	0.0022 U
4,4'-DDT	0.0033	7.9	~	NA	0.008 U	0.0009 U		0.14 U	0.00087 L) NA	0.002 U	0.0052 U
Aldrin	0.005	0.097	~	NA	0.0041 U	0.0003 U		0.029 U	0.00007 C	NA NA	0.001 U	0.0032 U
Alpha BHC (Alpha Hexachlorocyclohexane)	0.003	0.48	~	NA	0.0041 U	0.00021 U		0.029 U	0.013	NA NA	0.0016 U	0.0011 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	NA	0.0041 U	0.00013 U		<i>0.076</i> U	0.00049 L	J NA	0.0010 U	0.0029 U
Beta Endosulfan	2.4	24		NA	0.027 U	0.0003 U		0.19 U	0.00043 C	J NA	0.0027 U	0.0023 U
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~	NA	0.027 U	0.00051 U		0.13 U	0.0012 C	J NA	0.0007 U	0.0072 U
Dieldrin	0.005	0.2		NA	0.008 U	0.00031 U		0.057 U	0.0003 C	J NA	0.0020 U	0.0022 U
Endosulfan Sulfate	2.4	24		NA	0.019 U	0.00038 U		0.057 U	0.00036 L	J NA	0.002 U	0.0022 U
Endrin	0.014	11		NA NA	0.019 UJ	0.00038 U		0.12 U	0.00036 C		0.002 UJ	0.0022 U.
Gamma Bhc (Lindane)	0.014	1.3	~ ~	NA NA	0.0051 U	0.00077 U		0.036 U	0.00075 U	J NA	0.0042 03 0.0013 U	0.0045 U
Heptachlor	0.042	2.1	~	NA	0.0031 U	0.00024 U		0.053 U	0.00023 C	J NA	0.0019 U	0.0014 U
Herbicides (mg/kg)	~	~	~	NA NA	ND	ND		ND 0	ND	NA NA	ND	ND
2,4,5-T (Trichlorophenoxyacetic Acid)	~	~	~	NA NA	0.001 U	0.00093 U		0.0014 U	0.00091 L	J NA	0.001 U	0.0011 U
2,4-D (Dichlorophenoxyacetic Acid)	~ ~	~ ~	~ ~	NA NA	0.001 U	0.00093 U		0.02 U	0.00091 C	J NA	0.001 U	0.011 U
Silvex (2,4,5-Tp)	3.8	100	~ ~	NA NA	0.00091 U	0.00085 U		0.02 U	0.00083 L	J NA	0.00093 U	0.00099 U
Polychlorinated Biphenyls (mg/kg)	3.0	100	~	IVA	0.00031 0	0.00065		0.0019 0	0.00005) INA	0.00033 0	0.00033 0
PCB-1016 (Aroclor 1016)		~	~	NA	0.022 U	0.0041 U	1 (0.0062 U	0.004 L	J NA	0.0044 U	0.0047 U
PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221)	~ ~	~ ~	~	NA NA	0.022 U	0.0041 U		0.0079 U	0.0051 L		0.0044 U	0.0047 U
PCB-1232 (Aroclor 1232)				NA NA	0.028 U	0.0032 U		0.014 U	0.0087 C	J NA	0.0098 U	0.000 U
PCB-1232 (Arodior 1232)	~	~	~	NA NA	0.048 U	0.0031 U		0.0057 U	0.0036 L	J NA	0.0098 U	0.0043 U
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	~	~ ~	~ ~	NA NA	0.02 U	0.0038 U		0.0057 U	0.0036 C	J NA	0.004 U	0.0043 U
PCB-1254 (Aroclor 1254)	~	~	~	NA NA	0.02 U	0.0038 U		0.0057 U	0.0036 L	J NA	0.004 U	0.0043 U
PCB-1260 (Aroclor 1260)	~	~	~	NA NA	0.02 U	0.0056 U		0.0084 U	0.0054 L	J NA	0.004 U	0.0043 U
Total PCBs	0.1	1	~ ~	NA NA	0.03 U	0.0038 U		0.0057 U	0.0034 C	J NA	0.004 U	0.0044 U
Inorganics (mg/kg)	0.1	1	~	IVA	0.02	0.0036 0		0.0037	0.0030) INA	0.004 0	0.0043
Arsenic	13	16	~	NA	3.73	7.05		13.9	14.3	NA	9.55	7.27
Barium	350	400	~	NA NA	29.4	7.03 76.9		82.8	136	NA NA	28.3	32.7
Beryllium	7.2	72	~	NA NA	0.14	0.416		0.738	0.507	NA NA	0.253	0.574
Cadmium	2.5	4.3	~	NA NA	0.14	0.334		0.187	0.739	NA NA	0.233	0.0748 J
Chromium, Hexavalent	2.5	110	~	NA NA	0.254 0.17 U	1.5		0.187 0.24 U	0.739 0.16 L	J NA	0.223 0.17 U	0.0748 J
Chromium, Total	1	~	~	NA NA	5.01	17.1		27	25.7	NA NA	7.52	22.4
Chromium, Trivalent	30	~ 180	~	NA NA	5.01	15.6		27	25.7	NA NA	7.52 7.5	22.4
· · · · · · · · · · · · · · · · · · ·	50	270	~	NA NA	34.6	114		50	108	NA NA	35.9	10
Copper Cyanide	27	270	~	NA NA	0.21 U	0.39 J	.	0.31 U	0.24 J	NA NA	0.24 U	0.24 U
	63	400	~	4.57	118	141	'	1 54	325	409	155	7.91
Lead	1,600	2,000	~	NA	52.6	379		250	325 305	NA	60.4	307
Manganese			~									
Mercury Nickel	0.18	0.81 310	~	0.0000	0.291 5.12	0.733 19.2		0.398 32.8	0.588 21.3	1.91 J	0.147 U 29.4	0.0889 U 20.5
	30	180	~	NA NA	0.489	0.441			21.3 0.672		29.4 4.27	20.5 0.239 J
Selenium Silver	3.9		~	NA NA						NA NA		
Silver	2	180	~	NA NA	0.122	0.109		0.193	0.249	NA NA	0.0882 J	
Zinc	109	10,000	~	NA	163	194		115	275	NA	180	61.1
TCLP - Inorganics (mg/L)	1	<u> </u>	<u> </u>	0.010	NIA	NIA		NIA I	NΙΛ	0.010	NIA I	NΙΛ
Arsenic	~	~	5 -	0.016 U		NA		NA	NA	0.016 U	NA NA	NA NA
Lead	~	~	5	0.0071 U		NA		NA	NA	9.01	NA NA	NA NA
Mercury	~	~	0.2	0.000079 U	NA	NA		NA	NA	0.000079 U	NA	NA

45 Commercial Street
Brooklyn, New York
Langan Project No.: 170229024

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use, Restricted Use Restricted-Residential, and the Environmental Protection Agency (USEPA) Resource Conservation and Recovery Act (RCRA) Code of Federal Regulations (CFR) part 261 Maximum Concentration of Contaminants for the Toxicity Characteristic.
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above Unrestricted Use SCOs are bolded.
- 4. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.
- 5. Detected analytical results above USEPA RCRA CFR part 261 Maximum Concentration of Contaminants for the Toxicity Characteristic are bolded and italicized.
- 6. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 7. Sample SODUP01_05062020 is a duplicate sample of LB17_3-5.
- 8. \sim = Regulatory limit for this analyte does not exist
- 9. bgs = below grade surface
- 10. mg/kg = milligrams per kilogram
- 11. mg/l = milligrams per liter
- 12. NA = Not analyzed
- 13. ND = Not detected
- 14. TCLP = Toxicity Characteristic Leaching Procedure

- P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 5 Remedial Investigation Report Soil Sample Analytical Results Summary - Emerging Contaminants

Location	LB16	LB16	LB16	LB16	LB17	LB17	LB17	LB18	LB18	LB19	LB19
Sample ID	LB16_3-5	LB16_8-10	LB16_15-17	LB16_18-20	LB17_3-5	SODUP01_05062020	LB17_15-16	LB18_4-6	LB18_18-20	LB19_6-8	LB19_14-16
Laboratory ID	1314144	1314143	1314145	1314146	1310328	1310329	1310911	1311688	1311690	1314149	1314150
Sample Date	5/13/2020	5/13/2020	5/13/2020	5/13/2020	5/6/2020	5/6/2020	5/7/2020	5/8/2020	5/8/2020	5/13/2020	5/13/2020
Sample Depth (feet bgs)	3 - 5	8 - 10	15 - 17	18 - 20	3 - 5	3 - 5	15 - 16	4 - 6	18 - 20	6 - 8	14 - 16
Per and Polyfluoroalkyl Substances (ng/kg)											
Perfluorooctanesulfonic acid (PFOS)	210	U 590	J 230 L	J 250 L	J 210 U	210 U	230 L	220 U	230 U	210 U	220 U
Perfluorooctanoic Acid (PFOA)	210	U 210	U 230 L	J 250 L	J 210 U	210 U	230 L	1,700	230 U	210 U	220 U

Table 5 Remedial Investigation Report Soil Sample Analytical Results Summary - Emerging Contaminants

Location	LB20	LB20	LB21	LB21	LB22	LB22	LB22
Sample ID	LB20_3-5	LB20_14-16	LB21_1-3	LB21_15-17	LB22_2-4	LB22_12-14	LB22_18-20
Laboratory ID	1314155	1314162	1310914	1310915	1311691	1311693	1311694
Sample Date	5/13/2020	5/13/2020	5/7/2020	5/7/2020	5/8/2020	5/8/2020	5/8/2020
Sample Depth (feet bgs)	3 - 5	14 - 16	1 - 3	15 - 17	2 - 4	12 - 14	18 - 20
Per and Polyfluoroalkyl Substances (ng/kg)	-						
Perfluorooctanesulfonic acid (PFOS)	200 U	230 U	490 J	340 U	220 U	240 U	260 U
Perfluorooctanoic Acid (PFOA)	200 U	230 U	210 U	340 U	220 U	240 U	260 U

Table 5 Remedial Investigation Report Soil Sample Analytical Results Summary - Emerging Contaminants

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Notes:

- 1. Only detected analytes are shown in the table.
- 2. Sample SODUP01_05062020 is a duplicate sample of LB17_3-5.
- 3. ng/kg = nanograms per kilogram

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Location Sample ID Laboratory ID Sample Date	NYSDEC SGVs	MW13 MW13_051620 1316581 5/16/2020		MW13N MW13N_051620 1316589 5/16/2020		MW16 MW16_052020 1317993 5/20/2020		MW18 MW18_052 1317999 5/20/202	2020 5	MW18 GWDUP01_05 1317999 5/20/202		MW19 MW19_052 131799 5/20/202	2020 7	MW22 MW22_051 1316591 5/16/202	1620 1
Volatile Organic Compounds	(µg/L)	0.2													
1,2-Dichloroethane	0.6	0.3	U	0.3	U	1	J	0.3	U	0.3	U	0.3	U	0.3	U
Acetone	50	8	J	0.7	U	20	U	0.7	U	0.7	U	0.7	U	0.7	U
Chloromethane	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	J	0.2	U	0.2	U
Tert-Butyl Methyl Ether	10	3		0.2	U	0.4	J	0.5	J	0.5	J	0.2	U	0.9	J
Semivolatile Organic Compo	unds (µg/L)														
1,4-Dioxane (P-Dioxane)	~	0.1	J	0.1	U	0.1	U	0.09	U	0.09	U	0.09	U	0.1	J
Acenaphthene	20	0.6		0.1	U	0.1	U	0.09	U	0.09	U	0.09	U	0.1	U
Naphthalene	10	0.7		0.1	U	0.1	U	0.09	U	0.09	U	0.2	J	0.1	J
Phenol	1	0.5	U	0.5	U	0.6	U	0.7	J	0.5	U	0.5	U	0.5	U

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above NYSDEC SGVs are bolded and shaded.
- ${\it 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.}\\$
- 5. Sample GWDUP01_052020 is a duplicate sample of MW18_052020.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. ug/l = micrograms per liter

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Location		MW13 M				MW13N	MW16 MW18				MW18		MW19		MW22		
Sample ID	NYSDEC			MW13N_051620		MW13N 051620	MW16 052020		MW18 052020		GWDUP01 052020		MW19 052020		MW22 051620		
Laboratory ID	SGVs	_		1316589/1316			1317993/1317994		1317995/1317996		1317999/1318000		1317997/1317998		1316591/1316592		
Sample Date		5/16/202		5/16/2020		5/16/2020	5/20/2020		5/20/2020		5/20/2020		5/20/2020		5/16/2020		
Pesticides (µg/L)	~	ND	ND ND		NA	ND	ND		ND			ND		ND	$\overline{}$		
Herbicides (µg/L)	~	ND ND		NA ND		ND		ND		ND		ND					
Polychlorinated Biphenyls (µg/L)			•				•	•				•		•			
PCB-1260 (Aroclor 1260)	~	0.16	U	1.5		0.16 U	0.26	UJ	0.21	UJ	0.21	UJ	0.21	UJ	0.15	U	
Total PCBs	0.09	0.1	U	1.5		0.11 U	0.17	U	0.14	U	0.14	U	0.14	U	0.1	U	
Inorganics (µg/L)		_															
Arsenic	25	3		2.7		NA	22.3		4.3		4.2		2.6		3.7		
Arsenic (Dissolved)	25	1.8	J	2.1		NA	8.3		4.3		4.2		2.3		3.2		
Barium	1,000	325		105		NA	76.7		130		131		63.6		121		
Barium (Dissolved)	1,000	283		98.4		NA	30.4		134		132		61.5		126		
Cadmium	5	0.15	U	0.15	U	NA	0.15	U	1.5		1.2		0.15	U	0.15	U	
Cadmium (Dissolved)	5	0.15	U	0.15	U	NA	0.15	U	1.3		1.3		0.15	U	0.15	U	
Chromium, Total	50	2.1	U	2	U	NA	0.78	J	0.5	J	0.52	J	0.72	J	2	U	
Chromium, Total (Dissolved)	50	0.66	J	2	U	NA	0.33	U	0.44	J	0.34	J	0.53	J	2	U	
Copper	200	5.7		1.9		NA	0.36	U	2.5		2.7		0.96	J	0.36	U	
Copper (Dissolved)	200	0.36	U	0.36	U	NA	0.36	U	1.2		1.3		0.52	J	0.36	U	
Lead	25	21.5		8.3		NA	0.92		2.1		2		1.4		4.6		
Lead (Dissolved)	25	0.15	J	0.071	U	NA	0.071	U	0.4	J	0.3	J	0.12	J	0.071	U	
Manganese	300	352		829		NA	644		912		924		203		620		
Manganese (Dissolved)	300	310		802		NA	262		926		934		195		620		
Nickel	100	1.8		1.6		NA	3.4		10.2		9.6		30.9		1.8		
Nickel (Dissolved)	100	1.2		0.6	U	NA	1.2		10.1		10.7		31.3		1.8		
Selenium	10	0.33	J	0.28	U	NA	0.28	U	2		1.9		3.5		0.28	U	
Selenium (Dissolved)	10	0.28	U	0.28	U	NA	0.28	U	2		2		3.8		0.28	U	
Zinc	2,000	44.4		6.2	U	NA	6.3	J	405		415		252		8.1	J	
Zinc (Dissolved)	2,000	11.5		6.2	U	NA	6.2	U	414		413		256		6.2	U	

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above NYSDEC SGVs are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.
- 5. Sample GWDUP01_052020 is a duplicate sample of MW18_052020.
- 6. Sample MW13N_051620 (Laboratory ID: 1321423) was lab filtered. Sample MW13N_051620 (Laboratory ID: 1316589/1316590) was not lab filtered.
- 7. ~ = Regulatory limit for this analyte does not exist
- 8. ug/l = micrograms per liter
- 9. ND = Not detected

- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 8 Remedial Investigation Report Groundwater Sample Analytical Results Summary - Emerging Contaminants

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

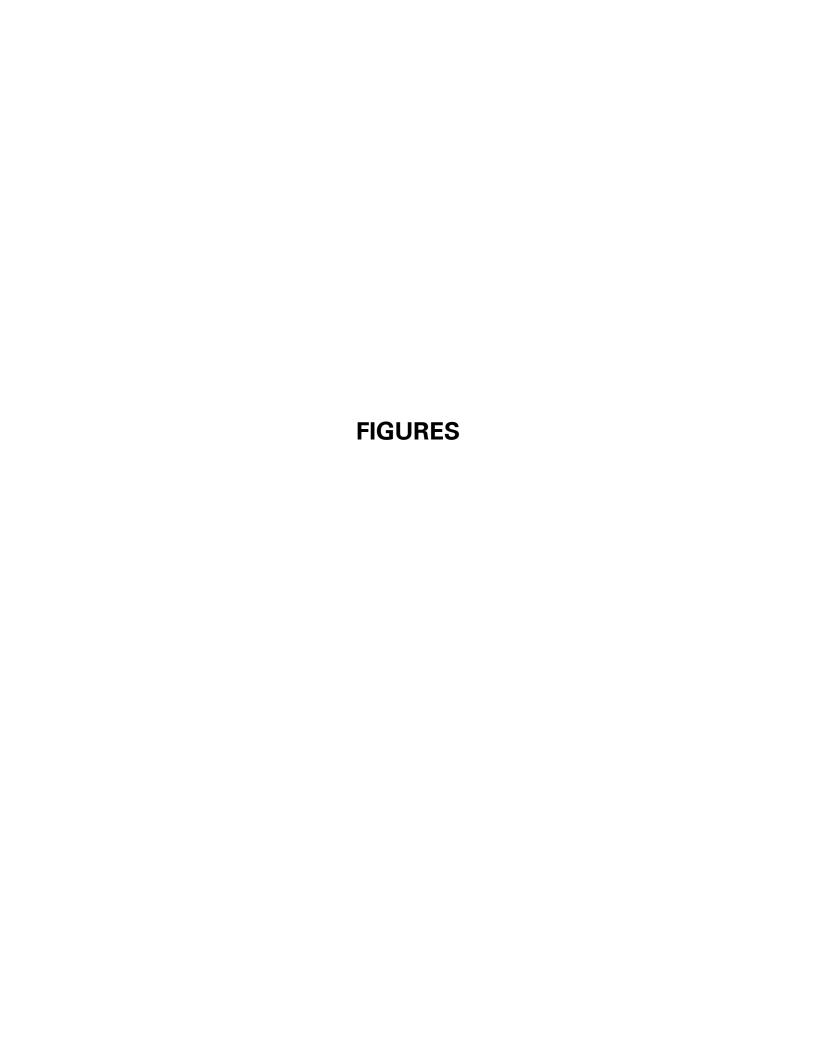
Location Sample ID	NYSDEC Jan 2020	MW13 EC Jan 2020 MW13_0516		MW13N MW13N_051620		MW16 MW16_052		MW18 MW18_0520)20	MW18 GWDUP01_05	2020	MW19 MW19_0520	20	MW22 MW22_051620	
Laboratory ID	PFAS Guielines	1316581		1316589		1317993		1317995		1317999		1317997		1316591	
Sample Date		5/16/2020		5/16/2020		5/20/2020		5/20/2020		5/20/2020		5/20/2020		5/16/2020	
Per and Polyfluoroalkyl Substances (ng/L												-			
Perfluorobutanesulfonic Acid (PFBS)	100	4.9	U	3.7		5		8		8		7.4		4.9	U
Perfluorobutanoic acid (PFBA)	100	20	U	11		13		33		33		47		20	U
Perfluoroheptanesulfonic acid (PFHpS)	100	4.9	U	0.44	U	0.44	U	0.87	J	0.84	J	0.42	U	4.9	U
Perfluoroheptanoic acid (PFHpA)	100	8.8	J	5.4		4.1		29		30		32		8.1	J
Perfluorohexanesulfonic Acid (PFHxS)	100	4.9	U	1.7	J	0.9	J	5		5.1		2.6		4.9	U
Perfluorohexanoic Acid (PFHxA)	100	11	J	12		12		77		80		120		13	J
Perfluorononanoic Acid (PFNA)	100	4.9	U	1.1	J	0.51	J	12		12		4.4		4.9	U
Perfluorooctanesulfonamide (FOSA)	100	4.9	U	0.44	U	0.44	U	0.58	J	0.58	J	0.42	U	4.9	U
Perfluorooctanesulfonic acid (PFOS)	10	4.9	U	5.3		2		25		24		2		6.6	J
Perfluorooctanoic Acid (PFOA)	10	52		43		16		170		170		100		66	
Perfluoropentanoic Acid (PFPeA)	100	12	J	15		18		110		120		190		16	J
Total PFAS	500	83.8		98.2		71.5		471		484		505		110	

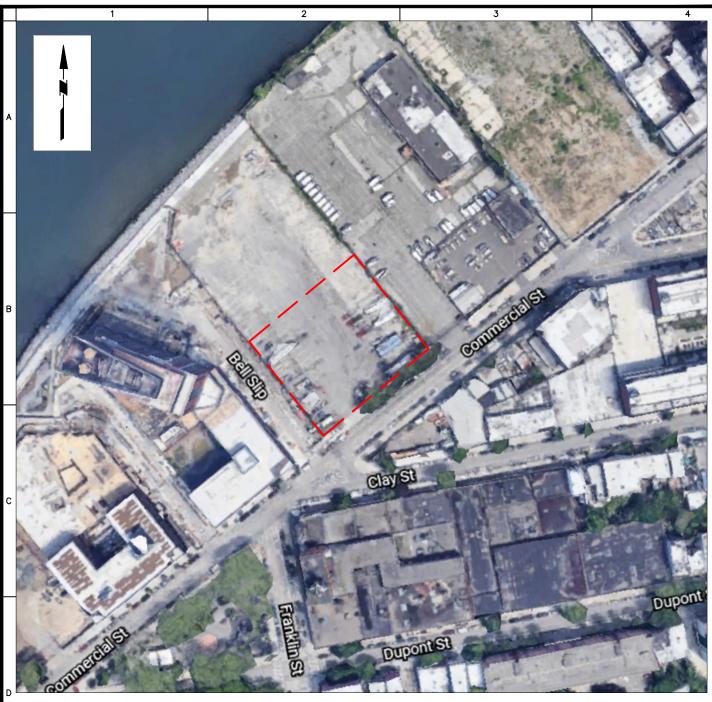
Notes

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) January 2020 Guidelines for Sampling and Analysis of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs.
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above the NYSDEC Jan 2020 PFAS Guielines are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above the regulartory criteriaare italicized.
- 5. Sample GWDUP01_052020 is a duplicate sample of MW18_052020.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. ng/l = nanograms per liter

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 9 Remedial Investigation Report Soil Vapor Analytical Results Summary - VOCs


45 Commercial Street Brooklyn, New York Langan Project No.: 170229024


Location Sample ID Laboratory ID Sample Date Sample Type	NYSDOH Decision Matrices Minimum Concentrations	NYSDOH AGVs	AA01 AA01_050820 1311681 5/8/2020 AA		SV-1 SV01_050820 1311683 5/8/2020 SV		SV-2 SV02_050820 1311679 5/8/2020 SV		SV-2 SVDUP01_050820 1311680 5/8/2020 SV		SV-3 SV03_050820 1311682 5/8/2020 SV		SV-4 SV04_050820 1311678 5/8/2020 SV		SV-5 SV05_050820 1311677 5/8/2020 SV	
Volatile Organic Compounds (µg/m³)															•	
1,2,4-Trimethylbenzene	~	~	1.6	J	1.4	U	3	J	1.8	J	2.5	J	4.4	J	1.7	J
1,2-Dichlorobenzene	~	~	1.2	U	1.3	J	1.2	U	1.2	U	12		1.2	U	1.2	U
1,3-Dichlorobenzene	~	~	7.3		1.1	U	6.2		9.8		6.8		4.3	J	5.9	J
1,4-Dichlorobenzene	~	~	1	U	1	U	1	U	1	U	2.5	J	1	U	1	U
2,2,4-Trimethylpentane	~	~	3.9	J	0.86	J	1.8	J	22	J	2.4	J	2.1	J	8.2	
4-Ethyltoluene	~	~	0.88	U	0.88	U	0.92	J	0.88	U	0.9	J	1.8	J	0.88	U
Acetone	~	~	750		26		360		570		550		860		610	
Benzene	~	~	4		1.3	J	3.3		5.8		7.4		6.9		3.4	
Carbon Disulfide	~	~	16		0.4	U	1.4	J	32	J	64		37		13	
Chlorobenzene	~	~	0.6	U	2.5	J	0.6	U	0.6	U	3.5	J	0.6	U	0.6	U
Chloroform	~	~	0.45	U	0.45	U	0.95	J	0.45	U	0.45	U	0.45	U	0.45	U
Dichlorodifluoromethane	~	~	2.5	J	2.7	J	2.9	J	1.7	J	3	J	2.6	J	1.9	J
Ethylbenzene	~	~	3.5	J	0.95	J	3.4	J	2	J	5.1		8.6		5.5	
M,P-Xylene	~	~	11		2	J	11		6	J	20		32		14	
Methyl Ethyl Ketone (2-Butanone)	~	~	69		6		30	J	64	J	40		81		59	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	~	2.1	J	0.61	U	1.8	J	0.61	U	2.1	J	1.8	J	2.3	J
n-Heptane	~	~	9.1		1.2	J	4.4	J	13	J	6.9		11		31	
n-Hexane	~	~	0.46	U	2.5	J	0.46	UJ	82	J	0.46	U	0.46	U	180	
N-Octane	~	~	11		1.9	U	12		12		9.3	J	11		20	
n-Pentane	~	~	120		1.7	J	4.9	J	260	J	13		14		470	
o-Xylene (1,2-Dimethylbenzene)	~	~	3.1	J	0.86	J	3.4	J	2	J	6.8		9.1		6.9	
Tert-Butyl Methyl Ether	~	~	4.8		0.54	U	0.54	UJ	24	J	0.54	U	0.54	U	2	J
Tetrachloroethene (PCE)	100	30	1.7	U	1.7	U	1.7	U	1.7	U	1.7	U	1.7	U	1.8	J
Toluene	~	~	19		2.3	J	16		14		20		31		11	ļ
Trichlorofluoromethane	~	~	0.84	U	2	J	2.2	J	0.84	U	2	J	1.9	J	0.84	U
Total VOCs	~	~	1,040		54.2		470		1,120		780		1,120		1,450	

Notes:

- 1. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations recommending mitigation as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).
- 2. The NYSDOH Air Guideline Values (AGVs) as set forth in the NYSDOH October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York and subsequent updates (2013, 2015) are shown for reference only.
- 3. Ambient air sample analytical results are shown for reference only.
- 4. Only detected analytes are shown in the table.
- 5. Detected analytical results above the minimum soil vapor concentrations recommending mitigation are bolded and shaded.
- 6. Analytical results with reporting limits (RL) above the minimum soil vapor concentrations recommending mitigation are italicized.
- 7. Sample SVDUP01_050820 is a duplicate of parent sample SV02_050820.
- 8. ~ = Regulatory limit for this analyte does not exist
- 9. ug/m3 = micrograms per cubic meter
- 10. AA = Ambient Air
- 11. SV = Soil Vapor

- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
- UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

NOTES

BASE MAP SOURCE: USGS (2016) 7.5-MINUTE BROOKLYN, N.Y., TOPOGRAPHIC QUADRANGLES

NORTH ARROW SHOWS TRUE NORTH.

LEGEND

APPROXIMATE SITE BOUNDARY

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

KINGS COUNTY

45 COMMERCIAL STREET

BLOCK No. 2472, LOT No. 70 BROOKLYN

Figure Title

SITE LOCATION MAP

ı
l
l

APPROXIMATE SITE BOUNDARY

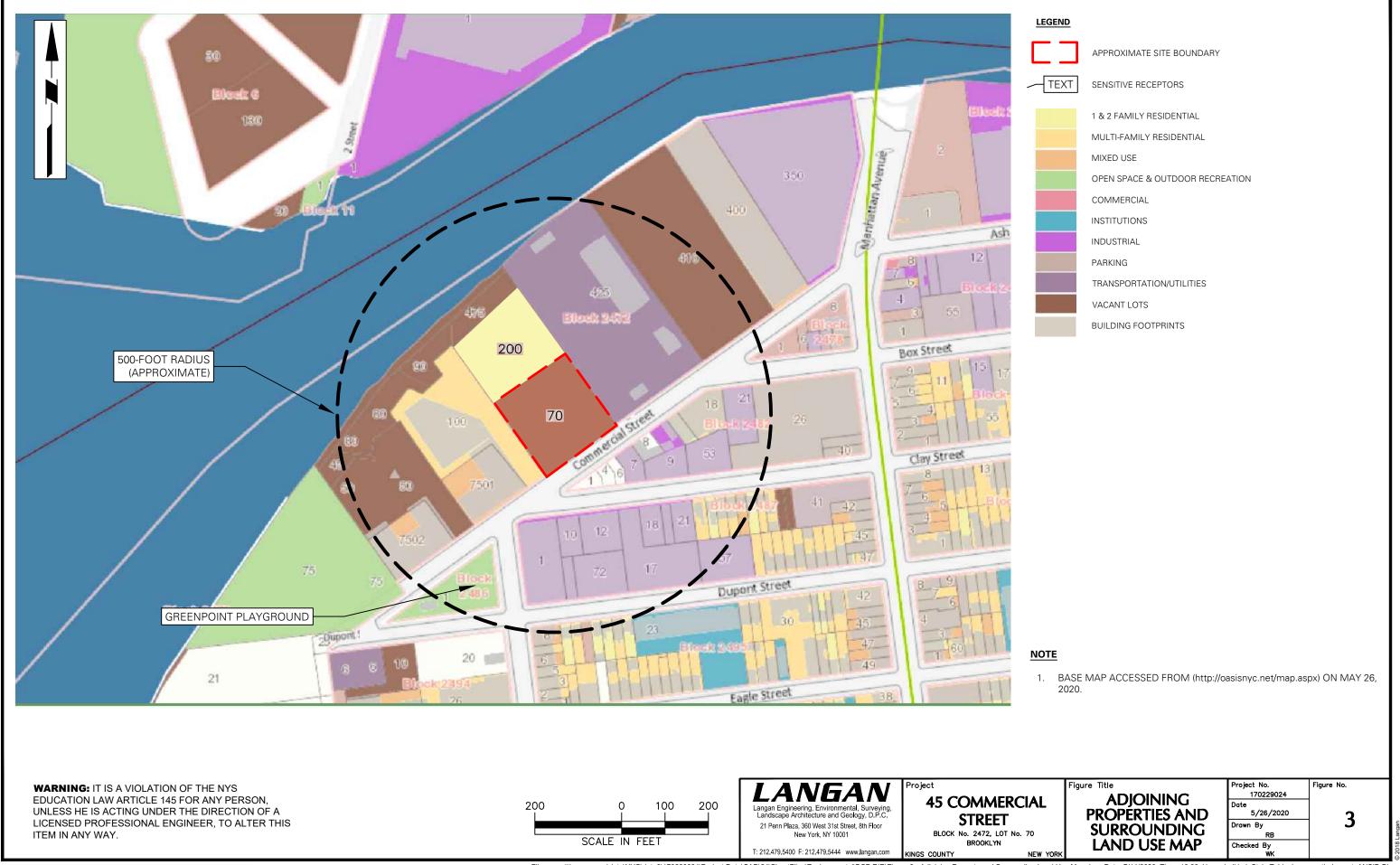
APPROXIMATE TAX LOT BOUNDARY

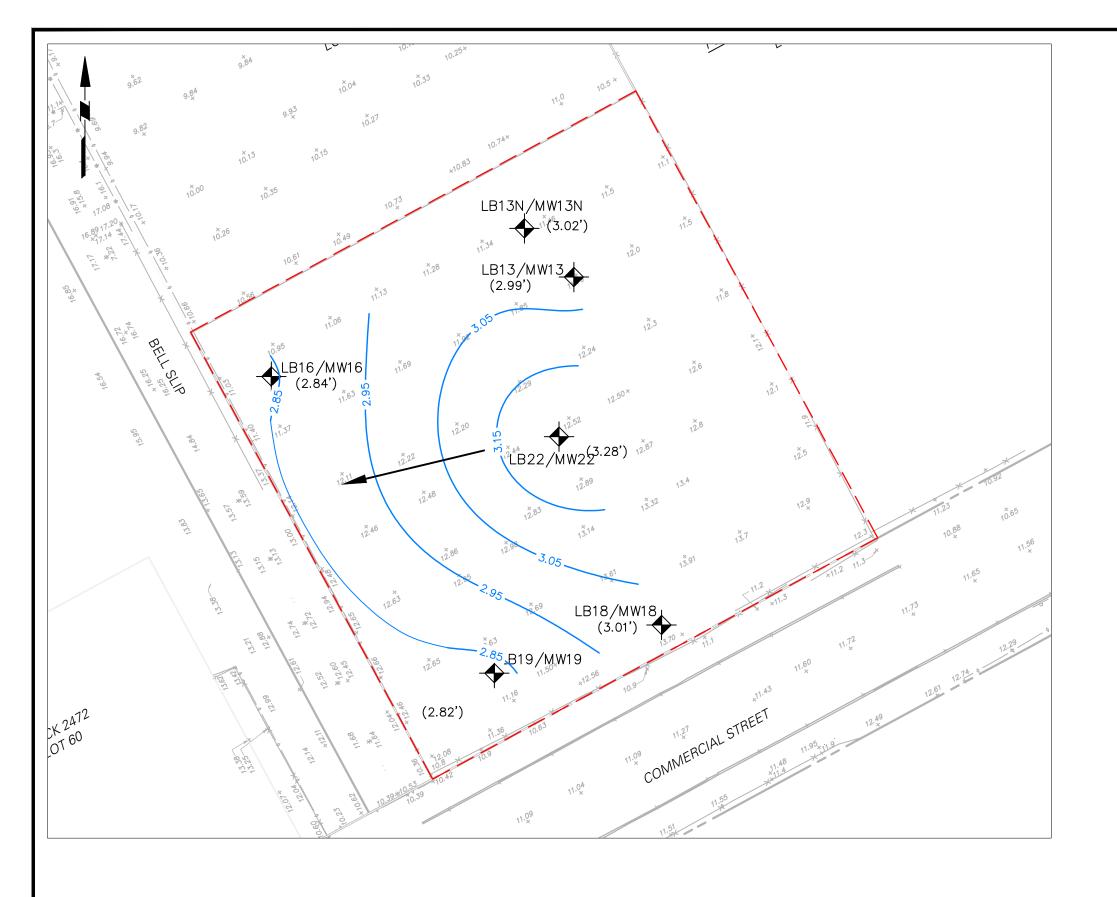
- 1. BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- 2. NORTH ARROW SHOWS TRUE NORTH.

Figure Title

ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY 1.1 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGIC SURVEY (USGS NGVD 1929).

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.


ANGAN Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor


New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com **45 COMMERCIAL STREET** BLOCK No. 2472, LOT No. 70 BROOKLYN

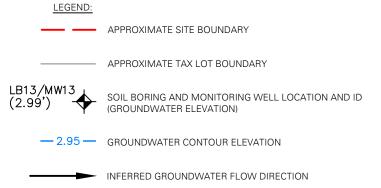
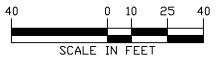

SITE PLAN

Figure No. 170229024 04/01/2020

Checked By



NOTES:

- BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- NORTH ARROW SHOWS TRUE NORTH.
- ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY 1.1 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGIC SURVEY (USGS NGVD 1929).
- MONITORING WELL TOP OF CASING ELEVATIONS WERE SURVEYED BY LANGAN ON MAY 18, 2020.
- ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- GROUNDWATER ELEVATIONS ARE BASED ON A SYNOPTIC GROUNDWATER GAUGING ON MAY 20, 2020
- GROUNDWATER CONTOUR INTERVAL IS 0.1 FOOT

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

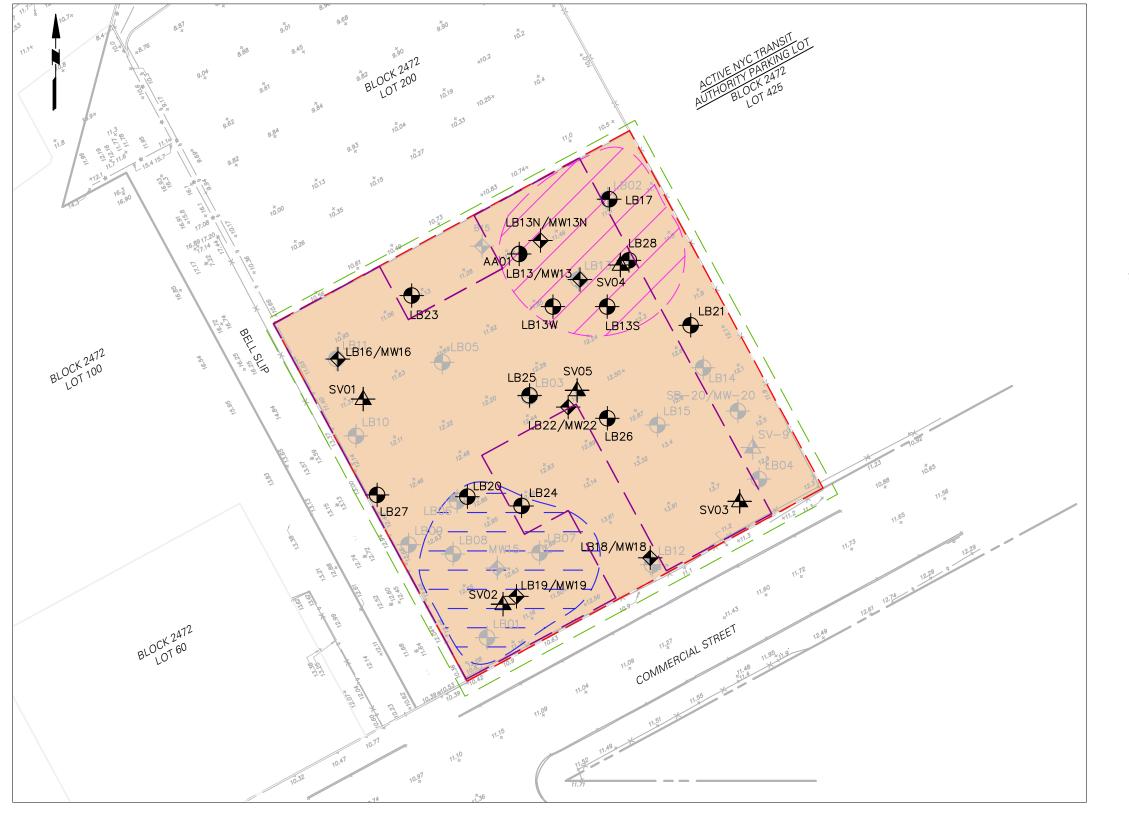

STREET BLOCK No. 2472, LOT No. 70 BROOKLYN

Figure Title **45 COMMERCIAL**

GROUNDWATER ELEVATION CONTOUR MAP

Project No. Figure No. 170229024 05/29/2020 Drawn By JFY

Checked By WK

LEGEND:

APPROXIMATE SITE BOUNDARY

APPROXIMATE TAX LOT BOUNDARY

APPROXIMATE PROPOSED BUILDING BOUNDARY

LB13/MW13

SOIL BORING AND MONITORING WELL LOCATION AND ID

LB14

SOIL BORING LOCATION AND ID

SV05

SOIL VAPOR SAMPLING LOCATION AND ID

AMBIENT AIR SAMPLING LOCATION AND ID

PREVIOUS SOIL BORING LOCATION AND ID (LANGAN 2019)

PREVIOUS SOIL BORING AND MONITORING WELL LOCATION AND ID

(AKRF PHASE II, 2004)

SV-9

PREVIOUS SOIL VAPOR SAMPLING LOCATION AND ID (LANGAN REMEDIAL INVESTIGATION, 2014)

AOC 1: PRIOR SITE USE

AOC 2: NYSDEC SPILL No. 19-06491

AOC 3: HISTORIC FILL


AOC 4: HISTORICAL USE OF SURROUNDING PROPERTIES

NOTES:

- 1. BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- 2. NORTH ARROW SHOWS TRUE NORTH.
- 3. ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY 1.1 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGIC SURVEY (USGS NGVD 1929).
- 4. ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- 5. AOC = AREA OF CONCERN

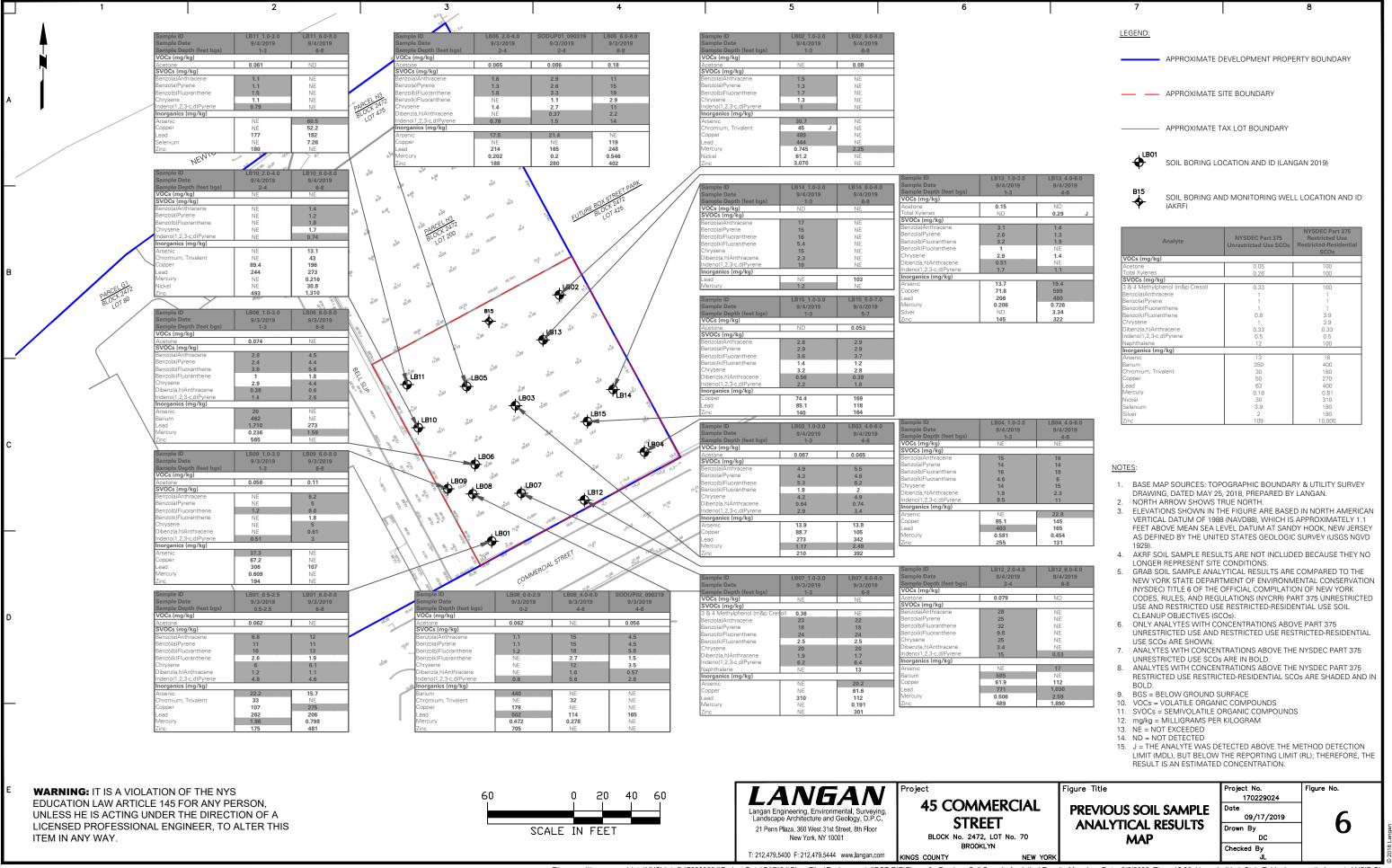
Figure Title

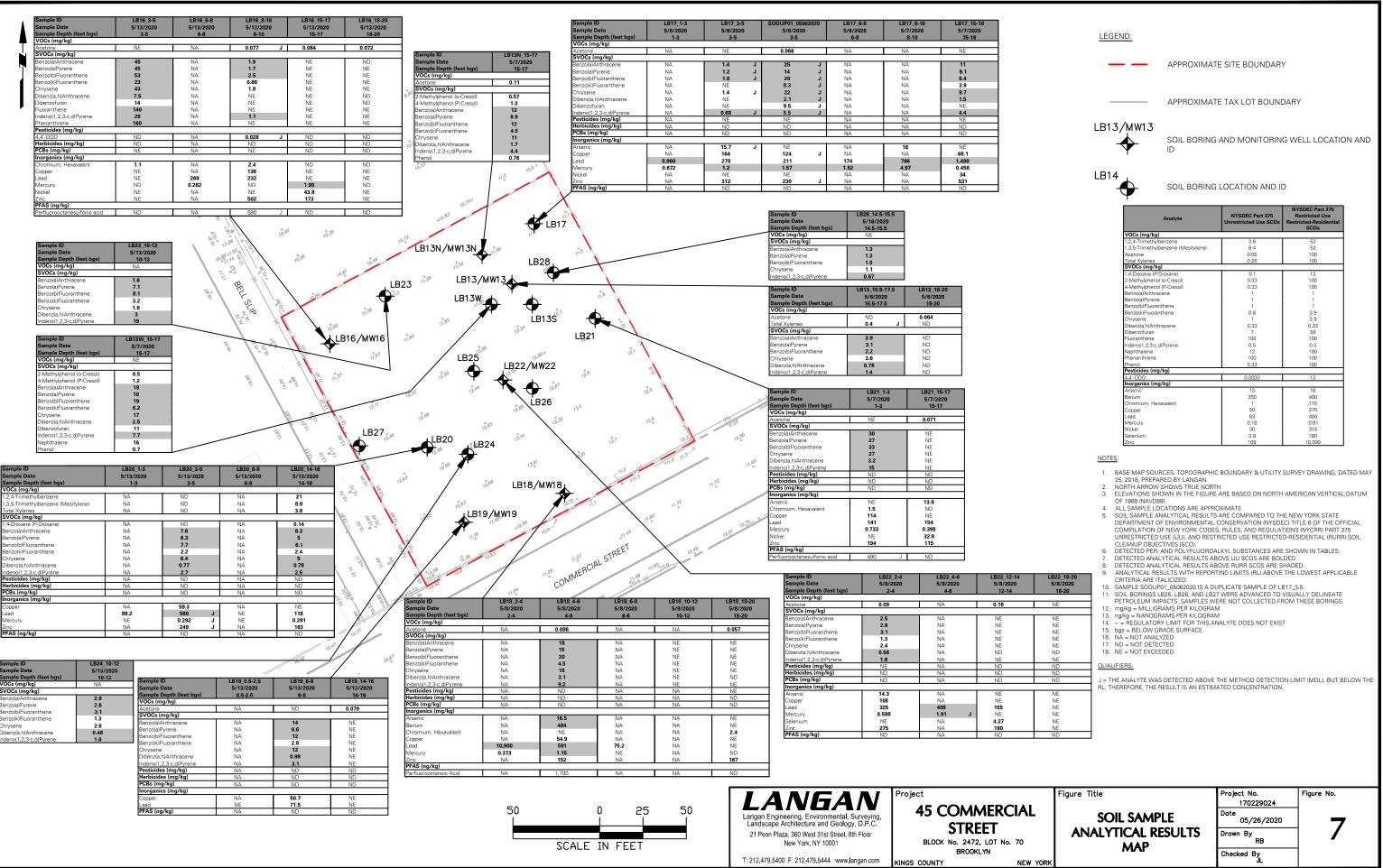
WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

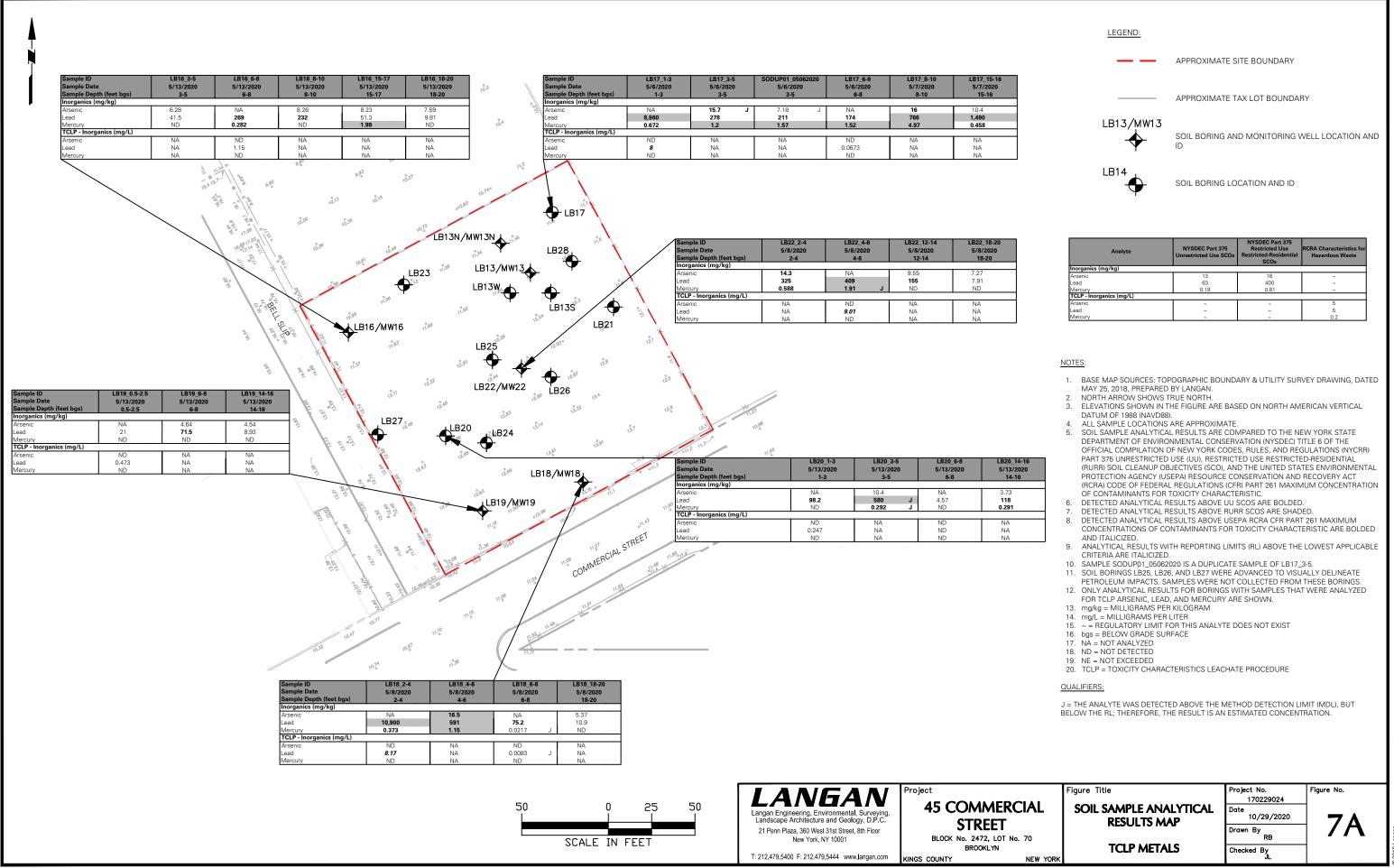
ANGAN Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

45 COMMERCIAL **STREET**


BLOCK No. 2472, LOT No. 70 BROOKLYN


AOC AND SAMPLE LOCATION MAP


PRE-RIR

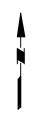

Project No. 170229024 05/22/2020 Drawn By RB Checked By WK

Figure No.

ample ID

VOCs (µg/L)

SVOCs (µg/L)

PCBs (µg/L)

PFAS (ng/L)

Total PFAS

Pesticides (µg/L)

Herbicides (µg/L)

Inorganics (µg/L)

Perfluorobutanesulfonic Acid

Perfluorohexanesulfonic Acid

Perfluorooctanesulfonic acid

Perfluorobutanoic acid

Perfluoroheptanoic acid

Perfluorohexanoic Acid

Perfluorononanoic Acid

Perfluorooctanoic Acid

Perfluoropentanoic Acid

Sample ID	MW13N_051620
Sample Date	5/16/2020
VOCs (µg/L)	ND
SVOCs (µg/L)	ND
Pesticides (µg/L)	ND
Herbicides (µg/L)	ND
PCBs (µg/L)	ND
Inorganics (µg/L)	
Manganese	829
Manganese (Dissolved)	802
PFAS (ng/L)	
Perfluorobutanesulfonic Acid	3.7
Perfluorobutanoic acid	11
Perfluoroheptanoic acid	5.4
Perfluorohexanesulfonic Acid	1.7 J
Perfluorohexanoic Acid	12

1.1

5.3 43

15

LB13N/MW13N

LB13/MW13

LB22/MW22

LB19/MW19

LB18/MW18

Perfluorononanoic Acid

Perfluorooctanoic Acid Perfluoropentanoic Acid

Total PFAS

Perfluorooctanesulfonic acid

MW16 052020

5/20/2020

ND

ND

ND

ND

644

13

4.1

0.9

12

0.51

18

71.5

Sample ID	MW13_051620	
Sample Date	5/16/2020	
VOCs (µg/L)	NE	
SVOCs (µg/L)	NE	
Pesticides (µg/L)	ND	
Herbicides (µg/L)	ND	
PCBs (µg/L)	ND	
Inorganics (µg/L)		
Manganese	352	
Manganese (Dissolved)	310	
PFAS (ng/L)		
Perfluoroheptanoic acid	8.8	J
Perfluorohexanoic Acid	11	J
Perfluorooctanoic Acid	52	
Perfluoropentanoic Acid	12	J
Total PFAS	83.8	

Perfluorohexanesulfonic Acid

Perfluorooctanesulfonamide

Perfluorooctanesulfonic acid

Perfluorohexanoic Acid

Perfluorononanoic Acid

Perfluorooctanoic Acid

Perfluoropentanoic Acid

otal PFAS

MW19 052020

Sample ID	MW18_052020	GWDUP01_052020
Sample Date	5/20/2020	5/20/2020
VOCs (µg/L)	NE	NE
SVOCs (µg/L)	NE	ND
Pesticides (µg/L)	ND	ND
Herbicides (µg/L)	ND	ND
PCBs (µg/L)	ND	ND
Inorganics (µg/L)		
Manganese	912	924
Manganese (Dissolved)	926	934
PFAS (ng/L)	•	
Perfluorobutanesulfonic Acid	8	8
Perfluorobutanoic acid	33	33
Perfluoroheptanesulfonic acid	0.87 J	0.84 J
Perfluoroheptanoic acid	29	30

77

12

0.58

25

170

110

471

APPROXIMATE SITE BOUNDARY

APPROXIMATE TAX LOT BOUNDARY

LB13/MW13

SOIL BORING AND MONITORING WELL LOCATION AND ID

Analyte	NYSDEC SGVs	NYSDEC January 2020 Guidance for Sampling and Analysis of PFAS		
VOCs (μg/L)	-			
1,2-Dichloroethane	0.6	~		
Inorganics (µg/L)				
Manganese	300	~		
PFAS (ng/L)				
Perfluorohexanoic Acid	~	100		
Perfluorooctanesulfonic Acid	~	10		
Perfluorooctanoic Acid	~	10		
Perfluoropentanoic Acid	~	100		
Total PFAS	~	500		

NOTES:

- 1. BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- 2. NORTH ARROW SHOWS TRUE NORTH.
- 3. ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY 1.1 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGIC SURVEY (USGS NGVD 1929).
- 4. ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- GROUNDWATER SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TITLE 6 OF THE OFFICIAL COMPILATION OF NEW YORK CODES, RULES, AND REGULATIONS (NYCRR) PART 703.5 AND THE NYSDEC TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES FOR CLASS GA WATER AND THE NYSDEC JANUARY 2020 GUIDANCE FOR SAMPLING AND ANALYSIS OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS).
- DETECTED ANALYTES ABOVE NYSDEC SGVs AND THE NYSDEC JANUARY 2020 GUIDANCE FOR SAMPLING AND ANALYSIS OF PFAS ARE BOLDED AND
- SAMPLE GWDUP01_052020 IS A DUPLICATE SAMPLE OF MW18_052020.
- SAMPLE MW13N_051620 WAS REANALYZED FOR PCBS AFTER LAB FILTRATION.
- μ g/L = MICROGRAMS PER LITER
- 10. ng/L = NANOGRAMS PER LITER
- 11. NE = NO EXCEEDANCES
- 12. ND = NO DETECTIONS

Figure Title

J = THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT (MDL), BUT BELOW THE RL; THEREFORE, THE RESULT IS AN ESTIMATED CONCENTRATION.

Sample ID	MW22_0516	20
Sample Date	5/16/2020	
VOCs (µg/L)	NE	
SVOCs (µg/L)	NE	
Pesticides (µg/L)	ND	
Herbicides (µg/L)	ND	
PCBs (µg/L)	ND	
Inorganics (µg/L)		
Manganese	620	
Manganese (Dissolved)	620	
PFAS (ng/L)		
Perfluoroheptanoic acid	8.1	J
Perfluorohexanoic Acid	13	J
Perfluorooctanesulfonic acid	6.6	J
Perfluorooctanoic Acid	66	
Perfluoropentanoic Acid	16	J
Total PFAS	110	

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON. UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Sample Date 5/20/2020 VOCs (µg/L) ND SVOCs (µg/L) NF Pesticides (µg/L) ND Herbicides (µg/L) ND PCBs (µg/L) ND Inorganics (µg/L) NE PFAS (ng/L) Perfluorobutanesulfonic Acid 7.4 47 Perfluorobutanoic acid Perfluoroheptanoic acid 32 Perfluorohexanesulfonic Acid 26 Perfluorohexanoic Acid Perfluorononanoic Acid 4.4 Perfluorooctanesulfonic acid Perfluorooctanoic Acid 100 190 Perfluoropentanoic Acid Total PFAS 20 40 60 SCALE IN FEET

COMMERCIAL STREET

ANGAN Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

45 COMMERCIAL STREET

5.1

80

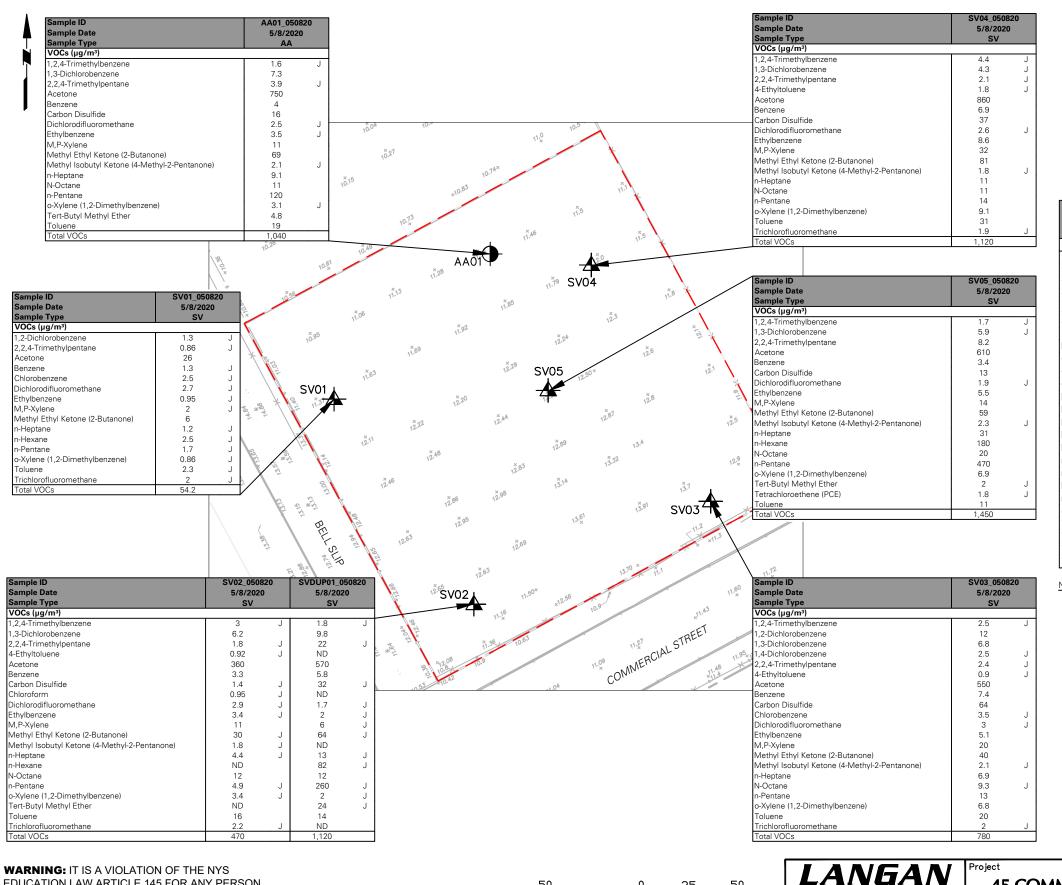
12

0.58

24

170

120


484

BLOCK No. 2472, LOT No. 70 BROOKLYN

GROUNDWATER SAMPLE **ANALYTICAL RESULTS** MAP

Figure No. 170229024 05/26/2020 Drawn By Checked By

8

50

SCALE IN FEET

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

EDUCATION LAW ARTICLE 145 FOR ANY PERSON.

ITEM IN ANY WAY.

UNLESS HE IS ACTING UNDER THE DIRECTION OF A

LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

LEGEND: APPROXIMATE SITE BOUNDARY APPROXIMATE TAX LOT BOUNDARY SV01 SOIL VAPOR SAMPLE LOCATION AND ID AA01 AMBIENT AIR SAMPLE LOCATION AND ID

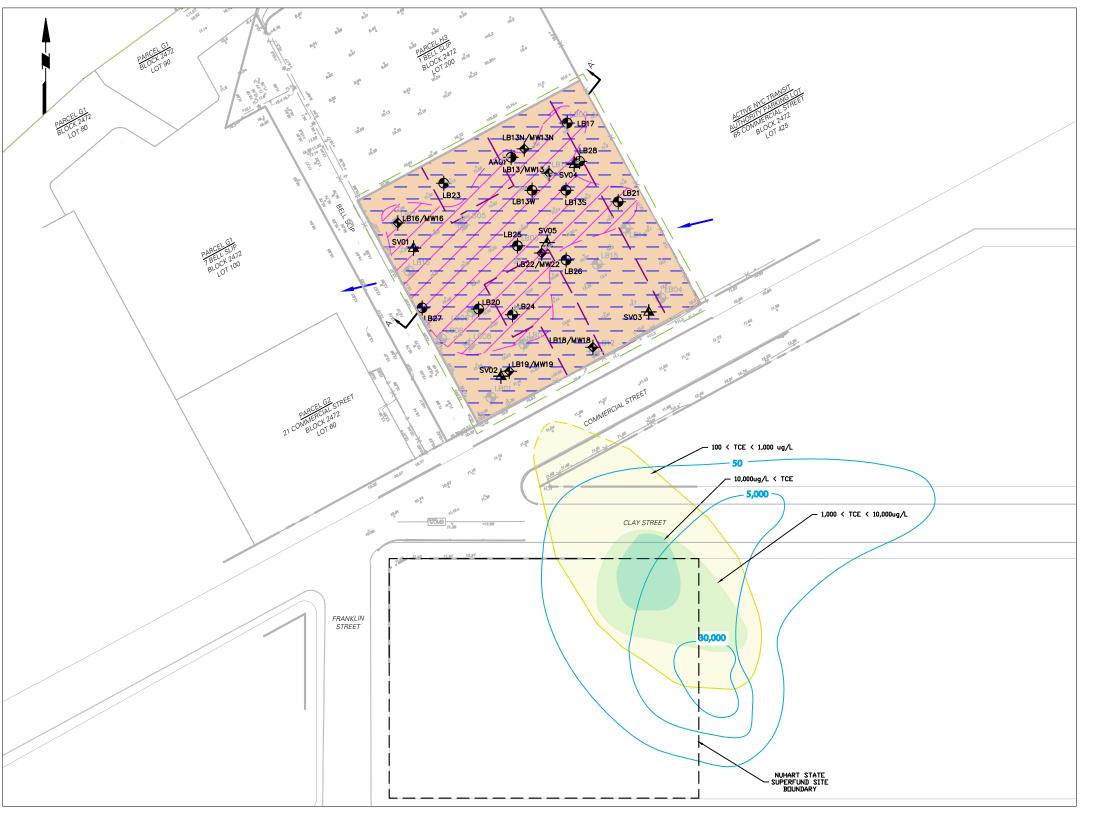
Analyte	NYSDOH Decision Matrices Minimum Concentrations	NYSDOH AGVs
VOCs (μg/m³)		
1,2,4-Trimethylbenzene	~	~
1,2-Dichlorobenzene	~	~
1,3-Dichlorobenzene	~	~
1,4-Dichlorobenzene	~	~
2,2,4-Trimethylpentane	~	~
4-Ethyltoluene	~	~
Acetone	~	~
Benzene	~	~
Carbon Disulfide	~	~
Chlorobenzene	~	~
Chloroform	~	~
Dichlorodifluoromethane	~	~
Ethylbenzene	~	~
M,P-Xylene	~	~
Methyl Ethyl Ketone (2-Butanone)	~	~
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	~
n-Heptane	~	~
n-Hexane	~	~
N-Octane	~	~
n-Pentane	~	~
o-Xylene (1,2-Dimethylbenzene)	~	~
Tert-Butyl Methyl Ether	~	~
Tetrachloroethene (PCE)	100	30
Toluene	~	~
Trichlorofluoromethane	~	~

- BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- 2. NORTH ARROW SHOWS TRUE NORTH.
- ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
- ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- SOIL VAPOR SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE MINIMUM SOIL VAPOR CONCENTRATIONS RECOMMENDING MITIGATION AS SET FORTH IN THE NEW YORK STATE DEPARTMENT OF HEALTH (NYSDOH) OCTOBER 2006 GUIDANCE FOR EVALUATING SOIL VAPOR INTRUSION IN THE STATE OF NEW YORK DECISION MATRICES FOR SUB-SLAB VAPOR AND INDOOR AIR AND SUBSEQUENT UPDATES (2017).
- THE NYSDOH AIR GUIDELINE VALUES (AGVS) AS SET FORTH IN THE NYSDOH OCTOBER 2006 GUIDANCE FOR EVALUATING SOIL VAPOR INTRUSION IN THE STATE OF NEW YORK AND SUBSEQUENT UPDATES (2013, 2015) ARE SHOWN FOR REFERENCE ONLY.
- AMBIENT AIR SAMPLE ANALYTICAL RESULTS ARE SHOWN FOR REFERENCE ONLY.
- ONLY DETECTED ANALYTES ARE SHOWN IN THE TABLES.
- SAMPLE SVDUP01 050820 IS A DUPLCATE OF PARENT SAMPLE SV02 050820.

MAP

- 10. ALL CONCENTRATIONS ARE REPORTED IN MICROGRAMS PER CUBIC METER 11. VOCs = VOLATILE ORGANIC COMPOUNDS
- 12. μg/m³ = MICROGRAMS PER CUBIC METER
- 13. NE = NOT EXCEEDED
- 15. J = THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT (MDL), BUT BELOW THE REPORTING LIMIT (RL); THEREFORE, THE RESULT IS AN ESTIMATED CONCENTRATION.

Figure Title **45 COMMERCIAL SOIL VAPOR SAMPLE**


ANALYTICAL RESULTS

Project No Figure No. 170229024 05/26/2020 9 Jrawn By RB Checked By

STREET

BLOCK No. 2472, LOT No. 70

BROOKLYN

LEGEND: APPROXIMATE SITE BOUNDARY APPROXIMATE TAX LOT BOUNDARY APPROXIMATE PROPOSED BUILDING BOUNDARY AOC 1: PRIOR SITE USE AOC 2: PETROLEUM-IMPACTED FILL AOC 3: HISTORIC FILL AOC 4: HISTORICAL USE OF SURROUNDING PROPERTIES LB13/MW13 SOIL BORING AND MONITORING WELL LOCATION AND ID LB14 RI SOIL BORING LOCATION AND ID SV05 RI SOIL VAPOR SAMPLING POINT LOCATION AND ID AA01 RI AMBIENT AIR SAMPLING POINT LOCATION AND ID LB01 PREVIOUS SOIL BORING LOCATION AND ID (LANGAN 2019) INFERRED GROUNDWATER FLOW DIRECTION

APPROXIMATE AREA AND EXTENT OF NUHART TCE PLUME IN GROUNDWATER (AS OF JULY 2015)

APPROXIMATE AREA AND EXTENT OF NUHART TCE PLUME IN SOIL VAPOR [ug/m³] (AS OF JULY 2015)

- 1. BASE MAP SOURCES: TOPOGRAPHIC BOUNDARY & UTILITY SURVEY DRAWING, DATED MAY 25, 2018, PREPARED BY LANGAN.
- NORTH ARROW SHOWS TRUE NORTH
- ELEVATIONS SHOWN IN THE FIGURE ARE BASED ON NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY 1.1 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGIC SURVEY (USGS NGVD 1929).
- ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- TCE = TRICHLOROETHYLENE
- LOCATIONS AND EXTENTS OF TCE PLUME ARE REFERENCED FROM THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION RECORD OF DECISION FOR THE FORMER NUHART PLASTIC MANUFACTURING SITE, DATED MARCH 2019.

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

.ANGAN Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

45 COMMERCIAL **STREET** BLOCK No. 2472, LOT No. 70

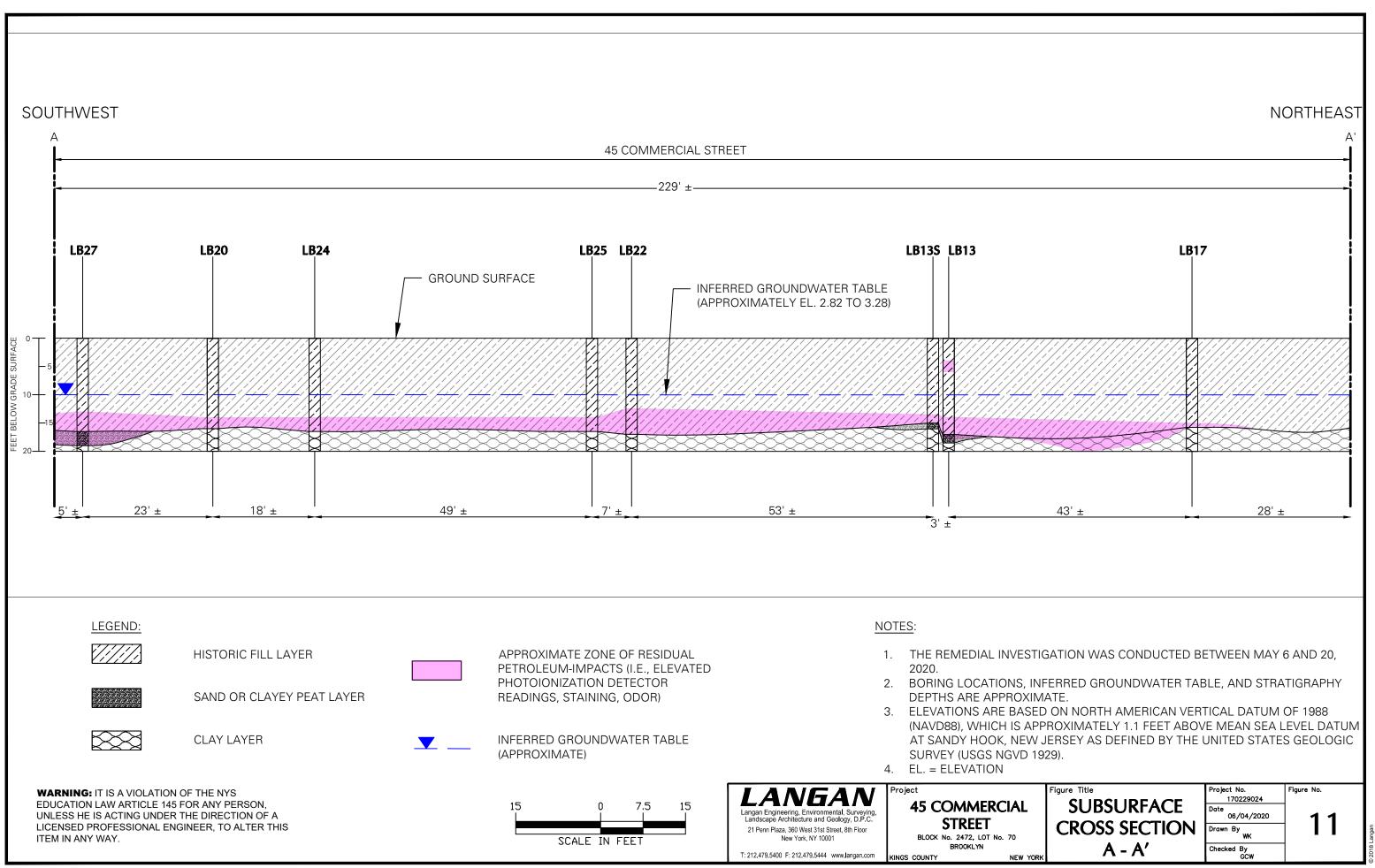
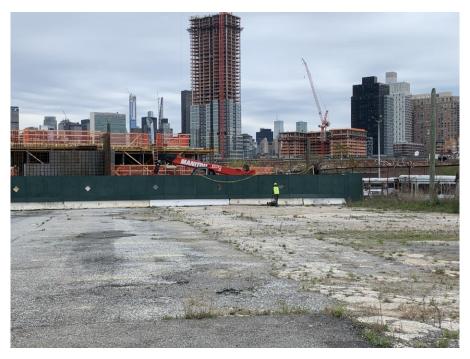
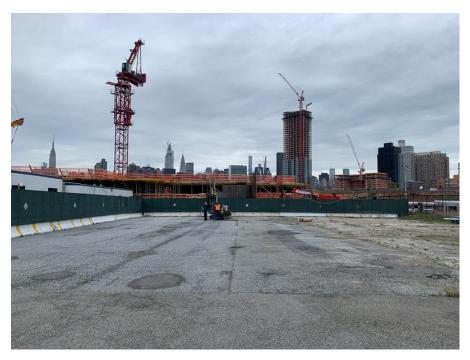

BROOKLYN

Figure Title AREA OF CONCERN AND **CONCEPTUAL SITE MODEL** MAP

POST-RIR

roject No. Figure No. 170229024 05/29/2020 Drawn By


Checked By


APPENDIX A Previous Environmental Reports

APPENDIX B

Photograph Log

Photo 1, 5/06/2020: View of NOVA performing a ground-penetrating radar survey in the northeastern part of the site, facing north.

Photo 2, 5/06/2020: View of Eastern performing soil boring activities in the northern part of the site, facing north.

Photo 3, 5/07/2020: View of the macrocore samples recovered from soil boring LB13N.

Photo 4, 5/08/2020: View of Eastern installing soil vapor point SV02, facing northwest.

Photo 5, 5/08/2020: View of Eastern installing soil vapor point SV02, facing east.

Photo 6, 5/08/2020: View of a soil vapor and soil vapor duplicate samples being collected at SV02, facing west.

Photo 7, 5/11/2020: View of the southern CAMP station, facing southwest.

Photo 8, 5/08/2020: View of site conditions in the eastern and central parts of the site, facing north.

Photo 9, 5/11/2020: View of Eastern drilling soil boring LB26, facing northeast.

Photo 10, 5/11/2020: View of the macrocore samples recovered from soil boring LB25.

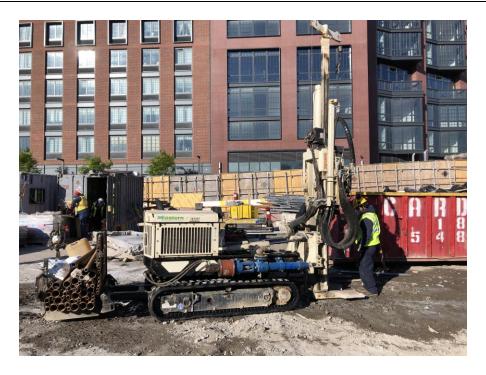


Photo 11, 5/13/2020: View of Eastern drilling soil boring LB16, facing west.

Photo 12, 5/13/2020: View of the flush-mount cover installed over monitoring well MW16.

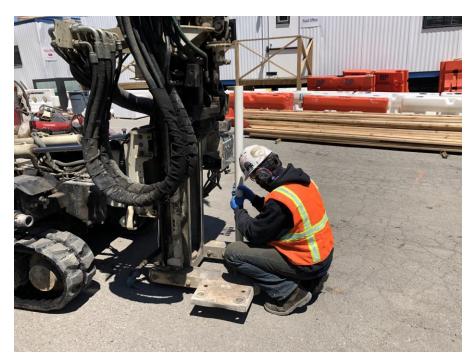



Photo 13, 5/13/2020: View of Eastern installing monitoring well MW19, facing east.

Photo 14, 5/16/2020: View of groundwater sampling at monitoring well MW13N using a peristaltic pump, facing north.

Photo 15, 5/20/2020: View of depth–to-water being gauged at monitoring well MW18 post-groundwater sampling.

Photo 16, 5/20/2020: View of the properly labeled 55-gallon drum filled with purge water from groundwater sampling. The drum is staged on-site in preparation for off-site disposal (facing north).

APPENDIX C Geophysical Survey Report

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 35 Commercial Street, Brooklyn, New York 11222

NOVA PROJECT NUMBER:

20-1742

DATED:


May 15, 2020

PREPARED FOR:

LANGAN

21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001-2727

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS

56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527

May 15, 2020

Woo Kim Senior Staff Geologist

LANGAN

21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001-2727 P: 212.479.5400 x5733 | E: wkim@langan.com

Re: Geophysical Engineering Survey (GES) Report

Commercial Site 35 Commercial Street, Brooklyn, New York 11222

Dear Mr. Kim,

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 35 Commercial Street, Brooklyn, New York 11222 (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

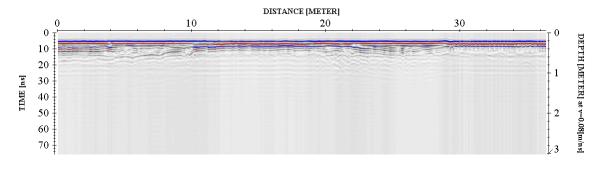
NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify utilities, underground storage tanks and other substructures on May 6th, 2020.

The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

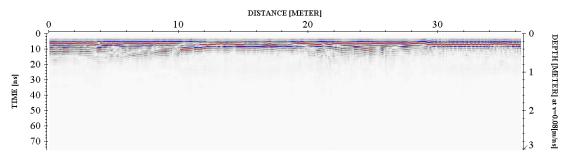
A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

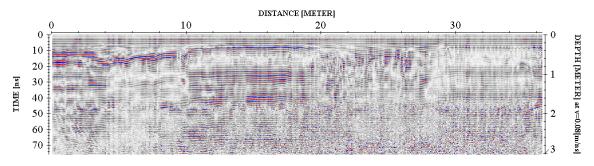
GEOPHYSICAL METHODS

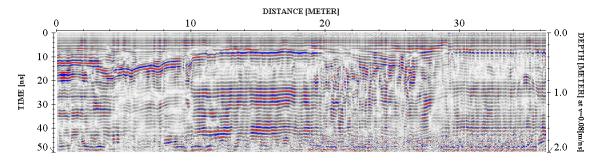

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was used to help determine the locations of utilities within the survey area.

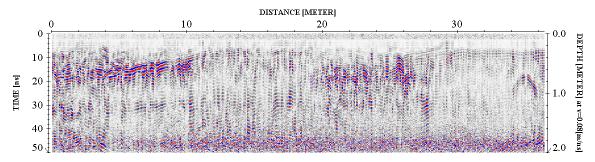
EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.


DATA PROCESSING

In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.


Step 1. Import Raw RAMAC data to standard processing format


Step 2. Remove instrument noise (dewow)


Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and represents the subsurface anomalies much more accurately.

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Clear

Temperature: 55° F

Surface: Concrete, Asphalt, Gravel

Geophysical Noise Level (GNL): The GNL was high at the site. The noise was a result of the site being located in an urban environment and heavily reinforced concrete on portions of the site. Portions of the site were covered with large immobile objects and could not be effectively surveyed.

RESULTS

The results of the geophysical engineering survey (GES) identified the following at the project site:

- Anomalies resembling potential subsurface utilities (such as electric and telecom) were identified during the GES. The approximate locations are shown in the survey plan.
- Anomalies resembling potential foundation slab from a historic building were detected during the GES. Approximate locations of the foundation slab boundaries are shown in the Survey Plan.
- No large geophysical anomalies resembling an underground storage tank (UST) were identified during the GES.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were marked in the onsite mark out.

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 35 Commercial Street, Brooklyn, New York 11222

If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

Levent Eskicakit, P.G., E.P.

Sweet Chaff

Project Engineer

Attachments:

Location Map

Survey Plan

Geophysical Images

NOVA Geophysical Services

Subsurface Mapping Solutions 56-01 Marathon Parkway, # 765 Douglaston, New York 11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.novagsi.com

LOCATION MAP

Commercial Site

35 Commercial Street,

Brooklyn, New York 11222

CLIENT: Langan

SITE:

DATE: May 6th, 2020

Chris Steinley AUTH:

LEGEND

NOVA Geophysical Services

Subsurface Mapping Solutions

56-01 Marathon Parkway, # 765 Douglaston, New York 11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.novagsi.com

SURVEY PLAN

SITE: Commercial Site

35 Commercial Street, Brooklyn, New York 11222

CLIENT: Langan

DATE: May 6th, 2020

AUTH: Peter Hurst

LEGEND

Survey Area

Electric

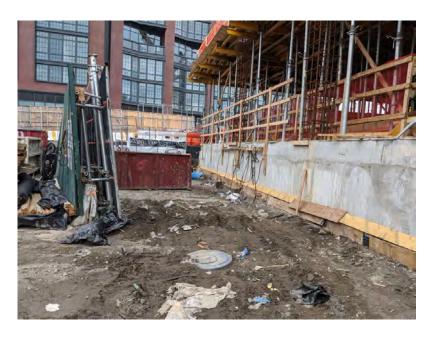
Telecom

Buried Foundation

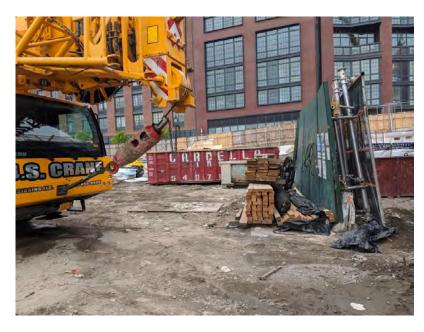
GEOPHYSICAL IMAGESCommercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020

GEOPHYSICAL IMAGES

Commercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020



GEOPHYSICAL IMAGESCommercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020



GEOPHYSICAL IMAGES

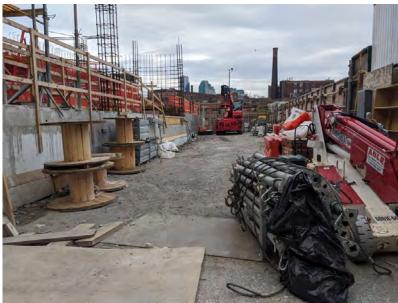
Commercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020

GEOPHYSICAL IMAGES

Commercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020

GEOPHYSICAL IMAGESCommercial Site 35 Commercial Street, Brooklyn, New York 11222 May 6th, 2020

GEOPHYSICAL IMAGES
Commercial Site
35 Commercial Street,
Brooklyn, New York 11222
May 6th, 2020



APPENDIX D Soil Boring Logs

SHEET 1 OF 2

PROJEC	T 45.0				PROJECT I			200	00.4						
LOCATIO	ON	mercial Street			ELEVATION	NA I	D DA	TUN							
DRILLING	Brooklyn G EQUIPMENT				DATE STAF	RTEL)	rox.	11.89 DATE	FINISH	HED		COMP	LETION [DEPTH
	Geoprob O TYPE OF BIT	pe 7822 DT			5/ NUMBE	6/2	0	DIST		5/6	3/20	DIST.		20 f	t
	2in Direc		T11(ft)		SAMPI	LES			4			0			0
	DIAMETER (in) 2in	CASING DEF	PTH(ft) NA		WATER I (ft.))		FIRS	9 9		CO	MPL.		24 HR. <u>T</u>	
SAMPLEI		Macrocore			DRILLING F	ORE	MAN Jay	ı Sla	vin						
SAMPLE	R HAMMER NA	WEIGHT(lbs)	DROP(in)		INSPECTIN	G EN	IGINI	EER		nev/					
		14/3	INA				SAI	MPLE	E DATA		guil		DEM	ARKS	
ELEV. (ft)		SAMPLE DESCRIPT	ION	SYME	BOL DEPTH SCALE	NUMBER	TYPE	in)	PENETR. RESIST BL/6in	OWS ER FT	Reading (ppm)	(DRILLIN			F CASING, TANCE, ETC
+11.9	(0-56") Blac	ck to olive brown fine SA	AND some silt	- XXX	×	⊋		8	H H H	88					9:56 AM.
		ravel, coal ash, coal, br									0.1		J		
					× 1 -						0.1				
O Z					× ·										
BORI					፠ ∃	1	Щ				0				
- Fog -					2 -	_	MACROCORE				0.1				
Report:						꼰	CRO	26			0				
 Σ					⊗ - 3 -		MA				0				
2.29 PI					X						0.1				
0 1:23					% - 4 -	1					0.1				
2/202											0.1				
5/2	(0.00W) DI				×- 5 -						0				
R.GPJ		ck to tan fine SAND, tra l ash, brick (moist)[FILL			X -										
024_R		, ,,	-		× -	1					0				
702290					6 -	R2A					0.1				
GS/17						_	l				3.6				
OJEN					7 -		ORE				1.8				
AL/GI	(30-57") Oli	ive brown to grayish oliv	e silty fine		X -	-	CROCORE	22			1				
MENT	<u>````</u>	e fine gravel, slag, coal			 8 −		MAC				0				
NON											0				
N N N N N N N N N N N N N N N N N N N			7	$ abla \bigotimes$	—————————————————————————————————————	R2B					0				
E LE					* -	1									
DISC					× 10	1					0				
ATA,		enish black to olive bro e clay, trace fine gravel			10 -										
ECT	wood (wet)		, odai asii, biick,								1.2				
ROJE					11 -						3.8				
3024\F					X -	1					3.9				
70228					12 -	1)RE				7.3				
(TA0/1						R3	MACROCORE	54			4.7				
/C/D/					13 -	-	IACE				2.3				
TAIN					₩		2								
MIDA					X	1					12.7				
AN.CC					14 -]					5				
NLANGAN COMDATANYCIDATAO\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_R\.GPJ 5/22/2020 1:23:29 PM Report: Log - BORING										;	37.1	Petroleur detected			

LANGAN

LOG OF BORING

SHEET

LB-13 OF

2

PROJECT NO. 170229024 45 Commercial Street LOCATION **ELEVATION AND DATUM** Brooklyn, NY Approx. 11.89 ft NAVD88 SAMPLE DATA PID Reading (ppm) REMARKS RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH UMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG **SCALE** (0-24") Dark gray medium SAND, trace coarse sand, trace fine gravel, brick, wood, slag 25.5 2:20 PM - Collect grab sample. (wet)[FILL] LB13_15.5-17.5 R4A 16 120 178 MACROCORE -5.1 33 (24-30") Black clayey PEAT (wet)[NATIVE] R4B -5.6 12.8 (30-36") Black CLAY, trace fine sand R4D R4C (wet)[NATIVE] -6.1 4.7 14:25 PM - Collect grab sample. (36-42") Dark gray fine SAND (wet)[NATIVE] LB13_18-20 -6.6 12 (42-54") Olive gray CLAY, trace fine sand NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:29 PM ... Report: Log - BORING (moist)[NATIVĔ] 19 0.6 R4E 0.6 20 -8.1 Bottom of boring at 20ft. Permanent monitoring well MW13 installed to 17ft and backfilled to grade. 21 22 23 24 25 26 27 28 29 30 31 32

SHEET 1 OF 2

4													0		ı	0-	
	PROJECT		mercial Str	eet			PROJE	CT NO.	170	1229	9024						
ı	LOCATIO	N					ELEVA	TION AI	ND DA	ATUN	Л	71 ft N	١٨١/٢	100			
ŀ	DRILLING	Brooklyn EQUIPMENT					DATE	STARTE	D	лUX		71 ft N	SHED		COMP	LETION	DEPTH
		Geoprob TYPE OF BIT	e 7822 DT	-			NII II	5/6/2 MBER 0		DIS	 T	5	/6/20) IDIST.		20 f	t.
		2in Direc	t Push				SA	MPLES			4			0			0
	CASING E	DIAMETER (in) 2in		CASING DEF	PTH(ft) NA		WAT	ER LEV (ft.)	EL	FIR:		8.5	CC	MPL.		24 HR.	
ı	SAMPLER	₹	lacrocore				DRILLI	NG FOR	EMAI Jay	N							
ŀ	SAMPLER	RHAMMER	WEIGHT(lbs)		DROP(in)		INSPE	CTING E	NGIN	NEER	1						
ŀ		NA	<u> </u>	IA	NA NA		<u> </u>		Luk SA	e IV	IcCar E DAT	tney	5				
	ELEV.		SAMPLE [DESCRIPTI	ON		BOL DE	TH H	Щ	9.	Sin TR.	- NS L	Reading (ppm)	(DRILLIN		ARKS	OF CASING,
	(ft)					LO	G SC.	NUMBER HTC	TYPE	REC	PENETR. RESIST BL/6in	N-VALUE BLOWS PER FT	PID P	FLUID LOS	S, DRILL	ING RESIS	STANCE, ETC
	+11.7	(0-56") Blac	k to dark gr	ay fine SAN	ID, trace clay, , coal, brick,		X -	-					0	Started [Orilling a	t 5/6/202	0 1:19 PM.
		slag, wood	(moist)[FILL	ei, coai asii .]	, coai, brick,		X	}					0				
		O.	` /-	-			X -	1 -					0				
SING.							₩-	7					0				
BOR							₩.	,]	Щ								
Log.							₩ '	2 -	MACROCORE				0				
sport:							₩.	_ 5	S. S.	29			0				
:: %							X - :	3 -	MAO				0				
31 PM							X	}					0				
1:23:3							₩.	.]									
2020							፠ '	•					0				
5/22/2							₩	_					0				
2		(0-30") Blac	k to olive br	own fine SA	AND, trace silt,			5 +					0				
RI.GF		trace fine g	ravel, coal a	sh, brick, sla	ag (moist)[FILL]		X	-					0				
3024							₩ .,	3 -					0				
7022							₩ '	, ⊢ R2A					U				
GS/1							X	-	l				0				
NALC							X - :	7 -	ROCORE				0				
4L/GI		(30-58") Oli	ve brown to	olive grav fi	ne SAND		X	1		88			0				
/ENT		some silt, co					X ≠ ;	3 -	MACI				0				
SON						$\nabla \bigotimes$	X	-	-								
N.							X	, †88 828					0				
INE/E							X - '	9 - "					0				
SCIPL							X	1					0				
A DI		(0-43") Darl	k aray to bla	ck silty fine	SAND, trace		Ж- 1	o 		-			0.0				
DAT/		coal ash, br			SAND, liace		X	-					0.1				
JECT							ቖ	,]									
PRO							 1	1 -					0.1				
9024							X	-					0.1				
7022							X -1	2 - 82	RE				1.9				
TA0\1								7	000	28			2.8				
C/DA							₩ ,	,]	MACROCORE	"							
NLANGAN.COMIDATAINYCIDATAO\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:31 PM Report: Log - BORING							₩ ¹	3 –	Ž				3.7				
\DAT		(43-58") Da	ırk gravish h	rown clave	fine SAND,		\bigotimes	}	+				3.1				
COM		trace wood	(moist)[FILL	.]	,		X - 1	4 -] س					2.6				
GAN							X	R3B									
\LAN							X	7									

SHEET 2 OF 2

PROJECT NO. 170229024 45 Commercial Street LOCATION **ELEVATION AND DATUM** Brooklyn, NY Approx. 11.71 ft NAVD88 SAMPLE DATA PID Reading (ppm) REMARKS RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH UMBER TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG **SCALE** (ft) 10:30 AM - Collect grab sample. LB13N_15-17 (0-23") Dark gray silty fine SAND, trace brick, trace clay, trace gravel (wet)[FILL] 02 R4A 16 0.3 0.6 -5.2 MACROCORE (23-29") Black clayey PEAT (moist)[NATIVE] Organic-like odor detected from 17ft -5.7 28 (29-58") Dark gray CLAY, trace organics 0.0 (moist)[NATIVE] 18 0.0 0.0 R4C NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:23:31 PM ... Report: Log - BORING 19 0.0 0.0 20 -8.3 Bottom of boring at 20ft. Permanent monitoring well MW13N installed to 17ft and backfilled to grade. 21 22 23 24 25 26 27 28 29 30 31 32

SHEET __1__ OF __2

	PROJECT	45 Comr	mercial Street			PROJECT		170	220	024						
ł	LOCATIO	N				ELEVATIO	N AN	D DA	ATUN	Л						
ŀ	DRILLING	Brooklyn EQUIPMENT	n, NY			DATE STA	RTFI	<u> </u>	rox	. 12 f	t NAV	D88		OMPL F	TION DEF	TH
		Geoprob	oe 6610 DT			5	/7/2	0			5	/7/20)		20 ft.	
	SIZE AND	TYPE OF BIT 2in Direct	ct Push			NUMBE SAMP		-	DIS	т. 4		UN	DIST.	C	ORE 0	
ı	CASING E	DIAMETER (in)	CASING DE			WATER	LEVE	L	FIRS	ST			MPL.	24	4 HR.	
ł	SAMPLER			NA		(ft. DRILLING	FORE				9.5	1	_		<u>V</u>	
ŀ	SAMDI ER	5-Foot N R HAMMER	Macrocore WEIGHT(lbs)	DROP(in)		INSPECTIN	IG EN	Jay	Sla	vin						
	OAWII LLI	NA	NA NA	NA NA		INOI LOTII	Ī	Reid	d Ba	alkind						
	ELEV. (ft)		SAMPLE DESCRIPT	TION	SYMI LO	BOL DEPTH G SCALE	NUMBER			PENETR. M RESIST VO BL/6in	N-VALUE BLOWS PER FT	PID Reading (ppm)	(DRILLING FLUID LOSS, I	REMAI FLUID, D DRILLING		ASING, ICE, ETC.
Ì	+12.0	(0-8") Light	gray fine SAND (dry)[0	CONCRETE]			R1A				_	0.0	Started Dril	ling at 5	7/2020 12	::05 PM.
	+11.3	(2.121) = 1					ķ					0.0				
		(8-40") Blac gravel, coal	ck to dark brown fine S (dry)[FILL]	AND, trace fine		X 1 -	1					0.0				
ŊĠ		g. a. e., ee a.	()/[]				1					0.0				
BOR							_	ш				0.0				
Log -						2 -	R18	Son				0.0				
port:							1	MACROCORE	28			0.0				
 Re						3 -	1	MAC				0.0				
3 PM		(40-58") Bro	ownish gray to light bro	own fine SAND,			7					0.0				
:23:3		trace coal a	sh, coal, brick (dry)[FIL	_L]			Ŧ.,									
020						₩ [*] 7	R1C					0.0				
5/22/2												0.0				
2 .:		(0-18") Tan	nish brown to light gra	v fine SAND.		∭ 5 −						0				
RI.GF			trace coal ash, brick (d			X						0				
024_						6 -	R2A									
,0229						₩ '	-					0				
GS/17		(18-48") Lig	ght brown to brownish	gray silty fine								0				
J F		SAND, trac	e fine gravel, brick, wo	od (moist)[FILL]		7 -	1	ACROCORE				0				
II)GII							1	ő	84			0				
N TA						 8 -		ACF				0				
NO						₩ ' '	R2B	¥				0				
N V												0				
NE/E						─ 9 -	1					0				
SIPLI					∇		1									
DIS						10 -										
ATA)		(0-36") Blac	ck to dark gray silty fine e slag, glass(wet)[FILL	to coarse		₩ 10	1									
CTD		SAND, IIac	e siag, giass(wei)[Fill	1												
30SE						X - 11 -										
24\PF						X										
2290						X- 12 -		Щ								
0/170						X 12 7		ß								
DATA							R3	MACROCORE	36			0.0				
NYC						13 -	1	MA				0.0				
ATA/							1					27.5	Petroleum-	l ike Od	or and stai	nina
OMIC						×- 14 -	1					16.0	detected fro			9
AN.C						₩ ''	1									
NLANGAN.COMIDATAINYCIDATAO(170229024/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:33 PM Report: Log - BORING							1					0.0				
퀻					KXX	(XX)	1	1	1	1			1			

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** SYMBOL DEPTH LOG SCALE RECOV. (in) PENETR. RESIST BL/6in ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (0-8") Black to dark gray sandy fine GRAVEL R4A (wet)[FILL] 0 -3.7 (8-58") Dark gray organic silty CLAY (moist)[NATIVE] 16 0 0 MACROCORE 0 28 0 R4B 0 0 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:33 PM ... Report: Log - BORING 19 0 0 20 -8.0 Bottom of boring at 20ft. Backfilled to grade with No 2 sand and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

NLANGAN.COMIDATAINYCIDATA0\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:33:35 PM ... Report: Log - BORING

LOG OF BORING

LB-13W

SHEET 1 OF 2

Brooklyn, NY Approx. 12 ft NAVD88 DRILLING GEUPHENT Geoprobe 6610 DT SIZE AND TYPE OF BIT ZID DIRECT Plush ZID	
DECATION Brooklyn, NY DRILLING EQUIPMENT CASING DEPTHIN STARTED SIZE AND TYPE OF BIT DIFFECT PUSH CASING DEPTHIN SAMPLES SAMPLER SAMPLER (I) SAMPLER S-FOot Macrocore SAMPLER NAMER SAMPLER S-FOot Macrocore SAMPLER INAMER SAMPLER DESCRIPTION SAMPLER Reid Balkind (I) (I) SAMPLE DESCRIPTION SYMBOL DEPTH LOG SCALE (B-22") Grayish black fine to medium SAND, trace coal ash, brick (dry)[FILL] (Q-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, coal (moist)[FILL] (Q-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (Q-15") Dark gray to black fine to medium SAND, trace coal ash, coal (moist)[FILL] (Q-15") Dark gray to black fine to medium SAND, trace gravel, price of the gravel (moist)[FILL] (Q-15") Dark gray to black fine to medium SAND, trace slag, coal (wet)[FILL] (Q-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (Q-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (Q-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (Q-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (Q-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] Q-11" DATE STARTED DATE STARTED DATE STARTED SAMPLER A UNDDIST. 4 UNDDIST	
DRILLING EQUIPMENT SIZE AND TYPE OF BIT DIFFECT PUSH SIZE AND TYPE OF BIT NA	
Second S	ETION DEPTH
2In Direct Push CASING DAMPLER (iii) 2In CASING DEPTH (iiii) 2In CASING DEPTH (iiiii) 2In CASING DEPTH (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	20 ft.
2in NA (The provided in the pr	ORE 0
SAMPLER HAMMER NA SAMPLE PLAN SAMPLE DESCRIPTION SAMPLE DESCRIPTION **SAMPLE DATA** SAMPLE	4 HR. ▼
SAMPLER HAMMER NA SAMPLE DESCRIPTION SYMBOL Core (II) SAMPLE DATA RELEV. (III) SAMPLE DATA REMARICAL SAMPLE DATA REMARIA REMARICAL SAMPLE DATA REMARIC	
ELEV. (ft) SAMPLE DESCRIPTION SYMBOL DEPTH CALL BY A SAMPLE DESCRIPTION SYMBOL DEPTH CALL BY A SAMPLE DESCRIPTION SYMBOL DEPTH CALL BY A SAMPLE DESCRIPTION **11.3** (0-8") Light gray fine SAND (dry)[CONCRETE] **11.3** (8-22") Grayish black fine to medium SAND, trace coal ash, brick (dry)[FILL] (22-54") Dark gray to brownish black fine SAND, trace coal ash, glass, coal (dry)[FILL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace gravel, brick (moist)[FILL] (30-34") Grayish black fine to coarse SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
+12.0 (0-8") Light gray fine SAND (dry)[CONCRETE] +11.3 (8-22") Grayish black fine to medium SAND, trace coal ash, brick (dry)[FILL] (22-54") Dark gray to brownish black fine SAND, trace coal ash, glass, coal (dry)[FILL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
+11.3 (0-8") Light gray fine SAND (dry)[CONCRETE] +11.3 (8-22") Grayish black fine to medium SAND, trace coal ash, brick (dry)[FILL] (22-54") Dark gray to brownish black fine SAND, trace coal ash, glass, coal (dry)[FILL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(0-20") Dark gray to brownish black fine to coarse SAND, trace coal ash, prick (dry)[FILL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (30-34") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	5/7/2020 11:15 AM.
(22-54") Dark gray to brownish black fine SAND, trace coal ash, glass, coal (dry)[FiLL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FiLL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FiLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FiLL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL]	
(22-54") Dark gray to brownish black fine SAND, trace coal ash, glass, coal (dry)[FilLL] (0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FilLL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FilLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FilLL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FilLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FilLL]	
(0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FiLL] (20-30") Light brown sitty fine SAND, trace fine gravel (moist)[FiLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FiLL] (34-47") Brownish gray sitty fine SAND, trace fine gravel, brick (moist)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL]	
(0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FiLL] (20-30") Light brown sitty fine SAND, trace fine gravel (moist)[FiLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FiLL] (34-47") Brownish gray sitty fine SAND, trace fine gravel, brick (moist)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL]	
(0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FiLL] (20-30") Light brown sitty fine SAND, trace fine gravel (moist)[FiLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FiLL] (34-47") Brownish gray sitty fine SAND, trace fine gravel, brick (moist)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL]	
(0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FilLL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FilLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FilLL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FilLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FilLL]	
(0-20") Dark gray to grayish brown fine to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FiLL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FiLL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FiLL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FiLL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FiLL]	
(0-15") Dark gray to graysh brown line to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(0-15") Dark gray to graysh brown line to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(0-15") Dark gray to graysh brown line to coarse SAND, trace coal ash, trace fine gravel, coal, brick (dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(dry)[FILL] (20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(20-30") Light brown silty fine SAND, trace fine gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
gravel (moist)[FILL] (30-34") Grayish black fine to medium SAND, trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
trace coal ash, coal (moist)[FILL] (34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(34-47") Brownish gray silty fine SAND, trace fine gravel, brick (moist)[FILL] (0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
(0-15") Dark gray to black fine to coarse SAND, trace slag, coal (wet)[FILL]	
trace slag, coal (wet)[FILL]	
trace slag, coal (wet)[FILL]	
trace slag, coal (wet)[FILL]	
(15-47") Grayish brown silty CLAY, trace fine	
graveLcoal (wet)[FILL]	
14 - 14 - 0	

NLANGAN COMIDATAINYCIDATA01/170229024/PROJECT DATAL DISCIPLINE'ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:35 PM ... Report: Log - BORING

LOG OF BORING

LB-13W

2 OF 2 SHEET PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** SYMBOL DEPTH LOG SCALE RECOV. (in) PENETR. RESIST BL/6in ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC 11:45 AM - Collect grab sample. LB13W_15-17 (0-14") Dark gray to black fine to coarse SAND, trace wood, trace fine gravel (wet)[FILL] R4A 0 16 0 -4.2 (14-58") Dark gray organic CLAY (moist)[NATIVE] 0 MACROCORE 0 28 0 18 0 0 19 0 0 20 -8.0 Bottom of boring at 20ft. Backfilled to grade with No 2 sand and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31

32

SHEET ___1__ OF ___2

	PROJECT	45 Con	amaraial Ct				PRO	OJECT I		170	220	0004						
	LOCATIO	N	nmercial St	reet			ELE	VATION	NA I	D DA	ATUN							
	DRILLING	Brookly EQUIPMENT	/n, NY				DΔ	ΓΕ STAF) STEI	App	rox	. 11.3	1 ft N	SHED	088	COMP	LETION	DEDTH
		Geopro	be 7822 D	Т					13/2				5/	13/2			20 f	
	SIZE AND	TYPE OF BIT	ect Push					NUMBE SAMPL		=	DIS	т. 4		UN	IDIST.		CORE	0
	CASING E	DIAMETER (in)	3011 4011	CASING DEF			٧	/ATER I	LEVE	L	FIR	ST			MPL.		24 HR.	
	SAMPLER	2in			NA		DRI	(ft.) LLING F		1AME	1 		9	Ţ			$ar{ar{\Lambda}}$	
	CAMPLED	5-Foot R HAMMER	Macrocore	-\	DDOD(:-)		INIC	PECTIN		Jay	Sla	vin						
	SAIVIPLER	NA	WEIGHT(lbs	ŇA	DROP(in) NA		IINO	PECTIN	ا ا	Reid	d Ba	alkind						
	ELEV.					evMe	201	DEPTH	22	SA	MPL	E DATA	H S L	Reading (ppm)		REM	ARKS	
	(ft)		SAMPLE	DESCRIPT	ON	LO	G	SCALE	NUMBER	TYPE	Ö.Ë	PENETR. RESIST BL/6in	N-VALUE BLOWS PER FT	D Rea (ppm	(DRILLIN	IG FLUID	DEPTH (OF CASING, STANCE, ETC
	+11.3	(0-10") Gi	ray fine to coa	arse SAND		8383	DW.			ļ ·	₩.	888	<u> </u>	<u> </u>	Started [
		(dry)[CON	ICRETE]	a100 07 11 1B				_	R1A					0	AM.	J		
	+10.5	(10_3/ ") F	Black fine to d	Sarca SANI) trace				<u> </u>	-								
(J		concrete,	coal, brick (n	noist)[FILL]	o, trace		\bowtie	- 1 -	1					0				
ORIN							\boxtimes	-	<u>_</u>					0				
g - BC							\bowtie	- 2 -	R1B	뀖				0				
rt: Lo							\bowtie	-		000	26			0				
Repo		(0.4 EC!!) I	inlat language fi	CAND b	ما ما د		\bowtie			MACROCORE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			U				
: S		(34-56") L (moist)[FI	ight brown fi	ne SAND, b	rick		\bowtie	- 3 -		¥				0	8:55 AM LB16_3-		grab sa	mple.
:37 P		()1	•				\bowtie		1					0	LD 10_3-	5		
1:23							\bowtie	- 4 -	R1C					0				
/2020							\bowtie	-	1									
5/22							\bowtie	-						0				
<u>S</u>		(0-21") Liç	ght brown fin	e SAND, bri	ck (moist)[FILL]		\bowtie	- 5 -						0				
<u>8</u>							\bowtie	-						0				
9024							\bowtie	- 6 -	R2A					0	0 45 444	0 "		
7022							\bowtie	-	1						8:45 AM LB16_6-		grab sa	mple.
GS/1		(24.40") [Dook to aroui	ah hraum fin	o to operan		▓	· -	_	l				0				
NFLC		SAND, co	Black to grayis oal, slag (wet)	sn brown iin)[FILL]	e to coarse		\bowtie	- 7 -	1	ACROCORE				0				
IF/GII		r	, ,				\bowtie	-		8	8			0				
ENT/							\bigotimes	 - 8 -		ACF				0				
ONM							\bigotimes		R2B	×				U	8:50 AM LB16_8-		grab sa	mple.
NVIR							\boxtimes		l ex									
NE/E						\perp	\bigotimes	- 9 -										
CIPLI							\bigotimes											
DIS							\bigotimes	- 10 -						0				
ATA/			ack to grayisl al, slag, woo				\boxtimes	-						U				
CTD		OAND, CC	ai, siag, woo	a (wei)[i iiii	J		\bigotimes		}					0				
ROJE							▓	- 11 -	R3A					0				
24\PI							▓₺	-	8					0				
2290							\boxtimes	12		Щ								
0/170							₩	- 12 -		S R				0				
DATA			Dark gray san	idy CLAY, tra	ace brick		₩	-		8	25			0				
VYC/L		(wet)[FILL	-]				₩	- 13 -	1	MACROCORE				0				
ATA\I							\bigotimes	- -	m					0				
JM/D							\bowtie		R3B									
NLANGAN COMIDATAINYCIDATA0/170229024/PROJECT DATA_DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI GFJ 5/22/2020 1:23:37 PM Report: Log - BORING							₩	- 14 - -						23.1	Petroleus detected			
₹NG⁄							\bigotimes	-						255.2	1			
Į							XX	·	1									

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 11.31 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) RECOV.
(in)
PENETR.
RESIST
BL/6in
N-VALUE
BLOWS
PER FT **REMARKS** ELEV. SYMBOL DEPTH NUMBER TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG **SCALE** 9:00 AM - Collect grab sample. LB16_15-17 (0-20") Dark gray fine to coarse SAND, brick (wet)[FILL] 19.0 R4A 16 0.4 0 -5.4 (20-42") Black to dark gray organic CLAY (moist)[NATIVE] MACROCORE 0 42 0 9:05 AM - Collect grab sample. LB16_18-20 18 0 R4B NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:37 PM ... Report: Log - BORING 19 20 -8.7 Bottom of boring at 20ft. Permanent monitoring well MW16 installed to 17ft and backfilled with No 2 sand to grade. 21 22 23 24 25 26 27 28 29 30 31 32

LANGAN

LOG OF BORING **LB-17**

> SHEET 1 OF

		v Li											S	HEET _	1	_ OF _	2
PROJEC		ımercial Stı	reet			PRO	DJECT I		170	220	024						
LOCATIO	ON		001			ELE	OITAV	NA N	D DA	ATUN	Л	- ft NIA	\/D	00			
DRILLING	Brookly G EQUIPMENT		_			DAT	TE STAI	RTE)	IOX	DAT	E FINIS	SHED		COMPI	ETION DE	EPTH
SIZE ANI	Geopro D TYPE OF BIT	be 6610 D	<u> </u>			١.,	5/ NUMBE	/7/2 R OF		DIS	 T.	5/	/7/20 UN) IDIST.		20 ft.	
CASING	2in Dire	ct Push	CASING D	EDTH/ft\			SAMPI ATER I	LES		FIR	<u>4</u>		CC	OMPL.		24 HR.)
	2in		O/ (OII VO D	ŇÁ			(ft.))		$\mid \nabla$		8.5	Ţ	_		<u>Ā</u>	
SAMPLE	5-Foot N	Macrocore					LLING F		Jay	Sla	vin						
SAMPLE	R HAMMER NA	WEIGHT(Ibs) \A	DROP(in) NA		INSI	PECTIN	IG EN F	vgin Reid	IEER d Ba	: alkind	l					
ELEV. (ft)		SAMPLE	DESCRIP	TION	SYMI LO		DEPTH SCALE		TYPE AS	MPL (ii)	PENETR. THE RESIST BL/6in	-VALUE	PID Reading (ppm)	(DRILLIN	G FLUID,	ARKS DEPTH OF NG RESISTA	
+11.5	(0-10") Lig	ht gray fine S	SAND (mo	oist)[CONCRETE]			-	R1A N		IL.	<u>~</u>	Z	0.0	Started D Started R	rilling at edrilling	5/6/2020 7 5/7/2020 8	7:40 AM. 8:00 AM.
+10.7	(10-21") D brick (mois	ark gray fine st)[FILL]	SAND, tra	ace coal ash,			- 1 -	R1B	-				0.0	Refusal e		ered at 11.0	Oft. Step
t: Log - BOF	(21-44") D fine gravel	ark brown fii (moist)[FILL	ne SAND,]	trace slag, trace			- 2 - - 2 -		MACROCORE	44			0.0	5/6/2020 sample. L		M - Collect 3	grab
5/22/2020 1:23:39 PM Report: Log - BORING							- 3 -	S	MACRO	4			0.0	5/6/2020 sample. L	1:15 PM B17 3-	1 - Collect g	grab
0 1:23:39 P							- 4 -	R1C					0.0	Sample. L	-0_11 שב	J	
5/22/202							- - - 5 -						0.0				
24 RI.GPJ	(0-13") Da brick (mois		e SAND, ti	race coal ash,			- - -	R2A					0.0				
18/17/02/290	(13-22") Li (moist)[FIL	ight brown fii L]	ne SAND,	trace concrete			- 6 - - -	R2B	-				0.0	5/6/2020 sample. L		l - Collect g 8	grab
NLANGAN.COMIDATAINYCIDATAO/170229024PROJECT DATA_DISCIPLINE/ENVIRONMENTAL/GINTLOGS/170229024_RIGPJ	(22-41") D brick, trace	ark gray fine e glass (wet)	to coarse [FILL]	SAND, trace			- 7 -		OCORE	14			0.0				
ONMENIA					∇		- 8 - - 8 -	R2C	MACR				0.0	5/7/2020 sample. L		1 - Collect o	grab
INE VIK					***************************************		- - 9 -	<u> </u>									
DISCIPL	(0, 00!!) D -			DANID to a s			- - - 10 -						0.0				
ECT DATA	glass, trace	rk gray fine t e brick (wet)	o coarse s [FILL]	SAND, trace			-						0.3				
9024/PRO.						*	- 11 - - - -	R3A					0.4				
40/17022			fine SANI), trace wood			- 12 - - -	_	CORE				0.4				
NYC/DAT	(wet)[FILL]	I				\bigotimes	- 13 -		MACROCORE	36			0.4				
DATA						\bigotimes	-	R3B									
WOO.						\bigotimes	- 14 -	-									
ANGA						\bigotimes	-										
ᆀ					XXX	XXI	_	1			1						

NLANGAN COMIDATAINYCIDATA01/170229024/PROJECT DATAL DISCIPLINE'ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:39 PM ... Report: Log - BORING

LOG OF BORING

OF

LB-17

SHEET 2 PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 11.5 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** SYMBOL DEPTH LOG SCALE RECOV. (in) PENETR. RESIST BL/6in ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC Petroleum-like dor detected from 15ft (0-10") Black fine to coarse SAND, trace brick, R4A to 16ft. 5/7/2020 9:15 AM - Collect grab sample. LB17_15-16 trace fine gravel (wet)[FILL] 1.4 -4.3 (10-58") Dark gray organic CLAY, Shells (moist)[NATIVE] 16 6.8 9.0 MACROCORE 0.3 28 0.0 R4B 18 0.0 0.0 19 0.0 0.0 20 -8.5 Bottom of boring at 20ft. Backfilled to grade with No 2 sand and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

NLANGAN.COMIDATANYCIDATA01170229024/PROJECT DATA_DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GFJ....5/22/2200 1:23:41 PM ... Report: Log - BORING

LOG OF BORING

RING LB-18

SHEET OF 2 PROJECT NO. 45 Commercial Street 170229024 LOCATION **ELEVATION AND DATUM** Approx. 13.54 ft NAVD88 Brooklyn, NY DRILLING EQUIPMENT DATE STARTED DATE FINISHED COMPLETION DEPTH Geoprobe 6610 DT 5/8/20 5/8/20 20 ft. DIST. SIZE AND TYPE OF BIT NUMBER OF UNDIST CORE 2in Direct Push 4 0 SAMPLES CASING DIAMETER (in) COMPL. CASING DEPTH(ft) 24 HR. FIRST WATER LEVEL \mathbf{I} (ft.) 10 DRILLING FOREMAN SAMPLER 5-Foot Macrocore Jay Slavin SAMPLER HAMMER WEIGHT(lbs) DROP(in) INSPECTING ENGINEER NA NA Reid Balkind SAMPLE DATA PID Readin (ppm) REMARKS PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (ft) LOG **SCALE** Started Drilling at 5/8/2020 12:00 PM. +13.5 (0-11") Dark brown to tannish brown fine to coarse R1A SAND, trace fine gravel (moist)[FILL] 0 (11-52") Orangish brown fine SAND, trace brick, 0 trace fine gravel, slag (moist)[FILL] 0 MACROCORE 2 1:55 PM - Collect grab sample. LB18_2-4 25 0 **R1B** 3 0 0 0 2:05 PM - Collect grab sample. LB18_4-6 5 0 (0-40") Brown to tan fine to coarse SAND, trace slag, trace coal ash, trace glass, coal, brick 0 (moist)[FILL] 0 2:00 PM - Collect grab sample. LB18_6-8 0 MACROCORE 0 6 0 8 0 9 10 0 2:10 PM - Collect grab sample. (0-18") Black fine to coarse SAND, trace brick, LB18_10-12 coal (wet)[FILL] 0 R3A 0.1 0.1 (18-52") Tannish brown silty fine SAND (wet)[FILL] MACROCORE 02 52 0 13 0 **R3B** 0 14 0

NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22\2020 1:23:41 PM ... Report: Log - BORING

LOG OF BORING

LB-18 OF 2 SHEET PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 13.54 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) RECOV.
(in)
PENETR.
RESIST
BL/6in
N-VALUE
BLOWS
PER FT **REMARKS** SYMBOL DEPTH LOG SCALE ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (0-8") Black fine to coarse SAND, trace coal, trace R4A slag (wet)[FILL] 0 -2.1 (8-58") Dark gray to medium gray CLAY (moist)[NATIVE] 16 0 0 MACROCORE 0 28 0 R4B 18 0 2:15 PM - Collect grab sample. LB18_18-20 0 19 0 20 -6.5 Bottom of boring at 20ft. Permanent monitoring well MW18 installed to 17ft. Backfilled with No 2 sand to grade. 21 22 23 24 25 26 27 28 29 30 31

32

NLANGAN.COMIDATAINYCIDATA0\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:33:43 PM ... Report: Log - BORING

LOG OF BORING LB-19

SHEET ___1__ OF ___2

PROJECT	15 Comr	maraial Street			PRO	DJECT I		70	റാറ	024						
LOCATIO		nercial Street			ELE	VATION	I ANI	D DA	TUN	024 1 12 ()1 ft N	ΙΑVΓ	188			
DRILLING	EQUIPMENT	e 7822 DT			DAT	E STAF	RTED 13/2)	. 071	DA	TE FINIS	SHED 13/20		COMP	LETION DE 20 ft.	PTH
SIZE AND	TYPE OF BIT				1	NUMBE	R OF		DIS				DIST.		CORE	
CASING D	2in Direction DIAMETER (in)	T PUSN CASING DEP	TH(ft)		W	SAMPI ATER I		L	FIRS	<u>4</u> ST			MPL.		2 <u>4 HR</u> .	
SAMPLER	2in		NÁ			(ft.) LLING F			<u>1</u>		9.5	Ţ			$ar{ar{\Lambda}}$	
	5-Foot M	acrocore WEIGHT(lbs)	DROP(in)			PECTIN	J	lay	Sla	vin						
JAIVIF LLIN	NA	NA NA	NA NA		IINOI	LOTIN	F	Reic	d Ba	lkind						
ELEV. (ft)		SAMPLE DESCRIPTION	ON	SYMI LO	G I	DEPTH SCALE	NUMBER	TYPE	RECOV. (in)	PENETR. THE RESIST BL/6in	N-VALUE BLOWS PER FT	PID Reading (ppm)	(DRILLIN		ARKS , DEPTH OF ING RESISTA	CASING, INCE, ETC.
+12.0	concrete, bi	yish brown silty fine SAN rick (moist)[FILL] rk brown fine to coarse)[FILL]				- 1 - - 2 - - 3 - - 4 -	R1B R1A	MACROCORE	51	ш.		0 0 0 0 0 0 0 0 0	AM.	- Collec	t 5/13/2020 t grab samp	
	(0-50") Blac slag, trace b	ck fine-coarse SAND, tra orick, trace coal ash (mo	ace coal, trace pist)[FILL]			- 5 6 7 8 8	R2A	MACROCORE	58				3:25 PM LB19_6-8	- Collec 3	t grab samp	ole.
	concrete (w	,-	-	∇		- 9 - - - - 10 -	R2B					0				
	trace brick,	k to dark gray fine to co trace coal, trace coal as	h (wet)[FILL]			- 11 - - 12 - - 12 - - 13 -	R3A	MACROCORE	52			0 0 0 0 0 0 0				
	(43-52") Gra (wet)[FILL]	ayish brown fine SAND,	trace wood			- 14 - - 14 - -	R3B					0	3:30 PM LB19_14		t grab samp	ole.

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12.01 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) RECOV.
(in)
PENETR.
RESIST
BL/6in
N-VALUE
BLOWS
PER FT **REMARKS** ELEV. SYMBOL DEPTH NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG **SCALE** (0-33") Dark gray coarse SAND, trace brick, trace fine gravel, wood (wet)[FILL] 0 16 0 R4A 0 MACROCORE 17 0 28 0 -5.7 (33-58") Dark gray organic silty CLAY 18 0 (moist)[NATIVE] 0 R4B NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:43 PM ... Report: Log - BORING 19 0 0 20 -8.0 Bottom of boring at 20ft. Permanent monitoring well MW19 installed to 17ft and backfilled to grade. 21 22 23 24 25 26 27 28 29 30 31 32

LANGAN

LOG OF BORING LB-20

SHEET ___1__ OF ___2

	PROJECT	45 Comr	nercial Str	oot			PROJECT		170	220	024						
	LOCATIO	N					ELEVATIO	N AN	D DA	ATUN	1		/D.00				
	DRILLING	Brooklyn EQUIPMENT	, NY				DATE STA	ARTE	<u> </u>	rox	. 13 f	t NA\	/D88 SHED	<u> </u>	COMF	PLETION [DEPTH
		Geoprob	e 7822 DT	•			5	/13/2	20	DIO		5/	13/2			20 ft	t
		TYPE OF BIT 2in Direct	t Push				NUMB SAM	ER OI PLES	-	DIS	4			IDIST.		CORE	0
	CASING D	DIAMETER (in) 2in		CASING DEF	PTH(ft) NA		WATEF (f		ĒL	FIRS	ST	9.5	CC	MPL.		24 HR.	
	SAMPLER		1		10/1		DRILLING	FOR		V		0.0		_		1 	
	SAMPLER	HAMMER	lacrocore WEIGHT(Ibs)	1	DROP(in)		INSPECTI	NG EI	NGĪN	Sla IEER							
		NA	N	Α	NA NA						Alkino E DAT		-	1			
	ELEV. (ft)			DESCRIPTI		SYME LO		NUMBER			PENETR. RESIST BL/6in		PID Reading (ppm)	FLUID LOSS	IG FLUID S, DRILL		TANCE, ETC.
	+13.0	(0-15.5") Go trace fine sa	ray coarse S	SAND, some	e fine gravel,		\otimes	}					0.0	Started D	rilling a	at 5/13/202	20 12:20
		liace line so	ariu, brick (ii	ioist)[FILL]			X]					0.0				
							1	1					0.0	11:50 AM	1 - Colle	ect grab sa	mple.
SING							X	1					0.0	LB20_1-3	3		
- BOF							 2		Ж				0.0				
Log		(15.5-36") E	Black coarse	SAND soi	me silt coal		₩ ′	R1AR1B	9				0.0				
eport		(moist)[FILL		, O, (1 1 D, 30)	Tie siit, coai		X	- 2	MACROCORE	36			0.1				
7 							⊗ – 3	-	MA				0.4	12:00 PM	1 - Colle	ect grab sa	ample.
45 PN							X	-					0.5	LB21_3-5	;		
1:23:							₩ 4	1					0.4				
2020							₩ .	1									
5/22/								1					0.6				
PJ .:		(0-58") Gra	y to light gra	y fine to coa	arse SAND,		 5	+					0.0				
R.G		trace coal a	sh, coal, bri	ck (moist)[F	ILL]		X	1					0.0				
9024							≫ 6	1					0.0	44.55.41			
7022							*	1						LB20_6-8		ect grab sa	impie.
)GS/1							X	1					0.0				
NTLO							7	1	CROCORE				0.0				
AL/GI								- R	80	88			0.0				
/ENT							₩ 8	1	MACI				0.0				
SONN							*	1	_								
ENVIE							*	1					0.0				
INE/							9	7					0.0				
SCIPL						\perp	X	1					0.0				
N DIS		(0-20") Rad	dieh brown	fine to coar	se SAND, trace		10	1					0.0				
DAT/		brick, coal (se SAND, trace			1					0.0				
JECT							*	1					0.0				
PRO,							11	7					0.0				
3024		(00.4011)						R3B					0.0				
7022		(20-48") Da trace slag, o			ilty fine SAND,		12	۳ ا)RE				0.0				
TA0\1		Jiag, (/t· .==]			X	R3A	000	48			0.0				
C/DA							₩ 40	7 2	MACROCORE								
4\NYC							13	7	¥				0.0				
\DAT,							X	1					0.0				
NLANGAN.COMIDATANYCIDATA0\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:45 PM Report: Log - BORING							14	1					5.2	LB20_14		ect grab sa	ample.
LANG							X	+					255.6	Petroleur	n-like c	odor and st	taining

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 13 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH UMBER TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG SCALE 78.2 observed from 14.5ft to 16ft. (0-15") Dark brown to grayish black fine SAND, trace slag, coal, coal ash (moist)[FILL] 70.2 16 12.1 R4B -3.3 (15-52") Light gray to dark gray organic CLAY (moist)[NATIVE] 0.0 MACROCORE 0.0 R4A 25 0.0 18 0.0 0.0 NLANGAN COMIDATAINYCIDATA01/170229024/PROJECT DATAL DISCIPLINE'ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:45 PM ... Report: Log - BORING 19 0.0 0.0 20 -7.0 0.0 Bottom of boring at 20 ft. Boring backfilled with No 2 sand to grade and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

SHEFT 1 OF 2

-													•				
	PROJECT	45 Com	mercial Street			PRO	OJECT N		170	220	024						
ŀ	LOCATIO	N				ELE	VATION	NA I	D DA	ATUN	1		/F				
ŀ	DRILLING	Brookly EQUIPMENT	n, NY			DAT	ΓΕ STAF			rox		t NAV			COME	PI FTION	DEPTH
		Geopro	be 6610 DT				5/	7/2	0			5	$\frac{1}{7}$	0	OOW	20	
	SIZE AND	TYPE OF BIT 2in Dire	ct Push			'	NUMBEI SAMPL		:	DIS	т. 4		UN	NDIST.		CORE	0
ı	CASING E	DIAMETER (in)		NG DEPTH(ft)		W	/ATER I	EVE	L	FIR	ST			MPL.		24 HR.	
ŀ	SAMPLER	2in		NA		DRI	(ft.) LLING F	ORE				9		<u></u>		<u> </u>	
-	SVMDI EE	5-Foot Name	Macrocore WEIGHT(lbs)	DROP(in)		INIC	PECTIN			Sla							
	OAWI LLI	NA	NA NA	NA NA		1110	LOTIN		Reid	d Ba	alkind						
	ELEV. (ft)		SAMPLE DESC	RIPTION	SYMI LO	BOL I	DEPTH SCALE	NUMBER	SA IV BE	MPL (ii)	PENETR. M RESIST Q BL/6in T	N-VALUE BLOWS PER FT	PID Reading (ppm)	(DRILLIN	REM IG FLUID S, DRILL	IARKS), DEPTH ING RESI	OF CASING, STANCE, ETC.
ŀ	+12.0	(0-8") Ligh (dry)[CON	t gray fine to coars	e SAND			-	R1A			ш		0.0	Started D	Prilling a	at 5/7/202	20 1:20 PM.
	+11.3	* ***	ht brown to orangi	oh brown fino to			_	- R					0.0				
		medium S	AND, trace coal as	h, trace slag, coal		\bowtie	- 1 -	1					0.0				
SING		(dry)[FILL]		-		\bigotimes	-						0.0				
BOF						₩											
Log .						\bigotimes	- 2 -		core				0.0				
eport:						\bigotimes	- -	В	Macrocore	48			0.0				
- -						▓	- 3 -	R1B	Σ				0.0	1:45 PM	- Collec	t grab sa	ample.
47 PN						\bigotimes	-						0.0	LB21_1-3	3		
1:23:4						\bigotimes	. <u> </u>						0.0				
2020						▓₺	·						0.0				
5/22/						\bigotimes	- 										
ر :		(0-15") Lig	ht gray to dark gra	y fine to coarse		\bigotimes	- 5 -						0.0				
RI.GF		SAND, tra	ce slag, trace conc	rete (moist)[FILL]		▓₺	-	_ <					0.0				
9024						\bigotimes	 - 6 -	R2A					0.0				
7022		(1E 10"\ O	rangish brown to b	rownich growfine		\bowtie	·						0.0				
GS/1		SAND, tra	ce fine gravel (mois	st)[FILL]		\bowtie	- -						0.0				
NTLC						\bowtie	- 7 -		ore				0.0				
4L/GI						\bowtie	· -	22B	acrocore	26			0.0				
IENT,						\bowtie	- 8 -	5	Ma				0.0				
SON						\bowtie	-										
INVI					∇	\bowtie							0.0				
-INE				coarse SAND, trace	: =	\bowtie	- 9 -						0.0				
SCIP		glass, trace	e slag (wet)[FILL]			\bowtie	-	R2C									
A_DI		(0-46") Da	rk gray fine to coar	se SAND, trace slag		X	- 10 -						0.0				
DAT			trace coal ash (we		' ₩	\bowtie	_	1					4.3				
JECT						\bigotimes	11										
PRO						\bigotimes	- 11 -						9.6				
9024						\bigotimes	- - -						2.2				
7022						₩	- 12 -		உ				0.0				
TA0\						\bigotimes	- -	R3	Macrocore	46			0.0				
NLANGAN.COMIDATAINYCIDATAO\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:47 PM Report: Log - BORING						XX	- - 13 -	-	Mac								
AINY						▓	10 -						0.0				
\\DA1							- -						0.0				
CO						\bigotimes	- 14 -						0.0				
IGAN						\bigotimes	. <u>-</u>										
ILAN						\bigotimes	-	-									

LOG OF BORING

LB-21

OF 2 SHEET PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** SYMBOL DEPTH LOG SCALE PENETR. RESIST BL/6in ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC Petroleum--Like Odor detected from 15ft to 16ft. 15.2 (0-8") Gravish black fine to coarse SAND, trace R4A glass (wet)[FILL] 41.0 -3.7 2:15 PM - Collect grab sample. (8-58") Gray organic silty CLAY (moist)[NATIVE] LB21_15-17 16 12.3 2.3 0.0 28 0.0 0.0 0.0 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:23:47 PM ... Report: Log - BORING 19 0.0 0.0 20 -8.0 Bottom of boring at 20 ft. Boring backfilled with No 2 sand to grade and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

AND AND ALGORITO AT AND ATAINY CIDATA (170229024) PROJECT DATA DISCIPLINE ENVIRONMENTALIGINTLOGS (170229024 RIGP) ... 5/22/2020 1:23:49 PM ... Report: Log - BORING

LOG OF BORING

LB-22

SHEET OF 2 PROJECT NO. 45 Commercial Street 170229024 LOCATION **ELEVATION AND DATUM** Approx. 12 ft NAVD88 Brooklyn, NY DRILLING EQUIPMENT DATE STARTED DATE FINISHED COMPLETION DEPTH Geoprobe 6610 DT 5/8/20 5/8/20 20 ft. DIST. SIZE AND TYPE OF BIT NUMBER OF UNDIST CORE 2in Direct Push 4 0 SAMPLES COMPL. CASING DIAMETER (in) CASING DEPTH(ft) 24 HR. WATER LEVEL **FIRST** \mathbf{I} (ft.) 10 SAMPLER DRILLING FOREMAN 5-Foot Macrocore Jay Slavin SAMPLER HAMMER WEIGHT(lbs) DROP(in) INSPECTING ENGINEER NA NA Reid Balkind SAMPLE DATA PID Readin (ppm) REMARKS PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (ft) LOG **SCALE** Started Drilling at 5/8/2020 9:30 AM +12.0 (0-15") Light gray coarse SAND (dry)[CONCRETE] 쮼 +10.7 (15-45") Dark brown fine SAND, trace coal ash, brick (moist)[FILL] MACROCORE 2 1:10 PM - Collect grab sample LB22_2-4. <u>m</u> 29 2 3 (45-56") Orangish brown to tannish brown SAND, 11:50 AM - Collect grab sample trace fine gravel (moist)[FILL] LB22_4-6. 쮼 5 (0-12") Black fine SAND, trace coal ash (moist)[FILL] R2A (12-30") Dark gray fine to coarse SAND, trace slag, coal (moist)[FILL] MACROCORE 25 8 (30-52") Light tan fine SAND, trace fine gravel (moist)[FILL] 10 0.0 (0-56") Black to dark brown fine SAND, trace coal, trace coal ash, trace glass, trace slag (wet)[FILL] 0.0 11 0.0 0.0 MACROCORE 0.0 1:15 PM - Collect grab sample LB22_12-14. R3 26 27.6 13 Petroleum-like odor and staining detected from 12.5ft to 13.5ft 68.0 14 0.0 0.0

LOG OF BORING

SHEET 2 OF 2

LB-22

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH UMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG SCALE (0-24") Black to dark brown fine SAND, trace coal, trace slag, trace brick (wet)[FILL] 0.6 R4A 16 1.0 0.7 MACROCORE -5.0 0.6 (24-58") Black to dark brown organic CLAY (moist)[NATIVE] 28 0.0 18 0.0 1:25 PM - Collect grab sample LB22_18-20. 0.0 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:49 PM ... Report: Log - BORING 19 0.0 20 -8.0 Bottom of boring at 20 ft. Boring backfilled with No 2 sand to grade and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

SHEET ___1__ OF ___2

Γ	PROJECT	-				PRC	DJECT N	NO.									
		45 Comr	mercial Street					1			024						
	LOCATIO	^N Brooklyn	NY			ELE	VATION	I ANI L	D DA ∆nn	TUN	1 11 f	t NA\	/D88				
ŀ	DRILLING	EQUIPMENT				DAT	E STAF	RTED)	. JA.	DA	TE FINI	SHED		COME	PLETION D	
-	CIZE AND	Geoprob	e 7822 DT			<u> </u>		13/2		DIC	_	5/	13/2			20 ft	
	SIZE AND	2in Direc	t Push			'	NUMBEI SAMPL	≺ OF .ES		DIS	ı. 4		UN	DIST.		CORE	0
ı	CASING D	DIAMETER (in)	CASING DE			W	ATER L	EVE	L	FIRS	ST	0 E		MPL.		24 HR.	
ŀ	SAMPLER	2in		NA		DRII	(ft.) LLING F	ORE	IAM=	1 — — —		9.5	7			Ā	
		5-Foot M	lacrocore					·	Jay	Sla	vin						
	SAMPLER	R HAMMER NA	WEIGHT(lbs) NA	DROP(in) NA		INSF	PECTIN	G EN F	vGIN Reid	EER 1 Ra	alkind	4					
ı			177	101		<u>'</u>			SA	MPLI	E DAT	A	ing		חבי	44 DICO	
	ELEV. (ft)		SAMPLE DESCRIPT	ION	SYMI LO	BOL	DEPTH SCALE	BER	TYPE	ος	ETR. SIST (6in	NS NS FT	Reading (ppm)	(DRILLIN	IG FLUI	MARKS D, DEPTH O	F CASING,
	(11)						OOMEL	NUMBER	₹	REC (i	PEN PES BL	N-VALUE BLOWS PER FT	吕				F CASING, TANCE, ETC.
	+11.0	(0-9") Gray	fine to coarse SAND		2.4	Ø	_	R1A					0	Started E	orilling a	at 5/13/202	0 9:30 AM.
	. 40.0	(dry)[CONC	RETEJ				_	쮼					0				
	+10.3	(9-33") Darl	k gray fine SAND, trace	e coal ash,			- 1 -						0				
ō		concrete, b	rick (dry)[FILL]			\bowtie							Ü				
ORIN						**	-	R1B					0				
g - B						\bowtie	- 2 -	<u>~</u>	ഉ				0				
rt: L						X	-		Macrocore	55			0				
Repo		(33-55") Bla	ack fine to coarse SAN	D trace coal		\bowtie	_ =		Jacr	۵,			U				
: ≥		(moist)[FILL	-]	D, 11400 0041		\bowtie	- 3 -		_				0				
:51 P						\bowtie	_						0				
1:23						\boxtimes	- 4 -	R1C					0				
2020						\bigotimes							U				
5/22/2						\bigotimes	_										
.:		(0-12") Blac	ck fine to coarse SAND	trace coal		\boxtimes	- 5 -						0				
RI.GP		(moist)[FILL	_]	, trace coar		\bigotimes	=	R2A					0				
24_F						\bowtie	_	~					U				
)229((12-52") Lig	ght brown to orangish b	prown fine		\bowtie	- 6 -						0				
S/170		SAND, trac (wet)[FILL]	e concrete, brick, coar	se gravel, coal		\bowtie	_						0				
106		(wet)[i iiii]				\bowtie	- 7 -		d)				0				
GINT						\bigotimes	_		lacrocore	~							
JTAL						\bowtie	_	_	lacro	52			0				
MEN						▓╴	- 8 -	R2B	2				0				
RO						\bigotimes	-						0				
/ENV						\bigotimes	- 9 -										
LINE					$\neg \bigotimes$	\bowtie	-						0				
SCIF					$\stackrel{\perp}{\Longrightarrow}$	₩-	-						0				
 □		(0-20") Ligh	nt brown to orangish br	own fine SAND		\bigotimes	- 10 -						0	10:45 AN	1 - Colle	ect sample	
DAT,			ete, brick, coarse grave		' ※	X	_						0	LB23_10			
ECT		(wet)[FILL]	_			\bowtie		R3A					0				
ROJ						\bowtie	- 11 -	E E					0				
)24\F						\bowtie	_						0				
)2290			ack coarse SAND, trac	e slag, brick,		\bigotimes	- - 12 -										
0/170		coal (wet)[F	·ILL]			\otimes	12 -		core				0				
ATA						XF	_		Macrocore	28			0				
IYC/[\bowtie	- 13 -		ğ				0				
TAIN						\bigotimes	=	R3B					^				
NLANGAN.COMIDATAINYCIDATAO\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:51 PM Report: Log - BORING						\bigotimes							0				
00.5						\bowtie	- 14 -						0				
NGAI						\bigotimes	_						0				
ΙΨ						XX	-										

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 11 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH NUMBER TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC SCALE LOG (0-29") Black coarse SAND, trace slag, brick, coal, wood(wet)[FILL] 0 16 0 R4A 0 17 0 -6.4 33 (29-33") Dark gray organic CLAY (moist)[NATIVE] 0 18 R4B NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22\2020 1:23:51 PM ... Report: Log - BORING 19 20 -9.0 Bottom of boring at 20 ft. Boring backfilled with clean soil cuttings to grade and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

SHEET 1 OF 2

-															"			
	PROJECT	45 Com	mercial Stree	ıt.			PRO	DJECT N		70	220	024						
}	LOCATIO	V					ELE	VATION	I ANI	D DA	TUN	1						
ļ		Brooklyr	n, NY								rox		t NAV					
	DKILLING	EQUIPMENT Geoprol	oe 6610 DT				DAT	E STAF 5/	RTED 13/2			DAT	ΓΕ FINI: 5/	SHED 13/2	0	COMPI	LETION 20 1	DEPTH ft.
ŀ	SIZE AND	TYPE OF BIT						NUMBER	R OF		DIS				IDIST.		CORE	_
ŀ	CASING F	2in Direction		ASING DEP	TU/#\			SAMPL ATER L		,	FIRS	<u>4</u>			OMPL.		24 HR.	0
	CAOIIVO D	2in	0,	AOINO DEI	ŇĂ		"	(ft.)		_	∇		9.5	Į Š	_		<u>T</u>	
	SAMPLER	5 Foot N	/lacrocore				DRI	LLING F	ORE	MAN	ง Sla	vin						
ŀ	SAMPLER	HAMMER	WEIGHT(lbs)		DROP(in)		INSI	PECTIN	G EN	IGÍN	EER							
		NA	NA.		` NA		L,		<u> </u>			alking						
	ELEV.					SYME	3011	DEPTH	<u>K</u>	SA	MPL S	E DATA	4 US⊢	Reading (ppm)		REM	ARKS	
	(ft)		SAMPLE DE	SCRIPTI	ON	LO	G	SCALE	NUMBER	TYPE	Ö.E	PENETR. RESIST BL/6in	N-VALUE BLOWS PER FT	D Rei	(DRILLING	G FLUID,	DEPTH ON RESIS	OF CASING, STANCE, ETC
ŀ	+13.0	(0.8") Grav	fine to coarse	SAND		SV43	NA:			_	2	889	<u> </u>	0 E	Started D			
	1 13.0	(dry)[CON(CRETEI	SAND		4		_	R1A						PM.	illing a	. 0/ 10/20	20 12.00
	+12.3		k brown fine S	AND trac	e brick coal			_	-	MC				0				
		concrete (n	noist)[FILL]	AND, liac	o brick, coal,		▓	- 1 -						0				
Ŋ		•	,				₩	_						0				
BOR							\bowtie							U				
- go							\bowtie	- 2 -						0				
ort: L							\bigotimes	-		MC	28			0				
Rep							₩	_	R1B	_								
: ≥							\bowtie	- 3 -	"					0				
53 P							\bowtie	_						0				
1:23:							\bigotimes	- 4 -						0				
020							₩							0				
122/2							XF	_						0				
5		(0.40!!) 0::-	4 - 15 - 15 4 4	.	CAND		\bowtie	- 5 -						0				
.GP,		trace coal a	ly to light gray f ash, coal, brick	moist)[FI	IISE SAND,		\boxtimes	_										
4. S		irado doare	ion, ooal, bhok	(1110101)[1	,		▓₺	_						0				
2902							₩-	- 6 -						0				
1702							X	_						0				
\gs							\bowtie	_						U				
틹							\bigotimes	- 7 -						0				
L/GII							▓₺	_	R2	MC	43			0				
NTA							₩	_	_	_								
NME							\otimes	- 8 -						0				
/RO							\bowtie	_						0				
EN							▓₺	- 9 -						0				
LINE						$\neg \bigotimes$	▓	-						0				
SCIF						\perp	\bigotimes	_										
		(n 20"\ D	dich brown fi-	o to occir	20 CAND +200-		\bowtie	- 10 -						0	2:45 PM -	. Collact	arab so	mnle
ATA			aaisn brown fin (moist)[FILL]	e io coars	se SAND, trace		\bowtie	_							LB24_10-		grap sa	iiihia
CT		2or, oour	(ə.ə.)[i i]				\bowtie	-	⊀					0				
3OJE							₩	- 11 -	R3A					0				
4\PF							\bowtie	-						^				
2902		(20-56") Da	ark brown to gr	av fine SA	ND. trace slag		\bowtie	-	\vdash	MC				0				
1702		(moist)[FILI	L]	,3 31	, o.ag		▓	- 12 -						0				
TAO							₩	-		MC	26			0				
S/DA							\bigotimes	40		~	-							
NYC							\bowtie	- 13 -	ا ۾					0				
ATA							\bowtie	-	R3B					0.7				
NLANGAN.COMIDATAINYCIDATAO\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:53 PM Report: Log - BORING							\bigotimes	- - 14 -						24.0				
N.C.							\bigotimes	' -						24.0				
NG/							\bowtie	-						145.2				
¥						-	₩	-										

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 13 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA PID Reading (ppm) **REMARKS** SYMBOL DEPTH LOG SCALE RECOV. (in) PENETR. RESIST BL/6in ELEV. NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC Petroleum-like odor detected from 14 ft to 16 ft. (0-15") Dark brown to gray fine SAND, trace slag (moist)[FILL] R4A 0 16 0 -3.3 (15-56") Light gray to dark gray organic CLAY 0 (moist)[NATIVE] 0 8 29 0 R4B 18 0 0 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:53 PM ... Report: Log - BORING 19 0 -7.0 20 Bottom of boring at 20 ft. Boring backfilled with No 2 sand to grade and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

LANGAN

NLANGAN.COMIDATAINYCIDATA0\170229024\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:33:55 PM ... Report: Log - BORING

LOG OF BORING LB-25

SHEET ___1__ OF ___2

PROJECT	45 Comr	maraial Ctraat			PRC	JECT		70	വാറ	0024						
LOCATIO		nercial Street			ELE'	OITAV	N ANI	D DA	ATUN	024 1 12 f	t NAV	/D88				
DRILLING	EQUIPMENT	e 6610 DT			DAT	E STAI	RTEC 11/2)	101		TE FINIS		1	COMPL	ETION E	EPTH
SIZE AND	TYPE OF BIT				١	IUMBE	R OF		DIS				DIST.		CORE	_
CASING E	2in Direction 2in Direction 2in Direction 2in Direction 2in 2in 2in 2in 2in 2in 2in 2in 2in 2i	t Push Casing Dep			W	SAMPI ATER		L	FIR	<u>4</u> st		CO	O MPL.	2	24 HR.	0
SAMPLER	2in		NA			(ft.) LING F)		1 <u>\</u>	-	10	Ţ			Ā	
		lacrocore WEIGHT(lbs)	DROP(in)			PECTIN	J	lay	Sla	vin						
SAIVIF LLIV	NA	NA NA	NA NA		IINOF	LOTIN		Reid	d Ba	alkind			ı			
ELEV. (ft)		SAMPLE DESCRIPTI	ON	SYME LO	G S	DEPTH SCALE	NUMBER			PENETR. M RESIST DO BL/6in		PID Reading (ppm)	(DRILLIN	REMA G FLUID, S, DRILLIN		F CASING, TANCE, ETC.
+12.0	(0-14") Gra (dry)[CONC	y fine to coarse SAND RETE]				. 1 _	R1A				_	0	Started D	rilling at	5/11/202	0 7:34 AM.
+10.8	(14-48") Gr. brick, coal,	ay to dark brown fine S/coal ash (dry)[FILL]	AND, trace			. 2 -	R1B	Macrocore	28			0 0 0 0 0 0				
	(48-58") Bla (dry)[FILL]	ack fine to coarse SANE), trace coal			· 4 -	R1C					0				
	(moist)[FILL (18-53") Da	k brown fine SAND, trac .] rk gray to tannish browi e ash, glass, slag, brick	n fine to coarse			- 5	R2B R2A	Macrocore	53			0 0 0 0 0 0				
	(0-29") Blac coal, trace f	k fine to coarse SAND, îne gravel (wet)[FILL]	trace slag,			· 10 - · - · 11 - · - · 12 -	R3A	core				0 0 0 0				
	(29-58") Gr. coal (wet)[F	ayish brown CLAY, trac ILL]	e wood, brick,			· 13 -	R3B	Macrocore	58			0.1 0.2 0.2 0.3 16.2	Petroleur detected			

LOG OF BORING LB-25

SHEET __2__ OF __2

PROJECT	45 Commercial Street		PROJECT I	•	170	229	024			
LOCATION	Brooklyn, NY	[ELEVATION	NA N	D DA	TUN	1 12 ft	: NA\	/D88	
		<u> </u>			SA	MPI I	= DATA	4	g	DEMARKS
ELEV. (ft)	SAMPLE DESCRIPTION	SYMB(LOG	DEPTH SCALE	NUMBER	TYPE	RECOV. (in)	PENETR. RESIST BL/6in	N-VALUE BLOWS PER FT	PID Reading (ppm)	REMARKS (DRILLING FLUID, DEPTH OF CASING LUID LOSS, DRILLING RESISTANCE, E
	(0-20") Black fine to coarse SAND, trace brick, wood, coal (wet)[FILL]		- 16 -	R4A					24.4 39.8 7.0	
-4.7	(20-58") Dark gray organic CLAY (wet)[NATIVE]		- 17 -		Macrocore	58			3.6	
			- 18 -	R4B	Macr	4,			0	
			19 -						0	
-8.0			20 -						0	Bottom of boring at 20 ft. Boring backfilled with No 2 sand to grade patched with concrete.
			- 21 -							раклеч with concrete.
			- 22 -							
			- 23 -							
			- 24 -							
			- 25 -							
			- 26 -							
			- 27 -							
			- 28 -							
			- - 29 -							
			- 30 -							
			- 31 -							
			32 -							

NLANGAN.COMIDATANYCIDATA01170229024/PROJECT DATA_DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GFJ....5/22/2200 1:23:57 PM ... Report: Log - BORING

LOG OF BORING **LB-26**

SHEET OF 2 PROJECT NO. 45 Commercial Street 170229024 LOCATION **ELEVATION AND DATUM** Approx. 12 ft NAVD88 Brooklyn, NY DATE STARTED DRILLING EQUIPMENT DATE FINISHED COMPLETION DEPTH Geoprobe 6610 DT 5/11/20 5/11/20 20 ft. DIST. SIZE AND TYPE OF BIT NUMBER OF UNDIST CORE 2in Direct Push 4 0 SAMPLES CASING DIAMETER (in) COMPL. CASING DEPTH(ft) 24 HR. WATER LEVEL **FIRST** (ft.) 10 \mathbf{I} SAMPLER DRILLING FOREMAN 5-Foot Macrocore Jay Slavin SAMPLER HAMMER WEIGHT(lbs) DROP(in) INSPECTING ENGINEER NA NA Reid Balkind SAMPLE DATA PID Readin (ppm) REMARKS PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH NUMBER SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (ft) LOG **SCALE** Started Drilling at 5/11/2020 9:20 AM. +12.0 (0-12")Dark gray to brown fine SAND, trace fine R1A gravel, brick (dry)[FILL] 0 n (12-58") Red fine to coarse SAND, trace brick, trace fine orange sand (dry)[FILL] 0 2 0 89 0 R1B 3 O 0 0 5 0 (0-40") Red fine to coarse SAND, trace brick, trace fine orange sand (dry)[FILL] 0 6 0 O R2A 0 29 0 8 0 (40-56") Black fine to coarse SAND, trace coal, 0 slag, coal ash (moist)[FILL] R2B 0 0 10 0 (0-33") Black fine to coarse SAND, trace coal, slag, coal ash (moist)[FILL] 0.6 0.2 R3A 1.2 0.3 10:10 AM - Collect grab sample from foot above confining layer. 25 LB26_12-13 0.4 -0.8 (33-54") Dark gray silty CLAY, trace organics 13 0 (wet)[NATIVE] 0 R3B n

LOG OF BORING LB-26

SHEET ___2 OF ___2

PROJECT	45 Commercial Street		PROJECT I	•	1 <u>7</u> 0	229	024			
OCATION	Brooklyn, NY		ELEVATION	NA I	D DA App	rox	1 . 12 f	t NA\	/D88	
ELEV. (ft)	SAMPLE DESCRIPTION	SYMB LOC	OL DEPTH SCALE		SA	MPL	E DAT	N-VALUE BLOWS PER FT	g	REMARKS (DRILLING FLUID, DEPTH OF CASIN- LUID LOSS, DRILLING RESISTANCE, I
	(0-58") Dark gray silty CLAY, trace organics (wet)[NATIVE]		16 -	Z		<u>r</u>	<u>a.u.</u>	200	0 0 0	
			18 -	R4	Macrocore	28			0	
			19 -						0 0	
-8.0			20 -							Bottom of boring at 20 ft. Boring backfilled with clean soil cuttings grade and patched with concrete.
			- 22 -							
			- 23 -							
			- 24 - 							
			- 26 -							
			- 27 -							
			28 -							
			- 29 - - - - 30 -							
			- 31 -							
			- 32 -							

LOG OF BORING LB-27

SHEET __1__ OF __2__

	PROJECT	45 Com	mercial Street		PROJECT		170	220	024							
	LOCATIO	N				ELEVATIO	N AN	D DA	ATUN	Л						
	DRILLING	Brooklyn EQUIPMENT	ı, NY			DATE STA			rox	. 13 f	t NAV	/D88		COMPI	LETION E	DEPTH
		Geoprob	oe 7822 DT			5/	16/2	20			5/	/16/2	0		20 ft	t
	SIZE AND	TYPE OF BIT 2in Direct	ct Push			NUMBE SAMP	R OF LES	=	DIS	т. 4		UN	IDIST.		CORE	0
	CASING D	DIAMETER (in) 2in	CASING D	EPTH(ft) NA		WATER		ΞL	FIRS	ST	9.5	CC	OMPL.		24 HR.	
	SAMPLER	}	-	INA		(ft. DRILLING	FORE		V		9.5	-	<u>Ľ</u>		<u> </u>	
	SAMPLER	5-Foot N R HAMMER	Macrocore WEIGHT(lbs)	DROP(in)		INSPECTIN			Sla							
	O, 1111 EE1	NA	NA NA	NA		1101 2011		Luk	е М	lcCar						
	ELEV. (ft)		SAMPLE DESCRIP		SYMI LO		NUMBER			PENETR. M RESIST VO BL/6in		PID Reading (ppm)	(DRILLING FLUID LOSS	G FLUID.	ARKS , DEPTH O NG RESIS	F CASING, TANCE, ETC.
	+13.0		ck fine SAND, trace si l ash, brick, slag, conr			X -						0.0	Started Dr Take at 0f		t 5/16/202	20 9:30 AM.
		gravei, coai	rasii, blick, siag, coili	ete (moist)[FILL]		X						2.8				
						 1 −	1					0.2				
SING						X	1					1.9				
- BOF						×- 2 -		Щ								
Log						₩ ′	4	9				1.8				
eport:							R1B R1A	MACROCORE	55			0.8				
 R		(36-55") Br	own fine SAND, some	e silt, trace clay,		3 -	R1B	MA				0.5				
3:59 P		fine gravel,	brick, concrete (dry)[I	FILL]								1.4				
20 1:2						4 -						0.5				
22/20							1					0.4				
5/,		(O. 4711) D		- · · · · · ·		— 5 -	1									
I.GPJ			wn to black fine SANI k, coal ash, slag (mois				1									
24_R		9	n, coar acri, ciag (iiich				1									
05220						6 -						0.1				
38/17(0.2				
NTLO						7 -		CROCORE				1.7				
[AL/G							R2	ROC	26			1.2				
MEN						8 -		MAG				2.3				
MRO						X -						3.3				
NE/EN						9 -						0.1				
SCIPLI					∇	X -						1.7				
A_D!		(0-26") Oliv	e brown fine SAND, s	some fine gravel.		_ 10 -						3.7				
T DAT			rick, coal ash (wet)[FII									3.9				
SOJEC							1					5.0				
24\PF												3.6				
02290						12 -	- m	묎				5.0				
TA0\17			ark gray to black fine S	SAND, trace fine		×- '	R34R3B	MACROCORE	09			6.0				
C\DA1		gravei, coal	ash (wet)[FILL]			13 -	<u> </u>	4CR								
TA\NY.						× 13 -	1	Ž				21.3				
M\DA						X -						90.4				
N.CO		(48-60") Oli	ive brown fine SAND,	coal (wet)[FILL]		14 -	R3C					14.1				
NLANGAN.COMIDATAINYCIDATA0/170229024/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170229024_RI.GPJ 5/22/2020 1:23:59 PM Report: Log - BORING												6.7	Petroleum observed			

LANGAN

LOG OF BORING

SHEET 2 OF 2

LB-27

PROJECT NO. 170229024 45 Commercial Street LOCATION **ELEVATION AND DATUM** Brooklyn, NY Approx. 13 ft NAVD88 SAMPLE DATA PID Reading (ppm) REMARKS RECOV. (in) PENETR. RESIST BL/6in ELEV. SYMBOL DEPTH SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC LOG **SCALE** (0-18") Dark gray to black medium SAND, some coarse sand, some fine gravel, coal ash 60.5 (wet)[FILL] 16 66.6 -3.5 54.8 (18-31") Olive brown silty fine SAND, some clay (wet)[NATIVE] 388.1 R4DR46 28 268.1 -4.6(31-35") Brown PEAT (moist)[NATIVE] 18 (35-51") Dark gray fine SAND, some silt, shells 130.1 (wet)[NATIVE] 174 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5\22/2020 1:23:59 PM ... Report: Log - BORING 19 21.2 R4E -6.3 (51-60") Dark gray CLAY, trace fine sand 17.4 (moist)[NATIVE] 20 -7.0 Bottom of boring at 20 ft. Boring backfilled with No 2 sand and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

LOG OF BORING LB-28

SHEET 1 OF 2

PROJECT	45 Com	mercial Street			PROJEC				9024					
OCATIO	N Brooklyr				ELEVAT		App	TUN	и . 12 f	t NAV	'D88			
DRILLING	EQUIPMENT	ne 7822 DT			DATE S	TARTE 5/16/	D			TE FINIS		COMF	LETION I	DEPTH t.
SIZE AND	TYPE OF BIT 2in Direct				NUM	BER O MPLES	F	DIS	T. 4		UNDIST. 0		CORE	0
ASING D	DIAMETER (in)		ING DEPTH(ft)		WATE	R LEV		FIR	ST		COMPL.		24 HR.	J
AMPLER			NÁ		DRILLIN	(ft.) G FOR	EMAI	N 		9	<u> </u>		Ā	
AMPLER	RHAMMER	Macrocore WEIGHT(lbs)	DROP(in)		INSPEC	ΓING E	Jay NGIN	IEER	}					
	NA) NA		NA	<u> </u>		Luk SA	e M MPL	IcCar	tney 4				
ELEV. (ft)		SAMPLE DES	CRIPTION	SYN LC	MBOL DEPTH BW N CODD SCALE BW				N-VALUE BLOWS PER FT	(DRILL FLUID LO	ING FLUID	IARKS), DEPTH C ING RESIS	OF CASING STANCE, E	
+12.0	fine gravel, (moist)[FILI		concrete, slag		- 1 - 2 - 3		SORE	40			Started AM. Ta	Drilling a ke at 0ft	at 5/16/202	20 10:30
	(0-34") Bro clay, trace t (moist to w	wn to black fine s îne gravel, coal a et)[FILL]	SAND, some silt ish, brick, concr	, trace ete	- 6 - 7 - 8	R2	MACROCORE	34						
		k gray to dark bla and, trace fine gr FILL]			- 10 - 11 - 12 - 13 - 14	R3	MACROCORE	18			15:00 -	Collect L	B28_14.5	i-15.5

LOG OF BORING LB-28

SHEET 2 OF 2

PROJECT NO. 45 Commercial Street 170229024 ELEVATION AND DATUM
Approx. 12 ft NAVD88 LOCATION Brooklyn, NY SAMPLE DATA RECOV.
(in)
PENETR.
PESIST BL/6in
N-VALUE
BLOWS
PER FT **REMARKS** SYMBOL DEPTH LOG SCALE ELEV. NUMBER TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, FLUID LOSS, DRILLING RESISTANCE, ETC (0-18") Dark gray to brown to black medium SAND, some fine gravel, trace fine gravel, coal ash, slag, brick (wet)[FILL] 16 MACROCORE 17 8 18 NLANGAN COMIDATAINYCIDATA01/10229024/PROJECT DATAL DISCIPLINE\ENVIRONMENTALIGINTLOGS\170229024_RI.GPJ ... 5/22/2020 1:24:01 PM ... Report: Log - BORING 19 20 -8.0 Bottom of boring at 20 ft. Boring backfilled with No 2 sand and patched with concrete. 21 22 23 24 25 26 27 28 29 30 31 32

APPENDIX E

Monitoring Well Construction and Groundwater Sampling Logs

Well No. MW13

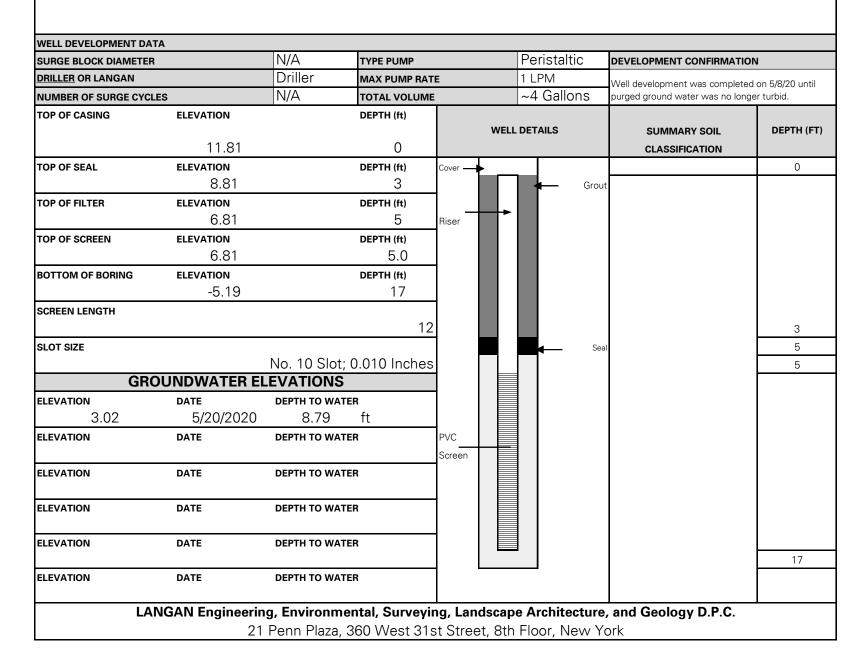
PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 11.91 NAVD88				
DRILLING AGENCY		DATE STARTED	DATE FINISHED			
Eastern Environmental Solutions, Inc	D	5/6/2020	5/6/2020			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 7822 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Luke McCartney				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL			
PVC No. 10 Slot	2-Inch	No. 2 Sand	Bentonite			

METHOD OF INSTALLATION

Geoprobe 7822 DT was used to advance the boring to approximately 17 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box and concrete pad.

SURGE BLOCK DIAMETER		N/A	TYPE PUMP		Peristaltic	DEVELOPMENT CONFIRMAT	ION
DRILLER OR LANGAN		Driller	MAX PUMP RAT	ΓE	1 LPM	Well development began on 5/6/20 until pum	
NUMBER OF SURGE CYCL	ES	N/A	TOTAL VOLUMI		~4 Gallons	continued on 5/7/20 until purged groundwate groundwater exhibited a petroleum-like odor	
TOP OF CASING	ELEVATION		DEPTH (ft)				
	11.91		0	V	VELL DETAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (F
TOP OF SEAL	ELEVATION		DEPTH (ft)	Cover —			0
	8.91		3		Gr	out	
TOP OF FILTER	ELEVATION		DEPTH (ft)	1			
	6.91		5	Riser	 		
TOP OF SCREEN	ELEVATION		DEPTH (ft)	1			
	6.91		5.0				
BOTTOM OF BORING	ELEVATION		DEPTH (ft)				
	-5.09		17				
SCREEN LENGTH				1			
			12	2			3
SLOT SIZE						Seal	5
		No. 10 Slot; (0.010 Inches	3			5
GRO	DUNDWATER EL	EVATIONS					
ELEVATION	DATE	DEPTH TO WATE					
2.99	5/20/2020	8.92	ft				
ELEVATION	DATE	DEPTH TO WATE	R	PVC			
				Screen			
ELEVATION	DATE	DEPTH TO WATE	R				
ELEVATION	DATE	DERTH TO WATE		-			
ELEVATION	DATE	DEPTH TO WATE	n				
ELEVATION	DATE	DEPTH TO WATE	R	1			
							17
ELEVATION	DATE	DEPTH TO WATE	R				

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

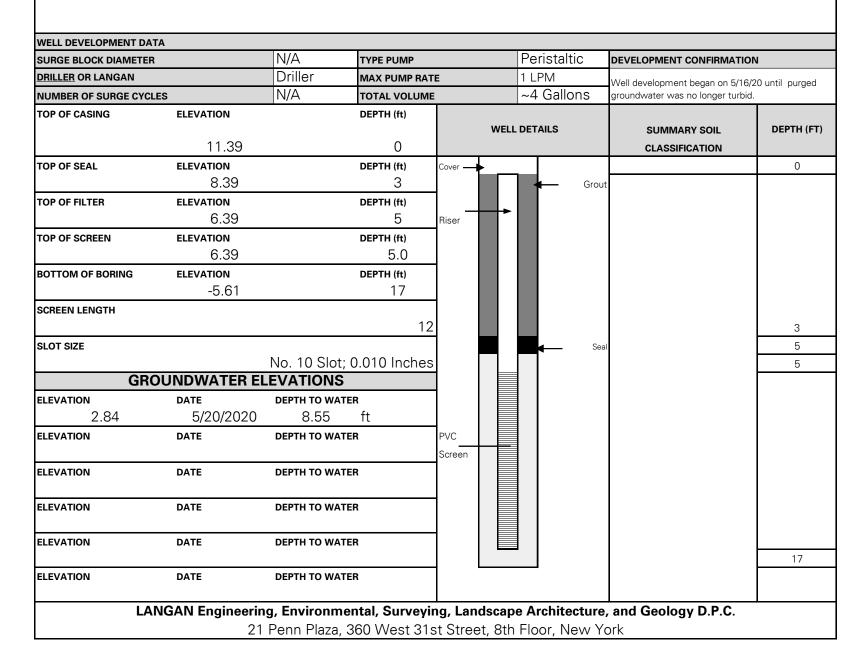

Well No.

MW13N

PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 11.81 NAVD88				
DRILLING AGENCY		DATE STARTED DATE FINISHED				
Eastern Environmental Solutions, Inc	С.	5/7/2020	5/8/2020			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 6610 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Luke McCartney				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL			
PVC No. 10 Slot	2-Inch	No. 2 Sand	Bentonite			

METHOD OF INSTALLATION

Geoprobe 6610 DT was used to advance the boring to approximately 20 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box and concrete pad.

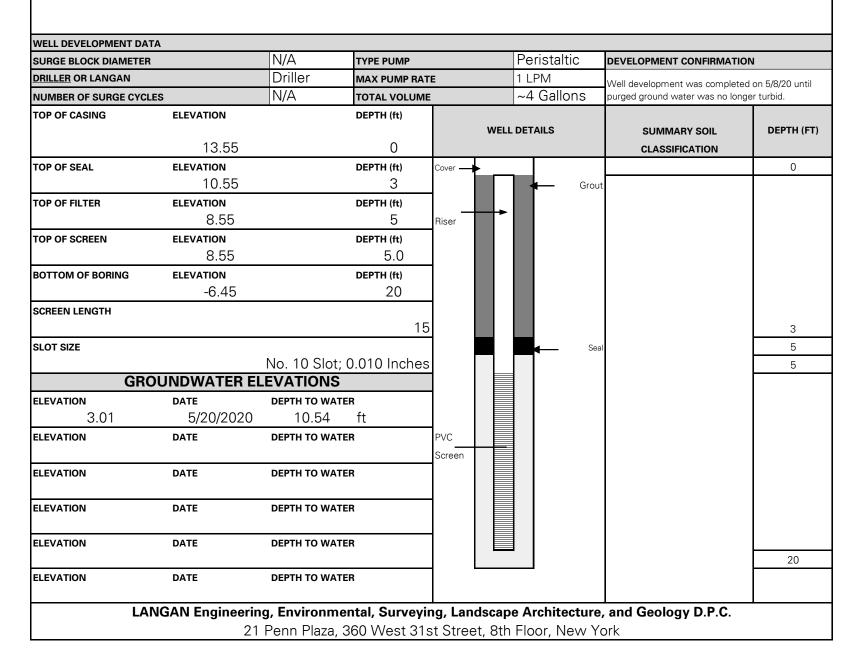


Well No. MW16

PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 11.39 NAVD88				
DRILLING AGENCY		DATE STARTED DATE FINISHED				
Eastern Environmental Solutions, Inc	C.	5/13/2020	5/13/2020			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 7822 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Reid Balkind				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL			
PVC No. 10 Slot	2-Inch	No. 2 Sand	Bentonite			

METHOD OF INSTALLATION

Geoprobe 7822 DT was used to advance the boring to approximately 17 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box and concrete pad.



Well No. MW18

PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 13.55 NAVD88				
DRILLING AGENCY		DATE STARTED DATE FINISHED				
Eastern Environmental Solutions, Inc	C.	5/8/2020	5/8/2020			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 6610 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Reid Balkind				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL			
PVC No. 10 Slot	2-Inch	No. 2 Sand	Bentonite			

METHOD OF INSTALLATION

Geoprobe 6610 DT was used to advance the boring to approximately 20 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box and concrete pad.

Well No. MW19

PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 11.97 NAVD88				
DRILLING AGENCY		DATE STARTED DATE FINISHED				
Eastern Environmental Solutions, Inc	D.	5/13/2020	5/13/2020			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 7822 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Reid Balkind				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL			
PVC No. 10 Slot	2-Inch	No. 2 Sand	Bentonite			

METHOD OF INSTALLATION

Geoprobe 7822 DT was used to advance the boring to approximately 17 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box and concrete pad.

SURGE BLOCK DIAMETER	₹	N/A	TYPE PUMP		Peristaltic	DEVELOPMENT CONFIRMATI	ON
DRILLER OR LANGAN		Driller	MAX PUMP RA	TE	1 LPM	Well development began on 5/1	6/20 until nurged
NUMBER OF SURGE CYC	LES	N/A	TOTAL VOLUM	E	~4 Gallons	groundwater was no longer turb	
TOP OF CASING	ELEVATION			١	WELL DETAILS	SUMMARY SOIL	DEPTH (FT)
	11.97		0			CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)	Cover —			0
	8.97		3		← Gr	out	
TOP OF FILTER	ELEVATION		DEPTH (ft)				
	6.97		5	Riser			
TOP OF SCREEN	ELEVATION		DEPTH (ft)				
	6.97		5.0				
BOTTOM OF BORING	ELEVATION		DEPTH (ft)				
	-5.03		17				
SCREEN LENGTH				7			
			1:	2			3
SLOT SIZE					←	Seal	5
		No. 10 Slot; 0	0.010 Inche	S			5
GR	OUNDWATER EL	EVATIONS					
ELEVATION	DATE	DEPTH TO WATER	3				
2.82	5/20/2020	9.15	ft				
ELEVATION	DATE	DEPTH TO WATER	3	PVC			
				Screen			
ELEVATION	DATE	DEPTH TO WATER	3				
ELEVATION	DATE	DEPTH TO WATER	₹				
ELEVATION	DATE	DEPTH TO WATER	₹				
							17
ELEVATION	DATE	DEPTH TO WATER	3				

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Well No. MW22

PROJECT		PROJECT NO.				
45 Commercial Street		170229024				
LOCATION		ELEVATION AND DATUM				
Brooklyn, NY		el. 12.97 NAVD88				
DRILLING AGENCY		DATE STARTED DATE FINISHED				
Eastern Environmental Solutions, Inc	С.	5/8/2020 5/8/2020				
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 6610 DT		Jay Slavin				
SIZE AND TYPE OF BIT		INSPECTOR				
2-inch Direct Push		Reid Balkind				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
2-Inches		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-Inch	No. 2 Sand				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL				
PVC No. 10 Slot	2-Inch	No. 2 Sand Bentonite				

Geoprobe 6610 DT was used to advance the boring to approximately 20 feet bgs. A two-inch (2") PVC monitoring well was installed which consisted of 12' of 10 slot (0.010-inch) well screen, and a solid 2" PVC riser. Well screen was installed from approximately 17 to 5 feet bgs with riser from 5 feet bgs to surface. Wells were finished with a flush mounted road box

METHOD OF INSTALLATION

and concrete pad.

WELL DEVELOPMENT DATA N/A TYPE PUMP Peristaltic SURGE BLOCK DIAMETER DEVELOPMENT CONFIRMATION Driller MAX PUMP RATE <u>DRILLER</u> OR LANGAN 1 LPM Well development was completed on 5/8/20 until ~4 Gallons NUMBER OF SURGE CYCLES N/A TOTAL VOLUME purged ground water was no longer turbid. TOP OF CASING **ELEVATION** DEPTH (ft) **WELL DETAILS** DEPTH (FT) SUMMARY SOIL 12.97 CLASSIFICATION **ELEVATION** TOP OF SEAL DEPTH (ft) 0 9.97 TOP OF FILTER **ELEVATION** DEPTH (ft) 7.97 5 ELEVATION TOP OF SCREEN DEPTH (ft) 7.97 5.0 ELEVATION BOTTOM OF BORING DEPTH (ft) -7.03 20 SCREEN LENGTH 15 SLOT SIZE 5 No. 10 Slot; 0.010 Inches 5 **GROUNDWATER ELEVATIONS DEPTH TO WATER ELEVATION** DATE 5/20/2020 9.69 ft 3.28 ELEVATION DATE **DEPTH TO WATER** PVC Screen ELEVATION DATE **DEPTH TO WATER** ELEVATION DATE **DEPTH TO WATER ELEVATION** DATE **DEPTH TO WATER** 20 **ELEVATION** DATE DEPTH TO WATER LANGAN Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Projec	t Information	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	S	Sampling I	nformation
Project Name:	45 Commercial Street	Well No:	MW13		lity Device Model:			Weather:	Clear 70s	. ,	MW13_051620
Project Number:	170229024	Well Depth:	17		Pine Number:		Backg	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2-Inch	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	23.1		GWMSD01_051620
Sampling	Reid Balkind	Well Screen	5		Pine Number:	043748	Pι	ımp Intake Depth:	13.00	Sample Date:	5/16/2020
Personnel:		Interval:	17		Tubing Diameter:	1/4 ID x 3/8 OD HDPE	Depth to W	ater Before Purge:		Sample Time:	9:50
			STA	ABILIZATION = 3 su		within limits		-			
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN PURG						
8:35	15.48	6.65	-4	0.782	119.0	0.00			0.75	Petroleum-Like	N/A
8:40	14.91	6.86	-61	0.801	110.0	0.00		0.03	0.9	Odor	N/A
8:45	14.84	6.93	-79	0.891	67.5	0.00		0.04	1.1		N
8:50	14.95	6.94	-83	0.955	56.1	0.00		0.02	1.2		N
8:55	14.88	6.98	-90	0.989	33.7	0.00		0.04	1.4		N
9:00	14.87	6.98	-93	1.020	29.2	0.00		0.04	1.6		N
9:05	14.86	7.00	-97	1.060	19.8	0.00			1.8		N
9:10	14.91	7.05	-102	1.400	20.4	0.00			2.2		N
9:15	14.90	7.05	-103	1.390	30.6	0.00			2.3		N
9:20											N
9:25	14.91	7.06	-106	1.490	32.8	0.00		0.56	2.8		N
9:30	14.97	7.06	-107	1.560	35.7	0.00		0.04	3		N
9:35	15.03	7.07	-108	1.570	38.1	0.00		0.06	3.3		N
9:40	15.07	7.08	-109	1.570	35.7	0.00		0.04	3.5		Υ
								0.7			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	t Information	Well Info	rmation	Eq	uipment Informati	on	S	ampling Conditions	s	Sampling Ir	nformation
Project Name:	45 Commercial Street	Well No:	MW13N		lity Device Model:			Weather:	Clear 70s		MW13N_051620
Project Number:	170229024	Well Depth:	17		Pine Number:	21975	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2-Inch	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.7		
Sampling	Reid Balkind	Well Screen	5		Pine Number:	043748	Pι	ımp Intake Depth:	13.00	Sample Date:	5/16/2020
Personnel:		Interval:	17		Tubing Diameter:	1/4 ID x 3/8 OD HDPE	Depth to Water Before Purge:			Sample Time:	13:40
			STA	ABILIZATION = 3 su	ıccessive readings	within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN PURG	ING					
12:35	16.25	7.48	-120	0.703	1000	3.01			0.75	Silty black water	N/A
12:40	15.93	7.44	-120	0.64	1000	2.91		0.05	1		N/A
12:45	16.4	7.43	-119	0.646	763	3.2		0.08	1.4		N
12:50	16.13	7.43	-121	0.648	992	2.71		0.08	1.8		N
12:55	16.47	7.43	-122	0.651	971	2.74		0.02	1.9		N
13:00	16.65	7.43	-122	0.641	538	2.72		0.06	2.2		N
13:05	16.42	7.44	-121	0.637	928	2.66		0.06	2.5		N
13:10	16.41	7.43	-120	0.63	811	2.69		0.05	2.75		N
13:15	16.35	7.43	-120	0.626	407	3.03		0.05	3		N
13:20	16.23	7.43	-119	0.611	466	2.45		0.05	3.25		N
13:25	16.23	7.43	-119	0.609	397	2.44		0.05	3.5		N
13:30	15.94	7.42	-118	0.603	230	2.25		0.05	3.75		N
13:35	15.95	7.43	-117	0.6	151	2.2		0.05	4		N
13:40	15.9	7.43	-118	0.6	113	2.23		0.06	4.3		N
								-0.86			N
								0			N
								0			N
								0			N
								0			N
								0			N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	t Information	Well Info	rmation	Ea	uipment Informati	on	S	ampling Condition	ıs	Sampling I	nformation
Project Name:		Well No:	MW16		lity Device Model:			Weather:	Clear 60s	J	MW16_052020
Project Number:	170229024	Well Depth:	17		Pine Number:	21975	Backe	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2-Inch	Pump	Make and Model:			Inner Cap (ppm):	0.0	1 ' ' '	
Sampling	Reid Balkind	Well Screen	5	·	Pine Number:	043748		ımp Intake Depth:	13.00	Sample Date:	5/20/2020
Personnel:		Interval:	17		Tubing Diameter:	1/4 ID x 3/8 OD HDPE		ater Before Purge:		Sample Time:	7:55
,			STA	ABILIZATION = 3 su							
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN PURG						
7:25	12.96	6.59	-47	2.720	3.0	0.00			1	Yellow, Chemical-	N/A
7:30	12.99	6.74	-74	2.710	1.4	0.00		0.1	1.5	Like Odor	N/A
7:35	13.08	6.80	-83	2.700	0.8	0.00		0.05	1.75		N
7:40	13.14	6.85	-90	2.700	0.2	0.00		0.05	2		N
7:45	13.26	6.89	-95	2.710	0.1	0.00		0.16	2.8		N
7:50	13.30	6.90	-97	2.720	0.1	0.00		0.06	3.1		Υ
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	t Information	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	S	Sampling I	nformation
Project Name:	45 Commercial Street	Well No:	MW18	Water Qua	lity Device Model:	Horiba U-52		Weather:	Clear 60s		MW18_052020
Project Number:	170229024	Well Depth:	17		Pine Number:		Back	ground PID (ppm):	0.0	Sample(s):	GWDUP01_052020
Site Location:	Brooklyn, NY	Well Diameter:	2-Inch	Pump	Make and Model:	Peri Pump	PID Beneath	n Inner Cap (ppm):	0.1		
Sampling	Reid Balkind	Well Screen	5		Pine Number:			ımp Intake Depth:	13.00	Sample Date:	5/20/2020
Personnel:		Interval:	17		Tubing Diameter:		Depth to W	ater Before Purge:		Sample Time:	13:05
				ABILIZATION = 3 st		within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
				•	BEGIN PURG	ING					
12:00	14.91	7.18	89	2.570	109.0	8.05			0.5		N/A
12:05	14.42	7.05	90	2.580	88.7	1.06		0.06	0.8		N/A
12:10	14.40	7.03	83	2.590	66.0	0.18		0.08	1.2		N
12:15	14.35	7.01	76	2.640	68.6	0.00		0.08	1.6		N
12:20	14.25	6.99	64	2.850	46.7	0.00		0.08	2		N
12:25	14.25	6.99	53	2.970	31.2	0.00		0.06	2.3		N
12:30	14.22	6.98	37	3.100	15.6	0.00		0.08	2.7		N
12:35								0.54			N
12:40	14.24	6.97	3	3.290	4.7	0.00		0.68	3.4		N
12:45	14.19	6.96	-7	3.350	5.7	0.00		0.07	3.75		N
12:50	14.25	6.97	-14	3.390	4.1	0.00		0.09	4.2		N
12:55	14.25	6.96	-21	3.440	3.1	0.00		0.08	4.6		N
13:00	14.20	6.96	-24	3.450	3.0	0.00		0.08	5		Υ
								1			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

1. Well depths and groundwater depths were measured in feet below the top of well casing.

- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

	i illorillation	vveii iiiio		Equipment information		Sampling Conditions			Sampling in		
Project Name:		Well No:	MW19	Water Qua	lity Device Model:			Weather:	Clear 70s		MW19_052020
Project Number:	170229024	Well Depth:	17		Pine Number:			ground PID (ppm):	0.0	Sample(s):	
Site Location:		Well Diameter:	2-Inch	Pump	Make and Model:			Inner Cap (ppm):	0.4		
Sampling	Reid Balkind	Well Screen	5		Pine Number:			ımp Intake Depth:	13.00	Sample Date:	5/20/2020
Personnel:		Interval:	17		Tubing Diameter:		Depth to Wa	ater Before Purge:		Sample Time:	10:10
			STA	ABILIZATION = 3 su	uccessive readings	within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Communications	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.111 12
	30.0.0					(+/- 10%) above	Drawdown <	(9)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
1	(17 6 70)	(17 0.17	(17 1011117)	(17 570)	BEGIN PURG		0.00 10	40.10 gpiii/		1 001017 0001 010.	
9.10	9:10 15.33 6.83 44 3.210 14.7 0.52							0.5	l I	N/A	
9:15	15.33	6.80	42	3.270	6.5	0.00		0.05	0.75		N/A
9:20	15.34	6.76	40	3.290	7.2	2.40		0.05	1		N
9:25	15.24	6.75	37	3.300	6.0	2.68		0.08	1.4		N
9:30	15.43	6.74	31	3.330	0.3	2.24		0.07	1.75		N
9:35	15.45	6.73	25	3.330	0.0	2.05		0.05			N N
									2		
9:40	15.37	6.77	15	3.310	5.2	0.00		0.1	2.5		N
9:45	15.52	6.71	11	3.350	6.8	0.00		0.06	2.8		N
9:50	15.53	6.71	7	3.350	6.6	0.00		0.08	3.2		N
9:55	15.56	6.71	5	3.360	4.4	0.00		0.06	3.5		N
10:00	15.64	6.71	7	3.370	3.5	0.00		0.05	3.75		N
10:05	15.62	6.71	-2	3.380	0.5	0.00		0.05	4		Υ
								0.8			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											14

Equipment Information

Sampling Conditions

Sampling Information

Notes

1. Well depths and groundwater depths were measured in feet below the top of well casing.

Well Information

2. Well and tubing diameters are measured in inches.

Project Information

- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	t Information	Well Info	rmation	Fa	uipment Informati	on	S	ampling Conditions	8	Sampling I	nformation
Project Name:	45 Commercial Street	Well No:	MW22		lity Device Model:			Weather:	Clear 70s	- Camping ii	MW22_051620
Project Number:	170229024	Well Depth:	17	Trate: Qua	Pine Number:	21975	Back	ground PID (ppm):	0.0	Sample(s):	1414422_001020
Site Location:	Brooklyn, NY	Well Diameter:	2-Inch	Pump	Make and Model:			Inner Cap (ppm):	3.5	5 3.11.[1.5(5).	
Sampling	Reid Balkind	Well Screen	5		Pine Number:	043748		ımp Intake Depth:	13.00	Sample Date:	5/16/2020
Personnel:		Interval:	20		Tubing Diameter:			ater Before Purge:		Sample Time:	15:00
				ABILIZATION = 3 su			•			•	
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative Discharge		Stabilized?
						(+/- 10%) above	Drawdown <				Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PURG						
14:35	18.20	7.55	-80	1.400	64.7	3.37			0.5		N/A
14:40	17.24	7.56	-105	1.390	27.0	0.76		0.02	0.6		N/A
14:45	16.52	7.53	-120	1.380	6.2	0.00		0.08	1		N
14:50	16.46	7.52	-123	1.380	5.6	0.00		0.05	1.25		N
14:55	16.34	7.51	-123	1.380	5.8	0.00		0.07	1.6		Υ
								0.32			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

APPENDIX F

Soil Vapor Construction and Sampling Logs

PROJECT:		DDO JECT NO	3 .						
45 Commercial Street		17022902							
LOCATION:				N AND DATUM:					
Brooklyn, NY		Approx. 1	1.5 ft	NAVD88					
DRILLING FIRM OR LANGAN INSTALLEI	₹:	INSTALLATIO	ON DAT	E STARTED:	DATE FINISHED:				
Eastern Environmental Solution	ns, Inc.	5/8/2020			5/8/2020				
INSTALLATION FOREMAN:		SAMPLE DA	TE STAF	RTED:	DATE FINISHED:				
Jay Slavin		5/8/2020			5/8/2020				
INSTALLATION EQUIPMENT: Geoprobe® 7822 DT		1-Liter Su							
INSPECTOR:		SAMPLER:	ımına	Carrister					
Reid Balkind		Reid Balkind							
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
		Temp: 49-54 F							
		Wind: 0-6 mph S							
		Precipitation: 0 in							
None		Pressure:	:	29.85 in Hg					
METHOD OF INSTALLATION AND PURG		The second second	ло.	المالية المالية	analaa laaal CU	Na Oalt- 4 f			
Advance Geoprobe 7822 DT to	_	pgs), insta	ali Z-ind	ch son vapor	probe, backfill Wit	th No. 2 sand to 1 feet			
bgs and seal to surface with h	ydrated bentonite.								
TUBING TYPE/DIAMETER:		TYPE OF MA	TERIΔI	ABOVE SEAL:					
3/16-inch ID, 1/4-inch OD Tefle	on-Lined Polyethylene Tubina	_							
IMPLANT SCREEN TYPE/LENGTH/DIAN		1	RIAL (Be	ntonite, Beeswax	, Modeling Clay, etc.):				
2-Inch Polyethylene Probe		Bentonite							
BOREHOLE DIAMETER:		FILTER PACK MATERIAL (Sand or Glass Beads):							
2-Inches		No. 2 Sand							
PURGE VOLUME (L):	0.03	IMPLA	NT/PRO	BE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200	(SEAL, FILTER, ETC.)			(FEET FROM				
PID AFTER PURGE (PPM):	0.5	SURFACE	4	SURFACE	SURFACE)				
HELIUM TESTS	Pre-sampling Post-sampling								
HELIUM TEST IN BUCKET(%):	15.0% 10.6%								
HELIUM TEST IN TUBE (PPM):	0.0%								
SAMPLE START TIME:	9:35	1							
SAMPLE STOP TIME:	11:35								
TOTAL SAMPLE TIME (MIN):	120								
REGULATOR FLOW RATE (L/MIN):	7			Top of Seal	0.00				
VOLUME OF SAMPLE (LITERS):	1								
PID AFTER SAMPLE (PPM):	0.2								
SAMPLE MOISTURE CONTENT:	NA								
CAN SERIAL NUMBER:	1325	<u> </u>		Top of Pack	1.00				
REGULATOR SERIAL NUMBER:	824855] [
CAN START VACUUM PRESS. (" HG):	29.5]							
CAN STOP VACUUM PRESS. (" HG):	16]							
SAMPLE LOCA	TION SKETCH]							
				Probe Depth	6.00				
		_		_					
					NOTES	•			
See Sample I	ocation Plan								
Langan Engir	neering, Environmental, Sur	veying, La	andsc	ape Architec	ture, and Geolog	gy D.P.C.			
21 Penn	Plaza, 360 West 31st Stree	t, 8th Flo	or, Ne	<u>ew Yo</u> rk, Ne	w York 10001-2	727			

PROJECT:		PROJECT							
45 Commercial Street		170229							
LOCATION:				TION AND DATUM:					
Brooklyn, NY		1		NAVD88	DATE FINIOUED				
DRILLING FIRM OR LANGAN INSTALLER Eastern Environmental Solutio		5/8/202		ATE STARTED:	DATE FINISHED : 5/8/2020				
INSTALLATION FOREMAN:	113, 1116.	SAMPLE I		ARTED:	DATE FINISHED:				
Jay Slavin		5/8/202		AITED.	5/8/2020				
INSTALLATION EQUIPMENT:				NG DEVICE:	0,0,000				
Geoprobe® 7822 DT		1-Liter	Summ	a Canister					
INSPECTOR:		SAMPLER	ì:						
Reid Balkind		Reid Ba	alkind						
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
		Temp: 49-54 F							
		Wind: 0-6 mph S							
Nana		Precipit							
None	INIO.	Pressu	e:	29.85 in Hg					
Advance Geoprobe 7822 DT to		'has\ inc	s+all 2 i	inch soil vanor	nroho haakfill wi	th No. 2 cand to 1 foot			
bgs and seal to surface with h	-	bys), ilis	otali Z-i	iricii soii vapoi	ргоре, раский ул	tii No. 2 Sand to 1 leet			
bgs and sear to surface with h	ydrated bentomite.								
TUBING TYPE/DIAMETER:		TYPE OF I	VIATERIA	AL ABOVE SEAL:					
3/16-inch ID, 1/4-inch OD Teflo	on-Lined Polyethylene Tubing			, ,					
IMPLANT SCREEN TYPE/LENGTH/DIAM	, ,		TERIAL (Bentonite, Beeswax	, Modeling Clay, etc.):				
2-Inch Polyethylene Probe		Benton							
BOREHOLE DIAMETER:			СК МАТ	ERIAL (Sand or Gla	ss Beads):				
2 Inches		No. 2 S	and						
PURGE VOLUME (L):	0.03	IMP	LANT/P	ROBE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200	(SEAL, FILTER, ETC.)			(FEET FROM				
PID AFTER PURGE (PPM):	0.6	SURFACE		SURFACE	SURFACE)				
HELIUM TESTS	Pre-sampling Post-sampling	4							
HELIUM TEST IN BUCKET(%):	11.2% 10.8%								
HELIUM TEST IN TUBE (PPM):	0.0%								
SAMPLE START TIME:	9:52	1							
SAMPLE STOP TIME:	11:52	1							
TOTAL SAMPLE TIME (MIN):	120	1							
REGULATOR FLOW RATE (L/MIN):	7.1	1		Top of Seal	0.00				
VOLUME OF SAMPLE (LITERS):	1	1							
PID AFTER SAMPLE (PPM):	0.3	1							
SAMPLE MOISTURE CONTENT:	NA	1							
CAN SERIAL NUMBER:	Z038	1		Top of Pack	1.00				
REGULATOR SERIAL NUMBER:	507749	1							
CAN START VACUUM PRESS. (" HG):	30	1	1						
CAN STOP VACUUM PRESS. (" HG):	7	1	1 🛮						
SAMPLE LOCA	TION SKETCH	1	1 🛮						
		1	#	Probe Depth	6.00				
				Flobe Deptil	0.00				
					NOTES				
					NOTES				
See Sample L	acation Plan								
See Sample L	ocation Fian								
Longon Engin	paring Environmental Com	Vovisa	l anda	roana Architas	ture and Casts	av D.P.C			
	i <mark>eering, Environmental, Sur</mark> Plaza, 360 West 31st Stree								
	. 1424, 555 v v 551 5 131 511 55	r, oull	, I	NOVY TOTAL INC	** 101N 10001-Z	. / _ /			

		r							
PROJECT:		PROJECT NO							
45 Commercial Street		17022902							
LOCATION:				ION AND DATUM:					
Brooklyn, NY		1		t NAVD88					
DRILLING FIRM OR LANGAN INSTALLER				TE STARTED:	DATE FINISHED:				
Eastern Environmental Solutio	ns, inc.	5/7/2020			5/7/2020				
INSTALLATION FOREMAN:		SAMPLE DA		ARTED:	DATE FINISHED:				
Jay Slavin		5/8/2020 TYPE OF SA		0 DE1/105	5/8/2020				
Geoprobe® 7822 DT				a Canister					
INSPECTOR:		SAMPLER:	אוווווונ	d Carrister					
Reid Balkind		Reid Balk	rind						
POTENTIAL SAMPLE INTERFERENCES:				IONS (PRECIP. TEMP	DDECC WIND CREED A	ND DIP).			
POTENTIAL SAMPLE INTERPERENCES.		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.): Temp: 49-54 F							
		Wind:							
		Wind: 0-6 mph S Precipitation: 0 in							
None		Pressure		29.85 in Hg					
METHOD OF INSTALLATION AND PURG	ING:								
Advance Geoprobe 7822 DT to		'bas) insta	all 2-ir	nch soil vapor i	orobe backfill wi	th No. 2 sand to 1 feet			
bgs and seal to surface with h	-	bgo,, mote	<u>~</u>	Torroom vapor	orobo, baokim vvi	11140. 2 04114 to 1 1001			
bgs and sear to surface with h	ydiated bentonite.								
TUBING TYPE/DIAMETER:		TVDE OF MA	TEDIA	L ABOVE SEAL:					
3/16-inch ID, 1/4-inch OD Teflo	on-Lined Polyethylene Tubing		A I ENIA	L ABOVE SEAL.					
IMPLANT SCREEN TYPE/LENGTH/DIAM		1	BIAI /F	Sentonite Reseway	, Modeling Clay, etc.):				
2-Inch Polyethylene Probe	Bentonite		Jentonite, Deeswax	, would be clay, etc.,					
BOREHOLE DIAMETER:				ERIAL (Sand or Glas	ss Beads):				
2 Inches	No. 2 Sar			.o 20000).					
PURGE VOLUME (L):	0.03			OBE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200	(SEAL, FILTER, ETC.) (FEET FROM							
PID AFTER PURGE (PPM):	0.1	SURFACE	ΙΑΙ, 111	SURFACE	SURFACE)				
HELIUM TESTS	Pre-sampling Post-sampling	SURFACE	\dashv	SURFACE	SURFACE)				
-	10.7%	1							
HELIUM TEST IN BUCKET(%):	0.0% 11.4%	4 1							
HELIUM TEST IN TUBE (PPM):	0.0%								
SAMPLE START TIME:	10:10								
SAMPLE STOP TIME:	11:50	1 1							
TOTAL SAMPLE TIME (MIN):	100	1 1							
REGULATOR FLOW RATE (L/MIN):	6.9	1 1		Top of Seal	0.00				
VOLUME OF SAMPLE (LITERS):	1	1		- '					
PID AFTER SAMPLE (PPM):	0	1							
SAMPLE MOISTURE CONTENT:	NA NA	1							
-	962	1		Ton of Book	1.00				
CAN SERIAL NUMBER:		 		Top of Pack	1.00				
REGULATOR SERIAL NUMBER:	710623	- 1							
CAN START VACUUM PRESS. (" HG):	30	4 1							
CAN STOP VACUUM PRESS. (" HG):	2.2	4 1							
SAMPLE LOCA	TION SKETCH	4							
			1	Probe Depth	6.00				
		<u> </u>							
					NOTES	1			
.									
See Sample I	ocation Plan								
1									
Langan Engir	eering, Environmental, Sur	veying, La	ands	cape Architec	ture, and Geolo	gy D.P.C.			
	Plaza, 360 West 31st Stree			•		- -			

PROJECT:	PROJECT NO.:							
45 Commercial Street	170229024							
LOCATION:	SURFACE ELEVATION AND DATU	M:						
Brooklyn, NY	Approx. 12.5 ft NAVD88							
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:						
Eastern Environmental Solutions, Inc.	5/7/2020	5/7/2020						
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: 5/8/2020	DATE FINISHED:						
Jay Slavin INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:	5/8/2020						
Geoprobe® 7822 DT	1-Liter Summa Canister							
INSPECTOR:	SAMPLER:							
Reid Balkind	Reid Balkind							
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
TOTENTIAL SAMILE INVENTED ENERGES.	Temp: 49-54 F							
	Temp: 49-54 F Wind: 0-6 mph S							
	Precipitation: 0 in							
None	Pressure: 29.85 in H	На						
METHOD OF INSTALLATION AND PURGING:		<u> </u>						
Advance Geoprobe 7822 DT to 6 feet below grade surface	(bgs), install 2-inch soil vapo	or probe, backfill wi	th No. 2 sand to 1 feet					
bgs and seal to surface with hydrated bentonite.	(
and courte cando with hydrated sentente.								
TUBING TYPE/DIAMETER:	TYPE OF MATERIAL ABOVE SEAL:							
3/16-inch ID, 1/4-inch OD Teflon-Lined Polyethylene Tubing								
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:	SEAL MATERIAL (Bentonite, Beesv	vax, Modeling Clay, etc.):						
2-Inch Polyethylene Probe	Bentonite							
BOREHOLE DIAMETER:	FILTER PACK MATERIAL (Sand or 0	Glass Beads):						
2 Inches	No. 2 Sand							
PURGE VOLUME (L): 0.03	IMPLANT/PROBE DETAILS	DEPTH	NOTES					
PURGE FLOW RATE (ML/MIN): 200	(SEAL, FILTER, ETC.)	(FEET FROM						
PID AFTER PURGE (PPM): 0.9	SURFACE SURFACE	SURFACE)						
HELIUM TESTS Pre-sampling Post-sampling		·						
HELIUM TEST IN BUCKET(%): 10.9% 10.2%								
0.0%	6							
HELIUM TEST IN TUBE (PPM):	-							
SAMPLE START TIME: 10:37	4 1 1							
SAMPLE STOP TIME: 11:55	-							
TOTAL SAMPLE TIME (MIN): 78	4 11							
REGULATOR FLOW RATE (L/MIN): 7.2	Top of Sea	o.00						
VOLUME OF SAMPLE (LITERS):	<u> </u>							
PID AFTER SAMPLE (PPM): 0.2]							
SAMPLE MOISTURE CONTENT: NA	」 							
CAN SERIAL NUMBER: Z024	Top of Pag	k 1.00						
REGULATOR SERIAL NUMBER: 301068								
CAN START VACUUM PRESS. (" HG): 30	1							
CAN STOP VACUUM PRESS. (" HG):	1							
SAMPLE LOCATION SKETCH	1							
	1	0.00						
	Probe Dept	th 6.00						
		NOTEC						
		NOTES						
See Sample Location Plan								
Langan Engineering, Environmental, Sui	uveving. I andscane ∆rchit	ecture, and Geolog	av D.P.C					
21 Penn Plaza, 360 West 31st Stree			- -					

PROJECT:		PROJECT NO							
45 Commercial Street		17022902							
LOCATION:				N AND DATUM:					
Brooklyn, NY		Approx. 1							
DRILLING FIRM OR LANGAN INSTALLE		INSTALLATIO	ON DATE	STARTED:	DATE FINISHED:				
Eastern Environmental Solution	ns, Inc.	5/7/2020			5/7/2020				
INSTALLATION FOREMAN:		SAMPLE DAT	TE STAR	TED:	DATE FINISHED:				
Jay Slavin		5/8/2020			5/8/2020				
INSTALLATION EQUIPMENT:		TYPE OF SAM							
Geoprobe® 7822 DT		1-Liter Su	mma (Canister					
INSPECTOR:		SAMPLER:							
Reid Balkind		Reid Balk							
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.): Tomb: 19_54 F							
		Temp: 49-54 F							
		Wind: 0-6 mph S							
		Precipitat		0 in					
None	Pressure:		29.85 in Hg						
METHOD OF INSTALLATION AND PURC		<i>,</i> , , , , ,							
Advance Geoprobe 7822 DT to		(bgs), insta	II 2-ind	th soil vapor i	probe, backfill wi	th No. 2 sand to 1 feet			
bgs and seal to surface with h	ydrated bentonite.								
TUBING TYPE/DIAMETER:		TYPE OF MA	TERIAL A	ABOVE SEAL:					
3/16-inch ID, 1/4-inch OD Tefle	on-Lined Polyethylene Tubing	N/A							
IMPLANT SCREEN TYPE/LENGTH/DIAN	SEAL MATER	RIAL (Ber	ntonite, Beeswax	, Modeling Clay, etc.):					
2-Inch Polyethylene Probe		Bentonite	:						
BOREHOLE DIAMETER:		FILTER PACK	MATER	IAL (Sand or Gla	ss Beads):				
2 Inches		No. 2 San	nd						
PURGE VOLUME (L):	0.03	IMPLAN	NT/PROE	BE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200	(SE	AL, FILTE	R, ETC.)	(FEET FROM				
PID AFTER PURGE (PPM):	1.2	SURFACE	П	SURFACE	SURFACE)				
HELIUM TESTS	Pre-sampling Post-sampling		$\exists \vdash$						
HELIUM TEST IN BUCKET(%):	11.0% 10.6%								
	0.0% 0.0%	5							
HELIUM TEST IN TUBE (PPM):		4							
SAMPLE START TIME:	10:26	↓							
SAMPLE STOP TIME:	12:15	1							
TOTAL SAMPLE TIME (MIN):	109	1							
REGULATOR FLOW RATE (L/MIN):	7			Top of Seal	0.00				
VOLUME OF SAMPLE (LITERS):	1								
PID AFTER SAMPLE (PPM):	0.3								
SAMPLE MOISTURE CONTENT:	NA	1							
CAN SERIAL NUMBER:	970	1		Top of Pack	1.00				
REGULATOR SERIAL NUMBER:	507743	1 F	11	.,					
CAN START VACUUM PRESS. (" HG):	30	1							
·	5	1							
CAN STOP VACUUM PRESS. (" HG): SAMPLE LOCA	-	-							
SAIVIPLE LOCA	TION SKETCH	-	1						
			\blacksquare	Probe Depth	6.00				
				•					
					NOTES				
1									
See Sample I	ocation Plan								
1									
I angan Fngir	neering, Environmental, Sur	vevina la	ndera	ne Architec	ture, and Geolo	av D.P.C.			
	Plaza, 360 West 31st Stree			-		- -			
		,	,			· — ·			

Sample Number: SVDUP01

PROJECT: 45 Commercial Street LOCATION: Brooklyn, NY DRILLING FIRM OR LANGAN INSTALLER: Eastern Environmental Solutions INSTALLATION FOREMAN: Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind POTENTIAL SAMPLE INTERFERENCES:	, Inc.	Approx. 1 INSTALLATIO 5/8/2020 SAMPLE DA 5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	24 EVATION 1 ft NA ON DATE TE START MPLING D	STARTED: ED: DEVICE:	DATE FINISHED: 5/8/2020 DATE FINISHED: 5/8/2020				
Brooklyn, NY DRILLING FIRM OR LANGAN INSTALLER: Eastern Environmental Solutions INSTALLATION FOREMAN: Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind	, Inc.	Approx. 1 INSTALLATIO 5/8/2020 SAMPLE DA 5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	1 ft NA ON DATE TE START MPLING D IMMA C	VD88 STARTED: ED: DEVICE:	5/8/2020 DATE FINISHED:				
DRILLING FIRM OR LANGAN INSTALLER: Eastern Environmental Solutions INSTALLATION FOREMAN: Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind	, Inc.	INSTALLATIO 5/8/2020 SAMPLE DA 5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	ON DATE TE START MPLING D IMMA C	STARTED: ED: DEVICE:	5/8/2020 DATE FINISHED:				
Eastern Environmental Solutions INSTALLATION FOREMAN: Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind	, Inc.	5/8/2020 SAMPLE DA' 5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	TE START MPLING D IMMa C	ED:	5/8/2020 DATE FINISHED:				
INSTALLATION FOREMAN: Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind	, Inc.	SAMPLE DA' 5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	MPLING D umma C	ED: DEVICE:	DATE FINISHED:				
Jay Slavin INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind		5/8/2020 TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	MPLING D umma C	DEVICE:					
INSTALLATION EQUIPMENT: Geoprobe® 7822 DT INSPECTOR: Reid Balkind		TYPE OF SAI 1-Liter Su SAMPLER: Reid Balk WEATHER C	ımma C	DEVICE:	5/8/2020				
Geoprobe® 7822 DT INSPECTOR: Reid Balkind		1-Liter Su SAMPLER: Reid Balk WEATHER C	ımma C						
INSPECTOR: Reid Balkind		SAMPLER: Reid Balk WEATHER C		anister					
Reid Balkind		Reid Balk	ind						
		WEATHER C	iiiu						
			ONDITION	NS (PRECIP . TEMP	. PRESS . WIND SPEED AN	MD DIR)·			
		riemb:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.): Temp: 49-54 F						
		Wind:	(0-6 mph S					
		Precipitat	ion: (0 in					
None		Pressure:	: 2	29.85 in Hg					
METHOD OF INSTALLATION AND PURGING	- -								
Advance Geoprobe 7822 DT to 6	•	•							
bgs and seal to surface with hyd	rated bentonite. The duplica	ate soil vap	oor poin	nt was instal	led adjacent to S\	√02.			
		I							
TUBING TYPE/DIAMETER:	Linad Dalvathylana Tubin -	TYPE OF MA	TERIAL A	BOVE SEAL:					
3/16-inch ID, 1/4-inch OD Teflon-		1	DIAL /P 1	tonito Bar	Modeling Clay, etc.):				
2-Inch Polyethylene Probe	EK:	Bentonite		tonite, Beeswax	. Modeling Clay, etc.):				
BOREHOLE DIAMETER:				AL (Sand or Glas	e Beade).				
2 Inches		No. 2 Sar		AL (Ourid Or Gia.	o Deudoj.				
PURGE VOLUME (L):	0.03			E DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200	1	EAL, FILTER,		(FEET FROM				
PID AFTER PURGE (PPM):	0.4	SURFACE	П	SURFACE	SURFACE)				
HELIUM TESTS	Pre-sampling Post-sampling		\dashv		·				
HELIUM TEST IN BUCKET(%):	10.9% 11.9%								
HELIUM TEST IN TUBE (PPM):	0.0%								
SAMPLE START TIME:	9:52								
SAMPLE STOP TIME:	11:52								
TOTAL SAMPLE TIME (MIN):	120								
REGULATOR FLOW RATE (L/MIN):	7		Ш	Top of Seal	0.00				
VOLUME OF SAMPLE (LITERS):	1								
PID AFTER SAMPLE (PPM):	0.1								
SAMPLE MOISTURE CONTENT:	NA								
CAN SERIAL NUMBER:	Z060		Ш	Top of Pack	1.00				
REGULATOR SERIAL NUMBER:	415305] [
CAN START VACUUM PRESS. (" HG):	29]							
CAN STOP VACUUM PRESS. (" HG):	8]							
SAMPLE LOCATI	ON SKETCH]							
				Probe Depth	6.00				
			NOTES						
See Sample Loca	ation Plan								
255 22	•								
Langan Enginee	ering, Environmental, Sur	veying, La	andscar	pe Architec	ture, and Geolog	y D.P.C.			
	aza, 360 West 31st Stree		-						

AIR SAMPLING LOG SHEET

Sample Number: AA01 PROJECT: PROJECT NO.: 45 Commercial Street 170229024 SURFACE ELEVATION AND DATUM: LOCATION: Brooklyn, NY Approx. 15 ft NAVD88 DATE FINISHED: SAMPLE DATE STARTED: SAMPLER: Reid Balkind 5/8/2020 5/8/2020 INSPECTOR: TYPE OF SAMPLING DEVICE: Reid Balkind 1-Liter Summa Canister POTENTIAL SAMPLE INTERFERENCES: WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.): 49-54 F Temp: The Geoprobe exhaust was within 5 feet of the Wind: 0-6 mph S summa canister during collection for approximately Precipitation: 0 in

METHOD OF INSTALLATION AND SAMPLING:

5 minutes

Langan field screened the sample location with a MiniRAE 3000 photoionization detector prior to sampling. Sample consisted of 2.7 L Summa canister fitted with a 2-hour flow control valve. The flow controller was zeroed and valve opened to initiate the 2-hour sample collection. The sample and flow controller were checked each hour during sampling to ensure proper operation.

Pressure:

29.85 in Hg

SAMPLE DETAILS		SAMPLE LOCATION SKETCH		
HEIGHT ABOVE GROUND (FT):	3			
PID BEFORE SAMPLE (PPM):	0.0			
SAMPLE START TIME:	10:13			
SAMPLE STOP TIME:	12:13			
TOTAL SAMPLE TIME (MIN):	120	See Sample Location Plan		
REGULATOR FLOW RATE (L/MIN):	7.3			
VOLUME OF SAMPLE (LITERS):	2.7			
PID AFTER SAMPLE (PPM):	0.0			
SAMPLE MOISTURE CONTENT:	NA			
CAN SERIAL NUMBER:	961			
REGULATOR SERIAL NUMBER:	710568			
CAN START VACUUM PRESS. (" HG):	30			
CAN STOP VACUUM PRESS. (" HG):	7			
		NOTES		

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor, New York, New York 10001-2727

APPENDIX G Data Usability Summary Report

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Woo Kim, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 5, 2020

Re: Data Usability Summary Report

For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples

Langan Project No.: 170229024

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in May 2020 by Langan Engineering and Environmental Services ("Langan") at the 45 Commercial Street site ("the site"). The samples were analyzed by Eurofins Lancaster Laboratories (NYSDOH NELAP registration # 10670) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6020B
- Mercury by SW-846 Method 7471B
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 2 of 30

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters	
CMS01	1310329	SODUP01_050620	5/6/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S	
CMS01	1310330	SOFB01_050620	5/6/2020	PFAS	
CMS01	1310328	LB17_3-5	5/6/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S	
CMS01	1310331	SOTB01_050620	5/6/2020	VOCs	
CMS01	1310325	LB13_18-20	5/6/2020	VOCs, SVOCs, %S	
CMS01	1310324	LB13_15.5-17.5	5/6/2020	VOCs, SVOCs, %S	
CMS01	1310326	LB17_1-3	5/6/2020	TCLP Arsenic, Total Lead and Mercury, %S	
CMS01	1312681	LB17_6-8	5/6/2020	TCLP Arsenic, Total Lead and Mercury, %S	
CMS04	1311689	LB18_10-12	5/8/2020	SVOCs	
CMS04	1311684	SOFB03_050820	5/8/2020	PFAS and 1,4-Dioxane	
CMS04	1311691	LB22_2-4	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S	
CMS04	1311690	LB18_18-20	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN PFAS, %S	
CMS04	1311687	LB18_6-8	5/8/2020	TCLP Arsenic, Total Lead and Mercury, %S	
CMS04	1312694	LB18_2-4	5/8/2020	TCLP Arsenic, Total Lead and Mercury, %S	
CMS04	1311694	LB22_18-20	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S	
CMS04	1311685	SOTB03_050820	5/8/2020	VOCs	
CMS04	1311693	LB22_12-14	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S	
CMS04	1312696	LB22_4-6	5/8/2020	TCLP Arsenic, Total Lead and Mercury, %S	

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 3 of 30

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
CMS04	1311688	LB18_4-6	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS05	1312796	LB26_12-13	5/11/2020	VOCs, SVOCs, %S
CMS05	1312797	SOTB04_051120	5/11/2020	VOCs
CMS08	1314144	LB16_3-5	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314145	LB16_15-17	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314146	LB16_18-20	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314150	LB19_14-16	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314164	LB24_10-12	5/13/2020	SVOCs, %S
CMS08	1314155	LB20_3-5	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314143	LB16_8-10	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314163	LB23_10-12	5/13/2020	SVOCs, %S
CMS08	1314166	SOFB05_051320	5/13/2020	CrVI, CrIII, CN, PFAS, 1,4-Dioxane
CMS08	1314162	LB20_14-16	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314165	SOTB05_051320	5/13/2020	VOCs
CMS08	1314148	LB19_0.5-2.5	5/13/2020	TCLP Arsenic, Total Lead and Mercury, %S
CMS08	1314149	LB19_6-8	5/13/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S
CMS08	1314151	LB20_1-3	5/13/2020	TCLP Arsenic, Total Lead and Mercury, %S
CMS08	1314142	LB16_6-8	5/13/2020	TCLP Arsenic, Total Lead and Mercury, %S

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 4 of 30

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
CMS08	1314153	LB20_6-8	5/13/2020	TCLP Arsenic, Total Lead and Mercury, %S
CMS09	1316563	LB28_14.5-15.5	5/16/2020	VOCs, SVOCs, %S
CMS09	1316564	TB06_051620	5/16/2020	VOCs
CMS04	1311687	LB18_6-8	5/8/2020	TCLP Arsenic, Total Lead and Mercury, %S
CMS04	1312694	LB18_2-4	5/8/2020	TCLP Arsenic, Total Lead and Mercury, %S
CMS04	1311694	LB22_18-20	5/8/2020	VOCs, SVOCs, Pesticides, Herbicides, Metals, CrVI/CrIII, CN, PFAS, %S

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 5 of 30

acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, trip blank sample results, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 6 of 30

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB18_18-20	SW8082A	1336-36-3	Total PCBs	UJ
LB16_15-17	SW8270D	95-50-1	1,2-Dichlorobenzene	UJ
LB16_3-5	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_3-5	SW8081B	72-20-8	Endrin	UJ
LB16_15-17	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
LB22_2-4	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB28_14.5-15.5	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB22_18-20	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
1017.05	CVA/0004 D	010.04.0	Alpha BHC (Alpha	
LB17_3-5	SW8081B	319-84-6	Hexachlorocyclohexane)	J
LB20_14-16	SW8260C	107-13-1	Acrylonitrile Methyl Ethyl Ketone (2-	UJ
LB17_3-5	SW8260C	78-93-3	Butanone)	U (0.009)
LB20_1-3	SW7471B	7439-97-6	Mercury	U (0.116)
LB16_8-10	SW7471B	7439-97-6	Mercury	U (0.171)
LB16_15-17	SW8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
LB16_8-10	SW8081B	72-20-8	Endrin	UJ
LB16_15-17	SW8270D	83-32-9	Acenaphthene	J
LB16_15-17	SW8081B	76-44-8	Heptachlor	UJ
LB16_15-17	SW8081B	72-54-8	4,4'-DDD	UJ
LB19_6-8	SW7471B	7439-97-6	Mercury	U (0.141)
LB28_14.5-15.5	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB20_3-5	SW6020B	7440-47-3	Chromium, Total	J
LB16_15-17	SW8270D	39638-32-9	2,2-Oxybis(2-Chloropropane)	UJ
LB18_18-20	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
LB16_15-17	SW8270D	85-01-8	Phenanthrene	J
LB22_12-14	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB16_15-17	SW8270D	191-24-2	Benzo(g,h,i)Perylene	J
LB16_15-17	SW8270D	98-95-3	Nitrobenzene	UJ
LB16_15-17	SW8270D	91-58-7	2-Chloronaphthalene	UJ
LB18_6-8	SW7471B	7439-97-6	Mercury	J

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 7 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB13_15.5-17.5	SW8260C	75-00-3	Chloroethane	UJ
LB18_18-20	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
LB20_3-5	SW8270DSIM	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB19_6-8	SW8270D	87-86-5	Pentachlorophenol	UJ
LB18_4-6	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB17_3-5	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
LB17_3-5	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
LB24_10-12	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB22_4-6	SW7471B	7439-97-6	Mercury	J
LB20_14-16	SW8260C	79-20-9	Methyl Acetate	UJ
SODUP01_05062020	SW8081B	50-29-3	4,4'-DDT	J
LB22_18-20	SW7471B	7439-97-6	Mercury	U (0.0889)
LB16_15-17	SW8270D	541-73-1	1,3-Dichlorobenzene	UJ
LB16_15-17	SW8270D	120-82-1	1,2,4-Trichlorobenzene	UJ
LB18_18-20	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB18_4-6	SW9012B	57-12-5	Cyanide	J
LB19_14-16	SW8081B	72-20-8	Endrin	UJ
LB16_15-17	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
LB17_3-5	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
SODUP01_05062020	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.01)
LB16_15-17	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
LB16_15-17	SW8270D	62-75-9	n-Nitrosodimethylamine	UJ
LB17_3-5	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
LB26_12-13	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB22_18-20	SW8081B	72-20-8	Endrin	UJ
LB19_6-8	SW8081B	72-20-8	Endrin	UJ
LB16_15-17	SW8081B	60-57-1	Dieldrin	UJ
LB20_14-16	SW8260C	107-02-8	Acrolein	UJ
SODUP01_05062020	SW6020B	7440-50-8	Copper	J
LB16_15-17	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
LB16_15-17	SW8270D	78-59-1	Isophorone	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 8 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB16_15-17	SW8270D	100-52-7	Benzaldehyde	J
LB16_15-17	SW8081B	33213-65-9	Beta Endosulfan	UJ
LB23_10-12	SW8270D	87-86-5	Pentachlorophenol	UJ
LB17_3-5	SW8081B	72-55-9	4,4'-DDE	J
LB20_14-16	SW8270D	87-86-5	Pentachlorophenol	UJ
LB16_15-17	SW8270D	1912-24-9	Atrazine	UJ
LB16_15-17	SW8270D	87-68-3	Hexachlorobutadiene	UJ
LB18_18-20	SW7471B	7439-97-6	Mercury	U (0.077)
LB18_18-20	SW8260C	124-48-1	Dibromochloromethane	UJ
LB28_14.5-15.5	SW8260C	107-02-8	Acrolein	UJ
LB16_15-17	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
LB19_6-8	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB16_15-17	SW8270D	110-86-1	Pyridine	UJ
SODUP01_05062020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB20_3-5	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SODUP01_05062020	SW8081B	58-89-9	Gamma BHC (Lindane)	J
LB20_3-5	SW7471B	7439-97-6	Mercury	J
LB13_18-20	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB22_12-14	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB16_15-17	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
LB16_18-20	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB16_15-17	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_15-17	SW8270D	84-66-2	Diethyl Phthalate	UJ
LB16_15-17	SW8270D	92-52-4	Biphenyl (Diphenyl)	UJ
LB19_14-16	SW7471B	7439-97-6	Mercury	U (0.0807)
SODUP01_05062020	SW6020B	7440-66-6	Zinc	J
LB22_2-4	SW8081B	309-00-2	Aldrin	J
LB16_15-17	SW8270D	DNT	Dinitrotoluenes	UJ
LB20_3-5	SW6020B	7782-49-2	Selenium	J
LB20_3-5	SW8081B	72-20-8	Endrin	UJ
LB16_3-5	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 9 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB16_15-17	SW8270D	131-11-3	Dimethyl Phthalate	UJ
LB16_18-20	SW8270D	39638-32-9	2,2-Oxybis(2-Chloropropane)	UJ
LB17_3-5	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
LB16_18-20	SW8081B	72-20-8	Endrin	UJ
LB16_3-5	SW8270D	87-86-5	Pentachlorophenol	UJ
LB13_18-20	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.012)
LB23_10-12	SW8270D	39638-32-9	2,2-Oxybis(2-Chloropropane)	UJ
LB19_6-8	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB13_15.5-17.5	SW8260C	108-88-3	Toluene	U (0.33)
LB16_15-17	SW8270D	50-32-8	Benzo(a)Pyrene	J
SODUP01_05062020	SW6020B	7782-49-2	Selenium	J
LB22_2-4	SW8260C	124-48-1	Dibromochloromethane	UJ
LB24_10-12	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_15-17	SW8270D	132-64-9	Dibenzofuran	J
LB20_14-16	SW8260C	74-83-9	Bromomethane	UJ
LB24_10-12	SW8270D	87-86-5	Pentachlorophenol	UJ
LB20_14-16	SW8081B	72-20-8	Endrin	UJ
LB18_18-20	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
LB16_18-20	SW8270D	87-86-5	Pentachlorophenol	UJ
LB16_3-5	SW7471B	7439-97-6	Mercury	U (0.0701)
LB16_15-17	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
LB16_15-17	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB20_14-16	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_15-17	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
LB19_6-8	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_15-17	SW8270D	120-12-7	Anthracene	J
LB16_15-17	SW8081B	50-29-3	4,4'-DDT	UJ
LB20_3-5	SW6020B	7440-02-0	Nickel	J
LB16_15-17	SW8270D	88-74-4	2-Nitroaniline	UJ
LB16_15-17	SW8270D	98-86-2	Acetophenone	J
LB18_18-20	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 10 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB18_18-20	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
LB18_4-6	SW8260C	124-48-1	Dibromochloromethane	UJ
LB16_15-17	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
LB20_3-5	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB16_15-17	SW8270D	205-99-2	Benzo(b)Fluoranthene	J
LB16_15-17	SW8270D	106-46-7	1,4-Dichlorobenzene	UJ
LB13_15.5-17.5	SW8260C	74-83-9	Bromomethane	UJ
LB17_3-5	SW8081B	50-29-3	4,4'-DDT	J
LB20_14-16	SW8260C	75-00-3	Chloroethane	UJ
LB20_14-16	SW8260C	75-15-0	Carbon Disulfide	UJ
LB22_2-4	SW9012B	57-12-5	Cyanide	J
LB16_15-17	SW8270D	67-72-1	Hexachloroethane	UJ
SODUP01_05062020	SW6020B	7439-96-5	Manganese	J
LB16_15-17	SW8270D	118-74-1	Hexachlorobenzene	UJ
LB17_3-5	SW8081B	319-85-7	Beta BHC (Beta Hexachlorocyclohexane)	J
LB16_18-20	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB22_12-14	SW8260C	124-48-1	Dibromochloromethane	UJ
LB16_15-17	SW8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
LB19_6-8	SW8270D	39638-32-9	2,2-Oxybis(2-Chloropropane)	UJ
LB16_15-17	SW8081B	959-98-8	Alpha Endosulfan	UJ
LB16_8-10	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_8-10	SW8260C	67-64-1	Acetone	J
LB16_15-17	SW8270D	85-68-7	Benzyl Butyl Phthalate	UJ
LB22_12-14	SW8081B	72-20-8	Endrin	UJ
LB22_2-4	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB16_8-10	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	J
LB18_18-20	SW8081B	72-20-8	Endrin	UJ
LB19_0.5-2.5	SW7471B	7439-97-6	Mercury	U (0.0752)
LB16_15-17	SW8270D	129-00-0	Pyrene	J
LB16_18-20	SW8270D	51-28-5	2,4-Dinitrophenol	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 11 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB26_12-13	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB22_18-20	SW8260C	124-48-1	-48-1 Dibromochloromethane	
LB16_8-10	SW8270DSIM	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB16_15-17	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
LB16_15-17	SW8270D	218-01-9	Chrysene	J
LB16_15-17	SW8270D	91-20-3	Naphthalene	J
LB16_15-17	SW8270D	105-60-2	Caprolactam	UJ
LB17_3-5	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
LB20_3-5	SW6020B	7440-41-7	Beryllium	J
SODUP01_05062020	SW6020B	7440-41-7	Beryllium	J
LB20_14-16	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB16_15-17	SW8081B	72-20-8	Endrin	UJ
LB20_3-5	SW6020B	7440-66-6	Zinc	J
LB16_15-17	SW8270D	86-74-8	Carbazole	UJ
LB16_15-17	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
LB22_18-20	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB16_15-17	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
LB17_3-5	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
LB18_18-20	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB16_15-17	SW8270D	206-44-0	Fluoranthene	J
SODUP01_05062020	SW6020B	7440-22-4	Silver	J
LB20_3-5	SW6020B	7439-92-1	Lead	J
LB16_15-17	SW8270D	84-74-2	Di-N-Butyl Phthalate	UJ
LB17_3-5	SW8082A	1336-36-3	Total PCBs	UJ
LB16_15-17	SW8081B	309-00-2	Aldrin	UJ
SODUP01_05062020	SW6020B	7440-39-3	Barium	J
LB23_10-12	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB18_4-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB20_14-16			Trans-1,3-Dichloropropene	UJ
LB16_15-17	SW8270D	53-70-3	Dibenz(a,h)Anthracene	J
LB20_14-16	SW8270D	87-68-3	Hexachlorobutadiene	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 12 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB20_14-16	SW8260C	67-64-1	Acetone	UJ
LB16_15-17	SW8270D	87-86-5	Pentachlorophenol	UJ
LB20_14-16	SW8270D	39638-32-9	2,2-Oxybis(2-Chloropropane)	UJ
LB16_8-10	SW8270D	87-86-5	Pentachlorophenol	UJ
LB18_18-20	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
LB19_14-16	SW8270DSIM	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
LB16_15-17	SW8270D	86-30-6	n-Nitrosodiphenylamine	UJ
LB16_15-17	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
LB22_12-14	SW7471B	7439-97-6	Mercury	U (0.147)
LB16_15-17	SW8270D	122-66-7	1,2-Diphenylhydrazine	UJ
LB17_3-5	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB16_8-10	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
LB16_15-17	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
LB16_15-17	SW8270D	91-57-6	2-Methylnaphthalene	J
LB16_15-17	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
LB20_14-16	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
LB18_18-20	SW8082A	12674-11-2 PCB-1016 (Aroclor 1016)		UJ
LB16_8-10	SW8260C	75-65-0	Tert-Butyl Alcohol	J
LB16_15-17	SW8270D	92-87-5	Benzidine	UJ
LB16_15-17	SW8270D	56-55-3	Benzo(a)Anthracene	J
LB16_15-17	SW8270D	86-73-7	Fluorene	J
LB16_8-10	SW8081B	72-54-8	4,4'-DDD	J
LB16_15-17	SW8270D	208-96-8	Acenaphthylene	J
LB16_15-17	SW8082A	1336-36-3	Total PCBs	UJ
LB20_3-5	SW6020B	7440-43-9	Cadmium	J
LB16_15-17	SW8270D	207-08-9	Benzo(k)Fluoranthene	J
LB23_10-12	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
LB16_3-5	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
LB20_6-8	SW7471B	7439-97-6	Mercury	U (0.0855)
LB18_4-6	SW8081B	72-20-8	Endrin	UJ
LB16_15-17	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 13 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB22_2-4	SW8081B	72-20-8	Endrin	UJ
SODUP01_05062020	SW6020B	7440-38-2	Arsenic	J
LB20_3-5	SW8270D	87-86-5	Pentachlorophenol	J
LB17_3-5	SW8270D	91-57-6	2-Methylnaphthalene	J
SODUP01_05062020	SW8270D	91-57-6	2-Methylnaphthalene	J
LB17_3-5	SW8270D	83-32-9	Acenaphthene	J
LB17_3-5	SW8270D	208-96-8	Acenaphthylene	J
SODUP01_05062020	SW8270D	83-32-9	Acenaphthene	J
SODUP01_05062020	SW8270D	208-96-8	Acenaphthylene	J
LB17_3-5	SW8270D	120-12-7	Anthracene	J
LB17_3-5	SW6020B	7440-38-2	Arsenic	J
SODUP01_05062020	SW8270D	120-12-7	Anthracene	J
LB17_3-5	SW6020B	7440-39-3	Barium	J
LB17_3-5	SW8270D	56-55-3	Benzo(a)Anthracene	J
SODUP01_05062020	SW8270D	56-55-3	Benzo(a)Anthracene	J
LB17_3-5	SW8270D	50-32-8	Benzo(a)Pyrene	J
LB17_3-5	SW8270D	205-99-2	Benzo(b)Fluoranthene	J
LB17_3-5	SW8270D	191-24-2	Benzo(g,h,i)Perylene	J
LB17_3-5	SW8270D	207-08-9	Benzo(k)Fluoranthene	J
SODUP01_05062020	SW8270D	50-32-8	Benzo(a)Pyrene	J
LB17_3-5	SW6020B	7440-41-7	Beryllium	J
SODUP01_05062020	SW8270D	205-99-2	Benzo(b)Fluoranthene	J
SODUP01_05062020	SW8270D	191-24-2	Benzo(g,h,i)Perylene	J
SODUP01_05062020	SW8270D	207-08-9	Benzo(k)Fluoranthene	J
LB17_3-5	SW8270D	92-52-4	Biphenyl (Diphenyl)	J
SODUP01_05062020	SW8270D	92-52-4	Biphenyl (Diphenyl)	J
LB17_3-5	SW6020B	7440-43-9	Cadmium	J
LB17_3-5	SW8270D	86-74-8	Carbazole	J
SODUP01_05062020	SW6020B	7440-43-9	Cadmium	J
SODUP01_05062020	SW8270D	86-74-8	Carbazole	J
SODUP01_05062020	SW8270D	218-01-9	Chrysene	J

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 14 of 30

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB17_3-5	SW8270D	218-01-9	Chrysene	J
LB17_3-5	SW8270D	53-70-3	Dibenz(a,h)Anthracene	J
SODUP01_05062020	SW8270D	53-70-3	Dibenz(a,h)Anthracene	J
LB17_3-5	SW8270D	132-64-9	Dibenzofuran	J
SODUP01_05062020	SW8270D	132-64-9	Dibenzofuran	J
LB17_3-5	SW8270D	206-44-0	Fluoranthene	J
LB17_3-5	SW8270D	86-73-7	Fluorene	J
SODUP01_05062020	SW8270D	206-44-0	Fluoranthene	J
SODUP01_05062020	SW8270D	86-73-7	Fluorene	J
LB17_3-5	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
SODUP01_05062020	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
LB17_3-5	SW8270D	91-20-3	Naphthalene	J
SODUP01_05062020	SW8270D	91-20-3	Naphthalene	J
LB17_3-5	SW8270D	85-01-8	Phenanthrene	J
LB17_3-5	SW8270D	129-00-0	Pyrene	J
SODUP01_05062020	SW8270D	85-01-8	Phenanthrene	J
LB17_3-5	SW6020B	7440-22-4	Silver	J
SODUP01_05062020	SW8270D	129-00-0	Pyrene	J

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C

CMS01

The trip blank (TB) (SOTB01_05062020) exhibited detections of toluene (0.3 ug/L) and methyl ethyl ketone (2-butanone) (0.3 ug/L). The associated results in sample LB13_15.5-17.5, LB17_3-

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 15 of 30

5, LB13_18-20, and SODUP01_05062020 are qualified as "U" at the reporting limit based on potential blank contamination.

The continuing calibration verification (CCV) analyzed on 5/7/2020 at 18:17 exhibited a percent difference (%D) above the control limit for dichlorodifluoromethane (30%). The associated results in sample LB13_18-20, LB17_3-5, and SODUP01_05062020 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2020 at 17:45 exhibited %Ds above the control limit for bromomethane (81%) and chloroethane (43%). The associated results in sample LB13_15.5-17.5 are qualified as "UJ" based on potential indeterminate bias.

CMS04

The CCV analyzed on 5/11/2020 at 17:58 exhibited %Ds above the control limit for dichlorodifluoromethane (33%), 1,4-dioxane (36%), and dibromochloromethane (21%). The associated results in sample LB22_2-4, LB22_18-20, LB22_12-14, LB18_4-6, and LB18_18-20 are qualified as "UJ" based on potential indeterminate bias.

CMS05

The CCV analyzed on 5/12/2020 at 19:57 exhibited %Ds above the control limit for dichlorodifluoromethane (37%) and 1,4-dioxane (25%). The associated results in sample LB26_12-13 are qualified as "UJ" based on potential indeterminate bias.

CMS08

The CCV analyzed on 5/15/2020 at 09:01 exhibited a %D above the control limit for dichlorodifluoromethane (42%). The associated results in sample LB16_18-20, LB19_6-8, LB16_15-17, and LB16_3-5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/17/2020 at 18:24 exhibited a %D above the control limit for 1,4-dioxane (43%). The associated results in sample LB20_3-5, LB16_8-10, and LB19_14-16 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/15/2020 at 10:29 exhibited %Ds above the control limit for acrylonitrile (28%), methyl acetate (21%), acrolein (26%), bromomethane (73%), chloroethane (41%), carbon disulfide (23%), trans-1,3-dichloropropene (22%), hexachlorobutadiene (-21%), acetone (27%), and 1,2-dibromo-3-chloropropane (23%). The associated results in sample LB20_14-16 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples

Langan Project No.: 170229024 June 5, 2020 Page 16 of 30

<u>CMS09</u>

The CCV analyzed on 5/19/2020 at 17:46 exhibited %Ds above the control limit for dichlorodifluoromethane (54%) and acrolein (25%). The associated results in sample LB28_14.5-15.5 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM

CMS08

The sample LB16_15-17 exhibited percent recoveries below the LCL for the surrogates nitrobenzene-d5 (19%) and 2-fluorobiphenyl (22%). The associated results are qualified as "J" or "UJ" based on potential low bias.

The CCV analyzed on 5/18/2020 at 09:39 exhibited %Ds above the control limit for 2,4-dinitrophenol (68%), 4,6-dinitro-2-methylphenol (41%), and pentachlorophenol (23%). The associated results in sample LB16_3-5, LB20_3-5, LB24_10-12, and LB16_8-10 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/19/2020 at 09:34 exhibited %Ds above the control limit for 2,2-oxybis(2-chloropropane) (-21%), 2,4-dinitrophenol (78%), 4,6-dinitro-2-methylphenol (46%), and pentachlorophenol (22%). The associated results in sample LB16_15-17, LB16_18-20, LB23_10-12, LB19_6-8, and LB20_14-16 are qualified as "UJ" based on potential indeterminate bias.

CMS09

The CCV analyzed on 5/19/2020 at 09:34 exhibited a %D above the control limit for 4,6-dinitro-2-methylphenol (46%). The associated results in sample LB28_14.5-15.5 are qualified as "UJ" based on potential indeterminate bias.

PCBs by SW-846 Method 8082A

CMS01

The sample LB17_3-5 exhibited percent recoveries below the lower control limit (LCL) for the surrogates tetrachloro-m-xylene - 1c (51%) and tetrachloro-m-xylene - 2c (47%) on the primary and secondary chromatography columns, respectively. The associated results are qualified as "J" or "UJ" based on potential low bias.

<u>CMS04</u>

The sample LB18_18-20 exhibited a percent recovery below the LCL for the surrogates decachlorobiphenyl (PCB 209) - 1c (38%) and decachlorobiphenyl (PCB 209) - 2c (38%) on the

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples

Langan Project No.: 170229024 June 5, 2020 Page 17 of 30

primary and secondary chromatography columns, respectively.. The associated results are qualified as "UJ" based on potential low bias.

CMS08

The sample LB16_8-10 exhibited a percent recovery below the LCL for the surrogate tetrachlorom-xylene-d2 (48%). The associated results are qualified as "J" based on potential low bias.

The sample LB16_15-17 exhibited percent recoveries below the LCL for the surrogates tetrachloro-m-xylene-d1 (16%) on the primary column, decachlorobiphenyl-d1 (19%) on the primary column, tetrachloro-m-xylene-d2 (15%) on the secondary column, and decachlorobiphenyl-d2 (18%) on the secondary column. The associated results are qualified as "UJ" based on potential low bias.

Pesticides by SW-846 Method 8081B

CMS01

The sample LB17_3-5 exhibited percent recoveries above the upper control limit (UCL) for the surrogates decachlorobiphenyl - 1c (178%) and decachlorobiphenyl - 2c (174%) on the primary and secondary chromatography columns, respectively. The associated results are qualified as "J" based on potential high bias.

The sample SODUP01_05062020 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl - 2c (155%) on the secondary column. The associated results are qualified as "J" based on potential high bias.

CMS04

The sample LB22_2-4 exhibited a percent recovery above the UCL for the surrogate tetrachlorom-xylene – 2c (617%) on the secondary column. The associated results are qualified as "J" based on potential high bias.

<u>CMS08</u>

The sample LB16_8-10 exhibited percent recoveries above the UCL for the surrogates tetrachloro-m-xylene-d1 (244%) on the primary column, decachlorobiphenyl-d1 (344%) on the primary column, tetrachloro-m-xylene-d2 (182%) on the secondary column, and decachlorobiphenyl-d2 (378%) on the secondary column. The associated results are qualified as "J" based on potential high bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 18 of 30

The sample LB16_15-17 exhibited a percent recovery below the LCL for the surrogate tetrachloro-m-xylene-d2 (11%) on the secondary column. The associated results are qualified as "UJ" based on potential low bias.

The laboratory control sample (LCS) for batch 201350016A exhibited a percent recovery below the LCL for endrin (76%). The associated results in sample LB20_14-16, LB16_8-10, LB16_3-5, LB16_15-17, LB20_3-5, LB19_14-16, LB19_6-8, and LB16_18-20 are qualified as "UJ" based on potential low bias.

Metals by SW-846 Method 6020B

CMS01

The matrix spike/matrix spike duplicate (MS/MSD) performed on sample SODUP01_05062020 exhibited a percent recovery above the UCL for arsenic (342%, 162%). The associated results in sample SODUP01_05062020 are qualified as "J" based on potential high bias.

The MS/MSD performed on sample SODUP01_05062020 exhibited a percent recovery below the LCL for zinc (60%, 60%). The associated results in sample SODUP01_05062020 are qualified as "J" based on potential low bias.

The MS/MSD performed on sample SODUP01_05062020 exhibited relative percent differences (RPDs) above the control limit for silver (29%) and beryllium (27%). The associated results in sample SODUP01_05062020 are qualified as "J" based on potential indeterminate bias.

The laboratory duplicate and parent sample (SODUP01_05062020) exhibited RPDs above the control limit for barium (57%), copper (44%), manganese (44%), and selenium (83%). The associated results are qualified as "J" based on potential indeterminate bias.

CMS08

The MSD for batch LB20_3-5 exhibited percent recoveries above the UCL for beryllium (141%), nickel (165%), and selenium (145%). The associated results in sample LB20_3-5 are qualified as "J" based on potential high bias.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries above the UCL for chromium (156%, 177%) and zinc (140%, 200%). The associated results in sample LB20_3-5 are qualified as "J" based on potential high bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples

Langan Project No.: 170229024 June 5, 2020 Page 19 of 30

The laboratory duplicate performed on sample LB20_3-5 exhibited RPDs above the control limit for beryllium (34%), cadmium (52%), and lead (111%). The associated results are qualified as "J"

based on potential indeterminate bias.

Mercury by SW-846 Method 7471B

CMS04

The method blank (MB) for batch BLK201311063801 exhibited a detection of mercury (0.0266

mg/kg). The associated results in sample LB18_18-20, LB18_4-6, LB22_12-14, LB22_18-20, and

LB22_2-4 are qualified as "U" at the higher of the sample concentration and the reporting limit

based on potential blank contamination.

The laboratory duplicate and parent sample (LB18_6-8) exhibited a RPD above the control limit

for mercury (24%). The associated results are qualified as "J" based on potential indeterminate

bias.

The laboratory duplicate and parent sample (LB22_4-6) exhibited a RPD above the control limit

for mercury (92%). The associated results are qualified as "J" based on potential indeterminate

bias.

CMS08

The MB for batch BLK201351063801 exhibited a detection of mercury (0.01740 mg/kg). The

associated results in sample LB16_3-5, LB16_8-10, LB19_0.5-2.5, LB19_14-16, LB19_6-8,

LB20_1-3, and LB20_6-8 are qualified as "U" at the higher of the sample concentration and the

reporting limit based on potential blank contamination.

The MS/MSD for batch LB20_3-5 exhibited a percent recovery above the UCL for mercury (170%,

275%). The associated results in sample LB20_3-5 are qualified as "J" based on potential high

hias

Cyanide by SW-846 Method 9012B

CMS04

The laboratory duplicate and parent sample (LB22_2-4) exhibited a RPD above the control limit

for cyanide (200%). The associated results are qualified as "J" based on potential indeterminate

bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 20 of 30

The laboratory duplicate and parent sample (LB18_4-6) exhibited a RPD above the control limit for cyanide (87%). The associated results are qualified as "J" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C

<u>CMS01</u>

The TB (SOTB01_05062020) exhibited a detection of acetone (3 ug/L). The associated results are >10X the contamination. No qualification is necessary.

The LCS for batch LB13_15.5-17.5 exhibited a percent recovery above the UCL for bromomethane (141%). The associated results are non-detections. No qualification is necessary.

CMS04

The MS/MSD performed on sample LB18_18-20 exhibited percent recoveries below the LCL for hexachlorocyclopentadiene (0%), 2,4-dinitrophenol (0%), 4,6-dinitro-2-methylphenol (0%), benzo(a)anthracene (59%, 64%), benzo(a)pyrene (57%, 65%), benzo(k)fluoranthene (50%, 58%), chrysene (52%, 57%), fluoranthene (58%, 63%), pyrene (59%, 62%), and benzo(g,h,i)perylene (59%, 67%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MS performed on sample LB18_18-20 exhibited percent recoveries below the LCL for 2,4-dinitrotoluene (60%), anthracene (66%), atrazine (64%), benzidine (16%), benzo(b)fluoranthene (62%), butylbenzylphthalate (65%), di-n-butylphthalate (65%), phenanthrene (66%), dibenz(a,h)anthracene (61%), and indeno(1,2,3-cd)pyrene (59%). Organic results are not qualified on the basis of MSs alone. No qualification is necessary.

The MS/MSD performed on sample LB18_18-20 exhibited a RPD above the control limit for benzidine (43%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 21 of 30

CMS04

The LCS for batch B201361AA exhibited a percent recovery above the UCL for dichlorodifluoromethane (128%). The associated results are non-detections. No qualification is necessary.

The laboratory control sample duplicate (LCSD) for batch R201362AA exhibited a percent recovery above the UCL for bromomethane (142%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch LB20_3-5_05132020 exhibited percent recoveries above the UCL for acetone (261%, 224%), 2-butanone (150%, 135%), and dichlorodifluoromethane (145%, 141%). The associated results in sample LB20_3-5, LB16_8-10, and LB19_14-16 are qualified as "J" based on potential high bias.

The MS for batch LB20_3-5_05132020 exhibited a percent recovery above the UCL for t-butyl alcohol (128%). The associated results in sample LB20_3-5, LB16_8-10, and LB19_14-16 are qualified as "J" based on potential high bias.

The MSD for batch LB20_3-5_05132020 exhibited a percent recovery above the UCL for 1,1,2,2-tetrachloroethane (127%). The associated results are non-detections. No qualification is necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM

<u>CMS01</u>

The sample SODUP01_05062020 exhibited percent recoveries above the UCL for the surrogates fluoranthene-d10 (295%) and benzo(a)pyrene-d12 (146%). The associated results are non-detections. No qualification is necessary.

The MS/MSD performed on sample SODUP01_05062020 exhibited percent recoveries below the LCL for 2-methylnaphthalene (-197%, -203%), hexachlorocyclopentadiene (0%), 2,4-dinitrophenol (31%, 32%), 4,6-dinitro-2-methylphenol (52%, 51%), acenaphthene (-803%, -813%), acenaphthylene (-64%, -69%), anthracene (-1195%, -1201%), benzidine (16%, 13%), benzo(a)anthracene (-1136%, -1138%), benzo(a)pyrene (-541%, -539%), benzo(b)fluoranthene (-814%, -796%), benzo(k)fluoranthene (-322%, -313%), carbazole (-102%, -104%), chrysene (-954%, -958%), dibenzofuran (-414%, -426%), fluoranthene (-3517%, -3527%), fluorene (-1294%, -1314%), phenanthrene (-4732%, -4736%), pyrene (-2417%, -2401%), benzo(g,h,i)perylene (-

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 22 of 30

125%, -122%), dibenz(a,h)anthracene (25%, 16%), and indeno(1,2,3-cd)pyrene (-126%, -127%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MSD performed on sample SODUP01_05062020 exhibited a percent recovery below the LCL for naphthalene (48%). Organic results are not qualified on the basis of MSD recoveries alone. No qualification is necessary.

The MS/MSD performed on sample SODUP01_05062020 exhibited a RPD above the control limit for 2-chloronaphthalene (37%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

CMS04

The sample LB18_4-6 exhibited a percent recovery above the UCL for the surrogate fluoranthene-d10 (229%). The sample was diluted >10X. No qualification is necessary.

CMS08

The MB for batch BLK20135SLC026 exhibited detections of 1,4-dioxane (p-dioxane) (1.0 ug/kg) and 1,4-dioxane (p-dioxane) (2.0 ug/kg). The associated results are non-detections. No qualification is necessary.

The sample LB16_3-5 exhibited a percent recovery above the UCL for the surrogate terphenyl-d14 (136%). The other LB16_3-5 surrogates were recovered within the control limits. No qualification is necessary.

The sample LB16_3-5 exhibited percent recoveries above the UCL for the surrogates fluoranthene-d10 (399%) and benzo(a)pyrene-d12 (134%). The associated results are non-detections. No qualification is necessary.

The sample LB19_6-8 exhibited a percent recovery above the UCL for the surrogate fluoranthene-d10 (138%). The associated results are non-detections. No qualification is necessary.

The LCS for batch 20139SLA026 exhibited percent recoveries above the UCL for 4,6-dinitro-2-methylphenol (137%) and 2,4-dinitrophenol (167%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries below the LCL for acenaphthene (58%, 48%), anthracene (29%, 4%), benzo(a)anthracene (-106%, -172%), benzo(a)pyrene (-47%, -107%), benzo(b)fluoranthene (-90%, -137%), benzo(g,h,i)perylene (63%, 22%), chrysene (-46%, -116%), fluoranthene-d10 (-490%, -548%), hexachlorocyclopentadiene (0%), phenanthrene (-

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples

Langan Project No.: 170229024 June 5, 2020 Page 23 of 30

372%, -420%), and pyrene (-368%, -415%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MS for batch LB20_3-5 exhibited a percent recovery below the LCL for benzidine (8%). Organic results are not qualified on the basis of MS recoveries alone. No qualification is necessary.

The MSD for batch LB20_3-5 exhibited percent recoveries below the LCL for benzo(k)fluoranthene (26%), carbazole (55%), dibenz(a,h)anthracene (66%), fluorene (60%), and indeno(1,2,3-cd)pyrene (27%). Organic results are not qualified on the basis of MSD recoveries alone. No qualification is necessary.

CMS09

The LCS for batch 20139SLA026 exhibited percent recoveries above the UCL for 2,4-dinitrophenol (167%) and 4,6-dinitro-2-methylphenol (137%). The associated results are non-detections. No qualification is necessary.

PFAS by USEPA Method 537M

CMS08

The sample LB16_3-5 exhibited a percent recovery above the UCL for the surrogate 13C8-PFOA (116%). The associated results are non-detections. No qualification is necessary.

The sample LB19_14-16 exhibited a percent recovery above the UCL for the surrogate 13C8-PFOA (119%). The associated results are non-detections. No qualification is necessary.

The sample LB16_3-5 exhibited percent recoveries above the UCL for the surrogates 13C7-PFUnDA (129%) and 13c2-PFTeDA (128). The associated results are non-detections. No qualification is necessary.

Herbicides by SW-846 Method 8151A

CMS01

The MSD performed on sample SODUP01_05062020 exhibited a percent recovery above the UCL for 2,4-D (145%). The associated results are non-detections. No qualification is necessary.

The MS/MSD performed on sample SODUP01_05062020 exhibited percent recoveries above the UCL for 2,4,5-TP (154%, 160%) and 2,4,5-T (170%, 170%). The associated results are non-detections. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 24 of 30

The LCS for batch 201280015A exhibited percent recoveries above the UCL for 2,4-D (153%), 2,4,5-TP (153%), and 2,4,5-T (161%). The associated results are non-detections. No qualification is necessary.

CMS04

The LCS for batch 201320018A exhibited percent recoveries above the UCL for 2,4,5-TP (135%) and 2,4,5-T (150%). The associated results are non-detections. No qualification is necessary.

CMS08

The sample LB16_8-10 exhibited a percent recovery above the UCL for the surrogate 2,4-Dichlorophenylacetic Acid-d2 (151%) on the secondary column. The associated results are non-detections. No qualification is necessary.

The LCS for batch 201350020A exhibited a percent recovery above the UCL for 2,4,5-TP (141%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries above the UCL for 2,4-D (157%, 153%), 2,4,5-T (190%, 177%), and 2,4,5-TP (154%, 151%). The associated results are non-detections. No qualification is necessary.

PCBs by SW-846 Method 8082A

CMS01

The sample SODUP01_05062020 exhibited a percent recovery below the LCL for the surrogate tetrachloro-m-xylene - 2c (50%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The MS/MSD for batch SODUP01_05062020 exhibited percent recoveries below the LCL for pcb-1016 (66%, 65%) and pcb-1260 (72%, 71%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

CMS04

The sample LB22_12-14 exhibited a percent recovery below the LCL for the surrogate tetrachloro-m-xylene (40%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The sample LB18_18-20 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (38%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 25 of 30

The sample LB22_2-4 exhibited a percent recovery below the LCL for the surrogate tetrachlorom-xylene (39%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The sample LB18_4-6 exhibited a percent recovery below the LCL for the surrogate tetrachlorom-xylene (43%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

CMS08

The MB for batch BLK201350022A exhibited detections of total PCBs (33.0 ug/kg) and Aroclor 1260 (33.0 ug/kg). The associated results are non-detections. No qualification is necessary.

The sample LB20_3-5 exhibited a percent recovery below the LCL for the surrogate tetrachlorom-xylene-d2 (50%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The sample LB16_3-5 exhibited percent recoveries below the LCL for the surrogates tetrachlorom-xylene-d2 (28%) and decachlorobiphenyl-d2 (44%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The sample LB20_14-16 exhibited a percent recovery below the LCL for the surrogate tetrachloro-m-xylene-d2 (45%) on the secondary column. The associated results were reported from the primary column. No further action is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries below the LCL for Aroclor 1016 (68%, 66%) and Aroclor 1260 (70%, 69%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

Pesticides by SW-846 Method 8081B

CMS04

The sample LB18_4-6 exhibited percent recoveries above the UCL for the surrogates decachlorobiphenyl (232%) and tetrachloro-m-xylene (169%). The sample was diluted >10X. No qualification is necessary.

The sample LB22_18-20 exhibited a percent recovery above the UCL for the surrogate tetrachloro-m-xylene (176%). The associated results are non-detections. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 26 of 30

CMS08

The MB for batch BLK201350016A exhibited a detection of 4,4'-DDT (0.00250 mg/kg). The associated results are non-detections. No qualification is necessary.

The sample LB16_3-5 exhibited percent recoveries above the UCL for the surrogates decachlorobiphenyl-d1 (173%) and decachlorobiphenyl-d2 (175%). The associated results are non-detections. No qualification is necessary.

The sample LB19_6-8 exhibited percent recoveries above the UCL for the surrogates tetrachlorom-xylene-d1 (148%), decachlorobiphenyl-d1 (183%), tetrachloro-m-xylene-d2 (144%), and decachlorobiphenyl-d2 (197%). The associated results are non-detections. No qualification is necessary.

The sample LB19_14-16 exhibited percent recoveries above the UCL for the surrogates decachlorobiphenyl-d1 (163%) and decachlorobiphenyl-d2 (172%). The associated results are non-detections. No qualification is necessary.

The sample LB20_3-5 exhibited percent recoveries above the UCL for the surrogates tetrachlorom-xylene-d1 (167%), decachlorobiphenyl-d1 (210%), tetrachloro-m-xylene-d2 (168%), and decachlorobiphenyl-d2 (256%). The associated results are non-detections. No qualification is necessary.

The sample LB20_14-16 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl-d2 (181%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries above the UCL for aldrin (173%, 211%), alpha BHC (133%, 158%), beta BHC (177%, 198%), alpha chlordane (186%, 179%), 4,4'-DDD (172%, 191%), 4,4'-DDE (187%, 223%), 4,4'-DDT (168%, 198%), dieldrin (154%, 182%), endosulfan I (126%, 167%), endosulfan sulfate (137%, 191%), endrin (188%, 191%), and heptachlor (139%, 173%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

The MS/MSD for batch LB20_3-5 did not recover (i.e., 0%) for gamma BHC, delta BHC, and endosulfan II. Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 27 of 30

Metals by SW-846 Method 6020B

CMS01

The MB for batch BLK201281404901A exhibited a detection of zinc (0.683 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch SODUP01_05062020 exhibited percent recoveries outside of control limits for barium (-375%, 872%), copper (-283%, -402%), lead (7522%, -2412%), manganese (-370%, -216%), and mercury (2800%, 345%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch SODUP01_05062020 exhibited a RPD above the control limit for arsenic (38%). The associated results were previously qualified. No further action is necessary.

The MS/MSD for batch SODUP01_05062020 exhibited RPDs above the control limit for barium (63%), lead (40%), and mercury (97%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The laboratory duplicate and parent sample (SODUP01_05062020) exhibited RPDs above the control limit for beryllium (28%), arsenic (73%), silver (57%), and zinc (37%). The associated results were previously qualified. No further action is necessary.

CMS04

The MB for batch BLK201311404902A exhibited a detection of barium (0.193 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

CMS08

The MB for batch BLK201351404902A exhibited a detection of zinc (0.7440 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries above the UCL for arsenic (297%, 524%), barium (1176%, 1836%), and copper (771%, 1198%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited percent recoveries below the LCL for lead (-26591%, -27129%) and manganese (-590%, -488%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024

June 5, 2020 Page 28 of 30

Mercury by SW-846 Method 7471B

CMS08

The MB for batch BLK201351063802 exhibited a detection of mercury (0.02090 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch LB20_3-5 exhibited a RPD above the control limit for mercury (28%). The associated results were previously qualified. No further action is necessary.

The laboratory duplicate and parent sample (LB20_3-5) exhibited a RPD above the control limit for mercury (126%). The associated results were previously qualified. No further action is necessary.

Cyanide by SW-846 Method 9012B

CMS04

The LCS for batch 20134102201A exhibited a percent recovery above the UCL for cyanide (114%). The associated results were previously qualified. No further action is necessary.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than the RL, analytes meet the precision criteria if the absolute difference is less than ±2X the RL. For results greater than the RL, analytes meet the precision criteria if the RPD is less than or equal to 50% for soil. The following field duplicate and parent sample pairs were compared to the precision criteria:

• LB17_3-5 and SODUP01_05062020

The field duplicate and parent sample (LB17_3-5 and SODUP01_05062020) exhibited RPDs above the control limit for 2-methylnaphthalene (186.9%), acenaphthene (192.2%), acenaphthylene (184.9%), anthracene (191%), arsenic (74.5%), barium (57.6%), benzo(a)anthracene (178.8%), benzo(a)pyrene (168.4%), benzo(b)fluoranthene (170.4%), benzo(g,h,i)perylene (150.9%), benzo(k)fluoranthene (175.6%), beryllium (83.4%), biphenyl (diphenyl) (156.9%), cadmium (70.5%), carbazole (175.9%), chrysene (176.1%), dibenz(a,h)anthracene (160.5%), dibenzofuran (187%), fluoranthene (183.3%), fluorene (192.7%), indeno(1,2,3-c,d)pyrene (156%), naphthalene (109.1%), phenanthrene (188.6%), pyrene (180.2%), and silver (92.2%). The associated results are qualified as "J" based on potential indeterminate bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 29 of 30

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Soil Samples Langan Project No.: 170229024 June 5, 2020 Page 30 of 30

Signed:

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Woo Kim, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 5, 2020

Re: Data Usability Summary Report

For 45 Commercial Street Brooklyn, New York, NY

May 2020 Groundwater Samples Langan Project No.: 170229024

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in May 2020 by Langan Engineering and Environmental Services ("Langan") at the 45 Commercial Street site ("the site"). The samples were analyzed by Eurofins Lancaster Laboratories (NYSDOH NELAP registration # 10670) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D and 6020B
- Mercury by SW-846 Method 7470A
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium by Calculation

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 2 of 11

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
CMS11	1316581	MW13_051620	5/16/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS11	1316589	MW13N_051620	5/16/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS11	1316591	MW22_051620	5/16/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS11	1316595	GWTB01_051620	5/16/2020	VOCs
CMS11	1316593	GWFB01_051620	5/16/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS12	1318000	GWDUP01_052020	5/20/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS12	1317993	MW16_052020	5/20/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS12	1317995	MW18_052020	5/20/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS12	1318001	GWFB02_052020	5/20/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
CMS12	1318002	GWTB02_052020	5/20/2020	VOCs
CMS12	1317997	MW19_052020	5/20/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 3 of 11

2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3b, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, trip blank sample results, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 4 of 11

- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW13_051620	SW6020B	7440-47-3	Chromium, Total	U (0.0021)
MW13_051620	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
MW13_051620	SW8081B	50-29-3	4,4'-DDT	UJ
MW13_051620	SW8081B	309-00-2	Aldrin	UJ
MW13_051620	SW8081B	5103-71-9	Alpha Chlordane	UJ
MW13_051620	SW8081B	319-85-7	Beta BHC (Beta Hexachlorocyclohexane)	UJ
MW13_051620	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
MW13_051620	SW8260C	74-83-9	Bromomethane	UJ
MW13_051620	SW8260C	75-00-3	Chloroethane	UJ
MW13_051620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
MW13_051620	SW8260C	98-06-6	T-Butylbenzene	UJ
MW13_051620	SW8260C	75-69-4	Trichlorofluoromethane	UJ
MW13_051620	SW8260C	75-01-4	Vinyl Chloride	UJ
MW13N_051620	SW6020B	7440-47-3	Chromium, Total	U (0.002)
MW13N_051620	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
MW13N_051620	SW8260C	74-83-9	Bromomethane	UJ
MW13N_051620	SW8260C	75-00-3	Chloroethane	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 5 of 11

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW13N_051620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
MW13N_051620	SW8260C	98-06-6	T-Butylbenzene	UJ
MW13N_051620	SW8260C	75-69-4	Trichlorofluoromethane	UJ
MW13N_051620	SW8260C	75-01-4	Vinyl Chloride	UJ
MW13N_051620	SW6020B	7440-47-3	Chromium, Total	U (0.002)
MW22_051620	SW6020B	7440-47-3	Chromium, Total	U (0.002)
MW22_051620	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
MW22_051620	SW8260C	74-83-9	Bromomethane	UJ
MW22_051620	SW8260C	75-00-3	Chloroethane	UJ
MW22_051620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
MW22_051620	SW8260C	98-06-6	T-Butylbenzene	UJ
MW22_051620	SW8260C	75-69-4	Trichlorofluoromethane	UJ
MW22_051620	SW8260C	75-01-4	Vinyl Chloride	UJ
MW22_051620	SW6020B	7440-47-3	Chromium, Total	U (0.002)
GWFB01_051620	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
GWFB01_051620	SW8260C	107-02-8	Acrolein	UJ
GWFB01_051620	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
GWFB01_051620	SW8260C	75-69-4	Trichlorofluoromethane	UJ
GWTB01_051620	SW8260C	107-02-8	Acrolein	UJ
GWTB01_051620	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
GWTB01_051620	SW8260C	75-69-4	Trichlorofluoromethane	UJ
MW16_052020	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
MW16_052020	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
MW16_052020	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
MW16_052020	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
MW16_052020	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
MW16_052020	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
MW16_052020	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
MW16_052020	SW8260C	67-64-1	Acetone	U (0.02)
MW16_052020	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
MW16_052020	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 6 of 11

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW16_052020	SW8270D	105-67-9	2,4-Dimethylphenol	UJ
MW16_052020	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
MW16_052020	SW8270D	88-74-4	2-Nitroaniline	UJ
MW16_052020	SW8270D	92-87-5	Benzidine	UJ
MW16_052020	SW8270D	78-59-1	Isophorone	UJ
MW18_052020	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
MW18_052020	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
MW18_052020	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
MW18_052020	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
MW18_052020	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
MW18_052020	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
MW18_052020	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
MW18_052020	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
MW18_052020	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ
MW18_052020	SW8270D	105-67-9	2,4-Dimethylphenol	UJ
MW18_052020	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
MW18_052020	SW8270D	88-74-4	2-Nitroaniline	UJ
MW18_052020	SW8270D	92-87-5	Benzidine	UJ
MW18_052020	SW8270D	78-59-1	Isophorone	UJ
MW19_052020	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
MW19_052020	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
MW19_052020	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
MW19_052020	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
MW19_052020	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
MW19_052020	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
MW19_052020	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
MW19_052020	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
MW19_052020	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ
MW19_052020	SW8270D	105-67-9	2,4-Dimethylphenol	UJ
MW19_052020	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
MW19_052020	SW8270D	88-74-4	2-Nitroaniline	UJ

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024 June 5, 2020 Page 7 of 11

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW19_052020	SW8270D	92-87-5	Benzidine	UJ
MW19_052020	SW8270D	78-59-1	Isophorone	UJ
GWDUP01_052020	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
GWDUP01_052020	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
GWDUP01_052020	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
GWDUP01_052020	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
GWDUP01_052020	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
GWDUP01_052020	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
GWDUP01_052020	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
GWDUP01_052020	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ
GWDUP01_052020	SW8270D	105-67-9	2,4-Dimethylphenol	UJ
GWDUP01_052020	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
GWDUP01_052020	SW8270D	88-74-4	2-Nitroaniline	UJ
GWDUP01_052020	SW8270D	92-87-5	Benzidine	UJ
GWDUP01_052020	SW8270D	78-59-1	Isophorone	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

CMS11:

The continuing calibration verification (CCV) analyzed on 5/20/2020 at 20:13 exhibited percent drifts (%Ds) above the control limit for trichlorofluoromethane (-22%), acrolein (23%), and tert-butyl alcohol (23%). The associated results in sample GWFB01_051620 and GWTB01_051620 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024

June 5, 2020 Page 8 of 11

The CCV analyzed on 5/21/2020 at 19:04 exhibited %Ds above the control limit for dichlorodifluoromethane (28%), vinyl chloride (23%), bromomethane (29%), chloroethane (25%), trichlorofluoromethane (24%), and tert-butylbenzene (22%). The associated results in sample MW22_051620, MW13N_051620, and MW13_051620 are qualified as "UJ" based on potential indeterminate bias.

CMS12:

The trip blank (GWTB02_052020) exhibited a detection of acetone (0. 7 ug/L). The associated results in sample MW16_052020 are qualified as "U" at the reporting limit based on potential blank contamination.

The CCV analyzed on 5/26/2020 at 20:17 exhibited a %D above the control limit for tert-butyl alcohol (-23%). The associated results in sample MW19_052020, MW16_052020, and MW18_052020 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM:

CMS12:

The laboratory control sample (LCS) for batch 20147WAC026Y exhibited percent recoveries below the lower control limit (LCL) for 2,6-dinitrotoluene (65%), 2,4-dimethylphenol (51%), isophorone (62%), benzidine (5%), 2-nitroaniline (65%), and 2,4,6-trichlorophenol (68%). The associated results in sample MW19_052020, MW16_052020, GWDUP01_052020, and MW18_052020 are qualified as "UJ" based on potential low bias.

PCBs by SW-846 Method 8082A:

CMS12:

The LCS and laboratory control sample duplicate (LCSD) for batch 201430007AY exhibited relative percent differences (RPDs) above the control limit for PCB-1016 (54%) and PCB-1260 (37%). The associated results in sample MW19_052020, MW16_052020, GWDUP01_052020, and MW18_052020 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

CMS11:

The sample MW13_051620 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (30%). The associated results are qualified as "UJ" based on potential low bias.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples Langan Project No.: 170229024

June 5, 2020 Page 9 of 11

Metals by SW-846 Method 6010D and 6020B:

CMS11:

The method blank (MB) for batch 201391404704 exhibited a detection of chromium (0.00038 mg/L). The associated results in sample MW22_051620, MW13N_051620, and MW13_051620 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

CMS12:

The MB for batch 201421404701AY exhibited a detection of chromium (0.00052 mg/L). The associated results in sample MW19_052020, MW16_052020, GWDUP01_052020, and MW18_052020 are qualified as "U" at the reporting limit based on potential blank contamination.

Hexavalent Chromium by SW-846 Method 7196A:

CMS11:

The matrix spike and matrix spike duplicate (MS/MSD) for batch 20137027601A exhibited a percent recovery below the LCL for hexavalent chromium (0%). The associated results in sample MW22_051620, GWFB01_051620, MW13N_051620, and MW13_051620 are qualified as "UJ" based on potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

CMS11:

The MS for batch 5201422AA exhibited a percent recovery above the upper control limit (UCL) for vinyl chloride (122%). Organic results are not qualified on the basis of MS recoveries alone. No qualification is necessary.

Herbicides by SW-846 Method 8151A:

CMS11:

The MS/MSD for batch 201400007A exhibited percent recoveries above the UCL for 2,4-D (159%, 170%), 2,4,5-T (187%, 203%), and 2,4,5-TP (160%, 174%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples

Langan Project No.: 170229024 June 5, 2020 Page 10 of 11

CMS12:

The sample GWDUP01_052020 exhibited a percent recovery above the UCL for the surrogate 2,4-dichlorophenylacetic acid (143%). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch 201430018AY exhibited percent recoveries above the UCL for 2,4,5-TP (143%, 156%), 2,4-D (144%, 152%), and 2,4,5-T (173%). The associated results are non-detections. No qualification is necessary.

PCBs by SW-846 Method 8082A:

CMS12:

The LCS for batch 201430007AY exhibited percent recoveries above the UCL for PCB-1016 (137%) and PCB-1260 (140%). The associated results are non-detections. No qualification is necessary.

Metals by SW-846 Method 6010D and 6020B:

CMS11:

The MB for batch 201391404704 exhibited a detection of manganese (0.00064 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The MB for batch 201411404703 exhibited a detection of manganese (0.003 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The laboratory duplicate and parent sample (MW13_051620) exhibited a RPD above the control limit for dissolved lead (21%). The associated results are less than 5x the RL. No qualification is necessary.

The MS/MSD for batch 201391404703 exhibited percent recoveries above the UCL for total lead (205%, 355%) and total manganese (150%, 156%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch 201391404703 exhibited a percent recovery below the LCL for total barium (41%, 49%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch 201391404703 exhibited a RPD above the control limit for total lead (21%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Groundwater Samples

Langan Project No.: 170229024 June 5, 2020 Page 11 of 11

The MS/MSD for batch 201391404704 exhibited a percent recovery above the UCL for dissolved

barium (173%, 258%). The associated results in the parent sample are >4X the spiked amount.

No qualification is necessary.

The MS/MSD for batch 201391404704 exhibited a percent recovery below the LCL for dissolved

manganese (36%, -24%). The associated results in the parent sample are >4X the spiked

amount. No qualification is necessary.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For

results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less

than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

RPD is less than or equal to 30%. The following analytes did not meet the precision criteria:

• GWDUP01_052020 and MW18_052020: all criteria met.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned above,

that means that all specified criteria were met for that parameter. All of the data packages met

ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage

of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Woo Kim, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 5, 2020

Re: Data Usability Summary Report

For 45 Commercial Street Brooklyn, New York, NY May 2020 Air Samples

Langan Project No.: 170229024

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in May 2020 by Langan Engineering and Environmental Services ("Langan") at the 45 Commercial Street site ("the site"). The samples were analyzed by Eurofins Lancaster Laboratories (NYSDOH NELAP registration # 10670) for volatile organic compounds (VOCs) by the methods specified below.

VOCs by USEPA Method TO-15

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
CMS03	1311677	SV05_050820	5/8/2020	VOCs
CMS03	1311678	SV04_050820	5/8/2020	VOCs
CMS03	1311679	SV02_050820	5/8/2020	VOCs
CMS03	1311680	SVDUP01_050820	5/8/2020	VOCs
CMS03	1311681	AA01_050820	5/8/2020	VOCs
CMS03	1311682	SV03_050820	5/8/2020	VOCs
CMS03	1311683	SV01_050820	5/8/2020	VOCs

Technical Memorandum

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Air Samples Langan Project No.: 170229024

June 5, 2020 Page 2 of 4

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Technical Memorandum

Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Air Samples Langan Project No.: 170229024

June 5, 2020 Page 3 of 4

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SV02_050820	TO15	540-84-1	2,2,4- Trimethylpentane	J
SVDUP01_050820	TO15	540-84-1	2,2,4- Trimethylpentane	J
SV02_050820	TO15	75-15-0	Carbon Disulfide	J
SVDUP01_050820	TO15	75-15-0	Carbon Disulfide	J
SV02_050820	TO15	78-93-3	Methyl Ethyl Ketone (2-Butanone)	J
SVDUP01_050820	TO15	78-93-3	Methyl Ethyl Ketone (2-Butanone)	J
SV02_050820	TO15	142-82-5	n-Heptane	J
SVDUP01_050820	TO15	142-82-5	n-Heptane	J
SV02_050820	TO15	110-54-3	n-Hexane	UJ
SVDUP01_050820	TO15	110-54-3	n-Hexane	J
SV02_050820	TO15	109-66-0	n-Pentane	J
SVDUP01_050820	TO15	109-66-0	n-Pentane	J
SV02_050820	TO15	1634-04-4	Tert-Butyl Methyl Ether	UJ
SVDUP01_050820	TO15	1634-04-4	Tert-Butyl Methyl Ether	J

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method TO-15:

The field duplicate and parent sample (SVDUP01_050820 and SV02_050820) exhibited absolute differences greater than the reporting limit (RL) for 2,2,4-trimethylpentane (20.2 ug/m³), carbon disulfide (30.6 ug/m³), n-heptane (8.6 ug/m³), n-hexane (78.5 ug/m³), n-pentane (255.1 ug/m³), and

Technical Memorandum Data Usability Summary Report For 45 Commercial Street Brooklyn, New York, NY May 2020 Air Samples

Langan Project No.: 170229024 June 5, 2020 Page 4 of 4

tert-butyl methyl ether (20.4 ug/m³). The associated results are qualified as "J" or "UJ" based on

potential indeterminate bias.

The field duplicate and parent sample (SVDUP01_050820 and SV02_050820) exhibited a relative percent difference above the control limit for 2-butanone (72%). The associated results are

qualified as "J" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. No other deficiencies were identified.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less

than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

RPD is less than or equal to 30%. The following analytes did not meet the precision criteria:

• SVDUP01_050820 and SV02_050820: 2,2,4-trimethylpentane, carbon disulfide, n-

heptane, n-hexane, n-pentane, tert-butyl methyl ether, 2-butanone

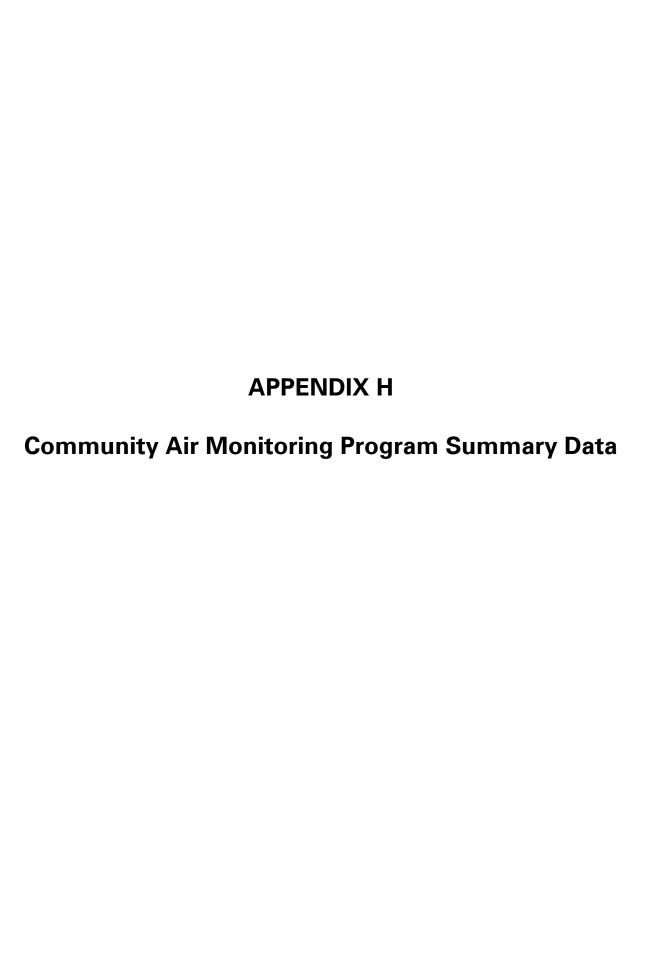
On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned above,

that means that all specified criteria were met for that parameter. All of the data packages met

ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage


of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

LANGAN

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/6/2020 Observer: Luke McCartney

Particulate Monitoring								
	Downwind							
Minimum 15min Average	0.008	0.006						
Maximum 15min Average	0.013	0.010						
High Intervals "exceedances"	N/A	0						
Minimum 1min Reading	0.007	0.006						
Maximum 1min Reading	0.013	0.010						

Organic Vapor Monitoring									
Upwind Downwin									
Minimum 15min Average	0.0	0.0							
Maximum 15min Average	0.7	0.0							
High Intervals "exceedances"	N/A	0							
Minimum 1min Reading	0.0	0.0							
Maximum 1min Reading	0.7	0.0							

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

May 6, 2020 Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + .150 mg/m^3 = Number of Comparable Data Points = PARTICULATE DATA														
								Upwind Downwind						
							Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit	
7:59	0.007		7:59	0.007										
8:00			8:00											
8:01			8:01											
8:02			8:02											
8:03			8:03											
8:04			8:04											
8:05			8:05											
8:06			8:06											
8:07			8:07											
8:08			8:08											
8:09			8:09											
8:10			8:10											
8:11			8:11											
8:12			8:12											
8:13			8:13											
8:14	0.008	0.008	8:14	0.006	0.006	-								
8:15			8:15											
8:16			8:16											
8:17			8:17											
8:18			8:18											
8:19			8:19											
8:20			8:20											
8:21			8:21											
8:22			8:22											
8:23			8:23											
8:24			8:24											
8:25			8:25											
8:26			8:26											
8:27			8:27											
8:28			8:28											
8:29	0.008	0.008	8:29	0.007	0.007	-								
8:30			8:30											
8:31			8:31											
8:32			8:32											
8:33	+		8:33											
8:34			8:34											
8:35	+		8:35											
8:36 8:37	+		8:36 8:37											
8:37	+		8:37											
8:38	+		8:38											
8:39	+		8:39											
8:41			8:40											
8:42			8:42											
8:43			8:43											
8:44	0.008	0.008	8:44	0.006	0.006	_								
8:45	0.000	0.000	8:45	0.000	0.000	-								
8:46			8:46											
8:47			8:47											
8:48			8:48											
8:49			8:49											
8:50	1		8:50											

	PARTICULATE DATA						
	Upwind			Downwind		Exceeds	
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits	
8:51			8:51				
8:52			8:52				
8:53			8:53				
8:54			8:54				
8:55			8:55				
8:56			8:56				
8:57			8:57				
8:58	0.01	0.010	8:58	0.000	0.000		
8:59	0.01	0.010	8:59	0.006	0.006	-	
9:00 9:01			9:00 9:01				
9:02			9:02				
9:03			9:03				
9:04			9:04				
9:05			9:05				
9:06			9:06	1			
9:07			9:07				
9:08			9:08				
9:09			9:09				
9:10			9:10				
9:11			9:11				
9:12			9:12				
9:13			9:13				
9:14	0.009	0.009	9:14	0.007	0.007	-	
9:15			9:15				
9:16			9:16				
9:17			9:17				
9:18			9:18				
9:19			9:19				
9:20			9:20				
9:21			9:21				
9:22			9:22				
9:23			9:23				
9:24			9:24				
9:25			9:25				
9:26			9:26				
9:27			9:27				
9:28	2.011	0.011	9:28	0.006	0.005		
9:29	0.011	0.011	9:29	0.006	0.006	-	
9:30	+		9:30	+			
9:31	+		9:31				
9:32 9:33	+		9:32 9:33	+			
9:33	+		9:33	+			
9:34	+		9:34				
9:36			9:36				
9:37			9:37				
9:38			9:38	+			
9:39			9:39	+			
9:40			9:40	+			
9:41			9:41	1			
9:42			9:42				
9:43			9:43				
9:44	0.011	0.011	9:44	0.007	0.007	-	
9:45			9:45				

Time PM 10 (mg/m^2) 15 Minute Average Time PM 10 (mg/m^2) 15 Minute Average	Exceeds	Т		nd	DATA Downwind	RTICULATE	PA	Upwind	
9:46 9:47 9:48 9:48 9:48 9:49 9:50 9:50 9:51 9:51 9:51 9:52 9:53 9:53 9:53 9:54 9:55 9:55 9:55 9:56 9:57 9:57 9:58 9:59 9:59 9:59 9:59 9:59 9:50 9:50 9:50	Particulate larm Limits		15-Minute Average			Time	15-Minute Average		Time
9.47 9.48 9.48 9.49 9.49 9.49 9.50 9.50 9.51 9.51 9.51 9.51 9.52 9.52 9.53 9.53 9.53 9.54 9.55 9.55 9.55 9.57 9.57 9.57 9.58 9.58 9.59 9.59 9.011 0.011 9.59 9.59 0.011 10.00 0.007 10:00 10:00 0.007 0.007 10:01 10:02 10:02 10:02 10:03 10:03 10:04 10:04 10:04 10:04 10:04 10:04 10:05 10:05 10:07 10:07 10:07 10:08 10:09 10:09 10:09 10:09 10:10 10:10 10:11 10:11 10:11 10:12 10:12 10:14 0.007 0.007 10:13 10:13 10:13		十		-		9:46			9:46
9.49 9.50 9.50 9.51 9.51 9.52 9.52 9.53 9.54 9.55 9.55 9.55 9.55 9.55 9.57 9.58 9.59 9.59 9.59 9.59 9.59 9.59 9.59		1							
9:50 9:51 9:51 9:52 9:52 9:53 9:53 9:54 9:55 9:55 9:56 9:56 9:57 9:57 9:58 9:59 9:59 9:59 9:50 9:59 9:50 9:50 9:50						9:48			9:48
9:51 9:52 9:53 9:53 9:54 9:55 9:55 9:55 9:55 9:57 9:57 9:57 9:57	,					9:49			9:49
9:52 9:52 9:52 9:52 9:53 9:53 9:53 9:54 9:54 9:54 9:55 9:55 9:56 9:57 9:57 9:57 9:58 9:58 9:59 0.001 0.011 9:59 0.007 0.007 0.007 0.001 0.011 0.012 0.013 0.003 0.004 0.004 0.005 0.						9:50			9:50
9:53 9:54 9:55 9:55 9:55 9:56 9:57 9:58 9:59 9:59 9:59 0.011 0.011 10:00 10:01 10:02 10:02 10:03 10:04 10:04 10:05 10:06 10:06 10:06 10:06 10:07 10:08 10:09 10:10 10:11 10:11 10:11 10:12 10:12 10:13 10:14 10:15 10:15 10:15 10:16 10:16 10:16 10:17 10:18 10:19 10:20 10:20 10:20 10:20 10:20 10:21 10:21 10:21 10:21 10:21 10:22 10:23 10:24 10:24 10:24 10:25 10:25 10:26 10:26 10:26 10:27 10:27 10:27 10:28 10:29 10:29 10:20 10:29 10:20 10:20 10:21 10:22 10:22 10:22 10:22 10:23 10:23 10:24 10:24 10:25 10:26 10:26 10:27 10:27 10:27 10:28 10:29 10:29 10:20 10:33 10:35						9:51			9:51
9:54 9:55 9:55 9:55 9:55 9:55 9:55 9:55 9:55 9:55 9:55 9:57 9:57 9:58 9:58 9:59 0.011 0.011 9:59 0.007 0.007 0.007 10:00						9:52			9:52
9:55 9:56 9:56 9:57 9:57 9:57 9:58 9:59 9:59 0.011 10:00 10:00 10:01 10:02 10:02 10:03 10:03 10:03 10:04 10:04 10:05 10:05 10:06 10:06 10:07 10:07 10:08 10:08 10:09 10:09 10:10 10:10 10:11 10:11 10:12 10:12 10:13 10:13 10:14 0.01 10:14 10:15 10:15 10:16 10:16 10:17 10:17 10:18 10:18 10:19 10:20 10:20 10:20 10:21 10:21 10:19 10:19 10:22 10:23 10:23 10:24 10:24 10:25						9:53			9:53
9:56 9:57 9:57 9:57 9:58 9:58 9:58 9:59 0.011 0.011 9:59 0.007 0.007 10:00 <						9:54			9:54
9:57 9:58 9:58 9:58 9:58 9:59 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008						9:55			9:55
9:58 9:59 0.011 0.011 9:59 0.007 0.007 10:00<						9:56			9:56
9:59						9:57			9:57
10:00						9:58			9:58
10:01	-		0.007		0.007	9:59	0.011	0.011	9:59
10:02						10:00			10:00
10:03						10:01			10:01
10:04 10:05 10:05 10:06 10:06 10:06 10:06 10:06 10:07 10:07 10:08 10:09 10:09 10:09 10:09 10:10 10:10 10:11 10:11 10:11 10:11 10:11 10:12 10:12 10:13 10:13 10:13 10:13 10:13 10:14 0.007 0.007 0.007 10:15 10:15 10:15 10:15 10:15 10:16 10:16 10:17 10:18 10:18 10:18 10:18 10:19 10:19 10:19 10:20 10:20 10:20 10:20 10:20 10:22 10:22 10:22 10:24 10:24 10:24 10:24 10:24 10:24 10:28 10:28 10:28 10:28 10:28 10:28 10:28 10:28 10:33 10:33 10:33 10:33 10:33 10:33 10:33 10:34 10:34 10:35 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:02</td><td></td><td></td><td>10:02</td></td<>						10:02			10:02
10:05 10:06 10:06 10:06 10:07 10:07 10:08 10:08 10:09 10:09 10:10 10:10 10:11 10:12 10:12 10:12 10:13 10:13 10:14 0.01 0.010 10:15 10:15 10:16 10:16 10:17 10:17 10:18 10:19 10:20 10:20 10:21 10:21 10:22 10:22 10:23 10:23 10:24 10:24 10:25 10:26 10:26 10:27 10:28 10:28 10:31 10:31 10:32 10:32 10:33 10:33 10:34 10:33 10:35 10:36 10:36 10:36						10:03			10:03
10:06 10:07 10:08 10:08 10:08 10:09 10:09 10:09 10:09 10:10 10:10 10:11 10:11 10:12 10:12 10:12 10:13 10:13 10:13 10:13 10:13 10:14 0.007 0.007 0.007 10:15 10:15 10:15 10:16 10:16 10:17 10:17 10:18 10:18 10:19 10:19 10:19 10:20 10:20 10:21 10:22 10:22 10:22 10:23 10:24 10:24 10:25 10:25 10:25 10:26 10:27 10:28 10:29 0.006 0.006 10:30 10:33 10:33 10:33 10:33 10:33 10:34 10:34 10:34 10:34 10:34 10:34 10:35 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:04</td><td></td><td></td><td>10:04</td></td<>						10:04			10:04
10:07 10:08 10:08 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:09 10:00 10:00 10:00 10:01 10:10 10:11 10:11 10:12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:05</td><td></td><td></td><td>10:05</td></td<>						10:05			10:05
10:08 10:09 10:09 10:09 10:10 10:10 10:11 10:11 10:12 10:12 10:13 10:13 10:14 0.01 0.010 10:14 10:15 10:15 10:15 10:16 10:17 10:17 10:18 10:19 10:19 10:20 10:20 10:21 10:21 10:22 10:23 10:24 10:24 10:25 10:25 10:26 10:26 10:27 10:28 10:28 10:29 0.012 0.012 10:30 10:31 10:31 10:31 10:34 10:34 10:34 10:35 10:36 10:36 10:37 10:37 10:37						10:06			10:06
10:09 10:10 10:10 10:10 10:11 10:11 10:12 10:12 10:13 10:13 10:14 0.01 0.010 10:14 10:15 10:15 10:15 10:16 10:16 10:17 10:18 10:18 10:19 10:20 10:20 10:20 10:21 10:21 10:22 10:22 10:23 10:23 10:24 10:24 10:25 10:26 10:26 10:27 10:28 10:29 0.006 10:30 10:30 10:30 10:31 10:32 10:34 10:33 10:34 10:35 10:35 10:36 10:35 10:36 10:36 10:36						10:07			10:07
10:10 10:11 10:11 10:11 10:12 10:12 10:13 10:13 10:13 10:13 10:13 10:13 10:14 0.007 0.007 0.007 10:07 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:08</td><td></td><td></td><td>10:08</td></td<>						10:08			10:08
10:11 10:12 10:12 10:13 10:13 10:13 10:13 10:13 10:14 0.007 0.007 0.007 10:15 10:15 10:15 10:15 10:15 10:16 10:16 10:16 10:17 10:17 10:18 10:19 10:19 10:19 10:19 10:19 10:19 10:19 10:20 10:20 10:20 10:21 10:21 10:22 10:23 10:23 10:24 10:24 10:24 10:24 10:25 10:25 10:26 10:26 10:27 10:27 10:27 10:28 10:28 10:28 10:29 0.006 0.006 10:31 10:31 10:31 10:31 10:32 10:32 10:33 10:33 10:33 10:34 10:34 10:34 10:35 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:34 10:34 10:34 10:34 10:36 10:36 10:36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:09</td><td></td><td></td><td>10:09</td></td<>						10:09			10:09
10:12 10:13 10:14 0.01 0.010 10:14 0.007 0.007 10:15 10:15 10:15 10:16 10:17 10:16 10:17 10:18 10:18 10:18 10:18 10:19 10:19 10:19 10:19 10:20 10:20 10:20 10:21 10:21 10:22 10:22 10:22 10:22 10:23 10:23 10:24 10:24 10:25 10:25 10:25 10:26 10:26 10:27 10:28 10:28 10:28 10:28 10:30 10:30 10:30 10:33 10:33 10:33 10:33 10:33 10:33 10:33 10:34 10:34 10:34 10:34 10:34 10:34 10:34 10:34 10:34 10:35 10:36 10:36 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:3						10:10			10:10
10:13 10:14 0.01 0.010 10:14 0.007 0.007 10:15 10:15 10:15 10:16 10:17 10:17 10:17 10:18 10:18 10:18 10:19 10:19 10:19 10:19 10:19 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:22 10:22 10:22 10:22 10:23 10:23 10:23 10:24 10:24 10:25 10:25 10:25 10:25 10:25 10:25 10:26 10:27 10:28 10:28 10:28 10:29 0.006 0.006 10:30 10:30 10:31 10:33 10:33 10:33 10:33 10:33 10:33 10:33 10:34 10:34 10:34 10:34 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:3						10:11			10:11
10:14 0.01 0.010 10:14 0.007 0.007 10:15 10:15 10:16 10:17 10:17 10:18 10:18 10:19 10:19 10:19 10:20 10:21 10:21 10:21 10:22 10:23 10:23 10:24 10:25 10:25 10:26 10:27 10:28 10:29 0.012 10:29 0.006 0.006 10:31 10:32 10:32 10:32 10:34 10:34 10:34 10:35 10:36 10:36 10:37 10:37						10:12			10:12
10:15 10:16 10:17 10:17 10:18 10:19 10:20 10:20 10:21 10:21 10:22 10:22 10:23 10:23 10:24 10:25 10:27 10:28 10:29 0.012 10:29 10:30 10:30 10:31 10:32 10:33 10:33 10:34 10:34 10:35 10:36 10:37 10:37						10:13			10:13
10:16 10:17 10:17 10:18 10:19 10:19 10:19 10:20 10:20 10:20 10:20 10:21 10:21 10:21 10:22 10:23 10:23 10:23 10:24 10:24 10:25 10:26 10:26 10:27 10:28 10:28 10:28 10:28 10:30 10:30 10:30 10:31 10:32 10:32 10:32 10:33 10:33 10:33 10:33 10:34 10:35 10:36 10:36 10:37	-		0.007		0.007	10:14	0.010	0.01	10:14
10:17 10:18 10:18 10:19 10:19 10:19 10:20 10:20 10:21 10:21 10:21 10:22 10:23 10:23 10:24 10:25 10:26 10:26 10:27 10:27 10:28 10:29 0.012 10:30 10:30 10:31 10:32 10:32 10:32 10:33 10:34 10:34 10:35 10:36 10:36 10:36 10:36						10:15			10:15
10:18 10:19 10:19 10:20 10:20 10:20 10:21 10:21 10:21 10:21 10:22 10:22 10:22 10:22 10:23 10:23 10:23 10:23 10:23 10:24 10:24 10:24 10:24 10:24 10:25 10:25 10:25 10:25 10:25 10:25 10:26 10:27 10:27 10:27 10:28 10:28 10:28 10:28 10:28 10:28 10:30 10:30 10:30 10:30 10:31 10:31 10:31 10:33 10:33 10:33 10:33 10:33 10:33 10:34 10:34 10:34 10:35 10:36 10:36 10:36 10:37 10:						10:16			10:16
10:19 10:20 10:20 10:20 10:21 10:21 10:21 10:22 10:22 10:22 10:23 10:23 10:23 10:24 10:24 10:24 10:25 10:25 10:25 10:26 10:27 10:27 10:28 10:28 10:28 10:28 10:29 0.006 0.006 10:30 10:31 10:31 10:33 10:33 10:33 10:33 10:34 10:34 10:34 10:35 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:34 10:37 10:37 10:37 10:34 10:37 10:37 10:34 10:34 10:36 10:36 10:36 10:36 10:37 10:37 10:34 10:37 10:37 10:34 10:37 10:37 10:34 10:37 10:37 10:34 10:34 10:34 10:34 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 10:36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:17</td><td></td><td></td><td>10:17</td></td<>						10:17			10:17
10:20 10:21 10:21 10:22 10:22 10:23 10:23 10:24 10:24 10:24 10:25 10:25 10:26 10:26 10:27 10:27 10:28 10:28 10:29 0.002 0.012 10:30 10:30 10:30 10:31 10:31 10:32 10:33 10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:34 10:34 10:36 10:36 10:37 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>10:18</td><td></td><td></td><td>10:18</td></td<>						10:18			10:18
10:21 10:22 10:22 10:23 10:23 10:24 10:25 10:25 10:25 10:26 10:27 10:27 10:28 10:28 10:29 10:30 10:30 0.006 10:31 10:31 10:32 10:33 10:33 10:33 10:34 10:34 10:35 10:36 10:36 10:36 10:37 10:37 10:37						10:19			10:19
10:22 10:23 10:24 10:24 10:25 10:25 10:26 10:26 10:27 10:27 10:28 10:28 10:30 10:30 10:31 10:31 10:32 10:32 10:33 10:34 10:35 10:35 10:36 10:36 10:37 10:37						10:20			10:20
10:23 10:24 10:25 10:25 10:26 10:26 10:27 10:27 10:28 10:28 10:29 0.012 10:29 0.006 0.006 10:30 10:30 10:31 10:31 10:32 10:32 10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37						10:21			10:21
10:24 10:25 10:26 10:26 10:27 10:27 10:28 10:28 10:29 0.012 10:29 0.006 0.006 10:30 10:30 0.012 0.012 0.006 0.006 10:31 10:31 0.031 0.006									
10:25 10:26 10:27 10:27 10:28 10:28 10:29 0.012 10:29 0.006 10:30 10:30 10:31 10:31 10:31 10:32 10:32 10:32 10:33 10:33 10:34 10:35 10:35 10:36 10:37 10:37 10:37									
10:26 10:27 10:28 10:28 10:29 0.012 0.012 10:29 0.006 0.006 10:30 10:30 10:30 10:31 10:31 10:31 10:32 10:32 10:33 10:33 10:33 10:34 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:36									
10:27 10:28 10:28 10:29 0.012 0.012 10:29 0.006 0.006 10:30 10:30 10:30 10:31 10:31 10:31 10:32 10:32 10:33 10:33 10:33 10:34 10:34 10:35 10:35 10:35 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:36 10:36 10:36 10:36 10:37 10:									
10:28 10:29 0.012 0.012 10:29 0.006 0.006 10:30 10:30 10:30 10:31 10:31 10:31 10:32 10:32 10:32 10:33 10:33 10:34 10:34 10:35 10:35 10:35 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:37 10:37 10:36 10:37 10:37 10:36 10:37 10:37 10:37 10:36 10:36 10:36 10:36 10:37 10:37 10:37 10:37 10:37 10:36 1		$oxedsymbol{oxedsymbol{oxedsymbol{eta}}}$							
10:29 0.012 0.012 10:29 0.006 0.006 10:30 10:30 10:30 10:31 10:31 10:31 10:32 10:32 10:32 10:33 10:33 10:34 10:35 10:35 10:35 10:36 10:36 10:37									
10:30 10:30 10:31 10:31 10:32 10:32 10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37		$oldsymbol{\perp}$							
10:31 10:31 10:32 10:32 10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37	-	\bot	0.006		0.006		0.012	0.012	
10:32 10:32 10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37		\bot							
10:33 10:33 10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37		\bot							
10:34 10:34 10:35 10:35 10:36 10:36 10:37 10:37		\bot							
10:35 10:35 10:36 10:36 10:37 10:37		$oldsymbol{\perp}$							
10:36 10:36 10:37 10:37		\perp							
10:37		\bot							
		\bot							
10:38		\bot							
		丄							
10:39 10:39 10:40 10:40		\bot							

	PARTICULATE DATA						
	Upwind			Downwind		Exceeds	
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits	
10:41			10:41				
10:42			10:42				
10:43			10:43				
10:44	0.012	0.012	10:44	0.007	0.007	-	
10:45			10:45				
10:46			10:46				
10:47			10:47				
10:48			10:48				
10:49			10:49				
10:50			10:50				
10:51			10:51				
10:52			10:52				
10:53			10:53				
10:54			10:54	+			
10:55			10:55				
10:56			10:56				
10:57			10:57				
10:58	0.013	0.013	10:58	0.000	0.000		
10:59	0.012	0.012	10:59	0.008	0.008	-	
11:00			11:00				
11:01			11:01				
11:02			11:02				
11:03			11:03				
11:04			11:04				
11:05 11:06	+		11:05 11:06				
11:06							
11:07			11:07 11:08	+			
11:09			11:09				
11:10			11:10				
11:11			11:11				
11:12			11:12				
11:13			11:13				
11:14	0.013	0.013	11:14	0.008	0.008	-	
11:15	0.015	0.013	11:15	0.000	0.000		
11:16			11:16	1			
11:17			11:17				
11:18			11:18				
11:19			11:19				
11:20			11:20				
11:21			11:21				
11:22			11:22				
11:23			11:23	1			
11:24			11:24				
11:25			11:25				
11:26			11:26				
11:27			11:27				
11:28			11:28				
11:29	0.013	0.013	11:29	0.008	0.008	-	
11:30			11:30				
11:31			11:31				
11:32			11:32				
11:33			11:33				
11:34			11:34				
11:35			11:35				

		P/	ARTICULATE		Fuessal-	
	Upwind			Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
11:36			11:36			
11:37			11:37			
11:38			11:38			
11:39			11:39			
11:40			11:40			
11:41			11:41			
11:42			11:42			
11:43 11:44	0.012	0.012	11:43 11:44	0.009	0.009	
11:44	0.012	0.012	11:44	0.009	0.009	-
11:46			11:46			
11:47			11:47			
11:48			11:48			
11:49			11:49			
11:50			11:50			
11:51			11:51			
11:52			11:52			
11:53			11:53			
11:54			11:54			
11:55			11:55			
11:56			11:56			
11:57			11:57			
11:58			11:58			
11:59	0.012	0.012	11:59	0.008	0.008	-
12:00			12:00			
12:01			12:01			
12:02			12:02			
12:03			12:03			
12:04 12:05			12:04 12:05			
12:06			12:06			
12:07			12:07			
12:08			12:08			
12:09			12:09			
12:10			12:10			
12:11			12:11			
12:12			12:12			
12:13			12:13			
12:14	0.013	0.013	12:14	0.008	0.008	-
12:15			12:15			
12:16			12:16			
12:17			12:17			
12:18			12:18			
12:19			12:19			
12:20			12:20			
12:21			12:21			
12:22			12:22			
12:23			12:23	+		
12:24 12:25			12:24 12:25			
12:25	+		12:25			
12:27			12:27			
12:28			12:28			
12:29	0.012	0.012	12:29	0.008	0.008	_
12:30	0.012	0.012	12:30	0.000	3.300	

	Upwind		PARTICULATE DATA Downwind			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
12:31	+		12:31			Alai III LIIIIII
12:32			12:32			
12:33			12:33			
12:34			12:34			
12:35			12:35			
12:36			12:36			
12:37			12:37			
12:38			12:38			
12:39			12:39			
12:40			12:40			
12:41			12:41			
12:42			12:42			
12:43			12:43			
12:44	0.013	0.013	12:44	0.008	0.008	-
12:45			12:45			
12:46			12:46			
12:47			12:47			
12:48			12:48			
12:49			12:49			
12:50			12:50			
12:51			12:51			
12:52			12:52			
12:53			12:53			
12:54			12:54			
12:55			12:55			
12:56			12:56			
12:57			12:57			
12:58			12:58			
12:59	0.013	0.013	12:59	0.010	0.010	-
13:00			13:00			
13:01			13:01			
13:02			13:02			
13:03			13:03			
13:04			13:04			
13:05			13:05			
13:06			13:06			
13:07			13:07			
13:08			13:08			
13:09			13:09			
13:10			13:10			
13:11			13:11			
13:12			13:12			
13:13			13:13			
13:14	0.012	0.012	13:14	0.008	0.008	-
13:15			13:15			
13:16			13:16			
13:17			13:17			
13:18			13:18			
13:19			13:19			
13:20			13:20			
13:21			13:21			
13:22			13:22			
13:23			13:23			
13:24	1		13:24			

		P/	ARTICULATE			
	Upwind			Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
13:26			13:26			
13:27			13:27			
13:28			13:28			
13:29	0.012	0.012	13:29	0.007	0.007	-
13:30			13:30			
13:31			13:31			
13:32			13:32			
13:33			13:33			
13:34			13:34			
13:35			13:35			
13:36			13:36			
13:37			13:37			
13:38			13:38			
13:39			13:39			
13:40			13:40			
13:41			13:41			
13:42			13:42			
13:43	0.013	0.012	13:43	0.000	0.000	_
13:44	0.013	0.013	13:44	0.009	0.009	-
13:45			13:45			
13:46			13:46			
13:47 13:48			13:47			
			13:48			
13:49			13:49			
13:50 13:51	+		13:50 13:51			
13:52			13:52			
13:53			13:53			
13:54			13:54			
13:55			13:55			
13:56			13:56			
13:57			13:57			
13:58			13:58			
13:59	0.012	0.012	13:59	0.009	0.009	_
14:00	0.012	0.022	14:00	0.000	0.000	
14:01			14:01			
14:02			14:02			
14:03			14:03			
14:04			14:04			
14:05			14:05			
14:06			14:06			
14:07			14:07			
14:08			14:08			
14:09			14:09			
14:10			14:10			
14:11			14:11			
14:12			14:12			
14:13			14:13			
14:14	0.016	0.016	14:14	0.009	0.009	-
14:15			14:15			
14:16			14:16			
14:17			14:17			
14:18			14:18			
14:19			14:19			
14:20			14:20			

PARTICULATE DATA									
	Upwind			Downwind		Exceeds			
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
14:21			14:21						
14:22			14:22						
14:23			14:23						
14:24			14:24						
14:25			14:25						
14:26			14:26						
14:27			14:27						
14:28			14:28						
14:29	0.012	0.012	14:29	0.009	0.009	-			
14:30			14:30						
14:31			14:31						
14:32			14:32						
14:33			14:33						
14:34			14:34						
14:35			14:35						
14:36			14:36						
14:37			14:37						
14:38			14:38						
14:39			14:39						
14:40			14:40						
14:41			14:41						
14:42			14:42						
14:43			14:43						
14:44	0.012	0.012	14:44	0.008	0.008	-			

	May 6, 2020 Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5ppm =								
			arable Data Points			0 348			
		г	PID DATA						
	Upwind			Downwind					
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits			
7:48			7:48	0					
7:49			7:49	0					
7:50			7:50	0					
7:51			7:51	0					
7:52			7:52	0					
7:53			7:53	0					
7:54			7:54	0					
7:55			7:55	0					
7:56			7:56	0					
7:57			7:57	0					
7:58			7:58	0					
7:59			7:59	0					
8:00			8:00	0					
8:01	0		8:01	0					
8:02	0	0.0	8:02	0					
8:03	0	0.0	8:03	0	0.0	-			
8:04	0	0.0	8:04	0	0.0	-			
8:05	0	0.0	8:05	0	0.0	-			
8:06	0	0.0	8:06	0	0.0	-			
8:07	0	0.0	8:07	0	0.0	-			
8:08	0.1	0.0	8:08	0	0.0	-			
8:09	0.1	0.0	8:09	0	0.0	-			
8:10	0.1	0.0	8:10	0	0.0	_			
8:11	0.1	0.0	8:11	0	0.0	-			
8:12	0.2	0.1	8:12	0	0.0	-			
8:13	0.2	0.1	8:13	0	0.0	-			
8:14	0.2	0.1	8:14	0	0.0	-			
8:15	0.2	0.1	8:15	0	0.0	-			
8:16	0.2	0.1	8:16	0	0.0	-			
8:17	0.2	0.1	8:17	0	0.0	-			
8:18	0.3	0.1	8:18	0	0.0	-			
8:19	0.3	0.1	8:19	0	0.0	-			
8:20	0.3	0.2	8:20	0	0.0	-			
8:21	0.3	0.2	8:21	0	0.0	-			
8:22	0.3	0.2	8:22	0	0.0	-			
8:23	0.3	0.2	8:23	0	0.0	-			
8:24	0.4	0.2	8:24	0	0.0	-			
8:25	0.4	0.3	8:25	0	0.0	-			
8:26	0.4	0.3	8:26	0	0.0	-			
8:27	0.4	0.3	8:27	0	0.0	-			
8:28	0.4	0.3	8:28	0	0.0	-			
8:29	0.4	0.3	8:29	0	0.0	-			
8:30	0.4	0.3	8:30	0	0.0	-			
8:31	0.5	0.4	8:31	0	0.0	-			
8:32	0.5	0.4	8:32	0	0.0	-			
8:33	0.5	0.4	8:33	0	0.0	-			
8:34	0.5	0.4	8:34	0	0.0	-			
8:35	0.5	0.4	8:35	0	0.0	-			
8:36	0.5	0.4	8:36	0	0.0	-			
8:37	0.5	0.4	8:37	0	0.0	-			
8:38	0.5	0.5	8:38	0	0.0				
0.30	0.3	0.5	0.30	1 0	0.0	-			

		PID DATA	Downwind		T	
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
8:39	0.5	0.5	8:39	0	0.0	-
8:40	0.6	0.5	8:40	0	0.0	-
8:41	0.6	0.5	8:41	0	0.0	-
8:42	0.6	0.5	8:42	0	0.0	-
8:43	0.6	0.5	8:43	0	0.0	-
8:44	0.6	0.5	8:44	0	0.0	-
8:45	0.6	0.5	8:45	0	0.0	-
8:46	0.6	0.5	8:46	0	0.0	-
8:47	0.6	0.6	8:47	0	0.0	-
8:48	0.6	0.6	8:48	0	0.0	-
8:49	0.7	0.6	8:49	0	0.0	-
8:50	0.7	0.6	8:50	0	0.0	-
8:51	0.7	0.6	8:51	0	0.0	-
8:52	0.7	0.6	8:52	0	0.0	-
8:53	0.7	0.6	8:53	0	0.0	-
8:54	0.7	0.6	8:54	0	0.0	-
8:55	0.7	0.6	8:55	0	0.0	_
8:56	0.7	0.7	8:56	0	0.0	_
8:57	0.7	0.7	8:57	0	0.0	_
8:58	0.7	0.7	8:58	0	0.0	<u> </u>
8:59	0.7	0.7	8:59	0	0.0	 -
9:00	0.7	0.7	9:00	0	0.0	 -
9:01	0.7	0.7	9:01	0	0.0	<u>-</u>
9:02	0.7	0.7	9:02	0	0.0	-
9:03	0.7	0.7	9:03	0	0.0	-
9:04	0.7	0.7	9:04	0	0.0	
9:05	0.7	0.7	9:05	0	0.0	-
9:06	0.7	0.7	9:06	0	0.0	
9:07	0.7	0.7	9:07	0	0.0	-
9:08	0.7	0.7	9:08	0	0.0	
9:08	0.7	0.7	9:09	0	0.0	-
9:10	0.7	0.7	9:10	0	0.0	-
				0		
9:11	0.7	0.7	9:11		0.0	-
9:12	0.7	0.7	9:12	0	0.0	-
9:13	0.7	0.7	9:13	0	0.0	-
9:14	0.7	0.7	9:14	0	0.0	-
9:15	0.7	0.7	9:15	0	0.0	-
9:16	0.7	0.7	9:16	0	0.0	-
9:17	0.7	0.7	9:17		0.0	-
9:18	0.7	0.7	9:18	0	0.0	-
9:19	0.7	0.7	9:19	0	0.0	-
9:20	0.7	0.7	9:20	0	0.0	-
9:21	0.7	0.7	9:21	0	0.0	-
9:22	0.7	0.7	9:22		0.0	-
9:23	0.6	0.7	9:23	0	0.0	-
9:24	0.6	0.7	9:24	0	0.0	-
9:25	0.6	0.7	9:25	0	0.0	-
9:26	0.6	0.7	9:26	0	0.0	-
9:27	0.6	0.7	9:27	0	0.0	-
9:28	0.6	0.7	9:28	0	0.0	-
9:29	0.6	0.7	9:29	0	0.0	-
9:30	0.6	0.6	9:30	0	0.0	-
9:31	0.6	0.6	9:31	0	0.0	-
9:32	0.6	0.6	9:32	0	0.0	-

PID DATA Upwind Downwind						
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
9:33	0.5	0.6	9:33	0	0.0	-
9:34	0.5	0.6	9:34	0	0.0	-
9:35	0.5	0.6	9:35	0	0.0	-
9:36	0.5	0.6	9:36	0	0.0	-
9:37	0.5	0.6	9:37	0	0.0	-
9:38	0.5	0.6	9:38	0	0.0	-
9:39	0.5	0.6	9:39	0	0.0	-
9:40	0.5	0.5	9:40	0	0.0	-
9:41	0.5	0.5	9:41	0	0.0	-
9:42	0.5	0.5	9:42	0	0.0	-
9:43	0.5	0.5	9:43	0	0.0	_
9:44	0.5	0.5	9:44	0	0.0	_
9:45	0.5	0.5	9:45	0	0.0	_
9:46	0.5	0.5	9:46	0	0.0	_
9:47	0.5	0.5	9:47	0	0.0	_
9:48	0.5	0.5	9:48	0	0.0	
9:49	0.5	0.5	9:49	0	0.0	 -
9:50	0.4	0.5	9:50	0	0.0	_
9:51	0.4	0.5	9:51	0	0.0	
9:52	0.4	0.5	9:52	0	0.0	-
9:53	0.4	0.5	9:53	0	0.0	
	0.4	0.5				-
9:54			9:54	0	0.0	-
9:55	0.4	0.5	9:55	0	0.0	-
9:56	0.4	0.5	9:56	0	0.0	-
9:57	0.4	0.4	9:57	0	0.0	-
9:58	0.4	0.4	9:58	0	0.0	-
9:59	0.4	0.4	9:59	0	0.0	-
10:00	0.4	0.4	10:00	0	0.0	-
10:01	0.4	0.4	10:01	0	0.0	-
10:02	0.4	0.4	10:02	0	0.0	-
10:03	0.4	0.4	10:03	0	0.0	-
10:04	0.4	0.4	10:04	0	0.0	-
10:05	0.4	0.4	10:05	0	0.0	-
10:06	0.4	0.4	10:06	0	0.0	-
10:07	0.4	0.4	10:07	0	0.0	-
10:08	0.4	0.4	10:08	0	0.0	-
10:09	0.4	0.4	10:09	0	0.0	-
10:10	0.4	0.4	10:10	0	0.0	-
10:11	0.4	0.4	10:11	0	0.0	-
10:12	0.4	0.4	10:12	0	0.0	-
10:13	0.4	0.4	10:13	0	0.0	-
10:14	0.4	0.4	10:14	0	0.0	-
10:15	0.4	0.4	10:15	0	0.0	-
10:16	0.4	0.4	10:16	0	0.0	-
10:17	0.4	0.4	10:17	0	0.0	-
10:18	0.4	0.4	10:18	0	0.0	-
10:19	0.4	0.4	10:19	0	0.0	-
10:20	0.4	0.4	10:20	0	0.0	-
10:21	0.4	0.4	10:21	0	0.0	-
10:22	0.4	0.4	10:22	0	0.0	-
10:23	0.4	0.4	10:23	0	0.0	-
10:24	0.4	0.4	10:24	0	0.0	-
10:25	0.4	0.4	10:25	0	0.0	-
10:26	0.4	0.4	10:26	0	0.0	-

	Upwind	I	PID DATA	Downwind		T
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
10:27	0.4	0.4	10:27	0	0.0	-
10:28	0.4	0.4	10:28	0	0.0	-
10:29	0.4	0.4	10:29	0	0.0	-
10:30	0.4	0.4	10:30	0	0.0	-
10:31	0.4	0.4	10:31	0	0.0	-
10:32	0.4	0.4	10:32	0	0.0	_
10:33	0.3	0.4	10:33	0	0.0	_
10:34	0.3	0.4	10:34	0	0.0	_
10:35	0.3	0.4	10:35	0	0.0	-
10:36	0.3	0.4	10:36	0	0.0	-
10:37	0.3	0.4	10:37	0	0.0	_
10:38	0.3	0.4	10:38	0	0.0	
10:39	0.3	0.4	10:39	0	0.0	
10:39	0.3	0.4	10:40	0	0.0	
						-
10:41	0.4	0.3	10:41	0	0.0	-
10:42	0.4	0.3	10:42	0	0.0	-
10:43	0.4	0.3	10:43	0	0.0	-
10:44	0.3	0.3	10:44	0	0.0	-
10:45	0.4	0.3	10:45	0	0.0	-
10:46	0.4	0.3	10:46	0	0.0	-
10:47	0.4	0.3	10:47	0	0.0	-
10:48	0.4	0.3	10:48	0	0.0	-
10:49	0.3	0.3	10:49	0	0.0	-
10:50	0.3	0.3	10:50	0	0.0	-
10:51	0.3	0.3	10:51	0	0.0	-
10:52	0.3	0.3	10:52	0	0.0	-
10:53	0.3	0.3	10:53	0	0.0	-
10:54	0.3	0.3	10:54	0	0.0	-
10:55	0.3	0.3	10:55	0	0.0	-
10:56	0.3	0.3	10:56	0	0.0	-
10:57	0.3	0.3	10:57	0	0.0	-
10:58	0.3	0.3	10:58	0	0.0	_
10:59	0.3	0.3	10:59	0	0.0	_
11:00	0.3	0.3	11:00	0	0.0	_
11:01	0.3	0.3	11:01	0	0.0	_
11:02	0.3	0.3	11:02	0	0.0	_
11:03	0.3	0.3	11:03	0	0.0	-
11:04	0.3	0.3	11:04	0	0.0	-
11:05	0.3	0.3	11:05	0	0.0	-
11:06	0.3	0.3	11:06	0	0.0	
11:07	0.3	0.3	11:07	0	0.0	-
		0.3		0		-
11:08	0.3		11:08		0.0	-
11:09	0.3	0.3	11:09	0		-
11:10	0.3	0.3	11:10	0	0.0	-
11:11	0.3	0.3	11:11	0	0.0	-
11:12	0.4	0.3	11:12	0	0.0	-
11:13	0.4	0.3	11:13	0	0.0	-
11:14	0.3	0.3	11:14	0	0.0	-
11:15	0.3	0.3	11:15	0	0.0	-
11:16	0.3	0.3	11:16	0	0.0	-
11:17	0.3	0.3	11:17	0	0.0	-
11:18	0.3	0.3	11:18	0	0.0	-
11:19	0.3	0.3	11:19	0	0.0	-
11:20	0.3	0.3	11:20	0	0.0	-

	Upwind		PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	Downwind VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
11:21	0.3	0.3	11:21	0	0.0	-
11:22	0.3	0.3	11:22	0	0.0	-
11:23	0.3	0.3	11:23	0	0.0	-
11:24	0.3	0.3	11:24	0	0.0	-
11:25	0.3	0.3	11:25	0	0.0	-
11:26	0.3	0.3	11:26	0	0.0	-
11:27	0.3	0.3	11:27	0	0.0	-
11:28	0.3	0.3	11:28	0	0.0	-
11:29	0.3	0.3	11:29	0	0.0	-
11:30	0.3	0.3	11:30	0	0.0	-
11:31	0.3	0.3	11:31	0	0.0	-
11:32	0.3	0.3	11:32	0	0.0	-
11:33	0.3	0.3	11:33	0	0.0	-
11:34	0.3	0.3	11:34	0	0.0	-
11:35	0.3	0.3	11:35	0	0.0	-
11:36	0.3	0.3	11:36	0	0.0	-
11:37	0.3	0.3	11:37	0	0.0	-
11:38	0.3	0.3	11:38	0	0.0	_
11:39	0.3	0.3	11:39	0	0.0	_
11:40	0.3	0.3	11:40	0	0.0	_
11:41	0.3	0.3	11:41	0	0.0	-
11:42	0.3	0.3	11:42	0	0.0	_
11:43	0.3	0.3	11:43	0	0.0	_
11:44	0.3	0.3	11:44	0	0.0	-
11:45	0.3	0.3	11:45	0	0.0	
11:46	0.3	0.3	11:46	0	0.0	-
11:47	0.3	0.3	11:47	0	0.0	-
11:48	0.3	0.3	11:48	0	0.0	-
11:49	0.3	0.3	11:49	0	0.0	-
11:50	0.3	0.3	11:50	0	0.0	
11:51	0.3	0.3	11:51	0	0.0	-
11:52	0.3	0.3	11:52	0	0.0	-
11:53	0.3	0.3	11:53	0	0.0	
11:54	0.3	0.3	11:54	0	0.0	-
11:55	0.3	0.3	11:55	0	0.0	-
	0.3	0.3		0	0.0	-
11:56 11:57	0.3	0.3	11:56 11:57	0	0.0	-
11:57	0.3	0.3	11:57	0	0.0	-
11:58	0.3	0.3	11:58	0	0.0	
12:00	0.3	0.3	12:00	0	0.0	-
12:00	0.3	0.3	12:00	0	0.0	-
				0		-
12:02	0.3	0.3 0.3	12:02	0	0.0	-
12:03 12:04			12:03	0	0.0	-
	0.3	0.3	12:04	0	0.0	-
12:05			12:05	0		-
12:06	0.3	0.3	12:06		0.0	-
12:07	0.3	0.3	12:07	0	0.0	-
12:08	0.3	0.3	12:08	0	0.0	-
12:09	0.3	0.3	12:09	0	0.0	-
12:10	0.3	0.3	12:10	0	0.0	-
12:11	0.3	0.3	12:11	0	0.0	-
12:12	0.3	0.3	12:12	0	0.0	-
12:13	0.3	0.3	12:13	0	0.0	-

	Upwind		PID DATA	Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits		
12:15	0.3	0.3	12:15	0	0.0	-		
12:16	0.3	0.3	12:16	0	0.0	-		
12:17	0.3	0.3	12:17	0	0.0	-		
12:18	0.3	0.3	12:18	0	0.0	-		
12:19	0.3	0.3	12:19	0	0.0	-		
12:20	0.3	0.3	12:20	0	0.0	_		
12:21	0.3	0.3	12:21	0	0.0	_		
12:22	0.3	0.3	12:22	0	0.0	_		
12:23	0.3	0.3	12:23	0	0.0	_		
12:24	0.3	0.3	12:24	0	0.0	_		
12:25	0.3	0.3	12:25	0	0.0	_		
12:26	0.3	0.3	12:26	0	0.0	_		
12:27	0.3	0.3	12:27	0	0.0	_		
12:28	0.3	0.3	12:28	0	0.0	-		
12:29	0.3	0.3	12:29	0	0.0			
12:30	0.3	0.3	12:30	0	0.0	-		
12:31	0.3	0.3	12:31	0	0.0	-		
12:32	0.3	0.3	12:32	0	0.0			
				0		-		
12:33	0.3	0.3	12:33		0.0	-		
12:34	0.3	0.3	12:34	0	0.0	-		
12:35	0.3	0.3	12:35	0	0.0	-		
12:36	0.3	0.3	12:36	0	0.0	-		
12:37	0.3	0.3	12:37	0	0.0	-		
12:38	0.3	0.3	12:38	0	0.0	-		
12:39	0.3	0.3	12:39	0	0.0	-		
12:40	0.3	0.3	12:40	0	0.0	-		
12:41	0.3	0.3	12:41	0	0.0	-		
12:42	0.3	0.3	12:42	0	0.0	-		
12:43	0.3	0.3	12:43	0	0.0	-		
12:44	0.3	0.3	12:44	0	0.0	-		
12:45	0.3	0.3	12:45	0	0.0	-		
12:46	0.3	0.3	12:46	0	0.0	-		
12:47	0.3	0.3	12:47	0	0.0	-		
12:48	0.3	0.3	12:48	0	0.0	-		
12:49	0.3	0.3	12:49	0	0.0	-		
12:50	0.3	0.3	12:50	0	0.0	-		
12:51	0.3	0.3	12:51	0	0.0	-		
12:52	0.3	0.3	12:52	0	0.0	-		
12:53	0.3	0.3	12:53	0	0.0	-		
12:54	0.3	0.3	12:54	0	0.0	-		
12:55	0.3	0.3	12:55	0	0.0	-		
12:56	0.3	0.3	12:56	0	0.0	-		
12:57	0.3	0.3	12:57	0	0.0	-		
12:58	0.3	0.3	12:58	0	0.0	-		
12:59	0.3	0.3	12:59	0	0.0	-		
13:00	0.3	0.3	13:00	0	0.0	-		
13:01	0.3	0.3	13:01	0	0.0	-		
13:02	0.3	0.3	13:02	0	0.0	-		
13:03	0.3	0.3	13:03	0	0.0	-		
13:04	0.3	0.3	13:04	0	0.0	-		
13:05	0.3	0.3	13:05	0	0.0	-		
13:06	0.3	0.3	13:06	0	0.0	-		
13:07	0.3	0.3	13:07	0	0.0	-		
13:08	0.3	0.3	13:08	0	0.0	_		

	Upwind	PID DATA Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:09	0.3	0.3	13:09	0	0.0	-
13:10	0.3	0.3	13:10	0	0.0	_
13:11	0.3	0.3	13:11	0	0.0	_
13:12	0.3	0.3	13:12	0	0.0	_
13:13	0.3	0.3	13:13	0	0.0	_
13:14	0.3	0.3	13:14	0	0.0	_
13:15	0.3	0.3	13:15	0	0.0	_
13:16	0.3	0.3	13:16	0	0.0	_
13:17	0.3	0.3	13:17	0	0.0	_
13:18	0.3	0.3	13:18	0	0.0	_
13:19	0.3	0.3	13:19	0	0.0	-
13:20	0.3	0.3	13:20	0	0.0	-
13:21	0.3	0.3	13:21	0	0.0	
13:21	0.3	0.3	13:21	0	0.0	<u>-</u>
				0		-
13:23	0.3	0.3	13:23		0.0	-
13:24	0.3	0.3	13:24	0.1	0.0	-
13:25	0.3	0.3	13:25	0	0.0	-
13:26	0.3	0.3	13:26	0.1	0.0	-
13:27	0.3	0.3	13:27	0	0.0	-
13:28	0.2	0.3	13:28	0	0.0	-
13:29	0.3	0.3	13:29	0	0.0	-
13:30	0.2	0.3	13:30	0.1	0.0	-
13:31	0.3	0.3	13:31	0.1	0.0	-
13:32	0.3	0.3	13:32	0.1	0.0	-
13:33	0.3	0.3	13:33	0.1	0.0	-
13:34	0.3	0.3	13:34	0.2	0.0	-
13:35	0.2	0.3	13:35	0.2	0.1	-
13:36	0.3	0.3	13:36	0.1	0.1	-
13:37	0.2	0.3	13:37	0.2	0.1	-
13:38	0.3	0.3	13:38	0	0.1	-
13:39	0.2	0.3	13:39	0.1	0.1	-
13:40	0.3	0.3	13:40	0	0.1	-
13:41	0.3	0.3	13:41	0.1	0.1	-
13:42	0.3	0.3	13:42	0.1	0.1	-
13:43	0.3	0.3	13:43	0.1	0.1	-
13:44	0.3	0.3	13:44	0.2	0.1	-
13:45	0.3	0.3	13:45	0.4	0.1	-
13:46	0.3	0.3	13:46	0.2	0.1	-
13:47	0.3	0.3	13:47	0.3	0.1	-
13:48	0.3	0.3	13:48	0.2	0.2	_
13:49	0.3	0.3	13:49	0.1	0.2	-
13:50	0.3	0.3	13:50	0	0.2	-
13:51	0.3	0.3	13:51	0	0.1	_
13:52	0.3	0.3	13:52	0	0.1	-
13:53	0.3	0.3	13:53	0	0.1	-
13:54	0.3	0.3	13:54	0.2	0.1	-
13:55	0.3	0.3	13:55	0.2	0.1	-
13:56	0.3	0.3	13:56	0.2	0.1	-
13:57	0.3	0.3	13:57	0.2	0.1	
13:57	0.3	0.3	13:58	0.1	0.1	-
13:58	0.3	0.3	13:58	0	0.1	-
	_					-
14:00	0.3	0.3	14:00	0.1	0.1	-
14:01	0.3	0.3	14:01	0.1	0.1	-

Time 14:03	Upwind VOC (ppm)			Downwind		
1/1:03	VOC (ppili)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
17.03	0.3	0.3	14:03	0.1	0.1	-
14:04	0.3	0.3	14:04	0.1	0.1	-
14:05	0.3	0.3	14:05	0.2	0.1	-
14:06	0.3	0.3	14:06	0.1	0.1	-
14:07	0.3	0.3	14:07	0.2	0.1	-
14:08	0.3	0.3	14:08	0.1	0.1	-
14:09	0.3	0.3	14:09	0.2	0.1	-
14:10	0.3	0.3	14:10	0.2	0.1	-
14:11	0.3	0.3	14:11	0.1	0.1	-
14:12	0.3	0.3	14:12	0.1	0.1	_
14:13	0.3	0.3	14:13	0	0.1	_
14:14	0.3	0.3	14:14	0.1	0.1	 -
14:15	0.3	0.3	14:15	0.1	0.1	-
14:16	0.3	0.3	14:16	0.1	0.1	-
14:17	0.3	0.3	14:17	0.1	0.1	
14:17	0.3	0.3	14:17	0.1	0.1	-
		<u> </u>				-
14:19	0.3	0.3	14:19	0.1	0.1	-
14:20	0.3	0.3	14:20	0.1	0.1	-
14:21	0.3	0.3	14:21	0	0.1	-
14:22	0.3	0.3	14:22	0	0.1	-
14:23	0.3	0.3	14:23	0	0.1	-
14:24	0.4	0.3	14:24	0.1	0.1	-
14:25	0.3	0.3	14:25	0.1	0.1	-
14:26	0.3	0.3	14:26	0.1	0.1	-
14:27	0.3	0.3	14:27	0.1	0.1	-
14:28	0.3	0.3	14:28	0.1	0.1	-
14:29	0.3	0.3	14:29	0.1	0.1	-
14:30	0.3	0.3	14:30	0.2	0.1	-
14:31	0.3	0.3	14:31	0.1	0.1	-
14:32	0.3	0.3	14:32	0.1	0.1	-
14:33	0.3	0.3	14:33	0.2	0.1	-
14:34	0.3	0.3	14:34	0.2	0.1	-
14:35	0.3	0.3	14:35	0.2	0.1	-
14:36	0.3	0.3	14:36	0.1	0.1	-
14:37	0.3	0.3	14:37	0.1	0.1	-
14:38	0.3	0.3	14:38	0.2	0.1	-
14:39	0.3	0.3	14:39	0.1	0.1	-
14:40	0.3	0.3	14:40	0.1	0.1	-
14:41	0.3	0.3	14:41	0.1	0.1	-
14:42	0.3	0.3	14:42	0.1	0.1	-
14:43	0.3	0.3	14:43	0.2	0.1	-
14:44	0.3	0.3	14:44	0.2	0.1	-
14:45	0.3	0.3	14:45	0.2	0.1	-
14:46	0.3	0.3	14:46	0.2	0.1	-
14:47	0.3	0.3	14:47	0.3	0.2	-
14:48	0.3	0.3	14:48	0.2	0.2	_
14:49	0.3	0.3	14:49	0.2	0.2	-
14:50	0.3	0.3	14:50	0.2	0.2	-
14:51	0.3	0.3	14:51	0.2	0.2	-
14:51	0.3	0.3	14:52	0.3	0.2	
14:52	0.3					-
		0.3	14:53	0.4	0.2	-
14:54	0.3	0.3	14:54	0.4	0.2	-
14:55 14:56	0.3	0.3 0.3	14:55 14:56	0.4	0.2	-

	PID DATA									
	Upwind			Downwind						
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits				
14:57	0.3	0.3	14:57	0.4	0.3	-				
14:58	0.3	0.3	14:58	0.4	0.3	-				
14:59	0.3	0.3	14:59	0.5	0.3	-				
15:00	0.3	0.3	15:00	0.4	0.3	-				
15:01	0.3	0.3	15:01	0.4	0.3	-				
15:02	0.3	0.3	15:02	0.5	0.4	-				
15:03	0.3	0.3	15:03	0.4	0.4	-				

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/7/2020 Observer: Reid Balkind

Particulate Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.007	0.015					
Maximum 15min Average	0.012	0.058					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.006	0.014					
Maximum 1min Reading	0.023	0.167					

Organic Vapor Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.4	0.0					
Maximum 15min Average	0.9	0.0					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.3	0.0					
Maximum 1min Reading	1.2	0.0					

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Numh	er of Instances Where	e Downwind Particulate	May 7, 20		.150 mg/m^3 =	0
		Number of Compara		·	G/ ··· •	256
		•	RTICULATE			
	Upwind	Ī		Downwind		Exceeds
						Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limit
7:59	0.012		7:59			
8:00	0.011		8:00			
8:01	0.01		8:01	0.015		
8:02	0.01		8:02	0.014		
8:03	0.011		8:03	0.015		
8:04	0.011		8:04	0.015		
8:05	0.011		8:05	0.021		
8:06	0.01		8:06	0.015		
8:07	0.014		8:07	0.018		
8:08	0.01		8:08	0.017		
8:09	0.01		8:09	0.015		
8:10	0.01		8:10	0.014		
8:11	0.011		8:11	0.016		
8:12	0.013		8:12	0.018		
8:13	0.011	0.009	8:13	0.019	0.026	-
8:14	0.013	0.010	8:14	0.023	0.016	-
8:15	0.011	0.010	8:15	0.018	0.016	-
8:16	0.009	0.009	8:16	0.016	0.016	-
8:17	0.009	0.010	8:17	0.014	0.015	-
8:18	0.01	0.010	8:18	0.015	0.016	-
8:19	0.009	0.010	8:19	0.015	0.016	-
8:20	0.01	0.010	8:20	0.014	0.016	-
8:21	0.009	0.010	8:21	0.016	0.016	-
8:22	0.009	0.010	8:22	0.016	0.016	
8:23	0.01	0.010 0.010	8:23	0.015	0.016 0.016	-
8:24 8:25	0.011	0.010	8:24 8:25	0.018 0.019	0.016	-
8:26	0.009	0.009	8:26	0.019	0.016	-
8:27	0.009	0.009	8:27	0.014	0.016	<u> </u>
8:28	0.003	0.009	8:28	0.014	0.016	
8:29	0.009	0.009	8:29	0.014	0.017	
8:30	0.009	0.009	8:30	0.014	0.017	
8:31	0.009	0.009	8:31	0.014	0.017	<u> </u>
8:32	0.01	0.009	8:32	0.014	0.017	
8:33	0.011	0.009	8:33	0.017	0.018	_
8:34	0.01	0.009	8:34	0.018	0.018	
8:35	0.009	0.009	8:35	0.018	0.018	-
8:36	0.009	0.009	8:36	0.019	0.018	-
8:37	0.009	0.009	8:37	0.014	0.018	-
8:38	0.008	0.009	8:38	0.015	0.019	-
8:39	0.009	0.009	8:39	0.016	0.019	-
8:40	0.01	0.009	8:40	0.021	0.019	-
8:41	0.009	0.009	8:41	0.018	0.019	-
8:42	0.008	0.009	8:42	0.016	0.020	-
8:43	0.009	0.009	8:43	0.021	0.020	-
8:44	0.01	0.009	8:44	0.019	0.020	-
8:45	0.009	0.009	8:45	0.018	0.020	-
8:46	0.009	0.009	8:46	0.019	0.019	-
8:47	0.008	0.009	8:47	0.018	0.019	-
8:48	0.009	0.009	8:48	0.019	0.019	-
8:49	0.009	0.009	8:49	0.017	0.019	-
8:50	0.009	0.009	8:50	0.017	0.019	-

		P/	ARTICULATE	Evenode		
Upwind				Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
8:51	0.01	0.009	8:51	0.023	0.019	-
8:52	0.009	0.009	8:52	0.021	0.019	-
8:53	0.009	0.009	8:53	0.017	0.018	-
8:54	0.009	0.009	8:54	0.016	0.018	-
8:55	0.009	0.009	8:55	0.019	0.019	-
8:56	0.01	0.009	8:56	0.034	0.019	-
8:57	0.009	0.009	8:57	0.019	0.019	-
8:58	0.009	0.009	8:58	0.019	0.019	-
8:59	0.009	0.009	8:59	0.018	0.019	-
9:00	0.009	0.009	9:00	0.016	0.020	-
9:01	0.01	0.009	9:01	0.018	0.021	-
9:02	0.01	0.009	9:02	0.017	0.023	-
9:03	0.009	0.009	9:03	0.016	0.023	-
9:04	0.01	0.009	9:04	0.016	0.024	-
9:05	0.01	0.009	9:05	0.018	0.025	-
9:06	0.01	0.009	9:06	0.017	0.025	-
9:07	0.009	0.009	9:07	0.015	0.025	-
9:08	0.009	0.009	9:08	0.015	0.026	-
9:09	0.009	0.009	9:09	0.021	0.026	-
9:10	0.008	0.009	9:10	0.022	0.027	-
9:11	0.011	0.009	9:11	0.036	0.026	-
9:12	0.008	0.009	9:12	0.018	0.025	-
9:13	0.008	0.009	9:13	0.028	0.026	-
9:14	0.01	0.009	9:14	0.031	0.025	-
9:15	0.009	0.009	9:15	0.023	0.025	-
9:16	0.008	0.009	9:16	0.045	0.025	-
9:17	0.008	0.009	9:17	0.03	0.023	-
9:18	0.009	0.009	9:18	0.024	0.023	-
9:19	0.01	0.009	9:19	0.025	0.023	-
9:20	0.008	0.009	9:20	0.021	0.022	-
9:21	0.009	0.009	9:21	0.024	0.022	-
9:22	0.01	0.009	9:22	0.022	0.022	-
9:23	0.009	0.008	9:23	0.025	0.021	-
9:24	0.01	0.008	9:24	0.024	0.021	-
9:25	0.008	0.008	9:25	0.019	0.020	-
9:26	0.008	0.008	9:26	0.021	0.020	-
9:27	0.01	0.008	9:27	0.022	0.020	-
9:28	0.011	0.008	9:28	0.021	0.020	-
9:29	0.008	0.008 0.008	9:29 9:30	0.028	0.020	-
9:30 9:31	0.008	0.008	9:30	0.023 0.021	0.020 0.019	-
9:31	0.008	0.008	9:31	0.021		-
9:32	_	0.008	9:32	0.022	0.019 0.019	-
9:33	0.008 0.007	0.008	9:33	0.02	0.019	<u> </u>
9:34	0.007	0.008	9:34	0.019	0.019	-
9:35	0.008	0.008	9:35	0.02	0.019	-
9:36	0.008	0.008	9:36	0.018	0.018	-
9:37	0.008	0.008	9:37	0.018	0.018	<u>-</u>
9:38	0.009	0.008	9:38	0.017	0.018	-
9:39	0.008	0.008	9:39	0.015	0.019	-
9:40	0.008	0.009	9:40	0.016	0.019	<u>-</u>
9:41		0.009	9:41	0.019	0.020	
9:42	0.009 0.009	0.009	9:42	0.023	0.021	-
9:43	0.009	0.008	9:43	0.021	0.022	<u>-</u>
9:44	0.009	0.008	9:44	0.021	0.023	-

Upwind			ARTICULATE	DATA Downwind	Ī	Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:46	0.009	0.008	9:46	0.019	0.023	-
9:47	0.008	0.008	9:47	0.02	0.023	-
9:48	0.008	0.008	9:48	0.016	0.023	-
9:49	0.007	0.008	9:49	0.017	0.023	-
9:50	0.008	0.008	9:50	0.018	0.023	-
9:51	0.009	0.008	9:51	0.018	0.023	-
9:52	0.008	0.008	9:52	0.019	0.023	-
9:53	0.009	0.008	9:53	0.022	0.023	-
9:54	0.009	0.008	9:54	0.023	0.023	-
9:55	0.008	0.008	9:55	0.022	0.022	-
9:56	0.008	0.008	9:56	0.039	0.022	-
9:57	0.007	0.008	9:57	0.042	0.021	-
9:58	0.007	0.008	9:58	0.033	0.019	-
9:59	0.008	0.008	9:59	0.024	0.018	-
10:00	0.008	0.008	10:00	0.017	0.018	-
10:01	0.008	0.008	10:01	0.017	0.018	-
10:02	0.009	0.008	10:02	0.018	0.018	-
10:03	0.008	0.008	10:03	0.018	0.019	-
10:04	0.007	0.008	10:04	0.017	0.019	-
10:05	0.007	0.008	10:05	0.017	0.019	-
10:06	0.008	0.008	10:06	0.018	0.019	-
10:07	0.008	0.007	10:07	0.018	0.019	-
10:08	0.007	0.007	10:08	0.018	0.020	-
10:09	0.008	0.007	10:09	0.017	0.020	-
10:10	0.008	0.007	10:10	0.018	0.020	-
10:11	0.008	0.007	10:11	0.019	0.020	-
10:12	0.007	0.007	10:12	0.017	0.020	-
10:13	0.007	0.007	10:13	0.018	0.021	-
10:14	0.008	0.007	10:14	0.019	0.021	-
10:15	0.008	0.007	10:15	0.022	0.021	-
10:16	0.008	0.007	10:16	0.022	0.021	-
10:17	0.007	0.007	10:17	0.02	0.021	-
10:18	0.007	0.007	10:18	0.02	0.021	-
10:19	0.007	0.007	10:19	0.02	0.021	-
10:20	0.007	0.007	10:20	0.022	0.024	-
10:21	0.007	0.008	10:21	0.021	0.029	-
10:22	0.007	0.008	10:22	0.02	0.031	-
10:23	0.007	0.008	10:23	0.021	0.034	-
10:24	0.007	0.008	10:24	0.023	0.037	-
10:25	0.007	0.008	10:25	0.021	0.039	-
10:26	0.007	0.008	10:26	0.021	0.041	-
10:27	0.008	0.008	10:27	0.021	0.049	-
10:28	0.007	0.008	10:28	0.02	0.052	-
10:29	0.008	0.008	10:29	0.021	0.054	-
10:30	0.007	0.008	10:30	0.022	0.055	
10:31	0.007	0.008	10:31	0.022	0.055	-
10:32	0.008	0.008	10:32	0.022	0.057	-
10:33	0.009	0.008	10:33	0.022	0.058	-
10:34	0.008	0.008	10:34	0.054	0.058	-
10:35	0.009	0.008	10:35	0.102	0.057	
10:36	0.008	0.008	10:36	0.059	0.052	-
10:37	0.008	0.008	10:37	0.055	0.050	-
10:38	0.009	0.008	10:38	0.069	0.048	-
10:39	0.009	0.008	10:39	0.048	0.045	-
10:40	0.009	0.008	10:40	0.058	0.044	-

	المستندية ا	P/	ARTICULATE			Exceeds
Time	Upwind PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
10:41	0.009	0.008	10:41	0.145	0.041	- Alai III LIIIIILS
10:42	0.003	0.008	10:42	0.062	0.034	
10:43	0.009	0.008	10:43	0.047	0.033	
10:44	0.003	0.008	10:44	0.047	0.033	
10:45	0.007	0.009	10:45	0.032	0.032	
10:45	0.007	0.009	10:46	0.031	0.032	
10:47	0.008	0.009	10:47	0.035	0.032	
10:48	0.007	0.009	10:48	0.027	0.031	
10:49	0.007	0.009	10:49	0.037	0.031	
10:50	0.007	0.010	10:50	0.037	0.031	
10:51	0.007	0.010	10:51	0.033	0.030	
10:52	0.003	0.010	10:52	0.025	0.029	
10:53	0.008	0.010	10:53	0.025	0.029	<u>-</u>
10:54	0.009	0.010	10:54	0.023	0.029	
10:55	0.008	0.010	10:55	0.023	0.029	
10:56		0.010	10:56	0.024	0.030	
	0.014					
10:57	0.011	0.010	10:57	0.037	0.030	-
10:58	0.011	0.009	10:58	0.032	0.029	-
10:59	0.01	0.009	10:59	0.035	0.038	-
11:00	0.01	0.009	11:00	0.035	0.039	-
11:01	0.01	0.009	11:01	0.033	0.039	-
11:02	0.01	0.009	11:02	0.031	0.041	-
11:03	0.01	0.009	11:03	0.027	0.041	-
11:04	0.01	0.009	11:04	0.03	0.041	-
11:05	0.009	0.009	11:05	0.024	0.041	-
11:06	0.009	0.009	11:06	0.025	0.043	-
11:07	0.008	0.009	11:07	0.025	0.043	-
11:08	0.008	0.009	11:08	0.023	0.044	-
11:09	0.009	0.009	11:09	0.028	0.044	-
11:10	0.009	0.009	11:10	0.026	0.044	-
11:11	0.009	0.009	11:11	0.036	0.045	-
11:12	0.007	0.009	11:12	0.022	0.045	-
11:13	0.011	0.009	11:13	0.167	0.046	-
11:14	0.009	0.008	11:14	0.052	0.037	-
11:15	0.008	0.008	11:15	0.034	0.035	-
11:16	0.008	0.008	11:16	0.06	0.035	-
11:17	0.009	0.008	11:17	0.031	0.034	-
11:18	0.009	0.008	11:18	0.026	0.035	-
11:19	0.008	0.008	11:19	0.038	0.036	-
11:20	0.011	0.009	11:20	0.049	0.036	-
11:21	0.009	0.008	11:21	0.034	0.035	-
11:22	0.01	0.009	11:22	0.037	0.038	-
11:23	0.008	0.009	11:23	0.025	0.039	-
11:24	0.008	0.009	11:24	0.026	0.040	-
11:25	0.007	0.009	11:25	0.043	0.041	-
11:26	0.008	0.009	11:26	0.036	0.040	-
11:27	0.007	0.009	11:27	0.028	0.041	-
11:28	0.007	0.010	11:28	0.033	0.041	-
11:29	0.008	0.010	11:29	0.031	0.041	-
11:30	0.007	0.010	11:30	0.029	0.040	-
11:31	0.009	0.010	11:31	0.045	0.040	-
11:32	0.011	0.010	11:32	0.05	0.038	-
11:33	0.008	0.010	11:33	0.03	0.037	-
11:34	0.011	0.010	11:34	0.041	0.036	-
11:35	0.009	0.010	11:35	0.038	0.035	

		P	ARTICULATE		Ī	
	Upwind			Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
11:36	0.011	0.010	11:36	0.079	0.034	-
11:37	0.011	0.009	11:37	0.053	0.031	-
11:38	0.009	0.009	11:38	0.039	0.029	-
11:39	0.011	0.009	11:39	0.034	0.028	-
11:40	0.011	0.009	11:40	0.04	0.027	-
11:41	0.012	0.009	11:41	0.038	0.026	-
11:42	0.01	0.009	11:42	0.034	0.025	-
11:43	0.011	0.009	11:43	0.027	0.024	-
11:44	0.01	0.009	11:44	0.022	0.024	-
11:45	0.007	0.008	11:45	0.026	0.030	-
11:46	0.008	0.009	11:46	0.025	0.030	-
11:47	0.008	0.009	11:47	0.024	0.030	-
11:48	0.009	0.009	11:48	0.023	0.030	-
11:49	0.007	0.009	11:49	0.023	0.030	-
11:50	0.008	0.009	11:50	0.025	0.030	-
11:51	0.01	0.009	11:51	0.025	0.030	-
11:52	0.009	0.009	11:52	0.023	0.030	-
11:53	0.011	0.009	11:53	0.025	0.030	-
11:54	0.008	0.009	11:54	0.027	0.030	-
11:55	0.007	0.009	11:55	0.023	0.030	-
11:56	0.01	0.009	11:56	0.024	0.030	-
11:57	0.008	0.009	11:57	0.024	0.030	-
11:58	0.009	0.009	11:58	0.026	0.030	-
11:59	0.008	0.009	11:59	0.104	0.030	-
12:00	0.009	0.009	12:00	0.024	0.024	-
12:01	0.008	0.009	12:01	0.027	0.026	-
12:02	0.009	0.009	12:02	0.025	0.026	-
12:03	0.013	0.009	12:03	0.026	0.027	-
12:04	0.009	0.009	12:04	0.022	0.026	-
12:05	0.008	0.009	12:05	0.026	0.027	-
12:06	0.007	0.009	12:06	0.022	0.027	-
12:07	0.007	0.009	12:07	0.024	0.027	-
12:08	0.01	0.009	12:08	0.027	0.027	-
12:09	0.008	0.009	12:09	0.028	0.027	-
12:10	0.007	0.008	12:10	0.021	0.027	-
12:11	0.009	0.008	12:11	0.023	0.027	-
12:12	0.013	0.008	12:12	0.024	0.027	-
12:13	0.011	0.008	12:13	0.023	0.027	-
12:14	0.007	0.008	12:14	0.023	0.027	-
12:15	0.009	0.008	12:15	0.042	0.027	-
12:16	0.011	0.008	12:16	0.039	0.025	-
12:17	0.007	0.008	12:17	0.028	0.025	-
12:18	0.009	0.008	12:18	0.025	0.024	-
12:19	0.008	0.008	12:19	0.027	0.024	-
12:20	0.007	0.008	12:20	0.031	0.024	-
12:21	0.008	0.008	12:21	0.025	0.024	-
12:22	0.007	0.008	12:22	0.025	0.023	-
12:23	0.007	0.008	12:23	0.023	0.023	-
12:24	0.006	0.008	12:24	0.022	0.023	-
12:25	0.007	0.008	12:25	0.022	0.023	-
12:26	0.008	0.008	12:26	0.023	0.024	-
12:27	0.007	0.008	12:27	0.023	0.024	-
12:28	0.007	0.008	12:28	0.024	0.023	-
12:29	0.008	0.008	12:29	0.023	0.023	-
12:30	0.009	0.008	12:30	0.022	0.023	

	Harrier d	P.	ARTICULATE	Eveneds		
	Upwind			Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
12:31	0.009	0.008	12:31	0.025	0.023	-
12:32	0.01	0.008	12:32	0.027	0.024	-
12:33	0.008	0.008	12:33	0.023	0.024	-
12:34	0.007	0.008	12:34	0.022	0.024	-
12:35	0.008	0.008	12:35	0.024	0.024	-
12:36	0.007	0.008	12:36	0.023	0.024	-
12:37	0.007	0.008	12:37	0.023	0.024	-
12:38	0.008	0.008	12:38	0.026	0.024	-
12:39	0.008	0.008	12:39	0.022	0.023	-
12:40	0.008	0.008	12:40	0.024	0.023	-
12:41	0.007	0.008	12:41	0.023	0.024	-
12:42	0.007	0.008	12:42	0.021	0.024	-
12:43	0.007	0.008	12:43	0.021	0.024	-
12:44	0.008	0.008	12:44	0.021	0.024	-
12:45	0.008	0.008	12:45	0.022	0.025	-
12:46	0.008	0.008	12:46	0.036	0.025	-
12:47	0.008	0.008	12:47	0.023	0.024	-
12:48	0.01	0.008	12:48	0.024	0.024	-
12:49	0.009	0.008	12:49	0.024	0.024	-
12:50	0.007	0.008	12:50	0.022	0.024	-
12:51	0.007	0.008	12:51	0.023	0.024	-
12:52	0.008	0.008	12:52	0.022	0.024	-
12:53	0.007	0.008	12:53	0.021	0.024	-
12:54	0.007	0.008	12:54	0.024	0.025	-
12:55	0.008	0.008	12:55	0.026	0.024	-
12:56	0.008	0.008	12:56	0.023	0.024	-
12:57	0.008	0.008	12:57	0.024	0.024	-
12:58	0.008	0.008	12:58	0.023	0.024	-
12:59	0.01	0.008	12:59	0.031	0.024	-
13:00	0.008	0.008	13:00	0.027	0.023	-
13:01	0.009	0.008	13:01	0.024	0.023	-
13:02	0.008	0.008	13:02	0.025	0.023	-
13:03	0.009	0.008	13:03	0.025	0.023	-
13:04	0.009	0.008	13:04	0.025	0.023	-
13:05	0.006	0.009	13:05	0.023	0.023	-
13:06	0.006	0.010	13:06	0.022	0.023	-
13:07	0.007	0.010	13:07	0.022	0.023	-
13:08	0.009	0.010	13:08	0.024	0.024	-
13:09	0.008	0.010	13:09	0.022	0.024	-
13:10	0.009	0.010	13:10	0.022	0.024	-
13:11	0.008	0.010	13:11	0.024	0.024	
13:12	0.007	0.010	13:12	0.021	0.024	-
13:13	0.007	0.010	13:13	0.023	0.024	-
13:14	0.007	0.010	13:14	0.023	0.024	-
13:15	0.013	0.010 0.010	13:15	0.023	0.024	-
13:16 13:17	0.008	0.010	13:16 13:17	0.025 0.025	0.024 0.024	-
13:17	0.008	0.011	13:17	0.025	0.024	<u>-</u>
13:18	0.008	0.011	13:18	0.025	0.024	
13:19	0.023	0.011	13:19	0.025	0.024	-
13:20	0.015	0.010	13:20	0.023	0.024	<u>-</u> -
		0.010	13:21	0.024	0.024	
13:22 13:23	0.01 0.009	0.009	13:22	0.024	0.024	<u>-</u>
13:23	0.009	0.009	13:23	0.024	0.024	<u>-</u>
13:24	0.008	0.009	13:24	0.024	0.024	-

		P/	ARTICULATE			Eveneds
Upwind				Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
13:26	0.01	0.010	13:26	0.025	0.024	-
13:27	0.008	0.010	13:27	0.023	0.024	-
13:28	0.009	0.011	13:28	0.022	0.024	-
13:29	0.009	0.011	13:29	0.022	0.024	-
13:30	0.012	0.011	13:30	0.027	0.024	-
13:31	0.011	0.012	13:31	0.024	0.024	-
13:32	0.01	0.012	13:32	0.024	0.024	-
13:33	0.009	0.012	13:33	0.024	0.024	-
13:34	0.009	0.012	13:34	0.024	0.024	-
13:35	0.01	0.012	13:35	0.023	0.024	-
13:36	0.008	0.012	13:36	0.023	0.024	-
13:37	0.009	0.012	13:37	0.024	0.024	-
13:38	0.011	0.012	13:38	0.024	0.024	-
13:39	0.01	0.012	13:39	0.023	0.024	-
13:40	0.01	0.012	13:40	0.024	0.024	-
13:41	0.014	0.013	13:41	0.023	0.024	-
13:42	0.018	0.012	13:42	0.023	0.024	-
13:43	0.014	0.012	13:43	0.023	0.024	-
13:44	0.012	0.011	13:44	0.028	0.024	-
13:45	0.02	0.011	13:45	0.022	0.024	-
13:46	0.017	0.011	13:46	0.025	0.024	-
13:47	0.01	0.010	13:47	0.025	0.024	-
13:48	0.008	0.010	13:48	0.024	0.024	-
13:49	0.008	0.010	13:49	0.026	0.024	-
13:50	0.008	0.010	13:50	0.022	0.024	-
13:51	0.009	0.010	13:51	0.022	0.024	-
13:52	0.009	0.010	13:52	0.025	0.024	-
13:53	0.011	0.010	13:53	0.026	0.024	-
13:54	0.014	0.010	13:54	0.024	0.024	-
13:55	0.018	0.009	13:55	0.026	0.024	-
13:56	0.011	0.009	13:56	0.023	0.024	-
13:57	0.009	0.009	13:57	0.024	0.024	-
13:58	0.008	0.009	13:58	0.023	0.025	-
13:59	0.008	0.009	13:59	0.022	0.025	-
14:00	0.011	0.009	14:00	0.026	0.025	-
14:01	0.008	0.008	14:01	0.024	0.025	-
14:02	0.009	0.009	14:02	0.023	0.025	-
14:03	0.008	0.009	14:03	0.024	0.025	-
14:04	0.008	0.009	14:04	0.026	0.025	-
14:05	0.009	0.008	14:05	0.024	0.025	-
14:06	0.008	0.008	14:06	0.025	0.025	-
14:07	0.008	0.008	14:07	0.022	0.024	-
14:08	0.01	0.008	14:08	0.025	0.024	-
14:09	0.009	0.008	14:09	0.026	0.024	-
14:10	0.008	0.008	14:10	0.025	0.024	-
14:11	0.009	0.008	14:11	0.025	0.024	-
14:12	0.009	0.008	14:12	0.029	0.024	-
14:13	0.008	0.008	14:13	0.024	0.023	-
14:14	0.008	0.008	14:14	0.025	0.023	-
14:15	0.008	0.008	14:15	0.027	0.023	-
14:16	0.009	0.008	14:16	0.026	0.023	-
14:17	0.009	0.008	14:17	0.024	0.023	-
14:18	0.008	0.008	14:18	0.022	0.023	
14:19	0.007	0.008	14:19	0.021	0.023	_
14:20	0.007	0.008	14:20	0.022	0.023	_

		P/	ARTICULATE	DATA		
	Upwind			Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
14:21	0.008	0.008	14:21	0.023	0.023	-
14:22	0.008	0.008	14:22	0.022	0.023	-
14:23	0.007	0.008	14:23	0.022	0.023	-
14:24	0.008	0.009	14:24	0.022	0.024	-
14:25	0.008	0.009	14:25	0.022	0.024	-
14:26	0.008	0.009	14:26	0.023	0.024	-
14:27	0.008	0.009	14:27	0.023	0.025	-
14:28	0.009	0.009	14:28	0.022	0.024	-
14:29	0.009	0.009	14:29	0.026	0.024	-
14:30	0.008	0.009	14:30	0.024	0.024	-
14:31	0.007	0.008	14:31	0.024	0.024	-
14:32	0.008	0.008	14:32	0.024	0.024	-
14:33	0.01	0.008	14:33	0.022	0.024	-
14:34	0.008	0.008	14:34	0.022	0.024	-
14:35	0.01	0.008	14:35	0.024	0.024	-
14:36	0.008	0.008	14:36	0.023	0.024	-
14:37	0.01	0.008	14:37	0.028	0.024	-
14:38	0.01	0.008	14:38	0.028	0.024	-
14:39	0.011	0.008	14:39	0.026	0.024	-
14:40	0.007	0.008	14:40	0.026	0.023	-
14:41	0.008	0.008	14:41	0.026	0.023	-
14:42	0.008	0.008	14:42	0.021	0.023	-
14:43	0.007	0.008	14:43	0.022	0.023	-
14:44	0.008	0.008	14:44	0.023	0.023	-
14:45	0.007	0.008	14:45	0.022	0.024	-
14:46	0.007	0.008	14:46	0.022	0.024	-
14:47	0.008	0.008	14:47	0.021	0.024	-
14:48	0.008	0.008	14:48	0.028	0.024	-
14:49			14:49	0.023	0.024	
14:50			14:50	0.023	0.024	
14:51			14:51			

	Number of Inst	ances Where Downwir	May 7, 2020 nd VOCs Exceeds U	owind VOCs + 5nnm	=	0
			arable Data Points			348
		Tramber of comp	PID DATA			340
	Upwind		110 07(17)	Downwind		I
Time		15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
7:28	0.4		7:28			
7:29			7:29			
7:30	0.5		7:30			
7:31	0.5		7:31			
7:32	0.5		7:32			
7:33	0.5		7:33			
7:34	0.5		7:34	0		
7:35	0.5		7:35	0		
7:36	0.5		7:36	0		
7:37	0.5		7:37	0		
7:38	0.5		7:38	0		
7:39	0.5		7:39	0		
7:40	0.5		7:40	0		
7:41	0.5		7:41	0		
7:42	0.6	0.5	7:42	0		
7:43	0.7	0.5	7:43	0	0.0	-
7:44	0.7	0.5	7:44	0	0.0	-
7:45	0.6	0.5	7:45	0	0.0	-
7:46	0.7	0.6	7:46	0	0.0	-
7:47	0.7	0.6	7:47	0	0.0	-
7:48	0.7	0.6	7:48	0	0.0	-
7:49	0.8	0.6	7:49	0	0.0	-
7:50	1.2	0.6	7:50	0	0.0	-
7:51	0.8	0.7	7:51	0	0.0	-
7:52	0.6	0.7	7:52	0	0.0	-
7:53	0.6	0.7	7:53	0	0.0	-
7:54	0.6	0.7	7:54	0	0.0	-
7:55	0.6	0.7	7:55	0	0.0	-
7:56	0.7	0.7	7:56	0	0.0	-
7:57	0.6	0.7	7:57	0	0.0	-
7:58	0.6	0.7	7:58	0	0.0	-
7:59	0.6	0.7	7:59	0	0.0	-
8:00	0.6	0.7	8:00	0	0.0	-
8:01	0.6	0.7	8:01	0	0.0	-
8:02	0.6	0.7	8:02	0	0.0	-
8:03	0.6	0.7	8:03	0	0.0	-
8:04	0.6	0.7	8:04	0	0.0	-
8:05	0.6	0.6	8:05	0	0.0	-
8:06	0.6	0.6	8:06	0	0.0	-
8:07	0.6	0.6	8:07	0	0.0	-
8:08	0.6	0.6	8:08	0	0.0	-
8:09	0.7	0.6	8:09	0	0.0	-
8:10	0.6	0.6	8:10	0	0.0	-
8:11		0.6	8:11	0	0.0	-
8:12	0.6	0.6	8:12	0	0.0	-
8:13	0.6	0.6	8:13	0	0.0	-
8:14		0.6	8:14	0	0.0	-
8:15	0.6	0.6	8:15	0	0.0	-
8:16		0.6	8:16	0	0.0	-
8:17		0.6	8:17	0	0.0	-
8:18	0.6	0.6	8:18	0	0.0	-

PID DATA Upwind Downwind						
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC
8:19	0.6	0.6	8:19	0	0.0	-
8:20	0.6	0.6	8:20	0	0.0	-
8:21	0.6	0.6	8:21	0	0.0	-
8:22	0.6	0.6	8:22	0	0.0	-
8:23	0.6	0.6	8:23	0	0.0	-
8:24	0.6	0.6	8:24	0	0.0	-
8:25	0.6	0.6	8:25	0	0.0	-
8:26	0.5	0.6	8:26	0	0.0	-
8:27	0.5	0.6	8:27	0	0.0	-
8:28	0.5	0.6	8:28	0	0.0	-
8:29	0.5	0.6	8:29	0	0.0	-
8:30	0.5	0.6	8:30	0	0.0	-
8:31	0.5	0.6	8:31	0	0.0	-
8:32	0.5	0.6	8:32	0	0.0	-
8:33	0.5	0.5	8:33	0	0.0	-
8:34	0.6	0.5	8:34	0	0.0	-
8:35	0.6	0.5	8:35	0	0.0	-
8:36	0.6	0.5	8:36	0	0.0	-
8:37	0.6	0.5	8:37	0	0.0	_
8:38	0.6	0.5	8:38	0	0.0	_
8:39	0.5	0.5	8:39	0	0.0	_
8:40	0.6	0.5	8:40	0	0.0	_
8:41	0.5	0.5	8:41	0	0.0	_
8:42	0.5	0.5	8:42	0	0.0	_
8:43	0.5	0.5	8:43	0	0.0	 _
8:44	0.5	0.5	8:44	0	0.0	-
8:45	0.5	0.5	8:45	0	0.0	-
8:46	0.5	0.5	8:46	0	0.0	_
8:47	0.5	0.5	8:47	0	0.0	-
8:48	0.5	0.5	8:48	0	0.0	-
8:49	0.5	0.5	8:49	0	0.0	-
8:50	0.5	0.5	8:50	0	0.0	-
8:51	0.5	0.5	8:51	0	0.0	-
8:52	0.5	0.5	8:52	0	0.0	-
8:53	0.4	0.5	8:53	0	0.0	-
8:54	0.4	0.5	8:54	0	0.0	
8:55	0.4	0.5	8:55	0	0.0	-
8:56	0.3	0.5	8:56	0	0.0	-
8:57	0.4	0.5	8:57	0	0.0	-
8:58	0.4	0.5	8:58	0	0.0	-
8:59	0.4	0.5	8:59	0	0.0	-
9:00	0.4	0.5	9:00	0	0.0	-
9:00	0.4	0.5	9:01	0	0.0	-
9:02	0.5	0.5	9:02	0	0.0	-
9:03	0.3	0.5	9:03	0	0.0	-
9:04	0.5	0.4	9:04	0	0.0	-
9:05	0.5	0.4	9:05	0	0.0	-
9:05	0.5	0.4	9:05	0	0.0	
9:06	0.5	0.4	9:06	0	0.0	-
				0		-
9:08	0.5	0.5	9:08		0.0	-
9:09	0.5	0.5	9:09	0	0.0	-
9:10	0.5	0.5	9:10	0	0.0	-
9:11	0.5	0.5	9:11	0	0.0	-

	Upwind		PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC
9:13	0.4	0.5	9:13	0	0.0	-
9:14	0.4	0.5	9:14	0	0.0	-
9:15	0.3	0.5	9:15	0	0.0	-
9:16	0.4	0.5	9:16	0	0.0	-
9:17	0.3	0.4	9:17	0	0.0	-
9:18	0.4	0.4	9:18	0	0.0	-
9:19	0.4	0.4	9:19	0	0.0	-
9:20	0.3	0.4	9:20	0	0.0	-
9:21	0.3	0.4	9:21	0	0.0	-
9:22	0.4	0.4	9:22	0	0.0	_
9:23	0.3	0.4	9:23	0	0.0	-
9:24	0.4	0.4	9:24	0	0.0	_
9:25	0.4	0.4	9:25	0	0.0	_
9:26	0.4	0.4	9:26	0	0.0	_
9:27	0.4	0.4	9:27	0	0.0	_
9:28	0.4	0.4	9:28	0	0.0	_
9:29	0.5	0.4	9:29	0	0.0	_
9:30	0.4	0.4	9:30	0	0.0	_
9:31	0.4	0.4	9:31	0	0.0	_
9:32	0.4	0.4	9:32	0	0.0	
9:33	0.4	0.4	9:33	0	0.0	
9:34	0.4	0.4	9:34	0	0.0	_
9:35	0.5	0.4	9:35	0	0.0	-
9:36	0.6	0.4	9:36	0	0.0	
9:37	0.6	0.4	9:37	0	0.0	-
9:38	0.6	0.4	9:38	0	0.0	-
9:39	0.6	0.5	9:39			-
9:39	0.6	0.5	9:40	0 0	0.0	-
9:40	0.6	0.5	9:40	0	0.0	-
9:41	0.6	0.5	9:42	0	0.0	-
	0.7	0.5	9:42	0		-
9:43					0.0	-
9:44	0.7	0.5	9:44	0	0.0	-
9:45 9:46	0.6	0.6 0.6	9:45 9:46	0	0.0	-
9:47	0.7	0.6	9:47	0	0.0	-
				0		-
9:48	0.7	0.6	9:48	0	0.0	-
9:49	0.7	0.6 0.6	9:49	0	0.0	-
9:50 9:51	0.7	0.6	9:50 9:51	0	0.0	-
	0.7	0.7		0		-
9:52	0.7		9:52	0	0.0	-
9:53		0.7	9:53		0.0	-
9:54	0.8	0.7	9:54	0	0.0	-
9:55	0.8	0.7	9:55	0	0.0	-
9:56	0.7	0.7	9:56	0	0.0	-
9:57	0.7	0.7	9:57	0	0.0	-
9:58	0.6	0.7	9:58	0	0.0	-
9:59	0.6	0.7	9:59	0	0.0	-
10:00	0.6	0.7	10:00	0	0.0	-
10:01	0.7	0.7	10:01	0	0.0	-
10:02	0.7	0.7	10:02	0	0.0	-
10:03	0.6	0.7	10:03	0	0.0	-
10:04	0.7	0.7	10:04	0	0.0	-
10:05	0.7	0.7	10:05	0	0.0	-

	Upwind	1	PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
10:07	0.7	0.7	10:07	0	0.0	-
10:08	0.7	0.7	10:08	0	0.0	-
10:09	0.7	0.7	10:09	0	0.0	-
10:10	0.7	0.7	10:10	0	0.0	-
10:11	0.7	0.7	10:11	0	0.0	-
10:12	0.7	0.7	10:12	0	0.0	-
10:13	0.7	0.7	10:13	0	0.0	-
10:14	0.7	0.7	10:14	0	0.0	-
10:15	0.7	0.7	10:15	0	0.0	-
10:16	0.7	0.7	10:16	0	0.0	-
10:17	0.8	0.7	10:17	0	0.0	-
10:18	0.8	0.7	10:18	0	0.0	_
10:19	0.8	0.7	10:19	0	0.0	_
10:20	0.7	0.7	10:20	0	0.0	_
10:21	0.8	0.7	10:21	0	0.0	_
10:22	0.8	0.7	10:22	0	0.0	_
10:23	0.8	0.7	10:23	0	0.0	_
10:24	0.8	0.7	10:24	0	0.0	_
10:25	0.8	0.7	10:25	0	0.0	-
10:26	0.7	0.7	10:26	0	0.0	-
10:26	0.7	0.7	10:26	0	0.0	-
						-
10:28	0.8	0.8	10:28	0	0.0	-
10:29	0.8	0.8	10:29	0	0.0	-
10:30	0.8	0.8	10:30	0	0.0	-
10:31	0.8	0.8	10:31	0	0.0	-
10:32	0.8	0.8	10:32	0	0.0	-
10:33	0.8	0.8	10:33	0	0.0	-
10:34	0.7	0.8	10:34	0	0.0	-
10:35	0.7	0.8	10:35	0	0.0	-
10:36	0.6	0.8	10:36	0	0.0	-
10:37	0.6	0.7	10:37	0	0.0	-
10:38	0.6	0.7	10:38	0	0.0	-
10:39	0.6	0.7	10:39	0	0.0	-
10:40	0.6	0.7	10:40	0	0.0	-
10:41	0.5	0.7	10:41	0	0.0	-
10:42	0.5	0.7	10:42	0	0.0	-
10:43	0.5	0.7	10:43	0	0.0	-
10:44	0.5	0.6	10:44	0	0.0	-
10:45	0.6	0.6	10:45	0	0.0	-
10:46	0.6	0.6	10:46	0	0.0	-
10:47	0.6	0.6	10:47	0	0.0	-
10:48	0.6	0.6	10:48	0	0.0	-
10:49	0.6	0.6	10:49	0	0.0	-
10:50	0.6	0.6	10:50	0	0.0	-
10:51	0.7	0.6	10:51	0	0.0	-
10:52	0.7	0.6	10:52	0	0.0	-
10:53	0.7	0.6	10:53	0	0.0	-
10:54	0.7	0.6	10:54	0	0.0	-
10:55	0.7	0.6	10:55	0	0.0	-
10:56	0.8	0.6	10:56	0	0.0	-
10:57	0.8	0.6	10:57	0	0.0	-
10:58	0.8	0.7	10:58	0	0.0	-
10:59	0.8	0.7	10:59	0	0.0	-
11:00	0.8	0.7	11:00	0	0.0	-

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
11:01	0.8	0.7	11:01	0	0.0	-
11:02	0.9	0.7	11:02	0	0.0	-
11:03	0.9	0.8	11:03	0	0.0	-
11:04	1	0.8	11:04	0	0.0	-
11:05	0.9	0.8	11:05	0	0.0	-
11:06	0.9	0.8	11:06	0	0.0	-
11:07	0.9	0.8	11:07	0	0.0	-
11:08	0.9	0.8	11:08	0	0.0	-
11:09	0.9	0.9	11:09	0	0.0	-
11:10	0.9	0.9	11:10	0	0.0	-
11:11	0.9	0.9	11:11	0	0.0	-
11:12	0.9	0.9	11:12	0	0.0	-
11:13	0.9	0.9	11:13	0	0.0	-
11:14	0.8	0.9	11:14	0	0.0	-
11:15	0.7	0.9	11:15	0	0.0	-
11:16	0.8	0.9	11:16	0	0.0	-
11:17	0.7	0.9	11:17	0	0.0	-
11:18	0.6	0.8	11:18	0	0.0	-
11:19	0.7	0.8	11:19	0	0.0	-
11:20	0.7	0.8	11:20	0	0.0	_
11:21	0.7	0.8	11:21	0	0.0	-
11:22	0.8	0.8	11:22	0	0.0	_
11:23	0.6	0.8	11:23	0	0.0	<u> </u>
11:24	0.7	0.8	11:24	0	0.0	_
11:25	0.7	0.7	11:25	0	0.0	_
11:26	0.7	0.7	11:26	0	0.0	-
11:27	0.8	0.7	11:27	0	0.0	-
11:28	0.6	0.7	11:28	0	0.0	 -
11:29	0.7	0.7	11:29	0	0.0	-
11:30	0.7	0.7	11:30	0	0.0	-
11:31	0.7	0.7	11:31	0	0.0	-
11:32	0.7	0.7	11:32	0	0.0	-
11:33	0.7	0.7	11:33	0	0.0	-
11:34	0.7	0.7	11:34	0	0.0	-
11:35	0.7	0.7	11:35	0	0.0	
	0.7	0.7		0	0.0	-
11:36 11:37	0.8	0.7	11:36 11:37	0	0.0	-
11:37	0.7	0.7	11:37	0	0.0	-
11:38	0.7	0.7	11:38	0	0.0	-
11:39	0.7	0.7	11:40	0	0.0	-
	0.8	0.7	11:40	0	0.0	-
11:41				0		-
11:42	0.7	0.7	11:42		0.0	-
11:43	0.7	0.7	11:43	0		-
11:44	0.8	0.7	11:44	0	0.0	-
11:45	0.8	0.7	11:45	0	0.0	-
11:46	0.9	0.7	11:46	0	0.0	-
11:47	0.8	0.7	11:47	0	0.0	-
11:48	0.8	0.8	11:48	0	0.0	-
11:49	0.9	0.8	11:49	0	0.0	-
11:50	0.8	0.8	11:50	0	0.0	-
11:51	0.8	0.8	11:51	0	0.0	-
11:52	0.9	0.8	11:52	0	0.0	-
11:53	0.9	0.8	11:53	0	0.0	-
11:54	0.9	0.8	11:54	0	0.0	-

	Upwind	I	PID DATA	Downwind			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits	
11:55	0.9	0.8	11:55	0	0.0	-	
11:56	0.9	0.8	11:56	0	0.0	-	
11:57	0.9	0.8	11:57	0	0.0	-	
11:58	0.9	0.9	11:58	0	0.0	-	
11:59	0.9	0.9	11:59	0	0.0	-	
12:00	0.8	0.9	12:00	0	0.0	-	
12:01	1.1	0.9	12:01	0	0.0	-	
12:02	0.8	0.9	12:02	0	0.0	-	
12:03	0.9	0.9	12:03	0	0.0	-	
12:04	0.8	0.9	12:04	0	0.0	-	
12:05	0.9	0.9	12:05	0	0.0	-	
12:06	0.9	0.9	12:06	0	0.0	-	
12:07	0.9	0.9	12:07	0	0.0	-	
12:08	0.8	0.9	12:08	0	0.0	-	
12:09	0.9	0.9	12:09	0	0.0	_	
12:10	0.9	0.9	12:10	0	0.0	-	
12:11	0.9	0.9	12:11	0	0.0	-	
12:12	0.9	0.9	12:12	0	0.0	_	
12:13	0.8	0.9	12:13	0	0.0	-	
12:14	0.8	0.9	12:14	0	0.0	-	
12:14	0.9	0.9	12:14	0	0.0		
						-	
12:16	0.8	0.9	12:16	0	0.0	-	
12:17	0.8	0.9	12:17	0	0.0	-	
12:18	0.8	0.9	12:18	0	0.0	-	
12:19	0.8	0.9	12:19	0	0.0	-	
12:20	0.8	0.9	12:20	0	0.0	-	
12:21	0.8	0.8	12:21	0	0.0	-	
12:22	0.8	0.8	12:22	0	0.0	-	
12:23	0.8	0.8	12:23	0	0.0	-	
12:24	0.8	0.8	12:24	0	0.0	-	
12:25	0.8	0.8	12:25	0	0.0	-	
12:26	0.8	0.8	12:26	0	0.0	-	
12:27	0.8	0.8	12:27	0	0.0	-	
12:28	0.8	0.8	12:28	0	0.0	-	
12:29	0.8	0.8	12:29	0	0.0	-	
12:30	0.8	0.8	12:30	0	0.0	-	
12:31	0.8	0.8	12:31	0	0.0	-	
12:32	0.8	0.8	12:32	0	0.0	-	
12:33	0.8	0.8	12:33	0	0.0	-	
12:34	0.8	0.8	12:34	0	0.0	-	
12:35	0.8	0.8	12:35	0	0.0	-	
12:36	0.8	0.8	12:36	0	0.0	-	
12:37	0.8	0.8	12:37	0	0.0	-	
12:38	0.9	0.8	12:38	0	0.0	-	
12:39	0.8	0.8	12:39	0	0.0	-	
12:40	0.8	0.8	12:40	0	0.0	-	
12:41	0.8	0.8	12:41	0	0.0	-	
12:42	0.8	0.8	12:42	0	0.0	-	
12:43	0.9	0.8	12:43	0	0.0	-	
12:44	0.9	0.8	12:44	0	0.0	-	
12:45	0.9	0.8	12:45	0	0.0	-	
12:46	0.9	0.8	12:46	0	0.0	_	
12:47	0.8	0.8	12:47	0	0.0	_	
12:48	0.8	0.8	12:48	0	0.0	-	

	Upwind	I	PID DATA	Downwind		1
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
12:49	0.8	0.8	12:49	0	0.0	-
12:50	0.8	0.8	12:50	0	0.0	-
12:51	0.8	0.8	12:51	0	0.0	-
12:52	0.8	0.8	12:52	0	0.0	-
12:53	0.8	0.8	12:53	0	0.0	-
12:54	0.8	0.8	12:54	0	0.0	-
12:55	0.8	0.8	12:55	0	0.0	-
12:56	0.8	0.8	12:56	0	0.0	-
12:57	0.8	0.8	12:57	0	0.0	-
12:58	0.8	0.8	12:58	0	0.0	_
12:59	0.8	0.8	12:59	0	0.0	_
13:00	0.9	0.8	13:00	0	0.0	_
13:01	0.9	0.8	13:01	0	0.0	_
13:02	0.9	0.8	13:02	0	0.0	-
13:03	0.9	0.8	13:03	0	0.0	-
13:04	0.9	0.8	13:04	0	0.0	-
13:05	0.8	0.8	13:05	0	0.0	-
13:06	0.8	0.8	13:06	0	0.0	
13:07	0.9	0.8	13:07	0	0.0	-
						-
13:08	0.9	0.9	13:08	0	0.0	-
13:09	0.9	0.9	13:09	0	0.0	-
13:10	0.9	0.9	13:10	0	0.0	-
13:11	0.9	0.9	13:11	0	0.0	-
13:12	0.9	0.9	13:12	0	0.0	-
13:13	0.9	0.9	13:13	0	0.0	-
13:14	0.9	0.9	13:14	0	0.0	-
13:15	0.9	0.9	13:15	0	0.0	-
13:16	1	0.9	13:16	0	0.0	-
13:17	1	0.9	13:17	0	0.0	-
13:18	0.9	0.9	13:18	0	0.0	-
13:19	0.9	0.9	13:19	0	0.0	-
13:20	1	0.9	13:20	0	0.0	-
13:21	1	0.9	13:21	0	0.0	-
13:22	0.9	0.9	13:22	0	0.0	-
13:23	1	0.9	13:23	0	0.0	-
13:24	1	0.9	13:24	0	0.0	-
13:25	1	0.9	13:25	0	0.0	-
13:26	0.9	0.9	13:26	0	0.0	-
13:27	0.9	0.9	13:27	0	0.0	-
13:28	0.9	0.9	13:28	0	0.0	-
13:29	1	1.0	13:29	0	0.0	-
13:30	1	1.0	13:30	0	0.0	-
13:31	1	1.0	13:31	0	0.0	-
13:32	1	1.0	13:32	0	0.0	-
13:33	1	1.0	13:33	0	0.0	-
13:34	1	1.0	13:34	0	0.0	-
13:35	1	1.0	13:35	0	0.0	-
13:36	1	1.0	13:36	0	0.0	-
13:37	1	1.0	13:37	0	0.0	-
13:38	1	1.0	13:38	0	0.0	-
13:39	1	1.0	13:39	0	0.0	-
13:40	1	1.0	13:40	0	0.0	-
13:41	1	1.0	13:41	0	0.0	-
13:42	1	1.0	13:42	0	0.0	_

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:43	1	1.0	13:43	0	0.0	-
13:44	1	1.0	13:44	0	0.0	-
13:45	1	1.0	13:45	0	0.0	-
13:46	1	1.0	13:46	0	0.0	-
13:47	1	1.0	13:47	0	0.0	-
13:48	1	1.0	13:48	0	0.0	_
13:49	1	1.0	13:49	0	0.0	_
13:50	1	1.0	13:50	0	0.0	_
13:51	1	1.0	13:51	0	0.0	_
13:52	1	1.0	13:52	0	0.0	_
13:53	1.1	1.0	13:53	0	0.0	-
13:54	1.1	1.0	13:54	0	0.0	<u> </u>
13:55	1	1.0	13:55	0	0.0	-
13:56	1	1.0	13:56	0	0.0	-
13:57	1	1.0	13:57	0	0.0	-
13:58	1	1.0	13:58	0	0.0	-
13:59	1	1.0	13:59	0	0.0	-
14:00	1	1.0	14:00	0	0.0	-
14:01	1	1.0	14:01	0	0.0	-
14:02	1	1.0	14:02	0	0.0	-
14:03	1	1.0	14:03	0	0.0	-
14:04	1	1.0	14:04	0.1	0.0	-
14:05	1	1.0	14:05	0	0.0	-
14:06	1	1.0	14:06	0	0.0	-
14:07	1	1.0	14:07	0	0.0	-
14:08	1	1.0	14:08	0	0.0	-
14:09	1	1.0	14:09	0	0.0	-
14:10	0.9	1.0	14:10	0	0.0	_
14:11	1	1.0	14:11	0	0.0	_
14:12	1	1.0	14:12	0	0.0	-
14:13	1	1.0	14:13	0	0.0	_
14:14	1	1.0	14:14	0	0.0	-
14:15	1	1.0	14:15	0	0.0	
14:16	1	1.0	14:16	0	0.0	-
				0		-
14:17	1	1.0	14:17		0.0	-
14:18	1	1.0	14:18	0	0.0	-
14:19	1	1.0	14:19	0	0.0	-
14:20	1	1.0	14:20	0	0.0	-
14:21	1.1	1.0	14:21	0	0.0	-
14:22	1	1.0	14:22	0	0.0	-
14:23	1	1.0	14:23	0	0.0	-
14:24	1	1.0	14:24	0	0.0	-
14:25	1	1.0	14:25	0	0.0	-
14:26	1	1.0	14:26	0	0.0	-
14:27	0.9	1.0	14:27	0	0.0	-
14:28	0.9	1.0	14:28	0	0.0	-
14:29	0.9	1.0	14:29	0	0.0	-
14:30	0.9	1.0	14:30	0	0.0	-
14:31	0.8	1.0	14:31	0	0.0	-
14:32	0.8	1.0	14:32	0	0.0	-
14:33	0.8	0.9	14:33	0	0.0	-
14:34	0.8	0.9	14:34	0	0.0	-
14:35	0.8	0.9	14:35	0	0.0	-
14:36	0.8	0.9	14:36	0	0.0	_

	PID DATA									
	Upwind Downwind									
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits				
14:37	0.8	0.9	14:37	0	0.0	-				
14:38	0.8	0.9	14:38	0	0.0	-				
14:39	0.8	0.9	14:39	0	0.0	-				
14:40	0.8	0.8	14:40	0	0.0	-				
14:41	0.9	0.8	14:41	0	0.0	-				
14:42	0.8	0.8	14:42	0	0.0	-				
14:43	0.8	0.8	14:43	0	0.0	-				
14:44	0.8	0.8	14:44	0	0.0	-				
14:45	0.8	0.8	14:45	0	0.0	-				
14:46	0.8	0.8	14:46	0	0.0	-				
14:47	0.8	0.8	14:47	0	0.0	-				
14:48	0.8	0.8	14:48	0	0.0	-				
14:49	0.8	0.8	14:49	0	0.0	-				
14:50	0.8	0.8	14:50		0.0	-				

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/8/2020 Observer: Reid Balkind

Particulate Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.004	0.005					
Maximum 15min Average	0.020	0.023					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.003	0.003					
Maximum 1min Reading	0.070	0.115					

Organic Vapor Monitoring							
Upwind Downw							
Minimum 15min Average	0.2	0.1					
Maximum 15min Average	0.8	0.4					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.1	0.0					
Maximum 1min Reading	1.8	1.0					

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Numb	er of Instances Where	e Downwind Particulate	May 8, 20 es Exceeds l		.150 mg/m^3 =	0
		Number of Compara		·	G.	256
PARTICULATE DATA						
Upwind Downwind						
						Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limit
6:55	0.005		6:55			
6:56	0.004		6:56			
6:57	0.007		6:57			
6:58	0.004		6:58			
6:59	0.004		6:59			
7:00	0.004		7:00	0.005		
7:01	0.005		7:01	0.004		
7:02	0.004		7:02	0.003		
7:03	0.004		7:03	0.003		
7:04	0.004		7:04	0.003		
7:05	0.004		7:05	0.003		
7:06	0.004		7:06	0.003		
7:07	0.004		7:07	0.003		
7:08	0.004	0.000	7:08	0.003	0.013	
7:09 7:10	0.004	0.008 0.005	7:09 7:10	0.003	0.012 0.006	-
7:10	0.004 0.004	0.005	7:10	0.004	0.006	
7:11	0.004	0.005	7:11	0.004	0.006	
7:13	0.005	0.006	7:12	0.004	0.007	
7:14	0.003	0.006	7:14	0.005	0.007	
7:15	0.004	0.006	7:14	0.003	0.007	
7:16	0.005	0.006	7:16	0.005	0.008	
7:17	0.005	0.006	7:17	0.007	0.008	_
7:18	0.006	0.006	7:18	0.007	0.008	_
7:19	0.006	0.006	7:19	0.005	0.009	_
7:20	0.005	0.007	7:20	0.006	0.010	_
7:21	0.005	0.007	7:21	0.006	0.011	-
7:22	0.005	0.007	7:22	0.014	0.013	_
7:23	0.005	0.008	7:23	0.007	0.013	-
7:24	0.008	0.009	7:24	0.009	0.015	-
7:25	0.008	0.009	7:25	0.008	0.016	-
7:26	0.008	0.009	7:26	0.008	0.016	-
7:27	0.007	0.011	7:27	0.007	0.017	-
7:28	0.006	0.012	7:28	0.009	0.017	-
7:29	0.006	0.014	7:29	0.008	0.018	-
7:30	0.007	0.015	7:30	0.01	0.019	-
7:31	0.006	0.015	7:31	0.008	0.019	-
7:32	0.007	0.015	7:32	0.015	0.019	-
7:33	0.008	0.015	7:33	0.008	0.020	-
7:34	0.013	0.016	7:34	0.022	0.021	-
7:35	0.009	0.016	7:35	0.03	0.023	-
7:36	0.008	0.016	7:36	0.029	0.022	-
7:37	0.011	0.016	7:37	0.021	0.021	-
7:38	0.016	0.015	7:38	0.028	0.020	-
7:39	0.018	0.014	7:39	0.024	0.019	-
7:40	0.011	0.014	7:40	0.016	0.019	-
7:41	0.031	0.013	7:41	0.013	0.018	-
7:42	0.028	0.012	7:42	0.014	0.018	-
7:43	0.025	0.010	7:43	0.025	0.018	-
7:44	0.02	0.009 0.007	7:44	0.019	0.016 0.017	<u>-</u>
7:45 7:46	0.014	0.007	7:45 7:46	0.013 0.013	0.017	-

		P/	ARTICULATE	Eveneds		
Upwind				Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
7:47	0.009	0.006	7:47	0.025	0.016	-
7:48	0.01	0.006	7:48	0.03	0.015	-
7:49	0.015	0.006	7:49	0.046	0.013	-
7:50	0.011	0.005	7:50	0.015	0.010	-
7:51	0.004	0.004	7:51	0.013	0.010	-
7:52	0.004	0.004	7:52	0.009	0.009	-
7:53	0.004	0.004	7:53	0.016	0.009	-
7:54	0.007	0.005	7:54	0.013	0.009	-
7:55	0.007	0.004	7:55	0.013	0.008	-
7:56	0.006	0.004	7:56	0.01	0.008	-
7:57	0.004	0.004	7:57	0.005	0.007	-
7:58	0.004	0.004	7:58	0.005	0.007	-
7:59	0.003	0.004	7:59	0.034	0.007	-
8:00	0.004	0.004	8:00	0.008	0.005	-
8:01	0.004	0.004	8:01	0.004	0.005	-
8:02	0.004	0.004	8:02	0.004	0.005	-
8:03	0.004	0.004	8:03	0.004	0.005	-
8:04	0.004	0.005	8:04	0.004	0.005	-
8:05	0.004	0.005	8:05	0.004	0.006	-
8:06	0.004	0.005	8:06	0.004	0.006	-
8:07	0.004	0.005	8:07	0.006	0.007	-
8:08	0.005	0.005	8:08	0.01	0.007	-
8:09	0.005	0.005	8:09	0.006	0.007	-
8:10	0.005	0.005	8:10	0.006	0.007	-
8:11	0.004	0.005	8:11	0.005	0.008	-
8:12	0.004	0.005	8:12	0.005	0.009	-
8:13	0.005	0.006	8:13	0.005	0.011	-
8:14	0.005	0.006	8:14	0.006	0.012	-
8:15	0.005	0.007	8:15	0.004	0.014	-
8:16	0.004	0.007	8:16	0.004	0.015	-
8:17	0.005	0.008	8:17	0.004	0.016	-
8:18	0.005	0.008	8:18	0.006	0.016	-
8:19	0.005	0.007	8:19	0.008	0.016	-
8:20	0.005	0.007	8:20	0.007	0.015	-
8:21	0.005	0.008	8:21	0.021	0.016	-
8:22	0.005	0.008	8:22	0.012	0.015	-
8:23	0.006	0.008	8:23	0.008	0.014	-
8:24	0.006	0.008	8:24	0.008	0.015	-
8:25	0.005	0.008	8:25	0.020	0.016	-
8:26	0.005	0.009	8:26	0.012	0.016	-
8:27	0.013	0.009	8:27	0.033	0.015	-
8:28	0.014	0.008	8:28	0.028	0.014	-
8:29	0.012	0.008	8:29	0.032	0.013	-
8:30	0.013	0.007	8:30	0.023	0.011	-
8:31	0.009	0.007	8:31	0.011	0.010	-
8:32	0.005	0.006	8:32	0.005	0.010	-
8:33	0.004	0.007	8:33	0.005	0.011	-
8:34	0.005	0.007	8:34	0.007	0.012	-
8:35	0.01	0.007	8:35	0.008	0.013	-
8:36	0.007	0.007	8:36	0.007	0.013	-
8:37	0.006	0.007	8:37	0.01	0.013	-
8:38	0.007	0.007	8:38	0.016	0.013	-
8:39	0.011	0.007	8:39	0.023	0.015	-
8:40	0.007	0.007 0.007	8:40 8:41	0.015 0.007	0.014 0.014	-

	11	P/	ARTICULATE	Evenode		
Time	Upwind PM 10 (mg/m^3)	15-Minute Average	Time	Downwind PM 10 (mg/m^3)	15-Minute Average	Exceeds Particulate
				, ,		Alarm Limits
8:42	0.004	0.007	8:42	0.007	0.016	-
8:43	0.006	0.008	8:43	0.016	0.017	-
8:44	0.006	0.008	8:44	0.009	0.017	-
8:45	0.006	0.008	8:45	0.008	0.017	-
8:46	0.005	0.008	8:46	0.009	0.017	-
8:47	0.011	0.008	8:47	0.022	0.017	-
8:48	0.008	0.007	8:48	0.013	0.016	-
8:49	0.006	0.007	8:49	0.019	0.016	-
8:50	0.009	0.007	8:50	0.013	0.015	-
8:51	0.006	0.007	8:51	0.008	0.016	-
8:52	0.006	0.007	8:52	0.011	0.016	-
8:53	0.01	0.007	8:53	0.038	0.016	-
8:54	0.01	0.007	8:54	0.021	0.014	-
8:55	0.006	0.006	8:55	0.014	0.013	-
8:56	0.009	0.006	8:56	0.038	0.012	-
8:57	0.012	0.006	8:57	0.021	0.010	-
8:58	0.006	0.006	8:58	0.008	0.009	-
8:59	0.005	0.006	8:59	0.008	0.009	-
9:00	0.005	0.006	9:00	0.011	0.009	-
9:01	0.005	0.006	9:01	0.007	0.009	-
9:02	0.005	0.007	9:02	0.007	0.010	-
9:03	0.005	0.007	9:03	0.01	0.010	-
9:04	0.006	0.008	9:04	0.017	0.011	-
9:05	0.008	0.008	9:05	0.023	0.010	-
9:06	0.008	0.008	9:06	0.007	0.010	-
9:07	0.005	0.008	9:07	0.006	0.011	-
9:08	0.006	0.009	9:08	0.007	0.011	-
9:09	0.005	0.009	9:09	0.006	0.012	-
9:10	0.005	0.010	9:10	0.006	0.014	-
9:11	0.005	0.011	9:11	0.008	0.015	-
9:12	0.006	0.011	9:12	0.01	0.016	-
9:13	0.008	0.011	9:13	0.008	0.016	-
9:14	0.01	0.011	9:14	0.008	0.017	-
9:15	0.01	0.011	9:15	0.008	0.019	-
9:16	0.013	0.011	9:16	0.013	0.020	<u> </u>
9:17	0.011	0.011	9:17	0.015	0.019	-
9:18	0.012	0.011	9:18	0.018	0.020	-
9:19 9:20	0.009	0.011 0.011	9:19 9:20	0.013 0.021	0.019 0.019	-
	0.009				0.019	-
9:21 9:22	0.013	0.011 0.011	9:21 9:22	0.015 0.013		-
9:22	0.012	0.011	9:22	0.013	0.018 0.018	<u>-</u>
9:23	0.011	0.010	9:23	0.018	0.018	-
9:24	0.014	0.010	9:24	0.036	0.017	-
9:25	0.015	0.010	9:25	0.019	0.015	-
9:26	0.013 0.009	0.009	9:26	0.025	0.015	<u>-</u> -
9:27	0.009	0.009	9:27	0.011	0.014	
9:28	0.006	0.009	9:28	0.027	0.014	-
						-
9:30	0.01	0.009 0.009	9:30	0.021	0.012	-
9:31	0.012		9:31	0.012	0.012	-
9:32	0.01	0.009	9:32	0.016	0.012	-
9:33	0.01	0.009	9:33	0.014	0.012	-
9:34	0.01	0.009	9:34	0.008	0.012	-
9:35	0.008	0.009	9:35	0.01	0.012	-

		P	ARTICULATE		Ī	
Upwind				Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:37	0.008	0.008	9:37	0.009	0.011	-
9:38	0.007	0.008	9:38	0.013	0.011	-
9:39	0.009	0.008	9:39	0.009	0.011	-
9:40	0.008	0.008	9:40	0.009	0.011	-
9:41	0.008	0.007	9:41	0.014	0.011	-
9:42	0.007	0.007	9:42	0.012	0.010	-
9:43	0.008	0.007	9:43	0.012	0.010	-
9:44	0.008	0.007	9:44	0.01	0.009	-
9:45	0.008	0.007	9:45	0.023	0.009	-
9:46	0.015	0.007	9:46	0.018	0.008	-
9:47	0.008	0.007	9:47	0.01	0.009	-
9:48	0.007	0.008	9:48	0.009	0.010	-
9:49	0.006	0.008	9:49	0.008	0.010	-
9:50	0.006	0.010	9:50	0.007	0.011	-
9:51	0.006	0.012	9:51	0.007	0.011	-
9:52	0.006	0.013	9:52	0.008	0.011	-
9:53	0.006	0.014	9:53	0.007	0.011	-
9:54	0.006	0.014	9:54	0.007	0.011	-
9:55	0.006	0.014	9:55	0.007	0.011	-
9:56	0.006	0.014	9:56	0.007	0.011	-
9:57	0.006	0.014	9:57	0.007	0.011	-
9:58	0.006	0.015	9:58	0.007	0.012	-
9:59	0.005	0.015	9:59	0.007	0.012	-
10:00	0.007	0.015	10:00	0.007	0.012	-
10:01	0.025	0.015	10:01	0.032	0.012	-
10:02	0.012	0.014	10:02	0.018	0.010	-
10:03	0.008	0.013	10:03	0.011	0.009	-
10:04	0.032	0.014	10:04	0.02	0.009	-
10:05	0.039	0.012	10:05	0.01	0.008	-
10:06	0.025	0.010	10:06	0.012	0.008	-
10:07	0.014	0.010	10:07	0.008	0.008	-
10:08	0.016	0.010	10:08	0.008	0.008	-
10:09	0.007	0.010	10:09	0.008	0.008	-
10:10	0.006	0.011	10:10	0.008	0.008	-
10:11	0.008	0.013	10:11	0.008	0.008	-
10:12	0.009	0.015	10:12	0.009	0.008	-
10:13	0.007	0.015	10:13	0.008	0.008	-
10:14	0.007	0.015	10:14	0.008	0.008	-
10:15	0.007	0.015	10:15	0.008	0.008	-
10:16	0.006	0.016	10:16	0.007	0.008	-
10:17	0.008	0.016	10:17	0.007	0.008	-
10:18	0.013	0.017	10:18	0.007	0.009	-
10:19	0.008	0.018	10:19	0.007	0.009	-
10:20	0.009	0.019	10:20	0.008	0.009	-
10:21	0.029	0.019	10:21	0.007	0.009	-
10:22	0.015	0.018	10:22	0.007	0.009	-
10:23	0.009	0.018	10:23	0.01	0.009	
10:24	0.031	0.020	10:24	0.012	0.009	-
10:25	0.027	0.019	10:25	0.009	0.008	-
10:26	0.034	0.018	10:26	0.008	0.008	-
10:27	0.015	0.017	10:27	0.008	0.009	-
10:28	0.013	0.017	10:28	0.009	0.009	
10:29	0.007	0.017	10:29	0.008	0.010	-
10:30	0.01	0.018	10:30	0.01	0.010	-
10:31	0.01	0.019	10:31	0.009	0.010	-

P Upwind			ARTICULATE			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	Downwind PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
10:32	0.03	0.019	10:32	0.009	0.010	- Alai III LIIIIICS
10:33	0.023	0.019	10:33	0.009	0.010	
10:34	0.023	0.018	10:34	0.007	0.011	
10:35	0.023	0.017	10:35	0.007	0.011	
10:36	0.018	0.018	10:36	0.008	0.013	
10:37	0.01	0.018	10:37	0.009	0.013	_
10:38	0.046	0.018	10:38	0.008	0.013	
10:39	0.008	0.016	10:39	0.008	0.013	_
10:40	0.012	0.017	10:40	0.009	0.013	_
10:41	0.02	0.016	10:41	0.012	0.013	
10:42	0.014	0.016	10:42	0.019	0.013	_
10:43	0.012	0.015	10:43	0.013	0.012	
10:44	0.02	0.015	10:44	0.011	0.011	
10:45	0.032	0.014	10:45	0.011	0.011	_
10:46	0.016	0.014	10:46	0.016	0.011	
10:47	0.010	0.012	10:47	0.016	0.011	<u> </u>
10:48	0.01	0.012	10:48	0.015	0.010	
10:49	0.015	0.012	10:49	0.017	0.010	
10:50	0.02	0.013	10:50	0.016	0.009	
10:51	0.018	0.014	10:51	0.012	0.009	
10:52	0.015	0.014	10:52	0.009	0.009	
10:53	0.013	0.015	10:53	0.009	0.009	
10:54	0.014	0.015	10:54	0.01	0.009	_
10:55	0.01	0.015	10:55	0.007	0.009	
10:56	0.01	0.014	10:56	0.007	0.009	
10:57	0.007	0.014	10:57	0.007	0.009	_
10:58	0.007	0.014	10:58	0.007	0.009	_
10:59	0.007	0.014	10:59	0.008	0.009	_
11:00	0.007	0.014	11:00	0.008	0.010	_
11:01	0.008	0.014	11:01	0.008	0.010	_
11:02	0.012	0.014	11:02	0.008	0.010	_
11:03	0.008	0.013	11:03	0.01	0.010	_
11:04	0.042	0.013	11:04	0.014	0.011	_
11:05	0.033	0.011	11:05	0.015	0.012	_
11:06	0.045	0.014	11:06	0.011	0.013	_
11:07	0.006	0.012	11:07	0.008	0.013	_
11:08	0.009	0.012	11:08	0.008	0.013	_
11:09	0.007	0.013	11:09	0.007	0.014	-
11:10	0.006	0.013	11:10	0.008	0.014	-
11:11	0.006	0.014	11:11	0.008	0.014	-
11:12	0.005	0.014	11:12	0.008	0.015	-
11:13	0.006	0.015	11:13	0.012	0.015	-
11:14	0.008	0.015	11:14	0.016	0.015	-
11:15	0.007	0.015	11:15	0.01	0.015	_
11:16	0.006	0.015	11:16	0.009	0.015	-
11:17	0.006	0.015	11:17	0.01	0.015	-
11:18	0.008	0.016	11:18	0.024	0.015	_
11:19	0.013	0.016	11:19	0.028	0.015	-
11:20	0.07	0.016	11:20	0.023	0.015	-
11:21	0.01	0.012	11:21	0.017	0.015	-
11:22	0.012	0.012	11:22	0.011	0.015	-
11:23	0.021	0.012	11:23	0.013	0.015	-
11:24	0.015	0.011	11:24	0.011	0.015	-
11:25	0.014	0.011	11:25	0.014	0.016	-
11:26	0.015	0.011	11:26	0.018	0.016	-

		P	ARTICULATE		1	Fuenda
Upwind				Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
11:27	0.015	0.012	11:27	0.013	0.016	-
11:28	0.008	0.012	11:28	0.009	0.016	-
11:29	0.007	0.012	11:29	0.011	0.016	-
11:30	0.006	0.012	11:30	0.009	0.016	-
11:31	0.006	0.012	11:31	0.011	0.016	-
11:32	0.015	0.012	11:32	0.02	0.016	-
11:33	0.012	0.012	11:33	0.022	0.016	-
11:34	0.012	0.012	11:34	0.019	0.015	-
11:35	0.012	0.012	11:35	0.02	0.014	-
11:36	0.013	0.012	11:36	0.02	0.014	-
11:37	0.012	0.011	11:37	0.018	0.013	-
11:38	0.009	0.013	11:38	0.015	0.013	-
11:39	0.011	0.016	11:39	0.016	0.013	-
11:40	0.015	0.016	11:40	0.017	0.014	-
11:41	0.023	0.016	11:41	0.018	0.014	-
11:42	0.017	0.015	11:42	0.019	0.014	-
11:43	0.01	0.014	11:43	0.012	0.014	-
11:44	0.009	0.014	11:44	0.011	0.021	-
11:45	0.009	0.014	11:45	0.009	0.021	-
11:46	0.007	0.014	11:46	0.01	0.021	-
11:47	0.008	0.014	11:47	0.011	0.022	-
11:48	0.011	0.014	11:48	0.011	0.022	-
11:49	0.011	0.014	11:49	0.01	0.022	-
11:50	0.009	0.014	11:50	0.011	0.022	-
11:51	0.01	0.014	11:51	0.012	0.023	-
11:52	0.029	0.014	11:52	0.015	0.023	-
11:53	0.059	0.013	11:53	0.016	0.023	-
11:54	0.011	0.010	11:54	0.027	0.023	-
11:55	0.013	0.010	11:55	0.025	0.022	-
11:56	0.011	0.010	11:56	0.016	0.021	-
11:57	0.01	0.010	11:57	0.019	0.021	-
11:58	0.008	0.010	11:58	0.115	0.021	-
11:59	0.008	0.010	11:59	0.013	0.014	-
12:00	0.007	0.011	12:00	0.011	0.014	-
12:01	0.008	0.011	12:01	0.013	0.014	-
12:02	0.008	0.011	12:02	0.013	0.014	-
12:03	0.009	0.011	12:03	0.014	0.016	-
12:04	0.008	0.012	12:04	0.015	0.016	-
12:05	0.009	0.012	12:05	0.016	0.016	-
12:06	0.011	0.012	12:06	0.015	0.017	
12:07	0.012	0.012	12:07	0.014	0.016	-
12:08	0.015	0.012	12:08	0.015	0.016	-
12:09	0.011	0.012	12:09	0.015	0.016	-
12:10	0.01	0.012	12:10	0.014	0.015	-
12:11	0.01	0.012	12:11	0.017	0.015	-
12:12	0.016	0.012	12:12	0.012	0.015	-
12:13	0.015	0.011	12:13	0.015	0.015	-
12:14	0.009	0.011	12:14	0.012	0.015	
12:15	0.009	0.011	12:15	0.01	0.015	
12:16	0.015	0.011	12:16	0.014	0.015	-
12:17	0.01	0.011	12:17	0.046	0.015	-
12:18	0.02	0.011	12:18	0.015	0.013	-
12:19	0.011	0.010	12:19	0.017	0.013	-
12:20	0.011	0.010	12:20	0.02	0.013	-
12:21	0.01	0.010	12:21	0.01	0.012	-

		P	ARTICULATE			
	Upwind 			Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
12:22	0.009	0.010	12:22	0.009	0.012	-
12:23	0.01	0.010	12:23	0.01	0.013	-
12:24	0.012	0.010	12:24	0.011	0.013	-
12:25	0.01	0.010	12:25	0.010	0.013	-
12:26	0.01	0.010	12:26	0.01	0.013	-
12:27	0.011	0.010	12:27	0.014	0.013	-
12:28	0.013	0.010	12:28	0.017	0.014	-
12:29	0.01	0.010	12:29	0.014	0.014	-
12:30	0.009	0.010	12:30	0.013	0.016	-
12:31	0.01	0.010	12:31	0.012	0.016	-
12:32	0.009	0.010	12:32	0.014	0.016	-
12:33	0.01	0.010	12:33	0.011	0.016	-
12:34	0.01	0.010	12:34	0.013	0.016	-
12:35	0.011	0.010	12:35	0.014	0.016	-
12:36	0.011	0.010	12:36	0.012	0.017	-
12:37	0.01	0.010	12:37	0.013	0.017	-
12:38	0.009	0.010	12:38	0.013	0.017	-
12:39	0.011	0.010	12:39	0.013	0.018	-
12:40	0.009	0.010	12:40	0.010	0.021	-
12:41	0.01	0.011	12:41	0.013	0.023	-
12:42	0.011	0.011	12:42	0.022	0.023	-
12:43	0.013	0.011	12:43	0.02	0.022	-
12:44	0.01	0.011	12:44	0.041	0.022	-
12:45	0.009	0.011	12:45	0.017	0.020	-
12:46	0.008	0.011	12:46	0.011	0.019	-
12:47	0.008	0.011	12:47	0.012	0.019	-
12:48	0.01	0.011	12:48	0.018	0.019	-
12:49	0.011	0.011	12:49	0.017	0.019	-
12:50	0.012	0.011	12:50	0.021	0.019	-
12:51	0.011	0.011	12:51	0.017	0.018	-
12:52	0.01	0.011	12:52	0.015	0.019	-
12:53	0.01	0.011	12:53	0.019	0.019	-
12:54	0.014	0.011	12:54	0.059	0.018	-
12:55	0.022	0.011	12:55	0.037	0.015	-
12:56	0.01	0.010	12:56	0.016	0.014	-
12:57	0.009	0.010	12:57	0.016	0.014	-
12:58 12:59	0.009	0.010 0.010	12:58	0.012 0.01	0.013 0.013	-
13:00	0.009	0.010	12:59 13:00	0.01	0.013	-
		0.010				-
13:01 13:02	0.009 0.009	0.010	13:01 13:02	0.011 0.013	0.013 0.013	<u>-</u> -
13:02	0.009	0.010	13:02	0.013	0.013	
13:03	0.009	0.010	13:03	0.012	0.013	<u>-</u>
13:05	0.009	0.010	13:05	0.013	0.013	
13:06	0.014	0.010	13:06	0.025	0.013	
13:07	0.014	0.010	13:07	0.025	0.013	
13:08	0.012	0.010	13:08	0.016	0.012	
13:09	0.012	0.010	13:09	0.016	0.012	
13:10	0.011	0.010	13:10	0.014	0.012	
13:11	0.009	0.011	13:11	0.012	0.011	
13:12	0.009	0.012	13:12	0.012	0.011	<u>-</u>
13:13	0.009	0.012	13:13	0.011	0.011	
13:14	0.009	0.012	13:14	0.012	0.011	<u>-</u>
13:15	0.009	0.014	13:15	0.012	0.011	-
13:16	0.009	0.016	13:16	0.011	0.011	

P Upwind			ARTICULATE			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
13:17	0.014	0.018	13:17	0.012	0.011	-
13:18	0.01	0.019	13:18	0.013	0.011	-
13:19	0.01	0.021	13:19	0.012	0.010	-
13:20	0.01	0.022	13:20	0.012	0.010	-
13:21	0.009	0.023	13:21	0.011	0.010	-
13:22	0.009	0.023	13:22	0.01	0.011	-
13:23	0.013	0.023	13:23	0.01	0.011	-
13:24	0.023	0.023	13:24	0.01	0.011	-
13:25	0.021	0.022	13:25	0.010	0.011	-
13:26	0.01	0.022	13:26	0.01	0.012	-
13:27	0.013	0.022	13:27	0.01	0.012	-
13:28	0.041	0.022	13:28	0.01	0.012	-
13:29	0.031	0.019	13:29	0.01	0.012	-
13:30	0.023	0.019	13:30	0.01	0.012	-
13:31	0.029	0.020	13:31	0.01	0.012	
13:32	0.035	0.019	13:32	0.01	0.012	-
13:33	0.031	0.017	13:33	0.01	0.012	-
13:34	0.027	0.016	13:34	0.011	0.012	-
13:35	0.028	0.015	13:35	0.011	0.012	-
13:36	0.012	0.014	13:36	0.017	0.012	-
13:37	0.01	0.014	13:37	0.017	0.012	-
13:38	0.012	0.014	13:38	0.014	0.012	-
13:39	0.013	0.014	13:39	0.012	0.011	-
13:40	0.011	0.014	13:40	0.012	0.012	-
13:41	0.01	0.014	13:41	0.011	0.012	-
13:42	0.01	0.014	13:42	0.011	0.012	-
13:43	0.01	0.014	13:43	0.011	0.012	-
13:44	0.02	0.014	13:44	0.01	0.012	-
13:45	0.041	0.014	13:45	0.01	0.012	-
13:46	0.012	0.012	13:46	0.013	0.012	-
13:47	0.011	0.012	13:47	0.012	0.012	-
13:48	0.011	0.012	13:48	0.014	0.012	-
13:49	0.011	0.012	13:49	0.01	0.012	-
13:50	0.011	0.012	13:50	0.011	0.012	-
13:51	0.012	0.012	13:51	0.011	0.012	-
13:52	0.012	0.012	13:52	0.012	0.012	-
13:53	0.012	0.012	13:53	0.012	0.011	-
13:54	0.012	0.012	13:54	0.013	0.012	-
13:55	0.012	0.012	13:55	0.012	0.012	-
13:56	0.012	0.012	13:56	0.012	0.012	-
13:57	0.012	0.013	13:57	0.014	0.012	-
13:58	0.014	0.013	13:58	0.015	0.012	-
13:59	0.014	0.013	13:59	0.013	0.012	-
14:00	0.013	0.012	14:00	0.012	0.012	-
14:01	0.013	0.012	14:01	0.019	0.013	-
14:02	0.012	0.012	14:02	0.015	0.013	-
14:03	0.012	0.012	14:03	0.011	0.013	-
14:04	0.012	0.013	14:04	0.011	0.013	-
14:05	0.012	0.013	14:05	0.011	0.013	-
14:06	0.012	0.013	14:06	0.011	0.013	-
14:07	0.012	0.013	14:07	0.011	0.013	-
14:08	0.012	0.013	14:08	0.011	0.013	-
14:09	0.012	0.013	14:09	0.011	0.013	-
14:10	0.013	0.013	14:10	0.012	0.013	-
14:11	0.013	0.013	14:11	0.013	0.013	-

	Havrind	P.	ARTICULATE			Exceeds
Time	Upwind PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
14:12	0.013	0.013	14:12	0.014	0.013	-
14:13	0.014	0.013	14:13	0.012	0.012	-
14:14	0.012	0.013	14:14	0.012	0.012	_
14:15	0.012	0.013	14:15	0.012	0.012	-
14:16	0.012	0.013	14:16	0.012	0.012	-
14:17	0.013	0.013	14:17	0.013	0.012	-
14:18	0.014	0.013	14:18	0.013	0.012	-
14:19	0.015	0.013	14:19	0.015	0.012	-
14:20	0.014	0.013	14:20	0.012	0.012	-
14:21	0.013	0.013	14:21	0.012	0.012	-
14:22	0.013	0.013	14:22	0.012	0.012	-
14:23	0.012	0.013	14:23	0.012	0.012	-
14:24	0.012	0.013	14:24	0.012	0.013	-
14:25	0.012	0.013	14:25	0.012	0.013	-
14:26	0.012	0.013	14:26	0.099	0.018	-
14:27	0.012	0.013	14:27	0.029	0.019	-
14:28	0.013	0.013	14:28	0.043	0.021	-
14:29	0.013	0.013	14:29	0.013	0.021	-
14:30	0.014	0.013	14:30	0.025	0.022	-
14:31	0.015	0.013	14:31	0.021	0.023	-
14:32	0.013	0.013	14:32	0.014	0.023	-
14:33	0.013	0.013	14:33	0.013	0.023	-
14:34	0.013	0.013	14:34	0.013	0.023	-
14:35	0.013	0.013	14:35	0.013	0.023	-
14:36	0.013	0.013	14:36	0.013	0.023	-
14:37	0.013	0.013	14:37	0.014	0.023	-
14:38	0.014	0.013	14:38	0.014	0.023	-
14:39	0.014	0.013	14:39	0.015	0.023	-
14:40	0.013	0.013	14:40	0.014	0.024	-
14:41	0.013	0.013	14:41	0.013	0.018	-
14:42	0.013	0.013	14:42	0.013	0.017	-
14:43	0.013	0.013	14:43	0.013	0.015	-
14:44	0.013	0.013	14:44	0.013	0.015	-
14:45	0.013	0.013	14:45	0.013	0.014	-
14:46	0.013	0.013	14:46	0.013	0.013	-
14:47	0.013	0.014	14:47	0.013	0.013	-
14:48	0.013	0.014	14:48	0.013	0.013	-
14:49	0.013	0.014	14:49	0.013	0.013	-
14:50	0.013	0.014	14:50	0.016	0.014	-
14:51	0.013	0.014	14:51	0.016	0.014	-
14:52	0.013	0.014	14:52	0.018	0.014	-
14:53	0.014	0.014	14:53	0.019	0.014	-
14:54	0.013	0.014	14:54	0.018	0.015	-
14:55	0.014	0.014	14:55	0.014	0.015	-
14:56	0.014	0.014	14:56	0.014	0.015	-
14:57	0.014	0.014	14:57	0.014	0.015	-
14:58	0.014	0.014	14:58	0.014	0.015	-
14:59	0.014	0.014	14:59	0.014	0.015	-
15:00	0.014	0.014	15:00	0.014	0.015	-
15:01	0.014	0.014	15:01	0.013	0.015	-
15:02	0.014	0.014	15:02	0.014	0.015	-
15:03	0.014	0.015	15:03	0.013	0.015	-
15:04	0.014	0.015	15:04	0.014	0.015	-
15:05	0.014	0.015	15:05	0.014	0.015	-
15:06	0.014	0.015	15:06	0.014	0.015	-

P Upwind			ARTICULATE I			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
15:07	0.015	0.015	15:07	0.014	0.014	-
15:08	0.014	0.015	15:08	0.014	0.014	-
15:09	0.014	0.015	15:09	0.014	0.014	-
15:10	0.014	0.015	15:10	0.014	0.014	-
15:11	0.015	0.016	15:11	0.014	0.014	-
15:12	0.015	0.016	15:12	0.014	0.014	-
15:13	0.015	0.016	15:13	0.014	0.014	-
15:14	0.015	0.016	15:14	0.014	0.014	-
15:15	0.015	0.016	15:15	0.014	0.014	-
15:16	0.015	0.016	15:16	0.014	0.014	-
15:17	0.015	0.016	15:17	0.015	0.014	-
15:18	0.016	0.016	15:18	0.015	0.014	-
15:19	0.016	0.016	15:19	0.015	0.014	-
15:20	0.016	0.016	15:20	0.015	0.014	-
15:21	0.016	0.016	15:21	0.015	0.014	
15:22	0.017	0.016	15:22	0.015	0.014	-
15:23	0.016	0.016	15:23	0.015	0.014	-
15:24	0.016	0.016	15:24	0.015	0.015	-
15:25	0.016	0.016	15:25	0.015	0.015	-
15:26	0.015	0.016	15:26	0.015	0.015	-
15:27	0.016	0.016	15:27	0.015	0.015	-
15:28	0.016	0.016	15:28	0.015	0.015	-
15:29	0.016	0.016	15:29	0.01	0.015	-
15:30	0.016	0.016	15:30	0.011	0.014	-
15:31	0.016	0.016	15:31	0.074	0.018	-
15:32	0.016	0.016	15:32	0.01	0.018	-
15:33	0.016	0.016	15:33	0.034	0.019	-
15:34	0.016	0.016	15:34	0.005	0.019	-
15:35	0.016	0.016	15:35	0.012	0.018	-
15:36	0.016	0.016	15:36	0.007	0.018	-
15:37	0.016	0.016	15:37	0.004	0.017	-
15:38	0.016	0.016	15:38	0.011	0.017	-
15:39	0.016	0.017	15:39	0.004	0.016	-
15:40	0.016	0.017	15:40	0.007	0.016	-
15:41	0.016	0.017	15:41	0.009	0.015	-
15:42	0.016	0.017	15:42			
15:43	0.017	0.017	15:43			
15:44	0.017	0.017	15:44			
15:45	0.017	0.017	15:45			
15:46	0.016	0.017	15:46			
15:47	0.017	0.017	15:47			
15:48	0.017	0.017	15:48			
15:49	0.017	0.017	15:49			
15:50	0.016	0.017	15:50			
15:51	0.016	0.017	15:51			
15:52	0.017	0.017	15:52			
15:53	0.017	0.017	15:53			
15:54	0.017	0.017	15:54			
15:55	0.017	0.017	15:55			
15:56	0.017	0.017	15:56			
15:57	0.017	0.017	15:57			
15:58	0.017	0.017	15:58			
15:59	0.017	0.017	15:59			
16:00	0.017	0.017	16:00			
16:01	0.017	0.018	16:01			

	PARTICULATE DATA								
	Upwind Downwind								
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
16:02	0.018	0.018	16:02						

	Number of Inst	ances Where Downwir	May 8, 2020 nd VOCs Exceeds U	pwind VOCs + 5ppm =	=	0
			arable Data Points			348
		<u> </u>	PID DATA			
	Upwind			Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
6:57			6:57	0		
6:58			6:58	0		
6:59			6:59	0		
7:00			7:00	0		
7:01			7:01	0		
7:02	0.2		7:02	0		
7:03	0.1		7:03	0		
7:04	0.2		7:04	0		
7:05	0.2		7:05	0		
7:06	0.2		7:06	0.3		
7:07	0.2		7:07	0		
7:08	0.2		7:08	0		
7:09	0.2		7:09	0.2		
7:10	0.2		7:10	0.2		
7:11	0.2	0.2	7:11	0.2		
7:12	0.2	0.2	7:12	0.2	0.1	-
7:13	0.2	0.2	7:13	0.2	0.1	-
7:14	0.2	0.2	7:14	0.1	0.1	-
7:15	0.3	0.2	7:15	0.1	0.1	-
7:16	0.3	0.2	7:16	0.1	0.1	-
7:17	0.3	0.2	7:17	0.1	0.1	-
7:18	0.3	0.2	7:18	0.2	0.1	-
7:19	0.3	0.2	7:19	0.2	0.1	-
7:20	0.3	0.2	7:20	0.3	0.1	-
7:21	0.3	0.2	7:21	0	0.2	-
7:22	0.3	0.3	7:22	0.2	0.1	-
7:23	0.3	0.3	7:23	0.4	0.2	-
7:24	0.4	0.3	7:24	0	0.2	-
7:25	0.3	0.3	7:25	0.1	0.2	-
7:26	0.4	0.3	7:26	0.1	0.2	-
7:27	0.4	0.3	7:27	0.1	0.2	-
7:28	0.4	0.3	7:28	0.6	0.1	-
7:29	0.4	0.3	7:29	0.1	0.2	-
7:30	0.4	0.3	7:30	0.1	0.2	-
7:31	0.4	0.3	7:31	0.1	0.2	-
7:32	0.4	0.4	7:32	0	0.2	-
7:33	0.4	0.4	7:33	0	0.2	-
7:34	0.4	0.4	7:34	0	0.2	-
7:35	0.5	0.4	7:35	0.1	0.1	-
7:36	0.4	0.4	7:36	0.7	0.1	-
7:37	0.4	0.4	7:37	1	0.2	-
7:38	0.4	0.4	7:38	0.4	0.2	-
7:39	0.5	0.4	7:39	0.1	0.2	-
7:40	0.4	0.4	7:40	0.2	0.2	-
7:41	0.4	0.4	7:41	0.2	0.2	-
7:42	0.4	0.4	7:42	0.2	0.2	-
7:43	0.4	0.4	7:43	0.1	0.3	-
7:44	0.5	0.4	7:44	0.2	0.2	-
7:45	0.6	0.4	7:45	0.1	0.2	-
7:46	0.5	0.4	7:46	0.2	0.2	-
7:47	0.5	0.4	7:47	0.2	0.2	-
/ /	1 3.5	J	,,,,	1 3.2	1 0.2	<u> </u>

	PID DATA Upwind Downwind						
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits	
7:48	0.6	0.5	7:48	0.2	0.2	-	
7:49	0.9	0.5	7:49	0.1	0.3	-	
7:50	0.6	0.5	7:50	0.2	0.3	-	
7:51	0.5	0.5	7:51	0.1	0.3	-	
7:52	0.5	0.5	7:52	0.1	0.2	-	
7:53	0.4	0.5	7:53	0.1	0.2	-	
7:54	0.4	0.5	7:54	0.1	0.2	-	
7:55	0.6	0.5	7:55	0	0.2	-	
7:56	0.5	0.5	7:56	0	0.1	_	
7:57	0.4	0.5	7:57	0	0.1	_	
7:58	0.4	0.5	7:58	0	0.1	_	
7:59	0.4	0.5	7:59	0.1	0.1	_	
8:00	0.4	0.5	8:00	0.1	0.1	-	
8:01	0.4	0.5	8:01	0.2	0.1		
8:02	0.4	0.5	8:02	0.2	0.1	-	
8:02	0.5	0.5	8:02	0.2	0.1		
8:04	0.5	0.5	8:04	0.2	0.1	-	
						-	
8:05	0.5	0.5	8:05	0.2	0.1	-	
8:06	0.5	0.5	8:06	0.2	0.1	-	
8:07	0.5	0.5	8:07	0.2	0.1	-	
8:08	0.5	0.5	8:08	0.3	0.1	-	
8:09	0.5	0.5	8:09	0.3	0.1	-	
8:10	0.5	0.5	8:10	0.2	0.2	-	
8:11	0.5	0.5	8:11	0.2	0.2	-	
8:12	0.5	0.5	8:12	0.3	0.2	-	
8:13	0.5	0.5	8:13	0.3	0.2	-	
8:14	0.5	0.5	8:14	0.3	0.2	-	
8:15	0.6	0.5	8:15	0.2	0.2	-	
8:16	0.5	0.5	8:16	0.3	0.2	-	
8:17	0.5	0.5	8:17	0.3	0.2	-	
8:18	0.5	0.5	8:18	0.2	0.3	-	
8:19	0.5	0.5	8:19	0.2	0.3	-	
8:20	0.5	0.5	8:20	0.2	0.2	-	
8:21	0.6	0.5	8:21	0.1	0.2	-	
8:22	0.7	0.5	8:22	0.2	0.2	_	
8:23	0.6	0.5	8:23	0.1	0.2	_	
8:24	0.6	0.5	8:24	0.4	0.2	-	
8:25	0.6	0.5	8:25	0.3	0.2	-	
8:26	0.6	0.6	8:26	0.2	0.2	-	
8:27	0.6	0.6	8:27	0.3	0.2	-	
8:28	0.6	0.6	8:28	0.3	0.2	-	
8:29	0.7	0.6	8:29	0.3	0.2	-	
8:30	0.7	0.6	8:30	0.3	0.2		
8:30	0.7	0.6	8:30	0.2	0.2	-	
						-	
8:32	0.6	0.6	8:32	0.3	0.2	-	
8:33	0.6	0.6	8:33	0.3	0.2	-	
8:34	0.6	0.6	8:34	0.3	0.2	-	
8:35	0.6	0.6	8:35	0.3	0.2	-	
8:36	0.6	0.6	8:36	0.2	0.3	-	
8:37	0.5	0.6	8:37	0.2	0.3	-	
8:38	0.6	0.6	8:38	0.3	0.3	-	
8:39	0.6	0.6	8:39	0.3	0.3	-	
8:40	0.7	0.6	8:40	0.3	0.3	-	
8:41	0.8	0.6	8:41	0.3	0.3	-	

	Upwind		PID DATA	Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits		
8:42	0.6	0.6	8:42	0.3	0.3	-		
8:43	0.6	0.6	8:43	0.2	0.3	-		
8:44	0.6	0.6	8:44	0.3	0.3	-		
8:45	0.6	0.6	8:45	0.2	0.3	-		
8:46	0.6	0.6	8:46	0.3	0.3	-		
8:47	0.7	0.6	8:47	0.3	0.3	-		
8:48	0.6	0.6	8:48	0.3	0.3	-		
8:49	0.6	0.6	8:49	0.3	0.3	-		
8:50	0.6	0.6	8:50	0.3	0.3	-		
8:51	0.6	0.6	8:51	0.2	0.3	-		
8:52	0.6	0.6	8:52	0.3	0.3	-		
8:53	0.6	0.6	8:53	0.3	0.3	-		
8:54	0.7	0.6	8:54	0.3	0.3	-		
8:55	0.6	0.6	8:55	0.3	0.3	-		
8:56	0.6	0.6	8:56	0.3	0.3	-		
8:57	0.6	0.6	8:57	0.3	0.3	-		
8:58	0.6	0.6	8:58	0.3	0.3	-		
8:59	0.6	0.6	8:59	0.3	0.3	_		
9:00	0.6	0.6	9:00	0.3	0.3	_		
9:01	0.6	0.6	9:01	0.3	0.3	_		
9:02	0.6	0.6	9:02	0.3	0.3	-		
9:03	0.6	0.6	9:03	0.3	0.3	-		
9:04	0.6	0.6	9:04	0.3	0.3	-		
9:05	0.6	0.6	9:05	0.3	0.3			
9:06	0.6	0.6	9:06	0.3	0.3	-		
						-		
9:07	0.6	0.6	9:07	0.3	0.3	-		
9:08 9:09	0.5	0.6	9:08 9:09	0.3	0.3	-		
	0.5 0.5	0.6 0.6		0.3	0.3	-		
9:10			9:10	0.2		-		
9:11	0.6	0.6	9:11	0.3	0.3	-		
9:12	0.6	0.6	9:12	0.2	0.3	-		
9:13	0.6	0.6	9:13	0.3	0.3	-		
9:14	0.6	0.6	9:14	0.3	0.3	-		
9:15	0.6	0.6	9:15	0.2	0.3	-		
9:16	0.5	0.6	9:16	0.3	0.3	-		
9:17	0.5	0.6	9:17	0.3	0.3	-		
9:18	0.5	0.6	9:18	0.3	0.3	-		
9:19	0.6	0.6	9:19	0.2	0.3	-		
9:20	0.6	0.6	9:20	0.3	0.3	-		
9:21	0.5	0.6	9:21	0.3	0.3	-		
9:22	0.5	0.5	9:22	0.4	0.3	-		
9:23	0.5	0.5	9:23	0.3	0.3	-		
9:24	0.6	0.6	9:24	0.3	0.3	-		
9:25	0.5	0.6	9:25	0.3	0.3	-		
9:26	0.5	0.5	9:26	0.3	0.3	-		
9:27	0.5	0.5	9:27	0.3	0.3	-		
9:28	0.5	0.5	9:28	0.3	0.3	-		
9:29	0.5	0.5	9:29	0.3	0.3	-		
9:30	0.6	0.5	9:30	0.3	0.3	-		
9:31	0.5	0.5	9:31	0.3	0.3	-		
9:32	0.6	0.5	9:32	0.3	0.3	-		
9:33	0.6	0.5	9:33	0.3	0.3	-		
9:34	0.5	0.5	9:34	0.4	0.3	-		
9:35	0.5	0.5	9:35	0.3	0.3	-		

	Upwind		PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
9:36	0.5	0.5	9:36	0.3	0.3	-
9:37	0.5	0.5	9:37	0.3	0.3	-
9:38	0.5	0.5	9:38	0.4	0.3	-
9:39	0.5	0.5	9:39	0.3	0.3	-
9:40	0.5	0.5	9:40	0.3	0.3	-
9:41	0.5	0.5	9:41	0.3	0.3	-
9:42	0.5	0.5	9:42	0.3	0.3	-
9:43	0.5	0.5	9:43	0.3	0.3	-
9:44	0.5	0.5	9:44	0.3	0.3	-
9:45	0.6	0.5	9:45	0.3	0.3	_
9:46	0.5	0.5	9:46	0.3	0.3	_
9:47	0.6	0.5	9:47	0.3	0.3	<u> </u>
9:48	0.5	0.5	9:48	0.3	0.3	-
9:49	0.5	0.5	9:49	0.3	0.3	-
9:50	0.5	0.5	9:50	0.3	0.3	-
9:50	0.5	0.5	9:50	0.3	0.3	-
	0.5	0.5	9:52	0.3	0.3	-
9:52						-
9:53	0.5	0.5	9:53	0.3	0.3	-
9:54	0.5	0.5	9:54	0.3	0.3	-
9:55	0.5	0.5	9:55	0.3	0.3	-
9:56	0.5	0.5	9:56	0.3	0.3	-
9:57	0.5	0.5	9:57	0.3	0.3	-
9:58	0.5	0.5	9:58	0.3	0.3	-
9:59	0.5	0.5	9:59	0.3	0.3	-
10:00	0.5	0.5	10:00	0.3	0.3	-
10:01	0.5	0.5	10:01	0.3	0.3	-
10:02	0.5	0.5	10:02	0.4	0.3	-
10:03	0.5	0.5	10:03	0.3	0.3	-
10:04	0.5	0.5	10:04	0.3	0.3	-
10:05	0.5	0.5	10:05	0.5	0.3	-
10:06	0.5	0.5	10:06	0.4	0.3	-
10:07	0.4	0.5	10:07	0.3	0.3	-
10:08	0.4	0.5	10:08	0.3	0.3	-
10:09	0.4	0.5	10:09	0.3	0.3	-
10:10	0.5	0.5	10:10	0.3	0.3	-
10:11	0.5	0.5	10:11	0.3	0.3	-
10:12	0.5	0.5	10:12	0.3	0.3	-
10:13	0.5	0.5	10:13	0.3	0.3	-
10:14	0.5	0.5	10:14	0.3	0.3	-
10:15	0.4	0.5	10:15	0.3	0.3	-
10:16	0.5	0.5	10:16	0.3	0.3	-
10:17	0.4	0.5	10:17	0.3	0.3	-
10:18	0.4	0.5	10:18	0.3	0.3	-
10:19	0.5	0.5	10:19	0.3	0.3	-
10:20	0.5	0.5	10:20	0.3	0.3	-
10:21	0.5	0.5	10:21	0.3	0.3	-
10:22	0.5	0.5	10:22	0.3	0.3	-
10:23	0.5	0.5	10:23	0.3	0.3	
10:23	0.5	0.5		0.3	0.3	-
			10:24			-
10:25	0.5	0.5	10:25	0.5	0.3	-
10:26	0.5	0.5	10:26	0.3	0.3	-
10:27	0.5	0.5	10:27	0.4	0.3	-
10:28	0.5	0.5	10:28	0.4	0.3	-
10:29	0.5	0.5	10:29	0.3	0.3	-

	Upwind	I	PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
10:30	0.5	0.5	10:30	0.3	0.3	-
10:31	0.6	0.5	10:31	0.3	0.3	-
10:32	0.5	0.5	10:32	0.3	0.3	-
10:33	0.5	0.5	10:33	0.3	0.3	-
10:34	0.5	0.5	10:34	0.3	0.3	-
10:35	0.5	0.5	10:35	0.3	0.3	-
10:36	0.5	0.5	10:36	0.3	0.3	-
10:37	0.5	0.5	10:37	0.4	0.3	-
10:38	0.5	0.5	10:38	0.3	0.3	-
10:39	0.5	0.5	10:39	0.3	0.3	-
10:40	0.5	0.5	10:40	0.3	0.3	-
10:41	0.5	0.5	10:41	0.3	0.3	_
10:42	0.6	0.5	10:42	0.3	0.3	_
10:43	0.6	0.5	10:43	0.4	0.3	_
10:44	0.5	0.5	10:44	0.3	0.3	_
10:45	0.5	0.5	10:45	0.4	0.3	-
10:46	0.6	0.5	10:46	0.4	0.3	 -
10:47	0.6	0.5	10:47	0.5	0.3	
10:48	1.8	0.6	10:48	0.3	0.3	-
10:49	1	0.6	10:49	0.4	0.3	-
10:50	0.9	0.7	10:50	0.4	0.3	-
10:51	0.9	0.7	10:51	0.4	0.3	
	0.8	0.7		0.4	0.4	-
10:52		_	10:52			-
10:53	0.6	0.7 0.7	10:53	0.4	0.4	-
10:54	0.7		10:54	0.4	0.4	-
10:55		0.7	10:55		0.4	-
10:56	0.6	0.7	10:56	0.4	0.4	-
10:57	0.6	0.7	10:57	0.3	0.4	-
10:58	0.6	0.7	10:58	0.3	0.4	-
10:59	0.6	0.7	10:59	0.3	0.4	-
11:00	0.6	0.8	11:00	0.3	0.4	-
11:01	0.6	0.8	11:01	0.3	0.4	-
11:02	0.7	0.8	11:02	0.3	0.4	-
11:03	0.6	0.7	11:03	0.3	0.3	-
11:04	0.7	0.7	11:04	0.3	0.3	-
11:05	0.6	0.6	11:05	0.3	0.3	-
11:06	0.7	0.6	11:06	0.4	0.3	-
11:07	0.6	0.6	11:07	0.3	0.3	-
11:08	0.6	0.6	11:08	0.3	0.3	-
11:09	0.6	0.6	11:09	0.3	0.3	-
11:10	0.6	0.6	11:10	0.3	0.3	-
11:11	0.6	0.6	11:11	0.3	0.3	-
11:12	0.6	0.6	11:12	0.4	0.3	-
11:13	0.5	0.6	11:13	0.3	0.3	-
11:14	0.6	0.6	11:14	0.3	0.3	-
11:15	0.6	0.6	11:15	0.3	0.3	-
11:16	0.6	0.6	11:16	0.3	0.3	-
11:17	0.5	0.6	11:17	0.3	0.3	-
11:18	0.6	0.6	11:18	0.3	0.3	-
11:19	0.6	0.6	11:19	0.2	0.3	-
11:20	0.6	0.6	11:20	0.2	0.3	-
11:21	0.6	0.6	11:21	0.2	0.3	-
11:22	0.6	0.6	11:22	0.2	0.3	-
11:23	0.6	0.6	11:23	0.2	0.3	-

PID DATA Upwind Downwind							
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits	
11:24	0.6	0.6	11:24	0.3	0.3	-	
11:25	0.6	0.6	11:25	0.2	0.3	-	
11:26	0.5	0.6	11:26	0.3	0.3	-	
11:27	0.5	0.6	11:27	0.2	0.3	-	
11:28	0.5	0.6	11:28	0.3	0.3	-	
11:29	0.5	0.6	11:29	0.2	0.3	-	
11:30	0.5	0.6	11:30	0.2	0.2	-	
11:31	0.5	0.6	11:31	0.2	0.2	-	
11:32	0.5	0.6	11:32	0.2	0.2	-	
11:33	0.6	0.6	11:33	0.2	0.2	_	
11:34	0.6	0.6	11:34	0.2	0.2	-	
11:35	0.6	0.6	11:35	0.2	0.2	_	
11:36	0.6	0.6	11:36	0.2	0.2	_	
11:37	0.6	0.6	11:37	0.2	0.2	_	
11:38	0.5	0.5	11:38	0.2	0.2	-	
11:39	0.6	0.5	11:39	0.2	0.2	-	
11:40	0.5	0.5	11:40	0.2	0.2	-	
11:40	0.5	0.5	11:41	0.2	0.2	-	
11:42	0.6	0.5	11:42	0.3	0.2	-	
11:42	0.5	0.5	11:43	0.3	0.2		
		0.5				-	
11:44	0.5		11:44	0.2	0.2	-	
11:45	0.5	0.5	11:45	0.2	0.2	-	
11:46	0.5	0.5	11:46	0.2	0.2	-	
11:47	0.5	0.5	11:47	0.2	0.2	-	
11:48	0.5	0.5	11:48	0.2	0.2	-	
11:49	0.5	0.5	11:49	0.2	0.2	-	
11:50	0.5	0.5	11:50	0.2	0.2	-	
11:51	0.5	0.5	11:51	0.2	0.2	-	
11:52	0.5	0.5	11:52	0.2	0.2	-	
11:53	0.5	0.5	11:53	0.2	0.2	-	
11:54	0.5	0.5	11:54	0.3	0.2	-	
11:55	0.5	0.5	11:55	0.2	0.2	-	
11:56	0.5	0.5	11:56	0.2	0.2	-	
11:57	0.5	0.5	11:57	0.3	0.2	-	
11:58	0.5	0.5	11:58	0.3	0.2	-	
11:59	0.5	0.5	11:59	0.2	0.2	-	
12:00	0.4	0.5	12:00	0.2	0.2	-	
12:01	0.4	0.5	12:01	0.2	0.2	-	
12:02	0.5	0.5	12:02	0.2	0.2	-	
12:03	0.4	0.5	12:03	0.2	0.2	-	
12:04	0.4	0.5	12:04	0.2	0.2	-	
12:05	0.5	0.5	12:05	0.3	0.2	-	
12:06	0.5	0.5	12:06	0.2	0.2	-	
12:07	0.5	0.5	12:07	0.3	0.2	-	
12:08	0.5	0.5	12:08	0.3	0.2	-	
12:09	0.5	0.5	12:09	0.3	0.2	-	
12:10	0.5	0.5	12:10	0.3	0.2	-	
12:11	0.5	0.5	12:11	0.3	0.2	-	
12:12	0.5	0.5	12:12	0.2	0.3	-	
12:13	0.5	0.5	12:13	0.3	0.2	-	
12:14	0.5	0.5	12:14	0.3	0.2	-	
12:15	0.5	0.5	12:15	0.2	0.3	-	
12:16	0.5	0.5	12:16	0.2	0.3	-	
12:17	0.5	0.5	12:17	0.3	0.3	-	

PID DATA Upwind Downwind								
	Opwilla			Downwilla	15-Minute	Exceeds VOCs		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	Average	Alarm Limits		
12:18	0.5	0.5	12:18	0.3	0.3	-		
12:19	0.5	0.5	12:19	0.3	0.3	-		
12:20	0.5	0.5	12:20	0.2	0.3	-		
12:21	0.5	0.5	12:21	0.2	0.3	-		
12:22	0.5	0.5	12:22	0.2	0.3	-		
12:23	0.5	0.5	12:23	0.2	0.3	-		
12:24	0.5	0.5	12:24	0.2	0.3	-		
12:25	0.5	0.5	12:25	0.3	0.2	-		
12:26	0.5	0.5	12:26	0.2	0.2	-		
12:27	0.5	0.5	12:27	0.3	0.2	-		
12:28	0.5	0.5	12:28	0.3	0.2	-		
12:29	0.6	0.5	12:29	0.2	0.2	-		
12:30	0.5	0.5	12:30	0.2	0.2	-		
12:31	0.6	0.5	12:31	0.2	0.2	_		
12:32	0.6	0.5	12:32	0.2	0.2	-		
12:33	0.6	0.5	12:33	0.2	0.2	_		
12:34	0.6	0.5	12:34	0.2	0.2	_		
12:35	0.6	0.5	12:35	0.2	0.2	_		
12:36	0.6	0.5	12:36	0.3	0.2	-		
12:37	0.6	0.6	12:37	0.2	0.2			
12:38	0.6	0.6	12:38	0.2	0.2	-		
						-		
12:39	0.7	0.6	12:39	0.3	0.2	-		
12:40	0.7	0.6	12:40	0.3	0.2	-		
12:41	0.6	0.6	12:41	0.3	0.2	-		
12:42	0.6	0.6	12:42	0.3	0.2	-		
12:43	0.6	0.6	12:43	0.3	0.2	-		
12:44	0.6	0.6	12:44	0.3	0.2	-		
12:45	0.6	0.6	12:45	0.3	0.2	-		
12:46	0.7	0.6	12:46	0.3	0.3	-		
12:47	0.6	0.6	12:47	0.3	0.3	-		
12:48	0.6	0.6	12:48	0.3	0.3	-		
12:49	0.6	0.6	12:49	0.3	0.3	-		
12:50	0.6	0.6	12:50	0.3	0.3	-		
12:51	0.6	0.6	12:51	0.3	0.3	-		
12:52	0.6	0.6	12:52	0.3	0.3	-		
12:53	0.6	0.6	12:53	0.3	0.3	-		
12:54	0.7	0.6	12:54	0.3	0.3	-		
12:55	1.1	0.6	12:55	0.3	0.3	-		
12:56	0.8	0.7	12:56	0.3	0.3	-		
12:57	0.7	0.7	12:57	0.3	0.3	-		
12:58	0.7	0.7	12:58	0.3	0.3	-		
12:59	0.7	0.7	12:59	0.3	0.3	-		
13:00	0.7	0.7	13:00	0.3	0.3	-		
13:01	0.7	0.7	13:01	0.3	0.3	-		
13:02	0.7	0.7	13:02	0.3	0.3	-		
13:03	0.7	0.7	13:03	0.3	0.3	-		
13:04	0.7	0.7	13:04	0.3	0.3	-		
13:05	0.7	0.7	13:05	0.3	0.3	-		
13:06	0.7	0.7	13:06	0.3	0.3	-		
13:07	0.7	0.7	13:07	0.3	0.3	-		
13:08	0.7	0.7	13:08	0.3	0.3	-		
13:09	0.7	0.7	13:09	0.3	0.3	_		
13:10	0.7	0.7	13:10	0.3	0.3	-		
13:11	0.7	0.7	13:11	0.3	0.3	-		

	Upwind		PID DATA	Downwind			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits	
13:12	0.7	0.7	13:12	0.3	0.3	-	
13:13	0.7	0.7	13:13	0.3	0.3	-	
13:14	0.7	0.7	13:14	0.3	0.3	-	
13:15	0.7	0.7	13:15	0.3	0.3	-	
13:16	0.7	0.7	13:16	0.3	0.3	-	
13:17	0.7	0.7	13:17	0.3	0.3	-	
13:18	0.7	0.7	13:18	0.3	0.3	-	
13:19	0.8	0.7	13:19	0.3	0.3	-	
13:20	0.7	0.7	13:20	0.3	0.3	-	
13:21	0.8	0.7	13:21	0.3	0.3	-	
13:22	0.7	0.7	13:22	0.3	0.3	-	
13:23	0.7	0.7	13:23	0.3	0.3	-	
13:24	0.7	0.7	13:24	0.3	0.3	-	
13:25	0.7	0.7	13:25	0.4	0.3	-	
13:26	0.7	0.7	13:26	0.3	0.3	-	
13:27	0.7	0.7	13:27	0.3	0.3	-	
13:28	0.7	0.7	13:28	0.3	0.3	-	
13:29	0.7	0.7	13:29	0.3	0.3	_	
13:30	0.7	0.7	13:30	0.3	0.3	<u> </u>	
13:31	0.7	0.7	13:31	0.3	0.3	_	
13:32	0.7	0.7	13:32	0.4	0.3	-	
13:33	0.7	0.7	13:33	0.3	0.3	-	
13:34	0.7	0.7	13:34	0.4	0.3	-	
13:35	0.7	0.7	13:35	0.3	0.3	-	
13:36	0.7	0.7	13:36	0.3	0.3	-	
13:37	0.7	0.7	13:37	0.3	0.3	-	
						-	
13:38 13:39	0.8	0.7	13:38	0.3	0.3	-	
	0.7	0.7 0.7	13:39	0.3	0.3	-	
13:40			13:40		0.3	-	
13:41	0.7	0.7	13:41	0.3	0.3	-	
13:42	0.7	0.7	13:42	0.3	0.3	-	
13:43	0.7	0.7	13:43	0.3	0.3	-	
13:44	0.7	0.7	13:44	0.3	0.3	-	
13:45	0.7	0.7	13:45	0.3	0.3	-	
13:46	0.7	0.7	13:46	0.3	0.3	-	
13:47	0.7	0.7	13:47	0.3	0.3	-	
13:48	0.7	0.7	13:48	0.3	0.3	-	
13:49	0.7	0.7	13:49	0.3	0.3	-	
13:50	0.7	0.7	13:50	0.3	0.3	-	
13:51	0.7	0.7	13:51	0.3	0.3	-	
13:52	0.7	0.7	13:52	0.3	0.3	-	
13:53	0.7	0.7	13:53	0.2	0.3	-	
13:54	0.7	0.7	13:54	0.3	0.3	-	
13:55	0.8	0.7	13:55	0.3	0.3	-	
13:56	0.8	0.7	13:56	0.3	0.3	-	
13:57	0.8	0.7	13:57	0.3	0.3	-	
13:58	0.8	0.7	13:58	0.3	0.3	-	
13:59	0.8	0.7	13:59	0.3	0.3	-	
14:00	0.8	0.7	14:00	0.3	0.3	-	
14:01	0.8	0.7	14:01	0.3	0.3	-	
14:02	0.8	0.8	14:02	0.3	0.3	-	
14:03	0.7	0.8	14:03	0.3	0.3	-	
14:04	0.8	0.8	14:04	0.3	0.3	-	
14:05	0.8	0.8	14:05	0.3	0.3	-	

	Upwind		PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
14:06	0.8	0.8	14:06	0.3	0.3	-
14:07	0.8	0.8	14:07	0.3	0.3	-
14:08	0.8	0.8	14:08	0.3	0.3	-
14:09	0.8	0.8	14:09	0.3	0.3	-
14:10	0.8	0.8	14:10	0.3	0.3	-
14:11	0.8	0.8	14:11	0.3	0.3	-
14:12	0.8	0.8	14:12	0.3	0.3	-
14:13	0.8	0.8	14:13	0.3	0.3	-
14:14	0.8	0.8	14:14	0.3	0.3	-
14:15	0.8	0.8	14:15	0.3	0.3	_
14:16	0.8	0.8	14:16	0.3	0.3	_
14:17	0.8	0.8	14:17	0.3	0.3	_
14:18	0.8	0.8	14:18	0.3	0.3	-
14:19	0.9	0.8	14:19	0.3	0.3	_
14:20	0.8	0.8	14:20	0.3	0.3	
14:21	0.8	0.8	14:21	0.3	0.3	-
14:22	0.8	0.8	14:22	0.3	0.3	
14:23	0.8	0.8	14:23	0.3	0.3	-
14:24	0.8	0.8	14:24	0.3	0.3	-
14:25	0.8	0.8	14:25	0.3	0.3	
14:25	0.8	0.8	14:26	0.3	0.3	-
						-
14:27	0.8	0.8	14:27	0.3	0.3	-
14:28	0.9	0.8	14:28	0.3	0.3	-
14:29	0.8	0.8	14:29	0.3	0.3	-
14:30	0.8	0.8	14:30	0.3	0.3	-
14:31	0.9	0.8	14:31	0.3	0.3	-
14:32	0.9	0.8	14:32	0.3	0.3	-
14:33	0.8	0.8	14:33	0.3	0.3	-
14:34	0.8	0.8	14:34	0.3	0.3	-
14:35	0.8	0.8	14:35	0.3	0.3	-
14:36	0.8	0.8	14:36	0.3	0.3	-
14:37	0.8	0.8	14:37	0.3	0.3	-
14:38	0.9	0.8	14:38	0.3	0.3	-
14:39	0.8	0.8	14:39	0.3	0.3	-
14:40	0.8	0.8	14:40	0.3	0.3	-
14:41	0.8	0.8	14:41	0.3	0.3	-
14:42	0.8	0.8	14:42	0.3	0.3	-
14:43	0.8	0.8	14:43	0.3	0.3	-
14:44	0.9	0.8	14:44	0.3	0.3	-
14:45	0.9	0.8	14:45	0.3	0.3	-
14:46	0.9	0.8	14:46	0.3	0.3	-
14:47	0.9	0.8	14:47	0.3	0.3	-
14:48	0.8	0.8	14:48	0.3	0.3	-
14:49	0.9	0.8	14:49	0.3	0.3	-
14:50	0.9	0.8	14:50	0.3	0.3	-
14:51	0.9	0.9	14:51	0.3	0.3	-
14:52	0.9	0.9	14:52	0.3	0.3	-
14:53	0.9	0.9	14:53	0.3	0.3	-
14:54	1.1	0.9	14:54	0.4	0.3	-
14:55	1	0.9	14:55	0.3	0.3	-
14:56	1.1	0.9	14:56	0.3	0.3	-
14:57	0.9	0.9	14:57	0.3	0.3	-
14:58	0.9	0.9	14:58	0.3	0.3	-
14:59	0.9	0.9	14:59	0.3	0.3	_

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
15:00	0.9	0.9	15:00	0.3	0.3	-
15:01	0.9	0.9	15:01	0.3	0.3	-
15:02	0.9	0.9	15:02	0.3	0.3	-
15:03	0.9	0.9	15:03	0.3	0.3	-
15:04	0.9	0.9	15:04	0.3	0.3	_
15:05	0.9	0.9	15:05	0.3	0.3	_
15:06	0.9	0.9	15:06	0.3	0.3	_
15:07	0.9	0.9	15:07	0.3	0.3	-
15:08	0.9	0.9	15:08	0.3	0.3	
15:09	0.9	0.9	15:09	0.3	0.3	-
						-
15:10	0.9	0.9	15:10	0.3	0.3	-
15:11	0.9	0.9	15:11	0.3	0.3	-
15:12	0.9	0.9	15:12	0.3	0.3	-
15:13	0.9	0.9	15:13	0.4	0.3	-
15:14	0.9	0.9	15:14	0.4	0.3	-
15:15	0.9	0.9	15:15	0.4	0.3	-
15:16	0.9	0.9	15:16	0.4	0.3	-
15:17	0.9	0.9	15:17	0.4	0.3	-
15:18	0.9	0.9	15:18	0.4	0.3	-
15:19	0.9	0.9	15:19	0.4	0.3	_
15:20	0.9	0.9	15:20	0.4	0.3	-
15:21	0.9	0.9	15:21	0.4	0.4	_
15:22	0.9	0.9	15:22	0.4	0.4	
15:23	0.9	0.9	15:23	0.4	0.4	
	0.9	0.9				-
15:24			15:24	0.4	0.4	-
15:25	0.9	0.9	15:25	0.4	0.4	-
15:26	0.9	0.9	15:26	0.4	0.4	-
15:27	0.9	0.9	15:27	0.4	0.4	-
15:28	0.9	0.9	15:28	0.4	0.4	-
15:29	0.9	0.9	15:29	0.4	0.4	-
15:30	0.9	0.9	15:30	0.4	0.4	-
15:31	0.9	0.9	15:31	0.4	0.4	-
15:32	0.9	0.9	15:32	0.4	0.4	-
15:33	0.9	0.9	15:33	0.4	0.4	-
15:34	0.9	0.9	15:34	0.4	0.4	-
15:35	0.9	0.9	15:35	0.4	0.4	-
15:36	0.9	0.9	15:36	0.4	0.4	-
15:37	0.9	0.9	15:37	0.4	0.4	-
15:38	0.9	0.9	15:38	0.4	0.4	-
15:39	0.9	0.9	15:39	0.4	0.4	-
15:40	0.9	0.9	15:40	0.4	0.4	-
15:41	0.9	0.9	15:41	0.4	0.4	-
15:42	0.9	0.9	15:42	0.4	0.4	-
15:43	0.9	0.9	15:43	0.4	0.4	
						-
15:44	0.9	0.9	15:44	0.4	0.4	-
15:45	0.9	0.9	15:45	0.4	0.4	-
15:46	0.9	0.9	15:46	0.4	0.4	-
15:47	0.9	0.9	15:47		0.4	-
15:48	0.9	0.9	15:48		0.4	-
15:49	0.9	0.9	15:49		0.4	-
15:50	0.9	0.9	15:50		0.4	-
15:51	0.9	0.9	15:51		0.4	-
15:52	0.9	0.9	15:52		0.4	-
15:53	0.9	0.9	15:53		0.4	-

	PID DATA										
	Upwind			Downwind							
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits					
15:54	0.9	0.9	15:54		0.4	-					
15:55	0.9	0.9	15:55		0.4	-					
15:56	0.9	0.9	15:56		0.4	-					
15:57	0.9	0.9	15:57		0.4	-					
15:58	0.9	0.9	15:58		0.4	-					
15:59	0.9	0.9	15:59		0.4	-					
16:00	0.9	0.9	16:00		0.4	-					

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/11/2020 Observer: Reid Balkind

Particulate Monitoring						
	Upwind	Downwind				
Minimum 15min Average	0.000	0.007				
Maximum 15min Average	0.000	0.016				
High Intervals "exceedances"	N/A	0				
Minimum 1min Reading	0.001	0.006				
Maximum 1min Reading	0.107	0.066				

Organic Vapor Monitoring							
Upwind Dow							
Minimum 15min Average	0.1	0.5					
Maximum 15min Average	0.5	1.0					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.1	0.4					
Maximum 1min Reading	0.6	1.2					

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Numb	er of Instances Wher	e Downwind Particulate	May 11, 20 es Exceeds U		.150 mg/m^3 =	0	
Number of Comparable Data Points =						0	
PARTICULATE DATA							
	Upwind Downwind						
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit	
6:46	0.066		6:46				
6:47	0.02		6:47				
6:48	0.008		6:48				
6:49	0.002		6:49	0.011			
6:50	0.001		6:50	0.009			
6:51	0.002		6:51	0.008			
6:52	0.107		6:52	0.008			
6:53	0.008		6:53	0.008			
6:54	0.03		6:54	0.008			
6:55	0.007		6:55	0.008			
6:56	0.015		6:56	0.007			
6:57	0.001		6:57	0.007			
6:58	0.011		6:58	0.007			
6:59	1		6:59	0.007	2 2 4 4		
7:00			7:00	0.007	0.011		
7:01			7:01	0.007	0.007		
7:02			7:02	0.007	0.008		
7:03			7:03	0.007	0.008		
7:04			7:04	0.007	0.008		
7:05			7:05	0.007	0.008		
7:06			7:06	0.007	0.008		
7:07			7:07	0.007	0.008		
7:08 7:09			7:08 7:09	0.007	0.008 0.008		
				0.008			
7:10 7:11			7:10 7:11	0.008	0.008 0.008		
7:12			7:11	0.009	0.008		
7:13			7:12	0.008	0.008		
7:14			7:14	0.008	0.008		
7:15			7:14	0.008	0.008		
7:16			7:16	0.007	0.008		
7:17			7:17	0.008	0.008		
7:18			7:17	0.007	0.008		
7:19			7:18	0.013	0.009		
7:20			7:20	0.009	0.008		
7:21			7:21	0.008	0.008		
7:22			7:22	0.007	0.008		
7:23			7:23	0.007	0.009		
7:24			7:24	0.008	0.009		
7:25			7:25	0.008	0.009		
7:26			7:26	0.007	0.009		
7:27			7:27	0.008	0.009		
7:28			7:28	0.009	0.009		
7:29			7:29	0.008	0.009		
7:30			7:30	0.008	0.009		
7:31			7:31	0.008	0.010		
7:32			7:32	0.011	0.010		
7:33			7:33	0.01	0.010		
7:34			7:34	0.009	0.010		
7:35			7:35	0.008	0.010		
7:36			7:36	0.009	0.010		
7:37			7:37	0.011	0.010		

P. Upwind			ARTICULATE	DATA Downwind	Ī	Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
7:38			7:38	0.011	0.010	7.1.0.1.11
7:39			7:39	0.01	0.010	
7:40			7:40	0.01	0.010	
7:41			7:41	0.01	0.010	
7:42			7:42	0.009	0.009	
7:43			7:43	0.009	0.009	
7:44			7:44	0.009	0.010	
7:45			7:45	0.009	0.010	
7:46			7:46	0.012	0.010	
7:47			7:47	0.011	0.009	
7:48			7:48	0.01	0.009	
7:49			7:49	0.01	0.009	
7:50			7:50	0.009	0.009	
7:51			7:51	0.009	0.009	
7:52			7:52	0.009	0.009	
7:53			7:53	0.009	0.010	
7:54			7:54	0.009	0.010	
7:55			7:55	0.009	0.010	
7:56			7:56	0.009	0.010	
7:57			7:57	0.009	0.010	
7:58			7:58	0.011	0.010	
7:59			7:59	0.009	0.010	
8:00			8:00	0.01	0.010	
8:01			8:01	0.009	0.010	
8:02			8:02	0.009	0.010	
8:03			8:03	0.009	0.010	
8:04			8:04	0.009	0.010	
8:05			8:05	0.012	0.011	
8:06			8:06	0.01	0.010	
8:07			8:07	0.01	0.011	
8:08			8:08	0.01	0.011	
8:09			8:09	0.01	0.011	
8:10			8:10	0.01	0.011	
8:11			8:11	0.01	0.011	
8:12			8:12	0.011	0.012	
8:13			8:13	0.012	0.012	
8:14			8:14	0.01	0.012	
8:15			8:15	0.012	0.012	
8:16			8:16	0.011	0.012	
8:17			8:17	0.01	0.012	
8:18			8:18	0.01	0.013	
8:19			8:19	0.01	0.013	
8:20			8:20	0.011	0.013	
8:21			8:21	0.011	0.013	
8:22			8:22	0.011	0.013	
8:23			8:23	0.012	0.014	
8:24			8:24	0.014	0.015	
8:25			8:25	0.013	0.015	
8:26			8:26	0.018	0.015	
8:27			8:27	0.013	0.015	
8:28			8:28	0.013	0.015	
8:29			8:29	0.015	0.016	
8:30			8:30	0.013	0.015	
8:31			8:31	0.012	0.015	
8:32			8:32	0.012	0.016	

Upwind P			ARTICULATE			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
8:33			8:33	0.014	0.016	Alaim Limits
8:34			8:34	0.014	0.015	
8:35			8:35	0.014	0.015	
8:36			8:36	0.014	0.015	
8:37			8:37	0.023	0.015	
8:38			8:38	0.017	0.014	
8:39			8:39	0.02	0.014	
8:40			8:40	0.017	0.013	
8:41			8:41	0.015	0.013	
8:42			8:42	0.014	0.013	
8:43			8:43	0.019	0.013	
8:44			8:44	0.013	0.012	
8:45			8:45	0.014	0.012	
8:46			8:46	0.013	0.012	
8:47			8:47	0.012	0.012	
8:48			8:48	0.012	0.012	
8:49			8:49	0.012	0.012	
8:50			8:50	0.012	0.012	
8:51			8:51	0.012	0.012	
8:52			8:52	0.012	0.012	
8:53			8:53	0.013	0.012	
8:54			8:54	0.012	0.012	
8:55			8:55	0.012	0.012	
			8:56	0.012		
8:56					0.012	
8:57			8:57	0.012	0.012	
8:58			8:58	0.012	0.012	
8:59			8:59	0.012	0.012	
9:00			9:00	0.013	0.012	
9:01			9:01	0.013	0.012	
9:02			9:02	0.012	0.012	
9:03			9:03	0.012	0.012	
9:04			9:04	0.013	0.012	
9:05			9:05	0.012	0.012	
9:06			9:06	0.013	0.012	
9:07			9:07	0.012	0.012	
9:08			9:08	0.012	0.012	
9:09			9:09	0.013	0.012	
9:10			9:10	0.013	0.012	
9:11			9:11	0.012	0.011	
9:12			9:12	0.012	0.011	
9:13			9:13	0.012	0.011	
9:14			9:14	0.012	0.011	
9:15			9:15	0.011	0.011	
9:16			9:16	0.011	0.011	
9:17			9:17	0.013	0.011	
9:18			9:18	0.011	0.011	
9:19			9:19	0.011	0.011	
9:20			9:20	0.011	0.011	
9:21			9:21	0.011	0.011	
9:22			9:22	0.011	0.011	
9:23			9:23	0.011	0.011	
9:24			9:24	0.011	0.011	
9:25			9:25	0.011	0.011	
9:26			9:26	0.012	0.011	
9:27			9:27	0.011	0.011	

Upwind P			ARTICULATE	DATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:28			9:28	0.011	0.012	
9:29			9:29	0.011	0.012	
9:30			9:30	0.012	0.012	
9:31			9:31	0.011	0.012	
9:32			9:32	0.011	0.012	
9:33			9:33	0.011	0.012	
9:34			9:34	0.011	0.012	
9:35			9:35	0.011	0.012	
9:36			9:36	0.012	0.012	
9:37			9:37	0.012	0.012	
9:38			9:38	0.012	0.012	
9:39			9:39	0.012	0.012	
9:40			9:40	0.012	0.012	
9:41			9:41	0.012	0.012	
9:42			9:42	0.013	0.012	
9:43			9:43	0.013	0.012	
9:44			9:44	0.012	0.011	
9:45			9:45	0.012	0.011	
9:46			9:46	0.012	0.011	
9:47			9:47	0.011	0.011	
9:48			9:48	0.013	0.011	
9:49			9:49	0.014	0.011	
9:50			9:50	0.013	0.010	
9:51			9:51	0.011	0.010	
9:52			9:52	0.011	0.010	
9:53			9:53	0.011	0.010	
9:54			9:54	0.012	0.010	
9:55			9:55	0.01	0.009	
9:56			9:56	0.01	0.009	
9:57			9:57	0.01	0.009	
9:58			9:58	0.009	0.009	
9:59			9:59	0.009	0.009	
10:00			10:00	0.01	0.008	
10:01			10:01	0.010	0.008	
10:02			10:02	0.01	0.008	
10:03			10:03	0.01	0.009	
10:04			10:04	0.01	0.009	
10:05			10:05	0.01	0.010	
10:06			10:06	0.01	0.010	
10:07			10:07	0.008	0.014	
10:08			10:08	0.007	0.014	
10:09			10:09	0.007	0.014	
10:10			10:10	0.007	0.014	
10:11			10:11	0.007	0.014	
10:12			10:12	0.007	0.014	
10:13			10:13	0.007	0.014	
10:14			10:14	0.006	0.014	
10:15			10:15	0.006	0.014	
10:16			10:16	0.007	0.014	
10:17			10:17	0.031	0.014	
10:18			10:18	0.01	0.013	
10:19			10:19	0.015	0.013	
10:20			10:20	0.017	0.012	
10:21			10:21	0.066	0.012	
10:22			10:22	0.006	0.008	

Upwind P			ARTICULATE	DATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
10:23			10:23	0.011	0.008	
10:24			10:24	0.009	0.008	
10:25			10:25	0.007	0.008	
10:26			10:26	0.007	0.008	
10:27			10:27	0.007	0.008	
10:28			10:28	0.007	0.009	
10:29			10:29	0.008	0.009	
10:30			10:30	0.008	0.009	
10:31			10:31	0.008	0.009	
10:32			10:32	0.008	0.009	
10:33			10:33	0.008	0.009	
10:34			10:34	0.008	0.010	
10:35			10:35	0.008	0.010	
10:36			10:36	0.009	0.010	
10:37			10:37	0.009	0.010	
10:38			10:38	0.01	0.010	
10:39			10:39	0.01	0.010	
10:40			10:40	0.009	0.010	
10:41			10:41	0.01	0.010	
10:42			10:42	0.009	0.010	
10:43			10:43	0.01	0.010	
10:44			10:44	0.011	0.010	
10:45			10:45	0.01	0.010	
10:46			10:46	0.010	0.010	
10:47			10:47	0.01	0.010	
10:48			10:48	0.01	0.010	
10:49			10:49	0.01	0.010	
10:50			10:50	0.01	0.010	
10:51			10:51	0.01	0.010	
10:52			10:52	0.009	0.010	
10:53			10:53	0.009	0.010	
10:54			10:54	0.009	0.010	
10:55			10:55	0.009	0.010	
10:56			10:56	0.01	0.010	
10:57			10:57	0.011	0.010	
10:58			10:58	0.01	0.010	
10:59			10:59	0.01	0.010	
11:00			11:00	0.011	0.010	
11:01			11:01	0.010	0.010	
11:02			11:02	0.01	0.010	
11:03			11:03	0.011	0.010	
11:04			11:04	0.01	0.010	
11:05			11:05	0.01	0.010	
11:06			11:06	0.011	0.010	
11:07			11:07	0.01	0.010	
11:08			11:08	0.01	0.010	
11:09			11:09	0.011	0.009	
11:10			11:10	0.01	0.009	
11:11			11:11	0.01	0.009	
11:12			11:12	0.011	0.009	
11:13			11:13	0.011	0.009	
11:14			11:14	0.008	0.009	
11:15			11:15	0.008	0.009	
11:16			11:16	0.010	0.009	
11:17			11:17	0.011	0.008	

Upwind P			ARTICULATE	DATA Downwind	Ī	Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
11:18	+		11:18	0.008	0.008	7.1.0.1.11
11:19			11:19	0.009	0.008	
11:20			11:20	0.009	0.008	
11:21			11:21	0.009	0.008	
11:22			11:22	0.008	0.008	
11:23			11:23	0.007	0.008	
11:24			11:24	0.007	0.008	
11:25			11:25	0.011	0.008	
11:26			11:26	0.01	0.008	
11:27			11:27	0.008	0.008	
11:28			11:28	0.007	0.008	
11:29			11:29	0.007	0.008	
11:30			11:30	0.007	0.008	
11:31			11:31	0.007	0.009	
11:32			11:32	0.008	0.009	
11:33			11:33	0.008	0.009	
11:34			11:34	0.008	0.009	
11:35			11:35	0.008	0.009	
11:36			11:36	0.009	0.009	
11:37			11:37	0.009	0.010	
11:38			11:38	0.009	0.010	
11:39			11:39	0.009	0.010	
11:40			11:40	0.009	0.010	
11:41			11:41	0.009	0.010	
11:42			11:42	0.009	0.010	
11:43			11:43	0.009	0.010	
11:44			11:44	0.009	0.010	
11:45			11:45	0.009	0.010	
11:46			11:46	0.009	0.010	
11:47			11:47	0.01	0.010	
11:48			11:48	0.012	0.010	
11:49			11:49	0.01	0.009	
11:50			11:50	0.01	0.009	
11:51			11:51	0.014	0.009	
11:52			11:52	0.012	0.009	
11:53			11:53	0.01	0.008	
11:54			11:54	0.009	0.008	
11:55			11:55	0.01	0.008	
11:56			11:56	0.01	0.008	
11:57			11:57	0.009	0.008	
11:58			11:58	0.008	0.008	
11:59			11:59	0.008	0.008	
12:00			12:00	0.008	0.008	
12:01			12:01	0.008	0.008	
12:02			12:02	0.008	0.008	
12:03			12:03	0.008	0.008	
12:04			12:04	0.008	0.008	
12:05			12:05	0.008	0.008	
12:06			12:06	0.008	0.008	
12:07			12:07	0.007	0.008	
12:08			12:08	0.007	0.008	
12:09			12:09	0.007	0.008	
12:10			12:10	0.008	0.008	
12:11			12:11	0.008	0.009	
12:12			12:12	0.008	0.009	

P Upwind			PARTICULATE DATA Downwind			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
12:13			12:13	0.008	0.009	7.1.0.1.11
12:14			12:14	0.008	0.009	
12:15			12:15	0.008	0.009	
12:16			12:16	0.008	0.009	
12:17			12:17	0.008	0.009	
12:18			12:18	0.008	0.009	
12:19			12:19	0.008	0.009	
12:20			12:20	0.008	0.009	
12:21			12:21	0.008	0.009	
12:22			12:22	0.008	0.009	
12:23			12:23	0.008	0.009	
12:24			12:24	0.008	0.009	
12:25			12:25	0.016	0.009	
12:26			12:26	0.01	0.009	
12:27			12:27	0.009	0.009	
12:28			12:28	0.008	0.009	
12:29			12:29	0.008	0.009	
12:30			12:30	0.009	0.009	
12:31			12:31	0.009	0.009	
12:32			12:32	0.009	0.009	
12:33			12:33	0.009	0.009	
12:34			12:34	0.009	0.009	
12:35			12:35	0.009	0.009	
12:36			12:36	0.009	0.009	
12:37			12:37	0.009	0.009	
12:38			12:38	0.009	0.009	
12:39			12:39	0.009	0.009	
12:40			12:40	0.009	0.009	
12:41			12:41	0.009	0.009	
12:42			12:42	0.009	0.009	
12:43			12:43	0.009	0.009	
12:44			12:44	0.008	0.009	
12:45			12:45	0.008	0.009	
12:46			12:46	0.008	0.009	
12:47			12:47	0.009	0.009	
12:48			12:48	0.009	0.009	
12:49			12:49	0.009	0.010	
12:50			12:50	0.009	0.010	
12:51			12:51	0.009	0.010	
12:52			12:52	0.009	0.010	
12:53			12:53	0.01	0.010	
12:54			12:54	0.009	0.010	
12:55			12:55	0.009	0.010	
12:56			12:56	0.009	0.010	
12:57			12:57	0.009	0.010	
12:58			12:58	0.009	0.010	
12:59			12:59	0.009	0.010	
13:00			13:00	0.01	0.010	
13:01			13:01	0.010	0.010	
13:02			13:02	0.01	0.010	
13:03		`	13:03	0.013	0.010	
13:04			13:04	0.011	0.010	
13:05			13:05	0.012	0.010	
13:06			13:06	0.011	0.010	
13:07			13:07	0.011	0.011	

P Upwind			PARTICULATE DATA Downwind			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
13:08			13:08	0.009	0.011	
13:09			13:09	0.01	0.011	
13:10			13:10	0.009	0.011	
13:11			13:11	0.01	0.011	
13:12			13:12	0.009	0.011	
13:13			13:13	0.01	0.011	
13:14			13:14	0.01	0.011	
13:15			13:15	0.01	0.011	
13:16			13:16	0.011	0.011	
13:17			13:17	0.011	0.011	
13:18			13:18	0.012	0.011	
13:19			13:19	0.012	0.011	
13:20			13:20	0.012	0.011	
13:21			13:21	0.012	0.011	
13:22			13:22	0.012	0.011	
13:23			13:23	0.011	0.011	
13:24			13:24	0.011	0.011	
13:25			13:25	0.011	0.011	
13:26			13:26	0.01	0.011	
13:27			13:27	0.01	0.011	
13:28			13:28	0.011	0.011	
13:29			13:29	0.01	0.011	
13:30			13:30	0.01	0.011	
13:31			13:31	0.010	0.011	
13:32			13:32	0.010	0.011	
13:33			13:33	0.011	0.011	
13:34			13:34	0.011	0.011	
13:35			13:35	0.011	0.011	
13:36			13:36	0.011	0.011	
13:37			13:37	0.011	0.011	
13:38			13:38	0.011	0.011	
13:39			13:39	0.011	0.011	
13:40			13:40	0.013	0.011	
13:41			13:41	0.012	0.011	
13:42			13:42	0.011	0.011	
13:43			13:43	0.011	0.011	
13:44			13:44	0.011	0.011	
13:45			13:45	0.012	0.011	
13:46			13:46	0.012	0.011	
13:47			13:47	0.013	0.011	
13:48			13:48	0.013	0.012	
13:49			13:49	0.012	0.012	
13:50			13:50	0.012	0.012	
13:51			13:51	0.012	0.012	
13:52			13:52	0.012	0.012	
13:53			13:53	0.012	0.012	
13:54			13:54	0.013	0.012	
13:55			13:55	0.013	0.012	
13:56			13:56	0.013	0.012	
13:57			13:57	0.013	0.012	
13:58			13:58	0.013	0.012	
13:59			13:59	0.013	0.013	
14:00			14:00	0.015	0.013	
14:01			14:01	0.013	0.013	
14:02			14:02	0.014	0.013	

Upwind			ARTICULATE	DATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
14:03			14:03	0.015	0.013	
14:04			14:04	0.015	0.013	
14:05			14:05	0.014	0.013	
14:06			14:06	0.014	0.013	
14:07			14:07	0.014	0.014	
14:08			14:08	0.014	0.014	
14:09			14:09	0.014	0.014	
14:10			14:10	0.013	0.014	
14:11			14:11	0.013	0.014	
14:12			14:12	0.014	0.014	
14:13			14:13	0.015	0.014	
14:14			14:14	0.014	0.014	
14:15			14:15	0.014	0.014	
14:16			14:16	0.014	0.014	
14:17			14:17	0.014	0.014	
14:18			14:18	0.013	0.014	
14:19			14:19	0.014	0.014	
14:20			14:20	0.014	0.014	
14:21			14:21	0.014	0.014	
14:22			14:22	0.012	0.014	
14:23			14:23	0.012	0.014	
14:24			14:24	0.012	0.013	
14:25			14:25	0.012	0.013	
14:26			14:26	0.014	0.013	
14:27			14:27	0.012	0.013	
14:28			14:28	0.011	0.013	
14:29			14:29	0.011	0.013	
14:30			14:30	0.011	0.013	
14:31			14:31	0.011	0.012	
14:32			14:32	0.011	0.012	
14:33			14:33	0.009	0.012	
14:34			14:34	0.009	0.012	
14:35			14:35	0.007	0.011	
14:36			14:36	0.008	0.011	
14:37			14:37	0.007	0.010	
14:38			14:38	0.007	0.010	
14:39			14:39	0.007	0.010	
14:40			14:40	0.007	0.009	
14:41			14:41	0.008	0.009	
14:42			14:42	0.007	0.009	
14:43			14:43	0.007	0.008	
14:44			14:44	0.007	0.008	
14:45			14:45	0.006	0.008	
14:46			14:46	0.006	0.008	
14:47			14:47	0.006	0.007	
14:48		7	14:48	0.006	0.007	
14:49			14:49	0.006	0.007	
14:50			14:50	0.006	0.007	
14:51			14:51	0.008	0.007	
14:52			14:52	0.007	0.007	
14:53		`	14:53	0.006	0.007	
14:54			14:54	0.006	0.007	
14:55			14:55	0.006	0.007	
14:56			14:56	0.006	0.006	
14:57			14:57	0.006	0.006	

PARTICULATE DATA									
	Upwind			Downwind		Exceeds			
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
14:58			14:58	0.006	0.006				
14:59			14:59	0.006	0.006				
15:00			15:00	0.006	0.006				
15:01			15:01	0.006	0.006				
15:02			15:02	0.006	0.006				
15:03			15:03	0.006	0.006				
15:04			15:04	0.006	0.006				
15:05			15:05	0.005	0.006				
15:06			15:06	0.005	0.006				
15:07			15:07	0.006	0.006				
15:08			15:08	0.006	0.006				
15:09			15:09	0.006	0.006				
15:10			15:10	0.006	0.006				
15:11			15:11	0.007	0.006				
15:12			15:12	0.007	0.006				
15:13			15:13	0.007	0.006				
15:14			15:14	0.006	0.006				
15:15			15:15	0.006	0.006				
15:16			15:16	0.006	0.006				
15:17			15:17	0.007	0.006				
15:18			15:18	0.007	0.006				
15:19			15:19	0.006	0.006				
15:20			15:20	0.007	0.006				
15:21			15:21	0.006	0.006				
15:22			15:22	0.006	0.006				
15:23			15:23	0.007	0.006				
15:24			15:24	0.006	0.006				
15:25			15:25	0.006	0.006				
15:26			15:26	0.006	0.006				
15:27			15:27	0.004	0.006				
15:28			15:28	0.006	0.006				
15:29			15:29	0.007	0.006				
15:30			15:30	0.007	0.006				
15:31			15:31	0.004	0.006				
15:32			15:32	0.006	0.006				
15:33			15:33	0.004	0.006				
15:34			15:34	0.005	0.006				
15:35			15:35	0.003	0.006				
15:36			15:36	0.002	0.005				
15:37			15:37	0.002	0.005				
15:38			15:38	0.002	0.005				
15:39			15:39	0.001	0.004				

	Number of Inst	tances Where Downwir	May 11, 2020		_	0
	Number of mist		arable Data Points			348
		Number of Comp	PID DATA) -		340
	Upwind		PID DATA	Downwind		1
	Opwilla			Jownwind		Exceeds VOCs
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
6:49	0.1		6:49			
6:50	0.1		6:50			
6:51	0.1		6:51			
6:52	0.1		6:52	0.4		
6:53	0.1		6:53	0.4		
6:54	0.1		6:54	0.4		
6:55	0.1		6:55	0.4		
6:56	0.1		6:56	0.5		
6:57	0.1		6:57	0.5		
6:58	0.1		6:58	0.5		
6:59	0.1		6:59	0.5		
7:00	0.1		7:00	0.6		
7:01	0.1		7:01	0.6		
7:02	0.1		7:02	0.6		
7:03	0.1	0.1	7:03	0.6		
7:04	0.1	0.1	7:04	0.6	0.5	-
7:05	0.1	0.1	7:05	0.6	0.5	-
7:06	0.1	0.1	7:06	0.6	0.5	-
7:07	0.1	0.1	7:07	0.7	0.5	-
7:08	0.1	0.1	7:08	0.7	0.5	-
7:09	0.1	0.1	7:09	0.7	0.6	-
7:10	0.1	0.1	7:10	0.7	0.6	-
7:11	0.1	0.1	7:11	0.8	0.6	-
7:12	0.1	0.1	7:12	0.7	0.6	-
7:13	0.1	0.1	7:13	0.7	0.6	-
7:14	0.1	0.1	7:14	0.8	0.6	-
7:15	0.1	0.1	7:15	0.8	0.7	-
7:16	0.1	0.1	7:16	0.8	0.7	-
7:17	0.1	0.1	7:17	0.8	0.7	-
7:18	0.1	0.1	7:18	0.9	0.7	-
7:19	0.1	0.1	7:19	0.8	0.7	-
7:20	0.1	0.1	7:20	0.8	0.7	-
7:21	0.1	0.1	7:21	1	0.8	-
7:22	0.1	0.1	7:22	1.1	0.8	-
7:23	0.1	0.1	7:23	0.9	0.8	-
7:24	0.1	0.1	7:24	0.8	0.8	-
7:25	0.1	0.1	7:25	0.8	0.8	-
7:26	0.1	0.1	7:26	0.9	0.8	-
7:27	0.1	0.1	7:27	0.9	0.8	-
7:28	0.1	0.1	7:28	0.9	0.9	-
7:29	0.1	0.1	7:29	0.9	0.9	-
7:30	0.1	0.1	7:30	0.9	0.9	-
7:31	0.1	0.1	7:31	0.9	0.9	-
7:32	0.1	0.1	7:32	0.9	0.9	-
7:33	0.1	0.1	7:33	0.9	0.9	-
7:34	0.1	0.1	7:34	0.9	0.9	-
7:35	0.1	0.1	7:35	0.9	0.9	-
7:36	0.1	0.1	7:36	0.9	0.9	-
7:37	0.1	0.1	7:37	0.9	0.9	-
7:38	0.1	0.1	7:38	0.9	0.9	-
7:39	0.1	0.1	7:39	0.9	0.9	-

Time VOC (ppm) 15-Minute Average Time VOC (ppm) 15-Minute Average Exceeded Alarm 7:40 0.1 0.1 7:40 1 0.9 0.9 7:42 0.1 0.1 7:42 1 0.9 0.9 7:44 0.1 0.1 0.1 7:44 0.9 0.9 0.9 7:45 0.1 0.1 0.1 7:45 0.9 0.9 0.9 7:46 0.1 0.1 7:46 0.9 0.9 0.9 0.9 7:47 0.1 0.1 7:46 0.9 0.9 0.9 0.9 7:48 0.1 0.1 7:48 0.9	Hn		Upwind		PID DATA	Downwind		1
Time VOC (ppm) 15-Minute Average Time VOC (ppm) Average Alarm 7:40	υþ		Opwina			Downwind		Exceeds VOCs
7.41 0.1 0.1 7.42 1 0.9 0.9 7.42 0.1 0.1 7.43 1 0.9 7.744 0.1 0.1 7.43 1 0.9 9 7.744 0.1 0.1 7.745 0.9 0.9 0.9 0.9 7.746 0.1 0.1 7.746 0.9 0.	OC (:	VOC (ppm)	15-Minute Average	Time	VOC (ppm)		Alarm Limits
7:42 0.1 0.1 7:42 1 0.9 7:43 0.1 0.1 7:43 1 0.9 7:44 0.1 0.1 7:44 0.9 0.9 7:45 0.1 0.1 7:46 0.9 0.9 0.9 7:46 0.1 0.1 0.1 7:46 0.9 0.9 0.9 7:47 0.1 0.1 0.1 7:47 0.9 0.9 0.9 7:48 0.1 0.1 0.1 7:48 0.9 0.9 0.9 7:49 0.1 0.1 0.1 7:59 0.9 0.9 0.9 7:50 0.1 0.1 0.1 7:51 0.9 0.9 0.9 7:51 0.1 0.1 7:52 0.9 0.9 0.9 7:52 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.9<	0.	,	0.1	0.1	7:40	1	0.9	-
7:43 0.1 0.1 7:44 0.9 0.9 7:45 0.1 0.1 7:44 0.9 0.9 0.9 7:46 0.1 0.1 0.1 7:46 0.9 0.9 0.9 7:47 0.1 0.1 0.1 7:47 0.9 0.9 0.9 7:48 0.1 0.1 0.1 7:48 0.9 0.9 0.9 7:50 0.1 0.1 0.1 7:49 0.9 0.9 0.9 7:51 0.1 0.1 0.1 7:51 0.9 0.9 0.9 7:52 0.1 0.1 7:51 0.9 0.9 0.9 7:53 0.1 0.1 7:52 0.9 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.9 0.9 0.9 7:55 0.9 0.9 0.9 7:54 0.9 0.9 0.9 7:55 0.9 0.9 <	0.		0.1	0.1	7:41	0.9	0.9	-
7:44 0.1 0.1 7:45 0.9 0.9 0.9 7:45 0.1 0.1 7:45 0.9 0.9 0.9 7:47 0.1 0.1 7:46 0.9 0.9 0.9 7:48 0.1 0.1 7:48 0.9 0.9 0.9 7:49 0.1 0.1 7:49 0.9 0.9 0.9 7:50 0.1 0.1 7:50 0.9 0.9 0.9 7:51 0.1 0.1 7:51 0.9 0.9 0.9 7:52 0.1 0.1 7:51 0.9 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.1 0.1 7:53 0.9 0.9 0.9 7:55 0.1 0.1 7:55 0.9 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:42</td> <td>1</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:42	1	0.9	-
7:45 0.1 0.1 7:46 0.9 0.9 7:46 0.1 0.1 0.1 7:46 0.9 0.9 7:48 0.1 0.1 0.1 7:47 0.9 0.9 7:48 0.1 0.1 0.1 7:49 0.9 0.9 7:50 0.1 0.1 7:50 0.9 0.9 7:51 0.1 0.1 7:51 0.9 0.9 0.9 7:52 0.1 0.1 7:51 0.9 0.9 0.9 7:53 0.1 0.1 7:54 0.9 0.9 0.9 7:53 0.1 0.1 7:54 0.9 0.9 0.9 7:54 0.1 0.1 7:55 0.9 0.9 0.9 7:56 0.1 0.1 7:55 0.9 0.9 0.9 7:57 0.1 0.1 7:59 0.9 0.9 0.9 7:59 0.1 0.1 <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:43</td> <td>1</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:43	1	0.9	-
7:46 0.1 0.1 7:47 0.0 0.1 0.1 7:47 0.9 0.9 0.9 7:48 0.1 0.1 7:48 0.9<	0.		0.1	0.1	7:44	0.9	0.9	-
7:47 0.1 0.1 7:48 0.9 0.9 0.9 7:48 0.1 0.1 0.1 7:48 0.9 0.9 0.9 7:50 0.1 0.1 0.1 7:50 0.9 0.9 0.9 7:51 0.1 0.1 0.1 7:51 0.9 0.9 0.9 7:52 0.1 0.1 7:52 0.9 0.9 0.9 7:53 0.1 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.1 0.1 7:54 0.9 0.9 0.9 0.9 0.9 7:55 0.1 0.1 7:55 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:45</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:45	0.9	0.9	-
7:48 0.1 0.1 7:48 0.9 0.9 7:49 0.1 0.1 0.1 7:49 0.9 0.9 7:51 0.1 0.1 0.1 7:51 0.9 0.9 7:52 0.1 0.1 0.1 7:52 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.1 0.1 0.1 7:53 0.9 0.9 0.9 7:55 0.1 0.1 0.1 7:55 0.9 0.9 0.9 7:55 0.1 0.1 0.1 7:55 0.9 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 0.9 8:00 0.1 0.1 7:58 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:46</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:46	0.9	0.9	-
7:49 0.1 0.1 7:49 0.9 0.9 7:50 0.1 0.1 0.1 7:50 0.9 0.9 7:51 0.1 0.1 0.1 7:51 0.9 0.9 7:52 0.1 0.1 0.1 7:53 0.9 0.9 7:53 0.1 0.1 0.1 7:54 0.9 0.9 7:55 0.1 0.1 0.1 7:55 0.9 0.9 7:56 0.1 0.1 7:56 0.9 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 0.9 8:00 0.1 0.1 7:58 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:00 0.9 0.9 0.9 8:02 0.1 <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:47</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:47	0.9	0.9	-
7:50 0.1 0.1 7:50 0.9 0.9 7:51 0.1 0.1 7:51 0.9 0.9 7:52 0.1 0.1 7:52 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 7:54 0.1 0.1 7:54 0.9 0.9 7:55 0.1 0.1 7:55 0.9 0.9 7:56 0.1 0.1 7:56 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:00 0.9 0.9 8:02 0.1 0.1 8:00 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:48</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:48	0.9	0.9	-
7:51 0.1 0.1 7:51 0.9 0.9 0.9 7:52 0.1 0.1 7:52 0.9 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 0.9 7:54 0.1 0.1 7:54 0.9 0.9 0.9 7:55 0.1 0.1 7:55 0.9 0.9 0.9 7:56 0.1 0.1 7:57 0.9 0.9 0.9 7:57 0.1 0.1 7:58 0.9 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:00 0.9 0.9 0.9 8:02 0.1 0.1 8:00 0.9 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 0.9 8:04 <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:49</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:49	0.9	0.9	-
7:52 0.1 0.1 7:52 0.9 0.9 7:53 0.1 0.1 7:53 0.9 0.9 7:54 0.1 0.1 7:54 0.9 0.9 7:55 0.1 0.1 7:55 0.9 0.9 7:56 0.1 0.1 7:56 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:04 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:50</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:50	0.9	0.9	-
7:53 0.1 0.1 7:54 0.1 0.1 7:54 0.9 0.9 0.9 7:54 0.1 0.1 7:54 0.9 0.9 0.9 7:55 0.1 0.1 7:56 0.9 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 0.1 0.1 7:59 0.9 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:00 0.9 0.9 0.9 8:02 0.1 0.1 8:00 0.9 0.9 0.9 8:03 0.1 0.1 8:02 0.9 0.9 0.9 8:04 0.1 0.1 8:03 0.9 0.9 0.9 8:05 0.1 0.1 8:04 0.9 0.9<	0.		0.1	0.1	7:51	0.9	0.9	-
7:54 0.1 0.1 7:54 0.9 0.9 7:55 0.1 0.1 7:55 0.9 0.9 7:56 0.1 0.1 7:57 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 8:01 0.9 0.9 8:03 0.1 0.1 8:02 0.9 0.9 8:04 0.1 0.1 8:03 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 8:05 0.9 0.9 8:07 0.1 0.1 8:05 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:52</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:52	0.9	0.9	-
7:55 0.1 0.1 7:55 0.9 0.9 7:56 0.1 0.1 7:56 0.9 0.9 7:57 0.1 0.1 7:57 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:01 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:53</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:53	0.9	0.9	-
7:56 0.1 0.1 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:02 0.9 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9<	0.		0.1	0.1	7:54	0.9	0.9	-
7:56 0.1 0.1 7:57 0.1 0.1 7:57 0.9 0.9 0.9 7:58 0.1 0.1 7:58 0.9 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:02 0.9 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9<								-
7:57 0.1 0.1 7:58 0.1 0.1 7:58 0.9 0.9 0.9 7:59 0.1 0.1 7:59 0.9 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 8:04 0.1 0.1 8:03 0.9 0.9 8:05 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 0.9 8:05 0.1 0.1 8:06 0.9 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 0.9 8:11 0.2 0.1 8:13 </td <td>0.</td> <td></td> <td>0.1</td> <td>0.1</td> <td>7:57</td> <td>0.9</td> <td>0.9</td> <td>-</td>	0.		0.1	0.1	7:57	0.9	0.9	-
7:59 0.1 0.1 7:59 0.9 0.9 8:00 0.1 0.1 8:00 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 0.9 8:05 0.1 0.1 8:06 0.9 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 </td <td>0.</td> <td></td> <td>0.1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	0.		0.1					-
8:00 0.1 0.1 8:00 0.9 0.9 0.9 8:01 0.1 0.1 8:01 0.9 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 0.9 8:14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:01 0.1 0.1 8:02 0.9 0.9 8:02 0.1 0.1 8:02 0.9 0.9 8:03 0.1 0.1 8:03 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:13 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:02 0.1 0.1 8:03 0.9 0.9 0.9 8:03 0.1 0.1 8:04 0.9 0.9 0.9 8:04 0.1 0.1 8:05 0.9 0.9 0.9 8:05 0.1 0.1 8:06 0.9 0.9 0.9 8:07 0.1 0.1 8:06 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 0.9 8:10 0.2 0.1 8:09 0.9 0.9 0.9 8:11 0.2 0.1 8:10 0.9 0.9 0.9 8:12 0.2 0.1 8:11 0.9 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 0.9 8:15 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:03 0.1 0.1 8:04 0.9 0.9 8:04 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 0.1 8:06 0.9 0.9 8:07 0.1 0.1 8:07 0.9 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 0.9 8:15 0.2 0.2 8:16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:04 0.1 0.1 8:04 0.9 0.9 8:05 0.1 0.1 8:05 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 8:07 0.1 0.1 8:07 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 0.9 8:14 0.2 0.1 8:13 0.9 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 0.9 8:16 0.2 0.2 8:18 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:05 0.1 0.1 8:06 0.9 0.9 8:06 0.1 0.1 8:06 0.9 0.9 8:07 0.1 0.1 8:07 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:18 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:06 0.1 0.1 8:07 0.9 0.9 8:07 0.1 0.1 8:07 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 0.9 8:16 0.2 0.2 8:15 0.9 0.9 0.9 8:17 0.2 0.2 8:18 0.9 0.9 0.9 8:18 0.2 0.2 8:20 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:07 0.1 0.1 8:08 0.9 0.9 8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:12 0.2 0.1 8:13 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:08 0.2 0.1 8:08 0.9 0.9 8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.1 8:14 0.9 0.9 8:16 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:21 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
8:09 0.2 0.1 8:09 0.9 0.9 8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:18 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:23 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:10 0.2 0.1 8:10 0.9 0.9 8:11 0.2 0.1 8:11 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8:11 0.2 0.1 8:12 0.9 0.9 8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:12 0.2 0.1 8:12 0.9 0.9 8:13 0.2 0.1 8:13 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9								-
8:13 0.2 0.1 8:14 0.9 0.9 8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:26 1 0.9								-
8:14 0.2 0.1 8:14 0.9 0.9 8:15 0.2 0.2 8:15 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:28 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9								-
8:15 0.2 0.2 8:16 0.9 0.9 8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:28 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:30 1 0.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:16 0.2 0.2 8:16 0.9 0.9 8:17 0.2 0.2 8:17 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
8:17 0.2 0.2 8:18 0.9 0.9 8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:23 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:30 1 0.9								-
8:18 0.2 0.2 8:18 0.9 0.9 8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:19 0.2 0.2 8:19 0.9 0.9 8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:30 1 0.9								-
8:20 0.2 0.2 8:20 0.9 0.9 8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:21 0.2 0.2 8:21 0.9 0.9 8:22 0.2 0.2 8:22 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:22 0.2 0.2 8:23 0.9 0.9 8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:23 0.2 0.2 8:23 0.9 0.9 8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:24 0.2 0.2 8:24 0.9 0.9 8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:25 0.2 0.2 8:25 1 0.9 8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:26 0.2 0.2 8:26 1 0.9 8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:27 0.2 0.2 8:27 1.1 0.9 8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:28 0.2 0.2 8:28 1.1 0.9 8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:29 0.2 0.2 8:29 1 0.9 8:30 0.2 0.2 8:30 1 0.9								-
8:30 0.2 0.2 8:30 1 0.9								-
								-
								-
			0.2	0.2	8:31	1	1.0	-
8:32 0.2 0.2 8:32 1 1.0 8:33 0.2 0.2 8:33 1 1.0	0.		0.2	0.2			1.0	-

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
8:34	0.2	0.2	8:34	0.9	1.0	-
8:35	0.2	0.2	8:35	1	1.0	-
8:36	0.2	0.2	8:36	1	1.0	-
8:37	0.2	0.2	8:37	1	1.0	-
8:38	0.2	0.2	8:38	1	1.0	-
8:39	0.2	0.2	8:39	1	1.0	-
8:40	0.2	0.2	8:40	0.9	1.0	-
8:41	0.2	0.2	8:41	1.1	1.0	-
8:42	0.2	0.2	8:42	1	1.0	-
8:43	0.2	0.2	8:43	1	1.0	_
8:44	0.2	0.2	8:44	0.9	1.0	_
8:45	0.2	0.2	8:45	1	1.0	_
8:46	0.2	0.2	8:46	1.2	1.0	_
8:47	0.2	0.2	8:47	1	1.0	-
8:48	0.2	0.2	8:48	0.9	1.0	-
8:49	0.2	0.2	8:49	0.9	1.0	-
8:50	0.2	0.2	8:50	0.9	1.0	-
8:51	0.2	0.2	8:51	0.9	1.0	
8:52	0.2	0.2	8:52	0.9	1.0	-
						-
8:53	0.2	0.2	8:53	0.9	1.0	-
8:54	0.2	0.2	8:54	0.9	1.0	-
8:55	0.2	0.2	8:55	0.9	1.0	-
8:56	0.2	0.2	8:56	0.9	1.0	-
8:57	0.2	0.2	8:57	0.9	0.9	-
8:58	0.2	0.2	8:58	0.9	0.9	-
8:59	0.2	0.2	8:59	0.9	0.9	-
9:00	0.2	0.2	9:00	0.9	0.9	-
9:01	0.2	0.2	9:01	0.9	0.9	-
9:02	0.2	0.2	9:02	0.9	0.9	-
9:03	0.2	0.2	9:03	0.9	0.9	-
9:04	0.2	0.2	9:04	0.9	0.9	-
9:05	0.2	0.2	9:05	0.9	0.9	-
9:06	0.2	0.2	9:06	0.9	0.9	-
9:07	0.2	0.2	9:07	0.9	0.9	-
9:08	0.2	0.2	9:08	0.9	0.9	-
9:09	0.2	0.2	9:09	0.9	0.9	-
9:10	0.2	0.2	9:10	0.9	0.9	-
9:11	0.2	0.2	9:11	0.9	0.9	-
9:12	0.3	0.2	9:12	0.9	0.9	-
9:13	0.3	0.2	9:13	0.9	0.9	-
9:14	0.3	0.2	9:14	0.9	0.9	-
9:15	0.3	0.2	9:15	0.9	0.9	-
9:16	0.3	0.2	9:16	0.8	0.9	-
9:17	0.3	0.2	9:17	0.8	0.9	-
9:18	0.3	0.2	9:18	0.9	0.9	-
9:19	0.3	0.3	9:19	0.9	0.9	-
9:20	0.3	0.3	9:20	0.9	0.9	-
9:21	0.3	0.3	9:21	0.9	0.9	-
9:22	0.3	0.3	9:22	0.9	0.9	-
9:23	0.3	0.3	9:23	0.9	0.9	-
9:24	0.3	0.3	9:24	0.9	0.9	-
9:25	0.3	0.3	9:25	0.9	0.9	_
9:26	0.3	0.3	9:26	0.9	0.9	_
9:27	0.3	0.3	9:27	0.9	0.9	-

	Upwind	Τ	PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC
9:28	0.4	0.3	9:28	0.9	0.9	-
9:29	0.3	0.3	9:29	0.9	0.9	-
9:30	0.4	0.3	9:30	0.9	0.9	-
9:31	0.4	0.3	9:31	0.9	0.9	-
9:32	0.4	0.3	9:32	0.9	0.9	-
9:33	0.3	0.3	9:33	0.8	0.9	-
9:34	0.4	0.3	9:34	0.8	0.9	-
9:35	0.4	0.3	9:35	0.9	0.9	-
9:36	0.4	0.3	9:36	0.9	0.9	_
9:37	0.5	0.4	9:37	0.9	0.9	_
9:38	0.4	0.4	9:38	0.9	0.9	_
9:39	0.5	0.4	9:39	0.9	0.9	_
9:40	0.4	0.4	9:40	0.9	0.9	_
9:41	0.4	0.4	9:41	0.9	0.9	 _
9:42	0.4	0.4	9:42	0.9	0.9	-
9:43	0.4	0.4	9:43	0.9	0.9	-
9:44	0.5	0.4	9:44	0.9	0.9	<u>-</u>
9:45	0.5	0.4	9:45	0.9	0.9	
9:46	0.5	0.4	9:46	0.9	0.9	-
						-
9:47	0.4	0.4	9:47	0.9	0.9	-
9:48	0.5	0.5	9:48	0.9	0.9	-
9:49	0.5	0.5	9:49	0.9	0.9	-
9:50	0.5	0.5	9:50	0.9	0.9	-
9:51	0.5	0.5	9:51	1	0.9	-
9:52	0.5	0.5	9:52	0.9	0.9	-
9:53	0.5	0.5	9:53	0.9	0.9	-
9:54	0.4	0.5	9:54	0.9	0.9	-
9:55	0.5	0.5	9:55	0.9	0.9	-
9:56	0.4	0.5	9:56	1	0.9	-
9:57	0.5	0.5	9:57	0.9	0.9	-
9:58	0.4	0.5	9:58	0.9	0.9	-
9:59	0.4	0.5	9:59	0.9	0.9	-
10:00	0.4	0.5	10:00	0.9	0.9	-
10:01	0.4	0.5	10:01	0.9	0.9	-
10:02	0.4	0.5	10:02	0.9	0.9	-
10:03	0.4	0.4	10:03	0.9	0.9	-
10:04	0.4	0.4	10:04	0.9	0.9	-
10:05	0.4	0.4	10:05	1	0.9	-
10:06	0.4	0.4	10:06	0.9	0.9	-
10:07	0.5	0.4	10:07	0.9	0.9	-
10:08	0.4	0.4	10:08	1	0.9	-
10:09	0.4	0.4	10:09	0.9	0.9	-
10:10	0.4	0.4	10:10	1	0.9	-
10:11	0.4	0.4	10:11	1	0.9	-
10:12	0.4	0.4	10:12	0.9	0.9	-
10:13	0.4	0.4	10:13	1	0.9	-
10:14	0.4	0.4	10:14	0.9	0.9	-
10:15	0.4	0.4	10:15	1	0.9	-
10:16	0.3	0.4	10:16	0.9	0.9	-
10:17	0.4	0.4	10:17	1	0.9	-
10:18	0.4	0.4	10:18	0.9	0.9	-
10:19	0.4	0.4	10:19	0.9	0.9	_
10:20	0.4	0.4	10:20	1	0.9	_
10:21	0.4	0.4	10:21	1	0.9	-

	Upwind	_	PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
10:22	0.4	0.4	10:22	0.9	1.0	-
10:23	0.4	0.4	10:23	0.9	1.0	-
10:24	0.4	0.4	10:24	0.9	0.9	-
10:25	0.3	0.4	10:25	0.9	0.9	-
10:26	0.4	0.4	10:26	0.9	0.9	-
10:27	0.4	0.4	10:27	0.9	0.9	_
10:28	0.5	0.4	10:28	1	0.9	_
10:29	0.4	0.4	10:29	1	0.9	-
10:30	0.4	0.4	10:30	1	0.9	_
10:31	0.4	0.4	10:31	0.9	0.9	_
10:32	0.4	0.4	10:32	0.9	0.9	-
10:33	0.4	0.4	10:33	0.9	0.9	_
10:34	0.4	0.4	10:34	1	0.9	+ -
10:35	0.5	0.4	10:35	0.9	0.9	-
10:36	0.5	0.4	10:36	0.9	0.9	
10:36	0.5	0.4	10:36	0.9	0.9	-
10:37	0.3	0.4	10:38	1	0.9	-
10:39	0.4	0.4	10:39	0.9	0.9	
	0.4	0.4				-
10:40			10:40	1	0.9	-
10:41	0.4	0.4	10:41	1	0.9	-
10:42	0.3	0.4	10:42	0.9	0.9	-
10:43	0.4	0.4	10:43	0.9	0.9	-
10:44	0.3	0.4	10:44	0.9	0.9	-
10:45	0.4	0.4	10:45	0.9	0.9	-
10:46	0.4	0.4	10:46	0.9	0.9	-
10:47	0.4	0.4	10:47	0.9	0.9	-
10:48	0.3	0.4	10:48	0.9	0.9	-
10:49	0.4	0.4	10:49	0.9	0.9	-
10:50	0.4	0.4	10:50	0.9	0.9	-
10:51	0.4	0.4	10:51	0.9	0.9	-
10:52	0.3	0.4	10:52	0.9	0.9	-
10:53	0.4	0.4	10:53	0.9	0.9	-
10:54	0.4	0.4	10:54	0.9	0.9	-
10:55	0.3	0.4	10:55	0.9	0.9	-
10:56	0.3	0.4	10:56	0.9	0.9	-
10:57	0.3	0.4	10:57	0.9	0.9	-
10:58	0.3	0.4	10:58	0.9	0.9	-
10:59	0.4	0.4	10:59	0.9	0.9	-
11:00	0.3	0.4	11:00	0.9	0.9	-
11:01	0.4	0.4	11:01	0.9	0.9	-
11:02	0.3	0.3	11:02	0.9	0.9	-
11:03	0.3	0.3	11:03	0.9	0.9	-
11:04	0.3	0.3	11:04	0.9	0.9	-
11:05	0.3	0.3	11:05	0.9	0.9	-
11:06	0.3	0.3	11:06	0.9	0.9	-
11:07	0.3	0.3	11:07	0.9	0.9	-
11:08	0.3	0.3	11:08	0.9	0.9	-
11:09	0.3	0.3	11:09	0.9	0.9	-
11:10	0.3	0.3	11:10	0.9	0.9	-
11:11	0.3	0.3	11:11	0.9	0.9	-
11:12	0.3	0.3	11:12	0.9	0.9	-
11:13	0.3	0.3	11:13	0.9	0.9	-
11:14	0.3	0.3	11:14	0.9	0.9	-
11:15	0.3	0.3	11:15	0.9	0.9	_

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
11:16	0.2	0.3	11:16	0.9	0.9	-
11:17	0.2	0.3	11:17	0.9	0.9	-
11:18	0.3	0.3	11:18	1	0.9	-
11:19	0.3	0.3	11:19	0.9	0.9	-
11:20	0.3	0.3	11:20	0.9	0.9	-
11:21	0.3	0.3	11:21	0.9	0.9	-
11:22	0.3	0.3	11:22	1	0.9	-
11:23	0.3	0.3	11:23	0.9	0.9	-
11:24	0.3	0.3	11:24	0.9	0.9	-
11:25	0.2	0.3	11:25	0.9	0.9	-
11:26	0.2	0.3	11:26	1	0.9	-
11:27	0.3	0.3	11:27	1	0.9	-
11:28	0.2	0.3	11:28	1	0.9	-
11:29	0.2	0.3	11:29	1	0.9	-
11:30	0.2	0.3	11:30	0.9	0.9	_
11:31	0.2	0.3	11:31	0.9	0.9	_
11:32	0.2	0.3	11:32	0.9	0.9	_
11:33	0.2	0.2	11:33	0.9	0.9	-
11:34	0.2	0.2	11:34	0.9	0.9	_
11:35	0.2	0.2	11:35	0.9	0.9	
11:36	0.2	0.2	11:36	0.9	0.9	-
11:37	0.2	0.2	11:37	0.9	0.9	-
11:38	0.3	0.2	11:38	0.9	0.9	
11:39	0.3	0.2	11:39	0.9	0.9	-
11:40	0.2	0.2	11:40	0.9	0.9	-
11:41	0.2	0.2	11:41	0.9	0.9	-
11:42	0.2	0.2	11:42	0.9	0.9	-
11:42	0.2	0.2	11:43	0.9	0.9	
11:44	0.2	0.2	11:44	0.9	0.9	-
	0.2	0.2		0.9	0.9	-
11:45 11:46	0.2	0.2	11:45 11:46	0.9	0.9	-
		-				-
11:47	0.2	0.2	11:47	0.8	0.9	-
11:48	0.2	0.2	11:48	0.8	0.9	-
11:49	0.2	0.2	11:49	0.8	0.9	-
11:50	0.2	0.2	11:50	0.9	0.9	-
11:51	0.2	0.2	11:51	0.8	0.9	-
11:52	0.1	0.2	11:52	0.8	0.9	-
11:53	0.2	0.2	11:53	0.9	0.9	-
11:54	0.2	0.2	11:54	0.9	0.9	-
11:55	0.1	0.2	11:55	0.8	0.9	-
11:56	0.2	0.2	11:56	0.8	0.9	-
11:57	0.2	0.2	11:57	0.8	0.8	-
11:58	0.2	0.2	11:58	0.8	0.8	-
11:59	0.2	0.2	11:59	0.8	0.8	-
12:00	0.1	0.2	12:00	0.8	0.8	-
12:01	0.1	0.2	12:01	0.8	0.8	-
12:02	0.1	0.2	12:02	0.8	0.8	-
12:03	0.2	0.2	12:03	0.8	0.8	-
12:04	0.2	0.2	12:04	0.8	0.8	-
12:05	0.2	0.2	12:05	0.8	0.8	-
12:06	0.2	0.2	12:06	0.8	0.8	-
12:07	0.2	0.2	12:07	0.8	0.8	-
12:08	0.2	0.2	12:08	0.8	0.8	-
12:09	0.1	0.2	12:09	0.8	0.8	-

	Upwind		PID DATA	Downwind		1
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
12:10	0.2	0.2	12:10	0.8	0.8	-
12:11	0.2	0.2	12:11	0.8	0.8	-
12:12	0.2	0.2	12:12	0.8	0.8	-
12:13	0.2	0.2	12:13	0.8	0.8	-
12:14	0.2	0.2	12:14	0.8	0.8	-
12:15	0.2	0.2	12:15	0.8	0.8	-
12:16	0.2	0.2	12:16	0.8	0.8	-
12:17	0.2	0.2	12:17	0.8	0.8	-
12:18	0.2	0.2	12:18	0.8	0.8	-
12:19	0.2	0.2	12:19	0.7	0.8	-
12:20	0.2	0.2	12:20	0.7	0.8	-
12:21	0.2	0.2	12:21	0.7	0.8	-
12:22	0.2	0.2	12:22	0.8	0.8	-
12:23	0.2	0.2	12:23	0.8	0.8	-
12:24	0.2	0.2	12:24	0.7	0.8	-
12:25	0.2	0.2	12:25	0.7	0.8	-
12:26	0.2	0.2	12:26	0.7	0.8	-
12:27	0.2	0.2	12:27	0.7	0.8	_
12:28	0.2	0.2	12:28	0.7	0.8	<u> </u>
12:29	0.2	0.2	12:29	0.7	0.7	_
12:30	0.2	0.2	12:30	0.7	0.7	-
12:31	0.2	0.2	12:31	0.7	0.7	-
12:32	0.2	0.2	12:32	0.7	0.7	<u> </u>
12:33	0.2	0.2	12:33	0.7	0.7	
12:34	0.2	0.2		0.7	0.7	-
12:34	0.2	0.2	12:34 12:35	0.7		-
					0.7	-
12:36 12:37	0.2	0.2	12:36	0.7	0.7	-
	0.2	0.2	12:37	0.7	0.7 0.7	-
12:38	0.2		12:38			-
12:39	0.2	0.2	12:39	0.7	0.7	-
12:40	0.2	0.2	12:40	0.7	0.7	-
12:41	0.2	0.2	12:41	0.7	0.7	-
12:42	0.2	0.2	12:42	0.7	0.7	-
12:43	0.2	0.2	12:43	0.8	0.7	-
12:44	0.2	0.2	12:44	0.8	0.7	-
12:45	0.2	0.2	12:45	0.8	0.7	-
12:46	0.2	0.2	12:46	0.8	0.7	-
12:47	0.2	0.2	12:47	0.8	0.7	-
12:48	0.2	0.2	12:48	0.8	0.7	-
12:49	0.2	0.2	12:49	0.8	0.7	-
12:50	0.2	0.2	12:50	0.8	0.7	-
12:51	0.2	0.2	12:51	0.8	0.8	-
12:52	0.2	0.2	12:52	0.8	0.8	-
12:53	0.2	0.2	12:53	0.8	0.8	-
12:54	0.2	0.2	12:54	0.8	0.8	-
12:55	0.2	0.2	12:55	0.8	0.8	-
12:56	0.2	0.2	12:56	0.8	0.8	-
12:57	0.2	0.2	12:57	0.8	0.8	-
12:58	0.2	0.2	12:58	0.8	0.8	-
12:59	0.2	0.2	12:59	0.8	0.8	-
13:00	0.3	0.2	13:00	0.8	0.8	-
13:01	0.3	0.2	13:01	0.8	0.8	-
13:02	0.3	0.2	13:02	0.7	0.8	-
13:03	0.3	0.2	13:03	0.7	0.8	-

	Upwind		PID DATA	Downwind		Τ
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:04	0.4	0.2	13:04	0.7	0.8	-
13:05	0.3	0.2	13:05	0.7	0.8	-
13:06	0.3	0.3	13:06	0.7	0.8	-
13:07	0.4	0.3	13:07	0.7	0.8	-
13:08	0.3	0.3	13:08	0.7	0.8	-
13:09	0.3	0.3	13:09	0.7	0.8	_
13:10	0.4	0.3	13:10	0.7	0.7	_
13:11	0.3	0.3	13:11	0.7	0.7	 -
13:12	0.3	0.3	13:12	0.7	0.7	_
13:13	0.3	0.3	13:13	0.7	0.7	_
13:14	0.3	0.3	13:14	0.7	0.7	
13:15	0.3	0.3	13:15	0.7	0.7	-
13:16	0.4	0.3	13:16	0.7	0.7	
						-
13:17	0.4	0.3	13:17	0.7	0.7	-
13:18	0.4	0.3	13:18	0.7	0.7	-
13:19	0.3	0.3	13:19	0.7	0.7	-
13:20	0.4	0.3	13:20	0.7	0.7	-
13:21	0.4	0.3	13:21	0.7	0.7	-
13:22	0.4	0.3	13:22	0.8	0.7	-
13:23	0.4	0.4	13:23	0.8	0.7	-
13:24	0.4	0.4	13:24	0.7	0.7	-
13:25	0.4	0.4	13:25	0.8	0.7	-
13:26	0.4	0.4	13:26	0.8	0.7	-
13:27	0.4	0.4	13:27	0.8	0.7	-
13:28	0.3	0.4	13:28	0.8	0.7	-
13:29	0.4	0.4	13:29	0.8	0.7	-
13:30	0.3	0.4	13:30	0.8	0.7	-
13:31	0.3	0.4	13:31	0.8	0.8	_
13:32	0.4	0.4	13:32	0.8	0.8	_
13:33	0.3	0.4	13:33	0.8	0.8	_
13:34	0.3	0.4	13:34	0.8	0.8	-
13:35	0.4	0.4	13:35	0.8	0.8	_
13:36	0.4	0.4	13:36	0.8	0.8	_
13:37	0.4	0.4	13:37	0.8	0.8	-
13:38	0.4	0.4	13:38	0.8	0.8	<u>-</u>
13:39	0.3	0.4	13:39	0.8	0.8	
	0.3	0.4	13:40	0.8	0.8	-
13:40	0.4	0.4		0.8	0.8	-
13:41			13:41			-
13:42	0.4	0.4	13:42	0.8	0.8	-
13:43	0.4	0.4	13:43	0.8	0.8	-
13:44	0.4	0.4	13:44	0.8	0.8	-
13:45	0.3	0.4	13:45	0.8	0.8	-
13:46	0.4	0.4	13:46	0.8	0.8	-
13:47	0.4	0.4	13:47	0.8	0.8	-
13:48	0.4	0.4	13:48	0.8	0.8	-
13:49	0.4	0.4	13:49	0.9	0.8	-
13:50	0.3	0.4	13:50	0.9	0.8	-
13:51	0.3	0.4	13:51	0.8	0.8	-
13:52	0.3	0.4	13:52	0.8	0.8	-
13:53	0.3	0.4	13:53	0.9	0.8	-
13:54	0.3	0.4	13:54	0.8	0.8	-
13:55	0.4	0.4	13:55	0.8	0.8	-
13:56	0.3	0.4	13:56	0.8	0.8	-
13:57	0.3	0.3	13:57	0.8	0.8	-

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:58	0.3	0.3	13:58	0.8	0.8	-
13:59	0.4	0.3	13:59	0.8	0.8	-
14:00	0.3	0.3	14:00	0.8	0.8	-
14:01	0.3	0.3	14:01	0.8	0.8	-
14:02	0.4	0.3	14:02	0.8	0.8	-
14:03	0.3	0.3	14:03	0.8	0.8	-
14:04	0.4	0.3	14:04	0.8	0.8	-
14:05	0.4	0.3	14:05	0.8	0.8	-
14:06	0.4	0.3	14:06	0.8	0.8	-
14:07	0.4	0.3	14:07	0.8	0.8	-
14:08	0.4	0.4	14:08	0.8	0.8	-
14:09	0.4	0.4	14:09	0.8	0.8	-
14:10	0.4	0.4	14:10	0.8	0.8	-
14:11	0.4	0.4	14:11	0.8	0.8	-
14:12	0.3	0.4	14:12	0.8	0.8	-
14:13	0.4	0.4	14:13	0.8	0.8	-
14:14	0.3	0.4	14:14	0.8	0.8	-
14:15	0.4	0.4	14:15	0.8	0.8	_
14:16	0.3	0.4	14:16	0.8	0.8	_
14:17	0.3	0.4	14:17	0.8	0.8	
14:18	0.3	0.4	14:18	0.8	0.8	_
14:19	0.3	0.4	14:19	0.8	0.8	-
14:20	0.3	0.4	14:20	0.8	0.8	-
14:21	0.3	0.3	14:21	0.8	0.8	-
14:22	0.3	0.3	14:22	0.8	0.8	
14:23	0.3	0.3	14:23	0.8	0.8	-
14:24	0.3	0.3	14:24	0.8	0.8	-
14:25	0.3	0.3	14:25	0.8	0.8	
14:26	0.2	0.3	14:26	0.8	0.8	-
	0.3	0.3		0.8	0.8	-
14:27 14:28	0.2	0.3	14:27 14:28	0.8	0.8	-
14:29						-
	0.3	0.3	14:29	0.8	0.8	-
14:30 14:31	0.2	0.3	14:30	0.8	0.8	-
			14:31			-
14:32	0.2	0.3	14:32	0.8	0.8	-
14:33	0.2	0.3	14:33	0.9	0.8	-
14:34	0.2	0.3	14:34	0.8	0.8	-
14:35	0.2	0.2	14:35	0.8	0.8	-
14:36	0.2	0.2	14:36	0.8	0.8	-
14:37	0.2	0.2	14:37	0.8	0.8	-
14:38	0.1	0.2	14:38	0.8	0.8	-
14:39	0.2	0.2	14:39	0.8	0.8	-
14:40	0.1	0.2	14:40	0.8	0.8	-
14:41	0.2	0.2	14:41	0.8	0.8	-
14:42	0.1	0.2	14:42	0.8	0.8	-
14:43	0.1	0.2	14:43	0.8	0.8	-
14:44	0.1	0.2	14:44	0.8	0.8	-
14:45	0.1	0.2	14:45	0.8	0.8	-
14:46	0.1	0.2	14:46	0.8	0.8	-
14:47	0.1	0.1	14:47	0.8	0.8	-
14:48	0.2	0.1	14:48	0.8	0.8	-
14:49	0.1	0.1	14:49	0.8	0.8	-
14:50	0.2	0.1	14:50	0.8	0.8	-
14:51	0.2	0.1	14:51	0.8	0.8	-

	Upwind	T	PID DATA	Downwind		T
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
14:52	0.2	0.1	14:52	0.8	0.8	-
14:53	0.1	0.1	14:53	0.9	0.8	-
14:54	0.1	0.1	14:54	0.9	0.8	-
14:55	0.1	0.1	14:55	0.8	0.8	-
14:56	0.1	0.1	14:56	0.8	0.8	-
14:57	0.1	0.1	14:57	0.8	0.8	-
14:58	0.1	0.1	14:58	0.8	0.8	-
14:59	0.1	0.1	14:59	0.8	0.8	-
15:00	0.1	0.1	15:00	0.8	0.8	-
15:01	0.1	0.1	15:01	0.8	0.8	-
15:02	0.2	0.1	15:02	0.8	0.8	-
15:03	0.1	0.1	15:03	0.8	0.8	-
15:04	0.1	0.1	15:04	0.8	0.8	-
15:05	0.1	0.1	15:05	0.8	0.8	-
15:06	0.1	0.1	15:06	0.8	0.8	_
15:07	0.1	0.1	15:07	0.8	0.8	_
15:08	0.1	0.1	15:08	0.8	0.8	_
15:09	0.1	0.1	15:09	0.8	0.8	-
15:10	0.1	0.1	15:10	0.7	0.8	_
15:11	0.1	0.1	15:11	0.7	0.8	
15:12	0.1	0.1	15:12	0.7	0.8	-
15:13	0.1	0.1	15:13	0.7	0.8	-
15:14	0.1	0.1	15:14	0.7	0.8	
15:15	0.1	0.1	15:15	0.7	0.8	-
15:16	0.1	0.1	15:16	0.7	0.8	-
15:17	0.1	0.1	15:17	0.7	0.8	-
15:17	0.1	0.1	15:18	0.7	0.8	-
15:19	0.1	0.1	15:19	0.7	0.7	-
15:20	0.1	0.1	15:20	0.7	0.7	-
15:21	0.1	0.1		0.7	0.7	
15:21	0.1	0.1	15:21	0.7	0.7	-
			15:22			-
15:23	0.1	0.1	15:23	0.7	0.7	-
15:24 15:25	0.1	0.1	15:24	0.7	0.7	-
	0.1	0.1	15:25		0.7	-
15:26	0.1	0.1	15:26	0.7	0.7	-
15:27	0.1	0.1	15:27	0.7	0.7	-
15:28	0.1	0.1	15:28	0.7	0.7	-
15:29	0.1	0.1	15:29	0.7	0.7	-
15:30	0.1	0.1	15:30		0.7	-
15:31	0.1	0.1	15:31	0.7	0.7	-
15:32	0.1	0.1	15:32	0.7	0.7	-
15:33	0.1	0.1	15:33	0.7	0.7	-
15:34	0.1	0.1	15:34	0.7	0.7	-
15:35	0.1	0.1	15:35	0.7	0.7	-
15:36	0.1	0.1	15:36	0.7	0.7	-
15:37	0.1	0.1	15:37	0.7	0.7	-
15:38	0.1	0.1	15:38	0.7	0.7	-
15:39	0.1	0.1	15:39	0.6	0.7	-
15:40	0.1	0.1	15:40	0.6	0.7	-
15:41	0.1	0.1	15:41	0.7	0.7	-
15:42	0.1	0.1	15:42	0.6	0.7	-
15:43	0.1	0.1	15:43	0.6	0.7	-
15:44	0.1	0.1	15:44	0.6	0.7	-
15:45	0.1	0.1	15:45	0.6	0.7	-

Upwind			PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
15:46	0.1	0.1	15:46	0.6	0.7	-
15:47	0.1	0.1	15:47	0.6	0.7	-
15:48	0.1	0.1	15:48	0.6	0.6	-
15:49	0.1	0.1	15:49	0.6	0.6	-
15:50	0.1	0.1	15:50	0.6	0.6	-
15:51	0.1	0.1	15:51	0.6	0.6	-
15:52	0.1	0.1	15:52	0.6	0.6	-
15:53	0.1	0.1	15:53	0.6	0.6	-
15:54	0.1	0.1	15:54	0.6	0.6	-
15:55	0.1	0.1	15:55	0.6	0.6	-
15:56	0.1	0.1	15:56	0.6	0.6	-
15:57	0.1	0.1	15:57	0.6	0.6	-
15:58	0.1	0.1	15:58	0.6	0.6	-
15:59	0.1	0.1	15:59	0.6	0.6	-
16:00	0.1	0.1	16:00	0.6	0.6	-
16:01	0.1	0.1	16:01	0.7	0.6	-
16:02	0.1	0.1	16:02	0.7	0.6	-
16:03	0.1	0.1	16:03	0.7	0.6	-
16:04	0.1	0.1	16:04	0.7	0.6	_
16:05	0.1	0.1	16:05	0.7	0.6	_
16:06	0.1	0.1	16:06	0.7	0.6	_
16:07	0.1	0.1	16:07	0.7	0.6	-
16:08	0.1	0.1	16:08	0.7	0.6	-
16:09	0.1	0.1	16:09	0.7	0.7	-
16:10	0.1	0.1	16:10	0.7	0.7	<u> </u>
16:11	0.1	0.1	16:11	0.7	0.7	-
16:12	0.1	0.1	16:12	0.7	0.7	-
16:13	0.1	0.1	16:13	0.7	0.7	
16:14	0.1	0.1	16:14	0.7	0.7	-
16:15	0.1	0.1		0.7	0.7	-
16:15	0.1	0.1	16:15	0.7	0.7	-
	0.1		16:16	0.7	0.7	-
16:17		0.1	16:17	0.7		-
16:18 16:19	0.1	0.1	16:18	0.7	0.7 0.7	-
			16:19			-
16:20	0.1	0.1	16:20	0.7	0.7	-
16:21	0.1	0.1	16:21	0.7	0.7	-
16:22	0.1	0.1	16:22	0.7	0.7	-
16:23	0.1	0.1	16:23	0.7	0.7	-
16:24	0.1	0.1	16:24		0.7	-
16:25	0.1	0.1	16:25	0.7	0.7	-
16:26	0.1	0.1	16:26	0.7	0.7	-
16:27	0.1	0.1	16:27	0.7	0.7	-
16:28	0.1	0.1	16:28	0.7	0.7	-
16:29	0.1	0.1	16:29		0.7	-
16:30	0.1	0.1	16:30	0.7	0.7	-
16:31	0.1	0.1	16:31	0.7	0.7	-
16:32	0.1	0.1	16:32	0.7	0.7	-
16:33	0.1	0.1	16:33	0.7	0.7	-
16:34	0.1	0.1	16:34	0.7	0.7	-
16:35	0.1	0.1	16:35	0.7	0.7	-
16:36	0.1	0.1	16:36	0.7	0.7	-
16:37	0.1	0.1	16:37	0.7	0.7	-
16:38	0.1	0.1	16:38	0.7	0.7	-
16:39	0.1	0.1	16:39	0.7	0.7	-

	PID DATA									
Upwind										
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits				
16:40	0.1	0.1	16:40	0.7	0.7	-				
16:41	0.1	0.1	16:41	0.7	0.7	-				
16:42	0.1	0.1	16:42	0.7	0.7	-				
16:43	0.1	0.1	16:43	0.7	0.7	-				
16:44	0.1	0.1	16:44	0.7	0.7	-				
16:45	0.1	0.1	16:45	0.7	0.7	-				
16:46	0.1	0.1	16:46	0.7	0.7	-				
16:47	0.1	0.1	16:47	0.7	0.7	-				
16:48	0.1	0.1	16:48	0.7	0.7	-				
16:49	0.1	0.1	16:49	0.7	0.7	-				
16:50	0.1	0.1	16:50	0.7	0.7	-				
16:51	0.1	0.1	16:51	0.8	0.7	-				
16:52	0.1	0.1	16:52	0.7	0.7	-				
16:53	0.1	0.1	16:53	0.8	0.7	-				
16:54	0.1	0.1	16:54	0.7	0.7	-				
16:55	0.1	0.1	16:55		0.7	-				

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/13/2020 Observer: Reid Balkind

Particulate Monitoring								
Upwind Downw								
Minimum 15min Average	0.006	0.008						
Maximum 15min Average	0.077	0.018						
High Intervals "exceedances"	N/A	0						
Minimum 1min Reading	0.005	0.006						
Maximum 1min Reading	0.659	0.030						

Organic Vapor Monitoring								
Upwind Downwin								
Minimum 15min Average	2.5	0.0						
Maximum 15min Average	3.6	1.8						
High Intervals "exceedances"	N/A	0						
Minimum 1min Reading	2.3	0.0						
Maximum 1min Reading	3.8	5.2						

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Numbe	er of Instances Where	e Downwind Particulate	May 13, 20 es Exceeds U		.150 mg/m^3 =	0		
Number of Comparable Data Points =								
PARTICULATE DATA								
Upwind Downwind								
						Particulate		
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limit		
7:03			7:03	0.013				
7:04			7:04	0.012				
7:05			7:05	0.007				
7:06			7:06	0.007				
7:07			7:07	0.007				
7:08			7:08	0.007				
7:09	0.009		7:09	0.007				
7:10	0.007		7:10	0.008				
7:11	0.006		7:11	0.008				
7:12	0.005		7:12	0.008				
7:13	0.005		7:13	0.008				
7:14	0.005		7:14	0.007				
7:15	0.005		7:15	0.008				
7:16	0.005		7:16	0.011				
7:17	0.006	0.017	7:17	0.01	0.012	-		
7:18	0.006	0.008	7:18	0.009	0.010	-		
7:19	0.006	0.008	7:19	0.009	0.010	-		
7:20	0.005	0.008	7:20	0.01	0.011	-		
7:21	0.011	0.009	7:21	0.008	0.011	_		
7:22	0.005	0.010	7:22	0.008	0.012	-		
7:23	0.014	0.010	7:23	0.008	0.012	-		
7:24	0.005	0.009	7:24	0.007	0.012	-		
7:25	0.005	0.010	7:25	0.014	0.013	-		
7:26	0.007	0.011	7:26	0.011	0.012	-		
7:27	0.006	0.011	7:27	0.01	0.012			
7:28	0.021	0.012	7:28	0.008	0.013	-		
7:29	0.006	0.012	7:29	0.012	0.013	-		
7:30 7:31	0.008 0.012	0.013 0.013	7:30 7:31	0.011 0.016	0.013 0.014	-		
7:31		0.013			0.014	-		
7:32	0.009	0.014	7:32 7:33	0.013 0.011	0.014	-		
7:34	0.007 0.006	0.015	7:34	0.011	0.014			
7:35	0.006	0.015	7:35	0.016	0.013	-		
7:36	0.019	0.015	7:36	0.012	0.014	<u>-</u>		
7:37	0.010	0.013	7:37	0.010	0.015	<u> </u>		
7:38	0.007	0.014	7:38	0.011	0.015			
7:39	0.003	0.016	7:39	0.012	0.017	_		
7:40	0.011	0.016	7:40	0.013	0.017	_		
7:41	0.013	0.017	7:40	0.012	0.018	-		
7:42	0.011	0.017	7:42	0.014	0.018	-		
7:43	0.028	0.017	7:43	0.017	0.018	-		
7:44	0.016	0.015	7:44	0.013	0.017	_		
7:45	0.015	0.017	7:45	0.019	0.017	-		
7:46	0.02	0.016	7:46	0.017	0.017	-		
7:47	0.021	0.015	7:47	0.018	0.016	-		
7:48	0.014	0.015	7:48	0.017	0.016	_		
7:49	0.017	0.015	7:49	0.013	0.016	-		
7:50	0.008	0.015	7:50	0.02	0.016	-		
7:51	0.007	0.015	7:51	0.021	0.015	_		
7:52	0.006	0.015	7:52	0.026	0.015	-		
7:53	0.024	0.015	7:53	0.02	0.014	-		
7:54	0.019	0.013	7:54	0.027	0.014	_		

			ARTICULATE			Evenede
Time	Upwind PM 10 (mg/m^3)	15-Minute Average	Time	Downwind PM 10 (mg/m^3)	15-Minute Average	Exceeds Particulate
						Alarm Limits
7:55	0.025	0.013	7:55	0.017	0.014	-
7:56	0.019	0.011	7:56	0.015	0.014	-
7:57	0.009	0.010	7:57	0.008	0.014	-
7:58	0.011	0.010	7:58	0.008	0.014	-
7:59	0.033	0.010	7:59	0.012	0.015	-
8:00	0.008	0.008	8:00	0.012	0.016	-
8:01	0.008	0.008	8:01	0.01	0.016	-
8:02	0.018	0.008	8:02	0.009	0.016	-
8:03	0.018	0.007	8:03	0.017	0.016	-
8:04	0.009	0.006	8:04	0.013	0.015	-
8:05	0.006	0.006	8:05	0.013	0.015	-
8:06	0.006	0.007	8:06	0.011	0.014	-
8:07	0.007	0.007	8:07	0.023	0.014	-
8:08	0.006	0.007	8:08	0.019	0.014	-
8:09	0.006	0.008	8:09	0.023	0.013	-
8:10	0.006	0.008	8:10	0.02	0.012	-
8:11	0.006	0.008	8:11	0.01	0.012	-
8:12	0.005	0.008	8:12	0.014	0.012	-
8:13	0.006	0.009	8:13	0.014	0.011	-
8:14	0.007	0.009	8:14	0.029	0.011	-
8:15	0.007	0.009	8:15	0.012	0.010	-
8:16	0.007	0.009	8:16	0.008	0.010	-
8:17	0.006	0.012	8:17	0.008	0.010	-
8:18	0.007	0.014	8:18	0.009	0.010	-
8:19	0.008	0.019	8:19	0.008	0.011	-
8:20	0.008	0.023	8:20	0.009	0.011	-
8:21	0.007	0.024	8:21	0.01	0.011	-
8:22	0.011	0.024	8:22	0.014	0.011	-
8:23	0.016	0.024	8:23	0.008	0.011	-
8:24	0.011	0.024	8:24	0.012	0.012	-
8:25	0.009	0.030	8:25	0.011	0.012	-
8:26	0.01	0.074	8:26	0.01	0.013	-
8:27	0.008	0.074	8:27	0.008	0.013	-
8:28	0.008	0.075	8:28	0.008	0.014	-
8:29	0.009	0.077	8:29	0.009	0.014	-
8:30	0.015	0.077	8:30	0.013	0.014	-
8:31	0.045	0.077	8:31	0.016	0.014	-
8:32	0.043	0.074	8:32	0.012	0.014	-
8:33	0.084	0.073	8:33	0.012	0.014	-
8:34	0.065	0.069	8:34	0.014	0.014	-
8:35	0.024	0.065	8:35	0.013	0.014	-
8:36	0.008	0.064	8:36	0.01	0.014	-
8:37	0.01	0.064	8:37	0.012	0.014	-
8:38	0.017	0.064	8:38	0.014	0.014	-
8:39	0.1	0.063	8:39	0.024	0.014	-
8:40	0.659	0.057	8:40	0.019	0.013	-
8:41	0.02	0.014	8:41	0.012	0.013	-
8:42	0.018	0.013	8:42	0.016	0.012	-
8:43	0.035	0.012	8:43	0.018	0.012	_
8:44	0.013	0.010	8:44	0.009	0.011	_
8:45	0.008	0.010	8:45	0.01	0.011	-
8:46	0.011	0.010	8:46	0.011	0.011	_
8:47	0.027	0.010	8:47	0.015	0.011	-
8:48	0.013	0.009	8:48	0.017	0.012	-
8:49	0.009	0.009	8:49	0.012	0.011	-

Upwind F			ARTICULATE	Typeda		
·				Downwind		Exceeds Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
8:50	0.008	0.009	8:50	0.011	0.012	-
8:51	0.008	0.010	8:51	0.01	0.012	-
8:52	0.009	0.010	8:52	0.015	0.011	-
8:53	0.008	0.010	8:53	0.012	0.011	-
8:54	0.009	0.010	8:54	0.01	0.011	-
8:55	0.008	0.010	8:55	0.011	0.011	-
8:56	0.008	0.010	8:56	0.009	0.011	-
8:57	0.008	0.011	8:57	0.008	0.011	-
8:58	0.01	0.011	8:58	0.009	0.011	-
8:59	0.01	0.011	8:59	0.009	0.011	-
9:00	0.011	0.011	9:00	0.012	0.011	-
9:01	0.009	0.011	9:01	0.012	0.011	-
9:02	0.011	0.011	9:02	0.017	0.011	-
9:03	0.012	0.012	9:03	0.013	0.011	-
9:04	0.013	0.012	9:04	0.016	0.010	-
9:05	0.011	0.012	9:05	0.01	0.010	-
9:06	0.012	0.012	9:06	0.009	0.010	-
9:07	0.01	0.012	9:07	0.009	0.009	-
9:08	0.01	0.012	9:08	0.009	0.010	-
9:09	0.011	0.012	9:09	0.009	0.010	-
9:10	0.01	0.013	9:10	0.009	0.010	-
9:11	0.011	0.013	9:11	0.011	0.010	-
9:12	0.012	0.013	9:12	0.008	0.011	-
9:13	0.011	0.013	9:13	0.008	0.011	-
9:14	0.012	0.014	9:14	0.009	0.011	-
9:15	0.013	0.014	9:15	0.016	0.011	-
9:16	0.012	0.014	9:16	0.014	0.011	-
9:17	0.02	0.016	9:17	0.008	0.010	-
9:18	0.015	0.015	9:18	0.008	0.010	-
9:19	0.011	0.015	9:19	0.008	0.010	-
9:20	0.01	0.015	9:20	0.008	0.011	-
9:21	0.01	0.016	9:21	0.008	0.011	-
9:22	0.011	0.016	9:22	0.01	0.011	-
9:23	0.012	0.016	9:23	0.01	0.011	-
9:24	0.021	0.016	9:24	0.008	0.011	-
9:25	0.018	0.015	9:25	0.013	0.012	-
9:26	0.013	0.015	9:26	0.022	0.011	-
9:27	0.013	0.015	9:27	0.02	0.010	-
9:28	0.012	0.016	9:28	0.008	0.010	-
9:29	0.018	0.016	9:29	0.007	0.011	-
9:30	0.017	0.016	9:30	0.006	0.011	-
9:31	0.033	0.016	9:31	0.006	0.011	-
9:32	0.013	0.015	9:32	0.007	0.012	-
9:33	0.012	0.015	9:33	0.007	0.013	-
9:34	0.015	0.016	9:34	0.021	0.013	-
9:35	0.016	0.016	9:35	0.01	0.012	-
9:36	0.016	0.016	9:36	0.016	0.012	-
9:37	0.011	0.016	9:37	0.01	0.012	-
9:38	0.013	0.017	9:38	0.01	0.012	-
9:39	0.012	0.017	9:39	0.01	0.012	
9:40	0.012	0.017	9:40	0.008	0.012	
9:41	0.019	0.017	9:41	0.008	0.012	
9:42	0.016	0.017	9:42	0.011	0.012	-
9:43	0.015	0.017 0.017	9:43 9:44	0.021 0.013	0.012 0.011	-

		P	ARTICULATE			
Upwind				Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:45	0.016	0.017	9:45	0.011	0.011	-
9:46	0.016	0.017	9:46	0.014	0.011	-
9:47	0.02	0.017	9:47	0.018	0.011	-
9:48	0.02	0.016	9:48	0.013	0.011	-
9:49	0.017	0.016	9:49	0.01	0.011	-
9:50	0.021	0.016	9:50	0.011	0.011	-
9:51	0.017	0.015	9:51	0.01	0.011	-
9:52	0.016	0.015	9:52	0.009	0.012	-
9:53	0.015	0.015	9:53	0.01	0.012	-
9:54	0.015	0.015	9:54	0.008	0.012	-
9:55	0.015	0.015	9:55	0.008	0.012	-
9:56	0.014	0.015	9:56	0.009	0.012	-
9:57	0.014	0.015	9:57	0.011	0.012	-
9:58	0.017	0.015	9:58	0.012	0.012	-
9:59	0.02	0.015	9:59	0.009	0.011	-
10:00	0.016	0.015	10:00	0.013	0.011	-
10:01	0.014	0.015	10:01	0.021	0.011	-
10:02	0.014	0.014	10:02	0.009	0.010	-
10:03	0.014	0.014	10:03	0.012	0.010	-
10:04	0.013	0.014	10:04	0.011	0.010	-
10:05	0.014	0.014	10:05	0.019	0.010	-
10:06	0.015	0.014	10:06	0.014	0.009	-
10:07	0.019	0.014	10:07	0.016	0.009	-
10:08	0.014	0.013	10:08	0.009	0.008	-
10:09	0.019	0.013	10:09	0.007	0.008	-
10:10	0.014	0.013	10:10	0.007	0.008	-
10:11	0.013	0.013	10:11	0.007	0.009	-
10:12	0.014	0.013	10:12	0.007	0.010	-
10:13	0.014	0.013	10:13	0.008	0.010	-
10:14	0.014	0.013	10:14	0.008	0.010	-
10:15	0.013	0.013	10:15	0.008	0.011	-
10:16	0.013	0.014	10:16	0.007	0.011	-
10:17	0.012	0.014	10:17	0.007	0.012	-
10:18	0.012	0.015	10:18	0.010	0.012	-
10:19	0.012	0.015	10:19	0.013	0.012	-
10:20	0.012	0.015	10:20	0.008	0.011	-
10:21 10:22	0.013	0.015 0.015	10:21 10:22	0.008 0.007	0.012 0.012	-
10:23	0.013 0.013	0.015	10:23	0.007	0.012	
					0.012	<u>-</u>
10:24 10:25	0.013 0.013	0.016 0.016	10:24 10:25	0.012 0.017	0.012	<u>-</u>
10:25	0.013	0.016	10:25	0.017	0.013	
10:26	0.014	0.016	10:26	0.009	0.013	<u>-</u>
10:28	0.019	0.016	10:27	0.009	0.013	<u>-</u>
10:29	0.014	0.016	10:29	0.011	0.013	
10:30	0.015	0.016	10:30	0.011	0.013	<u>-</u>
10:31	0.016	0.017	10:31	0.011	0.013	
10:31	0.022	0.017	10:31	0.014	0.013	
10:33	0.017	0.017	10:33	0.008	0.013	
10:33	0.016	0.017	10:33	0.009	0.013	
10:34	0.014	0.017	10:35	0.009	0.014	<u> </u>
10:36	0.016	0.017	10:36	0.009	0.014	
10:37	0.016	0.017	10:37	0.009	0.014	<u>-</u>
10:38	0.013	0.017	10:38	0.012	0.014	
10:39	0.014	0.018	10:39	0.013	0.014	

Time			P	ARTICULATE			
Time PM 10 (mg/m²s) 15-Minute Average Time PM 10 (mg/m²s) 15-Minute Average 10:40 0.016 0.018 10:41 0.017 0.013 10:41 0.017 0.013 10:42 0.016 0.018 10:42 0.015 0.013 10:42 0.016 0.018 10:43 0.016 0.014 10:44 0.017 0.018 10:44 0.017 0.018 10:44 0.017 0.018 10:44 0.012 0.015 0.013 10:45 0.018 0.018 10:44 0.017 0.018 10:45 0.018 0.018 0.018 10:46 0.018 0.015 0.015 10:46 0.018 0.017 0.018 10:46 0.018 0.015 0.015 10:47 0.017 0.018 10:48 0.013 0.015 0.015 10:49 0.013 0.015 10:49 0.015 0.019 10:49 0.013 0.015 10:49 0.015 0.019 10:49 0.015 0.019 10:49 0.015 0.015 10:50 0.016 0.020 10:50 0.013 0.015 10:51 0.02 0.022 10:52 0.011 0.016 10:52 0.02 0.022 10:53 0.011 0.016 10:53 0.019 10:49 0.015 0.015 10:51 0.02 0.022 10:53 0.011 0.016 10:54 0.017 0.016 10:55 0.011 0.016 10:55 0.016 0.022 10:55 0.011 0.016 10:55 0.016 0.022 10:55 0.011 0.017 10:56 0.016 0.022 10:58 0.029 0.016 10:51	Upwind				Downwind		Exceeds Particulate
1041	Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limits
1042	10:40	0.016	0.018	10:40	0.017	0.013	-
10:43	10:41	0.017	0.018	10:41	0.017	0.013	-
10:44	10:42	0.016	0.018	10:42	0.015	0.013	-
10:45	10:43	0.02	0.018	10:43	0.016	0.014	-
10:46 0.02 0.018 10:46 0.018 0.015 10:47 0.017 0.018 10:47 0.012 0.014 10:48 0.023 0.019 10:48 0.013 0.015 10:49 0.015 0.019 10:49 0.015 0.015 10:50 0.016 0.020 10:50 0.013 0.015 10:51 0.02 0.022 10:51 0.012 0.016 10:52 0.02 0.022 10:53 0.01 0.016 10:54 0.017 0.021 10:54 0.011 0.017 10:55 0.016 0.021 10:55 0.01 0.016 10:54 0.017 0.021 10:56 0.012 0.017 10:55 0.016 0.021 10:56 0.01 0.017 10:55 0.016 0.021 10:56 0.01 0.017 10:57 0.017 0.022 10:57 0.03 0.018 10:58 0.018 0.022 10:58 0.029 0.016 10:59 0.02 0.022 10:59 0.013 0.015 11:00 0.021 0.022 11:00 0.011 0.015 11:01 0.02 0.022 11:00 0.011 0.015 11:02 0.029 0.021 11:02 0.016 0.014 11:03 0.027 0.021 11:03 0.022 0.014 11:04 0.031 0.020 11:04 0.011 0.013 11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:07 0.012 0.012 11:09 0.018 0.017 11:10 0.012 0.012 11:09 0.018 0.017 11:11 0.019 0.011 11:11 0.017 0.018 11:07 0.012 0.012 11:01 0.021 0.018 11:07 0.012 0.012 11:01 0.021 0.018 11:07 0.012 0.012 11:01 0.015 0.018 11:10 0.019 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:11 0.019 0.018 11:09 0.011 0.013 11:11 0.010 0.011 0.012 0.012 11:11 0.015 0.018 11:19 0.010 0.011 11:11 0.015 0.018 11:19 0.010 0.011 11:11 0.015 0.018 11:20 0.009 0.010 11:11 0.015 0.018 11:20 0.009 0.010 11:11 0.015 0.018 11:20 0.009 0.010 11:12 0.015 0.018 11:21 0.0011 0.011 11:12 0.015 0.018 11:21 0.001 0.011 11:12 0.015 0.018 11:21 0.009 0.016 11:24 0.016 0.022 11:24 0.014 0.015 11:25 0.0	10:44	0.017	0.018	10:44	0.012	0.015	-
10:47	10:45	0.018	0.018	10:45	0.01	0.015	-
10:48	10:46	0.02	0.018	10:46	0.018	0.015	-
10:49	10:47	0.017	0.018	10:47	0.012	0.014	-
10:50	10:48	0.023	0.019	10:48	0.013	0.015	-
10:51	10:49	0.015	0.019	10:49	0.015	0.015	-
10:52	10:50	0.016	0.020	10:50	0.013	0.015	-
10:53	10:51	0.02	0.022	10:51	0.012	0.016	-
10:54	10:52	0.02	0.022	10:52	0.011	0.016	-
10:55	10:53	0.019	0.022	10:53	0.01	0.016	-
10:56	10:54	0.017	0.021	10:54	0.011	0.017	-
10:57	10:55	0.016	0.021	10:55	0.01	0.017	-
10:58	10:56	0.016	0.022	10:56	0.012	0.017	-
10:59	10:57	0.017	0.022	10:57	0.03	0.018	-
11:00 0.021 0.022 11:01 0.015 11:01 0.02 0.022 11:01 0.014 0.015 11:02 0.029 0.021 11:02 0.016 0.014 11:03 0.027 0.021 11:03 0.022 0.014 11:04 0.031 0.020 11:04 0.011 0.013 11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:07 0.012 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.012 0.018 11:09 0.011 0.011 11:10 0.017 0.018 11:09 0.011 0.011 11:11 0.017 10:11 0.011 0.011 11:11 0.017<	10:58	0.018	0.022	10:58	0.029	0.016	-
11:01 0.02 0.022 11:01 0.014 0.015 11:02 0.029 0.021 11:02 0.016 0.014 11:03 0.027 0.021 11:03 0.022 0.014 11:03 0.022 0.014 11:04 0.031 0.020 11:04 0.011 0.013 11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:06 0.018 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:13 0.012 0.010 11:14 0.010 0.017 11:15 0.009 0.010 11:15 0.019 0.011 11:15 0.019 0.011 11:15 0.019 0.011 11:15 0.019 0.011 11:16 0.017 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:18 0.017 0.017 11:16 0.009 0.012 11:19 0.015 0.011 11:19 0.015 0.012 11:19 0.018 11:19 0.011 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.020 0.013 11:21 0.015 0.018 11:22 0.015 0.019 11:22 0.011 0.013 11:24 0.015 0.015 0.018 11:25 0.009 0.014 11:25 0.015 0.015 0.018 11:26 0.009 0.013 11:27 0.015 0.015 0.018 11:29 0.014 0.015 0.016 11:25 0.015 0.022 11:26 0.009 0.016 11:27 0.015 0.022 11:28 0.016 0.022 11:28 0.016 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.017 11:30 0.019 0.023 11:30 0.020 0.017 11:32 0.028 0.024 11:32 0.009 0.017 11:32 0.028 0.024 11:32 0.009	10:59	0.02	0.022	10:59	0.013	0.015	-
11:02	11:00	0.021	0.022	11:00	0.011	0.015	-
11:03 0.027 0.021 11:03 0.022 0.014 11:04 0.031 0.020 11:04 0.011 0.013 11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:06 0.018 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:11 0.017 0.017 11:12 0.011 0.011 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:14 0.016 0.017 11:15 0.009 0.011	11:01	0.02	0.022	11:01	0.014	0.015	-
11:04 0.031 0.020 11:04 0.011 0.013 11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:06 0.018 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:13 0.012 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:16 0.009 0.012	11:02	0.029	0.021	11:02	0.016	0.014	-
11:05 0.035 0.019 11:05 0.021 0.013 11:06 0.019 0.018 11:06 0.018 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:10 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:11 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:14 0.016 0.017 11:14 0.009 0.012 11:15 0.019 0.017 11:14 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012	11:03	0.027	0.021	11:03	0.022	0.014	-
11:06 0.019 0.018 11:07 0.012 0.012 11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:11 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:13 0.021 0.017 11:14 0.009 0.010 11:14 0.016 0.017 11:15 0.009 0.010 11:15 0.019 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:17 0.015 0.017 11:18 0.013 0.012	11:04	0.031	0.020	11:04	0.011	0.013	-
11:07 0.019 0.018 11:07 0.012 0.012 11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:13 0.012 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:29 0.018 0.018 11:19 0.01 0.012	11:05	0.035	0.019	11:05	0.021		-
11:08 0.016 0.017 11:08 0.021 0.012 11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:13 0.012 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 <		0.019					-
11:09 0.018 0.018 11:09 0.011 0.011 11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:18 0.017 0.018 11:18 0.012 0.012 11:29 0.018 11:29 0.01 0.012 0.012 11:20 0.02 0.018 11:21 0.013 0.013 <							-
11:10 0.021 0.018 11:10 0.015 0.011 11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:18 0.017 0.018 11:19 0.01 0.012 11:19 0.018 0.018 11:29 0.01 0.012 11:20 0.02 0.018 11:21 0.013 0.013 11:21 0.015 0.018 11:22 0.011 0.014 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>							-
11:11 0.017 0.017 11:11 0.019 0.011 11:12 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.018 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 <						+	-
11:12 0.017 0.017 11:12 0.011 0.010 11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:21 0.015 0.018 11:22 0.011 0.014 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 <							-
11:13 0.021 0.017 11:13 0.012 0.010 11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.021 11:24 0.014 0.015 <							-
11:14 0.016 0.017 11:14 0.009 0.010 11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 <							-
11:15 0.019 0.017 11:15 0.009 0.011 11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.018 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>							-
11:16 0.017 0.017 11:16 0.009 0.012 11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:30 <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>-</td>						+	-
11:17 0.015 0.017 11:17 0.009 0.012 11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:30 0.019 0.023 11:29 0.019 0.017 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>							-
11:18 0.017 0.018 11:18 0.013 0.012 11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.002 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:31 0.02 0.024 11:31 0.014 0.017 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>							-
11:19 0.018 0.018 11:19 0.01 0.012 11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>							-
11:20 0.02 0.018 11:20 0.009 0.013 11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:21 0.015 0.018 11:21 0.013 0.013 11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017						+	-
11:22 0.015 0.019 11:22 0.011 0.014 11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:23 0.018 0.020 11:23 0.009 0.014 11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:24 0.018 0.020 11:24 0.014 0.015 11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:25 0.015 0.021 11:25 0.009 0.016 11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:26 0.02 0.022 11:26 0.008 0.016 11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017						+	-
11:27 0.015 0.022 11:27 0.009 0.016 11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:28 0.016 0.022 11:28 0.015 0.017 11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:29 0.017 0.023 11:29 0.019 0.017 11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:30 0.019 0.023 11:30 0.022 0.017 11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017							-
11:31 0.02 0.024 11:31 0.014 0.017 11:32 0.028 0.024 11:32 0.009 0.017						+	-
11:32 0.028 0.024 11:32 0.009 0.017							-
							-
					+		-
11:33 0.021 0.023 11:33 0.015 0.017 11:34 0.015 0.024 11:34 0.015 0.017							-

F Upwind			ARTICULATE			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
11:35	0.025	0.024	11:35	0.02	0.016	-
11:36	0.021	0.024	11:36	0.019	0.016	_
11:37	0.028	0.024	11:37	0.019	0.015	_
11:38	0.028	0.023	11:38	0.023	0.015	-
11:39	0.027	0.023	11:39	0.017	0.014	-
11:40	0.023	0.022	11:40	0.016	0.014	-
11:41	0.025	0.022	11:41	0.014	0.013	-
11:42	0.023	0.021	11:42	0.015	0.013	-
11:43	0.024	0.021	11:43	0.016	0.012	-
11:44	0.024	0.021	11:44	0.026	0.012	-
11:45	0.024	0.020	11:45	0.012	0.011	-
11:46	0.022	0.020	11:46	0.013	0.011	-
11:47	0.019	0.020	11:47	0.012	0.011	-
11:48	0.026	0.020	11:48	0.011	0.011	-
11:49	0.027	0.019	11:49	0.013	0.011	-
11:50	0.019	0.019	11:50	0.011	0.011	-
11:51	0.021	0.019	11:51	0.011	0.010	-
11:52	0.019	0.019	11:52	0.011	0.010	-
11:53	0.019	0.019	11:53	0.011	0.010	-
11:54	0.018	0.019	11:54	0.011	0.010	-
11:55	0.018	0.019	11:55	0.01	0.010	-
11:56	0.019	0.019	11:56	0.01	0.010	-
11:57	0.019	0.019	11:57	0.009	0.010	-
11:58	0.019	0.019	11:58	0.009	0.010	-
11:59	0.016	0.019	11:59	0.009	0.010	-
12:00	0.019	0.019	12:00	0.011	0.011	-
12:01	0.019	0.019	12:01	0.012	0.011	-
12:02	0.019	0.020	12:02	0.012	0.012	-
12:03	0.021	0.020	12:03	0.011	0.012	-
12:04	0.02	0.020	12:04	0.011	0.011	-
12:05	0.02	0.020	12:05	0.009	0.011	-
12:06	0.019	0.020	12:06	0.011	0.011	-
12:07	0.019	0.021	12:07	0.009	0.011	-
12:08	0.02	0.022	12:08	0.009	0.012	-
12:09	0.018	0.022	12:09	0.009	0.012	-
12:10	0.018	0.022	12:10	0.008	0.012	-
12:11	0.018	0.022	12:11	0.009	0.012	-
12:12	0.019	0.021	12:12	0.013	0.012	-
12:13	0.019	0.021	12:13	0.014	0.012	-
12:14	0.021	0.022	12:14	0.017	0.012	-
12:15	0.022	0.021	12:15	0.017	0.011	-
12:16	0.022	0.021	12:16	0.014	0.011	-
12:17	0.022	0.021	12:17	0.012	0.011	-
12:18	0.027	0.021	12:18	0.009	0.011	-
12:19	0.019	0.021	12:19	0.01	0.011	-
12:20	0.022	0.022	12:20	0.011	0.011	-
12:21	0.027	0.022	12:21	0.01	0.011	-
12:22	0.031	0.021	12:22	0.011	0.011	
12:23	0.019	0.021	12:23	0.01	0.011	-
12:24	0.018	0.021	12:24	0.009	0.012	-
12:25	0.017	0.021	12:25	0.01	0.012	-
12:26	0.017	0.021	12:26	0.011	0.012	-
12:27	0.017	0.022	12:27	0.013	0.012	-
12:28	0.022	0.022	12:28	0.011	0.012	-
12:29	0.019	0.022	12:29	0.013	0.012	-

P Upwind			ARTICULATE			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
12:30	0.019	0.022	12:30	0.014	0.012	-
12:31	0.02	0.022	12:31	0.012	0.011	-
12:32	0.021	0.022	12:32	0.01	0.011	_
12:33	0.02	0.022	12:33	0.011	0.011	-
12:34	0.034	0.022	12:34	0.013	0.011	-
12:35	0.025	0.021	12:35	0.012	0.011	-
12:36	0.02	0.020	12:36	0.011	0.011	-
12:37	0.021	0.020	12:37	0.012	0.011	-
12:38	0.021	0.020	12:38	0.012	0.011	-
12:39	0.022	0.020	12:39	0.013	0.011	-
12:40	0.022	0.020	12:40	0.011	0.011	-
12:41	0.021	0.020	12:41	0.01	0.011	-
12:42	0.022	0.021	12:42	0.01	0.011	-
12:43	0.019	0.021	12:43	0.011	0.011	-
12:44	0.02	0.021	12:44	0.013	0.011	-
12:45	0.021	0.020	12:45	0.01	0.011	-
12:46	0.02	0.021	12:46	0.009	0.010	-
12:47	0.02	0.021	12:47	0.009	0.010	-
12:48	0.019	0.021	12:48	0.012	0.010	-
12:49	0.019	0.021	12:49	0.014	0.010	-
12:50	0.02	0.021	12:50	0.012	0.010	-
12:51	0.02	0.021	12:51	0.011	0.010	-
12:52	0.02	0.021	12:52	0.011	0.010	-
12:53	0.022	0.021	12:53	0.01	0.010	-
12:54	0.022	0.021	12:54	0.012	0.010	-
12:55	0.02	0.021	12:55	0.01	0.009	-
12:56	0.026	0.021	12:56	0.009	0.009	-
12:57	0.02	0.020	12:57	0.009	0.010	-
12:58	0.019	0.021	12:58	0.01	0.010	-
12:59	0.019	0.021	12:59	0.01	0.010	-
13:00	0.022	0.021	13:00	0.009	0.010	-
13:01	0.023	0.021	13:01	0.009	0.010	-
13:02	0.023	0.021	13:02	0.009	0.011	-
13:03	0.022	0.021	13:03	0.009	0.011	-
13:04	0.019	0.021	13:04	0.01	0.012	-
13:05	0.019	0.021	13:05	0.009	0.012	-
13:06	0.021	0.022	13:06	0.01	0.012	-
13:07	0.024	0.022	13:07	0.009	0.012	-
13:08	0.02	0.022	13:08	0.009	0.012	-
13:09	0.018	0.022	13:09	0.009	0.012	-
13:10	0.017	0.022	13:10	0.01	0.012	-
13:11	0.02	0.022	13:11	0.015	0.012	-
13:12	0.023	0.022	13:12	0.012	0.012	-
13:13	0.025	0.022	13:13	0.01	0.012	-
13:14	0.023	0.022	13:14	0.013	0.012	-
13:15	0.019	0.022	13:15	0.013	0.012	-
13:16	0.02	0.022	13:16	0.014	0.011	-
13:17	0.024	0.022	13:17	0.013	0.012	-
13:18	0.028	0.022	13:18	0.019	0.012	-
13:19	0.02	0.021	13:19	0.012	0.011	-
13:20	0.028	0.021	13:20	0.011	0.011	-
13:21	0.022	0.021	13:21	0.01	0.011	-
13:22	0.02	0.020	13:22	0.01	0.011	-
13:23	0.02	0.020	13:23	0.011	0.011	-
13:24	0.019	0.020	13:24	0.01	0.011	-

PARTICULATE DATA									
	Upwind			Downwind					
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
13:25	0.019	0.020	13:25	0.009	0.011	-			
13:26	0.018	0.020	13:26	0.01	0.011	-			
13:27	0.019	0.020	13:27	0.01	0.011	-			
13:28	0.026	0.020	13:28	0.01	0.011	-			
13:29	0.023	0.020	13:29	0.012	0.011	-			
13:30	0.025	0.020	13:30	0.01	0.011	-			
13:31	0.023	0.020	13:31	0.017	0.011	-			
13:32	0.019	0.019	13:32	0.012	0.010	-			
13:33	0.019	0.020	13:33	0.010	0.010	-			
13:34	0.018	0.020	13:34	0.011	0.010	-			
13:35	0.018	0.020	13:35	0.01	0.010	-			
13:36	0.02	0.020	13:36	0.009	0.010	-			
13:37	0.02	0.020	13:37	0.009	0.011	-			
13:38	0.018	0.020	13:38	0.01	0.011	-			
13:39	0.019	0.020	13:39	0.011	0.011	-			
13:40	0.018	0.020	13:40	0.012	0.011	-			
13:41	0.02	0.020	13:41	0.01	0.011	-			
13:42	0.02	0.020	13:42	0.01	0.011	-			
13:43	0.019	0.020	13:43	0.01	0.011	-			
13:44	0.019	0.021	13:44	0.01	0.011	-			
13:45	0.024	0.021	13:45	0.01	0.011	-			
13:46	0.02	0.020	13:46	0.01	0.012	-			
13:47	0.021	0.020	13:47	0.01	0.013	-			
13:48	0.019	0.019	13:48	0.015	0.015	-			

	Number of Inst	tances Where Downwing	May 13, 2020 VOCs Exceeds U		=	0
		Number of Compa		•		348
			PID DATA			
	Upwind			Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
7:06	2.3		7:06			
7:07	2.4		7:07			
7:08	2.5		7:08			
7:09	2.6		7:09	1.1		
7:10	2.7		7:10	1.2		
7:11	2.8		7:11	0.7		
7:12	2.8		7:12	1		
7:13	2.9		7:13	0.7		
7:14	2.9		7:14	0.9		
7:15	2.9		7:15	0.6		
7:16	3		7:16	0.8		
7:17	3		7:17	0.5		
7:18	3.1		7:18	0.5		
7:19	3.1		7:19	0.4		
7:20	3.1	2.8	7:20	0.2		
7:21	3.2	2.9	7:21	0.2	0.7	-
7:22	3.2	2.9	7:22	0.4	0.7	-
7:23	3.3	3.0	7:23	0.2	0.7	-
7:24	3.3	3.0	7:24	0.2	0.6	-
7:25	3.3	3.1	7:25	0.2	0.6	-
7:26	3.3	3.1	7:26	0.2	0.5	-
7:27	3.3	3.1	7:27	0.4	0.5	-
7:28	3.4	3.2	7:28	0.7	0.4	-
7:29	3.5	3.2	7:29	0.6	0.4	-
7:30	3.4	3.2	7:30	0.2	0.4	-
7:31	3.5	3.3	7:31	0.3	0.4	-
7:32	3.4	3.3	7:32	0.3	0.3	-
7:33	3.5	3.3	7:33	0.4	0.3	-
7:34	3.5	3.3	7:34	1.1	0.3	-
7:35	3.6	3.4	7:35	0.5	0.4	-
7:36	3.6	3.4	7:36	0.2	0.4	-
7:37	3.5	3.4	7:37	0.3	0.4	-
7:38	3.5	3.4	7:38	0.6	0.4	-
7:39	3.5	3.5	7:39	0.4	0.4	-
7:40	3.5	3.5	7:40	0.7	0.4	-
7:41	3.5	3.5	7:41	0.8	0.5	-
7:42	3.5	3.5	7:42	0.5	0.5	-
7:43	3.6	3.5	7:43	0.3	0.5	-
7:44	3.7	3.5	7:44	0.5	0.5	-
7:45	3.6	3.5	7:45	0.4	0.5	-
7:46	3.6	3.5	7:46	1.3	0.5	-
7:47	3.6	3.6	7:47	0.1	0.6	-
7:48	3.6	3.6	7:48	0.5	0.5	-
7:49	3.5	3.6	7:49	0.2	0.5	-
7:50	3.5	3.6	7:50	0.3	0.5	-
7:51	3.6	3.6	7:51	1.1	0.5	-
7:52	3.6	3.6	7:52	0.5	0.5	-
7:53	3.6	3.6	7:53	0.8	0.5	-
7:54	3.6	3.6	7:54	0.3	0.6	-
7:55	3.6	3.6	7:55	0.3	0.6	-
7:56	3.5	3.6	7:56	0.5	0.5	-

	Upwind	I	PID DATA	Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC Alarm Limits		
7:57	3.5	3.6	7:57	1.8	0.5	-		
7:58	3.5	3.6	7:58	0.5	0.6	-		
7:59	3.5	3.6	7:59	0.7	0.6	-		
8:00	3.5	3.6	8:00	1.1	0.6	-		
8:01	3.6	3.6	8:01	2.4	0.7	-		
8:02	3.6	3.6	8:02	0.7	0.7	-		
8:03	3.5	3.5	8:03	2.6	0.8	-		
8:04	3.5	3.5	8:04	0.3	0.9	-		
8:05	3.5	3.5	8:05	0.2	0.9	-		
8:06	3.6	3.5	8:06	0.1	0.9	_		
8:07	3.6	3.5	8:07	0.1	0.9	_		
8:08	3.6	3.5	8:08	0.2	0.8	_		
8:09	3.6	3.5	8:09	0.1	0.8	_		
8:10	3.6	3.5	8:10	0.2	0.8	<u> </u>		
8:11	3.6	3.6	8:11	0.2	0.8	-		
8:12	3.6	3.6	8:12	0	0.7			
8:13	3.5	3.6	8:13	1.4	0.6			
8:14	3.5	3.6	8:14	1.4	0.7			
8:15	3.6	3.6	8:15	0.8	0.7	-		
						-		
8:16	3.5	3.6	8:16	0.3	0.7	-		
8:17	3.5	3.6	8:17	0.3	0.6	-		
8:18	3.5	3.6	8:18	0.5	0.5	-		
8:19	3.5	3.6	8:19	0.3	0.4	-		
8:20	3.5	3.6	8:20	0.3	0.4	-		
8:21	3.5	3.5	8:21	0.7	0.4	-		
8:22	3.8	3.6	8:22	1.1	0.4	-		
8:23	3.8	3.6	8:23	1.7	0.5	-		
8:24	3.5	3.6	8:24	0.5	0.6	-		
8:25	3.5	3.6	8:25	0.4	0.6	-		
8:26	3.5	3.6	8:26	0.5	0.6	-		
8:27	3.5	3.5	8:27	0.3	0.7	-		
8:28	3.5	3.5	8:28	0.3	0.7	-		
8:29	3.5	3.5	8:29	2.4	0.6	-		
8:30	3.5	3.5	8:30	2.5	0.7	-		
8:31	3.6	3.5	8:31	1.7	0.8	-		
8:32	3.6	3.6	8:32	3.8	0.9	-		
8:33	3.6	3.6	8:33	1	1.1	-		
8:34	3.6	3.6	8:34	0.3	1.2	-		
8:35	3.5	3.6	8:35	0.2	1.2	-		
8:36	3.6	3.6	8:36	1	1.2	-		
8:37	3.5	3.6	8:37	1.3	1.2	-		
8:38	3.6	3.5	8:38	5.2	1.2	-		
8:39	3.5	3.5	8:39	1.5	1.4	-		
8:40	3.6	3.5	8:40	1.4	1.5	-		
8:41	3.5	3.5	8:41	2	1.6	-		
8:42	3.4	3.5	8:42	2.8	1.7	-		
8:43	3.4	3.5	8:43	0.3	1.8	-		
8:44	3.5	3.5	8:44	0.3	1.8	-		
8:45	3.7	3.5	8:45	1.1	1.7	-		
8:46	3.7	3.6	8:46	0.4	1.6	-		
8:47	3.8	3.6	8:47	0.2	1.5	-		
8:48	3.7	3.6	8:48	0	1.3	-		
8:49	3.5	3.6	8:49	0	1.2	-		
8:50	3.5	3.6	8:50	0	1.2	-		

	Upwind					
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC Alarm Limits
8:51	3.4	3.6	8:51	0	1.2	-
8:52	3.5	3.6	8:52	0.1	1.1	-
8:53	3.4	3.5	8:53	0	1.0	-
8:54	3.4	3.5	8:54	0	0.7	-
8:55	3.4	3.5	8:55	0	0.6	-
8:56	3.4	3.5	8:56	0	0.5	-
8:57	3.4	3.5	8:57	0.2	0.3	-
8:58	3.4	3.5	8:58	0.3	0.2	_
8:59	3.3	3.5	8:59	0	0.2	_
9:00	3.4	3.5	9:00	0	0.2	_
9:01	3.4	3.5	9:01	0.1	0.1	_
9:02	3.4	3.4	9:02	0.9	0.1	 -
9:03	3.4	3.4	9:03	0.2	0.1	-
9:04	3.4	3.4	9:04	0.3	0.1	-
9:04	3.4	3.4		0.3	0.1	
9:05	3.4	3.4	9:05 9:06	0.1	0.1	-
						-
9:07	3.3	3.4	9:07	0	0.1	-
9:08	3.3	3.4	9:08	0	0.1	-
9:09	3.3	3.4	9:09	0	0.1	-
9:10	3.3	3.4	9:10	0	0.1	-
9:11	3.3	3.4	9:11	0.1	0.1	-
9:12	3.2	3.3	9:12	0.6	0.1	-
9:13	3.2	3.3	9:13	0.4	0.2	-
9:14	3.2	3.3	9:14	0.4	0.2	-
9:15	3.3	3.3	9:15	0.5	0.2	-
9:16	3.3	3.3	9:16	0.3	0.2	-
9:17	3.4	3.3	9:17	0	0.3	-
9:18	3.2	3.3	9:18	0.2	0.2	-
9:19	3.2	3.3	9:19	0	0.2	-
9:20	3.2	3.3	9:20	0.1	0.2	-
9:21	3.3	3.3	9:21	0.2	0.2	-
9:22	3.3	3.3	9:22	0.5	0.2	-
9:23	3.3	3.3	9:23	0.4	0.2	-
9:24	3.2	3.3	9:24	0.5	0.2	-
9:25	3.2	3.3	9:25	0.4	0.3	-
9:26	3.2	3.2	9:26	0.3	0.3	-
9:27	3.2	3.2	9:27	0.1	0.3	-
9:28	3.2	3.2	9:28	0.5	0.3	-
9:29	3.1	3.2	9:29	0.4	0.3	-
9:30	3.1	3.2	9:30	0.1	0.3	-
9:31	3.1	3.2	9:31	0	0.3	-
9:32	3.1	3.2	9:32	0.1	0.2	-
9:33	3.1	3.2	9:33	0.4	0.3	_
9:34	3.1	3.2	9:34	0.3	0.3	-
9:35	3.1	3.2	9:35	0.3	0.3	_
9:36	3.1	3.2	9:36	0.2	0.3	-
9:37	3.1	3.1	9:37	0.3	0.3	_
9:38	3.1	3.1	9:38	0.2	0.3	-
9:39	3.1	3.1	9:39	0.2	0.3	-
9:39	3.1	3.1	9:40	0.2	0.3	
	3					-
9:41		3.1	9:41	0.6	0.3	-
9:42 9:43	3	3.1	9:42	0.3	0.3	-
111/1/	3	3.1	9:43	0.4	0.3	-

	Upwind		PID DATA	Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits		
9:45	2.9	3.1	9:45	0.6	0.3	-		
9:46	3	3.0	9:46	0.4	0.4	-		
9:47	2.9	3.0	9:47	0.2	0.4	-		
9:48	2.9	3.0	9:48	0.7	0.4	-		
9:49	3	3.0	9:49	0.6	0.4	-		
9:50	3	3.0	9:50	0.3	0.4	-		
9:51	3	3.0	9:51	0.4	0.4	-		
9:52	3.1	3.0	9:52	0.4	0.5	-		
9:53	3	3.0	9:53	0.2	0.5	-		
9:54	3	3.0	9:54	0.3	0.5	-		
9:55	3	3.0	9:55	0.1	0.5	-		
9:56	3	3.0	9:56	0.2	0.4	_		
9:57	3	3.0	9:57	0.6	0.4	_		
9:58	3	3.0	9:58	0.1	0.4	_		
9:59	3	3.0	9:59	0.3	0.4	_		
10:00	2.9	3.0	10:00	0.1	0.4	-		
10:01	3	3.0	10:01	0.5	0.3	_		
10:02	3.1	3.0	10:02	0.5	0.3	-		
10:02	2.9	3.0	10:03	0	0.3			
10:04	2.9	3.0	10:04	0	0.3	-		
		3.0				-		
10:05	2.9		10:05	0.4	0.2	-		
10:06	2.9	3.0	10:06	0.3	0.2	-		
10:07	3	3.0	10:07	0.2	0.2	-		
10:08	3	3.0	10:08	0	0.2	-		
10:09	2.9	3.0	10:09	0	0.2	-		
10:10	2.9	3.0	10:10	0	0.2	-		
10:11	2.9	3.0	10:11	0	0.2	-		
10:12	2.9	2.9	10:12	0	0.2	-		
10:13	2.9	2.9	10:13	0	0.1	-		
10:14	3	2.9	10:14	0	0.1	-		
10:15	3	2.9	10:15	0	0.1	-		
10:16	3	2.9	10:16	0	0.1	-		
10:17	3	2.9	10:17	0	0.1	-		
10:18	2.9	2.9	10:18	0.1	0.1	-		
10:19	3	2.9	10:19	0	0.1	-		
10:20	3.1	3.0	10:20	0	0.1	-		
10:21	3	3.0	10:21	0	0.0	-		
10:22	3	3.0	10:22	0	0.0	-		
10:23	3	3.0	10:23	0	0.0	-		
10:24	3	3.0	10:24	0	0.0	-		
10:25	2.9	3.0	10:25	0.1	0.0	-		
10:26	2.9	3.0	10:26	0	0.0	-		
10:27	3.1	3.0	10:27	0	0.0	-		
10:28	2.8	3.0	10:28	0.2	0.0	-		
10:29	2.9	3.0	10:29	0.6	0.0	-		
10:30	2.9	3.0	10:30	0.5	0.1	-		
10:31	2.9	3.0	10:31	0.4	0.1	-		
10:32	2.9	3.0	10:32	0	0.1	-		
10:33	2.9	3.0	10:33	0	0.1	-		
10:34	2.9	2.9	10:34	0.1	0.1	-		
10:35	2.9	2.9	10:35	0.1	0.1	-		
10:36	2.9	2.9	10:36	0.1	0.1	-		
10:37	2.9	2.9	10:37	0.1	0.1	-		
10:38	2.9	2.9	10:38	0.1	0.1	_		

	Upwind	I	PID DATA	Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits		
10:39	2.9	2.9	10:39	0.1	0.2	-		
10:40	2.8	2.9	10:40	0.1	0.2	-		
10:41	2.8	2.9	10:41	0.1	0.2	-		
10:42	2.8	2.9	10:42	0.1	0.2	-		
10:43	2.8	2.9	10:43	0.1	0.2	-		
10:44	2.9	2.9	10:44	0.1	0.2	-		
10:45	2.9	2.9	10:45	0.5	0.1	-		
10:46	2.9	2.9	10:46	0.1	0.1	-		
10:47	2.8	2.9	10:47	0.2	0.1	-		
10:48	2.9	2.9	10:48	0.1	0.1	-		
10:49	2.9	2.9	10:49	0.4	0.1	-		
10:50	2.9	2.9	10:50	0.5	0.2	-		
10:51	2.9	2.9	10:51	0.1	0.2	_		
10:52	2.9	2.9	10:52	0.4	0.2	_		
10:53	2.9	2.9	10:53	0.1	0.2	-		
10:54	2.9	2.9	10:54	0.1	0.2	-		
10:55	2.8	2.9	10:55	0.1	0.2	_		
10:56	2.8	2.9	10:56	0	0.2	-		
10:57	2.8	2.9	10:57	0	0.2	_		
10:58	2.9	2.9	10:58	0.3	0.2	 		
10:59	2.8	2.9	10:59	0.8	0.2	 		
11:00	2.8	2.9	11:00	0.4	0.2	<u>-</u>		
11:01	2.8	2.9	11:01	0.4	0.2			
11:02	2.9	2.9	11:02	1.5	0.2	-		
	3	2.9	11:03		0.2	-		
11:03	2.8	2.9		1 1.1	0.3	-		
11:04			11:04			-		
11:05 11:06	2.8	2.9	11:05	0.4	0.4	-		
	2.8	2.8	11:06	0	0.4	-		
11:07		2.8	11:07		0.4	-		
11:08	2.7	2.8	11:08	0.2	0.4	-		
11:09	2.8	2.8	11:09	0.3	0.4	-		
11:10	2.8	2.8	11:10	0.1	0.4	-		
11:11	2.9	2.8	11:11	0.2	0.4	-		
11:12	3	2.8	11:12	0.1	0.4	-		
11:13	2.7	2.8	11:13	0.7	0.4	-		
11:14	2.7	2.8	11:14	0	0.5	-		
11:15	2.7	2.8	11:15	0	0.4	-		
11:16	2.9	2.8	11:16	0.1	0.4	-		
11:17	2.9	2.8	11:17	0	0.4	-		
11:18	2.8	2.8	11:18	0	0.3	-		
11:19	2.8	2.8	11:19	0	0.2	-		
11:20	2.8	2.8	11:20	0	0.1	-		
11:21	2.8	2.8	11:21	0	0.1	-		
11:22	2.8	2.8	11:22	0.6	0.1	-		
11:23	2.9	2.8	11:23	0	0.2	-		
11:24	2.9	2.8	11:24	0	0.1	-		
11:25	2.8	2.8	11:25	0	0.1	-		
11:26	2.8	2.8	11:26	0	0.1	-		
11:27	2.8	2.8	11:27	0	0.1	-		
11:28	2.8	2.8	11:28	0.2	0.1	-		
11:29	2.9	2.8	11:29	0.3	0.1	-		
11:30	2.9	2.8	11:30	0.8	0.1	-		
11:31	2.8	2.8	11:31	0	0.1	-		
11:32	2.8	2.8	11:32	0	0.1	-		

Upwind			PID DATA	Ι		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
11:33	2.8	2.8	11:33	0	0.1	-
11:34	2.8	2.8	11:34	0.3	0.1	-
11:35	2.9	2.8	11:35	0.6	0.1	-
11:36	2.8	2.8	11:36	0.5	0.2	-
11:37	2.8	2.8	11:37	0.6	0.2	-
11:38	2.9	2.8	11:38	0.1	0.2	-
11:39	2.8	2.8	11:39	0	0.2	-
11:40	2.7	2.8	11:40	0	0.2	-
11:41	2.7	2.8	11:41	0.2	0.2	-
11:42	2.7	2.8	11:42	0	0.2	-
11:43	2.8	2.8	11:43	0	0.2	-
11:44	2.8	2.8	11:44	0	0.2	-
11:45	2.7	2.8	11:45	0.2	0.2	-
11:46	2.7	2.8	11:46	0	0.2	-
11:47	2.7	2.8	11:47	0	0.2	-
11:48	2.7	2.8	11:48	0	0.2	-
11:49	2.7	2.8	11:49	0	0.2	-
11:50	2.6	2.7	11:50	0.2	0.1	_
11:51	2.6	2.7	11:51	0.3	0.1	<u> </u>
11:52	2.7	2.7	11:52	0.1	0.1	_
11:53	2.8	2.7	11:53	0.1	0.1	-
11:54	2.8	2.7	11:54	0.1	0.1	-
11:55	2.7	2.7	11:55	0	0.1	-
11:56	2.8	2.7	11:56	0	0.1	-
11:57	2.8	2.7	11:57	0	0.1	-
11:58	2.8	2.7	11:58	0	0.1	-
11:59	2.8	2.7	11:59	0	0.1	-
12:00	2.8	2.7	12:00	0	0.1	
12:01	2.7	2.7	12:01	0.1	0.0	-
12:02	2.7	2.7	12:02	0.1	0.0	-
12:02	2.8	2.7		0	0.1	-
		+	12:03	0		-
12:04	2.8	2.8	12:04	0	0.1	-
12:05	2.8	2.8	12:05	0	0.1	-
12:06	2.7	2.8	12:06		0.0	-
12:07	2.7	2.8	12:07	0	0.0	-
12:08	2.7	2.8	12:08	0	0.0	-
12:09	2.7	2.8	12:09	0	0.0	-
12:10	2.7	2.8	12:10	0	0.0	-
12:11	2.7	2.8	12:11		0.0	-
12:12	2.7	2.7	12:12	0.4	0.0	-
12:13	2.7	2.7	12:13	0.4	0.0	-
12:14	2.7	2.7	12:14	0.3	0.1	-
12:15	2.7	2.7	12:15	0.3	0.1	-
12:16	2.7	2.7	12:16	0.2	0.1	-
12:17	2.7	2.7	12:17	0.4	0.1	-
12:18	2.7	2.7	12:18	0.3	0.1	-
12:19	2.7	2.7	12:19	0.4	0.2	-
12:20	2.6	2.7	12:20	0.4	0.2	-
12:21	2.6	2.7	12:21	0.2	0.2	-
12:22	2.6	2.7	12:22	0.1	0.2	-
12:23	2.6	2.7	12:23	0	0.2	-
12:24	2.6	2.7	12:24	0.1	0.2	-
12:25	2.6	2.7	12:25	0.1	0.2	-
12:26	2.6	2.7	12:26	0.2	0.2	-

Time 12:27 12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:38 12:39 12:40 12:41 12:42	Upwind VOC (ppm) 2.6 2.5 2.5 2.6 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	Time 12:27 12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:38 12:39	0.1 0.1 0.5 0.3 0.5 0.3 0.6 0.4 0.3 0.7 0.2	15-Minute Average 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3	Exceeds VOCs Alarm Limits
12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.1 0.5 0.3 0.5 0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3	- - - - - - -
12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	12:28 12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.1 0.5 0.3 0.5 0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3	- - - - - -
12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.6 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	12:29 12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.5 0.3 0.5 0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3	- - - - -
12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.6 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	12:30 12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.3 0.5 0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3	- - - - -
12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.5 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	12:31 12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.5 0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.2 0.3 0.3 0.3 0.3	- - - -
12:32 12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5	12:32 12:33 12:34 12:35 12:36 12:37 12:38	0.3 0.6 0.4 0.3 0.7 0.2 1	0.2 0.2 0.3 0.3 0.3 0.3	
12:33 12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5	12:33 12:34 12:35 12:36 12:37 12:38	0.6 0.4 0.3 0.7 0.2 1	0.2 0.3 0.3 0.3 0.3	
12:34 12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.5 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.6 2.5 2.5	12:34 12:35 12:36 12:37 12:38	0.4 0.3 0.7 0.2 1	0.3 0.3 0.3 0.3	-
12:35 12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.6 2.6 2.5 2.5 2.6 2.5 2.5 2.5	2.6 2.6 2.6 2.6 2.5 2.5	12:35 12:36 12:37 12:38	0.3 0.7 0.2 1	0.3 0.3 0.3	-
12:36 12:37 12:38 12:39 12:40 12:41 12:42	2.6 2.6 2.5 2.5 2.6 2.5 2.5	2.6 2.6 2.6 2.5 2.5	12:36 12:37 12:38	0.7 0.2 1	0.3 0.3	-
12:37 12:38 12:39 12:40 12:41 12:42	2.6 2.5 2.5 2.6 2.5 2.5	2.6 2.6 2.5 2.5	12:37 12:38	0.2	0.3	
12:38 12:39 12:40 12:41 12:42	2.5 2.5 2.6 2.5 2.5	2.6 2.5 2.5	12:38	1		
12:39 12:40 12:41 12:42	2.5 2.6 2.5 2.5	2.5 2.5				_
12:40 12:41 12:42	2.6 2.5 2.5	2.5	12.55	0.9	0.4	_
12:41 12:42	2.5 2.5		12:40	0.6	0.4	-
12:42	2.5	<i>)</i> L	12:41	0.3	0.4	
		2.5	12:42	0.3	0.4	-
コンバン	2.3	2.5	12:43	0.2	0.5	-
12:43 12:44	2.5	2.5	12:44	0.3	0.5	
12:45	2.5	2.5	12:44	0.5	0.5	-
12:45	2.5	2.5		0.5	0.5	-
			12:46			-
12:47	2.4	2.5	12:47	0.3	0.5	-
12:48	2.5	2.5	12:48	0.5	0.5	-
12:49	2.5	2.5	12:49	0.3	0.5	-
12:50	2.5	2.5	12:50	0.4	0.5	-
12:51	2.5	2.5	12:51	0.3	0.5	-
12:52	2.5	2.5	12:52	0.2	0.4	-
12:53	2.5	2.5	12:53	0.7	0.4	-
12:54	2.6	2.5	12:54	0.3	0.4	-
12:55	2.5	2.5	12:55	0.4	0.4	-
12:56	2.5	2.5	12:56	0.4	0.4	-
12:57	2.5	2.5	12:57	0.4	0.4	-
12:58	2.5	2.5	12:58	0.3	0.4	-
12:59	2.5	2.5	12:59	0.4	0.4	-
13:00	2.5	2.5	13:00	0.3	0.4	-
13:01	2.5	2.5	13:01	0.3	0.4	-
13:02	2.5	2.5	13:02	0.6	0.4	-
13:03	2.5	2.5	13:03	0.4	0.4	-
13:04	2.5	2.5	13:04	0.4	0.4	-
13:05	2.5	2.5	13:05	0.5	0.4	-
13:06	2.5	2.5	13:06	0.4	0.4	-
13:07	2.4	2.5	13:07	0.2	0.4	-
13:08	2.4	2.5	13:08	0.4	0.4	-
13:09	2.5	2.5	13:09	0.4	0.4	-
13:10	2.5	2.5	13:10	1	0.4	-
13:11	2.5	2.5	13:11	0.6	0.4	-
13:12	2.5	2.5	13:12	0.4	0.4	-
13:13	2.4	2.5	13:13	0.4	0.4	-
13:14	2.4	2.5	13:14	0.4	0.4	-
13:15	2.4	2.5	13:15	0.4	0.4	-
13:16	2.4	2.5	13:16	0.6	0.5	-
13:17	2.4	2.5	13:17	0.4	0.5	-
13:18	2.3	2.4	13:18	0.4	0.5	-
13:19 13:20	2.4	2.4	13:19 13:20	0.4	0.5 0.5	-

			PID DATA			
	Upwind			Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:21	2.4	2.4	13:21	0.3	0.5	-
13:22	2.4	2.4	13:22	0.5	0.4	-
13:23	2.4	2.4	13:23	0.5	0.5	-
13:24	2.5	2.4	13:24	0.8	0.5	-
13:25	2.4	2.4	13:25	0.7	0.5	-
13:26	2.4	2.4	13:26	0.5	0.5	-
13:27	2.4	2.4	13:27	0.4	0.5	-
13:28	2.4	2.4	13:28	1	0.5	-
13:29	2.4	2.4	13:29	0.7	0.5	-
13:30	2.4	2.4	13:30	0.6	0.5	-
13:31	2.4	2.4	13:31	0.8	0.5	-
13:32	2.4	2.4	13:32	0.5	0.6	-
13:33	2.3	2.4	13:33	0.3	0.6	_
13:34	2.3	2.4	13:34	0.4	0.6	_
13:35	2.4	2.4	13:35	0.4	0.6	_
13:36	2.4	2.4	13:36	0.4	0.6	_
13:37	2.6	2.4	13:37	0.6	0.6	_
13:38	2.5	2.4	13:38	0.4	0.6	_
13:39	2.5	2.4	13:39	0.4	0.6	-
13:40	2.5	2.4	13:40	0.4	0.5	_
13:41	2.5	2.4	13:41	0.6	0.5	-
13:42	2.4	2.4	13:42	0.5	0.5	-
13:43	2.5	2.4	13:43	0.5	0.5	_
13:44	2.5	2.4	13:44	0.5	0.5	_
13:45	2.6	2.5	13:45	0.6	0.5	_
13:46	2.6	2.5	13:46	0.5	0.5	_
13:47	2.6	2.5	13:47	1.2	0.5	_
13:48	2.6	2.5	13:48	1.2	0.5	-
13:49	2.6	2.5	13:49		0.5	_
13:50	2.5	2.5	13:50		0.5	-

45 Commercial Street 170229024

CAMP Data Summary

Date: 5/16/2020 Observer: Reid Balkind

Particulate Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.002	0.003					
Maximum 15min Average	0.007	0.011					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.002	0.002					
Maximum 1min Reading	0.016	0.014					

Organic Vapor Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.0	#DIV/0!					
Maximum 15min Average	0.2	#DIV/0!					
High Intervals "exceedances"	N/A	0					
Minimum 1min Reading	0.0	0.0					
Maximum 1min Reading	1.4	0.6					

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Numb	er of Instances Where	e Downwind Particulate	May 16, 20		.150 mg/m^3 =	0
		Number of Compara			oi ··· •	256
		•	RTICULATE		<u> </u>	
	Upwind	T		Downwind		Exceeds
	- Opwilla			Downwina		Particulate
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Alarm Limit
7:44			7:44	0.002		
7:45			7:45	0.002		
7:46			7:46	0.002		
7:47			7:47	0.002		
7:48			7:48	0.002		
7:49	0.004		7:49	0.002		
7:50	0.003		7:50	0.002		
7:51	0.003		7:51	0.002		
7:52	0.003		7:52	0.002		
7:53	0.003		7:53	0.002		
7:54	0.003		7:54	0.002		
7:55	0.002		7:55	0.002		
7:56	0.003		7:56	0.002		
7:57	0.005		7:57	0.002		
7:58	0.004	0.004	7:58	0.002	0.004	-
7:59	0.003	0.004	7:59	0.002	0.003	-
8:00	0.004	0.004	8:00	0.002	0.003	-
8:01	0.003	0.004	8:01	0.002	0.003	-
8:02	0.004	0.004	8:02	0.002	0.003	-
8:03	0.004	0.004	8:03	0.003	0.003	-
8:04	0.004	0.004	8:04	0.003	0.003	-
8:05	0.004	0.004	8:05	0.003	0.003	-
8:06	0.004	0.003	8:06	0.004	0.003	-
8:07	0.004	0.003	8:07	0.004	0.003	-
8:08	0.004	0.003	8:08	0.003	0.003	-
8:09	0.004	0.003	8:09	0.003	0.003	-
8:10	0.003	0.003	8:10	0.003	0.003	-
8:11	0.004	0.004	8:11	0.002	0.003	-
8:12	0.003	0.005	8:12	0.003	0.003	-
8:13	0.002	0.005	8:13	0.003	0.003	-
8:14	0.004	0.005	8:14	0.003	0.003	-
8:15	0.005	0.005	8:15	0.003	0.003	-
8:16	0.003	0.005	8:16	0.003	0.003	-
8:17	0.002	0.005	8:17	0.003	0.003	-
8:18	0.003	0.005	8:18	0.002	0.003	-
8:19	0.004	0.005	8:19	0.003	0.003	-
8:20	0.003	0.005	8:20	0.003	0.003	-
8:21	0.003	0.005	8:21	0.003	0.003	-
8:22	0.003	0.004	8:22	0.003	0.003	-
8:23	0.003	0.004	8:23	0.003	0.003	-
8:24	0.003	0.004	8:24	0.004	0.003	-
8:25	0.014	0.004	8:25	0.004	0.003	-
8:26	0.013	0.004	8:26	0.003	0.003	-
8:27	0.005	0.003	8:27	0.003	0.003	-
8:28	0.003	0.003	8:28	0.003	0.003	-
8:29	0.003	0.003	8:29	0.003	0.003	-
8:30	0.003	0.003	8:30	0.003	0.003	-
8:31	0.003	0.003	8:31	0.004	0.003	-
8:32	0.003	0.003	8:32	0.003	0.003	-
8:33	0.004	0.003	8:33	0.004	0.003	-
8:34	0.003	0.003	8:34	0.003	0.003	-

Upwind P			ARTICULATE	Exceeds		
Time	PM 10 (mg/m^3)	15-Minute Average	Time	Downwind PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
8:36	0.002	0.003	8:36	0.003	0.003	- Alai III LIIIIILS
8:37	0.002	0.003	8:37	0.003	0.003	
8:38	0.003	0.003	8:38	0.003	0.003	
8:39	0.002	0.003	8:39	0.003	0.003	-
8:40	0.003	0.004	8:40	0.003	0.004	
8:41	0.003	0.004	8:41	0.004	0.004	
8:42	0.003	0.004	8:42	0.003	0.004	
8:43	0.005	0.004	8:43	0.003	0.004	
8:44	0.003	0.004	8:44	0.003	0.004	
8:45	0.003	0.004	8:45	0.003	0.004	
8:46	0.003	0.004	8:46	0.003	0.004	
8:47	0.004	0.004	8:47	0.004	0.004	
8:48	0.003	0.004	8:48	0.003	0.004	
8:49	0.003	0.004	8:49	0.003	0.004	
8:50	0.003	0.004	8:50	0.004	0.004	
8:51	0.003	0.004	8:51	0.004	0.004	
8:52	0.003	0.004	8:52	0.004	0.004	<u> </u>
8:53	0.004	0.004	8:53	0.004	0.004	<u>-</u>
8:54	0.004	0.004	8:54	0.004	0.004	-
8:55	0.004	0.004	8:55	0.004	0.004	<u> </u>
8:56	0.004	0.004	8:56	0.004	0.004	<u> </u>
8:57	0.004	0.004	8:57	0.003	0.004	<u> </u>
8:58	0.004	0.004	8:58	0.004	0.004	
8:59	0.004	0.004	8:59	0.004	0.004	<u> </u>
9:00	0.003	0.004	9:00	0.004	0.004	
9:01		0.004	9:01	0.004	0.004	<u>-</u>
9:02	0.003 0.006	0.004	9:02	0.003	0.004	
9:03	0.007	0.004	9:03	0.003	0.004	
9:04	0.007	0.004	9:04	0.003	0.004	-
9:05	0.002	0.005	9:05	0.003	0.004	-
9:06	0.003	0.005	9:06	0.003	0.004	-
9:07	0.003	0.005	9:07	0.003	0.004	-
9:08	0.002	0.003	9:08	0.004	0.004	
9:09	0.005	0.006	9:09	0.004	0.004	
9:10	0.003	0.006	9:10	0.004	0.004	
9:11	0.003	0.006	9:11	0.004	0.004	<u> </u>
9:12	0.003	0.006	9:12	0.004	0.004	
9:12	0.002	0.006	9:12	0.004	0.004	-
9:14	0.004	0.007	9:14	0.004	0.004	<u>-</u>
9:14	0.008	0.007	9:14	0.004	0.004	<u>-</u>
9:16	0.002	0.007	9:16	0.004	0.004	
9:17	0.004	0.007	9:17	0.004	0.004	
9:18	0.004	0.007	9:18	0.003	0.004	
9:19	0.008	0.007	9:19	0.004	0.004	
9:20	0.014	0.007	9:20	0.004	0.004	
9:21	0.007	0.007	9:21	0.004	0.004	
9:22	0.007	0.006	9:22	0.004	0.004	
9:23	0.008	0.006	9:23	0.004	0.004	_
9:24	0.008	0.006	9:24	0.004	0.004	-
9:25	0.008	0.006	9:25	0.005	0.004	<u>-</u>
9:26	0.003	0.006	9:26	0.003	0.004	<u> </u>
9:27	0.004	0.006	9:27	0.004	0.004	<u>-</u>
9:28	0.004	0.006	9:28	0.004	0.004	<u> </u>
9:29	0.016	0.005	9:29	0.004	0.004	<u> </u>
9:30	0.004	0.005	9:30	0.007	0.004	<u>-</u>

	Upwind	P/	ARTICULATE DATA Downwind			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:31	0.004	0.004	9:31	0.004	0.004	-
9:32	0.009	0.004	9:32	0.004	0.004	-
9:33	0.009	0.004	9:33	0.004	0.004	-
9:34	0.003	0.003	9:34	0.004	0.004	-
9:35	0.005	0.003	9:35	0.004	0.004	-
9:36	0.008	0.003	9:36	0.004	0.004	-
9:37	0.003	0.003	9:37	0.005	0.004	-
9:38	0.005	0.003	9:38	0.004	0.004	-
9:39	0.003	0.002	9:39	0.004	0.004	-
9:40	0.003	0.002	9:40	0.004	0.004	-
9:41	0.003	0.002	9:41	0.005	0.004	-
9:42	0.002	0.002	9:42	0.005	0.004	-
9:43	0.002	0.003	9:43	0.005	0.004	-
9:44	0.002	0.003	9:44	0.004	0.004	-
9:45	0.003	0.003	9:45	0.005	0.005	-
9:46	0.003	0.003	9:46	0.005	0.005	-
9:47	0.002	0.003	9:47	0.005	0.005	-
9:48	0.002	0.004	9:48	0.004	0.005	-
9:49	0.002	0.004	9:49	0.004	0.005	-
9:50	0.002	0.004	9:50	0.004	0.005	-
9:51	0.002	0.004	9:51	0.004	0.005	-
9:52	0.002	0.004	9:52	0.004	0.005	_
9:53	0.002	0.004	9:53	0.004	0.005	-
9:54	0.004	0.004	9:54	0.004	0.005	-
9:55	0.003	0.004	9:55	0.004	0.005	
9:56	0.003	0.004	9:56	0.005	0.005	
9:57	0.011	0.004	9:57	0.005	0.005	
9:58	0.003	0.003	9:58	0.006	0.005	
9:59	0.005	0.003	9:59	0.005	0.005	
10:00	0.004	0.003	10:00	0.005	0.005	
10:01	0.004	0.003	10:01	0.006	0.005	_
10:02	0.004	0.003	10:02	0.005	0.005	_
10:03	0.004	0.003	10:03	0.005	0.005	-
10:04	0.003	0.003	10:04	0.005	0.005	_
10:05	0.003	0.003	10:05	0.005	0.005	
10:06	0.003	0.003	10:06	0.005	0.005	_
10:07	0.004	0.004	10:07	0.005	0.005	
10:07	0.003	0.004	10:07	0.006	0.005	<u>-</u>
10:09	0.003	0.004	10:08	0.005	0.005	<u>-</u>
10:10	0.003	0.004	10:09	0.005	0.005	<u>-</u>
10:11	0.003	0.004	10:10	0.005	0.005	
10:12	0.004	0.004	10:11	0.005	0.005	<u> </u>
10:13	0.003	0.004	10:12	0.003	0.005	<u>-</u>
10:14	0.003	0.005	10:14	0.004	0.005	<u> </u>
10:15	0.002	0.005	10:14	0.005	0.005	<u> </u>
10:16	0.003	0.005	10:16	0.005	0.005	
10:17	0.003	0.005	10:17	0.005	0.003	
10:17	0.002	0.005	10:17	0.005	0.006	
10:19	0.003	0.005	10:18	0.005	0.006	
10:20	0.003	0.005	10:19	0.005	0.006	
10:21	0.013	0.005	10:20	0.005	0.006	
10:22	0.011	0.003	10:21	0.005	0.006	<u> </u>
10:22	0.004	0.004	10:22	0.005	0.006	<u>-</u>
	0.006					
10:24	0.004	0.004 0.004	10:24 10:25	0.005 0.005	0.006 0.006	-

		P	PARTICULATE DATA			
Upwind			Downwind			Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
10:26	0.004	0.004	10:26	0.006	0.006	-
10:27	0.004	0.004	10:27	0.006	0.006	-
10:28	0.003	0.004	10:28	0.005	0.006	-
10:29	0.005	0.004	10:29	0.006	0.006	-
10:30	0.005	0.004	10:30	0.006	0.006	-
10:31	0.007	0.004	10:31	0.014	0.006	-
10:32	0.004	0.004	10:32	0.007	0.005	-
10:33	0.005	0.004	10:33	0.006	0.005	-
10:34	0.005	0.004	10:34	0.006	0.005	-
10:35	0.004	0.004	10:35	0.005	0.005	-
10:36	0.003	0.005	10:36	0.005	0.005	-
10:37	0.005	0.005	10:37	0.005	0.005	-
10:38	0.004	0.004	10:38	0.005	0.005	-
10:39	0.004	0.004	10:39	0.005	0.005	-
10:40	0.003	0.005	10:40	0.005	0.006	-
10:41	0.004	0.005	10:41	0.006	0.006	-
10:42	0.004	0.006	10:42	0.005	0.006	-
10:43	0.004	0.006	10:43	0.005	0.006	-
10:44	0.006	0.006	10:44	0.005	0.006	-
10:45	0.004	0.006	10:45	0.005	0.006	-
10:46	0.005	0.006	10:46	0.005	0.006	-
10:47	0.005	0.005	10:47	0.005	0.006	-
10:48	0.005	0.005	10:48	0.006	0.006	-
10:49	0.004	0.005	10:49	0.006	0.006	-
10:50	0.008	0.005	10:50	0.006	0.006	-
10:51	0.004	0.005	10:51	0.006	0.006	-
10:52	0.003	0.005	10:52	0.006	0.006	-
10:53	0.004	0.005	10:53	0.006	0.006	-
10:54	0.012	0.005	10:54	0.006	0.006	-
10:55	0.01	0.004	10:55	0.006	0.006	-
10:56	0.011	0.004	10:56	0.006	0.006	-
10:57	0.003	0.003	10:57	0.006	0.006	-
10:58	0.003	0.003	10:58	0.006	0.006	-
10:59	0.003	0.003	10:59	0.006	0.006	-
11:00	0.003	0.003	11:00	0.006	0.006	-
11:01	0.003	0.003	11:01	0.006	0.006	-
11:02	0.003	0.003	11:02	0.006	0.006	-
11:03	0.003	0.003	11:03	0.006	0.006	-
11:04	0.005	0.003	11:04	0.006	0.006	
11:05	0.004	0.003	11:05	0.006	0.006	-
11:06	0.003	0.003	11:06	0.006	0.006	
11:07	0.003	0.003	11:07	0.006	0.006	-
11:08	0.004	0.003	11:08	0.006	0.006	-
11:09	0.003	0.003	11:09	0.006	0.006	-
11:10	0.003	0.003	11:10	0.006	0.006	-
11:11	0.003	0.003	11:11	0.006	0.007	-
11:12	0.003	0.003	11:12	0.006	0.007	-
11:13	0.003	0.003	11:13	0.006	0.007	-
11:14	0.003	0.003	11:14	0.006	0.007	-
11:15	0.003	0.003	11:15	0.006	0.007	-
11:16	0.003	0.003	11:16	0.006	0.007	-
11:17	0.003	0.003	11:17	0.006	0.007	-
11:18	0.003	0.003	11:18	0.006	0.007	-
11:19	0.003	0.003	11:19	0.007	0.007	-
11:20	0.004	0.003	11:20	0.007	0.007	-

PARTICULATE DATA Upwind Downwind									
	Upwind			Exceeds					
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
11:21	0.004	0.003	11:21	0.007	0.007	-			
11:22	0.004	0.003	11:22	0.007	0.007	-			
11:23	0.004	0.003	11:23	0.007	0.007	-			
11:24	0.004	0.003	11:24	0.008	0.007	-			
11:25	0.003	0.003	11:25	0.007	0.007	-			
11:26	0.003	0.003	11:26	0.006	0.007	-			
11:27	0.003	0.003	11:27	0.006	0.007	-			
11:28	0.004	0.003	11:28	0.007	0.007	-			
11:29	0.003	0.003	11:29	0.006	0.007	-			
11:30	0.003	0.003	11:30	0.006	0.007	-			
11:31	0.003	0.003	11:31	0.006	0.007	-			
11:32	0.003	0.003	11:32	0.006	0.007	-			
11:33	0.004	0.003	11:33	0.007	0.007	-			
11:34	0.003	0.003	11:34	0.007	0.007	-			
11:35	0.003	0.004	11:35	0.007	0.007	-			
11:36	0.003	0.004	11:36	0.007	0.008				
11:37	0.003	0.004	11:37	0.007	0.008	-			
11:38	0.003	0.004	11:38	0.007	0.008	-			
11:39	0.004	0.004	11:39	0.007	0.008	-			
11:40	0.003	0.004	11:40	0.007	0.008	-			
11:41	0.003	0.004	11:41	0.01	0.008	-			
11:42	0.003	0.004	11:42	0.008	0.008	-			
11:43	0.004	0.004	11:43	0.007	0.008	-			
11:44	0.004	0.004	11:44	0.008	0.008	-			
11:45	0.004	0.004	11:45	0.007	0.008	-			
11:46	0.004	0.004	11:46	0.007	0.008	-			
11:47	0.004	0.004	11:47	0.007	0.008	-			
11:48	0.004	0.004	11:48	0.008	0.008	-			
11:49	0.005	0.004	11:49	0.008	0.008	-			
11:50	0.005	0.003	11:50	0.009	0.008	-			
11:51	0.004	0.003	11:51	0.008	0.008	-			
11:52	0.003	0.003	11:52	0.009	0.008	-			
11:53	0.003	0.003	11:53	0.008	0.008	-			
11:54	0.003	0.003	11:54	0.008	0.008	-			
11:55	0.003	0.003	11:55	0.008	0.009	-			
11:56	0.003	0.003	11:56	0.009	0.009	-			
11:57	0.003	0.003	11:57	0.008	0.009	-			
11:58	0.003	0.003	11:58	0.008	0.009	-			
11:59	0.003	0.003	11:59	0.008	0.009	-			
12:00	0.003	0.003	12:00	0.008	0.009	-			
12:01	0.004	0.003	12:01	0.008	0.009	-			
12:02	0.004	0.003	12:02	0.008	0.009	-			
12:03	0.004	0.003	12:03	0.009	0.009	-			
12:04	0.004	0.003	12:04	0.009	0.009	-			
12:05	0.004	0.003	12:05	0.009	0.010	-			
12:06	0.004	0.003	12:06	0.009	0.010	-			
12:07	0.003	0.003	12:07	0.009	0.010	-			
12:08	0.004	0.003	12:08	0.009	0.010	-			
12:09	0.003	0.003	12:09	0.009	0.010	-			
12:10	0.003	0.003	12:10	0.009	0.010	-			
12:11	0.003	0.003	12:11	0.009	0.010	-			
12:12	0.003	0.003	12:12	0.009	0.010	-			
12:13	0.003	0.003	12:13	0.01	0.010	-			
12:14	0.003	0.004	12:14	0.010	0.010	-			
12:15	0.003	0.004	12:15	0.01	0.010	-			

PARTICULATE DATA										
	Upwind			Downwind						
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits				
12:16	0.003	0.004	12:16	0.01	0.010	-				
12:17	0.003	0.004	12:17	0.01	0.010	-				
12:18	0.003	0.004	12:18	0.01	0.010	-				
12:19	0.003	0.004	12:19	0.011	0.010	-				
12:20	0.004	0.004	12:20	0.01	0.010	-				
12:21	0.004	0.004	12:21	0.01	0.010	-				
12:22	0.004	0.004	12:22	0.01	0.011	-				
12:23	0.003	0.004	12:23	0.01	0.011	-				
12:24	0.004	0.004	12:24	0.01	0.011	-				
12:25	0.004	0.004	12:25	0.011	0.011	-				
12:26	0.004	0.004	12:26	0.011	0.011	-				
12:27	0.004	0.004	12:27	0.011	0.011	-				
12:28	0.004	0.004	12:28							

May 16, 2020 Number of Instances Where Downwind VOCs Exceeds Upwind VOCs + 5ppm =								
	- Hamber of mise		arable Data Points			271		
		rumber of comp	PID DATA			2/1		
	Upwind		115 57177	Downwind		I		
	- Optima			Jownwind	45.00	Exceeds VOCs		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits		
7:44			7:44	0.1				
7:45			7:45	0.1				
7:46			7:46	0.3				
7:47			7:47	0.5				
7:48			7:48	0.6				
7:49	0		7:49	0.4				
7:50	0		7:50	0.2				
7:51	0		7:51	0.2				
7:52	0		7:52	0.4				
7:53	0		7:53	0.3				
7:54	0.9		7:54	0.4				
7:55	1.4		7:55	0.4				
7:56	0		7:56	0.2				
7:57	0		7:57	0.1				
7:58	0	0.2	7:58	0.2				
7:59	0	0.2	7:59	0.3	0.3	-		
8:00	0	0.2	8:00	0.3	0.3	-		
8:01	0	0.2	8:01	0.3	0.3	-		
8:02	0	0.2	8:02	0.1	0.3	-		
8:03	0	0.2	8:03	0.2	0.3	-		
8:04	0	0.2	8:04	0.3	0.3	-		
8:05	0	0.2	8:05	0.2	0.3	-		
8:06	0	0.2	8:06	0.1	0.3	-		
8:07	0	0.2	8:07	0	0.3	-		
8:08	0	0.2	8:08	0	0.2	-		
8:09	0	0.1	8:09	0	0.2	-		
8:10	0	0.0	8:10	0.1	0.2	-		
8:11	0	0.0	8:11	0.3	0.2	-		
8:12	0	0.0	8:12	0.3	0.2	-		
8:13	0	0.0	8:13	0.2	0.2	-		
8:14	0	0.0	8:14	0.2	0.2	-		
8:15	0	0.0	8:15	0.2	0.2	-		
8:16	0	0.0	8:16	0.2	0.2	-		
8:17	0	0.0	8:17	0.2	0.2	-		
8:18	0	0.0	8:18	0.3	0.2	-		
8:19	0	0.0	8:19	0	0.2	-		
8:20	0	0.0	8:20	0.1	0.2	-		
8:21	0	0.0	8:21	0.2	0.1	-		
8:22	0	0.0	8:22	0.2	0.2	-		
8:23	0	0.0	8:23	0.3	0.2	-		
8:24	0	0.0	8:24	0.3	0.2	-		
8:25	0	0.0	8:25	0.2	0.2	-		
8:26	0	0.0	8:26	0.1	0.2	-		
8:27	0	0.0	8:27	0.3	0.2	-		
8:28	0	0.0	8:28	0.3	0.2	-		
8:29	0	0.0	8:29	0.3	0.2	-		
8:30	0	0.0	8:30	0.4	0.2	-		
8:31	0	0.0	8:31	0.4	0.2	-		
8:32	0	0.0	8:32	0	0.2	-		
8:33	0	0.0	8:33	0	0.2	-		
8:34	0	0.0	8:34	0.1	0.2	-		

	Upwind	I	PID DATA	PID DATA Downwind				
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute	Exceeds VOCs Alarm Limits		
Tillic	roc (pp)	13 Minute Average	Time	Toc (pp)	Average	1		
8:35	0	0.0	8:35	0.2	0.2	-		
8:36	0	0.0	8:36	0.3	0.2	-		
8:37	0	0.0	8:37	0.3	0.2	-		
8:38	0	0.0	8:38	0.1	0.2	-		
8:39	0	0.0	8:39	0.3	0.2	-		
8:40	0	0.0	8:40	0.3	0.2	-		
8:41	0	0.0	8:41	0.3	0.2	-		
8:42	0	0.0	8:42	0.3	0.2	-		
8:43	0	0.0	8:43	0.3	0.2	-		
8:44	0	0.0	8:44	0.3	0.2	-		
8:45	0	0.0	8:45	0.3	0.2	-		
8:46	0	0.0	8:46	0.3	0.2	-		
8:47	0	0.0	8:47	0.3	0.2	-		
8:48	0	0.0	8:48	0.3	0.2	-		
8:49	0	0.0	8:49	0.2	0.3	-		
8:50	0	0.0	8:50	0.3	0.3	-		
8:51	0	0.0	8:51	0.3	0.3	-		
8:52	0	0.0	8:52	0.4	0.3	-		
8:53	0	0.0	8:53	0.3	0.3	_		
8:54	0	0.0	8:54	0.2	0.3	_		
8:55	0	0.0	8:55	0.3	0.3	_		
8:56	0	0.0	8:56	0.3	0.3	-		
8:57	0	0.0	8:57	0.2	0.3	_		
8:58	0	0.0	8:58	0.2	0.3	-		
8:59	0	0.0	8:59	0.2	0.3	-		
9:00	0	0.0	9:00	0.1	0.3	-		
9:01	0	0.0	9:01	0.2	0.2	-		
9:02	0	0.0	9:02	0.2	0.2	-		
9:03	0	0.0	9:03	0.3	0.2			
9:04	0	0.0	9:04	0.3	0.2	-		
9:04	0	0.0	9:05	0.3	0.2	-		
						-		
9:06	0	0.0	9:06	0.2	0.2	-		
9:07	0	0.0	9:07	0.3	0.2	-		
9:08	0	0.0	9:08	0.3	0.2	-		
9:09	0	0.0	9:09	0.2	0.2	-		
9:10	0	0.0	9:10	0.3	0.2	-		
9:11	0	0.0	9:11	0.2	0.2	-		
9:12	0	0.0	9:12	0.2	0.2	-		
9:13	0	0.0	9:13	0.2	0.2	-		
9:14	0	0.0	9:14	0.1	0.2	-		
9:15	0	0.0	9:15	0.2	0.2	-		
9:16	0	0.0	9:16	0.2	0.2	-		
9:17	0	0.0	9:17	0.1	0.2	-		
9:18	0	0.0	9:18	0.1	0.2	-		
9:19	0	0.0	9:19	0.1	0.2	-		
9:20	0	0.0	9:20	0.1	0.2	-		
9:21	0	0.0	9:21	0.1	0.2	-		
9:22	0	0.0	9:22	0	0.2	-		
9:23	0	0.0	9:23	0	0.2	-		
9:24	0	0.0	9:24	0.1	0.1	-		
9:25	0	0.0	9:25	0	0.1	-		
9:26	0	0.0	9:26	0	0.1	-		
9:27	0	0.0	9:27	0	0.1	-		
9:28	0	0.0	9:28	0	0.1	-		

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
9:29	0	0.0	0.20	0	_	
9:29	0	0.0	9:29 9:30	0	0.1	-
	0					-
9:31	0	0.0	9:31	0	0.1	-
9:32	0	0.0	9:32	0	0.0	-
9:33	0	0.0	9:33	0	0.0	-
9:34	0	0.0	9:34	0	0.0	-
9:35	0	0.0	9:35	0	0.0	-
9:36	0	0.0	9:36	0	0.0	-
9:37	0	0.0	9:37	0	0.0	-
9:38	0	0.0	9:38	0	0.0	-
9:39	0	0.0	9:39	0	0.0	-
9:40	0	0.0	9:40	0	0.0	-
9:41	0	0.0	9:41	0	0.0	-
9:42	0	0.0	9:42	0	0.0	-
9:43	0	0.0	9:43	0	0.0	_
9:44	0	0.0	9:44	0	0.0	_
9:45	0	0.0	9:45	0	0.0	-
9:46	0	0.0	9:46	0	0.0	
9:47	0		9:47	0		-
		0.0			0.0	-
9:48	0	0.0	9:48	0.1	0.0	-
9:49	0	0.0	9:49	0	0.0	-
9:50	0	0.0	9:50	0.1	0.0	-
9:51	0	0.0	9:51	0	0.0	-
9:52	0	0.0	9:52	0	0.0	-
9:53	0	0.0	9:53	0	0.0	-
9:54	0	0.0	9:54	0	0.0	-
9:55	0	0.0	9:55	0	0.0	-
9:56	0	0.0	9:56	0	0.0	-
9:57	0	0.0	9:57	0	0.0	-
9:58	0	0.0	9:58	0	0.0	-
9:59	0	0.0	9:59	0.1	0.0	-
10:00	0	0.0	10:00	0.1	0.0	_
10:00	0	0.0	10:01	0.1	0.0	
		0.0		0.1		-
10:02	0		10:02		0.0	-
10:03	0	0.0	10:03	0.1	0.0	-
10:04	0	0.0	10:04	0.1	0.0	-
10:05	0	0.0	10:05	0.1	0.0	-
10:06	0	0.0	10:06	0	0.0	-
10:07	0	0.0	10:07	0	0.0	-
10:08	0	0.0	10:08	0.1	0.0	-
10:09	0	0.0	10:09	0.1	0.0	-
10:10	0	0.0	10:10	0.1	0.1	-
10:11	0	0.0	10:11	0.1	0.1	-
10:12	0	0.0	10:12	0.1	0.1	-
10:13	0	0.0	10:13	0.1	0.1	-
10:14	0	0.0	10:14	0.1	0.1	-
10:15	0	0.0	10:15	0.1	0.1	-
10:16	0	0.0	10:16	0.1	0.1	_
10:17	0	0.0	10:17	0.1	0.1	-
10:17	0	0.0	10:18	0.1	0.1	-
10:18	0	0.0	10:19	0.1	0.1	
						-
10:20	0	0.0	10:20	0.2	0.1	-
10:21	0	0.0	10:21	0	0.1	-

	Upwind		PID DATA	1		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
10:23	0	0.0	10:23	0.2	0.1	_
10:24	0	0.0	10:24	0.1	0.1	_
10:25	0	0.0	10:25	0.2	0.1	_
10:26	0	0.0	10:26	0.2	0.1	 -
10:27	0	0.0	10:27	0.2	0.1	-
10:27	0	0.0	10:28	0.2	0.1	
10:29	0	0.0	10:29	0.1	0.1	-
10:30	0	0.0		0.2	0.1	-
			10:30			-
10:31	0	0.0	10:31	0.2	0.1	-
10:32	0	0.0	10:32	0.2	0.2	-
10:33	0	0.0	10:33	0.2	0.2	-
10:34	0	0.0	10:34	0.3	0.2	-
10:35	0	0.0	10:35	0.3	0.2	-
10:36	0	0.0	10:36	0.3	0.2	-
10:37	0	0.0	10:37	0.4	0.2	-
10:38	0	0.0	10:38	0.3	0.2	-
10:39	0	0.0	10:39	0.3	0.2	-
10:40	0	0.0	10:40	0.3	0.2	-
10:41	0	0.0	10:41	0.3	0.2	-
10:42	0	0.0	10:42	0.3	0.3	-
10:43	0	0.0	10:43	0.3	0.3	-
10:44	0	0.0	10:44	0.1	0.3	_
10:45	0	0.0	10:45	0.2	0.3	_
10:46	0	0.0	10:46	0.3	0.3	 -
10:47	0	0.0	10:47	0.3	0.3	_
10:47	0	0.0	10:48	0.3	0.3	-
						-
10:49	0	0.0	10:49	0.2	0.3	-
10:50	0	0.0	10:50	0.3	0.3	-
10:51	0	0.0	10:51	0.3	0.3	-
10:52	0	0.0	10:52	0.3	0.3	-
10:53	0	0.0	10:53	0.3	0.3	-
10:54	0	0.0	10:54	0.4	0.3	-
10:55	0	0.0	10:55	0.3	0.3	-
10:56	0	0.0	10:56	0.3	0.3	-
10:57	0	0.0	10:57	0.4	0.3	-
10:58	0	0.0	10:58	0.3	0.3	-
10:59	0	0.0	10:59	0.3	0.3	-
11:00	0	0.0	11:00	0.2	0.3	-
11:01	0	0.0	11:01	0.4	0.3	-
11:02	0	0.0	11:02	0.4	0.3	-
11:03	0	0.0	11:03	0.4	0.3	-
11:04	0	0.0	11:04	0.4	0.3	-
11:05	0	0.0	11:05	0.4	0.3	-
11:06	0	0.0	11:06	0.4	0.3	-
11:07	0	0.0	11:07	0.4	0.3	-
11:08	0	0.0	11:08	0.4	0.4	-
11:09	0	0.0	11:09	0.4	0.4	+
						-
11:10	0	0.0	11:10	0.3	0.4	-
11:11	0	0.0	11:11	0.3	0.4	-
11:12	0	0.0	11:12	0.3	0.4	-
11:13	0	0.0	11:13	0.2	0.4	-
11:14	0	0.0	11:14	0.3	0.3	-
11:15	0	0.0	11:15	0.3	0.3	-
11:16	0	0.0	11:16	0.3	0.4	-

	Upwind		PID DATA			
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
11:17	0	0.0	11:17	0.1	0.3	-
11:18	0	0.0	11:18	0.1	0.3	-
11:19	0	0.0	11:19	0.2	0.3	-
11:20	0	0.0	11:20	0.2	0.3	-
11:21	0	0.0	11:21	0.2	0.3	-
11:22	0	0.0	11:22	0.1	0.3	_
11:23	0	0.0	11:23	0.2	0.2	_
11:24	0	0.0	11:24	0.2	0.2	_
11:25	0	0.0	11:25	0.2	0.2	-
11:26	0	0.0	11:26	0.3	0.2	_
11:27	0	0.0	11:27	0.4	0.2	_
11:28	0	0.0	11:28	0.4	0.2	
11:29	0	0.0	11:29	0.4	0.2	
11:30	0	0.0	11:30	0.4	0.2	
					0.2	-
11:31	0	0.0	11:31	0.4		-
11:32	0	0.0	11:32	0.4	0.3	-
11:33	0	0.0	11:33	0.3	0.3	-
11:34	0	0.0	11:34	0.3	0.3	-
11:35	0	0.0	11:35	0.5	0.3	-
11:36	0	0.0	11:36	0.4	0.3	-
11:37	0	0.0	11:37	0.2	0.3	-
11:38	0	0.0	11:38	0.4	0.3	-
11:39	0	0.0	11:39	0.3	0.3	-
11:40	0	0.0	11:40	0.3	0.4	-
11:41	0	0.0	11:41	0.5	0.4	-
11:42	0	0.0	11:42	0.4	0.4	-
11:43	0	0.0	11:43	0.4	0.4	-
11:44	0	0.0	11:44	0.5	0.4	-
11:45	0	0.0	11:45	0.5	0.4	-
11:46	0	0.0	11:46	0.4	0.4	-
11:47	0	0.0	11:47	0.4	0.4	-
11:48	0	0.0	11:48	0.4	0.4	_
11:49	0	0.0	11:49	0.4	0.4	_
11:50	0	0.0	11:50	0.4	0.4	_
11:51	0	0.0	11:51	0.4	0.4	_
11:52	0	0.0	11:52	0.3	0.4	-
11:53	0	0.0	11:53	0.3	0.4	-
11:54	0	0.0	11:54	0.3	0.4	-
11:55	0	0.0	11:55	0.3	0.4	-
11:56	0	0.0	11:56	0.1	0.4	
	0	0.0		0.2	0.4	-
11:57			11:57			-
11:58	0	0.0	11:58	0.2	0.3	-
11:59	0	0.0	11:59	0	0.3	-
12:00	0	0.0	12:00	0.1	0.3	-
12:01	0	0.0	12:01	0.1	0.3	-
12:02	0	0.0	12:02	0.2	0.3	-
12:03	0	0.0	12:03	0.2	0.2	-
12:04	0	0.0	12:04	0.2	0.2	-
12:05	0	0.0	12:05	0.2	0.2	-
12:06	0.3	0.0	12:06	0.2	0.2	-
12:07	0.1	0.0	12:07	0.3	0.2	-
12:08	0	0.0	12:08	0.3	0.2	-
12:09	0.1	0.0	12:09	0.3	0.2	-
12:10	0	0.0	12:10	0.3	0.2	-

	PID DATA									
	Upwind									
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits				
12:11	0	0.0	12:11	0.3	0.2	-				
12:12	0	0.0	12:12	0.3	0.2	-				
12:13	0	0.0	12:13	0.3	0.2	-				
12:14	0	0.0	12:14	0.2	0.2	-				
12:15	0	0.0	12:15	0.2	0.2	-				
12:16	0	0.0	12:16	0.4	0.2	-				
12:17	0	0.0	12:17	0.3	0.3	-				
12:18	0	0.0	12:18	0.3	0.3	-				
12:19	0	0.0	12:19	0.3	0.3	-				
12:20	0	0.0	12:20	0.2	0.3	-				
12:21	0	0.0	12:21	0.3	0.3	-				
12:22	0	0.0	12:22	0.3	0.3	-				
12:23	0	0.0	12:23	0.3	0.3	-				
12:24	0	0.0	12:24	0.3	0.3	-				
12:25	0	0.0	12:25	0.4	0.3	-				
12:26	0	0.0	12:26	0.4	0.3	-				
12:27	0	0.0	12:27	0.4	0.3	-				
12:28	0	0.0	12:28	0.3	0.3	-				

APPENDIX I Laboratory Analytical Reports

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: June 04, 2020 19:00

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2098617 SDG: CMS01 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

Previous versions of this report were generated on: 05/13/2020 08:32 05/20/2020 10:18

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	Date/Time	
LB13_15.5-17.5 Grab Soil	05/06/2020 14:20	1310324
LB13_18-20 Grab Soil	05/06/2020 14:25	1310325
LB17_1-3 TCLP NVE Grab Soil	05/06/2020 12:45	1310326
LB17_6-8 TCLP NVE Grab Soil	05/06/2020 13:15	1310327
LB17_3-5 Grab Soil	05/06/2020 13:15	1310328
SODUP01_050620 Grab Soil	05/06/2020	1310329
SOFB01_050620 Water	05/06/2020 15:00	1310330
SOTB01_050620 Water	05/06/2020	1310331
LB17_1-3 Grab Soil	05/06/2020 12:45	1312680
LB17_6-8 Grab Soil	05/06/2020 13:15	1312681

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2098617

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1310324

Reporting limits were raised due to interference from the sample matrix.

Batch #: R201311AA (Sample number(s): 1310324)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: Bromomethane

SW-846 8270D, GC/MS Semivolatiles

Batch #: 20128SLA026 (Sample number(s): 1310324-1310325, 1310328-1310329 UNSPK: 1310329)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Acenaphthene, Pyrene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, Naphthalene, Hexachlorocyclopentadiene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Benzidine, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(g,h,i)perylene, 2-Methylnaphthalene, Dibenzofuran, Carbazole

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: 2-Chloronaphthalene

SW-846 8270D SIM, GC/MS Semivolatiles

Sample #s: 1310328, 1310329

Reporting limits were raised due to interference from the sample matrix.

Batch #: 20136SLB026 (Sample number(s): 1310328-1310329)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1310329

SW-846 8081B, Pesticides

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample #s: 1310328

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Batch #: 201280010A (Sample number(s): 1310328-1310329)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1310328, 1310329

SW-846 8082A Feb 2007 Rev 1, PCBs

Batch #: 201280011A (Sample number(s): 1310329 UNSPK: 1310329)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: PCB-1016, PCB-1260

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1310329

Batch #: 201320002A (Sample number(s): 1310328)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1310328

SW-846 8151A, Herbicides

Sample #s: 1310328, 1310329

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201280015A (Sample number(s): 1310328-1310329 UNSPK: 1310329)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Batch #: 20128007 (Sample number(s): 1310328-1310329 UNSPK: 1310328)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) LCS

SW-846 6010D Rev.4, July 2014, Metals

Batch #: 201321404501 (Sample number(s): 1310326-1310327 UNSPK: 1310326 BKG: 1310326)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: Arsenic

SW-846 6020B Rev.2, July 2014, Metals

Batch #: 201281404901A (Sample number(s): 1310328-1310329 UNSPK: 1310329 BKG: 1310329)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Arsenic, Barium, Lead

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Copper, Lead, Manganese, Zinc, Barium

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

windows: Arsenic, Barium, Beryllium, Lead, Silver

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Arsenic, Barium, Beryllium, Copper, Manganese, Selenium, Silver, Zinc

SW-846 7470A, Metals

Batch #: 201330571301 (Sample number(s): 1310326 UNSPK: 1310326 BKG: 1310326)

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Mercury

SW-846 7471B, Metals

Batch #: 201281063801 (Sample number(s): 1310328-1310329 UNSPK: 1310329 BKG: 1310329)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Mercury

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Mercury

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310324

2098617

Sample Description: LB13_15.5-17.5 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: SDG#: CMS01-01

05/06/2020 14:20

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	46 8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	N.D.	0.39	1.3	52.08
11995	Acrolein	107-02-8	N.D.	0.33	6.6	52.08
11995	Acrylonitrile	107-13-1	N.D.	0.052	1.3	52.08
11995	Benzene	71-43-2	0.043 J	0.033	0.33	52.08
11995	Bromodichloromethane	75-27-4	N.D.	0.026	0.33	52.08
11995	Bromoform	75-25-2	N.D.	0.33	0.66	52.08
11995	Bromomethane	74-83-9	N.D.	0.046	0.33	52.08
11995	2-Butanone	78-93-3	N.D.	0.13	0.66	52.08
11995	t-Butyl alcohol	75-65-0	N.D.	0.98	6.6	52.08
11995	n-Butylbenzene	104-51-8	N.D.	0.20	0.52	52.08
11995	sec-Butylbenzene	135-98-8	0.21 J	0.13	0.33	52.08
11995	tert-Butylbenzene	98-06-6	0.13 J	0.052	0.33	52.08
11995	Carbon Disulfide	75-15-0	0.050 J	0.039	0.33	52.08
11995	Carbon Tetrachloride	56-23-5	N.D.	0.033	0.33	52.08
11995	Chlorobenzene	108-90-7	N.D.	0.033	0.33	52.08
11995	Chloroethane	75-00-3	N.D.	0.066	0.33	52.08
11995	Chloroform	67-66-3	N.D.	0.039	0.33	52.08
11995	Chloromethane	74-87-3	N.D.	0.039	0.33	52.08
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.033	0.33	52.08
11995	Dibromochloromethane	124-48-1	N.D.	0.033	0.33	52.08
11995	1,2-Dibromoethane	106-93-4	N.D.	0.026	0.33	52.08
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.033	0.33	52.08
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.033	0.33	52.08
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.026	0.33	52.08
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.039	0.33	52.08
11995	1,1-Dichloroethane	75-34-3	N.D.	0.033	0.33	52.08
11995	1,2-Dichloroethane	107-06-2	N.D.	0.039	0.33	52.08
11995	1,1-Dichloroethene	75-35-4	N.D.	0.033	0.33	52.08
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.033	0.33	52.08
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.033	0.33	52.08
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.066	0.66	52.08
11995	1,2-Dichloropropane	78-87-5	N.D.	0.033	0.33	52.08
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.026	0.33	52.08
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.033	0.33	52.08
11995	1,4-Dioxane	123-91-1	N.D.	2.4	4.9	52.08
11995	Ethylbenzene	100-41-4	0.050 J	0.026	0.33	52.08
11995	Methyl Acetate	79-20-9	0.17 J	0.066	0.33	52.08
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.033	0.33	52.08
11995	Methylene Chloride	75-09-2	N.D.	0.13	0.33	52.08
11995	n-Propylbenzene	103-65-1	0.037 J	0.026	0.33	52.08
11995	Styrene	100-42-5	N.D.	0.026	0.33	52.08

^{*=}This limit was used in the evaluation of the final result

Dry Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13_15.5-17.5 Grab Soil

Project Name:

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:20 SDG#: CMS01-01

Langan Eng & Env Services 35 Commercial St. / 170229024 **ELLE Sample #:** SW 1310324 **ELLE Group #:** 2098617 35 Commercial Street/170229024 Matrix: Soil

Dry Method

CAT No.	Analysis Name		CAS Number	Dry Result		hod ection Limit*	Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles	SW-846 8260	С	mg/kg	mg/	'kg	mg/kg		
11995	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	0.02	26	0.33	52.08	
11995	Tetrachloroethene		127-18-4	N.D.	0.03	33	0.33	52.08	
11995	Toluene		108-88-3	0.090 J	0.03	39	0.33	52.08	
11995	1,1,1-Trichloroethane		71-55-6	N.D.	0.03	39	0.33	52.08	
11995	1,1,2-Trichloroethane		79-00-5	N.D.	0.03	33	0.33	52.08	
11995	Trichloroethene		79-01-6	N.D.	0.03	33	0.33	52.08	
11995	Trichlorofluoromethane		75-69-4	N.D.	0.04	16	0.33	52.08	
11995	1,2,4-Trimethylbenzene		95-63-6	0.12 J	0.03	33	0.33	52.08	
11995	1,3,5-Trimethylbenzene		108-67-8	0.056 J	0.03	33	0.33	52.08	
11995	Vinyl Chloride		75-01-4	N.D.	0.03	39	0.33	52.08	
11995	Xylene (Total)		1330-20-7	0.40 J	0.09	92	0.66	52.08	
Repoi	ting limits were raised due t	to interference fron	n the sample matr	ix.					
GC/MS	Semivolatiles	SW-846 8270	D	mg/kg	mg/	'kg	mg/kg		
10726	Acenaphthene		83-32-9	1.0	0.00)4	0.021	1	
10726	Acenaphthylene		208-96-8	0.27	0.00)4	0.021	1	
10726	Acetophenone		98-86-2	N.D.	0.02	21	0.063	1	
10726	Anthracene		120-12-7	1.1	0.00)4	0.021	1	
10726	Atrazine		1912-24-9	N.D.	0.25	5	0.54	1	
10726	Benzaldehyde		100-52-7	N.D.	0.08	33	0.21	1	
10726	Benzidine		92-87-5	N.D.	0.42	2	1.3	1	
10726	Benzo(a)anthracene		56-55-3	3.9	0.00	08	0.021	1	
10726	Benzo(a)pyrene		50-32-8	3.1	0.00)4	0.021	1	
10726	Benzo(b)fluoranthene		205-99-2	2.2	0.00)4	0.021	1	
10726	Benzo(g,h,i)perylene		191-24-2	3.3	0.00)4	0.021	1	
10726	Benzo(k)fluoranthene		207-08-9	0.60	0.00		0.021	1	
10726	1,1'-Biphenyl		92-52-4	0.15	0.02	21	0.046	1	
10726	Butylbenzylphthalate		85-68-7	N.D.	0.08	33	0.21	1	
10726	Di-n-butylphthalate		84-74-2	N.D.	0.08	33	0.21	1	
10726	Caprolactam		105-60-2	N.D.	0.04		0.21	1	
10726	Carbazole		86-74-8	0.45	0.02		0.046	1	
10726	bis(2-Chloroethyl)ether		111-44-4	N.D.	0.02		0.063	1	
10726	bis(2-Chloroisopropyl)ethe		39638-32-9	N.D.	0.02	25	0.054	1	
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.								
10726	2-Chloronaphthalene		91-58-7	N.D.	0.00)8	0.042	1	
10726	2-Chlorophenol		95-57-8	N.D.	0.02	21	0.046	1	
10726	Chrysene		218-01-9	3.6	0.00)4	0.021	1	
10726	Dibenz(a,h)anthracene		53-70-3	0.78	0.00	08	0.021	1	
10726	Dibenzofuran		132-64-9	0.40	0.02	21	0.046	1	
10726	1,2-Dichlorobenzene		95-50-1	N.D.	0.02	21	0.063	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13_15.5-17.5 Grab Soil

35 Commercial St. / 170229024

Langan Eng & Env Services
ELLE Sample #: SW 1310324
ELLE Group #: 2098617

Matrix: Soil

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:20 SDG#: CMS01-01

Project Name:

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles SW-846 827	'0D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.021	0.046	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.021	0.046	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.13	0.42	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.025	0.054	1			
10726	Diethylphthalate	84-66-2	N.D.	0.083	0.21	1			
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.038	0.083	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.083	0.21	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.29	0.63	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.42	1.3	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.083	0.21	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.029	0.063	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.029	0.063	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.025	0.054	1			
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.								
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.083	0.21	1			
10726	Fluoranthene	206-44-0	2.5	0.004	0.021	1			
10726	Fluorene	86-73-7	0.86	0.004	0.021	1			
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.021	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.046	0.096	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.25	0.63	1			
10726	Hexachloroethane	67-72-1	N.D.	0.042	0.21	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	1.4	0.004	0.021	1			
10726	Isophorone	78-59-1	N.D.	0.021	0.046	1			
10726	2-Methylnaphthalene	91-57-6	1.1	0.004	0.042	1			
10726	2-Methylphenol	95-48-7	N.D.	0.021	0.083	1			
10726	4-Methylphenol	106-44-5	0.19	0.021	0.063	1			
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The resu	ılt reported						
10726	Naphthalene	91-20-3	2.8	0.008	0.021	1			
10726	2-Nitroaniline	88-74-4	N.D.	0.021	0.063	1			
10726	Nitrobenzene	98-95-3	N.D.	0.033	0.083	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.083	0.21	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.029	0.063	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.021	0.046	1			
	N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.								
10726	Di-n-octylphthalate	117-84-0	N.D.	0.083	0.21	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.083	0.21	1			
10726	Phenanthrene	85-01-8	3.4	0.004	0.021	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Factor

Sample Description: LB13_15.5-17.5 Grab Soil

35 Commercial St. / 170229024

Langan Eng & Env Services
ELLE Sample #: SW 1310324
ELLE Group #: 2098617

Matrix: Soil

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:20

Project Name:

CAT No. Analysis Name CAS Number Pry Result Dry Method Detection Limit* Quantitation

GC/MS Semivolatiles SW-846 8270D mg/kg mg/kg mg/kg

10726 Phenol 108-95-2 N.D. 0.021 0.046

		014 040 00700	m a/ka	mallea	ma/ka	
GC/MS	S Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.021	0.046	1
10726	Pyrene	129-00-0	4.2	0.004	0.021	1
10726	Pyridine	110-86-1	N.D.	0.083	0.21	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.029	0.063	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.038	0.083	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.033	0.071	1
Wet C	hemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	20.5	0.50	0.50	1
	Moisture represents the	loss in weight of the sample after o	ven drving at			

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	R201311AA	05/10/2020 21:12	Joel Trout	52.08			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012756758	05/06/2020 23:28	Lois E Hiltz	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012756758	05/06/2020 23:28	Lois E Hiltz	1			
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012756758	05/06/2020 14:20	Client Supplied	1			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 02:02	William H Saadeh	1			
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20128SLA026	05/08/2020 00:58	Laura Duquette	1			
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20128820001B	05/07/2020 12:19	Stephanie A Sanchez	1			

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13_18-20 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:25 SDG#: CMS01-02

Langan Eng & Env Services
ELLE Sample #: SW 1310325
ELLE Group #: 2098617
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.064	0.007	0.023	0.87
11995	Acrolein	107-02-8	N.D.	0.006	0.12	0.87
11995	Acrylonitrile	107-13-1	N.D.	0.0009	0.023	0.87
11995	Benzene	71-43-2	N.D.	0.0006	0.006	0.87
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.006	0.87
11995	Bromoform	75-25-2	N.D.	0.006	0.012	0.87
11995	Bromomethane	74-83-9	N.D.	0.0008	0.006	0.87
11995	2-Butanone	78-93-3	0.004 J	0.002	0.012	0.87
11995	t-Butyl alcohol	75-65-0	0.034 J	0.017	0.12	0.87
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.009	0.87
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.006	0.87
11995	tert-Butylbenzene	98-06-6	N.D.	0.0009	0.006	0.87
11995	Carbon Disulfide	75-15-0	N.D.	0.0007	0.006	0.87
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0006	0.006	0.87
11995	Chlorobenzene	108-90-7	N.D.	0.0006	0.006	0.87
11995	Chloroethane	75-00-3	N.D.	0.001	0.006	0.87
11995	Chloroform	67-66-3	N.D.	0.0007	0.006	0.87
11995	Chloromethane	74-87-3	N.D.	0.0007	0.006	0.87
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0006	0.006	0.87
11995	Dibromochloromethane	124-48-1	N.D.	0.0006	0.006	0.87
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.006	0.87
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.006	0.87
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.006	0.87
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.006	0.87
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0007	0.006	0.87
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0006	0.006	0.87
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0007	0.006	0.87
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0006	0.006	0.87
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0006	0.006	0.87
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0006	0.006	0.87
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.012	0.87
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0006	0.006	0.87
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.006	0.87
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0006	0.006	0.87
11995	1,4-Dioxane	123-91-1	N.D.	0.043	0.087	0.87
11995	Ethylbenzene	100-41-4	N.D.	0.0005	0.006	0.87
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.006	0.87
11995	Methyl Tertiary Butyl Ether	1634-04-4	0.0007 J	0.0006	0.006	0.87
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.006	0.87
11995	n-Propylbenzene	103-65-1	N.D.	0.0005	0.006	0.87
11995	Styrene	100-42-5	N.D.	0.0005	0.006	0.87

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13_18-20 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:25 SDG#: CMS01-02

Langan Eng & Env Services
ELLE Sample #: SW 1310325
ELLE Group #: 2098617

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0005	0.006	0.87
11995	Tetrachloroethene	127-18-4	N.D.	0.0006	0.006	0.87
11995	Toluene	108-88-3	N.D.	0.0007	0.006	0.87
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0007	0.006	0.87
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0006	0.006	0.87
11995	Trichloroethene	79-01-6	N.D.	0.0006	0.006	0.87
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0008	0.006	0.87
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0006	0.006	0.87
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0006	0.006	0.87
11995	Vinyl Chloride	75-01-4	N.D.	0.0007	0.006	0.87
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.012	0.87
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	N.D.	0.004	0.022	1
10726	Acenaphthylene	208-96-8	N.D.	0.004	0.022	1
10726	Acetophenone	98-86-2	N.D.	0.022	0.066	1
10726	Anthracene	120-12-7	N.D.	0.004	0.022	1
10726	Atrazine	1912-24-9	N.D.	0.26	0.57	1
10726	Benzaldehyde	100-52-7	N.D.	0.088	0.22	1
10726	Benzidine	92-87-5	N.D.	0.44	1.3	1
10726	Benzo(a)anthracene	56-55-3	N.D.	0.009	0.022	1
10726	Benzo(a)pyrene	50-32-8	N.D.	0.004	0.022	1
10726	Benzo(b)fluoranthene	205-99-2	N.D.	0.004	0.022	1
10726	Benzo(g,h,i)perylene	191-24-2	N.D.	0.004	0.022	1
10726	Benzo(k)fluoranthene	207-08-9	N.D.	0.004	0.022	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.022	0.049	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.088	0.22	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.088	0.22	1
10726	Caprolactam	105-60-2	N.D.	0.044	0.22	1
10726	Carbazole	86-74-8	N.D.	0.022	0.049	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.031	0.066	1
10726	bis(2-Chloroisopropyl)ether	39638-32-9	N.D.	0.026	0.057	1
		r CAS #39638-32-9 and e) CAS #108-60-1 cannot be sepa reported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.009	0.044	1
10726	2-Chlorophenol	95-57-8	N.D.	0.022	0.049	1
10726	Chrysene	218-01-9	N.D.	0.004	0.022	1
10726	Dibenz(a,h)anthracene	53-70-3	N.D.	0.009	0.022	1
10726	Dibenzofuran	132-64-9	N.D.	0.022	0.049	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.022	0.066	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310325

2098617

Sample Description: LB13_18-20 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

SDG#: CMS01-02

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:25

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 82	270D	mg/kg	mg/kg	mg/kg	
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.022	0.049	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.022	0.049	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.13	0.44	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.026	0.057	1
10726	Diethylphthalate	84-66-2	N.D.	0.088	0.22	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.040	0.088	1
10726	Dimethylphthalate	131-11-3	N.D.	0.088	0.22	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.31	0.66	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.44	1.3	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.088	0.22	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.031	0.066	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.031	0.066	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.026	0.057	1
	Azobenzene cannot be distinguished fror reported for 1,2-diphenylhydrazine represompounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.088	0.22	1
10726	Fluoranthene	206-44-0	0.008 J	0.004	0.022	1
10726	Fluorene	86-73-7	N.D.	0.004	0.022	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.009	0.022	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.049	0.10	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.26	0.66	1
10726	Hexachloroethane	67-72-1	N.D.	0.044	0.22	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.004	0.022	1
10726	Isophorone	78-59-1	N.D.	0.022	0.049	1
10726	2-Methylnaphthalene	91-57-6	N.D.	0.004	0.044	1
10726	2-Methylphenol	95-48-7	N.D.	0.022	0.088	1
10726	4-Methylphenol	106-44-5	N.D.	0.022	0.066	1
	3-Methylphenol and 4-methylphenol canr chromatographic conditions used for sam for 4-methylphenol represents the combin	ple analysis. The res	ult reported			
10726	Naphthalene	91-20-3	N.D.	0.009	0.022	1
10726	2-Nitroaniline	88-74-4	N.D.	0.022	0.066	1
10726	Nitrobenzene	98-95-3	N.D.	0.035	0.088	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.088	0.22	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.031	0.066	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.022	0.049	1
	N-nitrosodiphenylamine decomposes in t diphenylamine. The result reported for N represents the combined total of both cor	l-nitrosodiphenylamin	e			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.088	0.22	1
10726	Pentachlorophenol	87-86-5	N.D.	0.088	0.22	1
10726	Phenanthrene	85-01-8	0.008 J	0.004	0.022	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310325

2098617

Sample Description: LB13_18-20 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 14:25

SDG#: CMS01-02

CAT No.	Analysis Name	CAS Nun	Dry nber Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.022	0.049	1
10726	Pyrene	129-00-0	0.008 J	0.004	0.022	1
10726	Pyridine	110-86-1	N.D.	0.088	0.22	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.031	0.066	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.040	0.088	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.035	0.075	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	25.2	0.50	0.50	1
		oss in weight of the sample af s. The moisture result reporte				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201281AA	05/07/2020 21:17	Joel Trout	0.87			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012756758	05/06/2020 23:28	Lois E Hiltz	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012756758	05/06/2020 23:28	Lois E Hiltz	1			
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012756758	05/06/2020 14:25	Client Supplied	1			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 02:25	William H Saadeh	1			
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20128SLA026	05/08/2020 00:58	Laura Duquette	1			
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20128820001B	05/07/2020 12:19	Stephanie A Sanchez	1			

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1310326

2098617

Sample Description: LB17_1-3 TCLP NVE Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 12:45

SDG#: CMS01-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	8.00	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201321404501	05/11/2020 16:09	Elaine F Stoltzfus	1				
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201321404501	05/11/2020 16:09	Elaine F Stoltzfus	1				
00259	Mercury	SW-846 7470A	1	201330571301	05/12/2020 14:04	Damary Valentin	1				
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201321404501	05/11/2020 06:10	Annamaria Kuhns	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201320571302	05/11/2020 07:20	Annamaria Kuhns	1				
05713	WW SW846 Hg Digest	SW-846 7470A	2	201330571301	05/12/2020 04:24	James L Mertz	1				
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20128-16818-947B	05/07/2020 14:18	Brian Reed	n.a.				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1310327

2098617

Sample Description: LB17_6-8 TCLP NVE Grab Soil

35 Commercial St. / 170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15

SDG#: CMS01-04

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	0.0673	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201321404501	05/11/2020 16:43	Elaine F Stoltzfus	1		
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201321404501	05/11/2020 16:43	Elaine F Stoltzfus	1		
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:19	Damary Valentin	1		
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201321404501	05/11/2020 06:10	Annamaria Kuhns	1		
05713	WW SW846 Hg Digest	SW-846 7470A	1	201320571302	05/11/2020 07:20	Annamaria Kuhns	1		
05713	WW SW846 Hg Digest	SW-846 7470A	2	201330571301	05/12/2020 04:24	James L Mertz	1		
05713	WW SW846 Hg Digest	SW-846 7470A	3	201550571305	06/03/2020 17:35	JoElla L Rice	1		
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20128-16818-947B	05/07/2020 14:18	Brian Reed	n.a.		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

Project Name:

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

ELLE Sample #: SW 1310328 **ELLE Group #:** 2098617 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	46 8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.041	0.006	0.019	0.87
11995	Acrolein	107-02-8	N.D.	0.005	0.094	0.87
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.019	0.87
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.87
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.87
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.87
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.87
11995	2-Butanone	78-93-3	0.003 J	0.002	0.009	0.87
11995	t-Butyl alcohol	75-65-0	N.D.	0.014	0.094	0.87
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.87
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.87
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.87
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.87
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.87
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.87
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.87
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.87
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.87
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.87
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.87
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.87
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.87
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.87
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.87
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.87
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.87
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.87
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.87
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.87
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.87
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0009	0.009	0.87
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.87
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.87
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.87
11995	1,4-Dioxane	123-91-1	N.D.	0.035	0.071	0.87
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.87
11995	Methyl Acetate	79-20-9	N.D.	0.0009	0.005	0.87
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.87
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.87
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.87
	. 1 7	100-42-5	N.D.	0.0004	0.005	0.87

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_3-5 Grab Soil

Project Name:

Submittal Date/Time: Collection Date/Time: SDG#:

Langan Eng & Env Services 35 Commercial St. / 170229024 ELLE Sample #: SW 1310328 **ELLE Group #:** 2098617

35 Commercial Street/170229024 Matrix: Soil 05/06/2020 21:30 05/06/2020 13:15 CMS01-05 Dry Method Dry Limit of

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260	С	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	0.0004	0.005	0.87
11995	Tetrachloroethene		127-18-4	N.D.	0.0005	0.005	0.87
11995	Toluene		108-88-3	N.D.	0.0006	0.005	0.87
11995	1,1,1-Trichloroethane		71-55-6	N.D.	0.0006	0.005	0.87
11995	1,1,2-Trichloroethane		79-00-5	N.D.	0.0005	0.005	0.87
11995	Trichloroethene		79-01-6	N.D.	0.0005	0.005	0.87
11995	Trichlorofluoromethane		75-69-4	N.D.	0.0007	0.005	0.87
11995	1,2,4-Trimethylbenzene		95-63-6	N.D.	0.0005	0.005	0.87
11995	1,3,5-Trimethylbenzene		108-67-8	N.D.	0.0005	0.005	0.87
11995	Vinyl Chloride		75-01-4	N.D.	0.0006	0.005	0.87
11995	Xylene (Total)		1330-20-7	N.D.	0.001	0.009	0.87
GC/MS	Semivolatiles	SW-846 8270	D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene		83-32-9	0.34	0.004	0.018	1
10726	Acenaphthylene		208-96-8	0.11	0.004	0.018	1
10726	Acetophenone		98-86-2	N.D.	0.018	0.054	1
10726	Anthracene		120-12-7	0.55	0.004	0.018	1
10726	Atrazine		1912-24-9	N.D.	0.22	0.47	1
10726	Benzaldehyde		100-52-7	N.D.	0.072	0.18	1
10726	Benzidine		92-87-5	N.D.	0.36	1.1	1
10726	Benzo(a)anthracene		56-55-3	1.4	0.007	0.018	1
10726	Benzo(a)pyrene		50-32-8	1.2	0.004	0.018	1
10726	Benzo(b)fluoranthene		205-99-2	1.6	0.004	0.018	1
10726	Benzo(g,h,i)perylene		191-24-2	0.77	0.004	0.018	1
10726	Benzo(k)fluoranthene		207-08-9	0.54	0.004	0.018	1
10726	1,1'-Biphenyl		92-52-4	0.058	0.018	0.039	1
10726	Butylbenzylphthalate		85-68-7	N.D.	0.072	0.18	1
10726	Di-n-butylphthalate		84-74-2	N.D.	0.072	0.18	1
10726	Caprolactam		105-60-2	N.D.	0.036	0.18	1
10726	Carbazole		86-74-8	0.25	0.018	0.039	1
10726	bis(2-Chloroethyl)ether		111-44-4	N.D.	0.025	0.054	1
10726	bis(2-Chloroisopropyl)ethe	er ¹	39638-32-9	N.D.	0.022	0.047	1
	Bis(2-chloroisopropyl) ethe 2,2'-Oxybis(1-chloropropa chromatographically. The total of both compounds.	ne) CAS #108-60-1	cannot be sepai				
10726	2-Chloronaphthalene		91-58-7	N.D.	0.007	0.036	1
10726	2-Chlorophenol		95-57-8	N.D.	0.018	0.039	1
10726	Chrysene		218-01-9	1.4	0.004	0.018	1
10726	Dibenz(a,h)anthracene		53-70-3	0.23	0.007	0.018	1
10726	Dibenzofuran		132-64-9	0.32	0.018	0.039	1
10726	1,2-Dichlorobenzene		95-50-1	N.D.	0.018	0.054	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310328

2098617

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

Submittal Date/Time: Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

ELLE Group #: Project Name: 35 Commercial Street/170229024 Matrix: Soil 05/06/2020 21:30

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	70D	mg/kg	mg/kg	mg/kg	
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.018	0.039	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.018	0.039	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.36	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.022	0.047	1
10726	Diethylphthalate	84-66-2	N.D.	0.072	0.18	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.032	0.072	1
10726	Dimethylphthalate	131-11-3	N.D.	0.072	0.18	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.25	0.54	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.36	1.1	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.072	0.18	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.025	0.054	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.025	0.054	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.022	0.047	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.		al of both			
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.072	0.18	1
10726	Fluoranthene	206-44-0	3.1	0.004	0.018	1
10726	Fluorene	86-73-7	0.48	0.004	0.018	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.007	0.018	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.039	0.083	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.22	0.54	1
10726	Hexachloroethane	67-72-1	N.D.	0.036	0.18	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.68	0.004	0.018	1
10726	Isophorone	78-59-1	N.D.	0.018	0.039	1
10726	2-Methylnaphthalene	91-57-6	0.18	0.004	0.036	1
10726	2-Methylphenol	95-48-7	N.D.	0.018	0.072	1
10726	4-Methylphenol	106-44-5	N.D.	0.018	0.054	1
	3-Methylphenol and 4-methylphenol cannot chromatographic conditions used for samp for 4-methylphenol represents the combine	ole analysis. The res	ult reported			
10726	Naphthalene	91-20-3	0.20	0.007	0.018	1
10726	2-Nitroaniline	88-74-4	N.D.	0.018	0.054	1
10726	Nitrobenzene	98-95-3	N.D.	0.029	0.072	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.072	0.18	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.025	0.054	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.018	0.039	1
	N-nitrosodiphenylamine decomposes in th diphenylamine. The result reported for N- represents the combined total of both com	nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.072	0.18	1
10726	Pentachlorophenol	87-86-5	N.D.	0.072	0.18	1
10726	Phenanthrene	85-01-8	2.7	0.004	0.018	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

Dry Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310328

2098617

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

Project Name:

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

ELLE Group #: 35 Commercial Street/170229024 Matrix: Soil

Dry Method

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	S Semivolatiles	SW-846 8270)D	mg/kg	mg/kg	mg/kg	
10726	Phenol		108-95-2	N.D.	0.018	0.039	1
10726	Pyrene		129-00-0	2.6	0.004	0.018	1
10726	Pyridine		110-86-1	N.D.	0.072	0.18	1
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.025	0.054	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.	0.032	0.072	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.	0.029	0.061	1
GC/MS	S Semivolatiles	SW-846 8270	DD SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane		123-91-1	N.D.	7	18	10
Repo	orting limits were raised due	to interference from	m the sample matr	ix.			
Herbic	ides	SW-846 8151	1 A	mg/kg	mg/kg	mg/kg	
10401	2,4-D		94-75-7	N.D. D1	0.013	0.039	1
10401	2,4,5-T		93-76-5	N.D. D1	0.00088	0.0018	1
10401	2,4,5-TP		93-72-1	N.D. D1	0.00081	0.0018	1
Spike Sumr	recovery for a target analyte e(s) is outside the QC accept mary. Since the recovery is not detected in the sample,	otance limits as not s high and the targe	ed on the QC et analyte(s)				
PCBs		SW-846 8082	2A Feb 2007	mg/kg	mg/kg	mg/kg	
	202 4040	Rev 1		W.D. D.			
10885	PCB-1016		12674-11-2	N.D. D1	0.0039	0.018	1
10885	PCB-1221		11104-28-2	N.D. D1	0.0050	0.018	1
10885	PCB-1232		11141-16-5	N.D. D1	0.0086	0.018	1
10885	PCB-1242		53469-21-9	N.D. D1	0.0036	0.018	1
10885	PCB-1248		12672-29-6	N.D. D1	0.0036	0.018	1
10885	PCB-1254		11097-69-1	N.D. D1	0.0036	0.018	1
10885	PCB-1260		11096-82-5	N.D. D1	0.0053	0.018	1
10885	Total PCBs ¹		1336-36-3	N.D.	0.0036	0.018	1
Pestici	ides	SW-846 8081	1B	mg/kg	mg/kg	mg/kg	
10590	Aldrin		309-00-2	N.D. D2	0.0020	0.0020	1
10590	Alpha BHC		319-84-6	0.00027 JPD1	0.00018	0.00090	1
10590	Beta BHC		319-85-7	0.00057 JPD1	0.00047	0.0016	1
10590	Gamma BHC - Lindane		58-89-9	N.D. D2	0.00023	0.00090	1
10590	Alpha Chlordane		5103-71-9	N.D. VD1	0.00089	0.00090	1
10590	4,4'-Ddd		72-54-8	N.D. D1	0.00036	0.0022	1
10590	4,4'-Dde		72-55-9	0.00067 JPD2	0.00036	0.0022	1
10590	4,4'-Ddt		50-29-3	0.0019 JD2	0.00085	0.0022	1
10590	Delta BHC		319-86-8	N.D. D2	0.00049	0.0016	1
10590	Dieldrin		60-57-1	N.D. D2	0.00036	0.0022	1
10590	Endosulfan I		959-98-8	N.D. VD2	0.00027	0.00090	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_3-5 Grab Soil

Project Name:

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

Langan Eng & Env Services 35 Commercial St. / 170229024 ELLE Sample #: SW 1310328 **ELLE Group #:** 2098617 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Resul	t	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des SW-846	8081B	mg/kg	J	mg/kg	mg/kg	
10590	Endosulfan II	33213-65-9	N.D.	D2	0.0012	0.0022	1
10590	Endosulfan Sulfate	1031-07-8	N.D.	D1	0.00036	0.0022	1
10590	Endrin	72-20-8	N.D.	D1	0.00073	0.0022	1
10590	Heptachlor	76-44-8	N.D.	D1	0.00033	0.00090	1
	urrogate data is outside the QC limits du c problems evident in the sample chroma						
LC/MS	/MS Miscellaneous EPA 537	Version 1.1	ng/g		ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid ¹	- 27619-97-2	N.D.		0.64	2.1	1
14027	8:2-Fluorotelomersulfonic acid ¹	39108-34-4	N.D.		0.64	3.2	1
14027	NEtFOSAA1	2991-50-6	N.D.		0.21	2.1	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfonar	nidoaceti	c Acid.			
14027	NMeFOSAA ¹	2355-31-9	N.D.		0.21	2.1	1
	NMeFOSAA is the acronym for N-meth	nyl perfluorooctanesulfo	namidoad	etic Acid.			
14027	Perfluorobutanesulfonic acid¹	375-73-5	N.D.		0.43	2.1	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.		0.86	2.1	1
14027	Perfluorodecanesulfonic acid ¹	335-77-3	N.D.		0.21	0.64	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.		0.21	0.64	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.		0.21	0.64	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.		0.21	0.64	1
14027	Perfluoroheptanoic acid ¹	375-85-9	N.D.		0.21	0.64	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.		0.21	0.64	1
14027	Perfluorohexanoic acid ¹	307-24-4	N.D.		0.21	0.64	1
14027	Perfluorononanoic acid1	375-95-1	N.D.		0.21	0.64	1
14027	Perfluorooctanesulfonamide ¹	754-91-6	N.D.		0.21	0.64	1
14027	Perfluorooctanesulfonic acid ¹	1763-23-1	N.D.		0.21	0.64	1
14027	Perfluorooctanoic acid¹	335-67-1	N.D.		0.21	0.64	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.		0.21	0.64	1
14027	Perfluorotetradecanoic acid¹	376-06-7	N.D.		0.21	0.64	1
14027	Perfluorotridecanoic acid¹	72629-94-8	N.D.		0.21	0.64	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.		0.21	0.64	1
Metals	SW-846 6020B Rev.2, July 2014		, mg/kg	1	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	15.7		0.0966	0.289	2
06126	Barium	7440-39-3	86.2		0.661	1.44	10
06127	Beryllium	7440-41-7	0.824		0.0172	0.0433	2
06128	Cadmium	7440-43-9	0.792		0.0364	0.0722	2
06131	Chromium	7440-47-3	10.4		0.111	0.289	2
02829	Trivalent Chromium soils1	16065-83-1	10.4		0.15	0.46	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310328

2098617

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30

Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
	The Trivalent Chromium re Chromium from Total Chro	esult is calculated by subtracting Hexomium.	avalent			
06133	Copper	7440-50-8	164	0.634	1.44	10
06135	Lead	7439-92-1	278	0.182	0.722	10
06137	Manganese	7439-96-5	229	0.773	1.44	10
06139	Nickel	7440-02-0	23.5	0.118	0.289	2
06141	Selenium	7782-49-2	1.25	0.0942	0.289	2
06142	Silver	7440-22-4	0.165	0.0293	0.0722	2
06149	Zinc	7440-66-6	312	1.94	7.22	10
	SW-846 7471B		mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	1.20	0.0782	0.344	5
Wet Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	0.22 J	0.20	0.55	1
		SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	OLIDS) 18540-29-9	N.D.	0.15	0.46	1
Trot Orioninotry		SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	7.7	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310328

2098617

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15 SDG#: CMS01-05

Matrix: Soil

ELLE Sample #:

ELLE Group #:

No. 11995 N 06176 C 06176 C	Analysis Name	Method					Laboratory Sample Analysis Record											
11995 N 06176 C 06176 C			Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor											
06176	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201281AA	05/07/2020 21:39	Joel Trout	0.87											
	GC/MS - LL Water Prep	SW-846 5035A	1	202012756758	05/06/2020 23:28	Lois E Hiltz	1											
07570 (GC/MS - LL Water Prep	SW-846 5035A	2	202012756758	05/06/2020 23:28	Lois E Hiltz	1											
	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012756758	05/06/2020 13:15	Client Supplied	1											
	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 02:48	William H Saadeh	1											
12969 1	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 08:39	Joseph M Gambler	10											
10813 E	BNA Soil Microwave APP IX	SW-846 3546	1	20128SLA026	05/08/2020 00:58	Laura Duquette	1											
10811 E	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1											
	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201280015A	05/11/2020 13:08	Lisa A Reinert	1											
10885 7	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201320002A	05/12/2020 08:19	Covenant Mutuku	1											
10590 N	NY Part 375 Pests Soil	SW-846 8081B	1	201280010A	05/08/2020 14:00	Lisa A Reinert	1											
10497 F	PCB Microwave Soil Extraction	SW-846 3546	2	201320002A	05/11/2020 17:00	Scott Crawford	1											
10496 F	PPL Pest. Microwave Extraction	SW-846 3546	1	201280010A	05/08/2020 00:58	Laura Duquette	1											
04181 H	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201280015A	05/07/2020 23:10	Sherry L Morrow	1											
14027 N	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20128007	05/08/2020 02:57	Jason W Knight	1											
14090 F	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20128007	05/07/2020 08:00	Katherine Mora	1											
06125 A	Arsenic	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 08:58	Janeyah Rivers-Hamilton	2											
06126 E	Barium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:23	Patrick J Engle	10											
06127 E	Beryllium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:21	Patrick J Engle	2											
06128 (Cadmium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:21	Patrick J Engle	2											
06131 (Chromium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 08:58	Janeyah Rivers-Hamilton	2											
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201330282901	05/12/2020 16:05	Elizabeth Saarinen	1											
06133 (Copper	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:23	Patrick J Engle	10											
06135 L	Lead	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 14:00	Janeyah Rivers-Hamilton	10											
06137 N	Manganese	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:23	Patrick J Engle	10											
06139 N	Nickel	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 13:57	Janeyah Rivers-Hamilton	2											
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:21	Patrick J Engle	2											
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:21	Patrick J Engle	2											
06149 2	Zinc	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:23	Patrick J Engle	10											

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_3-5 Grab Soil

35 Commercial St. / 170229024

SW-846 7196A

SW-846 3060A

SM 2540 G-2011

%Moisture Calc

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15

SDG#: CMS01-05

ICP/ICPMS-SW, 3050B - U345

Hexavalent Chromium (SOLIDS)

Analysis Name

Hg - SW, 7471B - U4

Total Cyanide (solid)

Cyanide Solid Distillation

Hexavalent Cr (Extraction)

Mercury

Moisture

CAT

No.

00159

14049

10638

05895

05896

00425

07825

00111

Dilution Factor

5

1

1

1

1

Langan Eng & Env Services **ELLE Sample #:** SW 1310328 **ELLE Group #:** 2098617

Matrix: Soil

Daniel S Smith

Reece Himmelreich

Stephanie A Sanchez

Laboratory Sample Analysis Record										
Method	Trial# Batch#		Analysis Date and Time	Analyst						
SW-846 7471B	1	201281063801	05/07/2020 09:44	Damary Valentin						
SW-846 3050B	1	201281404901	05/07/2020 05:40	Annamaria Kuhns						
SW-846 7471B	1	201281063801	05/07/2020 06:40	Annamaria Kuhns						
SW-846 9012B	1	20128102201A	05/07/2020 20:06	Gregory Baldree						
SW-846 9012B	1	20128102201A	05/07/2020 18:00	Barbara A Washington						

05/07/2020 21:35

05/07/2020 08:13

05/07/2020 12:19

Laboratory Cample Analysis Books

20128042501A

20128042501A

20128820001B

*=This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-06

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 82	60C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.066	0.006	0.019	0.88
11995	Acrolein	107-02-8	N.D.	0.005	0.096	0.88
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.019	0.88
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.88
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.88
11995	Bromoform	75-25-2	N.D.	0.005	0.01	0.88
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.88
11995	2-Butanone	78-93-3	0.003 J	0.002	0.01	0.88
11995	t-Butyl alcohol	75-65-0	0.015 J	0.014	0.096	0.88
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.88
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.88
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.88
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.88
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.88
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.88
11995	Chloroethane	75-00-3	N.D.	0.001	0.005	0.88
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.88
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.88
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.88
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.88
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.88
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.88
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.88
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.88
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.88
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.88
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.88
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.88
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.88
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.88
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.01	0.88
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.88
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.88
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.88
11995	1,4-Dioxane	123-91-1	N.D.	0.035	0.072	0.88
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.88
11995	Methyl Acetate	79-20-9	0.001 J	0.001	0.005	0.88
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.88
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.88
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.88
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.88

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-06

Project Name:

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617

Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Result		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 826	0C	mg/kg		mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane		79-34-5	N.D.		0.0004	0.005	0.88
11995	Tetrachloroethene		127-18-4	N.D.		0.0005	0.005	0.88
11995	Toluene		108-88-3	N.D.		0.0006	0.005	0.88
11995	1,1,1-Trichloroethane		71-55-6	N.D.		0.0006	0.005	0.88
11995	1,1,2-Trichloroethane		79-00-5	N.D.		0.0005	0.005	0.88
11995	Trichloroethene		79-01-6	N.D.		0.0005	0.005	0.88
11995	Trichlorofluoromethane		75-69-4	N.D.		0.0007	0.005	0.88
11995	1,2,4-Trimethylbenzene		95-63-6	N.D.		0.0005	0.005	0.88
11995	1,3,5-Trimethylbenzene		108-67-8	N.D.		0.0005	0.005	0.88
11995	Vinyl Chloride		75-01-4	N.D.		0.0006	0.005	0.88
11995	Xylene (Total)		1330-20-7	N.D.		0.001	0.01	0.88
GC/MS	Semivolatiles	SW-846 827	0D	mg/kg		mg/kg	mg/kg	
10726	Acenaphthene		83-32-9	17		0.036	0.18	10
10726	Acenaphthylene		208-96-8	2.8		0.004	0.018	1
10726	Acetophenone		98-86-2	N.D.		0.018	0.054	1
10726	Anthracene		120-12-7	24		0.036	0.18	10
10726	Atrazine		1912-24-9	N.D.		0.21	0.46	1
10726	Benzaldehyde		100-52-7	N.D.		0.071	0.18	1
10726	Benzidine		92-87-5	N.D.		0.36	1.1	1
10726	Benzo(a)anthracene		56-55-3	25		0.071	0.18	10
10726	Benzo(a)pyrene		50-32-8	14		0.036	0.18	10
10726	Benzo(b)fluoranthene		205-99-2	20		0.036	0.18	10
10726	Benzo(g,h,i)perylene		191-24-2	5.5		0.036	0.18	10
10726	Benzo(k)fluoranthene		207-08-9	8.3		0.036	0.18	10
10726	1,1'-Biphenyl		92-52-4	0.48		0.018	0.039	1
10726	Butylbenzylphthalate		85-68-7	N.D.		0.071	0.18	1
10726	Di-n-butylphthalate		84-74-2	N.D.		0.071	0.18	1
10726	Caprolactam		105-60-2	N.D.		0.036	0.18	1
10726	Carbazole		86-74-8	3.9		0.018	0.039	1
10726	bis(2-Chloroethyl)ether		111-44-4	N.D.		0.025	0.054	1
10726	bis(2-Chloroisopropyl)ether	r ¹	39638-32-9	N.D.		0.021	0.046	1
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.							
10726	2-Chloronaphthalene		91-58-7	N.D.		0.007	0.036	1
10726	2-Chlorophenol		95-57-8	N.D.		0.018	0.039	1
10726	Chrysene		218-01-9	22		0.036	0.18	10
10726	Dibenz(a,h)anthracene		53-70-3	2.1		0.007	0.018	1
10726	Dibenzofuran		132-64-9	9.5		0.18	0.39	10
10726	1,2-Dichlorobenzene		95-50-1	N.D.		0.018	0.054	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310329

2098617

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170
Submittal Date/Time: 05/06/2020 21:30

Collection Date/Time: 05/06/2020 SDG#: 05/06/2020

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.018	0.039	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.018	0.039	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.36	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.021	0.046	1			
10726	Diethylphthalate	84-66-2	N.D.	0.071	0.18	1			
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.032	0.071	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.071	0.18	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.25	0.54	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.36	1.1	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.071	0.18	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.025	0.054	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.025	0.054	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.021	0.046	1			
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.								
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.071	0.18	1			
10726	Fluoranthene	206-44-0	71	0.36	1.8	100			
10726	Fluorene	86-73-7	26	0.036	0.18	10			
10726	Hexachlorobenzene	118-74-1	N.D.	0.007	0.018	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.039	0.082	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.21	0.54	1			
10726	Hexachloroethane	67-72-1	N.D.	0.036	0.18	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	5.5	0.036	0.18	10			
10726	Isophorone	78-59-1	N.D.	0.018	0.039	1			
10726	2-Methylnaphthalene	91-57-6	5.3	0.036	0.36	10			
10726	2-Methylphenol	95-48-7	N.D.	0.018	0.071	1			
10726	4-Methylphenol	106-44-5	0.033 J	0.018	0.054	1			
	3-Methylphenol and 4-methylphenol ca chromatographic conditions used for so for 4-methylphenol represents the com	ample analysis. The res	ult reported						
10726	Naphthalene	91-20-3	0.68	0.007	0.018	1			
10726	2-Nitroaniline	88-74-4	N.D.	0.018	0.054	1			
10726	Nitrobenzene	98-95-3	N.D.	0.029	0.071	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.071	0.18	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.025	0.054	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.018	0.039	1			
	N-nitrosodiphenylamine decomposes i diphenylamine. The result reported for represents the combined total of both of	r N-nitrosodiphenylamin	e						
10726	Di-n-octylphthalate	117-84-0	N.D.	0.071	0.18	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.071	0.18	1			
10726	Phenanthrene	85-01-8	92	0.36	1.8	100			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-06

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617
Matrix: Soil

SDG#:	CI	MS01-06				
CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.018	0.039	1
10726	Pyrene	129-00-0	50	0.36	1.8	100
10726	Pyridine	110-86-1	N.D.	0.071	0.18	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.025	0.054	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.032	0.071	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.029	0.061	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	7	18	10
Repo	rting limits were raised due	e to interference from the sample matr	ix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.013	0.039	1
10401	2,4,5-T	93-76-5	N.D. D2	0.00089	0.0018	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.00081	0.0018	1
Spike Sumr	(s) is outside the QC acce	e(s) in the Laboratory Control ptance limits as noted on the QC s high and the target analyte(s) the data is reported.				
PCR _s		SW-846 80824 Feb 2007	mg/kg	ma/ka	mg/kg	

PCBs		SW-846 8082A Feb 2007 Rev 1	mg/kg	mg/kg	mg/kg	
10885	PCB-1016	12674-11-2	N.D. D1	0.0039	0.018	1
10885	PCB-1221	11104-28-2	N.D. D1	0.0050	0.018	1
10885	PCB-1232	11141-16-5	N.D. D1	0.0086	0.018	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0036	0.018	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0036	0.018	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0036	0.018	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0053	0.018	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0036	0.018	1
Pesticides		SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	0.00025 JPD1	0.00018	0.00090	1
10590	Alpha BHC	319-84-6	N.D. D1	0.00018	0.00090	1
10590	Beta BHC	319-85-7	N.D. D2	0.00047	0.0016	1
10590	Gamma BHC - Lindane	58-89-9	0.0078 D2	0.0011	0.0045	5
10590	Alpha Chlordane	5103-71-9	N.D. D2	0.00018	0.00090	1
10590	4,4'-Ddd	72-54-8	N.D. D2	0.00036	0.0022	1
10590	4,4'-Dde	72-55-9	0.00044 JD1	0.00036	0.0022	1
10590	4,4'-Ddt	50-29-3	0.0013 JD2	0.00085	0.0022	1
10590	Delta BHC	319-86-8	N.D. D2	0.00049	0.0016	1
10590	Dieldrin	60-57-1	N.D. D2	0.00036	0.0022	1
10590	Endosulfan I	959-98-8	N.D. D2	0.00024	0.00090	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-06

Project Name:

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des SW-846 808	1B	mg/kg		mg/kg	mg/kg	
10590	Endosulfan II	33213-65-9	N.D.	D1	0.0012	0.0022	1
10590	Endosulfan Sulfate	1031-07-8	N.D.	D1	0.00036	0.0022	1
10590	Endrin	72-20-8	N.D.	D1	0.00073	0.0022	1
10590	Heptachlor	76-44-8	N.D.	D2	0.00033	0.00090	1
LC/MS/	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/g		ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid ¹	27619-97-2	N.D.		0.63	2.1	1
14027	8:2-Fluorotelomersulfonic acid ¹	39108-34-4	N.D.		0.63	3.1	1
14027	NEtFOSAA1	2991-50-6	N.D.		0.21	2.1	1
02.	NEtFOSAA is the acronym for N-ethyl perf			: Acid.	0.2.		•
14027	NMeFOSAA ¹	2355-31-9	N.D.		0.21	2.1	1
14021	NMeFOSAA is the acronym for N-methyl p			etic Acid.	0.21	2.1	,
14027	Perfluorobutanesulfonic acid¹	375-73-5	N.D.		0.42	2.1	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.		0.83	2.1	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.		0.21	0.63	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.		0.21	0.63	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.		0.21	0.63	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.		0.21	0.63	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.		0.21	0.63	1
14027	Perfluorohexanesulfonic acid ¹	355-46-4	N.D.		0.21	0.63	1
14027	Perfluorohexanoic acid ¹	307-24-4	N.D.		0.21	0.63	1
14027	Perfluorononanoic acid1	375-95-1	N.D.		0.21	0.63	1
14027	Perfluorooctanesulfonamide ¹	754-91-6	N.D.		0.21	0.63	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.		0.21	0.63	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.		0.21	0.63	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.		0.21	0.63	1
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.		0.21	0.63	1
14027	Perfluorotridecanoic acid ¹	72629-94-8	N.D.		0.21	0.63	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.		0.21	0.63	1
Metals	SW-846 602 2014	0B Rev.2, July	mg/kg		mg/kg	mg/kg	
06125	Arsenic	7440-38-2	7.18		0.130	0.387	2
06126	Barium	7440-39-3	156		0.886	1.94	10
06127	Beryllium	7440-41-7	0.339		0.0230	0.0581	2
06128	Cadmium	7440-43-9	0.379		0.0488	0.0968	2
06131	Chromium	7440-47-3	14.8		0.149	0.387	2
02829	Trivalent Chromium soils1	16065-83-1	14.8		0.15	0.46	1
	The Trivalent Chromium result is calculated Chromium from Total Chromium.	d by subtracting Hexa	avalent				
06133	Copper	7440-50-8	124		0.850	1.94	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617

Matrix: Soil

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 SDG#: 05/06/2020 CMS01-06

Project Name:

CAT No.	Analysis Name	(CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020E 2014	3 Rev.2, July	mg/kg	mg/kg	mg/kg	
06135	Lead	7	7439-92-1	211	0.244	0.968	10
06137	Manganese	Ī	7439-96-5	152	1.04	1.94	10
06139	Nickel	7	7440-02-0	16.4	0.158	0.387	2
06141	Selenium	7	7782-49-2	0.496	0.126	0.387	2
06142	Silver	7	7440-22-4	0.447	0.0393	0.0968	2
06149	Zinc	7	7440-66-6	230	2.60	9.68	10
		SW-846 7471E	3	mg/kg	mg/kg	mg/kg	
00159	Mercury	7	7439-97-6	1.57	0.0771	0.339	5
Wet Ch	emistry	SW-846 9012E	3	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	ŧ	57-12-5	N.D.	0.20	0.56	1
		SW-846 7196	4	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	OLIDS)	18540-29-9	N.D.	0.15	0.46	1
Wet Ch	nemistry	SM 2540 G-20 %Moisture Ca		%	%	%	
00111	Moisture ¹	r	n.a.	7.8	0.50	0.50	1
	Moisture represents the lo 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201281AA	05/07/2020 22:02	Joel Trout	0.88		
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	202012856759	05/07/2020 11:14	Essence Orden-Slocum	n.a.		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012756758	05/06/2020 23:28	Lois E Hiltz	1		

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SODUP01_050620 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-06

Langan Eng & Env Services
ELLE Sample #: SW 1310329
ELLE Group #: 2098617

Matrix: Soil

		Labor	atory S	Sample Analysis	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor							
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012756758	05/06/2020 23:28	Lois E Hiltz	1							
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 03:12	William H Saadeh	1							
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 19:04	William H Saadeh	10							
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20128SLA026	05/11/2020 19:27	William H Saadeh	100							
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 09:10	Joseph M Gambler	10							
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20128SLA026	05/08/2020 00:58	Laura Duguette	1							
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1							
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201280015A	05/11/2020 13:42	Lisa A Reinert	1							
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201280011A	05/08/2020 10:44	Covenant Mutuku	1							
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201280010A	05/08/2020 14:11	Lisa A Reinert	1							
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201280010A	05/12/2020 01:27	Lisa A Reinert	5							
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201280011A	05/08/2020 00:58	Laura Duquette	1							
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201280010A	05/08/2020 00:58	Laura Duquette	1							
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201280015A	05/07/2020 23:10	Sherry L Morrow	1							
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20128007	05/08/2020 03:24	Jason W Knight	1							
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20128007	05/07/2020 08:00	Katherine Mora	1							
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 08:44	Janeyah Rivers-Hamilton	2							
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:01	Patrick J Engle	10							
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 19:47	Patrick J Engle	2							
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 13:43	Janeyah Rivers-Hamilton	2							
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 08:44	Janeyah Rivers-Hamilton	2							
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201330282901	05/12/2020 16:06	Elizabeth Saarinen	1							
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:01	Patrick J Engle	10							
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:01	Patrick J Engle	10							
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:01	Patrick J Engle	10							
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/12/2020 13:43	Janeyah Rivers-Hamilton	2							
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 19:47	Patrick J Engle	2							
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 19:47	Patrick J Engle	2							
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201281404901A	05/07/2020 20:01	Patrick J Engle	10							

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SODUP01_050620 Grab Soil Sample Description:

35 Commercial St. / 170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30

Collection Date/Time: 05/06/2020 SDG#: CMS01-06

Project Name:

REVISED

Langan Eng & Env Services ELLE Sample #: SW 1310329 **ELLE Group #:** 2098617

Matrix: Soil

Laboratory	Sample	Analy	sis Reco	rd
------------	--------	-------	----------	----

	Laboratory Gample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
00159	Mercury	SW-846 7471B	1	201281063801	05/07/2020 09:17	Damary Valentin	5	
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201281404901	05/07/2020 05:40	Annamaria Kuhns	1	
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201281063801	05/07/2020 06:40	Annamaria Kuhns	1	
05895	Total Cyanide (solid)	SW-846 9012B	1	20128102201A	05/07/2020 20:08	Gregory Baldree	1	
05896	Cyanide Solid Distillation	SW-846 9012B	1	20128102201A	05/07/2020 18:00	Barbara A Washington	1	
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20128042501A	05/07/2020 21:35	Daniel S Smith	1	
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20128042501A	05/07/2020 08:13	Reece Himmelreich	1	
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20128820001B	05/07/2020 12:19	Stephanie A Sanchez	1	

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Water

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

WW 1310330

2098617

Sample Description: SOFB01_050620 Water

35 Commercial St. / 170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 15:00

SDG#: CMS01-07FB

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	Version 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	1.7	4.4	1
14473	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.87	2.6	1
14473	NEtFOSAA ¹	2991-50-6	N.D.	0.44	2.6	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfonar	midoacetic Acid.			
14473	NMeFOSAA ¹	2355-31-9	N.D.	0.52	1.7	1
	NMeFOSAA is the acronym for N-meth	nyl perfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.44	1.7	1
14473	Perfluorobutanoic acid1	375-22-4	N.D.	1.7	4.4	1
14473	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.44	1.7	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.44	1.7	1
14473	Perfluorododecanoic acid1	307-55-1	N.D.	0.44	1.7	1
14473	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.44	1.7	1
14473	Perfluoroheptanoic acid1	375-85-9	N.D.	0.44	1.7	1
14473	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.44	1.7	1
14473	Perfluorohexanoic acid ¹	307-24-4	N.D.	0.44	1.7	1
14473	Perfluorononanoic acid1	375-95-1	N.D.	0.44	1.7	1
14473	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.44	1.7	1
14473	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.44	1.7	1
14473	Perfluorooctanoic acid1	335-67-1	N.D.	0.44	1.7	1
14473	Perfluoropentanoic acid1	2706-90-3	N.D.	0.44	1.7	1
14473	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.44	1.7	1
14473	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.44	1.7	1
14473	Perfluoroundecanoic acid1	2058-94-8	N.D.	0.44	1.7	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method Dilution CAT **Analysis Name** Trial# Batch# Analysis Analyst Date and Time **Factor** 14473 NY 21 PFAS Water EPA 537 Version 1.1 20128001 05/08/2020 12:16 Anthony C Polaski Modified 14091 PFAS Water Prep EPA 537 Version 1.1 20128001 05/07/2020 07:00 Austin Prince Modified

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB01_050620 Water

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/06/2020 21:30

 Collection Date/Time:
 05/06/2020

 SDG#:
 CMS01-08TB

Langan Eng & Env Services
ELLE Sample #: WW 1310331
ELLE Group #: 2098617

Matrix: Water

SDG#:	CMS01	-0816				
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW	/-846 8260C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.003 J	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	0.0003 J	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	1,4-Dioxane	123-91-1	N.D.	0.029	0.075	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB01_050620 Water

35 Commercial St. / 170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 SDG#: CMS01-08TB

Project Name:

Langan Eng & Env	/ Services
ELLE Sample #:	WW 1310331
ELLE Group #:	2098617
Matrix: Water	

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	0.0003 J	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# **Analysis** Dilution **Analysis Name** Batch# Analyst No. Date and Time Factor PPL/TCL VOCs SW-846 8260C N201283AA 05/07/2020 22:52 Kevin A Sposito 11997 1 GC/MS VOA Water Prep SW-846 5030C N201283AA 05/07/2020 22:51 Kevin A Sposito 01163 1

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1312680

2098617

Sample Description: LB17_1-3 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 12:45

SDG#: CMS01-09

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	8,960	11.4	45.4	500
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.672	0.0175	0.0768	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	14.6	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201321404901A 05/12/2020 18:01 Patrick J Engle Lead 500 July 2014 00159 Mercury SW-846 7471B 1 201331063801 05/12/2020 08:36 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201321404901 05/12/2020 02:20 James L Mertz 1 05/12/2020 05:39 10638 Hg - SW, 7471B - U4 SW-846 7471B 201331063801 James L Mertz 1 1 00111 Moisture SM 2540 G-2011 20133820001A 05/12/2020 06:49 Stephanie A Sanchez %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1312681

2098617

Sample Description: LB17_6-8 Grab Soil

35 Commercial St. / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/06/2020 21:30 Collection Date/Time: 05/06/2020 13:15

SDG#: CMS01-10

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	174	0.229	0.908	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	1.52	0.0898	0.395	5
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	20.8	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201321404901A 05/12/2020 18:03 Patrick J Engle Lead 10 July 2014 00159 Mercury SW-846 7471B 1 201331063801 05/12/2020 08:41 Damary Valentin 5 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201321404901 05/12/2020 02:20 James L Mertz 1 Hg - SW, 7471B - U4 05/12/2020 05:39 10638 SW-846 7471B 201331063801 James L Mertz 1 1 00111 Moisture SM 2540 G-2011 20133820001A 05/12/2020 06:49 Stephanie A Sanchez %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201281AA	Sample number(s): 1310325,1	310328-1310329
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	8000.0	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
1,4-Dioxane	N.D.	0.037	0.075
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
n-Propylbenzene	N.D.	0.0004	0.005
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene	N.D.	0.0005	0.005
Toluene	N.D.	0.0006	0.005
1,1,1-Trichloroethane	N.D.	0.0006	0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0007	0.005
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005
1,3,5-Trimethylbenzene Vinyl Chloride	N.D. N.D.	0.0005 0.0006	0.005 0.005
Xylene (Total)	N.D. N.D.	0.0006	0.005
, , ,	N.D.	0.001	0.010
Batch number: R201311AA	Sample number	,	
Acetone	N.D.	0.30	1.0
Acrolein	N.D.	0.25	5.0
Acrylonitrile	N.D.	0.040	1.0
Benzene Bromodichloromethane	N.D. N.D.	0.025	0.25
Bromoform	N.D. N.D.	0.020 0.25	0.25 0.50
Bromomethane	N.D. N.D.	0.25	0.50
2-Butanone	N.D. N.D.	0.035	0.23
t-Butyl alcohol	N.D.	0.75	5.0
n-Butylbenzene	N.D.	0.15	0.40
sec-Butylbenzene	N.D.	0.10	0.25
tert-Butylbenzene	N.D.	0.040	0.25
Carbon Disulfide	N.D.	0.030	0.25
Carbon Tetrachloride	N.D.	0.025	0.25
Chlorobenzene	N.D.	0.025	0.25
Chloroethane	N.D.	0.050	0.25
Chloroform	N.D.	0.030	0.25
Chloromethane	N.D.	0.030	0.25
1,2-Dibromo-3-chloropropane	N.D.	0.025	0.25
Dibromochloromethane	N.D.	0.025	0.25
1,2-Dibromoethane	N.D.	0.020	0.25
1,2-Dichlorobenzene	N.D. N.D.	0.025 0.025	0.25 0.25
1,3-Dichlorobenzene 1,4-Dichlorobenzene	N.D. N.D.	0.025	0.25 0.25
Dichlorodifluoromethane	N.D. N.D.	0.020	0.25
1,1-Dichloroethane	N.D.	0.030	0.25
1,2-Dichloroethane	N.D.	0.030	0.25
1,1-Dichloroethane	N.D.	0.025	0.25
cis-1,2-Dichloroethene	N.D.	0.025	0.25
trans-1,2-Dichloroethene	N.D.	0.025	0.25
•			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
1,2-Dichloroethene (Total)	N.D.	0.050	0.50
1,2-Dichloropropane	N.D.	0.025	0.25
cis-1,3-Dichloropropene	N.D.	0.020	0.25
trans-1,3-Dichloropropene	N.D.	0.025	0.25
1,4-Dioxane	N.D.	1.9	3.8
Ethylbenzene	N.D.	0.020	0.25
Methyl Acetate	N.D.	0.050	0.25
Methyl Tertiary Butyl Ether	N.D.	0.025	0.25
Methylene Chloride	N.D.	0.10	0.25
n-Propylbenzene	N.D.	0.020	0.25
Styrene	N.D.	0.020	0.25
1,1,2,2-Tetrachloroethane	N.D.	0.020	0.25
Tetrachloroethene	N.D.	0.025	0.25
Toluene	N.D.	0.030	0.25
1,1,1-Trichloroethane	N.D.	0.030	0.25
1,1,2-Trichloroethane	N.D.	0.025	0.25
Trichloroethene	N.D.	0.025	0.25
Trichlorofluoromethane	N.D.	0.035	0.25
1,2,4-Trimethylbenzene	N.D.	0.025	0.25
1,3,5-Trimethylbenzene	N.D.	0.025	0.25
Vinyl Chloride	N.D.	0.030	0.25
Xylene (Total)	N.D.	0.070	0.50
Aylone (Total)			
	mg/l	mg/l	mg/l
Batch number: N201283AA	Sample num	ber(s): 1310331	
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
1,4-Dioxane	N.D.	0.029	0.075
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
	mg/kg	mg/kg	mg/kg
Batch number: 20128SLA026	Sample number	(s): 1310324-1	310325,1310328-1310329
Acenaphthene	N.D.	0.003	0.017
Acenaphthylene	N.D.	0.003	0.017
Acetophenone	N.D.	0.017	0.050
Anthracene	N.D.	0.003	0.017
Atrazine	N.D.	0.20	0.43
Benzaldehyde	N.D.	0.067	0.17
Benzidine	N.D.	0.33	1.0
Benzo(a)anthracene	N.D.	0.007	0.017
Benzo(a)pyrene	N.D.	0.003	0.017
Benzo(b)fluoranthene	N.D.	0.003	0.017

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Benzo(g,h,i)perylene	N.D.	0.003	0.017
Benzo(k)fluoranthene	N.D.	0.003	0.017
1,1'-Biphenyl	N.D.	0.017	0.037
Butylbenzylphthalate	N.D.	0.067	0.17
Di-n-butylphthalate	N.D.	0.067	0.17
Caprolactam	N.D.	0.033	0.17
Carbazole	N.D.	0.017	0.037
bis(2-Chloroethyl)ether	N.D.	0.023	0.050
bis(2-Chloroisopropyl)ether	N.D.	0.020	0.043
2-Chloronaphthalene	N.D.	0.007	0.033
2-Chlorophenol	N.D.	0.017	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067
2,4,6-Trichlorophenol	N.D.	0.027	0.057
	ug/kg	ug/kg	ug/kg
Batch number: 20136SLB026	Sample number(310329
1,4-Dioxane	N.D.	0.7	2
	mg/kg	mg/kg	mg/kg
Batch number: 201280015A	Sample number(,	310329
2,4-D	N.D.	0.012	0.036
2,4,5-T	N.D.	0.00082	0.0017
2,4,5-TP	N.D.	0.00075	0.0017
Batch number: 201280011A	Sample number(•	
PCB-1016	N.D.	0.0036	0.017
PCB-1221	N.D.	0.0046	0.017
PCB-1232	N.D.	0.0080	0.017
PCB-1242	N.D.	0.0033	0.017
PCB-1248 PCB-1254	N.D. N.D.	0.0033	0.017
PCB-1254 PCB-1260	N.D. N.D.	0.0033 0.0049	0.017 0.017
Total PCBs	N.D.	0.0049	0.017
			0.017
Batch number: 201320002A	Sample number(,	0.047
PCB-1016	N.D.	0.0036	0.017
PCB-1221	N.D.	0.0046	0.017
PCB-1232 PCB-1242	N.D. N.D.	0.0080 0.0033	0.017
PCB-1242 PCB-1248	N.D. N.D.	0.0033	0.017 0.017
PCB-1254	N.D.	0.0033	0.017
PCB-1260	N.D.	0.0033	0.017
Total PCBs	N.D.	0.0033	0.017
Batch number: 201280010A	Sample number(s): 1310328-1	310329
Aldrin	N.D.	0.00017	0.00083
Alpha BHC	N.D.	0.00017	0.00083
Beta BHC	N.D.	0.00044	0.0015
Gamma BHC - Lindane	N.D.	0.00021	0.00083
Alpha Chlordane	N.D.	0.00017	0.00083

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	Result	MDL**	LOQ
7 maryolo mamo	mg/kg	mg/kg	mg/kg
4,4'-Ddd	N.D.	0.00033	0.0020
4,4'-Ddd 4,4'-Dde	N.D.	0.00033	0.0020
4,4'-Ddt	N.D.	0.00033	0.0020
Delta BHC	N.D.	0.00079	0.0020
Dieldrin	N.D.	0.00043	0.0013
Endosulfan I	N.D.	0.00033	0.0020
Endosulfan II	N.D.	0.00022	0.0000
Endosulfan Sulfate	N.D.	0.00011	0.0020
Endrin	N.D.	0.00033	0.0020
Heptachlor	N.D.	0.0008	0.0020
пертастног	N.D.	0.00031	0.0008
	ng/g	ng/g	ng/g
Batch number: 20128007	•	ber(s): 1310328-	
6:2-Fluorotelomersulfonic acid	N.D.	0.60	2.0
8:2-Fluorotelomersulfonic acid	N.D.	0.60	3.0
NEtFOSAA	N.D.	0.20	2.0
NMeFOSAA	N.D.	0.20	2.0
Perfluorobutanesulfonic acid	N.D.	0.40	2.0
Perfluorobutanoic acid	N.D.	0.80	2.0
Perfluorodecanesulfonic acid	N.D.	0.20	0.60
Perfluorodecanoic acid	N.D.	0.20	0.60
Perfluorododecanoic acid	N.D.	0.20	0.60
Perfluoroheptanesulfonic acid	N.D.	0.20	0.60
Perfluoroheptanoic acid	N.D.	0.20	0.60
Perfluorohexanesulfonic acid	N.D.	0.20	0.60
Perfluorohexanoic acid	N.D.	0.20	0.60
Perfluorononanoic acid	N.D.	0.20	0.60
Perfluorooctanesulfonamide	N.D.	0.20	0.60
Perfluorooctanesulfonic acid	N.D.	0.20	0.60
Perfluorooctanoic acid	N.D.	0.20	0.60
Perfluoropentanoic acid	N.D.	0.20	0.60
Perfluorotetradecanoic acid	N.D.	0.20	0.60
Perfluorotridecanoic acid	N.D.	0.20	0.60
Perfluoroundecanoic acid	N.D.	0.20	0.60
	ng/l	ng/l	ng/l
Batch number: 20128001	Sample num	ber(s): 1310330	
6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
NEtFOSAA	N.D.	0.50	3.0
NMeFOSAA	N.D.	0.60	2.0
Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Perfluorododecanoic acid	Analysis Name	Result	MDL**	LOQ
Perfluoroheptanesulfonic acid		ng/l	ng/l	ng/l
Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanoic acid N.D. 0.50 2.0 Perfluorototanoic acid N.D. 0.50 2.0 Perfluorototanoic acid N.D. 0.50 2.0 Perfluorotridecanoic acid N.D. 0.50 2.0 Perfluorotridecanoic acid N.D. 0.50 2.0 Perfluorotridecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.152 0.0667 Perfluoroundecanoic acid N.D. 0.0152 0.0667 Perfluoroundecanoic acid N.D. 0.0504 0.000 Perfluoroundecanoic acid N	Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluorohexanosic acid	Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluoronexanoic acid	Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanoic acid N.D. 0.50 2.0 Perfluorotetradecanoic acid N.D. 0.50 2.0 Perfluorotridecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.0687 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/k	Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorococtanesulfonamide N.D. 0.50 2.0 Perfluorococtanesulfonic acid N.D. 0.50 2.0 Perfluoropentanoic acid N.D. 0.50 2.0 Perfluoropentanoic acid N.D. 0.50 2.0 Perfluorotetradecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.0152 0.0667 Perfluoroundecanoic acid N.D. 0.0152 0.0667	Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanoic acid N.D. 0.50 2.0 Perfluoropentanoic acid N.D. 0.50 2.0 Perfluorottridecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.050 2.0 Perfluoroundecanoic acid N.D. 0.0152 0.0667 Perfluoroundecanoic acid N.D. 0.0152 0.0600	Perfluorononanoic acid	N.D.	0.50	2.0
Perfluoroctanoic acid N.D. 0.50 2.0 Perfluoropentanoic acid N.D. 0.50 2.0 Perfluorotetradecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 mg/kg mg/kg mg/kg Batch number: 201281063801 Sample number(s): 1310328-1310329 Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.134 0.400 Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.0154 0.400 Chopper N.D. 0.176 0.400 Lead N.D. 0.163 0.400 Nickel N.D. 0.163 </td <td>Perfluorooctanesulfonamide</td> <td>N.D.</td> <td>0.50</td> <td>2.0</td>	Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluoropentanoic acid N.D. 0.50 2.0 Perfluorottridecanoic acid N.D. 0.50 2.0 Perfluorotnidecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Mercury N.D. 0.0150 2.0 Mercury N.D. 0.0152 0.0667 Batch number: 201321404901A Sample number(s): 1312680-1312681 0.0000 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201321404501 Sample number(s): 1310326-1310327	Perfluorooctanesulfonic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Mercury mg/kg mg/kg mg/kg Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.133 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.154 0.400 Lead N.D. 0.0504 0.100 Manganese N.D. 0.176 0.400 Male N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample	Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Perfluoroundecanoic acid N.D. 0.50 2.0 Mercury mg/kg mg/kg mg/kg Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.133 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.154 0.400 Lead N.D. 0.0504 0.100 Manganese N.D. 0.176 0.400 Male N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample	Perfluoropentanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid N.D. 0.50 2.0 mg/kg mg/kg mg/kg mg/kg Batch number: 201281063801 Sample number(s): 1310328-1310329 Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Cead N.D. 0.163 0.400 Manganese N.D. 0.163 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1310327 </td <td></td> <td>N.D.</td> <td>0.50</td> <td>2.0</td>		N.D.	0.50	2.0
Batch number: 201281063801 mg/kg mg/kg mg/kg Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.0238 0.0600 Beryllium N.D. 0.0504 0.100 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.163 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1310326-1310327 N.D.	Perfluorotridecanoic acid	N.D.	0.50	2.0
Batch number: 201281063801 Sample number(s): 1310328-1310329 Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.154 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404	Perfluoroundecanoic acid	N.D.	0.50	2.0
Batch number: 201281063801 Sample number(s): 1310328-1310329 Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.154 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404				
Mercury N.D. 0.0152 0.0667 Batch number: 201281404901A Sample number(s): 1310328-1310329 Arsenic N.D. 0.134 0.400 Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.0163 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300		mg/kg	mg/kg	mg/kg
Batch number: 201281404901A Arsenic Barium N.D. O.134 O.400 Barium N.D. O.183 O.400 Cadmium N.D. O.0238 O.0600 Cadmium N.D. O.154 O.154 O.400 Copper N.D. O.176 O.400 Lead N.D. O.176 N.D. O.176 O.400 Lead N.D. O.0504 N.D. O.0504 O.200 Manganese N.D. O.0504 N.D. O.163 O.400 Selenium N.D. O.163 O.400 Selenium N.D. O.163 O.400 Silver N.D. O.130 O.400 Silver N.D. O.683 J O.536 D.00 Batch number: 201321404901A Lead N.D. O.0504 D.00504 N.D. O.0683 J O.536 D.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. O.0504 N.D. O.0504 O.200 Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic Lead N.D. O.0150 O.0071 O.0150 Batch number: 201330571301 Sample number(s): 1310326 N.D. O.000055 J O.000050 O.00020 Batch number: 201550571305 Sample number(s): 1310327	Batch number: 201281063801	Sample number(s	s): 1310328-13	310329
Arsenic N.D. 0.134 0.400 Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.0504 0.200 Mickel N.D. 0.163 0.400 Selenium N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201330571301 Sample number(s): 1310326 Batch number: 201350571305 Sample number(s): 1310327	Mercury	N.D.	0.0152	0.0667
Arsenic N.D. 0.134 0.400 Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.0163 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.130 0.400 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.00005	Batch number: 201281404901A	Sample number(s	s)· 1310328-1:	310329
Barium N.D. 0.183 0.400 Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.163 0.400 Nickel N.D. 0.130 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1310327 N.D. 0.0152 0.0667 mg/l mg/l mg/l mg/l ng/l Batch number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 <t< td=""><td></td><td></td><td>,</td><td></td></t<>			,	
Beryllium N.D. 0.0238 0.0600 Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l mg/l ng/l Batch number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 0.00050 0.00020 Batch number: 2		– .		
Cadmium N.D. 0.0504 0.100 Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury Mercury N.D. 0.0152 0.0667 Mg/l mg/l mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 0.00050 0.00050 Batch number: 201330571301 Sample number(s): 1310326 <				
Chromium N.D. 0.154 0.400 Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury Mercury Mercury N.D. 0.0152 0.0667 March number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	•			
Copper N.D. 0.176 0.400 Lead N.D. 0.0504 0.200 Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l mg/l mg/l Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Lead N.D. 0.0504 0.200 Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Manganese N.D. 0.214 0.400 Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 N.D. 0.0152 0.0667 mg/l mg/l mg/l mg/l Mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 0.0050 Batch number: 201330571301 Sample number(s): 1310326 0.000055 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	• •			
Nickel N.D. 0.163 0.400 Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 N.D. 0.0152 0.0667 mg/l mg/l mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Selenium N.D. 0.130 0.400 Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	•	– .		
Silver N.D. 0.0406 0.100 Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Zinc 0.683 J 0.536 2.00 Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Batch number: 201321404901A Sample number(s): 1312680-1312681 Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Lead N.D. 0.0504 0.200 Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Batch number: 201331063801 Sample number(s): 1312680-1312681 Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327			,	
Mercury N.D. 0.0152 0.0667 mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	Lead	N.D.	0.0504	0.200
mg/l mg/l mg/l Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	Batch number: 201331063801	Sample number(s	s): 1312680-13	312681
Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	Mercury	N.D.	0.0152	0.0667
Batch number: 201321404501 Sample number(s): 1310326-1310327 Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	•	ma/l	ma/l	ma/l
Arsenic N.D. 0.0160 0.0300 Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	B	•	•	•
Lead N.D. 0.0071 0.0150 Batch number: 201330571301 Sample number(s): 1310326 0.000055 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327 1310327 0.000055 0.000			,	
Batch number: 201330571301 Sample number(s): 1310326 Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327				
Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	Lead	N.D.	0.0071	0.0150
Mercury 0.000055 J 0.000050 0.00020 Batch number: 201550571305 Sample number(s): 1310327	Batch number: 201330571301	Sample number(s	s): 1310326	
Batch number: 201550571305 Sample number(s): 1310327				0.00020
	,			5.55520
Mercury N.D. 0.000079 0.00020			,	
	Mercury	N.D.	0.000079	0.00020

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Method Blank (continued)

Analysis Name	Result mg/l		
	mg/kg	mg/kg	mg/kg
Batch number: 20128102201A	Sample num	ber(s): 1310328-	1310329
Total Cyanide (solid)	N.D.	0.18	0.50
Batch number: 20128042501A	Sample num	ber(s): 1310328-	1310329
Hexavalent Chromium (SOLIDS)	N.D.	0.14	0.42

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201281AA	Sample number	(s): 1310325,1	310328-1310329						
Acetone	0.150	0.154	0.150	0.155	102	103	41-150	1	30
Acrolein	0.150	0.120	0.150	0.119	80	80	57-131	0	30
Acrylonitrile	0.100	0.0893	0.100	0.0874	89	87	66-120	2	30
Benzene	0.0200	0.0179	0.0200	0.0183	89	91	80-120	2	30
Bromodichloromethane	0.0200	0.0180	0.0200	0.0182	90	91	70-120	1	30
Bromoform	0.0200	0.0164	0.0200	0.0163	82	82	51-127	0	30
Bromomethane	0.0200	0.0158	0.0200	0.0161	79	80	45-140	2	30
2-Butanone	0.150	0.130	0.150	0.129	87	86	57-128	1	30
t-Butyl alcohol	0.200	0.166	0.200	0.168	83	84	74-121	1	30
n-Butylbenzene	0.0200	0.0168	0.0200	0.0176	84	88	71-121	5	30
sec-Butylbenzene	0.0200	0.0173	0.0200	0.0178	86	89	72-120	3	30
tert-Butylbenzene	0.0200	0.0165	0.0200	0.0170	83	85	68-120	3	30
Carbon Disulfide	0.0200	0.0173	0.0200	0.0180	87	90	64-133	4	30
Carbon Tetrachloride	0.0200	0.0174	0.0200	0.0177	87	89	64-134	2	30
Chlorobenzene	0.0200	0.0175	0.0200	0.0179	87	90	80-120	2	30
Chloroethane	0.0200	0.0148	0.0200	0.0154	74	77	43-135	4	30
Chloroform	0.0200	0.0182	0.0200	0.0183	91	91	80-120	1	30
Chloromethane	0.0200	0.0159	0.0200	0.0166	80	83	56-120	4	30
1,2-Dibromo-3-chloropropane	0.0200	0.0167	0.0200	0.0166	83	83	48-134	1	30
Dibromochloromethane	0.0200	0.0183	0.0200	0.0180	92	90	69-125	1	30
1,2-Dibromoethane	0.0200	0.0175	0.0200	0.0177	88	89	76-120	1	30
1,2-Dichlorobenzene	0.0200	0.0170	0.0200	0.0176	85	88	76-120	3	30
1,3-Dichlorobenzene	0.0200	0.0167	0.0200	0.0173	83	87	75-120	4	30
1,4-Dichlorobenzene	0.0200	0.0169	0.0200	0.0175	84	87	80-120	4	30
Dichlorodifluoromethane	0.0200	0.0148	0.0200	0.0155	74	78	21-127	5	30
1,1-Dichloroethane	0.0200	0.0181	0.0200	0.0183	91	92	79-120	1	30
1,2-Dichloroethane	0.0200	0.0179	0.0200	0.0180	89	90	71-128	0	30
1,1-Dichloroethene	0.0200	0.0183	0.0200	0.0184	92	92	73-129	1	30
cis-1,2-Dichloroethene	0.0200	0.0192	0.0200	0.0197	96	98	80-125	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
trans-1,2-Dichloroethene	0.0200	0.0178	0.0200	0.0186	89	93	80-126	4	30
1,2-Dichloroethene (Total)	0.0400	0.0370	0.0400	0.0383	93	96	80-126	3	30
1,2-Dichloropropane	0.0200	0.0183	0.0200	0.0188	92	94	80-120	2	30
cis-1,3-Dichloropropene	0.0200	0.0178	0.0200	0.0181	89	91	66-120	2	30
trans-1,3-Dichloropropene	0.0200	0.0173	0.0200	0.0173	86	87	68-122	0	30
1,4-Dioxane	0.500	0.453	0.500	0.451	91	90	62-131	0	30
Ethylbenzene	0.0200	0.0175	0.0200	0.0177	88	88	78-120	1	30
Methyl Acetate	0.0200	0.0174	0.0200	0.0175	87	88	67-128	0	30
Methyl Tertiary Butyl Ether	0.0200	0.0178	0.0200	0.0178	89	89	72-120	0	30
Methylene Chloride	0.0200	0.0177	0.0200	0.0183	89	92	76-122	3	30
n-Propylbenzene	0.0200	0.0177	0.0200	0.0185	89	93	72-123	4	30
Styrene	0.0200	0.0168	0.0200	0.0172	84	86	76-120	2	30
1,1,2,2-Tetrachloroethane	0.0200	0.0177	0.0200	0.0175	88	87	69-125	1	30
Tetrachloroethene	0.0200	0.0169	0.0200	0.0173	84	87	73-120	2	30
Toluene	0.0200	0.0173	0.0200	0.0174	86	87	80-120	0	30
1,1,1-Trichloroethane	0.0200	0.0171	0.0200	0.0174	86	87	69-123	1	30
1,1,2-Trichloroethane	0.0200	0.0191	0.0200	0.0188	95	94	80-120	2	30
Trichloroethene	0.0200	0.0177	0.0200	0.0180	89	90	80-120	2	30
Trichlorofluoromethane	0.0200	0.0163	0.0200	0.0167	81	83	55-134	2	30
1,2,4-Trimethylbenzene	0.0200	0.0169	0.0200	0.0175	84	88	73-120	4	30
1,3,5-Trimethylbenzene	0.0200	0.0173	0.0200	0.0178	86	89	73-120	3	30
Vinyl Chloride	0.0200	0.0157	0.0200	0.0159	79	80	52-120	2	30
Xylene (Total)	0.0600	0.0522	0.0600	0.0527	87	88	75-120	1	30
Batch number: R201311AA	Sample number	(s): 1310324							
Acetone	7.50	7.02	7.50	6.71	94	89	41-150	5	30
Acrolein	7.50	7.20	7.50	6.75	96	90	57-131	6	30
Acrylonitrile	5.00	5.24	5.00	5.09	105	102	66-120	3	30
Benzene	1.00	1.05	1.00	1.07	105	107	80-120	1	30
Bromodichloromethane	1.00	1.01	1.00	1.02	101	102	70-120	1	30
Bromoform	1.00	0.885	1.00	0.881	88	88	51-127	0	30
Bromomethane	1.00	1.41	1.00	1.19	141*	119	45-140	17	30
2-Butanone	7.50	6.62	7.50	6.35	88	85	57-128	4	30
t-Butyl alcohol	10	8.21	10	8.92	82	89	74-121	8	30
n-Butylbenzene	1.00	0.920	1.00	0.927	92	93	71-121	1	30
sec-Butylbenzene	1.00	0.922	1.00	0.935	92	93	72-120	1	30
tert-Butylbenzene	1.00	0.894	1.00	0.902	89	90	68-120	1	30
Carbon Disulfide	1.00	1.02	1.00	1.05	102	105	64-133	3	30
Carbon Tetrachloride	1.00	0.972	1.00	0.993	97	99	64-134	2	30
Chlorobenzene	1.00	0.973	1.00	0.986	97	99	80-120	1	30
Chloroethane	1.00	1.29	1.00	1.08	129	108	43-135	18	30
Chloroform	1.00	1.01	1.00	1.03	101	103	80-120	1	30
Chloromethane	1.00	0.946	1.00	0.966	95	97	56-120	2	30
1,2-Dibromo-3-chloropropane	1.00	0.989	1.00	0.965	99	97	48-134	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Dibromochloromethane	1.00	0.996	1.00	0.994	100	99	69-125	0	30
1,2-Dibromoethane	1.00	0.972	1.00	0.981	97	98	76-120	1	30
1,2-Dichlorobenzene	1.00	0.942	1.00	0.948	94	95	76-120	1	30
1,3-Dichlorobenzene	1.00	0.948	1.00	0.960	95	96	75-120	1	30
1,4-Dichlorobenzene	1.00	0.957	1.00	0.974	96	97	80-120	2	30
Dichlorodifluoromethane	1.00	0.588	1.00	0.674	59	67	21-127	14	30
1,1-Dichloroethane	1.00	1.11	1.00	1.12	111	112	79-120	1	30
1,2-Dichloroethane	1.00	1.03	1.00	1.04	103	104	71-128	1	30
1,1-Dichloroethene	1.00	1.07	1.00	1.09	107	109	73-129	2	30
cis-1,2-Dichloroethene	1.00	1.08	1.00	1.10	108	110	80-125	1	30
trans-1,2-Dichloroethene	1.00	1.05	1.00	1.05	105	105	80-126	0	30
1,2-Dichloroethene (Total)	2.00	2.13	2.00	2.15	107	108	80-126	1	30
1,2-Dichloropropane	1.00	1.11	1.00	1.12	111	112	80-120	1	30
cis-1,3-Dichloropropene	1.00	1.06	1.00	1.08	106	108	66-120	2	30
trans-1,3-Dichloropropene	1.00	1.05	1.00	1.04	105	104	68-122	1	30
1,4-Dioxane	25	25.92	25	25.72	104	103	62-131	1	30
Ethylbenzene	1.00	1.01	1.00	1.02	101	102	78-120	1	30
Methyl Acetate	1.00	1.17	1.00	1.17	117	117	67-128	0	30
Methyl Tertiary Butyl Ether	1.00	0.918	1.00	0.919	92	92	72-120	0	30
Methylene Chloride	1.00	1.09	1.00	1.10	109	110	76-122	1	30
n-Propylbenzene	1.00	1.03	1.00	1.05	103	105	72-123	2	30
Styrene	1.00	1.01	1.00	1.02	101	102	76-120	1	30
1,1,2,2-Tetrachloroethane	1.00	1.03	1.00	1.05	103	105	69-125	2	30
Tetrachloroethene	1.00	0.925	1.00	0.945	93	95	73-120	2	30
Toluene	1.00	1.02	1.00	1.04	102	104	80-120	1	30
1,1,1-Trichloroethane	1.00	0.983	1.00	1.00	98	100	69-123	2	30
1,1,2-Trichloroethane	1.00 1.00	1.05 0.968	1.00 1.00	1.04 0.993	105 97	104 99	80-120 80-120	1 2	30 30
Trichloroethene		0.968	1.00		97 86			3	30
Trichlorofluoromethane 1,2,4-Trimethylbenzene	1.00 1.00	0.969	1.00	0.888 0.974	97	89 97	55-134 73-120	0	30
1,3,5-Trimethylbenzene	1.00	0.970	1.00	0.974	97	99	73-120	2	30
Vinyl Chloride	1.00	0.909	1.00	0.900	91	92	52-120	2	30
Xylene (Total)	3.00	3.00	3.00	3.02	100	101	75-120	1	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: N201283AA	Sample number	(s): 1310331							
Acetone	0.150	0.180	0.150	0.180	120	120	54-157	0	30
Acrolein	0.150	0.143	0.150	0.138	95	92	47-136	3	30
Acrylonitrile	0.100	0.103	0.100	0.103	103	103	60-129	0	30
Benzene	0.0200	0.0215	0.0200	0.0215	108	107	80-120	0	30
Bromodichloromethane	0.0200	0.0199	0.0200	0.0195	100	97	71-120	2	30
Bromoform	0.0200	0.0187	0.0200	0.0182	94	91	51-120	3	30
Bromomethane	0.0200	0.0165	0.0200	0.0159	83	79	53-128	4	30
2-Butanone	0.150	0.154	0.150	0.158	102	105	59-135	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
t-Butyl alcohol	0.200	0.223	0.200	0.213	112	106	60-130	5	30
n-Butylbenzene	0.0200	0.0202	0.0200	0.0196	101	98	76-120	3	30
sec-Butylbenzene	0.0200	0.0207	0.0200	0.0203	103	101	77-120	2	30
tert-Butylbenzene	0.0200	0.0195	0.0200	0.0196	97	98	78-120	1	30
Carbon Disulfide	0.0200	0.0231	0.0200	0.0220	116	110	65-128	5	30
Carbon Tetrachloride	0.0200	0.0196	0.0200	0.0194	98	97	64-134	1	30
Chlorobenzene	0.0200	0.0209	0.0200	0.0199	104	99	80-120	5	30
Chloroethane	0.0200	0.0177	0.0200	0.0169	88	84	55-123	5	30
Chloroform	0.0200	0.0209	0.0200	0.0199	104	100	80-120	5	30
Chloromethane	0.0200	0.0159	0.0200	0.0149	80	75	56-121	7	30
1,2-Dibromo-3-chloropropane	0.0200	0.0178	0.0200	0.0181	89	91	47-131	2	30
Dibromochloromethane	0.0200	0.0198	0.0200	0.0190	99	95	71-120	4	30
1,2-Dibromoethane	0.0200	0.0199	0.0200	0.0190	99	95	77-120	4	30
1,2-Dichlorobenzene	0.0200	0.0201	0.0200	0.0199	100	100	80-120	1	30
1,3-Dichlorobenzene	0.0200	0.0196	0.0200	0.0197	98	98	80-120	0	30
1,4-Dichlorobenzene	0.0200	0.0202	0.0200	0.0201	101	100	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0139	0.0200	0.0135	70	68	41-127	3	30
1,1-Dichloroethane	0.0200	0.0219	0.0200	0.0218	109	109	80-120	0	30
1,2-Dichloroethane	0.0200	0.0187	0.0200	0.0188	93	94	73-124	1	30
1,1-Dichloroethene	0.0200	0.0218	0.0200	0.0209	109	104	80-131	4	30
cis-1,2-Dichloroethene	0.0200	0.0227	0.0200	0.0218	114	109	80-125	4	30
trans-1,2-Dichloroethene	0.0200	0.0214	0.0200	0.0210	107	105	80-126	2	30
1,2-Dichloroethene (Total)	0.0400	0.0441	0.0400	0.0428	110	107	80-125	3	30
1,2-Dichloropropane	0.0200 0.0200	0.0229 0.0205	0.0200 0.0200	0.0229 0.0203	115 103	114 101	80-120 75-120	0 1	30 30
cis-1,3-Dichloropropene	0.0200	0.0205	0.0200	0.0203	93	92	67-120	1	30
trans-1,3-Dichloropropene 1,4-Dioxane	0.500	0.0100	0.500	0.0165	93 104	103	63-146	1	30
Ethylbenzene	0.0200	0.0205	0.0200	0.0199	104	99	80-120	3	30
Methyl Acetate	0.0200	0.0203	0.0200	0.0199	111	113	54-136	2	30
Methyl Tertiary Butyl Ether	0.0200	0.0193	0.0200	0.0223	97	96	69-122	1	30
Methylene Chloride	0.0200	0.0210	0.0200	0.0192	105	105	80-120	0	30
n-Propylbenzene	0.0200	0.0213	0.0200	0.0210	107	104	79-121	3	30
Styrene	0.0200	0.0200	0.0200	0.0207	100	99	80-120	1	30
1,1,2,2-Tetrachloroethane	0.0200	0.0210	0.0200	0.0214	105	107	72-120	2	30
Tetrachloroethene	0.0200	0.0202	0.0200	0.0195	101	98	80-120	4	30
Toluene	0.0200	0.0205	0.0200	0.0197	103	99	80-120	4	30
1,1,1-Trichloroethane	0.0200	0.0190	0.0200	0.0185	95	93	67-126	2	30
1,1,2-Trichloroethane	0.0200	0.0215	0.0200	0.0205	107	102	80-120	5	30
Trichloroethene	0.0200	0.0200	0.0200	0.0199	100	100	80-120	1	30
Trichlorofluoromethane	0.0200	0.0198	0.0200	0.0179	99	89	55-135	10	30
1,2,4-Trimethylbenzene	0.0200	0.0198	0.0200	0.0194	99	97	75-120	2	30
1,3,5-Trimethylbenzene	0.0200	0.0201	0.0200	0.0195	101	98	75-120	3	30
Vinyl Chloride	0.0200	0.0171	0.0200	0.0153	85	77	56-120	11	30
Xylene (Total)	0.0600	0.0614	0.0600	0.0594	102	99	80-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20128SLA026	Sample number	(s): 1310324-	1310325,1310328-	1310329					
Acenaphthene	1.67	1.39			83		61-112		
Acenaphthylene	1.67	1.38			83		60-124		
Acetophenone	1.67	1.16			69		48-109		
Anthracene	1.67	1.52			91		67-120		
Atrazine	1.67	1.67			100		70-129		
Benzaldehyde	1.67	0.724			43		20-101		
Benzidine	8.33	5.03			60		18-105		
Benzo(a)anthracene	1.67	1.70			102		68-120		
Benzo(a)pyrene	1.67	1.69			101		68-119		
Benzo(b)fluoranthene	1.67	1.81			109		67-125		
Benzo(g,h,i)perylene	1.67	1.72			103		68-125		
Benzo(k)fluoranthene	1.67	1.57			94		66-122		
1,1'-Biphenyl	1.67	1.43			86		59-106		
Butylbenzylphthalate	1.67	1.49			89		69-125		
Di-n-butylphthalate	1.67	1.55			93		70-126		
Caprolactam	1.67	1.48			89		62-119		
Carbazole	1.67	1.56			94		69-125		
bis(2-Chloroethyl)ether	1.67	1.18			71		44-104		
bis(2-Chloroisopropyl)ether	1.67	1.07			64		40-112		
2-Chloronaphthalene	1.67	1.26			76		48-123		
2-Chlorophenol	1.67	1.32			79		51-109		
Chrysene	1.67	1.53			92		66-111		
Dibenz(a,h)anthracene	1.67	1.77			106		69-135		
Dibenzofuran	1.67	1.38			83		62-113		
1,2-Dichlorobenzene	1.67	1.16			69		38-106		
1,3-Dichlorobenzene	1.67	1.11			67		36-103		
1,4-Dichlorobenzene	1.67	1.14			68		25-127		
3,3'-Dichlorobenzidine	1.67	1.17			70		18-114		
2,4-Dichlorophenol	1.67	1.43			86		57-115		
Diethylphthalate	1.67	1.45			87		68-116		
2,4-Dimethylphenol	1.67	1.08			65		47-95		
Dimethylphthalate	1.67	1.41			85		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.61			97		56-135		
2,4-Dinitrophenol	3.33	2.78			83		34-136		
2,4-Dinitrotoluene	1.67	1.43			86		61-121		
2,6-Dinitrotoluene	1.67	1.50			90		66-122		
1,2-Diphenylhydrazine	1.67	1.50			90		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.55			93		65-132		
Fluoranthene	1.67	1.60			96		65-114		
Fluorene	1.67	1.48			89		62-110		
Hexachlorobenzene	1.67	1.61			97		62-124		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Hexachlorobutadiene	1.67	1.31			79		39-120		
Hexachlorocyclopentadiene	3.33	1.64			49		13-115		
Hexachloroethane	1.67	1.19			71		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.72			103		64-130		
Isophorone	1.67	1.28			77		51-113		
2-Methylnaphthalene	1.67	1.39			83		52-104		
2-Methylphenol	1.67	1.31			79		52-116		
4-Methylphenol	1.67	1.23			74		52-121		
Naphthalene	1.67	1.27			76		49-104		
2-Nitroaniline	1.67	1.49			89		65-132		
Nitrobenzene	1.67	1.23			74		41-118		
N-Nitrosodimethylamine	1.67	1.02			61		31-107		
N-Nitroso-di-n-propylamine	1.67	1.29			78		49-108		
N-Nitrosodiphenylamine	1.67	1.59			95		64-127		
Di-n-octylphthalate	1.67	1.46			88		65-139		
Pentachlorophenol	1.67	1.26			76		40-131		
Phenanthrene	1.67	1.52			91		67-116		
Phenol	1.67	1.25			75		57-107		
Pyrene	1.67	1.48			89		67-109		
Pyridine	1.67	0.723			43		10-117		
1,2,4-Trichlorobenzene	1.67 1.67	1.34 1.54			81 92		46-109		
2,4,5-Trichlorophenol	1.67	1.54			92 95		62-121 60-120		
2,4,6-Trichlorophenol					95		60-120		
	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 20136SLB026	Sample number	(s): 1310328-1	310329						
1,4-Dioxane	33.33	12.52			38		21-79		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201280015A	Sample number	(s): 1310328-1	310329						
2,4-D	0.0834	0.128			153*		57-142		
2,4,5-T	0.00833	0.0134			161*		59-137		
2,4,5-TP	0.00833	0.0128			153*		70-130		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201280011A	Sample number	(s): 1310329							
PCB-1016	0.167	0.171			102		76-121		
PCB-1260	0.167	0.178			107		79-130		
Batch number: 201320002A	Sample number	r(s): 1310328							
PCB-1016	0.167	0.163			97		76-121		
PCB-1260	0.167	0.176			105		79-130		
	mg/kg	mg/kg	mg/kg	mg/kg					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201280010A	Sample number	(s): 1310328-1	310329						
Aldrin	0.00333	0.00257			77		60-117		
Alpha BHC	0.00338	0.00293			87		65-124		
Beta BHC	0.00333	0.00281			84		68-129		
Gamma BHC - Lindane	0.00333	0.00293			88		68-133		
Alpha Chlordane	0.00333	0.00272			82		73-131		
4,4'-Ddd	0.00671	0.00608			91		69-138		
4,4'-Dde	0.00667	0.00540			81		68-146		
4,4'-Ddt	0.00671	0.00641			96		67-135		
Delta BHC	0.00333	0.00289			87		45-151		
Dieldrin	0.00667	0.00572			86		63-126		
Endosulfan I	0.00333	0.00260			78		62-119		
Endosulfan II	0.00667	0.00559			84		65-126		
Endosulfan Sulfate	0.00667	0.00579			87		71-132		
Endrin	0.00667	0.00616			92		86-135		
Heptachlor	0.00333	0.00280			84		66-118		
	ng/g	ng/g	ng/g	ng/g					
Batch number: 20128007	Sample number	(s): 1310328-1	310329						
6:2-Fluorotelomersulfonic acid	23.7	18.65			79		51-144		
8:2-Fluorotelomersulfonic acid	23.94	18.25			76		54-152		
NEtFOSAA	25	23.81			95		51-145		
NMeFOSAA	25	23.01			92		55-152		
Perfluorobutanesulfonic acid	22.12	17.8			80		63-139		
Perfluorobutanoic acid	25	17.89			72		56-188		
Perfluorodecanesulfonic acid	24.08	18.59			77		60-142		
Perfluorodecanoic acid	25	20.74			83		65-144		
Perfluorododecanoic acid	25	20.83			83		62-150		
Perfluoroheptanesulfonic acid	23.78	20.53			86		67-139		
Perfluoroheptanoic acid	25	21.32			85		65-153		
Perfluorohexanesulfonic acid	23.64	20.37			86		59-139		
Perfluorohexanoic acid	25	19.37			77		64-149		
Perfluorononanoic acid	25	22.25			89		64-151		
Perfluorooctanesulfonamide	25	21.2			85		61-133		
Perfluorooctanesulfonic acid	23.9	17.12			72		54-132		
Perfluorooctanoic acid	25	20.5			82		65-147		
Perfluoropentanoic acid	25	18.3			73		71-139		
Perfluorotetradecanoic acid	25	21.4			86		66-147		
Perfluorotridecanoic acid	25	21.97			88		63-152		
Perfluoroundecanoic acid	25	21.6			86		65-146		
	ng/l	ng/l	ng/l	ng/l					
Batch number: 20128001	Sample number	(s): 1310330							
6:2-Fluorotelomersulfonic acid	24.28	19.61	24.28	21.68	81	89	56-140	10	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Analysis Name	LCS Spike Added ng/I	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
8:2-Fluorotelomersulfonic acid	24.52	20.94	24.52	23.08	85	94	58-143	10	30
NEtFOSAA	25.6	25.9	25.6	28.05	101	110	53-140	8	30
NMeFOSAA	25.6	29.03	25.6	29.05	113	113	59-141	0	30
Perfluorobutanesulfonic acid	22.64	20.71	22.64	23.16	91	102	67-135	11	30
Perfluorobutanoic acid	25.6	22.67	25.6	22.5	89	88	63-160	1	30
Perfluorodecanesulfonic acid	24.64	20.82	24.64	22.17	85	90	62-135	6	30
Perfluorodecanoic acid	25.6	23.69	25.6	25.66	93	100	66-141	8	30
Perfluorododecanoic acid	25.6	23.48	25.6	25.51	92	100	65-143	8	30
Perfluoroheptanesulfonic acid	24.36	21.9	24.36	23.25	90	95	67-138	6	30
Perfluoroheptanoic acid	25.6	23.91	25.6	27.23	93	106	69-144	13	30
Perfluorohexanesulfonic acid	24.2	22.57	24.2	24.02	93	99	63-132	6	30
Perfluorohexanoic acid	25.6	23.31	25.6	23.84	91	93	69-139	2	30
Perfluorononanoic acid	25.6	26.26	25.6	27.26	103	106	66-144	4	30
Perfluorooctanesulfonamide	25.6	23.37	25.6	25.48	91	100	67-126	9	30
Perfluorooctanesulfonic acid	24.48	20.67	24.48	21.66	84	88	53-129	5	30
Perfluorooctanoic acid	25.6	23.16	25.6	24.48	90	96	67-139	6	30
Perfluoropentanoic acid	25.6	21.69	25.6	23.56	85	92	73-135	8	30
Perfluorotetradecanoic acid	25.6	25.24	25.6	26.42	99	103	69-141	5	30
Perfluorotridecanoic acid	25.6	24.33	25.6	24.84	95	97	66-146	2	30
Perfluoroundecanoic acid	25.6	23.49	25.6	24.67	92	96	66-140	5	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201281063801	Sample number	(s): 1310328-1	310329						
Mercury	0.100	0.0860			86		80-115		
Batch number: 201281404901A	Sample number	(s): 1310328-1	310329						
Arsenic	1.00	1.15			115		80-120		
Barium	5.00	5.10			102		80-120		
Beryllium	0.400	0.395			99		80-120		
Cadmium	0.500	0.523			105		80-120		
Chromium	5.00	5.22			104		86-120		
Copper	5.00	5.16			103		85-120		
Lead	0.500	0.542			108		80-120		
Manganese	5.00	4.84			97		80-120		
Nickel	5.00	4.79			96		86-120		
Selenium	1.00	1.01			101		85-120		
Silver	5.00	5.14			103		84-120		
Zinc	50	50.8			102		85-120		
Batch number: 201321404901A	Sample number	(s): 1312680-1	312681						
Lead	0.500	0.524			105		80-120		
Batch number: 201331063801	Sample number	(s): 1312680-1	312681						
Mercury	0.100	0.104			104		80-115		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

LCS/LCSD (continued)

			-	_					
Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201321404501 Arsenic Lead	Sample number(0.0600 0.0300	(s): 1310326-1; 0.0784 0.0276	310327		131* 92		80-120 80-120		
Batch number: 201330571301 Mercury	Sample number(0.00100	(s): 1310326 0.000907			91		80-110		
Batch number: 201550571305 Mercury	Sample number(0.00100	(s): 1310327 0.000971			97		80-110		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20128102201A Total Cyanide (solid)	Sample number((s): 1310328-1; 9.86	310329		99		90-110		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20128042501A Hexavalent Chromium (SOLIDS)	Sample number(5.00	(s): 1310328-13 4.72	310329		94		80-120		
	%	%	%	%					
Batch number: 20128820001B Moisture	Sample number(89.5	(s): 1310324-13 89.38	310325,1310328-	1310329	100		99-101		
Batch number: 20133820001A Moisture	Sample number(89.5	(s): 1312680-13 89.37	312681		100		99-101		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 20128SLA026	Sample number	er(s): 1310324-	1310325,13	310328-1310329	UNSPK:	1310329				
Acenaphthene	15.31	1.64	2.08	1.64	1.92	-803 (2)	-813 (2)	61-112	8	30
Acenaphthylene	2.61	1.64	1.54	1.64	1.45	-64*	-69*	60-124	6	30
Acetophenone	N.D.	1.64	1.13	1.64	1.08	69	66	48-109	5	30
Anthracene	22.37	1.64	2.69	1.64	2.61	-1195 (2)	-1201 (2)	67-120	3	30
Atrazine	N.D.	1.64	1.66	1.64	1.59	101	97	70-129	5	30
Benzaldehyde	N.D.	1.64	1.02	1.64	0.937	62	57	20-101	8	30
Benzidine	N.D.	8.22	1.31	8.22	1.08	16*	13*	18-105	20	30
Benzo(a)anthracene	23.49	1.64	4.79	1.64	4.76	-1136 (2)	-1138 (2)	68-120	1	30
Benzo(a)pyrene	13.06	1.64	4.15	1.64	4.18	-541 (2)	-539 (2)	68-119	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Benzo(b)fluoranthene	18.39	1.64	4.98	1.64	5.29	-814 (2)	-796 (2)	67-125	6	30
Benzo(g,h,i)perylene	5.05	1.64	2.97	1.64	3.03	-125 [*]	-122 [*]	68-125	2	30
Benzo(k)fluoranthene	7.65	1.64	2.34	1.64	2.49	-322 (2)	-313 (2)	66-122	6	30
1,1'-Biphenyl	0.442	1.64	1.49	1.64	1.47	64	62	59-106	2	30
Butylbenzylphthalate	N.D.	1.64	1.44	1.64	1.38	87	84	69-125	4	30
Di-n-butylphthalate	N.D.	1.64	1.50	1.64	1.46	91	89	70-126	3	30
Caprolactam	N.D.	1.64	1.42	1.64	1.35	86	82	62-119	5	30
Carbazole	3.62	1.64	1.93	1.64	1.89	-102*	-104*	69-125	2	30
bis(2-Chloroethyl)ether	N.D.	1.64	1.12	1.64	1.03	68	63	44-104	8	30
bis(2-Chloroisopropyl)ether	N.D.	1.64	0.990	1.64	0.967	60	59	40-112	2	30
2-Chloronaphthalene	N.D.	1.64	1.21	1.64	1.77	74	108	48-123	37*	30
2-Chlorophenol	N.D.	1.64	1.23	1.64	1.19	75	72	51-109	4	30
Chrysene	20.03	1.64	4.32	1.64	4.27	-954 (2)	-958 (2)	66-111	1	30
Dibenz(a,h)anthracene	1.93	1.64	2.35	1.64	2.19	25*	16*	69-135	7	30
Dibenzofuran	8.80	1.64	1.97	1.64	1.78	-414 (2)	-426 (2)	62-113	10	30
1,2-Dichlorobenzene	N.D.	1.64	1.10	1.64	1.05	67	64	38-106	5	30
1,3-Dichlorobenzene	N.D.	1.64	1.04	1.64	0.977	63	59	36-103	6	30
1,4-Dichlorobenzene	N.D.	1.64	1.06	1.64	0.999	65	61	25-127	6	30
3,3'-Dichlorobenzidine	N.D.	1.64	1.23	1.64	1.31	75	80	18-114	6	30
2,4-Dichlorophenol	N.D.	1.64	1.34	1.64	1.31	82	80	57-115	3	30
Diethylphthalate	N.D.	1.64	1.34	1.64	1.31	82	79	68-116	3	30
2,4-Dimethylphenol	N.D.	1.64	1.03	1.64	0.985	63	60	47-95	5	30
Dimethylphthalate	N.D.	1.64	1.33	1.64	1.29	81	79	66-113	3	30
4,6-Dinitro-2-methylphenol	N.D.	1.64	0.863	1.64	0.838	52*	51*	56-135	3	30
2,4-Dinitrophenol	N.D.	3.29	1.03	3.29	1.04	31*	32*	34-136	1	30
2,4-Dinitrotoluene	N.D.	1.64	1.37	1.64	1.32	84	80	61-121	4	30
2,6-Dinitrotoluene	N.D.	1.64	1.48	1.64	1.41	90	86	66-122	5	30
1,2-Diphenylhydrazine	N.D.	1.64	1.45	1.64	1.41	88	86	74-117	3	30
bis(2-Ethylhexyl)phthalate	N.D.	1.64	1.61	1.64	1.57	98	95	65-132	3	30
Fluoranthene	65.6	1.64	7.73	1.64	7.61	-3517 (2)	-3527 (2)	65-114	2	30
Fluorene	23.77	1.64	2.47	1.64	2.15	-1294 (2)	-1314 (2)	62-110	14	30
Hexachlorobenzene	N.D.	1.64	1.54	1.64	1.51	94	92	62-124	2	30
Hexachlorobutadiene	N.D.	1.64	1.24	1.64	1.21	75	74	39-120	2	30
Hexachlorocyclopentadiene	N.D.	3.29	N.D.	3.29	N.D.	0*	0*	13-115	0	30
Hexachloroethane	N.D.	1.64	1.01	1.64	0.966	62	59	30-112	5	30
Indeno(1,2,3-cd)pyrene	5.07	1.64	2.98	1.64	2.97	-126*	-127*	64-130	1	30
Isophorone	N.D.	1.64	1.20	1.64	1.17	73	71	51-113	2	30
2-Methylnaphthalene	4.93	1.64	1.67	1.64	1.57	-197*	-203*	52-104	6	30
2-Methylphenol	N.D.	1.64	1.22	1.64	1.18	74	72	52-116	3	30
4-Methylphenol	0.0304	1.64	1.18	1.64	1.15	70	68	52-121	2	30
Naphthalene	0.628	1.64	1.45	1.64	1.41	50	48*	49-104	3	30
2-Nitroaniline	N.D.	1.64	1.48	1.64	1.42	90	87	65-132	4	30
Nitrobenzene	N.D.	1.64	1.17	1.64	1.14	71	69	41-118	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
N-Nitrosodimethylamine	N.D.	1.64	1.00	1.64	0.888	61	54	31-107	12	30
N-Nitroso-di-n-propylamine	N.D.	1.64	1.18	1.64	1.14	72	70	49-108	3	30
N-Nitrosodiphenylamine	N.D.	1.64	1.55	1.64	1.49	94	91	64-127	4	30
Di-n-octylphthalate	N.D.	1.64	1.49	1.64	1.46	91	89	65-139	2	30
Pentachlorophenol	N.D.	1.64	0.956	1.64	0.913	58	56	40-131	5	30
Phenanthrene	84.53	1.64	6.68	1.64	6.67	-4732 (2)	-4736 (2)	67-116	0	30
Phenol	N.D.	1.64	1.20	1.64	1.17	73	71	51-107	3	30
Pyrene	46	1.64	6.23	1.64	6.52	-2417 (2)	-2401 (2)	67-109	5	30
Pyridine	N.D.	1.64	0.563	1.64	0.563	34	34	10-117	0	30
1,2,4-Trichlorobenzene	N.D.	1.64	1.27	1.64	1.23	77	75	46-109	3	30
2,4,5-Trichlorophenol	N.D.	1.64	1.46	1.64	1.39	89	85	62-121	4	30
2,4,6-Trichlorophenol	N.D.	1.64	1.43	1.64	1.40	87	85	60-120	3	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201280015A	Sample number	er(s): 1310328-	1310329 UI	NSPK: 1310329)					
2,4-D	N.D.	0.0828	0.118	0.0830	0.120	142	145*	57-142	2	50
2,4,5-T	N.D.	0.00827	0.0140	0.00829	0.0141	170*	170*	59-137	0	50
2,4,5-TP	N.D.	0.00827	0.0127	0.00829	0.0133	154*	160*	70-130	4	50
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201280011A	Sample number	er(s): 1310329	UNSPK: 13	10329						
PCB-1016	N.D.	0.165	0.109	0.166	0.108	66*	65*	76-121	1	50
PCB-1260	N.D.	0.165	0.120	0.166	0.117	72*	71*	79-130	2	50
	ng/g	ng/g	ng/g	ng/g	ng/g					
Batch number: 20128007	Sample number	er(s): 1310328-	1310329 UI	NSPK: 1310328	}					
6:2-Fluorotelomersulfonic acid	N.D.	23.7	18.71	21.74	16.96	79	78	51-144	10	30
8:2-Fluorotelomersulfonic acid	N.D.	23.94	18.49	21.96	16.81	77	77	54-152	10	30
NEtFOSAA	N.D.	25	24.23	22.94	20.68	97	90	51-145	16	30
NMeFOSAA	N.D.	25	22.72	22.94	21.74	91	95	55-152	4	30
Perfluorobutanesulfonic acid	N.D.	22.12	17.49	20.29	17.52	79	86	63-139	0	30
Perfluorobutanoic acid	N.D.	25	17.7	22.94	16.92	71	74	56-188	4	30
Perfluorodecanesulfonic acid	N.D.	24.08	19.82	22.09	17.89	82	81	60-142	10	30
Perfluorodecanoic acid	N.D.	25	20.49	22.94	18.69	82	81	65-144	9	30
Perfluorododecanoic acid	N.D.	25	21.6	22.94	19.76	86	86	62-150	9	30
Perfluoroheptanesulfonic acid	N.D.	23.78	19.56	21.82	17.65	82	81	67-139	10	30
Perfluoroheptanoic acid	N.D.	25	21.6	22.94	19.9	86	87	65-153	8	30
Perfluorohexanesulfonic acid	N.D.	23.64	19.46	21.69	18.15	82	84	59-139	7	30
Perfluorohexanoic acid	N.D.	25	20.19	22.94	17.94	81	78	64-149	12	30
Perfluorononanoic acid	N.D.	25	21.57	22.94	19.87	86	87	64-151	8	30
Perfluorooctanesulfonamide	N.D.	25	20.25	22.94	20.23	81	88	61-133	0	30
Perfluorooctanesulfonic acid	N.D.	23.9	17.75	21.93	16.38	74	75	54-132	8	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ng/g	MS Spike Added ng/g	MS Conc ng/g	MSD Spike Added ng/g	MSD Conc ng/g	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Perfluorooctanoic acid	N.D.	25	21.22	22.94	18.91	85	82	65-147	11	30
Perfluoropentanoic acid	N.D.	25	19.43	22.94	17.83	78	78	71-139	9	30
Perfluorotetradecanoic acid	N.D.	25	21.07	22.94	19.63	84	86	66-147	7	30
Perfluorotridecanoic acid	N.D.	25	20.28	22.94	19.34	81	84	63-152	5	30
Perfluoroundecanoic acid	N.D.	25	22.02	22.94	18.88	88	82	65-146	15	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201281063801	Sample number	er(s): 1310328-	1310329 U	NSPK: 1310329)					
Mercury	1.45	0.154	5.75	0.156	1.99	2799 (2)	345 (2)	80-120	97*	20
Batch number: 201281404901A	Sample numbe	er(s): 1310328-	1310329 U	NSPK: 1310329)					
Arsenic	6.62	1.90	13.13	1.44	8.94	342*	162 (2)	75-125	38*	20
Barium	143.92	9.52	108.16	7.19	206.68	-375 (2)	872 (2)	75-125	63*	20
Beryllium	0.313	0.762	1.08	0.576	0.823	101	89	75-125	27*	20
Cadmium	0.349	0.952	1.25	0.719	1.22	95	121	75-125	3	20
Chromium	13.67	9.52	21.57	7.19	19.2	83	77	75-125	12	20
Copper	114.79	9.52	87.85	7.19	85.89	-283 (2)	-402 (2)	75-125	2	20
Lead	194.24	0.952	265.88	0.719	176.89	7523 (2)	-2412 (2)	75-125	40*	20
Manganese	139.94	9.52	104.73	7.19	124.37	-370 (2)	-216 (2)	75-118	17	20
Nickel	15.11	9.52	23.76	7.19	21.4	91 ်	87`´	75-125	10	20
Selenium	0.457	1.90	2.62	1.44	2.18	113	120	75-125	18	20
Silver	0.412	9.52	10.2	7.19	7.63	103	100	75-125	29*	20
Zinc	212.44	95.24	269.81	71.94	255.64	60*	60*	75-125	5	20
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201321404501	Sample number	er(s): 1310326-	1310327 U	NSPK: 1310326	;					
Arsenic	N.D.	5.00	4.85	5.00	5.04	97	101	75-125	4	20
Lead	8.00	5.00	12.91	5.00	12.83	98	97	75-125	1	20
Batch number: 201330571301	Sample number	er(s): 1310326	UNSPK: 13	310326						
Mercury	N.D.	0.0200	0.0164	0.0200	0.0163	82	81	80-120	0	20

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD	DUP RPD Max
Batch number: 201281063801	Sample number(s): 1310	0328-1310329 BKG: 13	10329	
Mercury	1.45	1.59	9 (1)	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Laboratory Duplicate (continued)

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD	DUP RPD Max
Batch number: 201281404901A	Sample number(s): 1310		10329	
Arsenic	6.62	14.28	73*	20
Barium	143.92	80.03	57*	20
Beryllium	0.313	0.413	28*	20
Cadmium	0.349	0.379	8 (1)	20
Chromium	13.67	11.41	18	20
Copper	114.79	73.4	44*	20
Lead	194.24	190.2	2	20
Manganese	139.94	89.64	44*	20
Nickel	15.11	14.96	1	20
Selenium	0.457	1.10	83* (1)	20
Silver	0.412	0.229	57* (1)	20
Zinc	212.44	146.07	37 [*] ′	20
	mg/l	mg/l		
Batch number: 201321404501	Sample number(s): 1310	0326-1310327 BKG: 131	10326	
Arsenic	N.D.	N.D.	0 (1)	20
Lead	8.00	8.14	2	20
Batch number: 201330571301	Sample number(s): 1310	0326 BKG: 1310326		
Mercury	N.D.	0.0000634	200* (1)	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: B201281AA

	Dibromofluoromethane 1,2-Dichloroethane-d4		Toluene-d8	4-Bromofluorobenzene
1310325	102	102	98	98
1310328	101	99	100	94
1310329	102	102	99	96
Blank	102	105	97	99
LCS	104	107	98	102
LCSD	102	103	98	101
Limits:	50-141	54-135	52-141	50-131

Analysis Name: PPL/TCL VOCs Batch number: N201283AA

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PPL/TCL VOCs Batch number: N201283AA

	Dibromofluoromethane 1,2-Dichloroethane-d4		Toluene-d8	4-Bromofluorobenzene
1310331	95	94	94	90
Blank	95	98	94	91
LCS	93	98	95	93
LCSD	94	94	95	91
Limits:	80-120	80-120	80-120	80-120

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: R201311AA

	Dibromofluoromethane 1,2-Dichloroethane-d4		Toluene-d8	4-Bromofluorobenzene
1310324	51	54	74	92
Blank	84	91	90	88
LCS	72	74	73	71
LCSD	72	75	73	72
Limits:	50-141	54-135	52-141	50-131

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20128SLA026

	Phenol-d6	Phenol-d6 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzer		Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1310324	51	44	25	41	55	79	
1310325	44	42	37	36	39	52	
1310328	80	78	94	74	89	107	
1310329	65	59	80	61	73	82	
Blank	65	64	91	62	75	108	
LCS	82	78	105	75	89	116	
MS	79	75	85	73	87	104	
MSD	77	71	85	71	86	100	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136SLB026

	Fluoranthene-d10 Benzo(a)pyrene-d12		1-Methylnaphthalene-d10
1310328	108	72	84
1310329	295*	146*	96
Blank	93	98	81
LCS	94	84	83
Limits:	21-120	17-112	27-107

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Soil

Batch number: 201280010A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310328	119	178*	99	174*
1310329	120	152	99	155*
Blank	85	118	84	120
LCS	64 94		63	100
Limite	10 136	46 1F3	10 136	46 152

Analysis Name: 7 PCBs + Total Soil

Batch number: 201280011A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2			
1310329	55	66	50*	69			
Blank	86	111	94	106			
LCS	92	111	100	109			
MS	62	83	55	117			
MSD	60	83	56	89			
Limits:	53-140	45-143	53-140	45-143			

Analysis Name: 2,4,5-T, 2,4-D, 2,4,5-TP 8151A

Batch number: 201280015A

	2,4-DCAA-D1	2,4-DCAA-D2	
1310328	134	120	
1310329	47	41	
Blank	120	122	
LCS	127	133	
MS	121	122	
MSD	125	123	
Limite	27 126	27 126	

Analysis Name: 7 PCBs + Total Soil Batch number: 201320002A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310328	51*	68	47*	73
Blank	92	102	99	111
LCS	88	105	96	105
Limits:	53-140	45-143	53-140	45-143

Analysis Name: NY 21 PFAS Water Batch number: 20128001

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Water

Batch number: 20128001

Blank 99	Datellinaling	61. 20120001					
Blank 99 92 92 99 95 94 88 LCS 92 90 96 96 96 99 90 Limits: 43-130 38-150 23-175 36-137 35-143 33-140 32-62-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-82-FTS 1310330 95 95 97 99 99 104 104 109 LCS 102 96 104 99 100 108 LCS 102 96 104 99 100 108 LCSD 99 96 104 37-169 105 106 105 106 101 91 86 LCSD 101 99 96 104 109 108 13C3-PFDA 13C8-PFOA		13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
LCS 92 90 90 94 91 98 98 96 99 90 11 11 11 11 11 11 11 11 11 11 11 11 11	1310330	95	90	88	92	88	84
LCSD 96 92 96 96 99 99 90 Limits: 43-130 38-150 23-175 36-137 35-143 33-140 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310330 95 95 95 97 99 98 104 109 109 LCS 102 96 100 93 98 100 LCSD 99 96 104 99 100 100 108 LCSD 99 96 56-124 52-121 48-130 50-124 37-169 Limits: 29-182 52-124 52-121 48-130 50-124 37-169 Limits: 30-143 13C7-PFUnDA 35-NEIFOSAA 13C2-PFDDA 13C2-PFEDA 13C8-PFOSA 1310330 102 94 100 88 89 92 79	Blank	99	92	99	95	94	88
LCSD 96 92 96 96 99 99 90 Limits: 43-130 38-150 23-175 36-137 35-143 33-140 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310330 95 95 95 97 99 98 104 109 109 LCS 102 96 100 93 98 100 LCSD 99 96 104 99 100 100 108 LCSD 99 96 56-124 52-121 48-130 50-124 37-169 Limits: 29-182 52-124 52-121 48-130 50-124 37-169 Limits: 30-143 13C7-PFUnDA 35-NEIFOSAA 13C2-PFDDA 13C2-PFEDA 13C8-PFOSA 1310330 102 94 100 88 89 92 79	LCS	92	90	94	91	98	96
Limits: 43-130 38-150 23-175 36-137 35-143 33-140 13C2-6;2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8;2-FTS 1310330 95 95 95 97 99 99 104 109 104 109 106 102 102 106 100 108 100 108 100 108 100 108 100 108 100 108 100 108 100 108 100 108 100 100	LCSD						
1310330 95 95 95 97 99 99 104 109	Limits:	43-130	38-150	23-175	36-137	35-143	33-140
Blank 100 99 99 99 99 104 109 102 106 102 102 96 100 93 98 104 109 100 108 105 105 104 109 100 108 104 103 104 103 105		13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
LCS 102 96 104 106 99 100 108 108 108 106 104 108 108 108 1010 108 108 109 100 108 108 109 100 108 108 109 100 108 108 109 100 108 108 109 100 108 108 109 100 108 108 109 100 109 100 100 100 100 100 100 100	1310330	95	95	97	99	98	100
LCSD 99 96 104 99 100 108 Limits: 29-182 52-124 52-121 48-130 50-124 37-169 d3-NMeFOSAA 13C7-PFUNDA d5-NEIFOSAA 13C2-PFD0DA 13C2-PFTEDA 13C8-PFOSA 1310330 102 94 100 88 89 82 Blank 104 103 109 94 92 79 LCS 101 98 102 98 92 87 LCSD 106 105 106 101 91 86 Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil 35 98 95 96 95 96 92 1310328 98 95 96 95 96 92 Blank 113 111 110 108 108 101 LCS 117 116 115 118	Blank	100	99	99	99	104	109
LCSD 99 96 104 99 100 108 Limits: 29-182 52-124 52-121 48-130 50-124 37-169 Limits: 29-182 52-124 52-121 48-130 50-124 37-169 Limits: 36-NMEFOSAA 13C2-PFEDDA 13C2-PFTEDA 13C8-PFOSA 1310330 102 94 100 88 89 82 Blank 104 103 109 94 92 79 LCS 101 98 102 98 92 87 LCSD 106 105 106 101 91 86 Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil 350-749 36-127 21-134 10-134 Batch number: 20128007 13C4-PFH9A 13C3-PFH9A 13C3-PFH9A 13C3-PFH9A 13C3-PFH9A 13C3-PFH9A 13C4-PFH9A 13C4-PFH9A 13C4-PFH9A 13C4-PFH9A	LCS	102	96	100	93	98	104
d3-NMeFOSAA 13C7-PFUnDA d5-NEIFOSAA 13C2-PFDoDA 13C2-PFTeDA 13C8-PFOSA 1310330 102 94 100 88 89 82 82 82 82 82 82	LCSD	99	96	104	99	100	108
1310330 102	Limits:	29-182	52-124	52-121	48-130	50-124	37-169
Blank 104 103 109 94 92 79 LCS 101 98 102 98 92 87 LCSD 106 105 106 101 91 86 Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil Batch number: 20128007 13C4-PFBA 13C5-PFPA 13C3-PFBS 13C5-PFHXA 13C3-PFHXS 13C4-PFHpA 1310328 98 95 96 95 96 92 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 87 MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 1310328 89 102 96 95 105 91 1310329 92 102 106 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121 LCS 110 113 122* 116 118 LCS 110 113 122* 116 118 LCS 110 113 122* 117 120* 121 LCS 110 113 122* 116 118 LCS 110 113 122* 116 118 LCS 110 113 122* 116 118 LCS 110 113 121* 116 118 LCS 110 113 122* 116 118 LCS 110 113 121* 116 118 LCS 110 113 122* 116 118 LCS 110 113 121* 116 118 LCS 110 113 114* 110 113 121* 116		d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
LCS 101 98 102 98 92 87 LCSD 106 105 106 105 106 101 91 86 Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil Batch number: 20128007 13C4-PFBA 13C5-PFPeA 13C3-PFBS 13C5-PFHxA 13C3-PFHxS 13C4-PFHpA 1310328 98 95 96 95 96 92 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 89 MSD 93 91 91 89 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-8:2-FTS 13C3-PFDA 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 106 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 116 118	1310330	102	94	100	88	89	82
LCS 101 98 102 98 92 87 LCSD 106 105 106 106 101 91 86 Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil Batch number: 20128007 13C4-PFBA 13C5-PFPeA 13C3-PFBS 13C5-PFHxA 13C3-PFHxS 13C4-PFHpA 1310328 98 95 96 95 96 92 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 89 91 87 MSD 93 91 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-8:2-FTS 13C3-PFDA 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 106 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 116 118	Blank	104	103	109	94	92	79
Limits: 36-143 44-128 42-149 36-127 21-134 10-134 Analysis Name: NY 21 PFAS Soil Batch number: 20128007 13C4-PFBA 13C5-PFPeA 13C3-PFBS 13C5-PFHxA 13C3-PFHxS 13C4-PFHpA 1310328 98 95 96 95 96 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 91 87 MSD 93 91 91 90 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 116 118	LCS	101	98	102	98	92	87
Analysis Name: NY 21 PFAS Soil Batch number: 20128007 13C4-PFBA 13C5-PFPeA 13C3-PFBS 13C5-PFHxA 13C3-PFHxS 13C4-PFHpA 1310328 98 95 96 95 100 102 99 92 1310329 99 95 1100 108 108 101 115 118 107 109 MS 98 91 100 91 100 91 91 91 87 MSD 93 91 100 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 106 104 101 Blank 115 118 LCS 110 118 13C3-PFHX 13C3-PFHX 13C3-PFHX 13C3-PFHX 13C4-PFHPA 13C3-PFHPA 13C4-PFHPA	LCSD	106	105	106	101		86
Batch number: 20128007 13C4-PFBA	Limits:	36-143	44-128	42-149	36-127	21-134	10-134
13C4-PFBA 13C5-PFPeA 13C3-PFBS 13C5-PFHxA 13C3-PFHxS 13C4-PFHpA 1310328 98 95 96 95 96 92 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 87 MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C3-PFHx 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 107 109 13C4-PFHpA 13C4-PFHpA 107 13C4-PFHpA 108 109 109 112 116 118 LCS 110 113 122* 117 120* 121 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C3-PFHx 13C4-PFHpA 13C4-PFHpA 13C3-PFHx 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 100 109 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 100 109 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 100 109 100 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 100 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 13C4-PFHpA 14C4 101 13C4-PFHpA 14C5 100 14C6 100 14C							
1310328 98 95 96 95 96 92 1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 91 87 MSD 93 91 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 1302-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 116 118	Batch numb						
1310329 99 95 100 102 99 92 Blank 113 111 110 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 87 MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121		13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
Blank 113 111 110 108 108 101 LCS 117 116 115 118 107 109 MS 98 91 100 91 91 87 MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 1302-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	1310328	98	95	96	95	96	92
LCS 117 116 115 118 107 109 MS 98 91 100 91 91 91 87 MSD 93 91 91 89 91 89 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	1310329	99	95	100	102	99	92
MS 98 91 100 91 91 87 MSD 93 91 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	Blank	113	111	110	108	108	101
MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	LCS	117	116	115	118	107	109
MSD 93 91 91 89 91 88 Limits: 40-117 38-118 38-120 36-120 38-124 39-120 13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	MS	98	91	100	91	91	87
13C2-6:2-FTS 13C8-PFOA 13C8-PFOS 13C9-PFNA 13C6-PFDA 13C2-8:2-FTS 1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	MSD		91				
1310328 89 102 96 95 105 91 1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	Limits:	40-117	38-118	38-120	36-120	38-124	39-120
1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121		13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1310329 92 102 106 106 104 101 Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	1310328	89	102	96	95	105	91
Blank 115 110 109 112 116 118 LCS 110 113 122* 117 120* 121	1310329						
LCS 110 113 122* 117 120* 121	Blank						
	LCS						
	MS						
	MSD						

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098617

Reported: 06/04/2020 19:00

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Soil Batch number: 20128007

Limits:	25-154	44-115	45-118	39-123	43-118	26-155
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1310328	34	102	47	103	97	101
1310329	36	103	49	106	101	100
Blank	113	116	116	107	106	110
LCS	129	118	124	115	113	116
MS	40	101	50	104	96	104
MSD	31	100	41	95	90	93
Limits:	10-152	34-124	10-156	28-126	26-125	31-127

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

🕸 eurofins 🛭

Lancaster Laboratories Environmental	Acct. # 452	DE) G	iroup	# 2	OPELO	1]s	ample	, #	311	337	24-	-3 [1		1	C	OC	#60	612	24
Client Informatio	n				Matrix					A	naly	sis F	Reque	ester		17.5		For Lab	Use Only		
Client: LANGOW, DPC	Acct, #:					\prod	1		Pr				Filtra			98		FSC:			
Project Name/#: 35 Commerciae St. 170:229024	PWSID #:		\dashv	Tissue] eace					8	-							SCR#: Pre	servatio	n Code	18
Project Manager: GNET-WYKA	P.O. #:		\dashv		Ground		ဗ္) Harry			chacou.					H=HCI N=HNO3	ı	T=Thiosu B=NaOH	1
Sampler: WHE Mc CANOMEY	Quote #:			nent			itainer		5	四,	igs					多		S=H ₂ SO, F=Field F	Filtered		
State where samples were collected: For Compliance:	No 🗆		site	Sediment	Potable NPDES		Total # of Containers	SOA	SNOCE	TZLP ARSENY, LEAD,	HERBS	5(15 (+ HEX	岩		4-DIOXAND			RESIUS	10	
Sample Identification	Collected	Grab	Composite	Soil 🔯	Water	Other:	otal # c	721	121	2116	PESTS	PCBs	TH MEMBES (12 mg/2	245	141		Jun	n And A Leun	ક	
LB13-15.5-17.5	Date Tim		ڵػ	ര്	_ ≥	Ö				1	\dashv		12	$\overrightarrow{\bot}$				(SEE	E-MAI	-ADDRE	TES)
B13-18-20	slu 20 14:2		\dashv	$\vdash\vdash$		 	5	X	Ϋ́			\rightarrow	\rightarrow			\vdash	4			- F	
1817 - 1-3	12:4:		_	$\vdash \vdash$	-	+	1	\triangle			\vdash	\dashv	-	\dashv		\vdash	\dashv				_
1317-6-8	13:15		7	\sqcap		 	主	$\vdash \vdash$	\vdash	Ŷ	\dashv	\neg	\dashv	\dashv	\dashv	-	十	-	*		\dashv
1317, 3-5	13.7	5 X					Б	X	X		X	X	太	才	Image: second content of the content of		\dashv				\dashv
SOOHOLOSOL20		X					6	X	X		X	X	Xt.	文	₹ ₹	K)	十				\dashv
SOFBOI-050620	i500	, –			VFAS-FREE WITHER		2								X		\top				$\neg \neg$
501801-050620	1 -				AQUEUS		2	\boxtimes									丁				\neg
		\rightarrow	_	ot	!												\Box	ja.			
Turnaround Time (TAT) Requested	(alabas sirela)	Relinqui	pighe 1						Potd	\Box	Time							-8	-	177.5	
	(piease circie) ush	-5	Y	V				•	STON .	W	4	5	Received	д ру		4.00		4	Date *	Time	_
(Rush TAT is subject to laboratory approval and surcharge.		Relingu	ulshed	PY		5		- 4	Date		Time		Received	d by					Date	Time	
Requested TAT in business days:		Rollage	1					-							1		2				
FYYKAE MANN, GOY JL	EUNG CHIW.	Relinquia	uisnea b <i>CC</i>	n	1	-		50	Pate .	200	Time	1	Received	d by	The state of	-(1	211	- ;	Date 5-6-2	Time	
E-mail address: NKIM & LANDAN, COM			uished b			7		- 1	Date	I1			Receive	y yd p	M	Jan	u		Date	0 / <i>§</i> S	
Data Package Options (circle if re	quired)		/	140	(Sq	le		. 9	-6-8	6	Time J//J					1					
Type I (EPA Level 3 Equivalent/non-CLP) Type VI (I	Raw Data Only)	Relinqui	ulshed 6	Sy					Date		Time	F	Received /	d by	10	1/1	1	11	Date 5/4/2	Time	20
Type III (Reduced non-CLP) NJ DKQP	TX TRRP-1:	3		If ves	EDD Req	quired	1? (Y	(es	No			7	Relinq UPS			y Comr		al Carrie	ər:	0,	Ť
NYSDEC Category A or B MA MCP	CT RCP		Site	e-Spe	ecific QC (I	(MS/M	/ISD/D	Dup)?			No ume.)	\exists	UPS	_				Other receipt _		Z.º9	

For Eurofins Lancaster Laboratories Environmental use only

000

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

283724

Group Number(s):

Client: Langan, DPC

35 Commercial St. / 170229024

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/06/2020

Number of Packages:

2

Number of Projects:

1

State/Province of Origin:

NY

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes

Trip Blank Type:

HCI

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples: Extra Samples:

No No

Discrepancy in Container Qty on COC:

No

Unpacked by William Mathers

Samples Chilled Details: 35 Commercial St. / 170229024

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler #	<u>Matrix</u>	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	Water	46730061WS	2.9	IR	Wet	Υ	Loose	N
1	Soil	46730061WS	0.5	IR	Wet	Υ	Loose	N
2	Soil	46730061WS	0.7	IR	Wet	Υ	Loose	N

Sample Date/Time Discrepancy Details: 35 Commercial St. / 170229024

Sample ID on COC

Date/Time on Label

Comments

LB17_3-5

Page 1 of 1

5/06/2020 12:05

BMQL

ppb

basis

Dry weight

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm		be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

parts per billion

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 20, 2020 10:31

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2098762 SDG: CMS02 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

A previous version of this report was generated on 05/14/2020 09:31.

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	Date/Time	
SOFB02_050720 Water	05/07/2020 14:20	1310907
SOFB02_050720 TCLP NVE Water	05/07/2020 14:20	1310908
SOTB02_050720 Water	05/07/2020	1310909
LB17_8-10 Soil	05/07/2020 08:45	1310910
LB17_15-16 Soil	05/07/2020 09:15	1310911
LB13N_15-17 Soil	05/07/2020 10:30	1310912
LB13W_15-17 Soil	05/07/2020 11:55	1310913
LB21_1-3 Soil	05/07/2020 13:45	1310914
LB21_15-17 Soil	05/07/2020 14:15	1310915

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2098762

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1310907, 1310909

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Preservation requirements were not met. The sample was received at pH <2 which is not the preservation specified for acrolein or acrylonitrile under the referenced method. The preservation criteria is pH of 4-5.

SW-846 8270D, GC/MS Semivolatiles

Sample #s: 1310914

Benzo(b)fluoranthene and benzo(k)fluoranthene were not resolved under the sample analysis conditions. The result reported for benzo(b)fluoranthene represents the combined total of both isomers.

Sample #s: 1310907

The LCS and/or LCSD recoveries are outside the stated QC window but within the marginal exceedance allowance of +/- 4 standard deviations as defined in the TNI/DoD Standards. The following analytes are accepted based on this allowance: Benzidine

Batch #: 20129WAC026 (Sample number(s): 1310907)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD were below the acceptance window: Benzidine

SW-846 8270D SIM, GC/MS Semivolatiles

Sample #s: 1310911, 1310914, 1310915

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Reporting limits were raised due to interference from the sample matrix.

Sample #s: 1310907

The holding time was not met. The analysis was added after the holding time had already expired.

Batch #: 20136SLB026 (Sample number(s): 1310911, 1310914-1310915)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1310911, 1310914

SW-846 8081B, Pesticides

Sample #s: 1310915

Reporting limits were raised due to interference from the sample matrix.

Batch #: 201290008A (Sample number(s): 1310911, 1310914-1310915 UNSPK: 1310911)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Endosulfan I

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Beta BHC, Gamma BHC - Lindane, Delta BHC, Heptachlor, Aldrin, 4,4'-Ddt, Endrin, Endosulfan II, Endosulfan Sulfate, Alpha Chlordane, Alpha BHC

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Alpha Chlordane, Gamma BHC - Lindane, Aldrin, Endosulfan Sulfate

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1310911, 1310915, MSD

SW-846 8082A, PCBs

Sample #s: 1310907

The LCS/LCSD surrogate(s) recovery is outside the QC acceptance limits as noted on the QC Summary. Since the recovery for the target analytes is compliant, the data is reported.

Batch #: 201290014A (Sample number(s): 1310907)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) LCS, LCSD

SW-846 8082A Feb 2007 Rev 1, PCBs

Batch #: 201290009A (Sample number(s): 1310911, 1310914-1310915 UNSPK: 1310914)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: PCB-1016, PCB-1260

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1310914, MS, MSD

SW-846 8151A, Herbicides

Sample #s: 1310907

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample #s: 1310911, 1310914, 1310915

The recovery for the method blank surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and no target analytes were detected, the data is reported.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201290002A (Sample number(s): 1310907)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP

Batch #: 201290011A (Sample number(s): 1310911, 1310914-1310915 UNSPK: 1310915)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: 2,4-D

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) Blank, LCS

EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1310907

The recovery for extraction standard d3-NMeFOSAA is outside the QC acceptance limits in the continuing closing calibration verification standard.

SW-846 6020B Rev.2, July 2014, Metals

<u>Batch #: 201281404904A (Sample number(s): 1310910-1310911, 1310914-1310915 UNSPK: 1310911 BKG: 1310911)</u>

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Copper, Zinc, Barium

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Arsenic, Barium, Beryllium, Chromium, Lead, Manganese, Nickel, Selenium

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Barium, Lead

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Barium, Beryllium, Chromium, Copper, Nickel, Selenium, Silver, Zinc

SW-846 7471B, Metals

<u>Batch #: 201281063802 (Sample number(s): 1310910-1310911, 1310914-1310915 UNSPK: 1310910 BKG: 1310910)</u>

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Mercury

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Mercury

SW-846 9012B, Wet Chemistry

Batch #: 20133102201A (Sample number(s): 1310911, 1310914-1310915 UNSPK: 1310914 BKG: 1310914)

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Total Cyanide (solid)

SW-846 7196A, Wet Chemistry

Batch #: 20129042501A (Sample number(s): 1310911, 1310914-1310915 UNSPK: 1310911 BKG: 1310911)

The recovery(ies) for the following analyte(s) in the MS were below the acceptance window: Hexavalent Chromium (SOLIDS)

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	1,4-Dioxane	123-91-1	N.D.	0.029	0.075	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

Matrix: Water

CAT No.	Analysis Name	CAS Num	ber Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
A Rep	oort Limit Verification (RLV)	standard is analyzed to confir	m			

sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Preservation requirements were not met. The sample was received at pH <2 which is not the preservation specified for acrolein or acrylonitrile under the referenced method. The preservation criteria is pH of 4-5.

GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Acenaphthene	83-32-9	N.D.	0.0001	0.0005	1
14242	Acenaphthylene	208-96-8	N.D.	0.0001	0.0005	1
14242	Acetophenone	98-86-2	N.D.	0.004	0.010	1
14242	Anthracene	120-12-7	N.D.	0.0001	0.0005	1
14242	Atrazine	1912-24-9	N.D.	0.002	0.005	1
14242	Benzaldehyde	100-52-7	N.D.	0.003	0.010	1
14242	Benzidine	92-87-5	N.D.	0.020	0.061	1
14242	Benzo(a)anthracene	56-55-3	N.D.	0.0001	0.0005	1
14242	Benzo(a)pyrene	50-32-8	N.D.	0.0001	0.0005	1
14242	Benzo(b)fluoranthene	205-99-2	N.D.	0.0001	0.0005	1
14242	Benzo(g,h,i)perylene	191-24-2	N.D.	0.0001	0.0005	1
14242	Benzo(k)fluoranthene	207-08-9	N.D.	0.0001	0.0005	1
14242	1,1'-Biphenyl	92-52-4	N.D.	0.003	0.010	1
14242	Butylbenzylphthalate	85-68-7	N.D.	0.002	0.005	1
14242	Di-n-butylphthalate	84-74-2	N.D.	0.002	0.005	1
14242	Caprolactam	105-60-2	N.D.	0.005	0.011	1
14242	Carbazole	86-74-8	N.D.	0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ethe	er ¹ 39638-32-9	N.D.	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/07/2020 19:45

 Collection Date/Time:
 05/07/2020 14:20

 SDG#:
 CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW	-846 8270D	mg/l	mg/l	mg/l	
	Bis(2-chloroisopropyl) ether CA 2,2'-Oxybis(1-chloropropane) C chromatographically. The reportotal of both compounds.	AS #108-60-1 cannot be separ				
14242	2-Chloronaphthalene	91-58-7	N.D.	0.0004	0.001	1
14242	2-Chlorophenol	95-57-8	N.D.	0.0005	0.002	1
14242	Chrysene	218-01-9	N.D.	0.0001	0.0005	1
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.0001	0.0005	1
14242	Dibenzofuran	132-64-9	N.D.	0.0005	0.002	1
14242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.002	1
14242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.002	1
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.010	1
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.010	1
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.021	1
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.014	0.030	1
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.005	1
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1
14242	2,4_2,6-Dinitrotoluenes1	25321-14-6	N.D.	0.001	0.005	1
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1
	Azobenzene cannot be distingu reported for 1,2-diphenylhydraz compounds.					
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.011	1
14242	Fluoranthene	206-44-0	N.D.	0.0001	0.0005	1
14242	Fluorene	86-73-7	N.D.	0.0001	0.0005	1
14242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0005	1
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.011	1
14242	Hexachloroethane	67-72-1	N.D.	0.001	0.005	1
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0005	1
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1
14242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0005	1
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1
	3-Methylphenol and 4-methylph chromatographic conditions use for 4-methylphenol represents the	ed for sample analysis. The res the combined total of both comp	ult reported counds.			
14242	Naphthalene	91-20-3	N.D.	0.0001	0.0005	1
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

CAT No.	Analysis Name	CAS	Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D		mg/l	mg/l	mg/l	
14242	Nitrobenzene	98-95	-3	N.D.	0.0005	0.002	1
14242	N-Nitrosodimethylamine	62-75	-9	N.D.	0.002	0.005	1
14242	N-Nitroso-di-n-propylamin	e 621-6	4-7	N.D.	0.0007	0.003	1
14242	N-Nitrosodiphenylamine	86-30	-6	N.D.	0.0007	0.003	1
	N-nitrosodiphenylamine d diphenylamine. The resul represents the combined	t reported for N-nitrosodi total of both compounds.	ohenylamine				
14242	Di-n-octylphthalate	117-8		N.D.	0.005	0.011	1
14242	Pentachlorophenol	87-86		N.D.	0.001	0.005	1
14242	Phenanthrene	85-01		N.D.	0.0001	0.0005	1
14242	Phenol	108-9		N.D.	0.0005	0.002	1
14242	Pyrene	129-0	0-0	N.D.	0.0001	0.0005	1
14242	Pyridine	110-8		N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-8		N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95		N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06	-2	N.D.	0.0005	0.002	1
the Ti allowa	arginal exceedance allowar NI/DoD Standards. The foll ance: Benzidine	owing analytes are accep	ted based on t		ug/l	ug/l	
	Semivolatiles	SW-846 8270D SII		_	-	-	4
14244	1,4-Dioxane	123-9		N.D.	0.1	0.3	1
	olding time was not met. T Iready expired.	ne anaiysis was added ai	ter the holding	time			
Herbici	ides	SW-846 8151A		mg/l	mg/l	mg/l	
10407	2,4-D	94-75	-7	N.D. D1	0.00024	0.00057	1
10407	2,4,5-T	93-76	-5	N.D. D2	0.000062	0.00014	1
10407	2,4,5-TP	93-72	-1	N.D. D1	0.000095	0.000048	1
Spike Sumn	ecovery for a target analyte (s) is outside the QC accep nary. Since the recovery is ot detected in the sample, t	tance limits as noted on t high and the target analy	he QC				
PCBs		SW-846 8082A		mg/l	mg/l	mg/l	
10591	PCB-1016	12674	I-11-2	N.D. D1	0.00010	0.00050	1
10591	PCB-1221	11104	1-28-2	N.D. D1	0.00010	0.00050	1
10591	PCB-1232	1114	I-16-5	N.D. D1	0.00020	0.00050	1
10591	PCB-1242	53469	9-21-9	N.D. D1	0.00010	0.00050	1
10591	PCB-1248	12672	2-29-6	N.D. D2	0.00010	0.00050	1
10591	PCB-1254	11097	7-69-1	N.D. D1	0.00010	0.00050	1
10591	PCB-1260	11096		N.D. D1	0.00015	0.00050	1
10591	Total PCBs ¹	1336-		N.D.	0.00010	0.00050	1
	CS/LCSD surrogate(s) reco	overy is outside the QC ac					
	U (, , , , , , , , , , , , , , , , , ,				*** *** ***		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/07/2020 19:45

 Collection Date/Time:
 05/07/2020 14:20

 SDG#:
 CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
	s as noted on the QC Summet analytes is compliant, the	nary. Since the recovery for the				
· ·	•	·	a./l	(I		
Pestic		SW-846 8081B	mg/l	mg/l	mg/l	
10589	Aldrin	309-00-2	N.D. D1	0.0000020	0.000010	1
10589	Alpha BHC	319-84-6	N.D. D1	0.0000030	0.000010	1
10589	Beta BHC	319-85-7	N.D. D1	0.0000034	0.000010	1
10589	Gamma BHC - Lindane	58-89-9	N.D. D1	0.0000020	0.000010	1
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.0000030	0.000010	1
10589	4,4'-Ddd	72-54-8	N.D. D2	0.0000050	0.000020	1
10589	4,4'-Dde	72-55-9	N.D. D2	0.0000050	0.000020	1
10589	4,4'-Ddt	50-29-3	N.D. D2	0.0000052	0.000020	1
10589	Delta BHC	319-86-8	N.D. D1	0.0000034	0.000010	1
10589	Dieldrin	60-57-1	N.D. D2	0.0000053	0.000020	1
10589 10589	Endosulfan I	959-98-8	N.D. D1	0.000043	0.000010	1
10589	Endosulfan II Endosulfan Sulfate	33213-65-9 1031-07-8	N.D. D1 N.D. D1	0.000015	0.000040 0.000020	1
10589		72-20-8	N.D. D1 N.D. D2	0.0000058		1
10589	Endrin			0.0000081	0.000030	1
10369	Heptachlor	76-44-8	N.D. D2	0.0000020	0.000010	I
LC/MS	MS Miscellaneous	EPA 537 Version 1.1	ng/l	ng/l	ng/l	
_0,0	, mo moodianoodo	Modified	-	_	_	
14473	6:2-Fluorotelomersulfonio		N.D.	1.6	4.0	1
14473	8:2-Fluorotelomersulfonio	c acid¹ 39108-34-4	N.D.	0.80	2.4	1
14473	NEtFOSAA1	2991-50-6	N.D.	0.40	2.4	1
	NEtFOSAA is the acrony	m for N-ethyl perfluorooctanesulfor	namidoacetic Acid.			
14473	NMeFOSAA ¹	2355-31-9	N.D.	0.48	1.6	1
	NMeFOSAA is the acron	ym for N-methyl perfluorooctanesu	Ifonamidoacetic Acid.			
14473	Perfluorobutanesulfonic	• •	N.D.	0.40	1.6	1
14473	Perfluorobutanoic acid1	375-22-4	N.D.	1.6	4.0	1
14473	Perfluorodecanesulfonic		N.D.	0.40	1.6	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.40	1.6	1
14473	Perfluorododecanoic acid	d¹ 307-55-1	N.D.	0.40	1.6	1
14473	Perfluoroheptanesulfonio	acid ¹ 375-92-8	N.D.	0.40	1.6	1
14473	Perfluoroheptanoic acid1	375-85-9	N.D.	0.40	1.6	1
14473	Perfluorohexanesulfonic	acid ¹ 355-46-4	N.D.	0.40	1.6	1
14473	Perfluorohexanoic acid1	307-24-4	N.D.	0.40	1.6	1
14473	Perfluorononanoic acid1	375-95-1	N.D.	0.40	1.6	1
14473	Perfluorooctanesulfonam	nide ¹ 754-91-6	N.D.	0.40	1.6	1
14473	Perfluorooctanesulfonic a	acid¹ 1763-23-1	N.D.	0.40	1.6	1
14473	Perfluorooctanoic acid1	335-67-1	N.D.	0.40	1.6	1
14473	Perfluoropentanoic acid1	2706-90-3	N.D.	0.40	1.6	1
14473	Perfluorotetradecanoic a		N.D.	0.40	1.6	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.40	1.6	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

WW 1310907

2098762

Sample Description: SOFB02 050720 Water

Project Name:

SDG#:

Submittal Date/Time:

Collection Date/Time:

35 Commercial Street / 170229024

35 Commercial Street/170229024

05/07/2020 19:45 05/07/2020 14:20

CMS02-01FB

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
		1 2058-94-8 dard d3-NMeFOSAA is outside the QC ng closing calibration verification stand		0.40	1.6	1
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	N.D. K4	0.00068	0.0020	1
06026	Barium	7440-39-3	N.D.	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D. K4	0.00015	0.00050	1
06031	Chromium	7440-47-3	N.D.	0.00033	0.0020	1
02828	Trivalent Chromium wate	rs¹ 16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium Chromium from Total Chi	result is calculated by subtracting Hexa romium.	avalent			
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	N.D.	0.00063	0.0020	1
06039	Nickel	7440-02-0	N.D.	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D. K4	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1
Wet Ch	nemistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1310907
ELLE Group #: 2098762

Matrix: Water

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11997	PPL/TCL VOCs	SW-846 8260C	1	Y201332AA	05/12/2020 14:20	Corie Mellinger	1
01163	GC/MS VOA Water Prep	SW-846 5030C	1	Y201332AA	05/12/2020 14:19	Corie Mellinger	1
14242	TCL SW846 8270D MINI	SW-846 8270D	1	20129WAC026	05/11/2020 10:58	Edward C Monborne	1
14244	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136WAB026	05/18/2020 00:43	William H Saadeh	1
00813	BNA Water Extraction	SW-846 3510C	1	20129WAC026	05/09/2020 02:00	Mathias Okpo	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	20136WAB026	05/15/2020 18:45	Patrick Thimes	1
10407	Herbicides in Water 8151A	SW-846 8151A	1	201290002A	05/11/2020 22:34	Richard A Shober	1
10591	7 PCBs + Total Water	SW-846 8082A	1	201290014A	05/12/2020 09:10	Covenant Mutuku	1
10589	NY Part 375 Pests Water	SW-846 8081B	1	201290013A	05/11/2020 22:47	Dylan Schreiner	1
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201290014A	05/11/2020 09:14	Christine E Gleim	1
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201290013A	05/11/2020 09:14	Christine E Gleim	1
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201290002A	05/08/2020 18:05	Bradley W VanLeuven	1
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20132008	05/13/2020 16:31	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	20132008	05/11/2020 16:00	Andrew Kutchins	1
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201291404401	05/08/2020 11:20	Patrick J Engle	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/13/2020 13:29	Janeyah Rivers-Hamilton	1
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201340282801	05/13/2020 18:42	Tshina Alamos	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/13/2020 13:29	Janeyah Rivers-Hamilton	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/13/2020 13:29	Janeyah Rivers-Hamilton	1
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201291404701A	05/09/2020 14:38	Patrick J Engle	1
00259	Mercury	SW-846 7470A	1	201250571307	05/11/2020 13:58	Damary Valentin	1
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201291404401	05/08/2020 05:00	Annamaria Kuhns	1
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201291404701	05/08/2020 05:00	Annamaria Kuhns	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201250571307	05/08/2020 06:30	Annamaria Kuhns	1
08255	Total Cyanide (water)	SW-846 9012B	1	20134117101B	05/13/2020 12:44	Jonathan Saul	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB02_050720 Water

35 Commercial Street / 170229024

ELLE Sample #: WW 1310907 ELLE Group #: 2098762

Langan Eng & Env Services

Matrix: Water

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-01FB

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
08256	Cyanide Water Distillation	SW-846 9012B	1	20134117101B	05/13/2020 08:50	Nancy J Shoop	1
00276	Hexavalent Chromium	SW-846 7196A	1	20129027601A	05/08/2020 00:50	Daniel S Smith	1

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1310908

2098762

Sample Description: SOFB02_050720 TCLP NVE Water

35 Commercial Street / 170229024

ELLE Group #: Matrix: Water

ELLE Sample #:

35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:20
SDG#: CMS02-02FB

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201321404503	05/12/2020 11:58	Lisa J Cooke	1			
14045 01339	ICP-WW/TL, 3010A (tot) - U345 Leachate Filtration	SW-846 3010A SW-846 1311	1 1	201321404503 20132-9169-1339	05/12/2020 02:33 05/11/2020 10:30	James L Mertz Craig S Pfautz	1 n.a.			

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB02_050720 Water

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/07/2020 19:45

 Collection Date/Time:
 05/07/2020

 SDG#:
 CMS02-03TB

Langan Eng & Env Services
ELLE Sample #: WW 1310909
ELLE Group #: 2098762

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	OC .	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.007 J	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	0.0004 J	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	1,4-Dioxane	123-91-1	N.D.	0.029	0.075	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB02_050720 Water

35 Commercial Street / 170229024

35 Commercial Street/170229024

 Submittal Date/Time:
 05/07/2020 19:45

 Collection Date/Time:
 05/07/2020

 SDG#:
 CMS02-03TB

Project Name:

Langan Eng & Env Services
ELLE Sample #: WW 1310909
ELLE Group #: 2098762

Matrix: Water

CAT No.	Analysis Name	CAS	Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C		mg/l	mg/l	mg/l	
11997	1,1,2,2-Tetrachloroethane	79-34	1- 5	N.D.	0.0002	0.001	1
11997	Tetrachloroethene	127-1	18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-8	38-3	0.0003 J	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55	5-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00)-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01	1-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69	9-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63	3-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-6	67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01	1-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-	-20-7	N.D.	0.001	0.006	1
ΔRor	oort Limit Verification (RLV)	standard is analyzed to d	confirm				

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Preservation requirements were not met. The sample was received at pH <2 which is not the preservation specified for acrolein or acrylonitrile under the referenced method. The preservation criteria is pH of 4-5.

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Dilution **Analysis Name** Trial# Batch# **Analysis** Analyst **Date and Time** No. Factor PPL/TCL VOCs SW-846 8260C Y201332AA 05/12/2020 14:42 Corie Mellinger 11997 GC/MS VOA Water Prep SW-846 5030C Y201332AA Corie Mellinger 01163 05/12/2020 14:41

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310910

2098762

Sample Description: LB17_8-10 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time:

05/07/2020 08:45 SDG#: CMS02-04

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
Metals		SW-846 6020B Rev.2, July	mg/kg	mg/kg	mg/kg		
		2014					
06125	Arsenic	7440-38-2	16.0	0.156	0.465	2	
06135	Lead	7439-92-1	766	0.586	2.32	20	
		SW-846 7471B	mg/kg	mg/kg	mg/kg		
00159	Mercury	7439-97-6	4.97	0.197	0.866	10	
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%		
00111	Moisture ¹	n.a.	28.9	0.50	0.50	1	
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.						

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# Dilution **Analysis** Analyst Date and Time Factor No. 06125 Arsenic SW-846 6020B Rev.2, 201281404904A 05/12/2020 10:17 Janeyah Rivers-Hamilton 2 July 2014 SW-846 6020B Rev.2, 06135 201281404904A 05/13/2020 10:56 Janeyah Rivers-Hamilton 20 Lead July 2014 00159 SW-846 7471B 1 201281063802 05/11/2020 09:01 Damary Valentin 10 Mercury 14049 ICP/ICPMS-SW, 3050B - U345 SW-846 3050B 201281404904 05/08/2020 04:40 Annamaria Kuhns 1 1 SW-846 7471B 10638 Hg - SW, 7471B - U4 201281063802 05/08/2020 05:50 Annamaria Kuhns 1 1 00111 SM 2540 G-2011 20131820001A 05/11/2020 09:28 Larry E Bevins Moisture 1 %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 09:15
SDG#: 05/07/2020 09:15
CMS02-05

Langan Eng & Env Services
ELLE Sample #: SW 1310911
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.044	0.007	0.023	0.95
11995	Acrolein	107-02-8	N.D.	0.006	0.12	0.95
11995	Acrylonitrile	107-13-1	N.D.	0.0009	0.023	0.95
11995	Benzene	71-43-2	N.D.	0.0006	0.006	0.95
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.006	0.95
11995	Bromoform	75-25-2	N.D.	0.006	0.012	0.95
11995	Bromomethane	74-83-9	N.D.	0.0008	0.006	0.95
11995	2-Butanone	78-93-3	0.010 J	0.002	0.012	0.95
11995	t-Butyl alcohol	75-65-0	N.D.	0.017	0.12	0.95
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.009	0.95
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.006	0.95
11995	tert-Butylbenzene	98-06-6	N.D.	0.0009	0.006	0.95
11995	Carbon Disulfide	75-15-0	0.0008 J	0.0007	0.006	0.95
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0006	0.006	0.95
11995	Chlorobenzene	108-90-7	N.D.	0.0006	0.006	0.95
11995	Chloroethane	75-00-3	N.D.	0.001	0.006	0.95
11995	Chloroform	67-66-3	N.D.	0.0007	0.006	0.95
11995	Chloromethane	74-87-3	N.D.	0.0007	0.006	0.95
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0006	0.006	0.95
11995	Dibromochloromethane	124-48-1	N.D.	0.0006	0.006	0.95
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.006	0.95
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.006	0.95
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.006	0.95
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.006	0.95
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0007	0.006	0.95
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0006	0.006	0.95
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0007	0.006	0.95
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0006	0.006	0.95
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0006	0.006	0.95
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0006	0.006	0.95
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.012	0.95
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0006	0.006	0.95
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.006	0.95
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0006	0.006	0.95
11995	1,4-Dioxane	123-91-1	N.D.	0.043	0.087	0.95
11995	Ethylbenzene	100-41-4	N.D.	0.0005	0.006	0.95
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.006	0.95
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0006	0.006	0.95
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.006	0.95
11995	n-Propylbenzene	103-65-1	N.D.	0.0005	0.006	0.95
11995	Styrene	100-42-5	N.D.	0.0005	0.006	0.95

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 09:15 SDG#: CMS02-05

10726

1,2-Dichlorobenzene

Langan Eng & Env Services 35 Commercial Street / 170229024 ELLE Sample #: SW 1310911 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

Dry Dry Method Limit of CAT Dry Dilution **Detection Limit*** Quantitation **Analysis Name CAS Number** Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8260C GC/MS Volatiles 11995 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 0.0005 0.006 0.95 Tetrachloroethene 127-18-4 N.D. 0.006 11995 0.0006 0.95 11995 Toluene 108-88-3 N.D. 0.0007 0.006 0.95 11995 1,1,1-Trichloroethane 71-55-6 N.D. 0.0007 0.006 0.95 1,1,2-Trichloroethane 79-00-5 N.D. 0.0006 0.006 0.95 11995 11995 Trichloroethene 79-01-6 N.D. 0.0006 0.006 0.95 11995 Trichlorofluoromethane 75-69-4 N.D. 8000.0 0.006 0.95 11995 1,2,4-Trimethylbenzene 95-63-6 0.0006 J 0.0006 0.006 0.95 1,3,5-Trimethylbenzene N.D. 0.006 0.95 11995 108-67-8 0.0006 11995 Vinyl Chloride 75-01-4 N.D. 0.0007 0.006 0.95 1330-20-7 0.95 11995 Xylene (Total) N.D. 0.002 0.012 SW-846 8270D mg/kg mg/kg mg/kg **GC/MS Semivolatiles** 83-32-9 3.5 800.0 0.040 10726 Acenaphthene 1 10726 Acenaphthylene 208-96-8 0.35 800.0 0.040 1 10726 Acetophenone 98-86-2 N.D. 0.040 0.12 10726 Anthracene 120-12-7 6.5 0.008 0.040 10726 Atrazine 1912-24-9 N.D. 0.48 1.0 10726 0.40 Benzaldehyde 100-52-7 N.D. 0.16 10726 Benzidine 92-87-5 2.4 N.D. 0.81 10726 Benzo(a)anthracene 56-55-3 11 0.081 0.20 5 10726 Benzo(a)pyrene 50-32-8 9.1 800.0 0.040 10726 Benzo(b)fluoranthene 205-99-2 0.040 0.008 10726 Benzo(g,h,i)perylene 191-24-2 4.5 800.0 0.040 10726 Benzo(k)fluoranthene 207-08-9 3.9 0.008 0.040 1,1'-Biphenyl 92-52-4 0.31 0.089 10726 0.040 Butylbenzylphthalate 85-68-7 0.40 10726 N.D. 0.16 10726 Di-n-butylphthalate 84-74-2 N.D. 0.16 0.40 10726 Caprolactam 105-60-2 N.D. 0.081 0.40 86-74-8 0.089 10726 Carbazole 2.9 0.040 10726 bis(2-Chloroethyl)ether 111-44-4 N.D. 0.056 0.12 1 10726 39638-32-9 N.D. 0.10 bis(2-Chloroisopropyl)ether1 0.048 Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds. 10726 2-Chloronaphthalene ΝD 91-58-7 0.016 0.081 10726 2-Chlorophenol 95-57-8 N.D. 0.089 0.040 1 10726 Chrysene 218-01-9 9.7 0.040 0.20 5 10726 Dibenz(a,h)anthracene 53-70-3 1.5 0.016 0.040 1 10726 Dibenzofuran 132-64-9 2.3 0.040 0.089 1

0.040

0.12

1

N.D.

95-50-1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 09:15 SDG#: CMS02-05

Langan Eng & Env Services 35 Commercial Street / 170229024 ELLE Sample #: SW 1310911 **ELLE Group #:** 2098762 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.040	0.089	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.040	0.089	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.24	0.81	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.048	0.10	1			
10726	Diethylphthalate	84-66-2	N.D.	0.16	0.40	1			
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.073	0.16	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.16	0.40	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.56	1.2	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.81	2.4	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.16	0.40	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.056	0.12	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.056	0.12	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.048	0.10	1			
	Azobenzene cannot be distinguished f reported for 1,2-diphenylhydrazine rep compounds.								
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.16	0.40	1			
10726	Fluoranthene	206-44-0	25	0.040	0.20	5			
10726	Fluorene	86-73-7	3.9	0.008	0.040	1			
10726	Hexachlorobenzene	118-74-1	N.D.	0.016	0.040	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.089	0.19	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.48	1.2	1			
10726	Hexachloroethane	67-72-1	N.D.	0.081	0.40	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	4.4	0.008	0.040	1			
10726	Isophorone	78-59-1	N.D.	0.040	0.089	1			
10726	2-Methylnaphthalene	91-57-6	1.2	0.008	0.081	1			
10726	2-Methylphenol	95-48-7	0.057 J	0.040	0.16	1			
10726	4-Methylphenol	106-44-5	0.18	0.040	0.12	1			
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.								
10726	Naphthalene	91-20-3	3.4	0.016	0.040	1			
10726	2-Nitroaniline	88-74-4	N.D.	0.040	0.12	1			
10726	Nitrobenzene	98-95-3	N.D.	0.065	0.16	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.16	0.40	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.056	0.12	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.040	0.089	1			
	N-nitrosodiphenylamine decomposes i diphenylamine. The result reported fo represents the combined total of both	r N-nitrosodiphenylamin	е						
10726	Di-n-octylphthalate	117-84-0	N.D.	0.16	0.40	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.16	0.40	1			
10726	Phenanthrene	85-01-8	27	0.040	0.20	5			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

35 Commercial Street / 170229024

Project Name:

Submittal Date/Time: 05/07/2020 19:45

ELLE Sample #: SW 1310911 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

Collection Date/Time: 05/07/2020 09:15 SDG#: CMS02-05

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	0.12	0.040	0.089	1
10726	Pyrene	129-00-0	21	0.040	0.20	5
10726	Pyridine	110-86-1	N.D.	0.16	0.40	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.056	0.12	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.073	0.16	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.065	0.14	1
GC/MS	S Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	8	20	10
Repo	orting limits were raised due	e to interference from the sample ma	atrix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D1	0.014	0.043	1
10401	2,4,5-T	93-76-5	N.D. D2	0.00099	0.0021	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.0012	0.0021	1
		ank surrogate(s) is outside the QC a				

limits as noted on the QC Summary. Since the recovery is high and no target analytes were detected, the data is reported.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

PCBs		SW-846 8082A Feb 2007 Rev 1	mg/kg	mg/kg	mg/kg	
10885	PCB-1016	12674-11-2	N.D. D1	0.0085	0.040	1
10885	PCB-1221	11104-28-2	N.D. D1	0.011	0.040	1
10885	PCB-1232	11141-16-5	N.D. D1	0.019	0.040	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0078	0.040	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0078	0.040	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0078	0.040	1
10885	PCB-1260	11096-82-5	N.D. D1	0.012	0.040	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0078	0.040	1
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. D2	0.0040	0.020	10
10590	Alpha BHC	319-84-6	0.0092 JPD2	0.0040	0.020	10
10590	Beta BHC	319-85-7	N.D. D1	0.010	0.036	10
10590	Gamma BHC - Lindane	58-89-9	N.D. D2	0.0050	0.020	10
10590	Alpha Chlordane	5103-71-9	N.D. VD1	0.010	0.020	10
10590	4,4'-Ddd	72-54-8	N.D. D2	0.0078	0.047	10
10590	4,4'-Dde	72-55-9	N.D. D2	0.0078	0.047	10
10590	4,4'-Ddt	50-29-3	N.D. D2	0.019	0.047	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 09:15 SDG#: CMS02-05

Langan Eng & Env Services 35 Commercial Street / 170229024 ELLE Sample #: SW 1310911 **ELLE Group #:** 2098762 Matrix: Soil

CAT No.	Analysis Name	CAS Nu	Dry mber Resu	ılt	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/k	g	mg/kg	mg/kg	
10590	Delta BHC	319-86-8	N.D.	D1	0.011	0.036	10
10590	Dieldrin	60-57-1	N.D.	D1	0.0078	0.047	10
10590	Endosulfan I	959-98-8	N.D.	D2	0.0052	0.020	10
10590	Endosulfan II	33213-6	5-9 N.D.	D1	0.026	0.047	10
10590	Endosulfan Sulfate	1031-07-	-8 N.D.	D2	0.0078	0.047	10
10590	Endrin	72-20-8	N.D.	D1	0.016	0.047	10
10590	Heptachlor	76-44-8	N.D.	D1	0.0074	0.020	10
LC/MS/	MS Miscellaneous	EPA 537 Version 1.1	ng/g		ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic		7-2 N.D.		0.70	2.3	1
14027	8:2-Fluorotelomersulfonic				0.70	3.5	1
14027	NEtFOSAA ¹	2991-50-			0.23	2.3	1
11021		n for N-ethyl perfluorooctane		ic Acid	0.20	2.0	•
14027	NMeFOSAA ¹	2355-31-		no riola.	0.23	2.3	1
14021		m for N-methyl perfluoroocta		cetic Acid	0.20	2.0	1
14027	Perfluorobutanesulfonic a	, ,		cette Acia.	0.46	2.3	1
	Perfluorobutanoic acid ¹	375-22-4				2.3	1
14027 14027	Perfluorodecanesulfonic a				0.93 0.23	2.3 0.70	1
14027	Perfluorodecanoic acid ¹	335-76-2			0.23	0.70	1
14027	Perfluorododecanoic acid				0.23	0.70	1
14027	Perfluoroheptanesulfonic				0.23	0.70	1
14027	Perfluoroheptanoic acid ¹	375-85-9			0.23	0.70	1
14027	Perfluorohexanesulfonic a				0.23	0.70	1
14027	Perfluorohexanoic acid ¹	307-24-4			0.23	0.70	1
14027	Perfluorononanoic acid ¹	375-95-1			0.23	0.70	1
14027	Perfluorooctanesulfonami				0.23	0.70	1
14027	Perfluorooctanesulfonic a				0.23	0.70	1
14027	Perfluorooctanoic acid¹	335-67-1			0.23	0.70	1
14027	Perfluoropentanoic acid¹	2706-90-			0.23	0.70	1
14027	Perfluorotetradecanoic ac				0.23	0.70	1
14027	Perfluorotridecanoic acid ¹	72629-9			0.23	0.70	1
14027	Perfluoroundecanoic acid				0.23	0.70	1
Metals		SW-846 6020B Rev.	2, July mg/k	g	mg/kg	mg/kg	
00405	A == == i =	2014	2 424		0.420	0.400	2
06125	Arsenic	7440-38-			0.136	0.406	2
06126	Barium	7440-39-		•	0.186	0.406	2
06127	Beryllium	7440-41-			0.0242	0.0609	2
)			
06128 06131	Cadmium Chromium	7440-43- 7440-47-)	0.0512 0.156	0.102 0.406	2 2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310911

2098762

Sample Description: LB17_15-16 Soil

35 Commercial Street / 170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 09:15

SDG#: CMS02-05

Project Name:

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		W-846 6020B Rev.2, July 014	mg/kg	mg/kg	mg/kg	
02829	Trivalent Chromium soils1	16065-83-1	16.9	0.17	0.51	1
	The Trivalent Chromium resu Chromium from Total Chromi	ult is calculated by subtracting Hexa ium.	avalent			
06133	Copper	7440-50-8	68.1	0.178	0.406	2
06135	Lead	7439-92-1	1,490	2.56	10.2	100
06137	Manganese	7439-96-5	239	1.09	2.03	10
06139	Nickel	7440-02-0	34.0	0.165	0.406	2
06141	Selenium	7782-49-2	0.479	0.132	0.406	2
06142	Silver	7440-22-4	0.244	0.0412	0.102	2
06149	Zinc	7440-66-6	531	5.44	20.3	20
	S	W-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.458	0.0171	0.0750	1
Wet Ch	emistry S	W-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	0.42 J	0.23	0.63	1
	S	:W-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SOLI	DS) 18540-29-9	N.D.	0.17	0.51	1
Wet Ch	•	M 2540 G-2011 Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	17.9	0.50	0.50	1
		in weight of the sample after oven he moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB17_15-16 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 09:15
SDG#: 05/07/2020 09:15
CMS02-05

Langan Eng & Env Services
ELLE Sample #: SW 1310911
ELLE Group #: 2098762

Matrix: Soil

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201311AA	05/10/2020 22:20	Joel Trout	0.95				
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012856765	05/07/2020 22:12	Lois E Hiltz	1				
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012856765	05/07/2020 22:12	Lois E Hiltz	1				
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012856765	05/07/2020 09:15	Client Supplied	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 05:07	William H Saadeh	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 19:50	William H Saadeh	5				
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 09:42	Joseph M Gambler	10				
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20129SLA026	05/09/2020 09:20	Joseph Underdonk	1				
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1				
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201290011A	05/11/2020 16:28	Richard A Shober	1				
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201290009A	05/11/2020 08:13	Covenant Mutuku	1				
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201290008A	05/11/2020 14:58	Lisa A Reinert	10				
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201290009A	05/09/2020 09:10	Joseph Underdonk	1				
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201290008A	05/09/2020 09:15	Joseph Underdonk	1				
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201290011A	05/10/2020 20:05	Karen L Beyer	1				
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 21:38	Anthony C Polaski	1				
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 07:00	Austin Prince	1				
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201340282901	05/13/2020 15:00	Katlin N Burkholder	1				
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 12:04	Janeyah Rivers-Hamiltor	100				
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:00	Janeyah Rivers-Hamiltor	10				
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 09:45	Janeyah Rivers-Hamiltor	2				
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:03	Janeyah Rivers-Hamiltor	2				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310911

2098762

Sample Description: LB17_15-16 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 09:15

SDG#: CMS02-05

ELLE Group #: Matrix: Soil

ELLE Sample #:

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:19	Janeyah Rivers-Hamiltor	20			
00159	Mercury	SW-846 7471B	1	201281063802	05/11/2020 09:11	Damary Valentin	1			
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201281404904	05/08/2020 04:40	Annamaria Kuhns	1			
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201281063802	05/08/2020 05:50	Annamaria Kuhns	1			
05895	Total Cyanide (solid)	SW-846 9012B	1	20133102201A	05/13/2020 12:50	Jonathan Saul	1			
05896	Cyanide Solid Distillation	SW-846 9012B	1	20133102201A	05/12/2020 17:30	Barbara A Washington	1			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20129042501A	05/09/2020 06:55	Daniel S Smith	1			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20129042501A	05/08/2020 09:37	Daniel S Smith	1			
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820001A	05/11/2020 09:28	Larry E Bevins	1			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13N_15-17 Soil

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 10:30 SDG#: CMS02-06

35 Commercial Street / 170229024 ELLE Sample #: SW 1310912 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 83	260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.11	0.006	0.019	0.76
11995	Acrolein	107-02-8	N.D.	0.005	0.093	0.76
11995	Acrylonitrile	107-13-1	N.D.	0.0007	0.019	0.76
11995	Benzene	71-43-2	0.0008 J	0.0005	0.005	0.76
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.76
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.76
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.76
11995	2-Butanone	78-93-3	0.005 J	0.002	0.009	0.76
11995	t-Butyl alcohol	75-65-0	0.030 J	0.014	0.093	0.76
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.007	0.76
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.76
11995	tert-Butylbenzene	98-06-6	N.D.	0.0007	0.005	0.76
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.76
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.76
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.76
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.76
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.76
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.76
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.76
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.76
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.76
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.76
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.76
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.76
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.76
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.76
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.76
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.76
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.76
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.76
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0009	0.009	0.76
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.76
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.76
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.76
11995	1,4-Dioxane	123-91-1	N.D.	0.034	0.070	0.76
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.76
11995	Methyl Acetate	79-20-9	0.001 J	0.0009	0.005	0.76
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.76
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.76
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.76
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.76

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13N_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 10:30
SDG#: CMS02-06

Langan Eng & Env Services
ELLE Sample #: SW 1310912
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.76
11995	Tetrachloroethene	127-18-4	N.D.	0.0005	0.005	0.76
11995	Toluene	108-88-3	N.D.	0.0006	0.005	0.76
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0006	0.005	0.76
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0005	0.005	0.76
11995	Trichloroethene	79-01-6	N.D.	0.0005	0.005	0.76
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0007	0.005	0.76
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0005	0.005	0.76
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0005	0.005	0.76
11995	Vinyl Chloride	75-01-4	N.D.	0.0006	0.005	0.76
11995	Xylene (Total)	1330-20-7	N.D.	0.001	0.009	0.76
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	4.5	0.008	0.041	1
10726	Acenaphthylene	208-96-8	0.36	0.008	0.041	1
10726	Acetophenone	98-86-2	N.D.	0.041	0.12	1
10726	Anthracene	120-12-7	7.2	0.008	0.041	1
10726	Atrazine	1912-24-9	N.D.	0.49	1.1	1
10726	Benzaldehyde	100-52-7	N.D.	0.16	0.41	1
10726	Benzidine	92-87-5	N.D.	0.81	2.4	1
10726	Benzo(a)anthracene	56-55-3	12	0.081	0.20	5
10726	Benzo(a)pyrene	50-32-8	9.9	0.041	0.20	5
10726	Benzo(b)fluoranthene	205-99-2	12	0.041	0.20	5
10726	Benzo(g,h,i)perylene	191-24-2	4.7	0.008	0.041	1
10726	Benzo(k)fluoranthene	207-08-9	4.5	0.008	0.041	1
10726	1,1'-Biphenyl	92-52-4	0.76	0.041	0.089	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.16	0.41	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.16	0.41	1
10726	Caprolactam	105-60-2	N.D.	0.081	0.41	1
10726	Carbazole	86-74-8	3.7	0.041	0.089	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.057	0.12	1
10726	bis(2-Chloroisopropyl)ethe	r ¹ 39638-32-9	N.D.	0.049	0.11	1
		er CAS #39638-32-9 and ne) CAS #108-60-1 cannot be sepa reported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.016	0.081	1
10726	2-Chlorophenol	95-57-8	N.D.	0.041	0.089	1
10726	Chrysene	218-01-9	11	0.041	0.20	5
10726	Dibenz(a,h)anthracene	53-70-3	1.7	0.016	0.041	1
10726	Dibenzofuran	132-64-9	3.6	0.041	0.089	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.041	0.12	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13N_15-17 Soil

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 10:30 SDG#: CMS02-06

35 Commercial Street / 170229024 ELLE Sample #: SW 1310912 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.041	0.089	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.041	0.089	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.24	0.81	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.049	0.11	1			
10726	Diethylphthalate	84-66-2	N.D.	0.16	0.41	1			
10726	2,4-Dimethylphenol	105-67-9	0.55	0.073	0.16	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.16	0.41	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.57	1.2	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.81	2.4	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.16	0.41	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.057	0.12	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.057	0.12	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.049	0.11	1			
	Azobenzene cannot be distinguished reported for 1,2-diphenylhydrazine recompounds.								
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.16	0.41	1			
10726	Fluoranthene	206-44-0	25	0.041	0.20	5			
10726	Fluorene	86-73-7	5.4	0.008	0.041	1			
10726	Hexachlorobenzene	118-74-1	N.D.	0.016	0.041	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.089	0.19	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.49	1.2	1			
10726	Hexachloroethane	67-72-1	N.D.	0.081	0.41	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	4.4	0.008	0.041	1			
10726	Isophorone	78-59-1	N.D.	0.041	0.089	1			
10726	2-Methylnaphthalene	91-57-6	4.3	0.008	0.081	1			
10726	2-Methylphenol	95-48-7	0.57	0.041	0.16	1			
10726	4-Methylphenol	106-44-5	1.3	0.041	0.12	1			
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.								
10726	Naphthalene	91-20-3	12	0.081	0.20	5			
10726	2-Nitroaniline	88-74-4	N.D.	0.041	0.12	1			
10726	Nitrobenzene	98-95-3	N.D.	0.065	0.16	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.16	0.41	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.057	0.12	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.041	0.089	1			
	N-nitrosodiphenylamine decomposes diphenylamine. The result reported for represents the combined total of both	or N-nitrosodiphenylamin	e						
10726	Di-n-octylphthalate	117-84-0	N.D.	0.16	0.41	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.16	0.41	1			
10726	Phenanthrene	85-01-8	29	0.041	0.20	5			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310912

2098762

Sample Description: LB13N_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 10:30

SDG#: CMS02-06

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS Semivolatiles SW-846 8270D		mg/kg	mg/kg	mg/kg		
10726	Phenol	108-95-2	0.76	0.041	0.089	1
10726	Pyrene	129-00-0	22	0.041	0.20	5
10726	Pyridine	110-86-1	N.D.	0.16	0.41	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.057	0.12	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.073	0.16	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.065	0.14	1
Trot Chamber,		SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	18.8	0.50	0.50	1
		oss in weight of the sample after over a sample after over the moisture result reported is one of the moisture result reported is one of the moisture result.				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201311AA	05/10/2020 21:35	Joel Trout	0.76				
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012856765	05/07/2020 22:12	Lois E Hiltz	1				
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012856765	05/07/2020 22:12	Lois E Hiltz	1				
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012856765	05/07/2020 10:30	Client Supplied	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 05:30	William H Saadeh	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 20:13	William H Saadeh	5				
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20129SLA026	05/09/2020 09:20	Joseph Underdonk	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820001A	05/11/2020 09:28	Larry E Bevins	1				

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13W_15-17 Soil

35 Commercial Street / 170229024

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 11:55 SDG#: CMS02-07

ELLE Sample #: SW 1310913 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.045	0.007	0.023	0.93
11995	Acrolein	107-02-8	N.D.	0.006	0.11	0.93
11995	Acrylonitrile	107-13-1	N.D.	0.0009	0.023	0.93
11995	Benzene	71-43-2	N.D.	0.0006	0.006	0.93
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.006	0.93
11995	Bromoform	75-25-2	N.D.	0.006	0.011	0.93
11995	Bromomethane	74-83-9	N.D.	0.0008	0.006	0.93
11995	2-Butanone	78-93-3	0.005 J	0.002	0.011	0.93
11995	t-Butyl alcohol	75-65-0	N.D.	0.017	0.11	0.93
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.009	0.93
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.006	0.93
11995	tert-Butylbenzene	98-06-6	N.D.	0.0009	0.006	0.93
11995	Carbon Disulfide	75-15-0	0.001 J	0.0007	0.006	0.93
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0006	0.006	0.93
11995	Chlorobenzene	108-90-7	N.D.	0.0006	0.006	0.93
11995	Chloroethane	75-00-3	N.D.	0.001	0.006	0.93
11995	Chloroform	67-66-3	N.D.	0.0007	0.006	0.93
11995	Chloromethane	74-87-3	N.D.	0.0007	0.006	0.93
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0006	0.006	0.93
11995	Dibromochloromethane	124-48-1	N.D.	0.0006	0.006	0.93
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.006	0.93
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.006	0.93
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.006	0.93
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.006	0.93
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0007	0.006	0.93
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0006	0.006	0.93
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0007	0.006	0.93
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0006	0.006	0.93
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0006	0.006	0.93
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0006	0.006	0.93
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.011	0.93
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0006	0.006	0.93
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.006	0.93
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0006	0.006	0.93
11995	1,4-Dioxane	123-91-1	N.D.	0.043	0.086	0.93
11995	Ethylbenzene	100-41-4	0.0007 J	0.0005	0.006	0.93
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.006	0.93
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0006	0.006	0.93
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.006	0.93
11995	n-Propylbenzene	103-65-1	0.002 J	0.0005	0.006	0.93
	Styrene	100-42-5	N.D.	0.0005	0.006	0.93

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13W_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 11:55
SDG#: 05/07/2020 11:55
CMS02-07

Langan Eng & Env Services
ELLE Sample #: SW 1310913
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0005	0.006	0.93
11995	Tetrachloroethene	127-18-4	N.D.	0.0006	0.006	0.93
11995	Toluene	108-88-3	0.0009 J	0.0007	0.006	0.93
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0007	0.006	0.93
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0006	0.006	0.93
11995	Trichloroethene	79-01-6	N.D.	0.0006	0.006	0.93
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0008	0.006	0.93
11995	1,2,4-Trimethylbenzene	95-63-6	0.003 J	0.0006	0.006	0.93
11995	1,3,5-Trimethylbenzene	108-67-8	0.001 J	0.0006	0.006	0.93
11995	Vinyl Chloride	75-01-4	N.D.	0.0007	0.006	0.93
11995	Xylene (Total)	1330-20-7	0.005 J	0.002	0.011	0.93
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	12	0.081	0.41	10
10726	Acenaphthylene	208-96-8	0.97	0.008	0.041	1
10726	Acetophenone	98-86-2	N.D.	0.041	0.12	1
10726	Anthracene	120-12-7	15	0.081	0.41	10
10726	Atrazine	1912-24-9	N.D.	0.49	1.1	1
10726	Benzaldehyde	100-52-7	N.D.	0.16	0.41	1
10726	Benzidine	92-87-5	N.D.	0.81	2.4	1
10726	Benzo(a)anthracene	56-55-3	19	0.16	0.41	10
10726	Benzo(a)pyrene	50-32-8	16	0.081	0.41	10
10726	Benzo(b)fluoranthene	205-99-2	19	0.081	0.41	10
10726	Benzo(g,h,i)perylene	191-24-2	8.2	0.008	0.041	1
10726	Benzo(k)fluoranthene	207-08-9	6.2	0.008	0.041	1
10726	1,1'-Biphenyl	92-52-4	0.67	0.041	0.090	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.16	0.41	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.16	0.41	1
10726	Caprolactam	105-60-2	N.D.	0.081	0.41	1
10726	Carbazole	86-74-8	11	0.41	0.90	10
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.057	0.12	1
10726				0.049	0.11	1
10726	2-Chloronaphthalene	91-58-7	N.D.	0.016	0.081	1
10726	2-Chlorophenol	95-57-8	N.D.	0.041	0.090	1
10726	Chrysene	218-01-9	17	0.081	0.41	10
10726	Dibenz(a,h)anthracene	53-70-3	2.5	0.016	0.041	1
10726	Dibenzofuran	132-64-9	11	0.41	0.90	10
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.041	0.12	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB13W_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 11:55
SDG#: 05/07/2020 11:55
CMS02-07

Langan Eng & Env Services
ELLE Sample #: SW 1310913
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor				
GC/MS	Semivolatiles SW-846 8	270D	mg/kg	mg/kg	mg/kg					
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.041	0.090	1				
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.041	0.090	1				
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.24	0.81	1				
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.049	0.11	1				
10726	Diethylphthalate	84-66-2	N.D.	0.16	0.41	1				
10726	2,4-Dimethylphenol	105-67-9	0.77	0.073	0.16	1				
10726	Dimethylphthalate	131-11-3	N.D.	0.16	0.41	1				
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.57	1.2	1				
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.81	2.4	1				
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.16	0.41	1				
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.057	0.12	1				
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.057	0.12	1				
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.049	0.11	1				
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.									
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.16	0.41	1				
10726	Fluoranthene	206-44-0	47	0.081	0.41	10				
10726	Fluorene	86-73-7	14	0.081	0.41	10				
10726	Hexachlorobenzene	118-74-1	N.D.	0.016	0.041	1				
10726	Hexachlorobutadiene	87-68-3	N.D.	0.090	0.19	1				
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.49	1.2	1				
10726	Hexachloroethane	67-72-1	N.D.	0.081	0.41	1				
10726	Indeno(1,2,3-cd)pyrene	193-39-5	7.7	0.008	0.041	1				
10726	Isophorone	78-59-1	N.D.	0.041	0.090	1				
10726	2-Methylnaphthalene	91-57-6	5.6	0.008	0.081	1				
10726	2-Methylphenol	95-48-7	0.50	0.041	0.16	1				
10726	4-Methylphenol	106-44-5	1.2	0.041	0.12	1				
	3-Methylphenol and 4-methylphenol car chromatographic conditions used for sa for 4-methylphenol represents the comb	mple analysis. The res	ult reported							
10726	Naphthalene	91-20-3	16	0.16	0.41	10				
10726	2-Nitroaniline	88-74-4	N.D.	0.041	0.12	1				
10726	Nitrobenzene	98-95-3	N.D.	0.065	0.16	1				
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.16	0.41	1				
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.057	0.12	1				
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.041	0.090	1				
	N-nitrosodiphenylamine decomposes in diphenylamine. The result reported for represents the combined total of both co	N-nitrosodiphenylamin	е							
10726	Di-n-octylphthalate	117-84-0	N.D.	0.16	0.41	1				
10726	Pentachlorophenol	87-86-5	N.D.	0.16	0.41	1				
10726	Phenanthrene	85-01-8	73	0.081	0.41	10				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310913

2098762

Sample Description: LB13W_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 11:55

SDG#: CMS02-07

CAT No.	Analysis Name	CAS Numb	Dry er Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg			
10726	Phenol	108-95-2	0.70	0.041	0.090	1		
10726	Pyrene	129-00-0	39	0.081	0.41	10		
10726	Pyridine	110-86-1	N.D.	0.16	0.41	1		
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.057	0.12	1		
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.073	0.16	1		
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.065	0.14	1		
Wet CI	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%			
00111	Moisture ¹	n.a.	18.7	0.50	0.50	1		
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an							

as-received basis.

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201311AA	05/10/2020 21:57	Joel Trout	0.93				
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012856765	05/07/2020 22:12	Lois E Hiltz	1				
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012856765	05/07/2020 22:13	Lois E Hiltz	1				
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012856765	05/07/2020 11:55	Client Supplied	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 05:53	William H Saadeh	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 20:36	William H Saadeh	10				
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20129SLA026	05/09/2020 09:20	Joseph Underdonk	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820001A	05/11/2020 09:28	Larry E Bevins	1				

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Dry

Matrix: Soil

Dry

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310914

2098762

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: 05/07/2020 13:45 SDG#: CMS02-08

05/07/2020 19:45

CAT No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.014 J	0.005	0.018	0.8
11995	Acrolein	107-02-8	N.D.	0.005	0.091	0.8
11995	Acrylonitrile	107-13-1	N.D.	0.0007	0.018	0.8
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.8
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.8
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.8
11995	Bromomethane	74-83-9	N.D.	0.0006	0.005	0.8
11995	2-Butanone	78-93-3	N.D.	0.002	0.009	0.8
11995	t-Butyl alcohol	75-65-0	N.D.	0.014	0.091	0.8
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.007	0.8
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.8
11995	tert-Butylbenzene	98-06-6	N.D.	0.0007	0.005	0.8
11995	Carbon Disulfide	75-15-0	N.D.	0.0005	0.005	0.8
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.8
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.8
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.8
11995	Chloroform	67-66-3	N.D.	0.0005	0.005	0.8
11995	Chloromethane	74-87-3	N.D.	0.0005	0.005	0.8
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.8
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.8
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.8
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.8
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.8
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.8
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0005	0.005	0.8
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.8
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0005	0.005	0.8
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.8
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.8
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.8
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0009	0.009	0.8
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.8
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.8
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.8
11995	1,4-Dioxane	123-91-1	N.D.	0.034	0.069	0.8
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.8
11995	Methyl Acetate	79-20-9	N.D.	0.0009	0.005	0.8
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.8
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.8
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.8
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.8

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 13:45 SDG#: CMS02-08

ELLE Sample #: SW 1310914 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dry Limit of * Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260	OC .	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	0.0004	0.005	0.8
11995	Tetrachloroethene		127-18-4	N.D.	0.0005	0.005	0.8
11995	Toluene		108-88-3	N.D.	0.0005	0.005	0.8
11995	1,1,1-Trichloroethane		71-55-6	N.D.	0.0005	0.005	0.8
11995	1,1,2-Trichloroethane		79-00-5	N.D.	0.0005	0.005	0.8
11995	Trichloroethene		79-01-6	N.D.	0.0005	0.005	0.8
11995	Trichlorofluoromethane		75-69-4	N.D.	0.0006	0.005	0.8
11995	1,2,4-Trimethylbenzene		95-63-6	N.D.	0.0005	0.005	0.8
11995	1,3,5-Trimethylbenzene		108-67-8	N.D.	0.0005	0.005	0.8
11995	Vinyl Chloride		75-01-4	N.D.	0.0005	0.005	0.8
11995	Xylene (Total)		1330-20-7	N.D.	0.001	0.009	0.8
GC/MS	Semivolatiles	SW-846 8270	0D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene		83-32-9	9.9	0.076	0.38	20
10726	Acenaphthylene		208-96-8	0.23	0.004	0.019	1
10726	Acetophenone		98-86-2	N.D.	0.019	0.057	1
10726	Anthracene		120-12-7	19	0.076	0.38	20
10726	Atrazine		1912-24-9	N.D.	0.23	0.49	1
10726	Benzaldehyde		100-52-7	N.D.	0.076	0.19	1
10726	Benzidine		92-87-5	N.D.	0.38	1.1	1
10726	Benzo(a)anthracene		56-55-3	30	0.15	0.38	20
10726	Benzo(a)pyrene		50-32-8	27	0.076	0.38	20
10726	Benzo(b)fluoranthene		205-99-2	33	0.076	0.38	20
10726	Benzo(g,h,i)perylene		191-24-2	16	0.076	0.38	20
10726	Benzo(k)fluoranthene		207-08-9	N.D.	0.004	0.019	1
10726	1,1'-Biphenyl		92-52-4	0.72	0.019	0.042	1
10726	Butylbenzylphthalate		85-68-7	N.D.	0.076	0.19	1
10726	Di-n-butylphthalate		84-74-2	N.D.	0.076	0.19	1
10726	Caprolactam		105-60-2	N.D.	0.038	0.19	1
10726	Carbazole		86-74-8	5.6	0.38	0.83	20
10726	bis(2-Chloroethyl)ether		111-44-4	N.D.	0.027	0.057	1
10726	bis(2-Chloroisopropyl)ethe		39638-32-9	N.D.	0.023	0.049	1
	Bis(2-chloroisopropyl) ethe 2,2'-Oxybis(1-chloropropar chromatographically. The total of both compounds.	ne) CAS #108-60	-1 cannot be sepa				
10726	2-Chloronaphthalene		91-58-7	N.D.	0.008	0.038	1
10726	2-Chlorophenol		95-57-8	N.D.	0.019	0.042	1
10726	Chrysene		218-01-9	27	0.076	0.38	20
10726	Dibenz(a,h)anthracene		53-70-3	3.2	0.15	0.38	20
10726	Dibenzofuran		132-64-9	5.2	0.38	0.83	20
10726	1,2-Dichlorobenzene		95-50-1	N.D.	0.019	0.057	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310914

2098762

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS02-08

05/07/2020 19:45 05/07/2020 13:45

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles SW-846 827	70 D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.019	0.042	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.019	0.042	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.38	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.023	0.049	1			
10726	Diethylphthalate	84-66-2	N.D.	0.076	0.19	1			
10726	2,4-Dimethylphenol	105-67-9	0.039 J	0.034	0.076	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.076	0.19	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.27	0.57	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.38	1.1	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.076	0.19	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.027	0.057	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.027	0.057	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.023	0.049	1			
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.	ent the combined tot	al of both						
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.076	0.19	1			
10726	Fluoranthene	206-44-0	75	0.076	0.38	20			
10726	Fluorene	86-73-7	9.5	0.076	0.38	20			
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.019	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.042	0.087	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.23	0.57	1			
10726	Hexachloroethane	67-72-1	N.D.	0.038	0.19	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	15	0.076	0.38	20			
10726	Isophorone	78-59-1	N.D.	0.019	0.042	1			
10726	2-Methylnaphthalene	91-57-6	2.2	0.004	0.038	1			
10726	2-Methylphenol	95-48-7	0.021 J	0.019	0.076	1			
10726	4-Methylphenol	106-44-5	0.074	0.019	0.057	1			
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.								
10726	Naphthalene	91-20-3	2.7	0.008	0.019	1			
10726	2-Nitroaniline	88-74-4	N.D.	0.019	0.057	1			
10726	Nitrobenzene	98-95-3	N.D.	0.030	0.076	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.076	0.19	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.027	0.057	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.019	0.042	1			
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-represents the combined total of both com-	nitrosodiphenylamin pounds.							
10726	Di-n-octylphthalate	117-84-0	N.D.	0.076	0.19	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.076	0.19	1			
10726	Phenanthrene	85-01-8	80	0.076	0.38	20			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310914

2098762

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 13:45

SDG#: CMS02-08

CAT No.	Analysis Name	CAS	S Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D		mg/kg	mg/kg	mg/kg	
10726	Phenol	108-	-95-2	0.040 J	0.019	0.042	1
10726	Pyrene	129-	-00-0	63	0.076	0.38	20
10726	Pyridine	110-	-86-1	N.D.	0.076	0.19	1
10726	1,2,4-Trichlorobenzene	120-	-82-1	N.D.	0.027	0.057	1
10726	2,4,5-Trichlorophenol	95-9	95-4	N.D.	0.034	0.076	1
10726	2,4,6-Trichlorophenol	88-0	06-2	N.D.	0.030	0.064	1
GC/MS 12969	Semivolatiles 1,4-Dioxane ting limits were raised du	SW-846 8270D S	-91-1	ug/kg N.D.	ug/kg 7	ug/kg 19	10
•	· ·		Sample math	mg/kg	malka	malka	
Herbici		SW-846 8151A	75 7		mg/kg	mg/kg	á
10401	2,4-D	94-7 93-7		N.D. D2	0.014	0.041	1
10401 10401	2,4,5-T 2,4,5-TP	93-7 93-7		N.D. D2 N.D. D1	0.00093 0.00085	0.0019 0.0019	1
The re limits analyt The re Spike Summ	ecovery for the method bla as noted on the QC Sumr es were detected, the dat ecovery for a target analyt (s) is outside the QC acce	ank surrogate(s) is outside mary. Since the recovery a is reported. e(s) in the Laboratory Co eptance limits as noted on s high and the target ana	e the QC according to the QC according to the QC	eptance	0.0000	5.5010	•

PCBs		SW-846 8082A Feb 2007 Rev 1	mg/kg	mg/kg	mg/kg	
10885	PCB-1016	12674-11-2	N.D. D1	0.0041	0.019	1
10885	PCB-1221	11104-28-2	N.D. D1	0.0052	0.019	1
10885	PCB-1232	11141-16-5	N.D. D1	0.0091	0.019	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0038	0.019	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0038	0.019	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0038	0.019	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0056	0.019	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0038	0.019	1
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. VD1	0.00021	0.00095	1
10590	Alpha BHC	319-84-6	N.D. D1	0.00019	0.00095	1
10590	Beta BHC	319-85-7	N.D. D1	0.00050	0.0017	1
10590	Gamma BHC - Lindane	58-89-9	N.D. D2	0.00024	0.00095	1
10590	Alpha Chlordane	5103-71-9	N.D. D2	0.00019	0.00095	1
10590	4,4'-Ddd	72-54-8	N.D. D2	0.00038	0.0023	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310914

2098762

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS02-08

05/07/2020 19:45 05/07/2020 13:45

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des SW	-846 8081B	mg/kg	mg/kg	mg/kg	
10590	4,4'-Dde	72-55-9	N.D. D2	0.00038	0.0023	1
10590	4,4'-Ddt	50-29-3	N.D. D2	0.00090	0.0023	1
10590	Delta BHC	319-86-8	N.D. D1	0.00051	0.0017	1
10590	Dieldrin	60-57-1	N.D. D2	0.00038	0.0023	1
10590	Endosulfan I	959-98-8	N.D. D2	0.00025	0.00095	1
10590	Endosulfan II	33213-65-9	N.D. D1	0.0013	0.0023	1
10590	Endosulfan Sulfate	1031-07-8	N.D. D1	0.00038	0.0023	1
10590	Endrin	72-20-8	N.D. D1	0.00077	0.0023	1
10590	Heptachlor	76-44-8	N.D. D2	0.00035	0.00095	1
LC/MS/		A 537 Version 1.1 dified	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	0.62	2.1	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.62	3.1	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.21	2.1	1
	NEtFOSAA is the acronym for N	-ethyl perfluorooctanesulfonam	idoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	N.D.	0.21	2.1	1
	NMeFOSAA is the acronym for	N-methyl perfluorooctanesulfon	amidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.42	2.1	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.83	2.1	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.21	0.62	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.21	0.62	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.21	0.62	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.21	0.62	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.21	0.62	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.21	0.62	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.21	0.62	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.21	0.62	1
14027	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.21	0.62	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	0.49 J	0.21	0.62	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.21	0.62	1
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.21	0.62	1
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.21	0.62	1
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.21	0.62	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.21	0.62	1
Metals	SW 201	-846 6020B Rev.2, July 4	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	7.05	0.118	0.354	2
06126	Barium	7440-39-3	76.9	0.162	0.354	2
06127	Beryllium	7440-41-7	0.416	0.0211	0.0531	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310914

2098762

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 13:45

SDG#: CMS02-08

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020 2014	B Rev.2, July	mg/kg	mg/kg	mg/kg	
06128	Cadmium		7440-43-9	0.334	0.0446	0.0885	2
06131	Chromium		7440-47-3	17.1	0.136	0.354	2
02829	Trivalent Chromium soils1		16065-83-1	15.6	0.16	0.48	1
	The Trivalent Chromium re Chromium from Total Chro		by subtracting Hexa	avalent			
06133	Copper		7440-50-8	114	0.388	0.885	5
06135	Lead		7439-92-1	141	0.112	0.442	5
06137	Manganese		7439-96-5	379	0.947	1.77	10
06139	Nickel		7440-02-0	19.2	0.144	0.354	2
06141	Selenium		7782-49-2	0.441	0.115	0.354	2
06142	Silver		7440-22-4	0.109	0.0359	0.0885	2
06149	Zinc		7440-66-6	194	1.19	4.42	5
		SW-846 7471	В	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.733	0.0168	0.0736	1
Wet Ch	emistry	SW-846 9012	:B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	0.39 J	0.21	0.58	1
		SW-846 7196	A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	OLIDS)	18540-29-9	1.5	0.16	0.48	1
Wet Ch	emistry	SM 2540 G-2 %Moisture C		%	%	%	
00111	Moisture ¹		n.a.	12.4	0.50	0.50	1
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 13:45
SDG#: 05/07/2020 13:45
CMS02-08

Langan Eng & Env Services
ELLE Sample #: SW 1310914
ELLE Group #: 2098762

Matrix: Soil

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201311AA	05/10/2020 20:51	Joel Trout	0.8			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012856765	05/07/2020 22:13	Lois E Hiltz	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012856765	05/07/2020 22:13	Lois E Hiltz	1			
7579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012856765	05/07/2020 13:45	Client Supplied	1			
0726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 06:17	William H Saadeh	1			
0726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 20:59	William H Saadeh	20			
2969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 10:13	Joseph M Gambler	10			
0813	BNA Soil Microwave APP IX	SW-846 3546	1	20129SLA026	05/09/2020 09:20	Joseph Underdonk	1			
0811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1			
0401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201290011A	05/11/2020 18:41	Richard A Shober	1			
0885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201290009A	05/11/2020 08:24	Covenant Mutuku	1			
0590	NY Part 375 Pests Soil	SW-846 8081B	1	201290008A	05/11/2020 15:34	Lisa A Reinert	1			
0497	PCB Microwave Soil Extraction	SW-846 3546	1	201290009A	05/09/2020 09:10	Joseph Underdonk	1			
0496	PPL Pest. Microwave Extraction	SW-846 3546	1	201290008A	05/09/2020 09:15	Joseph Underdonk	1			
4181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A		201290011A	05/10/2020 20:05	Karen L Beyer	1			
4027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 21:47	Anthony C Polaski	1			
4090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 07:00	Austin Prince	1			
6125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
6126	Barium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
6127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
6128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
2829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201340282901	05/13/2020 15:00	Katlin N Burkholder	1			
6133	Copper	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:43	Janeyah Rivers-Hamiltor	n 5			
6135	Lead	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:43	Janeyah Rivers-Hamiltor	n 5			
6137	Manganese	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:51	Janeyah Rivers-Hamiltor	10			
6139	Nickel	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:39	Janeyah Rivers-Hamiltor	2			
6141	Selenium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			
6142	Silver	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:19	Janeyah Rivers-Hamiltor	2			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_1-3 Soil

35 Commercial Street / 170229024

SW-846 3060A

SM 2540 G-2011

%Moisture Calc

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 13:45

SDG#: CMS02-08

ICP/ICPMS-SW, 3050B - U345

Hexavalent Chromium (SOLIDS)

Hg - SW, 7471B - U4

Total Cyanide (solid)

Cyanide Solid Distillation

Hexavalent Cr (Extraction)

Analysis Name

Zinc

Mercury

Moisture

CAT

No.

06149

00159

14049

10638

05895

05896 00425

07825

00111

Langan Eng & Env Services

ELLE Sample #: SW 1310914 **ELLE Group #:** 2098762

Daniel S Smith

Larry E Bevins

Matrix: Soil

Labo	ratory S	sample Analysis	Record		
Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:43	Janeyah Rivers-Hamilton	n 5
SW-846 7471B	1	201281063802	05/11/2020 09:13	Damary Valentin	1
SW-846 3050B	1	201281404904	05/08/2020 04:40	Annamaria Kuhns	1
SW-846 7471B	1	201281063802	05/08/2020 05:50	Annamaria Kuhns	1
SW-846 9012B	1	20133102201A	05/13/2020 11:58	Jonathan Saul	1
SW-846 9012B	1	20133102201A	05/12/2020 17:30	Barbara A Washington	1
SW-846 7196A	1	20129042501A	05/09/2020 06:55	Daniel S Smith	1

05/08/2020 09:37

05/11/2020 09:28

20129042501A

20131820001A

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:15
SDG#: 05/07/2020 14:15
CMS02-09

Langan Eng & Env Services
ELLE Sample #: SW 1310915
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.071	0.01	0.033	0.97
11995	Acrolein	107-02-8	N.D.	0.008	0.17	0.97
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.033	0.97
11995	Benzene	71-43-2	N.D.	0.0008	0.008	0.97
11995	Bromodichloromethane	75-27-4	N.D.	0.0007	0.008	0.97
11995	Bromoform	75-25-2	N.D.	0.008	0.017	0.97
11995	Bromomethane	74-83-9	N.D.	0.001	0.008	0.97
11995	2-Butanone	78-93-3	0.013 J	0.003	0.017	0.97
11995	t-Butyl alcohol	75-65-0	N.D.	0.025	0.17	0.97
11995	n-Butylbenzene	104-51-8	N.D.	0.005	0.013	0.97
11995	sec-Butylbenzene	135-98-8	N.D.	0.003	0.008	0.97
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.008	0.97
11995	Carbon Disulfide	75-15-0	0.004 J	0.001	0.008	0.97
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0008	0.008	0.97
11995	Chlorobenzene	108-90-7	N.D.	0.0008	0.008	0.97
11995	Chloroethane	75-00-3	N.D.	0.002	0.008	0.97
11995	Chloroform	67-66-3	N.D.	0.001	0.008	0.97
11995	Chloromethane	74-87-3	N.D.	0.001	0.008	0.97
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0008	0.008	0.97
11995	Dibromochloromethane	124-48-1	N.D.	0.0008	0.008	0.97
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0007	0.008	0.97
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0008	0.008	0.97
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0008	0.008	0.97
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0007	0.008	0.97
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.001	0.008	0.97
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0008	0.008	0.97
11995	1,2-Dichloroethane	107-06-2	N.D.	0.001	0.008	0.97
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0008	0.008	0.97
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0008	0.008	0.97
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0008	0.008	0.97
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.002	0.017	0.97
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0008	0.008	0.97
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0007	0.008	0.97
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0008	0.008	0.97
11995	1,4-Dioxane	123-91-1	N.D.	0.062	0.12	0.97
11995	Ethylbenzene	100-41-4	N.D.	0.0007	0.008	0.97
11995	Methyl Acetate	79-20-9	N.D.	0.002	0.008	0.97
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0008	0.008	0.97
11995	Methylene Chloride	75-09-2	N.D.	0.003	0.008	0.97
11995	n-Propylbenzene	103-65-1	N.D.	0.0007	0.008	0.97
11995	Styrene	100-42-5	N.D.	0.0007	0.008	0.97

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:15
SDG#: 05/07/2020 14:15
CMS02-09

Langan Eng & Env Services
ELLE Sample #: SW 1310915
ELLE Group #: 2098762

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0007	0.008	0.97
11995	Tetrachloroethene	127-18-4	N.D.	0.0008	0.008	0.97
11995	Toluene	108-88-3	N.D.	0.001	0.008	0.97
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.001	0.008	0.97
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0008	0.008	0.97
11995	Trichloroethene	79-01-6	N.D.	0.0008	0.008	0.97
11995	Trichlorofluoromethane	75-69-4	N.D.	0.001	0.008	0.97
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0008	0.008	0.97
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0008	0.008	0.97
11995	Vinyl Chloride	75-01-4	N.D.	0.001	0.008	0.97
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.017	0.97
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.072	0.006	0.029	1
10726	Acenaphthylene	208-96-8	0.026 J	0.006	0.029	1
10726	Acetophenone	98-86-2	N.D.	0.029	0.086	1
10726	Anthracene	120-12-7	0.17	0.006	0.029	1
10726	Atrazine	1912-24-9	N.D.	0.34	0.75	1
10726	Benzaldehyde	100-52-7	N.D.	0.11	0.29	1
10726	Benzidine	92-87-5	N.D.	0.57	1.7	1
10726	Benzo(a)anthracene	56-55-3	0.34	0.011	0.029	1
10726	Benzo(a)pyrene	50-32-8	0.30	0.006	0.029	1
10726	Benzo(b)fluoranthene	205-99-2	0.39	0.006	0.029	1
10726	Benzo(g,h,i)perylene	191-24-2	0.20	0.006	0.029	1
10726	Benzo(k)fluoranthene	207-08-9	0.12	0.006	0.029	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.029	0.063	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.11	0.29	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.11	0.29	1
10726	Caprolactam	105-60-2	N.D.	0.057	0.29	1
10726	Carbazole	86-74-8	0.061 J	0.029	0.063	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.040	0.086	1
10726	bis(2-Chloroisopropyl)ethe	r ¹ 39638-32-9	N.D.	0.034	0.075	1
		er CAS #39638-32-9 and ne) CAS #108-60-1 cannot be sepa reported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.011	0.057	1
10726	2-Chlorophenol	95-57-8	N.D.	0.029	0.063	1
10726	Chrysene	218-01-9	0.30	0.006	0.029	1
10726	Dibenz(a,h)anthracene	53-70-3	0.061	0.011	0.029	1
10726	Dibenzofuran	132-64-9	0.077	0.029	0.063	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.029	0.086	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_15-17 Soil

Project Name:

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 14:15 SDG#: CMS02-09

35 Commercial Street / 170229024 ELLE Sample #: SW 1310915 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg			
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.029	0.063	1		
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.029	0.063	1		
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.17	0.57	1		
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.034	0.075	1		
10726	Diethylphthalate	84-66-2	N.D.	0.11	0.29	1		
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.052	0.11	1		
10726	Dimethylphthalate	131-11-3	N.D.	0.11	0.29	1		
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.40	0.86	1		
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.57	1.7	1		
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.11	0.29	1		
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.040	0.086	1		
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.040	0.086	1		
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.034	0.075	1		
	Azobenzene cannot be distinguished treported for 1,2-diphenylhydrazine repcompounds.							
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.11	0.29	1		
10726	Fluoranthene	206-44-0	0.73	0.006	0.029	1		
10726	Fluorene	86-73-7	0.093	0.006	0.029	1		
10726	Hexachlorobenzene	118-74-1	N.D.	0.011	0.029	1		
10726	Hexachlorobutadiene	87-68-3	N.D.	0.063	0.13	1		
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.34	0.86	1		
10726	Hexachloroethane	67-72-1	N.D.	0.057	0.29	1		
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.17	0.006	0.029	1		
10726	Isophorone	78-59-1	N.D.	0.029	0.063	1		
10726	2-Methylnaphthalene	91-57-6	0.062	0.006	0.057	1		
10726	2-Methylphenol	95-48-7	N.D.	0.029	0.11	1		
10726	4-Methylphenol	106-44-5	0.15	0.029	0.086	1		
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.							
10726	Naphthalene	91-20-3	0.14	0.011	0.029	1		
10726	2-Nitroaniline	88-74-4	N.D.	0.029	0.086	1		
10726	Nitrobenzene	98-95-3	N.D.	0.046	0.11	1		
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.11	0.29	1		
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.040	0.086	1		
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.029	0.063	1		
	N-nitrosodiphenylamine decomposes diphenylamine. The result reported for represents the combined total of both	r N-nitrosodiphenylamin	е					
10726	Di-n-octylphthalate	117-84-0	N.D.	0.11	0.29	1		
10726	Pentachlorophenol	87-86-5	N.D.	0.11	0.29	1		
10726	Phenanthrene	85-01-8	0.49	0.006	0.029	1		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name:

Submittal Date/Time: 05/07/2020 19:45

ELLE Sample #: SW 1310915 **ELLE Group #:** 2098762 35 Commercial Street/170229024 Matrix: Soil

Collection Date/Time: 05/07/2020 14:15 SDG#: CMS02-09

CAT No.	Analysis Name	CAS N	umber	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D		mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95	i - 2	0.035 J	0.029	0.063	1
10726	Pyrene	129-00)-0	0.54	0.006	0.029	1
10726	Pyridine	110-86	i-1	N.D.	0.11	0.29	1
10726	1,2,4-Trichlorobenzene	120-82	!-1	N.D.	0.040	0.086	1
10726	2,4,5-Trichlorophenol	95-95-4	4	N.D.	0.052	0.11	1
10726	2,4,6-Trichlorophenol	88-06-2	2	N.D.	0.046	0.097	1
GC/MS	S Semivolatiles	SW-846 8270D SIM	1	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91	-1	N.D.	11	28	10
Repo	orting limits were raised due	to interference from the sa	mple matri	x.			
Herbic	ides	SW-846 8151A		mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	7	N.D. D2	0.020	0.061	1
10401	2,4,5-T	93-76-	5	N.D. D2	0.0014	0.0029	1
10401	2,4,5-TP	93-72-	1	N.D. VD2	0.0019	0.0029	1
The r	ecovery for the method bla	nk surrogate(s) is outside th	ne QC acce	eptance			

limits as noted on the QC Summary. Since the recovery is high and no target analytes were detected, the data is reported.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

PCBs		SW-846 8082A Feb 2007 Rev 1	mg/kg	mg/kg	mg/kg	
10885	PCB-1016	12674-11-2	N.D. D1	0.0062	0.029	1
10885	PCB-1221	11104-28-2	N.D. D1	0.0079	0.029	1
10885	PCB-1232	11141-16-5	N.D. D1	0.014	0.029	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0057	0.029	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0057	0.029	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0057	0.029	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0084	0.029	1
10885	Total PCBs1	1336-36-3	N.D.	0.0057	0.029	1
Pestici	das	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. D2	0.029	0.14	100
10590	Alpha BHC	319-84-6	N.D. D1	0.029	0.14	100
10590	Beta BHC	319-85-7	N.D. D1	0.076	0.26	100
10590	Gamma BHC - Lindane	58-89-9	N.D. D1	0.036	0.14	100
10590	Alpha Chlordane	5103-71-9	N.D. D1	0.029	0.14	100
10590	4,4'-Ddd	72-54-8	N.D. D2	0.057	0.34	100
10590	4,4'-Dde	72-55-9	N.D. D2	0.057	0.34	100
10590	4,4'-Ddt	50-29-3	N.D. D2	0.14	0.34	100
	1,1 Dut	00 20 0	11.0. 02	0.14	0.04	100

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310915

2098762

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS02-09

05/07/2020 19:45 05/07/2020 14:15

CAT No.	Analysis Name	CAS Numbe	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	ides	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Delta BHC	319-86-8	N.D. D1	0.077	0.26	100
10590	Dieldrin	60-57-1	N.D. D1	0.057	0.34	100
10590	Endosulfan I	959-98-8	N.D. D2	0.038	0.14	100
10590	Endosulfan II	33213-65-9	N.D. D2	0.19	0.34	100
10590	Endosulfan Sulfate	1031-07-8	N.D. D1	0.057	0.34	100
10590	Endrin	72-20-8	N.D. D1	0.12	0.34	100
10590	Heptachlor	76-44-8	N.D. D1	0.053	0.14	100
Repo	rting limits were raised due	to interference from the sample r	matrix.			
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonio		N.D.	1.0	3.4	1
14027	8:2-Fluorotelomersulfonio		N.D.	1.0	5.1	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.34	3.4	1
	NEtFOSAA is the acrony	m for N-ethyl perfluorooctanesulfo	onamidoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	N.D.	0.34	3.4	1
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanes	ulfonamidoacetic Acid			
14027	Perfluorobutanesulfonic a	acid ¹ 375-73-5	N.D.	0.68	3.4	1
14027	Perfluorobutanoic acid ¹	375-22-4	N.D.	1.4	3.4	1
14027	Perfluorodecanesulfonic		N.D.	0.34	1.0	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.34	1.0	1
14027	Perfluorododecanoic acid		N.D.	0.34	1.0	1
14027	Perfluoroheptanesulfonic	acid ¹ 375-92-8	N.D.	0.34	1.0	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.34	1.0	1
14027	Perfluorohexanesulfonic	acid¹ 355-46-4	N.D.	0.34	1.0	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.34	1.0	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.34	1.0	1
14027	Perfluorooctanesulfonam	ide ¹ 754-91-6	N.D.	0.34	1.0	1
14027	Perfluorooctanesulfonic a	cid¹ 1763-23-1	N.D.	0.34	1.0	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.34	1.0	1
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.34	1.0	1
14027	Perfluorotetradecanoic ad	cid ¹ 376-06-7	N.D.	0.34	1.0	1
14027	Perfluorotridecanoic acid	72629-94-8	N.D.	0.34	1.0	1
14027	Perfluoroundecanoic acid	2058-94-8	N.D.	0.34	1.0	1
Metals		SW-846 6020B Rev.2, J 2014	uly ^{mg/kg}	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	13.9	0.191	0.570	2
06126	Barium	7440-39-3	82.8	0.261	0.570	2
06127	Beryllium	7440-41-7	0.738	0.0339	0.0855	2
06128	Cadmium	7440-43-9	0.187	0.0718	0.142	2
06131	Chromium	7440-47-3	27.0	0.219	0.570	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310915

2098762

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 14:15

SDG#: CMS02-09

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 60201 2014	B Rev.2, July	mg/kg	mg/kg	mg/kg	
02829	Trivalent Chromium soils1		16065-83-1	27.0	0.24	0.72	1
	The Trivalent Chromium re Chromium from Total Chro		y subtracting Hexa	avalent			
06133	Copper		7440-50-8	50.0	0.250	0.570	2
06135	Lead		7439-92-1	154	0.180	0.712	5
06137	Manganese		7439-96-5	250	0.762	1.42	5
06139	Nickel		7440-02-0	32.8	0.232	0.570	2
06141	Selenium		7782-49-2	0.491 J	0.186	0.570	2
06142	Silver		7440-22-4	0.193	0.0579	0.142	2
06149	Zinc		7440-66-6	115	0.764	2.85	2
		SW-846 7471I	В	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.398	0.0261	0.115	1
Wet Ch	emistry	SW-846 9012I	В	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	N.D.	0.31	0.87	1
		SW-846 7196	Ą	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	DLIDS)	18540-29-9	N.D.	0.24	0.72	1
Wet Ch	emistry	SM 2540 G-20 %Moisture Ca		%	%	%	
00111	Moisture ¹		n.a.	42.0	0.50	0.50	1
	Moisture represents the load 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

		La	aboratory S	Sample Anal	ysis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310915

2098762

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45
Collection Date/Time: 05/07/2020 14:15
SDG#: CMS02-09

mmercial Street/170229024 Matrix: Soil

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201311AA	05/10/2020 21:13	Joel Trout	0.97	
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012856765	05/07/2020 22:13	Lois E Hiltz	1	
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012856765	05/07/2020 22:13	Lois E Hiltz	1	
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012856765	05/07/2020 14:15	Client Supplied	1	
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20129SLA026	05/11/2020 06:40	William H Saadeh	1	
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 10:44	Joseph M Gambler	10	
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20129SLA026	05/09/2020 09:20	Joseph Underdonk	1	
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1	
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201290011A	05/11/2020 19:14	Richard A Shober	1	
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201290009A	05/11/2020 08:56	Covenant Mutuku	1	
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201290008A	05/11/2020 15:46	Lisa A Reinert	100	
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201290009A	05/09/2020 09:10	Joseph Underdonk	1	
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201290008A	05/09/2020 09:15	Joseph Underdonk	1	
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201290011A	05/10/2020 20:05	Karen L Beyer	1	
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 21:56	Anthony C Polaski	1	
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20129002	05/08/2020 07:00	Austin Prince	1	
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201340282901	05/13/2020 15:00	Katlin N Burkholder	1	
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:46	Janeyah Rivers-Hamilton	5	
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:46	Janeyah Rivers-Hamilton	5	
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/13/2020 10:41	Janeyah Rivers-Hamilton	2	
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201281404904A	05/12/2020 10:27	Janeyah Rivers-Hamilton	2	

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1310915

2098762

Sample Description: LB21_15-17 Soil

35 Commercial Street / 170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/07/2020 19:45 Collection Date/Time: 05/07/2020 14:15

SDG#: CMS02-09

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
00159	Mercury	SW-846 7471B	1	201281063802	05/11/2020 09:20	Damary Valentin	1			
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201281404904	05/08/2020 04:40	Annamaria Kuhns	1			
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201281063802	05/08/2020 05:50	Annamaria Kuhns	1			
05895	Total Cyanide (solid)	SW-846 9012B	1	20133102201A	05/13/2020 12:02	Jonathan Saul	1			
05896	Cyanide Solid Distillation	SW-846 9012B	1	20133102201A	05/12/2020 17:30	Barbara A Washington	1			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20129042501A	05/09/2020 06:55	Daniel S Smith	1			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20129042501A	05/08/2020 09:37	Daniel S Smith	1			
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820001A	05/11/2020 09:28	Larry E Bevins	1			

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201311AA	Sample number(s	s): 1310911-1	310915
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	0.0008	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
1,4-Dioxane	N.D.	0.037	0.075
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
n-Propylbenzene	N.D.	0.0004	0.005
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene	N.D.	0.0005	0.005
Toluene	N.D.	0.0006	0.005
1,1,1-Trichloroethane	N.D.	0.0006	0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0007	0.005
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005
Vinyl Chloride	N.D.	0.0006	0.005
Xylene (Total)	N.D.	0.001	0.010
	mg/l	mg/l	mg/l
Batch number: Y201332AA	Sample number(s	s): 1310907,13	310909
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
1,4-Dioxane	N.D.	0.029	0.075
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
	N.D.	0.0002	0.001
Vinyl Chloride			
Xylene (Total)	N.D.	0.0002	0.006
Xylene (Total)	N.D. mg/kg	0.001 mg/kg	0.006 mg/kg
Xylene (Total) Batch number: 20129SLA026	N.D. mg/kg Sample number(s	0.001 mg/kg): 1310911-13	0.006 mg/kg 10915
Xylene (Total) Batch number: 20129SLA026 Acenaphthene	N.D. mg/kg Sample number(s N.D.	0.001 mg/kg): 1310911-13 0.003	0.006 mg/kg 10915 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene	N.D. mg/kg Sample number(s N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003	0.006 mg/kg 10915 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone	N.D. mg/kg Sample number(s N.D. N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003 0.017	0.006 mg/kg 10915 0.017 0.017 0.050
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Attrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003	0.006 mg/kg 10915 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(bfluoranthene Benzo(g,h,i)perylene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(y,h,i)perylene Benzo(k)fluoranthene	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003	0.006 mg/kg 10915 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.004	0.006 mg/kg 10915 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam	N.D. mg/kg Sample number(s N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20129SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole	N.D. mg/kg Sample number(s N.D. N.D.	0.001 mg/kg): 1310911-13 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067 0.033 0.017	0.006 mg/kg 10915 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.037

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
2-Chloronaphthalene	N.D.	0.007	0.033
2-Chlorophenol	N.D.	0.017	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

	5	1451 44	
Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
2,4,6-Trichlorophenol	N.D.	0.027	0.057
	mg/l	mg/l	mg/l
Batch number: 20129WAC026	Sample num	ber(s): 1310907	
Acenaphthene	N.D.	0.0001	0.0005
Acenaphthylene	N.D.	0.0001	0.0005
Acetophenone	N.D.	0.004	0.010
Anthracene	N.D.	0.0001	0.0005
Atrazine	N.D.	0.002	0.005
Benzaldehyde	N.D.	0.003	0.010
Benzidine	N.D.	0.020	0.060
Benzo(a)anthracene	N.D.	0.0001	0.0005
Benzo(a)pyrene	N.D.	0.0001	0.0005
Benzo(b)fluoranthene	N.D.	0.0001	0.0005
Benzo(g,h,i)perylene	N.D.	0.0001	0.0005
Benzo(k)fluoranthene	N.D.	0.0001	0.0005
1,1'-Biphenyl	N.D.	0.003	0.010
Butylbenzylphthalate	N.D.	0.002	0.005
Di-n-butylphthalate	N.D.	0.002	0.005
Caprolactam	N.D.	0.005	0.011
Carbazole	N.D.	0.0005	0.002
bis(2-Chloroethyl)ether	N.D.	0.0005	0.002
bis(2-Chloroisopropyl)ether	N.D.	0.0005	0.002
2-Chloronaphthalene	N.D.	0.0004	0.001
2-Chlorophenol	N.D.	0.0005	0.002
Chrysene	N.D.	0.0001	0.0005
Dibenz(a,h)anthracene	N.D.	0.0001	0.0005
Dibenzofuran	N.D.	0.0005	0.002
1,2-Dichlorobenzene	N.D.	0.0005	0.002
1,3-Dichlorobenzene	N.D.	0.0005	0.002
1,4-Dichlorobenzene	N.D.	0.0005	0.002
3,3'-Dichlorobenzidine	N.D.	0.003	0.010
2,4-Dichlorophenol	N.D.	0.0005	0.002
Diethylphthalate	N.D.	0.002	0.005
2,4-Dimethylphenol	N.D.	0.003	0.010
Dimethylphthalate	N.D.	0.002	0.005
4,6-Dinitro-2-methylphenol	N.D.	0.008	0.021
2,4-Dinitrophenol	N.D.	0.014	0.030
2,4-Dinitrotoluene	N.D.	0.001	0.005
2,6-Dinitrotoluene	N.D.	0.0005	0.002
2,4_2,6-Dinitrotoluenes	N.D.	0.001	0.005
1,2-Diphenylhydrazine	N.D.	0.0005	0.002
bis(2-Ethylhexyl)phthalate	N.D.	0.005	0.011
Fluoranthene	N.D.	0.0001	0.0005
Fluorene	N.D.	0.0001	0.0005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Hexachlorobenzene	N.D.	0.0001	0.0005
Hexachlorobutadiene	N.D.	0.0005	0.002
Hexachlorocyclopentadiene	N.D.	0.005	0.011
Hexachloroethane	N.D.	0.001	0.005
Indeno(1,2,3-cd)pyrene	N.D.	0.0001	0.0005
Isophorone	N.D.	0.0005	0.002
2-Methylnaphthalene	N.D.	0.0001	0.0005
2-Methylphenol	N.D.	0.0005	0.002
4-Methylphenol	N.D.	0.0005	0.002
Naphthalene	N.D.	0.0001	0.0005
2-Nitroaniline	N.D.	0.002	0.007
Nitrobenzene	N.D.	0.0005	0.002
N-Nitrosodimethylamine	N.D.	0.002	0.005
N-Nitroso-di-n-propylamine	N.D.	0.0007	0.003
N-Nitrosodiphenylamine	N.D.	0.0007	0.003
Di-n-octylphthalate	N.D.	0.005	0.011
Pentachlorophenol	N.D.	0.001	0.005
Phenanthrene	N.D.	0.0001	0.0005
Phenol	N.D.	0.0005	0.002
Pyrene	N.D.	0.0001	0.0005
Pyridine	N.D.	0.002	0.005
1,2,4-Trichlorobenzene	N.D.	0.0005	0.002
2,4,5-Trichlorophenol	N.D.	0.0005	0.002
2,4,6-Trichlorophenol	N.D.	0.0005	0.002
	ug/kg	ug/kg	ug/kg
Batch number: 20136SLB026	•	` '	1310914-1310915
1,4-Dioxane	N.D.	0.7	2
	ug/l	ug/l	ug/l
Batch number: 20136WAB026	Sample number	er(s): 1310907	
1,4-Dioxane	N.D.	0.1	0.3
	//	//	
	mg/kg	mg/kg	mg/kg
Batch number: 201290011A	•	. ,	1310914-1310915
2,4-D	N.D.	0.012	0.036
2,4,5-T	N.D.	0.00082	0.0017
2,4,5-TP	N.D.	0.00075	0.0017
	mg/l	mg/l	mg/l
Batch number: 201290002A	Sample number	er(s): 1310907	
2,4-D	N.D.	0.00025	0.00060
2,4,5-T	N.D.	0.000065	0.00015
2,4,5-TP	N.D.	0.000010	0.000050
	mg/kg	mg/kg	mg/kg

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
•	mg/kg	mg/kg	mg/kg
Batch number: 201290009A	Sample number(s): 1310911,1	310914-1310915
PCB-1016	N.D.	0.0036	0.017
PCB-1221	N.D.	0.0046	0.017
PCB-1232	N.D.	0.0080	0.017
PCB-1242	N.D.	0.0033	0.017
PCB-1248	N.D.	0.0033	0.017
PCB-1254	N.D.	0.0033	0.017
PCB-1260	N.D.	0.0049	0.017
Total PCBs	N.D.	0.0033	0.017
	mg/l	mg/l	mg/l
Batch number: 201290014A	Sample number(s): 1310907	
PCB-1016	N.D.	0.00010	0.00050
PCB-1221	N.D.	0.00010	0.00050
PCB-1232	N.D.	0.00020	0.00050
PCB-1242	N.D.	0.00010	0.00050
PCB-1248	N.D.	0.00010	0.00050
PCB-1254	N.D.	0.00010	0.00050
PCB-1260	N.D.	0.00015	0.00050
Total PCBs	N.D.	0.00010	0.00050
	mg/kg	mg/kg	mg/kg
Batch number: 201290008A		s): 1310911,1	310914-1310915
Aldrin	N.D.	0.00017	0.00083
Alpha BHC	N.D.	0.00017	0.00083
Beta BHC	N.D.	0.00044	0.0015
Gamma BHC - Lindane	N.D.	0.00021	0.00083
Alpha Chlordane	N.D.	0.00017	0.00083
4,4'-Ddd	N.D.	0.00033	0.0020
4,4'-Dde	N.D.	0.00033	0.0020
4,4'-Ddt	N.D.	0.00079	0.0020
Delta BHC	N.D.	0.00045	0.0015
Dieldrin	N.D.	0.00033	0.0020
Endosulfan I	N.D.	0.00022	0.00083
Endosulfan II	N.D.	0.0011	0.0020
Endosulfan Sulfate	N.D.	0.00033	0.0020
Endrin	N.D.	0.00068	0.0020
Heptachlor	N.D.	0.00031	0.00083
	mg/l	mg/l	mg/l
Batch number: 201290013A	Sample number(
Aldrin	N.D.	0.0000020	0.000010
Alpha BHC	N.D.	0.0000030	0.000010
Beta BHC	N.D.	0.0000034	0.000010
Gamma BHC - Lindane	N.D.	0.0000020	0.000010
Alpha Chlordane	N.D.	0.0000030	0.000010

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
4,4'-Ddd	N.D.	0.0000050	0.000020
4,4'-Dde	N.D.	0.0000050	0.000020
4,4'-Ddt	N.D.	0.0000052	0.000020
Delta BHC	N.D.	0.0000034	0.000010
Dieldrin	N.D.	0.0000053	0.000020
Endosulfan I	N.D.	0.0000043	0.000010
Endosulfan II	N.D.	0.000015	0.000040
Endosulfan Sulfate	N.D.	0.0000058	0.000020
Endrin	N.D.	0.0000081	0.000030
Heptachlor	N.D.	0.0000020	0.000010
	ng/g	ng/g	ng/g
Batch number: 20129002	Sample number(s): 1310911,1	310914-1310915
6:2-Fluorotelomersulfonic acid	N.D.	0.60	2.0
8:2-Fluorotelomersulfonic acid	N.D.	0.60	3.0
NEtFOSAA	N.D.	0.20	2.0
NMeFOSAA	N.D.	0.20	2.0
Perfluorobutanesulfonic acid	N.D.	0.40	2.0
Perfluorobutanoic acid	N.D.	0.80	2.0
Perfluorodecanesulfonic acid	N.D.	0.20	0.60
Perfluorodecanoic acid	N.D.	0.20	0.60
Perfluorododecanoic acid	N.D.	0.20	0.60
Perfluoroheptanesulfonic acid	N.D.	0.20	0.60
Perfluoroheptanoic acid	N.D.	0.20	0.60
Perfluorohexanesulfonic acid	N.D.	0.20	0.60
Perfluorohexanoic acid	N.D.	0.20	0.60
Perfluorononanoic acid	N.D.	0.20	0.60
Perfluorooctanesulfonamide	N.D.	0.20	0.60
Perfluorooctanesulfonic acid	N.D.	0.20	0.60
Perfluorooctanoic acid	N.D.	0.20	0.60
Perfluoropentanoic acid	N.D.	0.20	0.60
Perfluorotetradecanoic acid	N.D.	0.20	0.60
Perfluorotridecanoic acid	N.D.	0.20	0.60
Perfluoroundecanoic acid	N.D.	0.20	0.60
	ng/l	ng/l	ng/l
Batch number: 20132008	Sample number(
6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
NEtFOSAA	N.D.	0.50	3.0
NMeFOSAA	N.D.	0.60	2.0
Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	Result	MDL**	LOQ
	ng/l	ng/l	ng/l
Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluorooctanesulfonic acid	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluoropentanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid	N.D.	0.50	2.0
	ma/ka	malka	malka
D	mg/kg	mg/kg	mg/kg
Batch number: 201281063802			310911,1310914-1310915
Mercury	N.D.	0.0152	0.0667
Batch number: 201281404904A	Sample number(s): 1310910-1	310911,1310914-1310915
Arsenic	N.D.	0.134	0.400
Barium	N.D.	0.183	0.400
Beryllium	N.D.	0.0238	0.0600
Cadmium	N.D.	0.0504	0.100
Chromium	N.D.	0.154	0.400
Copper	N.D.	0.176	0.400
Lead	N.D.	0.0504	0.200
Manganese	N.D.	0.214	0.400
Nickel	N.D.	0.163	0.400
Selenium	N.D.	0.130	0.400
Silver	N.D.	0.0406	0.100
Zinc	N.D.	0.536	2.00
	mg/l	mg/l	mg/l
Batch number: 201250571307	Sample number(•	9
Mercury	N.D.	0.000050	0.00020
Wercury	N.D.	0.000030	0.00020
Batch number: 201291404401	Sample number(s): 1310907	
Silver	N.D.	0.0050	0.0100
Batch number: 201291404701A	Sample number(s)· 1310907	
Arsenic	N.D.	0.00068	0.0020
Barium	N.D.	0.00075	0.0020
Beryllium	N.D.	0.00073	0.00050
Cadmium	N.D.	0.00012	0.00050
Chromium	N.D.	0.00013	0.0020
Copper	N.D. N.D.	0.00033	0.0020
Lead	N.D. N.D.	0.00036	0.0010
LGau	N.D.	0.000071	0.0000

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Method Blank (continued)

Analysis Name	Result mg/l	MDL** mg/l	LOQ mg/l
Manganese Nickel Selenium Zinc	N.D. N.D. N.D. N.D.	0.00063 0.00060 0.00028 0.0062	0.0020 0.0010 0.0010 0.0100
Batch number: 201321404503 Arsenic	Sample number(N.D.	s): 1310908 0.0160	0.0300
Batch number: 20133102201A Total Cyanide (solid)	mg/kg Sample number(N.D.	mg/kg s): 1310911,1 0.18	mg/kg 310914-1310915 0.50
Batch number: 20134117101B Total Cyanide (water)	mg/I Sample number(N.D.	mg/l (s): 1310907 0.0050	mg/l 0.010
Batch number: 20129042501A Hexavalent Chromium (SOLIDS)	mg/kg Sample number(N.D.	mg/kg s): 1310911,1 0.14	mg/kg 310914-1310915 0.42
Batch number: 20129027601A Hexavalent Chromium	mg/I Sample number(N.D.	mg/l s): 1310907 0.010	mg/l 0.030

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201311AA	Sample number	(s): 1310911-1	310915						
Acetone	0.150	0.173	0.150	0.188	116	125	41-150	8	30
Acrolein	0.150	0.116	0.150	0.123	77	82	57-131	6	30
Acrylonitrile	0.100	0.0848	0.100	0.0872	85	87	66-120	3	30
Benzene	0.0200	0.0177	0.0200	0.0181	88	91	80-120	3	30
Bromodichloromethane	0.0200	0.0179	0.0200	0.0182	89	91	70-120	2	30
Bromoform	0.0200	0.0167	0.0200	0.0174	84	87	51-127	4	30
Bromomethane	0.0200	0.0156	0.0200	0.0158	78	79	45-140	1	30
2-Butanone	0.150	0.137	0.150	0.148	91	99	57-128	8	30
t-Butyl alcohol	0.200	0.169	0.200	0.178	84	89	74-121	5	30
n-Butylbenzene	0.0200	0.0172	0.0200	0.0178	86	89	71-121	4	30
sec-Butylbenzene	0.0200	0.0177	0.0200	0.0183	89	91	72-120	3	30
tert-Butylbenzene	0.0200	0.0168	0.0200	0.0174	84	87	68-120	3	30
Carbon Disulfide	0.0200	0.0172	0.0200	0.0179	86	90	64-133	4	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Carbon Tetrachloride	0.0200	0.0176	0.0200	0.0179	88	90	64-134	2	30
Chlorobenzene	0.0200	0.0175	0.0200	0.0181	88	91	80-120	3	30
Chloroethane	0.0200	0.0150	0.0200	0.0151	75	75	43-135	0	30
Chloroform	0.0200	0.0181	0.0200	0.0183	91	91	80-120	1	30
Chloromethane	0.0200	0.0159	0.0200	0.0159	80	79	56-120	0	30
1,2-Dibromo-3-chloropropane	0.0200	0.0165	0.0200	0.0175	83	88	48-134	6	30
Dibromochloromethane	0.0200	0.0184	0.0200	0.0190	92	95	69-125	3	30
1,2-Dibromoethane	0.0200	0.0177	0.0200	0.0184	89	92	76-120	4	30
1,2-Dichlorobenzene	0.0200	0.0174	0.0200	0.0176	87	88	76-120	1	30
1,3-Dichlorobenzene	0.0200	0.0170	0.0200	0.0179	85	89	75-120	5	30
1,4-Dichlorobenzene	0.0200	0.0173	0.0200	0.0178	87	89	80-120	3	30
Dichlorodifluoromethane	0.0200	0.0150	0.0200	0.0156	75	78	21-127	4	30
1,1-Dichloroethane	0.0200	0.0177	0.0200	0.0177	89	89	79-120	0	30
1,2-Dichloroethane	0.0200	0.0174	0.0200	0.0178	87	89	71-128	2	30
1,1-Dichloroethene	0.0200	0.0177	0.0200	0.0185	88	92	73-129	4	30
cis-1,2-Dichloroethene	0.0200	0.0191	0.0200	0.0197	95	99	80-125	3	30
trans-1,2-Dichloroethene	0.0200	0.0178	0.0200	0.0184	89	92	80-126	3	30
1,2-Dichloroethene (Total)	0.0400	0.0369	0.0400	0.0382	92	95	80-126	3	30
1,2-Dichloropropane	0.0200	0.0178	0.0200	0.0185	89	92	80-120	4	30
cis-1,3-Dichloropropene	0.0200	0.0178	0.0200	0.0183	89	91	66-120	2	30
trans-1,3-Dichloropropene	0.0200	0.0173	0.0200	0.0180	86	90	68-122	4	30
1,4-Dioxane	0.500	0.440	0.500	0.496	88	99	62-131	12	30
Ethylbenzene	0.0200	0.0176	0.0200	0.0182	88	91	78-120	3	30
Methyl Acetate	0.0200	0.0167	0.0200	0.0171	83	86	67-128	3	30
Methyl Tertiary Butyl Ether	0.0200	0.0172	0.0200	0.0177	86	89	72-120	3	30
Methylene Chloride	0.0200	0.0175	0.0200	0.0180	88	90	76-122	2	30
n-Propylbenzene	0.0200	0.0180	0.0200	0.0187	90	93	72-123	4	30 30
Styrene	0.0200	0.0169	0.0200	0.0176	85	88	76-120	4 1	
1,1,2,2-Tetrachloroethane	0.0200	0.0180	0.0200	0.0182	90	91	69-125 73-120	2	30 30
Tetrachloroethene Toluene	0.0200 0.0200	0.0173 0.0172	0.0200 0.0200	0.0178 0.0175	87 86	89 88	80-120	2	30
1,1,1-Trichloroethane	0.0200	0.0172	0.0200	0.0175	85	88	69-123	3	30
1,1,2-Trichloroethane	0.0200	0.0171	0.0200	0.0170	93	94	80-120	2	30
Trichloroethene	0.0200	0.0177	0.0200	0.0182	88	91	80-120	3	30
Trichlorofluoromethane	0.0200	0.0167	0.0200	0.0102	83	86	55-134	4	30
1,2,4-Trimethylbenzene	0.0200	0.0173	0.0200	0.0177	86	88	73-120	2	30
1,3,5-Trimethylbenzene	0.0200	0.0174	0.0200	0.0181	87	90	73-120	4	30
Vinyl Chloride	0.0200	0.0154	0.0200	0.0158	77	79	52-120	2	30
Xylene (Total)	0.0600	0.0523	0.0600	0.0541	87	90	75-120	3	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: Y201332AA	Sample number	•	J	3					
Acetone	0.150	0.136	0.150	0.134	91	90	54-157	1	30
Acrolein	0.150	0.122	0.150	0.120	81	80	47-136	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Acrylonitrile	0.100	0.0919	0.100	0.0917	92	92	60-129	0	30
Benzene	0.0200	0.0183	0.0200	0.0180	92	90	80-120	2	30
Bromodichloromethane	0.0200	0.0189	0.0200	0.0188	95	94	71-120	1	30
Bromoform	0.0200	0.0193	0.0200	0.0189	96	95	51-120	2	30
Bromomethane	0.0200	0.0167	0.0200	0.0167	84	83	53-128	0	30
2-Butanone	0.150	0.138	0.150	0.139	92	93	59-135	0	30
t-Butyl alcohol	0.200	0.193	0.200	0.192	96	96	60-130	0	30
n-Butylbenzene	0.0200	0.0172	0.0200	0.0168	86	84	76-120	2	30
sec-Butylbenzene	0.0200	0.0180	0.0200	0.0177	90	88	77-120	2	30
tert-Butylbenzene	0.0200	0.0181	0.0200	0.0176	91	88	78-120	3	30
Carbon Disulfide	0.0200	0.0172	0.0200	0.0168	86	84	65-128	2	30
Carbon Tetrachloride	0.0200	0.0188	0.0200	0.0187	94	93	64-134	1	30
Chlorobenzene	0.0200	0.0188	0.0200	0.0186	94	93	80-120	1	30
Chloroethane	0.0200	0.0158	0.0200	0.0155	79	78	55-123	2	30
Chloroform	0.0200	0.0187	0.0200	0.0186	93	93	80-120	1	30
Chloromethane	0.0200	0.0149	0.0200	0.0146	74	73	56-121	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0183	0.0200	0.0183	91	91	47-131	0	30
Dibromochloromethane	0.0200	0.0194	0.0200	0.0192	97	96	71-120	1	30
1,2-Dibromoethane	0.0200	0.0190	0.0200	0.0189	95	94	77-120	1	30
1,2-Dichlorobenzene	0.0200	0.0189	0.0200	0.0188	95	94	80-120	1	30
1,3-Dichlorobenzene	0.0200	0.0190	0.0200	0.0188	95	94	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0192	0.0200	0.0188	96	94	80-120	2	30
Dichlorodifluoromethane	0.0200	0.0132	0.0200	0.0133	66	67	41-127	1	30
1,1-Dichloroethane	0.0200	0.0182	0.0200	0.0178	91	89	80-120	2	30
1,2-Dichloroethane	0.0200	0.0192	0.0200	0.0191	96	95	73-124	0	30
1,1-Dichloroethene	0.0200	0.0175	0.0200	0.0173	87	86	80-131	1	30
cis-1,2-Dichloroethene	0.0200	0.0195	0.0200	0.0190	97	95	80-125	2	30
trans-1,2-Dichloroethene	0.0200	0.0184	0.0200	0.0181	92	90	80-126	2	30
1,2-Dichloroethene (Total)	0.0400	0.0379	0.0400	0.0371	95	93	80-125	2	30
1,2-Dichloropropane	0.0200	0.0181	0.0200	0.0180	91	90	80-120	1	30
cis-1,3-Dichloropropene	0.0200	0.0186	0.0200	0.0184	93 91	92	75-120 67-120	1 0	30
trans-1,3-Dichloropropene	0.0200	0.0182	0.0200	0.0183	91 95	91	67-120 63-146	2	30
1,4-Dioxane	0.500 0.0200	0.475 0.0183	0.500 0.0200	0.465 0.0183	95 92	93 91	80-120	0	30 30
Ethylbenzene Methyl Apototo	0.0200	0.0185	0.0200	0.0163	92	93	54-136	1	30
Methyl Acetate Methyl Tertiary Butyl Ether	0.0200	0.0180	0.0200	0.0167	93 90	93 89	69-122	0	30
Methylene Chloride	0.0200	0.0180	0.0200	0.0179	90 97	89 95	80-122	2	30
n-Propylbenzene	0.0200	0.0193	0.0200	0.0190	91	90	79-121	2	30
	0.0200	0.0183	0.0200	0.0179	96	96	80-120	0	30
Styrene	0.0200	0.0192	0.0200	0.0192	96 89	96 89	72-120	0	30
1,1,2,2-Tetrachloroethane Tetrachloroethene	0.0200	0.0176	0.0200	0.0176	98	98	80-120	0	30
Toluene	0.0200	0.0196	0.0200	0.0196	96 92	96 91	80-120 80-120	0	30
1,1,1-Trichloroethane	0.0200	0.0185	0.0200	0.0184	92	91	67-126	1	30
1,1,2-Trichloroethane	0.0200	0.0165	0.0200	0.0164	93 96	92 97	80-120	0	30
1,1,2-111011010ethane	0.0200	0.0193	0.0200	0.0193	90	91	00-120	U	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Trichloroethene	0.0200	0.0187	0.0200	0.0185	94	93	80-120	1	30
Trichlorofluoromethane	0.0200	0.0189	0.0200	0.0187	95	93	55-135	1	30
1,2,4-Trimethylbenzene	0.0200	0.0181	0.0200	0.0178	91	89	75-120	2	30
1,3,5-Trimethylbenzene	0.0200	0.0183	0.0200	0.0180	91	90	75-120	1	30
Vinyl Chloride	0.0200	0.0157	0.0200	0.0152	78	76	56-120	3	30
Xylene (Total)	0.0600	0.0567	0.0600	0.0561	94	94	80-120	1	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20129SLA026	Sample number	(s): 1310911-1	310915						
Acenaphthene	1.67	1.40			84		61-112		
Acenaphthylene	1.67	1.38			83		60-124		
Acetophenone	1.67	1.18			71		48-109		
Anthracene	1.67	1.53			92		67-120		
Atrazine	1.67	1.71			103		70-129		
Benzaldehyde	1.67	1.03			62		20-101		
Benzidine	8.33	4.34			52		18-105		
Benzo(a)anthracene	1.67	1.65			99		68-120		
Benzo(a)pyrene	1.67	1.68			101		68-119		
Benzo(b)fluoranthene	1.67	1.85			111		67-125		
Benzo(g,h,i)perylene	1.67	1.76			106		68-125		
Benzo(k)fluoranthene	1.67	1.53			92		66-122		
1,1'-Biphenyl	1.67	1.45			87		59-106		
Butylbenzylphthalate	1.67	1.45			87		69-125		
Di-n-butylphthalate	1.67	1.54			93		70-126		
Caprolactam	1.67	1.50			90		62-119		
Carbazole	1.67	1.56			94		69-125		
bis(2-Chloroethyl)ether	1.67	1.19			71		44-104		
bis(2-Chloroisopropyl)ether	1.67	1.06			64		40-112		
2-Chloronaphthalene	1.67	1.28			77		48-123		
2-Chlorophenol	1.67	1.32			79		51-109		
Chrysene	1.67	1.47			88		66-111		
Dibenz(a,h)anthracene	1.67	1.81			108		69-135		
Dibenzofuran	1.67	1.40			84		62-113		
1,2-Dichlorobenzene	1.67	1.21			73		38-106		
1,3-Dichlorobenzene	1.67	1.16			70		36-103		
1,4-Dichlorobenzene	1.67	1.20			72		25-127		
3,3'-Dichlorobenzidine	1.67	1.01			61		18-114		
2,4-Dichlorophenol	1.67	1.46			88		57-115		
Diethylphthalate	1.67	1.43			86		68-116		
2,4-Dimethylphenol	1.67	1.09			65		47-95		
Dimethylphthalate	1.67	1.41			85		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.64			98		56-135		
2,4-Dinitrophenol	3.33	2.76			83		34-136		
2,4-Dinitrotoluene	1.67	1.46			87		61-121		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
2,6-Dinitrotoluene	1.67	1.53			92		66-122		
1,2-Diphenylhydrazine	1.67	1.50			90		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.48			89		65-132		
Fluoranthene	1.67	1.60			96		65-114		
Fluorene	1.67	1.48			89		62-110		
Hexachlorobenzene	1.67	1.64			98		62-124		
Hexachlorobutadiene	1.67	1.33			80		39-120		
Hexachlorocyclopentadiene	3.33	1.72			52		13-115		
Hexachloroethane	1.67	1.26			75		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.76			106		64-130		
Isophorone	1.67	1.29			78		51-113		
2-Methylnaphthalene	1.67	1.40			84		52-104		
2-Methylphenol	1.67	1.30			78		52-116		
4-Methylphenol	1.67	1.24			74		52-121		
Naphthalene	1.67	1.28			77		49-104		
2-Nitroaniline	1.67	1.52			91		65-132		
Nitrobenzene	1.67	1.26			76		41-118		
N-Nitrosodimethylamine	1.67	1.15			69		31-107		
N-Nitroso-di-n-propylamine	1.67	1.27			76		49-108		
N-Nitrosodiphenylamine	1.67	1.60			96		64-127		
Di-n-octylphthalate	1.67	1.46			88		65-139		
Pentachlorophenol	1.67	1.19			71		40-131		
Phenanthrene	1.67	1.55			93		67-116		
Phenol	1.67	1.27			76		57-107		
Pyrene	1.67	1.47			88		67-109		
Pyridine	1.67	0.803			48		10-117		
1,2,4-Trichlorobenzene	1.67	1.35			81		46-109		
2,4,5-Trichlorophenol	1.67	1.52			91		62-121		
2,4,6-Trichlorophenol	1.67	1.59			96		60-120		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20129WAC026	Sample numbe	r(s): 1310907							
Acenaphthene	0.0500	0.0388	0.0500	0.0384	78	77	52-114	1	30
Acenaphthylene	0.0500	0.0383	0.0500	0.0385	77	77	56-127	0	30
Acetophenone	0.0500	0.0390	0.0500	0.0389	78	78	61-114	0	30
Anthracene	0.0500	0.0398	0.0500	0.0402	80	80	67-116	1	30
Atrazine	0.0500	0.0439	0.0500	0.0451	88	90	71-133	3	30
Benzaldehyde	0.0500	0.0415	0.0500	0.0411	83	82	55-116	1	30
Benzidine	0.250	0.0413	0.250	0.0474	17*	19*	25-77	14	30
Benzo(a)anthracene	0.0500	0.0433	0.0500	0.0429	87	86	68-123	1	30
Benzo(a)pyrene	0.0500	0.0421	0.0500	0.0413	84	83	71-117	2	30
Benzo(b)fluoranthene	0.0500	0.0425	0.0500	0.0418	85	84	69-121	2	30
Benzo(g,h,i)perylene	0.0500	0.0397	0.0500	0.0395	79	79	60-119	0	30
Benzo(k)fluoranthene	0.0500	0.0432	0.0500	0.0427	86	85	69-122	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,1'-Biphenyl	0.0500	0.0376	0.0500	0.0374	75	75	56-109	1	30
Butylbenzylphthalate	0.0500	0.0341	0.0500	0.0324	68	65	40-133	5	30
Di-n-butylphthalate	0.0500	0.0393	0.0500	0.0387	79	77	58-125	2	30
Caprolactam	0.0500	0.0102	0.0500	0.0109	20	22	10-57	6	30
Carbazole	0.0500	0.0418	0.0500	0.0426	84	85	64-127	2	30
bis(2-Chloroethyl)ether	0.0500	0.0367	0.0500	0.0369	73	74	58-108	0	30
bis(2-Chloroisopropyl)ether	0.0500	0.0424	0.0500	0.0421	85	84	44-108	1	30
2-Chloronaphthalene	0.0500	0.0366	0.0500	0.0365	73	73	51-107	1	30
2-Chlorophenol	0.0500	0.0337	0.0500	0.0322	67	64	57-105	5	30
Chrysene	0.0500	0.0399	0.0500	0.0395	80	79	65-121	1	30
Dibenz(a,h)anthracene	0.0500	0.0419	0.0500	0.0409	84	82	63-128	3	30
Dibenzofuran	0.0500	0.0395	0.0500	0.0396	79	79	60-112	0	30
1,2-Dichlorobenzene	0.0500	0.0324	0.0500	0.0318	65	64	35-104	2	30
1,3-Dichlorobenzene	0.0500	0.0305	0.0500	0.0302	61	60	28-103	1	30
1,4-Dichlorobenzene	0.0500	0.0315	0.0500	0.0306	63	61	34-97	3	30
3,3'-Dichlorobenzidine	0.0500	0.0236	0.0500	0.0248	47	50	42-107	5	30
2,4-Dichlorophenol	0.0500	0.0373	0.0500	0.0362	75	72	65-110	3	30
Diethylphthalate	0.0500	0.0358	0.0500	0.0340	72	68	42-126	5	30
2,4-Dimethylphenol	0.0500	0.0322	0.0500	0.0320	64	64	53-93	1	30
Dimethylphthalate	0.0500	0.0260	0.0500	0.0226	52	45	10-134	14	30
4,6-Dinitro-2-methylphenol	0.0500	0.0374	0.0500	0.0368	75	74	63-129	2	30
2,4-Dinitrophenol	0.100	0.0755	0.100	0.0718	76	72	44-134	5	30
2,4-Dinitrotoluene	0.0500	0.0415	0.0500	0.0423	83	85	66-122	2	30
2,6-Dinitrotoluene	0.0500	0.0418	0.0500	0.0409	84	82	71-120	2	30
1,2-Diphenylhydrazine	0.0500	0.0427	0.0500	0.0435	85	87	64-120	2	30
bis(2-Ethylhexyl)phthalate	0.0500	0.0423	0.0500	0.0414	85	83	61-129	2	30
Fluoranthene	0.0500	0.0422	0.0500	0.0426	84	85	63-122	1	30
Fluorene	0.0500	0.0410	0.0500	0.0415	82	83	56-115	1	30
Hexachlorobenzene	0.0500	0.0388	0.0500	0.0387	78	77	60-117	0	30
Hexachlorobutadiene	0.0500	0.0341	0.0500	0.0335	68	67	20-108	2	30
Hexachlorocyclopentadiene	0.100	0.0267	0.100	0.0247	27	25	10-91	8	30
Hexachloroethane	0.0500	0.0302	0.0500	0.0293	60	59	23-95	3	30
Indeno(1,2,3-cd)pyrene	0.0500	0.0396	0.0500	0.0395	79	79	59-123	0	30
Isophorone	0.0500	0.0410	0.0500	0.0414	82	83	63-120	1	30
2-Methylnaphthalene	0.0500	0.0373	0.0500	0.0364	75	73	51-107	3	30
2-Methylphenol	0.0500	0.0328	0.0500	0.0320	66	64	53-107	2	30
4-Methylphenol	0.0500	0.0331	0.0500	0.0325	66	65	49-108	2	30
Naphthalene	0.0500	0.0366	0.0500	0.0364	73	73	51-102	1	30
2-Nitroaniline	0.0500	0.0400	0.0500	0.0406	80	81	66-126	2	30
Nitrobenzene	0.0500	0.0409	0.0500	0.0407	82	81	59-109	0	30
N-Nitrosodimethylamine	0.0500	0.0233	0.0500	0.0236	47	47	17-101	1	30
N-Nitroso-di-n-propylamine	0.0500	0.0410	0.0500	0.0413	82	83	58-120	1	30
N-Nitrosodiphenylamine	0.0500	0.0393	0.0500	0.0401	79	80	60-126	2	30
Di-n-octylphthalate	0.0500	0.0430	0.0500	0.0423	86	85	60-136	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

LCS/LCSD (continued)									
Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Pentachlorophenol	0.0500	0.0393	0.0500	0.0380	79	76	54-131	3	30
Phenanthrene	0.0500	0.0403	0.0500	0.0407	81	81	65-113	1	30
Phenol	0.0500	0.0210	0.0500	0.0206	42	41	19-79	2	30
Pyrene	0.0500	0.0399	0.0500	0.0393	80	79	65-115	1	30
Pyridine	0.0500	0.0157	0.0500	0.0163	31	33	23-64	4	30
1,2,4-Trichlorobenzene	0.0500	0.0349	0.0500	0.0338	70	68	34-106	3	30
2,4,5-Trichlorophenol	0.0500	0.0397	0.0500	0.0390	79	78	66-118	2	30
2,4,6-Trichlorophenol	0.0500	0.0397	0.0500	0.0385	79	77	69-117	3	30
	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 20136SLB026	•	. ,	310914-1310915						
1,4-Dioxane	33.33	12.52			38		21-79		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 20136WAB026	Sample number	(s): 1310907							
1,4-Dioxane	1.00	0.432	1.00	0.443	43	44	18-91	3	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201290011A	Sample number	(s): 1310911,13	310914-1310915						
2,4-D	0.0834	0.149			179*		57-142		
2,4,5-T	0.00833	0.0167			200*		59-137		
2,4,5-TP	0.00833	0.0154			185*		70-130		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201290002A	Sample number	(s): 1310907							
2,4-D	0.00250	0.00363	0.00250	0.00369	145*	147*	70-134	2	30
2,4,5-T	0.000250	0.000395	0.000250	0.000399	158	160	69-164	1	30
2,4,5-TP	0.000250	0.000369	0.000250	0.000370	148*	148*	81-137	0	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201290009A	Sample number	(s): 1310911,13	310914-1310915						
PCB-1016	0.167	0.146			87		76-121		
PCB-1260	0.167	0.173			104		79-130		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201290014A	Sample number	(s): 1310907							
PCB-1016	0.00501	0.00418	0.00501	0.00413	84	82	60-117	1	30
PCB-1260	0.00501	0.00458	0.00501	0.00453	91	90	57-134	1	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201290008A			310914-1310915						
Aldrin	0.00333	0.00325			98		60-117		
Alpha BHC	0.00338	0.00327			97		65-124		
Beta BHC	0.00333	0.00315			95		68-129		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Gamma BHC - Lindane	0.00333	0.00313			94		68-133		
Alpha Chlordane	0.00333	0.00341			102		73-131		
4,4'-Ddd	0.00671	0.00655			98		69-138		
4,4'-Dde	0.00667	0.00650			97		68-146		
4,4'-Ddt	0.00671	0.00640			95		67-135		
Delta BHC	0.00333	0.00331			99		45-151		
Dieldrin	0.00667	0.00703			105		63-126		
Endosulfan I	0.00333	0.00322			97		62-119		
Endosulfan II	0.00667	0.00661			99		65-126		
Endosulfan Sulfate	0.00667	0.00683			102		71-132		
Endrin	0.00667	0.00685			103		86-135		
Heptachlor	0.00333	0.00301			90		66-118		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201290013A	Sample numbe	r(s): 1310907							
Aldrin	0.000100	0.0000494	0.000100	0.0000509	49	51	28-119	3	30
Alpha BHC	0.000101	0.0000782	0.000101	0.0000982	77	97	47-132	23	30
Beta BHC	0.000100	0.0000802	0.000100	0.000103	80	103	27-143	25	30
Gamma BHC - Lindane	0.000100	0.0000769	0.000100	0.0000998	77	100	29-136	26	30
Alpha Chlordane	0.000100	0.0000679	0.000100	0.0000857	68	86	28-136	23	30
4,4'-Ddd	0.000201	0.000155	0.000201	0.000192	77	96	42-148	21	30
4,4'-Dde	0.000200	0.000126	0.000200	0.000149	63	74	22-138	17	30
4,4'-Ddt	0.000201	0.000155	0.000201	0.000192	77	95	40-145	21	30
Delta BHC	0.000100	0.0000791	0.000100	0.000102	79 77	102	28-141	25	30
Dieldrin Endosulfan I	0.000200 0.000100	0.000153 0.0000748	0.000200	0.000195 0.0000914	77 75	97 91	31-145 40-138	24 20	30 30
Endosulfan II	0.000100	0.000148	0.000100 0.000200	0.0000914	75 74	93	27-138	23	30
Endosulfan Sulfate	0.000200	0.000148	0.000200	0.000187	82	101	41-133	23	30
Endrin	0.000200	0.000164	0.000200	0.000202	79	100	35-143	24	30
Heptachlor	0.000200	0.000157	0.000200	0.000199	53	59	38-135	10	30
	ng/g	ng/g	ng/g	ng/g					
Batch number: 20129002	Sample numbe	r(s): 1310911,13	310914-1310915						
6:2-Fluorotelomersulfonic acid	23.7	21.92			92		51-144		
8:2-Fluorotelomersulfonic acid	23.94	23.04			96		54-152		
NEtFOSAA	25	28.19			113		51-145		
NMeFOSAA	25	30.81			123		55-152		
Perfluorobutanesulfonic acid	22.12	22.61			102		63-139		
Perfluorobutanoic acid	25	22.49			90		56-188		
Perfluorodecanesulfonic acid	24.08	22.45			93		60-142		
Perfluorodecanoic acid	25	25.32			101		65-144		
Perfluorododecanoic acid	25	24.49			98		62-150		
Perfluoroheptanesulfonic acid	23.78	23.86			100		67-139		
Perfluoroheptanoic acid	25	27.46			110		65-153		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Analysis Name	LCS Spike Added ng/g	LCS Conc ng/g	LCSD Spike Added ng/g	LCSD Conc ng/g	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Perfluorohexanesulfonic acid	23.64	25.53			108		59-139		
Perfluorohexanoic acid	25	25.87			103		64-149		
Perfluorononanoic acid	25	25.99			104		64-151		
Perfluorooctanesulfonamide	25	25.45			102		61-133		
Perfluorooctanesulfonic acid	23.9	21.12			88		54-132		
Perfluorooctanoic acid	25	24.37			97		65-147		
Perfluoropentanoic acid	25	22.36			89		71-139		
Perfluorotetradecanoic acid	25	26.29			105		66-147		
Perfluorotridecanoic acid	25	24.79			99		63-152		
Perfluoroundecanoic acid	25	24.63			99		65-146		
	ng/l	ng/l	ng/l	ng/l					
Batch number: 20132008	Sample number	(s): 1310907							
6:2-Fluorotelomersulfonic acid	24.28	21.51	24.28	22.79	89	94	56-140	6	30
8:2-Fluorotelomersulfonic acid	24.52	22.44	24.52	22.07	92	90	58-143	2	30
NEtFOSAA	25.6	26.3	25.6	25.63	103	100	53-140	3	30
NMeFOSAA	25.6	27.42	25.6	26.64	107	104	59-141	3	30
Perfluorobutanesulfonic acid	22.64	21.26	22.64	20.67	94	91	67-135	3	30
Perfluorobutanoic acid	25.6	20.06	25.6	20.05	78	78	63-160	0	30
Perfluorodecanesulfonic acid	24.64	21.06	24.64	21.27	85	86	62-135	1	30
Perfluorodecanoic acid	25.6	23.76	25.6	24.02	93	94	66-141	1	30
Perfluorododecanoic acid	25.6	25.95	25.6	23.69	101	93	65-143	9	30
Perfluoroheptanesulfonic acid	24.36	21.64	24.36	21.39	89	88	67-138	1	30
Perfluoroheptanoic acid	25.6	23.13	25.6	23.45	90	92	69-144	1	30
Perfluorohexanesulfonic acid	24.2	20.93	24.2	21.91	86	91	63-132	5	30
Perfluorohexanoic acid	25.6	21.01	25.6	23.26	82	91	69-139	10	30
Perfluorononanoic acid	25.6	23.75	25.6	23.74	93	93	66-144	0	30
Perfluorooctanesulfonamide	25.6	24.23	25.6	24.98	95	98	67-126	3	30
Perfluorooctanesulfonic acid	24.48	20.08	24.48	19.79	82	81	53-129	1	30
Perfluorooctanoic acid	25.6	23.91	25.6	23.11	93	90	67-139	3	30
Perfluoropentanoic acid	25.6	23.04	25.6	23.07	90	90	73-135	0	30
Perfluorotetradecanoic acid	25.6	23.67	25.6	23.81	92	93	69-141	1	30
Perfluorotridecanoic acid	25.6	25.2	25.6	23.91	98	93	66-146	5	30
Perfluoroundecanoic acid	25.6	22.7	25.6	24.71	89	97	66-140	8	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201281063802	Sample number	(s): 1310910-1	310911,1310914-	1310915					
Mercury	0.100	0.0947			95		80-115		
Batch number: 201281404904A		` '	310911,1310914-	1310915					
Arsenic	1.00	1.10			110		80-120		
Barium	5.00	5.62			112		80-120		
Beryllium	0.400	0.398			100		80-120		
Cadmium	0.500	0.459			92		80-120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

LCS/LCSD (continued)											
Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max		
Chromium	5.00	5.19			104		86-120				
Copper	5.00	5.27			105		85-120				
Lead	0.500	0.527			105		80-120				
Manganese	5.00	4.69			94		80-120				
Nickel	5.00	5.61			112		86-120				
Selenium	1.00	0.970			97		85-120				
Silver	5.00	5.10			102		84-120				
Zinc	50	51.05			102		85-120				
	mg/l	mg/l	mg/l	mg/l							
Batch number: 201250571307	Sample number	(s): 1310907									
Mercury	0.00100	0.000852			85		80-110				
Batch number: 201291404401	Sample number	(s)· 1310907									
Silver	0.0200	0.0197	0.0200	0.0201	98	101	80-120	2	20		
Batch number: 201291404701A	Sample number	(s): 1310907									
Arsenic	0.0100	0.0109			109		85-120				
Barium	0.0500	0.0506			101		80-120				
Beryllium	0.00400	0.00418			105		90-112				
Cadmium	0.00500	0.00574			115		84-120				
Chromium	0.0500	0.0545			109		90-115				
Copper	0.0500	0.0562			112		89-120				
Lead	0.00500	0.00546			109		90-110				
Manganese	0.0500	0.0572			114		89-120				
Nickel	0.0500	0.0557			111		90-114				
Selenium	0.0100	0.0113			113		90-113				
Zinc	0.500	0.519			104		90-115				
Batch number: 201321404503	Sample number	r(s): 1310908									
Arsenic	0.0600	0.0576	0.0600	0.0637	96	106	80-120	10	20		
	mg/kg	mg/kg	mg/kg	mg/kg							
Batch number: 20133102201A Total Cyanide (solid)	Sample number 10	r(s): 1310911,1 10.07	310914-1310915		101		90-110				
, , ,	mg/l	mg/l	mg/l	mg/l							
Batch number: 20134117101B	Sample number	_	•	•							
Total Cyanide (water)	0.200	0.198			99		90-110				
	mg/kg	mg/kg	mg/kg	mg/kg							
Batch number: 20129042501A	Sample number	r(s): 1310911,1	310914-1310915								
Hexavalent Chromium (SOLIDS)	5.00	4.78			96		80-120				
	mg/l	mg/l	mg/l	mg/l							

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 20129027601A Hexavalent Chromium	Sample number(0.200	s): 1310907 0.207	0.200	0.207	103	103	90-110	0	4
	%	%	%	%					
Batch number: 20131820001A Moisture	Sample number(89.5	s): 1310910-1 89.34	310915		100		99-101		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 201290011A	Sample number	er(s): 1310911,	1310914-13	310915 UNSPK	: 1310915					
2,4-D	N.D.	0.0831	0.136	0.0831	0.118	164*	142	57-142	14	50
2,4,5-T	N.D.	0.00831	0.00984	0.00831	0.00905	119	109	59-137	8	50
2,4,5-TP	N.D.	0.00831	0.00977	0.00831	0.00934	118	112	70-130	4	50
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201290009A	Sample number	er(s): 1310911,	1310914-13	310915 UNSPK	: 1310914					
PCB-1016	N.D.	0.166	0.0847	0.166	0.0863	51*	52*	76-121	2	50
PCB-1260	N.D.	0.166	0.128	0.166	0.128	77*	77*	79-130	0	50
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201290008A	Sample number	er(s): 1310911,	1310914-13	310915 UNSPK	: 1310911					
Aldrin	N.D.	0.00658	0.00595	0.00649	N.D.	90	0*	60-117	200*	50
Alpha BHC	0.00752	0.00666	0.00771	0.00657	0.0118	3*	66	65-124	42	50
Beta BHC	N.D.	0.00658	N.D.	0.00649	N.D.	0*	0*	68-129	0	50
Gamma BHC - Lindane	N.D.	0.00658	0.00550	0.00649	N.D.	84	0*	68-133	200*	50
Alpha Chlordane	0.0415	0.00658	0.00646	0.00649	0.0486	-531 (2)	111 (2)	73-131	153*	50
4,4'-Ddd	N.D.	0.0132	0.0132	0.0131	0.0106	99	81	69-138	22	50
4,4'-Dde	N.D.	0.0132	0.0127	0.0130	0.0116	96	90	68-146	9	50
4,4'-Ddt	N.D.	0.0132	N.D.	0.0131	N.D.	0*	0*	67-135	0	50
Delta BHC	N.D.	0.00658	N.D.	0.00649	N.D.	0*	0*	45-151	0	50
Dieldrin	N.D.	0.0132	0.0121	0.0130	0.00994	92	77	63-126	20	50
Endosulfan I	N.D.	0.00658	0.00662	0.00649	0.0107	101	165*	62-119	47	50
Endosulfan II	N.D.	0.0132	N.D.	0.0130	N.D.	0*	0*	65-126	0	50
Endosulfan Sulfate	N.D.	0.0132	0.0125	0.0130	N.D.	95	0*	71-132	200*	50
Endrin	N.D.	0.0132	N.D.	0.0130	N.D.	0*	0*	86-135	0	50
Heptachlor	N.D.	0.00658	N.D.	0.00649	N.D.	0*	0*	66-118	0	50

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
	ng/g	ng/g	ng/g	ng/g	ng/g					
Batch number: 20129002	Sample number	er(s): 1310911	,1310914-13	310915 UNSPK	: 1310911					
6:2-Fluorotelomersulfonic acid	N.D.	21.94	21.25	21.55	23.43	97	109	51-144	10	30
8:2-Fluorotelomersulfonic acid	N.D.	22.17	22.46	21.76	22.54	101	104	54-152	0	30
NEtFOSAA	N.D.	23.15	26.32	22.73	27.82	114	122	51-145	6	30
NMeFOSAA	N.D.	23.15	28.02	22.73	29.34	121	129	55-152	5	30
Perfluorobutanesulfonic acid	N.D.	20.48	22.29	20.11	22.25	109	111	63-139	0	30
Perfluorobutanoic acid	N.D.	23.15	20.94	22.73	22.11	90	97	56-188	5	30
Perfluorodecanesulfonic acid	N.D.	22.3	20.95	21.89	23.38	94	107	60-142	11	30
Perfluorodecanoic acid	N.D.	23.15	23.69	22.73	24.23	102	107	65-144	2	30
Perfluorododecanoic acid	N.D.	23.15	25.19	22.73	24.14	109	106	62-150	4	30
Perfluoroheptanesulfonic acid	N.D.	22.02	23.39	21.62	23.29	106	108	67-139	0	30
Perfluoroheptanoic acid	N.D.	23.15	24.43	22.73	25.78	106	113	65-153	5	30
Perfluorohexanesulfonic acid	N.D.	21.89	21.79	21.49	22.76	100	106	59-139	4	30
Perfluorohexanoic acid	N.D.	23.15	22.44	22.73	24.02	97	106	64-149	7	30
Perfluorononanoic acid	N.D.	23.15	24.51	22.73	28.36	106	125	64-151	15	30
Perfluorooctanesulfonamide	N.D.	23.15	25.3	22.73	26.02	109	114	61-133	3	30
Perfluorooctanesulfonic acid	N.D.	22.13	19.75	21.73	21.88	89	101	54-132	10	30
Perfluorooctanoic acid	N.D.	23.15	24.33	22.73	25.56	105	112	65-147	5	30
Perfluoropentanoic acid	N.D.	23.15	23.79	22.73	22.78	103	100	71-139	4	30
Perfluorotetradecanoic acid	N.D.	23.15	23.59	22.73	24.67	102	109	66-147	4	30
Perfluorotridecanoic acid	N.D.	23.15	25.46	22.73	23.97	110	105	63-152	6	30
Perfluoroundecanoic acid	N.D.	23.15	23.61	22.73	23.88	102	105	65-146	1	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201281063802	Sample number	er(s): 1310910	-1310911,13	310914-131091	5 UNSPK:	1310910				
Mercury	3.53	0.164	2.45	0.161	2.36	-659 (2)	-728 (2)	80-120	4	20
Batch number: 201281404904A				310914-131091						
Arsenic	8.57	1.82	8.05	1.65	7.01	-28 (2)	-94 (2)	75-125	14	20
Barium	50.83	9.09	98.89	8.26	49.66	529 (2)	-14 (2)	75-125	66*	20
Beryllium	0.389	0.727	0.985	0.661	0.828	82	66*	75-125	17	20
Cadmium	0.230	0.909	1.26	0.826	1.19	113	116	75-125	6	20
Chromium	13.88	9.09	20.12	8.26	17.47	69*	43*	75-125	14	20
Copper	55.89	9.09	108.64	8.26	123.74	580 (2)	821 (2)	75-125	13	20
Lead	1222.08	0.909	1039.75	0.826	367.95	-20056 (2)	-103350 (2)	75-125	95*	20
Manganese	196.02	9.09	192.87	8.26	174.25	-35 (2)	-263 (2)	75-118	10	20
Nickel	27.89	9.09	25.81	8.26	23.58	-23*	-52*	75-125	9	20
Selenium	0.394	1.82	1.82	1.65	1.61	79	74*	75-125	12	20
Silver	0.200	9.09	9.58	8.26	8.32	103	98	75-125	14	20
Zinc	435.85	90.91	793.31	82.64	934.08	393 (2)	603 (2)	75-125	16	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20133102201A	Sample number	er(s): 1310911,	1310914-13	310915 UNSPK:	: 1310914					
Total Cyanide (solid)	0.338	5.24	4.64			82		41-145		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20129042501A	Sample number	er(s): 1310911,	1310914-13	310915 UNSPK:	: 1310911					
Hexavalent Chromium (SOLIDS)	N.D.	40.7	N.D.			0*		75-125		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/kg	mg/kg		
Batch number: 201281063802	Sample number(s): 1310	910-1310911,1310914	-1310915 BKG: 1	310910
Mercury	3.53	2.19	47* (1)	20
Batch number: 201281404904A	Sample number(s): 1310	910-1310911,1310914	-1310915 BKG: 1	310911
Arsenic	8.57	7.09	19	20
Barium	50.83	39.88	24*	20
Beryllium	0.389	0.288	30*	20
Cadmium	0.230	0.267	15 (1)	20
Chromium	13.88	10.78	25*	20
Copper	55.89	134.51	83*	20
Lead	1222.08	1006.9	19	20
Manganese	196.02	173.76	12	20
Nickel	27.89	12.62	75*	20
Selenium	0.394	0.302	26* (1)	20
Silver	0.200	0.118	51* (1)	20
Zinc	435.85	1114.75	88*	20
	mg/kg	mg/kg		
Batch number: 20133102201A	Sample number(s): 1310	911,1310914-1310915	BKG: 1310914	
Total Cyanide (solid)	0.338	N.D.	200* (1)	20
	mg/kg	mg/kg		
Batch number: 20129042501A	Sample number(s): 1310	911,1310914-1310915	BKG: 1310911	
Hexavalent Chromium (SOLIDS)	N.D.	N.D.	0 (1)	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Group Number: 2098762 Client Name: Langan Eng & Env Services

Reported: 05/20/2020 10:31

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: B201311AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1310911	99	98	112	99
1310912	100	100	100	101
1310913	101	99	103	101
1310914	102	105	100	98
1310915	102	107	100	98
Blank	100	100	98	98
LCS	101	106	99	101
LCSD	101	105	99	101
Limits:	50-141	54-135	52-141	50-131

Analysis Name: PPL/TCL VOCs

Batch number: Y201332AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1310907	101	103	97	95
1310909	102	102	97	95
Blank	101	103	97	95
LCS	100	105	98	97
LCSD	100	101	98	98
Limits:	80-120	80-120	80-120	80-120

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20129SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
1310911	74	69	89	69	85	96
1310912	60	59	74	56	63	80
1310913	79	73	90	73	89	98
1310914	70	65	81	67	77	82
1310915	76	72	88	68	83	110
Blank	85	83	112	78	96	125
LCS	83	80	105	77	89	113
Limits:	21-112	18-115	10-136	23-115	34-117	35-135

Analysis Name: TCL SW846 8270D MINI

Batch number	: 20129WAC026					
	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
1310907	30	39	75	80	73	97

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TCL SW846 8270D MINI

Batch number: 20129WAC026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
Blank	22	28	60	57	52	82	
LCS	35	45	79	79	71	88	
LCSD	34	43	76	78	72	86	
Limits:	10-67	10-84	18-141	38-113	44-102	34-128	

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136SLB026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1310911	163*	76	73
1310914	218*	114*	79
1310915	103	69	76
Blank	93	98	81
LCS	94	84	83
Limits:	21-120	17-112	27-107

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136WAB026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1310907	100	84	94
Blank	93	83	89
LCS	89	93	89
LCSD	90	89	86
Limits:	34-125	10-138	15-121

Analysis Name: Herbicides in Water 8151A

Batch number: 201290002A

	2,4-DCAA-D1	2,4-DCAA-D2	
1310907	121	126	
Blank	117	123	
LCS	128	132	
LCSD	125	130	
Limits:	34-142	34-142	

Analysis Name: NY Part 375 Pests Soil

Batch number: 201290008A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310911	160*	99	58	96

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Soil

Batch number: 201290008A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310914	42	56	28	47
1310915	82	200*	158*	109
Blank	67	102	64	97
LCS	63	97	60	93
MS	79	100	77	101
MSD	159*	84	71	82
Limits:	19-136	46-152	19-136	46-152

Analysis Name: 7 PCBs + Total Soil

Batch number: 201290009A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310911	69	91	58	97
1310914	51*	62	39*	62
1310915	70	74	60	75
Blank	101	107	94	104
LCS	102	107	95	107
MS	59	72	44*	74
MSD	58	73	43*	74
Limits:	53-140	45-143	53-140	45-143

Analysis Name: 2,4,5-T, 2,4-D, 2,4,5-TP 8151A

Batch number: 201290011A

	2,4-DCAA-D1	2,4-DCAA-D2	
1310911	132	116	
1310914	136	121	
1310915	129	92	
Blank	145*	148*	
LCS	165*	159*	
MS	108	97	
MSD	95	73	
I imits:	27-136	27-136	

Analysis Name: NY Part 375 Pests Water

Batch number: 201290013A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310907	54	45	55	44
Blank	45	44	48	45
LCS	53	54	54	54
LCSD	39	40	42	41

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless

attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Water

Batch number: 201290013A

Limits: 29-129 32-149 29-129 32-149

Analysis Name: 7 PCBs + Total Water

Batch number: 201290014A

	Tetrachloro-m-xylene-DT	Decachlorobiphenyl-D1	l etrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1310907	46	41	50	40
Blank	39	44	43	43
LCS	21*	73	23*	75
LCSD	23*	66	25*	70
Limits:	33-137	10-148	33-137	10-148

Analysis Name: NY 21 PFAS Soil

	er: 20129002					
	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1310911	81	79	79	79	79	78
1310914	78	75	77	77	83	80
1310915	72	70	72	69	72	67
Blank	81	79	81	79	80	77
LCS	83	81	80	83	80	78
MS	81	77	74	77	74	74
MSD	75	71	72	70	74	72
Limits:	40-117	38-118	38-120	36-120	38-124	39-120
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1310911	88	85	82	86	88	97
1310914	96	83	83	90	80	120
1310915	75	74	75	75	75	97
Blank	79	82	82	82	89	93
LCS	80	86	80	79	86	86
MS	80	78	83	85	83	92
MSD	79	78	76	81	79	88
Limits:	25-154	44-115	45-118	39-123	43-118	26-155
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1310911	86	89	88	87	80	81
1310914	54	80	57	83	76	39
1310915	24	73	27	68	69	75
Blank	88	91	96	87	84	83
LCS	89	90	94	87	85	83

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

13C8-PFOSA

13C2-PFTeDA

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098762

Reported: 05/20/2020 10:31

Labeled Isotope Quality Control (continued)

d5-NEtFOSAA

13C2-PFDoDA

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

13C7-PFUnDA

Analysis Name: NY 21 PFAS Soil Batch number: 20129002

d3-NMeFOSAA

	do Milior Coru	100711011071	40 11211 007111	100211100011	100211105/1	1000110011
MS	82	83	84	82	82	77
MSD	76	81	78	81	75	69
Limits:	10-152	34-124	10-156	28-126	26-125	31-127
	me: NY 21 PFAS Wate er: 20132008	r				
	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1310907	105	100	101	107	107	105
Blank	92	85	85	94	92	88
LCS	104	94	95	109	110	103
LCSD	109	101	104	107	110	107
Limits:	43-130	38-150	23-175	36-137	35-143	33-140
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1310907	114	107	99	95	103	111
Blank	92	93	88	91	92	99
LCS	107	105	103	101	102	105
LCSD	109	110	108	111	105	114
Limits:	29-182	52-124	52-121	48-130	50-124	37-169
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1310907	124	117	136	109	97	96
Blank	109	97	112	90	92	80
LCS	125	111	124	101	98	81
LCSD	132	113	142	119	107	93
Limits:	36-143	44-128	42-149	36-127	21-134	10-134

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

eurofins :

For Eurofins Lancaster Laboratories Environmental use only

Lancaster Laboratories Environmental use only

Acct. # 45206 Group # 20907 42 Sample # 1310907 -15

COC #606110

Client Information						Ma	trix	_					Analy	/sis (Requ	este	∌d			For Lab U	Jse Only	
Client: LANGAN, DPC	Acct. #:							\Box			Pr		vatio					les		FSC:) (TO . c	
Project Name/#;	214/212 ***			′	9	-		(-]'												SCR#:	(500	700
35 COMMERCIAL STREET / 170229024	PWSID #:			,	Tissue	Ground	Surface	I = I'								+ He-		,,	Mesen:	Pres	servation (Codes
Project Manager:	P.O. #;				仁	읝	žur	$i \mid l'$		1 '	'		ERULKY			Cue.		DICHAME	928	H=HCI		Thiosulfate
GREG WINA				,			-	$ \cdot $	2	1 /			136			36		3		N=HNO ₃		NaOH
Sampler: REID BALKIND	Quote #:				# '		네	$L \square^2$	1 2			ادا	12			12		1 1	5.46	S=H ₂ SO ₄ F=Field F	ı P=I Filtered O≕	H₃PO₄ Other
				′	֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	흥	ES	$L \perp L'$	眶	্থ	15	B	LJ	3.				1,4	- L	-	Remarks	
41				ø	Sediment	Potable	NPDES	, ['	Total # of Containers	2001	SwoCs	ARSENIC	LEAD	ERB5		Ments			1		-	_
Naw York Yes Er	No 🗆		4 /	Composite	8	, ar	- 1	, 11	0	1-1	10		7	N. S.		len	YAMIDE		K			
Sample Identification	Colle	lected	' ۾ ا	[월	Soil X		ō		#	13	121	3	3	E	100		1 251	PAR	3	1		
	Date	Time	Grab	8	io '	Water	<u> </u>	Other:	10	15	12	TWP	Torac	Pests	72.8	195	5	人	T			
SOF602 - 050720	5/1/20	14:20	1	1		-		۲	1	X	 	×	X		~	14	V	-		<u> </u>		
(OT602_056720	5/7/20		 	 	\vdash		\rightarrow		$\vdash\vdash$	×	\vdash			~	\vdash	\dashv	-		X	 		
L817-8-10	3 // [60]	8:45	1-	-	<u></u>	 	-	—						-			 	\vdash		 		
LB17-15-16		9:15	1-		-	\vdash	-		$\vdash\vdash\vdash$	\vdash		\rightarrow	×	-	\longrightarrow		\square		X	<u> </u>		
LB(3N_15-17	 	18:30		1	\vdash		-		$\vdash \vdash \vdash$		3		—	×	×	×	7	¥				
LB 13 W-15-17	 		┦	-	\leftarrow				igwdap		×					_						
1071 10		11:55	┦	—	4		-		\square	M	×			24		×	X	×		יביאטי	Tel vola	عملا دم
LBZ1_1-3 LBZ1_15-17		13.45	╨	1		 			\Box	×	K			×	×	¥	~	×				
		14:15	╨	↓!	igspace	<u> </u>	\rightarrow		\square	\sim	४			×	*	×	×	×				
E	 '	200	\bot	↓ J	igspace	<u> </u>																
	السلط	14:20				<u></u>	1	Δ														
Turnaround Time (TAT) Requested (a) [Relinqu	quished t	TAX.	201	do	س			Date		Time		Receive	ed by					Date	Time
(Rush TAT is subject to laboratory approval and surcharge.)	ush `		Beling	uished t	A/X	IC	W		1.0		Total Parks	_	017		1	SCL		d	7	ک	720	1.520
(1 lean, 1771 le saujeur le laboratory approvai alle suichaige.)			riomiqu	Jishow .	-	5	//	11	1/2		Date 5/-	1/20	Time		Receive		()				Date	Time
Requested TAT in business days:		,	Reling	uisbedi	byc	7	1			~	Date	_	77 C	_	Receive	\sim	M	_			Pate PAD	1720
Chyka Clangan Com	JEUNE @	MEMICA		1	T	'W'	In	~			7/14		194		1000	M DJ				V2:5	Date	Time
E-mail address: WIM@ LINGHU COM			Reling	uished t	by						Date		Time		Receive	ed by		-			Date	Time
Data Package Options (circle if req	quired)																					
Type I (EPA Level 3 Type VI (R	Raw Data C	Only)	Relinqu	uished t	бу					Ī	Date		Time		Receive		11	11			Date /	Time
Equivalent/non-CLP)		/···//																Trus			Date 5/7/20	1945
Type III (Reduced non-CLP) NJ DKQP	TX T	RRP-13					Requ	rired.	? (4	(eg)	No									cial Carrie	r:	
\wedge		,	-			, format		Fo				=		—	UP	S		FedEx	x	Other		
(NYSDEC Category A or (B) MA MCP	CT R	CP				ecific C ate QC s							No			Ter	mpera	ature	upon	receipt-(0.2-79	°C
				(11 300)	, It runus	ill UV 3	igitihie.	anu s	DOTING D	nplica	e samp	JIB VOIU	ıme.)				•					

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID: 283913

Group Number(s):

Client: Langan, DPC

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/07/2020

Number of Packages:

2

Number of Projects:

1

State/Province of Origin:

NY

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

No

Custody Seal Present:

Yes

Sample Date/Times match COC:

Yes

Custody Seal Intact:

Yes

Total Trip Blank Qty:

Air Quality Samples Present:

2 **HCI**

Samples Chilled: Paperwork Enclosed: Yes Yes Trip Blank Type:

No

Samples Intact:

Yes

Missing Samples:

No

Extra Samples:

No

No

Unpacked by Melvin Sanchez

Discrepancy in Container Qty on COC:

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Samples Collected Same Ice Present? Ice Container Elevated Temp? Day as Receipt? Thermometer ID Corrected Temp Therm. Type Ice Type Cooler# **Matrix** 7.9 **IR** Wet Bagged 46730061WS Water 6.9 IR Wet Υ Bagged Y Υ 46730061WS Soil N Υ 2 Water 46730061WS -0.2 **IR** Wet Υ Loose Wet Loose Υ 1.7 IR 46730061WS 2 Soil

Sample ID Discrepancy Details

Sample ID on COC LB13W_15-17

Sample ID on Label LB13W_15-16

Comments

General Comments:

Samples not frozen.

2425 New Holland Pike Lancaster, PA 17605-2425

T 717-656-2300 F 717-656-2681 www.LancasterLabs.com

BMQL

ppb

basis

Dry weight

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm		be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

parts per billion

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 13, 2020 11:07

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2098965 SDG: CMS03 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

Previous versions of this report were generated on: 05/13/2020 09:22 05/13/2020 11:03

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environmental-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
SV05_050820 Air	<u>Date/Time</u> 05/08/2020 09:35 -	1311677
C)/04_050000_A:-	05/08/2020 11:35	4044070
SV04_050820 Air	05/08/2020 09:52 - 05/08/2020 11:52	1311678
SV02_050820 Air	05/08/2020 10:10 -	1311679
	05/08/2020 11:50	
SVDUP01_050820 Air	05/08/2020 10:37 -	1311680
	05/08/2020 11:55	
AA01_050820 Air	05/08/2020 10:26 -	1311681
	05/08/2020 12:15	
SV03 050820 Air	05/08/2020 09:52 -	1311682
_	05/08/2020 11:52	
SV01 050820 Air	05/08/2020 10:13 -	1311683
_	05/08/2020 12:13	

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311677

2098965

Sample Description: SV05_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:35 through 05/08/2020 11:35

SDG#: CMS03-01

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Acetone		67-64-1	610	25	240	20
05298	Benzene		71-43-2	3.4	0.35	3.2	1
05298	Bromobenzene ¹		108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane		75-27-4	N.D.	0.80	6.7	1
05298	Bromoform		75-25-2	N.D.	1.8	10	1
05298	Bromomethane		74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene		106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone		78-93-3	59	0.62	2.9	1
05298	Carbon Disulfide		75-15-0	13	0.40	3.1	1
05298	Carbon Tetrachloride		56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene		108-90-7	N.D.	0.60	4.6	1
05298	Chlorodifluoromethane1		75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane		75-00-3	N.D.	0.50	2.6	1
05298	Chloroform		67-66-3	N.D.	0.45	4.9	1
05298	Chloromethane		74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene		107-05-1	N.D.	0.47	3.1	1
05298	Cumene		98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane		124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane		106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹		74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene		95-50-1	N.D.	1.2	6.0	1
05298	1,3-Dichlorobenzene		541-73-1	5.9 J	1.1	6.0	1
05298	1,4-Dichlorobenzene		106-46-7	N.D.	1.0	6.0	1
05298	Dichlorodifluoromethane		75-71-8	1.9 J	0.64	4.9	1
05298	1,1-Dichloroethane		75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane		107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene		75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene		156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene		156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane ¹		75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane		78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene		10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene		10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene		100-41-4	5.5	0.83	4.3	1
05298	4-Ethyltoluene ¹		622-96-8	N.D.	0.88	4.9	1
05298	Freon 113		76-13-1	N.D.	0.84	7.7	1
05298	Freon 114		76-14-2	N.D.	0.84	7.0	1
05298	Heptane		142-82-5	31	0.94	4.1	1
05298	Hexachloroethane		67-72-1	N.D.	2.6	19	1
05298	Hexane		110-54-3	180	0.46	3.5	1
05298	2-Hexanone ¹		591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311677

2098965

Sample Description: SV05 050820 Air

35 Commercial Street/170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:35 through 05/08/2020 11:35

SDG#: CMS03-01

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane	540-84-1	8.2	0.61	4.7	1
05298	Methyl t-Butyl Ether	1634-04-4	2.0 J	0.54	3.6	1
05298	4-Methyl-2-pentanone	108-10-1	2.3 J	0.61	4.1	1
05298	Methylene Chloride	75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹	111-65-9	20	1.9	9.3	1
05298	Pentane ¹	109-66-0	470	7.7	59	20
05298	Styrene	100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane1	630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene	127-18-4	1.8 J	1.7	14	1
05298	Toluene	108-88-3	11	0.45	3.8	1
05298	1,1,1-Trichloroethane	71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane	79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene	79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane	75-69-4	N.D.	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹	96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene	95-63-6	1.7 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene	108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride	75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene	179601-23-1	14	1.1	8.7	1
05298	o-Xylene	95-47-6	6.9	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst **Date and Time** Factor No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 11:01 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 11:32 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311678

2098965

Sample Description: SV04_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:52 through 05/08/2020 11:52

SDG#: CMS03-02

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Acetone		67-64-1	860	25	240	20
05298	Benzene		71-43-2	6.9	0.35	3.2	1
05298	Bromobenzene ¹		108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane		75-27-4	N.D.	0.80	6.7	1
05298	Bromoform		75-25-2	N.D.	1.8	10	1
05298	Bromomethane		74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene		106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone		78-93-3	81	0.62	2.9	1
05298	Carbon Disulfide		75-15-0	37	0.40	3.1	1
05298	Carbon Tetrachloride		56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene		108-90-7	N.D.	0.60	4.6	1
05298	Chlorodifluoromethane1		75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane		75-00-3	N.D.	0.50	2.6	1
05298	Chloroform		67-66-3	N.D.	0.45	4.9	1
05298	Chloromethane		74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene		107-05-1	N.D.	0.47	3.1	1
05298	Cumene		98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane		124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane		106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹		74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene		95-50-1	N.D.	1.2	6.0	1
05298	1,3-Dichlorobenzene		541-73-1	4.3 J	1.1	6.0	1
05298	1,4-Dichlorobenzene		106-46-7	N.D.	1.0	6.0	1
05298	Dichlorodifluoromethane		75-71-8	2.6 J	0.64	4.9	1
05298	1,1-Dichloroethane		75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane		107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene		75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene		156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene		156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane1		75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane		78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene		10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene		10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene		100-41-4	8.6	0.83	4.3	1
05298	4-Ethyltoluene ¹		622-96-8	1.8 J	0.88	4.9	1
05298	Freon 113		76-13-1	N.D.	0.84	7.7	1
05298	Freon 114		76-14-2	N.D.	0.84	7.0	1
05298	Heptane		142-82-5	11	0.94	4.1	1
05298	Hexachloroethane		67-72-1	N.D.	2.6	19	1
05298	Hexane		110-54-3	N.D.	0.46	3.5	1
05298	2-Hexanone ¹		591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311678

2098965

Sample Description: SV04_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:52 through 05/08/2020 11:52

SDG#: CMS03-02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air EPA TO-15	5	ug/m3	ug/m3	ug/m3	
05298	Isooctane	540-84-1	2.1 J	0.61	4.7	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.54	3.6	1
05298	4-Methyl-2-pentanone	108-10-1	1.8 J	0.61	4.1	1
05298	Methylene Chloride	75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹	111-65-9	11	1.9	9.3	1
05298	Pentane ¹	109-66-0	14	0.38	3.0	1
05298	Styrene	100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane ¹	630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene	127-18-4	N.D.	1.7	14	1
05298	Toluene	108-88-3	31	0.45	3.8	1
05298	1,1,1-Trichloroethane	71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane	79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene	79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane	75-69-4	1.9 J	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹	96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene	95-63-6	4.4 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene	108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride	75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene	179601-23-1	32	1.1	8.7	1
05298	o-Xylene	95-47-6	9.1	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst **Date and Time** Factor No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 12:02 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 12:33 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311679

2098965

Sample Description: SV02_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:10 through 05/08/2020 11:50

SDG#: CMS03-03

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Acetone		67-64-1	360	25	240	20
05298	Benzene		71-43-2	3.3	0.35	3.2	1
05298	Bromobenzene ¹		108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane		75-27-4	N.D.	0.80	6.7	1
05298	Bromoform		75-25-2	N.D.	1.8	10	1
05298	Bromomethane		74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene		106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone		78-93-3	30	0.62	2.9	1
05298	Carbon Disulfide		75-15-0	1.4 J	0.40	3.1	1
05298	Carbon Tetrachloride		56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene		108-90-7	N.D.	0.60	4.6	1
05298	Chlorodifluoromethane ¹		75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane		75-00-3	N.D.	0.50	2.6	1
05298	Chloroform		67-66-3	0.95 J	0.45	4.9	1
05298	Chloromethane		74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene		107-05-1	N.D.	0.47	3.1	1
05298	Cumene		98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane		124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane		106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹		74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene		95-50-1	N.D.	1.2	6.0	1
05298	1,3-Dichlorobenzene		541-73-1	6.2	1.1	6.0	1
05298	1,4-Dichlorobenzene		106-46-7	N.D.	1.0	6.0	1
05298	Dichlorodifluoromethane		75-71-8	2.9 J	0.64	4.9	1
05298	1,1-Dichloroethane		75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane		107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene		75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene		156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene		156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane1		75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane		78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene		10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene)	10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene		100-41-4	3.4 J	0.83	4.3	1
05298	4-Ethyltoluene ¹		622-96-8	0.92 J	0.88	4.9	1
05298	Freon 113		76-13-1	N.D.	0.84	7.7	1
05298	Freon 114		76-14-2	N.D.	0.84	7.0	1
05298	Heptane		142-82-5	4.4	0.94	4.1	1
05298	Hexachloroethane		67-72-1	N.D.	2.6	19	1
05298	Hexane		110-54-3	N.D.	0.46	3.5	1
05298	2-Hexanone ¹		591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SV02_050820 Air

Collection Date/Time: 05/08/2020 10:10 through 05/08/2020 11:50

SDG#: CMS03-03

	35 Commercial Street/170229024	ELLE Sample #: ELLE Group #:	AQ 1311679 2098965
Project Name:	35 Commercial Street/170229024	Matrix: Air	
Submittal Date/Time:	05/08/2020 20:50		

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane		540-84-1	1.8 J	0.61	4.7	1
05298	Methyl t-Butyl Ether		1634-04-4	N.D.	0.54	3.6	1
05298	4-Methyl-2-pentanone		108-10-1	1.8 J	0.61	4.1	1
05298	Methylene Chloride		75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹		111-65-9	12	1.9	9.3	1
05298	Pentane ¹		109-66-0	4.9	0.38	3.0	1
05298	Styrene		100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane1		630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene		127-18-4	N.D.	1.7	14	1
05298	Toluene		108-88-3	16	0.45	3.8	1
05298	1,1,1-Trichloroethane		71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane		79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene		79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane		75-69-4	2.2 J	0.84	5.6	1
05298	1,2,3-Trichloropropane1		96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene		95-63-6	3.0 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene		108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride		75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene		179601-23-1	11	1.1	8.7	1
05298	o-Xylene		95-47-6	3.4 J	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Analysis Dilution **Analysis Name** Batch# Analyst Date and Time **Factor** No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 13:03 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 14:04 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311680

2098965

Sample Description: SVDUP01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:37 through 05/08/2020 11:55

SDG#: CMS03-04FD

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Acetone		67-64-1	570	25	240	20
05298	Benzene		71-43-2	5.8	0.35	3.2	1
05298	Bromobenzene ¹		108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane		75-27-4	N.D.	0.80	6.7	1
05298	Bromoform		75-25-2	N.D.	1.8	10	1
05298	Bromomethane		74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene		106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone		78-93-3	64	0.62	2.9	1
05298	Carbon Disulfide		75-15-0	32	0.40	3.1	1
05298	Carbon Tetrachloride		56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene		108-90-7	N.D.	0.60	4.6	1
05298	Chlorodifluoromethane ¹		75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane		75-00-3	N.D.	0.50	2.6	1
05298	Chloroform		67-66-3	N.D.	0.45	4.9	1
05298	Chloromethane		74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene		107-05-1	N.D.	0.47	3.1	1
05298	Cumene		98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane		124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane		106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹		74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene		95-50-1	N.D.	1.2	6.0	1
05298	1,3-Dichlorobenzene		541-73-1	9.8	1.1	6.0	1
05298	1,4-Dichlorobenzene		106-46-7	N.D.	1.0	6.0	1
05298	Dichlorodifluoromethane		75-71-8	1.7 J	0.64	4.9	1
05298	1,1-Dichloroethane		75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane		107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene		75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene		156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene		156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane1		75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane		78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene		10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene		10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene		100-41-4	2.0 J	0.83	4.3	1
05298	4-Ethyltoluene1		622-96-8	N.D.	0.88	4.9	1
05298	Freon 113		76-13-1	N.D.	0.84	7.7	1
05298	Freon 114		76-14-2	N.D.	0.84	7.0	1
05298	Heptane		142-82-5	13	0.94	4.1	1
05298	Hexachloroethane		67-72-1	N.D.	2.6	19	1
05298	Hexane		110-54-3	82	0.46	3.5	1
05298	2-Hexanone ¹		591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311680

2098965

Sample Description: SVDUP01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

oo ooniinici olal oli eeti 17 02250

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:37 through 05/08/2020 11:55

SDG#: CMS03-04FD

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane	540-84-1	22	0.61	4.7	1
05298	Methyl t-Butyl Ether	1634-04-4	24	0.54	3.6	1
05298	4-Methyl-2-pentanone	108-10-1	N.D.	0.61	4.1	1
05298	Methylene Chloride	75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹	111-65-9	12	1.9	9.3	1
05298	Pentane ¹	109-66-0	260	7.7	59	20
05298	Styrene	100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane1	630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene	127-18-4	N.D.	1.7	14	1
05298	Toluene	108-88-3	14	0.45	3.8	1
05298	1,1,1-Trichloroethane	71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane	79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene	79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane	75-69-4	N.D.	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹	96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene	95-63-6	1.8 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene	108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride	75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene	179601-23-1	6.0 J	1.1	8.7	1
05298	o-Xylene	95-47-6	2.0 J	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst **Date and Time** Factor No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 14:35 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 15:05 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311681

2098965

Sample Description: AA01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:26 through 05/08/2020 12:15

SDG#: CMS03-05

CAT No.	Analysis Name		CAS Number	Result	Meth Detec	od ction Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air	EPA TO-15		ug/m3	ug/m	3	ug/m3	
05298	Acetone		67-64-1	750	25		240	20
05298	Benzene		71-43-2	4.0	0.35		3.2	1
05298	Bromobenzene ¹		108-86-1	N.D.	0.64		6.4	1
05298	Bromodichloromethane		75-27-4	N.D.	0.80		6.7	1
05298	Bromoform		75-25-2	N.D.	1.8		10	1
05298	Bromomethane		74-83-9	N.D.	0.70		3.9	1
05298	1,3-Butadiene		106-99-0	N.D.	0.38		2.2	1
05298	2-Butanone		78-93-3	69	0.62		2.9	1
05298	Carbon Disulfide		75-15-0	16	0.40		3.1	1
05298	Carbon Tetrachloride		56-23-5	N.D.	0.88		6.3	1
05298	Chlorobenzene		108-90-7	N.D.	0.60		4.6	1
05298	Chlorodifluoromethane1		75-45-6	N.D.	0.53		3.5	1
05298	Chloroethane		75-00-3	N.D.	0.50		2.6	1
05298	Chloroform		67-66-3	N.D.	0.45		4.9	1
05298	Chloromethane		74-87-3	N.D.	0.50		2.1	1
05298	3-Chloropropene		107-05-1	N.D.	0.47		3.1	1
05298	Cumene		98-82-8	N.D.	1.2		4.9	1
05298	Dibromochloromethane		124-48-1	N.D.	1.1		8.5	1
05298	1,2-Dibromoethane		106-93-4	N.D.	1.0		7.7	1
05298	Dibromomethane ¹		74-95-3	N.D.	1.0		7.1	1
05298	1,2-Dichlorobenzene		95-50-1	N.D.	1.2		6.0	1
05298	1,3-Dichlorobenzene		541-73-1	7.3	1.1		6.0	1
05298	1,4-Dichlorobenzene		106-46-7	N.D.	1.0		6.0	1
05298	Dichlorodifluoromethane		75-71-8	2.5 J	0.64		4.9	1
05298	1,1-Dichloroethane		75-34-3	N.D.	0.36		4.0	1
05298	1,2-Dichloroethane		107-06-2	N.D.	0.32		4.0	1
05298	1,1-Dichloroethene		75-35-4	N.D.	0.56		4.0	1
05298	cis-1,2-Dichloroethene		156-59-2	N.D.	0.48		4.0	1
05298	trans-1,2-Dichloroethene		156-60-5	N.D.	0.34		4.0	1
05298	Dichlorofluoromethane ¹		75-43-4	N.D.	0.46		4.2	1
05298	1,2-Dichloropropane		78-87-5	N.D.	0.60		4.6	1
05298	cis-1,3-Dichloropropene		10061-01-5	N.D.	0.45		4.5	1
05298	trans-1,3-Dichloropropene		10061-02-6	N.D.	0.54		4.5	1
05298	Ethylbenzene		100-41-4	3.5 J	0.83		4.3	1
05298	4-Ethyltoluene ¹		622-96-8	N.D.	0.88		4.9	1
05298	Freon 113		76-13-1	N.D.	0.84		7.7	1
05298	Freon 114		76-14-2	N.D.	0.84		7.0	1
05298	Heptane		142-82-5	9.1	0.94		4.1	1
05298	Hexachloroethane		67-72-1	N.D.	2.6		19	1
05298	Hexane		110-54-3	N.D.	0.46		3.5	1
05298	2-Hexanone ¹		591-78-6	N.D.	0.74		4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311681

2098965

Sample Description: AA01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:26 through 05/08/2020 12:15

SDG#: CMS03-05

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air	EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane		540-84-1	3.9 J	0.61	4.7	1
05298	Methyl t-Butyl Ether		1634-04-4	4.8	0.54	3.6	1
05298	4-Methyl-2-pentanone		108-10-1	2.1 J	0.61	4.1	1
05298	Methylene Chloride		75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹		111-65-9	11	1.9	9.3	1
05298	Pentane ¹		109-66-0	120	0.38	3.0	1
05298	Styrene		100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane ¹		630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene		127-18-4	N.D.	1.7	14	1
05298	Toluene		108-88-3	19	0.45	3.8	1
05298	1,1,1-Trichloroethane		71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane		79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene		79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane		75-69-4	N.D.	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹		96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene		95-63-6	1.6 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene		108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride		75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene		179601-23-1	11	1.1	8.7	1
05298	o-Xylene		95-47-6	3.1 J	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst **Date and Time** Factor No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 15:36 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 16:06 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311682

2098965

Sample Description: SV03_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:52 through 05/08/2020 11:52

SDG#: CMS03-06

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air EPA ⁻	TO-15	ug/m3	ug/m3	ug/m3	
05298	Acetone	67-64-1	550	25	240	20
05298	Benzene	71-43-2	7.4	0.35	3.2	1
05298	Bromobenzene ¹	108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane	75-27-4	N.D.	0.80	6.7	1
05298	Bromoform	75-25-2	N.D.	1.8	10	1
05298	Bromomethane	74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene	106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone	78-93-3	40	0.62	2.9	1
05298	Carbon Disulfide	75-15-0	64	0.40	3.1	1
05298	Carbon Tetrachloride	56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene	108-90-7	3.5 J	0.60	4.6	1
05298	Chlorodifluoromethane ¹	75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane	75-00-3	N.D.	0.50	2.6	1
05298	Chloroform	67-66-3	N.D.	0.45	4.9	1
05298	Chloromethane	74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene	107-05-1	N.D.	0.47	3.1	1
05298	Cumene	98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane	124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane	106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹	74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene	95-50-1	12	1.2	6.0	1
05298	1,3-Dichlorobenzene	541-73-1	6.8	1.1	6.0	1
05298	1,4-Dichlorobenzene	106-46-7	2.5 J	1.0	6.0	1
05298	Dichlorodifluoromethane	75-71-8	3.0 J	0.64	4.9	1
05298	1,1-Dichloroethane	75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane	107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene	75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene	156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene	156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane ¹	75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane	78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene	100-41-4	5.1	0.83	4.3	1
05298	4-Ethyltoluene ¹	622-96-8	0.90 J	0.88	4.9	1
05298	Freon 113	76-13-1	N.D.	0.84	7.7	1
05298	Freon 114	76-14-2	N.D.	0.84	7.0	1
05298	Heptane	142-82-5	6.9	0.94	4.1	1
05298	Hexachloroethane	67-72-1	N.D.	2.6	19	1
05298	Hexane	110-54-3	N.D.	0.46	3.5	1
05298	2-Hexanone ¹	591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311682

2098965

Sample Description: SV03_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 09:52 through 05/08/2020 11:52

SDG#: CMS03-06

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane	540-84-1	2.4 J	0.61	4.7	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.54	3.6	1
05298	4-Methyl-2-pentanone	108-10-1	2.1 J	0.61	4.1	1
05298	Methylene Chloride	75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹	111-65-9	9.3 J	1.9	9.3	1
05298	Pentane ¹	109-66-0	13	0.38	3.0	1
05298	Styrene	100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane1	630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene	127-18-4	N.D.	1.7	14	1
05298	Toluene	108-88-3	20	0.45	3.8	1
05298	1,1,1-Trichloroethane	71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane	79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene	79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane	75-69-4	2.0 J	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹	96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene	95-63-6	2.5 J	1.4	9.8	1
05298	1,3,5-Trimethylbenzene	108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride	75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene	179601-23-1	20	1.1	8.7	1
05298	o-Xylene	95-47-6	6.8	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst **Date and Time** Factor No. 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 16:37 Jacob E Bailey 05298 VOC EPA TO-15 Air EPA TO-15 F2013030AA 05/09/2020 17:07 Jacob E Bailey 20

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311683

2098965

Sample Description: SV01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:13 through 05/08/2020 12:13

SDG#: CMS03-07

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatile	es in Air EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Acetone	67-64-1	26	1.3	12	1
05298	Benzene	71-43-2	1.3 J	0.35	3.2	1
05298	Bromobenzene ¹	108-86-1	N.D.	0.64	6.4	1
05298	Bromodichloromethane	75-27-4	N.D.	0.80	6.7	1
05298	Bromoform	75-25-2	N.D.	1.8	10	1
05298	Bromomethane	74-83-9	N.D.	0.70	3.9	1
05298	1,3-Butadiene	106-99-0	N.D.	0.38	2.2	1
05298	2-Butanone	78-93-3	6.0	0.62	2.9	1
05298	Carbon Disulfide	75-15-0	N.D.	0.40	3.1	1
05298	Carbon Tetrachloride	56-23-5	N.D.	0.88	6.3	1
05298	Chlorobenzene	108-90-7	2.5 J	0.60	4.6	1
05298	Chlorodifluoromethane ¹	75-45-6	N.D.	0.53	3.5	1
05298	Chloroethane	75-00-3	N.D.	0.50	2.6	1
05298	Chloroform	67-66-3	N.D.	0.45	4.9	1
05298	Chloromethane	74-87-3	N.D.	0.50	2.1	1
05298	3-Chloropropene	107-05-1	N.D.	0.47	3.1	1
05298	Cumene	98-82-8	N.D.	1.2	4.9	1
05298	Dibromochloromethane	124-48-1	N.D.	1.1	8.5	1
05298	1,2-Dibromoethane	106-93-4	N.D.	1.0	7.7	1
05298	Dibromomethane ¹	74-95-3	N.D.	1.0	7.1	1
05298	1,2-Dichlorobenzene	95-50-1	1.3 J	1.2	6.0	1
05298	1,3-Dichlorobenzene	541-73-1	N.D.	1.1	6.0	1
05298	1,4-Dichlorobenzene	106-46-7	N.D.	1.0	6.0	1
05298	Dichlorodifluoromethane	75-71-8	2.7 J	0.64	4.9	1
05298	1,1-Dichloroethane	75-34-3	N.D.	0.36	4.0	1
05298	1,2-Dichloroethane	107-06-2	N.D.	0.32	4.0	1
05298	1,1-Dichloroethene	75-35-4	N.D.	0.56	4.0	1
05298	cis-1,2-Dichloroethene	156-59-2	N.D.	0.48	4.0	1
05298	trans-1,2-Dichloroethene	156-60-5	N.D.	0.34	4.0	1
05298	Dichlorofluoromethane ¹	75-43-4	N.D.	0.46	4.2	1
05298	1,2-Dichloropropane	78-87-5	N.D.	0.60	4.6	1
05298	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.45	4.5	1
05298	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.54	4.5	1
05298	Ethylbenzene	100-41-4	0.95 J	0.83	4.3	1
05298	4-Ethyltoluene ¹	622-96-8	N.D.	0.88	4.9	1
05298	Freon 113	76-13-1	N.D.	0.84	7.7	1
05298	Freon 114	76-14-2	N.D.	0.84	7.0	1
05298	Heptane	142-82-5	1.2 J	0.94	4.1	1
05298	Hexachloroethane	67-72-1	N.D.	2.6	19	1
05298	Hexane	110-54-3	2.5 J	0.46	3.5	1
05298	2-Hexanone ¹	591-78-6	N.D.	0.74	4.1	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Air

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

AQ 1311683

2098965

Sample Description: SV01_050820 Air

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50

Collection Date/Time: 05/08/2020 10:13 through 05/08/2020 12:13

SDG#: CMS03-07

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Volatil	es in Air EPA TO-15		ug/m3	ug/m3	ug/m3	
05298	Isooctane	540-84-1	0.86 J	0.61	4.7	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.54	3.6	1
05298	4-Methyl-2-pentanone	108-10-1	N.D.	0.61	4.1	1
05298	Methylene Chloride	75-09-2	N.D.	0.87	6.9	1
05298	Octane ¹	111-65-9	N.D.	1.9	9.3	1
05298	Pentane ¹	109-66-0	1.7 J	0.38	3.0	1
05298	Styrene	100-42-5	N.D.	0.85	4.3	1
05298	1,1,1,2-Tetrachloroethane1	630-20-6	N.D.	1.0	6.9	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.0	6.9	1
05298	Tetrachloroethene	127-18-4	N.D.	1.7	14	1
05298	Toluene	108-88-3	2.3 J	0.45	3.8	1
05298	1,1,1-Trichloroethane	71-55-6	N.D.	0.65	5.5	1
05298	1,1,2-Trichloroethane	79-00-5	N.D.	0.65	5.5	1
05298	Trichloroethene	79-01-6	N.D.	0.97	5.4	1
05298	Trichlorofluoromethane	75-69-4	2.0 J	0.84	5.6	1
05298	1,2,3-Trichloropropane ¹	96-18-4	N.D.	0.84	6.0	1
05298	1,2,4-Trimethylbenzene	95-63-6	N.D.	1.4	9.8	1
05298	1,3,5-Trimethylbenzene	108-67-8	N.D.	1.6	9.8	1
05298	Vinyl Chloride	75-01-4	N.D.	0.31	2.6	1
05298	m/p-Xylene	179601-23-1	2.0 J	1.1	8.7	1
05298	o-Xylene	95-47-6	0.86 J	0.83	4.3	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# Dilution **Analysis Name** Batch# **Analysis** Analyst Date and Time No. Factor VOC EPA TO-15 Air 05298 EPA TO-15 F2013030AA 05/09/2020 17:37 Jacob E Bailey

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098965

Reported: 05/13/2020 11:07

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	ug/m3	ug/m3	ug/m3
Batch number: F2013030AA	Sample num	ber(s): 1311677-	1311683
Acetone	N.D.	1.3	12
Benzene	N.D.	0.35	3.2
Bromobenzene	N.D.	0.64	6.4
Bromodichloromethane	N.D.	0.80	6.7
Bromoform	N.D.	1.8	10
Bromomethane	N.D.	0.70	3.9
1,3-Butadiene	N.D.	0.38	2.2
2-Butanone	N.D.	0.62	2.9
Carbon Disulfide	N.D.	0.40	3.1
Carbon Tetrachloride	N.D.	0.88	6.3
Chlorobenzene	N.D.	0.60	4.6
Chlorodifluoromethane	N.D.	0.53	3.5
Chloroethane	N.D.	0.50	2.6
Chloroform	N.D.	0.45	4.9
Chloromethane	N.D.	0.50	2.1
3-Chloropropene	N.D.	0.47	3.1
Cumene	N.D.	1.2	4.9
Dibromochloromethane	N.D.	1.1	8.5
1,2-Dibromoethane	N.D.	1.0	7.7
Dibromomethane	N.D.	1.0	7.1
1,2-Dichlorobenzene	N.D.	1.2	6.0
1,3-Dichlorobenzene	N.D.	1.1	6.0
1,4-Dichlorobenzene	N.D.	1.0	6.0
Dichlorodifluoromethane	N.D.	0.64	4.9
1,1-Dichloroethane	N.D.	0.36	4.0
1,2-Dichloroethane	N.D.	0.32	4.0
1,1-Dichloroethene	N.D.	0.56	4.0
cis-1,2-Dichloroethene	N.D.	0.48	4.0
trans-1,2-Dichloroethene	N.D.	0.34	4.0
Dichlorofluoromethane	N.D.	0.46	4.2
1,2-Dichloropropane	N.D.	0.60	4.6
cis-1,3-Dichloropropene	N.D.	0.45	4.5
trans-1,3-Dichloropropene	N.D.	0.54	4.5
Ethylbenzene	N.D.	0.83	4.3
4-Ethyltoluene	N.D.	0.88	4.9
Freon 113	N.D.	0.84	7.7
Freon 114	N.D.	0.84	7.0
Heptane	N.D.	0.94	4.1
Hexachloroethane	N.D.	2.6	19

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098965

Reported: 05/13/2020 11:07

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	ug/m3	ug/m3	ug/m3
Hexane	N.D.	0.46	3.5
2-Hexanone	N.D.	0.74	4.1
Isooctane	N.D.	0.61	4.7
Methyl t-Butyl Ether	N.D.	0.54	3.6
4-Methyl-2-pentanone	N.D.	0.61	4.1
Methylene Chloride	N.D.	0.87	6.9
Octane	N.D.	1.9	9.3
Pentane	N.D.	0.38	3.0
Styrene	N.D.	0.85	4.3
1,1,1,2-Tetrachloroethane	N.D.	1.0	6.9
1,1,2,2-Tetrachloroethane	N.D.	1.0	6.9
Tetrachloroethene	N.D.	1.7	14
Toluene	N.D.	0.45	3.8
1,1,1-Trichloroethane	N.D.	0.65	5.5
1,1,2-Trichloroethane	N.D.	0.65	5.5
Trichloroethene	N.D.	0.97	5.4
Trichlorofluoromethane	N.D.	0.84	5.6
1,2,3-Trichloropropane	N.D.	0.84	6.0
1,2,4-Trimethylbenzene	N.D.	1.4	9.8
1,3,5-Trimethylbenzene	N.D.	1.6	9.8
Vinyl Chloride	N.D.	0.31	2.6
m/p-Xylene	N.D.	1.1	8.7
o-Xylene	N.D.	0.83	4.3

LCS/LCSD

Analysis Name	LCS Spike Added ug/m3	LCS Conc ug/m3	LCSD Spike Added ug/m3	LCSD Conc ug/m3	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: F2013030AA	Sample number	(s): 1311677-1	1311683						
Acetone	23.76	26.29	23.76	24.63	111	104	70-137	7	25
Benzene	31.95	35.91	31.95	35.14	112	110	70-130	2	25
Bromobenzene	64.22	58.78	64.22	57.63	92	90	70-130	2	25
Bromodichloromethane	67.01	73.67	67.01	71.52	110	107	75-134	3	25
Bromoform	103.37	88.65	103.37	81.65	86	79	60-139	8	25
Bromomethane	38.83	42.52	38.83	43.67	110	112	70-134	3	25
1,3-Butadiene	22.12	17.92	22.12	17.18	81	78	70-131	4	25
2-Butanone	29.49	29.94	29.49	29.99	102	102	70-130	0	25
Carbon Disulfide	31.14	34.11	31.14	33.31	110	107	70-130	2	25
Carbon Tetrachloride	62.91	61.34	62.91	58.56	98	93	70-130	5	25
Chlorobenzene	46.04	45.57	46.04	45.05	99	98	76-117	1	25
Chlorodifluoromethane	35.37	41.38	35.37	40.5	117	115	70-141	2	25

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098965

Reported: 05/13/2020 11:07

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/m3	LCS Conc ug/m3	LCSD Spike Added ug/m3	LCSD Conc ug/m3	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Chloroethane	26.38	28.81	26.38	28.73	109	109	70-131	0	25
Chloroform	48.83	51.11	48.83	49.54	105	101	70-130	3	25
Chloromethane	20.65	22.39	20.65	22.24	108	108	70-138	1	25
3-Chloropropene	31.3	39.22	31.3	37.57	125	120	70-156	4	25
Cumene	49.16	42.07	49.16	42.08	86	86	70-131	0	25
Dibromochloromethane	85.19	85.55	85.19	79.67	100	94	74-131	7	25
1,2-Dibromoethane	76.83	78.19	76.83	77.17	102	100	70-130	1	25
Dibromomethane	71.1	74.62	71.1	71.82	105	101	70-130	4	25
1,2-Dichlorobenzene	60.12	54.95	60.12	56.32	91	94	61-139	2	25
1,3-Dichlorobenzene	60.12	56.26	60.12	57.07	94	95	64-140	1	25
1,4-Dichlorobenzene	60.12	56.16	60.12	54.76	93	91	64-137	3	25
Dichlorodifluoromethane	49.45	55.96	49.45	53.67	113	109	70-131	4	25
1,1-Dichloroethane	40.47	45.65	40.47	43.22	113	107	70-130	5	25
1,2-Dichloroethane	40.47	49.66	40.47	47.07	123	116	70-142	5	25
1,1-Dichloroethene	39.65	42.43	39.65	41.24	107	104	70-131	3	25
cis-1,2-Dichloroethene	39.65	40.7	39.65	39.93	103	101	70-130	2	25
trans-1,2-Dichloroethene	39.65	42.15	39.65	41.21	106	104	70-130	2	25
Dichlorofluoromethane	42.09	50.54	42.09	49.03	120	116	70-136	3	25
1,2-Dichloropropane	46.21	52.38	46.21	51.53	113	112	70-130	2	25
cis-1,3-Dichloropropene	45.39	46.89	45.39	43.64	103	96	70-130	7	25
trans-1,3-Dichloropropene	45.39	45.25	45.39	43.9	100	97	70-130	3	25
Ethylbenzene	43.42	40.68	43.42	40.78	94	94	70-130	0	25
4-Ethyltoluene	49.16	42.68	49.16	42.52	87	87	69-139	0	25
Freon 113	76.64	79.17	76.64	75.08	103	98	70-130	5	25
Freon 114	69.91	76.59	69.91	74.17	110	106	70-130	3	25
Heptane	40.98	39.86	40.98	38.46	97	94	70-130	4	25
Hexachloroethane	96.83	90.39	96.83	85.04	93	88	38-163	6	25
Hexane	35.25	34.27	35.25	34.34	97	97	70-130	0	25
2-Hexanone	40.97	41.71	40.97	41.46	102	101	63-144	1	25
Isooctane	46.72	49.92	46.72	48.66	107	104	70-130	3	25
Methyl t-Butyl Ether	36.05	32.98	36.05	31.69	91	88	70-130	4	25
4-Methyl-2-pentanone	40.97	41.5	40.97	40.61	101	99	68-133	2	25
Methylene Chloride	34.74	40.98	34.74	39.92	118	115	70-139	3	25
Octane	46.72	44.69	46.72	45.57	96	98	70-130	2	25
Pentane	29.51	29.15	29.51	28.13	99	95	70-130	4	25
Styrene	42.6	38.16	42.6	35.88	90	84	70-133	6	25
1,1,1,2-Tetrachloroethane	68.65	67.86	68.65	65.56	99	95	73-124	3	25
1,1,2,2-Tetrachloroethane	68.65	65.28	68.65	64.97	95	95	68-138	0	25
Tetrachloroethene	67.82	68.05	67.82	67.02	100	99	70-130	2	25
Toluene	37.69	38.29	37.69 54.56	37.99	102 97	101	70-130	1	25 25
1,1,1-Trichloroethane	54.56	52.76 57.06		51.99		95 104	70-130	1	25 25
1,1,2-Trichloroethane	54.56 52.74	57.96 59.87	54.56 53.74	56.81	106	104 109	76-127 70-130	2 3	25 25
Trichloroethene	53.74 56.18		53.74 56.18	58.35 57.18	111			2	∠5 25
Trichlorofluoromethane	50.18	58.62	50.18	57.18	104	102	70-130	2	25

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098965

Reported: 05/13/2020 11:07

LCS/LCSD (continued)

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added ug/m3	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ug/m3	ug/m3	ug/III3	ug/m3					
1,2,3-Trichloropropane	60.3	58.45	60.3	58.66	97	97	70-136	0	25
1,2,4-Trimethylbenzene	49.16	46.17	49.16	46.35	94	94	65-146	0	25
1,3,5-Trimethylbenzene	49.16	44.64	49.16	44.6	91	91	69-141	0	25
Vinyl Chloride	25.56	25.18	25.56	25.35	99	99	70-135	1	25
m/p-Xylene	43.42	38.62	43.42	38.33	89	88	78-119	1	25
o-Xylene	43.42	37.74	43.42	37.69	87	87	70-130	0	25

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Summa Canister Field Test Data/Chain of Custody

	eu	roi	fir	าร
--	----	-----	-----	----

Lancaster Laboratories
Environmental

Accl. # 45206 Group # 2098905 Sample # 1311 6 77 63

lile Order (SCR) # 258847

1 EtlAttouwenter				. <u> </u>									_			
	Client Informal				Ti	ımaro	und Tin	ie Requ	iested (TAT) (ci	rcle one)	A	nalys	ses R	eque	sted
LANGAN, DEC	# # H	Account #				landar	9)	Rue	sh (spec	lfy)				75		
Project Name/# Sh Commelling: S	PINEET	170229	024		Dat		age Re	quired?	- 1	_	equired?	1	MTBE	211	3	12
LANGAN, DRC roject Name!# Sh Commercial: Street 170229024 roject Manager CREC WYKA						(Yes) No (es) No										
CREG WYKA							Temper	slure (F)		Pressu	ıre ("Hg)	1	X	<u> </u>	3	
Sampler END BALKIND	· · · · · · · · · · · · · · · · · · ·	Quole #	W.		Ambie	nl	Start	Glop	,	Start	Slop	1	BTEX	range oe		
Name of state where samples were collected					Mexim						5	1		٥		
NY				857	Minimu	ım						ا _س ا	T do			된
Sample Identification	Start Date/Time (24-hour clock)	Stop Date/Time (24-hour clock)	Centater Pressure in Fleid ("Hg) (Start)	Canister Pressure in Flekt ("Hg) (Stop)	Interlor Temp. (F) (Start)	Interior Temp. (F) (Stop)	Flow F	Reg. ID	B Can ID	Can Size (L)	Controller Flowrate (ml/mln)	171	8 12	8 E	02/C02	Library Search
SVOI_050320	9:35	11:35	- 29.5	- 16.0			507	743	970	- 1	7.0	V		T		
5402-050820	9:52	11:52	. 76.0	-70	_			068	Zasy	i	7-2	V		\top		
SU07-0508ZC	1010	11:50	-30.€	-70				749	Z038	1	7.1	V	\top	1		
5004-050820	1037	11:55	-30.0	- 0.0			415	305	2060	(8)	7.5	V		7	П	
5V05-050820	1026	1245	-30.0	-5.6			1	568	961	-	7.3	×		_		-
SVDUA01_050820	952	1652	-29.0	- 5.0			7100	233	960	l	6.9	7		\top	П	
AA01_050820	1013	12:13	-900	-7. 6			824	855	1325	Į.	7.0	~				
			r'	851								\sqcup	_	_		
												H	-			-
				- 8				167			35	H	+	+-		Ç.
Instructions/QC Requirements 8	Comments	Email: GWY. WKI JU	KAD LANG M BL LANG SUNC B CAS	An com san com neah com		(0)	EPA 2	check			C1 - C4 C1 - C10 C2 - C4			2 - C		RO)
Reinfulshed by: Date	683 Ken	Bauno	Date/	To Paris	quished by QUIP quished by	BALLI		5/4	Mme: /c_ (5) 3 Mme:	Received I	mar		کر	ر ع ٠	/Time:	530
June 17	100 (38		M8 689	weo f	ZPuc	Um	_ 8th	420 7	2035					- 1		
Relinquished by: Date	/Time: Received I	y:	Date/	Ilme: Refin	quished by			Dale	Time:	Received I	Mh	4	5		70°	245

Eurofins Lancaster t abbratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

20:45 7050 19131403 518120

Lancaster Laboratories **Environmental**

Sample Administration Receipt Documentation Log

Doc Log ID: 284067

Group Number(s):

Client: Langan, DPC

Delivery and Receipt Information

ELLE Courier

Arrival Date:

05/08/2020

Number of Packages:

Delivery Method:

4

Number of Projects:

1

State/Province of Origin:

NY

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

No

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

N/A

Total Trip Blank Qty:

0

Paperwork Enclosed: Samples Intact:

Yes Yes

Air Quality Samples Present: Air Quality Flow Controllers Present: Yes

Missing Samples:

No

Flow Controller Quantity:

Comments

Yes 7

Extra Samples:

No

No

Air Quality Returns:

No

Discrepancy in Container Qty on COC:

Unpacked by Ann-Marie Phillips

Sample ID Discrepancy Details

Sample ID on COC

SV01_050820 (Summa Can 970)

Sample ID on Label SV01_050820 (Summa Can

1325)

SV02_050820 (Summa Can Z024)

SV02_050820 (Summa Can Z038)

SV03 050820 (Summa Can

SV03_050820 (Summa Can

Z038)

962) SV04_050820 (Summa Can

SV04_050820 (Summa Can Z060)

Z024) SV05_050820 (Summa Can

SV05_050820 (Summa Can 961)

970)

SVDUP01_050820 (Summa Can 962)

SVDUP01 050820 (Summa Can Z060)

SV01_050820 (Summa Can 1325)

Page 1 of 1

SV01_050820 (Summa Can 961)

General Comments:

Bag of summa parts

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: June 04, 2020 19:05

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2098966 SDG: CMS04 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

A previous version of this report was generated on 05/20/2020 13:16.

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	<u>Date/Time</u>	
SOFB03_050820 Water	05/08/2020 14:30	1311684
SOTB03_050820 Water	05/08/2020	1311685
LB18_2-4 TCLP NVE Grab Soil	05/08/2020 13:55	1311686
LB18_6-8 TCLP NVE Grab Soil	05/08/2020 14:00	1311687
LB18_4-6 Grab Soil	05/08/2020 14:05	1311688
LB18_10-12 Grab Soil	05/08/2020 14:10	1311689
LB18_18-20 Grab Soil	05/08/2020 14:15	1311690
LB22_2-4 Grab Soil	05/08/2020 13:10	1311691
LB22_4-6 TCLP NVE Grab Soil	05/08/2020 11:50	1311692
LB22_12-14 Grab Soil	05/08/2020 13:15	1311693
LB22_18-20 Grab Soil	05/08/2020 13:25	1311694
LB18_2-4 Grab Soil	05/08/2020 13:55	1312694
LB18 6-8 Grab Soil	05/08/2020 14:00	1312695
LB22_4-6 Grab Soil	05/08/2020 11:50	1312696

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2098966

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Batch #: 5201333AA (Sample number(s): 1311685)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: Acetone

SW-846 8270D, GC/MS Semivolatiles

Batch #: 20132SLA026 (Sample number(s): 1311688-1311691, 1311693-1311694 UNSPK: 1311690)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Pyrene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, Hexachlorocyclopentadiene, Fluoranthene, Benzo(a)anthracene, Chrysene, Benzo(k)fluoranthene, Benzo(a)pyrene, Benzo(g,h,i)perylene, 2,4-Dinitrotoluene, Phenanthrene, Anthracene, Di-n-butylphthalate, Benzidine, Butylbenzylphthalate, Benzo(b)fluoranthene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Atrazine

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Benzidine

SW-846 8270D SIM, GC/MS Semivolatiles

Sample #s: 1311688, 1311690, 1311691, 1311693, 1311694

Reporting limits were raised due to interference from the sample matrix.

Batch #: 20136SLB026 (Sample number(s): 1311688, 1311690-1311691, 1311693-1311694)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1311688

SW-846 8081B, Pesticides

Sample #s: 1311688

Reporting limits were raised due to interference from the sample matrix. The LCS and/or LCSD recoveries are outside the stated QC window but within

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

the marginal exceedance allowance of +/- 4 standard deviations as defined in the TNI/DoD Standards. The following analytes are accepted based on this allowance: Endrin

Sample #s: 1311690, 1311693, 1311694

The LCS and/or LCSD recoveries are outside the stated QC window but within the marginal exceedance allowance of +/- 4 standard deviations as defined in the TNI/DoD Standards. The following analytes are accepted based on this allowance: Endrin

Sample #s: 1311691

The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram. The LCS and/or LCSD recoveries are outside the stated QC window but within the marginal exceedance allowance of +/- 4 standard deviations as defined in the TNI/DoD Standards. The following analytes are accepted based on this allowance:

Batch #: 201320001A (Sample number(s): 1311688, 1311690-1311691, 1311693-1311694)

The recovery(ies) for the following analyte(s) in the LCS were below the acceptance window: Endrin

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1311688, 1311691, 1311694

SW-846 8082A Feb 2007 Rev 1, PCBs

Batch #: 201320002A (Sample number(s): 1311691, 1311693-1311694)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1311691, 1311693

Batch #: 201330012A (Sample number(s): 1311688, 1311690)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1311688, 1311690

SW-846 8151A, Herbicides

Sample #s: 1311688

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201320018A (Sample number(s): 1311688, 1311690-1311691, 1311693-1311694)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4,5-TP, 2,4,5-T

EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1311688, 1311690, 1311691

The recovery for extraction standard d3-NMeFOSAA is outside the QC acceptance limits in the continuing opening calibration verification standard.

Sample #s: 1311693, 1311694

The recovery for extraction standard d5-NEtFOSAA is outside the QC acceptance limits in the continuing closing calibration verification

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

standard.

SW-846 7471B, Metals

Batch #: 201331063801 (Sample number(s): 1312695 UNSPK: 1312695 BKG: 1312695)

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Mercury

Batch #: 201341063801 (Sample number(s): 1312694, 1312696 UNSPK: 1312696 BKG: 1312696)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Mercury

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Mercury

SW-846 9012B, Wet Chemistry

Batch #: 20134102201A (Sample number(s): 1311690-1311691, 1311693-1311694 UNSPK: 1311691 BKG: 1311691)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: Total Cyanide (solid)

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Total Cyanide (solid)

Batch #: 20135102201A (Sample number(s): 1311688 UNSPK: 1311688 BKG: 1311688)

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Total Cyanide (solid)

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB03_050820 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 14:30
SDG#: CMS04-01FB

Langan Eng & Env Services
ELLE Sample #: WW 1311684
ELLE Group #: 2098966

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	Version 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	1.7	4.3	1
14473	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.87	2.6	1
14473	NEtFOSAA1	2991-50-6	N.D.	0.43	2.6	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA ¹	2355-31-9	N.D.	0.52	1.7	1
	NMeFOSAA is the acronym for N-meth	yl perfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.43	1.7	1
14473	Perfluorobutanoic acid1	375-22-4	N.D.	1.7	4.3	1
14473	Perfluorodecanesulfonic acid ¹	335-77-3	N.D.	0.43	1.7	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.43	1.7	1
14473	Perfluorododecanoic acid1	307-55-1	N.D.	0.43	1.7	1
14473	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.43	1.7	1
14473	Perfluoroheptanoic acid1	375-85-9	N.D.	0.43	1.7	1
14473	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.43	1.7	1
14473	Perfluorohexanoic acid1	307-24-4	N.D.	0.43	1.7	1
14473	Perfluorononanoic acid1	375-95-1	N.D.	0.43	1.7	1
14473	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.43	1.7	1
14473	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.43	1.7	1
14473	Perfluorooctanoic acid1	335-67-1	N.D.	0.43	1.7	1
14473	Perfluoropentanoic acid1	2706-90-3	N.D.	0.43	1.7	1
14473	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.43	1.7	1
14473	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.43	1.7	1
14473	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.43	1.7	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method Dilution CAT **Analysis Name** Trial# Batch# Analysis Analyst **Date and Time Factor** 14473 NY 21 PFAS Water EPA 537 Version 1.1 20131006 05/12/2020 17:59 Marissa C Drexinger Modified 14091 PFAS Water Prep EPA 537 Version 1.1 20131006 05/11/2020 07:27 Carmen Rodriguez Modified

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB03_050820 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/08/2020 20:50

 Collection Date/Time:
 05/08/2020

 SDG#:
 CMS04-02TB

Langan Eng & Env Services
ELLE Sample #: WW 1311685
ELLE Group #: 2098966

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	1,4-Dioxane	123-91-1	N.D.	0.029	0.075	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

WW 1311685

Sample Description: SOTB03_050820 Water

35 Commercial Street/170229024

ELLE Group #: 2098966

Langan Eng & Env Services

Matrix: Water

ELLE Sample #:

35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020
SDG#: 05/08/2020
CMS04-02TB

Project Name:

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260	C	mg/l	mg/l	mg/l	
11997	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	0.0002	0.001	1
11997	Tetrachloroethene		127-18-4	N.D.	0.0002	0.001	1
11997	Toluene		108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane		71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane		75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene		95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene		108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride		75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)		1330-20-7	N.D.	0.001	0.006	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT Trial# **Analysis** Dilution **Analysis Name** Batch# Analyst No. Date and Time Factor PPL/TCL VOCs SW-846 8260C 5201333AA 05/12/2020 22:45 Laura Green 11997 1 GC/MS VOA Water Prep SW-846 5030C 5201333AA 05/12/2020 22:44 Laura Green 01163 1

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1311686

2098966

Sample Description: LB18 2-4 TCLP NVE Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time:

Project Name:

05/08/2020 20:50 05/08/2020 13:55

SDG#: CMS04-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	8.17	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:16	Lisa J Cooke	1
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:16	Lisa J Cooke	1
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:09	Damary Valentin	1
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201341404502	05/13/2020 14:50	JoElla L Rice	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20132-9169-947	05/11/2020 13:11	Craig S Pfautz	n.a.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1311687

2098966

Sample Description: LB18_6-8 TCLP NVE Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024

170229024 Matrix: Soil

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:00

SDG#: CMS04-04

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	0.0083 J	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:05	Lisa J Cooke	1
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:05	Lisa J Cooke	1
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:15	Damary Valentin	1
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201341404502	05/13/2020 14:50	JoElla L Rice	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20132-9169-947	05/11/2020 13:11	Craig S Pfautz	n.a.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311688

2098966

Sample Description: LB18_4-6 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: 05/08/2020 14:05 SDG#: CMS04-05

05/08/2020 20:50

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.086	0.009	0.028	1.21
11995	Acrolein	107-02-8	N.D.	0.007	0.14	1.21
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.028	1.21
11995	Benzene	71-43-2	N.D.	0.0007	0.007	1.21
11995	Bromodichloromethane	75-27-4	N.D.	0.0006	0.007	1.21
11995	Bromoform	75-25-2	N.D.	0.007	0.014	1.21
11995	Bromomethane	74-83-9	N.D.	0.001	0.007	1.21
11995	2-Butanone	78-93-3	N.D.	0.003	0.014	1.21
11995	t-Butyl alcohol	75-65-0	0.021 J	0.021	0.14	1.21
11995	n-Butylbenzene	104-51-8	N.D.	0.004	0.011	1.21
11995	sec-Butylbenzene	135-98-8	N.D.	0.003	0.007	1.21
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.007	1.21
11995	Carbon Disulfide	75-15-0	N.D.	0.0009	0.007	1.21
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0007	0.007	1.21
11995	Chlorobenzene	108-90-7	N.D.	0.0007	0.007	1.21
11995	Chloroethane	75-00-3	N.D.	0.001	0.007	1.21
11995	Chloroform	67-66-3	N.D.	0.0009	0.007	1.21
11995	Chloromethane	74-87-3	N.D.	0.0009	0.007	1.21
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0007	0.007	1.21
11995	Dibromochloromethane	124-48-1	N.D.	0.0007	0.007	1.21
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0006	0.007	1.21
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0007	0.007	1.21
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0007	0.007	1.21
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0006	0.007	1.21
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0009	0.007	1.21
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0007	0.007	1.21
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0009	0.007	1.21
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0007	0.007	1.21
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0007	0.007	1.21
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0007	0.007	1.21
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.014	1.21
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0007	0.007	1.21
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0006	0.007	1.21
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0007	0.007	1.21
11995	1,4-Dioxane	123-91-1	N.D.	0.053	0.11	1.21
11995	Ethylbenzene	100-41-4	N.D.	0.0006	0.007	1.21
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.007	1.21
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0007	0.007	1.21
11995	Methylene Chloride	75-09-2	N.D.	0.003	0.007	1.21
11995	n-Propylbenzene	103-65-1	N.D.	0.0006	0.007	1.21
11995	Styrene	100-42-5	N.D.	0.0006	0.007	1.21

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311688

2098966

Sample Description: LB18_4-6 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:05

SDG#: CMS04-05

:AT lo. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
C/MS Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
1995 1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0006	0.007	1.21
1995 Tetrachloroethene	127-18-4	N.D.	0.0007	0.007	1.21
1995 Toluene	108-88-3	N.D.	0.0009	0.007	1.21
1995 1,1,1-Trichloroethane	71-55-6	N.D.	0.0009	0.007	1.21
1995 1,1,2-Trichloroethane	79-00-5	N.D.	0.0007	0.007	1.21
1995 Trichloroethene	79-01-6	N.D.	0.0007	0.007	1.21
1995 Trichlorofluoromethane	75-69-4	N.D.	0.001	0.007	1.21
1995 1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0007	0.007	1.21
1995 1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0007	0.007	1.21
1995 Vinyl Chloride	75-01-4	N.D.	0.0009	0.007	1.21
1995 Xylene (Total)	1330-20-7	N.D.	0.002	0.014	1.21
C/MS Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
0726 Acenaphthene	83-32-9	3.9	0.004	0.019	1
0726 Acenaphthylene	208-96-8	0.27	0.004	0.019	1
0726 Acetophenone	98-86-2	0.046 J	0.019	0.058	1
0726 Anthracene	120-12-7	7.4	0.039	0.19	10
0726 Atrazine	1912-24-9	N.D.	0.23	0.51	1
0726 Benzaldehyde	100-52-7	N.D.	0.078	0.19	1
0726 Benzidine	92-87-5	N.D.	0.39	1.2	1
0726 Benzo(a)anthracene	56-55-3	18	0.078	0.19	10
0726 Benzo(a)pyrene	50-32-8	15	0.039	0.19	10
0726 Benzo(b)fluoranthene	205-99-2	20	0.039	0.19	10
0726 Benzo(g,h,i)perylene	191-24-2	10	0.039	0.19	10
0726 Benzo(k)fluoranthene	207-08-9	4.5	0.004	0.019	1
0726 1,1'-Biphenyl	92-52-4	0.45	0.019	0.043	1
0726 Butylbenzylphthalate	85-68-7	N.D.	0.078	0.19	1
0726 Di-n-butylphthalate	84-74-2	N.D.	0.078	0.19	1
0726 Caprolactam	105-60-2	N.D.	0.039	0.19	1
0726 Carbazole	86-74-8	5.6	0.19	0.43	10
0726 bis(2-Chloroethyl)ether	111-44-4	N.D.	0.027	0.058	1
chromatographically. The			0.023	0.051	1
total of both compounds. 0726 2-Chloronaphthalene	91-58-7	N.D.	0.008	0.039	1
0726 2-Chlorophenol	95-57-8	N.D.	0.008	0.043	1
0726 Chrysene	218-01-9	18	0.019	0.043	10
•					10
(, ,					1
					1
0726 Dibenz(a,h)a 0726 Dibenzofura	n	anthracene 53-70-3 n 132-64-9	anthracene 53-70-3 3.1 n 132-64-9 3.3	anthracene 53-70-3 3.1 0.008 n 132-64-9 3.3 0.019	anthracene 53-70-3 3.1 0.008 0.019 n 132-64-9 3.3 0.019 0.043

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_4-6 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:05 SDG#: CMS04-05

35 Commercial Street/170229024 ELLE Sample #: SW 1311688 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	0D	mg/kg	mg/kg	mg/kg	
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.019	0.043	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.019	0.043	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.39	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.023	0.051	1
10726	Diethylphthalate	84-66-2	N.D.	0.078	0.19	1
10726	2,4-Dimethylphenol	105-67-9	0.035 J	0.035	0.078	1
10726	Dimethylphthalate	131-11-3	N.D.	0.078	0.19	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.27	0.58	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.39	1.2	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.078	0.19	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.027	0.058	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.027	0.058	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.023	0.051	1
	Azobenzene cannot be distinguished from 1 reported for 1,2-diphenylhydrazine represer compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.078	0.19	1
10726	Fluoranthene	206-44-0	49	0.19	0.97	50
10726	Fluorene	86-73-7	4.0	0.004	0.019	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.019	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.043	0.090	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.23	0.58	1
10726	Hexachloroethane	67-72-1	N.D.	0.039	0.19	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	9.2	0.039	0.19	10
10726	Isophorone	78-59-1	N.D.	0.019	0.043	1
10726	2-Methylnaphthalene	91-57-6	1.5	0.004	0.039	1
10726	2-Methylphenol	95-48-7	0.021 J	0.019	0.078	1
10726	4-Methylphenol	106-44-5	0.062	0.019	0.058	1
	3-Methylphenol and 4-methylphenol cannot chromatographic conditions used for sample for 4-methylphenol represents the combined	e analysis. The resul	It reported			
10726	Naphthalene	91-20-3	3.0	0.008	0.019	1
10726	2-Nitroaniline	88-74-4	N.D.	0.019	0.058	1
10726	Nitrobenzene	98-95-3	N.D.	0.031	0.078	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.078	0.19	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.027	0.058	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.019	0.043	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-ni represents the combined total of both comp	trosodiphenylamine				
10726	Di-n-octylphthalate	117-84-0	N.D.	0.078	0.19	1
10726	Pentachlorophenol	87-86-5	N.D.	0.078	0.19	1
10726	Phenanthrene	85-01-8	54	0.19	0.97	50

^{*=}This limit was used in the evaluation of the final result

Dry Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Sample Description: LB18_4-6 Grab Soil

35 Comme

Project Name: 35 Commo

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:05 SDG#: CMS04-05

CAT

6 Grab Soil	Langan Eng & Env	Langan Eng & Env Services			
nercial Street/170229024	ELLE Sample #:	SW 1311688			
	ELLE Group #:	2098966			
nercial Street/170229024	Matrix: Soil				

Dry Method

CAT No.	Analysis Name	CAS Number	Dry Result	Detection Limit*	Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.019	0.043	1
10726	Pyrene	129-00-0	40	0.039	0.19	10
10726	Pyridine	110-86-1	N.D.	0.078	0.19	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.027	0.058	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.035	0.078	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.031	0.066	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	8	19	10
Reporting limits were raised due to interference from the sample matrix.						
Herbici	des	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.014	0.042	1
10401	2,4,5-T	93-76-5	N.D. D2	0.00096	0.0020	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.00088	0.0020	1
Spike Summ	(s) is outside the QC accep	(s) in the Laboratory Control tance limits as noted on the QC high and the target analyte(s) the data is reported.				
PCBs		SW-846 8082A Feb 2007	mg/kg	mg/kg	mg/kg	
		Rev 1				
10885	PCB-1016	12674-11-2	N.D. D1	0.0042	0.020	1
10885	PCB-1221	11104-28-2	N.D. D1	0.0054	0.020	1
10885	PCB-1232	11141-16-5	N.D. D1	0.0094	0.020	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0039	0.020	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0039	0.020	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0039	0.020	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0058	0.020	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0039	0.020	1
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. D1	0.040	0.19	200
10590	Alpha BHC	319-84-6	N.D. D1	0.040	0.19	200
10590	Beta BHC	319-85-7	N.D. D1	0.10	0.35	200
10590	Gamma BHC - Lindane	58-89-9	N.D. D1	0.049	0.19	200
10590	Alpha Chlordane	5103-71-9	N.D. D1	0.040	0.19	200
10590	4,4'-Ddd	72-54-8	N.D. D1	0.077	0.47	200
10590	4,4'-Dde	72-55-9	N.D. D1	0.077	0.47	200
10590	4,4'-Ddt	50-29-3	N.D. D1	0.19	0.47	200
10590	Delta BHC	319-86-8	N.D. D1	0.11	0.35	200
10590	Dieldrin	60-57-1	N.D. D1	0.077	0.47	200
10590	Endosulfan I	959-98-8	N.D. D1	0.052	0.19	200

Dry

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_4-6 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/08/2020 20:50

 Collection Date/Time:
 05/08/2020 14:05

 SDG#:
 CMS04-05

Langan Eng & Env Services
ELLE Sample #: SW 1311688
ELLE Group #: 2098966

CAT No.	Analysis Name	CASI	Dry Number Res		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/	kg	mg/kg	mg/kg	
10590	Endosulfan II	33213	3-65-9 N.D	. D2	0.26	0.47	200
10590	Endosulfan Sulfate	1031-	07-8 N.D	. D1	0.077	0.47	200
10590	Endrin	72-20	-8 N.D	. D1	0.16	0.47	200
10590	Heptachlor	76-44	-8 N.D	. D1	0.073	0.19	200
The L the ma	rting limits were raised due CS and/or LCSD recoveries arginal exceedance allowar NI/DoD Standards. The follance: Endrin	s are outside the stated Q nce of +/- 4 standard devia	C window but with ations as defined in				
LC/MS/	MS Miscellaneous	EPA 537 Version Modified	1.1 ng/g	9	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic		9-97-2 N.D		0.66	2.2	1
14027	8:2-Fluorotelomersulfonic	acid ¹ 39108	3-34-4 N.D		0.66	3.3	1
14027	NEtFOSAA ¹	2991-			0.22	2.2	1
	NEtFOSAA is the acronyr	n for N-ethyl perfluoroocta	anesulfonamidoace	etic Acid.			
14027	NMeFOSAA¹	2355-			0.22	2.2	1
	NMeFOSAA is the acrony				*		•
14027	Perfluorobutanesulfonic a	, ,			0.44	2.2	1
14027	Perfluorobutanoic acid¹	375-2			0.88	2.2	1
14027	Perfluorodecanesulfonic a				0.22	0.66	1
14027	Perfluorodecanoic acid ¹	335-7			0.22	0.66	1
14027	Perfluorododecanoic acid				0.22	0.66	1
14027	Perfluoroheptanesulfonic	acid ¹ 375-9	2-8 N.D		0.22	0.66	1
14027	Perfluoroheptanoic acid ¹	375-8	5-9 N.D		0.22	0.66	1
14027	Perfluorohexanesulfonic a	acid ¹ 355-4	6-4 N.D		0.22	0.66	1
14027	Perfluorohexanoic acid1	307-2	4-4 N.D		0.22	0.66	1
14027	Perfluorononanoic acid1	375-9	5-1 N.D		0.22	0.66	1
14027	Perfluorooctanesulfonami	de ¹ 754-9	1-6 N.D		0.22	0.66	1
14027	Perfluorooctanesulfonic a	cid ¹ 1763-	23-1 N.D		0.22	0.66	1
14027	Perfluorooctanoic acid1	335-6	7-1 1.7		0.22	0.66	1
14027	Perfluoropentanoic acid ¹	2706-	90-3 N.D	•	0.22	0.66	1
14027	Perfluorotetradecanoic ac	id¹ 376-0	6-7 N.D	•	0.22	0.66	1
14027	Perfluorotridecanoic acid1	72629	9-94-8 N.D	•	0.22	0.66	1
14027	Perfluoroundecanoic acid	2058-	94-8 N.D	•	0.22	0.66	1
	ecovery for extraction stand stance limits in the continuir ard.						
Metals		SW-846 6020B Re 2014	v.2, July mg/	kg	mg/kg	mg/kg	
				_			0
06125	Arsenic	7440-	38-2 16.5)	0.142	0.424	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

Dry

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_4-6 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:05 SDG#: CMS04-05

35 Commercial Street/170229024	ELLE Sample #:	SW 1311688
	ELLE Group #:	2098966
35 Commercial Street/170229024	Matrix: Soil	

Dry

CAT No.	Analysis Name	CAS N	umber	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev 2014	/.2, July	mg/kg	mg/kg	mg/kg	
06127	Beryllium	7440-4	1-7	0.325	0.0253	0.0637	2
06128	Cadmium	7440-4	3-9	0.185	0.0535	0.106	2
06131	Chromium	7440-4	7-3	25.0	0.163	0.424	2
02829	Trivalent Chromium soils1	16065-	83-1	24.1	0.16	0.49	1
	The Trivalent Chromium re Chromium from Total Chro	Chromium result is calculated by subtracting Hex m Total Chromium.		valent			
06133	Copper	7440-5	8-03	54.9	0.186	0.424	2
06135	Lead	7439-9	2-1	591	0.535	2.12	20
06137	Manganese	7439-9	6-5	206	1.14	2.12	10
06139	Nickel	7440-0	2-0	20.0	0.173	0.424	2
06141	Selenium	7782-4	9-2	1.39	0.138	0.424	2
06142	Silver	7440-2	2-4	0.130	0.0431	0.106	2
06149	Zinc	7440-6	66-6	152	2.84	10.6	10
		SW-846 7471B		mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-9	7-6	1.15	0.0447	0.196	2.5
Wet Ch	nemistry	SW-846 9012B		mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-	5	0.43 J	0.21	0.59	1
		SW-846 7196A		mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SO	LIDS) 18540-	29-9	0.85	0.16	0.49	1
Wet Ch		SM 2540 G-2011 %Moisture Calc		%	%	%	
00111	Moisture ¹	n.a.		15.1	0.50	0.50	1
	Moisture represents the los 103 - 105 degrees Celsius. as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_4-6 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 14:05
SDG#: CMS04-05

Langan Eng & Env Services
ELLE Sample #: SW 1311688
ELLE Group #: 2098966

	Laboratory Sample Analysis Record												
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor						
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201321AA	05/12/2020 01:18	Joel Trout	1.21						
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012956771	05/08/2020 22:51	Lois E Hiltz	1						
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012956771	05/08/2020 22:51	Lois E Hiltz	1						
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012956771	05/08/2020 14:05	Client Supplied	1						
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/13/2020 22:14	William H Saadeh	1						
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 13:19	William H Saadeh	10						
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 14:05	William H Saadeh	50						
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 11:15	Joseph M Gambler	10						
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1						
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1						
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201320018A	05/12/2020 13:10	Lisa A Reinert	1						
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201330012A	05/13/2020 08:41	Covenant Mutuku	1						
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/12/2020 14:57	Lisa A Reinert	200						
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201330012A	05/12/2020 17:20	Scott Crawford	1						
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1						
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201320018A	05/11/2020 20:33	Karen L Beyer	1						
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20134016	05/13/2020 20:32	Katie Renfro	1						
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	2	20134016	05/13/2020 15:30	Isaac Phillips-Cary	1						
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:52	Janeyah Rivers-Hamilton	20						
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201350282901	05/14/2020 16:36	Tshina Alamos	1						
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:52	Janeyah Rivers-Hamilton	20						
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:36	Janeyah Rivers-Hamilton	10						
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:22	Janeyah Rivers-Hamilton	2						

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

Larry E Bevins

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311688

2098966

Sample Description: LB18_4-6 Grab Soil

35 Commercial Street/170229024

SM 2540 G-2011

%Moisture Calc

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/08/2020 20:50

 Collection Date/Time:
 05/08/2020 14:05

 SDG#:
 CMS04-05

00111

Moisture

0000 00 50

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:06	Janeyah Rivers-Hamilton	2					
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:36	Janeyah Rivers-Hamilton	10					
00159	Mercury	SW-846 7471B	1	201311063801	05/11/2020 10:27	Damary Valentin	2.5					
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201311404902	05/11/2020 04:35	Annamaria Kuhns	1					
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201311063801	05/11/2020 06:40	Annamaria Kuhns	1					
05895	Total Cyanide (solid)	SW-846 9012B	1	20135102201A	05/14/2020 12:25	Jonathan Saul	1					
05896	Cyanide Solid Distillation	SW-846 9012B	2	20135102201A	05/14/2020 08:10	Nancy J Shoop	1					
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20132042501A	05/11/2020 21:15	Daniel S Smith	1					
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20132042501A	05/11/2020 09:40	Reece Himmelreich	1					

20131820002A

05/11/2020 09:59

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_10-12 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:10 SDG#: CMS04-06

35 Commercial Street/170229024 ELLE Sample #: SW 1311689 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 82	70D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.065	0.004	0.020	1
10726	Acenaphthylene	208-96-8	0.038	0.004	0.020	1
10726	Acetophenone	98-86-2	N.D.	0.020	0.059	1
10726	Anthracene	120-12-7	0.20	0.004	0.020	1
10726	Atrazine	1912-24-9	N.D.	0.24	0.51	1
10726	Benzaldehyde	100-52-7	N.D.	0.079	0.20	1
10726	Benzidine	92-87-5	N.D.	0.39	1.2	1
10726	Benzo(a)anthracene	56-55-3	0.47	0.008	0.020	1
10726	Benzo(a)pyrene	50-32-8	0.41	0.004	0.020	1
10726	Benzo(b)fluoranthene	205-99-2	0.52	0.004	0.020	1
10726	Benzo(g,h,i)perylene	191-24-2	0.26	0.004	0.020	1
10726	Benzo(k)fluoranthene	207-08-9	0.19	0.004	0.020	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.020	0.043	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.079	0.20	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.079	0.20	1
10726	Caprolactam	105-60-2	N.D.	0.039	0.20	1
10726	Carbazole	86-74-8	0.080	0.020	0.043	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.028	0.059	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.024	0.051	1
	Bis(2-chloroisopropyl) ether CAS #39638 2,2'-Oxybis(1-chloropropane) CAS #108-chromatographically. The reported result total of both compounds.	60-1 cannot be sepa				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.008	0.039	1
10726	2-Chlorophenol	95-57-8	N.D.	0.020	0.043	1
10726	Chrysene	218-01-9	0.47	0.004	0.020	1
10726	Dibenz(a,h)anthracene	53-70-3	0.075	0.008	0.020	1
10726	Dibenzofuran	132-64-9	0.045	0.020	0.043	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.020	0.059	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.020	0.043	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.020	0.043	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.39	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.024	0.051	1
10726	Diethylphthalate	84-66-2	N.D.	0.079	0.20	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.035	0.079	1
10726	Dimethylphthalate	131-11-3	N.D.	0.079	0.20	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.28	0.59	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.39	1.2	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.079	0.20	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.028	0.059	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.028	0.059	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.024	0.051	1

^{*=}This limit was used in the evaluation of the final result

Dry Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_10-12 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:10 SDG#: CMS04-06

as-received basis.

Langan Eng & Env Services 35 Commercial Street/170229024 **ELLE Sample #:** SW 1311689 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

Dry Method

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	S Semivolatiles	SW-846 827	0D	mg/kg	mg/kg	mg/kg	
	Azobenzene cannot be reported for 1,2-diphen compounds.						
10726	bis(2-Ethylhexyl)phthal	ate	117-81-7	N.D.	0.079	0.20	1
10726	Fluoranthene		206-44-0	0.98	0.004	0.020	1
10726	Fluorene		86-73-7	0.073	0.004	0.020	1
10726	Hexachlorobenzene		118-74-1	N.D.	0.008	0.020	1
10726	Hexachlorobutadiene		87-68-3	N.D.	0.043	0.091	1
10726	Hexachlorocyclopentac	diene	77-47-4	N.D.	0.24	0.59	1
10726	Hexachloroethane		67-72-1	N.D.	0.039	0.20	1
10726	Indeno(1,2,3-cd)pyrene)	193-39-5	0.23	0.004	0.020	1
10726	Isophorone		78-59-1	N.D.	0.020	0.043	1
10726	2-Methylnaphthalene		91-57-6	0.023 J	0.004	0.039	1
10726	2-Methylphenol		95-48-7	N.D.	0.020	0.079	1
10726	4-Methylphenol		106-44-5	N.D.	0.020	0.059	1
	3-Methylphenol and 4-r chromatographic condi for 4-methylphenol repu	tions used for sampl	e analysis. The res	sult reported			
10726	Naphthalene		91-20-3	0.049	0.008	0.020	1
10726	2-Nitroaniline		88-74-4	N.D.	0.020	0.059	1
10726	Nitrobenzene		98-95-3	N.D.	0.032	0.079	1
10726	N-Nitrosodimethylamin	е	62-75-9	N.D.	0.079	0.20	1
10726	N-Nitroso-di-n-propylar	nine	621-64-7	N.D.	0.028	0.059	1
10726	N-Nitrosodiphenylamin	е	86-30-6	N.D.	0.020	0.043	1
	N-nitrosodiphenylamine diphenylamine. The re represents the combine	sult reported for N-n	itrosodiphenylamin	e			
10726	Di-n-octylphthalate		117-84-0	N.D.	0.079	0.20	1
10726	Pentachlorophenol		87-86-5	N.D.	0.079	0.20	1
10726	Phenanthrene		85-01-8	0.99	0.004	0.020	1
10726	Phenol		108-95-2	N.D.	0.020	0.043	1
10726	Pyrene		129-00-0	1.0	0.004	0.020	1
10726	Pyridine		110-86-1	N.D.	0.079	0.20	1
10726	1,2,4-Trichlorobenzene	•	120-82-1	N.D.	0.028	0.059	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.	0.035	0.079	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.	0.032	0.067	1
Wet Cl	nemistry	SM 2540 G-2 %Moisture (%	%	%	
00111	Moisture ¹		n.a.	15.9	0.50	0.50	1
	Moisture represents the						

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311689

2098966

Sample Description: LB18_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 14:10
SDG#: 05/08/2020 14:10

3/2020 20:50

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Trial# Batch# Analysis

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/13/2020 22:37	William H Saadeh	1
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820002A	05/11/2020 09:59	Larry E Bevins	1

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311690

2098966

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: 05/08/2020 14:15 SDG#: CMS04-07

05/08/2020 20:50

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles SV	V-846 8260C	mg/kg	mg/kg	mg/kg		
11995	Acetone	67-64-1	0.057	0.006	0.019	0.76	
11995	Acrolein	107-02-8	N.D.	0.005	0.095	0.76	
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.019	0.76	
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.76	
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.76	
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.76	
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.76	
11995	2-Butanone	78-93-3	0.004 J	0.002	0.009	0.76	
11995	t-Butyl alcohol	75-65-0	N.D.	0.014	0.095	0.76	
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.76	
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.76	
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.76	
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.76	
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.76	
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.76	
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.76	
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.76	
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.76	
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.76	
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.76	
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.76	
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.76	
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.76	
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.76	
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.76	
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.76	
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.76	
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.76	
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.76	
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.76	
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0009	0.009	0.76	
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.76	
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.76	
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.76	
11995	1,4-Dioxane	123-91-1	N.D.	0.035	0.071	0.76	
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.76	
11995	Methyl Acetate	79-20-9	N.D.	0.0009	0.005	0.76	
11995	Methyl Tertiary Butyl Ether	1634-04-4	0.0007 J	0.0005	0.005	0.76	
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.76	
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.76	
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.76	

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311690

2098966

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 14:15
SDG#: CMS04-07

Commercial Street/1/0229024

	CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
G	C/MS	Volatiles	SW-846 8260	C	mg/kg	mg/kg	mg/kg		
_	11995	1,1,2,2-Tetrachloroethane		79-34-5	N.D.	0.0004	0.005	0.76	
1	11995	Tetrachloroethene		127-18-4	N.D.	0.0005	0.005	0.76	
1	11995	Toluene		108-88-3	N.D.	0.0006	0.005	0.76	
1	11995	1,1,1-Trichloroethane		71-55-6	N.D.	0.0006	0.005	0.76	
1	11995	1,1,2-Trichloroethane		79-00-5	N.D.	0.0005	0.005	0.76	
1	11995	Trichloroethene		79-01-6	N.D.	0.0005	0.005	0.76	
1	11995	Trichlorofluoromethane		75-69-4	N.D.	0.0007	0.005	0.76	
1	11995	1,2,4-Trimethylbenzene		95-63-6	N.D.	0.0005	0.005	0.76	
1	11995	1,3,5-Trimethylbenzene		108-67-8	N.D.	0.0005	0.005	0.76	
1	11995	Vinyl Chloride		75-01-4	N.D.	0.0006	0.005	0.76	
1	11995	Xylene (Total)		1330-20-7	N.D.	0.001	0.009	0.76	
c	2C/MS	Semivolatiles	SW-846 8270	חח	mg/kg	mg/kg	mg/kg		
_	10726	Acenaphthene	344-040 027	83-32-9	N.D.	0.004	0.021	1	
	10726	Acenaphthylene		208-96-8	0.005 J	0.004	0.021	1	
	10726	Acetophenone		98-86-2	N.D.	0.021	0.062	1	
	10726	Anthracene		120-12-7	0.01 J	0.004	0.002	1	
	10726	Atrazine		1912-24-9	N.D.	0.25	0.54	1	
	10726	Benzaldehyde		100-52-7	N.D.	0.082	0.21	1	
	10726	Benzidine		92-87-5	N.D.	0.41	1.2	1	
	10726	Benzo(a)anthracene		56-55-3	0.026	0.008	0.021	1	
	10726	Benzo(a)pyrene		50-32-8	0.015 J	0.004	0.021	1	
	10726	Benzo(b)fluoranthene		205-99-2	0.017 J	0.004	0.021	1	
	10726	Benzo(g,h,i)perylene		191-24-2	0.007 J	0.004	0.021	1	
	10726	Benzo(k)fluoranthene		207-08-9	0.009 J	0.004	0.021	1	
1	10726	1,1'-Biphenyl		92-52-4	N.D.	0.021	0.045	1	
	10726	Butylbenzylphthalate		85-68-7	N.D.	0.082	0.21	1	
1	10726	Di-n-butylphthalate		84-74-2	N.D.	0.082	0.21	1	
1	10726	Caprolactam		105-60-2	N.D.	0.041	0.21	1	
1	10726	Carbazole		86-74-8	N.D.	0.021	0.045	1	
1	10726	bis(2-Chloroethyl)ether		111-44-4	N.D.	0.029	0.062	1	
1	10726	bis(2-Chloroisopropyl)ethe	r¹	39638-32-9	N.D.	0.025	0.054	1	
		Bis(2-chloroisopropyl) ethe 2,2'-Oxybis(1-chloropropar chromatographically. The total of both compounds.	ne) CAS #108-60-	-1 cannot be sepa					
1	10726	2-Chloronaphthalene		91-58-7	N.D.	0.008	0.041	1	
1	10726	2-Chlorophenol		95-57-8	N.D.	0.021	0.045	1	
1	10726	Chrysene		218-01-9	0.025	0.004	0.021	1	
1	10726	Dibenz(a,h)anthracene		53-70-3	N.D.	0.008	0.021	1	
1	10726	Dibenzofuran		132-64-9	N.D.	0.021	0.045	1	
1	10726	1,2-Dichlorobenzene		95-50-1	N.D.	0.021	0.062	1	

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311690

2098966

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:15

SDG#: CMS04-07

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor					
GC/MS	Semivolatiles SW-846 8270	DD	mg/kg	mg/kg	mg/kg						
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.021	0.045	1					
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.021	0.045	1					
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.41	1					
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.025	0.054	1					
10726	Diethylphthalate	84-66-2	N.D.	0.082	0.21	1					
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.037	0.082	1					
10726	Dimethylphthalate	131-11-3	N.D.	0.082	0.21	1					
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.29	0.62	1					
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.41	1.2	1					
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.082	0.21	1					
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.029	0.062	1					
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.029	0.062	1					
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.025	0.054	1					
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.										
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.082	0.21	1					
10726	Fluoranthene	206-44-0	0.053	0.004	0.021	1					
10726	Fluorene	86-73-7	0.006 J	0.004	0.021	1					
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.021	1					
10726	Hexachlorobutadiene	87-68-3	N.D.	0.045	0.095	1					
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.25	0.62	1					
10726	Hexachloroethane	67-72-1	N.D.	0.041	0.21	1					
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.008 J	0.004	0.021	1					
10726	Isophorone	78-59-1	N.D.	0.021	0.045	1					
10726	2-Methylnaphthalene	91-57-6	N.D.	0.004	0.041	1					
10726	2-Methylphenol	95-48-7	N.D.	0.021	0.082	1					
10726	4-Methylphenol	106-44-5	N.D.	0.021	0.062	1					
	3-Methylphenol and 4-methylphenol cannot chromatographic conditions used for sample for 4-methylphenol represents the combined	e analysis. The resul	t reported								
10726	Naphthalene	91-20-3	N.D.	0.008	0.021	1					
10726	2-Nitroaniline	88-74-4	N.D.	0.021	0.062	1					
10726	Nitrobenzene	98-95-3	N.D.	0.033	0.082	1					
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.082	0.21	1					
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.029	0.062	1					
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.021	0.045	1					
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-ni represents the combined total of both comp	trosodiphenylamine									
10726	Di-n-octylphthalate	117-84-0	N.D.	0.082	0.21	1					
10726	Pentachlorophenol	87-86-5	N.D.	0.082	0.21	1					
10726	Phenanthrene	85-01-8	0.034	0.004	0.021	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_18-20 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:15 SDG#: CMS04-07

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1311690 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Resu	lt		Dry Method Detection Limit*	I	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270	D	mg/kg	9		mg/kg	ı	mg/kg	
10726	Phenol		108-95-2	N.D.			0.021	(0.045	1
10726	Pyrene		129-00-0	0.056			0.004	(0.021	1
10726	Pyridine		110-86-1	N.D.			0.082	(0.21	1
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.			0.029	(0.062	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.			0.037	(0.082	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.			0.033	(0.070	1
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/kg	J		ug/kg	,	ug/kg	
12969	1,4-Dioxane		123-91-1	N.D.			8	2	21	10
Repo	Reporting limits were raised due to interference from the sample matrix.									
Herbici	ides	SW-846 8151	A	mg/k	9		mg/kg	ı	mg/kg	
10401	2,4-D		94-75-7	N.D.	D1		0.015	(0.044	1
10401	2,4,5-T		93-76-5	N.D.	D2		0.0010	(0.0021	1
10401	2,4,5-TP		93-72-1	N.D.	D2		0.00093	(0.0021	1
PCBs		SW-846 8082	A Feb 2007	mg/k	j		mg/kg	ı	mg/kg	
10885	PCB-1016		12674-11-2	N.D.	D1		0.0044	(0.021	1
10885	PCB-1221		11104-28-2	N.D.			0.0057		0.021	1
10885	PCB-1232		11141-16-5	N.D.			0.0099		0.021	1
10885	PCB-1242		53469-21-9	N.D.			0.0033		0.021	1
10885	PCB-1248		12672-29-6	N.D.			0.0041		0.021	1
10885	PCB-1254		11097-69-1	N.D.			0.0041		0.021	1
10885	PCB-1260		11096-82-5	N.D.			0.0061		0.021	1
10885	Total PCBs ¹		1336-36-3	N.D.			0.0041		0.021	1
Pestici	des	SW-846 8081	R	mg/kg	a		mg/kg		mg/kg	
10590	Aldrin		309-00-2	N.D.	_		0.00021		0.0010	1
10590	Alpha BHC		319-84-6		1 PD1		0.00021		0.0010	1
10590	Beta BHC		319-85-7	N.D.			0.00054		0.0019	1
10590	Gamma BHC - Lindane		58-89-9	N.D.	D1		0.00026		0.0010	1
10590	Alpha Chlordane		5103-71-9	N.D.	D1		0.00021	(0.0010	1
10590	4,4'-Ddd		72-54-8	N.D.	D1		0.00041	(0.0025	1
10590	4,4'-Dde		72-55-9	N.D.	D1		0.00041	(0.0025	1
10590	4,4'-Ddt		50-29-3	N.D.	D1		0.00098	(0.0025	1
10590	Delta BHC		319-86-8	N.D.	D1		0.00056	(0.0019	1
10590	Dieldrin		60-57-1	N.D.	D1		0.00041	(0.0025	1
10590	Endosulfan I		959-98-8	N.D.	D1		0.00027	(0.0010	1
10590	Endosulfan II		33213-65-9	N.D.	D2		0.0014		0.0025	1
10590	Endosulfan Sulfate		1031-07-8	N.D.	D1		0.00041	(0.0025	1
10590	Endrin		72-20-8	N.D.	D1		0.00084	(0.0025	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_18-20 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:15 SDG#: CMS04-07

02829

Trivalent Chromium soils1

Langan Eng & Env Services 35 Commercial Street/170229024 **ELLE Sample #:** SW 1311690 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestic	ides SW	V-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Heptachlor	76-44-8	N.D. D1	0.00038	0.0010	1
the n	LCS and/or LCSD recoveries are narginal exceedance allowance of NI/DoD Standards. The following rance: Endrin	f +/- 4 standard deviations as de	fined in			
LC/MS	,	A 537 Version 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	0.70	2.3	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.70	3.5	1
14027	NEtFOSAA ¹	2991-50-6	N.D.	0.23	2.3	1
	NEtFOSAA is the acronym for	N-ethyl perfluorooctanesulfonan	nidoacetic Acid.			
14027	NMeFOSAA1	2355-31-9	N.D.	0.23	2.3	1
	NMeFOSAA is the acronym for	N-methyl perfluorooctanesulfor	namidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.47	2.3	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.94	2.3	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.23	0.70	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.23	0.70	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.23	0.70	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.23	0.70	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.23	0.70	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.23	0.70	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.23	0.70	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.23	0.70	1
14027	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.23	0.70	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.23	0.70	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.23	0.70	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.	0.23	0.70	1
14027	Perfluorotetradecanoic acid ¹	376-06-7	N.D.	0.23	0.70	1
14027	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.23	0.70	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.23	0.70	1
	recovery for extraction standard d ptance limits in the continuing ope dard.					
Metals	SW 20°	V-846 6020B Rev.2, July 14	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	5.37	0.154	0.459	2
06126	Barium	7440-39-3	30.3	0.210	0.459	2
06127	Beryllium	7440-41-7	0.426	0.0273	0.0689	2
06128	Cadmium	7440-43-9	0.361	0.0579	0.115	2
06131	Chromium	7440-47-3	14.0	0.177	0.459	2
	T: 1 : 01 : 11 4					

^{*=}This limit was used in the evaluation of the final result

0.53

16065-83-1

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311690

2098966

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:15

SDG#: CMS04-07

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
	The Trivalent Chromium res Chromium from Total Chrom	sult is calculated by subtracting Hexa	avalent			
06133	Copper	7440-50-8	14.7	0.202	0.459	2
06135	Lead	7439-92-1	10.9	0.0579	0.230	2
06137	Manganese	7439-96-5	207	0.614	1.15	5
06139	Nickel	7440-02-0	16.1	0.187	0.459	2
06141	Selenium	7782-49-2	0.156 J	0.150	0.459	2
06142	Silver	7440-22-4	N.D.	0.0466	0.115	2
06149	Zinc	7440-66-6	167	1.54	5.74	5
	;	SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0679 J	0.0175	0.0770	1
Wet Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	N.D.	0.23	0.65	1
	;	SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SOL	LIDS) 18540-29-9	2.4	0.18	0.53	1
Wet Ch		SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	20.1	0.50	0.50	1
		s in weight of the sample after oven The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 14:15
SDG#: CMS04-07

Langan Eng & Env Services
ELLE Sample #: SW 1311690
ELLE Group #: 2098966

No. 11995 06176	Analysis Name NYSDEC/NJDEP VOCs 8260C Soil GC/MS - LL Water Prep GC/MS - LL Water Prep	Method SW-846 8260C	Trial#	Batch#	Analysis	Analyst	Dilution
11995 06176	Soil GC/MS - LL Water Prep	SW-846 8260C			Date and Time	•	Factor
	•		1	B201321AA	05/11/2020 23:27	Joel Trout	0.76
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012956771	05/08/2020 22:51	Lois E Hiltz	1
		SW-846 5035A	2	202012956771	05/08/2020 22:51	Lois E Hiltz	1
	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012956771	05/08/2020 14:15	Client Supplied	1
	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/13/2020 23:00	William H Saadeh	1
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 11:47	Joseph M Gambler	10
	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201320018A	05/12/2020 13:43	Lisa A Reinert	1
	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201330012A	05/13/2020 08:52	Covenant Mutuku	1
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/12/2020 15:11	Lisa A Reinert	1
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201330012A	05/12/2020 17:20	Scott Crawford	1
	PPL Pest. Microwave Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1
	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201320018A	05/11/2020 20:33	Karen L Beyer	1
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20134016	05/13/2020 20:59	Katie Renfro	1
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	2	20134016	05/13/2020 15:30	Isaac Phillips-Cary	1
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	n 2
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201350282901	05/14/2020 16:37	Tshina Alamos	1
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:17	Janeyah Rivers-Hamiltor	1 2
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:24	Janeyah Rivers-Hamiltor	n 5
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:39	Janeyah Rivers-Hamiltor	1 2
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:17	Janeyah Rivers-Hamiltor	1 2
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:24	Janeyah Rivers-Hamiltor	n 5

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB18_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 14:15

SDG#: CMS04-07

Langan Eng & Env Services ELLE Sample #: SW 1311690 **ELLE Group #:** 2098966

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
00159	Mercury	SW-846 7471B	1	201311063801	05/11/2020 10:24	Damary Valentin	1				
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201311404902	05/11/2020 04:35	Annamaria Kuhns	1				
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201311063801	05/11/2020 06:40	Annamaria Kuhns	1				
05895	Total Cyanide (solid)	SW-846 9012B	1	20134102201A	05/13/2020 22:55	Gregory Baldree	1				
05896	Cyanide Solid Distillation	SW-846 9012B	1	20134102201A	05/13/2020 16:45	Barbara A Washington	1				
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20132042501A	05/11/2020 21:15	Daniel S Smith	1				
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20132042501A	05/11/2020 09:40	Reece Himmelreich	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820002A	05/11/2020 09:59	Larry E Bevins	1				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22 2-4 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:10 SDG#: CMS04-08

35 Commercial Street/170229024 ELLE Sample #: SW 1311691 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.090	0.008	0.025	1.13
11995	Acrolein	107-02-8	N.D.	0.006	0.13	1.13
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.025	1.13
11995	Benzene	71-43-2	N.D.	0.0006	0.006	1.13
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.006	1.13
11995	Bromoform	75-25-2	N.D.	0.006	0.013	1.13
11995	Bromomethane	74-83-9	N.D.	0.0009	0.006	1.13
11995	2-Butanone	78-93-3	0.005 J	0.003	0.013	1.13
11995	t-Butyl alcohol	75-65-0	N.D.	0.019	0.13	1.13
11995	n-Butylbenzene	104-51-8	N.D.	0.004	0.010	1.13
11995	sec-Butylbenzene	135-98-8	N.D.	0.003	0.006	1.13
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.006	1.13
11995	Carbon Disulfide	75-15-0	N.D.	0.0008	0.006	1.13
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0006	0.006	1.13
11995	Chlorobenzene	108-90-7	N.D.	0.0006	0.006	1.13
11995	Chloroethane	75-00-3	N.D.	0.001	0.006	1.13
11995	Chloroform	67-66-3	N.D.	0.0008	0.006	1.13
11995	Chloromethane	74-87-3	N.D.	0.0008	0.006	1.13
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0006	0.006	1.13
11995	Dibromochloromethane	124-48-1	N.D.	0.0006	0.006	1.13
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.006	1.13
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.006	1.13
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.006	1.13
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.006	1.13
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0008	0.006	1.13
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0006	0.006	1.13
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0008	0.006	1.13
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0006	0.006	1.13
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0006	0.006	1.13
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0006	0.006	1.13
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.013	1.13
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0006	0.006	1.13
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.006	1.13
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0006	0.006	1.13
11995	1.4-Dioxane	123-91-1	N.D.	0.047	0.095	1.13
11995	Ethylbenzene	100-41-4	N.D.	0.0005	0.006	1.13
11995	Methyl Acetate	79-20-9	N.D.	0.0003	0.006	1.13
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0006	0.006	1.13
11995	Methylene Chloride	75-09-2	N.D.	0.003	0.006	1.13
11995	n-Propylbenzene	103-65-1	N.D.	0.0005	0.006	1.13
	II I IOPYIDOIIZOIIO	100-00-1	14.0.	0.0000	0.000	1.10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 13:10
SDG#: CMS04-08

Langan Eng & Env Services
ELLE Sample #: SW 1311691
ELLE Group #: 2098966

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0005	0.006	1.13
11995	Tetrachloroethene	127-18-4	N.D.	0.0006	0.006	1.13
11995	Toluene	108-88-3	N.D.	0.0008	0.006	1.13
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0008	0.006	1.13
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0006	0.006	1.13
11995	Trichloroethene	79-01-6	N.D.	0.0006	0.006	1.13
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0009	0.006	1.13
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0006	0.006	1.13
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0006	0.006	1.13
11995	Vinyl Chloride	75-01-4	N.D.	0.0008	0.006	1.13
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.013	1.13
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.36	0.004	0.019	1
10726	Acenaphthylene	208-96-8	0.10	0.004	0.019	1
10726	Acetophenone	98-86-2	N.D.	0.019	0.056	1
10726	Anthracene	120-12-7	0.82	0.004	0.019	1
10726	Atrazine	1912-24-9	N.D.	0.22	0.48	1
10726	Benzaldehyde	100-52-7	N.D.	0.074	0.19	1
10726	Benzidine	92-87-5	N.D.	0.37	1.1	1
10726	Benzo(a)anthracene	56-55-3	2.5	0.007	0.019	1
10726	Benzo(a)pyrene	50-32-8	2.8	0.004	0.019	1
10726	Benzo(b)fluoranthene	205-99-2	3.1	0.004	0.019	1
10726	Benzo(g,h,i)perylene	191-24-2	2.0	0.004	0.019	1
10726	Benzo(k)fluoranthene	207-08-9	1.3	0.004	0.019	1
10726	1,1'-Biphenyl	92-52-4	0.047	0.019	0.041	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.074	0.19	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.074	0.19	1
10726	Caprolactam	105-60-2	N.D.	0.037	0.19	1
10726	Carbazole	86-74-8	0.36	0.019	0.041	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.026	0.056	1
10726	bis(2-Chloroisopropyl)ethe	r ¹ 39638-32-9	N.D.	0.022	0.048	1
		er CAS #39638-32-9 and ne) CAS #108-60-1 cannot be sepa reported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.007	0.037	1
10726	2-Chlorophenol	95-57-8	N.D.	0.019	0.041	1
10726	Chrysene	218-01-9	2.4	0.004	0.019	1
10726	Dibenz(a,h)anthracene	53-70-3	0.56	0.007	0.019	1
10726	Dibenzofuran	132-64-9	0.24	0.019	0.041	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.019	0.056	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 13:10
SDG#: CMS04-08

Langan Eng & Env Services
ELLE Sample #: SW 1311691
ELLE Group #: 2098966

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor			
GC/MS	S Semivolatiles SW-846 827	0D	mg/kg	mg/kg	mg/kg				
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.019	0.041	1			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.019	0.041	1			
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.37	1			
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.022	0.048	1			
10726	Diethylphthalate	84-66-2	N.D.	0.074	0.19	1			
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.033	0.074	1			
10726	Dimethylphthalate	131-11-3	N.D.	0.074	0.19	1			
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.26	0.56	1			
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.37	1.1	1			
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.074	0.19	1			
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.026	0.056	1			
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.026	0.056	1			
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.022	0.048	1			
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.								
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.074	0.19	1			
10726	Fluoranthene	206-44-0	5.5	0.037	0.19	10			
10726	Fluorene	86-73-7	0.30	0.004	0.019	1			
10726	Hexachlorobenzene	118-74-1	N.D.	0.007	0.019	1			
10726	Hexachlorobutadiene	87-68-3	N.D.	0.041	0.086	1			
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.22	0.56	1			
10726	Hexachloroethane	67-72-1	N.D.	0.037	0.19	1			
10726	Indeno(1,2,3-cd)pyrene	193-39-5	1.8	0.004	0.019	1			
10726	Isophorone	78-59-1	N.D.	0.019	0.041	1			
10726	2-Methylnaphthalene	91-57-6	0.099	0.004	0.037	1			
10726	2-Methylphenol	95-48-7	N.D.	0.019	0.074	1			
10726	4-Methylphenol	106-44-5	N.D.	0.019	0.056	1			
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for sample for 4-methylphenol represents the combine	e analysis. The resu	ult reported						
10726	Naphthalene	91-20-3	0.21	0.007	0.019	1			
10726	2-Nitroaniline	88-74-4	N.D.	0.019	0.056	1			
10726	Nitrobenzene	98-95-3	N.D.	0.030	0.074	1			
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.074	0.19	1			
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.026	0.056	1			
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.019	0.041	1			
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-n represents the combined total of both comp	itrosodiphenylamine							
10726	Di-n-octylphthalate	117-84-0	N.D.	0.074	0.19	1			
10726	Pentachlorophenol	87-86-5	N.D.	0.074	0.19	1			
10726	Phenanthrene	85-01-8	3.1	0.004	0.019	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 13:10
SDG#: CMS04-08

Langan Eng & Env Services							
ELLE Sample #:	SW 1311691						
ELLE Group #:	2098966						
Matrix: Soil							

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.019	0.041	1
10726	Pyrene	129-00-0	4.4	0.004	0.019	1
10726	Pyridine	110-86-1	N.D.	0.074	0.19	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.026	0.056	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.033	0.074	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.030	0.063	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	7	18	10
Repo	rting limits were raised due	to interference from the sample m				
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D1	0.013	0.040	1
10401	2,4,5-T	93-76-5	N.D. D2	0.00091	0.0019	1
10401	2,4,5-TP	93-72-1	N.D. D1	0.00083	0.0019	1
PCBs		SW-846 8082A Feb 2007 Rev 1	7 mg/kg	mg/kg	mg/kg	
40005	PCB-1016	12674-11-2	N.D. D4	0.0040	0.040	1
10885 10885	PCB-1016 PCB-1221	12674-11-2	N.D. D1 N.D. D1	0.0040	0.019	1
10885	PCB-1221 PCB-1232	11141-16-5	N.D. D1	0.0051 0.0088	0.019 0.019	1
10885	PCB-1232 PCB-1242	53469-21-9	N.D. D1	0.0036	0.019	1
10885	PCB-1242 PCB-1248	12672-29-6	N.D. D1	0.0036	0.019	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0036	0.019	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0054	0.019	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0036	0.019	1
Pestici		SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	0.0014 D1	0.00019	0.00092	1
10590	Alpha BHC	319-84-6	0.013 D2	0.00094	0.0046	5
10590	Beta BHC	319-85-7	N.D. D1	0.00049	0.0017	1
10590	Gamma BHC - Lindane	58-89-9	N.D. D1	0.00023	0.00092	1
10590	Alpha Chlordane	5103-71-9	N.D. VD1	0.0020	0.0020	1
10590	4,4'-Ddd	72-54-8	N.D. VD1	0.00050	0.0022	1
10590	4,4'-Dde	72-55-9	N.D. D1	0.00036	0.0022	1
10590	4,4'-Ddt	50-29-3	N.D. D1	0.00087	0.0022	1
10590	Delta BHC	319-86-8	N.D. D1	0.00050	0.0017	1
10590	Dieldrin	60-57-1	N.D. D1	0.00036	0.0022	1
10590	Endosulfan I	959-98-8	N.D. D1	0.00024	0.00092	1
10590	Endosulfan II Endosulfan Sulfate	33213-65-9	N.D. D2	0.0012	0.0022	1
10590 10590		1031-07-8	N.D. D1 N.D. D1	0.00036	0.0022 0.0022	1 1
10090	Endrin	72-20-8	וע.ט. טו	0.00075	0.0022	I

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22 2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:10 SDG#: CMS04-08

Langan Eng & Env Services ELLE Sample #: SW 1311691 **ELLE Group #:** 2098966

Matrix: Soil

CAT No.	Analysis Name	CAS Numb	Dry er Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestic	ides	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Heptachlor	76-44-8	N.D. D1	0.00034	0.00092	1
matri The I the n the T	x problems evident in the sa LCS and/or LCSD recoverie narginal exceedance allowa	e QC limits due to unresolvable ample chromatogram. s are outside the stated QC wind nce of +/- 4 standard deviations lowing analytes are accepted ba	as defined in			
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonio	acid¹ 27619-97-2	N.D.	0.67	2.2	1
14027	8:2-Fluorotelomersulfonio	acid¹ 39108-34-4	N.D.	0.67	3.4	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.22	2.2	1
	NEtFOSAA is the acrony	m for N-ethyl perfluorooctanesul	fonamidoacetic Acid.			
14027	NMeFOSAA1	2355-31-9	N.D.	0.22	2.2	1
	NMeFOSAA is the acrony	m for N-methyl perfluorooctane	sulfonamidoacetic Acid.			
14027	Perfluorobutanesulfonic a	acid¹ 375-73-5	N.D.	0.45	2.2	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.89	2.2	1
14027	Perfluorodecanesulfonic	acid ¹ 335-77-3	N.D.	0.22	0.67	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.22	0.67	1
14027	Perfluorododecanoic acid	l ¹ 307-55-1	N.D.	0.22	0.67	1
14027	Perfluoroheptanesulfonic	acid ¹ 375-92-8	N.D.	0.22	0.67	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.22	0.67	1
14027	Perfluorohexanesulfonic	acid¹ 355-46-4	N.D.	0.22	0.67	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.22	0.67	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.22	0.67	1
14027	Perfluorooctanesulfonam	ide ¹ 754-91-6	N.D.	0.22	0.67	1
14027	Perfluorooctanesulfonic a	ıcid¹ 1763-23-1	N.D.	0.22	0.67	1
14027	Perfluorooctanoic acid ¹	335-67-1	N.D.	0.22	0.67	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.	0.22	0.67	1
14027	Perfluorotetradecanoic ad		N.D.	0.22	0.67	1
14027	Perfluorotridecanoic acid		N.D.	0.22	0.67	1
	ptance limits in the continuir	11 2058-94-8 dard d3-NMeFOSAA is outside th ng opening calibration verificatio		0.22	0.67	1
Metals	•	SW-846 6020B Rev.2, . 2014	July ^{mg/kg}	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	14.3	0.147	0.439	2
06126	Barium	7440-39-3	136	1.00	2.19	10
06127	Beryllium	7440-41-7	0.507	0.0261	0.0658	2
06128	Cadmium	7440-43-9	0.739	0.0553	0.110	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311691

2098966

Sample Description: LB22 2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:10

SDG#: CMS04-08

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
Metals		SW-846 6020 2014	B Rev.2, July	mg/kg	mg/kg	mg/kg		
06131	Chromium		7440-47-3	25.7	0.169	0.439	2	
02829	Trivalent Chromium soils1		16065-83-1	25.7	0.17	0.47	1	
	The Trivalent Chromium result is calculated by subtracting Hexavalent Chromium from Total Chromium.							
06133	Copper		7440-50-8	108	0.963	2.19	10	
06135	Lead		7439-92-1	325	0.276	1.10	10	
06137	Manganese		7439-96-5	305	1.17	2.19	10	
06139	Nickel		7440-02-0	21.3	0.179	0.439	2	
06141	Selenium		7782-49-2	0.672	0.143	0.439	2	
06142	Silver		7440-22-4	0.249	0.0445	0.110	2	
06149	Zinc		7440-66-6	275	2.94	11.0	10	
		SW-846 7471	В	mg/kg	mg/kg	mg/kg		
00159	Mercury		7439-97-6	0.588	0.0170	0.0746	1	
Wet Ch	Wet Chemistry SW-846 9012		В	mg/kg	mg/kg	mg/kg		
05895	Total Cyanide (solid)		57-12-5	0.24 J	0.21	0.58	1	
		SW-846 7196A		mg/kg	mg/kg	mg/kg		
00425	Hexavalent Chromium (SC	OLIDS)	18540-29-9	N.D.	0.16	0.47	1	
Wet Ch	emistry	SM 2540 G-26 %Moisture C		%	%	%		
00111	Moisture ¹		n.a.	10.6	0.50	0.50	1	
	Moisture represents the load 103 - 105 degrees Celsius as-received basis.							

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:10 SDG#: 05/08/2020 13:10

Langan Eng & Env Services
ELLE Sample #: SW 1311691
ELLE Group #: 2098966

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201321AA	05/11/2020 23:49	Joel Trout	1.13		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012956771	05/08/2020 22:51	Lois E Hiltz	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012956771	05/08/2020 22:51	Lois E Hiltz	1		
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012956771	05/08/2020 13:10	Client Supplied	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 00:08	William H Saadeh	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 13:42	William H Saadeh	10		
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 12:17	Joseph M Gambler	10		
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1		
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1		
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201320018A	05/12/2020 14:16	Lisa A Reinert	1		
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201320002A	05/12/2020 08:33	Covenant Mutuku	1		
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/12/2020 15:25	Lisa A Reinert	1		
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/13/2020 22:32	Lisa A Reinert	5		
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1		
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1		
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	•	201320018A	05/11/2020 20:33	Karen L Beyer	1		
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20134016	05/13/2020 21:08	Katie Renfro	1		
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	2	20134016	05/13/2020 15:30	Isaac Phillips-Cary	1		
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:40	Janeyah Rivers-Hamilton	10		
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201350282901	05/14/2020 16:38	Tshina Alamos	1		
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:40	Janeyah Rivers-Hamilton	10		
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:40	Janeyah Rivers-Hamilton	10		
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:40	Janeyah Rivers-Hamilton	10		
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:34	Janeyah Rivers-Hamilton	2		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:10

SDG#: CMS04-08

Langan Eng & Env Services
ELLE Sample #: SW 1311691
ELLE Group #: 2098966

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:11	Janeyah Rivers-Hamilton	2		
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:40	Janeyah Rivers-Hamilton	10		
00159	Mercury	SW-846 7471B	1	201311063801	05/11/2020 10:15	Damary Valentin	1		
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201311404902	05/11/2020 04:35	Annamaria Kuhns	1		
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201311063801	05/11/2020 06:40	Annamaria Kuhns	1		
05895	Total Cyanide (solid)	SW-846 9012B	1	20134102201A	05/13/2020 22:57	Gregory Baldree	1		
05896	Cyanide Solid Distillation	SW-846 9012B	1	20134102201A	05/13/2020 16:45	Barbara A Washington	1		
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20132042501A	05/11/2020 21:15	Daniel S Smith	1		
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20132042501A	05/11/2020 09:40	Reece Himmelreich	1		
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820002A	05/11/2020 09:59	Larry E Bevins	1		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1311692

2098966

Sample Description: LB22_4-6 TCLP NVE Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024

35 Commercial Street/1/022902

Submittal Date/Time: Collection Date/Time:

Project Name:

05/08/2020 20:50 05/08/2020 11:50

SDG#:

05/08/2020 1 CMS04-09

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	9.01	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:12	Lisa J Cooke	1			
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201341404502	05/13/2020 23:12	Lisa J Cooke	1			
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:17	Damary Valentin	1			
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201341404502	05/13/2020 14:50	JoElla L Rice	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1			
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20132-9169-947	05/11/2020 13:11	Craig S Pfautz	n.a.			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15 SDG#: CMS04-10

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1311693 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.18	0.008	0.028	1.11
11995	Acrolein	107-02-8	N.D.	0.007	0.14	1.11
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.028	1.11
11995	Benzene	71-43-2	N.D.	0.0007	0.007	1.11
11995	Bromodichloromethane	75-27-4	N.D.	0.0006	0.007	1.11
11995	Bromoform	75-25-2	N.D.	0.007	0.014	1.11
11995	Bromomethane	74-83-9	N.D.	0.001	0.007	1.11
11995	2-Butanone	78-93-3	N.D.	0.003	0.014	1.11
11995	t-Butyl alcohol	75-65-0	0.051 J	0.021	0.14	1.11
11995	n-Butylbenzene	104-51-8	N.D.	0.004	0.011	1.11
11995	sec-Butylbenzene	135-98-8	N.D.	0.003	0.007	1.11
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.007	1.11
11995	Carbon Disulfide	75-15-0	N.D.	0.0008	0.007	1.11
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0007	0.007	1.11
11995	Chlorobenzene	108-90-7	N.D.	0.0007	0.007	1.11
11995	Chloroethane	75-00-3	N.D.	0.001	0.007	1.11
11995	Chloroform	67-66-3	N.D.	0.0008	0.007	1.11
11995	Chloromethane	74-87-3	N.D.	0.0008	0.007	1.11
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0007	0.007	1.11
11995	Dibromochloromethane	124-48-1	N.D.	0.0007	0.007	1.11
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0006	0.007	1.11
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0007	0.007	1.11
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0007	0.007	1.11
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0006	0.007	1.11
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0008	0.007	1.11
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0007	0.007	1.11
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0008	0.007	1.11
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0007	0.007	1.11
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0007	0.007	1.11
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0007	0.007	1.11
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.014	1.11
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0007	0.007	1.11
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0006	0.007	1.11
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0007	0.007	1.11
11995	1,4-Dioxane	123-91-1	N.D.	0.051	0.10	1.11
11995	Ethylbenzene	100-41-4	N.D.	0.0006	0.007	1.11
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.007	1.11
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0007	0.007	1.11
11995	Methylene Chloride	75-09-2	N.D.	0.003	0.007	1.11
11995	n-Propylbenzene	103-65-1	N.D.	0.0006	0.007	1.11
11995	Styrene	100-42-5	N.D.	0.0006	0.007	1.11

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15 SDG#: CMS04-10

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1311693 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0006	0.007	1.11
11995	Tetrachloroethene	127-18-4	N.D.	0.0007	0.007	1.11
11995	Toluene	108-88-3	N.D.	0.0008	0.007	1.11
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0008	0.007	1.11
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0007	0.007	1.11
11995	Trichloroethene	79-01-6	N.D.	0.0007	0.007	1.11
11995	Trichlorofluoromethane	75-69-4	N.D.	0.001	0.007	1.11
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0007	0.007	1.11
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0007	0.007	1.11
11995	Vinyl Chloride	75-01-4	N.D.	0.0008	0.007	1.11
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.014	1.11
GC/MS	Semivolatiles S	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.005 J	0.004	0.020	1
10726	Acenaphthylene	208-96-8	0.005 J	0.004	0.020	1
10726	Acetophenone	98-86-2	N.D.	0.020	0.061	1
10726	Anthracene	120-12-7	0.006 J	0.004	0.020	1
10726	Atrazine	1912-24-9	N.D.	0.25	0.53	1
10726	Benzaldehyde	100-52-7	N.D.	0.082	0.20	1
10726	Benzidine	92-87-5	N.D.	0.41	1.2	1
10726	Benzo(a)anthracene	56-55-3	0.012 J	0.008	0.020	1
10726	Benzo(a)pyrene	50-32-8	0.009 J	0.004	0.020	1
10726	Benzo(b)fluoranthene	205-99-2	0.012 J	0.004	0.020	1
10726	Benzo(g,h,i)perylene	191-24-2	0.005 J	0.004	0.020	1
10726	Benzo(k)fluoranthene	207-08-9	0.006 J	0.004	0.020	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.020	0.045	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.082	0.20	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.082	0.20	1
10726	Caprolactam	105-60-2	N.D.	0.041	0.20	1
10726	Carbazole	86-74-8	N.D.	0.020	0.045	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.029	0.061	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.025	0.053	1
		CAS #39638-32-9 and e) CAS #108-60-1 cannot be sepa eported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.008	0.041	1
10726	2-Chlorophenol	95-57-8	N.D.	0.020	0.045	1
10726	Chrysene	218-01-9	0.013 J	0.004	0.020	1
10726	Dibenz(a,h)anthracene	53-70-3	N.D.	0.008	0.020	1
10726	Dibenzofuran	132-64-9	N.D.	0.020	0.045	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.020	0.061	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

Project Name:

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15 SDG#: CMS04-10

35 Commercial Street/170229024 ELLE Sample #: SW 1311693 **ELLE Group #:** 2098966 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor				
GC/MS	Semivolatiles SW-846 827	'0D	mg/kg	mg/kg	mg/kg					
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.020	0.045	1				
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.020	0.045	1				
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.41	1				
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.025	0.053	1				
10726	Diethylphthalate	84-66-2	N.D.	0.082	0.20	1				
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.037	0.082	1				
10726	Dimethylphthalate	131-11-3	N.D.	0.082	0.20	1				
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.29	0.61	1				
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.41	1.2	1				
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.082	0.20	1				
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.029	0.061	1				
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.029	0.061	1				
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.025	0.053	1				
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.									
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.082	0.20	1				
10726	Fluoranthene	206-44-0	0.022	0.004	0.020	1				
10726	Fluorene	86-73-7	0.006 J	0.004	0.020	1				
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.020	1				
10726	Hexachlorobutadiene	87-68-3	N.D.	0.045	0.094	1				
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.25	0.61	1				
10726	Hexachloroethane	67-72-1	N.D.	0.041	0.20	1				
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.004 J	0.004	0.020	1				
10726	Isophorone	78-59-1	N.D.	0.020	0.045	1				
10726	2-Methylnaphthalene	91-57-6	0.012 J	0.004	0.041	1				
10726	2-Methylphenol	95-48-7	N.D.	0.020	0.082	1				
10726	4-Methylphenol	106-44-5	N.D.	0.020	0.061	1				
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.									
10726	Naphthalene	91-20-3	0.016 J	0.008	0.020	1				
10726	2-Nitroaniline	88-74-4	N.D.	0.020	0.061	1				
10726	Nitrobenzene	98-95-3	N.D.	0.033	0.082	1				
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.082	0.20	1				
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.029	0.061	1				
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.020	0.045	1				
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-represents the combined total of both compared to the combined total of the	nitrosodiphenylamin	е							
10726	Di-n-octylphthalate	117-84-0	N.D.	0.082	0.20	1				
10726	Pentachlorophenol	87-86-5	N.D.	0.082	0.20	1				
10726	Phenanthrene	85-01-8	0.017 J	0.004	0.020	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15 SDG#: CMS04-10

Langan Eng & Env Services ELLE Sample #: SW 1311693 **ELLE Group #:** 2098966 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Phenol	108-95-2	N.D.	0.020	0.045	1
10726	Pyrene	129-00-0	0.022	0.004	0.020	1
10726	Pyridine	110-86-1	N.D.	0.082	0.20	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.029	0.061	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.037	0.082	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.033	0.070	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	8	20	10
Repo	rting limits were raised due	to interference from the sample matr	ix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.015	0.044	1
10401	2,4,5-T	93-76-5	N.D. D2	0.0010	0.0021	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.00093	0.0021	1
PCBs		SW-846 8082A Feb 2007 Rev 1	mg/kg	mg/kg	mg/kg	
10885	PCB-1016	12674-11-2	N.D. D1	0.0044	0.021	1
10885	PCB-1221	11104-28-2	N.D. D1	0.0056	0.021	1
10885	PCB-1232	11141-16-5	N.D. D1	0.0098	0.021	1
10885	PCB-1242	53469-21-9	N.D. D1	0.0040	0.021	1
10885	PCB-1248	12672-29-6	N.D. D1	0.0040	0.021	1
10885	PCB-1254	11097-69-1	N.D. D1	0.0040	0.021	1
10885	PCB-1260	11096-82-5	N.D. D1	0.0060	0.021	1
10885	Total PCBs ¹	1336-36-3	N.D.	0.0040	0.021	1
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. D1	0.0010	0.0051	5
10590	Alpha BHC	319-84-6	N.D. VD1	0.0016	0.0051	5
10590	Beta BHC	319-85-7	N.D. D1	0.0027	0.0092	5
10590	Gamma BHC - Lindane	58-89-9	N.D. D1	0.0013	0.0051	5
10590	Alpha Chlordane	5103-71-9	N.D. D1	0.0010	0.0051	5
10590	4,4'-Ddd	72-54-8	N.D. D1	0.0020	0.012	5
10590	4,4'-Dde	72-55-9	N.D. D1	0.0020	0.012	5
10590	4,4'-Ddt	50-29-3	N.D. D1	0.0048	0.012	5
10590	Delta BHC	319-86-8	N.D. D1	0.0028	0.0092	5
10590	Dieldrin	60-57-1	N.D. D1	0.0020	0.012	5
10590	Endosulfan I	959-98-8	N.D. D1	0.0013	0.0051	5
10590	Endosulfan II	33213-65-9	N.D. D2	0.0067	0.012	5
10590	Endosulfan Sulfate	1031-07-8	N.D. D1	0.0020	0.012	5
10590	Endrin	72-20-8	N.D. D1	0.0042	0.012	5

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 13:15
SDG#: CMS04-10

Langan Eng & Env Services
ELLE Sample #: SW 1311693
ELLE Group #: 2098966
Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 808	1B	mg/kg	mg/kg	mg/kg	
10590	Heptachlor		76-44-8	N.D. D1	0.0019	0.0051	5
the m the Ti	CS and/or LCSD recoveries arginal exceedance allowar NI/DoD Standards. The follance: Endrin	nce of +/- 4 standa	ard deviations as de	efined in			
LC/MS/	MS Miscellaneous	EPA 537 Ver Modified	rsion 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic	acid1	27619-97-2	N.D.	0.72	2.4	1
14027	8:2-Fluorotelomersulfonic	acid1	39108-34-4	N.D.	0.72	3.6	1
14027	NEtFOSAA1		2991-50-6	N.D.	0.24	2.4	1
	NEtFOSAA is the acronyr	n for N-ethyl perflu	uorooctanesulfonar	midoacetic Acid.			
14027	NMeFOSAA1		2355-31-9	N.D.	0.24	2.4	1
	NMeFOSAA is the acrony	m for N-methyl pe	erfluorooctanesulfo	namidoacetic Acid.			
14027	Perfluorobutanesulfonic a	cid ¹	375-73-5	N.D.	0.48	2.4	1
14027	Perfluorobutanoic acid1		375-22-4	N.D.	0.96	2.4	1
14027	Perfluorodecanesulfonic a	acid1	335-77-3	N.D.	0.24	0.72	1
14027	Perfluorodecanoic acid1		335-76-2	N.D.	0.24	0.72	1
14027	Perfluorododecanoic acid	1	307-55-1	N.D.	0.24	0.72	1
14027	Perfluoroheptanesulfonic	acid¹	375-92-8	N.D.	0.24	0.72	1
14027	Perfluoroheptanoic acid1		375-85-9	N.D.	0.24	0.72	1
14027	Perfluorohexanesulfonic a	acid¹	355-46-4	N.D.	0.24	0.72	1
14027	Perfluorohexanoic acid1		307-24-4	N.D.	0.24	0.72	1
14027	Perfluorononanoic acid1		375-95-1	N.D.	0.24	0.72	1
14027	Perfluorooctanesulfonami	de¹	754-91-6	N.D.	0.24	0.72	1
14027	Perfluorooctanesulfonic a	cid ¹	1763-23-1	N.D.	0.24	0.72	1
14027	Perfluorooctanoic acid1		335-67-1	N.D.	0.24	0.72	1
14027	Perfluoropentanoic acid1		2706-90-3	N.D.	0.24	0.72	1
14027	Perfluorotetradecanoic ac	id¹	376-06-7	N.D.	0.24	0.72	1
14027	Perfluorotridecanoic acid1		72629-94-8	N.D.	0.24	0.72	1
14027	Perfluoroundecanoic acid	1	2058-94-8	N.D.	0.24	0.72	1
	ecovery for extraction stand stance limits in the continuin ard.						
Metals		SW-846 602 2014	0B Rev.2, July	y mg/kg	mg/kg	mg/kg	
06125	Arsenic		7440-38-2	9.55	0.166	0.497	2
06126	Barium		7440-39-3	28.3	0.227	0.497	2
06127	Beryllium		7440-41-7	0.253	0.0296	0.0745	2
06128	Cadmium		7440-43-9	0.223	0.0626	0.124	2
06131	Chromium		7440-47-3	7.52	0.191	0.497	2
02829	Trivalent Chromium soils1		16065-83-1	7.5	0.19	0.52	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311693

2098966

Sample Description: LB22_12-14 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15

SDG#: CMS04-10

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
	The Trivalent Chromium re Chromium from Total Chro	esult is calculated by subtracting Hex omium.	avalent			
06133	Copper	7440-50-8	35.9	0.218	0.497	2
06135	Lead	7439-92-1	155	0.157	0.621	5
06137	Manganese	7439-96-5	60.4	0.266	0.497	2
06139	Nickel	7440-02-0	29.4	0.202	0.497	2
06141	Selenium	7782-49-2	4.27	0.162	0.497	2
06142	Silver	7440-22-4	0.0882 J	0.0504	0.124	2
06149	Zinc	7440-66-6	180	1.66	6.21	5
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.147	0.0182	0.0801	1
Wet Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	N.D.	0.24	0.66	1
		SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC		N.D.	0.17	0.52	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	19.5	0.50	0.50	1
		ess in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50
Collection Date/Time: 05/08/2020 13:15
SDG#: CMS04-10

Langan Eng & Env Services
ELLE Sample #: SW 1311693
ELLE Group #: 2098966

Matrix: Soil

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201321AA	05/12/2020 00:11	Joel Trout	1.11			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012956771	05/08/2020 22:51	Lois E Hiltz	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012956771	05/08/2020 22:51	Lois E Hiltz	1			
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012956771	05/08/2020 13:15	Client Supplied	1			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 00:31	William H Saadeh	1			
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 12:48	Joseph M Gambler	10			
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1			
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1			
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201320018A	05/12/2020 14:50	Lisa A Reinert	1			
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201320002A	05/12/2020 08:44	Covenant Mutuku	1			
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/12/2020 15:54	Lisa A Reinert	5			
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201320002A	05/11/2020 17:00	Scott Crawford	1			
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1			
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201320018A	05/11/2020 20:33	Karen L Beyer	1			
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20134016	05/13/2020 21:26	Katie Renfro	1			
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	2	20134016	05/13/2020 15:30	Isaac Phillips-Cary	1			
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	2			
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	2			
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	2			
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	1 2			
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	2			
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201350282901	05/14/2020 16:39	Tshina Alamos	1			
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	1 2			
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:22	Janeyah Rivers-Hamiltor	n 5			
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:05	Janeyah Rivers-Hamiltor	1 2			
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	1 2			
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:19	Janeyah Rivers-Hamiltor	1 2			
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:05	Janeyah Rivers-Hamiltor	1 2			
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:22	Janeyah Rivers-Hamiltor	1 5			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_12-14 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:15 SDG#: 05/08/2020 13:15

Langan Eng & Env Services
ELLE Sample #: SW 1311693
ELLE Group #: 2098966

Matrix: Soil

	=ano.ato.y campio / manyoto / toco.a										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
00159	Mercury	SW-846 7471B	1	201311063801	05/11/2020 10:07	Damary Valentin	1				
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201311404902	05/11/2020 04:35	Annamaria Kuhns	1				
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201311063801	05/11/2020 06:40	Annamaria Kuhns	1				
05895	Total Cyanide (solid)	SW-846 9012B	1	20134102201A	05/13/2020 23:03	Gregory Baldree	1				
05896	Cyanide Solid Distillation	SW-846 9012B	1	20134102201A	05/13/2020 16:45	Barbara A Washington	1				
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20132042501A	05/11/2020 21:15	Daniel S Smith	1				
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20132042501A	05/11/2020 09:40	Reece Himmelreich	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820002A	05/11/2020 09:59	Larry E Bevins	1				

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311694

2098966

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25

SDG#: CMS04-11

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW	-846 8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.039	0.007	0.022	0.82
11995	Acrolein	107-02-8	N.D.	0.005	0.11	0.82
11995	Acrylonitrile	107-13-1	N.D.	0.0009	0.022	0.82
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.82
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.82
11995	Bromoform	75-25-2	N.D.	0.005	0.011	0.82
11995	Bromomethane	74-83-9	N.D.	0.0008	0.005	0.82
11995	2-Butanone	78-93-3	0.004 J	0.002	0.011	0.82
11995	t-Butyl alcohol	75-65-0	N.D.	0.016	0.11	0.82
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.009	0.82
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.82
11995	tert-Butylbenzene	98-06-6	N.D.	0.0009	0.005	0.82
11995	Carbon Disulfide	75-15-0	N.D.	0.0007	0.005	0.82
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.82
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.82
11995	Chloroethane	75-00-3	N.D.	0.001	0.005	0.82
11995	Chloroform	67-66-3	N.D.	0.0007	0.005	0.82
11995	Chloromethane	74-87-3	N.D.	0.0007	0.005	0.82
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.82
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.82
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.82
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.82
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.82
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.82
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0007	0.005	0.82
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.82
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0007	0.005	0.82
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.82
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.82
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.82
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.011	0.82
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.82
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.82
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.82
11995	1,4-Dioxane	123-91-1	N.D.	0.040	0.082	0.82
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.82
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.005	0.82
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.82
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.82
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.82
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.82

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311694

2098966

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25

SDG#: CMS04-11

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.82
11995	Tetrachloroethene	127-18-4	N.D.	0.0005	0.005	0.82
11995	Toluene	108-88-3	N.D.	0.0007	0.005	0.82
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0007	0.005	0.82
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0005	0.005	0.82
11995	Trichloroethene	79-01-6	N.D.	0.0005	0.005	0.82
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0008	0.005	0.82
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0005	0.005	0.82
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0005	0.005	0.82
11995	Vinyl Chloride	75-01-4	N.D.	0.0007	0.005	0.82
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.011	0.82
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	N.D.	0.004	0.022	1
10726	Acenaphthylene	208-96-8	N.D.	0.004	0.022	1
10726	Acetophenone	98-86-2	N.D.	0.022	0.066	1
10726	Anthracene	120-12-7	N.D.	0.004	0.022	1
10726	Atrazine	1912-24-9	N.D.	0.26	0.57	1
10726	Benzaldehyde	100-52-7	N.D.	0.088	0.22	1
10726	Benzidine	92-87-5	N.D.	0.44	1.3	1
10726	Benzo(a)anthracene	56-55-3	0.015 J	0.009	0.022	1
10726	Benzo(a)pyrene	50-32-8	0.012 J	0.004	0.022	1
10726	Benzo(b)fluoranthene	205-99-2	0.016 J	0.004	0.022	1
10726	Benzo(g,h,i)perylene	191-24-2	0.008 J	0.004	0.022	1
10726	Benzo(k)fluoranthene	207-08-9	0.008 J	0.004	0.022	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.022	0.048	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.088	0.22	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.088	0.22	1
10726	Caprolactam	105-60-2	N.D.	0.044	0.22	1
10726	Carbazole	86-74-8	N.D.	0.022	0.048	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.031	0.066	1
10726	bis(2-Chloroisopropyl)ether	39638-32-9	N.D.	0.026	0.057	1
		CAS #39638-32-9 and e) CAS #108-60-1 cannot be sepa eported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.009	0.044	1
10726	2-Chlorophenol	95-57-8	N.D.	0.022	0.048	1
10726	Chrysene	218-01-9	0.016 J	0.004	0.022	1
10726	Dibenz(a,h)anthracene	53-70-3	N.D.	0.009	0.022	1
10726	Dibenzofuran	132-64-9	N.D.	0.022	0.048	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.022	0.066	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311694

2098966

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 05/08/2020 13:25

Collection Date/Time: SDG#: CMS04-11

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	S Semivolatiles SW-846 827	'0D	mg/kg	mg/kg	mg/kg	
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.022	0.048	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.022	0.048	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.13	0.44	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.026	0.057	1
10726	Diethylphthalate	84-66-2	N.D.	0.088	0.22	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.040	0.088	1
10726	Dimethylphthalate	131-11-3	N.D.	0.088	0.22	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.31	0.66	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.44	1.3	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.088	0.22	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.031	0.066	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.031	0.066	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.026	0.057	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.	nt the combined tot	al of both			
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.088	0.22	1
10726	Fluoranthene	206-44-0	0.020 J	0.004	0.022	1
10726	Fluorene	86-73-7	N.D.	0.004	0.022	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.009	0.022	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.048	0.10	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.26	0.66	1
10726	Hexachloroethane	67-72-1	N.D.	0.044	0.22	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.008 J	0.004	0.022	1
10726	Isophorone	78-59-1	N.D.	0.022	0.048	1
10726	2-Methylnaphthalene	91-57-6	N.D.	0.004	0.044	1
10726	2-Methylphenol	95-48-7	N.D.	0.022	0.088	1
10726	4-Methylphenol	106-44-5	N.D.	0.022	0.066	1
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The res	ult reported			
10726	Naphthalene	91-20-3	N.D.	0.009	0.022	1
10726	2-Nitroaniline	88-74-4	N.D.	0.022	0.066	1
10726	Nitrobenzene	98-95-3	N.D.	0.035	0.088	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.088	0.22	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.031	0.066	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.022	0.048	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-represents the combined total of both com	nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.088	0.22	1
10726	Pentachlorophenol	87-86-5	N.D.	0.088	0.22	1
10726	Phenanthrene	85-01-8	0.009 J	0.004	0.022	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_18-20 Grab Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25 SDG#: CMS04-11

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1311694 **ELLE Group #:** 2098966 Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Metho Detect	d tion Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 827	0D	mg/kg	mg/kg		mg/kg	
10726	Phenol		108-95-2	N.D.	0.022		0.048	1
10726	Pyrene		129-00-0	0.021 J	0.004		0.022	1
10726	Pyridine		110-86-1	N.D.	0.088		0.22	1
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.031		0.066	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.	0.040		0.088	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.	0.035		0.075	1
GC/MS	Semivolatiles	SW-846 827	OD SIM	ug/kg	ug/kg		ug/kg	
12969	1,4-Dioxane		123-91-1	N.D.	9		22	10
Repo	rting limits were raised due	to interference fro	m the sample matr	ix.				
Herbic	ides	SW-846 815	1A	mg/kg	mg/kg		mg/kg	
10401	2,4-D		94-75-7	N.D. D1	0.016		0.047	1
10401	2,4,5-T		93-76-5	N.D. D2	0.0011		0.0022	1
10401	2,4,5-TP		93-72-1	N.D. D2	0.0009	9	0.0022	1
PCBs		SW-846 808	2A Feb 2007	mg/kg	mg/kg		mg/kg	
		Rev 1						
10885	PCB-1016		12674-11-2	N.D. D1	0.0047	•	0.022	1
10885	PCB-1221		11104-28-2	N.D. D1	0.0060)	0.022	1
10885	PCB-1232		11141-16-5	N.D. D1	0.011		0.022	1
10885	PCB-1242		53469-21-9	N.D. D1	0.0043	3	0.022	1
10885	PCB-1248		12672-29-6	N.D. D1	0.0043	3	0.022	1
10885	PCB-1254		11097-69-1	N.D. D1	0.0043	3	0.022	1
10885	PCB-1260		11096-82-5	N.D. D1	0.0064	ļ	0.022	1
10885	Total PCBs ¹		1336-36-3	N.D.	0.0043	}	0.022	1
Pestici	des	SW-846 808 ⁻	1B	mg/kg	mg/kg		mg/kg	
10590	Aldrin		309-00-2	N.D. D1	0.0011		0.0055	5
10590	Alpha BHC		319-84-6	N.D. D1	0.0011		0.0055	5
10590	Beta BHC		319-85-7	N.D. D1	0.0029)	0.0099	5
10590	Gamma BHC - Lindane		58-89-9	N.D. D1	0.0014	ļ	0.0055	5
10590	Alpha Chlordane		5103-71-9	N.D. D1	0.0011		0.0055	5
10590	4,4'-Ddd		72-54-8	N.D. D1	0.0022	2	0.013	5
10590	4,4'-Dde		72-55-9	N.D. D1	0.0022	2	0.013	5
10590	4,4'-Ddt		50-29-3	N.D. D1	0.0052	2	0.013	5
10590	Delta BHC		319-86-8	N.D. D1	0.0030)	0.0099	5
10590	Dieldrin		60-57-1	N.D. D1	0.0022	2	0.013	5
10590	Endosulfan I		959-98-8	N.D. D1	0.0014	ļ	0.0055	5
10590	Endosulfan II		33213-65-9	N.D. D2	0.0072	2	0.013	5
10590	Endosulfan Sulfate		1031-07-8	N.D. D1	0.0022	2	0.013	5
10590	Endrin		72-20-8	N.D. D1	0.0045	;	0.013	5

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311694

2098966

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: 05/08/2020 13:25 SDG#: CMS04-11

05/08/2020 20:50

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des SW-840	6 8081B	mg/kg	mg/kg	mg/kg	
10590	Heptachlor	76-44-8	N.D. D1	0.0020	0.0055	5
the m the Ti	CS and/or LCSD recoveries are outsic arginal exceedance allowance of +/- 4 NI/DoD Standards. The following anal ance: Endrin	standard deviations as d	efined in			
LC/MS/	/MS Miscellaneous EPA 53 Modifie	37 Version 1.1 ed	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	0.77	2.6	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.77	3.8	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.26	2.6	1
	NEtFOSAA is the acronym for N-eth	yl perfluorooctanesulfona	midoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	N.D.	0.26	2.6	1
	NMeFOSAA is the acronym for N-me	ethyl perfluorooctanesulfo	namidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.51	2.6	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	1.0	2.6	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.26	0.77	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.26	0.77	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.26	0.77	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.26	0.77	1
14027	Perfluoroheptanoic acid ¹	375-85-9	N.D.	0.26	0.77	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.26	0.77	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.26	0.77	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.26	0.77	1
14027	Perfluorooctanesulfonamide ¹	754-91-6	N.D.	0.26	0.77	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.26	0.77	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.26	0.77	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.	0.26	0.77	1
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.26	0.77	1
14027	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.26	0.77	1
	Perfluoroundecanoic acid ¹ ecovery for extraction standard d5-NE tance limits in the continuing closing card.		N.D.	0.26	0.77	1
Metals	SW-840 2014	6 6020B Rev.2, July	y mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	7.27	0.138	0.413	2
06126	Barium	7440-39-3	32.7	0.189	0.413	2
06127	Beryllium	7440-41-7	0.574	0.0246	0.0620	2
06128	Cadmium	7440-43-9	0.0748 J	0.0521	0.103	2
06131	Chromium	7440-47-3	22.4	0.159	0.413	2
02829	Trivalent Chromium soils1	16065-83-1	22.4	0.19	0.56	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1311694

2098966

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25

SDG#: CMS04-11

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	, mg/kg	mg/kg	mg/kg	
	The Trivalent Chromium re Chromium from Total Chro	esult is calculated by subtracting Head	xavalent			
06133	Copper	7440-50-8	10.0	0.181	0.413	2
06135	Lead	7439-92-1	7.91	0.0521	0.207	2
06137	Manganese	7439-96-5	307	1.11	2.07	10
06139	Nickel	7440-02-0	20.5	0.168	0.413	2
06141	Selenium	7782-49-2	0.239 J	0.135	0.413	2
06142	Silver	7440-22-4	N.D.	0.0420	0.103	2
06149	Zinc	7440-66-6	61.1	0.554	2.07	2
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0647 J	0.0202	0.0889	1
Wet Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	N.D.	0.24	0.67	1
		SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	OLIDS) 18540-29-9	N.D.	0.19	0.56	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	25.0	0.50	0.50	1
		ess in weight of the sample after over s. The moisture result reported is on				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25 SDG#: 05/08/2021 13:25

Langan Eng & Env Services
ELLE Sample #: SW 1311694
ELLE Group #: 2098966

Matrix: Soil

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201321AA	05/12/2020 00:33	Joel Trout	0.82				
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202012956771	05/08/2020 22:52	Lois E Hiltz	1				
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202012956771	05/08/2020 22:52	Lois E Hiltz	1				
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202012956771	05/08/2020 13:25	Client Supplied	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20132SLA026	05/14/2020 00:54	William H Saadeh	1				
12969	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136SLB026	05/19/2020 13:19	Joseph M Gambler	10				
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20132SLA026	05/11/2020 17:00	Scott Crawford	1				
10811	BNA Soil Microwave SIM	SW-846 3546	1	20136SLB026	05/18/2020 08:45	Joshua S Ruth	1				
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201320018A	05/12/2020 15:23	Lisa A Reinert	1				
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201320002A	05/12/2020 08:54	Covenant Mutuku	1				
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201320001A	05/12/2020 16:08	Lisa A Reinert	5				
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201320002A	05/11/2020 17:00	Scott Crawford	1				
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201320001A	05/11/2020 17:00	Scott Crawford	1				
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201320018A	05/11/2020 20:33	Karen L Beyer	1				
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20134016	05/13/2020 21:35	Katie Renfro	1				
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	2	20134016	05/11/2020 07:00	Isaac Phillips-Cary	1				
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201350282901	05/14/2020 16:40	Tshina Alamos	1				
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:12	Janeyah Rivers-Hamiltor	2				
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:41	Janeyah Rivers-Hamiltor	10				
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/14/2020 15:12	Janeyah Rivers-Hamiltor	2				
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201311404902A	05/13/2020 19:36	Janeyah Rivers-Hamiltor	2				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB22_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time: 05/08/2020 13:25

SDG#: CMS04-11

INLVIOLE

SW 1311694

2098966

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
00159	Mercury	SW-846 7471B	1	201311063801	05/11/2020 10:22	Damary Valentin	1				
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201311404902	05/11/2020 04:35	Annamaria Kuhns	1				
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201311063801	05/11/2020 06:40	Annamaria Kuhns	1				
05895	Total Cyanide (solid)	SW-846 9012B	1	20134102201A	05/13/2020 23:05	Gregory Baldree	1				
05896	Cyanide Solid Distillation	SW-846 9012B	1	20134102201A	05/13/2020 16:45	Barbara A Washington	1				
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20132042501A	05/11/2020 21:15	Daniel S Smith	1				
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20132042501A	05/11/2020 09:40	Reece Himmelreich	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20131820002A	05/11/2020 09:59	Larry E Bevins	1				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1312694

2098966

Sample Description: LB18 2-4 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time:

05/08/2020 20:50 05/08/2020 13:55 SDG#: CMS04-12

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	10,900	10.4	41.2	500
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.373	0.0166	0.0731	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	14.5	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor 06135 SW-846 6020B Rev.2, 201321404901A 05/14/2020 13:43 Janeyah Rivers-Hamilton 500 Lead 1 July 2014 00159 Mercury SW-846 7471B 1 201341063801 05/13/2020 09:54 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201321404901 05/12/2020 02:20 James L Mertz 1 Hg - SW, 7471B - U4 10638 SW-846 7471B 201341063801 05/13/2020 07:35 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20133820004B 05/12/2020 12:47 Stephanie A Sanchez %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1312695

2098966

Sample Description: LB18 6-8 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/08/2020 20:50 Collection Date/Time:

05/08/2020 14:00 SDG#: CMS04-13

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	75.2	0.0532	0.211	2
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0217 J	0.0165	0.0723	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	12.2	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor 06135 SW-846 6020B Rev.2, 201321404901A 05/13/2020 17:44 Janeyah Rivers-Hamilton 2 Lead 1 July 2014 00159 Mercury SW-846 7471B 1 201331063801 05/12/2020 08:26 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201321404901 05/12/2020 02:20 James L Mertz 1 Hg - SW, 7471B - U4 10638 SW-846 7471B 201331063801 05/12/2020 05:39 James L Mertz 1 1 00111 Moisture SM 2540 G-2011 20133820004B 05/12/2020 12:47 Stephanie A Sanchez %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1312696

2098966

Sample Description: LB22 4-6 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time:	05/08/2020 20:50
Collection Date/Time:	05/08/2020 11:50
SDG#:	CMS04-14

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	409	0.266	1.05	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	1.91	0.0800	0.352	5
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	9.7	0.50	0.50	1
		oss in weight of the sample after oven on a street or a second in the moisture result reported is on an arrange of the second in				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201321404901A 05/13/2020 17:52 Janeyah Rivers-Hamilton 10 Lead July 2014 00159 Mercury SW-846 7471B 1 201341063801 05/13/2020 09:44 Damary Valentin 5 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201321404901 05/12/2020 02:20 James L Mertz 1 05/13/2020 07:35 10638 Hg - SW, 7471B - U4 SW-846 7471B 201341063801 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20133820004B 05/12/2020 12:47 Stephanie A Sanchez 1 %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201321AA	Sample number(s): 1311688,1	311690-1311691,1311693-1311694
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	8000.0	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	8000.0	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
1,4-Dioxane	N.D.	0.037	0.075
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
n-Propylbenzene	N.D.	0.0004	0.005
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene	N.D.	0.0005	0.005
Toluene	N.D.	0.0006	0.005
1,1,1-Trichloroethane	N.D.	0.0006	0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0007	0.005
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005
Vinyl Chloride	N.D.	0.0006	0.005
Xylene (Total)	N.D.	0.001	0.010
	mg/l	mg/l	mg/l
Batch number: 5201333AA	Sample number(s): 1311685	
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	Result	MDL**	LOQ	
•	mg/l	mg/l	mg/l	
trans-1,2-Dichloroethene	N.D.	0.0002	0.001	
1,2-Dichloroethene (Total)	N.D.	0.0002	0.001	
1,2-Dichloropropane	N.D.	0.0004	0.002	
cis-1,3-Dichloropropene	N.D.	0.0002	0.001	
trans-1,3-Dichloropropene	N.D. N.D.	0.0002	0.001	
1,4-Dioxane	N.D.	0.0002	0.001	
Ethylbenzene	N.D. N.D.	0.009	0.075	
•	N.D.	0.0004	0.001	
Methyl Acetate	N.D.	0.0003	0.003	
Methyl Tertiary Butyl Ether	N.D. N.D.			
Methylene Chloride	N.D. N.D.	0.0003	0.001	
n-Propylbenzene		0.0002	0.005	
Styrene	N.D.	0.0002	0.005	
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001	
Tetrachloroethene	N.D.	0.0002	0.001	
Toluene	N.D.	0.0002	0.001	
1,1,1-Trichloroethane	N.D.	0.0003	0.001	
1,1,2-Trichloroethane	N.D.	0.0002	0.001	
Trichloroethene	N.D.	0.0002	0.001	
Trichlorofluoromethane	N.D.	0.0002	0.001	
1,2,4-Trimethylbenzene	N.D.	0.001	0.005	
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005	
Vinyl Chloride	N.D.	0.0002	0.001	
Xylene (Total)	N.D.	0.001	0.006	
Xylene (Total)	N.D. mg/kg	0.001 mg/kg	0.006 mg/kg	
Xylene (Total) Batch number: 20132SLA026	N.D. mg/kg Sample num	0.001 mg/kg aber(s): 1311688-	0.006 mg/kg 1311691,1311693-1311694	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene	N.D. mg/kg Sample num N.D. N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone	N.D. mg/kg Sample num N.D. N.D. N.D.	0.001 mg/kg ber(s): 1311688- 0.003 0.003 0.017	0.006 mg/kg 1311691,1311693-1311694 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg ber(s): 1311688- 0.003 0.003 0.017	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017 0.43	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.007	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg aber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate	N.D. mg/kg Sample num N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate	N.D. mg/kg Sample num N.D. N.D.	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.0017 0.067 0.067	0.006 mg/kg 1311691,1311693-1311694 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017	1
Xylene (Total) Batch number: 20132SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg sber(s): 1311688- 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067 0.033 0.017	0.006 mg/kg 1311691,1311693-1311694 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.037 0.17 0.17 0.17 0.17 0.17 0.037	1

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	Result	MDL**	LOQ
•	mg/kg	mg/kg	mg/kg
2-Chloronaphthalene	N.D.	0.007	0.033
2-Chlorophenol	N.D.	0.017	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	Result mg/kg	MDL**	LOQ mg/kg
2,4,6-Trichlorophenol	N.D.	0.027	0.057
B	ug/kg	ug/kg	ug/kg
Batch number: 20136SLB026 1,4-Dioxane	N.D.	s): 1311688,1 0.7	311690-1311691,1311693-1311694
	mg/kg	mg/kg	mg/kg
Batch number: 201320018A	•		311690-1311691,1311693-1311694
2,4-D	N.D.	0.012	0.036
2,4,5-T	N.D.	0.00082	0.0017
2,4,5-TP	N.D.	0.00075	0.0017
Batch number: 201320002A	•	s): 1311691,1	311693-1311694
PCB-1016	N.D.	0.0036	0.017
PCB-1221	N.D.	0.0046	0.017
PCB-1232	N.D.	0.0080	0.017
PCB-1242	N.D.	0.0033	0.017
PCB-1248	N.D.	0.0033	0.017
PCB-1254 PCB-1260	N.D. N.D.	0.0033 0.0049	0.017 0.017
Total PCBs	N.D. N.D.	0.0049	0.017
Total F CDS	N.D.	0.0033	0.017
Batch number: 201330012A	Sample number(
PCB-1016	N.D.	0.0036	0.017
PCB-1221	N.D.	0.0046	0.017
PCB-1232	N.D.	0.0080	0.017
PCB-1242 PCB-1248	N.D. N.D.	0.0033 0.0033	0.017 0.017
PCB-1246 PCB-1254	N.D. N.D.	0.0033	0.017
PCB-1254 PCB-1260	N.D. N.D.	0.0033	0.017
Total PCBs	N.D.	0.0049	0.017
Batch number: 201320001A			311690-1311691,1311693-1311694
Aldrin	N.D.	0.00017	0.00083
Alpha BHC Beta BHC	N.D. N.D.	0.00017	0.00083
Gamma BHC - Lindane	N.D. N.D.	0.00044 0.00021	0.0015 0.00083
Alpha Chlordane	N.D.	0.00021	0.00083
4,4'-Ddd	N.D.	0.00017	0.0020
4,4'-Dde	N.D.	0.00033	0.0020
4,4'-Ddt	N.D.	0.00079	0.0020
Delta BHC	N.D.	0.00045	0.0015
Dieldrin	N.D.	0.00033	0.0020
Endosulfan I	N.D.	0.00022	0.00083
Endosulfan II	N.D.	0.0011	0.0020
Endosulfan Sulfate	N.D.	0.00033	0.0020
Endrin	N.D.	0.00068	0.0020

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Heptachlor	Analysis Name	Result	MDL**	LOQ
Heptachlor N.D. 0.00031 0.00083	•	ma/ka	ma/ka	ma/ka
Batch number: 20134016 Sample number(s): 1311688,1311690-1311691,1311693-1311694 6:2-Fluorotelomersulfonic acid	Heptachlor			• •
6:2-Fluorotelomersulfonic acid 8:2-Fluorotelomersulfonic acid N.D. 0.60 3.0 NEtFOSAA N.D. 0.20 2.0 NM6FOSAA N.D. 0.20 2.0 Perfluorobutanesulfonic acid N.D. 0.40 2.0 Perfluorobutanoic acid N.D. 0.80 2.0 Perfluorobutanoic acid N.D. 0.80 2.0 Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanoic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluorononanoic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoroteloctanoic acid N.D. 0.20 0.60 Perfluorotelocanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.50 0.0 Perfluorotelomersulfonic acid N.D. 0.50 0.0 Perfluorotelomersulfonic acid N.D. 0.50 0.0 Perfluorodecanoic acid N.D. 0.50 0.0 Perfluorotelocanoic acid N.D. 0.50 0.0 Perfluorodecanoic acid N.D. 0.50 0.0 Perfluor		ng/g	ng/g	ng/g
8:2-Fluorotelomersulfonic acid N.D. 0.60 3.0 NEIFOSAA N.D. 0.20 2.0 NMeFOSAA N.D. 0.20 2.0 Perfluorobutanoic acid N.D. 0.40 2.0 Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorobexanesulfonadic N.D. 0.20 0.60 Perfluorobexanesulfonic acid N.D. 0.20 0.60 Perfluorobexanesulfonic acid N.D. 0.20 0.60 Perfluorobctanesulfonic acid N.D. 0.20 0.60 Perfluorobctanesulfonic acid N.D. 0.20 0.60	Batch number: 20134016	Sample num	ber(s): 1311688,	1311690-1311691,1311693-1311694
NEFOSAA N.D. 0.20 2.0	6:2-Fluorotelomersulfonic acid	N.D.	0.60	2.0
NMeFOSAA	8:2-Fluorotelomersulfonic acid	N.D.	0.60	3.0
Perfluorobutanesulfonic acid N.D. 0.40 2.0 Perfluorobutanoic acid N.D. 0.80 2.0 Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluorodeptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluoronomanoic acid N.D. 0.20 0.60 Perfluoronoctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluorotetanesulfonic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetoresulfonic acid N.D. 0.20	NEtFOSAA	N.D.	0.20	2.0
Perfluorobutanoic acid N.D. 0.80 2.0 Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorododecanoic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluoroncanoic acid N.D. 0.20 0.60 Perfluoroncanic acid N.D. 0.20 0.60 Perfluorocatanesulfonamide N.D. 0.20 0.60 Perfluorocatanesulfonic acid N.D. 0.20 0.60 Perfluorocatanesulfonic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetanesulfonic acid N.D. 0.20 0.60 Perfluorotetanesulfonic acid N.D. 0.20 0.60	NMeFOSAA	N.D.	0.20	2.0
Perfluorodecanesulfonic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluorodeptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluoronananic acid N.D. 0.20 0.60 Perfluoroctanesulfonamide N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotedocanoic acid N.D. 0.20 0.60 Perfluorotelmersulfonic acid N.D. 0.20 0.60 Perfluorotelmersulfonic acid N.D. 0.50 2	Perfluorobutanesulfonic acid	N.D.	0.40	2.0
Perfluorodecanoic acid N.D. 0.20 0.60 Perfluorododecanoic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluorohexanosulfonic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluoronamide N.D. 0.20 0.60 Perfluorocatanesulfonic acid N.D. 0.20 0.60 Perfluorocatanesulfonic acid N.D. 0.20 0.60 Perfluorocatanesulfonic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotedcanoic acid N.D. 0.20 0.60 Perfluorotedcanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.50 3.0	Perfluorobutanoic acid	N.D.	0.80	2.0
Perfluorododecanoic acid N.D. 0.20 0.60 Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanoic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluoronexanoic acid N.D. 0.20 0.60 Perfluoroctanesulfonamide N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotitradecanoic acid N.D. 0.20 0.60 Perfluorotitradecanoic acid N.D. 0.20 0.60 Perfluorotitradecanoic acid N.D. 0.20 0.60 Perfluoroteranesulfonic acid N.D. 0.20 0.60 Perfluorotemersulfonic acid N.D. 0.20 0.60 8:2-Fluorotelomersulfonic acid N.D. 0.50 3	Perfluorodecanesulfonic acid	N.D.	0.20	0.60
Perfluoroheptanesulfonic acid N.D. 0.20 0.60 Perfluoroheptanoic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluorooctanesulfonamide N.D. 0.20 0.60 Perfluorooctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotedecanoic acid N.D. 0.20 0.60 Perfluorotedemersulfonic acid N.D. 0.20 0.60 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.50 2.0	Perfluorodecanoic acid	N.D.	0.20	0.60
Perfluoroheptanoic acid N.D. 0.20 0.60 Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluoronoctanic acid N.D. 0.20 0.60 Perfluorooctanesulfonic acid N.D. 0.20 0.60 Perfluorooctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotetodecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.20 0.60 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEFOSAA N.D. 0.50 3.0	Perfluorododecanoic acid	N.D.	0.20	0.60
Perfluorohexanesulfonic acid N.D. 0.20 0.60 Perfluorohexanoic acid N.D. 0.20 0.60 Perfluoronoctanesulfonamide N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.20 0.60 8:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 0.50 3.0 NMEFOSAA N.D. 0.50 2.0	Perfluoroheptanesulfonic acid	N.D.	0.20	0.60
Perfluorohexanoic acid N.D. 0.20 0.60 Perfluorononanoic acid N.D. 0.20 0.60 Perfluoroctanesulfonamide N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 5.0 8atch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 0.50 6:2-Fluorotelomersulfonic acid N.D. 0.50 3.0 NETPOSAA N.D.	Perfluoroheptanoic acid	N.D.	0.20	0.60
Perfluorononanoic acid N.D. 0.20 0.60 Perfluoroctanesulfonamide N.D. 0.20 0.60 Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorottridecanoic acid N.D. 0.20 0.60 Perfluorotndecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 0.20 0.60 8ample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 1.0 3.0 N.D. 1.0 3.0 NETFOSAA N.D. 0.50 2.0 2.0 Perfluorobutanesulfonic acid	•	N.D.	0.20	0.60
Perfluorocotanesulfonic acid N.D. 0.20 0.60 Perfluorocotanesulfonic acid N.D. 0.20 0.60 Perfluorocotanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorodecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEFOSAA N.D. 0.50 3.0 NMEFOSAA N.D. 0.50 2.0 Perfluorobutanosic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodec	Perfluorohexanoic acid	N.D.	0.20	0.60
Perfluoroctanesulfonic acid N.D. 0.20 0.60 Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotteradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 2.0 5.0 NETFOSAA N.D. 0.50 3.0 NMEFOSAA N.D. 0.50 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesul	Perfluorononanoic acid	N.D.	0.20	0.60
Perfluoroctanoic acid N.D. 0.20 0.60 Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorottriadecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 Perfluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NETFOSAA N.D. 0.50 3.0 NMEFOSAA N.D. 0.50 3.0 NMEFOSAA N.D. 0.50 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid	Perfluorooctanesulfonamide	N.D.	0.20	0.60
Perfluoropentanoic acid N.D. 0.20 0.60 Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 ng/l ng/l ng/l ng/l Batch number: 20131006 Sample number(s): 13111684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 N.D. 3.0 NEtFOSAA N.D. 0.50 3.0 N.D. 0.50 3.0 NMFOSAA N.D. 0.60 2.0	Perfluorooctanesulfonic acid	N.D.	0.20	0.60
Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 ng/l ng/l ng/l Batch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 0.50 3.0 NMFOSAA N.D. 0.50 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid	Perfluorooctanoic acid	N.D.	0.20	0.60
Perfluorotetradecanoic acid N.D. 0.20 0.60 Perfluorotridecanoic acid N.D. 0.20 0.60 Perfluoroundecanoic acid N.D. 0.20 0.60 ng/l ng/l ng/l Batch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 0.50 3.0 NMFOSAA N.D. 0.50 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid	Perfluoropentanoic acid	N.D.	0.20	0.60
Perfluoroundecanoic acid N.D. 0.20 0.60 ng/l ng/l ng/l Batch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D.	·	N.D.	0.20	0.60
ng/l ng/l ng/l Batch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorotridecanoic acid	N.D.		0.60
Batch number: 20131006 Sample number(s): 1311684 6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluoroundecanoic acid	N.D.	0.20	0.60
6:2-Fluorotelomersulfonic acid N.D. 2.0 5.0 8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorodedecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0		ng/l	ng/l	ng/l
8:2-Fluorotelomersulfonic acid N.D. 1.0 3.0 NEtFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorohexanosulfonic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Batch number: 20131006	Sample num	ber(s): 1311684	
NEtFOSAA N.D. 0.50 3.0 NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 2.0 5.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
NMeFOSAA N.D. 0.60 2.0 Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 2.0 5.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
Perfluorobutanesulfonic acid N.D. 0.50 2.0 Perfluorobutanoic acid N.D. 2.0 5.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	NEtFOSAA	N.D.	0.50	3.0
Perfluorobutanoic acid N.D. 2.0 5.0 Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	NMeFOSAA	N.D.	0.60	2.0
Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorododecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid N.D. 0.50 2.0 Perfluorododecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorododecanoic acid N.D. 0.50 2.0 Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluoroheptanesulfonic acid N.D. 0.50 2.0 Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid N.D. 0.50 2.0 Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonic acid N.D. 0.50 2.0 Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluorohexanoic acid N.D. 0.50 2.0 Perfluorononanoic acid N.D. 0.50 2.0 Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorononanoic acidN.D.0.502.0PerfluorooctanesulfonamideN.D.0.502.0Perfluorooctanesulfonic acidN.D.0.502.0	Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorooctanesulfonamide N.D. 0.50 2.0 Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonic acid N.D. 0.50 2.0	Perfluorononanoic acid	N.D.	0.50	2.0
	Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluorooctanoic acid N.D. 0.50 2.0	Perfluorooctanesulfonic acid	N.D.	0.50	2.0
	Perfluorooctanoic acid	N.D.	0.50	2.0

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	Result ng/l	MDL** ng/l	LOQ ng/l
Perfluoropentanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid	N.D.	0.50	2.0
	mg/kg	mg/kg	mg/kg
Batch number: 201311063801			311690-1311691,1311693-1311694
Mercury	0.0266 J	0.0152	0.0667
Batch number: 201311404902A	Sample number(s): 1311688.1	311690-1311691,1311693-1311694
Arsenic	N.D.	0.134	0.400
Barium	0.193 J	0.183	0.400
Beryllium	N.D.	0.0238	0.0600
Cadmium	N.D.	0.0504	0.100
Chromium	N.D.	0.154	0.400
Copper	N.D.	0.176	0.400
Lead	N.D.	0.0504	0.200
Manganese	N.D.	0.214	0.400
Nickel	N.D.	0.163	0.400
Selenium	N.D.	0.130	0.400
Silver	N.D.	0.0406	0.100
Zinc	N.D.	0.536	2.00
Batch number: 201321404901A	Sample number(,	
Lead	N.D.	0.0504	0.200
Batch number: 201331063801	Sample number(s): 1312695	
Mercury	N.D.	0.0152	0.0667
Batch number: 201341063801	Sample number(s): 1312694,1	312696
Mercury	N.D.	0.0152	0.0667
•	//	//	
	mg/l	mg/l	mg/l
Batch number: 201341404502	Sample number(,	
Arsenic	N.D.	0.0160	0.0300
Lead	N.D.	0.0071	0.0150
Batch number: 201550571305	Sample number(s): 1311686-1	311687,1311692
Mercury	N.D.	0.000079	0.00020
	mg/kg	mg/kg	mg/kg
Batch number: 20134102201A	Sample number(s): 1311690-1	311691,1311693-1311694
Total Cyanide (solid)	N.D.	0.18	0.50
• • • •	0	-): 4044000	
Batch number: 20135102201A	Sample number(N.D.	,	0.50
Total Cyanide (solid)	N.D.	0.18	0.50
Batch number: 20132042501A	Sample number(s): 1311688,1	311690-1311691,1311693-1311694
Hexavalent Chromium (SOLIDS)	N.D.	0.14	0.42

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Method Blank (continued)

Analysis Name Result MDL** LOQ mg/kg mg/kg mg/kg

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201321AA	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694				
Acetone	0.150	0.145	0.150	0.141	96	94	41-150	2	30
Acrolein	0.150	0.123	0.150	0.121	82	81	57-131	1	30
Acrylonitrile	0.100	0.0896	0.100	0.0846	90	85	66-120	6	30
Benzene	0.0200	0.0175	0.0200	0.0180	87	90	80-120	3	30
Bromodichloromethane	0.0200	0.0175	0.0200	0.0176	87	88	70-120	1	30
Bromoform	0.0200	0.0170	0.0200	0.0169	85	85	51-127	0	30
Bromomethane	0.0200	0.0154	0.0200	0.0161	77	80	45-140	4	30
2-Butanone	0.150	0.125	0.150	0.123	83	82	57-128	2	30
t-Butyl alcohol	0.200	0.177	0.200	0.167	88	84	74-121	6	30
n-Butylbenzene	0.0200	0.0171	0.0200	0.0173	86	87	71-121	1	30
sec-Butylbenzene	0.0200	0.0178	0.0200	0.0183	89	92	72-120	3	30
tert-Butylbenzene	0.0200	0.0169	0.0200	0.0172	84	86	68-120	2	30
Carbon Disulfide	0.0200	0.0181	0.0200	0.0186	90	93	64-133	3	30
Carbon Tetrachloride	0.0200	0.0177	0.0200	0.0182	88	91	64-134	3	30
Chlorobenzene	0.0200	0.0177	0.0200	0.0181	88	90	80-120	2	30
Chloroethane	0.0200	0.0150	0.0200	0.0153	75	77	43-135	2	30
Chloroform	0.0200	0.0176	0.0200	0.0180	88	90	80-120	2	30
Chloromethane	0.0200	0.0154	0.0200	0.0160	77	80	56-120	4	30
1,2-Dibromo-3-chloropropane	0.0200	0.0178	0.0200	0.0166	89	83	48-134	7	30
Dibromochloromethane	0.0200	0.0185	0.0200	0.0185	93	92	69-125	0	30
1,2-Dibromoethane	0.0200	0.0178	0.0200	0.0179	89	90	76-120	1	30
1,2-Dichlorobenzene	0.0200	0.0171	0.0200	0.0174	86	87	76-120	2	30
1,3-Dichlorobenzene	0.0200	0.0172	0.0200	0.0175	86	88	75-120	2	30
1,4-Dichlorobenzene	0.0200	0.0173	0.0200	0.0176	87	88	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0157	0.0200	0.0164	79	82	21-127	4	30
1,1-Dichloroethane	0.0200	0.0176	0.0200	0.0176	88	88	79-120	0	30
1,2-Dichloroethane	0.0200	0.0169	0.0200	0.0170	85	85	71-128	1	30
1,1-Dichloroethene	0.0200	0.0185	0.0200	0.0189	93	95	73-129	2	30
cis-1,2-Dichloroethene	0.0200	0.0190	0.0200	0.0195	95	97	80-125	3	30
trans-1,2-Dichloroethene	0.0200	0.0182	0.0200	0.0184	91	92	80-126	1	30
1,2-Dichloroethene (Total)	0.0400	0.0371	0.0400	0.0379	93	95	80-126	2	30
1,2-Dichloropropane	0.0200	0.0176	0.0200	0.0180	88	90	80-120	2	30
cis-1,3-Dichloropropene	0.0200	0.0173	0.0200	0.0176	86	88	66-120	2	30
trans-1,3-Dichloropropene	0.0200	0.0170	0.0200	0.0172	85	86	68-122	1	30
1,4-Dioxane	0.500	0.507	0.500	0.468	101	94	62-131	8	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Ethylbenzene	0.0200	0.0177	0.0200	0.0180	89	90	78-120	1	30
Methyl Acetate	0.0200	0.0171	0.0200	0.0163	86	81	67-128	5	30
Methyl Tertiary Butyl Ether	0.0200	0.0172	0.0200	0.0173	86	87	72-120	1	30
Methylene Chloride	0.0200	0.0177	0.0200	0.0179	88	89	76-122	1	30
n-Propylbenzene	0.0200	0.0180	0.0200	0.0184	90	92	72-123	2	30
Styrene	0.0200	0.0170	0.0200	0.0173	85	87	76-120	2	30
1,1,2,2-Tetrachloroethane	0.0200	0.0179	0.0200	0.0175	90	88	69-125	2	30
Tetrachloroethene	0.0200	0.0178	0.0200	0.0181	89	90	73-120	1	30
Toluene	0.0200	0.0172	0.0200	0.0175	86	88	80-120	2	30
1,1,1-Trichloroethane	0.0200	0.0170	0.0200	0.0176	85	88	69-123	4	30
1,1,2-Trichloroethane	0.0200	0.0189	0.0200	0.0189	95	95	80-120	0	30
Trichloroethene	0.0200	0.0176	0.0200	0.0180	88	90	80-120	2	30
Trichlorofluoromethane	0.0200	0.0169	0.0200	0.0170	85	85	55-134	0	30
1,2,4-Trimethylbenzene	0.0200	0.0172	0.0200	0.0176	86	88	73-120	2	30
1,3,5-Trimethylbenzene	0.0200	0.0175	0.0200	0.0179	87	89	73-120	2	30
Vinyl Chloride	0.0200	0.0159	0.0200	0.0162	79	81	52-120	2	30
Xylene (Total)	0.0600	0.0527	0.0600	0.0541	88	90	75-120	3	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 5201333AA	Sample number	(s): 1311685							
Acetone	0.150	0.240	0.150	0.261	160*	174*	54-157	8	30
Acrolein	0.150	0.148	0.150	0.144	99	96	47-136	3	30
Acrylonitrile	0.100	0.0974	0.100	0.0957	97	96	60-129	2	30
Benzene	0.0200	0.0207	0.0200	0.0194	103	97	80-120	6	30
Bromodichloromethane	0.0200	0.0193	0.0200	0.0183	96	92	71-120	5	30
Bromoform	0.0200	0.0185	0.0200	0.0179	92	90	51-120	3	30
Bromomethane	0.0200	0.0172	0.0200	0.0184	86	92	53-128	7	30
2-Butanone	0.150	0.163	0.150	0.167	109	112	59-135	3	30
t-Butyl alcohol	0.200	0.224	0.200	0.216	112	108	60-130	4	30
n-Butylbenzene	0.0200	0.0215	0.0200	0.0204	108	102	76-120	6	30
sec-Butylbenzene	0.0200	0.0215	0.0200	0.0202	107	101	77-120	6	30
tert-Butylbenzene	0.0200	0.0228	0.0200	0.0216	114	108	78-120	6	30
Carbon Disulfide	0.0200	0.0191	0.0200	0.0177	96	88	65-128	8	30
Carbon Tetrachloride	0.0200	0.0199	0.0200	0.0184	100	92	64-134	8	30
Chlorobenzene	0.0200	0.0220	0.0200	0.0209	110	104	80-120	5	30
Chloroethane	0.0200	0.0204	0.0200	0.0186	102	93	55-123	9	30
Chloroform	0.0200	0.0207	0.0200	0.0196	104	98	80-120	6	30
Chloromethane	0.0200	0.0200	0.0200	0.0184	100	92	56-121	8	30
1,2-Dibromo-3-chloropropane	0.0200	0.0195	0.0200	0.0191	98	96	47-131	2	30
Dibromochloromethane	0.0200	0.0199	0.0200	0.0190	99	95	71-120	4	30
1,2-Dibromoethane	0.0200	0.0212	0.0200	0.0205	106	102	77-120	4	30
1,2-Dichlorobenzene	0.0200	0.0217	0.0200	0.0211	109	105	80-120	3	30
1,3-Dichlorobenzene	0.0200	0.0215	0.0200	0.0206	108	103	80-120	4	30
1,4-Dichlorobenzene	0.0200	0.0219	0.0200	0.0210	110	105	80-120	4	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Dichlorodifluoromethane	0.0200	0.0176	0.0200	0.0161	88	80	41-127	9	30
1,1-Dichloroethane	0.0200	0.0206	0.0200	0.0192	103	96	80-120	7	30
1,2-Dichloroethane	0.0200	0.0206	0.0200	0.0196	103	98	73-124	5	30
1,1-Dichloroethene	0.0200	0.0207	0.0200	0.0193	104	96	80-131	7	30
cis-1,2-Dichloroethene	0.0200	0.0219	0.0200	0.0206	110	103	80-125	6	30
trans-1,2-Dichloroethene	0.0200	0.0212	0.0200	0.0197	106	98	80-126	7	30
1,2-Dichloroethene (Total)	0.0400	0.0431	0.0400	0.0403	108	101	80-125	7	30
1,2-Dichloropropane	0.0200	0.0206	0.0200	0.0196	103	98	80-120	5	30
cis-1,3-Dichloropropene	0.0200	0.0187	0.0200	0.0181	94	91	75-120	3	30
trans-1,3-Dichloropropene	0.0200	0.0190	0.0200	0.0183	95	91	67-120	4	30
1,4-Dioxane	0.500	0.662	0.500	0.643	132	129	63-146	3	30
Ethylbenzene	0.0200	0.0218	0.0200	0.0205	109	102	80-120	6	30
Methyl Acetate	0.0200	0.0204	0.0200	0.0199	102	100	54-136	2	30
Methyl Tertiary Butyl Ether	0.0200	0.0195	0.0200	0.0189	97	95	69-122	3	30
Methylene Chloride	0.0200	0.0211	0.0200	0.0203	106	101	80-120	4	30
n-Propylbenzene	0.0200	0.0221	0.0200	0.0210	111	105	79-121	5	30
Styrene	0.0200	0.0216	0.0200	0.0204	108	102	80-120	6	30
1,1,2,2-Tetrachloroethane	0.0200	0.0212	0.0200	0.0214	106	107	72-120	1	30
Tetrachloroethene	0.0200	0.0221	0.0200	0.0207	111	103	80-120	7	30
Toluene	0.0200	0.0215	0.0200	0.0202	107	101	80-120	6	30
1,1,1-Trichloroethane	0.0200	0.0200	0.0200	0.0185	100	93	67-126	8	30
1,1,2-Trichloroethane	0.0200	0.0219	0.0200	0.0213	109	107	80-120	3	30
Trichloroethene	0.0200	0.0210	0.0200	0.0194	105	97	80-120	8	30
Trichlorofluoromethane	0.0200	0.0212	0.0200	0.0196	106	98	55-135	8	30
1,2,4-Trimethylbenzene	0.0200	0.0213	0.0200	0.0201	107	101	75-120	6	30
1,3,5-Trimethylbenzene	0.0200	0.0213	0.0200	0.0202	107	101	75-120	5	30
Vinyl Chloride	0.0200	0.0212	0.0200	0.0194	106	97	56-120	9	30
Xylene (Total)	0.0600	0.0659	0.0600	0.0622	110	104	80-120	6	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20132SLA026	Sample numbe	r(s): 1311688-1	311691,1311693-	1311694					
Acenaphthene	1.67	1.41			84		61-112		
Acenaphthylene	1.67	1.43			86		60-124		
Acetophenone	1.67	1.20			72		48-109		
Anthracene	1.67	1.46			87		67-120		
Atrazine	1.67	1.55			93		70-129		
Benzaldehyde	1.67	0.984			59		20-101		
Benzidine	8.33	4.64			56		18-105		
Benzo(a)anthracene	1.67	1.51			90		68-120		
Benzo(a)pyrene	1.67	1.61			97		68-119		
Benzo(b)fluoranthene	1.67	1.67			100		67-125		
Benzo(g,h,i)perylene	1.67	1.63			98		68-125		
Benzo(k)fluoranthene	1.67	1.50			90		66-122		
1,1'-Biphenyl	1.67	1.41			84		59-106		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Butylbenzylphthalate	1.67	1.63			98		69-125		
Di-n-butylphthalate	1.67	1.51			91		70-126		
Caprolactam	1.67	1.35			81		62-119		
Carbazole	1.67	1.53			92		69-125		
bis(2-Chloroethyl)ether	1.67	1.28			77		44-104		
bis(2-Chloroisopropyl)ether	1.67	0.921			55		40-112		
2-Chloronaphthalene	1.67	1.77			106		48-123		
2-Chlorophenol	1.67	1.31			78		51-109		
Chrysene	1.67	1.37			82		66-111		
Dibenz(a,h)anthracene	1.67	1.68			101		69-135		
Dibenzofuran	1.67	1.35			81		62-113		
1,2-Dichlorobenzene	1.67	1.21			73		38-106		
1,3-Dichlorobenzene	1.67	1.18			71		36-103		
1,4-Dichlorobenzene	1.67	1.19			71		25-127		
3,3'-Dichlorobenzidine	1.67	0.950			57		18-114		
2,4-Dichlorophenol	1.67	1.24			74		57-115		
Diethylphthalate	1.67	1.38			83		68-116		
2,4-Dimethylphenol	1.67	1.08			65		47-95		
Dimethylphthalate	1.67	1.36			82		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.46			88		56-135		
2,4-Dinitrophenol	3.33	2.47			74		34-136		
2,4-Dinitrotoluene	1.67	1.43			86		61-121		
2,6-Dinitrotoluene	1.67	1.49			90		66-122		
1,2-Diphenylhydrazine	1.67	1.67			100		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.66			100		65-132		
Fluoranthene	1.67	1.41			84		65-114		
Fluorene	1.67	1.39			83		62-110		
Hexachlorobenzene	1.67	1.43			86		62-124		
Hexachlorobutadiene	1.67	1.12			67		39-120		
Hexachlorocyclopentadiene	3.33	1.46			44		13-115		
Hexachloroethane	1.67	1.24			75		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.62			97		64-130		
Isophorone	1.67	1.27			76		51-113		
2-Methylnaphthalene	1.67	1.30			78		52-104		
2-Methylphenol	1.67	1.28			77		52-116		
4-Methylphenol	1.67	1.18			71		52-121		
Naphthalene	1.67	1.25			75		49-104		
2-Nitroaniline	1.67	1.59			96		65-132		
Nitrobenzene	1.67	1.26			76		41-118		
N-Nitrosodimethylamine	1.67	1.27			76		31-107		
N-Nitroso-di-n-propylamine	1.67	1.23			74		49-108		
N-Nitrosodiphenylamine	1.67	1.54			92		64-127		
Di-n-octylphthalate	1.67	1.77			106		65-139		
Pentachlorophenol	1.67	1.06			64		40-131		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Phenanthrene	1.67	1.45			87		67-116		
Phenol	1.67	1.23			74		57-107		
Pyrene	1.67	1.42			85		67-109		
Pyridine	1.67	0.895			54		10-117		
1,2,4-Trichlorobenzene	1.67	1.21			73		46-109		
2,4,5-Trichlorophenol	1.67	1.35			81		62-121		
2,4,6-Trichlorophenol	1.67	1.40			84		60-120		
	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 20136SLB026	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694				
1,4-Dioxane	33.33	12.52			38		21-79		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201320018A	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694				
2,4-D	0.0834	0.106			128		57-142		
2,4,5-T	0.00833	0.0125			150*		59-137		
2,4,5-TP	0.00833	0.0113			135*		70-130		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201320002A	Sample number	(s): 1311691,1	311693-1311694						
PCB-1016	0.167	0.163			97		76-121		
PCB-1260	0.167	0.176			105		79-130		
Batch number: 201330012A	Sample number	(s): 1311688,1	311690						
PCB-1016	0.167	0.168			101		76-121		
PCB-1260	0.167	0.173			104		79-130		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201320001A	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694				
Aldrin	0.00333	0.00307			92		60-117		
Alpha BHC	0.00338	0.00302			89		65-124		
Beta BHC	0.00333	0.00290			87		68-129		
Gamma BHC - Lindane	0.00333	0.00296			89		68-133		
Alpha Chlordane	0.00333	0.00332			100		73-131		
4,4'-Ddd	0.00671	0.00656			98		69-138		
4,4'-Dde	0.00667	0.00723			109		68-146		
4,4'-Ddt	0.00671	0.00726			108		67-135		
Delta BHC	0.00333	0.00308			92		45-151		
Dieldrin	0.00667	0.00655			98		63-126		
Endosulfan I	0.00333	0.00304			91		62-119		
Endosulfan II	0.00667	0.00634			95		65-126		
Endosulfan Sulfate	0.00667	0.00686			103		71-132		
Endrin	0.00667	0.00522			78*		86-135		
Heptachlor	0.00333	0.00315			95		66-118		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

LCS/LCSD	(continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ng/g	ng/g	ng/g	ng/g					
Batch number: 20134016	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694				
6:2-Fluorotelomersulfonic acid	23.7	20.19			85		51-144		
8:2-Fluorotelomersulfonic acid	23.94	21.13			88		54-152		
NEtFOSAA	25	24.25			97		51-145		
NMeFOSAA	25	24.57			98		55-152		
Perfluorobutanesulfonic acid	22.12	17.6			80		63-139		
Perfluorobutanoic acid	25	18.05			72		56-188		
Perfluorodecanesulfonic acid	24.08	19.09			79		60-142		
Perfluorodecanoic acid	25	20.7			83		65-144		
Perfluorododecanoic acid	25	21.49			86		62-150		
Perfluoroheptanesulfonic acid	23.78	19.48			82		67-139		
Perfluoroheptanoic acid	25	20.57			82		65-153		
Perfluorohexanesulfonic acid	23.64	18.73			79		59-139		
Perfluorohexanoic acid	25	20.88			84		64-149		
Perfluorononanoic acid	25	20.94			84		64-151		
Perfluorooctanesulfonamide	25	22.73			91		61-133		
Perfluorooctanesulfonic acid	23.9	17.54			73		54-132		
Perfluorooctanoic acid	25	21.07			84		65-147		
Perfluoropentanoic acid	25	19.45			78		71-139		
Perfluorotetradecanoic acid	25	20.44			82		66-147		
Perfluorotridecanoic acid	25	21.99			88		63-152		
Perfluoroundecanoic acid	25	22.47			90		65-146		
	ng/l	ng/l	ng/l	ng/l					
Batch number: 20131006	Sample number	(s): 1311684							
6:2-Fluorotelomersulfonic acid	24.28	25.18	24.28	24.87	104	102	56-140	1	30
8:2-Fluorotelomersulfonic acid	24.52	25.52	24.52	25.63	104	105	58-143	0	30
NEtFOSAA	25.6	27.65	25.6	26.71	108	104	53-140	3	30
NMeFOSAA	25.6	28.63	25.6	30.97	112	121	59-141	8	30
Perfluorobutanesulfonic acid	22.64	21.88	22.64	21.92	97	97	67-135	0	30
Perfluorobutanoic acid	25.6	22.78	25.6	23.1	89	90	63-160	1	30
Perfluorodecanesulfonic acid	24.64	22.21	24.64	22.72	90	92	62-135	2	30
Perfluorodecanoic acid	25.6	24.84	25.6	26.08	97	102	66-141	5	30
Perfluorododecanoic acid	25.6	24.33	25.6	25.44	95	99	65-143	4	30
Perfluoroheptanesulfonic acid	24.36	25.01	24.36	24.32	103	100	67-138	3	30
Perfluoroheptanoic acid	25.6	27.92	25.6	26.81	109	105	69-144	4	30
Perfluorohexanesulfonic acid	24.2	24.61	24.2	23.5	102	97	63-132	5	30
Perfluorohexanoic acid	25.6	25.35	25.6	24.05	99	94	69-139	5	30
Perfluorononanoic acid	25.6	27.24	25.6	27.15	106	106	66-144	0	30
Perfluorooctanesulfonamide	25.6	26.51	25.6	25.75	104	101	67-126	3	30
Perfluorooctanesulfonic acid	24.48	21.7	24.48	22.39	89	91	53-129	3	30
Perfluorooctanoic acid	25.6	24.71	25.6	26.45	97	103	67-139	7	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

LCS/LCSD (continued)												
Analysis Name	LCS Spike Added ng/l	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max			
Perfluoropentanoic acid	25.6	25.41	25.6	26.19	99	102	73-135	3	30			
Perfluorotetradecanoic acid	25.6	26.35	25.6	25.55	103	100	69-141	3	30			
Perfluorotridecanoic acid	25.6	26.09	25.6	25.65	102	100	66-146	2	30			
Perfluoroundecanoic acid	25.6	27.13	25.6	26.25	106	103	66-140	3	30			
	mg/kg	mg/kg	mg/kg	mg/kg								
Batch number: 201311063801	•	(s): 1311688,1	311690-1311691,	1311693-131	1694							
Mercury	0.100	0.106			106		80-115					
Batch number: 201311404902A	Sample number	(s): 1311688,1	311690-1311691,	1311693-131	1694							
Arsenic	1.00	1.05			105		80-120					
Barium	5.00	5.62			112		80-120					
Beryllium	0.400	0.393			98		80-120					
Cadmium	0.500	0.531			106		80-120					
Chromium	5.00	5.37			107		86-120					
Copper	5.00	5.65			113		85-120	5-120				
Lead	0.500	0.527			105		80-120					
Manganese	5.00	5.09			102		80-120					
Nickel	5.00	5.57			111		86-120					
Selenium	1.00	0.969			97		85-120					
Silver	5.00	4.92			98		84-120					
Zinc	50	54.01			108		85-120					
Batch number: 201321404901A	Sample number	(s): 1312694-1	312696									
Lead	0.500	0.524			105		80-120					
Batch number: 201331063801	Sample number	(s): 1312695										
Mercury	0.100	0.104			104		80-115					
Batch number: 201341063801	Sample number	(s): 1312694,1	312696									
Mercury	0.100	0.100			100		80-115					
	mg/l	mg/l	mg/l	mg/l								
Batch number: 201341404502	Sample number	(s): 1311686-1	311687,1311692									
Arsenic	0.0600	0.0699			116		80-120					
Lead	0.0300	0.0300			100		80-120					
Batch number: 201550571305 Mercury	Sample number 0.00100	(s): 1311686-1 0.000971	311687,1311692		97		80-110					
	mg/kg	mg/kg	mg/kg	mg/kg								
Batch number: 20134102201A	Sample number	(s): 1311690-1	311691,1311693-	1311694								
Total Cyanide (solid)	10	11.43			114*		90-110					
Potob number: 20425402204 A	Comple access -	(a), 1211COC										
Batch number: 20135102201A	Sample number	` '			06		00 110					
Total Cyanide (solid)	10	9.63			96		90-110					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max		
	mg/kg	mg/kg	mg/kg	mg/kg							
Batch number: 20132042501A	Batch number: 20132042501A Sample number(s): 1311688,1311690-1311691,1311693-1311694										
Hexavalent Chromium (SOLIDS)	5.00	4.83			97		80-120				
	%	%	%	%							
Batch number: 20131820002A	Sample number	(s): 1311688-1	311691,1311693-	1311694							
Moisture	89.5	88.96	,		99		99-101				
Batch number: 20133820004B	Sample number	(s): 1312694-1	312696								
Moisture	89.5	89.33			100		99-101				

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 20132SLA026	Sample numbe	er(s): 1311688-	1311691,13	311693-1311694	4 UNSPK: 1	311690				
Acenaphthene	N.D.	1.67	1.20	1.66	1.26	72	76	61-112	5	30
Acenaphthylene	0.00412	1.67	1.18	1.66	1.25	71	75	60-124	6	30
Acetophenone	N.D.	1.67	1.11	1.66	1.13	67	68	48-109	1	30
Anthracene	0.00767	1.67	1.10	1.66	1.19	66*	71	67-120	8	30
Atrazine	N.D.	1.67	1.06	1.66	1.21	64*	73	70-129	13	30
Benzaldehyde	N.D.	1.67	1.06	1.66	1.07	63	64	20-101	1	30
Benzidine	N.D.	8.33	1.32	8.31	2.04	16*	25	18-105	43*	30
Benzo(a)anthracene	0.0206	1.67	0.997	1.66	1.08	59*	64*	68-120	8	30
Benzo(a)pyrene	0.0121	1.67	0.959	1.66	1.10	57*	65*	68-119	13	30
Benzo(b)fluoranthene	0.0136	1.67	1.04	1.66	1.16	62*	69	67-125	11	30
Benzo(g,h,i)perylene	0.00585	1.67	0.990	1.66	1.12	59*	67*	68-125	12	30
Benzo(k)fluoranthene	0.00702	1.67	0.847	1.66	0.968	50*	58*	66-122	13	30
1,1'-Biphenyl	N.D.	1.67	1.22	1.66	1.25	73	75	59-106	2	30
Butylbenzylphthalate	N.D.	1.67	1.08	1.66	1.16	65*	70	69-125	7	30
Di-n-butylphthalate	N.D.	1.67	1.09	1.66	1.22	65*	73	70-126	11	30
Caprolactam	N.D.	1.67	1.15	1.66	1.23	69	74	62-119	7	30
Carbazole	N.D.	1.67	1.15	1.66	1.22	69	74	69-125	6	30
bis(2-Chloroethyl)ether	N.D.	1.67	1.18	1.66	1.15	71	69	44-104	2	30
bis(2-Chloroisopropyl)ether	N.D.	1.67	0.875	1.66	0.880	53	53	40-112	1	30
2-Chloronaphthalene	N.D.	1.67	1.50	1.66	1.55	90	93	48-123	4	30
2-Chlorophenol	N.D.	1.67	1.20	1.66	1.23	72	74	51-109	3	30
Chrysene	0.0199	1.67	0.890	1.66	0.975	52*	57*	66-111	9	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Dibenz(a,h)anthracene	N.D.	1.67	1.02	1.66	1.17	61*	71	69-135	14	30
Dibenzofuran	N.D.	1.67	1.14	1.66	1.19	68	71	62-113	4	30
1,2-Dichlorobenzene	N.D.	1.67	1.12	1.66	1.12	67	68	38-106	0	30
1,3-Dichlorobenzene	N.D.	1.67	1.08	1.66	1.08	65	65	36-103	0	30
1,4-Dichlorobenzene	N.D.	1.67	1.09	1.66	1.09	65	66	25-127	0	30
3,3'-Dichlorobenzidine	N.D.	1.67	0.850	1.66	1.01	51	61	18-114	17	30
2,4-Dichlorophenol	N.D.	1.67	1.10	1.66	1.14	66	69	57-115	3	30
Diethylphthalate	N.D.	1.67	1.16	1.66	1.21	69	73	68-116	5	30
2,4-Dimethylphenol	N.D.	1.67	0.951	1.66	1.00	57	60	47-95	6	30
Dimethylphthalate	N.D.	1.67	1.17	1.66	1.22	70	73	66-113	4	30
4,6-Dinitro-2-methylphenol	N.D.	1.67	N.D.	1.66	N.D.	0*	0*	56-135	0	30
2,4-Dinitrophenol	N.D.	3.33	N.D.	3.32	N.D.	0*	0*	34-136	0	30
2,4-Dinitrotoluene	N.D.	1.67	0.994	1.66	1.07	60*	64	61-121	7	30
2,6-Dinitrotoluene	N.D.	1.67	1.17	1.66	1.21	70	73	66-122	4	30
1,2-Diphenylhydrazine	N.D.	1.67	1.32	1.66	1.41	79	85	74-117	7	30
bis(2-Ethylhexyl)phthalate	N.D.	1.67	1.10	1.66	1.25	66	75	65-132	12	30
Fluoranthene	0.0420	1.67	1.01	1.66	1.10	58*	63*	65-114	8	30
Fluorene	0.00467	1.67	1.16	1.66	1.21	69	72	62-110	4	30
Hexachlorobenzene	N.D.	1.67	1.11	1.66	1.25	67	75	62-124	12	30
Hexachlorobutadiene	N.D.	1.67	1.05	1.66	1.06	63	64	39-120	1	30
Hexachlorocyclopentadiene	N.D.	3.33	N.D.	3.32	N.D.	0*	0*	13-115	0	30
Hexachloroethane	N.D.	1.67	0.932	1.66	1.04	56	63	30-112	11	30
Indeno(1,2,3-cd)pyrene	0.00600	1.67	0.992	1.66	1.13	59*	68	64-130	13	30
Isophorone	N.D.	1.67	1.15	1.66	1.20	69	72	51-113	4	30
2-Methylnaphthalene	N.D.	1.67	1.15	1.66	1.19	69	72	52-104	3	30
2-Methylphenol	N.D.	1.67	1.16	1.66	1.27	70	77	52-116	9	30
4-Methylphenol	N.D.	1.67	1.07	1.66	1.10	64	66	52-121	2	30
Naphthalene	N.D.	1.67	1.13	1.66	1.16	68	70	49-104	2	30
2-Nitroaniline	N.D.	1.67	1.70	1.66	1.74	102	105	65-132	2	30
Nitrobenzene	N.D.	1.67	1.13	1.66	1.18	68	71	41-118	4	30
N-Nitrosodimethylamine	N.D.	1.67	1.13	1.66	1.12	68	67	31-107	1	30
N-Nitroso-di-n-propylamine	N.D.	1.67	1.14	1.66	1.16	68	70	49-108	2	30
N-Nitrosodiphenylamine	N.D.	1.67	1.24	1.66	1.33	75	80	64-127	7	30
Di-n-octylphthalate	N.D.	1.67	1.10	1.66	1.26	66	76	65-139	14	30
Pentachlorophenol	N.D.	1.67	0.853	1.66	0.927	51	56	40-131	8	30
Phenanthrene	0.0272	1.67	1.13	1.66	1.21	66*	71	67-116	7	30
Phenol	N.D.	1.67	1.11	1.66	1.13	67	68	51-107	1	30
Pyrene	0.0446	1.67	1.03	1.66	1.08	59*	62*	67-109	4	30
Pyridine	N.D.	1.67	0.768	1.66	0.770	46	46	10-117	0	30
1,2,4-Trichlorobenzene	N.D.	1.67	1.09	1.66	1.11	65	67	46-109	2	30
2,4,5-Trichlorophenol	N.D.	1.67	1.14	1.66	1.20	68	72	62-121	6	30
2,4,6-Trichlorophenol	N.D.	1.67	1.22	1.66	1.29	73	77	60-120	5	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ng/g	MS Spike Added ng/g	MS Conc ng/g	MSD Spike Added ng/g	MSD Conc ng/g	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 20134016	Sample number	er(s): 1311688,	1311690-1	311691,1311693	3-1311694 (JNSPK: 131	11688			
6:2-Fluorotelomersulfonic acid	N.D.	23.7	21.44	23.24	21.43	90	92	51-144	0	30
8:2-Fluorotelomersulfonic acid	N.D.	23.94	19.63	23.47	23.89	82	102	54-152	20	30
NEtFOSAA	N.D.	25	23.73	24.51	24.6	95	100	51-145	4	30
NMeFOSAA	N.D.	25	24.25	24.51	27.96	97	114	55-152	14	30
Perfluorobutanesulfonic acid	N.D.	22.12	19.37	21.69	18.54	88	86	63-139	4	30
Perfluorobutanoic acid	N.D.	25	19.58	24.51	19.29	78	79	56-188	2	30
Perfluorodecanesulfonic acid	N.D.	24.08	18.42	23.61	18.7	77	79	60-142	2	30
Perfluorodecanoic acid	N.D.	25	22.04	24.51	22.76	88	93	65-144	3	30
Perfluorododecanoic acid	N.D.	25	22.07	24.51	21.45	88	88	62-150	3	30
Perfluoroheptanesulfonic acid	N.D.	23.78	19.43	23.31	20.27	82	87	67-139	4	30
Perfluoroheptanoic acid	N.D.	25	20.77	24.51	22.08	83	90	65-153	6	30
Perfluorohexanesulfonic acid	N.D.	23.64	19.22	23.18	20.27	81	87	59-139	5	30
Perfluorohexanoic acid	N.D.	25	22.05	24.51	19.91	88	81	64-149	10	30
Perfluorononanoic acid	N.D.	25	22.19	24.51	22	89	90	64-151	1	30
Perfluorooctanesulfonamide	N.D.	25	22.35	24.51	23.68	89	97	61-133	6	30
Perfluorooctanesulfonic acid	N.D.	23.9	17.81	23.43	17.73	75	76	54-132	0	30
Perfluorooctanoic acid	1.41	25	24.54	24.51	24.1	93	93	65-147	2	30
Perfluoropentanoic acid	N.D.	25	20.68	24.51	20.95	83	85	71-139	1	30
Perfluorotetradecanoic acid	N.D.	25	22.25	24.51	21.15	89	86	66-147	5	30
Perfluorotridecanoic acid	N.D.	25	23.19	24.51	22.13	93	90	63-152	5	30
Perfluoroundecanoic acid	N.D.	25	22.65	24.51	22.58	91	92	65-146	0	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201331063801	Sample number	er(s): 1312695	UNSPK: 13	312695						
Mercury	0.0190	0.154	0.201	0.159	0.207	118	119	80-120	3	20
Batch number: 201341063801	Sample number	er(s): 1312694,	1312696 U	NSPK: 1312696						
Mercury	1.72	0.156	0.990	0.154	0.875	-468 (2)	-551 (2)	80-120	12	20
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20134102201A	Sample number	er(s): 1311690-	1311691,1	311693-1311694	4 UNSPK: 1	311691				
Total Cyanide (solid)	0.216	4.72	4.80			97		41-145		
Batch number: 20135102201A	Sample number	er(s): 1311688	UNSPK: 13	311688						
Total Cyanide (solid)	0.365	4.93	4.94			93		41-145		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20132042501A	Sample number	er(s): 1311688,	1311690-1	311691,1311693	3-1311694 (JNSPK: 131	11688			
Hexavalent Chromium (SOLIDS)	0.720	40	31.84			78		75-125		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD	DUP RPD Max
Batch number: 201331063801	Sample number(s): 1312	695 BKG: 1312695		
Mercury	0.0190	0.0149	25* (1)	20
Batch number: 201341063801	Sample number(s): 1312	694,1312696 BKG: 13	12696	
Mercury	1.72	0.638	92* (1)	20
	mg/kg	mg/kg		
Batch number: 20134102201A	Sample number(s): 1311	690-1311691,1311693	-1311694 BKG: 1	311691
Total Cyanide (solid)	0.216	N.D.	200* (1)	20
Batch number: 20135102201A	Sample number(s): 1311	688 BKG: 1311688		
Total Cyanide (solid)	0.365	0.928	87* (1)	20
	mg/kg	mg/kg		
Batch number: 20132042501A	Sample number(s): 1311	688,1311690-1311691	,1311693-131169	94 BKG: 1311688
Hexavalent Chromium (SOLIDS)	0.720	0.591	20 (1)	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PPL/TCL VOCs Batch number: 5201333AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1311685	100	103	99	93
Blank	97	103	100	95
LCS	99	102	102	99
LCSD	99	102	101	98
Limits:	80-120	80-120	80-120	80-120

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: B201321AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1311688	103	105	105	90
1311690	102	105	100	97
1311691	101	102	99	97
1311693	101	100	102	93
1311694	102	109	99	96

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: B201321AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Blank	99	102	99	97
LCS	100	101	99	100
LCSD	101	105	100	99
Limits:	50-141	54-135	52-141	50-131

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20132SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1311688	66	67	61	66	72	84	
1311689	40	40	42	40	46	71	
1311690	72	78	67	74	74	67	
1311691	62	65	57	64	68	74	
1311693	67	71	64	67	72	86	
1311694	74	78	84	77	82	102	
Blank	79	84	79	80	86	104	
LCS	72	77	76	74	80	95	
MS	65	71	63	69	71	68	
MSD	66	72	68	70	72	73	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136SLB026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1311688	229*	98	90
1311690	95	84	78
1311691	117	74	79
1311693	103	41	70
1311694	83	61	74
Blank	93	98	81
LCS	94	84	83
Limits:	21-120	17-112	27-107

Analysis Name: NY Part 375 Pests Soil

Batch number: 201320001A

2010111101110	0 2002000 (
	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1311688	169*	232*	77	136
1311690	63	58	64	66
1311691	617*	90	67	105
1311693	113	109	92	145

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Soil

Batch number: 201320001A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1311694	110	106	176*	136
Blank	62	97	73	111
LCS	72	105	81	117
Limits:	19-136	46-152	19-136	46-152

Analysis Name: 7 PCBs + Total Soil

Batch number: 201320002A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1311691	61	55	39*	52
1311693	59	68	40*	59
1311694	65	66	70	69
Blank	92	102	99	111
LCS	88	105	96	105
Limits:	53-140	45-143	53-140	45-143

Analysis Name: 2,4,5-T, 2,4-D, 2,4,5-TP 8151A

Batch number: 201320018A

	2,4-DCAA-D1	2,4-DCAA-D2	
1311688	101	83	
1311690	107	98	
1311691	125	114	
1311693	119	115	
1311694	119	113	
Blank	116	118	
LCS	117	116	
Limite	27 126	27 126	

Analysis Name: 7 PCBs + Total Soil

Batch number: 201330012A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1311688	77	67	43*	52
1311690	54	38*	54	38*
Blank	87	89	93	97
LCS	87	90	92	94
Limits:	53-140	45-143	53-140	45-143

Analysis Name: NY 21 PFAS Water Batch number: 20131006

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

13C4-PFHpA

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Labeled Isotope Quality Control (continued)

13C3-PFBS

13C5-PFHxA

13C3-PFHxS

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

13C5-PFPeA

Analysis Name: NY 21 PFAS Water

13C4-PFBA

Batch number: 20131006

	100111211		10001120		10001111110	1001111pr1
1311684	93	89	89	88	91	89
Blank	89	89	84	96	92	90
.CS	88	89	90	87	83	84
CSD	98	90	90	95	94	92
_imits:	43-130	38-150	23-175	36-137	35-143	33-140
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
311684	103	92	88	89	88	95
Blank	96	91	90	96	90	97
.CS	93	90	90	92	89	87
.CSD	105	97	93	97	90	98
_imits:	29-182	52-124	52-121	48-130	50-124	37-169
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1311684	106	98	110	95	88	84
Blank	96	99	105	92	83	80
.CS	108	95	109	98	87	85
.CSD	105	96	111	94	87	87
imits:	36-143	44-128	42-149	36-127	21-134	10-134
	me: NY 21 PFAS Soil er: 20134016					
	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
311688	73	65	68	72	81	71
311690	66	67	67	66	72	65
311691	64	63	69	67	80	69
311693	81	73	75	77	81	73
311694	77	72	77	79	83	78
Blank	85	77	76	80	85	81
.CS	81	75	75	79	85	82
ИS	72	68	69	65	73	69
MSD	68	65	68	71	72	69
imits:	40-117	38-118	38-120	36-120	38-124	39-120
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1311688	83	78	72	71	77	95
1311690	68	67	68	69	70	79
1311691	68	66	76	69	66	74

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2098966

Reported: 06/04/2020 19:05

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Soil Batch number: 20134016

Daton numb	61. 20134010					
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1311693	83	81	81	80	79	89
1311694	80	84	81	82	81	83
Blank	84	85	81	81	82	82
LCS	83	81	81	78	84	82
MS	76	64	71	67	68	92
MSD	79	71	69	71	67	85
Limits:	25-154	44-115	45-118	39-123	43-118	26-155
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1311688	26	80	38	81	76	49
1311690	16	74	21	75	68	72
1311691	28	71	34	67	70	70
1311693	56	86	67	81	80	82
1311694	89	91	106	83	80	61
Blank	92	85	103	83	81	79
LCS	105	88	110	92	82	84
MS	47	72	54	73	69	49
MSD	53	73	68	77	71	46
Limits:	10-152	34-124	10-156	28-126	26-125	31-127

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

eurofins

For Eurofins Lancaster Laboratories Environmental use only

Lancaster Laboratories

Acct. # 45206 Group # 2010/10/0 Sample # 13110/84 - 94

COC #606123

Client Informatio	n			_	Γ_	M:	atrix	_					Analy	/sis	Regu	este	ed e			For Lab U	Jse Only	
Client: LANCAN DIC	Acct. #:			,					1!		Pr				d Filtr			88		FSC:		
] =	<u> </u>	السا	$1 \perp$												SCR#:		
Project Name/#: 35 commercial states / 170229024	PWSID #:				Tissue	Ground	Surface					CAO			12		Ž Ž			Pres	servation (Codes Thiosulfate
Cold to	P.O. #:					"	Su		ا _ب			127	[]	1	कृत		DorAnc			N=HNQ ₃		NaOH
Samilar VIKA	Quote #:				17		. □'	1 - 1	je /	1		经验	(-1)	1	132		12	1		S=H ₂ SO ₄		H ₃ PO ₄
Samples Kelo Barkino State where samples were collected: Est Compliance Est Complian	Guote #,			,	mer	0	S		ıtair		1 1	Ι.Ι	لرا		Sur 1		1-1			F=Field F	iltered 0=	
State where samples were collected: For Compliance: Yes Yes	No 🗆			ite	Sediment	Potable	NPDES		of Containers	das	SWC	ENIL	HEESE		METHS CACE. MEX!	106	+				Hellia h	5
Sample Identification	T .	ected	ا ۾	Сотроѕіте	Soil S		- 1	er:	Total # o	1 1	1 ~1	TUP ABSENILY	12	" 1	N I		PAK					
• • •	Date	Time	Grab	3	Soi		Water	Other:	l ig /	721	121	与	Pess	82	TH	7	四					
90FB3_060820	5/8/2					\vdash			1								×		一			
SOT803, 050820		<u> </u>				1						$ \longrightarrow $						\Box				
UH3_2-4	5/8/00	1355	×			\vdash				-		$ \mathbf{x} $					\vdash	\Box	\dashv			
L 48- G-3		14:00	×									Ź							\neg			
1013-46		14:05	×	-						$\overline{\mathbf{x}}$	~	1	×	×	×	×	Z	\Box	\dashv			
LB18_10-12		14:10	×								×							\Box			_	
L318 - 18-20		14:15	×			4,				\sim	×	\Box	×	×	×	×	코	\Box	\dashv			
LB22.2-4		1310	×							~		$\overline{}$	Ŷ	×	×	×	×	\sqcap	7			
LBZZ_4-C		11:50	×				-					ᅥᆽᅥ					1	\Box	\dashv			
LB22-15-19		1315	×						\$	*	\times		×	×	×	×	<	\Box	-			
Turnaround Time (TAT) Requested	(please circl			quished I	by		w.			173	Date		Time		Receive						Date	Time
()	ush	,	1	e	1	111	11	/		\rightarrow	2/2/		15	30	4	un	-2/			ے	820	1530
(Rush TAT is subject to laboratory approval and surcharge.)	,	Relingu	ulshed	by	1					Date		Time	-0	Fleceiv	PAC By	11				Date	Time
Requested TAT in business days:		,	Relinc	wished	1 by	11					Date:		190 Time		Receive	-1	<u> </u>	~_			8Mage 0	1800
GUSKA DANGAN. COM	WIME	LANCAN!	24	12	SI	IL	444	-			8hq				Heceive	ad by			_		Date	Time
E-mail address: TLEUNGO I ANGAN.com	, G/L.			quished	by	74	~~		/		Date		Time		Receive	ed by		_			Date a La	Time
Data Package Options (circle if required)								/								/	1		1		S-S-SH	
Type I (EPA Level 3 Type VI (I	Only)	Relinqu	uished!	by		/				Date	-	Time		Receive	ed by	1	7			Date SIC	Time	
Equivalent/non-CLP)	16477 10-101-10-	//···y/				/	البلا			-					Shuh				/	-	F 891	3058
Type III (Reduced non-CLP) NJ DKQP	TXT	FRRP-13				CEDE s, forma	D Req	uired	d? X	(fes)	No	_	_		Relinquished by Commercial Carrier:							
A STATE OF THE STA	~~.		_				DET:				Хe	37	No	-	UPS FedEx Other							
NYSDEC Category A or B MA MCP	CT R	.CP j					C sample	•			\sim				Temperature upon receipt°C							

Environmental Analysis Request/Chain of Custody

.00		rof	
0.00	OIL	rot	Inc.
4.0	∟u	w	1113
94			

Lancaster Laboratories

Acct. # 45206

Group # 2099100 Sample # 1311(094-94

COC #606122

Client Information	n					Mε	atrix				_		Analy	/sis	Requ	este	d			For Lab U	se Only	
Client:	Acct. #:			1							Pr				d Filtr			es		FSC:		
LANGAN, DPC	-] <u>B</u>	ľ	الــا	1 1'						_						SCR#:		
Project Name/#: 35 Commewor Smiles / 17029024 Project Manager:	PWSID #:			,	Tissue	Ground	Surface	1	1 1					3.8		DOSME				Pres	ervation	Codes
Prolect Manager:	P.O. #;				. F ′	Į į	当	$ \cdot '$	1 7		1 1	'	'	£3		1				H≃HCI	T=	Thiosulfate
GALL WYKA	F10. 84			,		၂	တ	$ \cdot '$	g		1 '	'	'	194	1 1	3				N=HNO ₃		NaOH
Sampler:	Quole #:				∮ ፱ ′			$ \cdot \cdot $	1 2 1		1 1	'		NO.	1 1					S=H ₂ SO ₄		H₃PO₄
REID BAIKIND				,	Sediment	<u></u>	တ	$1 \cdot 1'$	Total # of Containers	1.8	الد. ا	124	. '	3		1			ŀ	F=Field Fil	Remark	
State where samples were collected: For Compliance:					() []	Potable	NPDES	\cap Γ	5	E	3	yeeu	1000	METHLS	84				ŀ	<u>-</u>	Upiliai v	5
New York Yes Ex	No 🗆		4	Composite		Po	R I	(-)'	121	13	122	3.0	500	3	YANIOE	4						
	Coll	ected	1 . '	l g	Soil [2]	1 ,		الوا	# 1	1	ΙЧ		1285	`	12	ا د						
Sample Identification	<u> </u>		Grab	E	₹	1	Water	Other:		12	724	Pesrs	100	186	14	3						
	Date	Time		<u> ŭ </u>	တို		<u> </u>	<u>ιŏ</u> '	121	1		15		13		KH						ļ
LB2Z_18-20	5/3/20	1325	X	\Box'					400	×	×	र	~	×	X	V			\Box			
		(\Box					一			
N. S.		1													\Box	\neg			\dashv			_
		1 '					-				\Box	 	\square			\dashv	\neg		十			
							\rightarrow		\vdash		\vdash	$\vdash \vdash \vdash$	 	\square		\dashv	-	_	十			
	1		\vdash		\vdash	 	-		\vdash		\vdash	\vdash	$\vdash\vdash\vdash$		\vdash	\rightarrow	$\overline{}$	_	\dashv			
	 	$\overline{}$	1-		\vdash	\vdash		<u></u> -	\vdash	\longrightarrow	\vdash	$\vdash\vdash$				\rightarrow		\vdash	-+			
	1		1-	H	$\vdash \vdash$	 	\longrightarrow	\vdash	H	\vdash	\longrightarrow		$\vdash\vdash\vdash$	 	\longrightarrow	\dashv			-			
<u> </u>	 		+	-	igwdap	 	\longrightarrow	-	\vdash	\square	\longrightarrow	igwdap		igsqcut	\longrightarrow		\rightarrow		4			
	├ ──┤		1-	igspace	\longleftarrow	 		igspace	$\boldsymbol{\sqcup}$	igspace	igsquare	\square	igsquare	igsquare	\Box	\dashv			_			
Turnoround-Time (TAT) Degreeted	<u> </u>		Dalina					/			لبيا									_		
Turnaround Time (TAT) Requested Standard		/) !	Heimqu	quished t	OY	n	-0			J'	Date 5/8/2	1	Time /うつ		Receive						Date	Time
(Rush TAT is subject to laboratory approval and surcharge	ush		Reling	quished I	hy	10					/ <i>6/2</i>		7> /			een					820	1539
fright 1741 is souled to laboratory approval and suicillaige	,		7	7	رور ماوسود	1					5-2	- 4	19	av	Receive	30/2	120				Date SUNCYDO	Time
Requested TAT in business days:			10	quished t		V .					Date		Time		Receive	-	الغام	<u>~</u>	_		Date Date	(SOD)
			8		M	la				- 1	SMAY		203		1000	ia ay					Date	Tone
E-mail address:			Relinq	uished t		/~v~			_		Date	(20	Time		Receive	ad by					Date	Time
Data Package Options (circle if re	quired)							/							1		n	1				,,,,,
Type I (EPA Level 3	Raw Data O	3-64	Relinq	ulshed t	by			-			Date		Time		Receive	ed by	#	/			Date	Time
Equivalent/non-CLP)	naw Data C	niy					/_								6	1/	.1	2		4	FRM	25%
Type III (Reduced non-CLP) NJ DKQF	, TX T	RRP-13				ΕĎΓ) Req	uired	17 CY	/es	No				Relin	KISH	ed by	Com	merci	al Carrier	- VINE III	NU_)(I
	173 71	1111 110													UPS			FedEx		Other_		_ !
NYSDEC Category A or B MA MCP	CT R	(CP							/ISD/D		· ·	-	No			Ter	mners	eture u	200	receipt/	1.4	°C
		/		(II yes	, indice	ate QC	sample	and e	submit ti	riplicat	.e samr	ple voli	Jme.)			1011	uhara	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pon	eceiht	77	- '

Lancaster Laboratories **Environmental**

Sample Administration Receipt Documentation Log

Doc Log ID:

284070

Group Number(s):

Client: Langan, DPC

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/08/2020

Number of Packages:

2

NY

Number of Projects:

1

State/Province of Origin:

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes

Trip Blank Type:

HCI

Samples Intact:

Extra Samples:

Yes No

Air Quality Samples Present:

No

Missing Samples:

No

Discrepancy in Container Qty on COC:

No

Therm. Type

IR

IR

IR

Unpacked by Melvin Sanchez

Samples Chilled Details

Thermometer Types:

Matrix

Water

Soil

Soil

Cooler#

2

Page 1 of 1

DT = Digital (Temp. Bottle)

Thermometer ID Corrected Temp

46730061WS

46730061WS

46730061WS

IR = Infrared (Surface Temp)

Ice Type

Wet

Wet

Wet

All Temperatures in °C.

Collected Same Ice Present? Ice Container Elevated Temp? Day as Receipt? Υ Υ Υ Υ

Samples |

Υ

Sample Date/Time Discrepancy Details

Sample ID on COC

Date/Time on Label

9.5

9.3

1.4

Comments

Υ

Υ

Bagged

Bagged

Bagged

SOFB03_050820

5/08/2020 14:30

2425 New Holland Pike Lancaster, PA 17605-2425

T | 717-656-2300 F 717-656-2681 www.LancasterLabs.com

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 18, 2020 15:43

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2099141 SDG: CMS05 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

SAMPLE INFORMATION

 Client Sample Description
 Sample Collection
 ELLE#

 Date/Time
 D5/11/2020 10:20
 1312796

 SOTB04_051120 Water
 05/11/2020
 1312797

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2099141

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

No additional comments are necessary.

SW 1312796

2099141

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB26_12-13 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/11/2020 21:19
Collection Date/Time: 05/11/2020 10:20

SDG#: CMS05-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg		
11995	Acetone	67-64-1	0.035 J	0.011	0.037	1.19	
11995	Acrolein	107-02-8	N.D.	0.009	0.19	1.19	
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.037	1.19	
11995	Benzene	71-43-2	N.D.	0.0009	0.009	1.19	
11995	Bromodichloromethane	75-27-4	N.D.	0.0007	0.009	1.19	
11995	Bromoform	75-25-2	N.D.	0.009	0.019	1.19	
11995	Bromomethane	74-83-9	N.D.	0.001	0.009	1.19	
11995	2-Butanone	78-93-3	N.D.	0.004	0.019	1.19	
11995	t-Butyl alcohol	75-65-0	N.D.	0.028	0.19	1.19	
11995	n-Butylbenzene	104-51-8	N.D.	0.006	0.015	1.19	
11995	sec-Butylbenzene	135-98-8	N.D.	0.004	0.009	1.19	
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.009	1.19	
11995	Carbon Disulfide	75-15-0	N.D.	0.001	0.009	1.19	
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0009	0.009	1.19	
11995	Chlorobenzene	108-90-7	N.D.	0.0009	0.009	1.19	
11995	Chloroethane	75-00-3	N.D.	0.002	0.009	1.19	
11995	Chloroform	67-66-3	N.D.	0.001	0.009	1.19	
11995	Chloromethane	74-87-3	N.D.	0.001	0.009	1.19	
11995	1,2-Dibromo-3-chloropropa	ne 96-12-8	N.D.	0.0009	0.009	1.19	
11995	Dibromochloromethane	124-48-1	N.D.	0.0009	0.009	1.19	
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0007	0.009	1.19	
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0009	0.009	1.19	
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0009	0.009	1.19	
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0007	0.009	1.19	
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.001	0.009	1.19	
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0009	0.009	1.19	
11995	1,2-Dichloroethane	107-06-2	N.D.	0.001	0.009	1.19	
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0009	0.009	1.19	
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0009	0.009	1.19	
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0009	0.009	1.19	
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.002	0.019	1.19	
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0009	0.009	1.19	
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0007	0.009	1.19	
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0009	0.009	1.19	
11995	1,4-Dioxane	123-91-1	N.D.	0.069	0.14	1.19	
11995	Ethylbenzene	100-41-4	N.D.	0.0007	0.009	1.19	
11995	Methyl Acetate	79-20-9	N.D.	0.002	0.009	1.19	
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0009	0.009	1.19	
11995	Methylene Chloride	75-09-2	N.D.	0.004	0.009	1.19	
11995	n-Propylbenzene	103-65-1	N.D.	0.0007	0.009	1.19	
11995	Styrene	100-42-5	N.D.	0.0007	0.009	1.19	

^{*=}This limit was used in the evaluation of the final result

SW 1312796

2099141

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB26_12-13 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/11/2020 21:19
Collection Date/Time: 05/11/2020 10:20

SDG#: CMS05-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0007	0.009	1.19
11995	Tetrachloroethene	127-18-4	N.D.	0.0009	0.009	1.19
11995	Toluene	108-88-3	N.D.	0.001	0.009	1.19
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.001	0.009	1.19
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0009	0.009	1.19
11995	Trichloroethene	79-01-6	N.D.	0.0009	0.009	1.19
11995	Trichlorofluoromethane	75-69-4	N.D.	0.001	0.009	1.19
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0009	0.009	1.19
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0009	0.009	1.19
11995	Vinyl Chloride	75-01-4	N.D.	0.001	0.009	1.19
11995	Xylene (Total)	1330-20-7	N.D.	0.003	0.019	1.19
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	N.D.	0.005	0.026	1
10726	Acenaphthylene	208-96-8	N.D.	0.005	0.026	1
10726	Acetophenone	98-86-2	N.D.	0.026	0.078	1
10726	Anthracene	120-12-7	0.012 J	0.005	0.026	1
10726	Atrazine	1912-24-9	N.D.	0.31	0.68	1
10726	Benzaldehyde	100-52-7	N.D.	0.10	0.26	1
10726	Benzidine	92-87-5	N.D.	0.52	1.6	1
10726	Benzo(a)anthracene	56-55-3	0.035	0.010	0.026	1
10726	Benzo(a)pyrene	50-32-8	0.034	0.005	0.026	1
10726	Benzo(b)fluoranthene	205-99-2	0.052	0.005	0.026	1
10726	Benzo(g,h,i)perylene	191-24-2	0.027	0.005	0.026	1
10726	Benzo(k)fluoranthene	207-08-9	0.020 J	0.005	0.026	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.026	0.057	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.10	0.26	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.10	0.26	1
10726	Caprolactam	105-60-2	N.D.	0.052	0.26	1
10726	Carbazole	86-74-8	N.D.	0.026	0.057	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.036	0.078	1
10726	bis(2-Chloroisopropyl)ether	39638-32-9	N.D.	0.031	0.068	1
		r CAS #39638-32-9 and e) CAS #108-60-1 cannot be sepa reported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.010	0.052	1
10726	2-Chlorophenol	95-57-8	N.D.	0.026	0.057	1
10726	Chrysene	218-01-9	0.048	0.005	0.026	1
10726	Dibenz(a,h)anthracene	53-70-3	N.D.	0.010	0.026	1
10726	Dibenzofuran	132-64-9	N.D.	0.026	0.057	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.026	0.078	1

^{*=}This limit was used in the evaluation of the final result

SW 1312796

2099141

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB26_12-13 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/11/2020 21:19

Collection Date/Time: 05/11/2020 10:20 SDG#: CMS05-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	70D	mg/kg	mg/kg	mg/kg	
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.026	0.057	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.026	0.057	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.16	0.52	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.031	0.068	1
10726	Diethylphthalate	84-66-2	N.D.	0.10	0.26	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.047	0.10	1
10726	Dimethylphthalate	131-11-3	N.D.	0.10	0.26	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.36	0.78	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.52	1.6	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.10	0.26	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.036	0.078	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.036	0.078	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.031	0.068	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.10	0.26	1
10726	Fluoranthene	206-44-0	0.066	0.005	0.026	1
10726	Fluorene	86-73-7	0.007 J	0.005	0.026	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.010	0.026	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.057	0.12	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.31	0.78	1
10726	Hexachloroethane	67-72-1	N.D.	0.052	0.26	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.025 J	0.005	0.026	1
10726	Isophorone	78-59-1	N.D.	0.026	0.057	1
10726	2-Methylnaphthalene	91-57-6	0.007 J	0.005	0.052	1
10726	2-Methylphenol	95-48-7	N.D.	0.026	0.10	1
10726	4-Methylphenol	106-44-5	N.D.	0.026	0.078	1
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	ole analysis. The res	sult reported			
10726	Naphthalene	91-20-3	0.016 J	0.010	0.026	1
10726	2-Nitroaniline	88-74-4	N.D.	0.026	0.078	1
10726	Nitrobenzene	98-95-3	N.D.	0.042	0.10	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.10	0.26	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.036	0.078	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.026	0.057	1
	N-nitrosodiphenylamine decomposes in th diphenylamine. The result reported for N- represents the combined total of both com	nitrosodiphenylamin	e			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.10	0.26	1
10726	Pentachlorophenol	87-86-5	N.D.	0.10	0.26	1
10726	Phenanthrene	85-01-8	0.040	0.005	0.026	1

^{*=}This limit was used in the evaluation of the final result

SW 1312796

2099141

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB26_12-13 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/11/2020 21:19 Collection Date/Time: 05/11/2020 10:20

SDG#: CMS05-01

CAT No.	Analysis Name	CA	AS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D		mg/kg	mg/kg	mg/kg	
10726	Phenol	108	8-95-2	N.D.	0.026	0.057	1
10726	Pyrene	129	9-00-0	0.054	0.005	0.026	1
10726	Pyridine	110	0-86-1	N.D.	0.10	0.26	1
10726	1,2,4-Trichlorobenzene	120	0-82-1	N.D.	0.036	0.078	1
10726	2,4,5-Trichlorophenol	95-	-95-4	N.D.	0.047	0.10	1
10726	2,4,6-Trichlorophenol	88-	-06-2	N.D.	0.042	0.088	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc		%	%	%	
00111	Moisture ¹	n.a	ı.	36.1	0.50	0.50	1
	Moisture represents the last 103 - 105 degrees Celsiu as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
11995	NYSDEC/NJDEP VOCs 8260C Soil	SW-846 8260C	1	B201331AA	05/12/2020 23:51	Joel Trout	1.19					
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013356776	05/12/2020 11:07	Essence Orden-Slocum	1					
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013356776	05/12/2020 11:07	Essence Orden-Slocum	1					
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013356776	05/11/2020 10:20	Client Supplied	1					
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20133SLA026	05/15/2020 13:51	William H Saadeh	1					
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20133SLA026	05/12/2020 23:55	Laura Duquette	1					
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20133820004B	05/12/2020 12:47	Stephanie A Sanchez	1					

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SOTB04_051120 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/11/2020 21:19

 Collection Date/Time:
 05/11/2020

 SDG#:
 CMS05-02TB

Langan Eng & Env Services
ELLE Sample #: WW 1312797
ELLE Group #: 2099141

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	1,4-Dioxane	123-91-1	N.D.	0.029	0.075	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: SOTB04_051120 Water

35 Commercial Street/170229024

35 Commercial Street/170229024

 Submittal Date/Time:
 05/11/2020 21:19

 Collection Date/Time:
 05/11/2020

 SDG#:
 CMS05-02TB

Project Name:

Langan Eng & Env Services
ELLE Sample #: WW 1312797
ELLE Group #: 2099141

Matrix: Water

CAT No.	Analysis Name	CAS	S Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C		mg/l	mg/l	mg/l	
11997	1,1,2,2-Tetrachloroethane	79-3	34-5	N.D.	0.0002	0.001	1
11997	Tetrachloroethene	127	'-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108	3-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-5	55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-0	00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-0	01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-6	69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-6	63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108	3-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-0	01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	133	80-20-7	N.D.	0.001	0.006	1

Sample Comments

State of New York Certification No. 10670

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11997	PPL/TCL VOCs	SW-846 8260C	1	N201352AA	05/14/2020 19:36	Laura Green	1		
01163	GC/MS VOA Water Prep	SW-846 5030C	1	N201352AA	05/14/2020 19:35	Laura Green	1		

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201331AA	Sample number(s): 1312796	
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	0.0008	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
1,4-Dioxane	N.D.	0.037	0.075
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ		
-	mg/kg	mg/kg	mg/kg		
n-Propylbenzene	N.D.	0.0004	0.005		
Styrene	N.D.	0.0004	0.005		
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005		
Tetrachloroethene	N.D.	0.0005	0.005		
Toluene	N.D.	0.0006	0.005		
1,1,1-Trichloroethane	N.D.	0.0006	0.005		
1,1,2-Trichloroethane	N.D.	0.0005	0.005		
Trichloroethene	N.D.	0.0005	0.005		
Trichlorofluoromethane	N.D.	0.0007	0.005		
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005		
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005		
Vinyl Chloride	N.D.	0.0006	0.005		
Xylene (Total)	N.D.	0.001	0.010		
	mg/l	mg/l	mg/l		
Batch number: N201352AA	Sample numb	per(s): 1312797			
Acetone	0.0009 J	0.0007	0.020		
Acrolein	N.D.	0.002	0.10		
Acrylonitrile	N.D.	0.0003	0.020		
Benzene	N.D.	0.0002	0.001		
Bromodichloromethane	N.D.	0.0002	0.001		
Bromoform	N.D.	0.001	0.004		
Bromomethane	N.D.	0.0003	0.001		
2-Butanone	N.D.	0.0003	0.010		
t-Butyl alcohol	N.D.	0.012	0.050		
n-Butylbenzene	N.D.	0.0002	0.005		
sec-Butylbenzene	N.D.	0.0002	0.005		
tert-Butylbenzene	N.D. N.D.	0.0003	0.005		
Carbon Disulfide Carbon Tetrachloride		0.0002	0.005		
Carbon Tetrachioride Chlorobenzene	N.D. N.D.	0.0002	0.001		
Chloroethane	N.D. N.D.	0.0002 0.0002	0.001 0.001		
Chloroform	N.D. N.D.	0.0002	0.001		
Chloromethane	N.D. N.D.	0.0002	0.001		
1,2-Dibromo-3-chloropropane	N.D.	0.0002	0.001		
Dibromochloromethane	N.D.	0.0003	0.003		
1,2-Dibromoethane	N.D.	0.0002	0.001		
1,2-Dichlorobenzene	N.D.	0.0002	0.005		
1,3-Dichlorobenzene	N.D.	0.0002	0.005		
1,4-Dichlorobenzene	N.D.	0.0002	0.005		
Dichlorodifluoromethane	N.D.	0.0002	0.001		
1,1-Dichloroethane	N.D.	0.0002	0.001		
1,2-Dichloroethane	N.D.	0.0003	0.001		
1,1-Dichloroethene	N.D.	0.0002	0.001		
cis-1,2-Dichloroethene	N.D.	0.0002	0.001		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Method Blank (continued)

Analysis Namo	Result	MDL**	LOQ
Analysis Name		_	
4.0.00	mg/l	mg/l	mg/l
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D. N.D.	0.0002 0.0002	0.001 0.001
trans-1,3-Dichloropropene 1,4-Dioxane	N.D. N.D.	0.0002	0.001
Ethylbenzene	N.D. N.D.	0.0004	0.075
Methyl Acetate	N.D.	0.0004	0.001
Methyl Tertiary Butyl Ether	N.D.	0.0003	0.003
Methylene Chloride	N.D.	0.0002	0.001
n-Propylbenzene	N.D.	0.0003	0.001
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Vinyl Chloride Xylene (Total)	N.D. N.D.	0.0002 0.001	0.001 0.006
•			
•	N.D. mg/kg	0.001	0.006
Xylene (Total)	N.D. mg/kg	0.001 mg/kg	0.006
Xylene (Total) Batch number: 20133SLA026	N.D. mg/kg Sample num	0.001 mg/kg ber(s): 1312796	0.006 mg/kg
Xylene (Total) Batch number: 20133SLA026 Acenaphthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003	0.006 mg/kg 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene	N.D. mg/kg Sample num N.D. N.D. N.D. N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003	0.006 mg/kg 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene	N.D. mg/kg Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(y,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.0017 0.067 0.067	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067 0.033	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole	N.D. mg/kg Sample num N.D. N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.0017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067 0.033 0.017	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Xylene (Total) Batch number: 20133SLA026 Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam	N.D. mg/kg Sample num N.D.	0.001 mg/kg ber(s): 1312796 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.067 0.033	0.006 mg/kg 0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ	
	mg/kg	mg/kg	mg/kg	
2-Chloronaphthalene	N.D.	0.007	0.033	
2-Chlorophenol	N.D.	0.017	0.037	
Chrysene	N.D.	0.003	0.007	
Dibenz(a,h)anthracene	N.D.	0.007	0.017	
Dibenzofuran	N.D.	0.017	0.037	
1,2-Dichlorobenzene	N.D.	0.017	0.050	
1,3-Dichlorobenzene	N.D.	0.017	0.037	
1,4-Dichlorobenzene	N.D.	0.017	0.037	
3,3'-Dichlorobenzidine	N.D.	0.10	0.33	
2,4-Dichlorophenol	N.D.	0.020	0.043	
Diethylphthalate	N.D.	0.067	0.17	
2,4-Dimethylphenol	N.D.	0.030	0.067	
Dimethylphthalate	N.D.	0.067	0.17	
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50	
2,4-Dinitrophenol	N.D.	0.33	1.0	
2,4-Dinitrotoluene	N.D.	0.067	0.17	
2,6-Dinitrotoluene	N.D.	0.023	0.050	
2,4 2,6-Dinitrotoluenes	N.D.	0.023	0.050	
1,2-Diphenylhydrazine	N.D.	0.020	0.043	
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17	
Fluoranthene	N.D.	0.003	0.017	
Fluorene	N.D.	0.003	0.017	
Hexachlorobenzene	N.D.	0.007	0.017	
Hexachlorobutadiene	N.D.	0.037	0.077	
Hexachlorocyclopentadiene	N.D.	0.20	0.50	
Hexachloroethane	N.D.	0.033	0.17	
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017	
Isophorone	N.D.	0.017	0.037	
2-Methylnaphthalene	N.D.	0.003	0.033	
2-Methylphenol	N.D.	0.017	0.067	
4-Methylphenol	N.D.	0.017	0.050	
Naphthalene	N.D.	0.007	0.017	
2-Nitroaniline	N.D.	0.017	0.050	
Nitrobenzene	N.D.	0.027	0.067	
N-Nitrosodimethylamine	N.D.	0.067	0.17	
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050	
N-Nitrosodiphenylamine	N.D.	0.017	0.037	
Di-n-octylphthalate	N.D.	0.067	0.17	
Pentachlorophenol	N.D.	0.067	0.17	
Phenanthrene	N.D.	0.003	0.017	
Phenol	N.D.	0.017	0.037	
Pyrene	N.D.	0.003	0.017	
Pyridine	N.D.	0.067	0.17	
1,2,4-Trichlorobenzene	N.D.	0.023	0.050	
2,4,5-Trichlorophenol	N.D.	0.030	0.067	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ		
	mg/kg	mg/kg	mg/kg		
2,4,6-Trichlorophenol	N.D.	0.027	0.057		

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201331AA	Sample number	(s): 1312796							
Acetone	0.150	0.164	0.150	0.165	109	110	41-150	0	30
Acrolein	0.150	0.125	0.150	0.130	84	87	57-131	4	30
Acrylonitrile	0.100	0.0862	0.100	0.0856	86	86	66-120	1	30
Benzene	0.0200	0.0180	0.0200	0.0180	90	90	80-120	0	30
Bromodichloromethane	0.0200	0.0176	0.0200	0.0180	88	90	70-120	2	30
Bromoform	0.0200	0.0163	0.0200	0.0160	81	80	51-127	2	30
Bromomethane	0.0200	0.0156	0.0200	0.0159	78	79	45-140	2	30
2-Butanone	0.150	0.134	0.150	0.136	90	91	57-128	1	30
t-Butyl alcohol	0.200	0.173	0.200	0.177	86	88	74-121	2	30
n-Butylbenzene	0.0200	0.0173	0.0200	0.0173	86	87	71-121	0	30
sec-Butylbenzene	0.0200	0.0180	0.0200	0.0178	90	89	72-120	1	30
tert-Butylbenzene	0.0200	0.0170	0.0200	0.0169	85	85	68-120	0	30
Carbon Disulfide	0.0200	0.0177	0.0200	0.0178	88	89	64-133	1	30
Carbon Tetrachloride	0.0200	0.0175	0.0200	0.0174	88	87	64-134	1	30
Chlorobenzene	0.0200	0.0179	0.0200	0.0177	89	89	80-120	1	30
Chloroethane	0.0200	0.0148	0.0200	0.0148	74	74	43-135	0	30
Chloroform	0.0200	0.0179	0.0200	0.0181	89	90	80-120	1	30
Chloromethane	0.0200	0.0156	0.0200	0.0160	78	80	56-120	2	30
1,2-Dibromo-3-chloropropane	0.0200	0.0166	0.0200	0.0163	83	82	48-134	2	30
Dibromochloromethane	0.0200	0.0183	0.0200	0.0185	92	92	69-125	1	30
1,2-Dibromoethane	0.0200	0.0177	0.0200	0.0177	88	89	76-120	0	30
1,2-Dichlorobenzene	0.0200	0.0173	0.0200	0.0172	87	86	76-120	1	30
1,3-Dichlorobenzene	0.0200	0.0173	0.0200	0.0172	86	86	75-120	1	30
1,4-Dichlorobenzene	0.0200	0.0173	0.0200	0.0174	86	87	80-120	0	30
Dichlorodifluoromethane	0.0200	0.0141	0.0200	0.0143	71	72	21-127	2	30
1,1-Dichloroethane	0.0200	0.0177	0.0200	0.0180	88	90	79-120	2	30
1,2-Dichloroethane	0.0200	0.0173	0.0200	0.0175	87	88	71-128	1	30
1,1-Dichloroethene	0.0200	0.0183	0.0200	0.0185	92	93	73-129	1	30
cis-1,2-Dichloroethene	0.0200	0.0193	0.0200	0.0193	96	96	80-125	0	30
trans-1,2-Dichloroethene	0.0200	0.0180	0.0200	0.0182	90	91	80-126	1	30
1,2-Dichloroethene (Total)	0.0400	0.0373	0.0400	0.0375	93	94	80-126	1	30
1,2-Dichloropropane	0.0200	0.0182	0.0200	0.0183	91	91	80-120	0	30
cis-1,3-Dichloropropene	0.0200	0.0180	0.0200	0.0177	90	88	66-120	2	30
trans-1,3-Dichloropropene	0.0200	0.0172	0.0200	0.0174	86	87	68-122	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,4-Dioxane	0.500	0.474	0.500	0.495	95	99	62-131	4	30
Ethylbenzene	0.0200	0.0178	0.0200	0.0176	89	88	78-120	1	30
Methyl Acetate	0.0200	0.0166	0.0200	0.0163	83	82	67-128	2	30
Methyl Tertiary Butyl Ether	0.0200	0.0172	0.0200	0.0176	86	88	72-120	2	30
Methylene Chloride	0.0200	0.0178	0.0200	0.0179	89	90	76-122	1	30
n-Propylbenzene	0.0200	0.0183	0.0200	0.0182	91	91	72-123	0	30
Styrene	0.0200	0.0171	0.0200	0.0168	85	84	76-120	1	30
1,1,2,2-Tetrachloroethane	0.0200	0.0176	0.0200	0.0178	88	89	69-125	1	30
Tetrachloroethene	0.0200	0.0174	0.0200	0.0174	87	87	73-120	0	30
Toluene	0.0200	0.0174	0.0200	0.0174	87	87	80-120	0	30
1,1,1-Trichloroethane	0.0200	0.0172	0.0200	0.0173	86	87	69-123	1	30
1,1,2-Trichloroethane	0.0200	0.0193	0.0200	0.0186	96	93	80-120	4	30
Trichloroethene	0.0200	0.0177	0.0200	0.0178	89	89	80-120	0	30
Trichlorofluoromethane	0.0200	0.0161	0.0200	0.0162	80	81	55-134	1	30
1,2,4-Trimethylbenzene	0.0200	0.0175	0.0200	0.0175	88	88	73-120	0	30
1,3,5-Trimethylbenzene	0.0200	0.0176	0.0200	0.0177	88	88	73-120	1	30
Vinyl Chloride	0.0200	0.0158	0.0200	0.0159	79	80	52-120	1	30
Xylene (Total)	0.0600	0.0532	0.0600	0.0527	89	88	75-120	1	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: N201352AA	Sample number	(s): 1312797							
Acetone	0.150	0.207	0.150	0.199	138	132	54-157	4	30
Acrolein	0.150	0.137	0.150	0.149	91	99	47-136	8	30
Acrylonitrile	0.100	0.101	0.100	0.100	101	100	60-129	1	30
Benzene	0.0200	0.0199	0.0200	0.0206	100	103	80-120	4	30
Bromodichloromethane	0.0200	0.0187	0.0200	0.0191	94	95	71-120	2	30
Bromoform	0.0200	0.0196	0.0200	0.0190	98	95	51-120	3	30
Bromomethane	0.0200	0.0167	0.0200	0.0169	84	84	53-128	1	30
2-Butanone	0.150	0.152	0.150	0.150	102	100	59-135	1	30
t-Butyl alcohol	0.200	0.243	0.200	0.243	121	121	60-130	0	30
n-Butylbenzene	0.0200	0.0194	0.0200	0.0206	97	103	76-120	6	30
sec-Butylbenzene	0.0200	0.0200	0.0200	0.0211	100	105	77-120	5	30
tert-Butylbenzene	0.0200	0.0197	0.0200	0.0202	99	101	78-120	2	30
Carbon Disulfide	0.0200	0.0198	0.0200	0.0214	99	107	65-128	8	30
Carbon Tetrachloride	0.0200	0.0178	0.0200	0.0188	89	94	64-134	5	30
Chlorobenzene	0.0200	0.0201	0.0200	0.0206	100	103	80-120	2	30
Chloroethane	0.0200	0.0165	0.0200	0.0175	83	87	55-123	6	30
Chloroform	0.0200	0.0192	0.0200	0.0197	96	98	80-120	2	30
Chloromethane	0.0200	0.0153	0.0200	0.0163	77	82	56-121	6	30
1,2-Dibromo-3-chloropropane	0.0200	0.0190	0.0200	0.0182	95	91	47-131	4	30
Dibromochloromethane	0.0200	0.0198	0.0200	0.0199	99	99	71-120	1	30
1,2-Dibromoethane	0.0200	0.0196	0.0200	0.0196	98	98	77-120	0	30
1,2-Dichlorobenzene	0.0200	0.0208	0.0200	0.0207	104	103	80-120	1	30
1,3-Dichlorobenzene	0.0200	0.0203	0.0200	0.0210	101	105	80-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,4-Dichlorobenzene	0.0200	0.0203	0.0200	0.0210	102	105	80-120	3	30
Dichlorodifluoromethane	0.0200	0.0135	0.0200	0.0141	68	71	41-127	4	30
1,1-Dichloroethane	0.0200	0.0200	0.0200	0.0210	100	105	80-120	5	30
1,2-Dichloroethane	0.0200	0.0176	0.0200	0.0177	88	88	73-124	0	30
1,1-Dichloroethene	0.0200	0.0186	0.0200	0.0206	93	103	80-131	10	30
cis-1,2-Dichloroethene	0.0200	0.0204	0.0200	0.0214	102	107	80-125	5	30
trans-1,2-Dichloroethene	0.0200	0.0192	0.0200	0.0204	96	102	80-126	6	30
1,2-Dichloroethene (Total)	0.0400	0.0396	0.0400	0.0418	99	104	80-125	5	30
1,2-Dichloropropane	0.0200	0.0212	0.0200	0.0216	106	108	80-120	2	30
cis-1,3-Dichloropropene	0.0200	0.0194	0.0200	0.0196	97	98	75-120	1	30
trans-1,3-Dichloropropene	0.0200	0.0190	0.0200	0.0188	95	94	67-120	1	30
1,4-Dioxane	0.500	0.489	0.500	0.477	98	95	63-146	3	30
Ethylbenzene	0.0200	0.0197	0.0200	0.0205	98	103	80-120	4	30 30
Methyl Acetate Methyl Tertiary Butyl Ether	0.0200 0.0200	0.0216 0.0189	0.0200 0.0200	0.0208 0.0186	108 94	104 93	54-136 69-122	3 1	30
Methylene Chloride	0.0200	0.0169	0.0200	0.0100	9 4 101	93 102	80-120	1	30
n-Propylbenzene	0.0200	0.0207	0.0200	0.0204	104	102	79-121	4	30
Styrene	0.0200	0.0207	0.0200	0.0210	104	103	80-120	3	30
1,1,2,2-Tetrachloroethane	0.0200	0.0218	0.0200	0.0203	109	107	72-120	2	30
Tetrachloroethene	0.0200	0.0193	0.0200	0.0201	96	101	80-120	4	30
Toluene	0.0200	0.0198	0.0200	0.0208	99	104	80-120	5	30
1,1,1-Trichloroethane	0.0200	0.0176	0.0200	0.0184	88	92	67-126	5	30
1,1,2-Trichloroethane	0.0200	0.0214	0.0200	0.0209	107	105	80-120	2	30
Trichloroethene	0.0200	0.0185	0.0200	0.0193	93	97	80-120	4	30
Trichlorofluoromethane	0.0200	0.0165	0.0200	0.0179	83	90	55-135	8	30
1,2,4-Trimethylbenzene	0.0200	0.0194	0.0200	0.0200	97	100	75-120	3	30
1,3,5-Trimethylbenzene	0.0200	0.0195	0.0200	0.0206	98	103	75-120	6	30
Vinyl Chloride	0.0200	0.0158	0.0200	0.0169	79	84	56-120	6	30
Xylene (Total)	0.0600	0.0608	0.0600	0.0628	101	105	80-120	3	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20133SLA026	Sample number	` '							
Acenaphthene	1.67	1.50			90		61-112		
Acenaphthylene	1.67	1.53			92		60-124		
Acetophenone	1.67	1.36			82		48-109		
Anthracene	1.67	1.57			94		67-120		
Atrazine	1.67	1.69			101		70-129		
Benzaldehyde	1.67	1.11			67		20-101		
Benzidine	8.33	5.11			61		18-105		
Benzo(a)anthracene	1.67	1.67			100		68-120		
Benzo(a)pyrene	1.67	1.75			105		68-119		
Benzo(b)fluoranthene	1.67	1.68			101		67-125		
Benzo(g,h,i)perylene	1.67	1.83			110		68-125		
Benzo(k)fluoranthene	1.67	1.69			101		66-122		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,1'-Biphenyl	1.67	1.46			88		59-106		
Butylbenzylphthalate	1.67	1.78			107		69-125		
Di-n-butylphthalate	1.67	1.68			101		70-126		
Caprolactam	1.67	1.57			94		62-119		
Carbazole	1.67	1.67			100		69-125		
bis(2-Chloroethyl)ether	1.67	1.42			85		44-104		
bis(2-Chloroisopropyl)ether	1.67	1.05			63		40-112		
2-Chloronaphthalene	1.67	1.81			109		48-123		
2-Chlorophenol	1.67	1.49			89		51-109		
Chrysene	1.67	1.58			95		66-111		
Dibenz(a,h)anthracene	1.67	1.89			114		69-135		
Dibenzofuran	1.67	1.48			89		62-113		
1,2-Dichlorobenzene	1.67	1.30			78		38-106		
1,3-Dichlorobenzene	1.67	1.24			74		36-103		
1,4-Dichlorobenzene	1.67	1.25			75		25-127		
3,3'-Dichlorobenzidine	1.67	1.21			73		18-114		
2,4-Dichlorophenol	1.67	1.40			84		57-115		
Diethylphthalate	1.67	1.58			95		68-116		
2,4-Dimethylphenol	1.67	1.25			75		47-95		
Dimethylphthalate	1.67	1.51			91		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.69			102		56-135		
2,4-Dinitrophenol	3.33	2.91			87		34-136		
2,4-Dinitrotoluene	1.67	1.65			99		61-121		
2,6-Dinitrotoluene	1.67	1.68			101		66-122		
1,2-Diphenylhydrazine	1.67	1.73			104		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.84			110		65-132		
Fluoranthene	1.67	1.57			94		65-114		
Fluorene	1.67	1.57			94		62-110		
Hexachlorobenzene	1.67	1.62			97		62-124		
Hexachlorobutadiene	1.67	1.20			72		39-120		
Hexachlorocyclopentadiene	3.33	1.44			43		13-115		
Hexachloroethane	1.67	1.31			78		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.83			110		64-130		
Isophorone	1.67	1.42			85		51-113		
2-Methylnaphthalene	1.67	1.43			86		52-104		
2-Methylphenol	1.67	1.50			90		52-116		
4-Methylphenol	1.67	1.42			85		52-121		
Naphthalene	1.67	1.36			81		49-104		
2-Nitroaniline	1.67	1.79			108		65-132		
Nitrobenzene	1.67	1.39			83		41-118		
N-Nitrosodimethylamine	1.67	1.37			82		31-107		
N-Nitroso-di-n-propylamine	1.67	1.48			89		49-108		
N-Nitrosodiphenylamine	1.67	1.65			99		64-127		
Di-n-octylphthalate	1.67	1.76			105		65-139		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Pentachlorophenol	1.67	1.22			73		40-131		
Phenanthrene	1.67	1.57			94		67-116		
Phenol	1.67	1.42			85		57-107		
Pyrene	1.67	1.54			92		67-109		
Pyridine	1.67	0.908			54		10-117		
1,2,4-Trichlorobenzene	1.67	1.28			77		46-109		
2,4,5-Trichlorophenol	1.67	1.52			91		62-121		
2,4,6-Trichlorophenol	1.67	1.54			92		60-120		
	%	%	%	%					
Batch number: 20133820004B	Sample number	(s): 1312796							
Moisture	89.5	89.33			100		99-101		

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP VOCs 8260C Soil

Batch number: B201331AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1312796	98	99	100	96
Blank	100	104	98	97
LCS	100	106	99	100
LCSD	102	106	98	100
Limits:	50-141	54-135	52-141	50-131

Analysis Name: PPL/TCL VOCs Batch number: N201352AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1312797	93	95	98	89
Blank	92	97	97	89
LCS	94	99	99	89
LCSD	93	96	98	90
Limits:	80-120	80-120	80-120	80-120

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20133SLA026

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099141

Reported: 05/18/2020 15:43

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20133SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1312796	80	80	79	74	79	106	
Blank	84	86	94	81	86	111	
LCS	83	86	96	81	84	105	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

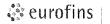
				20 10 15	ns
	88.	A4 6 6		- Au -	
46.6		** 5 5	2 8		ണം

For Eurofins Lancaster Laboratories Environmental use only

Lancaster Laboratories Acct. # 45208 Group # 2099141 Sample # 1312796-97

COC #606106

1 Cityironmental					ampi	<i>a m</i> <u>1</u>	7	1 1 0				
Client Information			Matrix		Π	T			sis Rec			For Lab Use Only
LANGAS OF C				T	1		Pres	ervatio	n and Fi	tration	Codes	FSC:
		ø	ᅵᅛᄔ									SCR#; <u>/</u>)()(////
Project Name/#: 170229024 PWSID #:		1 8	Ground									Preservation Codes
Project Manager:		⊒ Ĕ	Ground		ľ	ď						H=HCl T=Thlosulfa
GREG WARA P.O. #:		lm	ගි		١,,	Š						N=HNO ₃ B=NaOH
Sampler:		45	IDD		ě	K	1				,	S=H ₂ SO ₄ P=H ₃ PO ₄
REID BALKING		en			<u></u>		. W.					F=Field Filtered O=Other
State where samples were collected: For Compliance:		Sediment	Potable NPDES		ΙĔ	2225	ゴ					Remarks
N Yes □ No □	ē	١Ă	ots IPL		Q	3						
	⊣ '8	ľ'n			ō	Ч	<i>.</i>					
Sample Identification Collected	Grab Composite	· [□	Water	er:	Total # of Containers	Ŋ	ИI.					The second secon
Date Tim	Grab S	Soil	Na	Other	ĕ	Ŋ	1					
1527-12-17 LBZG_12-13 5/1/20 10:2		╅		-		X		+ +	_			
501804-051128		+		-	\vdash	\leftarrow	_					
	-	+			\vdash	\vdash	*					
		╂				\vdash	-					
		-			Щ	$\sqcup \downarrow$		4-4				
												ent this extends
												144
		1						+-+				
Turnaround Time (TAT) Requested (please circle)	Relinguishe	d by	Α		L		ale	Time	Recei	red by		Date Time
Standard Rush	人	o j	muny				5/1/2	166		-	10	3/201845
(Rush TAT is subject to laboratory approval and surcharge.)	Relinquishe	d by				1	ate	Time		ed by		Date Time
								ر ا	4			
Requested TAT in business days:	Relinquishe	d by				ſ	ate	Time	Recei	ed by		Date Time
							_/					
E-mail address:	Relinquishe	d by				J)ale	Time	Receiv	ed by		Date Time
 Data Package Options (circle if required) 	Della sulaba	a K.				4				مسمدن		
Type I (EPA Level 3 Type VI (Raw Data Only)	Relinquishe	о оу			//	ľ)ate	Time	Receiv	ed by		Dale Time
Equivalent/non-CLP)			5555	-4		, , ,						Date Time 5/11/20/21/9
Type III (Reduced non-CLP) NJ DKQP TX TRRP-13		Wilson	EDD Req , format:	uired #	L O	es)	NO		Relir	quishe	d by Com	nmercial Carrier:
			ecific QC (f				Vee	No	U	***************************************	FedE	
MYSDEC Category A or B MA MCP CT RCP			ate QC sample							Tem	perature	upon receipt 0.5-0,9c
		CONTRACTOR OF THE PARTY OF THE		•								- X 1 V


Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-655-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc
The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

Environmental Analysis Request/Chain of Custody

eurofins 🔅

For Eurofins Lancaster Laboratories Environmental use only

Acct. # 45208 Group # 2099141 Sample # 1312796 COC #606106 **Lancaster Laboratories** Environmental Client Information Matrix **Analysis Requested** For Lab Use Only Acct. #: Preservation and Filtration Codes FSC: LANGAN SCR#: Surface **Preservation Codes** commelline stables T=Thiosulfate H=HCI P.O. #: N=HNO₃ B=NaOH Total # of Containers S=H2SO4 P=H₂PO₄ Sediment Sampler: (LEII) Quote #: F=Field Filtered O=Other NPDES Potable Remarks State where samples were collected: For Compliance: Composite Yes 🖪 No 🗆 Water Collected Grab Soil Sample Identification Date Time B27-12-13 5/11/20 10:20 SOTBU4-051128 Relinguished by Turnaround Time (TAT) Requested (please circle) 5/4/20 1845 14810 BALLING (Standard Relinguished by (Rush TAT is subject to laboratory approval and surcharge.) 1120 Received by Requested TAT in business days: ___ Date E-mail address: Received by Data Package Options (circle if required) Relinguished by Date Type I (EPA Level 3 Received by Time Type VI (Raw Data Only) Equivalent/non-CLP) EDD Required? (Yes) No Relinquished by Commercial Carrier: Type III (Reduced non-CLP) NJ DKQP TX TRRP-13 If ves, format: FedEx Other Site-Specific QC (MS/MSD/Dup)? Yes No MYSDEC Category A or B Temperature upon receipt 0.5 -0 -9°C MA MCP CT RCP (If yes, indicate QC sample and submit triplicate sample volume.)

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

284182

Group Number(s): 2099141

Client: Langan

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/11/2020

Number of Packages:

2

Number of Projects:

<u>3</u>

State/Province of Origin:

<u>NY</u>

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty:

1

Paperwork Enclosed:

Yes

Trip Blank Type:

HCI

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples:
Discrepancy in Container Qty on COC:

No

No

Unpacked by Katherine Metzger

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler #	<u>Matrix</u>	Thermometer ID	Corrected Temp	Therm. Type	<u>lce Type</u>	Ice Present?	Ice Container	Elevated Temp?
1	Soil	46730060WS	0.5	IR	Wet	· Y	Loose	N
2	Soil	46730060WS	0.9	IR	Wet	Υ	Loose	N

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

REVISED

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: June 04, 2020 19:14

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2099431 SDG: CMS08 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

A previous version of this report was generated on 05/20/2020 13:22.

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
LD46 6 9 Crob Coil	<u>Date/Time</u>	101111
LB16_6-8 Grab Soil	05/13/2020 08:45	1314141
LB16_6-8 TCLP NVE Grab Soil	05/13/2020 08:45	1314142
LB16_8-10 Grab Soil	05/13/2020 08:50	1314143
LB16_3-5 Grab Soil	05/13/2020 08:55	1314144
LB16_15-17 Grab Soil	05/13/2020 09:00	1314145
LB16_18-20 Grab Soil	05/13/2020 09:05	1314146
LB19_0.5-2.5 Grab Soil	05/13/2020 15:20	1314147
LB19_0.5-2.5 TCLP NVE Grab Soil	05/13/2020 15:20	1314148
LB19_6-8 Grab Soil	05/13/2020 15:25	1314149
LB19_14-16 Grab Soil	05/13/2020 15:30	1314150
LB20_1-3 Grab Soil	05/13/2020 11:50	1314151
LB20_1-3 TCLP NVE Grab Soil	05/13/2020 11:50	1314152
LB20_6-8 Grab Soil	05/13/2020 11:55	1314153
LB20_6-8 TCLP NVE Grab Soil	05/13/2020 11:55	1314154
LB20 3-5 Grab Soil	05/13/2020 12:00	1314155
LB20_3-5 SS Grab Soil	05/13/2020 12:00	1314156
LB20_3-5 IS Grab Soil	05/13/2020 12:00	1314157
LB20 3-5 PDS Grab Soil	05/13/2020 12:00	1314158
LB20 3-5 MS Grab Soil	05/13/2020 12:00	1314159
LB20_3-5 MSD Grab Soil	05/13/2020 12:00	1314160
LB20_3-5 DUP Grab Soil	05/13/2020 12:00	1314161
LB20 14-16 Grab Soil	05/13/2020 12:05	1314162
LB23_10-12 Grab Soil	05/13/2020 10:45	1314163
LB24_10-12 Grab Soil	05/13/2020 14:45	1314164
SOTB05 051320 Water	05/13/2020	1314165
SOFB05 051320 Water	05/13/2020 13:30	
00. 200_00.020 Water	00/10/2020 10.00	101-100

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2099431

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Preservation requirements were not met.

Sample #: 1314166

Preservation requirements were not met. The pH preservation of all non-volatile containers was checked upon receipt at the laboratory. The container for the following analysis was not within the specification and was adjusted accordingly by the laboratory: Total Cyanide (water)

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1314165

Preservation requirements were not met. The sample was received at pH <2 which is not the preservation specified for acrolein or acrylonitrile under the referenced method. The preservation criteria is pH of 4-5.

Batch #: B201361AA (Sample number(s): 1314144-1314146, 1314149)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: Dichlorodifluoromethane

Batch #: B201381AA (Sample number(s): 1314143, 1314150, 1314155, 1314159-1314160 UNSPK: 1314155)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Dichlorodifluoromethane, 1,1,2,2-Tetrachloroethane, Acetone, 2-Butanone, t-Butyl alcohol

Batch #: R201362AA (Sample number(s): 1314162)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: Bromomethane

SW-846 8270D, GC/MS Semivolatiles

Sample #s: 1314144

Reporting limits were raised due to interference from the sample matrix.

Sample #s: 1314145, 1314146, 1314162, 1314163

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 20135SLA026 (Sample number(s): 1314143-1314144)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314144

Batch #: 20135SLB026 (Sample number(s): 1314149-1314150, 1314155, 1314159-1314160, 1314164 UNSPK: 1314155)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Acenaphthene, Pyrene, Hexachlorocyclopentadiene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(g,h,i)perylene, Carbazole, Benzidine

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Benzidine

Batch #: 20139SLA026 (Sample number(s): 1314145-1314146, 1314162-1314163)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1314145

SW-846 8270D SIM, GC/MS Semivolatiles

Sample #s: 1314143, 1314144, 1314145, 1314146, 1314149, 1314150, 1314155, 1314159, 1314160

Reporting limits were raised due to interference from the sample matrix.

Batch #: 20135SLC026 (Sample number(s): 1314143-1314144, 1314146)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314144

Batch #: 20135SLD026 (Sample number(s): 1314149-1314150, 1314155, 1314159-1314160, 1314162 UNSPK: 1314155)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314149

SW-846 8081B, Pesticides

Sample #s: 1314143, 1314144, 1314146, 1314149, 1314150, 1314155, 1314159, 1314160, 1314162

For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Reporting limits were raised due to interference from the sample matrix.

Sample #s: 1314145

For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Environmental

Reporting limits were raised due to interference from the sample matrix. The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

Batch #: 201350016A (Sample number(s): 1314143-1314146, 1314149-1314150, 1314155, 1314159-1314160, 1314162 UNSPK: 1314155)

The recovery(ies) for the following analyte(s) in the LCS were below the acceptance window: Endrin

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Alpha Chlordane, Alpha BHC, Beta BHC, Heptachlor, Aldrin, 4,4'-Dde, 4,4'-Ddd, 4,4'-Ddt, Dieldrin, Endrin, Endosulfan I, Endosulfan Sulfate

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Gamma BHC - Lindane, Delta BHC, Endosulfan II

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314143, 1314144, 1314149, 1314150, 1314155, 1314159, 1314160, 1314162, MS, MSD

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1314145

SW-846 8082A Feb 2007 Rev 1, PCBs

Sample #s: 1314149, 1314150, 1314155

For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client.

Sample #s: 1314159, 1314160

Target analytes were detected in the method blank associated with the samples as noted on the QC Summary.

Batch #: 201350022A (Sample number(s): 1314149-1314150, 1314155, 1314159-1314160 UNSPK: 1314155)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: PCB-1016, PCB-1260

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1314155, 1314160, MSD

Batch #: 201390026A (Sample number(s): 1314143-1314146, 1314162)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1314143, 1314144, 1314145, 1314162

SW-846 8151A, Herbicides

Sample #s: 1314160

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Sample #s: 1314159

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and no target analytes were detected, the data is reported.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample #s: 1314143, 1314144, 1314145, 1314146, 1314149, 1314150, 1314155, 1314162

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201350020A (Sample number(s): 1314143-1314146, 1314149-1314150, 1314155, 1314159-1314160, 1314162 UNSPK: 1314155)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4,5-TP

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314143, 1314159, MS

EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1314166

Reporting limits were raised due to limited sample volume.

The recovery for the extraction standard(s) in the method blank are outside the QC acceptance limits as noted on the QC Summary.

Sample #s: 1314144, 1314150

The recovery for labeled compound used as extraction standards is outside of QC acceptance limits as noted on the QC Summary.

<u>Batch #: 20135005 (Sample number(s): 1314143-1314146, 1314149-1314150, 1314155, 1314159-1314160, 1314162 UNSPK: 1314155)</u>

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1314144, 1314150, Blank

Batch #: 20139002 (Sample number(s): 1314166)

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) Blank

SW-846 6020B Rev.2, July 2014, Metals

Batch #: 201351404903A (Sample number(s): 1314155, 1314159-1314162 UNSPK: 1314155 BKG: 1314155)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Arsenic, Barium, Beryllium, Chromium, Copper, Nickel, Selenium, Zinc

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Lead, Manganese

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Arsenic, Barium, Copper

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Beryllium, Cadmium, Lead

SW-846 7471B, Metals

Batch #: 201351063802 (Sample number(s): 1314155, 1314159-1314162 UNSPK: 1314155 BKG: 1314155)

Lancaster Laboratories Environmental

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Mercury

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Mercury

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Mercury

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314141

2099431

Sample Description: LB16_6-8 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 08:45

SDG#: CMS08-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	269	0.275	1.09	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.282	0.0160	0.0703	1
Trot Grioninon y		SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	11.1	0.50	0.50	1
		oss in weight of the sample after over s. The moisture result reported is on				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201351404902A 05/18/2020 19:01 Patrick J Engle Lead 10 July 2014 00159 Mercury SW-846 7471B 1 201351063801 05/14/2020 10:10 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201351404902 05/14/2020 06:00 Annamaria Kuhns 1 Hg - SW, 7471B - U4 10638 SW-846 7471B 201351063801 05/14/2020 08:15 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20136820001A 05/15/2020 10:39 Larry E Bevins %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_6-8 TCLP NVE Grab Soil

35 Commercial Street/170229024

ELLE Group #:

ELLE Sample #:

TL 1314142 2099431

Matrix: Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time:

05/13/2020 22:21 05/13/2020 08:45

SDG#:

CMS08-02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	1.15	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201391404501	05/18/2020 23:26	Elaine F Stoltzfus	1				
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201391404501	05/18/2020 23:26	Elaine F Stoltzfus	1				
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 06:55	Damary Valentin	1				
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201391404501	05/18/2020 14:30	JoElla L Rice	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1				
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20135-9169-947	05/14/2020 12:53	Craig S Pfautz	n.a.				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_8-10 Grab Soil

Submittal Date/Time: Collection Date/Time:

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314143 **ELLE Group #:** 2099431

Project Name: 35 Commercial Street/170229024 Matrix: Soil 05/13/2020 22:21 05/13/2020 08:50 SDG#: CMS08-03 Drv Dry

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-8	846 8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.077	0.006	0.021	0.91
11995	Acrolein	107-02-8	N.D.	0.005	0.10	0.91
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.021	0.91
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.91
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.91
11995	Bromoform	75-25-2	N.D.	0.005	0.010	0.91
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.91
11995	2-Butanone	78-93-3	N.D.	0.002	0.010	0.91
11995	t-Butyl alcohol	75-65-0	0.030 J	0.015	0.10	0.91
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.91
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.91
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.91
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.91
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.91
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.91
11995	Chloroethane	75-00-3	N.D.	0.001	0.005	0.91
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.91
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.91
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.91
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.91
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.91
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.91
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.91
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.91
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.91
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.91
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.91
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.91
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.91
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.91
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.010	0.91
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.91
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.91
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.91
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.91
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.005	0.91
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.91
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.91
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.91
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.91
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.91

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_8-10 Grab Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:50 SDG#: CMS08-03

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314143 **ELLE Group #:** 2099431 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	16 8260C	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	127-18-4	N.D.	0.0005	0.005	0.91
11995	Toluene	108-88-3	N.D.	0.0006	0.005	0.91
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0006	0.005	0.91
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0005	0.005	0.91
11995	Trichloroethene	79-01-6	N.D.	0.0005	0.005	0.91
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0007	0.005	0.91
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0005	0.005	0.91
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0005	0.005	0.91
11995	Vinyl Chloride	75-01-4	N.D.	0.0006	0.005	0.91
11995	Xylene (Total)	1330-20-7	N.D.	0.001	0.010	0.91
GC/MS	Semivolatiles SW-84	16 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.46	0.004	0.019	1
10726	Acenaphthylene	208-96-8	0.14	0.004	0.019	1
10726	Acetophenone	98-86-2	N.D.	0.019	0.056	1
10726	Anthracene	120-12-7	0.97	0.004	0.019	1
10726	Atrazine	1912-24-9	N.D.	0.22	0.49	1
10726	Benzaldehyde	100-52-7	N.D.	0.075	0.19	1
10726	Benzidine	92-87-5	N.D.	0.37	1.1	1
10726	Benzo(a)anthracene	56-55-3	1.9	0.007	0.019	1
10726	Benzo(a)pyrene	50-32-8	1.7	0.004	0.019	1
10726	Benzo(b)fluoranthene	205-99-2	2.5	0.004	0.019	1
10726	Benzo(g,h,i)perylene	191-24-2	1.2	0.004	0.019	1
10726	Benzo(k)fluoranthene	207-08-9	0.86	0.004	0.019	1
10726	1,1'-Biphenyl	92-52-4	0.10	0.019	0.041	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.075	0.19	1
10726	Di-n-butylphthalate	84-74-2	0.078 J	0.075	0.19	1
10726	Caprolactam	105-60-2	N.D.	0.037	0.19	1
10726	Carbazole	86-74-8	0.45	0.019	0.041	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.026	0.056	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.022	0.049	1
	Bis(2-chloroisopropyl) ether CAS # 2,2'-Oxybis(1-chloropropane) CAS chromatographically. The reported total of both compounds.	#108-60-1 cannot be separ				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.007	0.037	1
10726	2-Chlorophenol	95-57-8	N.D.	0.019	0.041	1
10726	Chrysene	218-01-9	1.8	0.004	0.019	1
10726	Dibenz(a,h)anthracene	53-70-3	0.33	0.007	0.019	1
10726	Dibenzofuran	132-64-9	0.46	0.019	0.041	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.019	0.056	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.019	0.041	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_8-10 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:50 SDG#: CMS08-03

35 Commercial Street/170229024 ELLE Sample #: SW 1314143 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor					
GC/MS	Semivolatiles SW-846 8	3270D	mg/kg	mg/kg	mg/kg						
10726	1,4-Dichlorobenzene	106-46-7	0.034 J	0.019	0.041	1					
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.37	1					
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.022	0.049	1					
10726	Diethylphthalate	84-66-2	N.D.	0.075	0.19	1					
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.034	0.075	1					
10726	Dimethylphthalate	131-11-3	N.D.	0.075	0.19	1					
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.26	0.56	1					
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.37	1.1	1					
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.075	0.19	1					
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.026	0.056	1					
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.026	0.056	1					
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.022	0.049	1					
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.										
10726	bis(2-Ethylhexyl)phthalate	117-81-7	0.55	0.075	0.19	1					
10726	Fluoranthene	206-44-0	4.3	0.004	0.019	1					
10726	Fluorene	86-73-7	0.59	0.004	0.019	1					
10726	Hexachlorobenzene	118-74-1	N.D.	0.007	0.019	1					
10726	Hexachlorobutadiene	87-68-3	N.D.	0.041	0.086	1					
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.22	0.56	1					
10726	Hexachloroethane	67-72-1	N.D.	0.037	0.19	1					
10726	Indeno(1,2,3-cd)pyrene	193-39-5	1.1	0.004	0.019	1					
10726	Isophorone	78-59-1	N.D.	0.019	0.041	1					
10726	2-Methylnaphthalene	91-57-6	0.43	0.004	0.037	1					
10726	2-Methylphenol	95-48-7	N.D.	0.019	0.075	1					
10726	4-Methylphenol	106-44-5	N.D.	0.019	0.056	1					
	chromatographic conditions used for sa	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.									
10726	Naphthalene	91-20-3	0.63	0.007	0.019	1					
10726	2-Nitroaniline	88-74-4	N.D.	0.019	0.056	1					
10726	Nitrobenzene	98-95-3	N.D.	0.030	0.075	1					
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.075	0.19	1					
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.026	0.056	1					
10726	N-Nitrosodiphenylamine	86-30-6	0.075	0.019	0.041	1					
	N-nitrosodiphenylamine decomposes in diphenylamine. The result reported for represents the combined total of both of	N-nitrosodiphenylamin	е								
10726	Di-n-octylphthalate	117-84-0	N.D.	0.075	0.19	1					
10726	Pentachlorophenol	87-86-5	N.D.	0.075	0.19	1					
10726	Phenanthrene	85-01-8	4.2	0.004	0.019	1					
10726	Phenol	108-95-2	N.D.	0.019	0.041	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_8-10 Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:50 SDG#: CMS08-03

Langan Eng & Env Services ELLE Sample #: SW 1314143 **ELLE Group #:** 2099431 Matrix: Soil

Dry Limit of

Dry Method

CAT No.	Analysis Name		CAS Number	Dry Resu	lt		Method Detection Limit*	Limit of Quantitation	Dilution Factor			
GC/MS	Semivolatiles	SW-846 8270I	D	mg/k	g	r	mg/kg	mg/kg				
10726	Pyrene		129-00-0	3.3		C	0.004	0.019	1			
10726	Pyridine		110-86-1	N.D.		C	0.075	0.19	1			
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.		C	0.026	0.056	1			
10726	2,4,5-Trichlorophenol		95-95-4	N.D.		C	0.034	0.075	1			
10726	2,4,6-Trichlorophenol		88-06-2	N.D.		C	0.030	0.064	1			
GC/MS	Semivolatiles	SW-846 8270I	D SIM	ug/kg	3	ι	ıg/kg	ug/kg				
12969	1,4-Dioxane		123-91-1	N.D.		7	7	19	10			
Repo	Reporting limits were raised due to interference from the sample matrix.											
Herbic	ides	SW-846 8151	A	mg/k	g	r	ng/kg	mg/kg				
10401	2,4-D		94-75-7	N.D.	D1	C	0.013	0.040	1			
10401	2,4,5-T		93-76-5	N.D.	D1	C	0.00092	0.0019	1			
10401	2,4,5-TP		93-72-1	N.D.	D1	C	0.00084	0.0019	1			
Spike Sumr	ecovery for a target analyter (s) is outside the QC accep nary. Since the recovery is not detected in the sample, t	tance limits as note high and the target	d on the QC analyte(s)									
PCBs		SW-846 8082/ Rev 1	A Feb 2007	ug/ko	3	ι	ug/kg	ug/kg				
10885	PCB-1016		12674-11-2	N.D.	D1	4	1.0	19	1			
10885	PCB-1221		11104-28-2	N.D.	D1	5	5.2	19	1			
10885	PCB-1232		11141-16-5	N.D.	D1	g	9.0	19	1			
10885	PCB-1242		53469-21-9	N.D.	D1	3	3.7	19	1			
10885	PCB-1248		12672-29-6	N.D.	D1	3	3.7	19	1			
10885	PCB-1254		11097-69-1	N.D.	D1	3	3.7	19	1			
10885	PCB-1260		11096-82-5	17	JPD2	5	5.5	19	1			
10885	Total PCBs1		1336-36-3	17	J	3	3.7	19	1			
Pestici	des	SW-846 8081I	В	mg/k	g	r	ng/kg	mg/kg				
10590	Aldrin		309-00-2	N.D.	D1	C	0.0095	0.046	50			
10590	Alpha BHC		319-84-6	N.D.	D2	C	0.0095	0.046	50			
10590	Beta BHC		319-85-7	N.D.	D2	C	0.025	0.084	50			
10590	Gamma BHC - Lindane		58-89-9	N.D.	D2	C	0.012	0.046	50			
10590	Alpha Chlordane		5103-71-9	N.D.	VD1	C	0.021	0.046	50			
10590	4,4'-Ddd		72-54-8	0.028	JD1	C	0.018	0.11	50			
10590	4,4'-Dde		72-55-9	N.D.	D2	C	0.018	0.11	50			
10590	4,4'-Ddt		50-29-3	N.D.	D2	C	0.044	0.11	50			
10590	Delta BHC		319-86-8	N.D.	D1	C	0.025	0.084	50			
10590	Dieldrin		60-57-1	N.D.	D2	C	0.018	0.11	50			
10590	Endosulfan I		959-98-8	N.D.	D2	C	0.012	0.046	50			
10590	Endosulfan II		33213-65-9	N.D.	D1	C	0.061	0.11	50			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

Dry Limit of

mg/kg

0.11

0.11

0.046

Quantitation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Factor

50

50

50

Sample Description: LB16_8-10 Grab Soil

35 Commercial Street/170229024

SW-846 8081B

For noncompliant preparation/method/calibration blanks further action is not

CAS Number

1031-07-8

72-20-8

76-44-8

Project Name:

Submittal Date/Time: 05/13/2020 22:21

ELLE Sample #: SW 1314143 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

> Dry Method

mg/kg

0.018

0.038

0.017

Detection Limit*

Collection Date/Time: 05/13/2020 08:50 SDG#: CMS08-03

Analysis Name

Endosulfan Sulfate

Endrin

Heptachlor

CAT

10590

10590

10590

Pesticides

No.

conce The re Spike Sumn	entration, unless otherwise specovery for a target analyte(sout) is outside the QC accept nary.	is ND or > 10 times the blank becified in the method or by the clients) in the Laboratory Control ance limits as noted on the QC be interference from the sample matrix				
LC/MS/		EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic		N.D.	0.62	2.1	1
14027	8:2-Fluorotelomersulfonic	acid¹ 39108-34-4	N.D.	0.62	3.1	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.21	2.1	1
	NEtFOSAA is the acronym	for N-ethyl perfluorooctanesulfonam	idoacetic Acid.			
14027	NMeFOSAA1	2355-31-9	N.D.	0.21	2.1	1
	NMeFOSAA is the acronyr	n for N-methyl perfluorooctanesulfon	amidoacetic Acid.			
14027	Perfluorobutanesulfonic ac	id¹ 375-73-5	N.D.	0.42	2.1	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.83	2.1	1
14027	Perfluorodecanesulfonic ad	cid ¹ 335-77-3	N.D.	0.21	0.62	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.21	0.62	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.21	0.62	1
14027	Perfluoroheptanesulfonic a	cid¹ 375-92-8	N.D.	0.21	0.62	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.21	0.62	1
14027	Perfluorohexanesulfonic ad	cid¹ 355-46-4	N.D.	0.21	0.62	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.21	0.62	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.21	0.62	1
14027	Perfluorooctanesulfonamic	e ¹ 754-91-6	N.D.	0.21	0.62	1
14027	Perfluorooctanesulfonic ac	id ¹ 1763-23-1	0.59 J	0.21	0.62	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.21	0.62	1
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.21	0.62	1
14027	Perfluorotetradecanoic acid	d¹ 376-06-7	N.D.	0.21	0.62	1
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.21	0.62	1
14027	Perfluoroundecanoic acid1	2058-94-8	N.D.	0.21	0.62	1
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	8.26	0.151	0.452	2
06126	Barium	7440-39-3	180	0.518	1.13	5
06127	Beryllium	7440-41-7	0.564	0.0269	0.0679	2
06128	Cadmium	7440-43-9	0.332	0.0570	0.113	2

Dry

Result

mg/kg

N.D. D1

N.D. D1

N.D. D2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314143

2099431

Sample Description: LB16_8-10 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:50 SDG#: 05/13/2020 08:50 CMS08-03

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020 2014	B Rev.2, July	mg/kg	mg/kg	mg/kg	
06131	Chromium		7440-47-3	28.9	0.174	0.452	2
02829	Trivalent Chromium soils1		16065-83-1	26.5	0.17	0.48	1
	The Trivalent Chromium re Chromium from Total Chro		by subtracting Hexa	avalent			
06133	Copper		7440-50-8	136	0.993	2.26	10
06135	Lead		7439-92-1	232	0.285	1.13	10
06137	Manganese		7439-96-5	340	1.21	2.26	10
06139	Nickel		7440-02-0	16.3	0.184	0.452	2
06141	Selenium		7782-49-2	0.456	0.148	0.452	2
06142	Silver		7440-22-4	0.115	0.0459	0.113	2
06149	Zinc		7440-66-6	502	3.03	11.3	10
		SW-846 7471	В	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.171	0.0172	0.0754	1
Wet Ch	emistry	SW-846 9012	В	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	N.D.	0.20	0.54	1
		SW-846 7196	Α	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	OLIDS)	18540-29-9	2.4	0.16	0.48	1
Wet Ch	emistry	SM 2540 G-26 %Moisture C		%	%	%	
00111	Moisture ¹		n.a.	11.6	0.50	0.50	1
	Moisture represents the lo 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_8-10 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 08:50
SDG#: 05/13/2020 08:50
CMS08-03

Langan Eng & Env Services
ELLE Sample #: SW 1314143
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record												
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor						
11995	VOCs 8260C	SW-846 8260C	1	B201381AA	05/17/2020 21:15	Joel Trout	0.91						
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:39	Essence Orden-Slocum	1						
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:39	Essence Orden-Slocum	1						
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 08:50	Client Supplied	1						
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLA026	05/18/2020 17:47	Edward C Monborne	1						
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLC026	05/18/2020 15:31	William H Saadeh	10						
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLA026	05/15/2020 00:08	Laura Duquette	1						
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLC026	05/15/2020 00:08	Laura Duquette	1						
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 03:13	Rachel Umberger	1						
10885	7 PCBs + Total Soil	SW-846 8082A Feb	1	201390026A	05/19/2020 14:54	Elizabeth E Donovan	1						
10590	NV Dort 275 Doots Coil	2007 Rev 1 SW-846 8081B	1	2042500464	05/40/2020 07:27	Didan Cabrainas	50						
	NY Part 375 Pests Soil			201350016A	05/19/2020 07:37	Dylan Schreiner							
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201390026A	05/18/2020 19:40	Bradley W VanLeuven	1						
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1						
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1						
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 15:15	Katie Renfro	1						
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1						
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:13	Patrick J Engle	2						
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 10:52	Bradley M Berlot	5						
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:03	Patrick J Engle	2						
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:13	Patrick J Engle	2						
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:13	Patrick J Engle	2						
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1						
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:06	Patrick J Engle	10						
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:06	Patrick J Engle	10						
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:06	Patrick J Engle	10						
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:03	Patrick J Engle	2						
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:03	Patrick J Engle	2						
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:13	Patrick J Engle	2						

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314143

2099431

Sample Description: LB16_8-10 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:50

SDG#: CMS08-03

Laboratory Sample Analysis Record

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:06	Patrick J Engle	10					
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:12	Damary Valentin	1					
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1					
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1					
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:37	Gregory Baldree	1					
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1					
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1					
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1					
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1					

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314144

2099431

Sample Description: LB16_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time:

05/13/2020 08:55 SDG#: CMS08-04

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 82	260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.046	0.005	0.018	0.81
11995	Acrolein	107-02-8	N.D.	0.005	0.091	0.81
11995	Acrylonitrile	107-13-1	N.D.	0.0007	0.018	0.81
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.81
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.81
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.81
11995	Bromomethane	74-83-9	N.D.	0.0006	0.005	0.81
11995	2-Butanone	78-93-3	0.005 J	0.002	0.009	0.81
11995	t-Butyl alcohol	75-65-0	0.015 J	0.014	0.091	0.81
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.007	0.81
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.81
11995	tert-Butylbenzene	98-06-6	N.D.	0.0007	0.005	0.81
11995	Carbon Disulfide	75-15-0	0.001 J	0.0005	0.005	0.81
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.81
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.81
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.81
11995	Chloroform	67-66-3	N.D.	0.0005	0.005	0.81
11995	Chloromethane	74-87-3	N.D.	0.0005	0.005	0.81
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.81
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.81
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.81
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.81
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.81
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.81
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0005	0.005	0.81
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.81
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0005	0.005	0.81
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.81
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.81
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.81
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0009	0.009	0.81
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.81
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.81
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.81
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.81
11995	Methyl Acetate	79-20-9	N.D.	0.0009	0.005	0.81
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.81
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.81
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.81
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.81
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.81

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 08:55
SDG#: CMS08-04

Langan Eng & Env Services
ELLE Sample #: SW 1314144
ELLE Group #: 2099431
Matrix: Soil

Dry Dry Method Limit of CAT Dry Dilution Quantitation **Analysis Name CAS Number Detection Limit*** Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8260C **GC/MS Volatiles** 11995 Tetrachloroethene 127-18-4 N.D. 0.0005 0.005 0.81 108-88-3 N.D. 0.005 0.81 11995 Toluene 0.0005 11995 1,1,1-Trichloroethane 71-55-6 N.D. 0.0005 0.005 0.81 11995 1,1,2-Trichloroethane 79-00-5 N.D. 0.0005 0.005 0.81 11995 Trichloroethene 79-01-6 N.D. 0.0005 0.005 0.81 Trichlorofluoromethane 11995 75-69-4 N.D. 0.0006 0.005 0.81 11995 1,2,4-Trimethylbenzene 95-63-6 N.D. 0.0005 0.005 0.81 11995 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.0005 0.005 0.81 Vinyl Chloride 75-01-4 0.005 0.81 11995 N.D. 0.0005 11995 Xylene (Total) 1330-20-7 N.D. 0.001 0.009 0.81 SW-846 8270D mg/kg mg/kg mg/kg **GC/MS Semivolatiles** 83-32-9 15 0.075 0.37 20 10726 Acenaphthene 208-96-8 0.075 20 10726 Acenaphthylene 0.56 0.37 10726 Acetophenone 98-86-2 N.D. 0.37 1.1 20 10726 Anthracene 120-12-7 29 0.075 0.37 20 10726 Atrazine 1912-24-9 N.D. 4.5 9.7 20 10726 Benzaldehyde 100-52-7 N.D. 1.5 3.7 20 10726 92-87-5 N.D. 7.5 22 20 Benzidine 10726 Benzo(a)anthracene 56-55-3 45 20 0.15 0.37 10726 Benzo(a)pyrene 50-32-8 45 0.075 0.37 20 10726 Benzo(b)fluoranthene 205-99-2 53 0.075 0.37 20 10726 Benzo(g,h,i)perylene 191-24-2 28 20 0.075 0.37 10726 Benzo(k)fluoranthene 207-08-9 23 0.075 0.37 20 10726 1,1'-Biphenyl 92-52-4 1.6 0.37 0.82 20 Butylbenzylphthalate 85-68-7 N.D. 20 10726 1.5 3.7 Di-n-butylphthalate 84-74-2 N.D. 20 10726 1.5 3.7 10726 Caprolactam 105-60-2 N.D. 0.75 3.7 20 10726 Carbazole 86-74-8 22 0.37 0.82 20 N.D. 20 10726 bis(2-Chloroethyl)ether 111-44-4 0.52 1.1 10726 bis(2-Chloroisopropyl)ether1 39638-32-9 N.D. 0.45 0.97 20 Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds. 2-Chloronaphthalene N.D. 20 10726 91-58-7 0.15 0.75 2-Chlorophenol ND 20 10726 95-57-8 0.37 0.82 218-01-9 43 20 10726 Chrysene 0.075 0.37 10726 Dibenz(a,h)anthracene 53-70-3 7.5 0.15 0.37 20 10726 Dibenzofuran 132-64-9 14 0.37 0.82 20 10726 1,2-Dichlorobenzene 95-50-1 N.D. 0.37 1.1 20 10726 1,3-Dichlorobenzene 541-73-1 0.37 0.82 20

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_3-5 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:55 SDG#: CMS08-04

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314144 2099431 **ELLE Group #:** 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	'0D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.37	0.82	20
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	2.2	7.5	20
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.45	0.97	20
10726	Diethylphthalate	84-66-2	N.D.	1.5	3.7	20
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.67	1.5	20
10726	Dimethylphthalate	131-11-3	N.D.	1.5	3.7	20
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	5.2	11	20
10726	2,4-Dinitrophenol	51-28-5	N.D.	7.5	22	20
10726	2,4-Dinitrotoluene	121-14-2	N.D.	1.5	3.7	20
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.52	1.1	20
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.52	1.1	20
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.45	0.97	20
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	1.5	3.7	20
10726	Fluoranthene	206-44-0	140	0.75	3.7	200
10726	Fluorene	86-73-7	20	0.075	0.37	20
10726	Hexachlorobenzene	118-74-1	N.D.	0.15	0.37	20
10726	Hexachlorobutadiene	87-68-3	N.D.	0.82	1.7	20
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	4.5	11	20
10726	Hexachloroethane	67-72-1	N.D.	0.75	3.7	20
10726	Indeno(1,2,3-cd)pyrene	193-39-5	26	0.075	0.37	20
10726	Isophorone	78-59-1	N.D.	0.37	0.82	20
10726	2-Methylnaphthalene	91-57-6	5.3	0.075	0.75	20
10726	2-Methylphenol	95-48-7	N.D.	0.37	1.5	20
10726	4-Methylphenol	106-44-5	N.D.	0.37	1.1	20
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The resed total of both comp	ult reported			
10726	Naphthalene	91-20-3	11	0.15	0.37	20
10726	2-Nitroaniline	88-74-4	N.D.	0.37	1.1	20
10726	Nitrobenzene	98-95-3	N.D.	0.60	1.5	20
10726	N-Nitrosodimethylamine	62-75-9	N.D.	1.5	3.7	20
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.52	1.1	20
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.37	0.82	20
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-represents the combined total of both com	nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	1.5	3.7	20
10726	Pentachlorophenol	87-86-5	N.D.	1.5	3.7	20
10726	Phenanthrene	85-01-8	160	0.75	3.7	200
10726	Phenol	108-95-2	N.D.	0.37	0.82	20

^{*=}This limit was used in the evaluation of the final result

Dry Limit of

Quantitation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Factor

Sample Description: LB16_3-5 Grab Soil

CAS Number

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:55 SDG#: CMS08-04

Analysis Name

CAT

No.

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314144 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

Dry Method

Detection Limit*

GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	100	0.75	3.7	200
10726	Pyridine	110-86-1	N.D.	1.5	3.7	20
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.52	1.1	20
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.67	1.5	20
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.60	1.3	20
Repo	rting limits were raised due	to interference from the sample matr	ix.			
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	7	19	10
Repo	rting limits were raised due	to interference from the sample matr	ix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.013	0.040	1
10401	2,4,5-T	93-76-5	N.D. D2	0.00091	0.0019	1
10401	2,4,5-TP	93-72-1	N.D. D1	0.00083	0.0019	1
Spike Sumr	(s) is outside the QC accep	(s) in the Laboratory Control tance limits as noted on the QC high and the target analyte(s) the data is reported.				
PCBs		SW-846 8082A Feb 2007 Rev 1	ug/kg	ug/kg	ug/kg	
10885	PCB-1016	12674-11-2	N.D. D1	4.0	19	1
10885	PCB-1221	11104-28-2	N.D. D1	5.1	19	1
10885	PCB-1232	11141-16-5	N.D. D1	8.9	19	1
10885	PCB-1242	53469-21-9	N.D. D1	3.7	19	1
10885	PCB-1248	12672-29-6	N.D. D1	3.7	19	1
10885	PCB-1254	11097-69-1	N.D. D1	3.7	19	1
10885	PCB-1260	11096-82-5	20 PD1	5.4	19	1
10885	Total PCBs1	1336-36-3	20	3.7	19	1
5		CW 04C 0004D	mg/kg	mg/kg	mg/kg	
Pestici 10590		SW-846 8081B 309-00-2	N.D. D1	0.0038	0.018	20
10590	Aldrin Alpha BHC	309-00-2 319-84-6	N.D. DI N.D. D2	0.0038	0.018	20
10590	Beta BHC	319-85-7	N.D. D2 N.D. D2	0.0038	0.018	20
10590	Gamma BHC - Lindane	58-89-9	N.D. D2	0.0047	0.033	20
10590	Alpha Chlordane	5103-71-9	N.D. VD1	0.0052	0.018	20
10590	4,4'-Ddd	72-54-8	N.D. D1	0.0032	0.044	20
10590	4,4'-Ddd 4,4'-Dde	72-54-6 72-55-9	N.D. D2	0.0073	0.044	20
10590	4,4'-Ddt	50-29-3	N.D. D2	0.0073	0.044	20
10590	Delta BHC	319-86-8	N.D. D1	0.010	0.033	20
10590	Dieldrin	60-57-1	N.D. D2	0.0073	0.044	20
10590	Endosulfan I	959-98-8	N.D. D2	0.0073	0.018	20
10000		000 00 0	02	0.0010	0.010	

Dry

Result

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_3-5 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:55 SDG#: CMS08-04

35 Commercial Street/170229024 ELLE Sample #: SW 1314144 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pesticides S		SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Endosulfan II	33213-65-9	N.D. D2	0.024	0.044	20
10590	Endosulfan Sulfate	1031-07-8	N.D. D1	0.0073	0.044	20
10590	Endrin	72-20-8	N.D. D1	0.015	0.044	20
10590	Heptachlor	76-44-8	N.D. D2	0.0069	0.018	20
requi conce The r Spike Sumi	red if the associated sample is entration, unless otherwise sp recovery for a target analyte(s e(s) is outside the QC accepta mary.	ecified in the method or by the clie	ent.			
LC/MS	, me miocomanocae	EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g	
4 4007	0.0 []	-1-11 07040 07.0	ND	0.04	0.4	4

LC/MS	MS Miscellaneous EPA 537/ Modified	′ Version 1.1 เ	ng/g	ng/g	ng/g				
14027	6:2-Fluorotelomersulfonic acid ¹	- 27619-97-2	N.D.	0.64	2.1	1			
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.64	3.2	1			
14027	NEtFOSAA1	2991-50-6	N.D.	0.21	2.1	1			
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	amidoacetic Acid.						
14027	NMeFOSAA1	2355-31-9	N.D.	0.21	2.1	1			
	NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.								
14027	Perfluorobutanesulfonic acid¹	375-73-5	N.D.	0.42	2.1	1			
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.85	2.1	1			
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.21	0.64	1			
14027	Perfluorodecanoic acid ¹	335-76-2	N.D.	0.21	0.64	1			
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.21	0.64	1			
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.21	0.64	1			
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.21	0.64	1			
14027	Perfluorohexanesulfonic acid ¹	355-46-4	N.D.	0.21	0.64	1			
14027	Perfluorohexanoic acid ¹	307-24-4	N.D.	0.21	0.64	1			
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.21	0.64	1			
14027	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.21	0.64	1			
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.21	0.64	1			
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.21	0.64	1			
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.21	0.64	1			
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.21	0.64	1			
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.21	0.64	1			
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.21	0.64	1			
	recovery for labeled compound used as explicitly of OC appendicular limits as nated a								

is outside of QC acceptance limits as noted on the QC Summary.

Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	6.28	0.135	0.404	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314144

2099431

Sample Description: LB16_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS08-04

05/13/2020 22:21 05/13/2020 08:55

CAT No.	Analysis Name	CASI	Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev 2014	v.2, July	mg/kg	mg/kg	mg/kg	
06126	Barium	7440-3	39-3	44.6	0.185	0.404	2
06127	Beryllium	7440-4	41-7	0.824	0.0241	0.0607	2
06128	Cadmium	7440-4	43-9	0.475	0.0510	0.101	2
06131	Chromium	7440-4	47-3	11.5	0.156	0.404	2
02829	Trivalent Chromium soils1	16065	-83-1	10.4	0.16	0.47	1
	The Trivalent Chromium re Chromium from Total Chro		racting Hexa	valent			
06133	Copper	7440-5	50-8	25.9	0.178	0.404	2
06135	Lead	7439-9	92-1	41.5	0.0510	0.202	2
06137	Manganese	7439-9	96-5	116	1.08	2.02	10
06139	Nickel	7440-0	02-0	15.0	0.165	0.404	2
06141	Selenium	7782-4	49-2	0.311 J	0.132	0.404	2
06142	Silver	7440-2	22-4	N.D.	0.0411	0.101	2
06149	Zinc	7440-6	66-6	65.1	0.542	2.02	2
		SW-846 7471B		mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-9	97-6	0.0504 J	0.0160	0.0701	1
Wet Ch	emistry	SW-846 9012B		mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-	-5	N.D.	0.20	0.55	1
		SW-846 7196A		mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	DLIDS) 18540	-29-9	1.1	0.16	0.47	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc		%	%	%	
00111	Moisture ¹	n.a.		10.9	0.50	0.50	1
	Moisture represents the lo 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 08:55
SDG#: 05/13/2020 08:55
CMS08-04

Langan Eng & Env Services
ELLE Sample #: SW 1314144
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	VOCs 8260C	SW-846 8260C	1	B201361AA	05/15/2020 18:06	Linda C Pape	0.81			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:39	Essence Orden-Slocum	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:39	Essence Orden-Slocum	1			
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 08:55	Client Supplied	1			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLA026	05/18/2020 18:11	Edward C Monborne	20			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLA026	05/18/2020 18:35	Edward C Monborne	200			
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLC026	05/18/2020 16:02	William H Saadeh	10			
0813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLA026	05/15/2020 00:08	Laura Duquette	1			
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLC026	05/15/2020 00:08	Laura Duquette	1			
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 05:26	Rachel Umberger	1			
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201390026A	05/19/2020 15:05	Elizabeth E Donovan	1			
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 08:06	Dylan Schreiner	20			
0497	PCB Microwave Soil Extraction	SW-846 3546	2	201390026A	05/18/2020 19:40	Bradley W VanLeuven	1			
0496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1			
4181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1			
4027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 15:24	Katie Renfro	1			
4090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1			
6125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:08	Patrick J Engle	2			
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
6131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
)2829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1			
6133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
6135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2			
6137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:15	Patrick J Engle	10			
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:08	Patrick J Engle	2			
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:08	Patrick J Engle	2			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 08:55 SDG#: 05/13/2020 08:55

Langan Eng & Env Services
ELLE Sample #: SW 1314144
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2					
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:15	Patrick J Engle	2					
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:18	Damary Valentin	1					
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1					
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1					
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:38	Gregory Baldree	1					
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1					
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1					
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1					
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1					

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314145

2099431

Sample Description: **LB16_15-17 Grab Soil**

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: SDG#: CMS08-05

05/13/2020 09:00

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.084	0.007	0.024	1
11995	Acrolein	107-02-8	N.D.	0.006	0.12	1
11995	Acrylonitrile	107-13-1	N.D.	0.0009	0.024	1
11995	Benzene	71-43-2	N.D.	0.0006	0.006	1
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.006	1
11995	Bromoform	75-25-2	N.D.	0.006	0.012	1
11995	Bromomethane	74-83-9	N.D.	0.0008	0.006	1
11995	2-Butanone	78-93-3	0.006 J	0.002	0.012	1
11995	t-Butyl alcohol	75-65-0	N.D.	0.018	0.12	1
11995	n-Butylbenzene	104-51-8	N.D.	0.004	0.009	1
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.006	1
11995	tert-Butylbenzene	98-06-6	N.D.	0.0009	0.006	1
11995	Carbon Disulfide	75-15-0	0.004 J	0.0007	0.006	1
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0006	0.006	1
11995	Chlorobenzene	108-90-7	N.D.	0.0006	0.006	1
11995	Chloroethane	75-00-3	N.D.	0.001	0.006	1
11995	Chloroform	67-66-3	N.D.	0.0007	0.006	1
11995	Chloromethane	74-87-3	N.D.	0.0007	0.006	1
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0006	0.006	1
11995	Dibromochloromethane	124-48-1	N.D.	0.0006	0.006	1
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.006	1
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.006	1
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.006	1
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.006	1
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0007	0.006	1
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0006	0.006	1
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0007	0.006	1
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0006	0.006	1
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0006	0.006	1
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0006	0.006	1
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.012	1
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0006	0.006	1
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.006	1
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0006	0.006	1
11995	Ethylbenzene	100-41-4	N.D.	0.0005	0.006	1
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.006	1
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0006	0.006	1
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.006	1
11995	n-Propylbenzene	103-65-1	N.D.	0.0005	0.006	1
11995	Styrene	100-42-5	N.D.	0.0005	0.006	1
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0005	0.006	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_15-17 Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:00 SDG#: CMS08-05

Langan Eng & Env Services **ELLE Sample #:** SW 1314145 **ELLE Group #:** 2099431 Matrix: Soil

Dry Dry Method Limit of CAT Dry Dilution **Detection Limit* Analysis Name CAS Number** Quantitation Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8260C **GC/MS Volatiles** 11995 Tetrachloroethene 127-18-4 N.D. 0.0006 0.006 108-88-3 0.006 11995 Toluene N.D. 0.0007 11995 1,1,1-Trichloroethane 71-55-6 N.D. 0.0007 0.006 11995 1,1,2-Trichloroethane 79-00-5 N.D. 0.0006 0.006 Trichloroethene 79-01-6 N.D. 0.006 11995 0.0006 11995 Trichlorofluoromethane 75-69-4 N.D. 0.0008 0.006 11995 1,2,4-Trimethylbenzene 95-63-6 N.D. 0.0006 0.006 11995 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.0006 0.006 Vinyl Chloride 75-01-4 0.006 11995 N.D. 0.0007 11995 Xylene (Total) 1330-20-7 N.D. 0.002 0.012 SW-846 8270D mg/kg mg/kg mg/kg **GC/MS Semivolatiles** 83-32-9 0.017 J 0.020 10726 Acenaphthene 0.004 1 208-96-8 0.005 J 0.020 10726 Acenaphthylene 0.004 1 10726 Acetophenone 98-86-2 0.082 0.020 0.059 1 10726 Anthracene 120-12-7 0.030 0.004 0.020 10726 Atrazine 1912-24-9 N.D. 0.23 0.51 10726 Benzaldehyde 100-52-7 0.68 0.078 0.20 10726 Benzidine 92-87-5 N.D. 0.39 1.2 10726 Benzo(a)anthracene 0.020 56-55-3 0.062 0.008 10726 Benzo(a)pyrene 50-32-8 0.059 0.004 0.020 10726 Benzo(b)fluoranthene 205-99-2 0.066 0.004 0.020 10726 Benzo(g,h,i)perylene 191-24-2 0.047 0.020 0.004 10726 Benzo(k)fluoranthene 207-08-9 0.034 0.004 0.020 10726 1,1'-Biphenyl 92-52-4 N.D. 0.020 0.043 Butylbenzylphthalate 85-68-7 N.D. 0.078 0.20 10726 Di-n-butylphthalate 84-74-2 10726 N.D. 0.078 0.20 10726 Caprolactam 105-60-2 N.D. 0.039 0.20 10726 Carbazole 86-74-8 N.D. 0.020 0.043 0.059 10726 bis(2-Chloroethyl)ether 111-44-4 N.D. 0.027 10726 bis(2-Chloroisopropyl)ether1 39638-32-9 N.D. 0.023 0.051 Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds. 2-Chloronaphthalene 0.039 10726 91-58-7 N.D. 0.008 1 2-Chlorophenol ΝD 10726 95-57-8 0.020 0.043 218-01-9 0.065 10726 Chrysene 0.004 0.020 10726 Dibenz(a,h)anthracene 53-70-3 0.011 J 0.008 0.020 10726 Dibenzofuran 132-64-9 0.020 J 0.020 0.043 10726 1,2-Dichlorobenzene 95-50-1 N.D. 0.020 0.059 1 10726 1,3-Dichlorobenzene 541-73-1 N.D. 0.020 0.043 1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: **LB16_15-17 Grab Soil**

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:00 SDG#: CMS08-05

35 Commercial Street/170229024 ELLE Sample #: SW 1314145 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846 82	70D	mg/kg	mg/kg	mg/kg			
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.020	0.043	1		
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.39	1		
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.023	0.051	1		
10726	Diethylphthalate	84-66-2	N.D.	0.078	0.20	1		
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.035	0.078	1		
10726	Dimethylphthalate	131-11-3	N.D.	0.078	0.20	1		
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.27	0.59	1		
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.39	1.2	1		
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.078	0.20	1		
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.027	0.059	1		
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.027	0.059	1		
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.023	0.051	1		
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.							
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.078	0.20	1		
10726	Fluoranthene	206-44-0	0.12	0.004	0.020	1		
10726	Fluorene	86-73-7	0.020	0.004	0.020	1		
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.020	1		
10726	Hexachlorobutadiene	87-68-3	N.D.	0.043	0.090	1		
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.23	0.59	1		
10726	Hexachloroethane	67-72-1	N.D.	0.039	0.20	1		
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.040	0.004	0.020	1		
10726	Isophorone	78-59-1	N.D.	0.020	0.043	1		
10726	2-Methylnaphthalene	91-57-6	0.007 J	0.004	0.039	1		
10726	2-Methylphenol	95-48-7	N.D.	0.020	0.078	1		
10726	4-Methylphenol	106-44-5	N.D.	0.020	0.059	1		
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.							
10726	Naphthalene	91-20-3	0.018 J	0.008	0.020	1		
10726	2-Nitroaniline	88-74-4	N.D.	0.020	0.059	1		
10726	Nitrobenzene	98-95-3	N.D.	0.031	0.078	1		
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.078	0.20	1		
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.027	0.059	1		
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.020	0.043	1		
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N represents the combined total of both corresponding to the corresponding t	-nitrosodiphenylamin						
10726	Di-n-octylphthalate	117-84-0	N.D.	0.078	0.20	1		
10726	Pentachlorophenol	87-86-5	N.D.	0.078	0.20	1		
10726	Phenanthrene	85-01-8	0.12	0.004	0.020	1		
10726	Phenol	108-95-2	N.D.	0.020	0.043	1		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: **LB16_15-17 Grab Soil**

35 Commercial Street/170229024

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:00 SDG#: CMS08-05

10590

Delta BHC

ELLE Sample #: SW 1314145 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270	D	mg/kg	mg/kg	mg/kg	
10726	Pyrene		129-00-0	0.10	0.004	0.020	1
10726	Pyridine		110-86-1	N.D.	0.078	0.20	1
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.027	0.059	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.	0.035	0.078	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.	0.031	0.067	1
Spike Sumr	ecovery for a target analy e(s) is outside the QC acc mary. Since the recovery not detected in the sample	eptance limits as note is high and the target	d on the QC analyte(s)				
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane		123-91-1	11 J	8	20	10
	orting limits were raised du				-		
				mg/kg	mg/kg	mg/kg	
Herbic		SW-846 8151					4
10401	2,4-D		94-75-7	N.D. D2	0.014	0.042	1
10401	2,4,5-T		93-76-5	N.D. D1	0.00097	0.0020	1
10401	2,4,5-TP recovery for a target analy		93-72-1	N.D. D2	0.00088	0.0020	1
Spike Sumr	e(s) is outside the QC acc mary. Since the recovery not detected in the sample	eptance limits as note is high and the target	d on the QC analyte(s)				
PCBs		SW-846 8082 Rev 1	A Feb 2007	ug/kg	ug/kg	ug/kg	
10885	PCB-1016		12674-11-2	N.D. D1	4.2	20	1
10885	PCB-1221		11104-28-2	N.D. D1	5.4	20	1
10885	PCB-1232		11141-16-5	N.D. D1	9.4	20	1
10885	PCB-1242		53469-21-9	N.D. D1	3.9	20	1
10885	PCB-1248		12672-29-6	N.D. D1	3.9	20	1
10885	PCB-1254		11097-69-1	N.D. D1	3.9	20	1
10885	PCB-1260		11096-82-5	N.D. D1	5.8	20	1
10885	Total PCBs1		1336-36-3	N.D.	3.9	20	1
				_	_	_	
Pestici		SW-846 8081		mg/kg	mg/kg	mg/kg	
10590	Aldrin		309-00-2	N.D. D2	0.0010	0.0049	5
10590	Alpha BHC		319-84-6	N.D. D1	0.0010	0.0049	5
10590	Beta BHC		319-85-7	N.D. D1	0.0026	0.0089	5
10590	Gamma BHC - Lindane		58-89-9	N.D. D1	0.0012	0.0049	5
10590	Alpha Chlordane		5103-71-9	N.D. D1	0.0010	0.0049	5
10590	4,4'-Ddd		72-54-8	N.D. D2	0.0019	0.012	5
10590	4,4'-Dde		72-55-9	N.D. D1	0.0019	0.012	5
10590	4,4'-Ddt		50-29-3	N.D. D2	0.0047	0.012	5

0.0027

0.0089

N.D. D1

319-86-8

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314145

2099431

Sample Description: LB16_15-17 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 09:00
SDG#: 05/13/2020 09:00
CMS08-05

Commercial Street/170229024

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Dieldrin	60-57-1	N.D. D2	0.0019	0.012	5
10590	Endosulfan I	959-98-8	N.D. D2	0.0013	0.0049	5
10590	Endosulfan II	33213-65-9	N.D. D2	0.0065	0.012	5
10590	Endosulfan Sulfate	1031-07-8	N.D. D2	0.0019	0.012	5
10590	Endrin	72-20-8	N.D. D1	0.0040	0.012	5
10590	Heptachlor	76-44-8	N.D. D2	0.0018	0.0049	5

For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Reporting limits were raised due to interference from the sample matrix. The surrogate data is outside the QC limits due to unresolvable matrix problems evident in the sample chromatogram.

LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid ¹	27619-97-2	N.D.	0.70	2.3	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.70	3.5	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.23	2.3	1
	NEtFOSAA is the acronym for N-ethyl pe	rfluorooctanesulfona	midoacetic Acid.			
14027	NMeFOSAA1	2355-31-9	N.D.	0.23	2.3	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	onamidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.46	2.3	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.93	2.3	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.23	0.70	1
14027	Perfluorodecanoic acid ¹	335-76-2	N.D.	0.23	0.70	1
14027	Perfluorododecanoic acid ¹	307-55-1	N.D.	0.23	0.70	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.23	0.70	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.23	0.70	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.23	0.70	1
14027	Perfluorohexanoic acid ¹	307-24-4	N.D.	0.23	0.70	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.23	0.70	1
14027	Perfluorooctanesulfonamide ¹	754-91-6	N.D.	0.23	0.70	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.23	0.70	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.23	0.70	1
14027	Perfluoropentanoic acid ¹	2706-90-3	N.D.	0.23	0.70	1
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.23	0.70	1
14027	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.23	0.70	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.23	0.70	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314145

2099431

Sample Description: LB16_15-17 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: 05/13/2020 09:00 SDG#: CMS08-05

05/13/2020 22:21

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6	020B Rev.2, July	mg/kg	mg/kg	mg/kg	
06125	A == == i =	2014	7440-38-2	8.23	0.141	0.422	2
	Arsenic			8.23 34.8		0.422	
06126	Barium		7440-39-3		0.193		2
06127	Beryllium		7440-41-7	0.408	0.0251	0.0633	2
06128	Cadmium		7440-43-9	0.118	0.0532	0.106	2
06131	Chromium		7440-47-3	6.31	0.162	0.422	2
02829	Trivalent Chromium soils1		16065-83-1	6.3	0.17	0.50	1
	The Trivalent Chromium r Chromium from Total Chro		ited by subtracting Hexa	avalent			
06133	Copper		7440-50-8	24.2	0.185	0.422	2
06135	Lead		7439-92-1	51.3	0.0532	0.211	2
06137	Manganese		7439-96-5	83.7	0.226	0.422	2
06139	Nickel		7440-02-0	43.8	0.172	0.422	2
06141	Selenium		7782-49-2	0.649	0.138	0.422	2
06142	Silver		7440-22-4	0.0557 J	0.0428	0.106	2
06149	Zinc		7440-66-6	173	2.83	10.6	10
		SW-846 7	471B	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	1.99	0.0882	0.388	5
Net Ch	emistry	SW-846 9	012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	N.D.	0.21	0.59	1
		SW-846 7	196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (So	OLIDS)	18540-29-9	N.D.	0.17	0.50	1
Net Ch	emistry	SM 2540 (%Moistur		%	%	%	
00111	Moisture ¹		n.a.	15.4	0.50	0.50	1
	Moisture represents the lo 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_15-17 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 09:00
SDG#: 05/13/2020 09:00
CMS08-05

Langan Eng & Env Services
ELLE Sample #: SW 1314145
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	VOCs 8260C	SW-846 8260C	1	B201361AA	05/15/2020 18:28	Linda C Pape	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1		
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 09:00	Client Supplied	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 13:27	Edward C Monborne	1		
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20139SLD026	05/19/2020 14:58	Joseph M Gambler	10		
10813	BNA Soil Microwave APP IX	SW-846 3546	2	20139SLA026	05/19/2020 00:42	Laura Duquette	1		
10811	BNA Soil Microwave SIM	SW-846 3546	2	20139SLD026	05/19/2020 00:42	Laura Duquette	1		
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 05:59	Rachel Umberger	1		
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201390026A	05/19/2020 15:15	Elizabeth E Donovan	1		
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 08:34	Dylan Schreiner	5		
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201390026A	05/18/2020 19:40	Bradley W VanLeuven	1		
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1		
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A		201350020A	05/15/2020 00:10	Sherry L Morrow	1		
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 15:33	Katie Renfro	1		
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1		
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:18	Patrick J Engle	2		
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1		
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:12	Bradley M Berlot	2		
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:12	Bradley M Berlot	2		
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:16	Patrick J Engle	2		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314145

2099431

Sample Description: LB16_15-17 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:00

SDG#: CMS08-05

Laboratory Sample Analysis Record

		Labo	iatory c	ample Analysis	Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:20	Patrick J Engle	10
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:34	Damary Valentin	5
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:40	Gregory Baldree	1
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Dry

Matrix: Soil

Dry

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314146 2099431

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS08-06

05/13/2020 22:21 05/13/2020 09:05

CAT No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.072	0.006	0.021	0.8
11995	Acrolein	107-02-8	N.D.	0.005	0.11	0.8
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.021	0.8
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.8
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.8
11995	Bromoform	75-25-2	N.D.	0.005	0.011	0.8
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.8
11995	2-Butanone	78-93-3	0.007 J	0.002	0.011	0.8
11995	t-Butyl alcohol	75-65-0	0.044 J	0.016	0.11	0.8
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.8
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.8
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.8
11995	Carbon Disulfide	75-15-0	0.002 J	0.0006	0.005	0.8
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.8
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.8
11995	Chloroethane	75-00-3	N.D.	0.001	0.005	0.8
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.8
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.8
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.8
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.8
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.8
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.8
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.8
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.8
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.8
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.8
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.8
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.8
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.8
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.8
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.011	0.8
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.8
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.8
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.8
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.8
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.005	0.8
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.8
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.8
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.8
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.8
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.8

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_18-20 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:05 SDG#: CMS08-06

35 Commercial Street/170229024 ELLE Sample #: SW 1314146 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles S\	W-846 8260C	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	127-18-4	N.D.	0.0005	0.005	0.8
11995	Toluene	108-88-3	N.D.	0.0006	0.005	0.8
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0006	0.005	0.8
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0005	0.005	0.8
11995	Trichloroethene	79-01-6	N.D.	0.0005	0.005	0.8
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0007	0.005	0.8
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0005	0.005	0.8
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0005	0.005	0.8
11995	Vinyl Chloride	75-01-4	N.D.	0.0006	0.005	0.8
11995	Xylene (Total)	1330-20-7	N.D.	0.001	0.011	0.8
GC/MS	Semivolatiles S\	W-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	N.D.	0.004	0.022	1
10726	Acenaphthylene	208-96-8	N.D.	0.004	0.022	1
10726	Acetophenone	98-86-2	N.D.	0.022	0.066	1
10726	Anthracene	120-12-7	0.006 J	0.004	0.022	1
10726	Atrazine	1912-24-9	N.D.	0.26	0.57	1
10726	Benzaldehyde	100-52-7	N.D.	0.087	0.22	1
10726	Benzidine	92-87-5	N.D.	0.44	1.3	1
10726	Benzo(a)anthracene	56-55-3	N.D.	0.009	0.022	1
10726	Benzo(a)pyrene	50-32-8	0.006 J	0.004	0.022	1
10726	Benzo(b)fluoranthene	205-99-2	0.009 J	0.004	0.022	1
10726	Benzo(g,h,i)perylene	191-24-2	0.007 J	0.004	0.022	1
10726	Benzo(k)fluoranthene	207-08-9	0.005 J	0.004	0.022	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.022	0.048	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.087	0.22	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.087	0.22	1
10726	Caprolactam	105-60-2	N.D.	0.044	0.22	1
10726	Carbazole	86-74-8	N.D.	0.022	0.048	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.031	0.066	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.026	0.057	1
		AS #39638-32-9 and CAS #108-60-1 cannot be separated result represents the comb				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.009	0.044	1
10726	2-Chlorophenol	95-57-8	N.D.	0.022	0.048	1
10726	Chrysene	218-01-9	0.008 J	0.004	0.022	1
10726	Dibenz(a,h)anthracene	53-70-3	N.D.	0.009	0.022	1
10726	Dibenzofuran	132-64-9	N.D.	0.022	0.048	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.022	0.066	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.022	0.048	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:05 SDG#: CMS08-06

Langan Eng & Env Services ELLE Sample #: SW 1314146 **ELLE Group #:** 2099431 Matrix: Soil

Dry Dry Limit of Method CAT Dry Dilution **Analysis Name CAS Number Detection Limit*** Quantitation Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8270D GC/MS Semivolatiles 1,4-Dichlorobenzene 106-46-7 N.D. 0.022 0.048 10726 10726 3,3'-Dichlorobenzidine 91-94-1 N.D. 0.13 0.44 10726 2,4-Dichlorophenol 120-83-2 N.D. 0.026 0.057 10726 Diethylphthalate 84-66-2 N.D. 0.087 0.22 10726 2,4-Dimethylphenol 105-67-9 N.D. 0.039 0.087 10726 Dimethylphthalate 131-11-3 N.D. 0.087 0.22 10726 4,6-Dinitro-2-methylphenol 534-52-1 N.D. 0.31 0.66 2,4-Dinitrophenol 51-28-5 N.D. 0.44 10726 1.3 10726 2,4-Dinitrotoluene 121-14-2 N.D. 0.087 0.22 2,6-Dinitrotoluene 606-20-2 N.D. 0.031 0.066 10726 2,4_2,6-Dinitrotoluenes1 25321-14-6 N.D. 0.031 0.066 10726 1,2-Diphenylhydrazine 10726 122-66-7 0.026 0.057 N.D. Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds. 10726 bis(2-Ethylhexyl)phthalate 117-81-7 N.D. 0.087 0.22 Fluoranthene 206-44-0 0.017 J 0.004 0.022 10726 1 10726 Fluorene 86-73-7 N.D. 0.004 0.022 10726 Hexachlorobenzene 118-74-1 N.D. 0.009 0.022 10726 Hexachlorobutadiene 87-68-3 N.D. 0.048 0.10 Hexachlorocyclopentadiene 77-47-4 N.D. 10726 0.26 0.66 10726 Hexachloroethane 67-72-1 N.D. 0.044 0.22 193-39-5 0.007 J 0.004 0.022 10726 Indeno(1,2,3-cd)pyrene Isophorone 78-59-1 N.D. 0.048 10726 0.022 2-Methylnaphthalene 91-57-6 N.D. 0.004 0.044 10726 10726 2-Methylphenol 95-48-7 N.D. 0.022 0.087 10726 4-Methylphenol 106-44-5 N.D. 0.022 0.066 3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds. 91-20-3 0.022 10726 Naphthalene 0.009 N.D. 2-Nitroaniline 88-74-4 10726 N.D. 0.022 0.066 10726 Nitrobenzene 98-95-3 N.D. 0.035 0.087 10726 N-Nitrosodimethylamine 62-75-9 N.D. 0.087 0.22 621-64-7 0.066 10726 N-Nitroso-di-n-propylamine N.D. 0.031 10726 86-30-6 N.D. 0.022 0.048 N-Nitrosodiphenvlamine N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds. 10726 Di-n-octylphthalate 117-84-0 N.D. 0.087 0.22 1 10726 Pentachlorophenol 87-86-5 N.D. 0.087 0.22 1 10726 Phenanthrene 85-01-8 0.013 J 0.004 0.022 1 10726 Phenol 108-95-2 N.D. 0.022 0.048 1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

Dry Limit of

Quantitation

ELLE Group #:

Matrix: Soil

Dry Method

Detection Limit*

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314146

Dilution

Factor

2099431

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

CAS Number

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS08-06

Analysis Name

CAT

No.

05/13/2020 22:21 05/13/2020 09:05

GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	0.017 J	0.004	0.022	1
10726	Pyridine	110-86-1	N.D.	0.087	0.22	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.031	0.066	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.039	0.087	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.035	0.074	1
Spike Sumr	e(s) is outside the QC accep	e(s) in the Laboratory Control brance limits as noted on the QC high and the target analyte(s) the data is reported.				
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	9	22	10
Repo	rting limits were raised due	to interference from the sample matr	ix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D1	0.016	0.047	1
10401	2,4,5-T	93-76-5	N.D. D2	0.0011	0.0022	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.00098	0.0022	1
Spike Sumr	e(s) is outside the QC accep	(s) in the Laboratory Control stance limits as noted on the QC high and the target analyte(s) the data is reported.				
PCBs		SW-846 8082A Feb 2007 Rev 1	ug/kg	ug/kg	ug/kg	
PCBs 10885	PCB-1016	SW-846 8082A Feb 2007 Rev 1	ug/kg N.D. D1	ug/kg 4.7	ug/kg 22	1
	PCB-1016 PCB-1221	Rev 1				1
10885		Rev 1	N.D. D1	4.7	22	·
10885 10885	PCB-1221	Rev 1 12674-11-2 11104-28-2	N.D. D1 N.D. D1	4.7 6.0	22 22	1
10885 10885 10885	PCB-1221 PCB-1232	Rev 1 12674-11-2 11104-28-2 11141-16-5	N.D. D1 N.D. D1 N.D. D1	4.7 6.0 10	22 22 22 22	1
10885 10885 10885 10885	PCB-1221 PCB-1232 PCB-1242	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9	N.D. D1 N.D. D1 N.D. D1 N.D. D1	4.7 6.0 10 4.3	22 22 22 22 22	1 1 1
10885 10885 10885 10885 10885	PCB-1221 PCB-1232 PCB-1242 PCB-1248	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	4.7 6.0 10 4.3 4.3	22 22 22 22 22 22	1 1 1 1
10885 10885 10885 10885 10885 10885	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	4.7 6.0 10 4.3 4.3	22 22 22 22 22 22 22	1 1 1 1
10885 10885 10885 10885 10885 10885 10885	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs ¹	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D.	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3	22 22 22 22 22 22 22 22 22 22	1 1 1 1 1
10885 10885 10885 10885 10885 10885 10885 10885	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs ¹	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D.	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3	22 22 22 22 22 22 22 22 22 22	1 1 1 1 1 1
10885 10885 10885 10885 10885 10885 10885 10885 Pestici	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs ¹	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D.	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011	22 22 22 22 22 22 22 22 22 22 mg/kg 0.0054	1 1 1 1 1 1 1
10885 10885 10885 10885 10885 10885 10885 10885 Pestici 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs1	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D2 N.D. D2 N.D. D2	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011	22 22 22 22 22 22 22 22 22 22 22 0.0054 0.0054	1 1 1 1 1 1 1 1
10885 10885 10885 10885 10885 10885 10885 10885 Pestici 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs1	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D2 N.D. D1 N.D. D2 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0029	22 22 22 22 22 22 22 22 22 22 22 0.0054 0.0054 0.0098	1 1 1 1 1 1 1 1 5 5
10885 10885 10885 10885 10885 10885 10885 10885 Pestici 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ ides Aldrin Alpha BHC Beta BHC Gamma BHC - Lindane	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D1 N.D. D1 N.D. D1 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011 0.0029 0.0014	22 22 22 22 22 22 22 22 22 22 22 22 0.0054 0.0054 0.0054	1 1 1 1 1 1 1 1 5 5 5
10885 10885 10885 10885 10885 10885 10885 10885 Pestici 10590 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ ides Aldrin Alpha BHC Beta BHC Gamma BHC - Lindane Alpha Chlordane	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011 0.0029 0.0014 0.0011	22 22 22 22 22 22 22 22 22 22 22 22 22	1 1 1 1 1 1 1 1 5 5 5 5
10885 10885 10885 10885 10885 10885 10885 10885 10895 10590 10590 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ ides Aldrin Alpha BHC Beta BHC Gamma BHC - Lindane Alpha Chlordane 4,4'-Ddd	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081 B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9 72-54-8	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D1 N.D. D2 N.D. D2 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011 0.0029 0.0014 0.0011 0.0022	22 22 22 22 22 22 22 22 22 22 22 22 22	1 1 1 1 1 1 1 1 5 5 5 5 5
10885 10885 10885 10885 10885 10885 10885 10885 10895 10590 10590 10590 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ ides Aldrin Alpha BHC Beta BHC Gamma BHC - Lindane Alpha Chlordane 4,4'-Ddd 4,4'-Dde	Rev 1 12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9 72-54-8 72-55-9	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D1 N.D. D2 N.D. D2 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011 0.0029 0.0014 0.0011 0.0022 0.0022	22 22 22 22 22 22 22 22 22 22 22 22 22	1 1 1 1 1 1 1 1 5 5 5 5 5 5 5
10885 10885 10885 10885 10885 10885 10885 10885 10895 10590 10590 10590 10590 10590	PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ ides Aldrin Alpha BHC Beta BHC Gamma BHC - Lindane Alpha Chlordane 4,4'-Ddd	Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081 B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9 72-54-8	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D2 N.D. mg/kg N.D. D2 N.D. D1 N.D. D2 N.D. D2 N.D. D1	4.7 6.0 10 4.3 4.3 4.3 6.4 4.3 mg/kg 0.0011 0.0011 0.0029 0.0014 0.0011 0.0022	22 22 22 22 22 22 22 22 22 22 22 22 22	1 1 1 1 1 1 1 1 5 5 5 5 5

Dry

Result

Langan Eng & Env Services

ELLE Sample #:

Dry Limit of

mg/kg

0.013

0.0054

0.013

0.013

0.013

0.0054

Quantitation

ELLE Group #:

Matrix: Soil

Dry Method

mg/kg

0.0022

0.0014

0.0072

0.0022

0.0045

0.0038

Detection Limit*

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314146

Dilution

Factor

5

5

5

5

5

5

2099431

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

SW-846 8081B

CAS Number

60-57-1

959-98-8

33213-65-9

1031-07-8

72-20-8

76-44-8

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: Collection Date/Time: SDG#: CMS08-06

Analysis Name

Dieldrin

Endrin

Heptachlor

Endosulfan I

Endosulfan II

Endosulfan Sulfate

CAT

No.

10590

10590

10590

10590

10590

10590

Pesticides

05/13/2020 22:21 05/13/2020 09:05

require conce The re Spike Summ	ed if the associated sample intration, unless otherwise secovery for a target analyte (s) is outside the QC acceptary.	thod/calibration blanks further action is ND or > 10 times the blank pecified in the method or by the clien is) in the Laboratory Control tance limits as noted on the QC to interference from the sample matrix	t.				
LC/MS/	MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g		
14027	6:2-Fluorotelomersulfonic	acid ¹ 27619-97-2	N.D.	0.74	2.5	1	
14027	8:2-Fluorotelomersulfonic	acid ¹ 39108-34-4	N.D.	0.74	3.7	1	
14027	NEtFOSAA1	2991-50-6	N.D.	0.25	2.5	1	
	NEtFOSAA is the acronyn	n for N-ethyl perfluorooctanesulfonam	idoacetic Acid.				
14027	NMeFOSAA1	2355-31-9	N.D.	0.25	2.5	1	
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesulfon	amidoacetic Acid.				
14027	Perfluorobutanesulfonic a	cid ¹ 375-73-5	N.D.	0.50	2.5	1	
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.99	2.5	1	
14027	Perfluorodecanesulfonic a	cid ¹ 335-77-3	N.D.	0.25	0.74	1	
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.25	0.74	1	
14027	Perfluorododecanoic acid	307-55-1	N.D.	0.25	0.74	1	
14027	Perfluoroheptanesulfonic	acid¹ 375-92-8	N.D.	0.25	0.74	1	
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.25	0.74	1	
14027	Perfluorohexanesulfonic a	cid ¹ 355-46-4	N.D.	0.25	0.74	1	
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.25	0.74	1	
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.25	0.74	1	
14027	Perfluorooctanesulfonamie	de ¹ 754-91-6	N.D.	0.25	0.74	1	
14027	Perfluorooctanesulfonic ad	cid ¹ 1763-23-1	N.D.	0.25	0.74	1	
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.25	0.74	1	
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.25	0.74	1	
14027	Perfluorotetradecanoic ac	id ¹ 376-06-7	N.D.	0.25	0.74	1	
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.25	0.74	1	
14027	Perfluoroundecanoic acid	2058-94-8	N.D.	0.25	0.74	1	
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg		
06125	Arsenic	7440-38-2	7.59	0.130	0.390	2	

Dry

Result

mg/kg

N.D. D2

N.D. D2

N.D. D2

N.D. D2

N.D. D1

N.D. VD2

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314146

2099431

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time:

05/13/2020 09:05 SDG#: CMS08-06

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals			B Rev.2, July	mg/kg	mg/kg	mg/kg	
		2014					
06126	Barium		7440-39-3	37.5	0.178	0.390	2
06127	Beryllium		7440-41-7	0.793	0.0232	0.0585	2
06128	Cadmium		7440-43-9	0.0812 J	0.0491	0.0975	2
06131	Chromium		7440-47-3	28.8	0.150	0.390	2
02829	Trivalent Chromium soils	1	16065-83-1	28.8	0.18	0.55	1
	The Trivalent Chromium Chromium from Total Ch		by subtracting Hexa	avalent			
06133	Copper		7440-50-8	10.4	0.171	0.390	2
06135	Lead		7439-92-1	9.81	0.0491	0.195	2
06137	Manganese		7439-96-5	387	1.04	1.95	10
06139	Nickel		7440-02-0	25.0	0.159	0.390	2
06141	Selenium		7782-49-2	0.436	0.127	0.390	2
06142	Silver		7440-22-4	0.331	0.0396	0.0975	2
06149	Zinc		7440-66-6	62.6	0.522	1.95	2
		SW-846 7471	IB	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	N.D.	0.0187	0.0822	1
Wet Ch	nemistry	SW-846 9012	2B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	N.D.	0.23	0.64	1
		SW-846 7196	6A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (S	SOLIDS)	18540-29-9	N.D.	0.18	0.55	1
Wet Ch	nemistry	SM 2540 G-2 %Moisture C		%	%	%	
00111	Moisture ¹		n.a.	24.0	0.50	0.50	1
	Moisture represents the 103 - 105 degrees Celsiu as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 09:05
SDG#: CMS08-06

Langan Eng & Env Services
ELLE Sample #: SW 1314146
ELLE Group #: 2099431

	Laboratory Sample Analysis Record												
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor						
11995	VOCs 8260C	SW-846 8260C	1	B201361AA	05/15/2020 18:50	Linda C Pape	0.8						
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1						
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1						
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 09:05	Client Supplied	1						
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 13:51	Edward C Monborne	1						
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLC026	05/18/2020 17:04	William H Saadeh	10						
10813	BNA Soil Microwave APP IX	SW-846 3546	2	20139SLA026	05/19/2020 00:42	Laura Duquette	1						
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLC026	05/15/2020 00:08	Laura Duquette	1						
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 06:33	Rachel Umberger	1						
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201390026A	05/19/2020 15:26	Elizabeth E Donovan	1						
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 09:02	Dylan Schreiner	5						
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201390026A	05/18/2020 19:40	Bradley W VanLeuven	1						
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1						
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1						
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 15:43	Katie Renfro	1						
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1						
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:23	Patrick J Engle	2						
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1						
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:25	Patrick J Engle	10						
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:15	Bradley M Berlot	2						
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:15	Bradley M Berlot	2						
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2						

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314146

2099431

Sample Description: LB16_18-20 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 09:05

SDG#: CMS08-06

Laboratory Sample Analysis Record

		Labo	i atory t		rtooora		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:18	Patrick J Engle	2
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:22	Damary Valentin	1
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:41	Gregory Baldree	1
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314147

2099431

Sample Description: LB19_0.5-2.5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time:

05/13/2020 22:21 05/13/2020 15:20 SDG#: CMS08-07

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	21.0	0.0526	0.209	2
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0517 J	0.0171	0.0752	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	11.3	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201351404902A 05/14/2020 19:19 Patrick J Engle Lead 2 July 2014 00159 Mercury SW-846 7471B 1 201351063801 05/14/2020 10:24 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201351404902 05/14/2020 06:00 Annamaria Kuhns 1 Hg - SW, 7471B - U4 10638 SW-846 7471B 201351063801 05/14/2020 08:15 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20136820001A 05/15/2020 10:39 Larry E Bevins %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

TL 1314148

2099431

Sample Description: LB19_0.5-2.5 TCLP NVE Grab Soil

35 Commercial Street/170229024

ELLE Group #: Matrix: Soil

35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time:

Project Name:

05/13/2020 22:21 05/13/2020 15:20

SDG#: CMS08-08

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	0.473	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:00	Elaine F Stoltzfus	1				
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:00	Elaine F Stoltzfus	1				
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:03	Damary Valentin	1				
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201391404501	05/18/2020 14:30	JoElla L Rice	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1				
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20135-9169-947	05/14/2020 12:53	Craig S Pfautz	n.a.				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314149

2099431

Sample Description: LB19_6-8 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: Collection Date/Time: SDG#: CMS08-09

05/13/2020 22:21 05/13/2020 15:25

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles SW-846 8	260C	mg/kg	mg/kg	mg/kg		
11995	Acetone	67-64-1	N.D.	0.011	0.035	1.66	
11995	Acrolein	107-02-8	N.D.	0.009	0.18	1.66	
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.035	1.66	
11995	Benzene	71-43-2	N.D.	0.0009	0.009	1.66	
11995	Bromodichloromethane	75-27-4	N.D.	0.0007	0.009	1.66	
11995	Bromoform	75-25-2	N.D.	0.009	0.018	1.66	
11995	Bromomethane	74-83-9	N.D.	0.001	0.009	1.66	
11995	2-Butanone	78-93-3	N.D.	0.004	0.018	1.66	
11995	t-Butyl alcohol	75-65-0	N.D.	0.026	0.18	1.66	
11995	n-Butylbenzene	104-51-8	N.D.	0.005	0.014	1.66	
11995	sec-Butylbenzene	135-98-8	N.D.	0.004	0.009	1.66	
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.009	1.66	
11995	Carbon Disulfide	75-15-0	N.D.	0.001	0.009	1.66	
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0009	0.009	1.66	
11995	Chlorobenzene	108-90-7	N.D.	0.0009	0.009	1.66	
11995	Chloroethane	75-00-3	N.D.	0.002	0.009	1.66	
11995	Chloroform	67-66-3	N.D.	0.001	0.009	1.66	
11995	Chloromethane	74-87-3	N.D.	0.001	0.009	1.66	
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0009	0.009	1.66	
11995	Dibromochloromethane	124-48-1	N.D.	0.0009	0.009	1.66	
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0007	0.009	1.66	
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0009	0.009	1.66	
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0009	0.009	1.66	
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0007	0.009	1.66	
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.001	0.009	1.66	
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0009	0.009	1.66	
11995	1,2-Dichloroethane	107-06-2	N.D.	0.001	0.009	1.66	
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0009	0.009	1.66	
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0009	0.009	1.66	
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0009	0.009	1.66	
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.002	0.018	1.66	
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0009	0.009	1.66	
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0007	0.009	1.66	
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0009	0.009	1.66	
11995	Ethylbenzene	100-41-4	N.D.	0.0007	0.009	1.66	
11995	Methyl Acetate	79-20-9	N.D.	0.002	0.009	1.66	
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0009	0.009	1.66	
11995	Methylene Chloride	75-09-2	N.D.	0.004	0.009	1.66	
11995	n-Propylbenzene	103-65-1	N.D.	0.0007	0.009	1.66	
11995	Styrene	100-42-5	N.D.	0.0007	0.009	1.66	
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0007	0.009	1.66	

^{*=}This limit was used in the evaluation of the final result

Dry Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19 6-8 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:25 SDG#: CMS08-09

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314149 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

Dry Method

CAT No.	Analysis Name	С	AS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C		mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	12	27-18-4	N.D.	0.0009	0.009	1.66
11995	Toluene	10	08-88-3	N.D.	0.001	0.009	1.66
11995	1,1,1-Trichloroethane	7	1-55-6	N.D.	0.001	0.009	1.66
11995	1,1,2-Trichloroethane	79	9-00-5	N.D.	0.0009	0.009	1.66
11995	Trichloroethene	79	9-01-6	N.D.	0.0009	0.009	1.66
11995	Trichlorofluoromethane	75	5-69-4	N.D.	0.001	0.009	1.66
11995	1,2,4-Trimethylbenzene	95	5-63-6	N.D.	0.0009	0.009	1.66
11995	1,3,5-Trimethylbenzene	10	08-67-8	N.D.	0.0009	0.009	1.66
11995	Vinyl Chloride	75	5-01-4	N.D.	0.001	0.009	1.66
11995	Xylene (Total)	13	330-20-7	N.D.	0.002	0.018	1.66
GC/MS	Semivolatiles	SW-846 8270D		mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83	3-32-9	0.67	0.004	0.018	1
10726	Acenaphthylene	20	08-96-8	1.4	0.004	0.018	1
10726	Acetophenone	98	3-86-2	N.D.	0.018	0.053	1
10726	Anthracene	12	20-12-7	6.3	0.035	0.18	10
10726	Atrazine	19	912-24-9	N.D.	0.21	0.46	1
10726	Benzaldehyde	10	00-52-7	N.D.	0.070	0.18	1
10726	Benzidine	92	2-87-5	N.D.	0.35	1.1	1
10726	Benzo(a)anthracene	56	6-55-3	14	0.070	0.18	10
10726	Benzo(a)pyrene	50	0-32-8	9.6	0.035	0.18	10
10726	Benzo(b)fluoranthene	20	05-99-2	12	0.035	0.18	10
10726	Benzo(g,h,i)perylene	19	91-24-2	2.8	0.004	0.018	1
10726	Benzo(k)fluoranthene	20	07-08-9	2.8	0.004	0.018	1
10726	1,1'-Biphenyl	92	2-52-4	0.14	0.018	0.039	1
10726	Butylbenzylphthalate	88	5-68-7	N.D.	0.070	0.18	1
10726	Di-n-butylphthalate	84	4-74-2	N.D.	0.070	0.18	1
10726	Caprolactam	10	05-60-2	N.D.	0.035	0.18	1
10726	Carbazole	86	6-74-8	0.38	0.018	0.039	1
10726	bis(2-Chloroethyl)ether	11	11-44-4	N.D.	0.025	0.053	1
10726	bis(2-Chloroisopropyl)ethe	er ¹ 39	9638-32-9	N.D.	0.021	0.046	1
	Bis(2-chloroisopropyl) ethe 2,2'-Oxybis(1-chloropropa chromatographically. The total of both compounds.	ne) CAS #108-60-1 c	annot be separa				
10726	2-Chloronaphthalene	9.	1-58-7	0.019 J	0.007	0.035	1
10726	2-Chlorophenol	95	5-57-8	N.D.	0.018	0.039	1
10726	Chrysene	2	18-01-9	12	0.035	0.18	10
10726	Dibenz(a,h)anthracene		3-70-3	0.99	0.007	0.018	1
10726	Dibenzofuran	13	32-64-9	0.60	0.018	0.039	1
10726	1,2-Dichlorobenzene	95	5-50-1	N.D.	0.018	0.053	1
10726	1,3-Dichlorobenzene	54	1 1-73-1	N.D.	0.018	0.039	1

^{*=}This limit was used in the evaluation of the final result

Dry

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_6-8 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:25 SDG#: CMS08-09

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314149 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

Dry

CAT No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	'0D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.018	0.039	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.35	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.021	0.046	1
10726	Diethylphthalate	84-66-2	N.D.	0.070	0.18	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.032	0.070	1
10726	Dimethylphthalate	131-11-3	N.D.	0.070	0.18	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.25	0.53	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.35	1.1	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.070	0.18	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.025	0.053	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.025	0.053	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.021	0.046	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.070	0.18	1
10726	Fluoranthene	206-44-0	30	0.035	0.18	10
10726	Fluorene	86-73-7	1.0	0.004	0.018	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.007	0.018	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.039	0.081	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.21	0.53	1
10726	Hexachloroethane	67-72-1	N.D.	0.035	0.18	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	3.1	0.004	0.018	1
10726	Isophorone	78-59-1	N.D.	0.018	0.039	1
10726	2-Methylnaphthalene	91-57-6	0.25	0.004	0.035	1
10726	2-Methylphenol	95-48-7	0.025 J	0.018	0.070	1
10726	4-Methylphenol	106-44-5	0.069	0.018	0.053	1
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The resuled total of both comp	ult reported ounds.			
10726	Naphthalene	91-20-3	0.62	0.007	0.018	1
10726	2-Nitroaniline	88-74-4	N.D.	0.018	0.053	1
10726	Nitrobenzene	98-95-3	N.D.	0.028	0.070	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.070	0.18	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.025	0.053	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.018	0.039	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-n represents the combined total of both comp	nitrosodiphenylamine				
10726	Di-n-octylphthalate	117-84-0	N.D.	0.070	0.18	1
10726	Pentachlorophenol	87-86-5	N.D.	0.070	0.18	1
10726	Phenanthrene	85-01-8	21	0.035	0.18	10
10726	Phenol	108-95-2	N.D.	0.018	0.039	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19 6-8 Grab Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:25 SDG#: CMS08-09

10590

Dieldrin

Langan Eng & Env Services 35 Commercial Street/170229024 **ELLE Sample #:** SW 1314149 **ELLE Group #:** 2099431 Matrix: Soil

CAT No.	Analysis Name	CAS Nur	Dry nber Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	24	0.035	0.18	10
10726	Pyridine	110-86-1	N.D.	0.070	0.18	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.025	0.053	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.032	0.070	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.028	0.060	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	N.D.	7	18	10
Repo	rting limits were raised du	e to interference from the samp	ole matrix.			
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.013	0.038	1
10401	2,4,5-T	93-76-5	N.D. D1	0.00087	0.0018	1
10401	2,4,5-TP	93-72-1	N.D. D2	0.00080	0.0018	1
Sumn		eptance limits as noted on the G is high and the target analyte(s , the data is reported. SW-846 8082A Feb 2)	ug/kg	ug/kg	
PCBS		Rev 1	:007 ug/kg	ugrkg	ug/kg	
10885	PCB-1016	12674-11	-2 N.D. D1	3.8	18	1
10885	PCB-1221	11104-28	-2 N.D. D1	4.9	18	1
10885	PCB-1232	11141-16	-5 N.D. D1	8.5	18	1
10885	PCB-1242	53469-21	-9 N.D. D1	3.5	18	1
10885	PCB-1248	12672-29	-6 N.D. D1	3.5	18	1
10885	PCB-1254	11097-69	-1 N.D. D1	3.5	18	1
10885	PCB-1260	11096-82	-5 N.D. D1	5.2	18	1
10885	Total PCBs ¹	1336-36-	3 N.D.	3.5	18	1
requir	ed if the associated samp	nethod/calibration blanks furthe ble is ND or > 10 times the blan e specified in the method or by	k			
Pestici	des	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	N.D. D2	0.0018	0.0088	10
10590	Alpha BHC	319-84-6	N.D. D1	0.0018	0.0088	10
10590	Beta BHC	319-85-7	N.D. D1	0.0047	0.016	10
10590	Gamma BHC - Lindane	58-89-9	N.D. D2	0.0022	0.0088	10
10590	Alpha Chlordane	5103-71-	9 N.D. D1	0.0018	0.0088	10
10590	4,4'-Ddd	72-54-8	N.D. D1	0.0035	0.021	10
10590	4,4'-Dde	72-55-9	N.D. D1	0.0035	0.021	10
10590	4,4'-Ddt	50-29-3	N.D. D2	0.0084	0.021	10

^{*=}This limit was used in the evaluation of the final result

0.0035

0.021

10

N.D. D2

60-57-1

Dry Limit of

mg/kg

0.0088

0.021

0.021

0.418

Quantitation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Factor

10

10

10

Sample Description: LB19 6-8 Grab Soil

SW-846 8081B

CAS Number

959-98-8

33213-65-9

1031-07-8

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:25 SDG#: CMS08-09

Analysis Name

Endosulfan I

Endosulfan II

Endosulfan Sulfate

CAT

10590

10590

10590

06126

Barium

Pesticides

No.

Langan Eng & Env Services 35 Commercial Street/170229024 **ELLE Sample #:** SW 1314149 **ELLE Group #:** 2099431 Matrix: Soil 35 Commercial Street/170229024

Dry Method

mg/kg

0.0023

0.012

0.0035

Detection Limit*

				0.0000	0.02.		
10590	Endrin	72-20-8	N.D. D1	0.0072	0.021	10	
10590	Heptachlor	76-44-8	N.D. D2	0.0033	0.0088	10	
require conce The re Spike Summ	ed if the associated sample entration, unless otherwise secovery for a target analyte((s) is outside the QC acceptancy.	thod/calibration blanks further action is ND or > 10 times the blank pecified in the method or by the clies s) in the Laboratory Control cance limits as noted on the QC to interference from the sample matr	nt.				
LC/MS/	MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g		
14027	6:2-Fluorotelomersulfonic	acid ¹ 27619-97-2	N.D.	0.62	2.1	1	
14027	8:2-Fluorotelomersulfonic	acid ¹ 39108-34-4	N.D.	0.62	3.1	1	
14027	NEtFOSAA1	2991-50-6	N.D.	0.21	2.1	1	
	NEtFOSAA is the acronym	n for N-ethyl perfluorooctanesulfonar	nidoacetic Acid.				
14027	NMeFOSAA1	2355-31-9	N.D.	0.21	2.1	1	
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesulfor	namidoacetic Acid				
14027	Perfluorobutanesulfonic ad	cid ¹ 375-73-5	N.D.	0.41	2.1	1	
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.83	2.1	1	
14027	Perfluorodecanesulfonic a	cid¹ 335-77-3	N.D.	0.21	0.62	1	
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.21	0.62	1	
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.21	0.62	1	
14027	Perfluoroheptanesulfonic a	acid¹ 375-92-8	N.D.	0.21	0.62	1	
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.21	0.62	1	
14027	Perfluorohexanesulfonic a	cid¹ 355-46-4	N.D.	0.21	0.62	1	
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.21	0.62	1	
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.21	0.62	1	
14027	Perfluorooctanesulfonamio	de ¹ 754-91-6	N.D.	0.21	0.62	1	
14027	Perfluorooctanesulfonic ac	cid ¹ 1763-23-1	N.D.	0.21	0.62	1	
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.21	0.62	1	
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.21	0.62	1	
14027	Perfluorotetradecanoic aci	d¹ 376-06-7	N.D.	0.21	0.62	1	
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.21	0.62	1	
14027	Perfluoroundecanoic acid1	2058-94-8	N.D.	0.21	0.62	1	
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg		
06125	Arsenic	7440-38-2	4.64	0.140	0.418	2	

Dry

Result

mg/kg

N.D. D2

N.D. D1

N.D. D2

0.191

7440-39-3

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314149

2099431

Sample Description: LB19 6-8 Grab Soil

35 Commercial Street/170229024

Collection Date/Time: 05/13/2020 15:25 SDG#: CMS08-09

	33 Commercial Offices 170223024	ELLE Group #:
Project Name:	35 Commercial Street/170229024	Matrix: Soil
Submittal Date/Time:	05/13/2020 22:21	

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020 2014	B Rev.2, July	mg/kg	mg/kg	mg/kg	
06127	Beryllium		7440-41-7	0.545	0.0249	0.0627	2
06128	Cadmium		7440-43-9	0.263	0.0527	0.105	2
06131	Chromium		7440-47-3	7.83	0.161	0.418	2
02829	Trivalent Chromium soils1		16065-83-1	7.5	0.16	0.45	1
	The Trivalent Chromium re Chromium from Total Chro		by subtracting Hexa	avalent			
06133	Copper		7440-50-8	50.7	0.184	0.418	2
06135	Lead		7439-92-1	71.5	0.0527	0.209	2
06137	Manganese		7439-96-5	65.2	0.224	0.418	2
06139	Nickel		7440-02-0	10.3	0.170	0.418	2
06141	Selenium		7782-49-2	1.36	0.136	0.418	2
06142	Silver		7440-22-4	0.0519 J	0.0424	0.105	2
06149	Zinc		7440-66-6	45.5	0.560	2.09	2
		SW-846 7471	В	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.141	0.0154	0.0677	1
Wet Ch	emistry	SW-846 9012	B.	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)		57-12-5	N.D.	0.19	0.53	1
		SW-846 7196	A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	DLIDS)	18540-29-9	0.28 J	0.15	0.45	1
Wet Ch	emistry	SM 2540 G-2 %Moisture C	-	%	%	%	
00111	Moisture ¹		n.a.	6.2	0.50	0.50	1
	Moisture represents the lo 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_6-8 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:25
SDG#: CMS08-09

Langan Eng & Env Services
ELLE Sample #: SW 1314149
ELLE Group #: 2099431

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	VOCs 8260C	SW-846 8260C	1	B201361AA	05/15/2020 19:13	Linda C Pape	1.66			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1			
6176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1			
7579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 15:25	Client Supplied	1			
0726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/15/2020 19:22	William H Saadeh	1			
0726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/19/2020 13:03	Edward C Monborne	10			
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLD026	05/18/2020 19:37	William H Saadeh	10			
0813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLB026	05/15/2020 00:08	Laura Duquette	1			
0811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1			
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 07:06	Rachel Umberger	1			
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201350022A	05/15/2020 15:01	Covenant Mutuku	1			
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 09:31	Dylan Schreiner	10			
0497	PCB Microwave Soil Extraction	SW-846 3546	1	201350022A	05/14/2020 23:55	Laura Duquette	1			
0496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1			
4181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1			
4027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 15:52	Katie Renfro	1			
4090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1			
6125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
6127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:27	Patrick J Engle	2			
6128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
2829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1			
6133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
6135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
6137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2			
6139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:17	Bradley M Berlot	2			
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:17	Bradley M Berlot	2			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314149

2099431

Sample Description: LB19_6-8 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:25 SDG#: 05/13/2020 15:25 CMS08-09 Matrix: Soil

ELLE Sample #:

ELLE Group #:

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2					
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:21	Patrick J Engle	2					
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:26	Damary Valentin	1					
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1					
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1					
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:42	Gregory Baldree	1					
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1					
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1					
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1					
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:30 SDG#: CMS08-10

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314150 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.079	0.008	0.026	1.08
11995	Acrolein	107-02-8	N.D.	0.007	0.13	1.08
11995	Acrylonitrile	107-13-1	N.D.	0.001	0.026	1.08
11995	Benzene	71-43-2	N.D.	0.0007	0.007	1.08
11995	Bromodichloromethane	75-27-4	N.D.	0.0005	0.007	1.08
11995	Bromoform	75-25-2	N.D.	0.007	0.013	1.08
11995	Bromomethane	74-83-9	N.D.	0.0009	0.007	1.08
11995	2-Butanone	78-93-3	0.009 J	0.003	0.013	1.08
11995	t-Butyl alcohol	75-65-0	N.D.	0.020	0.13	1.08
11995	n-Butylbenzene	104-51-8	N.D.	0.004	0.010	1.08
11995	sec-Butylbenzene	135-98-8	N.D.	0.003	0.007	1.08
11995	tert-Butylbenzene	98-06-6	N.D.	0.001	0.007	1.08
11995	Carbon Disulfide	75-15-0	N.D.	0.0008	0.007	1.08
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0007	0.007	1.08
11995	Chlorobenzene	108-90-7	N.D.	0.0007	0.007	1.08
11995	Chloroethane	75-00-3	N.D.	0.001	0.007	1.08
11995	Chloroform	67-66-3	N.D.	0.0008	0.007	1.08
11995	Chloromethane	74-87-3	N.D.	0.0008	0.007	1.08
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0007	0.007	1.08
11995	Dibromochloromethane	124-48-1	N.D.	0.0007	0.007	1.08
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0005	0.007	1.08
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0007	0.007	1.08
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0007	0.007	1.08
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.007	1.08
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0008	0.007	1.08
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0007	0.007	1.08
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0008	0.007	1.08
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0007	0.007	1.08
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0007	0.007	1.08
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0007	0.007	1.08
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.001	0.013	1.08
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0007	0.007	1.08
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0005	0.007	1.08
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0007	0.007	1.08
11995	Ethylbenzene	100-41-4	N.D.	0.0005	0.007	1.08
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.007	1.08
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0007	0.007	1.08
11995	Methylene Chloride	75-09-2	N.D.	0.003	0.007	1.08
11995	n-Propylbenzene	103-65-1	N.D.	0.0005	0.007	1.08
11995	Styrene	100-42-5	N.D.	0.0005	0.007	1.08
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0005	0.007	1.08

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:30
SDG#: CMS08-10

Langan Eng & Env Services
ELLE Sample #: SW 1314150
ELLE Group #: 2099431

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	6 8260C	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	127-18-4	N.D.	0.0007	0.007	1.08
11995	Toluene	108-88-3	N.D.	0.0008	0.007	1.08
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0008	0.007	1.08
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0007	0.007	1.08
11995	Trichloroethene	79-01-6	N.D.	0.0007	0.007	1.08
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0009	0.007	1.08
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0007	0.007	1.08
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0007	0.007	1.08
11995	Vinyl Chloride	75-01-4	N.D.	0.0008	0.007	1.08
11995	Xylene (Total)	1330-20-7	N.D.	0.002	0.013	1.08
GC/MS	Semivolatiles SW-846	6 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.051	0.004	0.020	1
10726	Acenaphthylene	208-96-8	0.023	0.004	0.020	1
10726	Acetophenone	98-86-2	N.D.	0.020	0.060	1
10726	Anthracene	120-12-7	0.13	0.004	0.020	1
10726	Atrazine	1912-24-9	N.D.	0.24	0.52	1
10726	Benzaldehyde	100-52-7	N.D.	0.080	0.20	1
10726	Benzidine	92-87-5	N.D.	0.40	1.2	1
10726	Benzo(a)anthracene	56-55-3	0.18	0.008	0.020	1
10726	Benzo(a)pyrene	50-32-8	0.14	0.004	0.020	1
10726	Benzo(b)fluoranthene	205-99-2	0.19	0.004	0.020	1
10726	Benzo(g,h,i)perylene	191-24-2	0.084	0.004	0.020	1
10726	Benzo(k)fluoranthene	207-08-9	0.067	0.004	0.020	1
10726	1,1'-Biphenyl	92-52-4	N.D.	0.020	0.044	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.080	0.20	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.080	0.20	1
10726	Caprolactam	105-60-2	N.D.	0.040	0.20	1
10726	Carbazole	86-74-8	0.044	0.020	0.044	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.028	0.060	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.024	0.052	1
	Bis(2-chloroisopropyl) ether CAS #35 2,2'-Oxybis(1-chloropropane) CAS # chromatographically. The reported r total of both compounds.					
10726	2-Chloronaphthalene	91-58-7	N.D.	0.008	0.040	1
10726	2-Chlorophenol	95-57-8	N.D.	0.020	0.044	1
10726	Chrysene	218-01-9	0.16	0.004	0.020	1
10726	Dibenz(a,h)anthracene	53-70-3	0.022	0.008	0.020	1
10726	Dibenzofuran	132-64-9	0.046	0.020	0.044	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.020	0.060	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.020	0.044	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:30 SDG#: CMS08-10

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314150 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 82	270D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.020	0.044	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.40	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.024	0.052	1
10726	Diethylphthalate	84-66-2	N.D.	0.080	0.20	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.036	0.080	1
10726	Dimethylphthalate	131-11-3	N.D.	0.080	0.20	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.28	0.60	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.40	1.2	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.080	0.20	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.028	0.060	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.028	0.060	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.024	0.052	1
	Azobenzene cannot be distinguished fror reported for 1,2-diphenylhydrazine represompounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.080	0.20	1
10726	Fluoranthene	206-44-0	0.45	0.004	0.020	1
10726	Fluorene	86-73-7	0.060	0.004	0.020	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.020	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.044	0.093	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.24	0.60	1
10726	Hexachloroethane	67-72-1	N.D.	0.040	0.20	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.075	0.004	0.020	1
10726	Isophorone	78-59-1	N.D.	0.020	0.044	1
10726	2-Methylnaphthalene	91-57-6	0.047	0.004	0.040	1
10726	2-Methylphenol	95-48-7	N.D.	0.020	0.080	1
10726	4-Methylphenol	106-44-5	N.D.	0.020	0.060	1
	3-Methylphenol and 4-methylphenol can chromatographic conditions used for sam for 4-methylphenol represents the combi	nple analysis. The res	sult reported			
10726	Naphthalene	91-20-3	0.096	0.008	0.020	1
10726	2-Nitroaniline	88-74-4	N.D.	0.020	0.060	1
10726	Nitrobenzene	98-95-3	N.D.	0.032	0.080	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.080	0.20	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.028	0.060	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.020	0.044	1
	N-nitrosodiphenylamine decomposes in t diphenylamine. The result reported for N represents the combined total of both cou	I-nitrosodiphenylamin				
10726	Di-n-octylphthalate	117-84-0	N.D.	0.080	0.20	1
10726	Pentachlorophenol	87-86-5	N.D.	0.080	0.20	1
10726	Phenanthrene	85-01-8	0.38	0.004	0.020	1
10726	Phenol	108-95-2	N.D.	0.020	0.044	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:30
SDG#: CMS08-10

Langan Eng & Env Services
ELLE Sample #: SW 1314150
ELLE Group #: 2099431

SDG#:	CN	MS08-10					
CAT No.	Analysis Name	CAS	S Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D		mg/kg	mg/kg	mg/kg	
10726	Pyrene	129	-00-0	0.37	0.004	0.020	1
10726	Pyridine	110-	-86-1	N.D.	0.080	0.20	1
10726	1,2,4-Trichlorobenzene	120-	-82-1	N.D.	0.028	0.060	1
10726	2,4,5-Trichlorophenol	95-9	95-4	N.D.	0.036	0.080	1
10726	2,4,6-Trichlorophenol	88-0	06-2	N.D.	0.032	0.068	1
GC/MS	Semivolatiles	SW-846 8270D S	IM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123	-91-1	N.D.	8	20	10
Repo	rting limits were raised due	e to interference from the	sample matr	ix.			
Herbic	ides	SW-846 8151A		mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-7	75-7	N.D. D1	0.014	0.043	1
10401	2,4,5-T	93-7	76-5	N.D. D1	0.00098	0.0020	1
10401	2,4,5-TP	93-7	72-1	N.D. D1	0.00090	0.0020	1
Spike Sumr	ecovery for a target analyte (s) is outside the QC acce nary. Since the recovery is not detected in the sample,	ptance limits as noted on s high and the target ana	the QC				
PCBs		SW-846 8082A F Rev 1	eb 2007	ug/kg	ug/kg	ug/kg	
10885	PCB-1016		74-11-2	N.D. D1	4.3	20	1
10885	PCB-1221	111	04-28-2	N.D. D1	5.5	20	1
10885	PCB-1232	111-	41-16-5	N.D. D1	9.5	20	1
10885	PCB-1242	534	69-21-9	N.D. D1	3.9	20	1
10885	PCB-1248	126	72-29-6	N.D. D1	3.9	20	1
10885	PCB-1254	110	97-69-1	N.D. D1	3.9	20	1
10885	PCB-1260	110	96-82-5	N.D. D1	5.8	20	1
10885	Total PCBs1	133	6-36-3	N.D.	3.9	20	1
requi	oncompliant preparation/m red if the associated sampl entration, unless otherwise	e is ND or > 10 times the	e blank				
Pestici	des	SW-846 8081B		mg/kg	mg/kg	mg/kg	
10590	Aldrin	309	-00-2	N.D. D1	0.0020	0.0099	10
10590	Alpha BHC	319	-84-6	N.D. D2	0.0020	0.0099	10
10590	Beta BHC	319	-85-7	N.D. D2	0.0053	0.018	10
10590	Gamma BHC - Lindane	58-8	39-9	N.D. D1	0.0025	0.0099	10
10590	Alpha Chlordane	510	3-71-9	N.D. D1	0.0020	0.0099	10
10590	4,4'-Ddd	72-5	54-8	N.D. D1	0.0039	0.024	10
10590	4,4'-Dde	72-5	55-9	N.D. D1	0.0039	0.024	10
10590	4,4'-Ddt	50-2	29-3	N.D. D2	0.0094	0.024	10
10590	Delta BHC	319	-86-8	N.D. D1	0.0054	0.018	10
10590	Dieldrin	60-5	57-1	N.D. D2	0.0039	0.024	10

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

Dry Limit of

Quantitation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314150

Dilution

Factor

2099431

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

CAS Number

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 15:30 SDG#: CMS08-10

Analysis Name

CAT

No.

Metals

ELLE Group #: 35 Commercial Street/170229024 Matrix: Soil

Dry

Result

Dry Method

Detection Limit*

Pestici	des	SW-846 808	1B	mg/	kg		mg/kg	mg/k	ιg	
10590	Endosulfan I		959-98-8	N.D.	. D2		0.0026	0.00	99	10
10590	Endosulfan II		33213-65-9	N.D.	. D1		0.013	0.02	4	10
10590	Endosulfan Sulfate		1031-07-8	N.D.	. D1		0.0039	0.02	4	10
10590	Endrin		72-20-8	N.D.	. D1		0.0081	0.02	4	10
10590	Heptachlor		76-44-8	N.D.	. D2		0.0037	0.00	99	10
For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Reporting limits were raised due to interference from the sample matrix.										
LC/MS	/MS Miscellaneous	EPA 537 Ver Modified	rsion 1.1	ng/g	I		ng/g	ng/g		
14027	6:2-Fluorotelomersulfonic	acid¹	27619-97-2	N.D.	•		0.67	2.2		1
14027	8:2-Fluorotelomersulfonic	acid¹	39108-34-4	N.D.			0.67	3.4		1
14027	NEtFOSAA1		2991-50-6	N.D.			0.22	2.2		1
	NEtFOSAA is the acronym	n for N-ethyl perflu	uorooctanesulfonar	midoace	etic Acid.					
14027	NMeFOSAA1		2355-31-9	N.D.	-		0.22	2.2		1
	NMeFOSAA is the acrony	m for N-methyl pe	erfluorooctanesulfo	namido	acetic Acid.					
14027	Perfluorobutanesulfonic ad	cid¹	375-73-5	N.D.			0.45	2.2		1
14027	Perfluorobutanoic acid1		375-22-4	N.D.			0.90	2.2		1
14027	Perfluorodecanesulfonic a	cid ¹	335-77-3	N.D.			0.22	0.67		1
14027	Perfluorodecanoic acid1		335-76-2	N.D.			0.22	0.67		1
14027	Perfluorododecanoic acid1		307-55-1	N.D	•		0.22	0.67		1
14027	Perfluoroheptanesulfonic a	acid¹	375-92-8	N.D.			0.22	0.67		1
14027	Perfluoroheptanoic acid1		375-85-9	N.D	•		0.22	0.67		1
14027	Perfluorohexanesulfonic a	cid ¹	355-46-4	N.D.	•		0.22	0.67		1
14027	Perfluorohexanoic acid1		307-24-4	N.D.	•		0.22	0.67		1
14027	Perfluorononanoic acid1		375-95-1	N.D	•		0.22	0.67		1
14027	Perfluorooctanesulfonamio	de¹	754-91-6	N.D.	•		0.22	0.67		1
14027	Perfluorooctanesulfonic ad	cid¹	1763-23-1	N.D.	•		0.22	0.67		1
14027	Perfluorooctanoic acid1		335-67-1	N.D.	•		0.22	0.67		1
14027	Perfluoropentanoic acid1		2706-90-3	N.D.	•		0.22	0.67		1
14027	Perfluorotetradecanoic aci	d¹	376-06-7	N.D.	•		0.22	0.67		1
14027	Perfluorotridecanoic acid1		72629-94-8	N.D.	•		0.22	0.67		1
14027	Perfluoroundecanoic acid¹		2058-94-8	N.D.			0.22	0.67		1
	ecovery for labeled compou side of QC acceptance limits									

^{*=}This limit was used in the evaluation of the final result

mg/kg

mg/kg

SW-846 6020B Rev.2, July mg/kg

2014

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:30
SDG#: CMS08-10

Langan Eng & Env Services
ELLE Sample #: SW 1314150
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
00405	A ! -		4.54	0.450	0.400	0
06125 06126	Arsenic Barium	7440-38-2 7440-39-3	4.54 21.8	0.156 0.213	0.466 0.466	2 2
06126		7440-39-3 7440-41-7	0.387	0.213	0.466	2
06127	Beryllium				0.0696	
	Cadmium	7440-43-9	N.D.	0.0587		2
06131	Chromium Trivalent Chromium soils ¹	7440-47-3 16065-83-1	10.3 10.3	0.179 0.18	0.466 0.51	2
02829		esult is calculated by subtracting Hex		0.18	0.51	1
06133	Copper	7440-50-8	8.84	0.204	0.466	2
06135	Lead	7439-92-1	8.93	0.0587	0.233	2
06137	Manganese	7439-96-5	103	0.249	0.466	2
06139	Nickel	7440-02-0	10.1	0.190	0.466	2
06141	Selenium	7782-49-2	0.191 J	0.152	0.466	2
06142	Silver	7440-22-4	N.D.	0.0473	0.116	2
06149	Zinc	7440-66-6	29.5	0.624	2.33	2
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0606 J	0.0184	0.0807	1
Vet Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	N.D.	0.21	0.58	1
		SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	DLIDS) 18540-29-9	N.D.	0.17	0.51	1
Net Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	17.4	0.50	0.50	1
		ss in weight of the sample after over s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:30
SDG#: CMS08-10

Langan Eng & Env Services
ELLE Sample #: SW 1314150
ELLE Group #: 2099431

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
11995 06176	VOCs 8260C GC/MS - LL Water Prep	SW-846 8260C SW-846 5035A	1 1	B201381AA 202013556787	05/17/2020 21:37 05/14/2020 09:40	Joel Trout Essence Orden-Slocum	1.08					
	·		•									
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1					
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 15:30	Client Supplied	1					
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/15/2020 19:46	William H Saadeh	1					
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLD026	05/18/2020 20:08	William H Saadeh	10					
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLB026	05/15/2020 00:08	Laura Duquette	1					
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1					
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 07:39	Rachel Umberger	1					
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201350022A	05/15/2020 15:11	Covenant Mutuku	1					
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 09:59	Dylan Schreiner	10					
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201350022A	05/14/2020 23:55	Laura Duquette	1					
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1					
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1					
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 16:01	Katie Renfro	1					
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1					
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/18/2020 19:30	Patrick J Engle	2					
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1					
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:20	Bradley M Berlot	2					
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/19/2020 09:20	Bradley M Berlot	2					
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB19_14-16 Grab Soil

35 Commercial Street/170229024

%Moisture Calc

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 15:30
SDG#: CMS08-10

Langan Eng & Env Services
ELLE Sample #: SW 1314150
ELLE Group #: 2099431

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404902A	05/14/2020 19:22	Patrick J Engle	2					
00159	Mercury	SW-846 7471B	1	201351063801	05/14/2020 10:28	Damary Valentin	1					
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404902	05/14/2020 06:00	Annamaria Kuhns	1					
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063801	05/14/2020 08:15	Annamaria Kuhns	1					
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201B	05/15/2020 11:50	Gregory Baldree	1					
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201B	05/15/2020 08:20	Nancy J Shoop	1					
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1					
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1					
00111	Moisture	SM 2540 G-2011	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1					

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314151

2099431

Sample Description: LB20_1-3 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 05/13/2020 11:50

Collection Date/Time: SDG#: CMS08-11

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	98.2	0.244	0.970	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.116	0.0153	0.0671	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	5.4	0.50	0.50	1
		oss in weight of the sample after oven s. The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201351404902A 05/18/2020 19:32 Patrick J Engle Lead 10 July 2014 00159 Mercury SW-846 7471B 1 201351063801 05/14/2020 10:30 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201351404902 05/14/2020 06:00 Annamaria Kuhns 1 Hg - SW, 7471B - U4 10638 SW-846 7471B 201351063801 05/14/2020 08:15 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20136820001A 05/15/2020 10:39 Larry E Bevins %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_1-3 TCLP NVE Grab Soil

35 Commercial Street/170229024

Langan Eng & Env Services
ELLE Sample #: TL 1314152
ELLE Group #: 2099431

ELLE Group #:
Matrix: Soil

35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 11:50

Project Name:

SDG#: CMS08-12

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	0.247	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:04	Elaine F Stoltzfus	1				
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:04	Elaine F Stoltzfus	1				
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:05	Damary Valentin	1				
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201391404501	05/18/2020 14:30	JoElla L Rice	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1				
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20135-9169-947	05/14/2020 12:53	Craig S Pfautz	n.a.				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314153

2099431

Sample Description: LB20 6-8 Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time:	05/13/2020 22:21
Collection Date/Time:	05/13/2020 11:55
SDG#:	CMS08-13

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06135	Lead	7439-92-1	4.57	0.0624	0.248	2
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.0710 J	0.0194	0.0855	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	24.5	0.50	0.50	1
		oss in weight of the sample after oven on a street or a second or				

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** No. Factor 06135 SW-846 6020B Rev.2, 1 201351404902A 05/14/2020 19:25 Patrick J Engle Lead 2 July 2014 00159 Mercury SW-846 7471B 1 201351063801 05/14/2020 10:32 Damary Valentin 1 ICP/ICPMS-SW, 3050B - U345 14049 SW-846 3050B 201351404902 05/14/2020 06:00 Annamaria Kuhns 1 05/14/2020 08:15 10638 Hg - SW, 7471B - U4 SW-846 7471B 201351063801 Annamaria Kuhns 1 1 00111 Moisture SM 2540 G-2011 20136820001A 05/15/2020 10:39 Larry E Bevins %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_6-8 TCLP NVE Grab Soil

35 Commercial Street/170229024

ELLE Group #:

ELLE Sample #: TL 1314154 2099431

Langan Eng & Env Services

Matrix: Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 11:55 SDG#: CMS08-14

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0160	0.0300	1
07055	Lead	7439-92-1	N.D.	0.0071	0.0150	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07035	Arsenic	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:07	Elaine F Stoltzfus	1				
07055	Lead	SW-846 6010D Rev.4, July 2014	1	201391404501	05/19/2020 00:07	Elaine F Stoltzfus	1				
00259	Mercury	SW-846 7470A	1	201550571305	06/04/2020 07:07	Damary Valentin	1				
14045	ICP-WW/TL, 3010A (tot) - U345	SW-846 3010A	1	201391404501	05/18/2020 14:30	JoElla L Rice	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201550571305	06/03/2020 17:35	JoElla L Rice	1				
00947	TCLP Non-volatile Extraction	SW-846 1311	1	20135-9169-947	05/14/2020 12:53	Craig S Pfautz	n.a.				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15BKG

Langan Eng & Env Services
ELLE Sample #: SW 1314155
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.043	0.006	0.018	0.86
11995	Acrolein	107-02-8	N.D.	0.005	0.092	0.86
11995	Acrylonitrile	107-13-1	N.D.	0.0007	0.018	0.86
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.86
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.86
11995	Bromoform	75-25-2	N.D.	0.005	0.009	0.86
11995	Bromomethane	74-83-9	N.D.	0.0006	0.005	0.86
11995	2-Butanone	78-93-3	N.D.	0.002	0.009	0.86
11995	t-Butyl alcohol	75-65-0	N.D.	0.014	0.092	0.86
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.007	0.86
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.86
11995	tert-Butylbenzene	98-06-6	N.D.	0.0007	0.005	0.86
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.86
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.86
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.86
11995	Chloroethane	75-00-3	N.D.	0.0009	0.005	0.86
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.86
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.86
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.86
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.86
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.86
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.86
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.86
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.86
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.86
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.86
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.86
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.86
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.86
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.86
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0009	0.009	0.86
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.86
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.86
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.86
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.86
11995	Methyl Acetate	79-20-9	N.D.	0.0009	0.005	0.86
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.86
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.86
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.86
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.86
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.86

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: 05/13/2020 12:00 CMS08-15BKG

Langan Eng & Env Services
ELLE Sample #: SW 1314155
ELLE Group #: 2099431
Matrix: Soil

Dry Dry Method Limit of CAT Dry Dilution **Detection Limit*** Quantitation **Analysis Name CAS Number** Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8260C **GC/MS Volatiles** 11995 Tetrachloroethene 127-18-4 N.D. 0.0005 0.005 0.86 108-88-3 N.D. 0.005 11995 Toluene 0.0006 0.86 11995 1,1,1-Trichloroethane 71-55-6 N.D. 0.0006 0.005 0.86 11995 1,1,2-Trichloroethane 79-00-5 N.D. 0.0005 0.005 0.86 11995 Trichloroethene 79-01-6 N.D. 0.0005 0.005 0.86 11995 Trichlorofluoromethane 75-69-4 N.D. 0.0006 0.005 0.86 11995 1,2,4-Trimethylbenzene 95-63-6 N.D. 0.0005 0.005 0.86 11995 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.0005 0.005 0.86 Vinyl Chloride 75-01-4 0.005 0.86 11995 N.D. 0.0006 11995 Xylene (Total) 1330-20-7 N.D. 0.001 0.009 0.86 SW-846 8270D mg/kg mg/kg mg/kg **GC/MS Semivolatiles** 83-32-9 0.018 10726 Acenaphthene 1.1 0.004 1 208-96-8 0.22 0.018 10726 Acenaphthylene 0.004 1 10726 Acetophenone 98-86-2 N.D. 0.018 0.053 1 10726 Anthracene 120-12-7 2.6 0.004 0.018 0.46 10726 Atrazine 1912-24-9 N.D. 0.21 10726 Benzaldehyde 100-52-7 N.D. 0.071 0.18 1 10726 92-87-5 Benzidine N.D. 0.36 1.1 10726 5 Benzo(a)anthracene 7.6 0.089 56-55-3 0.036 10726 Benzo(a)pyrene 50-32-8 6.3 0.018 0.089 5 10726 Benzo(b)fluoranthene 205-99-2 7.7 0.018 0.089 5 10726 Benzo(g,h,i)perylene 191-24-2 2.9 0.018 0.004 10726 Benzo(k)fluoranthene 207-08-9 2.2 0.004 0.018 10726 1,1'-Biphenyl 92-52-4 0.12 0.018 0.039 Butylbenzylphthalate 85-68-7 N.D. 10726 0.071 0.18 1 Di-n-butylphthalate 84-74-2 N.D 10726 0.071 0.18 10726 Caprolactam 105-60-2 N.D. 0.036 0.18 1 10726 Carbazole 86-74-8 1.2 0.018 0.039 1 0.053 10726 bis(2-Chloroethyl)ether 111-44-4 N.D. 0.025 10726 bis(2-Chloroisopropyl)ether1 39638-32-9 N.D. 0.021 0.046 Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds. 2-Chloronaphthalene 0.036 10726 91-58-7 N.D. 0.007 1 2-Chlorophenol 10726 95-57-8 N.D. 0.018 0.039 218-01-9 0.089 5 10726 Chrysene 6.4 0.018 10726 Dibenz(a,h)anthracene 53-70-3 0.77 0.007 0.018 1 10726 Dibenzofuran 132-64-9 0.76 0.018 0.039 1 10726 1,2-Dichlorobenzene 95-50-1 N.D. 0.018 0.053 1 10726 1,3-Dichlorobenzene 541-73-1 N.D. 0.018 0.039 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

LB20_3-5 Grab Soil Sample Description:

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

05/13/2020 22:21 Submittal Date/Time: Collection Date/Time: SDG#:

Phenol

GC/MS Semivolatiles

CAT

10726

10726

10726

10726

10726 10726

10726

10726

10726

10726

10726 10726

10726 10726

10726

10726 10726

10726

10726

10726

10726

10726

10726

10726

10726 10726

10726

10726

10726

10726

10726

10726

10726

10726

No.

Langan Eng & Env	v Services
ELLE Sample #:	SW 1314155
ELLE Group #:	2099431

Matrix: Soil

0.039

Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Semivolatiles SW-84	6 8270D	mg/kg	mg/kg	mg/kg	
1,4-Dichlorobenzene	106-46-7	N.D.	0.018	0.039	1
3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.36	1
2,4-Dichlorophenol	120-83-2	N.D.	0.021	0.046	1
Diethylphthalate	84-66-2	N.D.	0.071	0.18	1
2,4-Dimethylphenol	105-67-9	N.D.	0.032	0.071	1
Dimethylphthalate	131-11-3	N.D.	0.071	0.18	1
4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.25	0.53	1
2,4-Dinitrophenol	51-28-5	N.D.	0.36	1.1	1
2,4-Dinitrotoluene	121-14-2	N.D.	0.071	0.18	1
2,6-Dinitrotoluene	606-20-2	N.D.	0.025	0.053	1
2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.025	0.053	1
1,2-Diphenylhydrazine	122-66-7	N.D.	0.021	0.046	1
reported for 1,2-diphenylhydrazine r compounds. bis(2-Ethylhexyl)phthalate	epresent the combined to	al of both N.D.	0.071	0.18	1
Fluoranthene	206-44-0	17	0.018	0.089	5
Fluorene	86-73-7	0.94	0.004	0.018	1
Hexachlorobenzene	118-74-1	N.D.	0.007	0.018	1
lexachlorobutadiene	87-68-3	N.D.	0.039	0.082	1
Hexachlorocyclopentadiene	77-47-4	N.D.	0.21	0.53	1
Hexachloroethane	67-72-1	N.D.	0.036	0.18	1
Indeno(1,2,3-cd)pyrene	193-39-5	2.7	0.004	0.018	1
Isophorone	78-59-1	N.D.	0.018	0.039	1
2-Methylnaphthalene	91-57-6	0.35	0.004	0.036	1
2-Methylphenol	95-48-7	N.D.	0.018	0.071	1
4-Methylphenol	106-44-5	0.037 J	0.018	0.053	1
3-Methylphenol and 4-methylphenol chromatographic conditions used for 4-methylphenol represents the conditions are the conditions.	r sample analysis. The resombined total of both com	sult reported pounds.	0.007	0.040	
Naphthalene	91-20-3	0.72	0.007	0.018	1
2-Nitroaniline	88-74-4	N.D.	0.018	0.053	1
Nitrobenzene	98-95-3	N.D.	0.028	0.071	1
I-Nitrosodimethylamine	62-75-9	N.D.	0.071	0.18	1
I-Nitroso-di-n-propylamine	621-64-7	N.D.	0.025	0.053	1
N-Nitrosodiphenylamine	86-30-6	N.D.	0.018	0.039	1
N-nitrosodiphenylamine decompose diphenylamine. The result reported epresents the combined total of bot	for N-nitrosodiphenylamin	е			
Di-n-octylphthalate	117-84-0	N.D.	0.071	0.18	1
Pentachlorophenol	87-86-5	N.D.	0.071	0.18	1
Phenanthrene	85-01-8	14	0.018	0.089	5
=: :					

^{*=}This limit was used in the evaluation of the final result

N.D.

108-95-2

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020 12:00

 SDG#:
 CMS08-15BKG

Langan Eng & Env Services
ELLE Sample #: SW 1314155
ELLE Group #: 2099431

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270	D	mg/kg	mg/kg	mg/kg	
10726	Pyrene		129-00-0	14	0.018	0.089	5
10726	Pyridine		110-86-1	N.D.	0.071	0.18	1
10726	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.025	0.053	1
10726	2,4,5-Trichlorophenol		95-95-4	N.D.	0.032	0.071	1
10726	2,4,6-Trichlorophenol		88-06-2	N.D.	0.028	0.060	1
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane		123-91-1	N.D.	7	18	10
Repo	rting limits were raised du	e to interference fror	n the sample matr	ix.			
Herbic	ides	SW-846 8151	A	mg/kg	mg/kg	mg/kg	
10401	2,4-D		94-75-7	N.D. D2	0.013	0.038	1
10401	2,4,5-T		93-76-5	N.D. D2	0.00087	0.0018	1
10401	2,4,5-TP		93-72-1	N.D. D2	0.00080	0.0018	1
Spike Sumr	ecovery for a target analy e(s) is outside the QC accornary. Since the recovery not detected in the sample	eptance limits as note is high and the targe	ed on the QC et analyte(s)				
PCBs		SW-846 8082 Rev 1	2A Feb 2007	ug/kg	ug/kg	ug/kg	
10885	PCB-1016		12674-11-2	N.D. D1	3.9	18	1
10885	PCB-1221		11104-28-2	N.D. D1	4.9	18	1
10885	PCB-1232		11141-16-5	N.D. D1	8.6	18	1
10885	PCB-1242		53469-21-9	N.D. D1	3.5	18	1
10885	PCB-1248		12672-29-6	N.D. D1	3.5	18	1
10885	PCB-1254		11097-69-1	N.D. D1	3.5	18	1
10885	PCB-1260		11096-82-5	N.D. D1	5.2	18	1
10885	Total PCBs ¹		1336-36-3	N.D.	3.5	18	1
requi	oncompliant preparation/r red if the associated samp entration, unless otherwise	ole is ND or > 10 time	es the blank				
Pestici	des	SW-846 8081	IB	mg/kg	mg/kg	mg/kg	
10590	Aldrin		309-00-2	N.D. D1	0.0018	0.0089	10
10590	Alpha BHC		319-84-6	N.D. D2	0.0018	0.0089	10
10590	Beta BHC		319-85-7	N.D. D1	0.0047	0.016	10
10590	Gamma BHC - Lindane		58-89-9	N.D. D2	0.0022	0.0089	10
10590	Alpha Chlordane		5103-71-9	N.D. D1	0.0018	0.0089	10
10590	4,4'-Ddd		72-54-8	N.D. D1	0.0035	0.021	10
10590	4,4'-Dde		72-55-9	N.D. D2	0.0035	0.021	10
10590	4,4'-Ddt		50-29-3	N.D. D1	0.0085	0.021	10
10590	Delta BHC		319-86-8	N.D. D2	0.0048	0.016	10
10590	Dieldrin		60-57-1	N.D. D2	0.0035	0.021	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Dilution

Factor

10

10

10

10

10

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

SW-846 8081B

For noncompliant preparation/method/calibration blanks further action is not

required if the associated sample is ND or > 10 times the blank

CAS Number

959-98-8

33213-65-9

1031-07-8

72-20-8

76-44-8

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15BKG

Analysis Name

Endosulfan I

Endosulfan II

Endrin

Heptachlor

Endosulfan Sulfate

CAT

10590

10590

10590

10590

10590

Pesticides

No.

Langan Eng & Env Services
ELLE Sample #: SW 1314155
ELLE Group #: 2099431

Matrix: Soil

Dry

Limit of

mg/kg

0.0089

0.021

0.021

0.021

0.0089

Quantitation

Dry

Method

mg/kg

0.0024

0.012

0.0035

0.0073

0.0033

Detection Limit*

3/2020 22:21 3/2020 12:00

Dry

Result

mg/kg

N.D. D2

N.D. D2

N.D. D1

N.D. D1

N.D. D2

	IS Miscellaneous					
		EPA 537 Version 1.1 Modified	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic	acid ¹ 27619-97-2	N.D.	0.60	2.0	1
14027 8	8:2-Fluorotelomersulfonic	acid ¹ 39108-34-4	N.D.	0.60	3.0	1
14027 N	NEtFOSAA1	2991-50-6	N.D.	0.20	2.0	1
1	NEtFOSAA is the acronym	n for N-ethyl perfluorooctanesulfonam	nidoacetic Acid.			
14027 N	NMeFOSAA¹	2355-31-9	N.D.	0.20	2.0	1
1	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesulfon	amidoacetic Acid.			
14027 F	Perfluorobutanesulfonic ad	cid ¹ 375-73-5	N.D.	0.40	2.0	1
14027 F	Perfluorobutanoic acid1	375-22-4	N.D.	0.80	2.0	1
14027 F	Perfluorodecanesulfonic a	cid ¹ 335-77-3	N.D.	0.20	0.60	1
14027 F	Perfluorodecanoic acid1	335-76-2	N.D.	0.20	0.60	1
14027 F	Perfluorododecanoic acid1	307-55-1	N.D.	0.20	0.60	1
14027 F	Perfluoroheptanesulfonic a	acid ¹ 375-92-8	N.D.	0.20	0.60	1
14027 F	Perfluoroheptanoic acid1	375-85-9	N.D.	0.20	0.60	1
14027 F	Perfluorohexanesulfonic a	cid ¹ 355-46-4	N.D.	0.20	0.60	1
14027 F	Perfluorohexanoic acid1	307-24-4	N.D.	0.20	0.60	1
14027 F	Perfluorononanoic acid1	375-95-1	N.D.	0.20	0.60	1
14027 F	Perfluorooctanesulfonamid	de ¹ 754-91-6	N.D.	0.20	0.60	1
14027 F	Perfluorooctanesulfonic ad	cid ¹ 1763-23-1	N.D.	0.20	0.60	1
14027 F	Perfluorooctanoic acid1	335-67-1	N.D.	0.20	0.60	1
14027 F	Perfluoropentanoic acid1	2706-90-3	N.D.	0.20	0.60	1
14027 F	Perfluorotetradecanoic aci	d¹ 376-06-7	N.D.	0.20	0.60	1
14027 F	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.20	0.60	1
14027 F	Perfluoroundecanoic acid1	2058-94-8	N.D.	0.20	0.60	1
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06125 A	Arsenic	7440-38-2	10.4	0.144	0.430	2
06126 E	Barium	7440-39-3	117	0.983	2.15	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: 05/13/2020 12:00 CMS08-15BKG

Langan Eng & Env	/ Services
ELLE Sample #:	SW 1314155
ELLE Group #:	2099431
Matrix: Soil	

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
/letals		SW-846 6020B Rev.2, Ju 2014	ıly ^{mg/kg}	mg/kg	mg/kg	
06127	Beryllium	7440-41-7	0.523	0.0256	0.0644	2
06128	Cadmium	7440-43-9	0.677	0.0541	0.107	2
6131	Chromium	7440-47-3	18.6	0.165	0.430	2
2829	Trivalent Chromium soils1	16065-83-1	18.6	0.17	0.45	1
	The Trivalent Chromium re Chromium from Total Chro	sult is calculated by subtracting I mium.	Hexavalent			
06133	Copper	7440-50-8	59.3	0.189	0.430	2
06135	Lead	7439-92-1	580	0.541	2.15	20
6137	Manganese	7439-96-5	311	1.15	2.15	10
6139	Nickel	7440-02-0	23.7	0.175	0.430	2
6141	Selenium	7782-49-2	0.688	0.140	0.430	2
6142	Silver	7440-22-4	0.133	0.0436	0.107	2
06149	Zinc	7440-66-6	249	2.88	10.7	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.292	0.0158	0.0693	1
et Ch	emistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
)5895	Total Cyanide (solid)	57-12-5	N.D.	0.19	0.53	1
		SW-846 7196A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC		N.D.	0.15	0.45	1
/et Ch	emistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	6.9	0.50	0.50	1
		ss in weight of the sample after o The moisture result reported is o				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15BKG

Langan Eng & Env Services
ELLE Sample #: SW 1314155
ELLE Group #: 2099431

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	VOCs 8260C	SW-846 8260C	1	B201381AA	05/17/2020 21:59	Joel Trout	0.86		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:40	Essence Orden-Slocum	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1		
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 12:00	Client Supplied	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/15/2020 20:10	William H Saadeh	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/18/2020 15:00	Edward C Monborne	5		
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLD026	05/18/2020 20:39	William H Saadeh	10		
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLB026	05/15/2020 00:08	Laura Duquette	1		
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1		
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 08:12	Rachel Umberger	1		
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201350022A	05/15/2020 15:21	Covenant Mutuku	1		
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 10:27	Dylan Schreiner	10		
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201350022A	05/14/2020 23:55	Laura Duquette	1		
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1		
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1		
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 16:10	Katie Renfro	1		
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1		
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:34	Patrick J Engle	2		
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:32	Bradley M Berlot	10		
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:49	Patrick J Engle	2		
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:34	Patrick J Engle	2		
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:34	Patrick J Engle	2		
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1		
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:34	Patrick J Engle	2		
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:23	Patrick J Engle	20		
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:04	Patrick J Engle	10		
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:49	Patrick J Engle	2		
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:49	Patrick J Engle	2		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15BKG

Langan Eng & Env Services

ELLE Sample #: SW 1314155 ELLE Group #: 2099431

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:34	Patrick J Engle	2		
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:32	Bradley M Berlot	10		
00159	Mercury	SW-846 7471B	1	201351063802	05/14/2020 10:44	Damary Valentin	1		
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404903	05/14/2020 06:00	Annamaria Kuhns	1		
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063802	05/14/2020 08:15	Annamaria Kuhns	1		
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:44	Gregory Baldree	1		
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1		
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1		
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1		
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 SS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: 05/13/2020 12:00 CMS08-15SS

Langan Eng & Eng	v Services
ELLE Sample #:	SW 1314156
ELLE Group #:	2099431
Matrix: Soil	

CAT No.	Analysis Name	CAS	Dry Number Result	Dry Method Detection	Dry Limit of n Limit* Quantitation	Dilution Factor
Wet Ch 00425	nemistry Hexavalent Chromium (\$	SW-846 7196A SOLIDS) 1854	mg/kg 40-29-9 36.2	mg/kg 0.15	mg/kg 0.45	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00118	Moisture ¹	n.a.	6.9	0.50	0.50	1

Sample Comments

State of New York Certification No. 10670

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1			
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 IS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: 05/13/2020 12:00 CMS08-15IS

Langan Eng & En	v Services
ELLE Sample #:	SW 1314157
ELLE Group #:	2099431
Matrix: Soil	

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Wet Ch	nemistry	SW-846 7196	6A	mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (S	SOLIDS)	18540-29-9	826	3.8	11.3	25
Wet Ch	nemistry	SM 2540 G-2 %Moisture C		%	%	%	
00118	Moisture ¹		n.a.	6.9	0.50	0.50	1

Sample Comments

State of New York Certification No. 10670

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	25			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1			
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1			

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 PDS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15PDS

Langan Eng & Env	/ Services
ELLE Sample #:	SW 1314158
ELLE Group #:	2099431
Matrix: Soil	

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Wet Cl 00425	nemistry Hexavalent Chromium	SW-846 71 9 (SOLIDS)	96A 18540-29-9	mg/kg 47.1	mg/kg 0.60	mg/kg 1.8	4
Wet Cl	nemistry	SM 2540 G %Moisture	-	%	%	%	
00118	Moisture ¹		n.a.	6.9	0.50	0.50	1

Sample Comments

State of New York Certification No. 10670

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

		Lak	oratory S	Sample Analysis	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	4
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15MS

Langan Eng & Env Services
ELLE Sample #: SW 1314159
ELLE Group #: 2099431

Matrix: Soil

No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.43	0.006	0.020	0.92
11995	Acrolein	107-02-8	0.16	0.005	0.099	0.92
11995	Acrylonitrile	107-13-1	0.078	0.0008	0.020	0.92
11995	Benzene	71-43-2	0.021	0.0005	0.005	0.92
11995	Bromodichloromethane	75-27-4	0.020	0.0004	0.005	0.92
11995	Bromoform	75-25-2	0.018	0.005	0.01	0.92
11995	Bromomethane	74-83-9	0.020	0.0007	0.005	0.92
11995	2-Butanone	78-93-3	0.22	0.002	0.01	0.92
11995	t-Butyl alcohol	75-65-0	0.25	0.015	0.099	0.92
11995	n-Butylbenzene	104-51-8	0.021	0.003	0.008	0.92
11995	sec-Butylbenzene	135-98-8	0.023	0.002	0.005	0.92
11995	tert-Butylbenzene	98-06-6	0.022	0.0008	0.005	0.92
11995	Carbon Disulfide	75-15-0	0.019	0.0006	0.005	0.92
11995	Carbon Tetrachloride	56-23-5	0.021	0.0005	0.005	0.92
11995	Chlorobenzene	108-90-7	0.021	0.0005	0.005	0.92
11995	Chloroethane	75-00-3	0.019	0.001	0.005	0.92
11995	Chloroform	67-66-3	0.021	0.0006	0.005	0.92
11995	Chloromethane	74-87-3	0.020	0.0006	0.005	0.92
11995	1,2-Dibromo-3-chloropropane	96-12-8	0.017	0.0005	0.005	0.92
11995	Dibromochloromethane	124-48-1	0.021	0.0005	0.005	0.92
11995	1,2-Dibromoethane	106-93-4	0.019	0.0004	0.005	0.92
11995	1,2-Dichlorobenzene	95-50-1	0.020	0.0005	0.005	0.92
11995	1,3-Dichlorobenzene	541-73-1	0.020	0.0005	0.005	0.92
11995	1,4-Dichlorobenzene	106-46-7	0.020	0.0004	0.005	0.92
11995	Dichlorodifluoromethane	75-71-8	0.029	0.0006	0.005	0.92
11995	1,1-Dichloroethane	75-34-3	0.020	0.0005	0.005	0.92
11995	1,2-Dichloroethane	107-06-2	0.018	0.0006	0.005	0.92
11995	1,1-Dichloroethene	75-35-4	0.021	0.0005	0.005	0.92
11995	cis-1,2-Dichloroethene	156-59-2	0.021	0.0005	0.005	0.92
11995	trans-1,2-Dichloroethene	156-60-5	0.020	0.0005	0.005	0.92
11995	1,2-Dichloroethene (Total)1	540-59-0	0.041	0.001	0.01	0.92
11995	1,2-Dichloropropane	78-87-5	0.021	0.0005	0.005	0.92
11995	cis-1,3-Dichloropropene	10061-01-5	0.019	0.0004	0.005	0.92
11995	trans-1,3-Dichloropropene	10061-02-6	0.018	0.0005	0.005	0.92
11995	Ethylbenzene	100-41-4	0.021	0.0004	0.005	0.92
11995	Methyl Acetate	79-20-9	0.016	0.001	0.005	0.92
11995	Methyl Tertiary Butyl Ether	1634-04-4	0.018	0.0005	0.005	0.92
11995	Methylene Chloride	75-09-2	0.020	0.002	0.005	0.92
11995	n-Propylbenzene	103-65-1	0.023	0.0004	0.005	0.92
11995	Styrene	100-42-5	0.019	0.0004	0.005	0.92
11995	1,1,2,2-Tetrachloroethane	79-34-5	0.021	0.0004	0.005	0.92

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: **CMS08-15MS**

Langan Eng & Env Services ELLE Sample #: SW 1314159 **ELLE Group #:** 2099431

Matrix: Soil

Dry Dry Method Limit of CAT Dry Dilution **Detection Limit*** Quantitation **Analysis Name CAS Number** Result **Factor** No. mg/kg mg/kg mg/kg SW-846 8260C **GC/MS Volatiles** 11995 Tetrachloroethene 127-18-4 0.021 0.0005 0.005 0.92 108-88-3 0.021 0.005 11995 Toluene 0.0006 0.92 11995 1,1,1-Trichloroethane 71-55-6 0.020 0.0006 0.005 0.92 11995 1,1,2-Trichloroethane 79-00-5 0.022 0.0005 0.005 0.92 Trichloroethene 11995 79-01-6 0.020 0.005 0.92 0.0005 11995 Trichlorofluoromethane 75-69-4 0.024 0.0007 0.005 0.92 11995 1,2,4-Trimethylbenzene 95-63-6 0.022 0.0005 0.005 0.92 11995 1,3,5-Trimethylbenzene 108-67-8 0.023 0.0005 0.005 0.92 Vinyl Chloride 75-01-4 0.020 0.005 0.92 11995 0.0006 11995 Xylene (Total) 1330-20-7 0.062 0.001 0.01 0.92 SW-846 8270D mg/kg mg/kg mg/kg **GC/MS Semivolatiles** 83-32-9 2.1 0.018 10726 Acenaphthene 0.004 1 208-96-8 0.018 10726 Acenaphthylene 1.7 0.004 1 10726 Acetophenone 98-86-2 1.3 0.018 0.053 1 10726 Anthracene 120-12-7 3.1 0.004 0.018 0.46 10726 Atrazine 1912-24-9 1.6 0.21 10726 Benzaldehyde 100-52-7 1.1 0.071 0.18 10726 0.68 J Benzidine 92-87-5 0.36 1.1 10726 Ε Benzo(a)anthracene 5.7 0.018 56-55-3 0.007 10726 Benzo(a)pyrene 50-32-8 5.5 F 0.004 0.018 10726 Benzo(b)fluoranthene 205-99-2 6.1 Е 0.004 0.018 10726 Benzo(g,h,i)perylene 191-24-2 0.018 4.0 0.004 10726 Benzo(k)fluoranthene 207-08-9 3.6 0.004 0.018 10726 1,1'-Biphenyl 92-52-4 1.6 0.018 0.039 Butylbenzylphthalate 85-68-7 10726 1.6 0.071 0.18 Di-n-butylphthalate 84-74-2

2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined

Bis(2-chloroisopropyl) ether CAS #39638-32-9 and

10726

10726

10726

10726

10726

Caprolactam

bis(2-Chloroethyl)ether

bis(2-Chloroisopropyl)ether1

Carbazole

0.036 0.007 1 2-Chlorophenol 10726 95-57-8 13 0.018 0.039 218-01-9 5.6 F 10726 Chrysene 0.004 0.018 10726 Dibenz(a,h)anthracene 53-70-3 2.1 0.007 0.018 10726 Dibenzofuran 132-64-9 2.0 0.018 0.039 1 10726 1,2-Dichlorobenzene 95-50-1 1.1 0.018 0.053 1 10726 1,3-Dichlorobenzene 541-73-1 0.018 0.039 1

1.7

1.6

2.4

1.2

1.2

105-60-2

86-74-8

111-44-4

39638-32-9

0.071

0.036

0.018

0.025

0.021

0.18

0.18

0.039 0.053

0.046

total of both compounds. 2-Chloronaphthalene 10726 91-58-7 1.6

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15MS

Langan Eng & En	v Services
ELLE Sample #:	SW 1314159
ELLE Group #:	2099431
Matrix: Soil	

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 8	3270D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	1.1	0.018	0.039	1
10726	3,3'-Dichlorobenzidine	91-94-1	1.3	0.11	0.36	1
10726	2,4-Dichlorophenol	120-83-2	1.5	0.021	0.046	1
10726	Diethylphthalate	84-66-2	1.5	0.071	0.18	1
10726	2,4-Dimethylphenol	105-67-9	1.2	0.032	0.071	1
10726	Dimethylphthalate	131-11-3	1.4	0.071	0.18	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	1.3	0.25	0.53	1
10726	2,4-Dinitrophenol	51-28-5	2.1	0.36	1.1	1
10726	2,4-Dinitrotoluene	121-14-2	1.6	0.071	0.18	1
10726	2,6-Dinitrotoluene	606-20-2	1.6	0.025	0.053	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	3.2	0.025	0.053	1
10726	1,2-Diphenylhydrazine	122-66-7	1.6	0.021	0.046	1
	Azobenzene cannot be distinguished for reported for 1,2-diphenylhydrazine repr compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	1.9	0.071	0.18	1
10726	Fluoranthene	206-44-0	8.1 E	0.004	0.018	1
10726	Fluorene	86-73-7	2.2	0.004	0.018	1
10726	Hexachlorobenzene	118-74-1	1.6	0.007	0.018	1
10726	Hexachlorobutadiene	87-68-3	1.3	0.039	0.082	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.21	0.53	1
10726	Hexachloroethane	67-72-1	0.81	0.036	0.18	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	3.9	0.004	0.018	1
10726	Isophorone	78-59-1	1.3	0.018	0.039	1
10726	2-Methylnaphthalene	91-57-6	1.7	0.004	0.036	1
10726	2-Methylphenol	95-48-7	1.3	0.018	0.071	1
10726	4-Methylphenol	106-44-5	1.4	0.018	0.053	1
	3-Methylphenol and 4-methylphenol cal chromatographic conditions used for sa for 4-methylphenol represents the comb	imple analysis. The res	sult reported			
10726	Naphthalene	91-20-3	1.8	0.007	0.018	1
10726	2-Nitroaniline	88-74-4	1.9	0.018	0.053	1
10726	Nitrobenzene	98-95-3	1.3	0.028	0.071	1
10726	N-Nitrosodimethylamine	62-75-9	1.0	0.071	0.18	1
10726	N-Nitroso-di-n-propylamine	621-64-7	1.3	0.025	0.053	1
10726	N-Nitrosodiphenylamine	86-30-6	1.7	0.018	0.039	1
	N-nitrosodiphenylamine decomposes in diphenylamine. The result reported for represents the combined total of both c	N-nitrosodiphenylamin	e			
10726	Di-n-octylphthalate	117-84-0	1.7	0.071	0.18	1
10726	Pentachlorophenol	87-86-5	1.5	0.071	0.18	1
10726	Phenanthrene	85-01-8	7.2 E	0.004	0.018	1
10726	Phenol	108-95-2	1.4	0.018	0.039	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: 05/13/2020 12:00 CMS08-15MS

4,4'-Ddd

4,4'-Dde

4,4'-Ddt

10590

10590

10590

Langan Eng & Env Services
ELLE Sample #: SW 1314159
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	S Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	7.3 E	0.004	0.018	1
10726	Pyridine	110-86-1	0.72	0.071	0.18	1
10726	1,2,4-Trichlorobenzene	120-82-1	1.4	0.025	0.053	1
10726	2,4,5-Trichlorophenol	95-95-4	1.6	0.032	0.071	1
10726	2,4,6-Trichlorophenol	88-06-2	1.4	0.028	0.060	1
GC/MS	S Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	17 J	7	18	10
Repo	orting limits were raised due	e to interference from the sample mat	rix.			
Herbio	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	0.14 D1	0.013	0.038	1
10401	2,4,5-T	93-76-5	0.017 D1	0.00087	0.0018	1
10401	2,4,5-TP	93-72-1	0.014 D2	0.00080	0.0018	1
repor	rted.	SW-846 8082A Feb 2007	ug/kg	ug/kg	ug/kg	
		Rev 1				
10885	PCB-1016	12674-11-2	120 D1	3.8	18	1
10885	PCB-1221	11104-28-2	N.D. D1	4.9	18	1
10885	PCB-1232	11141-16-5	N.D. D1	8.5	18	1
10885	PCB-1242	53469-21-9	N.D. D1	3.5	18	1
10885	PCB-1248	12672-29-6	N.D. D1	3.5	18	1
10885	PCB-1254	11097-69-1	N.D. D1	3.5	18	1
10885	PCB-1260	11096-82-5	130 D1	5.2	18	1
10885	Total PCBs ¹	1336-36-3	250	3.5	18	1
	et analytes were detected in oles as noted on the QC Su	n the method blank associated with th	ne			
	oles as noted on the QC Su	illillary.				
Pestic		SW-846 8081B	mg/kg	mg/kg	mg/kg	
		•	mg/kg 0.0061 JD2	mg/kg 0.0018	mg/kg 0.0088	10
10590	ides	SW-846 8081B				10 10
10590 10590	ides Aldrin	SW-846 8081B 309-00-2	0.0061 JD2	0.0018	0.0088	
Pestic 10590 10590 10590 10590	ides Aldrin Alpha BHC	SW-846 8081B 309-00-2 319-84-6	0.0061 JD2 0.0048 JD1	0.0018 0.0018	0.0088 0.0088	10
10590 10590	ides Aldrin Alpha BHC Beta BHC	SW-846 8081B 309-00-2 319-84-6 319-85-7	0.0061 JD2 0.0048 JD1 0.0062 JD2	0.0018 0.0018 0.0047	0.0088 0.0088 0.016	10 10

0.0035

0.0035

0.0084

0.021

0.021

0.021

10

10

10

0.012 JD1

0.013 JD2

0.012 JD2

72-54-8

72-55-9

50-29-3

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: SDG#: **CMS08-15MS**

Langan Eng & Env Services **ELLE Sample #:** SW 1314159 **ELLE Group #:** 2099431 Matrix: Soil

Drv

05/13/2020 12:00

CAT No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestic	ides	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Delta BHC	319-86-8	N.D. D1	0.0048	0.016	10
10590	Dieldrin	60-57-1	0.011 JPD2	0.0035	0.021	10
10590	Endosulfan I	959-98-8	0.0044 JD1	0.0023	0.0088	10
10590	Endosulfan II	33213-65-9	N.D. D1	0.012	0.021	10
10590	Endosulfan Sulfate	1031-07-8	0.0097 JD2	0.0035	0.021	10
10590	Endrin	72-20-8	0.013 JD2	0.0072	0.021	10
10590	Heptachlor	76-44-8	0.0049 JPD2	0.0033	0.0088	10
For n	oncompliant preparation/	method/calibration blanks further action	n is not			

Drv

For noncompliant preparation/method/calibration blanks further action is not required if the associated sample is ND or > 10 times the blank concentration, unless otherwise specified in the method or by the client. The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Reporting limits were raised due to interference from the sample matrix.

2014

LC/MS/	MS Miscellaneous EPA 537 Modified	Version 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	18	0.59	2.0	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	18	0.59	2.9	1
14027	NEtFOSAA1	2991-50-6	19	0.20	2.0	1
	NEtFOSAA is the acronym for N-ethyl p	erfluorooctanesulfonam	idoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	23	0.20	2.0	1
	NMeFOSAA is the acronym for N-methy	l perfluorooctanesulfon	amidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	16	0.39	2.0	1
14027	Perfluorobutanoic acid1	375-22-4	16	0.78	2.0	1
14027	Perfluorodecanesulfonic acid1	335-77-3	16	0.20	0.59	1
14027	Perfluorodecanoic acid1	335-76-2	18	0.20	0.59	1
14027	Perfluorododecanoic acid ¹	307-55-1	19	0.20	0.59	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	17	0.20	0.59	1
14027	Perfluoroheptanoic acid ¹	375-85-9	19	0.20	0.59	1
14027	Perfluorohexanesulfonic acid1	355-46-4	16	0.20	0.59	1
14027	Perfluorohexanoic acid1	307-24-4	18	0.20	0.59	1
14027	Perfluorononanoic acid1	375-95-1	20	0.20	0.59	1
14027	Perfluorooctanesulfonamide1	754-91-6	20	0.20	0.59	1
14027	Perfluorooctanesulfonic acid¹	1763-23-1	16	0.20	0.59	1
14027	Perfluorooctanoic acid1	335-67-1	19	0.20	0.59	1
14027	Perfluoropentanoic acid1	2706-90-3	18	0.20	0.59	1
14027	Perfluorotetradecanoic acid1	376-06-7	19	0.20	0.59	1
14027	Perfluorotridecanoic acid1	72629-94-8	18	0.20	0.59	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	18	0.20	0.59	1
Metals	SW-846 6	020B Rev.2, July	mg/kg	mg/kg	mg/kg	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15MS

Langan Eng & Env Services
ELLE Sample #: SW 1314159
ELLE Group #: 2099431

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	16.0	0.126	0.377	2
06126	Barium	7440-39-3	228	0.862	1.88	10
06127	Beryllium	7440-41-7	1.46	0.0224	0.0565	2
06128	Cadmium	7440-43-9	1.47	0.0475	0.0942	2
06131	Chromium	7440-47-3	33.3	0.145	0.377	2
06133	Copper	7440-50-8	132	0.165	0.377	2
06135	Lead	7439-92-1	330	0.0475	0.188	2
06137	Manganese	7439-96-5	256	0.202	0.377	2
06139	Nickel	7440-02-0	35.0	0.153	0.377	2
06141	Selenium	7782-49-2	3.03	0.123	0.377	2
06142	Silver	7440-22-4	9.33	0.0383	0.0942	2
06149	Zinc	7440-66-6	380	2.53	9.42	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.588	0.0158	0.0693	1
Vet Ch	nemistry	SW-846 9012B	mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-5	5.1	0.19	0.53	1
Vet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00118	Moisture ¹	n.a.	6.9	0.50	0.50	1

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11995	VOCs 8260C	SW-846 8260C	1	B201381AA	05/17/2020 22:22	Joel Trout	0.92
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020 12:00

 SDG#:
 CMS08-15MS

Langan Eng & Env Services
ELLE Sample #: SW 1314159
ELLE Group #: 2099431

Matrix: Soil

		Labor	atory S	Sample Analysis	Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 12:00	Client Supplied	1
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/15/2020 20:34	William H Saadeh	1
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLD026	05/18/2020 21:10	William H Saadeh	10
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20135SLB026	05/15/2020 00:08	Laura Duquette	1
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 08:46	Rachel Umberger	1
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201350022A	05/15/2020 15:31	Covenant Mutuku	1
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 10:42	Dylan Schreiner	10
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201350022A	05/14/2020 23:55	Laura Duquette	1
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 16:19	Katie Renfro	1
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:38	Patrick J Engle	2
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:39	Bradley M Berlot	10
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:56	Patrick J Engle	2
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:38	Patrick J Engle	2
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:38	Patrick J Engle	2
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:38	Patrick J Engle	2
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:56	Patrick J Engle	2
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:56	Patrick J Engle	2
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:56	Patrick J Engle	2
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:56	Patrick J Engle	2
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:38	Patrick J Engle	2
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:39	Bradley M Berlot	10
00159	Mercury	SW-846 7471B	1	201351063802	05/14/2020 10:50	Damary Valentin	1
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404903	05/14/2020 06:00	Annamaria Kuhns	1
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063802	05/14/2020 08:15	Annamaria Kuhns	1
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:45	Gregory Baldree	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MS Grab Soil

35 Commercial Street/170229024

ELLE Sample #: SW 1314159 **ELLE Group #:**

Langan Eng & Env Services

Matrix: Soil

2099431

35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: CMS08-15MS

Project Name:

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: 05/13/2020 12:00
CMS08-15MSD

Langan Eng & Env Services
ELLE Sample #: SW 1314160
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.41	0.007	0.022	1.03
11995	Acrolein	107-02-8	0.15	0.006	0.11	1.03
11995	Acrylonitrile	107-13-1	0.088	0.0009	0.022	1.03
11995	Benzene	71-43-2	0.023	0.0006	0.006	1.03
11995	Bromodichloromethane	75-27-4	0.022	0.0004	0.006	1.03
11995	Bromoform	75-25-2	0.021	0.006	0.011	1.03
11995	Bromomethane	74-83-9	0.021	0.0008	0.006	1.03
11995	2-Butanone	78-93-3	0.22	0.002	0.011	1.03
11995	t-Butyl alcohol	75-65-0	0.24	0.017	0.11	1.03
11995	n-Butylbenzene	104-51-8	0.021	0.003	0.009	1.03
11995	sec-Butylbenzene	135-98-8	0.026	0.002	0.006	1.03
11995	tert-Butylbenzene	98-06-6	0.026	0.0009	0.006	1.03
11995	Carbon Disulfide	75-15-0	0.019	0.0007	0.006	1.03
11995	Carbon Tetrachloride	56-23-5	0.024	0.0006	0.006	1.03
11995	Chlorobenzene	108-90-7	0.022	0.0006	0.006	1.03
11995	Chloroethane	75-00-3	0.020	0.001	0.006	1.03
11995	Chloroform	67-66-3	0.023	0.0007	0.006	1.03
11995	Chloromethane	74-87-3	0.022	0.0007	0.006	1.03
11995	1,2-Dibromo-3-chloropropane	96-12-8	0.022	0.0006	0.006	1.03
11995	Dibromochloromethane	124-48-1	0.025	0.0006	0.006	1.03
11995	1,2-Dibromoethane	106-93-4	0.021	0.0004	0.006	1.03
11995	1,2-Dichlorobenzene	95-50-1	0.023	0.0006	0.006	1.03
11995	1,3-Dichlorobenzene	541-73-1	0.022	0.0006	0.006	1.03
11995	1,4-Dichlorobenzene	106-46-7	0.021	0.0004	0.006	1.03
11995	Dichlorodifluoromethane	75-71-8	0.031	0.0007	0.006	1.03
11995	1,1-Dichloroethane	75-34-3	0.023	0.0006	0.006	1.03
11995	1,2-Dichloroethane	107-06-2	0.020	0.0007	0.006	1.03
11995	1,1-Dichloroethene	75-35-4	0.023	0.0006	0.006	1.03
11995	cis-1,2-Dichloroethene	156-59-2	0.023	0.0006	0.006	1.03
11995	trans-1,2-Dichloroethene	156-60-5	0.020	0.0006	0.006	1.03
11995	1,2-Dichloroethene (Total)1	540-59-0	0.043	0.001	0.011	1.03
11995	1,2-Dichloropropane	78-87-5	0.023	0.0006	0.006	1.03
11995	cis-1,3-Dichloropropene	10061-01-5	0.020	0.0004	0.006	1.03
11995	trans-1,3-Dichloropropene	10061-02-6	0.019	0.0006	0.006	1.03
11995	Ethylbenzene	100-41-4	0.023	0.0004	0.006	1.03
11995	Methyl Acetate	79-20-9	0.018	0.001	0.006	1.03
11995	Methyl Tertiary Butyl Ether	1634-04-4	0.022	0.0006	0.006	1.03
11995	Methylene Chloride	75-09-2	0.021	0.002	0.006	1.03
11995	n-Propylbenzene	103-65-1	0.026	0.0004	0.006	1.03
11995	Styrene	100-42-5	0.020	0.0004	0.006	1.03
11995	1,1,2,2-Tetrachloroethane	79-34-5	0.028	0.0004	0.006	1.03

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020 12:00

 SDG#:
 CMS08-15MSD

Langan Eng & Env Services
ELLE Sample #: SW 1314160
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles S	W-846 8260C	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	127-18-4	0.023	0.0006	0.006	1.03
11995	Toluene	108-88-3	0.023	0.0007	0.006	1.03
11995	1,1,1-Trichloroethane	71-55-6	0.023	0.0007	0.006	1.03
11995	1,1,2-Trichloroethane	79-00-5	0.025	0.0006	0.006	1.03
11995	Trichloroethene	79-01-6	0.021	0.0006	0.006	1.03
11995	Trichlorofluoromethane	75-69-4	0.027	0.0008	0.006	1.03
11995	1,2,4-Trimethylbenzene	95-63-6	0.025	0.0006	0.006	1.03
11995	1,3,5-Trimethylbenzene	108-67-8	0.026	0.0006	0.006	1.03
11995	Vinyl Chloride	75-01-4	0.022	0.0007	0.006	1.03
11995	Xylene (Total)	1330-20-7	0.066	0.002	0.011	1.03
GC/MS	Semivolatiles S	W-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	1.9	0.004	0.018	1
10726	Acenaphthylene	208-96-8	1.6	0.004	0.018	1
10726	Acetophenone	98-86-2	1.3	0.018	0.054	1
10726	Anthracene	120-12-7	2.6	0.004	0.018	1
10726	Atrazine	1912-24-9	1.5	0.21	0.47	1
10726	Benzaldehyde	100-52-7	1.1	0.072	0.18	1
10726	Benzidine	92-87-5	1.7	0.36	1.1	1
10726	Benzo(a)anthracene	56-55-3	4.6 E	0.007	0.018	1
10726	Benzo(a)pyrene	50-32-8	4.4 E	0.004	0.018	1
10726	Benzo(b)fluoranthene	205-99-2	5.2 E	0.004	0.018	1
10726	Benzo(g,h,i)perylene	191-24-2	3.3	0.004	0.018	1
10726	Benzo(k)fluoranthene	207-08-9	2.7	0.004	0.018	1
10726	1,1'-Biphenyl	92-52-4	1.5	0.018	0.039	1
10726	Butylbenzylphthalate	85-68-7	1.5	0.072	0.18	1
10726	Di-n-butylphthalate	84-74-2	1.6	0.072	0.18	1
10726	Caprolactam	105-60-2	1.5	0.036	0.18	1
10726	Carbazole	86-74-8	2.1	0.018	0.039	1
10726	bis(2-Chloroethyl)ether	111-44-4	1.2	0.025	0.054	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	1.2	0.021	0.047	1
		CAS #39638-32-9 and CAS #108-60-1 cannot be sepal ported result represents the comb				
10726	2-Chloronaphthalene	91-58-7	1.6	0.007	0.036	1
10726	2-Chlorophenol	95-57-8	1.3	0.018	0.039	1
10726	Chrysene	218-01-9	4.3	0.004	0.018	1
10726	Dibenz(a,h)anthracene	53-70-3	1.9	0.007	0.018	1
10726	Dibenzofuran	132-64-9	1.9	0.018	0.039	1
10726	1,2-Dichlorobenzene	95-50-1	1.2	0.018	0.054	1
10726	1,3-Dichlorobenzene	541-73-1	1.1	0.018	0.039	1

^{*=}This limit was used in the evaluation of the final result

Dry

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

Project Name: 35

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#: CMS08-15MSD

320_3-5 MSD Grab Soil	Langan Eng & Env	Services
Commercial Street/170229024	ELLE Sample #:	SW 1314160
	ELLE Group #:	2099431
Commercial Street/170229024	Matrix: Soil	

Dry

CAT No.	Analysis Name	CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 82	270D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	1.2	0.018	0.039	1
10726	3,3'-Dichlorobenzidine	91-94-1	1.1	0.11	0.36	1
10726	2,4-Dichlorophenol	120-83-2	1.4	0.021	0.047	1
10726	Diethylphthalate	84-66-2	1.5	0.072	0.18	1
10726	2,4-Dimethylphenol	105-67-9	1.1	0.032	0.072	1
10726	Dimethylphthalate	131-11-3	1.3	0.072	0.18	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	1.1	0.25	0.54	1
10726	2,4-Dinitrophenol	51-28-5	1.6	0.36	1.1	1
10726	2,4-Dinitrotoluene	121-14-2	1.5	0.072	0.18	1
10726	2,6-Dinitrotoluene	606-20-2	1.5	0.025	0.054	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	3.0	0.025	0.054	1
10726	1,2-Diphenylhydrazine	122-66-7	1.6	0.021	0.047	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represompounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	1.7	0.072	0.18	1
10726	Fluoranthene	206-44-0	7.0 E	0.004	0.018	1
10726	Fluorene	86-73-7	2.0	0.004	0.018	1
10726	Hexachlorobenzene	118-74-1	1.5	0.007	0.018	1
10726	Hexachlorobutadiene	87-68-3	1.3	0.039	0.082	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.21	0.54	1
10726	Hexachloroethane	67-72-1	0.89	0.036	0.18	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	3.2	0.004	0.018	1
10726	Isophorone	78-59-1	1.3	0.018	0.039	1
10726	2-Methylnaphthalene	91-57-6	1.7	0.004	0.036	1
10726	2-Methylphenol	95-48-7	1.3	0.018	0.072	1
10726	4-Methylphenol	106-44-5	1.4	0.018	0.054	1
	3-Methylphenol and 4-methylphenol can chromatographic conditions used for san for 4-methylphenol represents the combi	nple analysis. The res	ult reported			
10726	Naphthalene	91-20-3	1.8	0.007	0.018	1
10726	2-Nitroaniline	88-74-4	2.3	0.018	0.054	1
10726	Nitrobenzene	98-95-3	1.3	0.029	0.072	1
10726	N-Nitrosodimethylamine	62-75-9	1.1	0.072	0.18	1
10726	N-Nitroso-di-n-propylamine	621-64-7	1.3	0.025	0.054	1
10726	N-Nitrosodiphenylamine	86-30-6	1.6	0.018	0.039	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N represents the combined total of both combined total of	I-nitrosodiphenylamin	e			
10726	Di-n-octylphthalate	117-84-0	1.7	0.072	0.18	1
10726	Pentachlorophenol	87-86-5	1.6	0.072	0.18	1
10726	Phenanthrene	85-01-8	6.3 E	0.004	0.018	1
10726	Phenol	108-95-2	1.4	0.018	0.039	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020 12:00

 SDG#:
 CMS08-15MSD

Langan Eng & Env	/ Services
ELLE Sample #:	SW 1314160
ELLE Group #:	2099431
Matrix: Soil	

SDG#:	CI	MS08-15MSD				
CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	S Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	6.5 E	0.004	0.018	1
10726	Pyridine	110-86-1	0.72	0.072	0.18	1
10726	1,2,4-Trichlorobenzene	120-82-1	1.4	0.025	0.054	1
10726	2,4,5-Trichlorophenol	95-95-4	1.5	0.032	0.072	1
10726	2,4,6-Trichlorophenol	88-06-2	1.5	0.029	0.061	1
GC/MS	S Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1,4-Dioxane	123-91-1	18	7	18	10
		to interference from the sample ma		•	.0	
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	0.14 D1	0.013	0.038	1
10401	2,4,5-T	93-76-5	0.016 D1	0.00087	0.0018	1
10401	2,4,5-TP	93-72-1	0.013 D1	0.00080	0.0018	1
The r Spike Sumr	e(s) is outside the QC acce	e(s) in the Laboratory Control ptance limits as noted on the QC				
PCBs		SW-846 8082A Feb 2007 Rev 1	ug/kg	ug/kg	ug/kg	
10885	PCB-1016	12674-11-2	120 D1	3.8	18	1
10885	PCB-1221	11104-28-2	N.D. D1	4.9	18	1
10885	PCB-1232	11141-16-5	N.D. D1	8.5	18	1
10885	PCB-1242	53469-21-9	N.D. D1	3.5	18	1
10885	PCB-1248	12672-29-6	N.D. D1	3.5	18	1
10885	PCB-1254	11097-69-1	N.D. D1	3.5	18	1
10885	PCB-1260	11096-82-5	120 D1	5.2	18	1
10885	Total PCBs1	1336-36-3	240	3.5	18	1
Targe		n the method blank associated with t				
Pestici	ides	SW-846 8081B	mg/kg	mg/kg	mg/kg	
10590	Aldrin	309-00-2	0.0075 JD2	0.0018	0.0088	10
10590	Alpha BHC	319-84-6	0.0073 JD2	0.0018	0.0088	10
10590	Beta BHC	319-85-7	0.0070 JD2	0.0047	0.016	10
10590	Gamma BHC - Lindane	58-89-9	N.D. D2	0.0022	0.0088	10
10590	Alpha Chlordane	5103-71-9	0.0064 JPD1	0.0018	0.0088	10
10590	4,4'-Ddd	72-54-8	0.014 JD2	0.0035	0.021	10
10590	4,4'-Dde	72-55-9	0.014 JD2	0.0035	0.021	10
10590	4,4'-Ddt	50-29-3	0.014 JD2	0.0084	0.021	10
10590	Delta BHC	319-86-8	N.D. D1	0.0048	0.016	10
10590	Dieldrin	60-57-1	0.013 JPD2	0.0046	0.010	10
10590	Endosulfan I	959-98-8	0.0059 JD2	0.0023	0.0088	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020 12:00

 SDG#:
 CMS08-15MSD

Project Name:

Langan Eng & Env Services
ELLE Sample #: SW 1314160
ELLE Group #: 2099431

Matrix: Soil

500# .	CIVIS-151VI	3D				
CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestic	ides SW-846	8081B	mg/kg	mg/kg	mg/kg	
10590	Endosulfan II	33213-65-9	N.D. D1	0.012	0.021	10
10590	Endosulfan Sulfate	1031-07-8	0.014 JD2	0.0035	0.021	10
10590	Endrin	72-20-8	0.014 JD2	0.0072	0.021	10
10590	Heptachlor	76-44-8	0.0061 JPD2	0.0033	0.0088	10
Spike Sumi	recovery for a target analyte(s) in the Labe(s) is outside the QC acceptance limits a mary. orting limits were raised due to interference.	as noted on the QC	rix.			
LC/MS	/MS Miscellaneous EPA 537 Modified	Version 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	19	0.59	2.0	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	19	0.59	3.0	1
14027	NEtFOSAA1	2991-50-6	21	0.20	2.0	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	midoacetic Acid.			
14027	NMeFOSAA1	2355-31-9	21	0.20	2.0	1

	Modified					
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	19	0.59	2.0	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	19	0.59	3.0	1
14027	NEtFOSAA1	2991-50-6	21	0.20	2.0	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonam	idoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	21	0.20	2.0	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfon	amidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	18	0.39	2.0	1
14027	Perfluorobutanoic acid1	375-22-4	17	0.79	2.0	1
14027	Perfluorodecanesulfonic acid1	335-77-3	17	0.20	0.59	1
14027	Perfluorodecanoic acid ¹	335-76-2	19	0.20	0.59	1
14027	Perfluorododecanoic acid1	307-55-1	20	0.20	0.59	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	18	0.20	0.59	1
14027	Perfluoroheptanoic acid ¹	375-85-9	19	0.20	0.59	1
14027	Perfluorohexanesulfonic acid1	355-46-4	17	0.20	0.59	1
14027	Perfluorohexanoic acid ¹	307-24-4	19	0.20	0.59	1
14027	Perfluorononanoic acid1	375-95-1	20	0.20	0.59	1
14027	Perfluorooctanesulfonamide ¹	754-91-6	21	0.20	0.59	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	15	0.20	0.59	1
14027	Perfluorooctanoic acid1	335-67-1	19	0.20	0.59	1
14027	Perfluoropentanoic acid ¹	2706-90-3	19	0.20	0.59	1
14027	Perfluorotetradecanoic acid1	376-06-7	21	0.20	0.59	1
14027	Perfluorotridecanoic acid ¹	72629-94-8	19	0.20	0.59	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	17	0.20	0.59	1
Metals	SW-846 60: 2014	20B Rev.2, July	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	20.6	0.129	0.387	2
06126	Barium	7440-39-3	295	0.885	1.94	10
06127	Beryllium	7440-41-7	1.61	0.0230	0.0581	2

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15MSD

Langan Eng & Env Services
ELLE Sample #: SW 1314160
ELLE Group #: 2099431
Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/kg	mg/kg	mg/kg	
06128	Cadmium	7440-43-9	1.47	0.0488	0.0968	2
06131	Chromium	7440-47-3	35.7	0.149	0.387	2
06133	Copper	7440-50-8	175	0.170	0.387	2
06135	Lead	7439-92-1	318	0.0488	0.194	2
06137	Manganese	7439-96-5	264	0.207	0.387	2
06139	Nickel	7440-02-0	39.7	0.158	0.387	2
06141	Selenium	7782-49-2	3.50	0.126	0.387	2
06142	Silver	7440-22-4	9.78	0.0393	0.0968	2
06149	Zinc	7440-66-6	442	2.59	9.68	10
		SW-846 7471B	mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-97-6	0.776	0.0160	0.0704	1
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00118	Moisture ¹	n.a.	6.9	0.50	0.50	1

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11995	VOCs 8260C	SW-846 8260C	1	B201381AA	05/17/2020 22:44	Joel Trout	1.03			
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1			
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1			
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 12:00	Client Supplied	1			
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20135SLB026	05/15/2020 20:58	William H Saadeh	1			
12969 10813	1,4-Dioxane 8270D SIM add-on BNA Soil Microwave APP IX	SW-846 8270D SIM SW-846 3546	1 1	20135SLD026 20135SLB026	05/18/2020 21:41 05/15/2020 00:08	William H Saadeh Laura Duquette	10 1			

^{*=}This limit was used in the evaluation of the final result

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 MSD Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15MSD

Langan Eng & Env Services
ELLE Sample #: SW 1314160
ELLE Group #: 2099431

Matrix: Soil

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 09:19	Rachel Umberger	1
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201350022A	05/15/2020 15:41	Covenant Mutuku	1
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 10:56	Dylan Schreiner	10
10497	PCB Microwave Soil Extraction	SW-846 3546	1	201350022A	05/14/2020 23:55	Laura Duquette	1
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 16:28	Katie Renfro	1
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:40	Patrick J Engle	2
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:41	Bradley M Berlot	10
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:59	Patrick J Engle	2
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:40	Patrick J Engle	2
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:40	Patrick J Engle	2
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:40	Patrick J Engle	2
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:59	Patrick J Engle	2
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:59	Patrick J Engle	2
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:59	Patrick J Engle	2
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:59	Patrick J Engle	2
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:40	Patrick J Engle	2
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:41	Bradley M Berlot	10
00159	Mercury	SW-846 7471B	1	201351063802	05/14/2020 10:52	Damary Valentin	1
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404903	05/14/2020 06:00	Annamaria Kuhns	1
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063802	05/14/2020 08:15	Annamaria Kuhns	1
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20 3-5 DUP Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:00 SDG#:

CAT

Metals

06125

06126

06127

06128

06131

06133

06135

06137

06139

06141

06142

06149

00159

05895

00425

00118

00121

Wet Chemistry

Moisture¹

No.

Langan Eng & Env Services ELLE Sample #: SW 1314161 **ELLE Group #:** 2099431

Matrix: Soil

%

0.50

0.50

CMS08-15DUP Dry Dry Method Limit of Dry Dilution **Analysis Name CAS Number Detection Limit*** Quantitation Result Factor mg/kg mg/kg mg/kg SW-846 6020B Rev.2, July 2014 7440-38-2 0.140 0.417 Arsenic 11.8 2 Barium 7440-39-3 113 0.954 2.09 10 Beryllium 7440-41-7 0.734 0.0248 0.0626 2 Cadmium 7440-43-9 0.398 2 0.0526 0.104 Chromium 7440-47-3 19.6 0.160 0.417 2 Copper 7440-50-8 70.1 0.183 0.417 2 7439-92-1 166 0.263 10 Lead 1.04 Manganese 7439-96-5 340 1.12 2.09 10 Nickel 7440-02-0 21.4 0.170 0.417 2 Selenium 2 7782-49-2 0.624 0.136 0.417 Silver 7440-22-4 0.122 0.104 0.0423 2 Zinc 7440-66-6 305 2.79 10.4 10 SW-846 7471B ma/ka ma/ka ma/ka Mercury 7439-97-6 1.29 0.0815 0.358 5 SW-846 9012B mg/kg mg/kg mg/kg Wet Chemistry Total Cyanide (solid) 57-12-5 N.D. 0.52 0.19 mg/kg mg/kg mg/kg SW-846 7196A Hexavalent Chromium (SOLIDS) 18540-29-9 N.D. 0.15 0.45

The duplicate moisture value is provided to assess the precision of the moisture test. For comparability purposes, the initial moisture determination is the value used to perform dry weight calculations.

SM 2540 G-2011

%Moisture Calc

Sample Comments

%

0.50

0.50

%

6.9

7.3

State of New York Certification No. 10670

Moisture Duplicate1

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:37	Patrick J Engle	2			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_3-5 DUP Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:00
SDG#: CMS08-15DUP

Langan Eng & Env Services
ELLE Sample #: SW 1314161
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:36	Bradley M Berlot	10			
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:54	Patrick J Engle	2			
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:37	Patrick J Engle	2			
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:37	Patrick J Engle	2			
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:37	Patrick J Engle	2			
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:09	Patrick J Engle	10			
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:09	Patrick J Engle	10			
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:54	Patrick J Engle	2			
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 19:54	Patrick J Engle	2			
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:37	Patrick J Engle	2			
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:36	Bradley M Berlot	10			
00159	Mercury	SW-846 7471B	1	201351063802	05/14/2020 10:55	Damary Valentin	5			
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404903	05/14/2020 06:00	Annamaria Kuhns	1			
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063802	05/14/2020 08:15	Annamaria Kuhns	1			
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201A	05/15/2020 11:46	Gregory Baldree	1			
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201A	05/15/2020 05:55	Nancy J Shoop	1			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1			
00118	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1			
00121	Moisture Duplicate	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:05
SDG#: 05/13/2020 12:05
CMS08-16

Langan Eng & Env Services
ELLE Sample #: SW 1314162
ELLE Group #: 2099431

Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 82	60C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	N.D.	0.29	0.95	39
11995	Acrolein	107-02-8	N.D.	0.24	4.8	39
11995	Acrylonitrile	107-13-1	N.D.	0.038	0.95	39
11995	Benzene	71-43-2	N.D.	0.024	0.24	39
11995	Bromodichloromethane	75-27-4	N.D.	0.019	0.24	39
11995	Bromoform	75-25-2	N.D.	0.24	0.48	39
11995	Bromomethane	74-83-9	N.D.	0.033	0.24	39
11995	2-Butanone	78-93-3	N.D.	0.095	0.48	39
11995	t-Butyl alcohol	75-65-0	N.D.	0.71	4.8	39
11995	n-Butylbenzene	104-51-8	0.35 J	0.14	0.38	39
11995	sec-Butylbenzene	135-98-8	0.54	0.095	0.24	39
11995	tert-Butylbenzene	98-06-6	N.D.	0.038	0.24	39
11995	Carbon Disulfide	75-15-0	N.D.	0.029	0.24	39
11995	Carbon Tetrachloride	56-23-5	N.D.	0.024	0.24	39
11995	Chlorobenzene	108-90-7	N.D.	0.024	0.24	39
11995	Chloroethane	75-00-3	N.D.	0.048	0.24	39
11995	Chloroform	67-66-3	N.D.	0.029	0.24	39
11995	Chloromethane	74-87-3	N.D.	0.029	0.24	39
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.024	0.24	39
11995	Dibromochloromethane	124-48-1	N.D.	0.024	0.24	39
11995	1,2-Dibromoethane	106-93-4	N.D.	0.019	0.24	39
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.024	0.24	39
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.024	0.24	39
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.019	0.24	39
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.029	0.24	39
11995	1,1-Dichloroethane	75-34-3	N.D.	0.024	0.24	39
11995	1,2-Dichloroethane	107-06-2	N.D.	0.029	0.24	39
11995	1,1-Dichloroethene	75-35-4	N.D.	0.024	0.24	39
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.024	0.24	39
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.024	0.24	39
11995	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.048	0.48	39
11995	1,2-Dichloropropane	78-87-5	N.D.	0.024	0.24	39
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.019	0.24	39
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.024	0.24	39
11995	Ethylbenzene	100-41-4	N.D.	0.019	0.24	39
11995	Methyl Acetate	79-20-9	N.D.	0.048	0.24	39
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.024	0.24	39
11995	Methylene Chloride	75-09-2	N.D.	0.095	0.24	39
11995	n-Propylbenzene	103-65-1	1.1	0.019	0.24	39
11995	Styrene	100-42-5	N.D.	0.019	0.24	39
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.019	0.24	39

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 12:05
SDG#: CMS08-16

Langan Eng & Env Services
4 ELLE Sample #: SW 1314162
ELLE Group #: 2099431
4 Matrix: Soil

CAT No.	Analysis Name	C	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	;	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	1	127-18-4	N.D.	0.024	0.24	39
11995	Toluene	1	108-88-3	N.D.	0.029	0.24	39
11995	1,1,1-Trichloroethane	7	71-55-6	N.D.	0.029	0.24	39
11995	1,1,2-Trichloroethane	7	79-00-5	N.D.	0.024	0.24	39
11995	Trichloroethene	7	79-01-6	N.D.	0.024	0.24	39
11995	Trichlorofluoromethane	7	75-69-4	N.D.	0.033	0.24	39
11995	1,2,4-Trimethylbenzene	9	95-63-6	21	0.24	2.4	390.02
11995	1,3,5-Trimethylbenzene	1	108-67-8	8.9	0.024	0.24	39
11995	Vinyl Chloride	7	75-01-4	N.D.	0.029	0.24	39
11995	Xylene (Total)	1	1330-20-7	3.8	0.067	0.48	39
GC/MS	Semivolatiles	SW-846 8270D)	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	8	33-32-9	1.4	0.012	0.060	1
10726	Acenaphthylene	2	208-96-8	0.63	0.012	0.060	1
10726	Acetophenone	9	98-86-2	N.D.	0.060	0.18	1
10726	Anthracene	1	120-12-7	3.4	0.012	0.060	1
10726	Atrazine	1	1912-24-9	N.D.	0.72	1.6	1
10726	Benzaldehyde	1	100-52-7	N.D.	0.24	0.60	1
10726	Benzidine	g	92-87-5	N.D.	1.2	3.6	1
10726	Benzo(a)anthracene	5	56-55-3	6.3	0.024	0.060	1
10726	Benzo(a)pyrene	5	50-32-8	5.0	0.012	0.060	1
10726	Benzo(b)fluoranthene	2	205-99-2	6.1	0.012	0.060	1
10726	Benzo(g,h,i)perylene	1	191-24-2	2.7	0.012	0.060	1
10726	Benzo(k)fluoranthene	2	207-08-9	2.4	0.012	0.060	1
10726	1,1'-Biphenyl	9	92-52-4	0.13 J	0.060	0.13	1
10726	Butylbenzylphthalate	8	35-68-7	N.D.	0.24	0.60	1
10726	Di-n-butylphthalate	8	34-74-2	N.D.	0.24	0.60	1
10726	Caprolactam	1	105-60-2	N.D.	0.12	0.60	1
10726	Carbazole	8	36-74-8	0.95	0.060	0.13	1
10726	bis(2-Chloroethyl)ether	1	111-44-4	N.D.	0.084	0.18	1
10726	bis(2-Chloroisopropyl)ethe	er ¹ 3	39638-32-9	N.D.	0.072	0.16	1
	Bis(2-chloroisopropyl) ethe 2,2'-Oxybis(1-chloropropal chromatographically. The total of both compounds.	ne) CAS #108-60-1	cannot be sepai	pined			
10726	2-Chloronaphthalene		91-58-7	N.D.	0.024	0.12	1
10726	2-Chlorophenol		95-57-8	N.D.	0.060	0.13	1
10726	Chrysene		218-01-9	5.0	0.012	0.060	1
10726	Dibenz(a,h)anthracene	5	53-70-3	0.78	0.024	0.060	1
10726	Dibenzofuran	1	132-64-9	1.2	0.060	0.13	1
10726	1,2-Dichlorobenzene	9	95-50-1	N.D.	0.060	0.18	1
10726	1,3-Dichlorobenzene	5	541-73-1	N.D.	0.060	0.13	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05 SDG#: CMS08-16

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314162 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.060	0.13	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.36	1.2	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.072	0.16	1
10726	Diethylphthalate	84-66-2	N.D.	0.24	0.60	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.11	0.24	1
10726	Dimethylphthalate	131-11-3	N.D.	0.24	0.60	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.84	1.8	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	1.2	3.6	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.24	0.60	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.084	0.18	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.084	0.18	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.072	0.16	1
	Azobenzene cannot be distinguished fr reported for 1,2-diphenylhydrazine repr compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.24	0.60	1
10726	Fluoranthene	206-44-0	14	0.012	0.060	1
10726	Fluorene	86-73-7	1.9	0.012	0.060	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.024	0.060	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.13	0.28	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.72	1.8	1
10726	Hexachloroethane	67-72-1	N.D.	0.12	0.60	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	2.5	0.012	0.060	1
10726	Isophorone	78-59-1	N.D.	0.060	0.13	1
10726	2-Methylnaphthalene	91-57-6	0.59	0.012	0.12	1
10726	2-Methylphenol	95-48-7	N.D.	0.060	0.24	1
10726	4-Methylphenol	106-44-5	N.D.	0.060	0.18	1
	3-Methylphenol and 4-methylphenol ca chromatographic conditions used for sa for 4-methylphenol represents the com	ample analysis. The res	ult reported			
10726	Naphthalene	91-20-3	0.64	0.024	0.060	1
10726	2-Nitroaniline	88-74-4	N.D.	0.060	0.18	1
10726	Nitrobenzene	98-95-3	N.D.	0.096	0.24	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.24	0.60	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.084	0.18	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.060	0.13	1
	N-nitrosodiphenylamine decomposes in diphenylamine. The result reported for represents the combined total of both of	r N-nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.24	0.60	1
10726	Pentachlorophenol	87-86-5	N.D.	0.24	0.60	1
10726	Phenanthrene	85-01-8	18	0.12	0.60	10
10726	Phenol	108-95-2	N.D.	0.060	0.13	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314162

2099431

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05

SDG#: CMS08-16

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	11	0.012	0.060	1
10726	Pyridine	110-86-1	N.D.	0.24	0.60	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.084	0.18	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.11	0.24	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.096	0.21	1
Spike Sumr	e(s) is outside the QC acc	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported.				
CC/MS	Semivolatiles	SW-846 8270D SIM	ug/kg	ug/kg	ug/kg	
12969	1.4-Dioxane	123-91-1	140	8	20	10
	,, . <u>2.0</u> ,0,10	.20 0		· ·		
Herbic	ides	SW-846 8151A	mg/kg	mg/kg	mg/kg	
10401	2,4-D	94-75-7	N.D. D2	0.015	0.044	1
10401	2,4,5-T	93-76-5	N.D. D2	0.0010	0.0021	1
10401		00.70.4	N.D. D2	0.00091	0.0021	1
10401 The r Spike	e(s) is outside the QC acc	93-72-1 vte(s) in the Laboratory Control eptance limits as noted on the QC				
10401 The r Spike Sumr	ecovery for a target analy e(s) is outside the QC acc	ote(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007		ug/kg	ug/kg	
The r Spike Sumr was r	ecovery for a target analy e(s) is outside the QC acc mary. Since the recovery not detected in the sample	orte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1	ug/kg			
10401 The r Spike Sumr was r PCBs	ecovery for a target analy e(s) is outside the QC acc mary. Since the recovery not detected in the sample PCB-1016	orte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1	ug/kg N.D. D1	22	100	5
10401 The r Spike Sumr was r PCBs 10885 10885	ecovery for a target analyte(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016	orte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2	ug/kg N.D. D1 N.D. D1	22 28	100 100	5
10401 The r Spike Sumr was r PCBs 10885 10885 10885	ecovery for a target analyte(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1221 PCB-1232	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5	ug/kg N.D. D1 N.D. D1 N.D. D1	22 28 48	100 100 100	5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885	ecovery for a target analyte(s) is outside the QC according to Since the recovery not detected in the sample PCB-1016 PCB-1221 PCB-1232 PCB-1242	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9	ug/kg N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	22 28 48 20	100 100 100 100	5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885	ecovery for a target analyte(s) is outside the QC according to Since the recovery not detected in the sample PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	ug/kg N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	22 28 48 20 20	100 100 100 100 100	5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885	ecovery for a target analyte(s) is outside the QC according to Since the recovery not detected in the sample PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	ug/kg N.D. D1	22 28 48 20 20 20	100 100 100 100 100 100	5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ug/kg N.D. D1	22 28 48 20 20 20 30	100 100 100 100 100 100	5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885	ecovery for a target analyte(s) is outside the QC according to Since the recovery not detected in the sample PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	ug/kg N.D. D1	22 28 48 20 20 20	100 100 100 100 100 100	5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ug/kg N.D. D1	22 28 48 20 20 20 30	100 100 100 100 100 100	5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3	ug/kg N.D. D1	22 28 48 20 20 20 30 20	100 100 100 100 100 100 100 mg/kg	5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B	ug/kg N.D. D1	22 28 48 20 20 20 30 20	100 100 100 100 100 100 100	5 5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2	ug/kg N.D. D1	22 28 48 20 20 20 30 20 mg/kg 0.0041	100 100 100 100 100 100 100 mg/kg 0.020	5 5 5 5 5 5 5
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7	ug/kg N.D. D1	22 28 48 20 20 20 30 20 mg/kg 0.0041 0.0041	100 100 100 100 100 100 100 mg/kg 0.020 0.020	5 5 5 5 5 5 5 20 20
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10890 10590 10590	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample PCB-1016 PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹	rte(s) in the Laboratory Control reptance limits as noted on the QC is high and the target analyte(s) re, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7	ug/kg N.D. D1	22 28 48 20 20 20 30 20 mg/kg 0.0041 0.0041	100 100 100 100 100 100 100 100 mg/kg 0.020 0.020 0.036	5 5 5 5 5 5 5 5 20 20 20
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10890 10590 10590 10590	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample of the	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9	ug/kg N.D. D1 N.D. D2 N.D. D1 N.D. D1	22 28 48 20 20 20 30 20 mg/kg 0.0041 0.0041 0.0011	100 100 100 100 100 100 100 100 mg/kg 0.020 0.020 0.036 0.020	5 5 5 5 5 5 5 5 20 20 20 20
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885 10590 10590 10590 10590 10590	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample of the	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9	ug/kg N.D. D1 N.D. D2 N.D. D2 N.D. D2 N.D. D2	22 28 48 20 20 20 30 20 mg/kg 0.0041 0.0041 0.0011 0.0051 0.0041	100 100 100 100 100 100 100 100 mg/kg 0.020 0.020 0.036 0.020 0.020	5 5 5 5 5 5 5 5 20 20 20 20 20 20
10401 The r Spike Sumr was r PCBs 10885 10885 10885 10885 10885 10885 10885 10885 10885 10590 10590 10590 10590 10590 10590 10590	ecovery for a target analyse(s) is outside the QC according. Since the recovery not detected in the sample of the	rte(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s) e, the data is reported. SW-846 8082A Feb 2007 Rev 1 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 SW-846 8081B 309-00-2 319-84-6 319-85-7 58-89-9 5103-71-9 72-54-8	ug/kg N.D. D1 N.D. D2 N.D. D2	22 28 48 20 20 20 30 20 mg/kg 0.0041 0.0041 0.0011 0.0051 0.0041 0.0041	100 100 100 100 100 100 100 100 mg/kg 0.020 0.020 0.036 0.020 0.020 0.020 0.048	5 5 5 5 5 5 5 5 20 20 20 20 20 20 20 20

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name:

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05 SDG#: CMS08-16

ELLE Sample #: SW 1314162 **ELLE Group #:** 2099431 35 Commercial Street/170229024 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Pestici	des SW-846 808	1B	mg/kg	mg/kg	mg/kg	
10590	Dieldrin	60-57-1	N.D. D2	0.0080	0.048	20
10590	Endosulfan I	959-98-8	N.D. D2	0.0053	0.020	20
10590	Endosulfan II	33213-65-9	N.D. D2	0.027	0.048	20
10590	Endosulfan Sulfate	1031-07-8	N.D. VD2	0.019	0.048	20
10590	Endrin	72-20-8	N.D. D1	0.016	0.048	20
10590	Heptachlor	76-44-8	N.D. D2	0.0075	0.020	20
requi conce The r	oncompliant preparation/method/calibration be red if the associated sample is ND or > 10 time entration, unless otherwise specified in the me ecovery for a target analyte(s) in the Laborate e(s) is outside the QC acceptance limits as no	nes the blank ethod or by the clien ory Control				

Reporting limits were raised due to interference from the sample matrix.

LC/MS/	MS Miscellaneous EPA 537 Modified	Version 1.1	ng/g	ng/g	ng/g	
14027	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	0.69	2.3	1
14027	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.69	3.4	1
14027	NEtFOSAA1	2991-50-6	N.D.	0.23	2.3	1
	NEtFOSAA is the acronym for N-ethyl p	erfluorooctanesulfonam	idoacetic Acid.			
14027	NMeFOSAA ¹	2355-31-9	N.D.	0.23	2.3	1
	NMeFOSAA is the acronym for N-methy	l perfluorooctanesulfon	amidoacetic Acid.			
14027	Perfluorobutanesulfonic acid1	375-73-5	N.D.	0.46	2.3	1
14027	Perfluorobutanoic acid1	375-22-4	N.D.	0.92	2.3	1
14027	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.23	0.69	1
14027	Perfluorodecanoic acid1	335-76-2	N.D.	0.23	0.69	1
14027	Perfluorododecanoic acid1	307-55-1	N.D.	0.23	0.69	1
14027	Perfluoroheptanesulfonic acid1	375-92-8	N.D.	0.23	0.69	1
14027	Perfluoroheptanoic acid1	375-85-9	N.D.	0.23	0.69	1
14027	Perfluorohexanesulfonic acid1	355-46-4	N.D.	0.23	0.69	1
14027	Perfluorohexanoic acid1	307-24-4	N.D.	0.23	0.69	1
14027	Perfluorononanoic acid1	375-95-1	N.D.	0.23	0.69	1
14027	Perfluorooctanesulfonamide1	754-91-6	N.D.	0.23	0.69	1
14027	Perfluorooctanesulfonic acid1	1763-23-1	N.D.	0.23	0.69	1
14027	Perfluorooctanoic acid1	335-67-1	N.D.	0.23	0.69	1
14027	Perfluoropentanoic acid1	2706-90-3	N.D.	0.23	0.69	1
14027	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.23	0.69	1
14027	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.23	0.69	1
14027	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	0.23	0.69	1
Metals	SW-846 6 2014	020B Rev.2, July	mg/kg	mg/kg	mg/kg	
06125	Arsenic	7440-38-2	3.73	0.140	0.420	2

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314162

2099431

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05

SDG#: CMS08-16

CAT No.	Analysis Name	CASI	lumber	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev 2014	v.2, July	mg/kg	mg/kg	mg/kg	
06126	Barium	7440-3	39-3	29.4	0.192	0.420	2
06127	Beryllium	7440-4	11-7	0.140	0.0250	0.0630	2
06128	Cadmium	7440-4	43-9	0.254	0.0529	0.105	2
06131	Chromium	7440-4	47-3	5.01	0.161	0.420	2
02829	Trivalent Chromium soils1	16065	-83-1	5.0	0.17	0.51	1
	The Trivalent Chromium re Chromium from Total Chro		racting Hexa	valent			
06133	Copper	7440-5	50-8	34.6	0.184	0.420	2
06135	Lead	7439-9	92-1	118	0.265	1.05	10
06137	Manganese	7439-9	96-5	52.6	0.225	0.420	2
06139	Nickel	7440-0	02-0	5.12	0.171	0.420	2
06141	Selenium	7782-4	19-2	0.489	0.137	0.420	2
06142	Silver	7440-2	22-4	0.122	0.0426	0.105	2
06149	Zinc	7440-6	66-6	163	2.81	10.5	10
		SW-846 7471B		mg/kg	mg/kg	mg/kg	
00159	Mercury	7439-9	97-6	0.291	0.0179	0.0786	1
Wet Ch	emistry	SW-846 9012B		mg/kg	mg/kg	mg/kg	
05895	Total Cyanide (solid)	57-12-	5	N.D.	0.21	0.58	1
		SW-846 7196A		mg/kg	mg/kg	mg/kg	
00425	Hexavalent Chromium (SC	DLIDS) 18540-	-29-9	N.D.	0.17	0.51	1
Wet Ch	emistry	SM 2540 G-2011 %Moisture Calc		%	%	%	
00111	Moisture ¹	n.a.		17.9	0.50	0.50	1
	Moisture represents the load 103 - 105 degrees Celsius as-received basis.						

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05 SDG#: 05/13/2020 12:05

Langan Eng & Env Services
ELLE Sample #: SW 1314162
ELLE Group #: 2099431

Matrix: Soil

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	VOCs 8260C	SW-846 8260C	1	R201362AA	05/15/2020 17:23	Jennifer K Howe	39		
11995	VOCs 8260C	SW-846 8260C	1	R201362AA	05/15/2020 17:44	Jennifer K Howe	390.02		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013556787	05/14/2020 09:41	Essence Orden-Slocum	1		
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013556787	05/13/2020 12:05	Client Supplied	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 14:14	Edward C Monborne	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 16:36	Edward C Monborne	10		
12969	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20135SLD026	05/18/2020 22:12	William H Saadeh	10		
10813	BNA Soil Microwave APP IX	SW-846 3546	2	20139SLA026	05/19/2020 00:42	Laura Duquette	1		
10811	BNA Soil Microwave SIM	SW-846 3546	1	20135SLD026	05/15/2020 00:08	Laura Duquette	1		
10401	2,4,5-T, 2,4-D, 2,4,5-TP 8151A	SW-846 8151A	1	201350020A	05/16/2020 09:52	Rachel Umberger	1		
10885	7 PCBs + Total Soil	SW-846 8082A Feb 2007 Rev 1	1	201390026A	05/19/2020 15:37	Elizabeth E Donovan	5		
10590	NY Part 375 Pests Soil	SW-846 8081B	1	201350016A	05/19/2020 11:25	Dylan Schreiner	20		
10497	PCB Microwave Soil Extraction	SW-846 3546	2	201390026A	05/18/2020 19:40	Bradley W VanLeuven	1		
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	201350016A	05/14/2020 23:55	Laura Duquette	1		
04181	Herbicide Soil Extraction	SW-846 3550C/SW-846 8151A	1	201350020A	05/15/2020 00:10	Sherry L Morrow	1		
14027	NY 21 PFAS Soil	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 16:37	Katie Renfro	1		
14090	PFAS Solid Prep	EPA 537 Version 1.1 Modified	1	20135005	05/14/2020 07:00	Austin Prince	1		
06125	Arsenic	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
06126	Barium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
06127	Beryllium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:37	Patrick J Engle	2		
06128	Cadmium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
06131	Chromium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
02829	Trivalent Chromium soils	SW-846 6020B Rev.2, July 2014	1	201380282901	05/15/2020 22:13	Katlin N Burkholder	1		
06133	Copper	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
06135	Lead	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:40	Patrick J Engle	10		
06137	Manganese	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2		
06139	Nickel	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:37	Patrick J Engle	2		
06141	Selenium	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/18/2020 20:37	Patrick J Engle	2		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB20_14-16 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 12:05 SDG#: 05/13/2020 12:05

Langan Eng & Env Services
ELLE Sample #: SW 1314162
ELLE Group #: 2099431

Matrix: Soil

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06142	Silver	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/14/2020 19:43	Patrick J Engle	2			
06149	Zinc	SW-846 6020B Rev.2, July 2014	1	201351404903A	05/19/2020 09:49	Bradley M Berlot	10			
00159	Mercury	SW-846 7471B	1	201351063802	05/14/2020 10:57	Damary Valentin	1			
14049	ICP/ICPMS-SW, 3050B - U345	SW-846 3050B	1	201351404903	05/14/2020 06:00	Annamaria Kuhns	1			
10638	Hg - SW, 7471B - U4	SW-846 7471B	1	201351063802	05/14/2020 08:15	Annamaria Kuhns	1			
05895	Total Cyanide (solid)	SW-846 9012B	1	20136102201B	05/15/2020 11:52	Gregory Baldree	1			
05896	Cyanide Solid Distillation	SW-846 9012B	1	20136102201B	05/15/2020 08:20	Nancy J Shoop	1			
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	1	20135042501B	05/14/2020 22:15	Daniel S Smith	1			
07825	Hexavalent Cr (Extraction)	SW-846 3060A	1	20135042501B	05/14/2020 09:35	Daniel S Smith	1			
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314163

2099431

Sample Description: LB23_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 10:45

SDG#: CMS08-17

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.030	0.005	0.023	1
10726	Acenaphthylene	208-96-8	0.062	0.005	0.023	1
10726	Acetophenone	98-86-2	0.032 J	0.023	0.070	1
10726	Anthracene	120-12-7	0.33	0.005	0.023	1
10726	Atrazine	1912-24-9	N.D.	0.28	0.60	1
10726	Benzaldehyde	100-52-7	N.D.	0.093	0.23	1
10726	Benzidine	92-87-5	N.D.	0.46	1.4	1
10726	Benzo(a)anthracene	56-55-3	1.6	0.009	0.023	1
10726	Benzo(a)pyrene	50-32-8	7.1	0.046	0.23	10
10726	Benzo(b)fluoranthene	205-99-2	8.1	0.046	0.23	10
10726	Benzo(g,h,i)perylene	191-24-2	27	0.046	0.23	10
10726	Benzo(k)fluoranthene	207-08-9	3.2	0.046	0.23	10
10726	1,1'-Biphenyl	92-52-4	N.D.	0.023	0.051	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.093	0.23	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.093	0.23	1
10726	Caprolactam	105-60-2	N.D.	0.046	0.23	1
10726	Carbazole	86-74-8	0.037 J	0.023	0.051	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.033	0.070	1
10726	bis(2-Chloroisopropyl)ether ¹	39638-32-9	N.D.	0.028	0.060	1
	Bis(2-chloroisopropyl) ether CAS #390 2,2'-Oxybis(1-chloropropane) CAS #1 chromatographically. The reported re total of both compounds.	08-60-1 cannot be separ sult represents the comb	pined			
10726	2-Chloronaphthalene	91-58-7	N.D.	0.009	0.046	1
10726	2-Chlorophenol	95-57-8	N.D.	0.023	0.051	1
10726	Chrysene	218-01-9	1.6	0.005	0.023	1
10726	Dibenz(a,h)anthracene	53-70-3	3.0	0.009	0.023	1
10726	Dibenzofuran	132-64-9	0.050 J	0.023	0.051	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.023	0.070	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.023	0.051	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.023	0.051	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.14	0.46	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.028	0.060	1
10726	Diethylphthalate	84-66-2	N.D.	0.093	0.23	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.042	0.093	1
10726	Dimethylphthalate	131-11-3	N.D.	0.093	0.23	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.33	0.70	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.46	1.4	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.093	0.23	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.033	0.070	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.033	0.070	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.028	0.060	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314163

2099431

Sample Description: LB23_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 10:45

SDG#: CMS08-17

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-840	6 8270D	mg/kg	mg/kg	mg/kg	
	Azobenzene cannot be distinguished reported for 1,2-diphenylhydrazine re compounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.093	0.23	1
10726	Fluoranthene	206-44-0	1.7	0.005	0.023	1
10726	Fluorene	86-73-7	0.044	0.005	0.023	1
10726	Hexachlorobenzene	118-74-1	0.018 J	0.009	0.023	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.051	0.11	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.28	0.70	1
10726	Hexachloroethane	67-72-1	N.D.	0.046	0.23	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	19	0.046	0.23	10
10726	Isophorone	78-59-1	N.D.	0.023	0.051	1
10726	2-Methylnaphthalene	91-57-6	0.016 J	0.005	0.046	1
10726	2-Methylphenol	95-48-7	N.D.	0.023	0.093	1
10726	4-Methylphenol	106-44-5	N.D.	0.023	0.070	1
	3-Methylphenol and 4-methylphenol chromatographic conditions used for for 4-methylphenol represents the co	sample analysis. The res	sult reported			
10726	Naphthalene	91-20-3	0.091	0.009	0.023	1
10726	2-Nitroaniline	88-74-4	N.D.	0.023	0.070	1
10726	Nitrobenzene	98-95-3	N.D.	0.037	0.093	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.093	0.23	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.033	0.070	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.023	0.051	1
	N-nitrosodiphenylamine decomposed diphenylamine. The result reported represents the combined total of bottless and the combined total of bottless are combined total of bottless.	for N-nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.093	0.23	1
10726	Pentachlorophenol	87-86-5	N.D.	0.093	0.23	1
10726	Phenanthrene	85-01-8	0.88	0.005	0.023	1
10726	Phenol	108-95-2	N.D.	0.023	0.051	1
10726	Pyrene	129-00-0	2.0	0.005	0.023	1
10726	Pyridine	110-86-1	N.D.	0.093	0.23	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.033	0.070	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.042	0.093	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.037	0.079	1
Spike Summ	ecovery for a target analyte(s) in the La (s) is outside the QC acceptance limits nary. Since the recovery is high and the ot detected in the sample, the data is	s as noted on the QC he target analyte(s)				
Wet Ch		I0 G-2011 ture Calc	%	%	%	
00111	Moisture ¹	n.a.	28.7	0.50	0.50	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314163

2099431

Sample Description: LB23_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 10:45

SDG#: CMS08-17

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
1101 01101111011,		SM 2540 G-2011	%	%	%	
		%Moisture Calc ne loss in weight of the sample after over				
	103 - 105 degrees Ce	Isius. The moisture result reported is on a	an			

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 14:38	Edward C Monborne	1				
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 17:00	Edward C Monborne	10				
10813	BNA Soil Microwave APP IX	SW-846 3546	2	20139SLA026	05/19/2020 00:42	Laura Duquette	1				
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20136820001A	05/15/2020 10:39	Larry E Bevins	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB24_10-12 Grab Soil

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 14:45 SDG#: CMS08-18

Langan Eng & Env Services 35 Commercial Street/170229024 ELLE Sample #: SW 1314164 **ELLE Group #:** 2099431 Matrix: Soil

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	6 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.77	0.004	0.019	1
10726	Acenaphthylene	208-96-8	0.36	0.004	0.019	1
10726	Acetophenone	98-86-2	N.D.	0.019	0.057	1
10726	Anthracene	120-12-7	1.4	0.004	0.019	1
10726	Atrazine	1912-24-9	N.D.	0.23	0.50	1
10726	Benzaldehyde	100-52-7	N.D.	0.077	0.19	1
10726	Benzidine	92-87-5	N.D.	0.38	1.1	1
10726	Benzo(a)anthracene	56-55-3	2.9	0.008	0.019	1
10726	Benzo(a)pyrene	50-32-8	2.6	0.004	0.019	1
10726	Benzo(b)fluoranthene	205-99-2	3.1	0.004	0.019	1
10726	Benzo(g,h,i)perylene	191-24-2	1.8	0.004	0.019	1
10726	Benzo(k)fluoranthene	207-08-9	1.3	0.004	0.019	1
10726	1,1'-Biphenyl	92-52-4	0.086	0.019	0.042	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.077	0.19	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.077	0.19	1
10726	Caprolactam	105-60-2	N.D.	0.038	0.19	1
10726	Carbazole	86-74-8	0.61	0.019	0.042	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.027	0.057	1
10726	bis(2-Chloroisopropyl)ether ¹	39638-32-9	N.D.	0.023	0.050	1
	Bis(2-chloroisopropyl) ether CAS #39 2,2'-Oxybis(1-chloropropane) CAS # chromatographically. The reported r total of both compounds.	108-60-1 cannot be sepa				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.008	0.038	1
10726	2-Chlorophenol	95-57-8	N.D.	0.019	0.042	1
10726	Chrysene	218-01-9	2.6	0.004	0.019	1
10726	Dibenz(a,h)anthracene	53-70-3	0.46	0.008	0.019	1
10726	Dibenzofuran	132-64-9	0.46	0.019	0.042	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.019	0.057	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.019	0.042	1
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.019	0.042	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.11	0.38	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.023	0.050	1
10726	Diethylphthalate	84-66-2	N.D.	0.077	0.19	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.034	0.077	1
10726	Dimethylphthalate	131-11-3	N.D.	0.077	0.19	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.27	0.57	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.38	1.1	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.077	0.19	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.027	0.057	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.027	0.057	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.023	0.050	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

SW 1314164

2099431

Sample Description: LB24_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21
Collection Date/Time: 05/13/2020 14:45
SDG#: CMS08-18

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	6 8270D	mg/kg	mg/kg	mg/kg	
	Azobenzene cannot be distinguished reported for 1,2-diphenylhydrazine recompounds.					
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.077	0.19	1
10726	Fluoranthene	206-44-0	8.3	0.019	0.096	5
10726	Fluorene	86-73-7	0.64	0.004	0.019	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.019	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.042	0.088	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.23	0.57	1
10726	Hexachloroethane	67-72-1	N.D.	0.038	0.19	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	1.6	0.004	0.019	1
10726	Isophorone	78-59-1	N.D.	0.019	0.042	1
10726	2-Methylnaphthalene	91-57-6	0.24	0.004	0.038	1
10726	2-Methylphenol	95-48-7	N.D.	0.019	0.077	1
10726	4-Methylphenol	106-44-5	0.045 J	0.019	0.057	1
	3-Methylphenol and 4-methylphenol chromatographic conditions used for for 4-methylphenol represents the co	sample analysis. The resombined total of both comp	ult reported counds.			
10726	Naphthalene	91-20-3	0.49	0.008	0.019	1
10726	2-Nitroaniline	88-74-4	N.D.	0.019	0.057	1
10726	Nitrobenzene	98-95-3	N.D.	0.031	0.077	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.077	0.19	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.027	0.057	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.019	0.042	1
	N-nitrosodiphenylamine decomposes diphenylamine. The result reported represents the combined total of both	for N-nitrosodiphenylamin	e			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.077	0.19	1
10726	Pentachlorophenol	87-86-5	N.D.	0.077	0.19	1
10726	Phenanthrene	85-01-8	7.6	0.019	0.096	5
10726	Phenol	108-95-2	N.D.	0.019	0.042	1
10726	Pyrene	129-00-0	6.7	0.019	0.096	5
10726	Pyridine	110-86-1	N.D.	0.077	0.19	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.027	0.057	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.034	0.077	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.031	0.065	1
Wet Ch		l0 G-2011 ture Calc	%	%	%	
00111	Moisture ¹	n.a.	13.2	0.50	0.50	1
	Moisture represents the loss in weight 103 - 105 degrees Celsius. The mois as-received basis.					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: LB24_10-12 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 14:45

SDG#: CMS08-18

Langan Eng & Env Services

ELLE Sample #: SW 1314164 ELLE Group #: 2099431

Matrix: Soil

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# Analysis Dilution Analyst Date and Time Factor 10726 NYSDEC/NJDEP SVOCs 8270D SW-846 8270D 20135SLB026 05/15/2020 22:10 William H Saadeh NYSDEC/NJDEP SVOCs 8270D SW-846 8270D 20135SLB026 05/18/2020 16:11 Edward C Monborne 5 10726 Soil 10813 BNA Soil Microwave APP IX SW-846 3546 20135SLB026 05/15/2020 00:08 Laura Duquette 1 SM 2540 G-2011 20136820001A 05/15/2020 10:39 Larry E Bevins 00111 Moisture 1 1 %Moisture Calc

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB05_051320 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020

 SDG#:
 CMS08-19TB

Langan Eng & Env Services
ELLE Sample #: WW 1314165
ELLE Group #: 2099431

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	OC .	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOTB05_051320 Water

35 Commercial Street/170229024

Langan Eng & Env Services
ELLE Sample #: WW 1314165
ELLE Group #: 2099431

Matrix: Water

35 Commercial Street/170229024

 Submittal Date/Time:
 05/13/2020 22:21

 Collection Date/Time:
 05/13/2020

 SDG#:
 CMS08-19TB

Project Name:

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
	•	not met. The sample was received	•			

Preservation requirements were not met. The sample was received at pH <2 which is not the preservation specified for acrolein or acrylonitrile under the referenced method. The preservation criteria is pH of 4-5.

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11997 01163	VOCs 8260C GC/MS VOA Water Prep	SW-846 8260C SW-846 5030C	1 1	N201391AA N201391AA	05/18/2020 23:48 05/18/2020 23:47	Sara E Johnson Sara E Johnson	1 1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB05 051320 Water

35 Commercial Street/170229024

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 13:30 SDG#: CMS08-20FB

Langan Eng & Env	v Services
ELLE Sample #:	WW 1314166
ELLE Group #:	2099431
Matrix: Water	

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/l	ug/l	ug/l	
12971	1,4-Dioxane		123-91-1	N.D.	8.0	2	1
LC/MS	/MS Miscellaneous	EPA 537 Vers	sion 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonio	acid1	27619-97-2	N.D.	2.5	6.2	1
14473	8:2-Fluorotelomersulfonio	: acid1	39108-34-4	N.D.	1.2	3.7	1
14473	NEtFOSAA1		2991-50-6	N.D.	0.62	3.7	1
	NEtFOSAA is the acrony	m for N-ethyl perfluc	orooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA1		2355-31-9	N.D.	0.75	2.5	1
	NMeFOSAA is the acrony	m for N-methyl per	fluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic a	ıcid¹	375-73-5	N.D.	0.62	2.5	1
14473	Perfluorobutanoic acid1		375-22-4	N.D.	2.5	6.2	1
14473	Perfluorodecanesulfonic	acid¹	335-77-3	N.D.	0.62	2.5	1
14473	Perfluorodecanoic acid1		335-76-2	N.D.	0.62	2.5	1
14473	Perfluorododecanoic acid	1	307-55-1	N.D.	0.62	2.5	1
14473	Perfluoroheptanesulfonic	acid1	375-92-8	N.D.	0.62	2.5	1
14473	Perfluoroheptanoic acid1		375-85-9	N.D.	0.62	2.5	1
14473	Perfluorohexanesulfonic	acid¹	355-46-4	N.D.	0.62	2.5	1
14473	Perfluorohexanoic acid1		307-24-4	N.D.	0.62	2.5	1
14473	Perfluorononanoic acid1		375-95-1	N.D.	0.62	2.5	1
14473	Perfluorooctanesulfonam	ide ¹	754-91-6	N.D.	0.62	2.5	1
14473	Perfluorooctanesulfonic a	icid¹	1763-23-1	N.D.	0.62	2.5	1
14473	Perfluorooctanoic acid1		335-67-1	N.D.	0.62	2.5	1
14473	Perfluoropentanoic acid1		2706-90-3	N.D.	0.62	2.5	1
14473	Perfluorotetradecanoic ad	cid¹	376-06-7	N.D.	0.62	2.5	1
14473	Perfluorotridecanoic acid	I	72629-94-8	N.D.	0.62	2.5	1
14473	Perfluoroundecanoic acid	1	2058-94-8	N.D.	0.62	2.5	1

The recovery for the extraction standard(s) in the method blank are outside the QC acceptance limits as noted on the QC Summary.

Sample Comments

State of New York Certification No. 10670 Preservation requirements were not met. The pH preservation of all non-volatile containers was checked upon receipt at the laboratory. The container for the following analysis was not within the specification and was adjusted accordingly by the laboratory: Total Cyanide (water)

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Sample Description: SOFB05_051320 Water

35 Commercial Street/170229024

ELLE Sample #: WW 1314166 **ELLE Group #:** 2099431

Langan Eng & Env Services

Matrix: Water

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/13/2020 22:21 Collection Date/Time: 05/13/2020 13:30 SDG#: CMS08-20FB

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
12971	1,4-Dioxane 8270D SIM	SW-846 8270D SIM	1	20136WAJ026	05/18/2020 19:07	William H Saadeh	1				
10466	BNA Water Extraction SIM	SW-846 3510C	1	20136WAJ026	05/18/2020 12:41	Christine E Gleim	1				
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20139002	05/19/2020 03:42	Jason W Knight	1				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	20139002	05/18/2020 06:30	Nelson Richards	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201361AA	Sample num	nber(s): 1314144-	1314146,1314149
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	0.0008	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005
n-Propylbenzene	N.D.	0.0004	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene	N.D.	0.0005	0.005
Toluene	N.D.	0.0006	0.005
1,1,1-Trichloroethane	N.D.	0.0006	0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0007	0.005
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005
Vinyl Chloride	N.D.	0.0006	0.005
Xylene (Total)	N.D.	0.001	0.010
Batch number: B201381AA	•	(s): 1314143,1	314150,1314155,1314159-1314160
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol n-Butylbenzene	N.D. N.D.	0.015 0.003	0.10 0.008
sec-Butylbenzene	N.D. N.D.	0.003	0.005
tert-Butylbenzene	N.D. N.D.	0.002	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005
n-Propylbenzene	N.D.	0.0004	0.005
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene Toluene	N.D. N.D.	0.0005	0.005
1,1,1-Trichloroethane	N.D. N.D.	0.0006 0.0006	0.005 0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0003	0.005
1,2,4-Trimethylbenzene	N.D.	0.0007	0.005
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005
Vinyl Chloride	N.D.	0.0006	0.005
Xylene (Total)	N.D.	0.001	0.010
Batch number: R201362AA	Sample numb	per(s): 1314162	
Acetone	N.D.	0.30	1.0
Acrolein	N.D.	0.25	5.0
Acrylonitrile	N.D.	0.040	1.0
Benzene	N.D.	0.025	0.25
Bromodichloromethane	N.D.	0.020	0.25
Bromoform	N.D.	0.25	0.50
Bromomethane	N.D.	0.035	0.25
2-Butanone	N.D.	0.10	0.50
t-Butyl alcohol	N.D.	0.75	5.0
n-Butylbenzene	N.D.	0.15	0.40
sec-Butylbenzene	N.D.	0.10	0.25
tert-Butylbenzene Carbon Disulfide	N.D. N.D.	0.040 0.030	0.25 0.25
Carbon Tetrachloride	N.D.	0.030	0.25
Chlorobenzene	N.D.	0.025	0.25
Chloroethane	N.D.	0.050	0.25
Chloroform	N.D.	0.030	0.25
Chloromethane	N.D.	0.030	0.25
1,2-Dibromo-3-chloropropane	N.D.	0.025	0.25
Dibromochloromethane	N.D.	0.025	0.25
1,2-Dibromoethane	N.D.	0.020	0.25
1,2-Dichlorobenzene	N.D.	0.025	0.25
1,3-Dichlorobenzene	N.D.	0.025	0.25

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

	.	1401 44	
Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
1,4-Dichlorobenzene	N.D.	0.020	0.25
Dichlorodifluoromethane	N.D.	0.030	0.25
1,1-Dichloroethane	N.D.	0.025	0.25
1,2-Dichloroethane	N.D.	0.030	0.25
1,1-Dichloroethene	N.D.	0.025	0.25
cis-1,2-Dichloroethene	N.D.	0.025	0.25
trans-1,2-Dichloroethene	N.D.	0.025	0.25
1,2-Dichloroethene (Total)	N.D.	0.050	0.50
1,2-Dichloropropane	N.D.	0.025	0.25
cis-1,3-Dichloropropene	N.D.	0.020	0.25
trans-1,3-Dichloropropene	N.D.	0.025	0.25
Ethylbenzene	N.D.	0.020	0.25
Methyl Acetate	N.D.	0.050	0.25
Methyl Tertiary Butyl Ether	N.D.	0.025	0.25
Methylene Chloride	N.D.	0.10	0.25
n-Propylbenzene	N.D.	0.020	0.25
Styrene	N.D.	0.020	0.25
1,1,2,2-Tetrachloroethane	N.D.	0.020	0.25
Tetrachloroethene	N.D.	0.025	0.25
Toluene	N.D.	0.030	0.25
1,1,1-Trichloroethane	N.D.	0.030	0.25
1,1,2-Trichloroethane	N.D.	0.025	0.25
Trichloroethene	N.D.	0.025	0.25
Trichlorofluoromethane	N.D.	0.035	0.25
1,2,4-Trimethylbenzene	N.D.	0.025	0.25
1,3,5-Trimethylbenzene	N.D.	0.025	0.25
Vinyl Chloride	N.D.	0.030	0.25
Xylene (Total)	N.D.	0.070	0.50
	mg/l	mg/l	mg/l
Batch number: N201391AA	Sample num	ber(s): 1314165	
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
•	mg/l	mg/l	mg/l
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1.2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
	mg/kg	mg/kg	mg/kg
Batch number: 20135SLA026	Sample num	ber(s): 1314143-	1314144
Acenaphthene	N.D.	0.003	0.017
Acenaphthylene	N.D.	0.003	0.017
Acetophenone	N.D.	0.017	0.050
Anthracene	N.D.	0.003	0.017
Atrazine	N.D.	0.20	0.43

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
Allalysis Name			
	mg/kg	mg/kg	mg/kg
Benzaldehyde	N.D.	0.067	0.17
Benzidine	N.D.	0.33	1.0
Benzo(a)anthracene	N.D.	0.007	0.017
Benzo(a)pyrene	N.D.	0.003	0.017
Benzo(b)fluoranthene	N.D.	0.003	0.017
Benzo(g,h,i)perylene	N.D.	0.003	0.017
Benzo(k)fluoranthene	N.D.	0.003	0.017
1,1'-Biphenyl	N.D.	0.017	0.037
Butylbenzylphthalate	N.D.	0.067	0.17
Di-n-butylphthalate	N.D.	0.067	0.17
Caprolactam	N.D.	0.033	0.17
Carbazole	N.D.	0.017	0.037
bis(2-Chloroethyl)ether	N.D.	0.023	0.050
bis(2-Chloroisopropyl)ether	N.D.	0.020	0.043
2-Chloronaphthalene	N.D.	0.007	0.033
2-Chlorophenol	N.D.	0.017	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
, ,			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067
2,4,6-Trichlorophenol	N.D.	0.027	0.057
Batch number: 20135SLB026	Comple number/s	-). 1214140 1:	24.4450.424.4455.424.4450.424.4460.424.4464
	N.D.	0.003	314150,1314155,1314159-1314160,1314164
Acenaphthene Acenaphthylene	N.D. N.D.	0.003	0.017
Acetophenone	N.D. N.D.	0.003	0.017
Anthracene	N.D.	0.017	0.050 0.017
Arrazine	N.D. N.D.	0.003	
	N.D. N.D.	0.20	0.43 0.17
Benzaldehyde Benzidine	N.D. N.D.	0.067	1.0
Benzo(a)anthracene	N.D. N.D.	0.33	0.017
Benzo(a)pyrene	N.D. N.D.	0.007	0.017
Benzo(b)fluoranthene	N.D.	0.003	0.017
Benzo(g,h,i)perylene	N.D.	0.003	0.017
Benzo(k)fluoranthene	N.D. N.D.	0.003	0.017
1,1'-Biphenyl	N.D.	0.003	0.037
Butylbenzylphthalate	N.D.	0.017	0.037
Di-n-butylphthalate	N.D.	0.067	0.17
Caprolactam	N.D.	0.007	0.17
Carbazole	N.D.	0.033	0.037
bis(2-Chloroethyl)ether	N.D.	0.023	0.050
bis(2-Chloroisopropyl)ether	N.D.	0.020	0.043
2-Chloronaphthalene	N.D.	0.020	0.033
2-Chlorophenol	N.D.	0.007	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.007	0.037
1.2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.017	0.33
0,0 DIGITIOTODOTIZIGITIO	١٩.٠.	5.10	0.00

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067
2,4,6-Trichlorophenol	N.D.	0.027	0.057
Batch number: 20139SLA026	Sample number(s): 1314145-1	314146,1314162-1314163
Acenaphthene	N.D.	0.003	0.017
Acenaphthylene	N.D.	0.003	0.017
Acetophenone	N.D.	0.017	0.050
Anthracene	N.D.	0.003	0.017
Atrazine	N.D.	0.20	0.43
Benzaldehyde	N.D.	0.067	0.17

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Benzidine	N.D.	0.33	1.0
Benzo(a)anthracene	N.D.	0.007	0.017
Benzo(a)pyrene	N.D.	0.003	0.017
Benzo(b)fluoranthene	N.D.	0.003	0.017
Benzo(g,h,i)perylene	N.D.	0.003	0.017
Benzo(k)fluoranthene	N.D.	0.003	0.017
1,1'-Biphenyl	N.D.	0.017	0.037
Butylbenzylphthalate	N.D.	0.067	0.17
Di-n-butylphthalate	N.D.	0.067	0.17
Caprolactam	N.D.	0.033	0.17
Carbazole	N.D.	0.017	0.037
bis(2-Chloroethyl)ether	N.D.	0.023	0.050
bis(2-Chloroisopropyl)ether	N.D.	0.020	0.043
2-Chloronaphthalene	N.D.	0.007	0.033
2-Chlorophenol	N.D.	0.017	0.037
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D.	0.23	0.50
2,4-Dinitrophenol	N.D.	0.33	1.0
2,4-Dinitrotoluene	N.D.	0.067	0.17
2,6-Dinitrotoluene	N.D.	0.023	0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.020	0.043
bis(2-Ethylhexyl)phthalate	N.D.	0.067	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
- It is a second			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D.	0.027	0.067
N-Nitrosodimethylamine	N.D.	0.067	0.17
N-Nitroso-di-n-propylamine	N.D.	0.023	0.050
N-Nitrosodiphenylamine	N.D.	0.017	0.037
Di-n-octylphthalate	N.D.	0.067	0.17
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067
2,4,6-Trichlorophenol	N.D.	0.027	0.057
	ug/kg	ug/kg	ug/kg
Batch number: 20135SLC026	Sample numb	er(s): 1314143-	1314144,1314146
1,4-Dioxane	1 J	0.7	2
Batch number: 20135SLD026	Sample numb	er(s): 1314149-	1314150,1314155,1314159-1314160,1314162
1,4-Dioxane	2	0.7	2
Batch number: 20139SLD026	Sample numb	er(s): 1314145	
1,4-Dioxane	N.D.	0.7	2
	ug/l	ug/l	ug/l
Batch number: 20136WAJ026	Sample numb	er(s): 1314166	
1,4-Dioxane	N.D.	0.2	0.5
	mg/kg	mg/kg	mg/kg
Batch number: 201350020A	Sample numb	er(s): 1314143-	1314146,1314149-1314150,1314155,1314159-1314160,1314162
2,4-D	N.D.	0.012	0.036
2,4,5-T	N.D.	0.00082	0.0017
2,4,5-TP	N.D.	0.00075	0.0017
	ug/kg	ug/kg	ug/kg
Batch number: 201350022A	Sample numb	er(s): 1314149-	1314150,1314155,1314159-1314160
PCB-1016	N.D.	3.6	17
PCB-1221	N.D.	4.6	17
PCB-1232	N.D.	8.0	17
PCB-1242	N.D.	3.3	17
PCB-1248	N.D.	3.3	17
PCB-1254	N.D.	3.3	17
PCB-1260	33	4.9	17
Total PCBs	33	3.3	17
Batch number: 201390026A	Sample numb	er(s): 1314143-	1314146,1314162

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

PCB-1016 N.D. 3.6 17 PCB-1221 N.D. 4.6 17 PCB-1232 N.D. 8.0 17 PCB-1242 N.D. 3.3 17 PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 PCB-1260 N.D. 0.00017 0.00083 Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00020
PCB-1016 N.D. 3.6 17 PCB-1221 N.D. 4.6 17 PCB-1232 N.D. 8.0 17 PCB-1242 N.D. 3.3 17 PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00033 0.0020 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Delta BHC N.D. 0.00045 0.0015
PCB-1221 N.D. 4.6 17 PCB-1232 N.D. 8.0 17 PCB-1242 N.D. 3.3 17 PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 4.9 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00017 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddt N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.000
PCB-1232 N.D. 8.0 17 PCB-1242 N.D. 3.3 17 PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 Alpha Chlordane N.D. 0.00033 0.0020 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
PCB-1242 N.D. 3.3 17 PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
PCB-1248 N.D. 3.3 17 PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00024 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
PCB-1254 N.D. 3.3 17 PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
PCB-1260 N.D. 4.9 17 Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Total PCBs N.D. 3.3 17 mg/kg mg/kg mg/kg Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Batch number: 201350016A Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162 Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Aldrin N.D. 0.00017 0.00083 Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Alpha BHC N.D. 0.00017 0.00083 Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Beta BHC N.D. 0.00044 0.0015 Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Gamma BHC - Lindane N.D. 0.00021 0.00083 Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Alpha Chlordane N.D. 0.00017 0.00083 4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
4,4'-Ddd N.D. 0.00033 0.0020 4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
4,4'-Dde N.D. 0.00033 0.0020 4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
4,4'-Ddt 0.0025 0.00079 0.0020 Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Delta BHC N.D. 0.00045 0.0015 Dieldrin N.D. 0.00033 0.0020
Dieldrin N.D. 0.00033 0.0020
Endosulfan II N.D. 0.0011 0.0020
Endosulfan Sulfate N.D. 0.00033 0.0020
Endrin N.D. 0.00068 0.0020
Heptachlor N.D. 0.00031 0.00083
ng/g ng/g
Batch number: 20135005 Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162
6:2-Fluorotelomersulfonic acid N.D. 0.60 2.0
8:2-Fluorotelomersulfonic acid N.D. 0.60 3.0
NEtFOSAA N.D. 0.20 2.0
NMeFOSAA N.D. 0.20 2.0
Perfluorobutanesulfonic acid N.D. 0.40 2.0
Perfluorobutanoic acid N.D. 0.80 2.0
Perfluorodecanesulfonic acid N.D. 0.50 2.0 Perfluorodecanesulfonic acid N.D. 0.20 0.60
Perfluorodecanici acid N.D. 0.20 0.60
Perfluorododecanoic acid N.D. 0.20 0.60
Perfluoroheptanesulfonic acid N.D. 0.20 0.60
Perfluoroheptanoic acid N.D. 0.20 0.60
Perfluorohexanesulfonic acid N.D. 0.20 0.60
Perfluorohexanoic acid N.D. 0.20 0.60
Perfluorononanoic acid N.D. 0.20 0.60
Perfluorooctanesulfonamide N.D. 0.20 0.60
Perfluorooctanesulfonic acid N.D. 0.20 0.60

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	Result	MDL**	LOQ
	ng/g	ng/g	ng/g
Perfluorooctanoic acid	N.D.	0.20	0.60
Perfluoropentanoic acid	N.D.	0.20	0.60
Perfluorotetradecanoic acid	N.D.	0.20	0.60
Perfluorotridecanoic acid	N.D.	0.20	0.60
Perfluoroundecanoic acid	N.D.	0.20	0.60
	ng/l	ng/l	ng/l
Batch number: 20139002	Sample number(s): 1314166	
6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
NEtFOSAA	N.D.	0.50	3.0
NMeFOSAA	N.D.	0.60	2.0
Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluorooctanesulfonic acid	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluoropentanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid	N.D.	0.50	2.0
	mg/kg	mg/kg	mg/kg
Batch number: 201351063801		,	314143-1314147,1314149-1314151,1314153
Mercury	0.0174 J	0.0152	0.0667
Batch number: 201351063802	Sample number(s): 1314155,1	314159-1314162
Mercury	0.0209 J	0.0152	0.0667
Batch number: 201351404902A	Sample number(s): 1314141,1	314143-1314147,1314149-1314151,1314153
Arsenic	N.D.	0.134	0.400
Barium	N.D.	0.183	0.400
Beryllium	N.D.	0.0238	0.0600
Cadmium	N.D.	0.0504	0.100
Chromium	N.D.	0.154	0.400
Copper	N.D.	0.176	0.400
Lead	N.D.	0.0504	0.200
Manganese	N.D.	0.214	0.400

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Nickel	N.D.	0.163	0.400
Selenium	N.D.	0.130	0.400
Silver	N.D.	0.0406	0.100
Zinc	0.744 J	0.536	2.00
Batch number: 201351404903A	Sample number(s): 1314155,1	314159-1314162
Arsenic	N.D.	0.134	0.400
Barium	N.D.	0.183	0.400
Beryllium	N.D.	0.0238	0.0600
Cadmium	N.D.	0.0504	0.100
Chromium	N.D.	0.154	0.400
Copper	N.D.	0.176	0.400
Lead	N.D.	0.0504	0.200
Manganese	N.D.	0.214	0.400
Nickel	N.D.	0.163	0.400
Selenium	N.D.	0.130	0.400
Silver	N.D.	0.0406	0.100
Zinc	N.D.	0.536	2.00
	mg/l	mg/l	mg/l
Batch number: 201391404501	Sample number(s): 1314142,1	314148,1314152,1314154
Arsenic	N.D.	0.0160	0.0300
Lead	N.D.	0.0071	0.0150
Batch number: 201550571305	Sample number(s): 1314142,1	314148,1314152,1314154
Mercury	N.D.	0.000079	0.00020
	mg/kg	mg/kg	mg/kg
Batch number: 20136102201A	Sample number(s): 1314143-1	314146,1314149,1314155,1314159,1314161
Total Cyanide (solid)	N.D.	0.18	0.50
Batch number: 20136102201B	Sample number(s): 1314150.1	314162
Total Cyanide (solid)	N.D.	0.18	0.50
, , ,	0	-): 4044440 4	0444404044440
Batch number: 20135042501B	1 (,	314146,1314149-1314150,1314155-1314158,1314161-1314162
Hexavalent Chromium (SOLIDS)	N.D.	0.14	0.42

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201361AA	Sample number	s): 1314144-1	314146,1314149						
Acetone	0.150	0.169	0.150	0.208	112	138	41-150	21	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Acrolein	0.150	0.139	0.150	0.147	93	98	57-131	5	30
Acrylonitrile	0.100	0.0956	0.100	0.0892	96	89	66-120	7	30
Benzene	0.0200	0.0206	0.0200	0.0191	103	96	80-120	7	30
Bromodichloromethane	0.0200	0.0207	0.0200	0.0196	104	98	70-120	5	30
Bromoform	0.0200	0.0192	0.0200	0.0184	96	92	51-127	4	30
Bromomethane	0.0200	0.0179	0.0200	0.0166	89	83	45-140	7	30
2-Butanone	0.150	0.149	0.150	0.167	99	111	57-128	11	30
t-Butyl alcohol	0.200	0.199	0.200	0.202	100	101	74-121	1	30
n-Butylbenzene	0.0200	0.0191	0.0200	0.0181	95	90	71-121	5	30
sec-Butylbenzene	0.0200	0.0202	0.0200	0.0190	101	95	72-120	6	30
tert-Butylbenzene	0.0200	0.0193	0.0200	0.0183	97	91	68-120	5	30
Carbon Disulfide	0.0200	0.0205	0.0200	0.0184	103	92	64-133	11	30
Carbon Tetrachloride	0.0200	0.0210	0.0200	0.0191	105	95	64-134	9	30
Chlorobenzene	0.0200	0.0202	0.0200	0.0191	101	95	80-120	6	30
Chloroethane	0.0200	0.0175	0.0200	0.0158	88	79	43-135	11	30
Chloroform	0.0200	0.0205	0.0200	0.0194	103	97	80-120	5	30
Chloromethane	0.0200	0.0200	0.0200	0.0175	100	88	56-120	13	30
1,2-Dibromo-3-chloropropane	0.0200	0.0188	0.0200	0.0179	94	89	48-134	5	30
Dibromochloromethane	0.0200	0.0212	0.0200	0.0203	106	101	69-125	4	30
1,2-Dibromoethane	0.0200	0.0201	0.0200	0.0191	100	96	76-120	5	30
1,2-Dichlorobenzene	0.0200	0.0198	0.0200	0.0187	99	93	76-120	6	30
1,3-Dichlorobenzene	0.0200	0.0193	0.0200	0.0184	96	92	75-120	4	30
1,4-Dichlorobenzene	0.0200	0.0194	0.0200	0.0186	97	93	80-120	4	30
Dichlorodifluoromethane	0.0200	0.0256	0.0200	0.0235	128*	118	21-127	8	30
1,1-Dichloroethane	0.0200	0.0204	0.0200	0.0192	102	96	79-120	6	30
1,2-Dichloroethane	0.0200	0.0197	0.0200	0.0192	99	96	71-128	3	30
1,1-Dichloroethene	0.0200	0.0216	0.0200	0.0197	108	98	73-129	9	30
cis-1,2-Dichloroethene	0.0200	0.0222	0.0200	0.0208	111	104	80-125	7	30
trans-1,2-Dichloroethene	0.0200	0.0207	0.0200	0.0193	104	96	80-126	7	30
1,2-Dichloroethene (Total)	0.0400	0.0429	0.0400	0.0400	107	100	80-126	7	30
1,2-Dichloropropane	0.0200 0.0200	0.0209 0.0206	0.0200 0.0200	0.0195	105 103	98 97	80-120 66-120	7 5	30 30
cis-1,3-Dichloropropene				0.0195			68-120 68-122	5 4	30
trans-1,3-Dichloropropene	0.0200 0.0200	0.0199 0.0202	0.0200 0.0200	0.0192 0.0189	99 101	96 95	78-122	6	30
Ethylbenzene Methyl Apatoto	0.0200	0.0202	0.0200	0.0169	94	95 87	67-128	7	30
Methyl Acetate	0.0200	0.0187	0.0200	0.0174	94 97	95	72-120	2	30
Methyl Tertiary Butyl Ether Methylene Chloride	0.0200	0.0194	0.0200	0.0190	102	95 98	72-120 76-122	4	30
n-Propylbenzene	0.0200	0.0203	0.0200	0.0190	102	96 96	70-122	6	30
Styrene	0.0200	0.0204	0.0200	0.0192	96	90 91	72-123 76-120	6	30
1,1,2,2-Tetrachloroethane	0.0200	0.0193	0.0200	0.0162	100	91 95	69-125	5	30
Tetrachloroethene	0.0200	0.0199	0.0200	0.0190	100	93 94	73-120	7	30
Toluene	0.0200	0.0201	0.0200	0.0183	98	92	80-120	7	30
1,1,1-Trichloroethane	0.0200	0.0197	0.0200	0.0185	100	93	69-123	8	30
1,1,2-Trichloroethane	0.0200	0.0212	0.0200	0.0103	106	104	80-120	2	30
1,1,2 Thomoroemane	0.0200	0.0212	0.0200	0.0200	100	107	00-120	_	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max			
Trichloroethene	0.0200	0.0203	0.0200	0.0188	101	94	80-120	7	30			
Trichlorofluoromethane	0.0200	0.0222	0.0200	0.0198	111	99	55-134	11	30			
1,2,4-Trimethylbenzene	0.0200	0.0196	0.0200	0.0187	98	93	73-120	5	30			
1,3,5-Trimethylbenzene	0.0200	0.0196	0.0200	0.0188	98	94	73-120	5	30			
Vinyl Chloride	0.0200	0.0192	0.0200	0.0172	96	86	52-120	11	30			
Xylene (Total)	0.0600	0.0600	0.0600	0.0558	100	93	75-120	7	30			
Batch number: B201381AA	Sample number	Sample number(s): 1314143,1314150,1314155,1314159-1314160										
Acetone	0.150	0.194	0.150	0.174	129	116	41-150	11	30			
Acrolein	0.150	0.159	0.150	0.137	106	92	57-131	14	30			
Acrylonitrile	0.100	0.0754	0.100	0.0840	75	84	66-120	11	30			
Benzene	0.0200	0.0192	0.0200	0.0195	96	97	80-120	1	30			
Bromodichloromethane	0.0200	0.0192	0.0200	0.0198	96	99	70-120	3	30			
Bromoform	0.0200	0.0175	0.0200	0.0186	88	93	51-127	6	30			
Bromomethane	0.0200	0.0177	0.0200	0.0175	88	87	45-140	1	30			
2-Butanone	0.150	0.159	0.150	0.147	106	98	57-128	8	30			
t-Butyl alcohol	0.200	0.201	0.200	0.202	100	101	74-121	1	30			
n-Butylbenzene	0.0200	0.0201	0.0200	0.0198	101	99	71-121	2	30			
sec-Butylbenzene	0.0200	0.0206	0.0200	0.0205	103	103	72-120	0	30			
tert-Butylbenzene	0.0200	0.0198	0.0200	0.0195	99	98	68-120	1	30			
Carbon Disulfide	0.0200	0.0176	0.0200	0.0177	88	89	64-133	1	30			
Carbon Tetrachloride	0.0200	0.0191	0.0200	0.0190	95	95	64-134	0	30			
Chlorobenzene	0.0200	0.0200	0.0200	0.0202	100	101	80-120	1	30			
Chloroethane	0.0200	0.0168	0.0200	0.0167	84	84	43-135	1	30			
Chloroform	0.0200	0.0196	0.0200	0.0198	98	99	80-120	1	30			
Chloromethane	0.0200	0.0184	0.0200	0.0180	92	90	56-120	2	30			
1,2-Dibromo-3-chloropropane	0.0200	0.0157	0.0200	0.0180	79	90	48-134	13	30			
Dibromochloromethane	0.0200	0.0203	0.0200	0.0208	101	104	69-125	3	30			
1,2-Dibromoethane	0.0200	0.0185	0.0200	0.0195	92	97	76-120	5	30			
1,2-Dichlorobenzene	0.0200	0.0200	0.0200	0.0203	100	101	76-120	2	30			
1,3-Dichlorobenzene	0.0200	0.0200	0.0200	0.0201	100	101	75-120	0	30			
1,4-Dichlorobenzene	0.0200	0.0202	0.0200	0.0202	101	101	80-120	0	30			
Dichlorodifluoromethane	0.0200	0.0167	0.0200	0.0168	84	84	21-127	0	30			
1,1-Dichloroethane	0.0200	0.0189	0.0200	0.0191	94	95	79-120	1	30			
1,2-Dichloroethane	0.0200	0.0178	0.0200	0.0185	89	92	71-128	4	30			
1,1-Dichloroethene	0.0200	0.0185	0.0200	0.0190	93	95	73-129	2	30			
cis-1,2-Dichloroethene	0.0200	0.0208	0.0200	0.0211	104	105	80-125	1	30			
trans-1,2-Dichloroethene	0.0200	0.0191	0.0200	0.0193	95	96	80-126	1	30			
1,2-Dichloroethene (Total)	0.0400	0.0399	0.0400	0.0403	100	101	80-126	1	30			
1,2-Dichloropropane	0.0200	0.0193	0.0200	0.0198	97	99	80-120	2	30			
cis-1,3-Dichloropropene	0.0200	0.0190	0.0200	0.0196	95	98	66-120	3	30			
trans-1,3-Dichloropropene	0.0200	0.0186	0.0200	0.0195	93	98	68-122	5	30			
Ethylbenzene	0.0200	0.0200	0.0200	0.0201	100	100	78-120	0	30			
Methyl Acetate	0.0200	0.0146	0.0200	0.0167	73	83	67-128	13	30			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Methyl Tertiary Butyl Ether	0.0200	0.0173	0.0200	0.0187	86	94	72-120	8	30
Methylene Chloride	0.0200	0.0189	0.0200	0.0194	95	97	76-122	3	30
n-Propylbenzene	0.0200	0.0208	0.0200	0.0208	104	104	72-123	0	30
Styrene	0.0200	0.0192	0.0200	0.0195	96	97	76-120	2	30
1,1,2,2-Tetrachloroethane	0.0200	0.0179	0.0200	0.0196	89	98	69-125	9	30
Tetrachloroethene	0.0200	0.0194	0.0200	0.0195	97	98	73-120	1	30
Toluene	0.0200	0.0193	0.0200	0.0194	96	97	80-120	1	30
1,1,1-Trichloroethane	0.0200	0.0185	0.0200	0.0188	93	94	69-123	1	30
1,1,2-Trichloroethane	0.0200	0.0202	0.0200	0.0204	101	102	80-120	1	30
Trichloroethene	0.0200	0.0192	0.0200	0.0196	96	98	80-120	2	30
Trichlorofluoromethane	0.0200	0.0183	0.0200	0.0183	92	92	55-134	0	30
1,2,4-Trimethylbenzene	0.0200	0.0199	0.0200	0.0200	100	100	73-120	0	30
1,3,5-Trimethylbenzene	0.0200	0.0202	0.0200	0.0203	101	101	73-120	0	30
Vinyl Chloride	0.0200	0.0182	0.0200	0.0180	91	90	52-120	1	30
Xylene (Total)	0.0600	0.0601	0.0600	0.0604	100	101	75-120	1	30
Batch number: R201362AA	Sample number	(s): 1314162							
Acetone	7.50	7.51	7.50	6.93	100	92	41-150	8	30
Acrolein	7.50	7.96	7.50	7.76	106	103	57-131	3	30
Acrylonitrile	5.00	5.55	5.00	5.52	111	110	66-120	1	30
Benzene	1.00	1.03	1.00	1.02	103	102	80-120	1	30
Bromodichloromethane	1.00	1.02	1.00	1.01	102	101	70-120	1	30
Bromoform	1.00	0.951	1.00	0.946	95	95	51-127	0	30
Bromomethane	1.00	1.37	1.00	1.42	137	142*	45-140	4	30
2-Butanone	7.50	6.83	7.50	6.54	91	87	57-128	4	30
t-Butyl alcohol	10	9.26	10	9.24	93	92	74-121	0	30
n-Butylbenzene	1.00	0.964	1.00	0.958	96	96	71-121	1	30
sec-Butylbenzene	1.00	0.964	1.00	0.955	96	95	72-120	1	30
tert-Butylbenzene	1.00	0.936	1.00	0.923	94	92	68-120	1	30
Carbon Disulfide	1.00	1.08	1.00	1.09	108	109	64-133	1	30
Carbon Tetrachloride	1.00	0.984	1.00	0.992	98	99	64-134	1	30
Chlorobenzene	1.00	0.973	1.00	0.973	97	97	80-120	0	30
Chloroethane	1.00	1.32	1.00	1.28	132	128	43-135	3	30
Chloroform	1.00	0.987	1.00	0.973	99	97	80-120	1	30
Chloromethane	1.00	0.888	1.00	0.897	89	90	56-120	1	30
1,2-Dibromo-3-chloropropane	1.00	1.06	1.00	1.06	106	106	48-134	0	30
Dibromochloromethane	1.00	1.03	1.00	1.03	103	103	69-125	0	30
1,2-Dibromoethane	1.00	0.997	1.00	0.995	100	99	76-120	0	30
1,2-Dichlorobenzene	1.00	0.973	1.00	0.971	97	97	76-120	0	30
1,3-Dichlorobenzene	1.00	0.970	1.00	0.962	97	96	75-120	1	30
1,4-Dichlorobenzene	1.00	0.982	1.00	0.971	98	97	80-120	1	30
Dichlorodifluoromethane	1.00	0.714	1.00	0.722	71	72	21-127	1	30
1,1-Dichloroethane	1.00	1.08	1.00	1.06	108	106	79-120	2	30
1,2-Dichloroethane	1.00	1.00	1.00	0.988	100	99	71-128	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,1-Dichloroethene	1.00	1.07	1.00	1.07	107	107	73-129	0	30
cis-1,2-Dichloroethene	1.00	1.06	1.00	1.05	106	105	80-125	1	30
trans-1,2-Dichloroethene	1.00	1.02	1.00	1.01	102	101	80-126	1	30
1,2-Dichloroethene (Total)	2.00	2.08	2.00	2.05	104	103	80-126	1	30
1,2-Dichloropropane	1.00	1.10	1.00	1.10	110	110	80-120	0	30
cis-1,3-Dichloropropene	1.00	1.05	1.00	1.04	105	104	66-120	1	30
trans-1,3-Dichloropropene	1.00	1.06	1.00	1.04	106	104	68-122	2	30
Ethylbenzene	1.00	1.01	1.00	1.02	101	102	78-120	1	30
Methyl Acetate	1.00	1.23	1.00	1.24	123	124	67-128	1	30
Methyl Tertiary Butyl Ether	1.00	0.925	1.00	0.915	92	92	72-120	1	30
Methylene Chloride	1.00	1.08	1.00	1.06	108	106	76-122	1	30
n-Propylbenzene	1.00	1.06	1.00	1.05	106	105	72-123	1	30
Styrene	1.00	1.02	1.00	1.02	102	102	76-120	0	30
1,1,2,2-Tetrachloroethane	1.00	1.09	1.00	1.10	109	110	69-125	1	30
Tetrachloroethene	1.00	0.937	1.00	0.928	94	93	73-120	1	30
Toluene	1.00	1.03	1.00	1.02	103	102	80-120	1	30
1,1,1-Trichloroethane	1.00	0.964	1.00	0.969	96	97	69-123	1	30
1,1,2-Trichloroethane	1.00	1.07	1.00	1.06	107	106	80-120	1	30
Trichloroethene	1.00	0.962	1.00	0.957	96	96	80-120	1	30
Trichlorofluoromethane	1.00	0.933	1.00	0.942	93	94	55-134	1	30
1,2,4-Trimethylbenzene	1.00	1.00	1.00	0.990	100	99	73-120	1	30
1,3,5-Trimethylbenzene	1.00	1.01	1.00	1.00	101	100	73-120	1	30
Vinyl Chloride	1.00	0.861	1.00	0.875	86	87	52-120	2	30
Xylene (Total)	3.00	3.01	3.00	3.01	100	100	75-120	0	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: N201391AA	Sample number	(s): 1314165							
Acetone	0.150	0.158	0.150	0.164	105	109	54-157	4	30
Acrolein	0.150	0.147	0.150	0.148	98	99	47-136	1	30
Acrylonitrile	0.100	0.0938	0.100	0.103	94	103	60-129	9	30
Benzene	0.0200	0.0207	0.0200	0.0200	103	100	80-120	3	30
Bromodichloromethane	0.0200	0.0189	0.0200	0.0181	94	91	71-120	4	30
Bromoform	0.0200	0.0192	0.0200	0.0202	96	101	51-120	5	30
Bromomethane	0.0200	0.0165	0.0200	0.0168	82	84	53-128	2	30
2-Butanone	0.150	0.147	0.150	0.145	98	97	59-135	1	30
t-Butyl alcohol	0.200	0.229	0.200	0.241	115	120	60-130	5	30
n-Butylbenzene	0.0200	0.0203	0.0200	0.0203	101	102	76-120	0	30
sec-Butylbenzene	0.0200	0.0209	0.0200	0.0210	104	105	77-120	0	30
tert-Butylbenzene	0.0200	0.0218	0.0200	0.0205	109	102	78-120	6	30
Carbon Disulfide	0.0200	0.0203	0.0200	0.0220	102	110	65-128	8	30
Carbon Tetrachloride	0.0200	0.0189	0.0200	0.0191	95	96	64-134	1	30
Chlorobenzene	0.0200	0.0205	0.0200	0.0202	103	101	80-120	1	30
Chloroethane	0.0200	0.0170	0.0200	0.0172	85	86	55-123	1	30
Chloroform	0.0200	0.0194	0.0200	0.0196	97	98	80-120	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Chloromethane	0.0200	0.0148	0.0200	0.0150	74	75	56-121	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0186	0.0200	0.0187	93	93	47-131	0	30
Dibromochloromethane	0.0200	0.0201	0.0200	0.0193	101	97	71-120	4	30
1,2-Dibromoethane	0.0200	0.0198	0.0200	0.0190	99	95	77-120	4	30
1,2-Dichlorobenzene	0.0200	0.0206	0.0200	0.0202	103	101	80-120	2	30
1,3-Dichlorobenzene	0.0200	0.0205	0.0200	0.0203	102	101	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0207	0.0200	0.0204	103	102	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0125	0.0200	0.0123	62	61	41-127	2	30
1,1-Dichloroethane	0.0200	0.0189	0.0200	0.0204	94	102	80-120	8	30
1,2-Dichloroethane	0.0200	0.0174	0.0200	0.0170	87	85	73-124	2	30
1,1-Dichloroethene	0.0200	0.0187	0.0200	0.0213	93	106	80-131	13	30
cis-1,2-Dichloroethene	0.0200	0.0214	0.0200	0.0215	107	108	80-125	0	30
trans-1,2-Dichloroethene	0.0200	0.0189	0.0200	0.0206	95	103	80-126	9	30
1,2-Dichloroethene (Total)	0.0400	0.0403	0.0400	0.0421	101	105	80-125	4	30
1,2-Dichloropropane	0.0200	0.0211	0.0200	0.0206	106	103	80-120	3	30
cis-1,3-Dichloropropene	0.0200	0.0193	0.0200	0.0179	96	89	75-120	7	30
trans-1,3-Dichloropropene	0.0200	0.0186	0.0200	0.0183	93	92	67-120	1	30
Ethylbenzene	0.0200	0.0206	0.0200	0.0204	103	102	80-120	1	30
Methyl Acetate	0.0200	0.0188	0.0200	0.0206	94	103 92	54-136	9 7	30 30
Methyl Tertiary Butyl Ether Methylene Chloride	0.0200 0.0200	0.0171 0.0184	0.0200 0.0200	0.0184 0.0197	86 92	92 99	69-122 80-120	7	30
n-Propylbenzene	0.0200	0.0164	0.0200	0.0197	108	99 107	79-121	1	30
Styrene	0.0200	0.0210	0.0200	0.0214	102	107	80-120	5	30
1,1,2,2-Tetrachloroethane	0.0200	0.0204	0.0200	0.0213	102	106	72-120	1	30
Tetrachloroethene	0.0200	0.0213	0.0200	0.0211	101	101	80-120	Ö	30
Toluene	0.0200	0.0207	0.0200	0.0202	103	100	80-120	3	30
1,1,1-Trichloroethane	0.0200	0.0186	0.0200	0.0182	93	91	67-126	2	30
1,1,2-Trichloroethane	0.0200	0.0206	0.0200	0.0199	103	99	80-120	4	30
Trichloroethene	0.0200	0.0192	0.0200	0.0185	96	93	80-120	4	30
Trichlorofluoromethane	0.0200	0.0173	0.0200	0.0183	86	91	55-135	5	30
1,2,4-Trimethylbenzene	0.0200	0.0201	0.0200	0.0198	101	99	75-120	2	30
1,3,5-Trimethylbenzene	0.0200	0.0206	0.0200	0.0203	103	101	75-120	1	30
Vinyl Chloride	0.0200	0.0156	0.0200	0.0157	78	78	56-120	1	30
Xylene (Total)	0.0600	0.0627	0.0600	0.0651	104	109	80-120	4	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20135SLA026	Sample number		314144						
Acenaphthene	1.67	1.41			84		61-112		
Acenaphthylene	1.67	1.40			84		60-124		
Acetophenone	1.67	1.25			75		48-109		
Anthracene	1.67	1.50			90		67-120		
Atrazine	1.67	1.53			92		70-129		
Benzaldehyde	1.67	0.833			50		20-101		
Benzidine	8.33	3.89			47		18-105		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Benzo(a)anthracene	1.67	1.57			94		68-120		
Benzo(a)pyrene	1.67	1.60			96		68-119		
Benzo(b)fluoranthene	1.67	1.59			95		67-125		
Benzo(g,h,i)perylene	1.67	1.48			89		68-125		
Benzo(k)fluoranthene	1.67	1.68			101		66-122		
1,1'-Biphenyl	1.67	1.41			84		59-106		
Butylbenzylphthalate	1.67	1.54			93		69-125		
Di-n-butylphthalate	1.67	1.52			91		70-126		
Caprolactam	1.67	1.39			83		62-119		
Carbazole	1.67	1.55			93		69-125		
bis(2-Chloroethyl)ether	1.67	1.20			72		44-104		
bis(2-Chloroisopropyl)ether	1.67	1.24			74		40-112		
2-Chloronaphthalene	1.67	1.19			72		48-123		
2-Chlorophenol	1.67	1.35			81		51-109		
Chrysene	1.67	1.48			89		66-111		
Dibenz(a,h)anthracene	1.67	1.55			93		69-135		
Dibenzofuran	1.67	1.45			87		62-113		
1,2-Dichlorobenzene	1.67	1.23			74		38-106		
1,3-Dichlorobenzene	1.67	1.17			70		36-103		
1,4-Dichlorobenzene	1.67	1.21			72		25-127		
3,3'-Dichlorobenzidine	1.67	1.21			73		18-114		
2,4-Dichlorophenol	1.67	1.45			87		57-115		
Diethylphthalate	1.67	1.48			89		68-116		
2,4-Dimethylphenol	1.67	1.15			69		47-95		
Dimethylphthalate	1.67	1.44			86		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.52			91		56-135		
2,4-Dinitrophenol	3.33	3.09			93		34-136		
2,4-Dinitrotoluene	1.67	1.57			94		61-121		
2,6-Dinitrotoluene	1.67	1.57			94		66-122		
1,2-Diphenylhydrazine	1.67	1.51			91		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.64			98		65-132		
Fluoranthene	1.67	1.51			91		65-114		
Fluorene	1.67	1.49			89		62-110		
Hexachlorobenzene	1.67	1.48			89		62-124		
Hexachlorobutadiene	1.67	1.33			80		39-120		
Hexachlorocyclopentadiene	3.33	2.03			61		13-115		
Hexachloroethane	1.67	1.16			69		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.53			92		64-130		
Isophorone	1.67	1.32			79		51-113		
2-Methylnaphthalene	1.67	1.36			81		52-104		
2-Methylphenol	1.67	1.36			82		52-116		
4-Methylphenol	1.67	1.39			83		52-121		
Naphthalene	1.67	1.30			78		49-104		
2-Nitroaniline	1.67	1.55			93		65-132		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Nitrobenzene	1.67	1.28			77		41-118		
N-Nitrosodimethylamine	1.67	1.17			70		31-107		
N-Nitroso-di-n-propylamine	1.67	1.31			78		49-108		
N-Nitrosodiphenylamine	1.67	1.52			91		64-127		
Di-n-octylphthalate	1.67	1.65			99		65-139		
Pentachlorophenol	1.67	1.64			99		40-131		
Phenanthrene	1.67	1.49			89		67-116		
Phenol	1.67	1.34			80		57-107		
Pyrene	1.67	1.47			88		67-109		
Pyridine	1.67	0.921			55		10-117		
1,2,4-Trichlorobenzene	1.67	1.36			82		46-109		
2,4,5-Trichlorophenol	1.67	1.52			91		62-121		
2,4,6-Trichlorophenol	1.67	1.53			92		60-120		
Batch number: 20135SLB026	Sample number	(s): 1314149-1	1314150,1314155, ²	1314159-131	4160,13141	64			
Acenaphthene	1.67	1.41			85		61-112		
Acenaphthylene	1.67	1.43			86		60-124		
Acetophenone	1.67	1.26			76		48-109		
Anthracene	1.67	1.56			94		67-120		
Atrazine	1.67	1.59			95		70-129		
Benzaldehyde	1.67	0.864			52		20-101		
Benzidine	8.33	2.76			33		18-105		
Benzo(a)anthracene	1.67	1.59			95		68-120		
Benzo(a)pyrene	1.67	1.63			98		68-119		
Benzo(b)fluoranthene	1.67	1.59			96		67-125		
Benzo(g,h,i)perylene	1.67	1.52			91		68-125		
Benzo(k)fluoranthene	1.67	1.68			101		66-122		
1,1'-Biphenyl	1.67	1.42			85		59-106		
Butylbenzylphthalate	1.67	1.58			95		69-125		
Di-n-butylphthalate	1.67	1.60			96		70-126		
Caprolactam	1.67	1.43			86		62-119		
Carbazole	1.67	1.63			98		69-125		
bis(2-Chloroethyl)ether	1.67	1.17			70		44-104		
bis(2-Chloroisopropyl)ether	1.67	1.20			72		40-112		
2-Chloronaphthalene	1.67	1.19			71		48-123		
2-Chlorophenol	1.67	1.33			80		51-109		
Chrysene	1.67	1.48			89		66-111		
Dibenz(a,h)anthracene	1.67	1.56			93		69-135		
Dibenzofuran	1.67	1.47			88		62-113		
1,2-Dichlorobenzene	1.67	1.15			69		38-106		
1,3-Dichlorobenzene	1.67	1.12			67		36-103		
1,4-Dichlorobenzene	1.67	1.14			68		25-127		
3,3'-Dichlorobenzidine	1.67	0.922			55		18-114		
2,4-Dichlorophenol	1.67	1.49			89		57-115		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Diethylphthalate	1.67	1.55			93		68-116		
2,4-Dimethylphenol	1.67	1.16			69		47-95		
Dimethylphthalate	1.67	1.48			89		66-113		
4,6-Dinitro-2-methylphenol	1.67	1.71			103		56-135		
2,4-Dinitrophenol	3.33	3.65			109		34-136		
2,4-Dinitrotoluene	1.67	1.59			96		61-121		
2,6-Dinitrotoluene	1.67	1.63			98		66-122		
1,2-Diphenylhydrazine	1.67	1.57			94		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.66			99		65-132		
Fluoranthene	1.67	1.57			94		65-114		
Fluorene	1.67	1.54			92		62-110		
Hexachlorobenzene	1.67	1.54			92		62-124		
Hexachlorobutadiene	1.67	1.28			77		39-120		
Hexachlorocyclopentadiene	3.33	2.08			62		13-115		
Hexachloroethane	1.67	1.09			65		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.55			93		64-130		
Isophorone	1.67	1.30			78		51-113		
2-Methylnaphthalene	1.67	1.35			81		52-104		
2-Methylphenol	1.67	1.35			81		52-116		
4-Methylphenol	1.67	1.33			80		52-121		
Naphthalene	1.67	1.28			77		49-104		
2-Nitroaniline	1.67	1.62			97		65-132		
Nitrobenzene	1.67	1.24			74		41-118		
N-Nitrosodimethylamine	1.67	1.07			64		31-107		
N-Nitroso-di-n-propylamine	1.67	1.30			78		49-108		
N-Nitrosodiphenylamine	1.67	1.61			97		64-127		
Di-n-octylphthalate	1.67	1.74			105		65-139		
Pentachlorophenol	1.67	1.83			110		40-131		
Phenanthrene	1.67	1.58			95		67-116		
Phenol	1.67	1.35			81		57-107		
Pyrene	1.67	1.50			90		67-109		
Pyridine	1.67	0.742			45		10-117		
1,2,4-Trichlorobenzene	1.67	1.30			78		46-109		
2,4,5-Trichlorophenol	1.67	1.62			97		62-121		
2,4,6-Trichlorophenol	1.67	1.59			95		60-120		
Batch number: 20139SLA026	Sample number	(s): 1314145-1	1314146,1314162-	1314163					
Acenaphthene	1.67	1.38			83		61-112		
Acenaphthylene	1.67	1.40			84		60-124		
Acetophenone	1.67	1.19			72		48-109		
Anthracene	1.67	1.55			93		67-120		
Atrazine	1.67	1.63			98		70-129		
Benzaldehyde	1.67	0.749			45		20-101		
Benzidine	8.33	4.61			55		18-105		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Benzo(a)anthracene	1.67	1.65			99		68-120		
Benzo(a)pyrene	1.67	1.70			102		68-119		
Benzo(b)fluoranthene	1.67	1.63			98		67-125		
Benzo(g,h,i)perylene	1.67	1.69			101		68-125		
Benzo(k)fluoranthene	1.67	1.73			104		66-122		
1,1'-Biphenyl	1.67	1.36			82		59-106		
Butylbenzylphthalate	1.67	1.59			95		69-125		
Di-n-butylphthalate	1.67	1.60			96		70-126		
Caprolactam	1.67	1.43			86		62-119		
Carbazole	1.67	1.62			97		69-125		
bis(2-Chloroethyl)ether	1.67	1.10			66		44-104		
bis(2-Chloroisopropyl)ether	1.67	0.977			59		40-112		
2-Chloronaphthalene	1.67	1.20			72		48-123		
2-Chlorophenol	1.67	1.32			79		51-109		
Chrysene	1.67	1.46			87		66-111		
Dibenz(a,h)anthracene	1.67	1.78			107		69-135		
Dibenzofuran	1.67	1.44			86		62-113		
1,2-Dichlorobenzene	1.67	1.19			72		38-106		
1,3-Dichlorobenzene	1.67	1.15			69		36-103		
1,4-Dichlorobenzene	1.67	1.17			70 77		25-127		
3,3'-Dichlorobenzidine	1.67 1.67	1.28 1.49			77 89		18-114 57 115		
2,4-Dichlorophenol Diethylphthalate	1.67	1.49			92		57-115 68-116		
2,4-Dimethylphenol	1.67	1.16			70		47-95		
Dimethylphthalate	1.67	1.46			88		66-113		
4,6-Dinitro-2-methylphenol	1.67	2.29			137*		56-135		
2,4-Dinitrophenol	3.33	5.56			167*		34-136		
2,4-Dinitrotoluene	1.67	1.66			100		61-121		
2,6-Dinitrotoluene	1.67	1.66			99		66-122		
1,2-Diphenylhydrazine	1.67	1.42			85		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.65			99		65-132		
Fluoranthene	1.67	1.58			95		65-114		
Fluorene	1.67	1.48			89		62-110		
Hexachlorobenzene	1.67	1.51			91		62-124		
Hexachlorobutadiene	1.67	1.32			79		39-120		
Hexachlorocyclopentadiene	3.33	1.99			60		13-115		
Hexachloroethane	1.67	1.16			69		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.74			104		64-130		
Isophorone	1.67	1.22			73		51-113		
2-Methylnaphthalene	1.67	1.31			79		52-104		
2-Methylphenol	1.67	1.27			76		52-116		
4-Methylphenol	1.67	1.32			79		52-121		
Naphthalene	1.67	1.25			75		49-104		
2-Nitroaniline	1.67	1.68			101		65-132		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

LCS/LCSD (continued)											
Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max		
Nitrobenzene	1.67	1.19			71		41-118				
N-Nitrosodimethylamine	1.67	1.03			62		31-107				
N-Nitroso-di-n-propylamine	1.67	1.18			71		49-108				
N-Nitrosodiphenylamine	1.67	1.56			94		64-127				
Di-n-octylphthalate	1.67	1.77			106		65-139				
Pentachlorophenol	1.67	2.03			122		40-131				
Phenanthrene	1.67	1.56			94		67-116				
Phenol	1.67	1.27			76		57-107				
Pyrene	1.67	1.45			87		67-109				
Pyridine	1.67	0.746			45		10-117				
1,2,4-Trichlorobenzene	1.67	1.33			80		46-109				
2,4,5-Trichlorophenol	1.67	1.66			99		62-121				
2,4,6-Trichlorophenol	1.67	1.71			103		60-120				
2,4,0 11101101001101	1.07	1.7 1			100		00 120				
	ug/kg	ug/kg	ug/kg	ug/kg							
Batch number: 20135SLC026 1,4-Dioxane	Sample number(33.33	s): 1314143-1 9.82	314144,1314146		29		21-79				
Batch number: 20135SLD026	Sample number(s)· 1314149-1	314150,1314155,	1314159-131	4160 13141	62					
1,4-Dioxane	33.33	12.89	1014100,1014100,	1014100 101	39	02	21-79				
Batch number: 20139SLD026 1,4-Dioxane	Sample number(33.33	s): 1314145 14.01			42		21-79				
	ug/l	ug/l	ug/l	ug/l							
D-4-b 00400M/A 1000	•	•	~9··	g,-							
Batch number: 20136WAJ026 1,4-Dioxane	Sample number(1.00	s): 1314166 0.378	1.00	0.412	38	41	30-90	9	30		
	mg/kg	mg/kg	mg/kg	mg/kg							
Batch number: 201350020A	Sample number(s): 1314143-1	314146,1314149-	1314150.131	4155.13141	59-131416	0.1314162				
2,4-D	0.0834	0.0976	, -		117		57-142				
2,4,5-T	0.00833	0.0112			134		59-137				
2,4,5-TP	0.00833	0.0118			141*		70-130				
	ug/kg	ug/kg	ug/kg	ug/kg							
Batch number: 201350022A	Sample number(s): 1314149-1	314150,1314155,	1314159-131	4160						
PCB-1016	166.9	150.25		.000	90		76-121				
PCB-1260	167.03	188.84			113		79-130				
							. 5 100				
Batch number: 201390026A		,	314146,1314162								
PCB-1016	166.9	163.18			98		76-121				
PCB-1260	167.03	171.9			103		79-130				
	mg/kg	mg/kg	mg/kg	mg/kg							

^{*-} Outside of specification

Batch number: 201350016A

Sample number(s): 1314143-1314146,1314149-1314150,1314155,1314159-1314160,1314162

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

LCS/LCSD	(continued)
----------	-------------

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Aldrin	0.00333	0.00240			72		60-117		
Alpha BHC	0.00338	0.00235			70		65-124		
Beta BHC	0.00333	0.00237			71		68-129		
Gamma BHC - Lindane	0.00333	0.00236			71		68-133		
Alpha Chlordane	0.00333	0.00259			78		73-131		
4,4'-Ddd	0.00671	0.00524			78		69-138		
4,4'-Dde	0.00667	0.00557			84		68-146		
4,4'-Ddt	0.00671	0.00615			92		67-135		
Delta BHC	0.00333	0.00245			74		45-151		
Dieldrin	0.00667	0.00534			80		63-126		
Endosulfan I	0.00333	0.00245			73		62-119		
Endosulfan II	0.00667	0.00531			80		65-126		
Endosulfan Sulfate	0.00667	0.00571			86		71-132		
Endrin	0.00667	0.00510			76*		86-135		
Heptachlor	0.00333	0.00251			75		66-118		
	ng/g	ng/g	ng/g	ng/g					
Batch number: 20135005	Sample number	(s): 1314143-1	314146,1314149- ²	1314150,131	4155,13141	59-131416	0,1314162		
6:2-Fluorotelomersulfonic acid	23.7	18.8			79		51-144		
8:2-Fluorotelomersulfonic acid	23.94	19.69			82		54-152		
NEtFOSAA	25	20.9			84		51-145		
NMeFOSAA	25	21.36			85		55-152		
Perfluorobutanesulfonic acid	22.12	16.61			75		63-139		
Perfluorobutanoic acid	25	17.27			69		56-188		
Perfluorodecanesulfonic acid	24.08	17.14			71		60-142		
Perfluorodecanoic acid	25	17.97			72		65-144		
Perfluorododecanoic acid	25	19.39			78		62-150		
Perfluoroheptanesulfonic acid	23.78	16.54			70		67-139		
Perfluoroheptanoic acid	25	19.88			80		65-153		
Perfluorohexanesulfonic acid	23.64	17.24			73		59-139		
Perfluorohexanoic acid	25	18.79			75 70		64-149		
Perfluorononanoic acid	25	18.06			72		64-151		
Perfluorooctanesulfonamide	25	19.47			78		61-133		
Perfluorooctanesulfonic acid	23.9	14.96			63		54-132		
Perfluorooctanoic acid	25	17.59			70 77		65-147		
Perfluoropentanoic acid	25	19.29			77 70		71-139		
Perfluorotetradecanoic acid	25 25	19.46			78 75		66-147		
Perfluorotridecanoic acid	25 25	18.78			75 72		63-152		
Perfluoroundecanoic acid	20	18.11			12		65-146		
	ng/l	ng/l	ng/l	ng/l					
Batch number: 20139002	Sample number	` '						_	
6:2-Fluorotelomersulfonic acid	24.28	24.11	24.28	23.7	99	98	56-140	2	30
8:2-Fluorotelomersulfonic acid	24.52	24.8	24.52	25.44	101	104	58-143	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Analysis Name	LCS Spike Added ng/l	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
NEtFOSAA	25.6	24.71	25.6	25.35	97	99	53-140	3	30
NMeFOSAA	25.6	26.41	25.6	27.79	103	109	59-141	5	30
Perfluorobutanesulfonic acid	22.64	20.2	22.64	20.53	89	91	67-135	2	30
Perfluorobutanoic acid	25.6	20.43	25.6	21.2	80	83	63-160	4	30
Perfluorodecanesulfonic acid	24.64	20.19	24.64	22.1	82	90	62-135	9	30
Perfluorodecanoic acid	25.6	23.45	25.6	24.48	92	96	66-141	4	30
Perfluorododecanoic acid	25.6	23.84	25.6	24.91	93	97	65-143	4	30
Perfluoroheptanesulfonic acid	24.36	22.8	24.36	21.75	94	89	67-138	5	30
Perfluoroheptanoic acid	25.6	25.11	25.6	25.56	98	100	69-144	2	30
Perfluorohexanesulfonic acid	24.2	21.73	24.2	21.49	90	89	63-132	1	30
Perfluorohexanoic acid	25.6	23.04	25.6	25.21	90	98	69-139	9	30
Perfluorononanoic acid	25.6	24.96	25.6	26.03	97	102	66-144	4	30
Perfluorooctanesulfonamide	25.6	24.84	25.6	25.31	97	99	67-126	2	30
Perfluorooctanesulfonic acid	24.48	18.96	24.48	20.47	77	84	53-129	8	30
Perfluorooctanoic acid	25.6	22.59	25.6	23	88	90	67-139	2	30
Perfluoropentanoic acid	25.6	22.69	25.6	24.37	89	95	73-135	7	30
Perfluorotetradecanoic acid	25.6	23.88	25.6	26.16	93	102	69-141	9	30
Perfluorotridecanoic acid	25.6	23.38	25.6	23.58	91	92	66-146	1	30
Perfluoroundecanoic acid	25.6	23.55	25.6	25.18	92	98	66-140	7	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201351063801	Sample number	(s): 1314141.1	1314143-1314147,	1314149-131	4151.13141	53			
Mercury	0.100	0.113	,		113		80-115		
Batch number: 201351063802	Sample number	(s): 1314155,1	1314159-1314162						
Mercury	0.100	0.112			112		80-115		
Batch number: 201351404902A	Sample number	(s): 1314141,1	1314143-1314147,	1314149-131	4151,13141	53			
Arsenic	1.00	0.931			93		80-120		
Barium	5.00	4.84			97		80-120		
Beryllium	0.400	0.425			106		80-120		
Cadmium	0.500	0.495			99		80-120		
Chromium	5.00	4.98			100		86-120		
Copper	5.00	4.83			97		85-120		
Lead	0.500	0.540			108		80-120		
Manganese	5.00	4.61			92		80-120		
Nickel	5.00	5.15			103		86-120		
Selenium	1.00	0.993			99		85-120		
Silver	5.00	4.97			99		84-120		
Zinc	50	47.16			94		85-120		
Batch number: 201351404903A			1314159-1314162						
Arsenic	1.00	0.954			95		80-120		
Barium	5.00	4.90			98		80-120		
Beryllium	0.400	0.389			97		80-120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Cadmium	0.500	0.465			93		80-120		
Chromium	5.00	4.80			96		86-120		
Copper	5.00	4.81			96		85-120		
Lead	0.500	0.532			106		80-120		
Manganese	5.00	4.73			95		80-120		
Nickel	5.00	5.28			106		86-120		
Selenium	1.00	1.00			100		85-120		
Silver	5.00	4.87			97		84-120		
Zinc	50	50.99			102		85-120		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201391404501	Sample number	(s): 1314142,1	314148,1314152,1	1314154					
Arsenic	0.0600	0.0648			108		80-120		
Lead	0.0300	0.0321			107		80-120		
Batch number: 201550571305	Sample number	(s): 1314142,1	314148,1314152,1	1314154					
Mercury	0.00100	0.000971			97		80-110		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20136102201A	Sample number	(s): 1314143-1	314146,1314149,	1314155,131	4159,13141	61			
Total Cyanide (solid)	10	10.11			101		90-110		
Batch number: 20136102201B	Sample number	(s): 1314150,1	314162						
Total Cyanide (solid)	10	10.11			101		90-110		
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20135042501B	Sample number	(s): 1314143-1	314146,1314149-	1314150,131	4155-13141	58,131416	1-1314162		
Hexavalent Chromium (SOLIDS)	5.00	4.89			98		80-120		
	%	%	%	%					
Batch number: 20136820001A	Sample number	(s): 1314141.1	314143-1314147,	1314149-131	4151.13141	53.131415	5-1314164		
Moisture	89.5	89.36	,		100	,	99-101		
Moisture	89.5	89.36			100		99-101		
Moisture Duplicate	89.5	89.36			100		99-101		
•									

MS/MSD

 $\label{eq:Unspiked} \mbox{Unspiked (UNSPK)} = \mbox{the sample used in conjunction with the matrix spike}$

Analysis Name	Unspiked Conc	MS Spike Added	MS Conc	MSD Spike Added	MSD Conc	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: B201381AA	Sample number	er(s): 1314143,	1314150,13	314155,1314159	9-1314160 L	JNSPK: 131	14155			
Acetone	0.0402	0.138	0.401	0.155	0.386	261*	224*	41-150	4	30
Acrolein	N.D.	0.138	0.149	0.155	0.139	108	90	57-131	7	30
Acrylonitrile	N.D.	0.0921	0.0729	0.103	0.0816	79	79	66-120	11	30
Benzene	N.D.	0.0184	0.0191	0.0206	0.0213	104	103	80-120	11	30
Bromodichloromethane	N.D.	0.0184	0.0190	0.0206	0.0209	103	101	70-120	10	30
Bromoform	N.D.	0.0184	0.0169	0.0206	0.0192	92	93	51-127	13	30
Bromomethane	N.D.	0.0184	0.0182	0.0206	0.0195	99	94	45-140	7	30
2-Butanone	N.D.	0.138	0.207	0.155	0.209	150*	135*	57-128	1	30
t-Butyl alcohol	N.D.	0.184	0.237	0.206	0.219	128*	106	74-121	8	30
n-Butylbenzene	N.D.	0.0184	0.0192	0.0206	0.0195	104	94	71-121	2	30
sec-Butylbenzene	N.D.	0.0184	0.0213	0.0206	0.0241	115	117	72-120	13	30
tert-Butylbenzene	N.D.	0.0184	0.0206	0.0206	0.0246	112	119	68-120	17	30
Carbon Disulfide	N.D.	0.0184	0.0174	0.0206	0.0173	95	84	64-133	1	30
Carbon Tetrachloride	N.D.	0.0184	0.0198	0.0206	0.0219	108	106	64-134	10	30
Chlorobenzene	N.D.	0.0184	0.0192	0.0206	0.0205	104	99	80-120	6	30
Chloroethane	N.D.	0.0184	0.0172	0.0206	0.0187	94	91	43-135	8	30
Chloroform	N.D.	0.0184	0.0194	0.0206	0.0216	105	105	80-120	10	30
Chloromethane	N.D.	0.0184	0.0187	0.0206	0.0204	102	99	56-120	9	30
1,2-Dibromo-3-chloropropane	N.D.	0.0184	0.0158	0.0206	0.0209	86	101	48-134	28	30
Dibromochloromethane	N.D.	0.0184	0.0197	0.0206	0.0231	107	112	69-125	16	30
1,2-Dibromoethane	N.D.	0.0184	0.0178	0.0206	0.0194	97	94	76-120	9	30
1,2-Dichlorobenzene	N.D.	0.0184	0.0191	0.0206	0.0212	104	103	76-120	11	30
1,3-Dichlorobenzene	N.D.	0.0184	0.0189	0.0206	0.0205	103	99	75-120	8	30
1.4-Dichlorobenzene	N.D.	0.0184	0.0186	0.0206	0.0193	101	94	80-120	4	30
Dichlorodifluoromethane	N.D.	0.0184	0.0267	0.0206	0.0290	145*	141*	21-127	8	30
1,1-Dichloroethane	N.D.	0.0184	0.0188	0.0206	0.0212	102	103	79-120	12	30
1,2-Dichloroethane	N.D.	0.0184	0.0172	0.0206	0.0187	93	91	71-128	8	30
1,1-Dichloroethene	N.D.	0.0184	0.0198	0.0206	0.0217	107	105	73-129	10	30
cis-1,2-Dichloroethene	N.D.	0.0184	0.0200	0.0206	0.0214	109	104	80-123	7	30
trans-1,2-Dichloroethene	N.D.	0.0184	0.0186	0.0206	0.0191	101	93	80-125	3	30
1,2-Dichloroethene (Total)	N.D.	0.0368	0.0386	0.0412	0.0405	105	98	80-123	5	30
1,2-Dichloropropane	N.D.	0.0184	0.0192	0.0206	0.0211	104	102	80-120	10	30
cis-1,3-Dichloropropene	N.D.	0.0184	0.0175	0.0206	0.0182	95	88	66-120	4	30
trans-1,3-Dichloropropene	N.D.	0.0184	0.0170	0.0206	0.0172	92	84	68-122	2	30
Ethylbenzene	N.D.	0.0184	0.0197	0.0206	0.0210	107	102	78-120	7	30
Methyl Acetate	N.D.	0.0184	0.0150	0.0206	0.0166	81	81	67-128	10	30
Methyl Tertiary Butyl Ether	N.D.	0.0184	0.0171	0.0206	0.0201	93	98	72-120	16	30
Methylene Chloride	N.D.	0.0184	0.0186	0.0206	0.0199	101	97	76-122	7	30
n-Propylbenzene	N.D.	0.0184	0.0217	0.0206	0.0245	118	119	72-123	12	30
Styrene	N.D.	0.0184	0.0180	0.0206	0.0182	98	88	76-120	1	30
1,1,2,2-Tetrachloroethane	N.D.	0.0184	0.0199	0.0206	0.0262	108	127*	69-125	27	30
Tetrachloroethene	N.D.	0.0184	0.0197	0.0206	0.0213	107	103	73-120	8	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Toluene	N.D.	0.0184	0.0193	0.0206	0.0216	105	105	80-120	11	30
1,1,1-Trichloroethane	N.D.	0.0184	0.0189	0.0206	0.0212	102	103	69-123	12	30
1,1,2-Trichloroethane	N.D.	0.0184	0.0201	0.0206	0.0236	109	115	80-120	16	30
Trichloroethene	N.D.	0.0184	0.0189	0.0206	0.0200	103	97	80-120	5	30
Trichlorofluoromethane	N.D.	0.0184	0.0224	0.0206	0.0251	122	122	55-134	11	30
1,2,4-Trimethylbenzene	N.D.	0.0184	0.0202	0.0206	0.0233	110	113	73-120	14	30
1,3,5-Trimethylbenzene	N.D.	0.0184	0.0210	0.0206	0.0242	114	117	73-120	14	30
Vinyl Chloride	N.D.	0.0184	0.0190	0.0206	0.0202	103	98	52-120	6	30
Xylene (Total)	N.D.	0.0552	0.0581	0.0619	0.0614	105	99	75-120	6	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20135SLB026	Sample number	er(s): 1314149-	1314150,1	314155,1314159	9-1314160, ⁴	1314164 UN	NSPK: 1314	1155		
Acenaphthene	0.993	1.66	1.95	1.67	1.80	58*	48*	61-112	8	30
Acenaphthylene	0.204	1.66	1.62	1.67	1.52	85	79	60-124	7	30
Acetophenone	N.D.	1.66	1.19	1.67	1.19	72	71	48-109	0	30
Anthracene	2.38	1.66	2.85	1.67	2.44	29*	4*	67-120	15	30
Atrazine	N.D.	1.66	1.47	1.67	1.42	89	85	70-129	4	30
Benzaldehyde	N.D.	1.66	1.03	1.67	1.06	62	64	20-101	2	30
Benzidine	N.D.	8.28	0.630	8.33	1.55	8*	19	18-105	84*	30
Benzo(a)anthracene	7.12	1.66	5.34	1.67	4.24	-106 (2)	-172 (2)	68-120	23	30
Benzo(a)pyrene	5.91	1.66	5.11	1.67	4.11	-47*	-107*	68-119	22	30
Benzo(b)fluoranthene	7.17	1.66	5.66	1.67	4.87	-90 (2)	-137 (2)	67-125	15	30
Benzo(g,h,i)perylene	2.72	1.66	3.76	1.67	3.08	63*	22*	68-125	20	30
Benzo(k)fluoranthene	2.09	1.66	3.32	1.67	2.52	75	26*	66-122	28	30
1,1'-Biphenyl	0.114	1.66	1.48	1.67	1.44	83	80	59-106	3	30
Butylbenzylphthalate	N.D.	1.66	1.52	1.67	1.43	92	86	69-125	6	30
Di-n-butylphthalate	N.D.	1.66	1.55	1.67	1.49	94	90	70-126	4	30
Caprolactam	N.D.	1.66	1.47	1.67	1.39	89	84	62-119	5	30
Carbazole	1.07	1.66	2.24	1.67	1.98	70	55*	69-125	12	30
bis(2-Chloroethyl)ether	N.D.	1.66	1.09	1.67	1.10	66	66	44-104	1	30
bis(2-Chloroisopropyl)ether	N.D.	1.66	1.08	1.67	1.12	66	67	40-112	3	30
2-Chloronaphthalene	N.D.	1.66	1.50	1.67	1.47	91	88	48-123	2	30
2-Chlorophenol	N.D.	1.66	1.21	1.67	1.25	73	75	51-109	3	30
Chrysene	5.94	1.66	5.17	1.67	4.00	-46*	-116*	66-111	26	30
Dibenz(a,h)anthracene	0.719	1.66	1.99	1.67	1.82	77	66*	69-135	9	30
Dibenzofuran	0.707	1.66	1.90	1.67	1.74	72	62	62-113	9	30
1,2-Dichlorobenzene	N.D.	1.66	1.06	1.67	1.13	64	68	38-106	6	30
1,3-Dichlorobenzene	N.D.	1.66	1.03	1.67	1.07	62	64	36-103	3	30
1,4-Dichlorobenzene	N.D.	1.66	1.04	1.67	1.10	63	66	25-127	5	30
3,3'-Dichlorobenzidine	N.D.	1.66	1.17	1.67	1.06	70	64	18-114	9	30
2,4-Dichlorophenol	N.D.	1.66	1.37	1.67	1.33	83	80	57-115	3	30
Diethylphthalate	N.D.	1.66	1.42	1.67	1.38	86	83	68-116	3	30
2,4-Dimethylphenol	N.D.	1.66	1.08	1.67	1.06	65	64	47-95	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Dimethylphthalate	N.D.	1.66	1.34	1.67	1.24	81	74	66-113	8	30
4,6-Dinitro-2-methylphenol	N.D.	1.66	1.22	1.67	0.989	74	59	56-135	21	30
2,4-Dinitrophenol	N.D.	3.31	1.95	3.33	1.50	59	45	34-136	26	30
2,4-Dinitrotoluene	N.D.	1.66	1.45	1.67	1.35	87	81	61-121	7	30
2,6-Dinitrotoluene	N.D.	1.66	1.53	1.67	1.41	93	85	66-122	8	30
1,2-Diphenylhydrazine	N.D.	1.66	1.51	1.67	1.47	91	88	74-117	3	30
bis(2-Ethylhexyl)phthalate	N.D.	1.66	1.77	1.67	1.59	107	96	65-132	11	30
Fluoranthene	15.67	1.66	7.54	1.67	6.51	-490 (2)	-548 (2)	65-114	15	30
Fluorene	0.871	1.66	2.01	1.67	1.87	69	60*	62-110	7	30
Hexachlorobenzene	N.D.	1.66	1.48	1.67	1.44	89	86	62-124	3	30
Hexachlorobutadiene	N.D.	1.66	1.19	1.67	1.25	72	75	39-120	5	30
Hexachlorocyclopentadiene	N.D.	3.31	N.D.	3.33	N.D.	0*	0*	13-115	0	30
Hexachloroethane	N.D.	1.66	0.753	1.67	0.826	45	50	30-112	9	30
Indeno(1,2,3-cd)pyrene	2.54	1.66	3.60	1.67	2.99	64	27*	64-130	18	30
Isophorone	N.D.	1.66	1.25	1.67	1.24	75	74	51-113	0	30
2-Methylnaphthalene	0.328	1.66	1.60	1.67	1.56	77	74	52-104	3	30
2-Methylphenol	N.D.	1.66	1.23	1.67	1.24	74	75	52-116	1	30
4-Methylphenol	0.0343	1.66	1.29	1.67	1.27	76	74	52-121	1	30
Naphthalene	0.668	1.66	1.67	1.67	1.65	60	59	49-104	1	30
2-Nitroaniline	N.D.	1.66	1.81	1.67	2.10	110	126	65-132	15	30
Nitrobenzene	N.D.	1.66	1.19	1.67	1.20	72	72	41-118	0	30
N-Nitrosodimethylamine	N.D.	1.66	0.974	1.67	0.979	59	59	31-107	1	30
N-Nitroso-di-n-propylamine	N.D.	1.66	1.20	1.67	1.23	72	74	49-108	2	30
N-Nitrosodiphenylamine	N.D.	1.66	1.54	1.67	1.51	93	91	64-127	2	30
Di-n-octylphthalate	N.D.	1.66	1.59	1.67	1.54	96	92	65-139	3	30
Pentachlorophenol	N.D.	1.66	1.37	1.67	1.44	82	87	40-131	5	30
Phenanthrene	12.9	1.66	6.73	1.67	5.89	-372 (2)	-420 (2)	67-116	13	30
Phenol	N.D.	1.66	1.28	1.67	1.27	77`´	76	51-107	1	30
Pyrene	12.95	1.66	6.84	1.67	6.02	-368 (2)	-415 (2)	67-109	13	30
Pyridine	N.D.	1.66	0.671	1.67	0.668	40 ′	40	10-117	0	30
1,2,4-Trichlorobenzene	N.D.	1.66	1.26	1.67	1.28	76	77	46-109	2	30
2,4,5-Trichlorophenol	N.D.	1.66	1.46	1.67	1.41	88	85	62-121	3	30
2,4,6-Trichlorophenol	N.D.	1.66	1.32	1.67	1.39	80	83	60-120	5	30
	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 20135SLD026	Sample numbe	er(s): 1314149-	1314150.13	314155,1314159	9-1314160.1	1314162 UN	NSPK: 1314	1155		
1,4-Dioxane	N.D.	33.11	16.24	33	16.8	49	51	21-79	3	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201350020A	Sample number	er(s): 1314143-	1314146,13	314149-131415	0,1314155,1	1314159-13	14160,131	4162 UNSPK	: 131415	5
2,4-D	N.D.	0.0828	0.130	0.0829	0.127	157*	153*	57-142	2	50

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
2,4,5-T	N.D.	0.00827	0.0157	0.00828	0.0146	190*	177*	59-137	7	50
2,4,5-TP	N.D.	0.00827	0.0127	0.00828	0.0125	154*	151*	70-130	2	50
	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 201350022A	Sample number	er(s): 1314149-	-1314150,13	314155,131415	9-1314160 L	INSPK: 13	14155			
PCB-1016	N.D.	165.79	113.01	165.79	108.93	68*	66*	76-121	4	50
PCB-1260	N.D.	165.93	116.88	165.93	115.25	70*	69*	79-130	1	50
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201350016A	Sample numbe	er(s): 1314143-	-1314146,13	314149-131415	0,1314155,1	314159-13	14160,131	4162 UNSPK	: 1314155	5
						.=0.				
Aldrin	N.D.	0.00328	0.00568	0.00330	0.00697	173*	211*	60-117	20	50
Alpha BHC	N.D.	0.00333	0.00443	0.00334	0.00529	133*	158*	65-124	18	50
Beta BHC	N.D. N.D.	0.00328	0.00580	0.00330	0.00655	177*	198*	68-129	12	50
Gamma BHC - Lindane		0.00328	N.D.	0.00330	N.D.	0*	0*	68-133	0	50
Alpha Chlordane	N.D.	0.00328	0.00609	0.00330	0.00592	186*	179*	73-131	3	50
4,4'-Ddd	N.D. N.D.	0.00661	0.0114 0.0123	0.00664	0.0127 0.0147	172* 187*	191* 223*	69-138 68-146	11 18	50 50
4,4'-Dde	N.D.	0.00657 0.00661	0.0123	0.00660 0.00664	0.0147	168*	223 198*	67-135	17	50 50
4,4'-Ddt Delta BHC	N.D. N.D.	0.00661	0.0111 N.D.	0.0064	0.0131 N.D.	0*	0*	45-151	0	50 50
Dieldrin	N.D. N.D.	0.00326	0.0101	0.00330	พ.ม. 0.0120	154*	182*	63-126	17	50 50
Endosulfan I	N.D. N.D.	0.00657	0.0101	0.00330	0.0120	126*	16Z 167*	62-119	29	50 50
Endosulfan II	N.D. N.D.	0.00326	0.00413 N.D.	0.00330	0.00552 N.D.	0*	0*	65-126	0	50 50
Endosulfan II Endosulfan Sulfate	N.D. N.D.	0.00657	0.00903	0.00660	0.0126	137*	191*	71-132	33	50 50
Endosulian Suliate Endrin	N.D.	0.00657	0.00903	0.00660	0.0126	188*	191*	86-135	2	50
Heptachlor	N.D.	0.00328	0.0123	0.00330	0.0120	139*	173*	66-118	22	50
·	ng/g	ng/g	ng/g	ng/g	ng/g					
Batch number: 20135005				314149-131415		31/150-13	1/160 131	4162 LINISPK	. 131/156	5
Dater number. 20103000	Gample Hambe	1(3). 1314143	1017170,10	314149-131413	0,1014100,1	J1 4 100-10	14100,131	4102 ONOI N	. 1017100	,
6:2-Fluorotelomersulfonic acid	N.D.	21.55	17.2	21.74	17.94	80	83	51-144	4	30
8:2-Fluorotelomersulfonic acid	N.D.	21.76	16.86	21.96	18.09	77	82	54-152	7	30
NEtFOSAA	N.D.	22.73	18.02	22.94	19.15	79	83	51-145	6	30
NMeFOSAA	N.D.	22.73	21.74	22.94	19.73	96	86	55-152	10	30
Perfluorobutanesulfonic acid	N.D.	20.11	15.31	20.29	17.1	76	84	63-139	11	30
Perfluorobutanoic acid	N.D.	22.73	14.91	22.94	15.61	66	68	56-188	5	30
Perfluorodecanesulfonic acid	N.D.	21.89	15.1	22.09	15.46	69	70	60-142	2	30
Perfluorodecanoic acid	N.D.	22.73	16.96	22.94	17.8	75	78	65-144	5	30
Perfluorododecanoic acid	N.D.	22.73	17.34	22.94	18.76	76	82	62-150	8	30
Perfluoroheptanesulfonic acid	N.D.	21.62	15.98	21.82	16.68	74	76	67-139	4	30
Perfluoroheptanoic acid	N.D.	22.73	17.86	22.94	17.9	79	78	65-153	0	30
Perfluorohexanesulfonic acid	N.D.	21.49	14.98	21.69	15.89	70	73	59-139	6	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD (continued)

Analysis Name	Unspiked Conc ng/g	MS Spike Added ng/g	MS Conc ng/g	MSD Spike Added ng/g	MSD Conc ng/g	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Perfluorohexanoic acid	N.D.	22.73	17.04	22.94	18.03	75	79	64-149	6	30
Perfluorononanoic acid	N.D.	22.73	18.16	22.94	18.38	80	80	64-151	1	30
Perfluorooctanesulfonamide	N.D.	22.73	18.16	22.94	19.34	80	84	61-133	6	30
Perfluorooctanesulfonic acid	N.D.	21.73	14.79	21.93	14.34	68	65	54-132	3	30
Perfluorooctanoic acid	N.D.	22.73	17.6	22.94	17.48	77	76	65-147	1	30
Perfluoropentanoic acid	N.D.	22.73	16.45	22.94	18.04	72	79	71-139	9	30
Perfluorotetradecanoic acid	N.D.	22.73	17.91	22.94	19.33	79	84	66-147	8	30
Perfluorotridecanoic acid	N.D.	22.73	17.17	22.94	17.38	76	76	63-152	1	30
Perfluoroundecanoic acid	N.D.	22.73	16.33	22.94	16.18	72	71	65-146	1	30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 201351063802	Sample number	er(s): 1314155,	1314159-13	314162 UNSPK	: 1314155					
Mercury	0.272	0.161	0.547	0.164	0.722	170*	275*	80-120	28*	20
Batch number: 201351404903A	Sample number	er(s): 1314155,	1314159-13	314162 UNSPK	: 1314155					
Arsenic	9.69	1.75	14.91	1.80	19.13	297 (2)	524 (2)	75-125	25*	20
Barium	109.19	8.77	212.38	9.01	274.62	1176 (2)	1836 (2)	75-125	26*	20
Beryllium	0.487	0.702	1.36	0.721	1.50	124	141*	75-125	10	20
Cadmium	0.631	0.877	1.37	0.901	1.37	84	82	75-125	0	20
Chromium	17.31	8.77	31.02	9.01	33.27	156*	177*	75-125	7	20
Copper	55.23	8.77	122.86	9.01	163.12	771 (2)	1198 (2)	75-125	28*	20
Lead	540.24	0.877	306.99	0.901	295.84	-26591 (2)	-27129 (2)	75-125	4	20
Manganese	289.64	8.77	237.89	9.01	245.7	-590 (2)	-488 (2)	75-118	3	20
Nickel	22.1	8.77	32.61	9.01	36.95	120	165 [*]	75-125	12	20
Selenium	0.640	1.75	2.82	1.80	3.26	124	145*	75-125	14	20
Silver	0.124	8.77	8.68	9.01	9.11	98	100	75-125	5	20
Zinc	231.36	87.72	353.9	90.09	411.21	140*	200*	75-125	15	20
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201391404501	Sample number	er(s): 1314142.	1314148.13	314152,131415	4 UNSPK: 1	1314142				
Arsenic	N.D.	5.00	5.04	5.00	4.80	101	96	75-125	5	20
Lead	1.15	5.00	5.72	5.00	5.62	91	89	75-125	2	20
Batch number: 201550571305	Sample number	er(s): 1314142,	1314148,13	314152,131415	4 UNSPK: 1	1314142				
Mercury	N.D.	0.0200	0.0177	0.0200	0.0172	88	86	80-120	3	20
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20136102201A		` '	,	314149,131415	5,1314159,		NSPK: 1314			
Total Cyanide (solid)	N.D.	4.90	4.79			98		41-145		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 20135042501B	Sample number(s	s): 1314143-	1314146,13	314149-1314150),1314155-	1314158,13	14161-131	4162 UNSPK:	1314155	
Hexavalent Chromium (SOLIDS)	ND	40.3	33.66			84		75-125		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD	DUP RPD Max
Batch number: 201351063802	Sample number(s): 1314	155,1314159-1314162	BKG: 1314155	
Mercury	0.272	1.20	126* (1)	20
Batch number: 201351404903A	Sample number(s): 1314	155,1314159-1314162	BKG: 1314155	
Arsenic	9.69	10.97	12	20
Barium	109.19	105.01	4	20
Beryllium	0.487	0.683	34*	20
Cadmium	0.631	0.371	52* (1)	20
Chromium	17.31	18.26	5	20
Copper	55.23	65.28	17	20
Lead	540.24	154.52	111*	20
Manganese	289.64	316.22	9	20
Nickel	22.1	19.93	10	20
Selenium	0.640	0.581	10 (1)	20
Silver	0.124	0.114	9 (1)	20
Zinc	231.36	283.76	20	20
	mg/l	mg/l		
Batch number: 201391404501	Sample number(s): 1314	142.1314148.1314152	.1314154 BKG: 1	314142
Arsenic	N.D.	N.D.	0 (1)	20
Lead	1.15	1.22	6	20
Batch number: 201550571305	Sample number(s): 1314	142,1314148,1314152	,1314154 BKG: 1	314142
Mercury	N.D.	N.D.	0 (1)	20
	mg/kg	mg/kg		
Batch number: 20136102201A	Sample number(s): 1314	143-1314146,1314149	,1314155,131415	59,1314161 BKG: 1314155
Total Cyanide (solid)	N.D.	N.D.	0 (1)	20
	mg/kg	mg/kg		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Laboratory Duplicate (continued)

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max	
	mg/kg	mg/kg			
Batch number: 20135042501B	Sample number(s): 1314	143-1314146,1314149	-1314150,131415	5-1314158,1314161-13	14162 BKG: 1314155
Hexavalent Chromium (SOLIDS)	N.D.	N.D.	0 (1)	20	
	%	%			
Batch number: 20136820001A	Sample number(s): 1314	141,1314143-1314147	,1314149-131415	51,1314153,1314155-13	14164 BKG: 1314155
Moisture	6.93	7.31	5	5	
Moisture	6.93	7.31	5	5	
Moisture Duplicate	6.93	7.31	5	5	

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C Batch number: B201361AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1314144	101	98	108	85
1314145	101	95	110	83
1314146	99	96	106	86
1314149	102	104	99	96
Blank	100	104	98	98
LCS	102	105	99	99
LCSD	101	100	98	99
Limits:	50-141	54-135	52-141	50-131

Analysis Name: VOCs 8260C Batch number: B201381AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1314143	89	88	93	73
1314150	87	85	85	82
1314155	86	86	86	80
1314159	88	87	87	82
1314160	89	87	91	77
Blank	88	92	85	84
LCS	88	88	85	85
LCSD	89	93	85	85
MS	88	87	87	82
MSD	89	87	91	77

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C

Batch number: B201381AA

Limits: 50-141 54-135 52-141 50-131

80-120

Analysis Name: VOCs 8260C Batch number: N201391AA

			e-d8 4-Bro	mofluorobenzene
1314165 96	99	97	91	
Blank 93	97	99	91	
LCS 94	96	97	91	
LCSD 94	99	96	97	

80-120

Analysis Name: VOCs 8260C Batch number: R201362AA

80-120

Limits:

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1314162	50	54	92	120
Blank	81	87	88	86
LCS	88	92	93	89
LCSD	87	91	93	90
Limits:	50-141	54-135	52-141	50-131

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20135SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1314143	72	72	81	72	84	103	
1314144	85	84	96	79	101	136*	
Blank	71	74	83	70	80	103	
LCS	77	79	93	75	83	101	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

80-120

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20135SLB026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
1314149	69	70	75	69	76	88
1314150	71	71	83	64	75	89
1314155	76	74	78	72	86	99
1314159	73	69	67	71	82	96
1314160	72	70	73	71	79	93
1314164	73	69	41	69	80	95
Blank	73	74	85	70	82	104

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless

attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20135SLB026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
LCS	77	76	96	74	83	101	
MS	73	69	67	71	82	96	
MSD	72	70	73	71	79	93	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20135SLC026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1314143	116	86	103
1314144	399*	134*	104
1314146	33	22	37
Blank	80	77	69
LCS	92	88	69
Limits:	21-120	17-112	27-107

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20135SLD026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1314149	138*	72	95
1314150	108	73	91
1314155	112	92	90
1314159	104	77	82
1314160	98	67	75
1314162	71	77	83
Blank	89	87	75
LCS	90	89	78
MS	104	77	82
MSD	98	67	75
Limits:	21-120	17-112	27-107

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136WAJ026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1314166	83	76	80
Blank	94	85	93
LCS	98	93	92
LCSD	88	84	86

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 1,4-Dioxane 8270D SIM

Batch number: 20136WAJ026

Limits: 38-109 31-99 30-108

Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20139SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1314145	25	22	24	19*	22*	43	
1314146	64	65	81	61	73	90	
1314162	58	59	85	67	68	89	
1314163	69	67	52	68	81	102	
Blank	68	73	93	72	81	104	
LCS	73	74	102	70	80	101	
I imits:	21-112	18-115	10-136	23-115	34-117	35-135	

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20139SLD026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1314145	62	39	27
Blank	102	93	88
LCS	105	99	90
Limits:	21-120	17-112	27-107

Analysis Name: NY Part 375 Pests Soil

Batch number: 201350016A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1314143	244*	344*	182*	378*
1314144	125	173*	128	175*
1314145	37	85	11*	102
1314146	77	98	121	109
1314149	148*	183*	144*	197*
1314150	134	163*	136	172*
1314155	167*	210*	168*	256*
1314159	133	179*	145*	217*
1314160	150*	201*	160*	241*
1314162	88	125	95	181*
Blank	80	96	84	98
LCS	75	89	79	92
MS	133	179*	145*	217*
MSD	150*	201*	160*	241*

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Soil

Batch number: 201350016A

Limits: 19-136 46-152 19-136 46-152

Analysis Name: 2,4,5-T, 2,4-D, 2,4,5-TP 8151A

Batch number: 201350020A

	2,4-DCAA-D1	2,4-DCAA-D2	
1314143	127	151*	
1314144	123	107	
1314145	123	109	
1314146	119	117	
1314149	128	110	
1314150	119	119	
1314155	123	106	
1314159	318*	107	
1314160	132	118	
1314162	73	62	
Blank	116	116	
LCS	121	124	
MS	318*	107	
MSD	132	118	
Limits:	27-136	27-136	

Analysis Name: 7 PCBs + Total Soil

Batch number: 201350022A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1314149	56	61	54	67
1314150	78	81	79	83
1314155	54	61	50*	64
1314159	68	80	63	86
1314160	64	78	55	17*
Blank	95	97	99	104
LCS	92	101	97	100
MS	68	80	63	86
MSD	64	78	55	17*
Limits:	53-140	45-143	53-140	45-143

Analysis Name: 7 PCBs + Total Soil

Batch number: 201390026A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1314143	77	125	48*	96
1314144	61	59	28*	44*

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 7 PCBs + Total Soil Batch number: 201390026A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1314145	16*	19*	15*	18*
1314146	67	68	69	67
1314162	69	75	45*	68
Blank	96	97	96	99
LCS	87	97	90	99
Limits:	53-140	45-143	53-140	45-143

Analysis Name: NY 21 PFAS Soil

Batch number: 20135005

	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1314143	106	104	105	89	93	91
1314144	111	115	114	109	118	117
1314145	92	96	93	94	86	87
1314146	98	99	99	86	92	92
1314149	94	90	97	93	99	92
1314150	113	112	108	108	114	108
1314155	106	102	108	94	100	92
1314159	101	105	108	97	103	95
1314160	100	102	99	98	100	99
1314162	102	99	102	97	98	95
Blank	120*	122*	112	120	109	107
LCS	103	100	100	101	99	99
MS	101	105	108	97	103	95
MSD	100	102	99	98	100	99
Limits:	40-117	38-118	38-120	36-120	38-124	39-120
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1314143	113	98	105	106	114	127
1314144	122	116*	109	113	113	127
1314145	110	101	91	94	93	101
1314146	106	96	95	97	98	109
1314149	106	98	103	96	105	109
1314150	118	119*	107	111	107	109
1314155	124	104	104	118	105	144
1314159	113	100	107	105	98	128
1314160	108	103	103	98	98	117
1314162	119	106	108	105	100	111
Blank	124	125*	127*	129*	120*	122
LCS	100	106	99	103	103	97
MS	113	100	107	105	98	128

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

13C6-PFDA

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

13C2-8:2-FTS

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Labeled Isotope Quality Control (continued)

13C9-PFNA

13C8-PFOS

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

13C8-PFOA

Analysis Name: NY 21 PFAS Soil Batch number: 20135005

13C2-6:2-FTS

MSD	108	103	103	98	98	117
Limits:	25-154	44-115	45-118	39-123	43-118	26-155
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1314143	75	111	83	106	113	104
1314144	73	129*	86	117	128*	120
1314145	80	97	88	89	98	85
1314146	96	112	111	102	100	95
1314149	52	106	70	95	99	103
1314150	51	113	62	107	108	108
1314155	75	102	81	106	103	94
1314159	40	99	56	102	99	98
1314160	73	109	83	97	98	95
1314162	82	113	95	101	102	100
Blank	113	132*	126	114	120	115
LCS	98	104	101	98	102	96
MS	40	99	56	102	99	98
MSD	73	109	83	97	98	95
Limits:	10-152	34-124	10-156	28-126	26-125	31-127
Analysis Na	me: NY 21 PFAS Wate	ar.				
	er: 20139002	,ı				
	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1314166	103	104	107	99	97	94
Blank	121	113	110	122	116	115
LCS	101	101	100	104	98	99
LCSD	100	99	101	91	98	95
Limits:	43-130	38-150	23-175	36-137	35-143	33-140
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1314166	106	106	102	100	111	100
Blank	134	116	117	116	120	138
LCS	108	105	104	99	106	105
LCSD	103	96	97	96	97	99
Limits:	29-182	52-124	52-121	48-130	50-124	37-169

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

REVISED

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099431

Reported: 06/04/2020 19:14

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Water

Batch number: 20139002

	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA	
1314166	114	117	124	110	105	98	
Blank	135	135*	153*	123	124	110	
LCS	115	112	124	107	107	97	
LCSD	108	101	116	101	95	90	
Limits:	36-143	44-128	42-149	36-127	21-134	10-134	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

CT RCP

			-			
 a	11	11	ነተ	П	m	C
•	u	11	21	u	,,,	Э

For Eurofins Lancaster Laboratories Environmental use only _Group # 209943| Sample # 13 | 4 | 4 | Telp 222 COC #606291 Lancaster Laboratories Environmental Client Information Matrix **Analysis Requested** For Lab Use Only Acct. #: ANGAN, DPC Preservation and Filtration Codes FSC: SCR#: Project Name/# Surface PWSID #: Ground CHAMIDE **Preservation Codes** 170229024 H=HCI Project Manager T=Thiosutfate 2.0.#: N=HNO₂ B=NaOH of Containers S=H2SO4 Sediment P=H3PO4 Sampler: Quote #: F=Field Filtered O=Other NPDES Potable Remarks For Compliance: **8**253 Composite Yes 🔽 No 🗆 × # icant Collected Grab Sample Identification Total Soil Date **Time** 5/13/28 X 8:45 8:50 0 ¥ × × I NO THE ARSENIC # 8.53 B \forall × V × 2D16-15-17 9,00 × × LB16-18-20 9:05 × LB19-0.5-75 1520 × × LEG9 - C-8 1525 × 1530 × LBZO 1-3 1150 × 7 1 B23 G-8 1155 × Turnaround Time (TAT) Requested (please circle) Standard 5/11/20 Rush 1670 (Rush TAT is subject to laboratory approval and surcharge.) 720 Requested TAT in business days: E-mail address: Sieung & LANGAN. COM WILLIAM LANGH -13- Du Data Package Options (circle if required) Type I (EPA Level 3) Relinguished by Date Type VI (Raw Data Only) Equivalent/non-CLP) **EDD Required?** Tes Type III (Reduced non-CLP) Relinquished by Commercial Carrier: NJ DKQP TX TRRP-13 If yes, format: FedEx NYSDED Category A or B Site-Specific QC (MS/MSD/Dup)? MA MCP

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. 7044 0919

(If yes, indicate QC sample and submit triplicate sample volume.)

Temperature upon receipt

Environmental Analysis Request/Chain of Custody eurofins For Eurofins Lancaster Laboratories Environmental use only Group # 2090431 Sample # 131441-(66 00 Lancaster Laboratories COC #606290 **Environmental** Client Information Matrix **Analysis Requested** For Lab Use Only Acct. #: **Preservation and Filtration Codes** FSC: SCR#: PWSID #: Ground Surface 120125024 **Preservation Codes** H=HCI T=Thiosulfate P.O. #: CALL WYRA N=HNO₂ B=NaOH Total # of Containers S=H2SO4 P=H₂PO₄ Sediment Quote #: ARSENIC ARSONC F=Field Filtered O=Other NPDES Potable Remarks For Compliance: HEES Composite No 🗆 Yes III 12 Collected Other: TOTAL TOTAL Water Sample Identification Grab Soll 15 **Date** Time 5/13/20 1200 × ¥ × LB20-14-16 1205 6 × × > LB23-10-12 1045 1B24-10-12 1445 × SOT BOD 657320 SOFBO5-05/326 5/13/20 1330 3 >Turnaround Time (TAT) Requested (please circle) Standard / 5/18/a 16:10 1600 (Rush TAT is subject to laboratory approval and surcharge.) Requested TAT in business days: Chyrat & Lawcan com E-mail address: J LEWE & LAWCAN. COM WEIM @ LANGEN. COR Relinquished by Data Package Options (circle if required) Type I (EPA Level 3 Relinquished by Type VI (Raw Data Only) Equivalent/non-CLP) Type III (Reduced non-CLP) EDD Required? NJ DKQP Belinquished by Commercial Carrier: TX TRRP-13 EQUIS If yes, format: FedEx Site-Specific QC (MS/MSD/Dup)? MA MCP CT RCP Temperature upon receipt (If yes, indicate QC sample and submit triplicate sample volume.)

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc
The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

7044 0919

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

284424

Group Number(s):

Client: Langan

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/13/2020

Number of Packages:

3

Number of Projects:

1

State/Province of Origin:

NY

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Air Quality Samples Present:

No

No

Samples Chilled:

Yes

Total Trip Blank Qty:

1

Paperwork Enclosed:

Yes Yes Trip Blank Type:

HCI

Samples Intact: Missing Samples:

No

Yes

Extra Samples: Discrepancy in Container Qty on COC:

No

Unpacked by Ann-Marie Phillips

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	Matrix	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	Water	46730061WS	-0,2	IR	Wet	Υ	Loose	N
1	Soil	46730061WS	0.6	IR	Wet	Υ	Loose	N
2	Soil	46730061WS	2.4	IR	Wet	Υ	Loose	N
3	Soil	46730061WS	0.3	IR	Wet	Υ	Loose	N

Extra Sample Details

Number of Extra Containers Sample ID on Label SOMS01_051320

Date on Label 5/13/2020 12:00

SOMSD01_051320

6

5/13/2020 12:00

Sample Date/Time Discrepancy Details

Sample ID on COC

Date/Time on Label

Comments

Comments

LB19_0.5-2.5

Page 1 of 1

5/13/2020 13:20

General Comments:

Samples not frozen.

2425 New Holland Pike Lancaster, PA 17605-2425

T 717-656-2300 F 717-656-2681 www.LancasterLabs.com

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier Definition	
C Result confirmed by reanalysis	
D1 Indicates for dual column analyses that the result is reported from column 1	
D2 Indicates for dual column analyses that the result is reported from column 2	
E Concentration exceeds the calibration range	
K1 Initial Calibration Blank is above the QC limit and the sample result is less that	an the LOQ
K2 Continuing Calibration Blank is above the QC limit and the sample result is le	ess than the LOQ
K3 Initial Calibration Verification is above the QC limit and the sample result is le	ess than the LOQ
K4 Continuing Calibration Verification is above the QC limit and the sample resu	ult is less than the LOQ
J (or G, I, X) Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of	of Quantitation (LOQ or RL)
P Concentration difference between the primary and confirmation column >40%	%. The lower result is reported.
P^ Concentration difference between the primary and confirmation column > 40°	%. The higher result is reported.
U Analyte was not detected at the value indicated	
V Concentration difference between the primary and confirmation column >100	0%. The reporting limit is raised
due to this disparity and evident interference.	
W The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg	g/L.
Z Laboratory Defined - see analysis report	

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 22, 2020 09:06

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2099867 SDG: CMS09 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

SAMPLE INFORMATION

 Client Sample Description
 Sample Collection
 ELLE#

 Date/Time
 Dot/16/2020 15:00
 1316563

 TB06_051620 Water
 05/16/2020
 1316564

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2099867

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1316564

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

SW-846 8270D, GC/MS Semivolatiles

Sample #s: 1316563

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 20139SLA026 (Sample number(s): 1316563)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol

SW 1316563

2099867

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB28_14.5-15.5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS09-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 82	260C	mg/kg	mg/kg	mg/kg	
11995	Acetone	67-64-1	0.042	0.006	0.021	0.83
11995	Acrolein	107-02-8	N.D.	0.005	0.10	0.83
11995	Acrylonitrile	107-13-1	N.D.	0.0008	0.021	0.83
11995	Benzene	71-43-2	N.D.	0.0005	0.005	0.83
11995	Bromodichloromethane	75-27-4	N.D.	0.0004	0.005	0.83
11995	Bromoform	75-25-2	N.D.	0.005	0.010	0.83
11995	Bromomethane	74-83-9	N.D.	0.0007	0.005	0.83
11995	2-Butanone	78-93-3	0.004 J	0.002	0.010	0.83
11995	t-Butyl alcohol	75-65-0	N.D.	0.015	0.10	0.83
11995	n-Butylbenzene	104-51-8	N.D.	0.003	0.008	0.83
11995	sec-Butylbenzene	135-98-8	N.D.	0.002	0.005	0.83
11995	tert-Butylbenzene	98-06-6	N.D.	0.0008	0.005	0.83
11995	Carbon Disulfide	75-15-0	N.D.	0.0006	0.005	0.83
11995	Carbon Tetrachloride	56-23-5	N.D.	0.0005	0.005	0.83
11995	Chlorobenzene	108-90-7	N.D.	0.0005	0.005	0.83
11995	Chloroethane	75-00-3	N.D.	0.001	0.005	0.83
11995	Chloroform	67-66-3	N.D.	0.0006	0.005	0.83
11995	Chloromethane	74-87-3	N.D.	0.0006	0.005	0.83
11995	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0005	0.005	0.83
11995	Dibromochloromethane	124-48-1	N.D.	0.0005	0.005	0.83
11995	1,2-Dibromoethane	106-93-4	N.D.	0.0004	0.005	0.83
11995	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.005	0.83
11995	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.005	0.83
11995	1,4-Dichlorobenzene	106-46-7	N.D.	0.0004	0.005	0.83
11995	Dichlorodifluoromethane	75-71-8	N.D.	0.0006	0.005	0.83
11995	1,1-Dichloroethane	75-34-3	N.D.	0.0005	0.005	0.83
11995	1,2-Dichloroethane	107-06-2	N.D.	0.0006	0.005	0.83
11995	1,1-Dichloroethene	75-35-4	N.D.	0.0005	0.005	0.83
11995	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0005	0.005	0.83
11995	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0005	0.005	0.83
11995	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.001	0.010	0.83
11995	1,2-Dichloropropane	78-87-5	N.D.	0.0005	0.005	0.83
11995	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0004	0.005	0.83
11995	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0005	0.005	0.83
11995	Ethylbenzene	100-41-4	N.D.	0.0004	0.005	0.83
11995	Methyl Acetate	79-20-9	N.D.	0.001	0.005	0.83
11995	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	0.005	0.83
11995	Methylene Chloride	75-09-2	N.D.	0.002	0.005	0.83
11995	n-Propylbenzene	103-65-1	N.D.	0.0004	0.005	0.83
11995	Styrene	100-42-5	N.D.	0.0004	0.005	0.83
11995	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0004	0.005	0.83

^{*=}This limit was used in the evaluation of the final result

SW 1316563

2099867

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB28_14.5-15.5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS09-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Volatiles S	SW-846 8260C	mg/kg	mg/kg	mg/kg	
11995	Tetrachloroethene	127-18-4	N.D.	0.0005	0.005	0.83
11995	Toluene	108-88-3	N.D.	0.0006	0.005	0.83
11995	1,1,1-Trichloroethane	71-55-6	N.D.	0.0006	0.005	0.83
11995	1,1,2-Trichloroethane	79-00-5	N.D.	0.0005	0.005	0.83
11995	Trichloroethene	79-01-6	N.D.	0.0005	0.005	0.83
11995	Trichlorofluoromethane	75-69-4	N.D.	0.0007	0.005	0.83
11995	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.0005	0.005	0.83
11995	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0005	0.005	0.83
11995	Vinyl Chloride	75-01-4	N.D.	0.0006	0.005	0.83
11995	Xylene (Total)	1330-20-7	N.D.	0.001	0.010	0.83
GC/MS	Semivolatiles S	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Acenaphthene	83-32-9	0.31	0.004	0.021	1
10726	Acenaphthylene	208-96-8	0.086	0.004	0.021	1
10726	Acetophenone	98-86-2	N.D.	0.021	0.062	1
10726	Anthracene	120-12-7	0.55	0.004	0.021	1
10726	Atrazine	1912-24-9	N.D.	0.25	0.53	1
10726	Benzaldehyde	100-52-7	N.D.	0.082	0.21	1
10726	Benzidine	92-87-5	N.D.	0.41	1.2	1
10726	Benzo(a)anthracene	56-55-3	1.3	0.008	0.021	1
10726	Benzo(a)pyrene	50-32-8	1.3	0.004	0.021	1
10726	Benzo(b)fluoranthene	205-99-2	1.5	0.004	0.021	1
10726	Benzo(g,h,i)perylene	191-24-2	0.79	0.004	0.021	1
10726	Benzo(k)fluoranthene	207-08-9	0.65	0.004	0.021	1
10726	1,1'-Biphenyl	92-52-4	0.036 J	0.021	0.045	1
10726	Butylbenzylphthalate	85-68-7	N.D.	0.082	0.21	1
10726	Di-n-butylphthalate	84-74-2	N.D.	0.082	0.21	1
10726	Caprolactam	105-60-2	N.D.	0.041	0.21	1
10726	Carbazole	86-74-8	0.22	0.021	0.045	1
10726	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.029	0.062	1
10726	bis(2-Chloroisopropyl)ether1	39638-32-9	N.D.	0.025	0.053	1
		CAS #39638-32-9 and e) CAS #108-60-1 cannot be sepa eported result represents the com				
10726	2-Chloronaphthalene	91-58-7	N.D.	0.008	0.041	1
10726	2-Chlorophenol	95-57-8	N.D.	0.021	0.045	1
10726	Chrysene	218-01-9	1.1	0.004	0.021	1
10726	Dibenz(a,h)anthracene	53-70-3	0.22	0.008	0.021	1
10726	Dibenzofuran	132-64-9	0.21	0.021	0.045	1
10726	1,2-Dichlorobenzene	95-50-1	N.D.	0.021	0.062	1
10726	1,3-Dichlorobenzene	541-73-1	N.D.	0.021	0.045	1

^{*=}This limit was used in the evaluation of the final result

SW 1316563

2099867

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB28_14.5-15.5 Grab Soil

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS09-01

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 82	270D	mg/kg	mg/kg	mg/kg	
10726	1,4-Dichlorobenzene	106-46-7	N.D.	0.021	0.045	1
10726	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.12	0.41	1
10726	2,4-Dichlorophenol	120-83-2	N.D.	0.025	0.053	1
10726	Diethylphthalate	84-66-2	N.D.	0.082	0.21	1
10726	2,4-Dimethylphenol	105-67-9	N.D.	0.037	0.082	1
10726	Dimethylphthalate	131-11-3	N.D.	0.082	0.21	1
10726	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.29	0.62	1
10726	2,4-Dinitrophenol	51-28-5	N.D.	0.41	1.2	1
10726	2,4-Dinitrotoluene	121-14-2	N.D.	0.082	0.21	1
10726	2,6-Dinitrotoluene	606-20-2	N.D.	0.029	0.062	1
10726	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.029	0.062	1
10726	1,2-Diphenylhydrazine	122-66-7	N.D.	0.025	0.053	1
	Azobenzene cannot be distinguished fror reported for 1,2-diphenylhydrazine reprecompounds.	, , , ,				
10726	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.082	0.21	1
10726	Fluoranthene	206-44-0	2.6	0.004	0.021	1
10726	Fluorene	86-73-7	0.27	0.004	0.021	1
10726	Hexachlorobenzene	118-74-1	N.D.	0.008	0.021	1
10726	Hexachlorobutadiene	87-68-3	N.D.	0.045	0.094	1
10726	Hexachlorocyclopentadiene	77-47-4	N.D.	0.25	0.62	1
10726	Hexachloroethane	67-72-1	N.D.	0.041	0.21	1
10726	Indeno(1,2,3-cd)pyrene	193-39-5	0.67	0.004	0.021	1
10726	Isophorone	78-59-1	N.D.	0.021	0.045	1
10726	2-Methylnaphthalene	91-57-6	0.096	0.004	0.041	1
10726	2-Methylphenol	95-48-7	N.D.	0.021	0.082	1
10726	4-Methylphenol	106-44-5	0.028 J	0.021	0.062	1
	3-Methylphenol and 4-methylphenol can chromatographic conditions used for san for 4-methylphenol represents the combi	nple analysis. The res	sult reported pounds.			
10726	Naphthalene	91-20-3	0.19	0.008	0.021	1
10726	2-Nitroaniline	88-74-4	N.D.	0.021	0.062	1
10726	Nitrobenzene	98-95-3	N.D.	0.033	0.082	1
10726	N-Nitrosodimethylamine	62-75-9	N.D.	0.082	0.21	1
10726	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.029	0.062	1
10726	N-Nitrosodiphenylamine	86-30-6	N.D.	0.021	0.045	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N represents the combined total of both combined total of	N-nitrosodiphenylamin	е			
10726	Di-n-octylphthalate	117-84-0	N.D.	0.082	0.21	1
10726	Pentachlorophenol	87-86-5	N.D.	0.082	0.21	1
10726	Phenanthrene	85-01-8	2.5	0.004	0.021	1
10726	Phenol	108-95-2	0.023 J	0.021	0.045	1

^{*=}This limit was used in the evaluation of the final result

SW 1316563

2099867

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

Matrix: Soil

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: LB28_14.5-15.5 Grab Soil

35 Commercial Street/170229024

35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS09-01

Project Name:

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/kg	mg/kg	mg/kg	
10726	Pyrene	129-00-0	2.2	0.004	0.021	1
10726	Pyridine	110-86-1	N.D.	0.082	0.21	1
10726	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.029	0.062	1
10726	2,4,5-Trichlorophenol	95-95-4	N.D.	0.037	0.082	1
10726	2,4,6-Trichlorophenol	88-06-2	N.D.	0.033	0.070	1
Spike Sumr		ance limits as noted on the QC high and the target analyte(s)				
Wet Ch	nemistry	SM 2540 G-2011 %Moisture Calc	%	%	%	
00111	Moisture ¹	n.a.	18.9	0.50	0.50	1
		ss in weight of the sample after over . The moisture result reported is on a				

Sample Comments

State of New York Certification No. 10670

Eurofins Lancaster Laboratories Environmental, LLC is responsible only for the certified testing of samples. We are not directly responsible for the integrity of the sample prior to laboratory receipt. Any reported concentrations less than 200 ug/kg may be biased low if they were not collected according to EPA 5035/5035A specifications.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
11995	VOCs 8260C	SW-846 8260C	1	B201402AA	05/20/2020 01:33	Laura Green	0.83		
06176	GC/MS - LL Water Prep	SW-846 5035A	1	202013756807	05/16/2020 21:31	Rebecca Williams	1		
06176	GC/MS - LL Water Prep	SW-846 5035A	2	202013756807	05/16/2020 21:31	Rebecca Williams	1		
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	202013956810	05/16/2020 15:00	Client Supplied	1		
10726	NYSDEC/NJDEP SVOCs 8270D Soil	SW-846 8270D	1	20139SLA026	05/19/2020 15:01	Edward C Monborne	1		
10813	BNA Soil Microwave APP IX	SW-846 3546	1	20139SLA026	05/19/2020 00:42	Laura Duquette	1		
00111	Moisture	SM 2540 G-2011 %Moisture Calc	1	20140820002B	05/20/2020 09:54	William C Schwebel	1		

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: TB06_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020

 SDG#:
 CMS09-02TB

Langan Eng & Env Services
ELLE Sample #: WW 1316564
ELLE Group #: 2099867

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: TB06_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020

 SDG#:
 CMS09-02TB

Langan Eng & Env Services
ELLE Sample #: WW 1316564
ELLE Group #: 2099867

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
A Rei	oort Limit Verification (RLV)	standard is analyzed to confirm				

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor SW-846 8260C N201412AA Laura Green VOCs 8260C 05/20/2020 23:11 11997 1 1 01163 GC/MS VOA Water Prep SW-846 5030C N201412AA 05/20/2020 23:10 Laura Green

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: B201402AA	Sample number(s): 1316563	
Acetone	N.D.	0.006	0.020
Acrolein	N.D.	0.005	0.10
Acrylonitrile	N.D.	0.0008	0.020
Benzene	N.D.	0.0005	0.005
Bromodichloromethane	N.D.	0.0004	0.005
Bromoform	N.D.	0.005	0.010
Bromomethane	N.D.	0.0007	0.005
2-Butanone	N.D.	0.002	0.010
t-Butyl alcohol	N.D.	0.015	0.10
n-Butylbenzene	N.D.	0.003	0.008
sec-Butylbenzene	N.D.	0.002	0.005
tert-Butylbenzene	N.D.	0.0008	0.005
Carbon Disulfide	N.D.	0.0006	0.005
Carbon Tetrachloride	N.D.	0.0005	0.005
Chlorobenzene	N.D.	0.0005	0.005
Chloroethane	N.D.	0.001	0.005
Chloroform	N.D.	0.0006	0.005
Chloromethane	N.D.	0.0006	0.005
1,2-Dibromo-3-chloropropane	N.D.	0.0005	0.005
Dibromochloromethane	N.D.	0.0005	0.005
1,2-Dibromoethane	N.D.	0.0004	0.005
1,2-Dichlorobenzene	N.D.	0.0005	0.005
1,3-Dichlorobenzene	N.D.	0.0005	0.005
1,4-Dichlorobenzene	N.D.	0.0004	0.005
Dichlorodifluoromethane	N.D.	0.0006	0.005
1,1-Dichloroethane	N.D.	0.0005	0.005
1,2-Dichloroethane	N.D.	0.0006	0.005
1,1-Dichloroethene	N.D.	0.0005	0.005
cis-1,2-Dichloroethene	N.D.	0.0005	0.005
trans-1,2-Dichloroethene	N.D.	0.0005	0.005
1,2-Dichloroethene (Total)	N.D.	0.001	0.010
1,2-Dichloropropane	N.D.	0.0005	0.005
cis-1,3-Dichloropropene	N.D.	0.0004	0.005
trans-1,3-Dichloropropene	N.D.	0.0005	0.005
Ethylbenzene	N.D.	0.0004	0.005
Methyl Acetate	N.D.	0.001	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005
Methylene Chloride	N.D.	0.002	0.005
n-Propylbenzene	N.D.	0.0004	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Styrene	N.D.	0.0004	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0004	0.005
Tetrachloroethene	N.D.	0.0005	0.005
Toluene	N.D.	0.0006	0.005
1,1,1-Trichloroethane	N.D.	0.0006	0.005
1,1,2-Trichloroethane	N.D.	0.0005	0.005
Trichloroethene	N.D.	0.0005	0.005
Trichlorofluoromethane	N.D.	0.0007	0.005
1,2,4-Trimethylbenzene	N.D.	0.0005	0.005
1,3,5-Trimethylbenzene	N.D.	0.0005	0.005
Vinyl Chloride	N.D.	0.0006	0.005
Xylene (Total)	N.D.	0.001	0.010
	mg/l	mg/l	mg/l
Batch number: N201412AA	Sample number(s): 1316564	
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
•	mg/l	mg/l	mg/l
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
	mg/kg	mg/kg	mg/kg
Batch number: 20139SLA026		mg/kg ber(s): 1316563	mg/kg
Acenaphthene	Sample num N.D.		mg/kg 0.017
Acenaphthene Acenaphthylene	Sample num N.D. N.D.	ber(s): 1316563	
Acenaphthene Acenaphthylene Acetophenone	Sample num N.D. N.D. N.D.	ber(s): 1316563 0.003 0.003 0.017	0.017 0.017 0.050
Acenaphthene Acenaphthylene Acetophenone Anthracene	Sample num N.D. N.D. N.D. N.D.	ber(s): 1316563 0.003 0.003 0.017 0.003	0.017 0.017 0.050 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine	Sample num N.D. N.D. N.D. N.D. N.D. N.D.	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20	0.017 0.017 0.050 0.017 0.43
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde	Sample num N.D. N.D. N.D. N.D. N.D. N.D.	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067	0.017 0.017 0.050 0.017 0.43 0.17
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D.	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33	0.017 0.017 0.050 0.017 0.43 0.17 1.0
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(k)fluoranthene 1,1'-Biphenyl	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.017
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.037 0.17
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.037 0.17
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.0017 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.007 0.067 0.067 0.067 0.033	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.037 0.17
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.007 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.003 0.0017 0.067 0.067 0.033 0.017	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.037 0.17 0.17
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.007 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.0017 0.067 0.067 0.033 0.017 0.067 0.033 0.017	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.037 0.17 0.17 0.037 0.050
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.007 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.0017 0.067 0.067 0.033 0.017 0.067 0.033 0.017 0.023 0.020	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.017 0.17 0.
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl Butylbenzylphthalate Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether	Sample num N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ber(s): 1316563 0.003 0.003 0.007 0.003 0.20 0.067 0.33 0.007 0.003 0.003 0.003 0.0017 0.067 0.067 0.033 0.017 0.067 0.033 0.017	0.017 0.017 0.050 0.017 0.43 0.17 1.0 0.017 0.017 0.017 0.017 0.037 0.17 0.17 0.037 0.050

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
.,	mg/kg	mg/kg	mg/kg
Chrysene	N.D.	0.003	0.017
Dibenz(a,h)anthracene	N.D.	0.007	0.017
Dibenzofuran	N.D.	0.017	0.037
1,2-Dichlorobenzene	N.D.	0.017	0.050
1,3-Dichlorobenzene	N.D.	0.017	0.037
1,4-Dichlorobenzene	N.D.	0.017	0.037
3,3'-Dichlorobenzidine	N.D.	0.10	0.33
2,4-Dichlorophenol	N.D.	0.020	0.043
Diethylphthalate	N.D.	0.067	0.17
2,4-Dimethylphenol	N.D.	0.030	0.067
Dimethylphthalate	N.D.	0.067	0.17
4,6-Dinitro-2-methylphenol	N.D. N.D.	0.23	0.50 1.0
2,4-Dinitrophenol	N.D.	0.33	
2,4-Dinitrotoluene 2,6-Dinitrotoluene	N.D.	0.067 0.023	0.17 0.050
2,4_2,6-Dinitrotoluenes	N.D.	0.023	0.050
1,2-Diphenylhydrazine	N.D.	0.023	0.030
bis(2-Ethylhexyl)phthalate	N.D.	0.020	0.17
Fluoranthene	N.D.	0.003	0.017
Fluorene	N.D.	0.003	0.017
Hexachlorobenzene	N.D.	0.007	0.017
Hexachlorobutadiene	N.D.	0.037	0.077
Hexachlorocyclopentadiene	N.D.	0.20	0.50
Hexachloroethane	N.D.	0.033	0.17
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017
Isophorone	N.D.	0.017	0.037
2-Methylnaphthalene	N.D.	0.003	0.033
2-Methylphenol	N.D.	0.017	0.067
4-Methylphenol	N.D.	0.017	0.050
Naphthalene	N.D.	0.007	0.017
2-Nitroaniline	N.D.	0.017	0.050
Nitrobenzene	N.D. N.D.	0.027 0.067	0.067 0.17
N-Nitrosodimethylamine N-Nitroso-di-n-propylamine	N.D.	0.067	0.17
N-Nitrosodiphenylamine	N.D.	0.023	0.030
Di-n-octylphthalate	N.D.	0.067	0.037
Pentachlorophenol	N.D.	0.067	0.17
Phenanthrene	N.D.	0.003	0.017
Phenol	N.D.	0.017	0.037
Pyrene	N.D.	0.003	0.017
Pyridine	N.D.	0.067	0.17
1,2,4-Trichlorobenzene	N.D.	0.023	0.050
2,4,5-Trichlorophenol	N.D.	0.030	0.067
2,4,6-Trichlorophenol	N.D.	0.027	0.057

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B201402AA	Sample number	r(s): 1316563							
Acetone	0.150	0.192	0.150	0.199	128	133	41-150	4	30
Acrolein	0.150	0.138	0.150	0.147	92	98	57-131	7	30
Acrylonitrile	0.100	0.0961	0.100	0.0891	96	89	66-120	8	30
Benzene	0.0200	0.0192	0.0200	0.0193	96	97	80-120	1	30
Bromodichloromethane	0.0200	0.0200	0.0200	0.0198	100	99	70-120	1	30
Bromoform	0.0200	0.0197	0.0200	0.0185	98	93	51-127	6	30
Bromomethane	0.0200	0.0170	0.0200	0.0171	85	85	45-140	1	30
2-Butanone	0.150	0.155	0.150	0.158	103	106	57-128	2	30
t-Butyl alcohol	0.200	0.204	0.200	0.203	102	101	74-121	1	30
n-Butylbenzene	0.0200	0.0184	0.0200	0.0183	92	91	71-121	0	30
sec-Butylbenzene	0.0200	0.0192	0.0200	0.0192	96	96	72-120	0	30
tert-Butylbenzene	0.0200	0.0189	0.0200	0.0185	94	93	68-120	2	30
Carbon Disulfide	0.0200	0.0192	0.0200	0.0191	96	96	64-133	1	30
Carbon Tetrachloride	0.0200	0.0187	0.0200	0.0187	94	94	64-134	0	30
Chlorobenzene	0.0200	0.0198	0.0200	0.0196	99	98	80-120	1	30
Chloroethane	0.0200	0.0159	0.0200	0.0158	80	79	43-135	1	30
Chloroform	0.0200	0.0197	0.0200	0.0195	99	98	80-120	1	30
Chloromethane	0.0200	0.0177	0.0200	0.0175	89	88	56-120	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0194	0.0200	0.0182	97	91	48-134	6	30
Dibromochloromethane	0.0200	0.0214	0.0200	0.0205	107	103	69-125	4	30
1,2-Dibromoethane	0.0200	0.0205	0.0200	0.0195	103	98	76-120	5	30
1,2-Dichlorobenzene	0.0200	0.0199	0.0200	0.0196	100	98	76-120	2	30
1,3-Dichlorobenzene	0.0200	0.0195	0.0200	0.0195	97	97	75-120	0	30
1,4-Dichlorobenzene	0.0200	0.0198	0.0200	0.0195	99	98	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0217	0.0200	0.0213	109	107	21-127	2	30
1,1-Dichloroethane	0.0200	0.0192	0.0200	0.0190	96	95	79-120	1	30
1,2-Dichloroethane	0.0200	0.0191	0.0200	0.0188	95	94	71-128	2	30
1,1-Dichloroethene	0.0200	0.0196	0.0200	0.0197	98	98	73-129	1	30
cis-1,2-Dichloroethene	0.0200	0.0211	0.0200	0.0211	106	105	80-125	0	30
trans-1,2-Dichloroethene	0.0200	0.0194	0.0200	0.0195	97	97	80-126	0	30
1,2-Dichloroethene (Total)	0.0400	0.0405	0.0400	0.0405	101	101	80-126	0	30
1,2-Dichloropropane	0.0200	0.0198	0.0200	0.0197	99	98	80-120	1	30
cis-1,3-Dichloropropene	0.0200	0.0196	0.0200	0.0195	98	97	66-120	1	30
trans-1,3-Dichloropropene	0.0200	0.0196	0.0200	0.0192	98	96	68-122	2	30
Ethylbenzene	0.0200	0.0194	0.0200	0.0192	97	96	78-120	1	30
Methyl Acetate	0.0200	0.0183	0.0200	0.0169	92	85	67-128	8	30
Methyl Tertiary Butyl Ether	0.0200	0.0197	0.0200	0.0192	98	96	72-120	2	30
Methylene Chloride	0.0200	0.0197	0.0200	0.0196	99	98	76-122	1	30
n-Propylbenzene	0.0200	0.0197	0.0200	0.0198	98	99	72-123	1	30
Styrene	0.0200	0.0191	0.0200	0.0188	95	94	76-120	1	30
1,1,2,2-Tetrachloroethane	0.0200	0.0215	0.0200	0.0204	107	102	69-125	5	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Tetrachloroethene	0.0200	0.0197	0.0200	0.0194	98	97	73-120	2	30
Toluene	0.0200	0.0190	0.0200	0.0189	95	95	80-120	1	30
1,1,1-Trichloroethane	0.0200	0.0182	0.0200	0.0185	91	92	69-123	1	30
1,1,2-Trichloroethane	0.0200	0.0219	0.0200	0.0210	110	105	80-120	4	30
Trichloroethene	0.0200	0.0192	0.0200	0.0190	96	95	80-120	1	30
Trichlorofluoromethane	0.0200	0.0185	0.0200	0.0187	93	93	55-134	1	30
1,2,4-Trimethylbenzene	0.0200	0.0193	0.0200	0.0192	97	96	73-120	1	30
1,3,5-Trimethylbenzene	0.0200	0.0194	0.0200	0.0194	97	97	73-120	0	30
Vinyl Chloride	0.0200	0.0168	0.0200	0.0167	84	84	52-120	0	30
Xylene (Total)	0.0600	0.0587	0.0600	0.0577	98	96	75-120	2	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: N201412AA	Sample number	(s): 1316564							
Acetone	0.150	0.164	0.150	0.171	109	114	54-157	4	30
Acrolein	0.150	0.149	0.150	0.148	100	99	47-136	1	30
Acrylonitrile	0.100	0.0945	0.100	0.0957	95	96	60-129	1	30
Benzene	0.0200	0.0201	0.0200	0.0202	101	101	80-120	0	30
Bromodichloromethane	0.0200	0.0189	0.0200	0.0203	94	102	71-120	7	30
Bromoform	0.0200	0.0192	0.0200	0.0192	96	96	51-120	0	30
Bromomethane	0.0200	0.0180	0.0200	0.0181	90	91	53-128	1	30
2-Butanone	0.150	0.134	0.150	0.131	90	87	59-135	3	30
t-Butyl alcohol	0.200	0.235	0.200	0.235	117	118	60-130	0	30
n-Butylbenzene	0.0200	0.0202	0.0200	0.0201	101	100	76-120	0	30
sec-Butylbenzene	0.0200	0.0207	0.0200	0.0210	104	105	77-120	1	30
tert-Butylbenzene	0.0200	0.0207	0.0200	0.0202	104	101	78-120	2	30
Carbon Disulfide	0.0200	0.0203	0.0200	0.0210	101	105	65-128	3	30
Carbon Tetrachloride	0.0200	0.0187	0.0200	0.0189	93	94	64-134	1	30
Chlorobenzene	0.0200	0.0203	0.0200	0.0207	101	104	80-120	2	30
Chloroethane	0.0200	0.0181	0.0200	0.0183	90	92	55-123	1	30
Chloroform	0.0200	0.0184	0.0200	0.0194	92	97	80-120	5	30
Chloromethane	0.0200	0.0176	0.0200	0.0177	88	89	56-121	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0189	0.0200	0.0184	95	92	47-131	3	30
Dibromochloromethane	0.0200	0.0202	0.0200	0.0201	101	100	71-120	1	30
1,2-Dibromoethane	0.0200	0.0197	0.0200	0.0199	99	99	77-120	1	30
1,2-Dichlorobenzene	0.0200	0.0208	0.0200	0.0204	104	102	80-120	2	30
1,3-Dichlorobenzene	0.0200	0.0206	0.0200	0.0204	103	102	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0204	0.0200	0.0208	102	104	80-120	2	30
Dichlorodifluoromethane	0.0200	0.0146	0.0200	0.0161	73	80	41-127	9	30
1,1-Dichloroethane	0.0200	0.0191	0.0200	0.0200	96	100	80-120	5	30
1,2-Dichloroethane	0.0200	0.0175	0.0200	0.0181	88	90	73-124	3	30
1,1-Dichloroethene	0.0200	0.0193	0.0200	0.0199	96	100	80-131	4	30
cis-1,2-Dichloroethene	0.0200	0.0198	0.0200	0.0209	99	104	80-125	5	30
trans-1,2-Dichloroethene	0.0200	0.0189	0.0200	0.0200	95	100	80-126	5	30
1,2-Dichloroethene (Total)	0.0400	0.0388	0.0400	0.0409	97	102	80-125	5	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,2-Dichloropropane	0.0200	0.0216	0.0200	0.0227	108	114	80-120	5	30
cis-1,3-Dichloropropene	0.0200	0.0195	0.0200	0.0210	97	105	75-120	7	30
trans-1,3-Dichloropropene	0.0200	0.0187	0.0200	0.0184	93	92	67-120	2	30
Ethylbenzene	0.0200	0.0201	0.0200	0.0205	100	102	80-120	2	30
Methyl Acetate	0.0200	0.0194	0.0200	0.0198	97	99	54-136	2	30
Methyl Tertiary Butyl Ether	0.0200	0.0176	0.0200	0.0176	88	88	69-122	0	30
Methylene Chloride	0.0200	0.0186	0.0200	0.0196	93	98	80-120	5	30
n-Propylbenzene	0.0200	0.0212	0.0200	0.0212	106	106	79-121	0	30
Styrene	0.0200	0.0203	0.0200	0.0203	102	101	80-120	0	30
1,1,2,2-Tetrachloroethane	0.0200	0.0208	0.0200	0.0209	104	104	72-120	0	30
Tetrachloroethene	0.0200	0.0199	0.0200	0.0222	100	111	80-120	11	30
Toluene	0.0200	0.0204	0.0200	0.0207	102	104	80-120	2	30
1,1,1-Trichloroethane	0.0200	0.0180	0.0200	0.0183	90	92	67-126	2	30
1,1,2-Trichloroethane	0.0200	0.0218	0.0200	0.0204	109	102	80-120	6	30
Trichloroethene	0.0200	0.0192	0.0200	0.0207	96	103	80-120	7	30
Trichlorofluoromethane	0.0200	0.0181	0.0200	0.0188	91	94	55-135	3	30
1,2,4-Trimethylbenzene	0.0200	0.0197	0.0200	0.0198	99	99	75-120	0	30
1,3,5-Trimethylbenzene	0.0200	0.0203	0.0200	0.0202	102	101	75-120	0	30
Vinyl Chloride	0.0200	0.0174	0.0200	0.0180	87	90	56-120	3	30
Xylene (Total)	0.0600	0.0612	0.0600	0.0625	102	104	80-120	2	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 20139SLA026	Sample number	r(s): 1316563							
Acenaphthene	1.67	1.38			83		61-112		
Acenaphthylene	1.67	1.40			84		60-124		
Acetophenone	1.67	1.19			72		48-109		
Anthracene	1.67	1.55			93		67-120		
Atrazine	1.67	1.63			98		70-129		
Benzaldehyde	1.67	0.749			45		20-101		
Benzidine	8.33	4.61			55		18-105		
Benzo(a)anthracene	1.67	1.65			99		68-120		
Benzo(a)pyrene	1.67	1.70			102		68-119		
Benzo(b)fluoranthene	1.67	1.63			98		67-125		
Benzo(g,h,i)perylene	1.67	1.69			101		68-125		
Benzo(k)fluoranthene	1.67	1.73			104		66-122		
1,1'-Biphenyl	1.67	1.36			82		59-106		
Butylbenzylphthalate	1.67	1.59			95		69-125		
Di-n-butylphthalate	1.67	1.60			96		70-126		
Caprolactam	1.67	1.43			86		62-119		
Carbazole	1.67	1.62			97		69-125		
bis(2-Chloroethyl)ether	1.67	1.10			66		44-104		
bis(2-Chloroisopropyl)ether	1.67	0.977			59		40-112		
2-Chloronaphthalene	1.67	1.20			72		48-123		
2-Chlorophenol	1.67	1.32			79		51-109		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Chrysene	1.67	1.46			87		66-111		
Dibenz(a,h)anthracene	1.67	1.78			107		69-135		
Dibenzofuran	1.67	1.44			86		62-113		
1,2-Dichlorobenzene	1.67	1.19			72		38-106		
1,3-Dichlorobenzene	1.67	1.15			69		36-103		
1,4-Dichlorobenzene	1.67	1.17			70		25-127		
3,3'-Dichlorobenzidine	1.67	1.28			77		18-114		
2,4-Dichlorophenol	1.67	1.49			89		57-115		
Diethylphthalate	1.67	1.53			92		68-116		
2,4-Dimethylphenol	1.67	1.16			70		47-95		
Dimethylphthalate	1.67	1.46			88		66-113		
4,6-Dinitro-2-methylphenol	1.67	2.29			137*		56-135		
2,4-Dinitrophenol	3.33	5.56			167*		34-136		
2,4-Dinitrotoluene	1.67	1.66			100		61-121		
2,6-Dinitrotoluene	1.67	1.66			99		66-122		
1,2-Diphenylhydrazine	1.67	1.42			85		74-117		
bis(2-Ethylhexyl)phthalate	1.67	1.65			99		65-132		
Fluoranthene	1.67	1.58			95		65-114		
Fluorene	1.67	1.48			89		62-110		
Hexachlorobenzene	1.67	1.51			91		62-124		
Hexachlorobutadiene	1.67	1.32			79		39-120		
Hexachlorocyclopentadiene	3.33	1.99			60		13-115		
Hexachloroethane	1.67	1.16			69		30-112		
Indeno(1,2,3-cd)pyrene	1.67	1.74			104		64-130		
Isophorone	1.67	1.22			73		51-113		
2-Methylnaphthalene	1.67	1.31			79		52-104		
2-Methylphenol	1.67	1.27			76		52-116		
4-Methylphenol	1.67	1.32			79		52-121		
Naphthalene	1.67	1.25			75		49-104		
2-Nitroaniline	1.67	1.68			101		65-132		
Nitrobenzene	1.67	1.19			71		41-118		
N-Nitrosodimethylamine	1.67	1.03			62		31-107		
N-Nitroso-di-n-propylamine	1.67	1.18			71		49-108		
N-Nitrosodiphenylamine	1.67	1.56			94		64-127		
Di-n-octylphthalate	1.67	1.77			106		65-139		
Pentachlorophenol	1.67	2.03			122		40-131		
Phenanthrene	1.67	1.56			94		67-116		
Phenol	1.67	1.27			76		57-107		
Pyrene	1.67	1.45			87		67-109		
Pyridine	1.67	0.746			45		10-117		
1,2,4-Trichlorobenzene	1.67	1.33			80		46-109		
2,4,5-Trichlorophenol	1.67	1.66			99		62-121		
2,4,6-Trichlorophenol	1.67	1.71			103		60-120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099867

Reported: 05/22/2020 09:06

LCS/LCSD (continued)

Analysis Name	LCS Spike Added %	LCS Conc %	LCSD Spike Added %	LCSD Conc %	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 20140820002B Moisture	Sample number(s	s): 1316563 89.39			100		99-101		

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C Batch number: B201402AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1316563	89	89	84	82
Blank	88	94	84	84
LCS	89	93	85	85
LCSD	89	89	85	85
Limite	50-141	54-135	52-1/1	50-131

Analysis Name: VOCs 8260C Batch number: N201412AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1316564	94	99	96	89
Blank	94	94	98	90
LCS	90	99	98	91
LCSD	93	95	99	92
Limits:	80-120	80-120	80-120	80-120

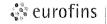
Analysis Name: NYSDEC/NJDEP SVOCs 8270D Soil

Batch number: 20139SLA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1316563	60	61	32	59	70	79	
Blank	68	73	93	72	81	104	
LCS	73	74	102	70	80	101	
Limits:	21-112	18-115	10-136	23-115	34-117	35-135	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank


⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

eurofins		45208	For E	urofir	ns La	ncaster Lab	orator	ies En	vironr	mental i	use c	anly		P	lo	E			20	•• CO	C77	70
Lancaster Laboratories Environmental	Acct. #	40000	Gr	гопр	# 5	-J9770	<u>, †</u> s	ample	#	13	6	563	3 -6	4		_		C	OC:	# ७ ∪	011	_
Client Informati						Matrix								Reque					For Lab U	ise Only		
Client: WANGAN, DPC	Acct. #:									Pre	eser	vation	n and	d Filtra	ition	Cod	88	-13	FSC:			_
Project Name/#:	PYANDER	u#-			e e	р <u>ө</u>		-		-							-		SCR#:			
35 COMMERCIAL STREET, BROOKED, O'	11 17	0229 02	4		Tissue	Ground		1	335										Pres H=HCI	servation	n Codes F=Thiosul	_
Project Name/#: 35 COMMENCIAN DONEET, BINDOLUM, N Project Manager: GNE WYKA WYO KIM	P.O. #:					<u></u>		8	/Pr 3	1									N=HNO ₃	E	B≃NaOH	
	Quote #:			—	텵			ine	121										S=H₂SO₄ F=Field F		P=H ₃ PO ₄ D=Other	
State where samples were collected: For Compliance:			-	/	Ĭ	ble DES		Sinta												Remai		
Yes [site	Sec	Potable NPDES		ŏ	\$						Ì							
Sample Identification		lected	Grab	Composite	Soil X Sediment	Water	Other:	Total # of Containers	3	80												
1800 100 27	Date	Time	2	<u>ပိ</u>		××	ਰ		<u> </u>	L.												-
1828 14.5-15.5	5/16/20		X	!	X		<u>_</u>	5	X	X												
1806-051620	5/16/20	1	-		-	TB	 	igspace	X	1		\sqcup	<u> </u>	\vdash								
	+		+		-	-	+-		\vdash	┝─┼	\square	\vdash	$\vdash \vdash$	H	\dashv	\longrightarrow						
	+		-	-			+-	 	\vdash	-		\vdash	-	-	\dashv	\dashv	 					_
	+		\vdash				+-	\vdash	\vdash	 	-	\longrightarrow		\vdash	+	\dashv		\vdash				\dashv
	1				\vdash		_	\vdash		 		\Box	\Box		\dashv	-						-
													\neg		7	\neg						\neg
				\Box											\Box							\neg
T. TATI Daywala	بب	<u></u> '		لِــَــ	igsqcup N	_ '	\prod'															
Turnereund Time (TAT) Requester Standard	d (please circli Rush	e)	Relinquis	sheu	7	1//	<			Gate 1	10	Time L.	5	Receive	影	11				Date	Time	
(Rush NAT is subject to laboratory approval and surcharg			Relinquis	ished	E STATE OF THE STA	A. T.	70	\rightarrow		Date	_	Time		Receive	d by	0	\w_	_		Date Date	0 /62'	5
TAT's business days			S-lineu	3	18	-Xxx	文化	m	لير	16Way		193	D						/_			
Requested TAT in business days:		* . I	Relinquis	shear	by С			/		Date		Time		Receive	d by		/			Date	Time	
E-mail address: WYKAC JANDAN COM, WK		MICON	Relinquis	ished	by		/	-		Date		Time		Receive	d by	/				Date	Time	
Data Package Options (circle if	required)														/	1		1				
Type I (EPA Level 3 Type VI Equivalent/non-CLP)	l (Raw Data (Only)	Relinquis	shedi	by			(Date		Time		Received	/1	bus	le			5462	Time 195	7
Type III (Reduced non-CLP) NJ DKC	ĮP TX ₹	TRRP-13			If yes	EDD Req s, format:		d? (Y	Yes	No				Relinq				nmerc	cial Carrie	Γ;		
NYSDEC Category A o	P CTF	1CP		Site	te-Spe	pecific QC (I	(MS/M	MSD/D				No lume.)		U , U					receipt _	0.26.0		

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. 7044 0919

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

284713

Group Number(s):

Client: Lanagn, DPC

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/16/2020

Number of Packages:

7

Number of Projects:

4

State/Province of Origin:

<u>NY</u>

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes

Trip Blank Type:

HCI

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No No

Extra Samples:

NO

Discrepancy in Container Qty on COC:

No

Unpacked by Melvin Sanchez

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Samples Collected Same Thermometer ID Corrected Temp Cooler# Ice Present? Ice Container Elevated Temp? Day as Receipt? <u>Matrix</u> Therm. Type Ice Type IR Wet Water 46730061WS 20.6 Υ Bagged 1 46730061WS 6.0 IR 2 Water Wet Υ Bagged Ν Ν 46730061WS 12.1 IR 3 Water Wet Υ Bagged Water 46730061WS 4.1 IR Wet Υ Bagged Ν 4 Ν 5 Water 46730061WS 8.2 IR Wet Bagged Soil 46730061WS -0.2 IR Wet Υ Bagged Ν Ν 6 4.2 IR Υ 7 Soil 46730061WS Wet Bagged Ν Ν

T | 717-656-2300 F | 717-656-2681 www.LancasterLabs.com

Page 4 of 4

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

284713

2099867 Group Number(s):

Client: Lanagn, DPC

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/16/2020

Number of Packages:

7

Number of Projects:

4

State/Province of Origin:

NY

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes

Trip Blank Type:

HCI

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No No

Extra Samples:

Nο

Unpacked by Melvin Sanchez

Discrepancy in Container Qty on COC:

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

									<u>Samples</u>
01 #	N 0 4 5	The surrente will	Corrected Temp	Therm Tree	Ion Tuno	Ice Present?	Ice Container	Elevated Temp?	Collected Same Day as Receipt?
Cooler #	<u>Matrix</u>	Thermometer ID	Corrected Terrib	Therm. Type	Ice Type	ice Fleseiil?	ice Container	Lievateu Tempr	Day as receipt:
1	Water	46730061WS	20.6	IR	Wet	Υ	Bagged	Υ	Υ
2	Water	46730061WS	6.0	IR	Wet	Υ	Bagged	N	N
3	Water	46730061WS	12.1	IR	Wet	Υ	Bagged	Υ	Υ
4	Water	46730061WS	4.1	IR	Wet	Υ	Bagged	N	N
5	Water	46730061WS	8.2	IR	Wet	Υ	Bagged	Υ	Υ
6	Soil	46730061WS	-0.2	IR	Wet	Υ	Bagged	N	N
7	Soil	46730061WS	4.2	IR	Wet	Υ	Bagged	N	N

General Comments:

Samples not frozen.

717-656-2300 717-656-2681 www.LancasterLabs.cor

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken	to be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 27, 2020 08:01

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2099869 SDG: CMS11 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	<u>Date/Time</u>	
MW13_051620 Groundwater	05/16/2020 09:50	1316581
GWMS01_051620 Groundwater	05/16/2020 09:50	1316582
GWMSD01_051620 Groundwater	05/16/2020 09:50	1316583
MW13_051620 Duplicate Groundwater	05/16/2020 09:50	1316584
MW13_051620 Filtered Groundwater	05/16/2020 09:50	1316585
GWMS01_051620 Filtered Groundwater	05/16/2020 09:50	1316586
GWMSD01_051620 Filtered Groundwater	05/16/2020 09:50	1316587
MW13_051620 Duplicate Filtered Groundwater	05/16/2020 09:50	1316588
MW13N_051620 Groundwater	05/16/2020 13:40	1316589
MW13N_051620 Filtered Groundwater	05/16/2020 13:40	1316590
MW22_051620 Groundwater	05/16/2020 15:00	1316591
MW22_051620 Filtered Groundwater	05/16/2020 15:00	1316592
GWFB01_051620 Water	05/16/2020 15:45	1316593
GWFB01_051620 Filtered Water	05/16/2020 15:45	1316594
GWTB01_051620 Water	05/16/2020	1316595

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2099869

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Sample #: 1316594

The holding time was not met for dissolved sample filtration. The filtration time for dissolved metals is to be within 15 minutes from collection. Since the filtration occurred after receipt in the laboratory, the 15 minute criteria was exceeded. This sample was not collected per applicable Clean Water Act (40CFR136) or SW-846 regulations.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1316593, 1316595

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Sample #s: 1316581

The referenced method allows a maximum of 20% of the analytes in the calibration to exceed the 20% Drift continuing calibration verification criteria. The reported concentration in the associated sample(s) is considered to be estimated. Therefore the result for the following analyte(s) is estimated: acetone.

Batch #: 5201422AA (Sample number(s): 1316581-1316583, 1316589, 1316591 UNSPK: 1316581)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Vinyl Chloride

SW-846 8081B, Pesticides

Batch #: 201430006A (Sample number(s): 1316581-1316583, 1316589, 1316591, 1316593 UNSPK: 1316581)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) 1316581

SW-846 8151A, Herbicides

Sample #s: 1316582, 1316583

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary.

Sample #s: 1316581, 1316589

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201400007A (Sample number(s): 1316581-1316583, 1316589, 1316591, 1316593 UNSPK: 1316581)

The recovery(ies) for the following analyte(s) in the LCS exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1316581, 1316582, 1316583, 1316591

Reporting limits were raised due to interference from the sample matrix.

SW-846 6020B Rev.2, July 2014, Metals

Batch #: 201391404703A (Sample number(s): 1316581-1316584 UNSPK: 1316581 BKG: 1316581)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Lead, Manganese

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Barium

The relative percent difference(s) for the following analyte(s) in the MS/MSD were outside acceptance windows: Lead

Batch #: 201391404704A (Sample number(s): 1316585-1316593 UNSPK: 1316585 BKG: 1316585)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Barium

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Manganese

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Lead

SW-846 6020B Rev.2, July 2014, Metals Dissolved

Batch #: 201391404704A (Sample number(s): 1316585-1316593 UNSPK: 1316585 BKG: 1316585)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Barium

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Manganese

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Lead

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SW-846 7196A, Wet Chemistry

Batch #: 20137027601A (Sample number(s): 1316581-1316584, 1316589, 1316591, 1316593 UNSPK: 1316581 BKG: 1316581)

The recovery(ies) for the following analyte(s) in the MS and/or MSD were below the acceptance window: Hexavalent Chromium

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: 05/16/2020 19:50
CMS11-01BKG

Langan Eng & Env Services
ELLE Sample #: GW 1316581
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	OC .	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.008 J	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.003	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

SW-846 8260C

CAS Number

Result

mg/l

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01BKG

Analysis Name

GC/MS Volatiles

CAT

No.

Langan Eng & Env Services
ELLE Sample #: GW 1316581
ELLE Group #: 2099869

Dilution

Factor

Matrix: Groundwater

Limit of

mg/l

Quantitation

Method

mg/l

Detection Limit*

11997	Tetrachloroethene		127-18-4	N.D.	0.0002	0.001	1	
11997	Toluene		108-88-3	N.D.	0.0002	0.001	1	
11997	1,1,1-Trichloroethane		71-55-6	N.D.	0.0003	0.001	1	
11997	1,1,2-Trichloroethane		79-00-5	N.D.	0.0002	0.001	1	
11997	Trichloroethene		79-01-6	N.D.	0.0002	0.001	1	
11997	Trichlorofluoromethane		75-69-4	N.D.	0.0002	0.001	1	
11997	1,2,4-Trimethylbenzene	Э	95-63-6	N.D.	0.001	0.005	1	
11997	1,3,5-Trimethylbenzene	Э	108-67-8	N.D.	0.0003	0.005	1	
11997	Vinyl Chloride		75-01-4	N.D.	0.0002	0.001	1	
11997	Xylene (Total)		1330-20-7	N.D.	0.001	0.006	1	
in the verific assoc	eferenced method allows calibration to exceed the ration criteria. The report inted sample(s) is conside sult for the following anal	e 20% Drift continuing ted concentration in the dered to be estimated	calibration he . Therefore					
GC/MS	Semivolatiles	SW-846 8270	D	mg/l	mg/l	mg/l		
14242	Acenaphthene		83-32-9	0.0006	0.0001	0.0005	1	
14242	Acenaphthylene		208-96-8	N.D.	0.0001	0.0005	1	
14242	Acetophenone		98-86-2	N.D.	0.004	0.010	1	
14242	Anthracene		120-12-7	N.D.	0.0001	0.0005	1	
14242	Atrazine		1912-24-9	N.D.	0.002	0.005	1	
14242	Benzaldehyde		100-52-7	N.D.	0.003	0.010	1	
14242	Benzidine		92-87-5	N.D.	0.020	0.060	1	
14242	Benzo(a)anthracene		56-55-3	N.D.	0.0001	0.0005	1	
14242	Benzo(a)pyrene		50-32-8	N.D.	0.0001	0.0005	1	
14242	Benzo(b)fluoranthene		205-99-2	N.D.	0.0001	0.0005	1	
14242	Benzo(g,h,i)perylene		191-24-2	N.D.	0.0001	0.0005	1	
14242	Benzo(k)fluoranthene		207-08-9	N.D.	0.0001	0.0005	1	
14242	1,1'-Biphenyl		92-52-4	N.D.	0.003	0.010	1	
14242	Butylbenzylphthalate		85-68-7	N.D.	0.002	0.005	1	
14242	Di-n-butylphthalate		84-74-2	N.D.	0.002	0.005	1	
14242	Caprolactam		105-60-2	N.D.	0.005	0.011	1	
14242	Carbazole		86-74-8	N.D.	0.0005	0.002	1	
14242	bis(2-Chloroethyl)ether		111-44-4	N.D.	0.0005	0.002	1	
14242	bis(2-Chloroisopropyl)e		39638-32-9	N.D.	0.0005	0.002	1	
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.							
14242	2-Chloronaphthalene		91-58-7	N.D.	0.0004	0.001	1	
14242	2-Chlorophenol		95-57-8	N.D.	0.0005	0.002	1	
14242	Chrysene		218-01-9	N.D.	0.0001	0.0005	1	
-			*=This limit w	vas used in the evalu	ation of the final result			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: 05/16/2020 19:50
CMS11-01BKG

Langan Eng & Env	v Services				
ELLE Sample #:	GW 1316581				
ELLE Group #:	2099869				
Matrix: Groundwater					

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor	
GC/MS	Semivolatiles S	SW-846 8270D	mg/l	mg/l	mg/l		
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.0001	0.0005	1	
14242	Dibenzofuran	132-64-9	N.D.	0.0005	0.002	1	
14242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.002	1	
14242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.002	1	
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1	
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.010	1	
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1	
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1	
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.010	1	
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1	
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.021	1	
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.014	0.030	1	
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.005	1	
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1	
14242	2,4_2,6-Dinitrotoluenes1	25321-14-6	N.D.	0.001	0.005	1	
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1	
		nguished from 1,2-diphenylhydraz razine represent the combined tot					
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.011	1	
14242	Fluoranthene	206-44-0	N.D.	0.0001	0.0005	1	
14242	Fluorene	86-73-7	N.D.	0.0001	0.0005	1	
14242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0005	1	
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1	
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.011	1	
14242	Hexachloroethane	67-72-1	N.D.	0.001	0.005	1	
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0005	1	
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1	
14242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0005	1	
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1	
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1	
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.						
14242	Naphthalene	91-20-3	0.0007	0.0001	0.0005	1	
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1	
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1	
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1	
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1	
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1	
		omposes in the GC inlet forming eported for N-nitrosodiphenylamin al of both compounds.	e				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: 05/16/2020 19:50
CMS11-01BKG

Langan Eng & Env	/ Services
ELLE Sample #:	GW 1316581
ELLE Group #:	2099869
Matrix: Groundwa	iter

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.011	1
14242	Pentachlorophenol	87-86-5	N.D.	0.001	0.005	1
14242	Phenanthrene	85-01-8	N.D.	0.0001	0.0005	1
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1
14242	Pyrene	129-00-0	N.D.	0.0001	0.0005	1
14242	Pyridine	110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	N.D.	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	0.1 J	0.1	0.3	1
Herbici	des	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	N.D. D1	0.00024	0.00058	1
10407	2,4,5-T	93-76-5	N.D. D2	0.00063	0.00014	1
10407	2,4,5-TP	93-72-1	N.D. D2	0.000096	0.000048	1
	nary. Since the recovery is ot detected in the sample,	•			_	
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00021	0.00052	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00010	0.00052	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00010	0.00052	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00010	0.00052	1
10591	PCB-1260	11096-82-5	N.D. D2	0.00016	0.00052	1
10591	Total PCBs ¹	1336-36-3	N.D.	0.00010	0.00052	1
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Aldrin	309-00-2	N.D. D1	0.0000021	0.000010	1
10589	Alpha BHC	319-84-6	N.D. D2	0.0000031	0.000010	1
10589	Beta BHC	319-85-7	N.D. D1	0.000036	0.000010	1
10589	Gamma BHC - Lindane	58-89-9	N.D. D2	0.0000021	0.000010	1
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.000031	0.000010	1
10589	4,4'-Ddd	72-54-8	N.D. D2	0.0000052	0.000021	1
10589	4,4'-Dde	72-55-9	N.D. D2	0.0000052	0.000021	1
10589	4,4'-Ddt	50-29-3	N.D. D1	0.000054	0.000021	1
10589	Delta BHC	319-86-8	N.D. D2	0.000036	0.000010	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: 05/16/2020 09:50 CMS11-01BKG

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316581
ELLE Group #:	2099869
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Dieldrin	60-57-1	N.D. D2	0.0000055	0.000021	1
10589	Endosulfan I	959-98-8	N.D. D2	0.0000045	0.000010	1
10589	Endosulfan II	33213-65-9	N.D. D2	0.000016	0.000042	1
10589	Endosulfan Sulfate	1031-07-8	N.D. D1	0.0000061	0.000021	1
10589	Endrin	72-20-8	N.D. D2	0.0000085	0.000031	1
10589	Heptachlor	76-44-8	N.D. D2	0.0000021	0.000010	1
LC/MS	ino imovonantovao	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic ad	cid ¹ 27619-97-2	N.D.	20	49	1
14473	8:2-Fluorotelomersulfonic ad	cid ¹ 39108-34-4	N.D.	9.8	30	1
14473	NEtFOSAA1	2991-50-6	N.D.	4.9	30	1
	NEtFOSAA is the acronym f	or N-ethyl perfluorooctanesulfonam	idoacetic Acid.			
14473	NMeFOSAA1	2355-31-9	N.D.	5.9	20	1
	NMeFOSAA is the acronym	for N-methyl perfluorooctanesulfon	amidoacetic Acid.			
14473	Perfluorobutanesulfonic acid	d ¹ 375-73-5	N.D.	4.9	20	1
14473	Perfluorobutanoic acid1	375-22-4	N.D.	20	49	1
14473	Perfluorodecanesulfonic aci	d¹ 335-77-3	N.D.	4.9	20	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	4.9	20	1
14473	Perfluorododecanoic acid1	307-55-1	N.D.	4.9	20	1
14473	Perfluoroheptanesulfonic ac	sid¹ 375-92-8	N.D.	4.9	20	1
14473	Perfluoroheptanoic acid1	375-85-9	8.8 J	4.9	20	1
14473	Perfluorohexanesulfonic aci	d ¹ 355-46-4	N.D.	4.9	20	1
14473	Perfluorohexanoic acid1	307-24-4	11 J	4.9	20	1
14473	Perfluorononanoic acid1	375-95-1	N.D.	4.9	20	1
14473	Perfluorooctanesulfonamide	754-91-6	N.D.	4.9	20	1
14473	Perfluorooctanesulfonic acid	d ¹ 1763-23-1	N.D.	4.9	20	1
14473	Perfluorooctanoic acid1	335-67-1	52	4.9	20	1
14473	Perfluoropentanoic acid1	2706-90-3	12 J	4.9	20	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	4.9	20	1
14473	Perfluorotridecanoic acid1	72629-94-8	N.D.	4.9	20	1
14473	Perfluoroundecanoic acid1	2058-94-8	N.D.	4.9	20	1
Repo	rting limits were raised due to	interference from the sample matrix	К.			
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D. K2	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0030	0.00068	0.0020	1
06026	Barium	7440-39-3	0.325	0.00075	0.0020	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

SW-846 6020B Rev.2, July

CAS Number

7440-41-7

7440-43-9

7440-47-3

16065-83-1

7440-50-8

7439-92-1

7439-96-5

7440-02-0

7782-49-2

7440-66-6

7439-97-6

57-12-5

18540-29-9

Result

mg/l

N.D.

N.D.

N.D.

0.0021

0.0057

0.0215

0.352

0.0018

0.0444

mg/l

N.D.

mg/l

N.D.

mg/l

N.D.

0.00033 J

Project Name: 35 Commercial Street/170229024

2014

The Trivalent Chromium result is calculated by subtracting Hexavalent

SW-846 7470A

SW-846 9012B

SW-846 7196A

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01BKG

Analysis Name

Beryllium

Cadmium

Chromium

Copper

Manganese

Lead

Nickel

Zinc

Selenium

Mercury

Wet Chemistry

Trivalent Chromium waters1

Chromium from Total Chromium.

CAT

Metals

06027 06028

06031

02828

06033

06035

06037

06039

06041

06049

00259

08255

00276

No.

Langan Eng & Env	v Services				
ELLE Sample #:	GW 1316581				
ELLE Group #:	2099869				
Matrix: Groundwater					

Method Detection Limit*	Limit of Quantitation	Dilution Factor
mg/l	mg/l	
0.00012	0.00050	1
0.00015	0.00050	1
0.00033	0.0020	1
0.010	0.030	1
0.00036	0.0010	1
0.000071	0.00050	1
0.00063	0.0020	1
0.00060	0.0010	1
0.00028	0.0010	1
0.0062	0.0100	1
mg/l	mg/l	
0.000050	0.00020	1
mg/l	mg/l	
0.0050	0.010	1

mg/l

0.030

1

Sample Comments

mg/l

0.010

State of New York Certification No. 10670

Total Cyanide (water)

Hexavalent Chromium

This sample was field filtered for SVOCs by SW-846 8270D.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11997	VOCs 8260C	SW-846 8260C	1	5201422AA	05/21/2020 21:59	Kevin A Sposito	1
01163	GC/MS VOA Water Prep	SW-846 5030C	1	5201422AA	05/21/2020 21:58	Kevin A Sposito	1
14242	TCL SW846 8270D MINI	SW-846 8270D	1	20143WAA026	05/24/2020 13:23	Edward C Monborne	1
14244	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20139WAC026	05/20/2020 14:48	Kira N Beck	1
00813	BNA Water Extraction	SW-846 3510C	2	20143WAA026	05/22/2020 18:50	Patrick Thimes	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	20139WAC026	05/18/2020 18:10	Patrick Thimes	1
10407	Herbicides in Water 8151A	SW-846 8151A	1	201400007A	05/21/2020 19:23	Rachel Umberger	1
10591	7 PCBs + Total Water	SW-846 8082A	1	201390007A	05/20/2020 09:30	Richard A Shober	1
10589	NY Part 375 Pests Water	SW-846 8081B	1	201430006A	05/26/2020 12:55	Dylan Schreiner	1
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201390007A	05/18/2020 18:10	Patrick Thimes	1
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201390006A	05/18/2020 18:10	Patrick Thimes	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01BKG

Langan Eng & Env Services
ELLE Sample #: GW 1316581
ELLE Group #: 2099869

		Labo	ratory S	Sample Analysis	Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11120 00816	Pesticide Waters Update IV Ext Water Sample Herbicide Extract	SW-846 3510C SW-846 8151A	2 1	201430006A 201400007A	05/22/2020 20:15 05/19/2020 20:15	Osvaldo R Sanchez Karen L Beyer	1
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20138002	05/19/2020 08:28	Archie H Covely	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20138002	05/17/2020 15:30	Eric Hockley	1
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404403	05/18/2020 17:13	Elaine F Stoltzfus	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:08	Patrick J Engle	1
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:31	Patrick J Engle	1
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:08	Patrick J Engle	1
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:08	Patrick J Engle	1
00259 14044	Mercury ICP-WW, 3005A (tot rec) - U345	SW-846 7470A SW-846 3005A	1 1	201390571301 201391404403	05/19/2020 08:05 05/18/2020 06:00	Damary Valentin Annamaria Kuhns	1 1
14047 05713 08255 08256	ICPMS - Water, 3020A - U345 WW SW846 Hg Digest Total Cyanide (water) Cyanide Water Distillation	SW-846 3020A SW-846 7470A SW-846 9012B	1 1 1	201391404703 201390571301 20141117101A	05/18/2020 06:00 05/18/2020 07:40 05/21/2020 20:33	Annamaria Kuhns Annamaria Kuhns Gregory Baldree	1 1 1
00276	Hexavalent Chromium	SW-846 9012B SW-846 7196A	1	20141117101A 20137027601A	05/20/2020 17:00 05/16/2020 21:10	Barbara A Washington Daniel S Smith	1 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MS

Langan Eng & Env Services
ELLE Sample #: GW 1316582
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.18	0.0007	0.020	1
11997	Acrolein	107-02-8	0.14	0.002	0.10	1
11997	Acrylonitrile	107-13-1	0.095	0.0003	0.020	1
11997	Benzene	71-43-2	0.021	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	0.020	0.0002	0.001	1
11997	Bromoform	75-25-2	0.018	0.001	0.004	1
11997	Bromomethane	74-83-9	0.022	0.0003	0.001	1
11997	2-Butanone	78-93-3	0.14	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	0.19	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	0.022	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	0.022	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	0.022	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	0.018	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	0.021	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	0.022	0.0002	0.001	1
11997	Chloroethane	75-00-3	0.022	0.0002	0.001	1
11997	Chloroform	67-66-3	0.021	0.0002	0.001	1
11997	Chloromethane	74-87-3	0.022	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	0.020	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	0.020	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	0.021	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	0.022	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	0.022	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	0.022	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	0.022	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	0.021	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	0.021	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	0.021	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	0.022	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	0.022	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	0.044	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	0.021	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	0.020	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	0.019	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	0.022	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	0.019	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.022	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	0.021	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	0.023	0.0002	0.005	1
11997	Styrene	100-42-5	0.022	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	0.022	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020 09:50

 SDG#:
 CMS11-01MS

Langan Eng & Env Services
ELLE Sample #: GW 1316582
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	0.023	0.0002	0.001	1
11997	Toluene	108-88-3	0.022	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	0.021	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	0.022	0.0002	0.001	1
11997	Trichloroethene	79-01-6	0.022	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	0.025	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	0.022	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	0.022	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	0.024	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	0.068	0.001	0.006	1
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Acenaphthene	83-32-9	0.044	0.0001	0.0005	1
14242	Acenaphthylene	208-96-8	0.042	0.0001	0.0005	1
14242	Acetophenone	98-86-2	0.043	0.004	0.010	1
14242	Anthracene	120-12-7	0.046	0.0001	0.0005	1
14242	Atrazine	1912-24-9	0.046	0.002	0.005	1
14242	Benzaldehyde	100-52-7	0.044	0.003	0.010	1
14242	Benzidine	92-87-5	0.11	0.021	0.062	1
14242	Benzo(a)anthracene	56-55-3	0.051	0.0001	0.0005	1
14242	Benzo(a)pyrene	50-32-8	0.048	0.0001	0.0005	1
14242	Benzo(b)fluoranthene	205-99-2	0.049	0.0001	0.0005	1
14242	Benzo(g,h,i)perylene	191-24-2	0.040	0.0001	0.0005	1
14242	Benzo(k)fluoranthene	207-08-9	0.047	0.0001	0.0005	1
14242	1,1'-Biphenyl	92-52-4	0.042	0.003	0.010	1
14242	Butylbenzylphthalate	85-68-7	0.048	0.002	0.005	1
14242	Di-n-butylphthalate	84-74-2	0.047	0.002	0.005	1
14242	Caprolactam	105-60-2	0.014	0.005	0.011	1
14242	Carbazole	86-74-8	0.048	0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	111-44-4	0.039	0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ether	1 39638-32-9	0.039	0.0005	0.002	1
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.					
14242	2-Chloronaphthalene	91-58-7	0.045	0.0004	0.001	1
14242	2-Chlorophenol	95-57-8	0.040	0.0005	0.002	1
14242	Chrysene	218-01-9	0.046	0.0001	0.0005	1
14242	Dibenz(a,h)anthracene	53-70-3	0.043	0.0001	0.0005	1
14242	Dibenzofuran	132-64-9	0.045	0.0005	0.002	1
14242	1,2-Dichlorobenzene	95-50-1	0.037	0.0005	0.002	1
14242	1,3-Dichlorobenzene	541-73-1	0.035	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: CMS11-01MS

Langan Eng & Env Services **ELLE Sample #: GW 1316582 ELLE Group #:** 2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	0D	mg/l	mg/l	mg/l	
14242	1,4-Dichlorobenzene	106-46-7	0.036	0.0005	0.002	1
14242	3,3'-Dichlorobenzidine	91-94-1	0.026	0.003	0.010	1
14242	2,4-Dichlorophenol	120-83-2	0.046	0.0005	0.002	1
14242	Diethylphthalate	84-66-2	0.050	0.002	0.005	1
14242	2,4-Dimethylphenol	105-67-9	0.039	0.003	0.010	1
14242	Dimethylphthalate	131-11-3	0.046	0.002	0.005	1
14242	4,6-Dinitro-2-methylphenol	534-52-1	0.048	0.008	0.022	1
14242	2,4-Dinitrophenol	51-28-5	0.089	0.015	0.031	1
14242	2,4-Dinitrotoluene	121-14-2	0.050	0.001	0.005	1
14242	2,6-Dinitrotoluene	606-20-2	0.049	0.0005	0.002	1
14242	2,4_2,6-Dinitrotoluenes1	25321-14-6	0.099	0.001	0.005	1
14242	1,2-Diphenylhydrazine	122-66-7	0.047	0.0005	0.002	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represer compounds.					
14242	bis(2-Ethylhexyl)phthalate	117-81-7	0.047	0.005	0.011	1
14242	Fluoranthene	206-44-0	0.048	0.0001	0.0005	1
14242	Fluorene	86-73-7	0.047	0.0001	0.0005	1
14242	Hexachlorobenzene	118-74-1	0.046	0.0001	0.0005	1
14242	Hexachlorobutadiene	87-68-3	0.043	0.0005	0.002	1
14242	Hexachlorocyclopentadiene	77-47-4	0.049	0.005	0.011	1
14242	Hexachloroethane	67-72-1	0.035	0.001	0.005	1
14242	Indeno(1,2,3-cd)pyrene	193-39-5	0.041	0.0001	0.0005	1
14242	Isophorone	78-59-1	0.045	0.0005	0.002	1
14242	2-Methylnaphthalene	91-57-6	0.042	0.0001	0.0005	1
14242	2-Methylphenol	95-48-7	0.042	0.0005	0.002	1
14242	4-Methylphenol	106-44-5	0.043	0.0005	0.002	1
	3-Methylphenol and 4-methylphenol cannot chromatographic conditions used for sampl for 4-methylphenol represents the combine	e analysis. The resu	ılt reported			
14242	Naphthalene	91-20-3	0.041	0.0001	0.0005	1
14242	2-Nitroaniline	88-74-4	0.049	0.002	0.007	1
14242	Nitrobenzene	98-95-3	0.046	0.0005	0.002	1
14242	N-Nitrosodimethylamine	62-75-9	0.026	0.002	0.005	1
14242	N-Nitroso-di-n-propylamine	621-64-7	0.044	0.0007	0.003	1
14242	N-Nitrosodiphenylamine	86-30-6	0.047	0.0007	0.003	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-n represents the combined total of both comp	trosodiphenylamine				
14242	Di-n-octylphthalate	117-84-0	0.047	0.005	0.011	1
14242	Pentachlorophenol	87-86-5	0.051	0.001	0.005	1
14242	Phenanthrene	85-01-8	0.046	0.0001	0.0005	1
14242	Phenol	108-95-2	0.030	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: CMS11-01MS

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316582
ELLE Group #:	2099869
Matrix: Groundwa	ater

Limit of

CAT No.	Analysis Name	CAS Num	ber Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Pyrene	129-00-0	0.045	0.0001	0.0005	1
14242	Pyridine	110-86-1	0.021	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	0.041	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	0.050	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	0.048	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	0.6	0.1	0.3	1
Herbic	ides	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	0.0038 D1	0.00024	0.00058	1
10407	2,4,5-T	93-76-5	0.00045 D1	0.000063	0.00014	1
10407	2,4,5-TP	93-72-1	0.00039 D1	0.000097	0.000048	1
	ecovery for a target analyte (s) is outside the QC accep	e(s) in the Laboratory Control otance limits as noted on the Q	С			
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-	2 0.0046 D2	0.00010	0.00050	1
10591	PCB-1221	11104-28-	2 N.D. D1	0.00010	0.00050	1
10591	PCB-1232	11141-16-	5 N.D. D1	0.00020	0.00050	1
10591	PCB-1242	53469-21-	9 N.D. D1	0.00010	0.00050	1
10591	PCB-1248	12672-29-	6 N.D. D1	0.00010	0.00050	1
10591	PCB-1254	11097-69-	1 N.D. D1	0.00010	0.00050	1
10591	PCB-1260	11096-82-	5 0.0045 D2	0.00015	0.00050	1
10591	Total PCBs ¹	1336-36-3	0.0090	0.00010	0.00050	1
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Aldrin	309-00-2	0.000063 D1	0.0000020	0.000010	1
10589	Alpha BHC	319-84-6	0.000092 D2	0.000030	0.000010	1
10589	Beta BHC	319-85-7	0.000093 D1	0.000034	0.000010	1
10589	Gamma BHC - Lindane	58-89-9	0.000089 D2	0.0000020	0.000010	1
10589	Alpha Chlordane	5103-71-9	0.000082 D1	0.000030	0.000010	1
10589	4,4'-Ddd	72-54-8	0.00016 D2	0.000050	0.000020	1
10589	4,4'-Dde	72-55-9	0.00015 D1	0.000050	0.000020	1
10589	4,4'-Ddt	50-29-3	0.00021 D2	0.000052	0.000020	1
10589	Delta BHC	319-86-8	0.000087 D2	0.000034	0.000010	1
10589	Dieldrin	60-57-1	0.00017 D2	0.000053	0.000020	1
10589	Endosulfan I	959-98-8	0.000087 D1	0.000043	0.000010	1
10589	Endosulfan II	33213-65-	9 0.00018 D1	0.000015	0.000040	1
10589	Endosulfan Sulfate	1031-07-8	0.00019 D1	0.000058	0.000020	1
10589	Endrin	72-20-8	0.00017 D2	0.0000082	0.000030	1
		* TI	esit was was die the swalve			

Method

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MS

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316582
ELLE Group #:	2099869
Matrix: Groundwa	ater

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081	IB	mg/l	mg/l	mg/l	
10589	Heptachlor		76-44-8	0.000065 D2	0.0000020	0.000010	1
LC/MS/	MS Miscellaneous	EPA 537 Ver Modified	sion 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic	acid¹	27619-97-2	230	20	50	1
14473	8:2-Fluorotelomersulfonic	acid1	39108-34-4	230	9.9	30	1
14473	NEtFOSAA1		2991-50-6	250	5.0	30	1
	NEtFOSAA is the acronyn	n for N-ethyl perflu	orooctanesulfonami	doacetic Acid.			
14473	NMeFOSAA1		2355-31-9	270	6.0	20	1
	NMeFOSAA is the acrony	m for N-methyl pe	rfluorooctanesulfona	amidoacetic Acid.			
14473	Perfluorobutanesulfonic a	cid ¹	375-73-5	200	5.0	20	1
14473	Perfluorobutanoic acid1		375-22-4	220	20	50	1
14473	Perfluorodecanesulfonic a	ıcid¹	335-77-3	210	5.0	20	1
14473	Perfluorodecanoic acid1		335-76-2	250	5.0	20	1
14473	Perfluorododecanoic acid	ı	307-55-1	240	5.0	20	1
14473	Perfluoroheptanesulfonic	acid¹	375-92-8	210	5.0	20	1
14473	Perfluoroheptanoic acid¹		375-85-9	250	5.0	20	1
14473	Perfluorohexanesulfonic a	ıcid¹	355-46-4	210	5.0	20	1
14473	Perfluorohexanoic acid1		307-24-4	250	5.0	20	1
14473	Perfluorononanoic acid1		375-95-1	250	5.0	20	1
14473	Perfluorooctanesulfonami	de ¹	754-91-6	240	5.0	20	1
14473	Perfluorooctanesulfonic a	cid¹	1763-23-1	200	5.0	20	1
14473	Perfluorooctanoic acid1		335-67-1	280	5.0	20	1
14473	Perfluoropentanoic acid1		2706-90-3	240	5.0	20	1
14473	Perfluorotetradecanoic ac	id¹	376-06-7	250	5.0	20	1
14473	Perfluorotridecanoic acid1		72629-94-8	240	5.0	20	1
14473	Perfluoroundecanoic acid	1	2058-94-8	250	5.0	20	1
Repoi	ting limits were raised due	to interference fror	n the sample matrix	•			
Metals		SW-846 6010 2014	D Rev.4, July	mg/l	mg/l	mg/l	
07066	Silver		7440-22-4	0.0201	0.0050	0.0100	1
		SW-846 6020 2014	B Rev.2, July	mg/l	mg/l	mg/l	
06025	Arsenic		7440-38-2	0.0132	0.00068	0.0020	1
06026	Barium		7440-39-3	0.346	0.00075	0.0020	1
06027	Beryllium		7440-41-7	0.0039	0.00012	0.00050	1
06028	Cadmium		7440-43-9	0.0051	0.00015	0.00050	1
06031	Chromium		7440-47-3	0.0491	0.00033	0.0020	1
02828	Trivalent Chromium water	s¹	16065-83-1	0.049	0.010	0.030	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MS

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316582
ELLE Group #:	2099869
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
	The Trivalent Chromium Chromium from Total Ch	result is calculated by subtracting Hexaromium.	avalent			
06033	Copper	7440-50-8	0.0556	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0318	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.427	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0525	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0108	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.554	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	0.00094	0.000050	0.00020	1
Wet Ch	emistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	0.22	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

This sample was field filtered for SVOCs by SW-846 8270D.

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time Factor** SW-846 8260C 11997 VOCs 8260C 5201422AA 05/21/2020 22:20 Kevin A Sposito 01163 GC/MS VOA Water Prep SW-846 5030C 1 5201422AA 05/21/2020 22:19 Kevin A Sposito 1 Edward C Monborne 14242 TCL SW846 8270D MINI SW-846 8270D 1 20143WAA026 05/24/2020 13:52 1 14244 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20139WAC026 05/20/2020 15:16 Kira N Beck 1 00813 **BNA Water Extraction** SW-846 3510C 20143WAA026 05/22/2020 18:50 Patrick Thimes 10466 BNA Water Extraction SIM SW-846 3510C 20139WAC026 05/18/2020 18:10 Patrick Thimes 10407 Herbicides in Water 8151A SW-846 8151A 201400007A 05/21/2020 19:56 Rachel Umberger 1 7 PCBs + Total Water 10591 SW-846 8082A 201390007A 05/20/2020 09:40 Richard A Shober 10589 NY Part 375 Pests Water SW-846 8081B 1 201430006A 05/26/2020 13:28 Dylan Schreiner 11121 PCB Waters Update IV Ext SW-846 3510C 1 201390007A 05/18/2020 18:10 Patrick Thimes 11120 Pesticide Waters Update IV Ext SW-846 3510C 1 201390006A 05/18/2020 18:10 Patrick Thimes 1 11120 Pesticide Waters Update IV Ext SW-846 3510C 2 201430006A 05/22/2020 20:15 Osvaldo R Sanchez 00816 Water Sample Herbicide Extract SW-846 8151A 201400007A 05/19/2020 20:15 Karen L Beyer

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Groundwater

35 Commercial Street/170229024

Method

SW-846 9012B

SW-846 7196A

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: CMS11-01MS

08256

00276

Cyanide Water Distillation

Hexavalent Chromium

Langan Eng & Env Services **ELLE Sample #:** GW 1316582 **ELLE Group #:** 2099869

Barbara A Washington

Daniel S Smith

1

Dilution

Factor

1

1

Matrix: Groundwater

CAT **Analysis Name** Trial# Batch# **Analyst Date and Time** No. NY 21 PFAS Water EPA 537 Version 1.1 14473 20138002 05/19/2020 08:37 Archie H Covely Modified EPA 537 Version 1.1 20138002 14091 PFAS Water Prep 1 05/17/2020 15:30 Eric Hockley Modified SW-846 6010D Rev.4, 05/18/2020 23:14 Elaine F Stoltzfus 07066 201391404403 Silver 1 July 2014 SW-846 6020B Rev.2, 201391404703A 05/18/2020 19:36 06025 1 Patrick J Engle Arsenic July 2014 SW-846 6020B Rev.2, Barium 1 201391404703A 05/18/2020 19:36 Patrick J Engle July 2014 SW-846 6020B Rev.2, Beryllium 1 201391404703A 05/18/2020 19:36 Patrick J Engle July 2014 SW-846 6020B Rev.2, Cadmium 201391404703A 05/18/2020 19:36 Patrick J Engle July 2014 SW-846 6020B Rev.2, 201391404703A 05/19/2020 19:14 Chromium Patrick J Engle July 2014

Laboratory Sample Analysis Record

20141117101A

20137027601A

1

05/20/2020 17:00

05/16/2020 21:10

⁰⁶⁰²⁶ 06027 06028 06031 SW-846 6020B Rev.2, 05/22/2020 09:44 Trivalent Chromium waters 201430282801 Tshina Alamos 02828 1 July 2014 SW-846 6020B Rev.2, 201391404703A 05/18/2020 19:36 06033 1 Patrick J Engle Copper July 2014 SW-846 6020B Rev.2, 05/18/2020 19:36 06035 201391404703A Patrick J Engle Lead July 2014 SW-846 6020B Rev.2, 201391404703A 05/18/2020 19:36 06037 Manganese 1 Patrick J Engle July 2014 SW-846 6020B Rev.2, 201391404703A 05/18/2020 19:36 Patrick J Engle 06039 Nickel 1 July 2014 06041 Selenium SW-846 6020B Rev.2, 201391404703A 05/19/2020 19:14 Patrick J Engle July 2014 06049 7inc SW-846 6020B Rev.2, 201391404703A 05/19/2020 19:14 Patrick J Engle 1 1 July 2014 00259 Mercury SW-846 7470A 201390571301 05/19/2020 08:09 Damary Valentin ICP-WW, 3005A (tot rec) - U345 SW-846 3005A 201391404403 05/18/2020 06:00 14044 1 Annamaria Kuhns 14047 ICPMS - Water, 3020A - U345 SW-846 3020A 201391404703 05/18/2020 06:00 Annamaria Kuhns WW SW846 Hg Digest 05713 SW-846 7470A 1 201390571301 05/18/2020 07:40 Annamaria Kuhns 1 SW-846 9012B 08255 Total Cyanide (water) 1 20141117101A 05/21/2020 20:34 Gregory Baldree 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316583
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.17	0.0007	0.020	1
11997	Acrolein	107-02-8	0.13	0.002	0.10	1
11997	Acrylonitrile	107-13-1	0.094	0.0003	0.020	1
11997	Benzene	71-43-2	0.021	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	0.020	0.0002	0.001	1
11997	Bromoform	75-25-2	0.018	0.001	0.004	1
11997	Bromomethane	74-83-9	0.022	0.0003	0.001	1
11997	2-Butanone	78-93-3	0.14	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	0.20	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	0.023	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	0.022	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	0.022	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	0.018	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	0.021	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	0.022	0.0002	0.001	1
11997	Chloroethane	75-00-3	0.022	0.0002	0.001	1
11997	Chloroform	67-66-3	0.021	0.0002	0.001	1
11997	Chloromethane	74-87-3	0.022	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	0.020	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	0.020	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	0.021	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	0.022	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	0.022	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	0.022	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	0.021	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	0.021	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	0.020	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	0.021	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	0.022	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	0.021	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	0.043	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	0.021	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	0.019	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	0.019	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	0.022	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	0.019	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.022	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	0.021	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	0.023	0.0002	0.005	1
11997	Styrene	100-42-5	0.022	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	0.021	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316583
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor	
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l		
11997	Tetrachloroethene	127-18-4	0.023	0.0002	0.001	1	
11997	Toluene	108-88-3	0.022	0.0002	0.001	1	
11997	1,1,1-Trichloroethane	71-55-6	0.021	0.0003	0.001	1	
11997	1,1,2-Trichloroethane	79-00-5	0.022	0.0002	0.001	1	
11997	Trichloroethene	79-01-6	0.021	0.0002	0.001	1	
11997	Trichlorofluoromethane	75-69-4	0.024	0.0002	0.001	1	
11997	1,2,4-Trimethylbenzene	95-63-6	0.022	0.001	0.005	1	
11997	1,3,5-Trimethylbenzene	108-67-8	0.022	0.0003	0.005	1	
11997	Vinyl Chloride	75-01-4	0.024	0.0002	0.001	1	
11997	Xylene (Total)	1330-20-7	0.067	0.001	0.006	1	
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l		
14242	Acenaphthene	83-32-9	0.044	0.0001	0.0005	1	
14242	Acenaphthylene	208-96-8	0.043	0.0001	0.0005	1	
14242	Acetophenone	98-86-2	0.044	0.004	0.010	1	
14242	Anthracene	120-12-7	0.047	0.0001	0.0005	1	
14242	Atrazine	1912-24-9	0.048	0.002	0.005	1	
14242	Benzaldehyde	100-52-7	0.044	0.003	0.010	1	
14242	Benzidine	92-87-5	0.10	0.021	0.062	1	
14242	Benzo(a)anthracene	56-55-3	0.051	0.0001	0.0005	1	
14242	Benzo(a)pyrene	50-32-8	0.047	0.0001	0.0005	1	
14242	Benzo(b)fluoranthene	205-99-2	0.048	0.0001	0.0005	1	
14242	Benzo(g,h,i)perylene	191-24-2	0.041	0.0001	0.0005	1	
14242	Benzo(k)fluoranthene	207-08-9	0.049	0.0001	0.0005	1	
14242	1,1'-Biphenyl	92-52-4	0.042	0.003	0.010	1	
14242	Butylbenzylphthalate	85-68-7	0.047	0.002	0.005	1	
14242	Di-n-butylphthalate	84-74-2	0.047	0.002	0.005	1	
14242	Caprolactam	105-60-2	0.015	0.005	0.011	1	
14242	Carbazole	86-74-8	0.049	0.0005	0.002	1	
14242	bis(2-Chloroethyl)ether	111-44-4	0.039	0.0005	0.002	1	
14242	bis(2-Chloroisopropyl)ethe	r ¹ 39638-32-9	0.040	0.0005	0.002	1	
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.						
14242	2-Chloronaphthalene	91-58-7	0.045	0.0004	0.001	1	
14242	2-Chlorophenol	95-57-8	0.039	0.0005	0.002	1	
14242	Chrysene	218-01-9	0.047	0.0001	0.0005	1	
14242	Dibenz(a,h)anthracene	53-70-3	0.045	0.0001	0.0005	1	
14242	Dibenzofuran	132-64-9	0.045	0.0005	0.002	1	
14242	1,2-Dichlorobenzene	95-50-1	0.038	0.0005	0.002	1	
14242	1,3-Dichlorobenzene	541-73-1	0.037	0.0005	0.002	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020 09:50

 SDG#:
 CMS11-01MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316583
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	'0D	mg/l	mg/l	mg/l	
14242	1,4-Dichlorobenzene	106-46-7	0.037	0.0005	0.002	1
14242	3,3'-Dichlorobenzidine	91-94-1	0.028	0.003	0.010	1
14242	2,4-Dichlorophenol	120-83-2	0.045	0.0005	0.002	1
14242	Diethylphthalate	84-66-2	0.047	0.002	0.005	1
14242	2,4-Dimethylphenol	105-67-9	0.039	0.003	0.010	1
14242	Dimethylphthalate	131-11-3	0.041	0.002	0.005	1
14242	4,6-Dinitro-2-methylphenol	534-52-1	0.049	0.008	0.022	1
14242	2,4-Dinitrophenol	51-28-5	0.085	0.014	0.031	1
14242	2,4-Dinitrotoluene	121-14-2	0.048	0.001	0.005	1
14242	2,6-Dinitrotoluene	606-20-2	0.047	0.0005	0.002	1
14242	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	0.095	0.001	0.005	1
14242	1,2-Diphenylhydrazine	122-66-7	0.049	0.0005	0.002	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.					
14242	bis(2-Ethylhexyl)phthalate	117-81-7	0.048	0.005	0.011	1
14242	Fluoranthene	206-44-0	0.049	0.0001	0.0005	1
14242	Fluorene	86-73-7	0.046	0.0001	0.0005	1
14242	Hexachlorobenzene	118-74-1	0.049	0.0001	0.0005	1
14242	Hexachlorobutadiene	87-68-3	0.045	0.0005	0.002	1
14242	Hexachlorocyclopentadiene	77-47-4	0.049	0.005	0.011	1
14242	Hexachloroethane	67-72-1	0.037	0.001	0.005	1
14242	Indeno(1,2,3-cd)pyrene	193-39-5	0.043	0.0001	0.0005	1
14242	Isophorone	78-59-1	0.046	0.0005	0.002	1
14242	2-Methylnaphthalene	91-57-6	0.044	0.0001	0.0005	1
14242	2-Methylphenol	95-48-7	0.040	0.0005	0.002	1
14242	4-Methylphenol	106-44-5	0.039	0.0005	0.002	1
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The resu	ılt reported			
14242	Naphthalene	91-20-3	0.043	0.0001	0.0005	1
14242	2-Nitroaniline	88-74-4	0.049	0.002	0.007	1
14242	Nitrobenzene	98-95-3	0.046	0.0005	0.002	1
14242	N-Nitrosodimethylamine	62-75-9	0.027	0.002	0.005	1
14242	N-Nitroso-di-n-propylamine	621-64-7	0.046	0.0007	0.003	1
14242	N-Nitrosodiphenylamine	86-30-6	0.048	0.0007	0.003	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-represents the combined total of both com	nitrosodiphenylamine	•			
14242	Di-n-octylphthalate	117-84-0	0.047	0.005	0.011	1
14242	Pentachlorophenol	87-86-5	0.052	0.001	0.005	1
14242	Phenanthrene	85-01-8	0.047	0.0001	0.0005	1
14242	Phenol	108-95-2	0.025	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: CMS11-01MSD

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316583
ELLE Group #:	2099869
Matrix: Groundwa	ater

Limit of

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Pyrene	129-00-0	0.046	0.0001	0.0005	1
14242	Pyridine	110-86-1	0.020	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	0.042	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	0.049	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	0.045	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	0.6	0.1	0.3	1
Herbic	ides	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	0.0041 D2	0.00024	0.00058	1
10407	2,4,5-T	93-76-5	0.00049 D1	0.000063	0.00014	1
10407	2,4,5-TP	93-72-1	0.00042 D1	0.000096	0.000048	1
	(s) is outside the QC accept	e(s) in the Laboratory Control ptance limits as noted on the QC				
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	0.0048 D2	0.00010	0.00051	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00010	0.00051	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00020	0.00051	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00010	0.00051	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00010	0.00051	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00010	0.00051	1
10591	PCB-1260	11096-82-5	0.0047 D2	0.00015	0.00051	1
10591	Total PCBs ¹	1336-36-3	0.0095	0.00010	0.00051	1
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Aldrin	309-00-2	0.000075 D1	0.0000021	0.000010	1
10589	Alpha BHC	319-84-6	0.000099 D2	0.000031	0.000010	1
10589	Beta BHC	319-85-7	0.00010 D1	0.000035	0.000010	1
10589	Gamma BHC - Lindane	58-89-9	0.000099 D2	0.0000021	0.000010	1
10589	Alpha Chlordane	5103-71-9	0.000095 D1	0.000031	0.000010	1
10589	4,4'-Ddd	72-54-8	0.00018 D2	0.000052	0.000021	1
10589	4,4'-Dde	72-55-9	0.00019 D1	0.0000052	0.000021	1
10589	4,4'-Ddt	50-29-3	0.00024 D2	0.000054	0.000021	1
10589	Delta BHC	319-86-8	0.000098 D2	0.0000035	0.000010	1
10589	Dieldrin	60-57-1	0.00018 D2	0.0000055	0.000021	1
10589	Endosulfan I	959-98-8	0.000096 D1	0.0000044	0.000010	1
10589	Endosulfan II	33213-65-9	0.00021 D1	0.000015	0.000041	1
10589	Endosulfan Sulfate	1031-07-8	0.00022 D1	0.0000060	0.000021	1
10589	Endrin	72-20-8	0.00019 D2	0.000084	0.000031	1
		* ***		(d. C. L. B.		

Method

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: 05/16/2020 19:50
CMS11-01MSD

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316583
ELLE Group #:	2099869
Matrix: Groundwa	ater

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 808	1B	mg/l	mg/l	mg/l	
10589	Heptachlor		76-44-8	0.000079 D2	0.0000021	0.000010	1
LC/MS/	MS Miscellaneous	EPA 537 Ver Modified	sion 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic	acid1	27619-97-2	230	20	50	1
14473	8:2-Fluorotelomersulfonic	acid1	39108-34-4	230	9.9	30	1
14473	NEtFOSAA1		2991-50-6	240	5.0	30	1
	NEtFOSAA is the acronyn	n for N-ethyl perflu	ıorooctanesulfonam	doacetic Acid.			
14473	NMeFOSAA1		2355-31-9	280	5.9	20	1
	NMeFOSAA is the acrony	m for N-methyl pe	erfluorooctanesulfon	amidoacetic Acid.			
14473	Perfluorobutanesulfonic a	cid ¹	375-73-5	210	5.0	20	1
14473	Perfluorobutanoic acid1		375-22-4	220	20	50	1
14473	Perfluorodecanesulfonic a	ncid1	335-77-3	210	5.0	20	1
14473	Perfluorodecanoic acid1		335-76-2	240	5.0	20	1
14473	Perfluorododecanoic acid	1	307-55-1	240	5.0	20	1
14473	Perfluoroheptanesulfonic	acid¹	375-92-8	210	5.0	20	1
14473	Perfluoroheptanoic acid1		375-85-9	250	5.0	20	1
14473	Perfluorohexanesulfonic a	ncid¹	355-46-4	220	5.0	20	1
14473	Perfluorohexanoic acid1		307-24-4	240	5.0	20	1
14473	Perfluorononanoic acid1		375-95-1	240	5.0	20	1
14473	Perfluorooctanesulfonami	de¹	754-91-6	230	5.0	20	1
14473	Perfluorooctanesulfonic ad	cid¹	1763-23-1	200	5.0	20	1
14473	Perfluorooctanoic acid1		335-67-1	280	5.0	20	1
14473	Perfluoropentanoic acid1		2706-90-3	240	5.0	20	1
14473	Perfluorotetradecanoic ac	id¹	376-06-7	250	5.0	20	1
14473	Perfluorotridecanoic acid1		72629-94-8	230	5.0	20	1
14473	Perfluoroundecanoic acid	1	2058-94-8	250	5.0	20	1
Repo	rting limits were raised due	to interference fro	m the sample matrix	•			
Metals		SW-846 6010 2014	DD Rev.4, July	mg/l	mg/l	mg/l	
07066	Silver		7440-22-4	0.0200	0.0050	0.0100	1
		SW-846 6020 2014	OB Rev.2, July	mg/l	mg/l	mg/l	
06025	Arsenic		7440-38-2	0.0140	0.00068	0.0020	1
06026	Barium		7440-39-3	0.350	0.00075	0.0020	1
06027	Beryllium		7440-41-7	0.0039	0.00012	0.00050	1
06028	Cadmium		7440-43-9	0.0053	0.00015	0.00050	1
06031	Chromium		7440-47-3	0.0509	0.00033	0.0020	1
02828	Trivalent Chromium water	rs ¹	16065-83-1	0.051	0.010	0.030	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316583
ELLE Group #: 2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
	The Trivalent Chromium re Chromium from Total Chro	esult is calculated by subtracting Hexamium.	valent			
06033	Copper	7440-50-8	0.0572	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0393	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.430	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0542	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0109	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.583	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	0.00094	0.000050	0.00020	1
Wet Ch	emistry	SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

This sample was field filtered for SVOCs by SW-846 8270D.

Laboratory Sample Analysis Record Method CAT **Analysis** Dilution Trial# Batch# **Analysis Name** Analyst No. **Date and Time** Factor 11997 VOCs 8260C SW-846 8260C 5201422AA 05/21/2020 22:41 Kevin A Sposito GC/MS VOA Water Prep SW-846 5030C 5201422AA Kevin A Sposito 01163 05/21/2020 22:40 1 1 14242 TCL SW846 8270D MINI SW-846 8270D 20143WAA026 05/24/2020 14:21 Edward C Monborne 1 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20139WAC026 05/20/2020 15:45 Kira N Beck 14244 1 00813 **BNA Water Extraction** SW-846 3510C 2 20143WAA026 05/22/2020 18:50 Patrick Thimes BNA Water Extraction SIM SW-846 3510C 1 20139WAC026 05/18/2020 18:10 Patrick Thimes 10466 10407 Herbicides in Water 8151A SW-846 8151A 201400007A 05/21/2020 20:29 Rachel Umberger 7 PCBs + Total Water SW-846 8082A 201390007A 05/20/2020 09:51 Richard A Shober 10591 1 10589 NY Part 375 Pests Water SW-846 8081B 201430006A 05/26/2020 13:52 Dylan Schreiner PCB Waters Update IV Ext SW-846 3510C 1 201390007A 05/18/2020 18:10 Patrick Thimes 11121 1 Pesticide Waters Update IV Ext SW-846 3510C 201390006A 05/18/2020 18:10 Patrick Thimes 11120 Osvaldo R Sanchez 11120 Pesticide Waters Update IV Ext SW-846 3510C 2 201430006A 05/22/2020 20:15 00816 Water Sample Herbicide Extract SW-846 8151A 201400007A 05/19/2020 20:15 Karen L Beyer 14473 NY 21 PFAS Water EPA 537 Version 1.1 20138002 05/19/2020 08:46 Archie H Covely 1 Modified EPA 537 Version 1.1 14091 PFAS Water Prep 20138002 05/17/2020 15:30 Eric Hockley 1 Modified

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316583
ELLE Group #: 2099869

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404403	05/18/2020 23:17	Elaine F Stoltzfus	1	
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:18	Patrick J Engle	1	
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1	
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:38	Patrick J Engle	1	
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:18	Patrick J Engle	1	
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:18	Patrick J Engle	1	
00259 14044	Mercury ICP-WW, 3005A (tot rec) - U345	SW-846 7470A SW-846 3005A	1 1	201390571301 201391404403	05/19/2020 08:11 05/18/2020 06:00	Damary Valentin Annamaria Kuhns	1 1	
14047 05713 00276	ICPMS - Water, 3020A - U345 WW SW846 Hg Digest Hexavalent Chromium	SW-846 3020A SW-846 7470A SW-846 7196A	1 1 1	201391404703 201390571301 20137027601A	05/18/2020 06:00 05/18/2020 07:40 05/16/2020 21:10	Annamaria Kuhns Annamaria Kuhns Daniel S Smith	1 1 1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Duplicate Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01DUP

Langan Eng & Env Services
ELLE Sample #: GW 1316584
ELLE Group #: 2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D. K2	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0028	0.00068	0.0020	1
06026	Barium	7440-39-3	0.319	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.0020 J	0.00033	0.0020	1
02828	Trivalent Chromium water	s ¹ 16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium r Chromium from Total Chr	esult is calculated by subtracting Hexomium.	kavalent			
06033	Copper	7440-50-8	0.0057	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0215	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.340	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0020	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.00034 J	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.0424	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1
Wet Ch	emistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404403	05/18/2020 17:19	Elaine F Stoltzfus	1		
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Duplicate Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-01DUP

Langan Eng & Env Services
ELLE Sample #: GW 1316584
ELLE Group #: 2099869

		Labo	ratory S	Sample Analysis	Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:12	Patrick J Engle	1
2828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1
6033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/18/2020 19:35	Patrick J Engle	1
6041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:12	Patrick J Engle	1
6049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404703A	05/19/2020 19:12	Patrick J Engle	1
0259	Mercury	SW-846 7470A	1	201390571301	05/19/2020 08:07	Damary Valentin	1
4044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404403	05/18/2020 06:00	Annamaria Kuhns	1
4047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404703	05/18/2020 06:00	Annamaria Kuhns	1
)5713	WW SW846 Hg Digest	SW-846 7470A	1	201390571301	05/18/2020 07:40	Annamaria Kuhns	1
8255	Total Cyanide (water)	SW-846 9012B	1	20141117101A	05/21/2020 20:36	Gregory Baldree	1
08256	Cyanide Water Distillation	SW-846 9012B	1	20141117101A	05/20/2020 17:00	Barbara A Washington	1
00276	Hexavalent Chromium	SW-846 7196A	1	20137027601A	05/16/2020 21:10	Daniel S Smith	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Filtered Groundwater

2014

2014

35 Commercial Street/170229024

SW-846 6010D Rev.4, July

SW-846 6020B Rev.2, July

CAS Number

7440-22-4

7440-38-2

7440-39-3

7440-41-7

7440-43-9

7440-47-3

7440-50-8

7439-92-1

7439-96-5

7440-02-0

7782-49-2

7440-66-6

7439-97-6

SW-846 7470A

Result

mg/l

0.000050

mg/l

N.D.

0.0018 J

0.00066 J

0.00015 J

0.283

N.D.

N.D.

N.D.

0.310

0.0012

0.0115

N.D.

mg/l

N.D.

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 09:50 SDG#: CMS11-02BKG

Analysis Name

Metals Dissolved

Silver

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese

Copper

Lead

Nickel

Zinc

Selenium

Mercury

CAT

07066

06025

06026

06027

06028

06031

06033

06035

06037

06039

06041

06049

00259

No.

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316585
ELLE Group #:	2099869
Matrix: Groundwa	ater

Method Detection Limit*	Limit of Quantitation	Dilution Factor
mg/l	mg/l	
0.0050	0.0100	1
mg/l	mg/l	
0.00068	0.0020	1
0.00075	0.0020	1
0.00012	0.00050	1
0.00015	0.00050	1
0.00033	0.0020	1
0.00036	0.0010	1
0.000071	0.00050	1
0.00063	0.0020	1
0.00060	0.0010	1
0.00028	0.0010	1
0.0062	0.0100	1

mg/l

0.00020

1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 16:55	Elaine F Stoltzfus	1	
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 19:59	Patrick J Engle	1	
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02BKG

Langan Eng & Env Services
ELLE Sample #: GW 1316585
ELLE Group #: 2099869

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1				
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:05	Patrick J Engle	1				
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 19:59	Patrick J Engle	1				
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 19:59	Patrick J Engle	1				
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:10	Damary Valentin	1				
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1				
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02MS

Langan Eng & Env	/ Services
ELLE Sample #:	GW 1316586
ELLE Group #:	2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	0.0208	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0119	0.00068	0.0020	1
06026	Barium	7440-39-3	0.370	0.00075	0.0020	1
06027	Beryllium	7440-41-7	0.0040	0.00012	0.00050	1
06028	Cadmium	7440-43-9	0.0054	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.0470	0.00033	0.0020	1
06033	Copper	7440-50-8	0.0485	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0052	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.328	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0505	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0106	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.529	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	0.00091	0.00050	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:05	Elaine F Stoltzfus	1				
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:04	Patrick J Engle	1				
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMS01_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02MS

Langan Eng & Env Services
ELLE Sample #: GW 1316586
ELLE Group #: 2099869

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:10	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:04	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:04	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:14	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: 05/16/2020 19:50
CMS11-02MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316587
ELLE Group #: 2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	0.0209	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0115	0.00068	0.0020	1
06026	Barium	7440-39-3	0.412	0.00075	0.0020	1
06027	Beryllium	7440-41-7	0.0039	0.00012	0.00050	1
06028	Cadmium	7440-43-9	0.0052	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.0470	0.00033	0.0020	1
06033	Copper	7440-50-8	0.0480	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0052	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.298	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0516	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0110	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.547	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	0.00087	0.000050	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:08	Elaine F Stoltzfus	1				
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:06	Patrick J Engle	1				
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWMSD01_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02MSD

Langan Eng & Env Services
ELLE Sample #: GW 1316587
ELLE Group #: 2099869

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:12	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:06	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:06	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:16	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Duplicate Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02DUP

Langan Eng & Env Services
ELLE Sample #: GW 1316588
ELLE Group #: 2099869

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0016 J	0.00068	0.0020	1
06026	Barium	7440-39-3	0.280	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00059 J	0.00033	0.0020	1
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	0.00012 J	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.302	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0011	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.0111	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:01	Elaine F Stoltzfus	1				
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:02	Patrick J Engle	1				
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13_051620 Duplicate Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 09:50
SDG#: CMS11-02DUP

Langan Eng & Env Services
ELLE Sample #: GW 1316588
ELLE Group #: 2099869

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:08	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:02	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:02	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:12	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316589

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316589

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

CAT No.	Analysis Name	C	CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	;	mg/l		mg/l	mg/l	
11997	Tetrachloroethene	1	27-18-4	N.D.		0.0002	0.001	1
11997	Toluene	1	08-88-3	N.D.		0.0002	0.001	1
11997	1,1,1-Trichloroethane	7	1-55-6	N.D.		0.0003	0.001	1
11997	1,1,2-Trichloroethane	7	9-00-5	N.D.		0.0002	0.001	1
11997	Trichloroethene	7	9-01-6	N.D.		0.0002	0.001	1
11997	Trichlorofluoromethane	7	5-69-4	N.D.		0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	9	5-63-6	N.D.		0.001	0.005	1
11997	1,3,5-Trimethylbenzene	1	08-67-8	N.D.		0.0003	0.005	1
11997	Vinyl Chloride	7	5-01-4	N.D.		0.0002	0.001	1
11997	Xylene (Total)	1	330-20-7	N.D.		0.001	0.006	1
GC/MS	S Semivolatiles SW-846 8270D			mg/l		mg/l	mg/l	
14242	Acenaphthene	8	3-32-9	N.D.		0.0001	0.0005	1
14242	Acenaphthylene	2	08-96-8	N.D.		0.0001	0.0005	1
14242	Acetophenone	9	8-86-2	N.D.		0.004	0.010	1
14242	Anthracene	1	20-12-7	N.D.		0.0001	0.0005	1
14242	Atrazine	1	912-24-9	N.D.		0.002	0.005	1
14242	Benzaldehyde	1	00-52-7	N.D.		0.003	0.010	1
14242	Benzidine	9	2-87-5	N.D.		0.020	0.061	1
14242	Benzo(a)anthracene	5	6-55-3	N.D.		0.0001	0.0005	1
14242	Benzo(a)pyrene	5	0-32-8	N.D.		0.0001	0.0005	1
14242	Benzo(b)fluoranthene	2	05-99-2	N.D.		0.0001	0.0005	1
14242	Benzo(g,h,i)perylene	1	91-24-2	N.D.		0.0001	0.0005	1
14242	Benzo(k)fluoranthene	2	07-08-9	N.D.		0.0001	0.0005	1
14242	1,1'-Biphenyl	9	2-52-4	N.D.		0.003	0.010	1
14242	Butylbenzylphthalate	8	5-68-7	N.D.		0.002	0.005	1
14242	Di-n-butylphthalate	8	4-74-2	N.D.		0.002	0.005	1
14242	Caprolactam	1	05-60-2	N.D.		0.005	0.011	1
14242	Carbazole	8	6-74-8	N.D.		0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	1	11-44-4	N.D.		0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ethe	er¹ 3	9638-32-9	N.D.		0.0005	0.002	1
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.							
14242	2-Chloronaphthalene		1-58-7	N.D.		0.0004	0.001	1
14242	2-Chlorophenol	9	5-57-8	N.D.		0.0005	0.002	1
14242	Chrysene	2	18-01-9	N.D.		0.0001	0.0005	1
14242	Dibenz(a,h)anthracene	5	3-70-3	N.D.		0.0001	0.0005	1
14242	Dibenzofuran	1	32-64-9	N.D.		0.0005	0.002	1
14242	1,2-Dichlorobenzene	9	5-50-1	N.D.		0.0005	0.002	1
14242	1,3-Dichlorobenzene	5	41-73-1	N.D.		0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316589

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846 827	'0D	mg/l	mg/l	mg/l			
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1		
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.010	1		
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1		
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1		
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.010	1		
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1		
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.021	1		
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.014	0.031	1		
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.005	1		
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1		
14242	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.001	0.005	1		
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1		
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.							
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.011	1		
14242	Fluoranthene	206-44-0	N.D.	0.0001	0.0005	1		
14242	Fluorene	86-73-7	N.D.	0.0001	0.0005	1		
14242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0005	1		
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1		
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.011	1		
14242	Hexachloroethane	67-72-1	N.D.	0.001	0.005	1		
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0005	1		
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1		
14242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0005	1		
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1		
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1		
	3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.							
14242	Naphthalene	91-20-3	N.D.	0.0001	0.0005	1		
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1		
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1		
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1		
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1		
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1		
	N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.							
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.011	1		
14242	Pentachlorophenol	87-86-5	N.D.	0.001	0.005	1		
14242	Phenanthrene	85-01-8	N.D.	0.0001	0.0005	1		
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316589

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS Semivolatiles		SW-846 8270	0D	mg/l	mg/l	mg/l	
14242	Pyrene		129-00-0	N.D.	0.0001	0.0005	1
14242	Pyridine		110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol		95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol		88-06-2	N.D.	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270	OD SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane		123-91-1	N.D.	0.1	0.3	1
Herbic	ides	SW-846 815	1 A	mg/l	mg/l	mg/l	
10407	2,4-D		94-75-7	N.D. D2	0.00024	0.00059	1
10407	2,4,5-T		93-76-5	N.D. D1	0.000064	0.00015	1
10407	2,4,5-TP		93-72-1	N.D. D2	0.0000098	0.000049	1
The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.							
PCBs		SW-846 8082	2A	mg/l	mg/l	mg/l	
10591	PCB-1016		12674-11-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1221		11104-28-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1232		11141-16-5	N.D. D1	0.00021	0.00052	1
10591	PCB-1242		53469-21-9	N.D. D1	0.00010	0.00052	1
10591	PCB-1248		12672-29-6	N.D. D1	0.00010	0.00052	1
10591	PCB-1254		11097-69-1	N.D. D1	0.00010	0.00052	1
10591	PCB-1260		11096-82-5	0.0015 D2	0.00015	0.00052	1
10591	Total PCBs1		1336-36-3	0.0015	0.00010	0.00052	1
Pesticides		SW-846 808	1B	mg/l	mg/l	mg/l	
10589	Aldrin		309-00-2	N.D. D1	0.0000022	0.000011	1
10589	Alpha BHC		319-84-6	N.D. D1	0.0000033	0.000011	1
10589	Beta BHC		319-85-7	N.D. D1	0.0000038	0.000011	1
10589	Gamma BHC - Lindane		58-89-9	N.D. D2	0.0000022	0.000011	1
10589	Alpha Chlordane		5103-71-9	N.D. D1	0.0000033	0.000011	1
10589	4,4'-Ddd		72-54-8	N.D. D2	0.0000055	0.000022	1
10589	4,4'-Dde		72-55-9	N.D. D1	0.0000055	0.000022	1
10589	4,4'-Ddt		50-29-3	N.D. D2	0.0000058	0.000022	1
10589	Delta BHC		319-86-8	N.D. D2	0.0000038	0.000011	1
10589	Dieldrin		60-57-1	N.D. D2	0.0000059	0.000022	1
10589	Endosulfan I		959-98-8	N.D. D1	0.0000048	0.000011	1
10589	Endosulfan II		33213-65-9	N.D. D2	0.000017	0.000044	1
10589	Endosulfan Sulfate		1031-07-8	N.D. D1	0.0000064	0.000022	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40 SDG#: CMS11-03

ELLE Sample #: GW 1316589 ELLE Group #: 2099869 Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Endrin	72-20-8	N.D. D2	0.000090	0.000033	1
10589	Heptachlor	76-44-8	N.D. D2	0.0000022	0.000011	1
LC/MS/	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic	acid ¹ 27619-97-2	N.D.	1.8	4.4	1
14473	8:2-Fluorotelomersulfonic	acid ¹ 39108-34-4	N.D.	0.88	2.6	1
14473	NEtFOSAA1	2991-50-6	N.D.	0.44	2.6	1
	NEtFOSAA is the acronyn	m for N-ethyl perfluorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA1	2355-31-9	N.D.	0.53	1.8	1
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic a		3.7	0.44	1.8	1
14473	Perfluorobutanoic acid1	375-22-4	11	1.8	4.4	1
14473	Perfluorodecanesulfonic a	acid¹ 335-77-3	N.D.	0.44	1.8	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.44	1.8	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.8	1
14473	Perfluoroheptanesulfonic	acid ¹ 375-92-8	N.D.	0.44	1.8	1
14473	Perfluoroheptanoic acid1	375-85-9	5.4	0.44	1.8	1
14473	Perfluorohexanesulfonic a	acid ¹ 355-46-4	1.7 J	0.44	1.8	1
14473	Perfluorohexanoic acid1	307-24-4	12	0.44	1.8	1
14473	Perfluorononanoic acid1	375-95-1	1.1 J	0.44	1.8	1
14473	Perfluorooctanesulfonami	ide ¹ 754-91-6	N.D.	0.44	1.8	1
14473	Perfluorooctanesulfonic a	cid ¹ 1763-23-1	5.3	0.44	1.8	1
14473	Perfluorooctanoic acid1	335-67-1	43	0.44	1.8	1
14473	Perfluoropentanoic acid1	2706-90-3	15	0.44	1.8	1
14473	Perfluorotetradecanoic ac	sid ¹ 376-06-7	N.D.	0.44	1.8	1
14473	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.44	1.8	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.8	1
Metals		SW-846 6010D Rev.4, July 2014	, mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	, mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0027	0.00068	0.0020	1
06026	Barium	7440-39-3	0.105	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.0016 J	0.00033	0.0020	1
02828	Trivalent Chromium water	rs¹ 16065-83-1	N.D.	0.010	0.030	1

^{*=}This limit was used in the evaluation of the final result

GW 1316589

2099869

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

SDG#: CMS11-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
	The Trivalent Chromium Chromium from Total Chromium	result is calculated by subtracting Hexa romium.	avalent			
06033	Copper	7440-50-8	0.0019	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0083	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.829	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0016	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1
Wet Ch	nemistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

This sample was field filtered for SVOCs by SW-846 8270D.

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
11997	VOCs 8260C	SW-846 8260C	1	5201422AA	05/21/2020 23:02	Kevin A Sposito	1				
01163	GC/MS VOA Water Prep	SW-846 5030C	1	5201422AA	05/21/2020 23:01	Kevin A Sposito	1				
14242	TCL SW846 8270D MINI	SW-846 8270D	1	20143WAA026	05/24/2020 14:49	Edward C Monborne	1				
14244	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20139WAC026	05/20/2020 16:13	Kira N Beck	1				
00813	BNA Water Extraction	SW-846 3510C	2	20143WAA026	05/22/2020 18:50	Patrick Thimes	1				
10466	BNA Water Extraction SIM	SW-846 3510C	1	20139WAC026	05/18/2020 18:10	Patrick Thimes	1				
10407	Herbicides in Water 8151A	SW-846 8151A	1	201400007A	05/21/2020 21:36	Rachel Umberger	1				
10591	7 PCBs + Total Water	SW-846 8082A	1	201390007A	05/20/2020 10:01	Richard A Shober	1				
10589	NY Part 375 Pests Water	SW-846 8081B	1	201430006A	05/26/2020 14:16	Dylan Schreiner	1				
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201390007A	05/18/2020 18:10	Patrick Thimes	1				
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201390006A	05/18/2020 18:10	Patrick Thimes	1				
11120	Pesticide Waters Update IV Ext	SW-846 3510C	2	201430006A	05/22/2020 20:15	Osvaldo R Sanchez	1				
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201400007A	05/19/2020 20:15	Karen L Beyer	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

SDG#: CMS11-03

Langan Eng & Env Services
ELLE Sample #: GW 1316589
ELLE Group #: 2099869

Matrix: Groundwater

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20138002	05/19/2020 08:55	Archie H Covely	1			
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20138002	05/17/2020 15:30	Eric Hockley	1			
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:14	Elaine F Stoltzfus	1			
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:17	Patrick J Engle	1			
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1			
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:19	Patrick J Engle	5			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:17	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:16	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:18	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1			
08255	Total Cyanide (water)	SW-846 9012B	1	20141117101B	05/21/2020 20:37	Gregory Baldree	1			
08256	Cyanide Water Distillation	SW-846 9012B	1	20141117101B	05/20/2020 17:00	Barbara A Washington	1			
00276	Hexavalent Chromium	SW-846 7196A	1	20137027601A	05/16/2020 21:10	Daniel S Smith	1			

^{*=}This limit was used in the evaluation of the final result

GW 1316590

2099869

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 13:40

SDG#: CMS11-04

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0021	0.00068	0.0020	1
06026	Barium	7440-39-3	0.0984	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00058 J	0.00033	0.0020	1
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.802	0.0032	0.0100	5
06039	Nickel	7440-02-0	N.D.	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:17	Elaine F Stoltzfus	1			
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:21	Patrick J Engle	1			
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 13:40

SDG#: CMS11-04

Langan Eng & Env Services
ELLE Sample #: GW 1316590
ELLE Group #: 2099869

Matrix: Groundwater

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:23	Patrick J Engle	5				
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1				
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:21	Patrick J Engle	1				
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:18	Patrick J Engle	1				
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:20	Damary Valentin	1				
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1				
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316591

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW	-846 8260C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.0009 J	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316591

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

CAT No.	Analysis Name	c	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	•	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	1	27-18-4	N.D.	0.0002	0.001	1
11997	Toluene	1	08-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	7	1-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	7	9-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	7	9-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	7	5-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	9	5-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	1	08-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	7	5-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1	330-20-7	N.D.	0.001	0.006	1
GC/MS	Semivolatiles	SW-846 8270D)	mg/l	mg/l	mg/l	
14242	Acenaphthene	8	3-32-9	N.D.	0.0001	0.0005	1
14242	Acenaphthylene	2	08-96-8	N.D.	0.0001	0.0005	1
14242	Acetophenone	9	8-86-2	N.D.	0.004	0.010	1
14242	Anthracene	1	20-12-7	N.D.	0.0001	0.0005	1
14242	Atrazine	1	912-24-9	N.D.	0.002	0.005	1
14242	Benzaldehyde	1	00-52-7	N.D.	0.003	0.010	1
14242	Benzidine	9	2-87-5	N.D.	0.020	0.060	1
14242	Benzo(a)anthracene	5	6-55-3	N.D.	0.0001	0.0005	1
14242	Benzo(a)pyrene	5	0-32-8	N.D.	0.0001	0.0005	1
14242	Benzo(b)fluoranthene	2	05-99-2	N.D.	0.0001	0.0005	1
14242	Benzo(g,h,i)perylene	1	91-24-2	N.D.	0.0001	0.0005	1
14242	Benzo(k)fluoranthene	2	07-08-9	N.D.	0.0001	0.0005	1
14242	1,1'-Biphenyl	9	2-52-4	N.D.	0.003	0.010	1
14242	Butylbenzylphthalate	8	5-68-7	N.D.	0.002	0.005	1
14242	Di-n-butylphthalate	8	4-74-2	N.D.	0.002	0.005	1
14242	Caprolactam	1	05-60-2	N.D.	0.005	0.011	1
14242	Carbazole	8	6-74-8	N.D.	0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	1	11-44-4	N.D.	0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ethe	er¹ 3	9638-32-9	N.D.	0.0005	0.002	1
	Bis(2-chloroisopropyl) ether 2,2'-Oxybis(1-chloropropachromatographically. The total of both compounds.	ne) CAS #108-60-1	cannot be separa				
14242	2-Chloronaphthalene	9	1-58-7	N.D.	0.0004	0.001	1
14242	2-Chlorophenol	9	5-57-8	N.D.	0.0005	0.002	1
14242	Chrysene	2	18-01-9	N.D.	0.0001	0.0005	1
14242	Dibenz(a,h)anthracene	5	3-70-3	N.D.	0.0001	0.0005	1
14242	Dibenzofuran	1	32-64-9	N.D.	0.0005	0.002	1
14242	1,2-Dichlorobenzene	9	5-50-1	N.D.	0.0005	0.002	1
14242	1,3-Dichlorobenzene	5	41-73-1	N.D.	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316591

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:00

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SV	V-846 8270D	mg/l	mg/l	mg/l	
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.010	1
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.010	1
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.021	1
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.014	0.030	1
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.005	1
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1
14242	2,4_2,6-Dinitrotoluenes1	25321-14-6	N.D.	0.001	0.005	1
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1
		uished from 1,2-diphenylhydrazi zine represent the combined tota				
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.011	1
14242	Fluoranthene	206-44-0	N.D.	0.0001	0.0005	1
14242	Fluorene	86-73-7	N.D.	0.0001	0.0005	1
14242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0005	1
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.011	1
14242	Hexachloroethane	67-72-1	N.D.	0.001	0.005	1
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0005	1
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1
14242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0005	1
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1
	chromatographic conditions us	henol cannot be resolved under ed for sample analysis. The reso the combined total of both comp	ult reported			
14242	Naphthalene	91-20-3	0.0001 J	0.0001	0.0005	1
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1
	N-nitrosodiphenylamine decom diphenylamine. The result rep represents the combined total	orted for N-nitrosodiphenylamine)			
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.011	1
14242	Pentachlorophenol	87-86-5	N.D.	0.001	0.005	1
14242	Phenanthrene	85-01-8	N.D.	0.0001	0.0005	1
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1316591

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270	D	mg/l	mg/l	mg/l	
14242	Pyrene		129-00-0	N.D.	0.0001	0.0005	1
14242	Pyridine		110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene		120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol		95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol		88-06-2	N.D.	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane		123-91-1	0.1 J	0.1	0.3	1
Herbic	ides	SW-846 8151	Α	mg/l	mg/l	mg/l	
10407	2,4-D		94-75-7	N.D. D2	0.00024	0.00058	1
10407	2,4,5-T		93-76-5	N.D. D1	0.000063	0.00014	1
10407	2,4,5-TP		93-72-1	N.D. D2	0.0000097	0.000048	1
PCBs		SW-846 8082	2A	mg/l	mg/l	mg/l	
10591	PCB-1016		12674-11-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1221		11104-28-2	N.D. D1	0.00010	0.00052	1
10591	PCB-1232		11141-16-5	N.D. D1	0.00021	0.00052	1
10591	PCB-1242		53469-21-9	N.D. D1	0.00010	0.00052	1
10591	PCB-1248		12672-29-6	N.D. D1	0.00010	0.00052	1
10591	PCB-1254		11097-69-1	N.D. D1	0.00010	0.00052	1
10591	PCB-1260		11096-82-5	N.D. D2	0.00015	0.00052	1
10591	Total PCBs ¹		1336-36-3	N.D.	0.00010	0.00052	1
Pestici	des	SW-846 8081	В	mg/l	mg/l	mg/l	
10589	Aldrin		309-00-2	N.D. D1	0.0000020	0.000010	1
10589	Alpha BHC		319-84-6	N.D. D2	0.0000031	0.000010	1
10589	Beta BHC		319-85-7	N.D. D1	0.0000035	0.000010	1
10589	Gamma BHC - Lindane		58-89-9	N.D. D2	0.0000020	0.000010	1
10589	Alpha Chlordane		5103-71-9	N.D. D1	0.0000031	0.000010	1
10589	4,4'-Ddd		72-54-8	N.D. D2	0.0000051	0.000020	1
10589	4,4'-Dde		72-55-9	N.D. D2	0.0000051	0.000020	1
10589	4,4'-Ddt		50-29-3	N.D. D1	0.0000053	0.000020	1
10589	Delta BHC		319-86-8	N.D. D2	0.0000035	0.000010	1
10589	Dieldrin		60-57-1	N.D. D2	0.0000054	0.000020	1
10589	Endosulfan I		959-98-8	N.D. D2	0.0000044	0.000010	1
10589	Endosulfan II		33213-65-9	N.D. D2	0.000015	0.000041	1
10589	Endosulfan Sulfate		1031-07-8	N.D. D1	0.0000059	0.000020	1
10589	Endrin		72-20-8	N.D. D2	0.0000083	0.000031	1
10589	Heptachlor		76-44-8	N.D. D2	0.0000020	0.000010	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Limit of

Method

Matrix: Groundwater

ELLE Sample #: GW 1316591

2099869

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00 SDG#: CMS11-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
	/MS Miscellaneous	EPA 537 Version 1.1	ng/l	ng/l	ng/l	1 40101
LO/NO		Modified	Ū	ŭ	J	
14473	6:2-Fluorotelomersulfonic a		N.D.	20	49	1
14473	8:2-Fluorotelomersulfonic a		N.D.	9.9	30	1
14473	NEtFOSAA1	2991-50-6	N.D.	4.9	30	1
	NEtFOSAA is the acronym	for N-ethyl perfluorooctanesulfonam	idoacetic Acid	d.		
14473	NMeFOSAA ¹	2355-31-9	N.D.	5.9	20	1
		for N-methyl perfluorooctanesulfon				·
14473	Perfluorobutanesulfonic aci	d¹ 375-73-5	N.D.	4.9	20	1
14473	Perfluorobutanoic acid1	375-22-4	N.D.	20	49	1
14473	Perfluorodecanesulfonic ac	id¹ 335-77-3	N.D.	4.9	20	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	4.9	20	1
14473	Perfluorododecanoic acid1	307-55-1	N.D.	4.9	20	1
14473	Perfluoroheptanesulfonic a	cid ¹ 375-92-8	N.D.	4.9	20	1
14473	Perfluoroheptanoic acid ¹	375-85-9	8.1 J	4.9	20	1
14473	Perfluorohexanesulfonic ac	id¹ 355-46-4	N.D.	4.9	20	1
14473	Perfluorohexanoic acid1	307-24-4	13 J	4.9	20	1
14473	Perfluorononanoic acid1	375-95-1	N.D.	4.9	20	1
14473	Perfluorooctanesulfonamide		N.D.	4.9	20	1
14473	Perfluorooctanesulfonic aci		6.6 J	4.9	20	1
14473	Perfluorooctanoic acid¹	335-67-1	66	4.9	20	1
14473	Perfluoropentanoic acid1	2706-90-3	16 J	4.9	20	1
14473	Perfluorotetradecanoic acid		N.D.	4.9	20	1
14473	Perfluorotridecanoic acid1	72629-94-8	N.D.	4.9	20	1
14473	Perfluoroundecanoic acid ¹	2058-94-8	N.D.	4.9	20	1
		interference from the sample matrix				
Metals		SW-846 6010D Rev.4, July	mg/l	mg/l	mg/l	
Motars		2014	•	•	•	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0037	0.00068	0.0020	1
06025	Barium	7440-36-2 7440-39-3	0.0037	0.00068	0.0020	1
06026		7440-39-3 7440-41-7	0.121 N.D.	0.00075	0.0020	1
06027	Beryllium Cadmium	7440-43-9	N.D.	0.00012	0.00050	1
06028	Chromium	7440-43-9 7440-47-3	0.00053 J	0.00013	0.00030	1
02828	Trivalent Chromium waters		0.00053 J N.D.	0.00033	0.0020	1
02020		sult is calculated by subtracting Hexa		0.010	0.030	Ī
	Chromium from Total Chroi		avalerit			
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0046	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.620	0.0032	0.0100	5
		* This limit was		valuation of the final result		

^{*=}This limit was used in the evaluation of the final result

GW 1316591

2099869

Langan Eng & Env Services

ELLE Sample #:

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22 051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00 SDG#: CMS11-05

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06039	Nickel	7440-02-0	0.0018	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.0081 J	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1
Wet Ch	nemistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

This sample was field filtered for SVOCs by SW-846 8270D.

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** Factor No. SW-846 8260C 11997 VOCs 8260C 5201422AA 05/21/2020 23:22 Kevin A Sposito GC/MS VOA Water Prep 01163 SW-846 5030C 5201422AA 05/21/2020 23:21 Kevin A Sposito 1 14242 TCL SW846 8270D MINI SW-846 8270D 1 20143WAA026 05/24/2020 15:18 Edward C Monborne 1 14244 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20139WAC026 05/20/2020 16:41 Kira N Beck 1 1 2 00813 **BNA Water Extraction** SW-846 3510C 20143WAA026 05/22/2020 18:50 Patrick Thimes **BNA Water Extraction SIM** SW-846 3510C 1 20139WAC026 05/18/2020 18:10 Patrick Thimes 10466 10407 Herbicides in Water 8151A SW-846 8151A 201400007A 05/21/2020 22:09 Rachel Umberger 10591 7 PCBs + Total Water SW-846 8082A 1 201390007A 05/20/2020 10:11 Richard A Shober 1 10589 NY Part 375 Pests Water SW-846 8081B 1 201430006A 05/26/2020 14:29 Dylan Schreiner 1 11121 PCB Waters Update IV Ext SW-846 3510C 1 201390007A 05/18/2020 18:10 Patrick Thimes 11120 Pesticide Waters Update IV Ext SW-846 3510C 1 201390006A 05/18/2020 18:10 Patrick Thimes 11120 Pesticide Waters Update IV Ext SW-846 3510C 2 201430006A 05/22/2020 20:15 Osvaldo R Sanchez 1 00816 Water Sample Herbicide Extract SW-846 8151A 201400007A 05/19/2020 20:15 Karen L Beyer 14473 NY 21 PFAS Water EPA 537 Version 1.1 20138002 05/19/2020 09:05 Archie H Covely 1 Modified 14091 PFAS Water Prep EPA 537 Version 1.1 20138002 05/17/2020 15:30 Eric Hockley Modified 07066 Silver SW-846 6010D Rev.4, 201391404404 05/18/2020 17:27 Elaine F Stoltzfus July 2014

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS11-05

Langan Eng & Env Services ELLE Sample #: GW 1316591 ELLE Group #: 2099869

Matrix: Groundwater

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:25	Patrick J Engle	1		
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1		
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:27	Patrick J Engle	5		
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:23	Patrick J Engle	1		
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:25	Patrick J Engle	1		
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:25	Patrick J Engle	1		
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:22	Damary Valentin	1		
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1		
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1		
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1		
08255	Total Cyanide (water)	SW-846 9012B	1	20141117101B	05/21/2020 20:41	Gregory Baldree	1		
08256	Cyanide Water Distillation	SW-846 9012B	1	20141117101B	05/20/2020 17:00	Barbara A Washington	1		
00276	Hexavalent Chromium	SW-846 7196A	1	20137027601A	05/16/2020 21:10	Daniel S Smith	1		

^{*=}This limit was used in the evaluation of the final result

GW 1316592

2099869

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#:		CMS11-06						
CAT No. Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor		
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l			
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1		
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l			

		SW-846 6020B Rev.2, July	mg/l	mg/l	mg/l	
		2014				
06025	Arsenic	7440-38-2	0.0032	0.00068	0.0020	1
06026	Barium	7440-39-3	0.126	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00067 J	0.00033	0.0020	1
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.620	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0018	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:30	Elaine F Stoltzfus	1		
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:29	Patrick J Engle	1		
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW22_051620 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:00

SDG#: CMS11-06

Langan Eng & Env Services
ELLE Sample #: GW 1316592
ELLE Group #: 2099869

Matrix: Groundwater

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:30	Patrick J Engle	5			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:29	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:25	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:24	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env Services
ELLE Sample #: GW 1316593
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: **GWFB01_051620 Water**

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50 Collection Date/Time: 05/16/2020 15:45 SDG#: CMS11-07FB

Langan Eng & Env Services **ELLE Sample #: GW 1316593** ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
with a (outsi	continuing calibration verifica	nples with non-detect analytes asso ation standard exhibiting low respo LV standard shows adequate sens	nse itivity at			
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Acenaphthene	83-32-9	N.D.	0.0001	0.0005	1
14242	Acenaphthylene	208-96-8	N.D.	0.0001	0.0005	1
14242	Acetophenone	98-86-2	N.D.	0.004	0.010	1
14242	Anthracene	120-12-7	N.D.	0.0001	0.0005	1
14242	Atrazine	1912-24-9	N.D.	0.002	0.005	1
14242	Benzaldehyde	100-52-7	N.D.	0.003	0.010	1
14242	Benzidine	92-87-5	N.D.	0.021	0.062	1
14242	Benzo(a)anthracene	56-55-3	N.D.	0.0001	0.0005	1
14242	Benzo(a)pyrene	50-32-8	N.D.	0.0001	0.0005	1
14242	Benzo(b)fluoranthene	205-99-2	N.D.	0.0001	0.0005	1
14242	Benzo(g,h,i)perylene	191-24-2	N.D.	0.0001	0.0005	1
14242	Benzo(k)fluoranthene	207-08-9	N.D.	0.0001	0.0005	1
14242	1,1'-Biphenyl	92-52-4	N.D.	0.003	0.010	1
14242	Butylbenzylphthalate	85-68-7	N.D.	0.002	0.005	1
14242	Di-n-butylphthalate	84-74-2	N.D.	0.002	0.005	1
14242	Caprolactam	105-60-2	N.D.	0.005	0.011	1
14242	Carbazole	86-74-8	N.D.	0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ether		N.D.	0.0005	0.002	1
		CAS #39638-32-9 and c) CAS #108-60-1 cannot be separe eported result represents the comb				
14242	2-Chloronaphthalene	91-58-7	N.D.	0.0004	0.001	1
	0.061	95-57-8	N.D.	0.0005	0.002	1
14242	2-Chlorophenol	90-01-0	N.D.	0.0003	0.002	•

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env	Services
ELLE Sample #:	GW 1316593
ELLE Group #:	2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846 82	70D	mg/l	mg/l	mg/l			
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.0001	0.0005	1		
14242	Dibenzofuran	132-64-9	N.D.	0.0005	0.002	1		
14242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.002	1		
14242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.002	1		
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1		
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.010	1		
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1		
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1		
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.010	1		
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1		
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.022	1		
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.014	0.031	1		
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.005	1		
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1		
14242	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.001	0.005	1		
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1		
	Azobenzene cannot be distinguished from 1,2-diphenylhydrazine. The results reported for 1,2-diphenylhydrazine represent the combined total of both compounds.							
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.011	1		
14242	Fluoranthene	206-44-0	N.D.	0.0001	0.0005	1		
14242	Fluorene	86-73-7	N.D.	0.0001	0.0005	1		
14242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0005	1		
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1		
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.011	1		
14242	Hexachloroethane	67-72-1	N.D.	0.001	0.005	1		
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0005	1		
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1		
14242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0005	1		
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1		
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1		
	3-Methylphenol and 4-methylphenol cann chromatographic conditions used for sam for 4-methylphenol represents the combin	ple analysis. The res	ult reported					
14242	Naphthalene	91-20-3	N.D.	0.0001	0.0005	1		
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1		
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1		
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1		
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1		
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1		
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N represents the combined total of both contractions.	-nitrosodiphenylamin	e					
	*-This limit was used in the evaluation of the final result							

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env Services
ELLE Sample #: GW 1316593
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS Semivolatiles SW-846 8270		SW-846 8270D	mg/l	mg/l	mg/l	
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.011	1
14242	Pentachlorophenol	87-86-5	N.D.	0.001	0.005	1
14242	Phenanthrene	85-01-8	N.D.	0.0001	0.0005	1
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1
14242	Pyrene	129-00-0	N.D.	0.0001	0.0005	1
14242	Pyridine	110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	N.D.	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	N.D.	0.1	0.4	1
Herbic	ides	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	N.D. D1	0.00028	0.00066	1
10407	2,4,5-T	93-76-5	N.D. D1	0.00072	0.00017	1
10407	2,4,5-TP	93-72-1	N.D. D2	0.000011	0.000055	1
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00012	0.00060	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00012	0.00060	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00024	0.00060	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00012	0.00060	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00012	0.00060	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00012	0.00060	1
10591	PCB-1260	11096-82-5	N.D. D2	0.00018	0.00060	1
10591	Total PCBs1	1336-36-3	N.D.	0.00012	0.00060	1
Dootiei	daa	SW-846 8081B	mg/l	mg/l	mg/l	
Pestici 10589	Aldrin	309-00-2	N.D. D1	0.000024	0.000012	1
10589	Alpha BHC	319-84-6	N.D. D1	0.0000024	0.000012	1
10589	Beta BHC	319-85-7	N.D. D2 N.D. D1	0.0000033	0.000012	1
10589	Gamma BHC - Lindane	58-89-9	N.D. D1	0.0000040	0.000012	1
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.0000024	0.000012	1
10589	4,4'-Ddd	72-54-8	N.D. D2	0.0000059	0.000012	1
10589	4,4'-Dde	72-55-9	N.D. D1	0.000059	0.000024	1
10589	4,4'-Dde 4,4'-Ddt	50-29-3	N.D. D1	0.0000039	0.000024	1
10589	Delta BHC	319-86-8	N.D. D2	0.0000040	0.000024	1
10589	Dieldrin	60-57-1	N.D. D2	0.0000040	0.000012	1
10589	Endosulfan I	959-98-8	N.D. D1	0.0000051	0.000024	1
10589	Endosulfan II	33213-65-9	N.D. D2	0.000018	0.000047	1
10589	Endosulfan Sulfate	1031-07-8	N.D. D1	0.000016	0.000047	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env Services
ELLE Sample #: GW 1316593
ELLE Group #: 2099869

CAT No.	Analysis Name	CA	AS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B		mg/l	mg/l	mg/l	
10589	Endrin	72	-20-8	N.D. D2	0.0000096	0.000035	1
10589	Heptachlor	76	-44-8	N.D. D2	0.0000024	0.000012	1
LC/MS/	LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified		ng/l	ng/l	ng/l		
14473	6:2-Fluorotelomersulfonic	acid ¹ 27	619-97-2	N.D.	2.0	5.0	1
14473	8:2-Fluorotelomersulfonic	acid ¹ 39	108-34-4	N.D.	1.0	3.0	1
14473	NEtFOSAA1	29	91-50-6	N.D.	0.50	3.0	1
	NEtFOSAA is the acronyr	n for N-ethyl perfluoro	octanesulfonami	doacetic Acid.			
14473	NMeFOSAA1	23	55-31-9	N.D.	0.60	2.0	1
	NMeFOSAA is the acrony	m for N-methyl perfluc	orooctanesulfona	midoacetic Acid.			
14473	Perfluorobutanesulfonic a	cid¹ 37	5-73-5	N.D.	0.50	2.0	1
14473	Perfluorobutanoic acid1	37	5-22-4	N.D.	2.0	5.0	1
14473	Perfluorodecanesulfonic a	acid¹ 33	5-77-3	N.D.	0.50	2.0	1
14473	Perfluorodecanoic acid1	33	5-76-2	N.D.	0.50	2.0	1
14473	Perfluorododecanoic acid	1 30	7-55-1	N.D.	0.50	2.0	1
14473	Perfluoroheptanesulfonic	acid¹ 37	5-92-8	N.D.	0.50	2.0	1
14473	Perfluoroheptanoic acid1	37	5-85-9	N.D.	0.50	2.0	1
14473	Perfluorohexanesulfonic a	acid¹ 35	5-46-4	N.D.	0.50	2.0	1
14473	Perfluorohexanoic acid1	30	7-24-4	N.D.	0.50	2.0	1
14473	Perfluorononanoic acid1	37	5-95-1	N.D.	0.50	2.0	1
14473	Perfluorooctanesulfonami	de ¹ 75	4-91-6	N.D.	0.50	2.0	1
14473	Perfluorooctanesulfonic a	cid¹ 17	63-23-1	N.D.	0.50	2.0	1
14473	Perfluorooctanoic acid1	33	5-67-1	N.D.	0.50	2.0	1
14473	Perfluoropentanoic acid1	27	06-90-3	N.D.	0.50	2.0	1
14473	Perfluorotetradecanoic ac	id¹ 37	6-06-7	N.D.	0.50	2.0	1
14473	Perfluorotridecanoic acid1	72	629-94-8	N.D.	0.50	2.0	1
14473	Perfluoroundecanoic acid	1 20	58-94-8	N.D.	0.50	2.0	1
Metals		SW-846 6010D 2014	Rev.4, July	mg/l	mg/l	mg/l	
07066	Silver	74	40-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B 2014	Rev.2, July	mg/l	mg/l	mg/l	
06025	Arsenic	74	40-38-2	N.D.	0.00068	0.0020	1
06026	Barium	74	40-39-3	N.D.	0.00075	0.0020	1
06027	Beryllium	74	40-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	74	40-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	74	40-47-3	0.00048 J	0.00033	0.0020	1
02828	Trivalent Chromium water	rs¹ 16	065-83-1	N.D.	0.010	0.030	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env	v Services
ELLE Sample #:	GW 1316593
ELLE Group #:	2099869
Matrix: Water	

Method	Limit of	Dilution	
Detection Limit*	Quantitation	Factor	

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
	The Trivalent Chromium (Chromium from Total Chromium from Total C	result is calculated by subtracting Hexa romium.	avalent			
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	N.D.	0.00063	0.0020	1
06039	Nickel	7440-02-0	N.D.	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1
Wet Ch	emistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

This sample was field filtered for SVOCs by SW-846 8270D.

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor SW-846 8260C 11997 VOCs 8260C N201412AA 05/20/2020 23:55 Laura Green 01163 GC/MS VOA Water Prep SW-846 5030C 1 N201412AA 05/20/2020 23:54 Laura Green 1 Edward C Monborne 14242 TCL SW846 8270D MINI SW-846 8270D 1 20143WAA026 05/24/2020 15:47 1 14244 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20139WAC026 05/20/2020 17:09 Kira N Beck 1 00813 **BNA Water Extraction** SW-846 3510C 20143WAA026 05/22/2020 18:50 Patrick Thimes 10466 BNA Water Extraction SIM SW-846 3510C 20139WAC026 05/18/2020 18:10 Patrick Thimes 10407 Herbicides in Water 8151A SW-846 8151A 201400007A 05/21/2020 22:43 Rachel Umberger 1 1 7 PCBs + Total Water 10591 SW-846 8082A 201390007A 05/20/2020 10:41 Richard A Shober 10589 NY Part 375 Pests Water SW-846 8081B 1 201430006A 05/26/2020 14:41 Dylan Schreiner 11121 PCB Waters Update IV Ext SW-846 3510C 1 201390007A 05/18/2020 18:10 Patrick Thimes 11120 Pesticide Waters Update IV Ext SW-846 3510C 1 201390006A 05/18/2020 18:10 Patrick Thimes 1 11120 Pesticide Waters Update IV Ext SW-846 3510C 2 201430006A 05/22/2020 20:15 Osvaldo R Sanchez 00816 Water Sample Herbicide Extract SW-846 8151A 201400007A 05/19/2020 20:15 Karen L Beyer

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-07FB

Langan Eng & Env Services
ELLE Sample #: GW 1316593
ELLE Group #: 2099869

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20138002	05/19/2020 09:14	Archie H Covely	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20138002	05/17/2020 15:30	Eric Hockley	1
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201391404404	05/18/2020 17:33	Elaine F Stoltzfus	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:32	Patrick J Engle	1
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201430282801	05/22/2020 09:44	Tshina Alamos	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/19/2020 20:32	Patrick J Engle	1
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201391404704A	05/18/2020 20:27	Patrick J Engle	1
00259	Mercury	SW-846 7470A	1	201390571302	05/19/2020 07:30	Damary Valentin	1
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201391404404	05/18/2020 06:00	Annamaria Kuhns	1
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201391404704	05/18/2020 06:00	Annamaria Kuhns	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201390571302	05/18/2020 07:40	Annamaria Kuhns	1
08255	Total Cyanide (water)	SW-846 9012B	1	20141117101B	05/21/2020 20:42	Gregory Baldree	1
08256	Cyanide Water Distillation	SW-846 9012B	1	20141117101B	05/20/2020 17:00	Barbara A Washington	1
00276	Hexavalent Chromium	SW-846 7196A	1	20137027601A	05/16/2020 21:10	Daniel S Smith	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Filtered Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-08FB

Langan Eng & Env Services
ELLE Sample #: GW 1316594
ELLE Group #: 2099869

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	N.D.	0.00068	0.0020	1
06026	Barium	7440-39-3	N.D.	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	N.D.	0.00033	0.0020	1
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	N.D.	0.00063	0.0020	1
06039	Nickel	7440-02-0	N.D.	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000050	0.00020	1

03277 Lab Filtration - Metals

The holding time was not met for dissolved sample filtration. The filtration time for dissolved metals is to be within 15 minutes from collection. Since the filtration occurred after receipt in the laboratory, the 15 minute criteria was exceeded. This sample was not collected per applicable Clean Water Act (40CFR136) or SW-846 regulations.

Sample Comments

State of New York Certification No. 10670 This sample was lab filtered for dissolved metals.

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201411404403	05/20/2020 21:42	Cindy M Gehman	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB01_051620 Filtered Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/16/2020 19:50
Collection Date/Time: 05/16/2020 15:45
SDG#: CMS11-08FB

Langan Eng & Env Services
ELLE Sample #: GW 1316594
ELLE Group #: 2099869

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/21/2020 03:19	Patrick J Engle	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/21/2020 03:19	Patrick J Engle	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201411404703A	05/20/2020 21:54	Patrick J Engle	1
00259	Mercury	SW-846 7470A	1	201410571303	05/21/2020 08:26	Damary Valentin	1
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201411404403	05/20/2020 14:25	JoElla L Rice	1
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201411404703	05/20/2020 14:25	JoElla L Rice	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201410571303	05/20/2020 15:20	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWTB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020

 SDG#:
 CMS11-09TB

Langan Eng & Env Services
ELLE Sample #: GW 1316595
ELLE Group #: 2099869

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWTB01_051620 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/16/2020 19:50

 Collection Date/Time:
 05/16/2020

 SDG#:
 CMS11-09TB

Langan Eng & Env Services
ELLE Sample #: GW 1316595
ELLE Group #: 2099869

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
Λ Do	acrt Limit Varification (DLV)	standard is analyzed to confirm				

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor SW-846 8260C N201412AA Laura Green VOCs 8260C 05/21/2020 00:17 11997 1 1 01163 GC/MS VOA Water Prep SW-846 5030C N201412AA 05/21/2020 00:16 Laura Green

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Batch number: 5201422AA	Sample number	(s): 1316581-1	316583,1316589,1316591
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
, and yello italino	mg/l	mg/l	mg/l
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
Batch number: N201412AA	Sample num	nber(s): 1316593,	1316595
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D. N.D.	0.0002	0.005
tert-Butylbenzene Carbon Disulfide	N.D. N.D.	0.0003 0.0002	0.005 0.005
Carbon Tetrachloride	N.D.	0.0002	0.003
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
Batch number: 20143WAA026	Sample number	(s): 1316581-1	316583,1316589,1316591,1316593
Acenaphthene	N.D.	0.0001	0.0005
Acenaphthylene	N.D.	0.0001	0.0005
Acetophenone	N.D.	0.004	0.010
Anthracene	N.D.	0.0001	0.0005
Atrazine	N.D.	0.002	0.005
Benzaldehyde	N.D.	0.003	0.010
Benzidine	N.D.	0.020	0.060
Benzo(a)anthracene	N.D.	0.0001	0.0005
Benzo(a)pyrene	N.D.	0.0001	0.0005
Benzo(b)fluoranthene	N.D.	0.0001	0.0005
Benzo(g,h,i)perylene	N.D.	0.0001	0.0005
Benzo(k)fluoranthene	N.D.	0.0001	0.0005
1,1'-Biphenyl	N.D.	0.003	0.010
Butylbenzylphthalate	N.D.	0.002	0.005
Di-n-butylphthalate	N.D.	0.002	0.005
Caprolactam	N.D.	0.005	0.011
Carbazole	N.D.	0.0005	0.002
bis(2-Chloroethyl)ether	N.D.	0.0005	0.002
bis(2-Chloroisopropyl)ether	N.D.	0.0005	0.002
2-Chloronaphthalene	N.D.	0.0004	0.001
2-Chlorophenol	N.D.	0.0005	0.002
Chrysene	N.D.	0.0001	0.0005
Dibenz(a,h)anthracene	N.D.	0.0001	0.0005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Dibenzofuran	N.D.	0.0005	0.002
1,2-Dichlorobenzene	N.D.	0.0005	0.002
1,3-Dichlorobenzene	N.D.	0.0005	0.002
1,4-Dichlorobenzene	N.D.	0.0005	0.002
3,3'-Dichlorobenzidine	N.D.	0.003	0.010
2,4-Dichlorophenol	N.D.	0.0005	0.002
Diethylphthalate	N.D.	0.002	0.005
2,4-Dimethylphenol	N.D.	0.003	0.010
Dimethylphthalate	N.D.	0.002	0.005
4,6-Dinitro-2-methylphenol	N.D.	0.008	0.021
2,4-Dinitrophenol	N.D.	0.014	0.030
2,4-Dinitrotoluene	N.D.	0.001	0.005
2,6-Dinitrotoluene	N.D.	0.0005	0.002
2,4_2,6-Dinitrotoluenes	N.D.	0.001	0.005
1,2-Diphenylhydrazine	N.D.	0.0005	0.002
bis(2-Ethylhexyl)phthalate Fluoranthene	N.D. N.D.	0.005	0.011
Fluorene	N.D. N.D.	0.0001 0.0001	0.0005 0.0005
Hexachlorobenzene	N.D.	0.0001	0.0005
Hexachlorobutadiene	N.D.	0.0001	0.0003
Hexachlorocyclopentadiene	N.D.	0.005	0.002
Hexachloroethane	N.D.	0.003	0.005
Indeno(1,2,3-cd)pyrene	N.D.	0.0001	0.0005
Isophorone	N.D.	0.0005	0.002
2-Methylnaphthalene	N.D.	0.0001	0.0005
2-Methylphenol	N.D.	0.0005	0.002
4-Methylphenol	N.D.	0.0005	0.002
Naphthalene	N.D.	0.0001	0.0005
2-Nitroaniline	N.D.	0.002	0.007
Nitrobenzene	N.D.	0.0005	0.002
N-Nitrosodimethylamine	N.D.	0.002	0.005
N-Nitroso-di-n-propylamine	N.D.	0.0007	0.003
N-Nitrosodiphenylamine	N.D.	0.0007	0.003
Di-n-octylphthalate	N.D.	0.005	0.011
Pentachlorophenol	N.D.	0.001	0.005
Phenanthrene	N.D.	0.0001	0.0005
Phenol	N.D.	0.0005	0.002
Pyrene	N.D.	0.0001	0.0005
Pyridine	N.D.	0.002	0.005
1,2,4-Trichlorobenzene	N.D.	0.0005	0.002
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	N.D. N.D.	0.0005 0.0005	0.002 0.002
2,4,0-Trichlorophenoi	N.D.	0.0003	0.002
	ug/l	ug/l	ug/l

Batch number: 20139WAC026 Sample number(s): 1316581-1316583,1316589,1316591,1316593

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Anglysia Nama	Popult	MDI **	100
Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
1,4-Dioxane	N.D.	0.1	0.3
	mg/l	mg/l	mg/l
Batch number: 201400007A	Sample number(s): 1316581-1	316583,1316589,1316591,1316593
2,4-D	N.D.	0.00025	0.00060
2,4,5-T	N.D.	0.000065	0.00015
2,4,5-TP	N.D.	0.000010	0.000050
Batch number: 201390007A	Sample number('s)· 1316581-1	316583,1316589,1316591,1316593
PCB-1016	N.D.	0.00010	0.00050
PCB-1221	N.D.	0.00010	0.00050
PCB-1232	N.D.	0.00020	0.00050
PCB-1242	N.D.	0.00010	0.00050
PCB-1248	N.D.	0.00010	0.00050
PCB-1254	N.D.	0.00010	0.00050
PCB-1260	N.D.	0.00015	0.00050
Total PCBs	N.D.	0.00010	0.00050
Batch number: 201430006A	Cample number	'a\· 1216501 1	316583,1316589,1316591,1316593
Aldrin	N.D.	0.0000020	0.000010
Alpha BHC	N.D.	0.0000020	0.000010
Beta BHC	N.D.	0.0000034	0.000010
Gamma BHC - Lindane	N.D.	0.0000034	0.000010
Alpha Chlordane	N.D.	0.0000030	0.000010
4,4'-Ddd	N.D.	0.0000050	0.000020
4,4'-Dde	N.D.	0.0000050	0.000020
4,4'-Ddt	N.D.	0.0000052	0.000020
Delta BHC	N.D.	0.0000034	0.000010
Dieldrin	N.D.	0.0000053	0.000020
Endosulfan I	N.D.	0.0000043	0.000010
Endosulfan II	N.D.	0.000015	0.000040
Endosulfan Sulfate	N.D.	0.0000058	0.000020
Endrin	N.D.	0.0000081	0.000030
Heptachlor	N.D.	0.0000020	0.000010
	ng/l	ng/l	ng/l
Batch number: 20138002	Sample number(s): 1316581-1	316583,1316589,1316591,1316593
6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
NEtFOSAA	N.D.	0.50	3.0
NMeFOSAA	N.D.	0.60	2.0
Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluorododecanoic acid	N.D.	0.50	2.0

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
Alialysis Name	ng/l	ng/l	ng/l
Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluorooctanesulfonic acid	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluoropentanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid Perfluoroundecanoic acid	N.D. N.D.	0.50 0.50	2.0 2.0
Periluoroundecanoic acid	N.D.	0.50	2.0
	mg/l	mg/l	mg/l
Batch number: 201390571301 Mercury	Sample number(N.D.	s): 1316581-1 0.000050	316584 0.00020
Batch number: 201390571302 Mercury	Sample number(N.D.	s): 1316585-1 0.000050	316593 0.00020
Batch number: 201391404403 Silver	Sample number(s): 1316581-1 0.0050	316584 0.0100
Batch number: 201391404404 Silver	Sample number(s): 1316585-1	316593 0.0100
Batch number: 201391404703A	Sample number(
Arsenic	N.D.	0.00068	0.0020
Barium	N.D.	0.00075	0.0020
Beryllium	N.D.	0.00012	0.00050
Cadmium	N.D.	0.00015	0.00050
Chromium	N.D.	0.00033	0.0020
Copper	N.D.	0.00036	0.0010
Lead	N.D.	0.000071	0.00050
Manganese	N.D.	0.00063	0.0020
Nickel Selenium	N.D. N.D.	0.00060 0.00028	0.0010 0.0010
Zinc	N.D. N.D.	0.00028	0.0010
Batch number: 201391404704A	Sample number(s): 1316585-1	316593
Arsenic	N.D.	0.00068	0.0020
Barium	N.D.	0.00075	0.0020
Beryllium	N.D.	0.00012	0.00050
Cadmium	N.D.	0.00015	0.00050
Chromium	0.00038 J N.D.	0.00033	0.0020
Copper Lead	N.D. N.D.	0.00036 0.000071	0.0010 0.00050
Manganese	N.D. 0.00064 J	0.000071	0.00050
Manganese	0.00004 3	0.00003	0.0020

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ	
	mg/l	mg/l	mg/l	
Nickel	N.D.	0.00060	0.0010	
Selenium	N.D.	0.00028	0.0010	
Zinc	N.D.	0.0062	0.0100	
Batch number: 201410571303	Sample numl	ber(s): 1316594		
Mercury	N.D.	0.000050	0.00020	
Batch number: 201411404403	Sample numl	ber(s): 1316594		
Silver	N.D.	0.0050	0.0100	
Batch number: 201411404703A	Sample numl	ber(s): 1316594		
Arsenic	N.D.	0.00068	0.0020	
Barium	N.D.	0.00075	0.0020	
Beryllium	N.D.	0.00012	0.00050	
Cadmium	N.D.	0.00015	0.00050	
Chromium	N.D.	0.00033	0.0020	
Copper	N.D.	0.00036	0.0010	
Lead	N.D.	0.000071	0.00050	
Manganese	0.0030	0.00063	0.0020	
Nickel	N.D.	0.00060	0.0010	
Selenium	N.D.	0.00028	0.0010	
Zinc	N.D.	0.0062	0.0100	
Batch number: 20141117101A	•	ber(s): 1316581-	1316582,1316584	
Total Cyanide (water)	N.D.	0.0050	0.010	
Batch number: 20141117101B	Sample numl	ber(s): 1316589,1	316591,1316593	
Total Cyanide (water)	N.D.	0.0050	0.010	
Batch number: 20137027601A	Sample num	ber(s): 1316581-1	1316584,1316589,1316591,131659	3
Hexavalent Chromium	N.D.	0.010	0.030	

LCS/LCSD

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 5201422AA	Sample number(s): 1316581-1	316583,1316589,1	316591					
Acetone	0.150	0.206			137		54-157		
Acrolein	0.150	0.134			89		47-136		
Acrylonitrile	0.100	0.0973			97		60-129		
Benzene	0.0200	0.0203			102		80-120		
Bromodichloromethane	0.0200	0.0195			97		71-120		
Bromoform	0.0200	0.0184			92		51-120		
Bromomethane	0.0200	0.0196			98		53-128		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
2-Butanone	0.150	0.158			105		59-135		
t-Butyl alcohol	0.200	0.185			92		60-130		
n-Butylbenzene	0.0200	0.0216			108		76-120		
sec-Butylbenzene	0.0200	0.0215			107		77-120		
tert-Butylbenzene	0.0200	0.0226			113		78-120		
Carbon Disulfide	0.0200	0.0177			89		65-128		
Carbon Tetrachloride	0.0200	0.0199			99		64-134		
Chlorobenzene	0.0200	0.0217			108		80-120		
Chloroethane	0.0200	0.0194			97		55-123		
Chloroform	0.0200	0.0205			102		80-120		
Chloromethane	0.0200	0.0188			94		56-121		
1,2-Dibromo-3-chloropropane	0.0200	0.0198			99		47-131		
Dibromochloromethane	0.0200	0.0198			99		71-120		
1,2-Dibromoethane	0.0200	0.0212			106		77-120		
1,2-Dichlorobenzene	0.0200	0.0217			109		80-120		
1,3-Dichlorobenzene	0.0200	0.0213			107		80-120		
1,4-Dichlorobenzene	0.0200	0.0218			109		80-120		
Dichlorodifluoromethane	0.0200	0.0173			87		41-127		
1,1-Dichloroethane	0.0200	0.0201			100		80-120		
1,2-Dichloroethane	0.0200	0.0206			103		73-124		
1,1-Dichloroethene	0.0200	0.0200			100		80-131		
cis-1,2-Dichloroethene	0.0200	0.0216			108		80-125		
trans-1,2-Dichloroethene	0.0200	0.0205			103		80-126		
1,2-Dichloroethene (Total)	0.0400	0.0421			105		80-125		
1,2-Dichloropropane	0.0200	0.0207			104		80-120		
cis-1,3-Dichloropropene	0.0200	0.0196			98		75-120		
trans-1,3-Dichloropropene	0.0200	0.0194			97		67-120		
Ethylbenzene	0.0200	0.0215			108		80-120		
Methyl Acetate	0.0200	0.0210			105		54-136		
Methyl Tertiary Butyl Ether	0.0200	0.0198			99		69-122		
Methylene Chloride	0.0200	0.0210			105		80-120		
n-Propylbenzene	0.0200	0.0219			109		79-121		
Styrene 1,1,2,2-Tetrachloroethane	0.0200 0.0200	0.0215			107 109		80-120		
Tetrachloroethene	0.0200	0.0219			109		72-120		
		0.0217					80-120		
Toluene	0.0200	0.0208			104 99		80-120		
1,1,1-Trichloroethane	0.0200	0.0198					67-126		
1,1,2-Trichloroethane	0.0200 0.0200	0.0219 0.0205			110 103		80-120		
Trichloroethene Trichlorofluoromethane	0.0200	0.0205			103		80-120 55-135		
	0.0200	0.0206			103		75-120		
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.0200	0.0210			105		75-120 75-120		
Vinyl Chloride	0.0200	0.0214			107		75-120 56-120		
Xylene (Total)	0.0200	0.0206			103		80-120		
Ayierie (Total)	0.0000	0.0000			100		00-120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: N201412AA	Sample number	(s): 1316593,1	316595						
Acetone	0.150	0.164	0.150	0.171	109	114	54-157	4	30
Acrolein	0.150	0.149	0.150	0.148	100	99	47-136	1	30
Acrylonitrile	0.100	0.0945	0.100	0.0957	95	96	60-129	1	30
Benzene	0.0200	0.0201	0.0200	0.0202	101	101	80-120	0	30
Bromodichloromethane	0.0200	0.0189	0.0200	0.0203	94	102	71-120	7	30
Bromoform	0.0200	0.0192	0.0200	0.0192	96	96	51-120	0	30
Bromomethane	0.0200	0.0180	0.0200	0.0181	90	91	53-128	1	30
2-Butanone	0.150	0.134	0.150	0.131	90	87	59-135	3	30
t-Butyl alcohol	0.200	0.235	0.200	0.235	117	118	60-130	0	30
n-Butylbenzene	0.0200	0.0202	0.0200	0.0201	101	100	76-120	0	30
sec-Butylbenzene	0.0200	0.0207	0.0200	0.0210	104	105	77-120	1	30
tert-Butylbenzene	0.0200	0.0207	0.0200	0.0202	104	101	78-120	2	30
Carbon Disulfide	0.0200	0.0203	0.0200	0.0210	101	105	65-128	3	30
Carbon Tetrachloride	0.0200	0.0187	0.0200	0.0189	93	94	64-134	1	30
Chlorobenzene	0.0200	0.0203	0.0200	0.0207	101	104	80-120	2	30
Chloroethane	0.0200	0.0181	0.0200	0.0183	90	92	55-123	1	30
Chloroform	0.0200	0.0184	0.0200	0.0194	92	97	80-120	5	30
Chloromethane	0.0200	0.0176	0.0200	0.0177	88	89	56-121	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0189	0.0200	0.0184	95	92	47-131	3	30
Dibromochloromethane	0.0200	0.0202	0.0200	0.0201	101	100	71-120	1	30
1,2-Dibromoethane	0.0200	0.0197	0.0200	0.0199	99	99	77-120	1	30
1,2-Dichlorobenzene	0.0200	0.0208	0.0200	0.0204	104	102	80-120	2	30
1,3-Dichlorobenzene	0.0200	0.0206	0.0200	0.0204	103	102	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0204	0.0200	0.0208	102	104	80-120	2	30
Dichlorodifluoromethane	0.0200	0.0146	0.0200	0.0161	73	80	41-127	9	30
1,1-Dichloroethane	0.0200	0.0191	0.0200	0.0200	96	100	80-120	5	30
1,2-Dichloroethane	0.0200	0.0175	0.0200	0.0181	88	90	73-124	3	30
1,1-Dichloroethene	0.0200	0.0193	0.0200	0.0199	96	100	80-131	4	30
cis-1,2-Dichloroethene	0.0200	0.0198	0.0200	0.0209	99	104	80-125	5	30
trans-1,2-Dichloroethene	0.0200	0.0189	0.0200	0.0200	95	100	80-126	5	30
1,2-Dichloroethene (Total)	0.0400	0.0388	0.0400	0.0409	97	102	80-125	5	30
1,2-Dichloropropane	0.0200	0.0216	0.0200	0.0227	108	114	80-120	5	30
cis-1,3-Dichloropropene	0.0200	0.0195	0.0200	0.0210	97	105	75-120	7	30
trans-1,3-Dichloropropene	0.0200	0.0187	0.0200	0.0184	93	92	67-120	2	30
Ethylbenzene	0.0200	0.0201	0.0200	0.0205	100	102	80-120	2	30
Methyl Acetate	0.0200	0.0194	0.0200	0.0198	97	99	54-136	2	30
Methyl Tertiary Butyl Ether	0.0200	0.0176	0.0200	0.0176	88	88	69-122	0	30
Methylene Chloride	0.0200	0.0186	0.0200	0.0196	93	98	80-120	5	30
n-Propylbenzene	0.0200	0.0212	0.0200	0.0212	106	106	79-121	0	30
Styrene	0.0200	0.0203	0.0200	0.0203	102	101	80-120	0	30
1,1,2,2-Tetrachloroethane	0.0200	0.0208	0.0200	0.0209	104	104	72-120	0	30
Tetrachloroethene	0.0200	0.0199	0.0200	0.0222	100	111	80-120	11	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Toluene	0.0200	0.0204	0.0200	0.0207	102	104	80-120	2	30
1,1,1-Trichloroethane	0.0200	0.0180	0.0200	0.0183	90	92	67-126	2	30
1,1,2-Trichloroethane	0.0200	0.0218	0.0200	0.0204	109	102	80-120	6	30
Trichloroethene	0.0200	0.0192	0.0200	0.0207	96	103	80-120	7	30
Trichlorofluoromethane	0.0200	0.0181	0.0200	0.0188	91	94	55-135	3	30
1,2,4-Trimethylbenzene	0.0200	0.0197	0.0200	0.0198	99	99	75-120	0	30
1,3,5-Trimethylbenzene	0.0200	0.0203	0.0200	0.0202	102	101	75-120	0	30
Vinyl Chloride	0.0200	0.0174	0.0200	0.0180	87	90	56-120	3	30
Xylene (Total)	0.0600	0.0612	0.0600	0.0625	102	104	80-120	2	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20143WAA026	Sample number	(s): 1316581-1	316583,1316589,1	1316591,131	6593				
Acenaphthene	0.0500	0.0411			82		52-114		
Acenaphthylene	0.0500	0.0405			81		56-127		
Acetophenone	0.0500	0.0423			85		61-114		
Anthracene	0.0500	0.0444			89		67-116		
Atrazine	0.0500	0.0491			98		71-133		
Benzaldehyde	0.0500	0.0381			76		55-116		
Benzidine	0.250	0.121			48		25-77		
Benzo(a)anthracene	0.0500	0.0482			96		68-123		
Benzo(a)pyrene	0.0500	0.0471			94		71-117		
Benzo(b)fluoranthene	0.0500	0.0469			94		69-121		
Benzo(g,h,i)perylene	0.0500	0.0397			79		60-119		
Benzo(k)fluoranthene	0.0500	0.0491			98		69-122		
1,1'-Biphenyl	0.0500	0.0404			81		56-109		
Butylbenzylphthalate	0.0500	0.0312			62		40-133		
Di-n-butylphthalate	0.0500	0.0405			81		58-125		
Caprolactam	0.0500	0.0129			26		10-57		
Carbazole	0.0500	0.0465			93		64-127		
bis(2-Chloroethyl)ether	0.0500	0.0379			76		58-108		
bis(2-Chloroisopropyl)ether	0.0500	0.0385			77		44-108		
2-Chloronaphthalene	0.0500	0.0386			77		51-107		
2-Chlorophenol	0.0500	0.0410			82		57-105		
Chrysene	0.0500	0.0451			90		65-121		
Dibenz(a,h)anthracene	0.0500	0.0437			87		63-128		
Dibenzofuran	0.0500	0.0430			86		60-112		
1,2-Dichlorobenzene	0.0500	0.0359			72		35-104		
1,3-Dichlorobenzene	0.0500	0.0337			67		28-103		
1,4-Dichlorobenzene	0.0500	0.0345			69		34-97		
3,3'-Dichlorobenzidine	0.0500	0.0381			76		42-107		
2,4-Dichlorophenol	0.0500	0.0455			91		65-110		
Diethylphthalate	0.0500	0.0353			71		42-126		
2,4-Dimethylphenol	0.0500	0.0372			74		53-93		
Dimethylphthalate	0.0500	0.0183			37		10-134		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
4,6-Dinitro-2-methylphenol	0.0500	0.0481			96		63-129		
2,4-Dinitrophenol	0.100	0.0852			85		44-134		
2,4-Dinitrotoluene	0.0500	0.0462			92		66-122		
2,6-Dinitrotoluene	0.0500	0.0462			92		71-120		
1,2-Diphenylhydrazine	0.0500	0.0456			91		64-120		
bis(2-Ethylhexyl)phthalate	0.0500	0.0462			92		61-129		
Fluoranthene	0.0500	0.0473			95		63-122		
Fluorene	0.0500	0.0445			89		56-115		
Hexachlorobenzene	0.0500	0.0455			91		60-117		
Hexachlorobutadiene	0.0500	0.0390			78		20-108		
Hexachlorocyclopentadiene	0.100	0.0326			33		10-91		
Hexachloroethane	0.0500	0.0332			66		23-95		
Indeno(1,2,3-cd)pyrene	0.0500	0.0414			83		59-123		
Isophorone	0.0500	0.0439			88		63-120		
2-Methylnaphthalene	0.0500	0.0412			82		51-107		
2-Methylphenol	0.0500	0.0393			79		53-107		
4-Methylphenol	0.0500	0.0390			78		49-108		
Naphthalene	0.0500	0.0390			78		51-102		
2-Nitroaniline	0.0500	0.0455			91		66-126		
Nitrobenzene	0.0500	0.0434			87		59-109		
N-Nitrosodimethylamine	0.0500	0.0258			52		17-101		
N-Nitroso-di-n-propylamine	0.0500	0.0442			88		58-120		
N-Nitrosodiphenylamine	0.0500	0.0450			90		60-126		
Di-n-octylphthalate	0.0500	0.0462			92		60-136		
Pentachlorophenol	0.0500	0.0461			92		54-131		
Phenanthrene	0.0500	0.0448			90		65-113		
Phenol	0.0500	0.0242			48		19-79		
Pyrene	0.0500	0.0439			88		65-115		
Pyridine	0.0500	0.0202			40		23-64		
1,2,4-Trichlorobenzene	0.0500	0.0397			79		34-106		
2,4,5-Trichlorophenol	0.0500	0.0469			94		66-118		
2,4,6-Trichlorophenol	0.0500	0.0467			93		69-117		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 20139WAC026	Sample numbe	r(s): 1316581-13	16583,1316589	9,1316591,131	6593				
1,4-Dioxane	1.00	0.464			46		18-91		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201400007A	Sample numbe	r(s): 1316581-13	16583,1316589	9,1316591,131	6593				
2,4-D	0.00250	0.00419			167*		70-134		
2,4,5-T	0.000250	0.000462			185*		69-164		
2,4,5-TP	0.000250	0.000422			169*		81-137		
	mg/l	mg/l	mg/l	mg/l					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

LCS/LCSD (continued)

			•	-					
Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201390007A	Sample number	r(s): 1316581-1	316583,1316589,1	1316591.131	6593				
PCB-1016	0.00501	0.00442			88		60-117		
PCB-1260	0.00501	0.00507			101		57-134		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201430006A	Sample number	r(s): 1316581-1	316583,1316589,1	1316591,131	6593				
Aldrin	0.000100	0.0000664			66		28-119		
Alpha BHC	0.000101	0.000109			108		47-132		
Beta BHC	0.000100	0.000114			114		27-143		
Gamma BHC - Lindane	0.000100	0.000110			110		29-136		
Alpha Chlordane	0.000100	0.0000955			95		28-136		
4,4'-Ddd	0.000201	0.000199			99		42-148		
4,4'-Dde	0.000200	0.000170			85		22-138		
4,4'-Ddt	0.000201	0.000200			99		40-145		
Delta BHC	0.000100	0.000110			110		28-141		
Dieldrin	0.000200	0.000205			103		31-145		
Endosulfan I	0.000100	0.000104			104		40-138		
Endosulfan II	0.000200	0.000207			104		27-138		
Endosulfan Sulfate	0.000200	0.000203			102		41-133		
Endrin	0.000200	0.000202			101		35-143		
Heptachlor	0.000100	0.0000762			76		38-135		
·	na/l	na/I	na/l	na/l					
	ng/l	ng/l	ng/l	ng/l					
Batch number: 20138002	•	` '	316583,1316589,1	1316591,131					
6:2-Fluorotelomersulfonic acid	24.28	24.35			100		56-140		
8:2-Fluorotelomersulfonic acid	24.52	25.96			106		58-143		
NEtFOSAA	25.6	25.61			100		53-140		
NMeFOSAA	25.6	27.86			109		59-141		
Perfluorobutanesulfonic acid	22.64	20.41			90		67-135		
Perfluorobutanoic acid	25.6	20.93			82		63-160		
Perfluorodecanesulfonic acid	24.64	20.96			85		62-135		
Perfluorodecanoic acid	25.6	24.53			96		66-141		
Perfluorododecanoic acid	25.6	25.46			99		65-143		
Perfluoroheptanesulfonic acid	24.36	23.53			97		67-138		
Perfluoroheptanoic acid	25.6	26.49			103		69-144		
Perfluorohexanesulfonic acid	24.2	22.9			95		63-132		
Perfluorohexanoic acid	25.6	22.92			90		69-139		
Perfluorononanoic acid	25.6	25.59			100		66-144		
Perfluorooctanesulfonamide	25.6	24.3			95		67-126		
Perfluorooctanesulfonic acid	24.48	19.52			80		53-129		
Perfluorooctanoic acid	25.6	22.99			90		67-139		
Perfluoropentanoic acid	25.6	23.15			90		73-135		
Perfluorotetradecanoic acid	25.6	24.68			96		69-141		
Perfluorotridecanoic acid	25.6	23.91			93		66-146		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

LCS/LCSD (continued)

			`	•					
Analysis Name	LCS Spike Added ng/l	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Perfluoroundecanoic acid	25.6	23.68			93		66-140		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201390571301 Mercury	Sample number(s):	-	_	•	91		80-110		
Batch number: 201390571302 Mercury	Sample number(s): 0.00100	: 1316585-1; 0.000919	316593		92		80-110		
Batch number: 201391404403 Silver	Sample number(s): 0.0200	: 1316581-1; 0.0200	316584		100		80-120		
Batch number: 201391404404 Silver	Sample number(s): 0.0200	: 1316585-1; 0.0208	316593		104		80-120		
Batch number: 201391404703A Arsenic Barium Beryllium Cadmium Chromium Copper Lead	Sample number(s): 0.0100 0.0500 0.00400 0.00500 0.0500 0.00500	0.0101 0.0489 0.00386 0.00512 0.0473 0.0487 0.00490	316584		101 98 97 102 95 97		85-120 80-120 90-112 84-120 90-115 89-120 90-110		
Manganese Nickel Selenium Zinc	0.0500 0.0500 0.0100 0.500	0.0524 0.0510 0.0101 0.513			105 102 101 103		89-120 90-114 90-113 90-115		
Batch number: 201391404704A Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Zinc	Sample number(s): 0.0100 0.0500 0.00400 0.00500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	: 1316585-1: 0.0103 0.0510 0.00397 0.00521 0.0480 0.0497 0.00502 0.0518 0.0517 0.0103 0.524	316593		103 102 99 104 96 99 100 104 103 103		85-120 80-120 90-112 84-120 90-115 89-120 90-110 89-120 90-114 90-113 90-115		
Batch number: 201410571303 Mercury	Sample number(s)		0.00100	0.000812	80	81	80-110	1	20
Batch number: 201411404403 Silver	Sample number(s): 0.0200	: 1316594 0.0204	0.0200	0.0201	102	100	80-120	2	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

LCS/LCSD (continued)

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201411404703A	Sample number	(s): 1316594							
Arsenic	0.0100	0.0104	0.0100	0.00997	104	100	85-120	5	20
Barium	0.0500	0.0491	0.0500	0.0499	98	100	80-120	2	20
Beryllium	0.00400	0.00379	0.00400	0.00386	95	96	90-112	2	20
Cadmium	0.00500	0.00493	0.00500	0.00508	99	102	84-120	3	20
Chromium	0.0500	0.0500	0.0500	0.0502	100	100	90-115	0	20
Copper	0.0500	0.0512	0.0500	0.0508	102	102	89-120	1	20
Lead	0.00500	0.00521	0.00500	0.00518	104	104	90-110	1	20
Manganese	0.0500	0.0533	0.0500	0.0536	107	107	89-120	0	20
Nickel	0.0500	0.0510	0.0500	0.0509	102	102	90-114	0	20
Selenium	0.0100	0.00985	0.0100	0.00982	99	98	90-113	0	20
Zinc	0.500	0.505	0.500	0.507	101	101	90-115	0	20
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20141117101A	Sample number	(s): 1316581-1	316582,1316584						
Total Cyanide (water)	0.200	0.220	•		110		90-110		
Batch number: 20141117101B	Sample number	(s): 1316589,1	316591,1316593						
Total Cyanide (water)	0.200	0.220			110		90-110		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20137027601A	Sample number	(s): 1316581-1	316584,1316589, ⁴	1316591,1316	5593				
Hexavalent Chromium	0.200	0.200			100		90-110		

MS/MSD

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 5201422AA	Sample number	er(s): 1316581-	1316583,1	316589,131659 ²	1 UNSPK: 1:	316581				
Acetone	0.00782	0.150	0.180	0.150	0.171	115	109	54-157	5	30
Acrolein	N.D.	0.150	0.136	0.150	0.133	90	89	47-136	2	30
Acrylonitrile	N.D.	0.100	0.0954	0.100	0.0938	95	94	60-129	2	30
Benzene	N.D.	0.0200	0.0212	0.0200	0.0208	106	104	80-120	2	30
Bromodichloromethane	N.D.	0.0200	0.0198	0.0200	0.0197	99	99	71-120	1	30
Bromoform	N.D.	0.0200	0.0180	0.0200	0.0178	90	89	51-120	1	30
Bromomethane	N.D.	0.0200	0.0225	0.0200	0.0218	112	109	53-128	3	30
2-Butanone	N.D.	0.150	0.143	0.150	0.141	95	94	59-135	1	30
t-Butyl alcohol	N.D.	0.200	0.191	0.200	0.197	95	98	60-130	3	30
n-Butylbenzene	N.D.	0.0200	0.0222	0.0200	0.0230	111	115	76-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
sec-Butylbenzene	N.D.	0.0200	0.0224	0.0200	0.0224	112	112	77-120	0	30
tert-Butylbenzene	N.D.	0.0200	0.0223	0.0200	0.0222	111	111	78-120	1	30
Carbon Disulfide	N.D.	0.0200	0.0185	0.0200	0.0182	92	91	65-128	1	30
Carbon Tetrachloride	N.D.	0.0200	0.0213	0.0200	0.0208	107	104	64-134	2	30
Chlorobenzene	N.D.	0.0200	0.0222	0.0200	0.0219	111	110	80-120	1	30
Chloroethane	N.D.	0.0200	0.0220	0.0200	0.0219	110	109	55-123	0	30
Chloroform	N.D.	0.0200	0.0213	0.0200	0.0209	106	104	80-120	2	30
Chloromethane	N.D.	0.0200	0.0222	0.0200	0.0217	111	109	56-121	2	30
1,2-Dibromo-3-chloropropane	N.D.	0.0200	0.0198	0.0200	0.0197	99	98	47-131	1	30
Dibromochloromethane	N.D.	0.0200	0.0198	0.0200	0.0196	99	98	71-120	1	30
1,2-Dibromoethane	N.D.	0.0200	0.0209	0.0200	0.0207	104	104	77-120	1	30
1,2-Dichlorobenzene	N.D.	0.0200	0.0220	0.0200	0.0218	110	109	80-120	1	30
1,3-Dichlorobenzene	N.D.	0.0200	0.0221	0.0200	0.0217	111	108	80-120	2	30
1,4-Dichlorobenzene	N.D.	0.0200	0.0222	0.0200	0.0220	111	110	80-120	1	30
Dichlorodifluoromethane	N.D.	0.0200	0.0216	0.0200	0.0210	108	105	41-127	3	30
1,1-Dichloroethane	N.D.	0.0200	0.0210	0.0200	0.0207	105	104	80-120	1	30
1,2-Dichloroethane	N.D.	0.0200	0.0207	0.0200	0.0204	103	102	73-124	2	30
1,1-Dichloroethene	N.D.	0.0200	0.0209	0.0200	0.0213	105	106	80-131	2	30
cis-1,2-Dichloroethene	N.D.	0.0200	0.0222	0.0200	0.0222	111	111	80-120	0	30
trans-1,2-Dichloroethene	N.D.	0.0200	0.0216	0.0200	0.0211	108	105	80-120	2	30
1,2-Dichloroethene (Total)	N.D.	0.0400	0.0438	0.0400	0.0433	110	108	80-120	1	30
1,2-Dichloropropane	N.D.	0.0200	0.0212	0.0200	0.0211	106	105	80-120	1	30
cis-1,3-Dichloropropene	N.D.	0.0200	0.0195	0.0200	0.0193	98	97	75-120	1	30
trans-1,3-Dichloropropene	N.D.	0.0200	0.0193	0.0200	0.0192	96	96	67-120	1	30
Ethylbenzene	N.D.	0.0200	0.0224	0.0200	0.0221	112	111	80-120	1	30
Methyl Acetate	N.D.	0.0200	0.0193	0.0200	0.0187	96	93	54-136	3	30
Methyl Tertiary Butyl Ether	0.00284	0.0200	0.0222	0.0200	0.0220	97	96	69-122	1	30
Methylene Chloride	N.D.	0.0200	0.0212	0.0200	0.0209	106	105	80-120	2	30
n-Propylbenzene	N.D.	0.0200	0.0229	0.0200	0.0227	115	113	79-121	1	30
Styrene	N.D.	0.0200	0.0221	0.0200	0.0217	110	109	80-120	2	30
1,1,2,2-Tetrachloroethane	N.D.	0.0200	0.0215	0.0200	0.0208	108	104	72-120	3	30
Tetrachloroethene	N.D.	0.0200	0.0230	0.0200	0.0226	115	113	80-120	2	30
Toluene	N.D.	0.0200	0.0218	0.0200	0.0215	109	108	80-120	1	30
1,1,1-Trichloroethane	N.D.	0.0200	0.0212	0.0200	0.0208	106	104	67-126	2	30
1,1,2-Trichloroethane	N.D.	0.0200	0.0224	0.0200	0.0216	112	108	80-120	4	30
Trichloroethene	N.D.	0.0200	0.0218	0.0200	0.0214	109	107	80-120	2	30
Trichlorofluoromethane	N.D.	0.0200	0.0245	0.0200	0.0238	123	119	55-135	3	30
1,2,4-Trimethylbenzene	N.D.	0.0200	0.0218	0.0200	0.0216	109	108	75-120	1	30
1,3,5-Trimethylbenzene	N.D.	0.0200	0.0221	0.0200	0.0220	111	110	75-120	1	30
Vinyl Chloride	N.D.	0.0200	0.0245	0.0200	0.0237	122*	119	56-120	3	30
Xylene (Total)	N.D.	0.0600	0.0677	0.0600	0.0669	113	112	80-120	1	30
	mg/l	mg/l	mg/l	mg/l	mg/l					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 20143WAA026	Sample number	er(s): 1316581-	1316583,1	316589,1316591	1,1316593 L	JNSPK: 13	16581			
Acenaphthene	0.000550	0.0519	0.0441	0.0517	0.0437	84	83	52-114	1	30
Acenaphthylene	N.D.	0.0519	0.0423	0.0517	0.0427	81	83	56-127	1	30
Acetophenone	N.D.	0.0519	0.0434	0.0517	0.0442	84	86	61-114	2	30
Anthracene	N.D.	0.0519	0.0455	0.0517	0.0469	88	91	67-116	3	30
Atrazine	N.D.	0.0519	0.0461	0.0517	0.0477	89	92	71-133	3	30
Benzaldehyde	N.D.	0.0519	0.0445	0.0517	0.0442	86	86	55-116	1	30
Benzidine	N.D.	0.259	0.110	0.258	0.102	42	39	25-77	8	30
Benzo(a)anthracene	N.D.	0.0519	0.0506	0.0517	0.0510	98	99	68-123	1	30
Benzo(a)pyrene	N.D.	0.0519	0.0479	0.0517	0.0474	92	92	71-117	1	30
Benzo(b)fluoranthene	N.D.	0.0519	0.0485	0.0517	0.0477	94	92	69-121	2	30
Benzo(g,h,i)perylene	N.D.	0.0519	0.0395	0.0517	0.0414	76	80	60-119	5	30
Benzo(k)fluoranthene	N.D.	0.0519	0.0468	0.0517	0.0492	90	95	69-122	5	30
1,1'-Biphenyl	N.D.	0.0519	0.0422	0.0517	0.0423	81	82	56-109	0	30
Butylbenzylphthalate	N.D.	0.0519	0.0476	0.0517	0.0472	92	91	40-133	1	30
Di-n-butylphthalate	N.D.	0.0519	0.0467	0.0517	0.0473	90	92	58-125	1	30
Caprolactam	N.D.	0.0519	0.0140	0.0517	0.0150	27	29	10-57	7	30
Carbazole	N.D.	0.0519	0.0482	0.0517	0.0490	93	95	64-127	2	30
bis(2-Chloroethyl)ether	N.D.	0.0519	0.0391	0.0517	0.0395	75	76	58-108	1	30
bis(2-Chloroisopropyl)ether	N.D.	0.0519	0.0392	0.0517	0.0399	76	77	44-108	2	30
2-Chloronaphthalene	N.D.	0.0519	0.0445	0.0517	0.0450	86	87	51-107	1	30
2-Chlorophenol	N.D.	0.0519	0.0403	0.0517	0.0393	78	76	57-105	3	30
Chrysene	N.D.	0.0519	0.0463	0.0517	0.0473	89	92	65-121	2	30
Dibenz(a,h)anthracene	N.D.	0.0519	0.0435	0.0517	0.0451	84	87	63-128	4	30
Dibenzofuran	N.D.	0.0519	0.0449	0.0517	0.0448	87	87	60-112	0	30
1,2-Dichlorobenzene	N.D.	0.0519	0.0367	0.0517	0.0381	71	74	35-104	4	30
1,3-Dichlorobenzene	N.D.	0.0519	0.0351	0.0517	0.0369	68	72	28-103	5	30
1,4-Dichlorobenzene	N.D.	0.0519	0.0360	0.0517	0.0371	69	72	34-97	3	30
3,3'-Dichlorobenzidine	N.D.	0.0519	0.0259	0.0517	0.0278	50	54	42-107	7	30
2,4-Dichlorophenol	N.D.	0.0519	0.0458	0.0517	0.0448	88	87	65-110	2	30
Diethylphthalate	N.D.	0.0519	0.0496	0.0517	0.0467	96	90	42-126	6	30
2,4-Dimethylphenol	N.D.	0.0519	0.0387	0.0517	0.0388	75	75	53-93	0	30
Dimethylphthalate	N.D.	0.0519	0.0462	0.0517	0.0414	89	80	10-134	11	30
4,6-Dinitro-2-methylphenol	N.D.	0.0519	0.0479	0.0517	0.0494	92	96	63-129	3	30
2,4-Dinitrophenol	N.D.	0.104	0.0894	0.103	0.0852	86	82	44-134	5	30
2,4-Dinitrotoluene	N.D.	0.0519	0.0501	0.0517	0.0476	97	92	66-122	5	30
2,6-Dinitrotoluene	N.D.	0.0519	0.0491	0.0517	0.0469	95	91	71-120	5	30
1,2-Diphenylhydrazine	N.D.	0.0519	0.0472	0.0517	0.0491	91	95	64-120	4	30
bis(2-Ethylhexyl)phthalate	N.D.	0.0519	0.0474	0.0517	0.0484	91	94	61-129	2	30
Fluoranthene	N.D.	0.0519	0.0480	0.0517	0.0494	93	96	63-122	3	30
Fluorene	N.D.	0.0519	0.0474	0.0517	0.0464	91	90	56-115	2	30
Hexachlorobenzene	N.D.	0.0519	0.0464	0.0517	0.0490	89	95	60-117	6	30
Hexachlorobutadiene	N.D.	0.0519	0.0432	0.0517	0.0452	83	87	20-108	4	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Hexachlorocyclopentadiene	N.D.	0.104	0.0491	0.103	0.0493	47	48	10-91	1	30
Hexachloroethane	N.D.	0.0519	0.0351	0.0517	0.0366	68	71	23-95	4	30
Indeno(1,2,3-cd)pyrene	N.D.	0.0519	0.0414	0.0517	0.0434	80	84	59-123	5	30
Isophorone	N.D.	0.0519	0.0452	0.0517	0.0460	87	89	63-120	2	30
2-Methylnaphthalene	N.D.	0.0519	0.0424	0.0517	0.0438	82	85	51-107	3	30
2-Methylphenol	N.D.	0.0519	0.0424	0.0517	0.0403	82	78	53-107	5	30
4-Methylphenol	N.D.	0.0519	0.0426	0.0517	0.0388	82	75	49-108	9	30
Naphthalene	0.000660	0.0519	0.0409	0.0517	0.0429	78	82	51-102	5	30
2-Nitroaniline	N.D.	0.0519	0.0488	0.0517	0.0485	94	94	66-126	1	30
Nitrobenzene	N.D.	0.0519	0.0456	0.0517	0.0459	88	89	59-109	1	30
N-Nitrosodimethylamine	N.D.	0.0519	0.0255	0.0517	0.0271	49	52	17-101	6	30
N-Nitroso-di-n-propylamine	N.D.	0.0519	0.0443	0.0517	0.0458	85	89	58-120	3	30
N-Nitrosodiphenylamine	N.D.	0.0519	0.0469	0.0517	0.0481	90	93	60-126	3	30
Di-n-octylphthalate	N.D.	0.0519	0.0468	0.0517	0.0474	90	92	60-136	1	30
Pentachlorophenol	N.D.	0.0519	0.0506	0.0517	0.0519	98	100	54-131	3	30
Phenanthrene	N.D.	0.0519	0.0457	0.0517	0.0466	88	90	65-113	2	30
Phenol	N.D.	0.0519	0.0302	0.0517	0.0250	58	48	19-79	19	30
Pyrene	N.D.	0.0519	0.0452	0.0517	0.0459	87	89	65-115	1	30
Pyridine	N.D.	0.0519	0.0205	0.0517	0.0200	40	39	23-64	3	30
1,2,4-Trichlorobenzene	N.D.	0.0519	0.0412	0.0517	0.0419	80	81	34-106	2	30
2,4,5-Trichlorophenol	N.D.	0.0519	0.0503	0.0517	0.0487	97	94	66-118	3	30
2,4,6-Trichlorophenol	N.D.	0.0519	0.0483	0.0517	0.0455	93	88	69-117	6	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 20139WAC026	Sample number	er(s): 1316581	-1316583,13	316589,131659	1,1316593 U	NSPK: 13	16581			
1,4-Dioxane	0.118	1.03	0.562	1.01	0.568	43	45	18-91	1	30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201400007A	Sample number	er(s): 1316581	-1316583.13	316589,131659	1.1316593 U	NSPK: 13	16581			
2,4-D	N.D.	0.00242	0.00385	0.00241	0.00410	159*	170*	70-134	6	30
2,4,5-T	N.D.	0.000241	0.000452	0.000241	0.000488	187*	203*	69-164	8	30
2,4,5-TP	N.D.	0.000241	0.000387	0.000241	0.000419	160*	174*	81-137	8	30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201390007A	Sample number	er(s): 1316581	-1316583,13	316589,131659	1,1316593 U	NSPK: 13	16581			
PCB-1016	N.D.	0.00505	0.00455	0.00507	0.00480	90	95	60-117	5	30
PCB-1260	N.D.	0.00505	0.00447	0.00507	0.00467	89	92	57-134	4	30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201430006A	Sample number	er(s): 1316581	-1316583,13	316589,131659	1,1316593 U	NSPK: 13	16581			
Aldrin	N.D.	` '	0.0000627	0.000103	0.0000748	62	72	28-119	18	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Alpha BHC	N.D.	0.000102	0.0000916	0.000105	0.0000985	90	94	47-132	7	30
Beta BHC	N.D.	0.000101	0.0000932	0.000103	0.000104	92	101	27-143	11	30
Gamma BHC - Lindane	N.D.	0.000101	0.0000893	0.000103	0.0000992	89	96	29-136	10	30
Alpha Chlordane	N.D.	0.000101	0.0000822	0.000103	0.0000950	82	92	28-136	14	30
4,4'-Ddd	N.D.	0.000203	0.000157	0.000208	0.000184	77	89	42-148	16	30
4,4'-Dde	N.D.	0.000202	0.000155	0.000207	0.000189	77	91	22-138	20	30
4,4'-Ddt	N.D.	0.000203	0.000205	0.000208	0.000239	101	115	40-145	15	30
Delta BHC	N.D.	0.000101	0.0000871	0.000103	0.0000978	86	95	28-141	12	30
Dieldrin	N.D.	0.000202	0.000167	0.000207	0.000183	83	89	31-145	9	30
Endosulfan I	N.D.	0.000101	0.0000867	0.000103	0.0000961	86	93	40-138	10	30
Endosulfan II	N.D.	0.000202	0.000181	0.000207	0.000215	90	104	27-138	17	30
Endosulfan Sulfate	N.D.	0.000202	0.000191	0.000207	0.000219	94	106	41-133	14	30
Endrin	N.D.	0.000202	0.000175	0.000207	0.000190	87	92	35-143	8	30
Heptachlor	N.D.	0.000101	0.0000651	0.000103	0.0000788	65	76	38-135	19	30
	ng/l	ng/l	ng/l	ng/l	ng/l					
Batch number: 20138002	Sample numbe	er(s): 1316581	-1316583,13	16589,131659	91,1316593 UI	NSPK: 13	16581			
6:2-Fluorotelomersulfonic acid	N.D.	241.06	225.18	240.49	227.49	93	95	56-140	1	30
8:2-Fluorotelomersulfonic acid	N.D.	243.45	228.34	242.87	233.58	94	96	58-143	2	30
NEtFOSAA	N.D.	254.17	250.11	253.57	243.44	98	96	53-140	3	30
NMeFOSAA	N.D.	254.17	273.75	253.57	283.02	108	112	59-141	3	30
Perfluorobutanesulfonic acid	N.D.	224.78	204.81	224.25	209.6	91	93	67-135	2	30
Perfluorobutanoic acid	N.D.	254.17	218.05	253.57	215.98	86	85	63-160	1	30
Perfluorodecanesulfonic acid	N.D.	244.64	214.27	244.06	211.98	88	87	62-135	1	30
Perfluorodecanoic acid	N.D.	254.17	249.79	253.57	243.46	98	96	66-141	3	30
Perfluorododecanoic acid	N.D.	254.17	242.86	253.57	237.64	96	94	65-143	2	30
Perfluoroheptanesulfonic acid	N.D.	241.86	212.72	241.28	211.89	88	88	67-138	0	30
Perfluoroheptanoic acid	8.78	254.17	245.43	253.57	245.94	93	94	69-144	0	30
Perfluorohexanesulfonic acid	N.D.	240.27	205.93	239.7	215.22	86	90	63-132	4	30
Perfluorohexanoic acid	10.72	254.17	254.51	253.57	242.81	96	92	69-139	5	30
Perfluorononanoic acid	N.D.	254.17	250.58	253.57	243.71	99	96	66-144	3	30
Perfluorooctanesulfonamide	N.D.	254.17	241.89	253.57	231.22	95	91	67-126	5	30
Perfluorooctanesulfonic acid	N.D.	243.05	199.54	242.47	200.8	82	83	53-129	1	30
Perfluorooctanoic acid	51.79	254.17	282.57	253.57	277.52	91	89	67-139	2	30
Perfluoropentanoic acid	11.69	254.17	237.21	253.57	237.25	89	89	73-135	0	30
Perfluorotetradecanoic acid	N.D.	254.17	248.57	253.57	245.02	98	97	69-141	1	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ng/l	MS Spike Added ng/l	MS Conc ng/l	MSD Spike Added ng/l	MSD Conc ng/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Perfluorotridecanoic acid Perfluoroundecanoic acid	N.D. N.D.	254.17 254.17	240.89 251.28	253.57 253.57	227.79 251.21	95 99	90 99	66-146 66-140	6 0	30 30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201390571301 Mercury	Sample numbe N.D.	er(s): 1316581- 0.00100	-1316584 UI 0.000942	NSPK: 1316581 0.00100	0.000944	94	94	80-120	0	20
Batch number: 201390571302 Mercury	Sample number N.D.	er(s): 1316585- 0.00100	-1316593 UI 0.000908	NSPK: 1316585 0.00100	0.000874	91	87	80-120	4	20
Batch number: 201391404403 Silver	Sample numbe N.D.	er(s): 1316581- 0.0200	-1316584 UI 0.0201	NSPK: 1316581 0.0200	0.0200	100	100	75-125	1	20
Batch number: 201391404404 Silver	Sample numbe N.D.	er(s): 1316585- 0.0200	-1316593 UI 0.0208	NSPK: 1316585 0.0200	0.0209	104	105	75-125	1	20
Batch number: 201391404703A Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Zinc	Sample number 0.00304 0.325 N.D. N.D. 0.00206 0.00569 0.0215 0.352 0.00185 0.000326 0.0444	er(s): 1316581- 0.0100 0.0500 0.00400 0.00500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	-1316584 UI 0.0132 0.346 0.00389 0.00511 0.0491 0.0556 0.0318 0.427 0.0525 0.0108 0.554	NSPK: 1316581 0.0100 0.0500 0.00400 0.00500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0140 0.350 0.00390 0.00526 0.0509 0.0572 0.0393 0.430 0.0542 0.0109 0.583	102 41 (2) 97 102 94 100 205 (2) 150 (2) 101 104 102	110 49 (2) 98 105 98 103 355 (2) 156 (2) 105 106 108	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	6 1 0 3 4 3 21* 1 3 1 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Batch number: 201391404704A Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Zinc	Sample number 0.00176 0.283 N.D. N.D. 0.000665 N.D. 0.000151 0.310 0.00119 N.D. 0.0115 mg/l	er(s): 1316585- 0.0100 0.0500 0.00400 0.00500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.500 mg/l	-1316593 UI 0.0119 0.370 0.00396 0.00538 0.0470 0.0485 0.00524 0.328 0.0505 0.0106 0.529 mg/l	NSPK: 1316585 0.0100 0.0500 0.00500 0.00500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0100 0.500 mg/l	0.0115 0.412 0.00386 0.00515 0.0470 0.0480 0.00515 0.298 0.0516 0.0110 0.547 mg/l	101 173 (2) 99 108 93 97 102 36 (2) 99 106 104	98 258 (2) 96 103 93 96 100 -24 (2) 101 110	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	3 11 3 4 0 1 2 10 2 3 3	20 20 20 20 20 20 20 20 20 20 20 20

Batch number: 20141117101A Sample number(s): 1316581-1316582,1316584 UNSPK: 1316581

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Total Cyanide (water)	N.D.	0.200	0.223			112		72-114		
Batch number: 20141117101B Total Cyanide (water)	Sample numbe N.D.	er(s): 1316589, 0.200	1316591,1: 0.198	316593 UNSPK:	1316589	99		72-114		
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 20137027601A	Sample numbe	er(s): 1316581-	1316584,1	316589,1316591	,1316593 L	JNSPK: 131	16581			
Hexavalent Chromium	N.D.	0.200	N.D.	0.200	N.D.	0*	0*	85-115	0	5

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/l	DUP Conc mg/l	DUP RPD	DUP RPD Max
Batch number: 201390571301	Sample number(s): 1316	5581-1316584 BKG: 13	16581	20
Mercury	N.D.	N.D.	0 (1)	
Batch number: 201390571302	Sample number(s): 1316	8585-1316593 BKG: 13	16585	20
Mercury	N.D.	N.D.	0 (1)	
Batch number: 201391404403	Sample number(s): 1316	8581-1316584 BKG: 13	16581	20
Silver	N.D.	N.D.	0 (1)	
Batch number: 201391404404	Sample number(s): 1316	8585-1316593 BKG: 13	16585	20
Silver	N.D.	N.D.	0 (1)	
Batch number: 201391404703A Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium	Sample number(s): 1316 0.00304 0.325 N.D. N.D. 0.00206 0.00569 0.0215 0.352 0.00185 0.000326	0.00285 0.319 N.D. N.D. 0.00197 0.00568 0.0215 0.340 0.00198 0.000337	16581 6 (1) 2 0 (1) 0 (1) 5 (1) 0 0 4 7 (1) 3 (1)	20 20 20 20 20 20 20 20 20 20 20
Zinc	0.0444	0.0424	5 (1)	20
Batch number: 201391404704A	Sample number(s): 1316	6585-1316593 BKG: 13	16585	20
Arsenic	0.00176	0.00161	9 (1)	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Laboratory Duplicate (continued)

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/l	mg/l		
Barium	0.283	0.280	1	20
Beryllium	N.D.	N.D.	0 (1)	20
Cadmium	N.D.	N.D.	0 (1)	20
Chromium	0.000665	0.000588	12 (1)	20
Copper	N.D.	N.D.	0 (1)	20
Lead	0.000151	0.000123	21* (1)	20
Manganese	0.310	0.302	3	20
Nickel	0.00119	0.00106	12 (1)	20
Selenium	N.D.	N.D.	0 (1)	20
Zinc	0.0115	0.0111	4 (1)	20
	mg/l	mg/l		
Batch number: 20141117101A	Sample number(s): 1316	6581-1316582,1316584	BKG: 1316581	
Total Cyanide (water)	N.D.	N.D.	0 (1)	20
Batch number: 20141117101B	Sample number(s): 1316	6589,1316591,1316593	BKG: 1316589	
Total Cyanide (water)	N.D.	N.D.	0 (1)	20
	mg/l	mg/l		
Batch number: 20137027601A	Sample number(s): 1316	6581-1316584,1316589	,1316591,131659	93 BKG: 1316581
Hexavalent Chromium	N.D.	N.D.	0 (1)	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C Batch number: 5201422AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1316581	97	103	100	97
1316582	99	102	101	100
1316583	99	101	101	100
1316589	97	102	100	96
1316591	97	103	100	97
Blank	97	104	99	95
LCS	99	101	101	99
MS	99	102	101	100
MSD	99	101	101	100
Limits:	80-120	80-120	80-120	80-120

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C Batch number: N201412AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1316593	95	99	89	88
1316595	94	97	98	89
Blank	94	94	98	90
LCS	90	99	98	91
LCSD	93	95	99	92
Limits:	80-120	80-120	80-120	80-120

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20139WAC026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1316581	79	86	82
1316582	97	94	98
1316583	88	97	98
1316589	89	28	81
1316591	86	44	78
1316593	82	79	75
Blank	83	81	86
LCS	72	81	70
MS	97	94	98
MSD	88	97	98
Limits:	34-125	10-138	15-121

Analysis Name: TCL SW846 8270D MINI

Batch number: 20143WAA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14		
1316581	36	42	92	75	71	90		
1316582	52	55	98	82	78	88		
1316583	43	52	95	85	80	94		
1316589	12	21	63	79	76	90		
1316591	16	21	70	71	70	93		
1316593	34	47	93	77	74	96		
Blank	26	37	88	66	61	78		
LCS	42	58	96	83	78	96		
MS	52	55	98	82	78	88		
MSD	43	52	95	85	80	94		
Limits:	10-67	10-84	18-141	38-113	44-102	34-128		

Analysis Name: 7 PCBs + Total Water

Batch number: 201390007A

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 7 PCBs + Total Water

Batch number: 201390007A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1316581	69	54	73	52
1316582	65	52	70	55
1316583	68	47	74	48
1316589	67	94	71	96
1316591	73	75	79	75
1316593	62	35	63	33
Blank	66	68	72	67
LCS	46	70	50	72
MS	65	52	70	55
MSD	68	47	74	48
Limits:	33-137	10-148	33-137	10-148

Analysis Name: Herbicides in Water 8151A

Batch number: 201400007A

	2,4-DCAA-D1	2,4-DCAA-D2	
1316581	122	117	
1316582	133	120	
1316583	138	133	
1316589	124	127	
1316591	119	122	
1316593	123	123	
Blank	81	80	
LCS	139	141	
MS	133	120	
MSD	138	133	
Limits:	34-142	34-142	

imits: 34-142

Analysis Name: NY Part 375 Pests Water

Batch number: 201430006A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1316581	57	30*	55	32
1316582	71	42	67	44
1316583	81	43	74	44
1316589	83	93	79	99
1316591	73	82	73	87
1316593	83	51	82	54
Blank	69	67	68	74
LCS	78	69	76	73
MS	71	42	67	44
MSD	81	43	74	44

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless

attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY Part 375 Pests Water

Batch number: 201430006A

Limits: 29-129 32-149 29-129 32-149

Analysis Name: NY 21 PFAS Water

Batch number: 20138002

Batch numb	er: 20138002					
	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1316581	108	102	103	107	103	103
1316582	112	115	118	107	107	112
1316583	98	99	100	100	99	101
1316589	108	117	123	105	105	111
1316591	102	103	104	100	103	102
1316593	107	103	104	102	106	104
Blank	108	105	103	102	104	100
_CS	105	102	104	104	96	94
MS	112	115	118	107	107	112
MSD	98	99	100	100	99	101
Limits:	43-130	38-150	23-175	36-137	35-143	33-140
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1316581	163	106	108	117	108	150
1316582	161	113	108	116	107	144
1316583	143	102	95	101	99	130
1316589	149	111	110	115	105	115
1316591	107	106	101	98	103	100
1316593	112	107	108	101	111	105
Blank	109	105	106	101	113	108
LCS	101	103	107	103	104	102
MS	161	113	108	116	107	144
MSD	143	102	95	101	99	130
Limits:	29-182	52-124	52-121	48-130	50-124	37-169
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1316581	106	112	128	107	101	90
1316582	114	110	127	106	104	93
1316583	102	104	120	102	96	91
1316589	111	113	126	103	102	98
1316591	113	116	128	108	105	103
1316593	117	120	124	114	109	101
Blank	121	114	125	117	111	105
LCS	118	117	127	113	109	101
MS	114	110	127	106	104	93

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2099869

Reported: 05/27/2020 08:01

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Water

Batch number: 20138002

	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA	
MSD	102	104	120	102	96	91	
Limits:	36-143	44-128	42-149	36-127	21-134	10-134	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

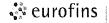
eurofins-

Lancaster Laboratories
Environmental

Acct. # 45508 Group # 204864 Sample # 1316581-45

Client Information

Matrix


Analysis Requested
Preservation and Filtration Codes

For Lab Use Only
FSC:

Client Information					N		Matrix			Analysis Requested For Lab Use Only													
Client: LANKAN TEC	Acct. #:	. ,				松	2 🗀			70.0	P				d Filti			les		FSC:	- Oilly		
Project Name/#: (70290)	PWSID #:		_	Tissue				1				- A							SCR#:	- 11			
Project Manager:	P.O. #:				TISE.	Ground	Surface				PRST		To the second		3	Je.		ĺ		Pres H≃HCl	servation T	n Codes	ı
GREGE WYKA	P.O. #:					<u>a</u>	Ŋ.		6			METHE 3	Na		DOEMNE	Menres				N=HNO ₃	E	3=NaOH	1
Sampler REID BALLIND	Quote #:			nent		SS SS		Containers		HEED,		TRIVERNI		D	Wa				S=H ₂ SO ₄ F=Field F	iltered C			
State where samples were collected: For Compliance: Yes	No 🗆			aite	Sediment	Potable	NPDES		of Con	WSS	SUCE	TAL	I \		1,1	נשחז					Remar	<u>K8</u>	1
Sample Identification	Coli	ected	Grab	Composite	Soil		water	Other:	Total # c	7		355	HEXAUTOEUT	CHAINSK	PETERS	Dissamen							ĺ
MW13 051820	Date	Time	9	ŏ	တိ	3	Š	ŏ	ြို	1/2	百	P233	·#		Ü	(l
MN13N -05/620	5/16/20	750	-			$\vdash \vdash$			12	X		×	X		×	X				17 HNG	Co PLAS	re is	1
MWZZ -05/600	-	1348	╀	\dashv		$\vdash \vdash$			17	X	_	×	~	×	×	X				FIELD A	LITERED	POR OUSSE	LEY
ENMISS -051630	-	950	╂╌┼			-		_	17	×	X	×		×	X	X				METALS	1200	HNO, FLA	ric
6NMSD01-051620		450	1-	\dashv		\dashv			17	X	X	X	×	×	X	4	_					METALS	
5/NFISCI - 951620		1545	╂─┼	\dashv		-		<u> </u>	加	X	X	×	<	<u>×</u>		×				AND IS	NET	FIELD ALE	KON
BNTBB1 -051620	_	-	1 +	\dashv		\dashv			74	×	×	عخ	×	×	×	➣		_					
			╂─┼	┪						₹	 		\vdash			-	\dashv			PAUL.	suocs i	NERE FIEL	b
				\dashv					_ _		\vdash					\dashv		-		FILTER	40 4		
									\vdash	\vdash	+			-	-	-							
Turnare and Time (TAT) Requested	(please circl	е)	Relinqui	shed t	у	1	1		101	_	Date	8:	Time	4	Receive	ed by	71	!	_		Date	Time	
	ısh		1	1	2	1/1	2	~			3/	g/w	16	25	1	W	NE	~	_		14/447		
(Rush TAT is subject to laboratory approval and surcharge)		Relinguis								Date	, m	Time	20	Receive	ed by					Date	Time	
Requested TAT in business days:			Relinquis	shed b	y y	<u> </u>	<u>~</u>	_			16NO	120	Time	O	Receive	ad by			_				
E-mail address: Thurse Langue on W	knou	معن لعبرياته											,,,,,		, 1000141	ou oy					Date	Time	
E-mail address:			Relinquis	shed b	у				/		Date		Time		Receive	ed by	,)			Date	Time	
Data Package Options (circle if re Type I (EPA Level 3	quired)		Relinquis	thad b	***			_											\angle				
Equivalent/non-CLP) Type VI (I	Raw Data (Only)	riamiqui	31180 0	, y						Date		Time		Receive	ed by	1	1	, =	- ,	Dale //n	Time	
Type III (Reduced non-CLP) NJ DKQP	TXT	RRP-13		14	Lvoc	EDD forma	Req	uired	? =@0	(es)	No									ial Carrier	3400	201950	
NYSDEC Category A or B MA MCP	CT R	CB		_	_		11: QC (N					<u>8</u> 1	No	\dashv	UP			FedEx		Other	- 31		
IMA MICE	CIF	UP	(1								ite samı	ole vol				Ten	npera	ture	upon	receipt _	046.0	_°C	

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc
The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

7044 0919

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

284713

Group Number(s):

2049869

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/16/2020

Number of Packages:

Client: Lanagn, DPC

7

Number of Projects:

4

State/Province of Origin:

<u>NY</u>

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes Yes Trip Blank Type:

HCI

Samples Intact:

No

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples:
Discrepancy in Container Qty on COC:

No

Unpacked by Melvin Sanchez

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Samples Collected Same Thermometer ID Corrected Temp Ice Present? Ice Container Elevated Temp? Day as Receipt? Therm. Type Ice Type Cooler# Matrix 20.6 IR Wet Υ Bagged Υ Υ 46730061WS Water 1 IR Wet Υ Bagged Ν Ν 46730061WS 6.0 2 Water 12.1 IR Wet Υ Bagged Υ Υ 46730061WS 3 Water IR Wet Υ Bagged Ν Ν 46730061WS 4.1 4 Water 46730061WS 8.2 IR Wet Υ Bagged Υ Υ 5 Water Ν -0.2 IR Wet Υ Bagged Ν 6 Soil 46730061WS Bagged Ν Ν 46730061WS 4.2 IR Wet Υ 7 Soil

General Comments:

Samples not frozen.

BMQL

ppb

basis

Dry weight

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm		be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

parts per billion

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: May 28, 2020 08:33

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2100197 SDG: CMS12 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SAMPLE INFORMATION

Client Sample Description	Sample Collection Date/Time	ELLE#
MW16_052020 Groundwater	05/20/2020 07:55	1317993
MW16_052020 Filtered Groundwater	05/20/2020 07:55	1317994
MW18_052020 Groundwater	05/20/2020 13:05	1317995
MW18_052020 Filtered Groundwater	05/20/2020 13:05	1317996
MW19_052020 Groundwater	05/20/2020 10:10	1317997
MW19_052020 Filtered Groundwater	05/20/2020 10:10	1317998
GWDUP01_052020 Groundwater	05/20/2020	1317999
GWDUP01_052020 Filtered Groundwater	05/20/2020	1318000
GWFB02_052020 Water	05/20/2020 14:30	1318001
GWTB02_052020 Water	05/20/2020	1318002

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2100197

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8260C, GC/MS Volatiles

Sample #s: 1317993, 1317995, 1317997

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

SW-846 8270D, GC/MS Semivolatiles

Sample #s: 1317999

In the first extraction, the recovery for the sample surrogate(s) is outside the QC acceptance limits. The sample was re-extracted within the method required holding time and the surrogates are compliant.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) from the second extraction is outside the QC acceptance limits as noted on the QC Summary. The recoveries for the target analytes in the Laboratory Control Spike(s) from the first extraction are compliant. All data is reported from the second extraction.

Sample #s: 1317995

In the first extraction, the recovery for the sample surrogate(s) is outside the QC acceptance limits. The sample was re-extracted within the method required holding time and the surrogates are compliant.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) from the second extraction is outside the QC acceptance limits as noted on the QC Summary. The recoveries for the target analytes in the Laboratory Control Spike(s) from the first extraction are compliant. All data is reported from the second extraction.

Batch #: 20147WAC026 (Sample number(s): 1317995, 1317999)

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

The recovery(ies) for the following analyte(s) in the LCS were below the acceptance window: 2-Nitroaniline, 2,4-Dimethylphenol, 2,4,6-Trichlorophenol, Isophorone, 2,6-Dinitrotoluene, Benzidine

SW-846 8270D SIM, GC/MS Semivolatiles

Sample #s: 1317993, 1317995, 1317997, 1317999, 1318001

The LCS/LCSD surrogate(s) recovery is outside the QC acceptance limits as noted on the QC Summary. Since the recovery for the target analytes is compliant, the data is reported.

Batch #: 20143WAC026 (Sample number(s): 1317993, 1317995, 1317997, 1317999, 1318001)

The recovery(ies) for one or more surrogates were below the acceptance window for sample(s) LCS

SW-846 8082A, PCBs

Sample #s: 1317993, 1317995, 1317997, 1317999

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Batch #: 201430007A (Sample number(s): 1317993, 1317995, 1317997, 1317999)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: PCB-1016, PCB-1260

The relative percent difference(s) for the following analyte(s) in the LCS/LCSD were outside acceptance windows: PCB-1016, PCB-1260

SW-846 8151A, Herbicides

Sample #s: 1317993, 1317995, 1317997

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

Sample #s: 1317999

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported. The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and no target analytes were detected, the data is reported.

Batch #: 201430018A (Sample number(s): 1317993, 1317995, 1317997, 1317999)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD exceeded the acceptance window indicating a positive bias: 2,4-D, 2,4,5-TP, 2,4,5-T

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1317999

GW 1317993

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

11997

11997

11997 11997 Methylene Chloride

1,1,2,2-Tetrachloroethane

n-Propylbenzene

Styrene

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.001 J	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	0.001 J	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.0004 J	0.0002	0.001	1

0.0003

0.0002

0.0002

0.0002

0.001

0.005

0.005

0.001

1

1

1

N.D.

N.D.

N.D.

N.D.

75-09-2

103-65-1

100-42-5

79-34-5

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

SW-846 8260C

CAS Number

127-18-4

Result

mg/l

N.D.

35 Commercial Street/170229024 **Project Name:**

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

Analysis Name

Tetrachloroethene

GC/MS Volatiles

CAT

No.

11997

Langan Eng & Env	v Services
ELLE Sample #:	GW 1317993
ELLE Group #:	2100197
Matrix: Groundwa	ater

Dilution

Factor

Limit of

mg/l

0.001

Quantitation

Method

mg/l

0.0002

Detection Limit*

		127 10 1	11.0.	0.0002	0.001	•
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1
sensi with a (outsi	port Limit Verification (RLV) stan tivity of the instrument for sample a continuing calibration verification de the 20%D criteria). The RLV low the reporting limit.	es with non-detect analytes as on standard exhibiting low resp	onse			
GC/MS	Semivolatiles SV	V-846 8270D	mg/l	mg/l	mg/l	
14242	Acenaphthene	83-32-9	N.D.	0.0001	0.0006	1
14242	Acenaphthylene	208-96-8	N.D.	0.0001	0.0006	1
14242	Acetophenone	98-86-2	N.D.	0.005	0.012	1
14242	Anthracene	120-12-7	N.D.	0.0001	0.0006	1
14242	Atrazine	1912-24-9	N.D.	0.002	0.006	1
14242	Benzaldehyde	100-52-7	N.D.	0.004	0.012	1
14242	Benzidine	92-87-5	N.D.	0.024	0.071	1
14242	Benzo(a)anthracene	56-55-3	N.D.	0.0001	0.0006	1
14242	Benzo(a)pyrene	50-32-8	N.D.	0.0001	0.0006	1
14242	Benzo(b)fluoranthene	205-99-2	N.D.	0.0001	0.0006	1
14242	Benzo(g,h,i)perylene	191-24-2	N.D.	0.0001	0.0006	1
14242	Benzo(k)fluoranthene	207-08-9	N.D.	0.0001	0.0006	1
14242	1,1'-Biphenyl	92-52-4	N.D.	0.004	0.012	1
14242	Butylbenzylphthalate	85-68-7	N.D.	0.002	0.006	1
14242 14242	Butylbenzylphthalate Di-n-butylphthalate	85-68-7 84-74-2	N.D. N.D.	0.002 0.002	0.006 0.006	1 1
	, ,,					•
14242	Di-n-butylphthalate	84-74-2	N.D.	0.002	0.006	1
14242 14242	Di-n-butylphthalate Caprolactam	84-74-2 105-60-2	N.D. N.D.	0.002 0.006	0.006 0.013	1 1
14242 14242 14242	Di-n-butylphthalate Caprolactam Carbazole	84-74-2 105-60-2 86-74-8	N.D. N.D. N.D.	0.002 0.006 0.0006	0.006 0.013 0.002	1 1 1
14242 14242 14242 14242	Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether	84-74-2 105-60-2 86-74-8 111-44-4 39638-32-9 AS #39638-32-9 and CAS #108-60-1 cannot be sep	N.D. N.D. N.D. N.D. N.D.	0.002 0.006 0.0006 0.0006	0.006 0.013 0.002 0.002	1 1 1 1
14242 14242 14242 14242	Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether¹ Bis(2-chloroisopropyl) ether C/2,2'-Oxybis(1-chloropropane) (chromatographically. The repo	84-74-2 105-60-2 86-74-8 111-44-4 39638-32-9 AS #39638-32-9 and CAS #108-60-1 cannot be sep	N.D. N.D. N.D. N.D. N.D.	0.002 0.006 0.0006 0.0006	0.006 0.013 0.002 0.002	1 1 1 1
14242 14242 14242 14242 14242	Di-n-butylphthalate Caprolactam Carbazole bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether¹ Bis(2-chloroisopropyl) ether C/2,2'-Oxybis(1-chloropropane) chromatographically. The repototal of both compounds.	84-74-2 105-60-2 86-74-8 111-44-4 39638-32-9 AS #39638-32-9 and CAS #108-60-1 cannot be sep orted result represents the con	N.D. N.D. N.D. N.D. N.D. arated	0.002 0.006 0.0006 0.0006 0.0006	0.006 0.013 0.002 0.002 0.002	1 1 1 1 1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317993

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SV	V-846 8270D	mg/l	mg/l	mg/l	
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.0001	0.0006	1
4242	Dibenzofuran	132-64-9	N.D.	0.0006	0.002	1
4242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0006	0.002	1
4242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0006	0.002	1
4242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0006	0.002	1
4242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.004	0.012	1
4242	2,4-Dichlorophenol	120-83-2	N.D.	0.0006	0.002	1
4242	Diethylphthalate	84-66-2	N.D.	0.002	0.006	1
4242	2,4-Dimethylphenol	105-67-9	N.D.	0.004	0.012	1
4242	Dimethylphthalate	131-11-3	N.D.	0.002	0.006	1
4242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.01	0.025	1
4242	2,4-Dinitrophenol	51-28-5	N.D.	0.017	0.036	1
4242	2,4-Dinitrotoluene	121-14-2	N.D.	0.001	0.006	1
4242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0006	0.002	1
4242	2,4_2,6-Dinitrotoluenes1	25321-14-6	N.D.	0.001	0.006	1
4242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0006	0.002	1
40.40	reported for 1,2-diphenylhydra: compounds.	uished from 1,2-diphenylhydraz zine represent the combined to	al of both	0.000	0.040	
4242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.006	0.013	1
4242	Fluoranthene	206-44-0	N.D.	0.0001	0.0006	1
4242	Fluorene	86-73-7	N.D.	0.0001	0.0006	1
4242	Hexachlorobenzene	118-74-1	N.D.	0.0001	0.0006	1
4242	Hexachlorobutadiene	87-68-3	N.D.	0.0006	0.002	1
4242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.006	0.013	1
4242	Hexachloroethane	67-72-1	N.D.	0.001	0.006	1
4242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.0001	0.0006	1
4242	Isophorone	78-59-1	N.D.	0.0006	0.002	1
4242	2-Methylnaphthalene	91-57-6	N.D.	0.0001	0.0006	1
4242 4242	2-Methylphenol	95-48-7	N.D. N.D.	0.0006	0.002 0.002	1 1
4242	chromatographic conditions us	106-44-5 henol cannot be resolved under ed for sample analysis. The res the combined total of both com	the sult reported	0.0006	0.002	1
4242	Naphthalene	91-20-3	N.D.	0.0001	0.0006	1
4242	2-Nitroaniline	88-74-4	N.D.	0.002	0.008	1
4242	Nitrobenzene	98-95-3	N.D.	0.0006	0.002	1
4242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.006	1
4242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0008	0.004	1
4242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0008	0.004	1
	N-nitrosodiphenylamine decome diphenylamine. The result reprepresents the combined total	orted for N-nitrosodiphenylamin	е			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

SW-846 8270D

CAS Number

Result

mg/l

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

Analysis Name

GC/MS Semivolatiles

CAT

No.

Langan Eng & Env Services **ELLE Sample #: GW 1317993 ELLE Group #:** 2100197

Matrix: Groundwater

Dilution

Factor

Limit of

mg/l

Quantitation

Method

mg/l

Detection Limit*

14242	Di-n-octylphthalate	117-84-0	N.D.	0.006	0.013	1
14242	Pentachlorophenol	87-86-5	N.D.	0.001	0.006	1
14242	Phenanthrene	85-01-8	N.D.	0.0001	0.0006	1
14242	Phenol	108-95-2	N.D.	0.0006	0.002	1
14242	Pyrene	129-00-0	N.D.	0.0001	0.0006	1
14242	Pyridine	110-86-1	N.D.	0.002	0.006	1
14242	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.0006	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	N.D.	0.0006	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	N.D.	0.0006	0.002	1
GC/MS	S Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	N.D.	0.1	0.4	1
limits		covery is outside the QC acceptance mary. Since the recovery for the e data is reported.				
Herbic	ides	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	N.D. D2	0.00025	0.00059	1
10407	2,4,5-T	93-76-5	N.D. D1	0.000064	0.00015	1
10407	2,4,5-TP	93-72-1	N.D. D2	0.0000099	0.000049	1
Sumn		eptance limits as noted on the QC is high and the target analyte(s) , the data is reported.				
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00017	0.00086	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00017	0.00006	
	. 02 .22.			0.00017	0.00086	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00017	0.00086	1 1
10591 10591	-	11141-16-5 53469-21-9				•
	PCB-1232		N.D. D1	0.00034	0.00086	1
10591	PCB-1232 PCB-1242	53469-21-9	N.D. D1 N.D. D1	0.00034 0.00017	0.00086 0.00086	1
10591 10591	PCB-1232 PCB-1242 PCB-1248	53469-21-9 12672-29-6	N.D. D1 N.D. D1 N.D. D1	0.00034 0.00017 0.00017	0.00086 0.00086 0.00086	1 1 1
10591 10591 10591	PCB-1232 PCB-1242 PCB-1248 PCB-1254	53469-21-9 12672-29-6 11097-69-1	N.D. D1 N.D. D1 N.D. D1 N.D. D1	0.00034 0.00017 0.00017 0.00017	0.00086 0.00086 0.00086 0.00086	1 1 1 1
10591 10591 10591 10591 10591 The re Spike Sumr	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs ¹ recovery for a target analyte(s) is outside the QC acce	53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 te(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s)	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	0.00034 0.00017 0.00017 0.00017 0.00026	0.00086 0.00086 0.00086 0.00086 0.00086	1 1 1 1 1
10591 10591 10591 10591 10591 The re Spike Sumr	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ recovery for a target analyte (s) is outside the QC accemary. Since the recovery inot detected in the sample	53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 te(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s)	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1	0.00034 0.00017 0.00017 0.00017 0.00026	0.00086 0.00086 0.00086 0.00086 0.00086	1 1 1 1 1
10591 10591 10591 10591 10591 The r Spike Sumr was r	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ recovery for a target analyte (s) is outside the QC accemary. Since the recovery inot detected in the sample	53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 re(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s), the data is reported.	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D.	0.00034 0.00017 0.00017 0.00017 0.00026 0.00017	0.00086 0.00086 0.00086 0.00086 0.00086	1 1 1 1 1
10591 10591 10591 10591 The ri Spike Sumri was ri	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ recovery for a target analyte (s) is outside the QC accemary. Since the recovery into detected in the sample iides	53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 se(s) in the Laboratory Control eptance limits as noted on the QC is high and the target analyte(s), the data is reported. SW-846 8081B	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D.	0.00034 0.00017 0.00017 0.00017 0.00026 0.00017	0.00086 0.00086 0.00086 0.00086 0.00086	1 1 1 1 1 1
10591 10591 10591 10591 The ri Spike Summ was r	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Total PCBs¹ recovery for a target analyte(s) is outside the QC accemary. Since the recovery inot detected in the sample	53469-21-9 12672-29-6 11097-69-1 11096-82-5 1336-36-3 te(s) in the Laboratory Control eptance limits as noted on the QC s high and the target analyte(s) , the data is reported. SW-846 8081B 309-00-2	N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D. D1 N.D.	0.00034 0.00017 0.00017 0.00017 0.00026 0.00017	0.00086 0.00086 0.00086 0.00086 0.00086 0.00086	1 1 1 1 1 1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317993

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

CAT No.	Analysis Name	С	AS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Pestici	des	SW-846 8081B		mg/l	mg/l	mg/l	
10589	Alpha Chlordane	5	103-71-9	N.D. D1	0.0000034	0.000011	1
10589	4,4'-Ddd	7:	2-54-8	N.D. D2	0.0000057	0.000023	1
10589	4,4'-Dde	7:	2-55-9	N.D. D2	0.0000057	0.000023	1
10589	4,4'-Ddt	50	0-29-3	N.D. D1	0.0000060	0.000023	1
10589	Delta BHC	3	19-86-8	N.D. D1	0.0000039	0.000011	1
10589	Dieldrin	6	0-57-1	N.D. D2	0.0000061	0.000023	1
10589	Endosulfan I	99	59-98-8	N.D. D2	0.0000049	0.000011	1
10589	Endosulfan II	33	3213-65-9	N.D. D2	0.000017	0.000046	1
10589	Endosulfan Sulfate	10	031-07-8	N.D. D1	0.0000067	0.000023	1
10589	Endrin	7:	2-20-8	N.D. D1	0.0000093	0.000034	1
10589	Heptachlor	70	6-44-8	N.D. D1	0.0000023	0.000011	1
LC/MS/	MS Miscellaneous	EPA 537 Version	on 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic	acid ¹ 2	7619-97-2	N.D.	1.8	4.4	1
14473	8:2-Fluorotelomersulfonic	acid¹ 3	9108-34-4	N.D.	0.88	2.6	1
14473	NEtFOSAA1	29	991-50-6	N.D.	0.44	2.6	1
	NEtFOSAA is the acronyn			doacetic Acid.			
14473	NMeFOSAA1	2:	355-31-9	N.D.	0.53	1.8	1
	NMeFOSAA is the acrony	m for N-methyl perflu	orooctanesulfona	midoacetic Acid.			
14473	Perfluorobutanesulfonic a	cid ¹ 3	75-73-5	5.0	0.44	1.8	1
14473	Perfluorobutanoic acid1	3	75-22-4	13	1.8	4.4	1
14473	Perfluorodecanesulfonic a	icid¹ 3	35-77-3	N.D.	0.44	1.8	1
14473	Perfluorodecanoic acid1	33	35-76-2	N.D.	0.44	1.8	1
14473	Perfluorododecanoic acid	30	07-55-1	N.D.	0.44	1.8	1
14473	Perfluoroheptanesulfonic	acid¹ 3	75-92-8	N.D.	0.44	1.8	1
14473	Perfluoroheptanoic acid1	3.	75-85-9	4.1	0.44	1.8	1
14473	Perfluorohexanesulfonic a	icid¹ 3	55-46-4	0.90 J	0.44	1.8	1
14473	Perfluorohexanoic acid1	30	07-24-4	12	0.44	1.8	1
14473	Perfluorononanoic acid1	3	75-95-1	0.51 J	0.44	1.8	1
14473	Perfluorooctanesulfonami	de ¹ 7:	54-91-6	N.D.	0.44	1.8	1
14473	Perfluorooctanesulfonic a	cid¹ 1	763-23-1	2.0	0.44	1.8	1
14473	Perfluorooctanoic acid1	3:	35-67-1	16	0.44	1.8	1
14473	Perfluoropentanoic acid1	2	706-90-3	18	0.44	1.8	1
14473	Perfluorotetradecanoic ac	id¹ 3	76-06-7	N.D.	0.44	1.8	1
14473	Perfluorotridecanoic acid1	7:	2629-94-8	N.D.	0.44	1.8	1
14473	Perfluoroundecanoic acid	2	058-94-8	N.D.	0.44	1.8	1
Metals		SW-846 6010D 2014	Rev.4, July	mg/l	mg/l	mg/l	
07066	Silver	7-	440-22-4	N.D.	0.0050	0.0100	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

Langan Eng & Env	v Services
ELLE Sample #:	GW 1317993
ELLE Group #:	2100197
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		-846 6020B Rev.2, July	mg/l	mg/l	mg/l	
	201	4				
06025	Arsenic	7440-38-2	0.0223	0.00068	0.0020	1
06026	Barium	7440-39-3	0.0767	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00078 J	0.00033	0.0020	1
02828	Trivalent Chromium waters ¹	16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium result is Chromium from Total Chromium		avalent			
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	0.00092	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.644	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0034	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.0063 J	0.0062	0.0100	1
	SW	-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1
Wet Cl	nemistry SW-	-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
	SW-	-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** Factor No. VOCs 8260C SW-846 8260C 5201473AA Kevin A Sposito 11997 05/26/2020 22:59 1 01163 GC/MS VOA Water Prep SW-846 5030C 5201473AA 05/26/2020 22:58 Kevin A Sposito 1 TCL SW846 8270D MINI SW-846 8270D 20143WAA026 Edward C Monborne 05/24/2020 16:15 14242 1 14244 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20143WAC026 05/26/2020 13:08 Kira N Beck **BNA Water Extraction** SW-846 3510C 05/22/2020 18:50 Patrick Thimes 00813 20143WAA026 1 **BNA Water Extraction SIM** SW-846 3510C 20143WAC026 05/22/2020 18:50 Patrick Thimes 10466 1 SW-846 8151A 10407 Herbicides in Water 8151A 1 201430018A 05/26/2020 22:40 Rachel Umberger 7 PCBs + Total Water SW-846 8082A 05/26/2020 11:38 10591 201430007A Covenant Mutuku NY Part 375 Pests Water 10589 SW-846 8081B 201430006A 05/27/2020 00:14 James Patrushev

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-01

Langan Eng & Env Services
ELLE Sample #: GW 1317993
ELLE Group #: 2100197

Matrix: Groundwater

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201430007A	05/22/2020 20:15	Osvaldo R Sanchez	1			
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201430006A	05/22/2020 20:15	Osvaldo R Sanchez	1			
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201430018A	05/25/2020 20:05	Karen L Beyer	1			
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20142002	05/22/2020 16:33	Jason W Knight	1			
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20142002	05/21/2020 07:00	Pamela Rothharpt	1			
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:37	Elaine F Stoltzfus	1			
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:38	Patrick J Engle	1			
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201480282801	05/27/2020 09:18	Tshina Alamos	1			
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:21	Patrick J Engle	1			
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:23	Patrick J Engle	5			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:38	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:12	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:18	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1			
08255	Total Cyanide (water)	SW-846 9012B	1	20148117101A	05/27/2020 10:45	Jonathan Saul	1			
08256	Cyanide Water Distillation	SW-846 9012B	1	20148117101A	05/27/2020 08:00	Nancy J Shoop	1			
00276	Hexavalent Chromium	SW-846 7196A	1	20142027601A	05/21/2020 02:45	Daniel S Smith	1			

^{*=}This limit was used in the evaluation of the final result

GW 1317994

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0083	0.00068	0.0020	1
06026	Barium	7440-39-3	0.0304	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	N.D.	0.00033	0.0020	1
06033	Copper	7440-50-8	N.D.	0.00036	0.0010	1
06035	Lead	7439-92-1	N.D.	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.262	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0012	0.00060	0.0010	1
06041	Selenium	7782-49-2	N.D.	0.00028	0.0010	1
06049	Zinc	7440-66-6	N.D.	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:27	Elaine F Stoltzfus	1				
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:31	Patrick J Engle	1				
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1				
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1				
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1				
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1				
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:11	Patrick J Engle	1				
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW16_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 07:55

SDG#: CMS12-02

Langan Eng & Env Services
ELLE Sample #: GW 1317994
ELLE Group #: 2100197

Matrix: Groundwater

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:11	Patrick J Engle	1	
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:31	Patrick J Engle	1	
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1	
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:02	Patrick J Engle	1	
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:30	Damary Valentin	1	
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1	
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1	
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1	

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317995

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

GC/MS Volatiles SW-846 8260C mg/l mg/l mg/l 11997 Acetone 67-64-1 N.D. 0.0007 0.020 1 11997 Acrolein 107-02-8 N.D. 0.002 0.10 1 11997 Acrylonitrile 107-13-1 N.D. 0.0003 0.020 1 11997 Benzene 71-43-2 N.D. 0.0002 0.001 1 11997 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 1 11997 Bromomethane 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 sec-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec	CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
11997 Acetone 67-64-1 N.D. 0.0007 0.020 1 11997 Acrolein 107-02-8 N.D. 0.002 0.10 1 11997 Acrylonitrile 107-13-1 N.D. 0.0003 0.020 1 11997 Benzene 71-43-2 N.D. 0.0002 0.001 1 11997 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 1 11997 Bromoform 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	GC/MS	Volatiles SW-846 826	OC	mg/l	mg/l	mg/l	
11997 Acrylonitrile 107-13-1 N.D. 0.0003 0.020 1 11997 Benzene 71-43-2 N.D. 0.0002 0.001 1 11997 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 1 11997 Bromoform 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1			67-64-1	N.D.	0.0007	0.020	1
11997 Benzene 71-43-2 N.D. 0.0002 0.001 1 11997 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 1 11997 Bromoform 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997 Bromodichloromethane 75-27-4 N.D. 0.0002 0.001 1 11997 Bromoform 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997 Bromoform 75-25-2 N.D. 0.001 0.004 1 11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997 Bromomethane 74-83-9 N.D. 0.0003 0.001 1 11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997 2-Butanone 78-93-3 N.D. 0.0003 0.010 1 11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997 t-Butyl alcohol 75-65-0 N.D. 0.012 0.050 1 11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997 n-Butylbenzene 104-51-8 N.D. 0.0002 0.005 1 11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997 sec-Butylbenzene 135-98-8 N.D. 0.0002 0.005 1	11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
	11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
	11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997 tert-Butylbenzene 98-06-6 N.D. 0.0003 0.005 1	11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997 Carbon Disulfide 75-15-0 N.D. 0.0002 0.005 1	11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997 Carbon Tetrachloride 56-23-5 N.D. 0.0002 0.001 1	11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997 Chlorobenzene 108-90-7 N.D. 0.0002 0.001 1	11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997 Chloroethane 75-00-3 N.D. 0.0002 0.001 1	11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997 Chloroform 67-66-3 N.D. 0.0002 0.001 1	11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997 Chloromethane 74-87-3 N.D. 0.0002 0.001 1	11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997 1,2-Dibromo-3-chloropropane 96-12-8 N.D. 0.0003 0.005 1	11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997 Dibromochloromethane 124-48-1 N.D. 0.0002 0.001 1	11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997 1,2-Dibromoethane 106-93-4 N.D. 0.0002 0.001 1	11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997 1,2-Dichlorobenzene 95-50-1 N.D. 0.0002 0.005 1	11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997 1,3-Dichlorobenzene 541-73-1 N.D. 0.0002 0.005 1	11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997 1,4-Dichlorobenzene 106-46-7 N.D. 0.0002 0.005 1	11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997 Dichlorodifluoromethane 75-71-8 N.D. 0.0002 0.001 1	11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997 1,1-Dichloroethane 75-34-3 N.D. 0.0002 0.001 1	11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997 1,2-Dichloroethane 107-06-2 N.D. 0.0003 0.001 1	11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997 1,1-Dichloroethene 75-35-4 N.D. 0.0002 0.001 1	11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997 cis-1,2-Dichloroethene 156-59-2 N.D. 0.0002 0.001 1	11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997 trans-1,2-Dichloroethene 156-60-5 N.D. 0.0002 0.001 1	11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997 1,2-Dichloroethene (Total) ¹ 540-59-0 N.D. 0.0004 0.002 1	11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997 1,2-Dichloropropane 78-87-5 N.D. 0.0002 0.001 1	11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997 cis-1,3-Dichloropropene 10061-01-5 N.D. 0.0002 0.001 1	11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997 trans-1,3-Dichloropropene 10061-02-6 N.D. 0.0002 0.001 1	11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997 Ethylbenzene 100-41-4 N.D. 0.0004 0.001 1	11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997 Methyl Acetate 79-20-9 N.D. 0.0003 0.005 1	11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997 Methyl Tertiary Butyl Ether 1634-04-4 0.0005 J 0.0002 0.001 1	11997	Methyl Tertiary Butyl Ether	1634-04-4	0.0005 J	0.0002	0.001	1
11997 Methylene Chloride 75-09-2 N.D. 0.0003 0.001 1	11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997 n-Propylbenzene 103-65-1 N.D. 0.0002 0.005 1	11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997 Styrene 100-42-5 N.D. 0.0002 0.005 1	11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 0.0002 0.001 1	11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

Dilution

Factor

Langan Eng & Env Services

Limit of

Quantitation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial S

CAS Number

Result

Project Name: 35 Commercial S

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

Analysis Name

CAT

No.

Street/170229024	ELLE Sample #: GW 13179	95
	ELLE Group #: 2100197	
Street/170229024	Matrix: Groundwater	

Method

Detection Limit*

GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l			
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1		
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1		
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1		
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1		
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1		
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1		
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1		
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1		
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1		
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1		
A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.								
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l			
14242	Acenaphthene	83-32-9	N.D.	0.00009	0.0005	1		
14242	Acenaphthylene	208-96-8	N.D.	0.00009	0.0005	1		
14242	Acetophenone	98-86-2	N.D.	0.004	0.009	1		
14242	Anthracene	120-12-7	N.D.	0.00009	0.0005	1		
14242	Atrazine	1912-24-9	N.D.	0.002	0.005	1		
14242	Benzaldehyde	100-52-7	N.D.	0.003	0.009	1		
14242	Benzidine	92-87-5	N.D.	0.019	0.056	1		
14242	Benzo(a)anthracene	56-55-3	N.D.	0.00009	0.0005	1		
14242	Benzo(a)pyrene	50-32-8	N.D.	0.00009	0.0005	1		
14242	Benzo(b)fluoranthene	205-99-2	N.D.	0.00009	0.0005	1		
14242	Benzo(g,h,i)perylene	191-24-2	N.D.	0.00009	0.0005	1		
14242	Benzo(k)fluoranthene	207-08-9	N.D.	0.00009	0.0005	1		
14242	1,1'-Biphenyl	92-52-4	N.D.	0.003	0.009	1		
14242	Butylbenzylphthalate	85-68-7	N.D.	0.002	0.005	1		
14242	Di-n-butylphthalate	84-74-2	N.D.	0.002	0.005	1		
14242	Caprolactam	105-60-2	N.D.	0.005	0.010	1		
14242	Carbazole	86-74-8	N.D.	0.0005	0.002	1		
14242	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.0005	0.002	1		
14242	bis(2-Chloroisopropyl)ethe	er ¹ 39638-32-9	N.D.	0.0005	0.002	1		
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.							
14242	2-Chloronaphthalene	91-58-7	N.D.	0.0004	0.0009	1		
14242	2-Chlorophenol	95-57-8	N.D.	0.0005	0.002	1		
14242	Chrysene	218-01-9	N.D.	0.00009	0.0005	1		

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317995

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW	/-846 8270D	mg/l	mg/l	mg/l			
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.00009	0.0005	1		
14242	Dibenzofuran	132-64-9	N.D.	0.0005	0.002	1		
14242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.002	1		
4242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.002	1		
4242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1		
4242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.009	1		
4242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1		
4242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1		
4242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.009	1		
4242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1		
4242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.007	0.020	1		
4242	2,4-Dinitrophenol	51-28-5	N.D.	0.013	0.028	1		
4242	2,4-Dinitrotoluene	121-14-2	N.D.	0.0009	0.005	1		
4242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1		
4242	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.0009	0.005	1		
4242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1		
40.40	Azobenzene cannot be distingu reported for 1,2-diphenylhydraz compounds.	ine represent the combined tot	al of both	0.005	0.040			
4242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.010	1		
4242	Fluoranthene	206-44-0	N.D.	0.00009	0.0005	1		
4242	Fluorene	86-73-7	N.D.	0.00009	0.0005	1		
4242	Hexachlorobenzene	118-74-1	N.D.	0.00009	0.0005	1		
4242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1		
4242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.010	1		
4242	Hexachloroethane	67-72-1	N.D.	0.0009	0.005	1		
4242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.00009	0.0005	1		
4242	Isophorone	78-59-1	N.D.	0.0005	0.002	1		
4242	2-Methylnaphthalene	91-57-6	N.D.	0.00009	0.0005	1		
4242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1		
4242	4-Methylphenol 106-44-5 N.D. 0.0005 0.002 1 3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.							
4242	Naphthalene	91-20-3	N.D.	0.00009	0.0005	1		
4242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1		
4242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1		
4242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1		
4242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1		
4242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1		
	N-nitrosodiphenylamine decom diphenylamine. The result repo represents the combined total of	orted for N-nitrosodiphenylamin	е					

^{*=}This limit was used in the evaluation of the final result

GW 1317995

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

ug/l

0.3

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

CAT No.	Analysis Name	CAS Numl	oer Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.010	1
14242	Pentachlorophenol	87-86-5	N.D.	0.0009	0.005	1
14242	Phenanthrene	85-01-8	N.D.	0.00009	0.0005	1
14242	Phenol	108-95-2	0.0007 J	0.0005	0.002	1
14242	Pyrene	129-00-0	N.D.	0.00009	0.0005	1
14242	Pyridine	110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	N.D.	0.0005	0.002	1

In the first extraction, the recovery for the sample surrogate(s) is outside the QC acceptance limits. The sample was re-extracted within the method required holding time and the surrogates are compliant.

The recovery for a target analyte(s) in the Laboratory Control Spike(s) from the second extraction is outside the QC acceptance limits as noted on the QC Summary. The recoveries for the target analytes in the Laboratory Control Spike(s) from the first extraction are compliant. All data is reported from the second extraction.

GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	
14244	1,4-Dioxane	123-91-1	N.D.	

The LCS/LCSD surrogate(s) recovery is outside the QC acceptance limits as noted on the QC Summary. Since the recovery for the target analytes is compliant, the data is reported.

Herbicides		SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	N.D. D2	0.00024	0.00057	1
10407	2,4,5-T	93-76-5	N.D. D1	0.000062	0.00014	1
10407	2.4.5-TP	93-72-1	N.D. D2	0.000096	0.000048	1

ug/l

0.09

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s) was not detected in the sample, the data is reported.

PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00014	0.00069	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00014	0.00069	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00028	0.00069	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00014	0.00069	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00014	0.00069	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00014	0.00069	1
10591	PCB-1260	11096-82-5	N.D. D1	0.00021	0.00069	1
10591	Total PCBs1	1336-36-3	N.D.	0.00014	0.00069	1

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317995

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
	mary. Since the recovery is high and the not detected in the sample, the data is re					
		•	mg/l	mg/l	mg/l	
Pestici 10589	ides SW-846 Aldrin	309-00-2	N.D. D1	0.0000018	0.0000092	1
10589	Alpha BHC	319-84-6	N.D. D1	0.0000018	0.0000092	1
10589	Beta BHC	319-85-7	N.D. D1	0.0000028	0.0000092	1
10589	Gamma BHC - Lindane	58-89-9	N.D. D1	0.0000031	0.0000092	1
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.0000018	0.0000092	1
10589	4,4'-Ddd	72-54-8	N.D. D1	0.0000028	0.0000092	1
10589	4,4'-Ddd 4,4'-Dde	72-54-6 72-55-9	N.D. D2	0.0000046	0.000018	1
10589	4,4'-Ddt	50-29-3	N.D. D2	0.0000048	0.000018	1
10589	Delta BHC	319-86-8	N.D. D1	0.0000048	0.000018	1
10589	Dieldrin	60-57-1	N.D. D2	0.0000031	0.000032	1
10589	Endosulfan I	959-98-8	N.D. D1	0.0000049	0.000010	1
10589	Endosulfan II	33213-65-9	N.D. D2	0.000014	0.000032	1
10589	Endosulfan Sulfate	1031-07-8	N.D. D1	0.000011	0.000018	1
10589	Endrin	72-20-8	N.D. D2	0.0000075	0.000028	1
10589	Heptachlor	76-44-8	N.D. D2	0.0000018	0.0000092	1
.0000	. roptas:e.			0.00000.0	0.000002	•
LC/MS	/MS Miscellaneous EPA 537	Version 1.1	ng/l	ng/l	ng/l	
	Modified	k				
14473	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	1.7	4.4	1
14473	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.87	2.6	1
14473	NEtFOSAA1	2991-50-6	N.D.	0.44	2.6	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA1	2355-31-9	N.D.	0.52	1.7	1
	NMeFOSAA is the acronym for N-met	hyl perfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic acid1	375-73-5	8.0	0.44	1.7	1
14473	Perfluorobutanoic acid1	375-22-4	33	1.7	4.4	1
14473	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.44	1.7	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.44	1.7	1
14473	Perfluorododecanoic acid1	307-55-1	N.D.	0.44	1.7	1
14473	Perfluoroheptanesulfonic acid1	375-92-8	0.87 J	0.44	1.7	1
14473	Perfluoroheptanoic acid1	375-85-9	29	0.44	1.7	1
14473	Perfluorohexanesulfonic acid ¹	355-46-4	5.0	0.44	1.7	1
14473	Perfluorohexanoic acid ¹	307-24-4	77	0.44	1.7	1
14473	Perfluorononanoic acid1	375-95-1	12	0.44	1.7	1
14473	Perfluorooctanesulfonamide ¹	754-91-6	0.58 J	0.44	1.7	1
14473	Perfluorooctanesulfonic acid1	1763-23-1	25	0.44	1.7	1
14473	Perfluorooctanoic acid1	335-67-1	170	0.44	1.7	1
14473	Perfluoropentanoic acid1	2706-90-3	110	0.44	1.7	1
14473	Perfluorotetradecanoic acid1	376-06-7	N.D.	0.44	1.7	1
14473	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.44	1.7	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

Langan Eng & En	v Services
ELLE Sample #:	GW 1317995
ELLE Group #:	2100197
Matrix: Groundwa	ater

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	MS Miscellaneous	EPA 537 Vers Modified	ion 1.1	ng/l	ng/l	ng/l	
14473	Perfluoroundecanoic acid¹	1	2058-94-8	N.D.	0.44	1.7	1
Metals		SW-846 6010E 2014	Rev.4, July	mg/l	mg/l	mg/l	
07066	Silver	7	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020E	3 Rev.2, July	mg/l	mg/l	mg/l	
06025	Arsenic		7440-38-2	0.0043	0.00068	0.0020	1
06026	Barium	-	7440-39-3	0.130	0.00075	0.0020	1
06027	Beryllium	-	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	-	7440-43-9	0.0015	0.00015	0.00050	1
06031	Chromium	-	7440-47-3	0.00050 J	0.00033	0.0020	1
02828	Trivalent Chromium water	S ¹	16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium re Chromium from Total Chro		y subtracting Hexa	avalent			
06033	Copper	-	7440-50-8	0.0025	0.00036	0.0010	1
06035	Lead	-	7439-92-1	0.0021	0.000071	0.00050	1
06037	Manganese	-	7439-96-5	0.912	0.0032	0.0100	5
06039	Nickel	-	7440-02-0	0.0102	0.00060	0.0010	1
06041	Selenium	-	7782-49-2	0.0020	0.00028	0.0010	1
06049	Zinc	-	7440-66-6	0.405	0.0062	0.0100	1
		SW-846 7470	4	mg/l	mg/l	mg/l	
00259	Mercury	7	7439-97-6	N.D.	0.000079	0.00020	1
Wet Ch	nemistry	SW-846 9012E	3	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)		57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196	4	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium		18540-29-9	N.D.	0.010	0.030	1
00276	Hexavalent Chromium	•	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Method

July 2014

July 2014

July 2014

SW-846 7470A

SW-846 3005A

SW-846 3020A

SW-846 7470A

SW-846 9012B

SW-846 6020B Rev.2,

SW-846 6020B Rev.2,

SW-846 8260C

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

Analysis Name

VOCs 8260C

CAT

No. 11997

06041

06049

00259

14044

14047

05713

Selenium

Mercury

08255 Total Cyanide (water)

ICP-WW, 3005A (tot rec) - U345

ICPMS - Water, 3020A - U345

WW SW846 Hg Digest

Zinc

Langan Eng & Env Services
ELLE Sample #: GW 1317995
ELLE Group #: 2100197

Dilution

Factor

Matrix: Groundwater

Analyst

Kevin A Sposito

Patrick J Engle

Patrick J Engle

Damary Valentin

1

JoElla L Rice

JoElla L Rice

JoElla L Rice

Jonathan Saul

Date and Time

05/27/2020 01:43

05/22/2020 16:24

05/22/2020 16:24

05/22/2020 05:42

05/21/2020 14:35

05/21/2020 14:30

05/21/2020 15:25

05/27/2020 10:46

01163	GC/MS VOA Water Prep	SW-846 5030C	1	5201473AA	05/27/2020 01:42	Kevin A Sposito	1
14242	TCL SW846 8270D MINI	SW-846 8270D	1	20147WAC026	05/27/2020 12:39	Edward C Monborne	1
14244	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20143WAC026	05/26/2020 13:36	Kira N Beck	1
00813	BNA Water Extraction	SW-846 3510C	2	20147WAC026	05/26/2020 19:30	Osvaldo R Sanchez	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	20143WAC026	05/22/2020 18:50	Patrick Thimes	1
10407	Herbicides in Water 8151A	SW-846 8151A	1	201430018A	05/26/2020 23:13	Rachel Umberger	1
10591	7 PCBs + Total Water	SW-846 8082A	1	201430007A	05/26/2020 11:49	Covenant Mutuku	1
10589	NY Part 375 Pests Water	SW-846 8081B	1	201430006A	05/27/2020 00:26	James Patrushev	1
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201430007A	05/22/2020 20:15	Osvaldo R Sanchez	1
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201430006A	05/22/2020 20:15	Osvaldo R Sanchez	1
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201430018A	05/25/2020 20:05	Karen L Beyer	1
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20142002	05/22/2020 16:42	Archie H Covely	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20142002	05/21/2020 07:00	Pamela Rothharpt	1
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:56	Elaine F Stoltzfus	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:48	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:24	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:24	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:24	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:24	Patrick J Engle	1
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201480282801	05/27/2020 09:18	Tshina Alamos	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:50	Patrick J Engle	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:24	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:52	Patrick J Engle	5
06039	Nickel	SW-846 6020B Rev.2,	1	201421404701A	05/22/2020 17:48	Patrick J Engle	1

Laboratory Sample Analysis Record

5201473AA

Batch#

Trial#

201421404701A

201421404701A

201420571302

201421404401

201421404701

201420571302

20148117101A

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-03

Langan Eng & Env Services
ELLE Sample #: GW 13179

ELLE Sample #: GW 1317995 ELLE Group #: 2100197

Matrix: Groundwater

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
08256	Cyanide Water Distillation	SW-846 9012B	1	20148117101A	05/27/2020 08:00	Nancy J Shoop	1
00276	Hexavalent Chromium	SW-846 7196A	1	20142027601A	05/21/2020 02:45	Daniel S Smith	1

GW 1317996

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-04

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0043	0.00068	0.0020	1
06026	Barium	7440-39-3	0.134	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	7440-43-9	0.0013	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00044 J	0.00033	0.0020	1
06033	Copper	7440-50-8	0.0012	0.00036	0.0010	1
06035	Lead	7439-92-1	0.00040 J	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.926	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0101	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0020	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.414	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:43	Elaine F Stoltzfus	1				
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:46	Patrick J Engle	1				
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:45	Patrick J Engle	1				
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW18_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 13:05

SDG#: CMS12-04

Langan Eng & Env Services ELLE Sample #: GW 1317996 ELLE Group #: 2100197

	•	
Matrix:	Groundwater	

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:47	Patrick J Engle	5				
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:46	Patrick J Engle	1				
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:21	Patrick J Engle	1				
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:38	Damary Valentin	1				
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1				
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1				
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1				

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317997

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

GW 1317997

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

CAT No.	Analysis Name	CAS	lumber Res		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/	1	mg/l	mg/l	
11997	Tetrachloroethene	127-18	8-4 N.D	•	0.0002	0.001	1
11997	Toluene	108-88	3-3 N.D	<u>.</u>	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-	6 N.D	<u>.</u>	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-	5 N.D	•	0.0002	0.001	1
11997	Trichloroethene	79-01-	6 N.D	<u>.</u>	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-	4 N.D	<u>.</u>	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-	6 N.D	<u>.</u>	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67	'-8 N.D	<u>.</u>	0.0003	0.005	1
11997	Vinyl Chloride	75-01-	4 N.D	<u>.</u>	0.0002	0.001	1
11997	Xylene (Total)	1330-2	20-7 N.D		0.001	0.006	1

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Acenaphthene	83-32-9	N.D.	0.00009	0.0005	1
14242	Acenaphthylene	208-96-8	N.D.	0.00009	0.0005	1
14242	Acetophenone	98-86-2	N.D.	0.004	0.009	1
14242	Anthracene	120-12-7	N.D.	0.00009	0.0005	1
14242	Atrazine	1912-24-9	N.D.	0.002	0.005	1
14242	Benzaldehyde	100-52-7	N.D.	0.003	0.009	1
14242	Benzidine	92-87-5	N.D.	0.019	0.056	1
14242	Benzo(a)anthracene	56-55-3	N.D.	0.00009	0.0005	1
14242	Benzo(a)pyrene	50-32-8	N.D.	0.00009	0.0005	1
14242	Benzo(b)fluoranthene	205-99-2	N.D.	0.00009	0.0005	1
14242	Benzo(g,h,i)perylene	191-24-2	N.D.	0.00009	0.0005	1
14242	Benzo(k)fluoranthene	207-08-9	N.D.	0.00009	0.0005	1
14242	1,1'-Biphenyl	92-52-4	N.D.	0.003	0.009	1
14242	Butylbenzylphthalate	85-68-7	N.D.	0.002	0.005	1
14242	Di-n-butylphthalate	84-74-2	N.D.	0.002	0.005	1
14242	Caprolactam	105-60-2	N.D.	0.005	0.010	1
14242	Carbazole	86-74-8	N.D.	0.0005	0.002	1
14242	bis(2-Chloroethyl)ether	111-44-4	N.D.	0.0005	0.002	1
14242	bis(2-Chloroisopropyl)ether	r ¹ 39638-32-9	N.D.	0.0005	0.002	1
		r CAS #39638-32-9 and ne) CAS #108-60-1 cannot be sepa reported result represents the com				
14242	2-Chloronaphthalene	91-58-7	N.D.	0.0004	0.0009	1
14242	2-Chlorophenol	95-57-8	N.D.	0.0005	0.002	1
14242	Chrysene	218-01-9	N.D.	0.00009	0.0005	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317997

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59
Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846 827	0D	mg/l	mg/l	mg/l	
14242	Dibenz(a,h)anthracene	53-70-3	N.D.	0.00009	0.0005	1
14242	Dibenzofuran	132-64-9	N.D.	0.0005	0.002	1
14242	1,2-Dichlorobenzene	95-50-1	N.D.	0.0005	0.002	1
14242	1,3-Dichlorobenzene	541-73-1	N.D.	0.0005	0.002	1
14242	1,4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.009	1
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.009	1
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.007	0.020	1
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.013	0.028	1
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.0009	0.005	1
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1
14242	2,4_2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.0009	0.005	1
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1
	Azobenzene cannot be distinguished from reported for 1,2-diphenylhydrazine represe compounds.	nt the combined total	al of both			
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.010	1
14242	Fluoranthene	206-44-0	N.D.	0.00009	0.0005	1
14242	Fluorene	86-73-7	N.D.	0.00009	0.0005	1
14242	Hexachlorobenzene	118-74-1	N.D.	0.00009	0.0005	1
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.010	1
14242	Hexachloroethane	67-72-1	N.D.	0.0009	0.005	1
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.00009	0.0005	1
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1
14242	2-Methylnaphthalene	91-57-6	N.D.	0.00009	0.0005	1
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1
	3-Methylphenol and 4-methylphenol canno chromatographic conditions used for samp for 4-methylphenol represents the combine	le analysis. The resi	ult reported			
14242	Naphthalene	91-20-3	0.0002 J	0.00009	0.0005	1
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1
	N-nitrosodiphenylamine decomposes in the diphenylamine. The result reported for N-r represents the combined total of both comp	itrosodiphenylamine	•			

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

ELLE Group #:

Matrix: Groundwater

ELLE Sample #: GW 1317997

2100197

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mg/l	mg/l	
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.010	1
14242	Pentachlorophenol	87-86-5	N.D.	0.0009	0.005	1
14242	Phenanthrene	85-01-8	N.D.	0.00009	0.0005	1
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1
14242	Pyrene	129-00-0	N.D.	0.00009	0.0005	1
14242	Pyridine	110-86-1	N.D.	0.002	0.005	1
14242	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.0005	0.002	1
14242	2,4,5-Trichlorophenol	95-95-4	N.D.	0.0005	0.002	1
14242	2,4,6-Trichlorophenol	88-06-2	N.D.	0.0005	0.002	1
GC/MS	Semivolatiles	SW-846 8270D SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane	123-91-1	N.D.	0.09	0.3	1
limits		covery is outside the QC acceptance nary. Since the recovery for the data is reported.				
Herbic	ides	SW-846 8151A	mg/l	mg/l	mg/l	
10407	2,4-D	94-75-7	N.D. D1	0.00024	0.00057	1
10407	2,4,5-T	93-76-5	N.D. D2	0.000062	0.00014	1
10407	2,4,5-TP	93-72-1	N.D. D1	0.000096	0.000048	1
Spike Sumr	e(s) is outside the QC accep	e(s) in the Laboratory Control ptance limits as noted on the QC s high and the target analyte(s) the data is reported.				
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00014	0.00069	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00014	0.00069	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00027	0.00069	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00014	0.00069	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00014	0.00069	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00014	0.00069	1
10591	PCB-1260	11096-82-5	N.D. D1	0.00021	0.00069	1
10591	Total PCBs1	1336-36-3	N.D.	0.00014	0.00069	1
Spike Sumr	e(s) is outside the QC accep	e(s) in the Laboratory Control ptance limits as noted on the QC s high and the target analyte(s) the data is reported.				
Pestici	ides	SW-846 8081B	mg/l	mg/l	mg/l	
10589		309-00-2	N.D. D1	0.000018	0.0000092	1
10000	Aldrin	309-00-2	11.0. 01	0.00000.0	0.0000002	
10589	Aldrin Alpha BHC	319-84-6	N.D. D2	0.0000027	0.0000092	1

^{*=}This limit was used in the evaluation of the final result

Langan Eng & Env Services

Limit of

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name:

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10 SDG#: CMS12-05

ELLE Sample #: GW 1317997 **ELLE Group #:** 2100197 35 Commercial Street/170229024 Matrix: Groundwater

Method

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Quantitation	Dilution Factor
Pestici	des	SW-846 8081B	mg/l	mg/l	mg/l	
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.000027	0.0000092	1
10589	4,4'-Ddd	72-54-8	N.D. D1	0.000046	0.000018	1
10589	4,4'-Dde	72-55-9	N.D. D1	0.000046	0.000018	1
10589	4,4'-Ddt	50-29-3	N.D. D1	0.000048	0.000018	1
10589	Delta BHC	319-86-8	N.D. D1	0.000031	0.0000092	1
10589	Dieldrin	60-57-1	N.D. D2	0.000049	0.000018	1
10589	Endosulfan I	959-98-8	N.D. D2	0.000039	0.0000092	1
10589	Endosulfan II	33213-65-9	N.D. D2	0.000014	0.000037	1
10589	Endosulfan Sulfate	1031-07-8	N.D. D1	0.000053	0.000018	1
10589	Endrin	72-20-8	N.D. D2	0.0000074	0.000027	1
10589	Heptachlor	76-44-8	N.D. D1	0.000018	0.0000092	1
LC/MS/	MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonic	acid ¹ 27619-97-2	N.D.	1.7	4.2	1
14473	8:2-Fluorotelomersulfonic	acid ¹ 39108-34-4	N.D.	0.85	2.5	1
14473	NEtFOSAA1	2991-50-6	N.D.	0.42	2.5	1
	NEtFOSAA is the acronyn	n for N-ethyl perfluorooctanesulfor	namidoacetic Acid.			
14473	NMeFOSAA1	2355-31-9	N.D.	0.51	1.7	1
	NMeFOSAA is the acrony	m for N-methyl perfluorooctanesu	Ifonamidoacetic Acid.			
14473	Perfluorobutanesulfonic a	cid ¹ 375-73-5	7.4	0.42	1.7	1
14473	Perfluorobutanoic acid1	375-22-4	47	1.7	4.2	1
14473	Perfluorodecanesulfonic a	cid ¹ 335-77-3	N.D.	0.42	1.7	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.42	1.7	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14473	Perfluoroheptanesulfonic	acid ¹ 375-92-8	N.D.	0.42	1.7	1
14473	Perfluoroheptanoic acid1	375-85-9	32	0.42	1.7	1
14473	Perfluorohexanesulfonic a	cid¹ 355-46-4	2.6	0.42	1.7	1
14473	Perfluorohexanoic acid1	307-24-4	120	0.42	1.7	1
14473	Perfluorononanoic acid1	375-95-1	4.4	0.42	1.7	1
14473	Perfluorooctanesulfonami	de ¹ 754-91-6	N.D.	0.42	1.7	1
14473	Perfluorooctanesulfonic ad	cid ¹ 1763-23-1	2.0	0.42	1.7	1
14473	Perfluorooctanoic acid1	335-67-1	100	0.42	1.7	1
14473	Perfluoropentanoic acid1	2706-90-3	190	0.42	1.7	1
14473	Perfluorotetradecanoic ac	id¹ 376-06-7	N.D.	0.42	1.7	1
14473	Perfluorotridecanoic acid1	72629-94-8	N.D.	0.42	1.7	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1
Metals		SW-846 6010D Rev.4, Ju 2014	ily mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1

^{*=}This limit was used in the evaluation of the final result

GW 1317997

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59
Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0026	0.00068	0.0020	1
06026	Barium	7440-39-3	0.0636	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00072 J	0.00033	0.0020	1
02828	Trivalent Chromium water	rs¹ 16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium Chromium from Total Ch	result is calculated by subtracting Hear romium.	kavalent			
06033	Copper	7440-50-8	0.00096 J	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0014	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.203	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0309	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0035	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.252	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1
Wet Ch	emistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution **Date and Time** Factor No. 11997 VOCs 8260C SW-846 8260C 5201473AA Kevin A Sposito 05/27/2020 02:04 1 01163 GC/MS VOA Water Prep SW-846 5030C 5201473AA 05/27/2020 02:03 Kevin A Sposito 1 TCL SW846 8270D MINI SW-846 8270D 20143WAA026 05/24/2020 17:13 Edward C Monborne 14242 1 14244 1,4-Dioxane 8270D SIM add-on SW-846 8270D SIM 20143WAC026 05/26/2020 14:04 Kira N Beck 1 **BNA Water Extraction** SW-846 3510C 20143WAA026 05/22/2020 18:50 Patrick Thimes 00813 1 **BNA Water Extraction SIM** SW-846 3510C 20143WAC026 05/22/2020 18:50 Patrick Thimes 10466 1 1 SW-846 8151A 10407 Herbicides in Water 8151A 1 201430018A 05/26/2020 23:47 Rachel Umberger 1 7 PCBs + Total Water SW-846 8082A 05/26/2020 11:59 10591 201430007A Covenant Mutuku NY Part 375 Pests Water 10589 SW-846 8081B 201430006A 05/27/2020 00:38 James Patrushev

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-05

Langan Eng & Env Services
ELLE Sample #: GW 1317997
ELLE Group #: 2100197

Matrix: Groundwater

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201430007A	05/22/2020 20:15	Osvaldo R Sanchez	1			
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201430006A	05/22/2020 20:15	Osvaldo R Sanchez	1			
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201430018A	05/25/2020 20:05	Karen L Beyer	1			
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20142002	05/22/2020 16:51	Jason W Knight	1			
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20142002	05/21/2020 07:00	Pamela Rothharpt	1			
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:53	Elaine F Stoltzfus	1			
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:40	Patrick J Engle	1			
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201480282801	05/27/2020 09:18	Tshina Alamos	1			
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:26	Patrick J Engle	1			
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:26	Patrick J Engle	1			
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:40	Patrick J Engle	1			
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:14	Patrick J Engle	1			
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:34	Damary Valentin	1			
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1			
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1			
08255	Total Cyanide (water)	SW-846 9012B	1	20148117101A	05/27/2020 10:48	Jonathan Saul	1			
08256	Cyanide Water Distillation	SW-846 9012B	1	20148117101A	05/27/2020 08:00	Nancy J Shoop	1			
00276	Hexavalent Chromium	SW-846 7196A	1	20142027601A	05/21/2020 02:45	Daniel S Smith	1			

^{*=}This limit was used in the evaluation of the final result

GW 1317998

2100197

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-06

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0023	0.00068	0.0020	1
06026	Barium	7440-39-3	0.0615	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D.	0.00012	0.00050	1
06028	Cadmium	7440-43-9	N.D.	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00053 J	0.00033	0.0020	1
06033	Copper	7440-50-8	0.00052 J	0.00036	0.0010	1
06035	Lead	7439-92-1	0.00012 J	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.195	0.00063	0.0020	1
06039	Nickel	7440-02-0	0.0313	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0038	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.256	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:47	Elaine F Stoltzfus	1	
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:33	Patrick J Engle	1	
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1	
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1	
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1	
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1	
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:16	Patrick J Engle	1	
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW19_052020 Filtered Groundwater

35 Commercial Street/170229024

Method

July 2014 SW-846 6020B

July 2014 SW-846 6020B

July 2014 SW-846 6020B

July 2014 SW-846 7470A

SW-846 3005A

SW-846 3020A

SW-846 7470A

SW-846 6020B

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 10:10

SDG#: CMS12-06

ICP-WW, 3005A (tot rec) - U345

ICPMS - Water, 3020A - U345

WW SW846 Hg Digest

Analysis Name

Manganese

Nickel

Zinc

Mercury

Selenium

CAT

No.

06037

06039

06041

06049

00259

14044

14047

05713

Langan Eng & Env Services ELLE Sample #: GW 1317998 ELLE Group #: 2100197 Matrix: Groundwater

JoElla L Rice

JoElla L Rice

Labo	ratory S	Sample Analysis	Record		
	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
8 Rev.2,	1	201421404701A	05/26/2020 13:16	Patrick J Engle	1
8 Rev.2,	1	201421404701A	05/22/2020 17:33	Patrick J Engle	1
8 Rev.2,	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1
8 Rev.2,	1	201421404701A	05/22/2020 16:04	Patrick J Engle	1
١	1	201420571302	05/22/2020 05:32	Damary Valentin	1
١	1	201421404401	05/21/2020 14:35	JoElla L Rice	1

05/21/2020 14:30

05/21/2020 15:25

201421404701

201420571302

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 SDG#: CMS12-07FD

Langan Eng & Env Services ELLE Sample #: GW 1317999 **ELLE Group #:** 2100197

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	N.D.	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	0.0002 J	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total)1	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	0.0005 J	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59 Collection Date/Time: 05/20/2020 SDG#: CMS12-07FD

Langan Eng & Env Services **ELLE Sample #: GW 1317999 ELLE Group #:** 2100197

Matrix: Groundwater

CAT No.	Analysis Name	CAS N	umber Resu	D-		Limit of Quantitation	Dilution Factor		
GC/MS	Volatiles	SW-846 8260C	mg/l	mg	g/l	mg/l			
11997	Tetrachloroethene	127-18	-4 N.D.	0.0	0002	0.001	1		
11997	Toluene	108-88	-3 N.D.	0.0	0002	0.001	1		
11997	1,1,1-Trichloroethane	71-55-6	6 N.D.	0.0	0003	0.001	1		
11997	1,1,2-Trichloroethane	79-00-	5 N.D.	0.0	0002	0.001	1		
11997	Trichloroethene	79-01-6	6 N.D.	0.0	0002	0.001	1		
11997	Trichlorofluoromethane	75-69-4	4 N.D.	0.0	0002	0.001	1		
11997	1,2,4-Trimethylbenzene	95-63-6	6 N.D.	0.0	001	0.005	1		
11997	1,3,5-Trimethylbenzene	108-67	-8 N.D.	0.0	0003	0.005	1		
11997	Vinyl Chloride	75-01-4	4 N.D.	0.0	0002	0.001	1		
11997	Xylene (Total)	1330-2	0-7 N.D.	0.0	001	0.006	1		
GC/MS	Semivolatiles	SW-846 8270D	mg/l	mç	g/l	mg/l			
14242	Acenaphthene	83-32-9	9 N.D.	0.0	00009	0.0005	1		
14242	Acenaphthylene	208-96	-8 N.D.	0.0	00009	0.0005	1		
14242	Acetophenone	98-86-2	2 N.D.	0.0	004	0.009	1		
14242	Anthracene	120-12	-7 N.D.	0.0	00009	0.0005	1		
14242	Atrazine	1912-2	4-9 N.D.	0.0	002	0.005	1		
14242	Benzaldehyde	100-52	-7 N.D.	0.0	003	0.009	1		
14242	Benzidine	92-87-	5 N.D.	0.0	019	0.057	1		
14242	Benzo(a)anthracene	56-55-3	N.D.	0.0	00009	0.0005	1		
14242	Benzo(a)pyrene	50-32-8	8 N.D.	0.0	00009	0.0005	1		
14242	Benzo(b)fluoranthene	205-99	-2 N.D.	0.0	00009	0.0005	1		
14242	Benzo(g,h,i)perylene	191-24	-2 N.D.	0.0	00009	0.0005	1		
14242	Benzo(k)fluoranthene	207-08	-9 N.D.	0.0	00009	0.0005	1		
14242	1,1'-Biphenyl	92-52-4	4 N.D.	0.0	003	0.009	1		
14242	Butylbenzylphthalate	85-68-7	7 N.D.	0.0	002	0.005	1		
14242	Di-n-butylphthalate	84-74-2	N.D.	0.0	002	0.005	1		
14242	Caprolactam	105-60	-2 N.D.	0.0	005	0.010	1		
14242	Carbazole	86-74-8	8 N.D.	0.0	0005	0.002	1		
14242	bis(2-Chloroethyl)ether	111-44	-4 N.D.	0.0	0005	0.002	1		
14242	bis(2-Chloroisopropyl)ethe	er ¹ 39638-	32-9 N.D.	0.0	0005	0.002	1		
	Bis(2-chloroisopropyl) ether CAS #39638-32-9 and 2,2'-Oxybis(1-chloropropane) CAS #108-60-1 cannot be separated chromatographically. The reported result represents the combined total of both compounds.								
14242	2-Chloronaphthalene	91-58-7	7 N.D.	0.0	0004	0.0009	1		
14242	2-Chlorophenol	95-57-8	8 N.D.	0.0	0005	0.002	1		
14242	Chrysene	218-01	-9 N.D.	0.0	00009	0.0005	1		
14242	Dibenz(a,h)anthracene	53-70-3	3 N.D.	0.0	00009	0.0005	1		
14242	Dibenzofuran	132-64	-9 N.D.	0.0	0005	0.002	1		
14242	1,2-Dichlorobenzene	95-50-	1 N.D.	0.0	0005	0.002	1		
14242	1,3-Dichlorobenzene	541-73	-1 N.D.	0.0	0005	0.002	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197
Matrix: Groundwater

		<u> </u>						
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor		
GC/MS	S Semivolatiles SW-84	16 8270D	mg/l	mg/l	mg/l			
14242	1.4-Dichlorobenzene	106-46-7	N.D.	0.0005	0.002	1		
14242	3,3'-Dichlorobenzidine	91-94-1	N.D.	0.003	0.009	1		
14242	2,4-Dichlorophenol	120-83-2	N.D.	0.0005	0.002	1		
14242	Diethylphthalate	84-66-2	N.D.	0.002	0.005	1		
14242	2,4-Dimethylphenol	105-67-9	N.D.	0.003	0.009	1		
14242	Dimethylphthalate	131-11-3	N.D.	0.002	0.005	1		
14242	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	0.008	0.020	1		
14242	2,4-Dinitrophenol	51-28-5	N.D.	0.013	0.028	1		
14242	2,4-Dinitrotoluene	121-14-2	N.D.	0.0009	0.005	1		
14242	2,6-Dinitrotoluene	606-20-2	N.D.	0.0005	0.002	1		
14242	2,4 2,6-Dinitrotoluenes ¹	25321-14-6	N.D.	0.0009	0.005	1		
14242	1,2-Diphenylhydrazine	122-66-7	N.D.	0.0005	0.002	1		
	Azobenzene cannot be distinguishe reported for 1,2-diphenylhydrazine compounds.	, ,						
14242	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	0.005	0.010	1		
14242	Fluoranthene	206-44-0	N.D.	0.00009	0.0005	1		
14242	Fluorene	86-73-7	N.D.	0.00009	0.0005	1		
14242	Hexachlorobenzene	118-74-1	N.D.	0.00009	0.0005	1		
14242	Hexachlorobutadiene	87-68-3	N.D.	0.0005	0.002	1		
14242	Hexachlorocyclopentadiene	77-47-4	N.D.	0.005	0.010	1		
14242	Hexachloroethane	67-72-1	N.D.	0.0009	0.005	1		
14242	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.00009	0.0005	1		
14242	Isophorone	78-59-1	N.D.	0.0005	0.002	1		
14242	2-Methylnaphthalene	91-57-6	N.D.	0.00009	0.0005	1		
14242	2-Methylphenol	95-48-7	N.D.	0.0005	0.002	1		
14242	4-Methylphenol	106-44-5	N.D.	0.0005	0.002	1		
	3-Methylphenol and 4-methylpheno chromatographic conditions used for for 4-methylphenol represents the o	or sample analysis. The res	ult reported					
14242	Naphthalene	91-20-3	N.D.	0.00009	0.0005	1		
14242	2-Nitroaniline	88-74-4	N.D.	0.002	0.007	1		
14242	Nitrobenzene	98-95-3	N.D.	0.0005	0.002	1		
14242	N-Nitrosodimethylamine	62-75-9	N.D.	0.002	0.005	1		
14242	N-Nitroso-di-n-propylamine	621-64-7	N.D.	0.0007	0.003	1		
14242	N-Nitrosodiphenylamine	86-30-6	N.D.	0.0007	0.003	1		
	N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.							
14242	Di-n-octylphthalate	117-84-0	N.D.	0.005	0.010	1		
14242	Pentachlorophenol	87-86-5	N.D.	0.0009	0.005	1		
14242	Phenanthrene	85-01-8	N.D.	0.00009	0.0005	1		
14242	Phenol	108-95-2	N.D.	0.0005	0.002	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Spike(s) is outside the QC acceptance limits as noted on the QC Summary. Since the recovery is high and the target analyte(s)

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197

Matrix: Groundwater

CAT	Analysis Name		CAS Number	5		Method Detection Limit*	Limit of Quantitation	Dilution
No.	Analysis Name			Result				Factor
GC/MS	S Semivolatiles	SW-846 8270	D	mg/l	I	mg/l	mg/l	
14242	Pyrene		129-00-0	N.D.		0.00009	0.0005	1
14242	Pyridine		110-86-1	N.D.		0.002	0.005	1
14242	1,2,4-Trichlorobenzene		120-82-1	N.D.		0.0005	0.002	1
14242	2,4,5-Trichlorophenol		95-95-4	N.D.		0.0005	0.002	1
14242	2,4,6-Trichlorophenol		88-06-2	N.D.	(0.0005	0.002	1
QC a	e first extraction, the reconseceptance limits. The same time and the surrogate	ample was re-extracted						
the s Sumi Spike	ecovery for a target analysecond extraction is outsic mary. The recoveries for refs) from the first extraction and extraction.	de the QC acceptance the target analytes in t	limits as noted or he Laboratory Co	n the QC entrol				
GC/MS	Semivolatiles	SW-846 8270	D SIM	ug/l	1	ug/l	ug/l	
14244	1.4-Dioxane		123-91-1	N.D.		0.09	0.3	1
limits	CS/LCSD surrogate(s) r as noted on the QC Sun t analytes is compliant, th	nmary. Since the reco						
Herbic	ides	SW-846 8151	Α	mg/l	1	mg/l	mg/l	
10407	2,4-D		94-75-7	N.D. D1		0.00024	0.00057	1
10407	2,4,5-T		93-76-5	N.D. D2		0.000062	0.00014	1
10407	2,4,5-TP		93-72-1	N.D. D2	(0.0000096	0.000048	1
Spike Sumi was i The r acce	ecovery for a target analyte(s) is outside the QC accumary. Since the recovery not detected in the sample secovery for the sample sotance limits as noted on h and no target analytes ted.	peptance limits as note is high and the target e, the data is reported urrogate(s) is outside the QC Summary. Sin	ed on the QC analyte(s) the QC nce the recovery					
PCBs		SW-846 8082	Α	mg/l	1	mg/l	mg/l	
10591	PCB-1016		12674-11-2	N.D. D1		0.00014	0.00070	1
10591	PCB-1221		11104-28-2	N.D. D1		0.00014	0.00070	1
10591	PCB-1232		11141-16-5	N.D. D1		0.00028	0.00070	1
10591	PCB-1242		53469-21-9	N.D. D1		0.00014	0.00070	1
10591	PCB-1248		12672-29-6	N.D. D1		0.00014	0.00070	1
10591	PCB-1254		11097-69-1	N.D. D1		0.00014	0.00070	1
10591	PCB-1260		11096-82-5	N.D. D1		0.00021	0.00070	1
10591	Total PCBs1		1336-36-3	N.D.	(0.00014	0.00070	1
The r	ecovery for a target analy	yte(s) in the Laborator	y Control					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59
Collection Date/Time: 05/20/2020
SDG#: 05/20/2020
CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
was r	not detected in the sample, the data is re	ported.				
Pestici	ides SW-846	8081B	mg/l	mg/l	mg/l	
10589	Aldrin	309-00-2	N.D. D1	0.000019	0.0000094	1
10589	Alpha BHC	319-84-6	N.D. D1	0.0000028	0.0000094	1
10589	Beta BHC	319-85-7	N.D. D1	0.000032	0.0000094	1
10589	Gamma BHC - Lindane	58-89-9	N.D. D1	0.000019	0.0000094	1
10589	Alpha Chlordane	5103-71-9	N.D. D1	0.0000028	0.0000094	1
10589	4,4'-Ddd	72-54-8	N.D. D1	0.000047	0.000019	1
10589	4,4'-Dde	72-55-9	N.D. D1	0.000047	0.000019	1
10589	4,4'-Ddt	50-29-3	N.D. D2	0.000049	0.000019	1
10589	Delta BHC	319-86-8	N.D. D1	0.0000032	0.0000094	1
10589	Dieldrin	60-57-1	N.D. D2	0.000050	0.000019	1
10589	Endosulfan I	959-98-8	N.D. D1	0.000040	0.0000094	1
10589	Endosulfan II	33213-65-9	N.D. D2	0.000014	0.000038	1
10589	Endosulfan Sulfate	1031-07-8	N.D. D1	0.0000055	0.000019	1
10589	Endrin	72-20-8	N.D. D2	0.000076	0.000028	1
10589	Heptachlor	76-44-8	N.D. D2	0.0000019	0.0000094	1
LC/MS		Version 1.1	ng/l	ng/l	ng/l	
	Modified					
14473	6:2-Fluorotelomersulfonic acid1	27619-97-2	N.D.	1.8	4.4	1
14473	8:2-Fluorotelomersulfonic acid1	39108-34-4	N.D.	0.88	2.6	1
14473	NEtFOSAA ¹	2991-50-6	N.D.	0.44	2.6	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	midoacetic Acid.			
14473	NMeFOSAA ¹	2355-31-9	N.D.	0.53	1.8	1
	NMeFOSAA is the acronym for N-met	nyl perfluorooctanesulfo	onamidoacetic Acid.			
14473	Perfluorobutanesulfonic acid ¹	375-73-5	8.0	0.44	1.8	1
14473	Perfluorobutanoic acid ¹	375-22-4	33	1.8	4.4	1
14473	Perfluorodecanesulfonic acid1	335-77-3	N.D.	0.44	1.8	1
14473	Perfluorodecanoic acid1	335-76-2	N.D.	0.44	1.8	1
14473	Perfluorododecanoic acid ¹	307-55-1	N.D.	0.44	1.8	1
14473	Perfluoroheptanesulfonic acid1	375-92-8	0.84 J	0.44	1.8	1
14473	Perfluoroheptanoic acid ¹	375-85-9	30	0.44	1.8	1
14473	Perfluorohexanesulfonic acid ¹	355-46-4	5.1	0.44	1.8	1
14473	Perfluorohexanoic acid ¹	307-24-4	80	0.44	1.8	1
14473	Perfluorononanoic acid1	375-95-1	12	0.44	1.8	1
14473	Perfluorooctanesulfonamide ¹	754-91-6	0.58 J	0.44	1.8	1
14473	Perfluorooctanesulfonic acid ¹	1763-23-1	24	0.44	1.8	1
14473	Perfluorooctanoic acid ¹	335-67-1	170	0.44	1.8	1
14473	Perfluoropentanoic acid ¹	2706-90-3	120	0.44	1.8	1
14473	Perfluorotetradecanoic acid ¹	376-06-7	N.D.	0.44	1.8	1
14473	Perfluorotridecanoic acid ¹	72629-94-8	N.D.	0.44	1.8	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	ng/l	
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.8	1
Metals		SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0042	0.00068	0.0020	1
06026	Barium	7440-39-3	0.131	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	7440-43-9	0.0012	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00052 J	0.00033	0.0020	1
02828	Trivalent Chromium water	rs ¹ 16065-83-1	N.D.	0.010	0.030	1
	The Trivalent Chromium r Chromium from Total Chro	esult is calculated by subtracting Hexa omium.	avalent			
06033	Copper	7440-50-8	0.0027	0.00036	0.0010	1
06035	Lead	7439-92-1	0.0020	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.924	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0096	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0019	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.415	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1
Wet Ch	nemistry	SW-846 9012B	mg/l	mg/l	mg/l	
08255	Total Cyanide (water)	57-12-5	N.D.	0.0050	0.010	1
		SW-846 7196A	mg/l	mg/l	mg/l	
00276	Hexavalent Chromium	18540-29-9	N.D.	0.010	0.030	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197

Matrix: Groundwater

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11997	VOCs 8260C	SW-846 8260C	1	L201481AA	05/27/2020 15:11	Corie Mellinger	1
01163	GC/MS VOA Water Prep	SW-846 5030C	1	L201481AA	05/27/2020 15:10	Corie Mellinger	1
14242	TCL SW846 8270D MINI	SW-846 8270D	1	20147WAC026	05/27/2020 13:07	Edward C Monborne	1
14244	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20143WAC026	05/26/2020 14:33	Kira N Beck	1
00813	BNA Water Extraction	SW-846 3510C	2	20147WAC026	05/26/2020 19:30	Osvaldo R Sanchez	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	20143WAC026	05/22/2020 18:50	Patrick Thimes	1
10407	Herbicides in Water 8151A	SW-846 8151A	1	201430018A	05/27/2020 00:20	Rachel Umberger	1
10591	7 PCBs + Total Water	SW-846 8082A	1	201430007A	05/26/2020 12:10	Covenant Mutuku	1
10589	NY Part 375 Pests Water	SW-846 8081B	1	201430006A	05/27/2020 00:50	James Patrushev	1
11121	PCB Waters Update IV Ext	SW-846 3510C	1	201430007A	05/22/2020 20:15	Osvaldo R Sanchez	1
11120	Pesticide Waters Update IV Ext	SW-846 3510C	1	201430006A	05/22/2020 20:15	Osvaldo R Sanchez	1
00816	Water Sample Herbicide Extract	SW-846 8151A	1	201430018A	05/25/2020 20:05	Karen L Beyer	1
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20142002	05/22/2020 17:00	Archie H Covely	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20142002	05/21/2020 07:00	Pamela Rothharpt	1
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:40	Elaine F Stoltzfus	1
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:42	Patrick J Engle	1
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
02828	Trivalent Chromium waters	SW-846 6020B Rev.2, July 2014	1	201480282801	05/27/2020 09:18	Tshina Alamos	1
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:35	Patrick J Engle	1
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:38	Patrick J Engle	5
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:42	Patrick J Engle	1
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:16	Patrick J Engle	1
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:36	Damary Valentin	1
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1
08255	Total Cyanide (water)	SW-846 9012B	1	20148117101A	05/27/2020 10:52	Jonathan Saul	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-07FD

Langan Eng & Env Services
ELLE Sample #: GW 1317999
ELLE Group #: 2100197

Matrix: Groundwater

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
08256	Cyanide Water Distillation	SW-846 9012B	1	20148117101A	05/27/2020 08:00	Nancy J Shoop	1
00276	Hexavalent Chromium	SW-846 7196A	1	20142027601A	05/21/2020 02:45	Daniel S Smith	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-08FD

Langan Eng & En	v Services
ELLE Sample #:	GW 1318000
ELLE Group #:	2100197

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metals	Dissolved	SW-846 6010D Rev.4, July 2014	mg/l	mg/l	mg/l	
07066	Silver	7440-22-4	N.D.	0.0050	0.0100	1
		SW-846 6020B Rev.2, July 2014	mg/l	mg/l	mg/l	
06025	Arsenic	7440-38-2	0.0042	0.00068	0.0020	1
06026	Barium	7440-39-3	0.132	0.00075	0.0020	1
06027	Beryllium	7440-41-7	N.D. K4	0.00012	0.00050	1
06028	Cadmium	7440-43-9	0.0013	0.00015	0.00050	1
06031	Chromium	7440-47-3	0.00034 J	0.00033	0.0020	1
06033	Copper	7440-50-8	0.0013	0.00036	0.0010	1
06035	Lead	7439-92-1	0.00030 J	0.000071	0.00050	1
06037	Manganese	7439-96-5	0.934	0.0032	0.0100	5
06039	Nickel	7440-02-0	0.0107	0.00060	0.0010	1
06041	Selenium	7782-49-2	0.0020	0.00028	0.0010	1
06049	Zinc	7440-66-6	0.413	0.0062	0.0100	1
		SW-846 7470A	mg/l	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000079	0.00020	1

Sample Comments

State of New York Certification No. 10670 This sample was field filtered for dissolved metals.

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
07066	Silver	SW-846 6010D Rev.4, July 2014	1	201421404401	05/22/2020 11:50	Elaine F Stoltzfus	1					
06025	Arsenic	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:44	Patrick J Engle	1					
06026	Barium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					
06027	Beryllium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					
06028	Cadmium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:44	Patrick J Engle	1					
06031	Chromium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					
06033	Copper	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:40	Patrick J Engle	1					
06035	Lead	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWDUP01_052020 Filtered Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-08FD

Langan Eng & Env Services
ELLE Sample #: GW 1318000
ELLE Group #: 2100197

Matrix: Groundwater

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor					
06037	Manganese	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/26/2020 13:42	Patrick J Engle	5					
06039	Nickel	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 17:44	Patrick J Engle	1					
06041	Selenium	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					
06049	Zinc	SW-846 6020B Rev.2, July 2014	1	201421404701A	05/22/2020 16:19	Patrick J Engle	1					
00259	Mercury	SW-846 7470A	1	201420571302	05/22/2020 05:40	Damary Valentin	1					
14044	ICP-WW, 3005A (tot rec) - U345	SW-846 3005A	1	201421404401	05/21/2020 14:35	JoElla L Rice	1					
14047	ICPMS - Water, 3020A - U345	SW-846 3020A	1	201421404701	05/21/2020 14:30	JoElla L Rice	1					
05713	WW SW846 Hg Digest	SW-846 7470A	1	201420571302	05/21/2020 15:25	JoElla L Rice	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB02_052020 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59
Collection Date/Time: 05/20/2020 14:30
SDG#: CMS12-09FB

Langan Eng & Env Services
ELLE Sample #: GW 1318001
ELLE Group #: 2100197

Matrix: Water

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles	SW-846 827	OD SIM	ug/l	ug/l	ug/l	
14244	1,4-Dioxane		123-91-1	N.D.	0.09	0.3	1
limits	CS/LCSD surrogate(s) rec as noted on the QC Summ t analytes is compliant, the	ary. Since the rec					
LC/MS	/MS Miscellaneous	EPA 537 Ver Modified	rsion 1.1	ng/l	ng/l	ng/l	
14473	6:2-Fluorotelomersulfonio	c acid¹	27619-97-2	N.D.	1.6	4.0	1
14473	8:2-Fluorotelomersulfonio	c acid¹	39108-34-4	N.D.	0.81	2.4	1
14473	NEtFOSAA1		2991-50-6	N.D.	0.40	2.4	1
	NEtFOSAA is the acrony	m for N-ethyl perflu	uorooctanesulfonai	midoacetic Acid.			
14473	NMeFOSAA1		2355-31-9	N.D.	0.48	1.6	1
	NMeFOSAA is the acron	ym for N-methyl pe	erfluorooctanesulfo	namidoacetic Acid.			
14473	Perfluorobutanesulfonic a	acid¹	375-73-5	N.D.	0.40	1.6	1
14473	Perfluorobutanoic acid1		375-22-4	N.D.	1.6	4.0	1
14473	Perfluorodecanesulfonic	acid¹	335-77-3	N.D.	0.40	1.6	1
14473	Perfluorodecanoic acid1		335-76-2	N.D.	0.40	1.6	1
14473	Perfluorododecanoic acid	j 1	307-55-1	N.D.	0.40	1.6	1
14473	Perfluoroheptanesulfonic	acid1	375-92-8	N.D.	0.40	1.6	1
14473	Perfluoroheptanoic acid1		375-85-9	N.D.	0.40	1.6	1
14473	Perfluorohexanesulfonic	acid¹	355-46-4	N.D.	0.40	1.6	1
14473	Perfluorohexanoic acid1		307-24-4	N.D.	0.40	1.6	1
14473	Perfluorononanoic acid1		375-95-1	N.D.	0.40	1.6	1
14473	Perfluorooctanesulfonam	ide ¹	754-91-6	N.D.	0.40	1.6	1
14473	Perfluorooctanesulfonic a	acid ¹	1763-23-1	N.D.	0.40	1.6	1
14473	Perfluorooctanoic acid1		335-67-1	N.D.	0.40	1.6	1
14473	Perfluoropentanoic acid1		2706-90-3	N.D.	0.40	1.6	1
14473	Perfluorotetradecanoic a		376-06-7	N.D.	0.40	1.6	1
14473	Perfluorotridecanoic acid	1	72629-94-8	N.D.	0.40	1.6	1
14473	Perfluoroundecanoic acid	1 1	2058-94-8	N.D.	0.40	1.6	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14244	1,4-Dioxane 8270D SIM add-on	SW-846 8270D SIM	1	20143WAC026	05/26/2020 15:01	Kira N Beck	1				
10466	BNA Water Extraction SIM	SW-846 3510C	1	20143WAC026	05/22/2020 18:50	Patrick Thimes	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWFB02_052020 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/20/2020 23:59
Collection Date/Time: 05/20/2020 14:30
SDG#: CMS12-09FB

Langan Eng & Env Services
ELLE Sample #: GW 1318001

ELLE Group #: 2100197

Matrix: Water

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	NY 21 PFAS Water	EPA 537 Version 1.1 Modified	1	20142002	05/22/2020 17:09	Archie H Covely	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	20142002	05/21/2020 07:00	Pamela Rothharpt	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWTB02_052020 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-10TB

Langan Eng & Env Services
ELLE Sample #: GW 1318002
ELLE Group #: 2100197

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	3260C	mg/l	mg/l	mg/l	
11997	Acetone	67-64-1	0.0007 J	0.0007	0.020	1
11997	Acrolein	107-02-8	N.D.	0.002	0.10	1
11997	Acrylonitrile	107-13-1	N.D.	0.0003	0.020	1
11997	Benzene	71-43-2	N.D.	0.0002	0.001	1
11997	Bromodichloromethane	75-27-4	N.D.	0.0002	0.001	1
11997	Bromoform	75-25-2	N.D.	0.001	0.004	1
11997	Bromomethane	74-83-9	N.D.	0.0003	0.001	1
11997	2-Butanone	78-93-3	N.D.	0.0003	0.010	1
11997	t-Butyl alcohol	75-65-0	N.D.	0.012	0.050	1
11997	n-Butylbenzene	104-51-8	N.D.	0.0002	0.005	1
11997	sec-Butylbenzene	135-98-8	N.D.	0.0002	0.005	1
11997	tert-Butylbenzene	98-06-6	N.D.	0.0003	0.005	1
11997	Carbon Disulfide	75-15-0	N.D.	0.0002	0.005	1
11997	Carbon Tetrachloride	56-23-5	N.D.	0.0002	0.001	1
11997	Chlorobenzene	108-90-7	N.D.	0.0002	0.001	1
11997	Chloroethane	75-00-3	N.D.	0.0002	0.001	1
11997	Chloroform	67-66-3	N.D.	0.0002	0.001	1
11997	Chloromethane	74-87-3	N.D.	0.0002	0.001	1
11997	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.0003	0.005	1
11997	Dibromochloromethane	124-48-1	N.D.	0.0002	0.001	1
11997	1,2-Dibromoethane	106-93-4	N.D.	0.0002	0.001	1
11997	1,2-Dichlorobenzene	95-50-1	N.D.	0.0002	0.005	1
11997	1,3-Dichlorobenzene	541-73-1	N.D.	0.0002	0.005	1
11997	1,4-Dichlorobenzene	106-46-7	N.D.	0.0002	0.005	1
11997	Dichlorodifluoromethane	75-71-8	N.D.	0.0002	0.001	1
11997	1,1-Dichloroethane	75-34-3	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethane	107-06-2	N.D.	0.0003	0.001	1
11997	1,1-Dichloroethene	75-35-4	N.D.	0.0002	0.001	1
11997	cis-1,2-Dichloroethene	156-59-2	N.D.	0.0002	0.001	1
11997	trans-1,2-Dichloroethene	156-60-5	N.D.	0.0002	0.001	1
11997	1,2-Dichloroethene (Total) ¹	540-59-0	N.D.	0.0004	0.002	1
11997	1,2-Dichloropropane	78-87-5	N.D.	0.0002	0.001	1
11997	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.0002	0.001	1
11997	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.0002	0.001	1
11997	Ethylbenzene	100-41-4	N.D.	0.0004	0.001	1
11997	Methyl Acetate	79-20-9	N.D.	0.0003	0.005	1
11997	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0002	0.001	1
11997	Methylene Chloride	75-09-2	N.D.	0.0003	0.001	1
11997	n-Propylbenzene	103-65-1	N.D.	0.0002	0.005	1
11997	Styrene	100-42-5	N.D.	0.0002	0.005	1
11997	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.0002	0.001	1
	, , ,_ : ::::::::::::::::::::::::::::::					•

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: GWTB02_052020 Water

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

 Submittal Date/Time:
 05/20/2020 23:59

 Collection Date/Time:
 05/20/2020

 SDG#:
 CMS12-10TB

Langan Eng & Env	/ Services
ELLE Sample #:	GW 1318002
ELLE Group #:	2100197

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8260C	mg/l	mg/l	mg/l	
11997	Tetrachloroethene	127-18-4	N.D.	0.0002	0.001	1
11997	Toluene	108-88-3	N.D.	0.0002	0.001	1
11997	1,1,1-Trichloroethane	71-55-6	N.D.	0.0003	0.001	1
11997	1,1,2-Trichloroethane	79-00-5	N.D.	0.0002	0.001	1
11997	Trichloroethene	79-01-6	N.D.	0.0002	0.001	1
11997	Trichlorofluoromethane	75-69-4	N.D.	0.0002	0.001	1
11997	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.001	0.005	1
11997	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.0003	0.005	1
11997	Vinyl Chloride	75-01-4	N.D.	0.0002	0.001	1
11997	Xylene (Total)	1330-20-7	N.D.	0.001	0.006	1

Sample Comments

State of New York Certification No. 10670

¹ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
11997 01163	VOCs 8260C GC/MS VOA Water Prep	SW-846 8260C SW-846 5030C	1 1	L201481AA L201481AA	05/27/2020 12:37 05/27/2020 12:36	Corie Mellinger Corie Mellinger	1 1

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Batch number: 5201473AA	Sample number(s): 1317993,1	317995,1317997
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide	N.D.	0.0002	0.005
Carbon Tetrachloride	N.D.	0.0002	0.001
Chlorobenzene	N.D.	0.0002	0.001
Chloroethane	N.D.	0.0002	0.001
Chloroform	N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0003	0.005
Dibromochloromethane	N.D.	0.0002	0.001
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
Batch number: L201481AA	Sample num	ber(s): 1317999,	1318002
Acetone	N.D.	0.0007	0.020
Acrolein	N.D.	0.002	0.10
Acrylonitrile	N.D.	0.0003	0.020
Benzene	N.D.	0.0002	0.001
Bromodichloromethane	N.D.	0.0002	0.001
Bromoform	N.D.	0.001	0.004
Bromomethane	N.D.	0.0003	0.001
2-Butanone	N.D.	0.0003	0.010
t-Butyl alcohol	N.D.	0.012	0.050
n-Butylbenzene	N.D.	0.0002	0.005
sec-Butylbenzene	N.D.	0.0002	0.005
tert-Butylbenzene	N.D.	0.0003	0.005
Carbon Disulfide Carbon Tetrachloride	N.D. N.D.	0.0002	0.005
Chlorobenzene	N.D. N.D.	0.0002 0.0002	0.001 0.001
Chloroethane	N.D. N.D.	0.0002	0.001
Chloroform	N.D. N.D.	0.0002	0.001
Chloromethane	N.D.	0.0002	0.001
1,2-Dibromo-3-chloropropane	N.D.	0.0002	0.001
Dibromochloromethane	N.D.	0.0003	0.003
1,2-Dibromoethane	N.D.	0.0002	0.001
1,2-Dichlorobenzene	N.D.	0.0002	0.005
1,3-Dichlorobenzene	N.D.	0.0002	0.005
1,4-Dichlorobenzene	N.D.	0.0002	0.005
Dichlorodifluoromethane	N.D.	0.0002	0.001
1,1-Dichloroethane	N.D.	0.0002	0.001
1,2-Dichloroethane	N.D.	0.0003	0.001
1,1-Dichloroethene	N.D.	0.0002	0.001
cis-1,2-Dichloroethene	N.D.	0.0002	0.001
trans-1,2-Dichloroethene	N.D.	0.0002	0.001
1,2-Dichloroethene (Total)	N.D.	0.0004	0.002
` '			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
1,2-Dichloropropane	N.D.	0.0002	0.001
cis-1,3-Dichloropropene	N.D.	0.0002	0.001
trans-1,3-Dichloropropene	N.D.	0.0002	0.001
Ethylbenzene	N.D.	0.0004	0.001
Methyl Acetate	N.D.	0.0003	0.005
Methyl Tertiary Butyl Ether	N.D.	0.0002	0.001
Methylene Chloride	N.D.	0.0003	0.001
n-Propylbenzene	N.D.	0.0002	0.005
Styrene	N.D.	0.0002	0.005
1,1,2,2-Tetrachloroethane	N.D.	0.0002	0.001
Tetrachloroethene	N.D.	0.0002	0.001
Toluene	N.D.	0.0002	0.001
1,1,1-Trichloroethane	N.D.	0.0003	0.001
1,1,2-Trichloroethane	N.D.	0.0002	0.001
Trichloroethene	N.D.	0.0002	0.001
Trichlorofluoromethane	N.D.	0.0002	0.001
1,2,4-Trimethylbenzene	N.D.	0.001	0.005
1,3,5-Trimethylbenzene	N.D.	0.0003	0.005
Vinyl Chloride	N.D.	0.0002	0.001
Xylene (Total)	N.D.	0.001	0.006
Batch number: 20143WAA026	Sample num	ber(s): 1317993,	1317997
Acenaphthene	N.D.	0.0001	0.0005
Acenaphthylene	N.D.	0.0001	0.0005
Acetophenone	N.D.	0.004	0.010
Anthracene	N.D.	0.0001	0.0005
Atrazine	N.D.	0.002	0.005
Benzaldehyde	N.D.	0.003	0.010
Benzidine	N.D.	0.020	0.060
Benzo(a)anthracene	N.D.	0.0001	0.0005
Benzo(a)pyrene	N.D.	0.0001	0.0005
Benzo(b)fluoranthene	N.D.	0.0001	0.0005
Benzo(g,h,i)perylene	N.D.	0.0001	0.0005
Benzo(k)fluoranthene	N.D. N.D.	0.0001	0.0005
1,1'-Biphenyl	N.D. N.D.	0.003 0.002	0.010
Butylbenzylphthalate Di-n-butylphthalate	N.D. N.D.		0.005
Caprolactam	N.D. N.D.	0.002 0.005	0.005 0.011
Carbazole	N.D.	0.005	0.011
bis(2-Chloroethyl)ether	N.D.	0.0005	0.002
bis(2-Chloroisopropyl)ether	N.D.	0.0005	0.002
2-Chloronaphthalene	N.D.	0.0003	0.002
2-Chlorophenol	N.D.	0.0004	0.001
Chrysene	N.D.	0.0003	0.002
Dibenz(a,h)anthracene	N.D.	0.0001	0.0005
Dibeliz(a,ii)alitiliatelle	IN.D.	0.0001	0.0003

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Dibenzofuran	N.D.	0.0005	0.002
1,2-Dichlorobenzene	N.D.	0.0005	0.002
1,3-Dichlorobenzene	N.D.	0.0005	0.002
1,4-Dichlorobenzene	N.D.	0.0005	0.002
3,3'-Dichlorobenzidine	N.D.	0.0003	0.002
2,4-Dichlorophenol	N.D.	0.0005	0.002
Diethylphthalate	N.D.	0.0003	0.002
2,4-Dimethylphenol	N.D.	0.002	0.003
Dimethylphthalate	N.D.	0.003	0.005
4,6-Dinitro-2-methylphenol	N.D.	0.002	0.003
2,4-Dinitrophenol	N.D.	0.008	0.021
2,4-Dinitrophenol	N.D.	0.014	0.005
2,6-Dinitrotoluene	N.D.	0.001	0.003
2,4 2,6-Dinitrotoluenes	N.D.	0.0003	0.002
1,2-Diphenylhydrazine	N.D.	0.0005	0.003
bis(2-Ethylhexyl)phthalate	N.D. N.D.	0.005	0.002
Fluoranthene	N.D. N.D.	0.005	0.0005
Fluorene	N.D. N.D.	0.0001	0.0005
Hexachlorobenzene	N.D. N.D.	0.0001	0.0005
Hexachlorobutadiene	N.D.	0.0001	0.0003
	N.D. N.D.	0.005	
Hexachlorocyclopentadiene	N.D. N.D.		0.011
Hexachloroethane	N.D. N.D.	0.001	0.005
Indeno(1,2,3-cd)pyrene		0.0001	0.0005
Isophorone	N.D. N.D.	0.0005	0.002 0.0005
2-Methylphopal	N.D.	0.0001 0.0005	0.0003
2-Methylphenol 4-Methylphenol	N.D. N.D.	0.0005	0.002
	N.D. N.D.		
Naphthalene 2-Nitroaniline	N.D. N.D.	0.0001 0.002	0.0005 0.007
Nitrobenzene	N.D. N.D.	0.002	0.007
	N.D. N.D.	0.0005	
N-Nitrosodimethylamine	N.D. N.D.		0.005
N-Nitroso-di-n-propylamine	N.D. N.D.	0.0007	0.003
N-Nitrosodiphenylamine		0.0007	0.003
Di-n-octylphthalate	N.D. N.D.	0.005	0.011
Pentachlorophenol		0.001	0.005
Phenanthrene Phenol	N.D. N.D.	0.0001	0.0005
	N.D. N.D.	0.0005	0.002
Pyrene	N.D. N.D.	0.0001	0.0005
Pyridine		0.002	0.005
1,2,4-Trichlorobenzene	N.D. N.D.	0.0005	0.002
2,4,5-Trichlorophenol		0.0005	0.002
2,4,6-Trichlorophenol	N.D.	0.0005	0.002
Batch number: 20147WAC026	Sample num	ber(s): 1317995,	1317999
Acenaphthene	N.D.	0.0001	0.0005

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Acenaphthylene	N.D.	0.0001	0.0005
Acetophenone	N.D.	0.004	0.010
Anthracene	N.D.	0.0001	0.0005
Atrazine	N.D.	0.002	0.005
Benzaldehyde	N.D.	0.003	0.010
Benzidine	N.D.	0.020	0.060
Benzo(a)anthracene	N.D.	0.0001	0.0005
Benzo(a)pyrene	N.D.	0.0001	0.0005
Benzo(b)fluoranthene	N.D.	0.0001	0.0005
Benzo(g,h,i)perylene	N.D.	0.0001	0.0005
Benzo(k)fluoranthene	N.D.	0.0001	0.0005
1,1'-Biphenyl	N.D.	0.003	0.010
Butylbenzylphthalate	N.D.	0.002	0.005
Di-n-butylphthalate	N.D.	0.002	0.005
Caprolactam	N.D.	0.005	0.011
Carbazole	N.D.	0.0005	0.002
bis(2-Chloroethyl)ether	N.D.	0.0005	0.002
bis(2-Chloroisopropyl)ether	N.D.	0.0005	0.002
2-Chloronaphthalene	N.D.	0.0004	0.001
2-Chlorophenol	N.D.	0.0005	0.002
Chrysene	N.D.	0.0001	0.0005
Dibenz(a,h)anthracene	N.D.	0.0001	0.0005
Dibenzofuran	N.D.	0.0005	0.002
1,2-Dichlorobenzene	N.D.	0.0005	0.002
1,3-Dichlorobenzene	N.D.	0.0005	0.002
1,4-Dichlorobenzene	N.D.	0.0005	0.002
3,3'-Dichlorobenzidine	N.D.	0.003	0.010
2,4-Dichlorophenol	N.D.	0.0005	0.002
Diethylphthalate	N.D.	0.002	0.005
2,4-Dimethylphenol	N.D.	0.003	0.010
Dimethylphthalate	N.D.	0.002	0.005
4,6-Dinitro-2-methylphenol	N.D.	0.008	0.021
2,4-Dinitrophenol	N.D.	0.014	0.030
2,4-Dinitrotoluene	N.D.	0.001	0.005
2,6-Dinitrotoluene	N.D.	0.0005	0.002
2,4_2,6-Dinitrotoluenes	N.D.	0.001	0.005
1,2-Diphenylhydrazine	N.D.	0.0005	0.002
bis(2-Ethylhexyl)phthalate	N.D.	0.005	0.011
Fluoranthene	N.D.	0.0001	0.0005
Fluorene	N.D.	0.0001	0.0005
Hexachlorobenzene	N.D.	0.0001	0.0005
Hexachlorobutadiene	N.D.	0.0005	0.002
Hexachlorocyclopentadiene	N.D.	0.005	0.011
Hexachloroethane	N.D.	0.001	0.005
Indeno(1,2,3-cd)pyrene	N.D.	0.0001	0.0005
• • • •			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Isophorone	N.D.	0.0005	0.002
2-Methylnaphthalene	N.D.	0.0001	0.0005
2-Methylphenol	N.D.	0.0005	0.002
4-Methylphenol	N.D.	0.0005	0.002
Naphthalene	N.D.	0.0001	0.0005
2-Nitroaniline	N.D.	0.002	0.007
Nitrobenzene	N.D.	0.0005	0.002
N-Nitrosodimethylamine	N.D.	0.002	0.005
N-Nitroso-di-n-propylamine	N.D.	0.0007	0.003
N-Nitrosodiphenylamine	N.D.	0.0007	0.003
Di-n-octylphthalate	N.D.	0.005	0.011
Pentachlorophenol	N.D.	0.001	0.005
Phenanthrene	N.D.	0.0001	0.0005
Phenol	N.D.	0.0005	0.002
Pyrene	N.D.	0.0001	0.0005
Pyridine	N.D.	0.002	0.005
1,2,4-Trichlorobenzene	N.D.	0.0005	0.002
2,4,5-Trichlorophenol	N.D.	0.0005	0.002
2,4,6-Trichlorophenol	N.D.	0.0005	0.002
	ug/l	ug/l	ug/l
Batch number: 20143WAC026	Sample number	(s): 1317993,1	317995,1317997,1317999,1318001
1,4-Dioxane	N.D.	0.1	0.3
	mg/l	mg/l	mg/l
Batch number: 201430018A	Sample number	(s): 1317993,1	317995,1317997,1317999
2,4-D	N.D.	0.00025	0.00060
2,4,5-T	N.D.	0.000065	0.00015
2,4,5-TP	N.D.	0.000010	0.000050
Batch number: 201430007A	Sample number	(s): 1317993,1	317995,1317997,1317999
PCB-1016	N.D.	0.00010	0.00050
PCB-1221	N.D.	0.00010	0.00050
PCB-1232	N.D.	0.00020	0.00050
PCB-1242	N.D.	0.00010	0.00050
PCB-1248	N.D.	0.00010	0.00050
PCB-1254	N.D.	0.00010	0.00050
PCB-1260	N.D.	0.00015	0.00050
Total PCBs	N.D.	0.00010	0.00050
Total T OBS	N.D.		
Batch number: 201430006A	Sample number	. ,	317995,1317997,1317999
Batch number: 201430006A Aldrin	Sample number	0.0000020	0.000010
Batch number: 201430006A Aldrin Alpha BHC	Sample number N.D. N.D.	0.0000020 0.0000030	0.000010 0.000010
Batch number: 201430006A Aldrin Alpha BHC Beta BHC	Sample number N.D. N.D. N.D.	0.0000020 0.0000030 0.0000034	0.000010 0.000010 0.000010
Batch number: 201430006A Aldrin Alpha BHC	Sample number N.D. N.D.	0.0000020 0.0000030	0.000010 0.000010

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
4,4'-Ddd	N.D.	0.0000050	0.000020
4,4'-Dde	N.D.	0.0000050	0.000020
4,4'-Ddt	N.D.	0.0000052	0.000020
Delta BHC	N.D.	0.0000034	0.000010
Dieldrin	N.D.	0.0000053	0.000020
Endosulfan I	N.D.	0.0000043	0.000010
Endosulfan II	N.D.	0.000015	0.000040
Endosulfan Sulfate	N.D.	0.0000058	0.000020
Endrin	N.D.	0.0000081	0.000030
Heptachlor	N.D.	0.0000020	0.000010
	ng/l	ng/l	ng/l
Batch number: 20142002	Sample number	(s): 1317993,1	317995,1317997,1317999,1318001
6:2-Fluorotelomersulfonic acid	N.D.	2.0	5.0
8:2-Fluorotelomersulfonic acid	N.D.	1.0	3.0
NEtFOSAA	N.D.	0.50	3.0
NMeFOSAA	N.D.	0.60	2.0
Perfluorobutanesulfonic acid	N.D.	0.50	2.0
Perfluorobutanoic acid	N.D.	2.0	5.0
Perfluorodecanesulfonic acid	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluoroheptanesulfonic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonic acid	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluorooctanesulfonamide	N.D.	0.50	2.0
Perfluorooctanesulfonic acid	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluoropentanoic acid Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D. N.D.	0.50 0.50	2.0 2.0
Perfluoroundecanoic acid	N.D. N.D.	0.50	2.0
remuoroundecarioic acid			
	mg/l	mg/l	mg/l
Batch number: 201420571302	Sample number	` '	
Mercury	N.D.	0.000079	0.00020
Batch number: 201421404401	Sample number	(s): 1317993-1	318000
Silver	N.D.	0.0050	0.0100
Batch number: 201421404701A	Sample number	(s): 1317993-1	318000
Arsenic	N.D.	0.00068	0.0020
Barium	N.D.	0.00075	0.0020
Beryllium	N.D.	0.00012	0.00050

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Method Blank (continued)

Analysis Name	Result mg/l	MDL** mg/l	LOQ mg/l				
Cadmium	N.D.	0.00015	0.00050				
Chromium	0.00052 J	0.00033	0.0020				
Copper	N.D.	0.00036	0.0010				
Lead	N.D.	0.000071	0.00050				
Manganese	N.D.	0.00063	0.0020				
Nickel	N.D.	0.00060	0.0010				
Selenium	N.D.	0.00028	0.0010				
Zinc	N.D.	0.0062	0.0100				
Batch number: 20148117101A	Sample number(s): 1317993,1317995,1317997,1317999						
Total Cyanide (water)	N.D.	0.0050	0.010				
Batch number: 20142027601A Hexavalent Chromium	Sample number N.D.	r(s): 1317993,1 0.010	317995,1317997,1317999 0.030				

LCS/LCSD

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	mg/l	mg/l	mg/l	mg/l	,,,,,	,,,,,			
Batch number: 5201473AA	Sample number(s): 1317993,1317995,1317997								
Acetone	0.150	0.200			133		54-157		
Acrolein	0.150	0.141			94		47-136		
Acrylonitrile	0.100	0.0959			96		60-129		
Benzene	0.0200	0.0197			98		80-120		
Bromodichloromethane	0.0200	0.0192			96		71-120		
Bromoform	0.0200	0.0186			93		51-120		
Bromomethane	0.0200	0.0192			96		53-128		
2-Butanone	0.150	0.151			101		59-135		
t-Butyl alcohol	0.200	0.174			87		60-130		
n-Butylbenzene	0.0200	0.0199			99		76-120		
sec-Butylbenzene	0.0200	0.0200			100		77-120		
tert-Butylbenzene	0.0200	0.0214			107		78-120		
Carbon Disulfide	0.0200	0.0189			94		65-128		
Carbon Tetrachloride	0.0200	0.0194			97		64-134		
Chlorobenzene	0.0200	0.0206			103		80-120		
Chloroethane	0.0200	0.0187			93		55-123		
Chloroform	0.0200	0.0200			100		80-120		
Chloromethane	0.0200	0.0178			89		56-121		
1,2-Dibromo-3-chloropropane	0.0200	0.0196			98		47-131		
Dibromochloromethane	0.0200	0.0193			97		71-120		
1,2-Dibromoethane	0.0200	0.0202			101		77-120		
1,2-Dichlorobenzene	0.0200	0.0205			102		80-120		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,3-Dichlorobenzene	0.0200	0.0202			101		80-120		
1,4-Dichlorobenzene	0.0200	0.0205			103		80-120		
Dichlorodifluoromethane	0.0200	0.0160			80		41-127		
1,1-Dichloroethane	0.0200	0.0197			99		80-120		
1,2-Dichloroethane	0.0200	0.0199			99		73-124		
1,1-Dichloroethene	0.0200	0.0199			99		80-131		
cis-1,2-Dichloroethene	0.0200	0.0210			105		80-125		
trans-1,2-Dichloroethene	0.0200	0.0200			100		80-126		
1,2-Dichloroethene (Total)	0.0400	0.0411			103		80-125		
1,2-Dichloropropane	0.0200	0.0200			100		80-120		
cis-1,3-Dichloropropene	0.0200	0.0189			95		75-120		
trans-1,3-Dichloropropene	0.0200	0.0186			93		67-120		
Ethylbenzene	0.0200	0.0206			103		80-120		
Methyl Acetate	0.0200	0.0212			106		54-136		
Methyl Tertiary Butyl Ether	0.0200	0.0185			92		69-122		
Methylene Chloride	0.0200	0.0206			103		80-120		
n-Propylbenzene	0.0200	0.0206			103		79-121		
Styrene	0.0200	0.0205			103		80-120		
1,1,2,2-Tetrachloroethane	0.0200	0.0204			102		72-120		
Tetrachloroethene	0.0200	0.0208			104		80-120		
Toluene	0.0200	0.0201			101		80-120		
1,1,1-Trichloroethane	0.0200	0.0194			97		67-126		
1,1,2-Trichloroethane	0.0200	0.0208			104		80-120		
Trichloroethene	0.0200	0.0199			99		80-120		
Trichlorofluoromethane	0.0200	0.0198			99		55-135		
1,2,4-Trimethylbenzene	0.0200	0.0199			99		75-120		
1,3,5-Trimethylbenzene	0.0200	0.0201			100		75-120		
Vinyl Chloride	0.0200	0.0196			98		56-120		
Xylene (Total)	0.0600	0.0619			103		80-120		
Batch number: L201481AA	Sample number	. ,							
Acetone	0.150	0.144	0.150	0.140	96	93	54-157	3	30
Acrolein	0.150	0.141	0.150	0.137	94	91	47-136	3	30
Acrylonitrile	0.100	0.0969	0.100	0.0981	97	98	60-129	1	30
Benzene	0.0200	0.0189	0.0200	0.0191	94	95	80-120	1	30
Bromodichloromethane	0.0200	0.0187	0.0200	0.0190	93	95	71-120	2	30
Bromoform	0.0200	0.0189	0.0200	0.0188	94	94	51-120	1	30
Bromomethane	0.0200	0.0178	0.0200	0.0178	89	89	53-128	0	30
2-Butanone	0.150	0.153	0.150	0.154	102	103	59-135	1	30
t-Butyl alcohol	0.200	0.193	0.200	0.187	97	93	60-130	4	30
n-Butylbenzene	0.0200	0.0210	0.0200	0.0212	105	106	76-120	1	30
sec-Butylbenzene	0.0200	0.0206	0.0200	0.0209	103	104	77-120	1	30
tert-Butylbenzene	0.0200	0.0198	0.0200	0.0201	99	101	78-120	2	30
Carbon Disulfide	0.0200	0.0187	0.0200	0.0191	94	95	65-128	2	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Carbon Tetrachloride	0.0200	0.0185	0.0200	0.0190	93	95	64-134	2	30
Chlorobenzene	0.0200	0.0198	0.0200	0.0200	99	100	80-120	1	30
Chloroethane	0.0200	0.0188	0.0200	0.0191	94	95	55-123	1	30
Chloroform	0.0200	0.0190	0.0200	0.0192	95	96	80-120	1	30
Chloromethane	0.0200	0.0179	0.0200	0.0180	90	90	56-121	1	30
1,2-Dibromo-3-chloropropane	0.0200	0.0194	0.0200	0.0193	97	97	47-131	0	30
Dibromochloromethane	0.0200	0.0195	0.0200	0.0197	97	99	71-120	1	30
1,2-Dibromoethane	0.0200	0.0192	0.0200	0.0194	96	97	77-120	1	30
1,2-Dichlorobenzene	0.0200	0.0202	0.0200	0.0204	101	102	80-120	1	30
1,3-Dichlorobenzene	0.0200	0.0204	0.0200	0.0205	102	103	80-120	1	30
1,4-Dichlorobenzene	0.0200	0.0205	0.0200	0.0207	103	104	80-120	1	30
Dichlorodifluoromethane	0.0200	0.0117	0.0200	0.0117	58	58	41-127	0	30
1,1-Dichloroethane	0.0200	0.0193	0.0200	0.0197	96	98	80-120	2	30
1,2-Dichloroethane	0.0200	0.0192	0.0200	0.0197	96	99	73-124	3	30
1,1-Dichloroethene	0.0200	0.0180	0.0200	0.0183	90	91	80-131	2	30
cis-1,2-Dichloroethene	0.0200	0.0198	0.0200	0.0199	99	100	80-125	1	30
trans-1,2-Dichloroethene	0.0200	0.0186	0.0200	0.0185	93	93	80-126	0	30
1,2-Dichloroethene (Total)	0.0400	0.0383	0.0400	0.0385	96	96	80-125	0	30
1,2-Dichloropropane	0.0200	0.0200	0.0200	0.0204	100	102	80-120	2	30
cis-1,3-Dichloropropene	0.0200	0.0183	0.0200	0.0187	92	94	75-120	2	30
trans-1,3-Dichloropropene	0.0200	0.0190	0.0200	0.0192	95	96	67-120	1	30
Ethylbenzene	0.0200	0.0196	0.0200	0.0199	98	99	80-120	1	30
Methyl Acetate	0.0200	0.0197	0.0200	0.0199	98	99	54-136	1	30
Methyl Tertiary Butyl Ether	0.0200	0.0169	0.0200	0.0172	85	86	69-122	2	30
Methylene Chloride	0.0200	0.0190	0.0200	0.0192	95	96	80-120	1	30
n-Propylbenzene	0.0200	0.0210	0.0200	0.0213	105	107	79-121	2	30
Styrene 1,1,2,2-Tetrachloroethane	0.0200 0.0200	0.0201 0.0207	0.0200 0.0200	0.0202 0.0215	100 103	101 108	80-120 72-120	0 4	30 30
Tetrachloroethene								2	30
Toluene	0.0200 0.0200	0.0187 0.0194	0.0200 0.0200	0.0191 0.0197	93 97	96 99	80-120 80-120	2	30
1,1,1-Trichloroethane	0.0200	0.0194	0.0200	0.0197	97 89	99 92	67-126	3	30
1,1,2-Trichloroethane	0.0200	0.0179	0.0200	0.0103	100	102	80-120	2	30
Trichloroethene	0.0200	0.0200	0.0200	0.0203	91	92	80-120	2	30
Trichlorofluoromethane	0.0200	0.0102	0.0200	0.0103	95	96	55-135	0	30
1,2,4-Trimethylbenzene	0.0200	0.0206	0.0200	0.0207	103	104	75-120	1	30
1,3,5-Trimethylbenzene	0.0200	0.0200	0.0200	0.0207	101	103	75-120 75-120	1	30
Vinyl Chloride	0.0200	0.0202	0.0200	0.0203	88	88	56-120	0	30
Xylene (Total)	0.0600	0.0598	0.0600	0.0608	100	101	80-120	2	30
Atylonia (Total)	0.0000	0.0000	0.0000	0.0000	100	101	00 120	-	00
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20143WAA026	Sample number(. ,	317997						
Acenaphthene	0.0500	0.0411			82		52-114		
Acenaphthylene	0.0500	0.0405			81		56-127		
Acetophenone	0.0500	0.0423			85		61-114		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Anthracene	0.0500	0.0444			89		67-116		
Atrazine	0.0500	0.0491			98		71-133		
Benzaldehyde	0.0500	0.0381			76		55-116		
Benzidine	0.250	0.121			48		25-77		
Benzo(a)anthracene	0.0500	0.0482			96		68-123		
Benzo(a)pyrene	0.0500	0.0471			94		71-117		
Benzo(b)fluoranthene	0.0500	0.0469			94		69-121		
Benzo(g,h,i)perylene	0.0500	0.0397			79		60-119		
Benzo(k)fluoranthene	0.0500	0.0491			98		69-122		
1,1'-Biphenyl	0.0500	0.0404			81		56-109		
Butylbenzylphthalate	0.0500	0.0312			62		40-133		
Di-n-butylphthalate	0.0500	0.0405			81		58-125		
Caprolactam	0.0500	0.0129			26		10-57		
Carbazole	0.0500	0.0465			93		64-127		
bis(2-Chloroethyl)ether	0.0500	0.0379			76		58-108		
bis(2-Chloroisopropyl)ether	0.0500	0.0385			77		44-108		
2-Chloronaphthalene	0.0500	0.0386			77		51-107		
2-Chlorophenol	0.0500	0.0410			82		57-105		
Chrysene	0.0500	0.0451			90		65-121		
Dibenz(a,h)anthracene	0.0500	0.0437			87		63-128		
Dibenzofuran	0.0500	0.0430			86		60-112		
1,2-Dichlorobenzene	0.0500	0.0359			72		35-104		
1,3-Dichlorobenzene	0.0500	0.0337			67		28-103		
1,4-Dichlorobenzene	0.0500	0.0345			69		34-97		
3,3'-Dichlorobenzidine	0.0500	0.0381			76		42-107		
2,4-Dichlorophenol	0.0500	0.0455			91		65-110		
Diethylphthalate	0.0500	0.0353			71		42-126		
2,4-Dimethylphenol	0.0500	0.0372			74		53-93		
Dimethylphthalate	0.0500	0.0183			37		10-134		
4,6-Dinitro-2-methylphenol	0.0500	0.0481			96		63-129		
2,4-Dinitrophenol	0.100	0.0852			85		44-134		
2,4-Dinitrotoluene	0.0500	0.0462			92		66-122		
2,6-Dinitrotoluene	0.0500	0.0462			92		71-120		
1,2-Diphenylhydrazine	0.0500	0.0456			91		64-120		
bis(2-Ethylhexyl)phthalate	0.0500	0.0462			92		61-129		
Fluoranthene	0.0500	0.0473			95		63-122		
Fluorene	0.0500	0.0445			89		56-115		
Hexachlorobenzene	0.0500	0.0455			91		60-117		
Hexachlorobutadiene	0.0500	0.0390			78		20-108		
Hexachlorocyclopentadiene	0.100	0.0326			33		10-91		
Hexachloroethane	0.0500	0.0332			66		23-95		
Indeno(1,2,3-cd)pyrene	0.0500	0.0414			83		59-123		
Isophorone	0.0500	0.0439			88		63-120		
2-Methylnaphthalene	0.0500	0.0412			82		51-107		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Ana	alysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
2-M	Methylphenol	0.0500	0.0393			79		53-107		
4-M	Methylphenol	0.0500	0.0390			78		49-108		
Nar	phthalene	0.0500	0.0390			78		51-102		
2-N	Nitroaniline	0.0500	0.0455			91		66-126		
Nitr	robenzene	0.0500	0.0434			87		59-109		
N-N	Nitrosodimethylamine	0.0500	0.0258			52		17-101		
	Nitroso-di-n-propylamine	0.0500	0.0442			88		58-120		
N-N	Nitrosodiphenylamine	0.0500	0.0450			90		60-126		
Di-r	n-octylphthalate	0.0500	0.0462			92		60-136		
	ntachlorophenol	0.0500	0.0461			92		54-131		
	enanthrene	0.0500	0.0448			90		65-113		
Phe	enol	0.0500	0.0242			48		19-79		
Pyr	rene	0.0500	0.0439			88		65-115		
Pyr	ridine	0.0500	0.0202			40		23-64		
1,2,	2,4-Trichlorobenzene	0.0500	0.0397			79		34-106		
2,4,	,5-Trichlorophenol	0.0500	0.0469			94		66-118		
2,4,	,6-Trichlorophenol	0.0500	0.0467			93		69-117		
Bat	tch number: 20147WAC026	Sample number(s): 1317995,1	317999						
Ace	enaphthene	0.0500	0.0294			59		52-114		
Ace	enaphthylene	0.0500	0.0290			58		56-127		
Ace	etophenone	0.0500	0.0306			61		61-114		
Ant	thracene	0.0500	0.0339			68		67-116		
Atra	azine	0.0500	0.0397			79		71-133		
Ber	nzaldehyde	0.0500	0.0316			63		55-116		
Ber	nzidine	0.250	0.0118			5*		25-77		
Ber	nzo(a)anthracene	0.0500	0.0424			85		68-123		
Ber	nzo(a)pyrene	0.0500	0.0398			80		71-117		
Ber	nzo(b)fluoranthene	0.0500	0.0414			83		69-121		
Ber	nzo(g,h,i)perylene	0.0500	0.0350			70		60-119		
Ber	nzo(k)fluoranthene	0.0500	0.0415			83		69-122		
1,1'	'-Biphenyl	0.0500	0.0285			57		56-109		
But	tylbenzylphthalate	0.0500	0.0314			63		40-133		
Di-r	n-butylphthalate	0.0500	0.0360			72		58-125		
Cap	prolactam	0.0500	0.00903			18		10-57		
Car	rbazole	0.0500	0.0390			78		64-127		
bis((2-Chloroethyl)ether	0.0500	0.0299			60		58-108		
bis((2-Chloroisopropyl)ether	0.0500	0.0324			65		44-108		
2-C	Chloronaphthalene	0.0500	0.0278			56		51-107		
2-C	Chlorophenol	0.0500	0.0310			62		57-105		
Chr	rysene	0.0500	0.0394			79		65-121		
Dib	penz(a,h)anthracene	0.0500	0.0363			73		63-128		
	penzofuran	0.0500	0.0305			61		60-112		
1,2-	2-Dichlorobenzene	0.0500	0.0243			49		35-104		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
1,3-Dichlorobenzene	0.0500	0.0234			47		28-103		
1,4-Dichlorobenzene	0.0500	0.0238			48		34-97		
3,3'-Dichlorobenzidine	0.0500	0.0274			55		42-107		
2,4-Dichlorophenol	0.0500	0.0327			65		65-110		
Diethylphthalate	0.0500	0.0276			55		42-126		
2,4-Dimethylphenol	0.0500	0.0255			51*		53-93		
Dimethylphthalate	0.0500	0.0175			35		10-134		
4,6-Dinitro-2-methylphenol	0.0500	0.0375			75		63-129		
2,4-Dinitrophenol	0.100	0.0674			67		44-134		
2,4-Dinitrotoluene	0.0500	0.0335			67		66-122		
2,6-Dinitrotoluene	0.0500	0.0327			65*		71-120		
1,2-Diphenylhydrazine	0.0500	0.0346			69		64-120		
bis(2-Ethylhexyl)phthalate	0.0500	0.0413			83		61-129		
Fluoranthene	0.0500	0.0387			77		63-122		
Fluorene	0.0500	0.0320			64		56-115		
Hexachlorobenzene	0.0500	0.0314			63		60-117		
Hexachlorobutadiene	0.0500	0.0240			48		20-108		
Hexachlorocyclopentadiene	0.100	0.0183			18		10-91		
Hexachloroethane	0.0500	0.0226			45		23-95		
Indeno(1,2,3-cd)pyrene	0.0500	0.0346			69		59-123		
Isophorone	0.0500	0.0311			62*		63-120		
2-Methylnaphthalene	0.0500	0.0275			55		51-107		
2-Methylphenol	0.0500	0.0273			59		53-107		
4-Methylphenol	0.0500	0.0297			60		49-108		
Naphthalene	0.0500	0.0301			54		51-102		
2-Nitroaniline	0.0500	0.0272			65*		66-126		
					62				
Nitrobenzene	0.0500 0.0500	0.0309			6∠ 41		59-109		
N-Nitrosodimethylamine		0.0203					17-101		
N-Nitroso-di-n-propylamine	0.0500	0.0320			64		58-120		
N-Nitrosodiphenylamine	0.0500	0.0333			67		60-126		
Di-n-octylphthalate	0.0500	0.0423			85		60-136		
Pentachlorophenol	0.0500	0.0351			70		54-131		
Phenanthrene	0.0500	0.0344			69		65-113		
Phenol	0.0500	0.0184			37		19-79		
Pyrene	0.0500	0.0372			74		65-115		
Pyridine	0.0500	0.0146			29		23-64		
1,2,4-Trichlorobenzene	0.0500	0.0252			50		34-106		
2,4,5-Trichlorophenol	0.0500	0.0343			69		66-118		
2,4,6-Trichlorophenol	0.0500	0.0342			68*		69-117		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 20143WAC026	Sample number(s): 1317993,1	317995,1317997,	1317999,131	8001				
1,4-Dioxane	1.00	0.391	1.00	0.496	39	50	18-91	24	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

LCS/LCSD (continued)

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201430018A	Sample number	r(s): 1317993,13	317995,1317997,	1317999					
2,4-D	0.00250	0.00360	0.00250	0.00380	144*	152*	70-134	5	30
2,4,5-T	0.000250	0.000409	0.000250	0.000433	164	173*	69-164	6	30
2,4,5-TP	0.000250	0.000358	0.000250	0.000391	143*	156*	81-137	9	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201430007A	Sample number	r(s): 1317993,13	317995,1317997,	1317999					
PCB-1016	0.00501	0.00687	0.00501	0.00396	137*	79	60-117	54*	30
PCB-1260	0.00501	0.00701	0.00501	0.00481	140*	96	57-134	37*	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201430006A	Sample number	r(s): 1317993,13	317995,1317997,	1317999					
Aldrin	0.000100	0.0000664			66		28-119		
Alpha BHC	0.000101	0.000109			108		47-132		
Beta BHC	0.000100	0.000114			114		27-143		
Gamma BHC - Lindane	0.000100	0.000110			110		29-136		
Alpha Chlordane	0.000100	0.0000955			95		28-136		
4,4'-Ddd	0.000201	0.000199			99		42-148		
4,4'-Dde	0.000200	0.000170			85		22-138		
4,4'-Ddt	0.000201	0.000200			99		40-145		
Delta BHC	0.000100	0.000110			110		28-141		
Dieldrin	0.000200	0.000205			103		31-145		
Endosulfan I	0.000100	0.000104			104		40-138		
Endosulfan II	0.000200	0.000207			104		27-138		
Endosulfan Sulfate	0.000200	0.000203			102		41-133		
Endrin	0.000200	0.000202			101		35-143		
Heptachlor	0.000100	0.0000762			76		38-135		

6:2-Fluorotelomersulfonic acid	24.28	24.27	24.28	26.61	100	110	56-140	9	30
8:2-Fluorotelomersulfonic acid	24.52	23.3	24.52	26.13	95	107	58-143	11	30
NEtFOSAA	25.6	26.52	25.6	28.65	104	112	53-140	8	30
NMeFOSAA	25.6	27.65	25.6	29.83	108	117	59-141	8	30
Perfluorobutanesulfonic acid	22.64	20.95	22.64	23.18	93	102	67-135	10	30
Perfluorobutanoic acid	25.6	22.2	25.6	23.85	87	93	63-160	7	30
Perfluorodecanesulfonic acid	24.64	22.07	24.64	23.21	90	94	62-135	5	30
Perfluorodecanoic acid	25.6	23.53	25.6	27.59	92	108	66-141	16	30
Perfluorododecanoic acid	25.6	25.35	25.6	28.46	99	111	65-143	12	30
Perfluoroheptanesulfonic acid	24.36	23.34	24.36	25.05	96	103	67-138	7	30
Perfluoroheptanoic acid	25.6	25.61	25.6	27.9	100	109	69-144	9	30
Perfluorohexanesulfonic acid	24.2	22.2	24.2	24.68	92	102	63-132	11	30
Perfluorohexanoic acid	25.6	25.25	25.6	26.82	99	105	69-139	6	30
Perfluorononanoic acid	25.6	25.37	25.6	28.07	99	110	66-144	10	30

Sample number(s): 1317993,1317995,1317997,1317999,1318001

ng/l

ng/l

Batch number: 20142002

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

LCS/LCSD (continued)

				,					
Analysis Name	LCS Spike Added ng/l	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Perfluorooctanesulfonamide	25.6	25.46	25.6	27.34	99	107	67-126	7	30
Perfluorooctanesulfonic acid	24.48	19.95	24.48	22.07	82	90	53-129	10	30
Perfluorooctanoic acid	25.6	24.38	25.6	26.44	95	103	67-139	8	30
Perfluoropentanoic acid	25.6	23.74	25.6	26.36	93	103	73-135	10	30
Perfluorotetradecanoic acid	25.6	25.69	25.6	27.74	100	108	69-141	8	30
Perfluorotridecanoic acid	25.6	25.87	25.6	28.56	101	112	66-146	10	30
Perfluoroundecanoic acid	25.6	24.77	25.6	26.91	97	105	66-140	8	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 201420571302	Sample number	(s): 1317993-	1318000						
Mercury	0.00100	0.000851			85		80-110		
Batch number: 201421404401	Sample number	(s): 1317993-	1318000						
Silver	0.0200	0.0186			93		80-120		
Batch number: 201421404701A	Sample number	(s): 1317993-	1318000						
Arsenic	0.0100	0.00985			99		85-120		
Barium	0.0500	0.0507			101		80-120		
Beryllium	0.00400	0.00423			106		90-112		
Cadmium	0.00500	0.00529			106		84-120		
Chromium	0.0500	0.0493			99		90-115		
Copper	0.0500	0.0495			99		89-120		
Lead	0.00500	0.00509			102		90-110		
Manganese	0.0500	0.0483			97		89-120		
Nickel	0.0500	0.0490			98		90-114		
Selenium	0.0100	0.00949			95		90-113		
Zinc	0.500	0.500			100		90-115		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20148117101A	Sample number	(s): 1317993,1	1317995,1317997,1	317999					
Total Cyanide (water)	0.200	0.197			99		90-110		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 20142027601A		· ,	1317995,1317997,1						
Hexavalent Chromium	0.200	0.198	0.200	0.200	99	100	90-110	1	4

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked	MS Spike	MS	MSD Spike	MSD	MS	MSD	MS/MSD	RPD	RPD
	Conc	Added	Conc	Added	Conc	%Rec	%Rec	Limits		Max

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 5201473AA	Sample number	er(s): 1317993,	1317995,1	317997 UNSPK:	: 1317993					
Acetone	0.00128	0.150	0.170	0.150	0.176	112	116	54-157	3	30
Acrolein	N.D.	0.150	0.126	0.150	0.140	84	93	47-136	10	30
Acrylonitrile	N.D.	0.100	0.0958	0.100	0.101	96	101	60-129	5	30
Benzene	N.D.	0.0200	0.0205	0.0200	0.0215	103	107	80-120	5	30
Bromodichloromethane	N.D.	0.0200	0.0195	0.0200	0.0204	98	102	71-120	4	30
Bromoform	N.D.	0.0200	0.0180	0.0200	0.0191	90	96	51-120	6	30
Bromomethane	N.D.	0.0200	0.0207	0.0200	0.0217	104	109	53-128	5	30
2-Butanone	N.D.	0.150	0.142	0.150	0.151	95	101	59-135	6	30
t-Butyl alcohol	N.D.	0.200	0.179	0.200	0.177	89	88	60-130	1	30
n-Butylbenzene	N.D.	0.0200	0.0208	0.0200	0.0220	104	110	76-120	6	30
sec-Butylbenzene	N.D.	0.0200	0.0208	0.0200	0.0221	104	110	77-120	6	30
tert-Butylbenzene	N.D.	0.0200	0.0220	0.0200	0.0233	110	116	78-120	6	30
Carbon Disulfide	N.D.	0.0200	0.0197	0.0200	0.0212	98	106	65-128	7	30
Carbon Tetrachloride	N.D.	0.0200	0.0210	0.0200	0.0220	105	110	64-134	5	30
Chlorobenzene	N.D.	0.0200	0.0213	0.0200	0.0224	107	112	80-120	5	30
Chloroethane	N.D.	0.0200	0.0203	0.0200	0.0213	102	107	55-123	5	30
Chloroform	N.D.	0.0200	0.0207	0.0200	0.0220	104	110	80-120	6	30
Chloromethane	N.D.	0.0200	0.0190	0.0200	0.0198	95	99	56-121	4	30
1,2-Dibromo-3-chloropropane	N.D.	0.0200	0.0189	0.0200	0.0202	95	101	47-131	6	30
Dibromochloromethane	N.D.	0.0200	0.0194	0.0200	0.0204	97	102	71-120	5	30
1,2-Dibromoethane	N.D.	0.0200	0.0199	0.0200	0.0211	99	106	77-120	6	30
1,2-Dichlorobenzene	N.D.	0.0200	0.0208	0.0200	0.0219	104	109	80-120	5	30
1,3-Dichlorobenzene	N.D.	0.0200	0.0208	0.0200	0.0219	104	110	80-120	5	30
1,4-Dichlorobenzene	N.D.	0.0200	0.0210	0.0200	0.0221	105	110	80-120	5	30
Dichlorodifluoromethane	N.D.	0.0200	0.0177	0.0200	0.0181	89	90	41-127	2	30
1,1-Dichloroethane	N.D.	0.0200	0.0206	0.0200	0.0216	103	108	80-120	5	30
1,2-Dichloroethane	0.000990	0.0200	0.0211	0.0200	0.0223	101	106	73-124	5	30
1,1-Dichloroethene	N.D.	0.0200	0.0222	0.0200	0.0228	111	114	80-131	3	30
cis-1,2-Dichloroethene	N.D.	0.0200	0.0218	0.0200	0.0230	109	115	80-120	5	30
trans-1,2-Dichloroethene	N.D.	0.0200	0.0213	0.0200	0.0226	107	113	80-120	6	30
1,2-Dichloroethene (Total)	N.D.	0.0400	0.0431	0.0400	0.0456	108	114	80-120	6	30
1,2-Dichloropropane	N.D.	0.0200	0.0205	0.0200	0.0215	102	107	80-120	5	30
cis-1,3-Dichloropropene	N.D.	0.0200	0.0187	0.0200	0.0199	93	99	75-120	6	30
trans-1,3-Dichloropropene	N.D.	0.0200	0.0183	0.0200	0.0196	91	98	67-120	7	30
Ethylbenzene	N.D.	0.0200	0.0213	0.0200	0.0224	106	112	80-120	5	30
Methyl Acetate	N.D.	0.0200	0.0204	0.0200	0.0219	102	110	54-136	7	30
Methyl Tertiary Butyl Ether	0.000362	0.0200	0.0187	0.0200	0.0201	91	98	69-122	7	30
Methylene Chloride	N.D.	0.0200	0.0212	0.0200	0.0223	106	112	80-120	5	30
n-Propylbenzene	N.D.	0.0200	0.0213	0.0200	0.0224	107	112	79-121	5	30
Styrene	N.D.	0.0200	0.0208	0.0200	0.0221	104	110	80-120	6	30
1,1,2,2-Tetrachloroethane	N.D.	0.0200	0.0195	0.0200	0.0208	97	104	72-120	7	30
Tetrachloroethene	N.D.	0.0200	0.0224	0.0200	0.0236	112	118	80-120	5	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Toluene	N.D.	0.0200	0.0206	0.0200	0.0218	103	109	80-120	5	30
1,1,1-Trichloroethane	N.D.	0.0200	0.0208	0.0200	0.0217	104	109	67-126	5	30
1,1,2-Trichloroethane	N.D.	0.0200	0.0207	0.0200	0.0220	103	110	80-120	6	30
Trichloroethene	N.D.	0.0200	0.0211	0.0200	0.0221	106	111	80-120	5	30
Trichlorofluoromethane	N.D.	0.0200	0.0224	0.0200	0.0229	112	114	55-135	2	30
1,2,4-Trimethylbenzene	N.D.	0.0200	0.0202	0.0200	0.0216	101	108	75-120	7	30
1,3,5-Trimethylbenzene	N.D.	0.0200	0.0205	0.0200	0.0217	103	109	75-120	6	30
Vinyl Chloride	N.D.	0.0200	0.0211	0.0200	0.0223	105	111	56-120	5	30
Xylene (Total)	N.D.	0.0600	0.0642	0.0600	0.0673	107	112	80-120	5	30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 201420571302	Sample number	er(s): 1317993	-1318000 UI	NSPK: 131799	3					
Mercury	N.D.	0.00100	0.000847	0.00100	0.000833	85	83	80-120	2	20
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 20148117101A	Sample numbe	er(s): 1317993	,1317995,13	317997,131799	9 UNSPK: 13	317997				
Total Cyanide (water)	N.D.	0.200	0.208	,		104		72-114		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/l	DUP Conc mg/l	DUP RPD	DUP RPD Max
Batch number: 201420571302	Sample number(s): 1317	993-1318000 BKG: 13 ⁻	17993	
Mercury	N.D.	N.D.	0 (1)	20
	mg/l	mg/l		
Batch number: 20148117101A	Sample number(s): 1317	993,1317995,1317997,	1317999 BKG: 1	317997
Total Cyanide (water)	N.D.	N.D.	0 (1)	20
	mg/l	mg/l		
Batch number: 20142027601A	Sample number(s): 1317	993,1317995,1317997,	1317999 BKG: 1	317993
Hexavalent Chromium	N.D.	N.D.	0 (1)	5

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260C Batch number: 5201473AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
1317993	100	105	98	94
1317995	99	104	98	96
1317997	99	103	99	95
Blank	99	102	98	96
LCS	100	101	100	99
MS	100	102	100	99
MSD	100	101	100	99
Limits:	80-120	80-120	80-120	80-120

Analysis Name: VOCs 8260C Batch number: L201481AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
1317999	97	98	101	94	
1318002	100	101	101	93	
Blank	100	101	100	93	
LCS	98	99	104	98	
LCSD	97	99	103	100	
Limits:	80-120	80-120	80-120	80-120	

Analysis Name: TCL SW846 8270D MINI

Batch number: 20143WAA026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1317993	33	42	85	75	70	94	
1317997	20	28	82	73	68	88	
Blank	26	37	88	66	61	78	
LCS	42	58	96	83	78	96	
Limits:	10-67	10-84	18-141	38-113	44-102	34-128	

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20143WAC026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
1317993	95	43	86
1317995	84	20	78
1317997	87	40	77
1317999	89	35	80
1318001	107	98	89
Blank	87	78	72
LCS	18*	26	14*
LCSD	96	93	86

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

eurofins

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless

attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 1,4-Dioxane 8270D SIM add-on

Batch number: 20143WAC026

Limits: 34-125 10-138 15-121

Analysis Name: TCL SW846 8270D MINI

Batch number: 20147WAC026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
1317995	33	30	62	71	66	89	
1317999	26	26	64	76	71	84	
Blank	35	48	85	83	77	102	
LCS	30	41	66	59	55	84	
Limits:	10-67	10-84	18-141	38-113	44-102	34-128	

Analysis Name: NY Part 375 Pests Water

Batch number: 201430006A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2	
1317993	73	66	73	68	
1317995	68	55	68	57	
1317997	77	78	75	77	
1317999	77	67	75	69	
Blank	69	67	68	74	
LCS	78	69	76	73	
Limite	20-120	32-140	20-120	32-140	

Analysis Name: 7 PCBs + Total Water

Batch number: 201430007A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1317993	101	96	109	100
1317995	91	79	98	85
1317997	104	109	115	117
1317999	103	94	113	98
Blank	62	66	65	72
LCS	88	83	94	90
LCSD	47	69	47	76
Limite	33-137	10-148	33-137	10-148

Analysis Name: Herbicides in Water 8151A

Batch number: 201430018A

	2,4-DCAA-D1	2,4-DCAA-D2	
1317993	107	101	
1317995	100	112	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Herbicides in Water 8151A

Batch number: 201430018A

	2,4-DCAA-D1	2,4-DCAA-D2	
1317997	104	111	
1317999	124	143*	
Blank	109	113	
LCS	120	122	
LCSD	126	129	
Limits:	34-142	34-142	

Analysis Name: NY 21 PFAS Water

Batch number: 20142002

	13C4-PFBA	13C5-PFPeA	13C3-PFBS	13C5-PFHxA	13C3-PFHxS	13C4-PFHpA
1317993	96	112	118	76	87	95
1317995	90	103	116	82	84	88
1317997	88	97	107	81	86	91
1317999	86	96	109	79	82	84
1318001	95	93	91	91	95	91
Blank	94	91	91	94	98	94
LCS	92	93	91	94	91	92
LCSD	91	89	91	92	88	91
Limits:	43-130	38-150	23-175	36-137	35-143	33-140
	13C2-6:2-FTS	13C8-PFOA	13C8-PFOS	13C9-PFNA	13C6-PFDA	13C2-8:2-FTS
1317993	170	95	90	101	94	146
1317995	138	86	88	98	89	121
1317997	126	86	85	91	87	100
1317999	137	84	79	87	85	122
1318001	105	96	92	96	92	100
Blank	105	97	97	97	96	100
LCS	102	96	96	94	100	105
LCSD	100	91	89	88	89	97
Limits:	29-182	52-124	52-121	48-130	50-124	37-169
	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA
1317993	82	85	95	76	44	41
1317995	81	90	94	80	47	47
1317997	80	90	86	80	76	63
1317999	79	84	89	76	50	51
1318001	87	91	92	90	86	79
Blank	91	98	95	92	91	81
LCS	95	99	100	98	97	86

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100197

Reported: 05/28/2020 08:33

Labeled Isotope Quality Control (continued)

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: NY 21 PFAS Water

Batch number: 20142002

	d3-NMeFOSAA	13C7-PFUnDA	d5-NEtFOSAA	13C2-PFDoDA	13C2-PFTeDA	13C8-PFOSA	
LCSD	90	97	95	89	88	80	
Limits:	36-143	44-128	42-149	36-127	21-134	10-134	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

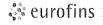
ૄ૽૾ૢૺૺૺૺૺૺ	e	u	r	O	f	i	n	S
76.6	•	v	•	v	•			•

Lancaster Laboratories

For Eurofins Lancaster Laboratories Environmental use only

Acct. # 4520 8 Group #2 10019 7 Sample # /317993 - 8002

COC #606117


Environmental				~F " —										- A	7	7					
Client Informati	AND AND THE PROPERTY OF THE PROPERTY OF			Matrix										27 1007	este				For Lab Use	Only	
Client: ANV. ANV. DPC	Acct. #:			TIT	٦١٢	口使				Pr	eser	<i>r</i> ation	n and	Filtr	ation	Cod	les		FSC:		
Chiconivi				ي ا	וע	Vi.						2							SCR#:		
Project Name/#: 35 (2000 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PWSID #:			Tissue	3 .	Ground Surface				12.53	NETHIS	2							Preser	vation C	odes
The state of the s		-		ļŸ	=	rou Jrfs				\^	K	Rivikens			ا ا	. !			H =HCI	T =T	hiosulfate
Project Manager:	P.O. #;				7 (ଫି ଦ		ا ۾ ا		HERB,	120	1		N	J J				N=HNO ₃		NaOH
GKEG WYKA				┛ ≒	_ r			ĕ		3		18		\$	Menn	. !			S=H ₂ SO ₄		l₃PO₄
Sampler: ZEID BALLINY)	Quote #:			Sediment	<u> -</u>			of Containers	ري.	1 1				Hoen	1/2				F=Field Filte		
State where samples were collected: For Compliance	3:	ENGLAS CHICAGO CONTRACTOR CONTRAC	T	- ₹	Ē :	able OE!		ē	VOCS	5	141	N.		1/2	8				n	emarks	i
The state of the s	No 🗆		! !	ق ا	ָהָ לְּהָלְיהָ הַלְּהָלְיהָ	Potable NPDES		ပ္	25	Sides		7	Ŋ		(14)				A10000	0.	ļ
Sample Identification		llected	ا ۾ اُ	Composite Soil Soil Se]		<u>.</u>	Total # o	12		23	YEXAVIA.	SAMOR	2	7580				200 m/s	17	7
Sample Menuncation	Date	Time	Grab	Soil S	5	Water	Other:	ğ	1	12	R	4/1/2	V	FFES	17				PJ 5/20	120	
MINIG 052020	5/24/20								X	·.<	×	*			×				* 1 20,000	ric W/N	185 <u>()</u> 17
NAMIE -025056		13:05				Market and Reference to the second			×	×	×	×	×	×	×			†	ACID is i		
MANIA -052020		10:10			\top	MARKET CO.			×	~	×	X	×	×	Y			\vdash	TO BE ANAL		
CINDUPOI -05ZEZE			1						v	1/2	×	Х	×	~ V	×			 	DISSOLVE	· · · · · · · · · · · · · · · · · · ·	
GWFB0Z -052080	11	1430		7										يخ پز							
CHT302 -052020		-			+				<u>×</u>					٦	\neg				IS NOT FIRE	MA SE	C 1 ADEL
					\top														10 100 1100	1601	
																			ALL SIX	: ME	FIELD
	S/	HORT																	PILTEREL	2 000	- All and a second seco
		יטאד.				_														***************************************	
Turnaround Time (TAT) Requeste	d (plea	OLD	Relinquis		,	1/2/				Date		Time	- 1	Receiv	ed by	My Warring Control	1	Secure consideration of the secure of the se	i	1	Time
Standard	Rush				Ü	<u> </u>			1	5/24		152		KI	in	-OV	1	***********	520	9	1520
(Rush TAT is subject to laboratory approval and surcha	rge.)		Relinquish	,		,			- 1	Date		Time		Receive	ed by YCCC (. \	W	ard	De De		Time 1830
			Rélinquish			7	-	tio	£.,	200		18	50				F.W.	نريات			
Requested TAT in business days:		_	1	•	\cap		= d	,	, ,	Date	- 1	Time	9.8	Receive	X	41)	۸.			ate	Time 7230
E-mail address: WKINA CANGAN WM	THUNGOLA	HNCANLOIM	Relinquish		1	1/4	Ed.	4	CONTRACTOR OF THE PARTY OF THE	5/10/ Date	20	22 Time	20	Receive	w hy	DA.	\overline{N}			cywy 20 ate	ارة درادة Time
Data Package Options (circle	if required)	_	Tomqua	"J'V	ノゲ	SAU	$\Lambda_{\Lambda_{+}}$		1	21Wa	מתו		2	UPORT	au by	the space of the space of	Management of the Parket of th	ACCOUNTS OF THE PARTY OF THE PA	_	ne l	IIIIII
Tyne I (FPA Level 3			Relinguish	ned by		70	Vn_	PMMccanatantostraturas		ZIWU Date		C(O)	\mathcal{I}	Receive	ed by				Di	ate /	Time
Equivalent/non-CLP)	/I (Raw Data	ι Only)		-	Фанкаци	POST STATE OF THE PARTY OF THE	in the last of the	Accessed to the last of the la							To	A	\mathcal{A}	/	/	. / 1	0100
•	'05 TV	TDDD 40			E	EDD Rec	uired	i? Y	(es)	No		<u> Provincenteron</u>		Relin	en manual transfer and	of charge systems was	v Cor	nmer	cial Carrier:	400	· · · · ·
Type III (Reduced non-CLP) NJ DK	QP IX	TRRP-13		lf y∈										UP			FedE		Other		
NYSDEC Category A or B MA Mo	OD OT	RCP		Site-S	Spec	cific QC (MS/N	ISD/E)up)?	Y e	<u>s</u> 1	No			Т.,				n receipt <u>5</u>	'U-R-	b0
NTODEC Category A CICE MAIN	<i>)</i>	nor	(If	yes, ind	dicate	QC sampl	le and s	submit	triplica	te sam	ple voli	ume.)			161	npera	ature	upor	1 receipt <u>O</u>	140,1	,*C

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

26 IRII 5-2 IRII

3-1 IR11

7044 0919

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

285059

Group Number(s):

~100197

Delivery and Receipt Information

Delivery Method:

Client: Langan

ELLE Courier

Arrival Date:

05/21/2020

Number of Packages:

2

Number of Projects:

1

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

No

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty: Trip Blank Type:

2 HCI

Paperwork Enclosed: Samples Intact:

Yes Yes

Air Quality Samples Present:

No

Missing Samples:

Extra Samples:

No

No

Discrepancy in Container Qty on COC:

No

Unpacked by Carolyn Cyms

Samples Chilled Details

Sample ID Discrepancy Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler# <u>Matrix</u> 1 Water

Thermometer ID Corrected Temp 46730060WS

Therm. Type IR

Ice Type Wet

<u>Ice Present?</u> <u>Ice Container</u> <u>Elevated Temp?</u>

Bagged

Ν

2

Water

46730060WS

5.7 5.4

IR

Wet

Bagged

Ν

Sample ID on COC

Sample ID on Label

Comments

MW19_052020

no ID at all

3 unlabeled vials presumed to be MW19 by process of elimination.

General Comments:

also rec'd vials for GWFB02_052020 but no VOCs marked on the coc

are they needed?

BMQL

ppb

basis

Dry weight

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually taken to	o be equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

parts per billion

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Langan Eng & Env Services 21 Penn Plaza 360 West 31st Street 8th Floor New York NY 10001-2727

Report Date: June 02, 2020 11:14

Project: 35 Commercial Street/170229024

Account #: 45208 Group Number: 2100848 SDG: CMS13 PO Number: 170229024 State of Sample Origin: NY

Electronic Copy To Langan Attn: Julia Leung
Electronic Copy To Langan Attn: Data Management
Electronic Copy To Langan Attn: Woo Kim
Electronic Copy To Langan Attn: Reid Balkind

Respectfully Submitted,

Kay Morung Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/. Historical copies may be requested through your project manager.

SAMPLE INFORMATION

Client Sample Description	Sample Collection	ELLE#
	Date/Time	
MW13N_051620 Groundwater	05/16/2020 13:40	1321423
MW13N_051620 Duplicate Groundwater	05/16/2020 13:40	1321424

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: 35 Commercial Street/170229024

ELLE Group #: 2100848

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

No additional comments are necessary.

Analysis Report

GW 1321423

2100848

Langan Eng & Env Services

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/28/2020 16:41 Collection Date/Time: 05/16/2020 13:40

SDG#: CMS13-01

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00011	0.00053	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00011	0.00053	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00021	0.00053	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00011	0.00053	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00011	0.00053	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00011	0.00053	1
10591	PCB-1260	11096-82-5	N.D. D1	0.00016	0.00053	1
10591	Total PCBs ¹	1336-36-3	N.D.	0.00011	0.00053	1

Sample Comments

State of New York Certification No. 10670

This sample was originally submitted to the laboratory on 05/16/20 at

19:50. We received authorization for further testing on 05/28/20.

This sample was filtered in lab for PCBs.

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor 7 PCBs + Total Water SW-846 8082A 201500003A 06/01/2020 08:57 Covenant Mutuku 10591 1 1 11121 PCB Waters Update IV Ext SW-846 3510C 201500003A 05/30/2020 00:47 Laura Duquette

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: MW13N_051620 Duplicate Groundwater

35 Commercial Street/170229024

Project Name: 35 Commercial Street/170229024

Submittal Date/Time: 05/28/2020 16:41 Collection Date/Time: 05/16/2020 13:40 SDG#: 05/16/2020 13:40 CMS13-02FD

Langan Eng & Env	v Services
ELLE Sample #:	GW 1321424
ELLE Group #:	2100848
Matrix: Groundwa	ater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
PCBs		SW-846 8082A	mg/l	mg/l	mg/l	
10591	PCB-1016	12674-11-2	N.D. D1	0.00011	0.00053	1
10591	PCB-1221	11104-28-2	N.D. D1	0.00011	0.00053	1
10591	PCB-1232	11141-16-5	N.D. D1	0.00021	0.00053	1
10591	PCB-1242	53469-21-9	N.D. D1	0.00011	0.00053	1
10591	PCB-1248	12672-29-6	N.D. D1	0.00011	0.00053	1
10591	PCB-1254	11097-69-1	N.D. D1	0.00011	0.00053	1
10591	PCB-1260	11096-82-5	N.D. D1	0.00016	0.00053	1
10591	Total PCBs ¹	1336-36-3	N.D.	0.00011	0.00053	1

Sample Comments

State of New York Certification No. 10670

This sample was originally submitted to the laboratory on 05/16/20 at

19:50. We received authorization for further testing on 05/28/20.

This sample was filtered in lab for PCBs.

Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor 7 PCBs + Total Water SW-846 8082A 201500003A 06/01/2020 09:07 Covenant Mutuku 10591 1 1 11121 PCB Waters Update IV Ext SW-846 3510C 201500003A 05/30/2020 00:47 Laura Duquette

 $^{^{1}}$ = This analyte was not on the laboratory's NYSDOH Scope of Accreditation at the time of analysis.

^{*=}This limit was used in the evaluation of the final result

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100848

Reported: 06/02/2020 11:14

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	mg/l	mg/l	mg/l
Batch number: 201500003A	Sample numl	ber(s): 1321423-	1321424
PCB-1016	N.D.	0.00010	0.00050
PCB-1221	N.D.	0.00010	0.00050
PCB-1232	N.D.	0.00020	0.00050
PCB-1242	N.D.	0.00010	0.00050
PCB-1248	N.D.	0.00010	0.00050
PCB-1254	N.D.	0.00010	0.00050
PCB-1260	N.D.	0.00015	0.00050
Total PCBs	N.D.	0.00010	0.00050

LCS/LCSD

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 201500003A	Sample number	(s): 1321423-1	321424						
PCB-1016	0.00501	0.00377	0.00501	0.00412	75	82	60-117	9	30
PCB-1260	0.00501	0.00435	0.00501	0.00456	87	91	57-134	5	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 7 PCBs + Total Water

Batch number: 201500003A

	Tetrachloro-m-xylene-D1	Decachlorobiphenyl-D1	Tetrachloro-m-xylene-D2	Decachlorobiphenyl-D2
1321423	60	76	65	81
1321424	58	78	62	83
Blank	58	55	64	60
LCS	43	61	47	68
LCSD	39	62	43	67
Limits:	33-137	10-148	33-137	10-148

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Quality Control Summary

Client Name: Langan Eng & Env Services Group Number: 2100848

Reported: 06/02/2020 11:14

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody ्रें eurofins।

Lancaster Laboratories Environmental	Acct. # 457	OS Group	" 2	4186	<u>L</u> e	ample) #	31	65	<u> </u>	45				COC	#60)6116	
Client Information	000.00.00.00.00.00.00.00.00.00.00.00.00		T	Matrix				(Mademan and a second	Α	nalv	sis R	eau	ested		Forta	b Use Only	•	
Client: LANCAN - VPC	Acct. #:			遂口	П	1		Pn	sen	/atlon	and	Filtra	illon C	odes	FSC:_	2 000 Om		
Project Name/#: TRESTORY 35 COMMERCIAN ZARLET	PWSID #:	Phone-1000000000000000000000000000000000000	Tissue	8 '		!	1,10		4.47	CURLY					SCR#:	reservatio	n Codes	4
Project Manager: SREGE WYNA	P.O. #:		F	Ground		w w		Pest	87. 22.			Direct	Werry		H=HCI N=HN		T=Thiosulfate B=NaOH	
Sampler REID BALKIND	Quate #:		160			ainer		, ffees,	・なのなら	POWERNI	1		(d)		S=H ₂ S F=Flek	fillered		
State where samples were collected: For Compliance: Yes	No 🗆		Sediment	Potable NPDES		of Containers	Š	SWZ.	746	N.	1		(Cac)			Rema	rk8	_
Sample Identification	Collected	Grab Composite			Other:	**=	i .	7 8	138°,	HEXAUMENT	Carried Contractions of the Contraction of the Cont	題	D. SSRUED					
MW13 OSTEZO	Date Time		į	3	8	Total	Ę)	B	例	Ě		Con	[-1		·			
MN13M -021620	5/16/20 530		<u> </u>	<u> </u>		12	X	X	X		K.		Х		R/ 11	NOS PLA	SIR 15	1
MM22 -021620	1340		<u> </u>			17_	Ż				anning and the same		<u>ŁĻ</u>		FIELD	FILTERES	FOTE OUTS	146.17
GNMS81 -051650	950				***************************************	17	×	L	X		á		_لكي		META	<u>-5 /2~</u>	MAD PLA	ric
6WMSD01-0516Z0	450					12	X				\succeq	× X			15 10	OC TOTA	L MICHE	i
BINFEO1 - 9516 20	1545					13	X		×	$\leq $		\leq	$\leq \downarrow$		AND	<u>is not</u>	FIELD ALI	KO
BWTB01-051620			***************************************			器	×	×	<u>}</u>	×	$\times \mid \rangle$	<u> </u>	<u> </u>					
				J		48. ***	<u> </u>								MALL	SVXs	WERE FIEL	p
						<u>\$</u>									FILT	even k	***************************************	
The second secon		_							-		_	_					**************************************	
Turnare and Time (TAT) Requested	(please circle)	Relinquished	бу		-			Date		ìme .		colvec	Thu T	, L				
Standard Ri	ush	1//	- Carlot	All-	~~~	S. Commenced		116	1/20	162	5	57	BIN	h		Date	7675	l
(Rush TAT is subject to laboratory approval and surcharge,)	Reliantished	by (0	***************************************	***************************************	,		Dale	T	îme	Re	celved	Бу	4446		Date Date	7 7 0 C 3 Time	
Requested TAT in husiness days		Relinquished	\overline{C}	<u> </u>	***************************************	·		16HON		930	~~~							
Requested TAT in business days: GNRAG CAREAN COM E-mail address: TEUNGT LARGAM. COM	Mariana		ыy		:			Date /	T	ime	Re	ceived	by			Date	Time	
E-mail address: Thursa Langer. con	ILMOLAKM "	Aelinquished	by	######################################	·············			Dale	$ \frac{1}{r}$	ime	— <u> </u>	celved	hw			Date		
Data Package Options (circle if re	quired)	-										/	y	1	/	Pate	Time	
Type I (EPA Level 3 Type VI (F	Raw Data Only)	Relinquished	by	7		***************************************		Date	Ŧ	mo	Re	colved	by /	1-		Dalg. , ,	A Timo	
migration (10) (10)							ارسر			***			2/1	nN		410	m (950	
Type III (Reduced non-CLP) NJ DKQP	TX TRRP-13		lf vec	EDD Required to make the community of th		? 5007		No			Re	linqu	ished	by Comm	ercial Carri			l
NYSDEC Category A of B MA MCP	AT AAA			cific QC (N	······································	Gwaren		MAD	N	~ <u>~~~</u>		UPS		_ FedEx _	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
MA MCP	CT RCP	(II yes	Indica	le QC sample	and s	ubmit tr	-r,, riplicat	n sample	volun				Tempe	arature up	on receipt	-046.0	<u>`</u> ."C	l

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • FOR HELP COMPLETING FORM CHECK OUT https://www.eurofinsus.com/coc The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. 7044 0919

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

284713

2047

Group Number(s):

2100as

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Date:

05/16/2020

Number of Packages:

Client: Lanagn, DPC

7

Number of Projects:

4

State/Province of Origin:

<u>NY</u>

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes Yes Trip Blank Type:

HCI

Samples Intact: • Missing Samples:

No

Extra Samples:

No No Air Quality Samples Present:

No

Unpacked by Melvin Sanchez

Discrepancy in Container Qty on COC:

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	<u>Matrix</u>	Thermometer ID	Corrected Temp	Therm. Type	<u>lce Type</u>	Ice Present?	Ice Container	Elevated Temp?	Samples Collected Same Day as Receipt?
1	Water	46730061WS	20.6	IR	Wet	Υ	Bagged	Υ	Υ
2	Water	46730061WS	6.0	IR	Wet	Υ	Bagged	N	N
3	Water	46730061WS	12.1	IR	Wet	Υ	Bagged	Υ	Υ
4	Water	46730061WS	4.1	IR	Wet	Υ	Bagged	N	N
5	Water	46730061WS	8.2	IR	Wet	Υ	Bagged	Υ	Υ
6	Soll	46730061WS	-0.2	IR	Wet	Υ	Bagged	Ν	N
7	Soil	46730061WS	4.2	IR	Wet	Υ	Bagged	N	N

General Comments:

Samples not frozen.

2425 New Holland Pike Lancaster, PA 17605-2425 T = 717-656-2300 F = 717-656-2681 www.LancasterLabs.cor

BMQL

ppb

basis

Dry weight

parts per billion

as-received basis.

Explanation of Symbols and Abbreviations

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

С	degrees Celsius	MPN	Most Probable Number		
cfu	colony forming units	N.D.	non-detect		
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)		
F	degrees Fahrenheit	NTU	nephelometric turbidity units		
g	gram(s)	pg/L	picogram/liter		
IU	International Units	RL	Reporting Limit		
kg	kilogram(s)	TNTC	Too Numerous To Count		
L	liter(s)	μg	microgram(s)		
lb.	pound(s)	μL	microliter(s)		
m3	cubic meter(s)	umhos/cm	micromhos/cm		
meq	milliequivalents	MCL	Maximum Contamination Limit		
mg	milligram(s)				
<	less than				
>	greater than				
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a v very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.				

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is less than the LOQ
K2	Continuing Calibration Blank is above the QC limit and the sample result is less than the LOQ
K3	Initial Calibration Verification is above the QC limit and the sample result is less than the LOQ
K4	Continuing Calibration Verification is above the QC limit and the sample result is less than the LOQ
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

APPENDIX J

Completed Fish and Wildlife Resources Impact Analysis Decision Key

Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key			If NO Go to:
1.	Is the site or area of concern a discharge or spill event?		2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.		3
3. Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?		4	9
4.	4. Does the site contain habitat of an endangered, threatened or special concern species?		5
5.	Has the contamination gone off-site?	6	14
6. Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?			14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources? i. Any endangered, threatened or special concern species or rare plants or their habitat ii. Any DEC designated significant habitats or rare NYS Ecological Communities iii. Tidal or freshwater wetlands iv. Stream, creek or river v. Pond, lake, lagoon vi. Drainage ditch or channel vii. Other surface water feature viii. Other marine or freshwater habitat ix. Forest x. Grassland or grassy field xi. Parkland or woodland xii. Shrubby area xiii. Urban wildlife habitat xiv. Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	11. Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?		12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	13. Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)		14
14.	No Fish and Wildlife Resources Impact Analysis needed.		