SUBSURFACE INVESTIGATION REPORT

for

130 SAINT FELIX STREET BROOKLYN, NEW YORK

Prepared For:

130 Saint Felix Street LLC 1010 Avenue of the Americas, Fourth Floor New York, NY 10018

Prepared By:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

Jason Hayes, P.E., LEED^{AP} Senior Associate/VP

June 2015 170366001

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	BACKGROUND	2
2.1 2.2 2.3	Site Location and Description Previous Environmental Reports Proposed Development	3
3.0	FIELD INVESTIGATION	3
3.1 3.2 3.3	Soil Investigation Groundwater Investigation Soil Vapor Investigation	4
4.0	OBSERVATIONS AND RESULTS	5
4.1 4.2	Field Observations Analytical Results	
5.0	CONCLUSIONS AND RECOMMENDATIONS	6

TABLES

- Table 2: Summary of Detected Soil Sample Results VOCs and SVOCs
- Table 3: Summary of Detected Soil Sample Results Herbicides, Pesticides, PCBs, and Metals
- Table 4: Summary of Detected Groundwater Sample Results
- Table 5:
 Summary of Detected Soil Vapor and Ambient Air Sample Results

FIGURES

- Figure 1: Site Location Map
- Figure 2: Sample Location Map

APPENDICES

- Appendix A: Boring Logs
- Appendix B: Monitoring Well Construction and Groundwater Sampling Log
- Appendix C: Soil Vapor Sample Logs
- Appendix D: Laboratory Analytical Reports

1.0 INTRODUCTION

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) prepared this Subsurface Investigation Report (SIR) for the proposed development at 130 St. Felix Street in Brooklyn, New York (the "site"). This SIR was prepared for 130 Saint Felix Street LLC and provides a summary of subsurface soil, groundwater, and soil vapor conditions to support the due diligence process associated with a potential transaction of the site.

Field activities were completed on May 30, 2015 including 1) installation of 5 soil borings and collection of six soil samples, 2) installation of one groundwater monitoring well and collection of two groundwater samples, and 3) collection of three soil vapor samples and one ambient air sample. The following sections summarize field methodologies, findings, and our conclusions and recommendations as they relate to this investigation.

2.0 BACKGROUND

2.1 Site Location and Description

The 12,500-square-foot site is located at 130 Saint Felix Street in Brooklyn, New York and identified as Kings County Tax Block 2111, Lot 40. The site is on an L-shaped city lot bound by two multiple-story Brooklyn Academy of Music buildings to the north, Saint Felix Street followed by multiple-story residential buildings to the east, a multiple-story church to the south, and Ashland Place followed by an active construction site to the west. Surface grades slope slightly from east to west, going from elevation (el) ± 47 to feet ± 43 feet Borough President of Brooklyn Datum (BPBD)¹, respectively. A site location map is provided as Figure 1.

New York City Transit (NYCT) active subway tunnels are located beneath Lafayette Avenue to the north, Saint Felix Street to the east, and Ashland Place, Fourth Avenue, and Flatbush Avenue to the west and south of the site.

Elevations are referenced with respect to the Borough President of Brooklyn datum, which is 2.547 feet above USGS NGVD datum (Mean Sea Level at Sandy Hook, NJ 1929).

2.2 **Previous Environmental Report**

A Draft Phase I Environmental Site Assessment Report, dated May 2015, was prepared by Langan in accordance with ASTM E1527-13. Findings of the Draft Phase I ESA are summarized below.

The Draft Phase I identified several Recognized Environmental Conditions (REC) including onsite uses and adjacent property uses, summarized below:

- The site was used as a parking lot as early 1950 and may have contained underground storage tanks (UST), which could have impacted soil, groundwater and/or soil vapor at the site.
- Surrounding property uses include manufacturing, filling stations, and several dry cleaners within 900 feet of the site and may have impacted groundwater and/or soil vapor at the site.
- A No. 2 fuel oil release of unknown quantity was reported to the New York State Department of Environmental Conservation (NYSDEC) on May 18, 2004, citing impacted soil at 4 to 40 feet below grade surface (bgs) and observed free-phase product on groundwater. A delineation work plan and exposure assessment was submitted to the NYSDEC in November 2013, and after review, the NYSDEC closed the spill on April 15, 2015.

2.3 **Proposed Development**

The proposed site development includes construction of a new multiple-story building. The proposed construction will likely require soil/fill excavation to accommodate a cellar level and foundation components. Building plans are in the conceptual design phase and will influence the type (i.e. fill, native) and quantity of material being excavated. Based on the depth to groundwater, it is unlikely dewatering will be required during construction.

3.0 FIELD INVESTIGATION

Langan retained AARCO Environmental Services Corporation (a licensed driller in Lindenhurst, New York) on May 30, 2015 to execute the investigation, which included; 1) the installation of five soil borings and collection of six soil samples, 2) installation of one permanent groundwater monitoring well and collection of two groundwater samples, and 3) collection of three soil vapor and one ambient air samples. All activities were observed and documented by a Langan engineer. Soil, groundwater, and soil vapor sample locations are shown on Figure 2. A sample collection summary is provided as Table 1.

3.1 Soil Investigation

Five soil borings (EB07, EB09, EB10, EB12, and EB13) were completed using a Geoprobe® 7822DT direct-push drill rig to about16 feet bgs (shown on Figure 2). Soil samples were collected continuously into 4-foot long Macro-Core® sample barrels with dedicated acetate liners. Samples recovered from each boring were visually classified for soil type, grain size and texture. Soil samples were inspected for visual and olfactory evidence of contamination and screened for volatile organic compounds (VOC) with a multiRAE 4-gas meter equipped with a

10.6 electron volt (eV) lamp. Field observations were documented in boring logs included in Appendix A.

A total of six samples and one duplicate sample were collected in to laboratory-supplied containers, placed in ice-chilled coolers, and transported by a laboratory courier, under chain-of-custody protocol to Alpha Analytical, a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory in Westborough, Massachusetts. Soil samples were analyzed for NYSDEC Full Part 375-list parameters. Following sample collection, borings were backfilled with soil cuttings and clean silica sand and the asphalt surface restored to its original state.

3.2 Groundwater Investigation

One monitoring well (MW11) was installed using a truck-mounted drill rig, equipped with 4-inch diameter augers, to about 60 feet bgs. Soil cuttings generated from the initial drilling were containerized in DOT-approved 55-gallon drums until a review of analytical data could be performed prior to disposal.

The monitoring well was constructed of 2-inch diameter Schedule 40 polyvinyl chloride (PVC) with 20 feet of 0.02-inch slotted screen and 40 feet of solid riser. The well screen was set across the water table to monitor for presence or potential presence of free-phase product. The annulus around the well was filled with Morie No. 2 silica filter sand to about 2 feet above the screen. About 1 foot of a hydrated bentonite seal was placed above the filter sand. A cement grout was installed above the bentonite seal by inserting a tremie pipe into the annulus and pumping grout up to surface grade. The well was finished with a flush-mount, bolt-down manhole set in a concrete collar. A well construction log is included in Appendix B.

Prior to sampling, groundwater level was measured using a Solinst® oil/water interface probe. The well was then purged in accordance with Environmental Protection Agency (EPA) low-flow sampling techniques to obtain a representative groundwater sample. During purging, groundwater field parameters were measured using a Horiba U-52 multi-parameter meter, at 5 minute intervals, until turbidity was less than or equal to 50 Nephelometric Turbidity Units (NTU) or field parameters stabilized to within 5 percent of each other. After purging was complete, a submersible pump with dedicated polyethylene tubing was used to collect groundwater samples directly from the pump discharge line into laboratory supplied containers. A copy of the groundwater sample log is included in Appendix B.

One groundwater sample and one duplicate sample was collected from MW11 and analyzed for target compound list (TCL) volatile organic compounds (VOC), TCL-semivolatile organic compounds (SVOC), total and dissolved target analyte list (TAL)-metals, and polychlorinated biphenyls (PCB).

3.3 Soil Vapor Investigation

Three soil vapor points (SV01 to SV03) were installed using the Geoprobe® 7822DT by advancing a 2-inch diameter Macro-Core® to about 2 feet bgs. A stainless steel screen was installed at the 2-foot depth and connected to a ¼-inch diameter polyethylene tubing, which extended up to the surface. The holes were then backfilled with clean silica sand to about 6 inches above the stainless steel screen. A hydrated bentonite seal was placed above the sand filter and up to surface grade.

Prior to, and at the conclusion of sampling, Langan performed a tracer gas test using helium gas for each sample. The helium trace gas test is a QA/QC measure to confirm the integrity of the seal by evaluating whether outdoor air intrusion will impact the soil vapor sample. After completing the helium gas tracer test, a total volume of about 3 times that of the tubing and

screen was purged using a multiRAE multi-gas meter calibrated to a flow rate of 0.2 liters per minute. The purged volume was also monitored for VOCs. After purging, a 2.7-liter Summa canister under vacuum pressure with a flow controller (laboratory-preset to 0.18 liters per minute) was connected to the polyethylene tubing. The sample was collected over a period of about 120 minutes or when the canister vacuum dropped below 5 inches of mercury. Soil vapor sample logs are included in Appendix C.

In addition, one ambient air sample (AMB_053015) was collected from the north-central area of the site (shown on Figure 2) and raised to an elevation that simulates average breathing height. The ambient air sample was collected into a 6-liter Summa canister over a period of about 4 hours. The soil vapor and ambient air samples were collected in conformance with NYSDOH Final Guidance on Soil Vapor Intrusion, October 2006, and analyzed for VOCs via EPA method TO-15.

4.0 OBSERVATIONS AND RESULTS

4.1 Field Observations

The general soil profile consists of uncontrolled historic fill overlying sand, which overlies silt, followed by sand. The fill layer consists of coarse to fine sand with varying amounts of brick, concrete, slag, coal, tile, glass, gravel, and silt. The site is capped by a 5-inch thick asphalt cover. Historic fill was encountered immediately below the asphalt cover to about 9.5 feet bgs. The historic fill was underlain by native brown medium to fine sand with varying amounts of gravel and silt. Below the sand in some areas was a thin band of fine silt. A dense, coarse to fine sand with varying amounts of coarse to fine gravel was encountered below the sit. Bedrock was not encountered. Water, where encountered, was observed perched above the silt layer. Depth to water is about 42 feet bgs (±el 4 feet BPBD).

4.2 Analytical Results

Soil

The five soil samples and one duplicate sample were compared to Title 6 NYCRR Part 375 Unrestricted Use and Restricted Use Restricted-Residential soil cleanup objectives (SCO). Detected soil analytical results are summarized in Tables 2 and 3. Relevant findings are as follows:

- Herbicides, pesticides, and PCBs were not detected in any samples.
- The VOCs Naphthalene and total xylenes were detected above Unrestricted Use SCOs in sample EB12_7-9.
- Several SVOCs and metals were detected at concentrations above Unrestricted Use and Restricted-Residential SCOs in one or more samples.

<u>Groundwater</u>

The groundwater sample and duplicate sample were compared to NYSDEC Technical and Operation Guidance Series (TOGS) Ambient Water Quality Standards (AWQS) and Guidance Values (GV) for class GA (drinking water). A summary of detected groundwater concentrations is presented in Table 4. Relevant findings are as follows:

• PCBs were not detected in either sample.

- SVOCs were not detected above AWQS.
- The VOC chloroform exceeds its respective AWQS.
- Total metals concentrations of trivalent chromium, iron, and sodium were detected above AWQS.
- With the exception of sodium, dissolved (filtered) metals did not exceed their respective AWQS or GVs.

<u>Soil Vapor</u>

There are no standard guidance values for soil vapor. However, analytical results were compared to NYSDOH Air Guidance Values (AGV) as a reference. AGVs have been established for methylene chloride, trichloroethene, and tetrachloroethene to determine if actions would be required to mitigate exposures to soil vapor intrusion into future buildings. In addition, soil vapor samples were compared to the ambient air sample, which serves as a baseline for site-specific background concentrations. A summary of detected VOCs is presented in Table 5.

Multiple VOCs, including petroleum-related compounds (i.e., trimethylbenzenes, xylenes, and toluene, etc.) were detected at concentrations above baseline levels in sample SV02, located near the north-central area of the site. No soil vapor sample results exceeded any AGVs.

Analytical laboratory reports for all samples collected are provided in Appendix D.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of the investigation, we conclude and recommend the following:

Conclusion

Fill was observed throughout the site from surface grade to about 6 to 9.5 feet bgs. The fill generally consists of coarse to fine sand with varying amounts of gravel, slag, coal, brick, concrete, and glass. Free-phase product was not observed in soil or groundwater. Groundwater was measured in monitoring well MW11 at about 42 feet bgs (±el 4 feet BPBD). Based on the depth of groundwater, it is not likely that dewatering will be required during construction.

Recommendations

- Excavated soil/fill is regulated solid waste and should be transported in accordance with applicable federal, state, and local regulations, using appropriate permits for transportation, to registered or permitted disposal facilities.
- Contingent on the final building design depth, excavation for one or more cellar levels and foundation components will address potential sources of soil and soil vapor contaminants. However, we recommend installation of a vapor barrier below the slab of the lowest cellar level and along subgrade foundation walls to prevent potentially contaminated vapor intrusion into the building that may be transported by groundwater flow below the site.

Tables

Table 1 Sample Collection Summary 130 Saint Felix Street Brooklyn, New York Langan Project No. 170366001

Sample Matrix	Sample ID	Collection Depth (ft)	Collection Date	Analysis
	EB07_10-12	10-12		
	DUP01_053015	10-12		
Soil	EB09_4.5-5.5	4.5-5.5		Full Part 275 (VOCs SVOCs DCPs Posticidas Harbisidas Matals)
3011	EB10_1-2	1-2		Full Part 375 (VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals)
	EB12_7-9	7-9		
	EB13_7-9	7-9	5/30/2015	
Groundwater	MW11_053015	NA	5/30/2015	TCL VOCs/SVOCs, TAL Metals, PCBs
Groundwater	GWDUP01_053015	NA		TCL VOCS/SVOCS, TAL IVIETAIS, FCBS
	SV01			
Soil Vapor	SV02	2		TO-15 VOCs
	SV03	SV03		10-13 1005
Ambient Air	AMB_053015	NA		

Notes:

VOC = Volatile Organic Compound SVOC = Semivolatile Organic Compound PCB = Polychlorinated Biphenyl TCL = Target Compound List

TAL = Target Analyte List

Table 2 Summary of Soil Sample Results - VOCs and SVOCs 130 Saint Felix Street Brooklyn, New York Langan Project No. 170366001

				DUP	PLICATES									
LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	Part 375 Unrestricted Use	Part 375 Restricted Use Restricted- Residential	EB07_10-12 5/30/2015 L1511932-01 Soil 10-12		DUP01_053015 5/30/2015 L1511932-06 Soil 10-12		EB09_4.5-5.5 5/30/2015 L1511932-02 Soil 4.5-5.5		EB10_1-2 5/30/2015 L1511932-03 Soil 1-2		EB12_7-9 5/30/2015 L1511932-04 Soil 7-9		EB13_7-9 5/30/2015 L1511932-05 Soil 7-9	
VOCs (mg/kg)														
1,2,4,5-Tetramethylbenzene	~	~	0.0039	U	0.0048	U	0.0063	U	0.0045	U	0.081	J	0.0048	U
1,2,4-Trimethylbenzene	3.6	52	0.0049	U	0.0061	U	0.0079	U	0.0057	U	0.54	J	0.0061	U
1,3,5-Trimethylbenzene	8.4	52	0.0049	U	0.0061	U	0.0079	U	0.0057	U	0.29	J	0.0061	U
Acetone	0.05	100	0.0056	J	0.012	U	0.016	U	0.011	U	2.4	U	0.012	U
Naphthalene	12	100	0.0049	U	0.0061	U	0.0079	U	0.0057	U	53		0.0061	U
o-Xylene	~	~	0.002	U	0.0024	U	0.0032	U	0.0023	U	0.24	J	0.0024	U
p-Diethylbenzene	~	~	0.0039	U	0.0048	U	0.0063	U	0.0045	U	0.2	J	0.0048	U
p/m-Xylene	~	~	0.00024	J	0.0024	U	0.0032	U	0.0023	U	0.3	J	0.0024	U
Toluene	0.7	100	0.00025	J	0.0018	U	0.0024	U	0.0017	U	0.36	U	0.0018	U
Xylenes, Total	0.26	100	0.00024	J	0.0024	U	0.0032	U	0.0023	U	0.54	J	0.0024	U
SVOCs (mg/kg)	-													
2,4-Dimethylphenol	~	~	0.21	U	0.22	С	0.93	U	0.37	С	3.8	J	0.18	U
2-Methylnaphthalene	~	~	0.26	U	0.26	U	1.2		0.44	U	50		0.093	J
3-Methylphenol/4-Methylphenol	0.33	100	0.31	U	0.32	U	1.3	U	0.53	U	8.1	J	0.27	U
Acenaphthene	20	100	0.17	U	0.18	U	1.9		0.3	U	58		0.18	
Acenaphthylene	100	100	0.17	U	0.18	U	2.2		0.3	U	42		0.15	
Anthracene	100	100	0.13	U	0.13	U	5		0.22	U	140		0.46	
Benzo(a)anthracene	1	1	0.13	U	0.13	U	17		0.22	U	270		0.9	
Benzo(a)pyrene	1	1	0.17	U	0.18	U	17		0.3	U	260		0.84	
Benzo(b)fluoranthene	1	1	0.13	U	0.13	U	21		0.22	U	270		1	
Benzo(ghi)perylene	100	100	0.17	U	0.18	U	12		0.3	U	180		0.57	
Benzo(k)fluoranthene	0.8	3.9	0.13	Ū	0.13	Ū	7.9		0.22	Ū	190		0.37	
Biphenyl	~	~	0.49	U	0.5	U	0.41	1	0.84	U	14	1	0.42	U
Carbazole	~	~	0.21	Ū	0.22	Ū	1.9	-	0.37	Ū	100	•	0.24	-
Chrysene	1	3.9	0.13	Ū	0.13	Ū	18		0.22	Ū	270		0.91	
Dibenzo(a,h)anthracene	0.33	0.33	0.13	U	0.13	U	3.6		0.22	U	60		0.15	
Dibenzofuran	7	59	0.21	Ŭ	0.22	Ŭ	1.5		0.37	Ŭ	71		0.17	1
Fluoranthene	100	100	0.13	U	0.13	U	23		0.11	J	600		2.4	Ĵ
Fluorene	30	100	0.21	U	0.22	U	1.6		0.37	Ů	76		0.2	
Indeno(1,2,3-cd)Pyrene	0.5	0.5	0.17	U	0.18	U	10		0.3	U	170		0.48	
Naphthalene	12	100	0.21	U	0.18	U	3.2		0.37	U	110		0.48	
Phenanthrene	100	100	0.13	U	0.13	U	16		0.22	U	620		2	
Phenol	0.33	100	0.13	U	0.13	U	0.93	U	0.22	U	3.9	1	0.18	U
	100	100	0.21	U	0.22	U	23	U	0.37	J	480	J	2	0
Pyrene	100	100	0.13	U	0.13	U	23		0.096	J	480		۷.	

Notes and Qualifiers:

1. Soil Samples are compared to New York State Department of Environmental Conservation (NYSDEC) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO).

2. Only detected concentrations are shown.

3. Concentrations exceeding Unrestricted Use SCOs are in bold.

4. Concentrations above Restricted-Residential SCOs are highlighted and in bold.

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound.

mg/kg = milligram per kilogram

U = Compound not detected at the reported detection limit for the sample.

E = Concentration of compound exceeds the range of the calibration curve and/or linear range of the instrument.

J = Concentration is below the reporting limit, but above the method detection limit. Concentration is a laboratory estimated value.

~ = No Regulation exists for this compound in Part 375

Table 3

Summary of Detected Soil Sample Results - Herbicides, Pesticides, PCBs, Metals, and Chemistry

130 Saint Felix Street

Brooklyn, New York

Langan Project No. 170366001

				DUI	PLICATES									
LOCATION SAMPLING DATE	Part 375	Part 375 Restricted Use	EB07_10-12 5/30/2015		DUP01_053015 5/30/2015		EB09_4.5-5.5 5/30/2015		EB10_1-2 5/30/2015		EB12_7-9 5/30/2015		EB13_7-9 5/30/2015	
LAB SAMPLE ID	Unrestricted Use	Restricted-	L1511932-01		L1511932-06		L1511932-02		L1511932-03		L1511932-04		L1511932-05	
SAMPLE TYPE		Residential	Soil		Soil		Soil		Soil		Soil		Soil	
SAMPLE DEPTH (ft.)			10-12		10-12		4.5-5.5		1-2		7-9		7-9	
Herbicides (mg/kg)	~	~	ND		ND		ND		ND		ND		ND	
Total Herbicides	~	~	ND		ND		ND		ND		ND		ND	
Pesticides (mg/kg)	~	~	ND		ND									
Total Peticides	~	~	ND		ND		ND		ND		ND		ND	
PCBs (mg/kg)	~	~	ND		ND		ND		ND		ND		ND	
Total PCBs			ND		ND		ND		ND		ND		ND	
Total Metals (mg/kg)	~	~	7400		0000		6200		6100		5000		7000	
Aluminum, Total	~	~	7100		9800		6200		6100		5800		7800	
Antimony, Total			5.1	U	5.1	U	2.3	J	1.6	J	1.1	J	4.2	U
Arsenic, Total	13	16	1.1		1.2		12		16		8.6		4.4	
Barium, Total	350	400	53		73		860		370		720		140	
Beryllium, Total	7.2	72	0.31	J	0.42	J	0.26	J	0.28	J	0.24	J	0.3	1
Cadmium, Total	2.5	4.3	1	U	1	U	0.95	J	0.1	J	0.93		0.85	U
Calcium, Total	~	~	1300		1700		45000		26000		22000		14000	
Chromium, Total	30	180	18		25		24		16		32		17	
Cobalt, Total	~	~	6.6		8.6		4.7		5.5		4.7		5.6	
Copper, Total	50	270	16		21		42		28		64		20	
Iron, Total	~	~	15000		20000		15000		13000		12000		14000	
Lead, Total	63	400	5.1	U	5.1	U	2800		620		2000		130	
Magnesium, Total	~	~	2400		3200		4100		2700		4600		2800	
Manganese, Total	1600	2000	370		380		390		250		260		270	
Mercury, Total	0.18	0.81	0.1	U	0.09	U	0.9		0.25		1.7		0.42	
Nickel, Total	30	310	15		16		16		13		20		13	
Potassium, Total	~	~	1300		2000		920		1300		1000		1300	
Selenium, Total	3.9	180	2	U	2	U	0.75	J	0.4	J	1.3	J	0.53	J
Silver, Total	2	180	1	U	1	U	0.72	J	0.86	U	0.21	J	0.85	U
Sodium, Total	~	~	270		450		120	J	100	J	220		160	J
Vanadium, Total	~	~	24		33		22		22		32		25	
Zinc, Total	109	10000	34		50		1200		510		620		140	
General Chemistry (mg/kg)														
Chromium, Hexavalent	1	110	0.58	J	0.53	J	0.96	J	0.31	J	0.33	J	0.3	J
Chromium, Trivalent	30	180	17	J	24	J	23	J	16	J	32	J	17	J
Cyanide, Total	27	27	1.2	U	1.3	U	0.62	J	1.1	U	0.75	J	1	U

Notes and Qualifiers:

1. Soil Samples are compared to New York State Department of Environmental Conservation (NYSDEC) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO).

2. Only detected concentrations are shown.

3. Concentrations exceeding Unrestricted Use SCOs are in bold.

4. Concentrations above Restricted-Residential SCOs are highlighted and in bold.

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound.

PCB = Polychlorinated Biphenyl

mg/kg = milligram per kilogram

U = Compound not detected at the reported detection limit for the sample.

E = Concentration of compound exceeds the range of the calibration curve and/or linear range of the instrument.

J = Concentration is below the reporting limit, but above the method detection limit. Concentration is a laboratory estimated value.

ND = Not Detected

~ = No Regulation exists for this compound in Part 375

Table 4 Summary of Detected Groundwater Sample Results 130 Saint Felix Street Brooklyn, New York Langan Project No. 170366001

			DUF	PLICATES	
LOCATION		MW11 053015		GWDUP01 053015	
SAMPLING DATE	NYSDEC TOGS	5/30/2015		5/30/2015	
LAB SAMPLE ID	AWQS - Class GA	L1511932-07		L1511932-08	
SAMPLE TYPE		Groundwater		Groundwater	
VOCs (µg/L)					
Chloroform	7	15		15	
Tetrachloroethene	5	1.2		1.3	
Trichloroethene	5	3.4		3.4	
SVOCs (µg/L)					
Fluoranthene	50	0.05	J	0.04	J
Phenanthrene	50	0.1	J	0.1	J
PCBs (µg/L)					
Total PCBs	5	ND		ND	
Metals, Total (µg/L)	-	-			
Aluminum, Total	~	1020		952	
Antimony, Total	3	1.5	J	0.8	J
Arsenic, Total	25	1		1	
Barium, Total	1000	125.8		114.3	
Cadmium, Total	5	0.1	J	0.2	U
Calcium, Total	~	67000		53100	
Chromium, Total	50	62.7		41.1	
Cobalt, Total	~	2.1		1.4	
Copper, Total	200	7.3		6.1	
Iron, Total	300	3090		2420	
Lead, Total	25	2.2		1.7	
Magnesium, Total	35000	29300		24300	
Manganese, Total	300	160.6		130	
Nickel, Total	100	39.2		23.6	
Potassium, Total	~	5040		4500	
Selenium, Total	10	1	J	1	J
Silver, Total	50	0.1	J	0.2	J
Sodium, Total	20000	51600		46600	
Vanadium, Total	~	3.3	J	2.3	J
Zinc, Total	2000	123.8		143.6	
Metals, Dissolved (µg/L)					
Aluminum, Dissolved	~	42		22	
Antimony, Dissolved	3	1.6	J	0.9	J
Arsenic, Dissolved	25	0.5	J	0.4	J
Barium, Dissolved	1000	104.2		101.9	
Calcium, Dissolved	~	69300		65900	
Chromium, Dissolved	50	4.1		1.7	
Cobalt, Dissolved	~	0.4	J	0.3	J
Copper, Dissolved	200	1.7		5.9	
Iron, Dissolved	300	58		37	J
Lead, Dissolved	25	1	U	0.1	J
Magnesium, Dissolved	35000	26200		23800	
Manganese, Dissolved	300	66.9		60.4	
Nickel, Dissolved	100	7.5		4.2	
Potassium, Dissolved	~	4490		4240	
Silver, Dissolved	50	0.2	J	0.4	U
Sodium, Dissolved	20000	62800		54200	
Zinc, Dissolved	2000	7.9	J	5.8	J

Notes and Qualifiers: 1. Groundwater Samples are compared to New York State Department of Environmental Conservation

(NYSDEC) Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards (AWQS) and Guidance Values (GV) for Class GA (drinking water).

Only detected concentrations are shown.
 Concentrations above AWQS Class GA are highlighted and in bold.

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound

PCB = Polychlorinated Biphenyl

 μ g/L = microgram per liter

J = Compound not detected at the reported detection limit for the sample. J = Concentration is below the reporting limit, but above the method detection limit. Concentration is a laboratory estimated value.

ND = Not Detected

~ = No standard or guidance value exists for this compound in TOGS AWQS Class GA.

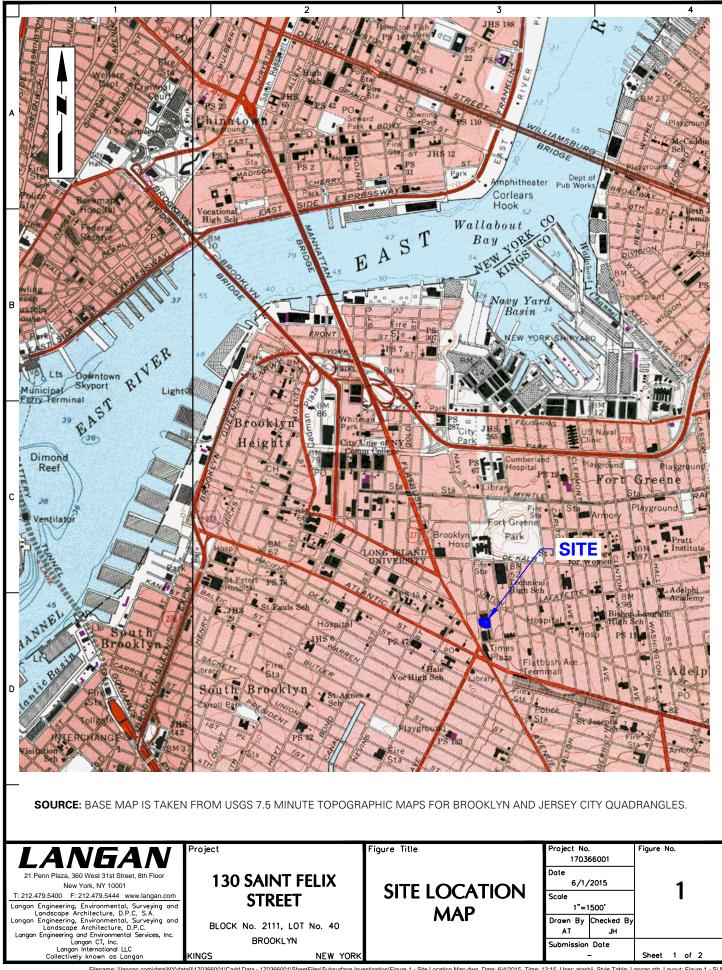
Table 5 Summary of Detected Soil Vapor and Ambient Air Sample Results 130 Saint Felix Street Brooklyn, NY

170366001

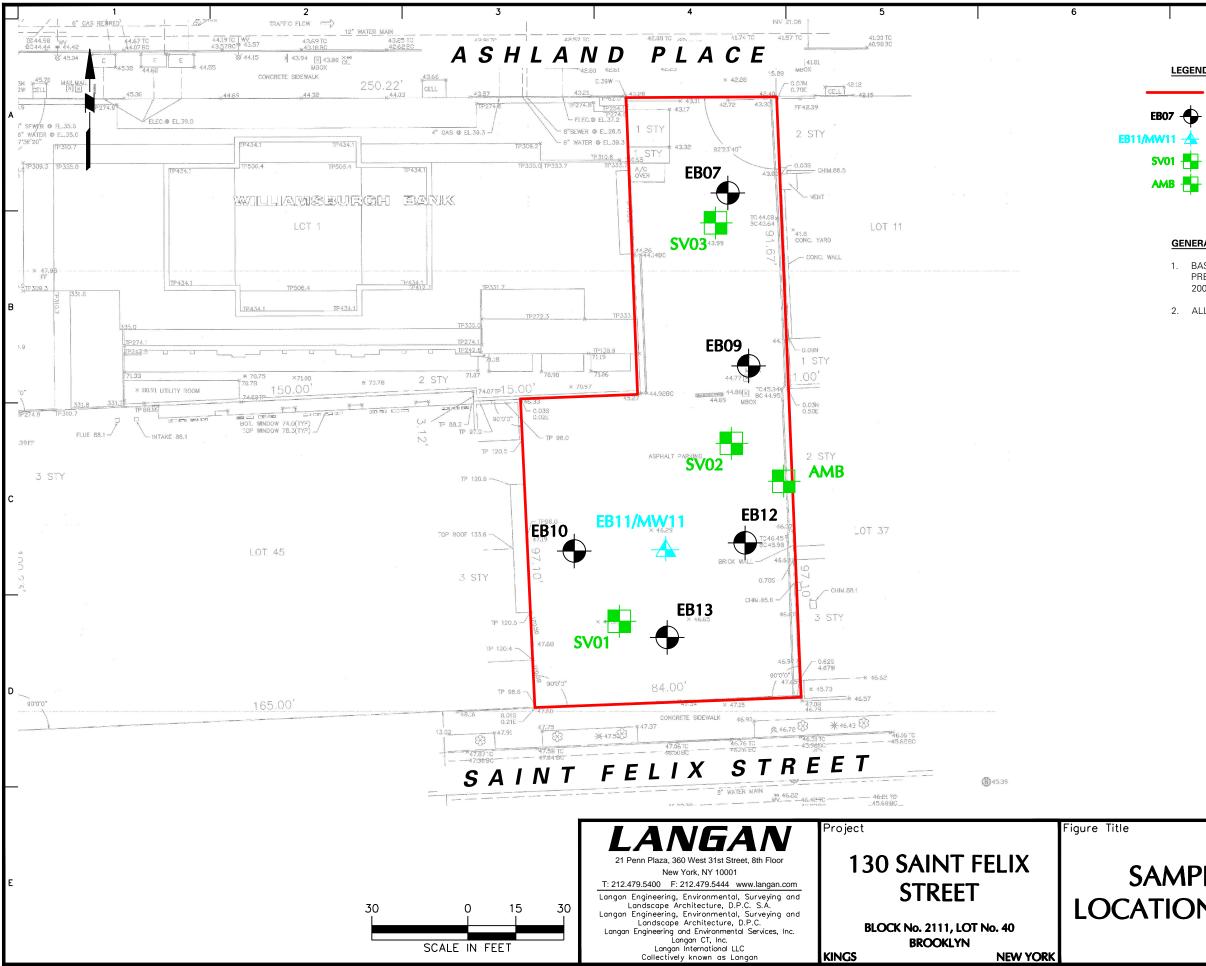
LOCATION		AMB_053015		SV01		SV02		SV03	
SAMPLING DATE		5/30/2015		5/30/2015		5/30/2015		5/30/2015	
	NYSDOH AGVs	L1511934-04		L1511934-01		L1511934-02		L1511934-03	
SAMPLE TYPE		Ambient Air		Soil Vapor		Soil Vapor		Soil Vapor	
VOCs, TO-15 (μg/m ³)									
1,1,1-Trichloroethane	~	1.09	U	2.73	U	3.64	U	1.3	
1,2,4-Trimethylbenzene	~	1.36		86.5		80.1		64.4	
1,3,5-Trimethylbenzene	~	0.983	U	24		23.6		16	
1,3-Butadiene	~	0.442	U	1.57		2.39		0.442	U
1,3-Dichlorobenzene	~	1.2	U	3.01	U	4.01	U	4.6	
2,2,4-Trimethylpentane	~	5.56		2.34	U	9.81		7.38	
2-Butanone	~	1.47	U	11.7		37.8		6.61	
4-Ethyltoluene	~	0.983	U	16		15.8		11.7	
4-Methyl-2-pentanone	~	2.05	U	5.66		15.5		2.05	U
Acetone	~	13.5		82		152		137	
Benzene	~	0.639	U	4.34		4.7		2.3	
Carbon disulfide	~	0.623	U	442		679		15.3	
Chloroform	~	0.977	U	2.44	U	3.26	U	1.02	
Chloromethane	~	1.31		1.03	U	1.38	U	1.18	
Cyclohexane	~	0.688	U	13.8		7.74		2.03	
Dichlorodifluoromethane	~	1.05		2.47	U	3.3	U	1.68	
Ethanol	~	12.9		27.5		69.5		164	
Ethylbenzene	~	0.869	U	17.2		21.1		11.9	
Heptane	~	1.05		8.77		22.5		4.34	
Isopropanol	~	1.98		8.41		14.1		28.3	
n-Hexane	~	0.835		13.9		49.3		2.97	
o-Xylene	~	1.06		37.4		43.9		26.1	
p/m-Xylene	~	2.81		81.7		93		53	
Styrene	~	0.852	U	38.5		35.3		24.4	
Tertiary butyl Alcohol	~	1.52	U	24.3		25.5		59.1	
Tetrachloroethene	30	1.36	U	3.39	U	7.87		3.04	
Tetrahydrofuran	~	1.47	U	3.69	U	20.2		1.77	
Toluene	~	4.11		43.3		41.8		27.2	
Trichlorofluoromethane	~	2.44		2.81	U	3.75	U	1.55	

Notes and Qualifiers: 1. Air samples are compared to New York State Department of Health (NYSDOH) Air Guidance

Values and compounds only detected in Ambient Air sample AMB_053015.


2. Only detected compounds are shown.

3. Concentrations of soil vapor above detected ambient air results are in bold.


4. VOC = Volatile Organic Compound 5. μ g/m³ = microgram per cubic meter U = Compound not detected at the reported detection limit for the sample.

Figures

Filename: \\langan.com\data\NY\data01170366001\Cadd Data - 170366001\SheetFiles\Subsurface Investigation\Figure 1 - Ste Location Map.dwg Date: 6/4/2015 Time: 13:15 User: atashji Style Table: Langan.stb Layout: Figure 1 - SLM

7	8

SITE BOUNDARY

EB07 - SOIL BORING LOCATION

BORING/MONITORING WELL LOCATION

SV01 - SOIL VAPOR SAMPLE LOCATION

AMBIENT AIR SAMPLE LOCATION

GENERAL NOTES:

- 1. BASE MAP TAKEN FROM ARCHITECTURAL SURVEY, PREPARED BY TRUE NORTH SURVEYORS, INC., DATED JULY 2005.
- 2. ALL LOCATIONS ARE APPROXIMATE.

						_
	Project N	0.	Figure	No.		
		66001				
	Date					
AMPLE	6/1/	′2015		~		
	Scale)		
	1"=	- 30'				
TION MAP	Drawn By	Checked By				
	AT	JH				
	Submissio	on Date				
		_	Sheet	2	of 2	

Appendix A

Boring Logs

LANGAN

LOG OF BORING ______ SHEET 1 OF _____

PROJECT	130	St. F.	élix ≤	street				Τ	PRO	JECT NO).	70360	6001			
LOCATIO	N		New Yo						ELEV	ATION A						
DRILLING	AGENCY	1						+	DAT	ESTARTE	ED / T	_	DATE FINISHED	10.5		
											5/30/2015 5/30/2015 COMPLETION DEPTH ROCK DEPTH					
	D TYPE OF BI	1	matel.	7822				-	NO	SAMPL	16' FS	DIST. 2	UNDIST. NA	CORE NA		
CASING	DITPEOFBI		<u>DA</u>					-		TERLE		FIRST -	COMPL. NA	24 HR. NA	-	
	HAMMER		WEIGHT	NA	DROP	NA				EMAN			<i>D</i> 1,			
SAMPLE		-in	1.D. Ma	crocore				-	INS	PECTOR	N	Dayb	i Tachecke) 		
SAMPLE	NA	1		MD.	LES	$\frac{A}{1}$. Tashj	<u>}</u>		_						
ń,	ł.	SA	MPLE DE	SCRIPTION	_	DEPTH SCALE	l ų			PENETR. 1 RESIST C BL/6 in/.	PID (ppm)) (DRILLI CASIN	REMARKS	OF CASING,		
FILL	12-34" Lt t D-9" DK-1 50.	PK gre F. Mico brn C. Brn C. Brn f	y C-S = (dry) (-f SAN tr. brick mortor, tr	D, 50. grave , tr. slag. (Fil DAND, 50. g [FIL]	idry) z] paud,		N-2	Moencore Mario nore	31/48	0.0 0.0 0.0 0.0 0.0	Z Ashland Pl.	30' 1 /lot 1			St. Felix Street	
2 7 N D	8 - 42 0-16" B 16-29 F	silt, 1 Bm . tr. mi	well, tr. : Willia (0 Frine SENS) Be (Mars ne SENS)	n so grainel, Osis NSC -f SAI	brick,		M-4 M-3	Martacene Martacene	149 48 29 48	0.0			07_10-12 1.PO1-05		0	

JOB N	NO. 170366001	LC	G	OF	BORIN	IG NO.	EB07		
DATE	5/30/2015		SHEET <u>2</u> OF <u>2</u>						
	SAMPLE DESCRIPTION	DEPTH SCALE	NO.LOC.	SAN 34/L	RECOV. FT. 4	PENETR. G	PID (ppm)	(DRILLING I CASING BI	REMARKS FLUID, DEPTH OF CASING, JOWS, FLUID LOSS, ETC.)
		15-	£	14	ł.	0.0			
2	E.O.B. C. 16 bys								

LOG OF BORING EBOQ 2 SHEET 1 OF PROJECT NO. PROJECT 170366001 130 St. Felix Street ELEVATION AND DATUM LOCATION Brooklyn, New York DATE STARTED DATE FINISHED **DRILLING AGENCY** 5/30/2015 AARCO 5/30/2015 ROCK DEPTH COMPLETION DEPTH DRILLING EQUIPMENT NA 7822 Reprobe 16 CORE NA NO. SAMPLES DIST. UNDIST. NA NA SIZE AND TYPE OF BIT FIRST NA 24 HR. NA WATER LEVEL COMPL. NA NA CASING FOREMAN DROP CASING HAMMER WEIGHT NA NA Daybi ochec SAMPLER 2-in 1.D. Macrocore INSPECTOR SAMPLER HAMMER Rush WEIGHT DROP A. Tas NA NA SAMPLES DEPTH PENETR. RESIST BL6-inf: REMARKS PID Ē NO.LOC. TYPE SAMPLE DESCRIPTION RECOV. F (DRILLING FLUID, DEPTH OF CASING, SCALE (ppm) CASING BLOWS, FLUID LOSS, ETC.) 0-4" ASPHALT 12' 4-10" DK grey mit SAND, So, glavel, ちゃち 0.0 2 27 <u>uduutuutuutuutuutuutuutuutuutuutuutuut</u> So, coal ash, tr. slag (dry) 48 84" Ashland Felix 2 -1 0.0 10-23" (+ but C-f sound, 50, gravel. ざ ot 1 Z trace brick , trace silt 3 0.0 NT Dark gray m-f SAND, some 23-27 coal ash, trace brick, trace 2 0.0 glass (dry) [Fim] SAMPLE E809 . 4.9-5.5 ٤.(0-4" Dark gray M-F SAND, trace COLLECTED @ 13:25 5 48 brick, trace gravel, trace silt (dry) [FIL] 0.0 K 4-41" Brown f dense SAND, some 0.0 6 ACrocor ż silt, trace mica (dry) [FILE] 0.0 5 0.0 0-9" Brown to dark gray M-F SAND. trace gravel, trace brick (dry) Q 0.0 41 48 [FILL] SILT 2 10 -0.0 Brown & dense SAND, trace 8-18" silt (dry) [FILL] Brown SILT (moist) 18-24" 11 -0.0 Dark brown c-f dense SAND, 24 - 33" 0 some f gravel, trace silt (day) Z 33-41" Reddish brown to white c-F 0.0 12 SAND (dry) 4 42 Red to brown c-f dense N 48 0-42" SAND, some c-f gravel, trace 0.0 13 silt (dry)

	10170366001			LC	DG	OF	BORIN	g no.	EBOQ
DATE	5/30/2015							SHEI	ET_2_OF_2
	SAMPLE DESCRIPTION	DEPTH SCALE	NO.LOC.	SAN IYPE	RECOV. FT. A	PENETR S	(ppm)	(DRILLING F CASING BL	REMARKS FLUID, DEPTH OF CASING, OWS, FLUID LOSS, ETC.)
		-15-	14	ц	и	0.0			
	E.O.B. C. 16' bys	$\sum_{i=1}^{n} \left[\frac{1}{2} + \frac{1}{2} +$				0.0			

3

LOG OF BORING _____ SHEET 1 OF ___

PROJECT	PROJECT 130 St. Felix Street								PROJECT NO. 170366001					
LOCATION	u .	New York				T	ELEV	ATION A		and the second sec	Liv _{at}			
DRILLING	AGENCY		451100 - 511115				DATE STARTED DATE FINISHED 5/30/15 5/30							
DRILLING			*****	an ar galar a mara		+	сом	DI 3		16'	BOCK DEPTH	NA		
SIZE AND	TYPE OF BIT	probe 7822				-+	NO.	SAMPL	ES	DIST. 1	UNDIST. NA	CORE NA		
CASING		NA						TERLE		FIRST NA	COMPL. NA	24 HR. NA		
CASING		WEIGHT NA	DROP	AUA			FOR	EMAN	Ð	aubi Pa	checko			
SAMPLER	A 2-in RHAMMER Push	ND. MACTOCOTE	DROP	NA	χ	-†	INSI	PECTOR		. Tashiji				
SAMPLE DESCRIPTION								REGIST REGIST BLIGIN.	[REMARK			
					Ž		쏊	0.0						
а 12		T RATY C.F. SAND, SOME WALT, SOME GRAVEL, DOME 2-10 EFILL	SUAG				33	٥,٥	1 Pl.	-			さき	
7	8-16" BROWN TRA CIRA	2 -	2	Macrocore	48	0.0	Ashland	777	7		Felix A			
7 /	TRA	CE MICA, TRACE GRAVE	516T/ L	- 3 - -		Mar		0.0	NT	/lot 1/	/ wij d	¢.	5	
K			3		-	-		0.0		SAMPLE (EB 10 _ 1-2	CO LLECTED		
		DRY) [FILD]					41	0.0		@ 10				
	29-41" BRO	WH & SAND, SOMES TRACE MICA (DR-1)	SILT,		2-	MARNOCOFE		0.0						
					X	X		0.0						
								0.0						
A		NN F SAND, SOME ACE MICA (DRY)	5167,				13	0.0	-12					
2 ≮		IN F SAND, COMES ACE MICA (MOIST-WET)			m	SCORE		0.0		0				
v					X	Macrocore		0.0						
A N A S								0.0						
		N F SAND, SOME S ICE MICA (MOIST)	167,		Ţ		38				÷.			
SILT	The		141		h-₩	MC	38 43	0.0						
SAND			-	F 14 -	1			0.0			in the second			

		10. 170366001			LC)G	OF E	BORING NO. EBIO
		5/30/15						SHEET _2_ OF _2
ľ			DEPTH SCALE	NO.LOC.	SAN	RECOV. FI.	PENETR. RESIST BL/6 In/.	REMARKS (DRILLING FLUID, DEPTH OF CASING, CASING BLOWS, FLUID LOSS, ETC.)
	SAND	11-18" BROWN F SILT (MOIST) 18-38" DARK BROWN M.F SAND, SOME GRAVEL, TRACE SILT (DRY)	- (5				0.0	END OF BORING Q 14
and			$\frac{2}{2}$				0.0	END OF BORING @ 16"

086100

LOG OF BORING EBIR SHEET 1 OF

PROJECT						Т	PRO	JECT NO					
LOCATION	4	Elix Street				+	170366001 ELEVATION AND DATUM						
		New York				+	DATE	ESTADT			DATE FINISHED		110.00
DRILLING	AGENCY	20				_	DATE STARTED DATE FINISHED 5/30/1015 5/30/1					2015	
DRILLING		eoprobe 7	822				сом	PLETION	DEPTH		ROCK DEPTH	AU	
SIZE AND	TYPE OF BIT	NA						SAMPL		DIST. 1	UNDIST. NA)A -
CASING	2 The second s	AU				_		TER LE	/EL	FIRST NA	COMPL. NA	24 HR. L	IA
CASING H		ID. Macroco	DROP	NA		-	FUR	EMAN	D	Darybi 1	achecku		
	RHAMMER Rush	WEIGHT NA	DROP	NA			INS	PECTOR	4	. Tashi	ί.		
	SAMPLE DESCRIPTION DEP SCA						RECOV. FT. A	LES LENEL	PID (ppm)	DB#18	REMARK NG FLUID, DEPTH G BLOWS, FLUID I	OF CASING,	
77	10 - 21" DX 8	CONCRETE, to sand (dry) [rey to brown a yovel, so. ash)[FILL]		No. 1 No.LOC.		21,	0.0 0.0	Z Ashland Pl.	lot 1	15.5'	49*	St Falix Street
1 Z	50. Cor 14-22" Blac	K C-f SAND, (dry)	Vel, tr. wood) [Fill] So. Coal ash [Fill]	- 5 - - 6 - - 7 - - 8 -	M.L	Herecote	22/28	0.0		7 %	-like ode 8 ft wyple EB1 2:40		
SAND SILT SAND	50. 61 11-22" Brn A Tr. Mic 12-32" Brn 32 -40 DK 6	n c-1' SAND, S	the fine gravel	E	M-3	Macrocore	40/48	0.0	-				
<u></u>		H (dry)	а. 		M·4	Me	12/12	0.0					
	Refusal	@13'E	p.3.	E ₁₄					- M	ocrecore 13' refi	bent .	t,	

LOG OF BORING ______ SHEET 1 OF ____

	PROJECT	130 St. F	Elix Street			PROJECT NO. 170366001							
	LOCATION	1	New York				Τ	ELE\	ATION A			- 2	
	DRILLING			and the strength of the			1	DAT	ESTART	ED 5/3	10/15	DATE FINISHED	30/15
	DRILLING						1	COMPLETION DEPTH				ROCK DEPTH	NA
	SIZE AND	TYPE OF BIT	probe 7822 NA					NO	SAMPL	.ES	DIST.	in the second	CORE NA
	CASING	2	NA						TERLE	VEL	FIRST NA	COMPL. NA	24 HR. NA
			WEIGHT NA	DROP	,UA			FOR	EMAN	T	Daybi To	scheko	
		HAMMER Push	I.D. Macrocore WEIGHT NA	DROP	NA		-	INS	PECTOR	A	. Tashi	î	
	SAMPLE DESCRIPTION DEPTH SCALE						SA	RECOV. FT. H	PENETR. RESIST BLIGING			REMARKS	
and	SAND FILL	612 TRA 18-31" DARK 64 0-10" DARK SOME SILT 10-13" BROW (DA- (DA	ALT C. GIRAY M-F SAND ALEL, SOME SLAG, TRA ICE SILT (DRI)) [FILL BROWN M-F SAND RAVEL, TRACE BRICK, TH RY) [FILL] GRAY TO BROWN M GRAVEL, SOME BRICK (DRY) [FILL] DN C-F SAND AND H) [FILL] MIT BROWN C-F SA E GRAVEL, SOME BRICK 2777R, TRACE COAL, LY) [FILL] AHT BROWN C-F SA E GRAVEL, SOME BRICK 2777R, TRACE COAL, LY) [FILL] AHT BROWN F SAND, SO ICTY SAND, TRACE G RACE MICA (DRY) BROWN M-F SAND, ICT (DR) BROWN M-F SAND, ICT (D	IND, IND,				¢ \$ \$ 10 10 10 10 10 10 10 10 10 10 10 10 10	0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0	Z Ashland Pl.	OPESET	VGRY 4-8; ~1' NW 3-7-9 COLLA	

JOB	NO170366001		LOG OF BORING NO. EGIS						
DATE	5/30/15							SHEE	T_2_OF_2_
	SAMPLE DESCRIPTION	DEPTH SCALE	NO.LOC.	SAN 34/1	RECOV. FT. J	PENETR: BUENC	PID (ppm)	(DRILLING FI CASING BLO	EMARKS LUID, DEPTH OF CASING, DWS, FLUID LOSS, ETC.)
SILT	27.32" BROWN F SILT (DRY) 32-48" DARK BROWN DENSE C-F SAND, SOME GRAVEN (DRY)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0.0	END OF	BORING	@ 16'
		····/···/···/···/···/···/···/···/···/·							

Appendix B

Monitoring Well Construction and Groundwater Sampling Log

LANGAN

WELL CONSTRUCTION SUMMARY

EB11/MW11

PROJECT NO.						
170366001						
ELEVATION AND DATUM						
± El. 46.0 feet BPBD						
DATE STARTED	DATE FINISHED					
5/30/2015	5/30/2015					
DRILLER						
Tom Seickel						
INSPECTORS						
A. Tashji	A. Tashji					
	PROJECT NO. 170366001 ELEVATION AND DATUM ± El. 46.0 feet DATE STARTED 5/30/2015 DRILLER Tom Seickel INSPECTORS	PROJECT NO. 170366001 ELEVATION AND DATUM ± El. 46.0 feet BPBD DATE STARTED DATE FINISHED 5/30/2015 5/30/2015 DRILLER Tom Seickel INSPECTORS				

METHOD OF INSTALLATION

A truck-mounted drill rig equiped with 4-inch diameter hollow-stem augers were advanced to a depth of ±60 feet bgs. Drill cuttings were collected into a 55-gallon drum. A 4-inch diameter Schedule 40 PVC well with 20 feet of 0.02-inch slotted screen and 40 feet of riser were installed. Sand was placed around the annulus of the well to 2 feet above the screen. Above the sand, 1 foot of hydrated bentonite was installed. Grout was tremie piped into the remaining annulus above the bentonite seal up to surface grade. the well was finished with a flush-mount, bolt-down manhole set in a concrete collar.

METHOD OF WELL DEVELOPMENT

A submersible pump was used to remove about 3 well volumes using EPA low-flow techniques. Purge water was pumped into a DOTapproved 55-gallon drum until the effluent was clear and the turbidity was within an EPA-acceptable range. The well was sampled immediately after purging.

PVC Schedule 4 TYPE OF SCREEN PVC Schedule 4 BOREHOLE DIAMETER 4-inch TOP OF CASING	40	2-inch DIAMETER 2-inch			Cement	Grout					
PVC Schedule 4 Borehole diameter 4-inch											
Borehole diameter 4-inch		2-inch		TYPE OF S	SEAL MATER	RIAL					
4-inch	1				Hydrate	d Benton	ite				
-				TYPE OF FILTER MATERIAL							
					Morie N	lo. 2 Sano	k				
OP OF CASING	ELEVATION (ft) ⁽³	3)	DEPTH (ft)		WELL DETAI	LS	SUMMARY SOIL	DEPTH			
	45.5	(0.5				CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾			
TOP OF SEAL			DEPTH (ft)	Cover			Ground Surface	0.00			
	10.00		36					0.5			
TOP OF FILTER			DEPTH (ft)	PVC				0.7			
	9		37	Riser —		Grout					
TOP OF SCREEN	-		DEPTH (ft)								
	7		39								
BOTTOM OF WELL			DEPTH (ft)								
	-14		60								
SCREEN LENGTH			LENGTH (ft)			Bentonite		36.0			
			20					37.0			
SLOT SIZE			SPACING (in)								
			0.02					39.0			
GROUNI	OWATER ELI							-			
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾								
4.00	5/30/2015	42									
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾	PVC							
	BAIL	-	/	Screen							
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾	Scicen		Morie #03					
	PAIL					Sand					
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾	-	-	Pack					
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾					59.0			
								60.0			
ELEVATION	DATE	DEPTH TO WATER ((ft) ⁽³⁾				EO				
LEVATION	DATE	DEPTH TO WATER ((11)				EUI	D			
LANGAN Engin	ooring Envir	onmontal Sum	ovina ca	l d Londer		aitaatura		1			
	-				-		ew York 10001				

Site: 130 Saint Felix Stree	et	Well#/Location:	EB11	/MW11	Job No.	17036600)1	
Date: 5/30/2015		Weather:	75-80	°F, Sunny	Sampling Pe	rsonnel:	A. Tashji	
Well Informat	ion			Purging Inform	ation			1
Sample ID		MW11_053015		Pu	urging Method		Low Flow	
Well Depth (ft)		59		Purgi	ng Rate (gpm)		0.15	
Screened Interval (ft)		39-59		Sta	art Purge Time		15:28	
Casing Elevation (msl)		45.5		Er	nd Purge Time		16:35	
Casing Diameter (in)		2		Volum	e Purged (gal)		6.75	
Depth to Water (ft)		42.29						
Water Elevation (msl)				Sampling Infor	mation			I
Casing Volume (gal)		2.7			npling Method		Low Flow	
PID/FID Reading (ppm)		0.0		Start S	Sampling Time		16:35	
				End Sampling Time		16:50		
				Depth Before Sampling (ft)		42.29		
				Number Bot	ttles Collected		18	
		1		Paramete	ers			
Sample Time	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp (∘C)	ORP (mV)	Depth to Water (ft)	Purged Volun (gallons)
15:35	7.45	0.792	0.0*	8.83	20.65	170	42.29	-
15:40	7.61	0.797	558	7.14	21.6	145	42.29	0.75
15:45	7.19	0.001	62.3	11.4	22.38	173	42.29	1.5
			Ρι	imp failure				
16:05	7.79	0.756	0.0*	8.19	20.75	138	42.29	2.25
16:10	7.79	0.762	0.0*	8.13	20.64	137	42.29	3
16:15	7.82	0.783	0.0*	7.01	21.05	131	42.29	3.75
16:20	7.75	0.866	0.0*	7.51	20.52	128	42.29	4.5
16:25	7.71	0.928	318	7.17	19.74	124	42.29	5.25
16:30	7.68	0.944	129	7.11	17.17	120	42.29	6
16:35	7.67	0.943	46.7	7.11	18.99	117	42.29	6.75
				1	1			
							_	

Notes/Remarks

Pump failure at 15:50 because battery died. Monsoon pump was connected to a car battery and pumping continued by 16:05. 0.0* = turbidity was too high for the water quality meter to read.

Sample MW11_053015 was collected at 16:35

GWDUP01_053015 was collected from MW11

[=

Wangan.com/data/WYdata0/170366001/Office Data/Reports/Environmental/Subsurface Investigation Report/Appendices/Appendix B - Well Construction and GW Sample Log/Water Sampling Record.xlsx

Langan Engineering, Environmental, Surveying, and Landscape Architecture, D.P.C.

Appendix C

Soil Vapor Sample Logs

SOIL VAPOR SAMPLING LOG SHEET

Sample Point: SV01

	<u></u>	nple Point: S	3001						
PROJECT:		PROJECT NO							
30 St. Felix Street		17036600							
ocation : 3rooklvn, New York		SURFACE EL	EVATIO	N AND DATUM:					
DIOORIYH, NEW TOIR DRILLING FIRM OR LANGAN INSTALLER:		INSTALLATIO			DATE FINISHED:				
AARCO Environmental			5/30/2		5/30/2015				
NSTALLATION FOREMAN:		SAMPLE DAT			DAT	E FINISHED:			
Daybi Pechecko		5/30/2015 5/30/2015							
NSTALLATION EQUIPMENT:		TYPE OF SAM				-,,			
Geoprobe® 7822DT direct-pus	h drill rig	2	.7 Lite	er Summa Ca	nister				
NSPECTOR:		SAMPLER:							
A. Tashji		A. Tashji							
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
None		75 - 80 degrees F, Sunny - Wind 15 - 25 mph							
METHOD OF INSTALLATION AND PURGI									
	n diameter macrocore with Ge	eoprobe to a	ı dentl	h of 2 feet bo	s. Stainless ste	el implant			
	et bgs, backfilled with sand a		•	•		•			
	vere purged using a multiRAE								
TUBING TYPE/DIAMETER:	UBING TYPE/DIAMETER:			ABOVE SEAL:					
1/4-inch polyethylene tubing	Ν	lone							
MPLANT SCREEN TYPE/LENGTH/DIAME	:TER:	SEAL MATER	IAL (Be	ntonite, Beeswax	, Modeling Clay, etc.	:			
6-inch length x 1/2-inch diamete	F	lydrat	ed Bentonite						
BOREHOLE DIAMETER:			RIAL (Sand or Glas	ss Beads):					
2-inch O.D.		N	/lorie	No. 2 Sand		1			
PURGE VOLUME (L):	0.01	IMPLANT/PROBE DETAILS DEPTH NOT							
PURGE FLOW RATE (ML/MIN):	0.2	(SE/	AL, FILTE	R, ETC.)	(FEET FROM				
PID AFTER PURGE (PPM):	0.2	SURFACE		SURFACE	SURFACE)				
HELIUM TEST IN BUCKET(%):	Before Sample: After Sample: 34.8% 34.3%					Bentonite seal to surface grade			
HELIUM TEST IN TUBE (PPM):	Before Sample: After Sample:					grade			
	0 0	_							
SAMPLE START DATE/TIME:	5/30/15 - 9:28	_							
SAMPLE STOP DATE/TIME:	5/30/15 - 11:30	_							
TOTAL SAMPLE TIME (MIN):	122								
FLOW RATE (L/MIN):	0.0178								
VOLUME OF SAMPLE (LITERS):	2.17								
PID AFTER SAMPLE (PPM):	0								
SAMPLE MOISTURE CONTENT:	-								
CAN SERIAL NUMBER:	2042			Top of Pack	1				
REGULATOR SERIAL NUMBER:	0150	- T							
CAN START VACUUM PRESS. (" HG):	-30.42	1	l.						
CAN STOP VACUUM PRESS. (" HG):	-4.89								
SAMPLE LOCATION		- I							
		 -	Â		-				
		L	•]	2				
					NATES				
					NOTES				
		1							
		1							
		1							
		1							
Langan Engin	eering, Environmental, Surv	veying and	Land	scape Archit	ecture, D.P.C.				

SOIL VAPOR SAMPLING LOG SHEET

Sample Point: SV02

		-							
PROJECT : 130 St. Felix Street		ркојест N 1703660							
OCATION:				ON AND DATUM:					
Brooklyn, New York									
DRILLING FIRM OR LANGAN INSTALLER:		INSTALLAT	ION DA	TE STARTED:	DAT	E FINISHED:			
AARCO Environmental			5/30/2	2015		5/30/2015			
INSTALLATION FOREMAN:		SAMPLE DATE STARTED: DATE FINISHED:							
Daybi Pechecko			5/30/2			5/30/2015			
INSTALLATION EQUIPMENT:	h drill rig	TYPE OF SA		3 DEVICE : ter Summa Ca	nictor				
Geoprobe® 7822DT direct-pusl INSPECTOR:	i unii ng	SAMPLER:	2.7 LI	ler Summa Ca	mister				
A. Tashii		A. Tashji							
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
None		75 - 80 degrees F, Sunny - Wind 15 - 25 mph							
METHOD OF INSTALLATION AND PURGI									
	diameter macrocore with Ge	eoprobe to	a dep	th of 2 feet bo	s. Stainless ste	eel implant			
	et bgs, backfilled with sand a		•			•			
	vere purged using a multiRAE								
TUBING TYPE/DIAMETER:	-		ABOVE SEAL:	·					
1/4-inch polyethylene tubing			None						
IMPLANT SCREEN TYPE/LENGTH/DIAME					, Modeling Clay, etc.):			
6-inch length x 1/2-inch diamete	er		1	ted Bentonite					
BOREHOLE DIAMETER:			RIAL (Sand or Gla No. 2 Sand	ss Beads):					
2-inch O.D.	0.01								
	0.01	_		DBE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	0.2		EAL, FILT	ER, ETC.)	(FEET FROM				
PID AFTER PURGE (PPM):	0.2 Before Sample: After Sample:	SURFACE	$\dashv \vdash$	SURFACE	SURFACE)	Bentonite seal to surface			
HELIUM TEST IN BUCKET(%):	34.1% 31.4% Before Sample: After Sample:					grade			
HELIUM TEST IN TUBE (PPM):	0 0								
SAMPLE START DATE/TIME:	5/30/15 - 9:51								
SAMPLE STOP DATE/TIME:	5/30/15 - 11:51								
TOTAL SAMPLE TIME (MIN):	120	- 1							
FLOW RATE (L/MIN):	0.0179	- 1							
VOLUME OF SAMPLE (LITERS):	2.15	- 1							
PID AFTER SAMPLE (PPM):	0	- 1							
SAMPLE MOISTURE CONTENT:		-							
CAN SERIAL NUMBER:	518	-		Top of Pack	1				
REGULATOR SERIAL NUMBER:	0002	-			, i				
CAN START VACUUM PRESS. (" HG):	-30.44	-							
CAN START VACUUM PRESS. ("HG):	-7.74	-							
SAMPLE LOCATION		-							
		-	ļ						
			v		2				
					NATES				
					NOTES				
Langon Engin	eering, Environmental, Surv	veving or	1	Jecono Archit					

SOIL VAPOR SAMPLING LOG SHEET

Sample Point: SV03

				-					
PROJECT: 130 St. Felix Street		PROJECT NO 17036600							
I 30 St. Felix Street				ON AND DATUM:					
Brooklyn, New York		SONTAGE EL		AND DATOW.					
DRILLING FIRM OR LANGAN INSTALLER:		INSTALLATI	ON DAT	E STARTED:	DATI	E FINISHED:			
AARCO Environmental			5/30/2			5/30/2015			
INSTALLATION FOREMAN:		SAMPLE DA			DATI	FINISHED:			
Daybi Pechecko		-	5/30/2			5/30/2015			
INSTALLATION EQUIPMENT:	a drill rig	TYPE OF SA			nintar				
Geoprobe® 7822DT direct-pus	n unii rig	SAMPLER:	2.7 LIt	er Summa Ca	mister				
inspector : A. Tashii		A. Tashji							
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
None		75 - 80 degrees F, Sunny - Wind 15 - 25 mph							
METHOD OF INSTALLATION AND PURGI	NG:								
	diameter macrocore with Ge	eoprobe to a	a dept	h of 2 feet bo	s. Stainless ste	el implant			
	et bgs, backfilled with sand a	•	•						
	vere purged using a multiRAE								
TUBING TYPE/DIAMETER:			ABOVE SEAL:						
1/4-inch polyethylene tubing	1	lone							
IMPLANT SCREEN TYPE/LENGTH/DIAME					, Modeling Clay, etc.)	:			
6-inch length x 1/2-inch diamet	er		1	ted Bentonite					
BOREHOLE DIAMETER: 2-inch O.D.			RIAL (Sand or Gla No. 2 Sand	ss Beads):					
	0.01				D				
	0.01	IMPLANT/PROBE DETAILS DEPTH				NOTES			
	0.2		AL, FILTI	ER, ETC.)	(FEET FROM				
PID AFTER PURGE (PPM):	0.1 Before Sample: After Sample:	SURFACE	┥┝	SURFACE	SURFACE)	Bentonite seal to surface			
HELIUM TEST IN BUCKET(%):	32.8% 33.3%					grade			
HELIUM TEST IN TUBE (PPM):	Before Sample: After Sample: 0 0								
SAMPLE START DATE/TIME:	5/30/15 - 12:31								
SAMPLE STOP DATE/TIME:	5/30/15 - 14:31								
TOTAL SAMPLE TIME (MIN):	120	- 1							
FLOW RATE (L/MIN):	0.018	- 1							
VOLUME OF SAMPLE (LITERS):	2.16	-							
PID AFTER SAMPLE (PPM):	0	- 1							
SAMPLE MOISTURE CONTENT:	-	-							
	2015	-		Top of Pack	1				
CAN SERIAL NUMBER:	0471	-		Тор от Раск	I				
		-							
CAN START VACUUM PRESS. (" HG):	-30.32	-							
	-11.85	-							
SAMPLE LOCATION		4							
			4		2				
					NOTES				
		1							
		1							
-									
	oning Environmental Cur	vovina ond	I and	laaama Arahit	octure DPC				
	eering, Environmental, Sur a, 360 West 31st Street, 81								

Appendix D

Laboratory Analytical Reports

ANALYTICAL REPORT

Lab Number:	L1511932
Client:	Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727
ATTN: Phone:	Joe Good (212) 479-5448
Project Name: Project Number: Report Date:	130 ST. FELIX STREET 170366001 06/01/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number:	L1511932
Report Date:	06/01/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1511932-01	EB07_10-12	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 14:40	05/30/15
L1511932-02	EB09_4.5-5.5	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 13:25	05/30/15
L1511932-03	EB10_1-2	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 10:35	05/30/15
L1511932-04	EB12_7-9	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 12:40	05/30/15
L1511932-05	EB13_7-9	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 12:00	05/30/15
L1511932-06	DUP01_053015	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 00:00	05/30/15
L1511932-07	MW11_053015	WATER	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 16:35	05/30/15
L1511932-08	GWDUP01_053015	WATER	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 00:00	05/30/15
L1511932-09	DRUM_053015	SOIL	130 ST. FELIX STREET, BROOKLYN NY	05/30/15 15:50	05/30/15

Project Name: 130 ST. FELIX STREET Project Number: 170366001
 Lab Number:
 L1511932

 Report Date:
 06/01/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 130 ST. FELIX STREET Project Number: 170366001
 Lab Number:
 L1511932

 Report Date:
 06/01/15

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The surrogate recovery for L1511932-01 is below the acceptance criteria for 1,2-dichloroethane-d4 (63%), due to a known matrix effect caused by the high pH of the sample (>10).

L1511932-02: The internal standard (IS) response(s) for 1,4-dichlorobenzene-d4 (34%) was below the acceptance criteria; however, re-analysis achieved similar results: 1,4-dichlorobenzene-d4 (38%). The results of both analyses are reported.

Semivolatile Organics

L1511932-03 has elevated detection limits due to the dilution required by the sample matrix. L1511932-04: The surrogate recoveries are below the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (0%), nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%), 2,4,6-tribromophenol (0%), and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

Metals

L1511932-01 through -06 have elevated detection limits for all elements, with the exception of mercury, due to the dilutions required by matrix interferences encountered during analysis.

The WG789474-4 MS recovery, performed on L1511932-01, is outside the acceptance criteria for mercury (126%). A post digestion spike was performed and was within acceptance criteria.

The WG789581-4 MS recoveries for aluminum (150%), iron (0%), and manganese (20%), performed on L1511932-01, do not apply because the sample concentrations are greater than four times the spike amount added.

The WG789581-4 MS recoveries, performed on L1511932-01, are outside the acceptance criteria for calcium (70%), chromium (70%), magnesium (70%), nickel (72%), thallium (66%), and zinc (72%). A post digestion

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number: L1511932 Report Date: 06/01/15

Case Narrative (continued)

spike was performed and yielded unacceptable recoveries for calcium (69%), chromium (74%), magnesium (79%), nickel (71%), thallium (65%), and zinc (73%). This has been attributed to sample matrix. The WG789724-4 MS recoveries for calcium (61%) and sodium (64%), performed on L1511932-07, do not apply because the sample concentrations are greater than four times the spike amounts added. The WG789724-4 MS recoveries, performed on L1511932-07, are outside the acceptance criteria for iron (0%) and magnesium (13%). A post digestion spike was performed and was within acceptance criteria. The WG789724-4 MS recovery, performed on L1511932-07, is outside the acceptance criteria for silver (67%). A post digestion spike was performed and yielded an unacceptable recovery of 72%. This has been attributed to sample matrix.

The WG789724-3 Laboratory Duplicate RPDs, performed on L1511932-07, are outside the acceptance criteria for arsenic (25%), chromium (51%), cobalt (43%), iron (29%), lead (24%), and nickel (53%). The elevated RPDs have been attributed to the non-homogeneous nature of the sample utilized for the laboratory duplicate.

Dissolved Metals

The WG789582-1 Method Blank, associated with L1511932-07 and -08, has a concentration above the reporting limit for Silver. Since the samples were non-detect to the RL for this target analyte, no further actions were taken. The results of the original analysis are reported.

The WG789582-4 MS recoveries for calcium (0%) and sodium (0%), performed on L1511932-07, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG789582-4 MS recovery, performed on L1511932-07, is outside the acceptance criteria for silver (58%). A post digestion spike was performed and was within acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Uning Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 06/01/15

ORGANICS

VOLATILES

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-01	Date Collected:	05/30/15 14:40
Client ID:	EB07_10-12	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 10:20		
Analyst:	BN		
Percent Solids:	77%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	9.8	1.1	1
1,1-Dichloroethane	ND		ug/kg	1.5	0.08	1
Chloroform	ND		ug/kg	1.5	0.36	1
Carbon tetrachloride	ND		ug/kg	0.98	0.20	1
1,2-Dichloropropane	ND		ug/kg	3.4	0.22	1
Dibromochloromethane	ND		ug/kg	0.98	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30	1
Tetrachloroethene	ND		ug/kg	0.98	0.14	1
Chlorobenzene	ND		ug/kg	0.98	0.34	1
Trichlorofluoromethane	ND		ug/kg	4.9	0.38	1
1,2-Dichloroethane	ND		ug/kg	0.98	0.11	1
1,1,1-Trichloroethane	ND		ug/kg	0.98	0.11	1
Bromodichloromethane	ND		ug/kg	0.98	0.17	1
trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.12	1
cis-1,3-Dichloropropene	ND		ug/kg	0.98	0.12	1
1,3-Dichloropropene, Total	ND		ug/kg	0.98	0.12	1
1,1-Dichloropropene	ND		ug/kg	4.9	0.14	1
Bromoform	ND		ug/kg	3.9	0.23	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.98	0.10	1
Benzene	ND		ug/kg	0.98	0.12	1
Toluene	0.25	J	ug/kg	1.5	0.19	1
Ethylbenzene	ND		ug/kg	0.98	0.12	1
Chloromethane	ND		ug/kg	4.9	0.29	1
Bromomethane	ND		ug/kg	2.0	0.33	1
Vinyl chloride	ND		ug/kg	2.0	0.11	1
Chloroethane	ND		ug/kg	2.0	0.31	1
1,1-Dichloroethene	ND		ug/kg	0.98	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21	1
Trichloroethene	ND		ug/kg	0.98	0.12	1
1,2-Dichlorobenzene	ND		ug/kg	4.9	0.15	1

			Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET				Lab Nu		L1511932
Project Number:	170366001				Report	Date:	06/01/15
	110000001	SAM	PLE RESULTS	6			00/01/10
Lab ID:	L1511932-01				Date Col	lected:	05/30/15 14:40
Client ID:	EB07_10-12				Date Red		05/30/15
Sample Location:	130 ST. FELIX STREET	, BROO	KLYN NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westborougl	n Lab					
					1.0	0.40	
1,3-Dichlorobenzene		ND		ug/kg	4.9	0.13	1
1,4-Dichlorobenzene		ND		ug/kg	4.9	0.14	1
Methyl tert butyl ether		ND		ug/kg	2.0	0.08	1
p/m-Xylene		0.24	J	ug/kg	2.0	0.19	1
o-Xylene		ND	1	ug/kg	2.0	0.17	1
Xylenes, Total		0.24	J	ug/kg	2.0	0.17	1
cis-1,2-Dichloroethene		ND		ug/kg	0.98	0.14	1
1,2-Dichloroethene, Total		ND		ug/kg	0.98	0.14	1
Dibromomethane		ND		ug/kg	9.8	0.16	1
Styrene		ND		ug/kg	2.0	0.39	1
Dichlorodifluoromethane		ND		ug/kg	9.8	0.19	1
Acetone		5.6	J	ug/kg	9.8	1.0	1
Carbon disulfide		ND		ug/kg	9.8	1.1	1
2-Butanone		ND		ug/kg	9.8	0.27	1
Vinyl acetate		ND		ug/kg	9.8	0.13	1
4-Methyl-2-pentanone		ND		ug/kg	9.8	0.24	1
1,2,3-Trichloropropane		ND		ug/kg	9.8	0.16	1
2-Hexanone		ND		ug/kg	9.8	0.65	1
Bromochloromethane		ND		ug/kg	4.9	0.27	1
2,2-Dichloropropane		ND		ug/kg	4.9	0.22	1
1,2-Dibromoethane		ND		ug/kg	3.9	0.17	1
1,3-Dichloropropane		ND		ug/kg	4.9	0.14	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	0.98	0.31	1
Bromobenzene		ND		ug/kg	4.9	0.20	1
n-Butylbenzene		ND		ug/kg	0.98	0.11	1
sec-Butylbenzene		ND		ug/kg	0.98	0.12	1
tert-Butylbenzene		ND		ug/kg	4.9	0.13	1
o-Chlorotoluene		ND		ug/kg	4.9	0.16	1
p-Chlorotoluene		ND		ug/kg	4.9	0.13	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/kg	4.9	0.39	1
Hexachlorobutadiene		ND		ug/kg	4.9	0.22	1
Isopropylbenzene		ND		ug/kg	0.98	0.10	1
p-Isopropyltoluene		ND		ug/kg	0.98	0.12	1
Naphthalene		ND		ug/kg	4.9	0.14	1
Acrylonitrile		ND		ug/kg	9.8	0.50	1
n-Propylbenzene		ND		ug/kg	0.98	0.11	1
1,2,3-Trichlorobenzene		ND		ug/kg	4.9	0.14	1
1,2,4-Trichlorobenzene		ND		ug/kg	4.9	0.18	1
1,3,5-Trimethylbenzene		ND		ug/kg	4.9	0.14	1

					:	Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREE	Т			Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP		6			
Lab ID:	L1511932-01				Date Col	llected:	05/30/15 14:40
Client ID:	EB07_10-12				Date Re	ceived:	05/30/15
Sample Location:	130 ST. FELIX STREE	ET, BROOK	LYN NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	8260/5035 - Westborou	ugh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	4.9	0.14	1
1,4-Dioxane		ND		ug/kg	98	14.	1
p-Diethylbenzene		ND		ug/kg	3.9	0.16	1
p-Ethyltoluene		ND		ug/kg	3.9	0.12	1
1,2,4,5-Tetramethylbenzer	e	ND		ug/kg	3.9	0.13	1
Ethyl ether		ND		ug/kg	4.9	0.25	1
trans-1,4-Dichloro-2-buten	9	ND		ug/kg	4.9	0.38	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	63	Q	70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	89		70-130
Dibromofluoromethane	86		70-130

		Serial_No	0:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-02	Date Collected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 11:18		
Analyst:	BN		
Percent Solids:	70%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		ug/kg	16	1.8	1
1,1-Dichloroethane	ND		ug/kg	2.4	0.14	1
Chloroform	ND		ug/kg	2.4	0.60	1
Carbon tetrachloride	ND		ug/kg	1.6	0.34	1
1,2-Dichloropropane	ND		ug/kg	5.6	0.37	1
Dibromochloromethane	ND		ug/kg	1.6	0.25	1
1,1,2-Trichloroethane	ND		ug/kg	2.4	0.49	1
Tetrachloroethene	ND		ug/kg	1.6	0.23	1
Chlorobenzene	ND		ug/kg	1.6	0.56	1
Trichlorofluoromethane	ND		ug/kg	8.1	0.63	1
1,2-Dichloroethane	ND		ug/kg	1.6	0.18	1
1,1,1-Trichloroethane	ND		ug/kg	1.6	0.18	1
Bromodichloromethane	ND		ug/kg	1.6	0.28	1
trans-1,3-Dichloropropene	ND		ug/kg	1.6	0.19	1
cis-1,3-Dichloropropene	ND		ug/kg	1.6	0.19	1
1,3-Dichloropropene, Total	ND		ug/kg	1.6	0.19	1
1,1-Dichloropropene	ND		ug/kg	8.1	0.23	1
Bromoform	ND		ug/kg	6.4	0.38	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.6	0.16	1
Benzene	ND		ug/kg	1.6	0.19	1
Toluene	ND		ug/kg	2.4	0.31	1
Ethylbenzene	ND		ug/kg	1.6	0.20	1
Chloromethane	ND		ug/kg	8.1	0.47	1
Bromomethane	ND		ug/kg	3.2	0.54	1
Vinyl chloride	ND		ug/kg	3.2	0.19	1
Chloroethane	ND		ug/kg	3.2	0.51	1
1,1-Dichloroethene	ND		ug/kg	1.6	0.42	1
trans-1,2-Dichloroethene	ND		ug/kg	2.4	0.34	1
Trichloroethene	ND		ug/kg	1.6	0.20	1
1,2-Dichlorobenzene	ND		ug/kg	8.1	0.25	1

					S	Serial_N	p:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
•		SAMPLE	RESULTS	5	•		
Lab ID:	L1511932-02				Date Coll	ected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5				Date Rec		05/30/15
Sample Location:	130 ST. FELIX STREET	, BROOKLY	N NY		Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborough	n Lab					
1,3-Dichlorobenzene		ND		ug/kg	8.1	0.22	1
1,4-Dichlorobenzene		ND		ug/kg	8.1	0.22	1
Methyl tert butyl ether		ND		ug/kg	3.2	0.14	1
p/m-Xylene		ND		ug/kg	3.2	0.32	1
o-Xylene		ND		ug/kg	3.2	0.28	1
Xylenes, Total		ND		ug/kg	3.2	0.28	1
cis-1,2-Dichloroethene		ND		ug/kg	1.6	0.23	1
1,2-Dichloroethene, Total		ND		ug/kg	1.6	0.23	1
Dibromomethane		ND		ug/kg	16	0.26	1
Styrene		ND		ug/kg	3.2	0.65	1
Dichlorodifluoromethane		ND		ug/kg	16	0.31	1
Acetone		ND		ug/kg	16	1.7	1
Carbon disulfide		ND		ug/kg	16	1.8	1
2-Butanone		ND		ug/kg	16	0.44	1
Vinyl acetate		ND		ug/kg	16	0.21	1
4-Methyl-2-pentanone		ND		ug/kg	16	0.39	1
1,2,3-Trichloropropane		ND		ug/kg	16	0.26	1
2-Hexanone		ND		ug/kg	16	1.1	1
Bromochloromethane		ND		ug/kg	8.1	0.44	1
2,2-Dichloropropane		ND		ug/kg	8.1	0.36	1
1,2-Dibromoethane		ND		ug/kg	6.4	0.28	1
1,3-Dichloropropane		ND		ug/kg	8.1	0.23	1
1,1,1,2-Tetrachloroethane	9	ND		ug/kg	1.6	0.51	1
Bromobenzene		ND		ug/kg	8.1	0.34	1
n-Butylbenzene		ND		ug/kg	1.6	0.18	1
sec-Butylbenzene		ND		ug/kg	1.6	0.20	1
tert-Butylbenzene		ND		ug/kg	8.1	0.22	1
o-Chlorotoluene		ND		ug/kg	8.1	0.26	1
p-Chlorotoluene		ND		ug/kg	8.1	0.21	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	8.1	0.64	1
Hexachlorobutadiene		ND		ug/kg	8.1	0.37	1
Isopropylbenzene		ND		ug/kg	1.6	0.17	1
p-Isopropyltoluene		ND		ug/kg	1.6	0.20	1
Naphthalene		4.3	J	ug/kg	8.1	0.22	1
Acrylonitrile		ND		ug/kg	16	0.83	1
n-Propylbenzene		ND		ug/kg	1.6	0.18	1
1,2,3-Trichlorobenzene		ND		ug/kg	8.1	0.24	1
1,2,4-Trichlorobenzene		ND		ug/kg	8.1	0.29	1
1,3,5-Trimethylbenzene		ND		ug/kg	8.1	0.23	1

					:	Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREE	Т			Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP	LE RESULTS	6			
Lab ID:	L1511932-02				Date Col	lected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5				Date Red	ceived:	05/30/15
Sample Location:	130 ST. FELIX STREI	ET, BROOK	LYN NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	v 8260/5035 - Westborou	ugh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	8.1	0.23	1
1,4-Dioxane		ND		ug/kg	160	23.	1
p-Diethylbenzene		ND		ug/kg	6.4	0.26	1
p-Ethyltoluene		ND		ug/kg	6.4	0.20	1
1,2,4,5-Tetramethylbenzer	e	ND		ug/kg	6.4	0.21	1
Ethyl ether		ND		ug/kg	8.1	0.42	1
trans-1,4-Dichloro-2-buten	e	ND		ug/kg	8.1	0.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	115		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	104		70-130	

		Serial_No:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932
Project Number:	170366001	Report Date: 06/01/15
	SAMPLE RESUL	TS
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date:	L1511932-02 R EB09_4.5-5.5 130 ST. FELIX STREET, BROOKLYN NY Soil 1,8260C 06/01/15 12:08	Date Collected:05/30/15 13:25Date Received:05/30/15Field Prep:Not Specified
Analyst: Analyst: Percent Solids:	BN 70%	

Parameter	Result	Qualifier Uni	ts RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab				
Methylene chloride	ND	ug/l	(a 16	1.7	1
1,1-Dichloroethane	ND	ug/l		0.14	1
Chloroform	ND	ug/l		0.58	1
Carbon tetrachloride	ND	ug/l		0.33	1
1,2-Dichloropropane	ND	ug/l		0.36	1
Dibromochloromethane	ND	ug/l		0.24	1
1,1,2-Trichloroethane	ND	ug/l		0.48	1
Tetrachloroethene	ND	ug/l		0.22	1
Chlorobenzene	ND	ug/l		0.55	1
Trichlorofluoromethane	ND	ug/l		0.61	1
1,2-Dichloroethane	ND	ug/l	kg 1.6	0.18	1
1,1,1-Trichloroethane	ND	ug/l	kg 1.6	0.17	1
Bromodichloromethane	ND	ug/l	kg 1.6	0.27	1
rans-1,3-Dichloropropene	ND	ug/l	kg 1.6	0.19	1
cis-1,3-Dichloropropene	ND	ug/l	kg 1.6	0.18	1
1,3-Dichloropropene, Total	ND	ug/l	kg 1.6	0.18	1
1,1-Dichloropropene	ND	ug/l	kg 7.9	0.22	1
Bromoform	ND	ug/l	kg 6.3	0.37	1
1,1,2,2-Tetrachloroethane	ND	ug/l	kg 1.6	0.16	1
Benzene	ND	ug/l	kg 1.6	0.19	1
Toluene	ND	ug/l	kg 2.4	0.31	1
Ethylbenzene	ND	ug/l	kg 1.6	0.20	1
Chloromethane	ND	ug/l	kg 7.9	0.46	1
Bromomethane	ND	ug/l	kg 3.2	0.53	1
Vinyl chloride	ND	ug/l	kg 3.2	0.18	1
Chloroethane	ND	ug/l	kg 3.2	0.50	1
1,1-Dichloroethene	ND	ug/l	kg 1.6	0.41	1
trans-1,2-Dichloroethene	ND	ug/l	kg 2.4	0.33	1
Trichloroethene	ND	ug/l	kg 1.6	0.20	1
1,2-Dichlorobenzene	ND	ug/l	kg 7.9	0.24	1

	Serial_No:06011519:38							
Project Name:	130 ST. FELIX STREET			Lab Nu	mber:	L1511932		
Project Number:	170366001			Report	Date:	06/01/15		
		SAMPLE RESULT	S					
Lab ID:	L1511932-02 R			Date Coll	ected:	05/30/15 13:25		
Client ID:	EB09_4.5-5.5			Date Rec		05/30/15		
Sample Location:	130 ST. FELIX STREET,	BROOKLYN NY		Field Pre	p:	Not Specified		
Parameter		Result Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y 8260/5035 - Westborough	i Lab						
1,3-Dichlorobenzene		ND	ug/kg	7.9	0.21	1		
1,4-Dichlorobenzene		ND	ug/kg	7.9	0.22	1		
Methyl tert butyl ether		ND	ug/kg	3.2	0.13	1		
p/m-Xylene		ND	ug/kg	3.2	0.31	1		
o-Xylene		ND	ug/kg	3.2	0.27	1		
Xylenes, Total		ND	ug/kg	3.2	0.27	1		
cis-1,2-Dichloroethene		ND	ug/kg	1.6	0.22	1		
1,2-Dichloroethene, Total		ND	ug/kg	1.6	0.22	1		
Dibromomethane		ND	ug/kg	16	0.26	1		
Styrene		ND	ug/kg	3.2	0.63	1		
Dichlorodifluoromethane		ND	ug/kg	16	0.30	1		
Acetone		ND	ug/kg	16	1.6	1		
Carbon disulfide		ND	ug/kg	16	1.7	1		
2-Butanone		ND	ug/kg	16	0.43	1		
Vinyl acetate		ND	ug/kg	16	0.21	1		
4-Methyl-2-pentanone		ND	ug/kg	16	0.38	1		
1,2,3-Trichloropropane		ND	ug/kg	16	0.26	1		
2-Hexanone		ND	ug/kg	16	1.0	1		
Bromochloromethane		ND	ug/kg	7.9	0.44	1		
2,2-Dichloropropane		ND	ug/kg	7.9	0.36	1		
1,2-Dibromoethane		ND	ug/kg	6.3	0.28	1		
1,3-Dichloropropane		ND	ug/kg	7.9	0.23	1		
1,1,1,2-Tetrachloroethane)	ND	ug/kg	1.6	0.50	1		
Bromobenzene		ND	ug/kg	7.9	0.33	1		
n-Butylbenzene		ND	ug/kg	1.6	0.18	1		
sec-Butylbenzene		ND	ug/kg	1.6	0.19	1		
tert-Butylbenzene		ND	ug/kg	7.9	0.21	1		
o-Chlorotoluene		ND	ug/kg	7.9	0.25	1		
p-Chlorotoluene 1,2-Dibromo-3-chloroprop	ana	ND ND	ug/kg	7.9	0.21	1		
Hexachlorobutadiene		ND	ug/kg	7.9	0.62	1		
Isopropylbenzene		ND	ug/kg	1.6	0.36	1		
p-lsopropyltoluene		ND	ug/kg ug/kg	1.6	0.16	1		
Naphthalene		ND	ug/kg ug/kg	7.9	0.20	1		
Acrylonitrile		ND	ug/kg ug/kg	16	0.22	1		
n-Propylbenzene		ND	ug/kg ug/kg	1.6	0.81	1		
1,2,3-Trichlorobenzene		ND	ug/kg ug/kg	7.9	0.17	1		
1,2,4-Trichlorobenzene		ND	ug/kg	7.9	0.29	1		
1,3,5-Trimethylbenzene		ND	ug/kg ug/kg	7.9	0.23	1		
			uy/ky	1.3	0.20	1		

					:	Serial_N	0:06011519:38
Project Name:	130 ST. FELIX ST	REET			Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP		6			
Lab ID:	L1511932-02	R			Date Col	lected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5			Date Received: 05/30/15		05/30/15	
Sample Location:					Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ 8260/5035 - West	borough Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	7.9	0.22	1
1,4-Dioxane		ND		ug/kg	160	23.	1
p-Diethylbenzene		ND		ug/kg	6.3	0.25	1
p-Ethyltoluene		ND		ug/kg	6.3	0.20	1
1,2,4,5-Tetramethylbenzer	ne	ND		ug/kg	6.3	0.20	1
Ethyl ether		ND		ug/kg	7.9	0.41	1
trans-1,4-Dichloro-2-buten	e	ND		ug/kg	7.9	0.62	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	77		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	98		70-130	

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-03	Date Collected:	05/30/15 10:35
Client ID:	EB10_1-2	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 10:45		
Analyst:	BN		
Percent Solids:	90%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	/estborough Lab					
Methylene chloride	ND	l	ug/kg	11	1.2	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1
Chloroform	ND		ug/kg	1.7	0.42	1
Carbon tetrachloride	ND		ug/kg	1.1	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.1	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.34	1
Tetrachloroethene	ND		ug/kg	1.1	0.16	1
Chlorobenzene	ND		ug/kg	1.1	0.40	1
Trichlorofluoromethane	ND	l	ug/kg	5.7	0.44	1
1,2-Dichloroethane	ND	l	ug/kg	1.1	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.20	1
trans-1,3-Dichloropropene	ND	l	ug/kg	1.1	0.14	1
cis-1,3-Dichloropropene	ND	l	ug/kg	1.1	0.13	1
1,3-Dichloropropene, Total	ND	ι	ug/kg	1.1	0.13	1
1,1-Dichloropropene	ND	ι	ug/kg	5.7	0.16	1
Bromoform	ND	ι	ug/kg	4.5	0.27	1
1,1,2,2-Tetrachloroethane	ND	ι	ug/kg	1.1	0.11	1
Benzene	ND	ι	ug/kg	1.1	0.13	1
Toluene	ND	ι	ug/kg	1.7	0.22	1
Ethylbenzene	ND	ι	ug/kg	1.1	0.14	1
Chloromethane	ND	ι	ug/kg	5.7	0.33	1
Bromomethane	ND	ι	ug/kg	2.3	0.38	1
Vinyl chloride	ND	ι	ug/kg	2.3	0.13	1
Chloroethane	ND	ι	ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND	ι	ug/kg	1.1	0.30	1
trans-1,2-Dichloroethene	ND	ι	ug/kg	1.7	0.24	1
Trichloroethene	ND	L	ug/kg	1.1	0.14	1
1,2-Dichlorobenzene	ND	l	ug/kg	5.7	0.17	1

					ç	Serial_No	0:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
,	110000001	SAMPL	E RESULTS	5			00/01/13
Lab ID:	L1511932-03				Date Col	ected:	05/30/15 10:35
Client ID:	EB10_1-2				Date Red		05/30/15
Sample Location:	130 ST. FELIX STREET,	BROOKL	YN NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/kg	5.7	0.15	1
1,4-Dichlorobenzene		ND		ug/kg	5.7	0.16	1
Methyl tert butyl ether		ND		ug/kg	2.3	0.10	1
p/m-Xylene		ND		ug/kg	2.3	0.22	1
o-Xylene		ND		ug/kg	2.3	0.20	1
Xylenes, Total		ND		ug/kg	2.3	0.20	1
cis-1,2-Dichloroethene		ND		ug/kg	1.1	0.16	1
1,2-Dichloroethene, Total		ND		ug/kg	1.1	0.16	1
Dibromomethane		ND		ug/kg	11	0.18	1
Styrene		ND		ug/kg	2.3	0.46	1
Dichlorodifluoromethane		ND		ug/kg	11	0.22	1
Acetone		ND		ug/kg	11	1.2	1
Carbon disulfide		ND		ug/kg	11	1.2	1
2-Butanone		ND		ug/kg	11	0.31	1
Vinyl acetate		ND		ug/kg	11	0.15	1
4-Methyl-2-pentanone		ND		ug/kg	11	0.28	1
1,2,3-Trichloropropane		ND		ug/kg	11	0.18	1
2-Hexanone		ND		ug/kg	11	0.76	1
Bromochloromethane		ND		ug/kg	5.7	0.31	1
2,2-Dichloropropane		ND		ug/kg	5.7	0.26	1
1,2-Dibromoethane		ND		ug/kg	4.5	0.20	1
1,3-Dichloropropane		ND		ug/kg	5.7	0.16	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	1.1	0.36	1
Bromobenzene		ND		ug/kg	5.7	0.24	1
n-Butylbenzene		ND		ug/kg	1.1	0.13	1
sec-Butylbenzene		ND		ug/kg	1.1	0.14	1
tert-Butylbenzene		ND		ug/kg	5.7	0.15	1
o-Chlorotoluene		ND		ug/kg	5.7	0.18	1
p-Chlorotoluene		ND		ug/kg	5.7	0.15	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.7	0.45	1
Hexachlorobutadiene		ND		ug/kg	5.7	0.26	1
Isopropylbenzene		ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene		ND		ug/kg	1.1	0.14	1
Naphthalene		ND		ug/kg	5.7	0.16	1
Acrylonitrile		ND		ug/kg	11	0.58	1
n-Propylbenzene		ND		ug/kg	1.1	0.12	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.7	0.17	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.7	0.21	1
1,3,5-Trimethylbenzene		ND		ug/kg	5.7	0.16	1

					Serial_No:06011519:38		
Project Name:	130 ST. FELIX STREET	Г			Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP	LE RESULTS	6			
Lab ID:	L1511932-03				Date Col	lected:	05/30/15 10:35
Client ID:	EB10_1-2				Date Red	ceived:	05/30/15
Sample Location:	Location: 130 ST. FELIX STREET, BROOKLYN NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westborou	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	5.7	0.16	1
1,4-Dioxane		ND		ug/kg	110	16.	1
p-Diethylbenzene		ND		ug/kg	4.5	0.18	1
p-Ethyltoluene		ND		ug/kg	4.5	0.14	1
1,2,4,5-Tetramethylbenzer	ne	ND		ug/kg	4.5	0.15	1
Ethyl ether		ND		ug/kg	5.7	0.30	1
trans-1,4-Dichloro-2-buten	е	ND		ug/kg	5.7	0.44	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	82		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	95		70-130	

				Serial_N	o:06011519:38
Project Name:	130 ST. FELIX ST	REET		Lab Number:	L1511932
Project Number:	170366001			Report Date:	06/01/15
		S	SAMPLE RESULTS		
Lab ID:	L1511932-04	D		Date Collected:	05/30/15 12:40
Client ID:	EB12_7-9			Date Received:	05/30/15
Sample Location:	130 ST. FELIX S	TREET, BF	ROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	06/01/15 10:49				
Analyst:	BN				
Percent Solids:	84%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	2400	260	2
1,1-Dichloroethane	ND		ug/kg	360	20.	2
Chloroform	ND		ug/kg	360	88.	2
Carbon tetrachloride	ND		ug/kg	240	50.	2
1,2-Dichloropropane	ND		ug/kg	830	54.	2
Dibromochloromethane	ND		ug/kg	240	37.	2
1,1,2-Trichloroethane	ND		ug/kg	360	72.	2
Tetrachloroethene	ND		ug/kg	240	33.	2
Chlorobenzene	ND		ug/kg	240	83.	2
Trichlorofluoromethane	ND		ug/kg	1200	92.	2
1,2-Dichloroethane	ND		ug/kg	240	27.	2
1,1,1-Trichloroethane	ND		ug/kg	240	26.	2
Bromodichloromethane	ND		ug/kg	240	41.	2
trans-1,3-Dichloropropene	ND		ug/kg	240	29.	2
cis-1,3-Dichloropropene	ND		ug/kg	240	28.	2
1,3-Dichloropropene, Total	ND		ug/kg	240	28.	2
1,1-Dichloropropene	ND		ug/kg	1200	34.	2
Bromoform	ND		ug/kg	950	56.	2
1,1,2,2-Tetrachloroethane	ND		ug/kg	240	24.	2
Benzene	ND		ug/kg	240	28.	2
Toluene	ND		ug/kg	360	46.	2
Ethylbenzene	ND		ug/kg	240	30.	2
Chloromethane	ND		ug/kg	1200	70.	2
Bromomethane	ND		ug/kg	480	80.	2
Vinyl chloride	ND		ug/kg	480	28.	2
Chloroethane	ND		ug/kg	480	75.	2
1,1-Dichloroethene	ND		ug/kg	240	62.	2
trans-1,2-Dichloroethene	ND		ug/kg	360	50.	2
Trichloroethene	ND		ug/kg	240	30.	2
1,2-Dichlorobenzene	ND		ug/kg	1200	36.	2

					S	erial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nur	nber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
•		SAM	PLE RESULTS	5	•		
Lab ID:	L1511932-04 D				Date Coll	ected:	05/30/15 12:40
Client ID:	EB12_7-9				Date Rec		05/30/15
Sample Location:	130 ST. FELIX STREE	T, BROC	KLYN NY		Field Prep	D:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1.2 Dichlorobonzono		ND			1200	22	2
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ND ND		ug/kg	1200	32. 33.	2 2
Methyl tert butyl ether		ND		ug/kg	480	20.	2
p/m-Xylene		300	J	ug/kg	480	47.	2
		240		ug/kg		47.	
o-Xylene Xylenes, Total		240 540	J	ug/kg	480		2
			J	ug/kg	480	41.	2
cis-1,2-Dichloroethene		ND		ug/kg	240	34.	2
1,2-Dichloroethene, Total		ND		ug/kg	240	34.	2
Dibromomethane		ND		ug/kg	2400	39.	2
Styrene		ND		ug/kg	480	96.	2
Dichlorodifluoromethane		ND		ug/kg	2400	45.	2
Acetone		ND		ug/kg	2400	250	2
Carbon disulfide		ND		ug/kg	2400	260	2
2-Butanone		ND		ug/kg	2400	65.	2
Vinyl acetate		ND		ug/kg	2400	32.	2
4-Methyl-2-pentanone		ND		ug/kg	2400	58.	2
1,2,3-Trichloropropane		ND		ug/kg	2400	39.	2
2-Hexanone		ND		ug/kg	2400	160	2
Bromochloromethane		ND		ug/kg	1200	66.	2
2,2-Dichloropropane		ND		ug/kg	1200	54.	2
1,2-Dibromoethane		ND		ug/kg	950	42.	2
1,3-Dichloropropane		ND		ug/kg	1200	35.	2
1,1,1,2-Tetrachloroethane	9	ND		ug/kg	240	76.	2
Bromobenzene		ND		ug/kg	1200	50.	2
n-Butylbenzene		ND		ug/kg	240	27.	2
sec-Butylbenzene		ND		ug/kg	240	29.	2
tert-Butylbenzene		ND		ug/kg	1200	32.	2
o-Chlorotoluene		ND		ug/kg	1200	38.	2
p-Chlorotoluene		ND		ug/kg	1200	32.	2
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	1200	94.	2
Hexachlorobutadiene		ND		ug/kg	1200	54.	2
Isopropylbenzene		ND		ug/kg	240	25.	2
p-Isopropyltoluene		ND		ug/kg	240	30.	2
Naphthalene		53000		ug/kg	1200	33.	2
Acrylonitrile		ND		ug/kg	2400	120	2
n-Propylbenzene		ND		ug/kg	240	26.	2
1,2,3-Trichlorobenzene		ND		ug/kg	1200	35.	2
1,2,4-Trichlorobenzene		ND		ug/kg	1200	43.	2
1,3,5-Trimethylbenzene		290	J	ug/kg	1200	34.	2
-				5.5			

					Serial_No:06011519:38			
Project Name:	130 ST. FELIX ST	REET			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMP		5				
Lab ID:	L1511932-04	D			Date Col	lected:	05/30/15 12:40	
Client ID:	EB12_7-9				Date Red	ceived:	05/30/15	
Sample Location:	Sample Location: 130 ST. FELIX STRE				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	/ 8260/5035 - West	oorough Lab						
1,2,4-Trimethylbenzene		540	J	ug/kg	1200	34.	2	
1,4-Dioxane		ND		ug/kg	24000	3400	2	
p-Diethylbenzene		200	J	ug/kg	950	38.	2	
p-Ethyltoluene		ND		ug/kg	950	30.	2	
1,2,4,5-Tetramethylbenzer	ne	81	J	ug/kg	950	31.	2	
Ethyl ether		ND		ug/kg	1200	62.	2	
trans-1,4-Dichloro-2-buten	e	ND		ug/kg	1200	93.	2	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	96		70-130	

		Serial_No:06011519:3				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932			
Project Number:	170366001	Report Date:	06/01/15			
	SAMPLE RESULTS					
Lab ID:	L1511932-05	Date Collected:	05/30/15 12:00			
Client ID:	EB13_7-9	Date Received:	05/30/15			
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified			
Matrix:	Soil					
Analytical Method:	1,8260C					
Analytical Date:	06/01/15 10:59					
Analyst:	BN					
Percent Solids:	90%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by 8260/5035 - Westborough Lab										
Methylene chloride	ND		ug/kg	12	1.3	1				
1,1-Dichloroethane	ND		ug/kg	1.8	0.10	1				
Chloroform	ND		ug/kg	1.8	0.45	1				
Carbon tetrachloride	ND		ug/kg	1.2	0.26	1				
1,2-Dichloropropane	ND		ug/kg	4.2	0.28	1				
Dibromochloromethane	ND		ug/kg	1.2	0.19	1				
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.37	1				
Tetrachloroethene	ND		ug/kg	1.2	0.17	1				
Chlorobenzene	ND		ug/kg	1.2	0.42	1				
Trichlorofluoromethane	ND		ug/kg	6.1	0.47	1				
1,2-Dichloroethane	ND		ug/kg	1.2	0.14	1				
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1				
Bromodichloromethane	ND		ug/kg	1.2	0.21	1				
rans-1,3-Dichloropropene	ND	I	ug/kg	1.2	0.15	1				
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1				
1,3-Dichloropropene, Total	ND		ug/kg	1.2	0.14	1				
1,1-Dichloropropene	ND		ug/kg	6.1	0.17	1				
Bromoform	ND		ug/kg	4.8	0.29	1				
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1				
Benzene	ND	I	ug/kg	1.2	0.14	1				
Toluene	ND	I	ug/kg	1.8	0.24	1				
Ethylbenzene	ND		ug/kg	1.2	0.15	1				
Chloromethane	ND		ug/kg	6.1	0.36	1				
Bromomethane	ND		ug/kg	2.4	0.41	1				
Vinyl chloride	ND		ug/kg	2.4	0.14	1				
Chloroethane	ND		ug/kg	2.4	0.38	1				
1,1-Dichloroethene	ND		ug/kg	1.2	0.32	1				
rans-1,2-Dichloroethene	ND		ug/kg	1.8	0.26	1				
Trichloroethene	ND		ug/kg	1.2	0.15	1				
1,2-Dichlorobenzene	ND		ug/kg	6.1	0.19	1				

			Serial_No:06011519:38							
Project Name:	130 ST. FELIX STREET				Lab Nu		L1511932			
Project Number:	170366001				Report	Date:	06/01/15			
··· , ·····		SAMPLE	ERESULTS	6			00/01/10			
Lab ID:	L1511932-05				Date Col	lected:	05/30/15 12:00			
Client ID:	EB13_7-9				Date Red		05/30/15			
Sample Location:	130 ST. FELIX STREET,	BROOKLY	YN NY		Field Pre	p:	Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by 8260/5035 - Westborough Lab										
1,3-Dichlorobenzene		ND		ug/kg	6.1	0.16	1			
1,4-Dichlorobenzene		ND		ug/kg	6.1	0.10	1			
Methyl tert butyl ether		ND		ug/kg	2.4	0.10	1			
p/m-Xylene		ND		ug/kg	2.4	0.24	1			
o-Xylene		ND		ug/kg	2.4	0.21	1			
Xylenes, Total		ND		ug/kg ug/kg	2.4	0.21	1			
cis-1,2-Dichloroethene		ND			1.2	0.21	1			
1,2-Dichloroethene, Total		ND		ug/kg	1.2	0.17	1			
Dibromomethane		ND		ug/kg	1.2		1			
		ND		ug/kg	2.4	0.20	1			
Styrene		ND		ug/kg						
Dichlorodifluoromethane				ug/kg	12	0.23	1			
Acetone		ND		ug/kg	12	1.2	1			
Carbon disulfide		ND		ug/kg	12	1.3	1			
2-Butanone		ND		ug/kg	12	0.33	1			
Vinyl acetate		ND		ug/kg	12	0.16	1			
4-Methyl-2-pentanone		ND		ug/kg	12	0.30	1			
1,2,3-Trichloropropane		ND		ug/kg	12	0.20	1			
2-Hexanone		ND		ug/kg	12	0.81	1			
Bromochloromethane		ND		ug/kg	6.1	0.34	1			
2,2-Dichloropropane		ND		ug/kg	6.1	0.27	1			
1,2-Dibromoethane		ND		ug/kg	4.8	0.21	1			
1,3-Dichloropropane		ND		ug/kg	6.1	0.18	1			
1,1,1,2-Tetrachloroethane		ND		ug/kg	1.2	0.39	1			
Bromobenzene		ND		ug/kg	6.1	0.25	1			
n-Butylbenzene		ND		ug/kg	1.2	0.14	1			
sec-Butylbenzene		ND		ug/kg	1.2	0.15	1			
tert-Butylbenzene		ND		ug/kg	6.1	0.16	1			
o-Chlorotoluene		ND		ug/kg	6.1	0.19	1			
p-Chlorotoluene		ND		ug/kg	6.1	0.16	1			
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	6.1	0.48	1			
Hexachlorobutadiene		ND		ug/kg	6.1	0.28	1			
Isopropylbenzene		ND		ug/kg	1.2	0.13	1			
p-Isopropyltoluene		ND		ug/kg	1.2	0.15	1			
Naphthalene		ND		ug/kg	6.1	0.17	1			
Acrylonitrile		ND		ug/kg	12	0.62	1			
n-Propylbenzene		ND		ug/kg	1.2	0.13	1			
1,2,3-Trichlorobenzene		ND		ug/kg	6.1	0.18	1			
1,2,4-Trichlorobenzene		ND		ug/kg	6.1	0.22	1			
1,3,5-Trimethylbenzene		ND		ug/kg	6.1	0.17	1			

					Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREE	Т			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMP		5				
Lab ID:	L1511932-05				Date Col	llected:	05/30/15 12:00	
Client ID:	EB13_7-9				Date Re	ceived:	05/30/15	
Sample Location:	130 ST. FELIX STRE	ET, BROOK	LYN NY		Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	8260/5035 - Westborou	ugh Lab						
1,2,4-Trimethylbenzene		ND		ug/kg	6.1	0.17	1	
1,4-Dioxane		ND		ug/kg	120	18.	1	
p-Diethylbenzene		ND		ug/kg	4.8	0.19	1	
p-Ethyltoluene		ND		ug/kg	4.8	0.15	1	
1,2,4,5-Tetramethylbenzen	e	ND		ug/kg	4.8	0.16	1	
Ethyl ether		ND		ug/kg	6.1	0.32	1	
trans-1,4-Dichloro-2-butene	9	ND		ug/kg	6.1	0.48	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	97		70-130	

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00
Client ID:	DUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 11:26		
Analyst:	BN		
Percent Solids:	75%		

ND ug/kg 12 1.3 1 1,1-Dichloroethane ND ug/kg 1.8 0.10 1 Chloroform ND ug/kg 1.8 0.45 1 Carbon tetrachloride ND ug/kg 1.2 0.25 1 1.2-Dichloroethane ND ug/kg 4.2 0.26 1 1.2-Dichloroethane ND ug/kg 4.2 0.26 1 1.2-Dichloroethane ND ug/kg 4.2 0.19 1 1.2-Dichloroethane ND ug/kg 1.2 0.17 1 1.2-Dichloroethane ND ug/kg 1.2 0.17 1 Tetrachloroethane ND ug/kg 1.2 0.17 1 Chloroethane ND ug/kg 1.2 0.14 1 1.2-Dichloroethane ND ug/kg 1.2 0.13 1 1.2-Dichloropropene ND ug/kg 1.2 0.14 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
It,1-DichloroethaneNDug/kg1.80.101ChloroformNDug/kg1.80.451Carbon tetrachlorideNDug/kg1.20.251Carbon tetrachloropropaneNDug/kg1.20.0211.2-DichloropropaneNDug/kg1.80.371DiformochloromethaneNDug/kg1.80.371TetrachloroethaneNDug/kg1.20.421ChloroethaneNDug/kg1.20.421ChloroethaneNDug/kg1.20.431ChloroethaneNDug/kg1.20.411ChloroethaneNDug/kg1.20.4111.1.1-TrichloroethaneNDug/kg1.20.1412.DichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.Tomodi	Volatile Organics by 8260/5035 - Westborough Lab										
It,1-DichloroethaneNDug/kg1.80.101ChloroformNDug/kg1.80.451Carbon tetrachlorideNDug/kg1.20.251Carbon tetrachloropropaneNDug/kg1.20.0211.2-DichloropropaneNDug/kg1.80.371DiformochloromethaneNDug/kg1.80.371TetrachloroethaneNDug/kg1.20.421ChloroethaneNDug/kg1.20.421ChloroethaneNDug/kg1.20.431ChloroethaneNDug/kg1.20.411ChloroethaneNDug/kg1.20.4111.1.1-TrichloroethaneNDug/kg1.20.1412.DichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.TomodichloropropeneNDug/kg1.20.1413.Tomodi	Methylene chloride	ND		ua/ka	12	1.3	1				
ChloroformNDug/kg1.80.451Carbon tetrachlorideNDug/kg1.20.2511.2.DichloropropaneNDug/kg4.20.2811.2.DichloropropaneNDug/kg1.20.1911.1.2.TrichloroethaneNDug/kg1.20.171ChlorobenzeneNDug/kg1.20.421ChlorobenzeneNDug/kg1.20.4711.1.2.DichloroethaneNDug/kg1.20.4111.2.DichloroethaneNDug/kg1.20.4111.3.DichloroptopeneNDug/kg1.20.4111.4.1.TrichloroethaneNDug/kg1.20.4111.5.DichloroptopeneNDug/kg1.20.4111.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.20.1411.5.DichloroptopeneNDug/kg1.80.2411.6.DichloroptopeneNDug/kg1.80.2411.7.Dichl	1,1-Dichloroethane	ND			1.8	0.10	1				
Data ug/kg 1.2 0.26 1 1,2-Dichloropropane ND ug/kg 4.2 0.28 1 1,12-Dichloropropane ND ug/kg 1.2 0.19 1 1,12-Tichloroethane ND ug/kg 1.8 0.37 1 Tetrachloroethane ND ug/kg 1.2 0.17 1 Chlorobenzene ND ug/kg 1.2 0.42 1 Tichlorotomethane ND ug/kg 1.2 0.42 1 1,1-1richloroethane ND ug/kg 1.2 0.14 1 1,1-1richloroethane ND ug/kg 1.2 0.13 1 1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,1-Dichloropropene ND ug/kg 1.2 0.14 1 1,1-Dichloropropene ND ug/kg 1.2 0.14 1 <	Chloroform	ND			1.8	0.45	1				
NDug/kg4.20.281DibromochloromethaneNDug/kg1.20.191L1,1.2.TrichloroethaneNDug/kg1.80.371FletrachloroethaneNDug/kg1.20.171ChlorobenzeneNDug/kg1.20.421ChlorobenzeneNDug/kg1.20.421ChlorobenzeneNDug/kg1.20.141J.DichloroethaneNDug/kg1.20.131L1,1-TrichloroethaneNDug/kg1.20.141L1,1-TrichloroethaneNDug/kg1.20.141Sich.3-DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141Sich.3-DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141Sich.3-DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141Sich.3-DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141L3.DichloropropeneNDug/kg1.20.141Sich.3-DichloropropeneN	Carbon tetrachloride	ND			1.2	0.25	1				
Dibromochloromethane ND ug/kg 1.2 0.19 1 1,1,2-Trichloroethane ND ug/kg 1.8 0.37 1 Fetrachloroethane ND ug/kg 1.2 0.17 1 Chlorobenzene ND ug/kg 1.2 0.42 1 Trichloroethane ND ug/kg 1.2 0.42 1 1,2-Dichloroethane ND ug/kg 1.2 0.14 1 1,1-Trichloroethane ND ug/kg 1.2 0.14 1 3romodichloromethane ND ug/kg 1.2 0.14 1 aras-1.3-Dichloropropene ND ug/kg 1.2 0.14 1 isi-1.3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 1,1-Dichloropropene ND ug/kg 1.2 0.14 1 1,2-Dichloropropene, Total ND ug/kg 1.2 0.12 1 1,1,2-2-Tetrachloroethane ND ug/kg	1,2-Dichloropropane	ND			4.2	0.28	1				
ND ug/kg 1.8 0.37 1 Tetrachloroethene ND ug/kg 1.2 0.17 1 Chlorobenzene ND ug/kg 1.2 0.42 1 Trichloroethane ND ug/kg 6.1 0.47 1 1,2-Dichloroethane ND ug/kg 1.2 0.14 1 1,1-Trichloroethane ND ug/kg 1.2 0.14 1 3romodichloromethane ND ug/kg 1.2 0.14 1 3romodichloromethane ND ug/kg 1.2 0.14 1 3romodichloromethane ND ug/kg 1.2 0.14 1 3romodichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.14	Dibromochloromethane	ND			1.2	0.19	1				
ND ug/kg 1.2 0.42 1 Trichlorodituoromethane ND ug/kg 6.1 0.47 1 Trichlorodituoromethane ND ug/kg 1.2 0.14 1 1,1-1-Trichloroethane ND ug/kg 1.2 0.14 1 3romodichloromethane ND ug/kg 1.2 0.13 1 arans-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,1-Dichloropropene ND ug/kg 6.1 0.17 1 3romoform ND ug/kg 4.8 0.29 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.14 1 Somoform ND ug/kg 1.8 0.24 1 Somoform ND ug/kg 2.4 0.14 1 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td></td> <td>1.8</td> <td>0.37</td> <td>1</td>	1,1,2-Trichloroethane	ND			1.8	0.37	1				
ND ug/kg 6.1 0.47 1 1,2-Dichloroethane ND ug/kg 1.2 0.14 1 1,1-Dichloroethane ND ug/kg 1.2 0.13 1 1,1-Trichloroethane ND ug/kg 1.2 0.13 1 3romodichloromethane ND ug/kg 1.2 0.14 1 rans-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 t,3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 t,1-Dichloropropene, Total ND ug/kg 1.2 0.14 1 t,1-Dichloropropene ND ug/kg 1.2 0.14 1 t,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 Toluene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.2 0.14 1 Chloromethane ND ug/kg 2.4 0.41 1	Tetrachloroethene	ND			1.2	0.17	1				
1,2-Dichloroethane ND ug/kg 1.2 0.14 1 1,1,1-Trichloroethane ND ug/kg 1.2 0.13 1 3romodichloromethane ND ug/kg 1.2 0.13 1 arans-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 isis-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 isis-1,3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 1,1-Dichloropropene, Total ND ug/kg 6.1 0.17 1 3romodicrim ND ug/kg 4.8 0.29 1 1,1-Dichloropropene ND ug/kg 1.2 0.14 1 3romoform ND ug/kg 1.2 0.14 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.13 1 Toluene ND ug/kg 1.2 0.14 1 Storomethane ND ug/kg <	Chlorobenzene	ND		ug/kg	1.2	0.42	1				
ND ug/kg 1.2 0.13 1 Bromodichloromethane ND ug/kg 1.2 0.21 1 Bromodichloromethane ND ug/kg 1.2 0.15 1 rans-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene ND ug/kg 1.2 0.14 1 1,3-Dichloropropene, Total ND ug/kg 6.1 0.17 1 1,1-Dichloropropene, Total ND ug/kg 1.2 0.14 1 1,1-Dichloropropene ND ug/kg 1.2 0.14 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.14 1 50 and for the ender ND ug/kg 1.8 0.24 1 10 uene ND ug/kg 1.2 0.15 1 11,10-choroethane ND ug/kg 2.4 0.41 <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>6.1</td> <td>0.47</td> <td>1</td>	Trichlorofluoromethane	ND		ug/kg	6.1	0.47	1				
ND ug/kg 1.2 0.21 1 Bromodichloromethane ND ug/kg 1.2 0.15 1 rans-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 cis-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 t,3-Dichloropropene, Total ND ug/kg 6.1 0.17 1 1,1-Dichloropropene ND ug/kg 4.8 0.29 1 stromodicm ND ug/kg 4.8 0.29 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.14 1 Stromodicm ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.14 1 Stromodichloroethane ND ug/kg 1.8 0.24 1 Stromomethane ND ug/kg 2.4 0.41 1 Chloromethane ND ug/kg 2.4 0.38 1 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.2</td> <td>0.14</td> <td>1</td>	1,2-Dichloroethane	ND		ug/kg	1.2	0.14	1				
ND ug/kg 1.2 0.15 1 cis-1,3-Dichloropropene ND ug/kg 1.2 0.14 1 t,3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 t,3-Dichloropropene, Total ND ug/kg 6.1 0.17 1 t,1-Dichloropropene ND ug/kg 4.8 0.29 1 Bromoform ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 Senzene ND ug/kg 1.2 0.14 1 1 Toluene ND ug/kg 1.2 0.14 1 1 Chloromethane ND ug/kg 1.2 0.14 1 1 Chloromethane ND ug/kg 1.2 0.15 1 1 Chloromethane ND ug/kg 2.4 0.41 1 1 Chloroethane ND ug/kg	1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1				
ND ug/kg 1.2 0.14 1 1,3-Dichloropropene, Total ND ug/kg 1.2 0.14 1 1,3-Dichloropropene, Total ND ug/kg 6.1 0.17 1 1,1-Dichloropropene ND ug/kg 4.8 0.29 1 3romoform ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 3enzene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.2 0.12 1 Ethylbenzene ND ug/kg 1.8 0.24 1 Chloromethane ND ug/kg 6.1 0.36 1 Stromomethane ND ug/kg 2.4 0.41 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 Chloroethene </td <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.2</td> <td>0.21</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	1.2	0.21	1				
ND ug/kg 1.2 0.14 1 1,3-Dichloropropene, Total ND ug/kg 6.1 0.17 1 1,1-Dichloropropene ND ug/kg 4.8 0.29 1 Bromoform ND ug/kg 1.2 0.12 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 Benzene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.2 0.14 1 Ethylbenzene ND ug/kg 1.2 0.14 1 Chloromethane ND ug/kg 1.2 0.15 1 Stromomethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.38 1 Chloroethene ND ug/kg 1.2 0.32 1 Chloroethene ND ug/kg 1.8 0.26 1 Trans-1,2-Dichloroethene </td <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.2</td> <td>0.15</td> <td>1</td>	trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1				
1,1-Dichloropropene ND ug/kg 6.1 0.17 1 Bromoform ND ug/kg 4.8 0.29 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 Benzene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.8 0.24 1 Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 1.2 0.15 1 Stromomethane ND ug/kg 2.4 0.41 1 Chloromethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.41 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 Chloroethane ND ug/kg 1.2 0.32 1 Trans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Tri	cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1				
Browner ND ug/kg 4.8 0.29 1 A1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.12 1 Benzene ND ug/kg 1.2 0.14 1 Benzene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.8 0.24 1 Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 6.1 0.36 1 Stromoforde ND ug/kg 2.4 0.41 1 Chloromethane ND ug/kg 2.4 0.14 1 Stromoforde ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 1,1-Dichloroethene ND ug/kg 1.8 0.26 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1	1,3-Dichloropropene, Total	ND		ug/kg	1.2	0.14	1				
ND ug/kg 1.2 0.12 1 Benzene ND ug/kg 1.2 0.14 1 Toluene ND ug/kg 1.8 0.24 1 Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 6.1 0.36 1 Stromomethane ND ug/kg 2.4 0.41 1 Chloroethane ND ug/kg 2.4 0.41 1 Chloroethane ND ug/kg 2.4 0.41 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 1,1-Dichloroethene ND ug/kg 1.8 0.26 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1	1,1-Dichloropropene	ND		ug/kg	6.1	0.17	1				
ND ug/kg 1.2 0.14 1 Foluene ND ug/kg 1.8 0.24 1 Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 6.1 0.36 1 Stromomethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.14 1 Chloromethane ND ug/kg 2.4 0.41 1 Chloromethane ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.38 1 1,1-Dichloroethene ND ug/kg 1.2 0.32 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Totoroethene ND ug/kg 1.8 0.26 1	Bromoform	ND		ug/kg	4.8	0.29	1				
Toluene ND ug/kg 1.8 0.24 1 Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 6.1 0.36 1 Bromomethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.14 1 Chloromethane ND ug/kg 2.4 0.14 1 Chloromethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 1,1-Dichloroethene ND ug/kg 1.8 0.26 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1				
Ethylbenzene ND ug/kg 1.2 0.15 1 Chloromethane ND ug/kg 6.1 0.36 1 Bromomethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 1,1-Dichloroethene ND ug/kg 1.8 0.26 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1	Benzene	ND		ug/kg	1.2	0.14	1				
ND ug/kg 6.1 0.36 1 Bromomethane ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.38 1 Chloroethane ND ug/kg 1.2 0.32 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Toluene	ND		ug/kg	1.8	0.24	1				
ND ug/kg 2.4 0.41 1 Vinyl chloride ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.38 1 1,1-Dichloroethene ND ug/kg 1.2 0.32 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Ethylbenzene	ND		ug/kg	1.2	0.15	1				
Vinyl chloride ND ug/kg 2.4 0.14 1 Chloroethane ND ug/kg 2.4 0.38 1 1,1-Dichloroethene ND ug/kg 1.2 0.32 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Chloromethane	ND		ug/kg	6.1	0.36	1				
ND ug/kg 2.4 0.38 1 1,1-Dichloroethene ND ug/kg 1.2 0.32 1 rans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Bromomethane	ND		ug/kg	2.4	0.41	1				
ND ug/kg 1.2 0.32 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Vinyl chloride	ND		ug/kg	2.4	0.14	1				
ND ug/kg 1.8 0.26 1 Trichloroethene ND ug/kg 1.2 0.15 1	Chloroethane	ND		ug/kg	2.4	0.38	1				
TrichloroetheneNDug/kg1.20.151	1,1-Dichloroethene	ND		ug/kg	1.2	0.32	1				
-9-9	trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.26	1				
1,2-Dichlorobenzene ND ug/kg 6.1 0.18 1	Trichloroethene	ND		ug/kg	1.2	0.15	1				
	1,2-Dichlorobenzene	ND		ug/kg	6.1	0.18	1				

		Serial_No:06011519:38						
Project Name:	130 ST. FELIX STREET			Lab Nu	mber:	L1511932		
Project Number:	170366001			Report	Date:	06/01/15		
··· , ·····		SAMPLE RE	SULTS			00/01/10		
Lab ID:	L1511932-06			Date Coll	ected:	05/30/15 00:00		
Client ID:	DUP01_053015			Date Rec		05/30/15		
Sample Location:	130 ST. FELIX STREET,	BROOKLYN N	Y	Field Pre		Not Specified		
Parameter		Result Qua	lifier Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - Westborough Lab								
1,3-Dichlorobenzene		ND		6.1	0.16	1		
1,3-Dichlorobenzene		ND	ug/kg	6.1	0.16	1		
		ND	ug/kg	2.4	0.17	1		
Methyl tert butyl ether		ND	ug/kg	2.4	0.10	1		
		ND	ug/kg	2.4	0.24	1		
o-Xylene			ug/kg					
Xylenes, Total		ND	ug/kg	2.4	0.21	1		
cis-1,2-Dichloroethene		ND	ug/kg	1.2	0.17	1		
1,2-Dichloroethene, Total		ND	ug/kg	1.2	0.17	1		
Dibromomethane		ND	ug/kg	12	0.20	1		
Styrene		ND	ug/kg	2.4	0.49	1		
Dichlorodifluoromethane		ND	ug/kg	12	0.23	1		
Acetone		ND	ug/kg	12	1.2	1		
Carbon disulfide		ND	ug/kg	12	1.3	1		
2-Butanone		ND	ug/kg	12	0.33	1		
Vinyl acetate		ND	ug/kg	12	0.16	1		
4-Methyl-2-pentanone		ND	ug/kg	12	0.30	1		
1,2,3-Trichloropropane		ND	ug/kg	12	0.20	1		
2-Hexanone		ND	ug/kg	12	0.81	1		
Bromochloromethane		ND	ug/kg	6.1	0.33	1		
2,2-Dichloropropane		ND	ug/kg	6.1	0.27	1		
1,2-Dibromoethane		ND	ug/kg	4.8	0.21	1		
1,3-Dichloropropane		ND	ug/kg	6.1	0.18	1		
1,1,1,2-Tetrachloroethane		ND	ug/kg	1.2	0.38	1		
Bromobenzene		ND	ug/kg	6.1	0.25	1		
n-Butylbenzene		ND	ug/kg	1.2	0.14	1		
sec-Butylbenzene		ND	ug/kg	1.2	0.15	1		
tert-Butylbenzene		ND	ug/kg	6.1	0.16	1		
o-Chlorotoluene		ND	ug/kg	6.1	0.19	1		
p-Chlorotoluene		ND	ug/kg	6.1	0.16	1		
1,2-Dibromo-3-chloroprop	ane	ND	ug/kg	6.1	0.48	1		
Hexachlorobutadiene		ND	ug/kg	6.1	0.28	1		
Isopropylbenzene		ND	ug/kg	1.2	0.12	1		
p-Isopropyltoluene		ND	ug/kg	1.2	0.15	1		
Naphthalene		ND	ug/kg	6.1	0.17	1		
Acrylonitrile		ND	ug/kg	12	0.62	1		
n-Propylbenzene		ND	ug/kg	1.2	0.13	1		
1,2,3-Trichlorobenzene		ND	ug/kg	6.1	0.18	1		
1,2,4-Trichlorobenzene		ND	ug/kg	6.1	0.22	1		
1,3,5-Trimethylbenzene		ND	ug/kg	6.1	0.17	1		

					Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Г			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMP	LE RESULTS	6				
Lab ID:	L1511932-06				Date Col	llected:	05/30/15 00:00	
Client ID:	DUP01_053015				Date Re	ceived:	05/30/15	
Sample Location:	130 ST. FELIX STREE	T, BROOK	LYN NY		Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	/ 8260/5035 - Westborou	gh Lab						
1,2,4-Trimethylbenzene		ND		ug/kg	6.1	0.17	1	
1,4-Dioxane		ND		ug/kg	120	18.	1	
p-Diethylbenzene		ND		ug/kg	4.8	0.19	1	
p-Ethyltoluene		ND		ug/kg	4.8	0.15	1	
1,2,4,5-Tetramethylbenzer	ne	ND		ug/kg	4.8	0.16	1	
Ethyl ether		ND		ug/kg	6.1	0.32	1	
trans-1,4-Dichloro-2-buten	е	ND		ug/kg	6.1	0.48	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	84		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	98		70-130	

		Serial_No	0:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-07	Date Collected:	05/30/15 16:35
Client ID:	MW11_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 11:08		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	15		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	3.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

				5	Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET			Lab Nu		L1511932
Project Number:	170366001			Report	Date [.]	06/01/15
i reject italliseli	17000001	SAMPLE RESULTS	5	Roport	Duto.	00/01/13
Lab ID:	L1511932-07			Date Coll	ected:	05/30/15 16:35
Client ID:	MW11_053015			Date Rec		05/30/15
Sample Location:	130 ST. FELIX STREET,	BROOKLYN NY		Field Pre		Not Specified
Parameter		Result Qualifier	Units	RL	MDL	Dilution Factor
	y GC/MS - Westborough La		••			
Volatile Organics b		0				
1,3-Dichlorobenzene		ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND	ug/l	2.5	0.70	1
Methyl tert butyl ether		ND	ug/l	2.5	0.70	1
p/m-Xylene		ND	ug/l	2.5	0.70	1
o-Xylene		ND	ug/l	2.5	0.70	1
Xylenes, Total		ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND	ug/l	2.5	0.70	1
Dibromomethane		ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND	ug/l	2.5	0.70	1
Acrylonitrile		ND	ug/l	5.0	1.5	1
Styrene		ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND	ug/l	5.0	1.0	1
Acetone		ND	ug/l	5.0	1.5	1
Carbon disulfide		ND	ug/l	5.0	1.0	1
2-Butanone		ND	ug/l	5.0	1.9	1
Vinyl acetate		ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND	ug/l	5.0	1.0	1
2-Hexanone		ND	ug/l	5.0	1.0	1
Bromochloromethane		ND	ug/l	2.5	0.70	1
2,2-Dichloropropane		ND	ug/l	2.5	0.70	1
1,2-Dibromoethane		ND	ug/l	2.0	0.65	1
1,3-Dichloropropane		ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND	ug/l	2.5	0.70	1
Bromobenzene		ND	ug/l	2.5	0.70	1
n-Butylbenzene		ND	ug/l	2.5	0.70	1
sec-Butylbenzene		ND	ug/l	2.5	0.70	1
tert-Butylbenzene		ND	ug/l	2.5	0.70	1
o-Chlorotoluene		ND	ug/l	2.5	0.70	1
p-Chlorotoluene		ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene		ND	ug/l	2.5	0.70	1
Isopropylbenzene		ND	ug/l	2.5	0.70	1
p-Isopropyltoluene		ND	ug/l	2.5	0.70	1
Naphthalene		ND	ug/l	2.5	0.70	1
n-Propylbenzene		ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND	ug/l	2.5	0.70	1

					Ş	Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP	LE RESULTS	5			
Lab ID:	L1511932-07				Date Col	lected:	05/30/15 16:35
Client ID:	MW11_053015				Date Red	ceived:	05/30/15
Sample Location:	130 ST. FELIX STREE	T, BROOK	LYN NY		Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab					
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	41.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzen	e	ND		ug/l	2.0	0.65	1
Ethyl ether		ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene)	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	108		70-130	

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-08	Date Collected:	05/30/15 00:00
Client ID:	GWDUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	06/01/15 11:36		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	15		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.3		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	3.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

				ç	Serial_No	p:06011519:38	
Project Name:	130 ST. FELIX STREET			Lab Nu	mber:	L1511932	
Project Number:	170366001			Report	Date:	06/01/15	
,	110000001	SAMPLE RESU	ILTS			00/01/10	
Lab ID:	L1511932-08			Date Col	lected.	05/30/15 00:00	
Client ID:	GWDUP01_053015			Date Red		05/30/15	
Sample Location:	130 ST. FELIX STREET,	BROOKLYN NY		Field Pre		Not Specified	
Parameter		Result Qualifie	er Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough La	b					
	,						
1,3-Dichlorobenzene		ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND	ug/l	2.5	0.70	1	
p/m-Xylene		ND	ug/l	2.5	0.70	1	
o-Xylene		ND	ug/l	2.5	0.70	1	
Xylenes, Total		ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND	ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND	ug/l	2.5	0.70	1	
Dibromomethane		ND	ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND	ug/l	2.5	0.70	1	
Acrylonitrile		ND	ug/l	5.0	1.5	1	
Styrene		ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND	ug/l	5.0	1.0	1	
Acetone		ND	ug/l	5.0	1.5	1	
Carbon disulfide		ND	ug/l	5.0	1.0	1	
2-Butanone		ND	ug/l	5.0	1.9	1	
Vinyl acetate		ND	ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND	ug/l	5.0	1.0	1	
2-Hexanone		ND	ug/l	5.0	1.0	1	
Bromochloromethane		ND	ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND	ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND	ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND	ug/l	2.5	0.70	1	
Bromobenzene		ND	ug/l	2.5	0.70	1	
n-Butylbenzene		ND	ug/l	2.5	0.70	1	
sec-Butylbenzene		ND	ug/l	2.5	0.70	1	
tert-Butylbenzene		ND	ug/l	2.5	0.70	1	
o-Chlorotoluene		ND	ug/l	2.5	0.70	1	
p-Chlorotoluene		ND	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND	ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND	ug/l	2.5	0.70	1	
Isopropylbenzene		ND	ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND	ug/l	2.5	0.70	1	
Naphthalene		ND	ug/l	2.5	0.70	1	
n-Propylbenzene		ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND	ug/l	2.5	0.70	1	

					S	Serial_No	0:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP	LE RESULTS	5			
Lab ID:	L1511932-08				Date Col	lected:	05/30/15 00:00
Client ID:	GWDUP01_053015				Date Red	ceived:	05/30/15
Sample Location:	130 ST. FELIX STREET	, BROOK	LYN NY		Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough La	ab					
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	41.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzen	e	ND		ug/l	2.0	0.65	1
Ethyl ether		ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	9	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	109		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	106		70-130	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:13
Analyst:	BN

Datatile Organics by 8260/5035 - Westborough Lab for sample(s): 05-06 Batch: WG789621-3 Methylene chloride ND ug/kg 1.0 1.1 1.1-Dichloroethane ND ug/kg 1.5 0.09 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 1.0 0.16 2-Chloroethane ND ug/kg 1.0 0.14 Chlorobethane ND ug/kg 1.0 0.35 Tetrachloroethane ND ug/kg 1.0 0.11 Chlorobenzene ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.12 1,2-Dichloropropene	arameter	Result	Qualifier	Units	RL		MDL
I.1-Dichloroethane ND ug/kg 1.5 0.09 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorofluoromethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichloroftuaromethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.12 1,1,1-Trichloroethane ND ug/kg 1.0 0.12 1,1,2-Trichloropropene ND<	olatile Organics by 8260/5035	5 - Westborough	Lab for sa	mple(s):	05-06	Batch:	WG789621-3
Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 1.0 0.62 1,1,2-Trichloroethane ND ug/kg 1.0 0.14 Chloroethylvinyl ether ND ug/kg 1.0 0.14 Chloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichloroftuoromethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1.1-Trichloroethane ND ug/kg 1.0 0.12 iz-Dichloroptopene ND ug/kg 1.0 0.12 i_1.1-Trichloroptropene ND ug/kg 1.0 0.12 i_1.1-Dichloropropene <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/kg</td><td>10</td><td></td><td>1.1</td></t<>	Methylene chloride	ND		ug/kg	10		1.1
Carbon tetrachloride ND ug/kg 1.0 0.21 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 20 0.62 1,1,2-Trichloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichloroftuoromethane ND ug/kg 1.0 0.31 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.14 Bromoform ND </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.5</td> <td>5</td> <td>0.09</td>	1,1-Dichloroethane	ND		ug/kg	1.5	5	0.09
1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 20 0.62 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichloroftluoromethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 rtans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloroprop	Chloroform	ND		ug/kg	1.5	5	0.37
Dibromochloromethane ND ug/kg 1.0 0.15 2-Chloroethylvinyl ether ND ug/kg 20 0.62 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.31 1,2-Dichloroethane ND ug/kg 1.0 0.31 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.10 Bromoform	Carbon tetrachloride	ND		ug/kg	1.0)	0.21
2-Chloroethylvinyl ether ND ug/kg 20 0.62 1,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.12 stras-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 Toluene	1,2-Dichloropropane	ND		ug/kg	3.5	5	0.23
I,1,2-Trichloroethane ND ug/kg 1.5 0.30 Tetrachloroethane ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-2,2-Tetrachloroethane ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Toluene ND<	Dibromochloromethane	ND		ug/kg	1.0)	0.15
Tetrachloroethene ND ug/kg 1.0 0.14 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1-Trichloroethane ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Toluene ND ug/k	2-Chloroethylvinyl ether	ND		ug/kg	20		0.62
ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.11 Bromodichloropropene ND ug/kg 1.0 0.11 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 1.0 0.13 Chloromethane ND ug/	1,1,2-Trichloroethane	ND		ug/kg	1.5	5	0.30
Trichlorofluoromethane ND ug/kg 5.0 0.39 1,2-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.11 Bromodichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 1.0 0.12 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.13 Chloromethane ND	Tetrachloroethene	ND		ug/kg	1.0)	0.14
ND ug/kg 1.0 0.11 1,1-Dichloroethane ND ug/kg 1.0 0.11 1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 1.0 0.12 1,1-2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg	Chlorobenzene	ND		ug/kg	1.0)	0.35
1,1,1-Trichloroethane ND ug/kg 1.0 0.11 Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 5.0 0.14 Bromoform ND ug/kg 1.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0	Trichlorofluoromethane	ND		ug/kg	5.0)	0.39
Bromodichloromethane ND ug/kg 1.0 0.17 trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Ethylbenzene ND ug/kg 1.0 0.12 Chloromethane ND ug/kg 1.0 0.12 Bromomethane ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 I,1-Dichloroethane ND ug/	1,2-Dichloroethane	ND		ug/kg	1.0)	0.11
trans-1,3-Dichloropropene ND ug/kg 1.0 0.12 cis-1,3-Dichloropropene ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene, Total ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Ethylbenzene ND ug/kg 1.0 0.12 Bromomethane ND ug/kg 1.0 0.12 Chloromethane ND ug/kg 1.0 0.12 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 I,1-Dichloroethene ND ug/kg 1.0 0.26	1,1,1-Trichloroethane	ND		ug/kg	1.0)	0.11
ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Ethylbenzene ND ug/kg 1.0 0.12 Bromomethane ND ug/kg 1.0 0.12 Chloromethane ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.0</td> <td>)</td> <td>0.17</td>	Bromodichloromethane	ND		ug/kg	1.0)	0.17
1,3-Dichloropropene, Total ND ug/kg 1.0 0.12 1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.0 0.12 Ethylbenzene ND ug/kg 1.0 0.12 Chloromethane ND ug/kg 1.0 0.12 Bromomethane ND ug/kg 1.0 0.12 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	trans-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
1,1-Dichloropropene ND ug/kg 5.0 0.14 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.29	cis-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.10 Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	1,3-Dichloropropene, Total	ND		ug/kg	1.0)	0.12
International Internationalistandin a state of a state of a state a state of a state	1,1-Dichloropropene	ND		ug/kg	5.0)	0.14
Benzene ND ug/kg 1.0 0.12 Toluene ND ug/kg 1.5 0.19 Ethylbenzene ND ug/kg 1.0 0.13 Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 I,1-Dichloroethene ND ug/kg 1.0 0.26	Bromoform	ND		ug/kg	4.0)	0.24
TolueneNDug/kg1.50.19EthylbenzeneNDug/kg1.00.13ChloromethaneNDug/kg5.00.29BromomethaneNDug/kg2.00.34Vinyl chlorideNDug/kg2.00.12ChloroethaneNDug/kg2.00.32I,1-DichloroetheneNDug/kg1.00.26	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0)	0.10
EthylbenzeneNDug/kg1.00.13ChloromethaneNDug/kg5.00.29BromomethaneNDug/kg2.00.34Vinyl chlorideNDug/kg2.00.12ChloroethaneNDug/kg2.00.321,1-DichloroetheneNDug/kg1.00.26	Benzene	ND		ug/kg	1.0)	0.12
Chloromethane ND ug/kg 5.0 0.29 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.12 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.26	Toluene	ND		ug/kg	1.5	5	0.19
BromomethaneNDug/kg2.00.34Vinyl chlorideNDug/kg2.00.12ChloroethaneNDug/kg2.00.321,1-DichloroetheneNDug/kg1.00.26	Ethylbenzene	ND		ug/kg	1.0)	0.13
Vinyl chlorideNDug/kg2.00.12ChloroethaneNDug/kg2.00.321,1-DichloroetheneNDug/kg1.00.26	Chloromethane	ND		ug/kg	5.0)	0.29
ChloroethaneNDug/kg2.00.321,1-DichloroetheneNDug/kg1.00.26	Bromomethane	ND		ug/kg	2.0)	0.34
1,1-Dichloroethene ND ug/kg 1.0 0.26	Vinyl chloride	ND		ug/kg	2.0)	0.12
	Chloroethane	ND		ug/kg	2.0)	0.32
trans-1,2-Dichloroethene ND ug/kg 1.5 0.21	1,1-Dichloroethene	ND		ug/kg	1.0)	0.26
	trans-1,2-Dichloroethene	ND		ug/kg	1.5	5	0.21

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:13
Analyst:	BN

arameter	Result	Qualifier	Units	RI	-	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	05-06	Batch:	WG789621-3
Trichloroethene	ND		ug/kg	1.()	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0)	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0)	0.14
1,4-Dichlorobenzene	ND		ug/kg	5.0)	0.14
Methyl tert butyl ether	ND		ug/kg	2.0)	0.08
p/m-Xylene	ND		ug/kg	2.0)	0.20
o-Xylene	ND		ug/kg	2.0)	0.17
Xylenes, Total	ND		ug/kg	2.0)	0.17
cis-1,2-Dichloroethene	ND		ug/kg	1.0)	0.14
1,2-Dichloroethene, Total	ND		ug/kg	1.()	0.14
Dibromomethane	ND		ug/kg	10)	0.16
Styrene	ND		ug/kg	2.0)	0.40
Dichlorodifluoromethane	ND		ug/kg	10)	0.19
Acetone	ND		ug/kg	10)	1.0
Carbon disulfide	ND		ug/kg	10)	1.1
2-Butanone	ND		ug/kg	10)	0.27
Vinyl acetate	ND		ug/kg	10)	0.13
4-Methyl-2-pentanone	ND		ug/kg	10	1	0.24
1,2,3-Trichloropropane	ND		ug/kg	10	1	0.16
2-Hexanone	ND		ug/kg	10		0.67
Bromochloromethane	ND		ug/kg	5.0)	0.28
2,2-Dichloropropane	ND		ug/kg	5.0)	0.23
1,2-Dibromoethane	ND		ug/kg	4.()	0.17
1,3-Dichloropropane	ND		ug/kg	5.0)	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0)	0.32
Bromobenzene	ND		ug/kg	5.0)	0.21
n-Butylbenzene	ND		ug/kg	1.0)	0.11
sec-Butylbenzene	ND		ug/kg	1.0)	0.12
tert-Butylbenzene	ND		ug/kg	5.0)	0.14

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:13
Analyst:	BN

arameter	Result	Qualifier	Units	RL		MDL
platile Organics by 8260/503	5 - Westborough	Lab for sa	mple(s):	05-06	Batch:	WG789621-3
o-Chlorotoluene	ND		ug/kg	5.0	1	0.16
p-Chlorotoluene	ND		ug/kg	5.0		0.13
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0		0.40
Hexachlorobutadiene	ND		ug/kg	5.0		0.23
lsopropylbenzene	ND		ug/kg	1.0		0.10
p-lsopropyltoluene	ND		ug/kg	1.0		0.12
Naphthalene	ND		ug/kg	5.0		0.14
Acrylonitrile	ND		ug/kg	10		0.51
Diisopropyl Ether	ND		ug/kg	4.0		0.14
Tert-Butyl Alcohol	ND		ug/kg	60		2.9
n-Propylbenzene	ND		ug/kg	1.0		0.11
1,2,3-Trichlorobenzene	ND		ug/kg	5.0		0.15
1,2,4-Trichlorobenzene	ND		ug/kg	5.0		0.18
1,3,5-Trimethylbenzene	ND		ug/kg	5.0		0.14
1,2,4-Trimethylbenzene	ND		ug/kg	5.0		0.14
Methyl Acetate	ND		ug/kg	20		0.27
Ethyl Acetate	ND		ug/kg	20		0.92
Acrolein	ND		ug/kg	25		8.1
Cyclohexane	ND		ug/kg	20		0.15
1,4-Dioxane	ND		ug/kg	100)	14.
Freon-113	ND		ug/kg	20		0.27
p-Diethylbenzene	ND		ug/kg	4.0		0.16
p-Ethyltoluene	ND		ug/kg	4.0		0.12
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0		0.13
Tetrahydrofuran	ND		ug/kg	20		1.0
Ethyl ether	ND		ug/kg	5.0		0.26
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		0.39
Methyl cyclohexane	ND		ug/kg	4.0		0.15
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0		0.12

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:13
Analyst:	BN

Parameter	Result	Qualifier	Units	RI	-	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sai	mple(s):	05-06	Batch:	WG789621-3	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.0)	0.10	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	82		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	93		70-130		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/01/15 09:05Analyst:BN

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by 8260/503	85 - Westborough	Lab for sample((s): 04 Batch:	WG789623-3
Methylene chloride	ND	ug/ł	(g 500	55.
1,1-Dichloroethane	ND	ug/ł	kg 75	4.3
Chloroform	ND	ug/ł	kg 75	18.
Carbon tetrachloride	ND	ug/ł	kg 50	10.
1,2-Dichloropropane	ND	ug/ł	kg 180	11.
Dibromochloromethane	ND	ug/ł	kg 50	7.7
2-Chloroethylvinyl ether	ND	ug/ł	kg 1000	31.
1,1,2-Trichloroethane	ND	ug/ł	kg 75	15.
Tetrachloroethene	ND	ug/ł	kg 50	7.0
Chlorobenzene	ND	ug/ł	kg 50	17.
Trichlorofluoromethane	ND	ug/ł	kg 250	19.
1,2-Dichloroethane	ND	ug/ł	kg 50	5.7
1,1,1-Trichloroethane	ND	ug/ł	kg 50	5.5
Bromodichloromethane	ND	ug/ł	kg 50	8.7
trans-1,3-Dichloropropene	ND	ug/ł	kg 50	6.0
cis-1,3-Dichloropropene	ND	ug/ł	kg 50	5.9
1,3-Dichloropropene, Total	ND	ug/ł	kg 50	5.9
1,1-Dichloropropene	ND	ug/ł	kg 250	7.1
Bromoform	ND	ug/ł	kg 200	12.
1,1,2,2-Tetrachloroethane	ND	ug/ł	kg 50	5.0
Benzene	ND	ug/ł	kg 50	5.9
Toluene	ND	ug/ł	kg 75	9.7
Ethylbenzene	ND	ug/ł	kg 50	6.4
Chloromethane	ND	ug/ł	kg 250	15.
Bromomethane	ND	ug/ł	kg 100	17.
Vinyl chloride	ND	ug/ł	kg 100	5.9
Chloroethane	ND	ug/ł	kg 100	16.
1,1-Dichloroethene	ND	ug/ł	kg 50	13.
trans-1,2-Dichloroethene	ND	ug/ł	kg 75	11.

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:1,8260CAnalytical Date:06/01/15 09:05Analyst:BN

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/503	35 - Westborough	Lab for sa	mple(s):	04	Batch:	WG789623-3
Trichloroethene	ND		ug/kg		50	6.2
1,2-Dichlorobenzene	ND		ug/kg		250	7.7
1,3-Dichlorobenzene	ND		ug/kg		250	6.8
1,4-Dichlorobenzene	ND		ug/kg		250	6.9
Methyl tert butyl ether	ND		ug/kg		100	4.2
p/m-Xylene	ND		ug/kg		100	9.9
o-Xylene	ND		ug/kg		100	8.6
Xylenes, Total	ND		ug/kg		100	8.6
cis-1,2-Dichloroethene	ND		ug/kg		50	7.1
1,2-Dichloroethene, Total	ND		ug/kg		50	7.1
Dibromomethane	ND		ug/kg		500	8.2
Styrene	ND		ug/kg		100	20.
Dichlorodifluoromethane	ND		ug/kg		500	9.5
Acetone	ND		ug/kg		500	52.
Carbon disulfide	ND		ug/kg		500	55.
2-Butanone	ND		ug/kg		500	14.
Vinyl acetate	ND		ug/kg		500	6.6
4-Methyl-2-pentanone	ND		ug/kg		500	12.
1,2,3-Trichloropropane	ND		ug/kg		500	8.1
2-Hexanone	ND		ug/kg		500	33.
Bromochloromethane	ND		ug/kg		250	14.
2,2-Dichloropropane	ND		ug/kg		250	11.
1,2-Dibromoethane	ND		ug/kg		200	8.7
1,3-Dichloropropane	ND		ug/kg		250	7.3
1,1,1,2-Tetrachloroethane	ND		ug/kg		50	16.
Bromobenzene	ND		ug/kg		250	10.
n-Butylbenzene	ND		ug/kg		50	5.7
sec-Butylbenzene	ND		ug/kg		50	6.1
tert-Butylbenzene	ND		ug/kg		250	6.8

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/01/15 09:05Analyst:BN

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	04	Batch:	WG789623-3
o-Chlorotoluene	ND		ug/kg		250	8.0
p-Chlorotoluene	ND		ug/kg		250	6.6
1,2-Dibromo-3-chloropropane	ND		ug/kg		250	20.
Hexachlorobutadiene	ND		ug/kg		250	11.
Isopropylbenzene	ND		ug/kg		50	5.2
p-Isopropyltoluene	ND		ug/kg		50	6.2
Naphthalene	ND		ug/kg		250	6.9
Acrylonitrile	ND		ug/kg		500	26.
Diisopropyl Ether	ND		ug/kg		200	7.0
Tert-Butyl Alcohol	ND		ug/kg		3000	150
n-Propylbenzene	ND		ug/kg		50	5.5
1,2,3-Trichlorobenzene	ND		ug/kg		250	7.4
1,2,4-Trichlorobenzene	ND		ug/kg		250	9.1
1,3,5-Trimethylbenzene	ND		ug/kg		250	7.2
1,2,4-Trimethylbenzene	ND		ug/kg		250	7.1
Methyl Acetate	ND		ug/kg		1000	14.
Ethyl Acetate	ND		ug/kg		1000	46.
Acrolein	ND		ug/kg		1200	400
Cyclohexane	ND		ug/kg		1000	7.3
1,4-Dioxane	ND		ug/kg		5000	720
Freon-113	ND		ug/kg		1000	14.
p-Diethylbenzene	ND		ug/kg		200	8.0
p-Ethyltoluene	ND		ug/kg		200	6.2
1,2,4,5-Tetramethylbenzene	ND		ug/kg		200	6.5
Tetrahydrofuran	ND		ug/kg		1000	50.
Ethyl ether	ND		ug/kg		250	13.
trans-1,4-Dichloro-2-butene	ND		ug/kg		250	20.
Methyl cyclohexane	ND		ug/kg		200	7.7
Ethyl-Tert-Butyl-Ether	ND		ug/kg		200	5.8

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:05
Analyst:	BN

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by 8260/5035 -	- Westborough	Lab for sar	mple(s):	04	Batch:	WG789623-3	
Tertiary-Amyl Methyl Ether	ND		ug/kg		200	4.8	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	105		70-130		
Toluene-d8	95		70-130		
4-Bromofluorobenzene	87		70-130		
Dibromofluoromethane	94		70-130		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/01/15 09:03Analyst:BN

arameter	Result	Qualifier	Units	RL		MDL
blatile Organics by 8260/503	5 - Westborough	Lab for sa	mple(s):	01-03	Batch:	WG789624-3
Methylene chloride	ND		ug/kg	10		1.1
1,1-Dichloroethane	ND		ug/kg	1.5		0.09
Chloroform	ND		ug/kg	1.5	i	0.37
Carbon tetrachloride	ND		ug/kg	1.0)	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	i	0.23
Dibromochloromethane	ND		ug/kg	1.0)	0.15
2-Chloroethylvinyl ether	ND		ug/kg	20		0.62
1,1,2-Trichloroethane	ND		ug/kg	1.5	i	0.30
Tetrachloroethene	ND		ug/kg	1.0)	0.14
Chlorobenzene	ND		ug/kg	1.0)	0.35
Trichlorofluoromethane	ND		ug/kg	5.0)	0.39
1,2-Dichloroethane	ND		ug/kg	1.0)	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0		0.11
Bromodichloromethane	ND		ug/kg	1.0		0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
1,3-Dichloropropene, Total	ND		ug/kg	1.0)	0.12
1,1-Dichloropropene	ND		ug/kg	5.0)	0.14
Bromoform	ND		ug/kg	4.0)	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0)	0.10
Benzene	ND		ug/kg	1.0	1	0.12
Toluene	ND		ug/kg	1.5	i	0.19
Ethylbenzene	ND		ug/kg	1.0		0.13
Chloromethane	ND		ug/kg	5.0		0.29
Bromomethane	0.35	J	ug/kg	2.0		0.34
Vinyl chloride	ND		ug/kg	2.0		0.12
Chloroethane	ND		ug/kg	2.0		0.32
1,1-Dichloroethene	ND		ug/kg	1.0		0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/01/15 09:03Analyst:BN

arameter	Result	Qualifier	Units	RL	-	MDL
platile Organics by 8260/503	35 - Westborough	Lab for sa	mple(s):	01-03	Batch:	WG789624-3
Trichloroethene	ND		ug/kg	1.0)	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0)	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0)	0.14
1,4-Dichlorobenzene	ND		ug/kg	5.0)	0.14
Methyl tert butyl ether	ND		ug/kg	2.0)	0.08
p/m-Xylene	ND		ug/kg	2.0)	0.20
o-Xylene	ND		ug/kg	2.0)	0.17
Xylenes, Total	ND		ug/kg	2.0)	0.17
cis-1,2-Dichloroethene	ND		ug/kg	1.0)	0.14
1,2-Dichloroethene, Total	ND		ug/kg	1.0)	0.14
Dibromomethane	ND		ug/kg	10		0.16
Styrene	ND		ug/kg	2.0)	0.40
Dichlorodifluoromethane	ND		ug/kg	10		0.19
Acetone	ND		ug/kg	10		1.0
Carbon disulfide	ND		ug/kg	10		1.1
2-Butanone	ND		ug/kg	10		0.27
Vinyl acetate	ND		ug/kg	10		0.13
4-Methyl-2-pentanone	ND		ug/kg	10		0.24
1,2,3-Trichloropropane	ND		ug/kg	10		0.16
2-Hexanone	ND		ug/kg	10		0.67
Bromochloromethane	ND		ug/kg	5.0)	0.28
2,2-Dichloropropane	ND		ug/kg	5.0)	0.23
1,2-Dibromoethane	ND		ug/kg	4.0)	0.17
1,3-Dichloropropane	ND		ug/kg	5.0)	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0)	0.32
Bromobenzene	ND		ug/kg	5.0)	0.21
n-Butylbenzene	ND		ug/kg	1.0)	0.11
sec-Butylbenzene	ND		ug/kg	1.0)	0.12
tert-Butylbenzene	ND		ug/kg	5.0)	0.14

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/01/15 09:03Analyst:BN

arameter	Result	Qualifier	Units	RL	-	MDL
platile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01-03	Batch:	WG789624-3
o-Chlorotoluene	ND		ug/kg	5.0)	0.16
p-Chlorotoluene	ND		ug/kg	5.0)	0.13
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0)	0.40
Hexachlorobutadiene	ND		ug/kg	5.0)	0.23
Isopropylbenzene	ND		ug/kg	1.0)	0.10
p-Isopropyltoluene	ND		ug/kg	1.0)	0.12
Naphthalene	ND		ug/kg	5.0)	0.14
Acrylonitrile	ND		ug/kg	10		0.51
Diisopropyl Ether	ND		ug/kg	4.0)	0.14
Tert-Butyl Alcohol	ND		ug/kg	60		2.9
n-Propylbenzene	ND		ug/kg	1.0)	0.11
1,2,3-Trichlorobenzene	ND		ug/kg	5.0)	0.15
1,2,4-Trichlorobenzene	ND		ug/kg	5.0)	0.18
1,3,5-Trimethylbenzene	ND		ug/kg	5.0)	0.14
1,2,4-Trimethylbenzene	ND		ug/kg	5.0)	0.14
Methyl Acetate	ND		ug/kg	20		0.27
Ethyl Acetate	ND		ug/kg	20		0.92
Acrolein	ND		ug/kg	25		8.1
Cyclohexane	ND		ug/kg	20		0.15
1,4-Dioxane	ND		ug/kg	100)	14.
Freon-113	ND		ug/kg	20		0.27
p-Diethylbenzene	ND		ug/kg	4.0)	0.16
p-Ethyltoluene	ND		ug/kg	4.0)	0.12
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0)	0.13
Tetrahydrofuran	ND		ug/kg	20		1.0
Ethyl ether	ND		ug/kg	5.0)	0.26
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0)	0.39
Methyl cyclohexane	ND		ug/kg	4.0)	0.15
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0)	0.12

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 09:03
Analyst:	BN

Parameter	Result	Qualifier	Units	RI	-	MDL	
Volatile Organics by 8260/5035	- Westborough	Lab for sai	mple(s):	01-03	Batch:	WG789624-3	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.()	0.10	

	Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	76		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	85		70-130	
Dibromofluoromethane	89		70-130	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 10:40
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 07-08	B Batch:	WG789639-3
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
2-Chloroethylvinyl ether	ND	ug/l	10	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 10:40
Analyst:	PD

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS -	Westborough Lal	o for sample(s):	07-08 Batch:	WG789639-3
Trichloroethene	ND	ug/	1 0.50	0.18
1,2-Dichlorobenzene	ND	ug/	1 2.5	0.70
1,3-Dichlorobenzene	ND	ug/	1 2.5	0.70
1,4-Dichlorobenzene	ND	ug/	1 2.5	0.70
Methyl tert butyl ether	ND	ug/	1 2.5	0.70
p/m-Xylene	ND	ug/	1 2.5	0.70
o-Xylene	ND	ug/	1 2.5	0.70
Xylenes, Total	ND	ug/	1 2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	1 2.5	0.70
1,2-Dichloroethene, Total	ND	ug/	1 2.5	0.70
Dibromomethane	ND	ug/	1 5.0	1.0
1,2,3-Trichloropropane	ND	ug/	1 2.5	0.70
Acrylonitrile	ND	ug/	1 5.0	1.5
Diisopropyl Ether	ND	ug/	1 2.0	0.65
Tert-Butyl Alcohol	ND	ug/	Ί 10	0.90
Styrene	ND	ug/	1 2.5	0.70
Dichlorodifluoromethane	ND	ug/	1 5.0	1.0
Acetone	ND	ug/	1 5.0	1.5
Carbon disulfide	ND	ug/	1 5.0	1.0
2-Butanone	ND	ug/	1 5.0	1.9
Vinyl acetate	ND	ug/	1 5.0	1.0
4-Methyl-2-pentanone	ND	ug/	1 5.0	1.0
2-Hexanone	ND	ug/	1 5.0	1.0
Acrolein	ND	ug/	1 5.0	0.63
Bromochloromethane	ND	ug/	1 2.5	0.70
2,2-Dichloropropane	ND	ug/	1 2.5	0.70
1,2-Dibromoethane	ND	ug/	1 2.0	0.65
1,3-Dichloropropane	ND	ug/	1 2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/	1 2.5	0.70

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 10:40
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS - V	Vestborough La	b for sample(s): 07-08	Batch:	WG789639-3
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Ethyl Acetate	ND	ug/l	10	0.70
Cyclohexane	ND	ug/l	10	0.27
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28
1,4-Dioxane	ND	ug/l	250	41.
Freon-113	ND	ug/l	2.5	0.70
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65
Tetrahydrofuran	ND	ug/l	5.0	1.5
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Analytical Method:	1,8260C
Analytical Date:	06/01/15 10:40
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough Lat	o for sample(s): 07-08	Batch:	WG789639-3	
lodomethane	ND	ug/l	5.0	5.0	
Methyl cyclohexane	ND	ug/l	10	0.40	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	109		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	105		70-130

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associated sar	mple(s): 05-06 Batch:	WG789621-1 WG789621-2			
Methylene chloride	106	104	70-130	2	30	
1,1-Dichloroethane	106	103	70-130	3	30	
Chloroform	107	104	70-130	3	30	
Carbon tetrachloride	105	98	70-130	7	30	
1,2-Dichloropropane	107	104	70-130	3	30	
Dibromochloromethane	91	90	70-130	1	30	
2-Chloroethylvinyl ether	109	108	70-130	1	30	
1,1,2-Trichloroethane	99	97	70-130	2	30	
Tetrachloroethene	107	101	70-130	6	30	
Chlorobenzene	106	103	70-130	3	30	
Trichlorofluoromethane	127	116	70-139	9	30	
1,2-Dichloroethane	94	94	70-130	0	30	
1,1,1-Trichloroethane	108	102	70-130	6	30	
Bromodichloromethane	104	102	70-130	2	30	
trans-1,3-Dichloropropene	102	99	70-130	3	30	
cis-1,3-Dichloropropene	111	110	70-130	1	30	
1,1-Dichloropropene	119	112	70-130	6	30	
Bromoform	89	87	70-130	2	30	
1,1,2,2-Tetrachloroethane	88	86	70-130	2	30	
Benzene	113	109	70-130	4	30	
Toluene	106	102	70-130	4	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	05-06	Batch:	WG789621-	1 WG789621-2	2		
Ethylbenzene	111		1()6		70-130	5		30
Chloromethane	92		8	8		52-130	4		30
Bromomethane	134		13	30		57-147	3		30
Vinyl chloride	117		1(9		67-130	7		30
Chloroethane	145		13	88		50-151	5		30
1,1-Dichloroethene	118		1(9		65-135	8		30
trans-1,2-Dichloroethene	116		11	1		70-130	4		30
Trichloroethene	115		1(9		70-130	5		30
1,2-Dichlorobenzene	95		9	3		70-130	2		30
1,3-Dichlorobenzene	100		9	8		70-130	2		30
1,4-Dichlorobenzene	98		9	6		70-130	2		30
Methyl tert butyl ether	101		1()1		66-130	0		30
p/m-Xylene	114		1()9		70-130	4		30
o-Xylene	113		11	0		70-130	3		30
cis-1,2-Dichloroethene	114		11	2		70-130	2		30
Dibromomethane	104		1()3		70-130	1		30
Styrene	115		11	2		70-130	3		30
Dichlorodifluoromethane	107		9	6		30-146	11		30
Acetone	60		5	6		54-140	7		30
Carbon disulfide	102		9	8		59-130	4		30
2-Butanone	75		7	0		70-130	7		30

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westbore	ough Lab Associated sampl	e(s): 05-06 Batch:	WG789621-1 WG789621-2	2		
Vinyl acetate	86	84	70-130	2	30	
4-Methyl-2-pentanone	84	82	70-130	2	30	
1,2,3-Trichloropropane	86	85	68-130	1	30	
2-Hexanone	70	66	Q 70-130	6	30	
Bromochloromethane	106	104	70-130	2	30	
2,2-Dichloropropane	111	104	70-130	7	30	
1,2-Dibromoethane	95	94	70-130	1	30	
1,3-Dichloropropane	97	96	69-130	1	30	
1,1,1,2-Tetrachloroethane	94	93	70-130	1	30	
Bromobenzene	97	96	70-130	1	30	
n-Butylbenzene	112	106	70-130	6	30	
sec-Butylbenzene	111	105	70-130	6	30	
tert-Butylbenzene	104	100	70-130	4	30	
o-Chlorotoluene	106	82	70-130	26	30	
p-Chlorotoluene	105	102	70-130	3	30	
1,2-Dibromo-3-chloropropane	79	74	68-130	7	30	
Hexachlorobutadiene	104	98	67-130	6	30	
Isopropylbenzene	108	103	70-130	5	30	
p-Isopropyltoluene	108	103	70-130	5	30	
Naphthalene	83	82	70-130	1	30	
Acrylonitrile	81	80	70-130	1	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

arameter	LCS %Recovery	Qual	LCS %Reco		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	05-06	Batch:	WG789621-1	WG789621-2			
Diisopropyl Ether	93		92	2		66-130	1		30
Tert-Butyl Alcohol	72		68	5	Q	70-130	6		30
n-Propylbenzene	109		10	4		70-130	5		30
1,2,3-Trichlorobenzene	94		93	;		70-130	1		30
1,2,4-Trichlorobenzene	100		99)		70-130	1		30
1,3,5-Trimethylbenzene	106		10	3		70-130	3		30
1,2,4-Trimethylbenzene	106		10	4		70-130	2		30
Methyl Acetate	71		70)		51-146	1		30
Ethyl Acetate	77		72	2		70-130	7		30
Acrolein	86		82	2		70-130	5		30
Cyclohexane	107		97	•		59-142	10		30
1,4-Dioxane	85		84	ŀ		65-136	1		30
Freon-113	111		10	2		50-139	8		30
p-Diethylbenzene	106		10	1		70-130	5		30
p-Ethyltoluene	108		10	3		70-130	5		30
1,2,4,5-Tetramethylbenzene	101		99)		70-130	2		30
Tetrahydrofuran	74		75	;		66-130	1		30
Ethyl ether	110		10	8		67-130	2		30
trans-1,4-Dichloro-2-butene	78		76	;		70-130	3		30
Methyl cyclohexane	117		10	7		70-130	9		30
Ethyl-Tert-Butyl-Ether	100		10	0		70-130	0		30

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

	LCS		LCS	SD	9	6Recovery			RPD
Parameter	%Recovery	Qual	%Reco	overy	Qual	Limits	RPD	Qual	Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	d sample(s):	05-06	Batch:	WG789621-1	WG789621-2			
Tertiary-Amyl Methyl Ether	106		10)5		70-130	1		30

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	84		82		70-130	
Toluene-d8	97		98		70-130	
4-Bromofluorobenzene	101		102		70-130	
Dibromofluoromethane	92		93		70-130	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboro	ough Lab Associated sample	e(s): 04 Batch: W	/G789623-1 WG789623-2			
Methylene chloride	104	102	70-130	2	30	
1,1-Dichloroethane	109	107	70-130	2	30	
Chloroform	108	108	70-130	0	30	
Carbon tetrachloride	110	104	70-130	6	30	
1,2-Dichloropropane	101	103	70-130	2	30	
Dibromochloromethane	95	94	70-130	1	30	
2-Chloroethylvinyl ether	83	87	70-130	5	30	
1,1,2-Trichloroethane	100	101	70-130	1	30	
Tetrachloroethene	104	100	70-130	4	30	
Chlorobenzene	100	100	70-130	0	30	
Trichlorofluoromethane	113	111	70-139	2	30	
1,2-Dichloroethane	110	111	70-130	1	30	
1,1,1-Trichloroethane	108	105	70-130	3	30	
Bromodichloromethane	99	101	70-130	2	30	
trans-1,3-Dichloropropene	98	97	70-130	1	30	
cis-1,3-Dichloropropene	99	101	70-130	2	30	
1,1-Dichloropropene	105	101	70-130	4	30	
Bromoform	93	92	70-130	1	30	
1,1,2,2-Tetrachloroethane	94	94	70-130	0	30	
Benzene	104	103	70-130	1	30	
Toluene	101	99	70-130	2	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associated sample((s): 04 Batch: WG	G789623-1 WG789623-2			
Ethylbenzene	102	100	70-130	2	30	
Chloromethane	104	99	52-130	5	30	
Bromomethane	124	123	57-147	1	30	
Vinyl chloride	103	97	67-130	6	30	
Chloroethane	123	119	50-151	3	30	
1,1-Dichloroethene	103	96	65-135	7	30	
trans-1,2-Dichloroethene	105	101	70-130	4	30	
Trichloroethene	106	104	70-130	2	30	
1,2-Dichlorobenzene	100	101	70-130	1	30	
1,3-Dichlorobenzene	104	104	70-130	0	30	
1,4-Dichlorobenzene	103	102	70-130	1	30	
Methyl tert butyl ether	100	101	66-130	1	30	
p/m-Xylene	102	100	70-130	2	30	
o-Xylene	100	100	70-130	0	30	
cis-1,2-Dichloroethene	103	103	70-130	0	30	
Dibromomethane	98	101	70-130	3	30	
Styrene	100	100	70-130	0	30	
Dichlorodifluoromethane	94	86	30-146	9	30	
Acetone	110	109	54-140	1	30	
Carbon disulfide	94	90	59-130	4	30	
2-Butanone	100	99	70-130	1	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westborou	ugh Lab Associated sample(s	s): 04 Batch: WG7	89623-1 WG789623-2			
Vinyl acetate	90	91	70-130	1	30	
4-Methyl-2-pentanone	80	85	70-130	6	30	
1,2,3-Trichloropropane	98	97	68-130	1	30	
2-Hexanone	76	76	70-130	0	30	
Bromochloromethane	110	110	70-130	0	30	
2,2-Dichloropropane	107	101	70-130	6	30	
1,2-Dibromoethane	96	96	70-130	0	30	
1,3-Dichloropropane	98	99	69-130	1	30	
1,1,1,2-Tetrachloroethane	100	99	70-130	1	30	
Bromobenzene	100	98	70-130	2	30	
n-Butylbenzene	110	105	70-130	5	30	
sec-Butylbenzene	103	99	70-130	4	30	
tert-Butylbenzene	98	95	70-130	3	30	
o-Chlorotoluene	105	102	70-130	3	30	
p-Chlorotoluene	102	100	70-130	2	30	
1,2-Dibromo-3-chloropropane	71	73	68-130	3	30	
Hexachlorobutadiene	98	95	67-130	3	30	
Isopropylbenzene	100	96	70-130	4	30	
p-Isopropyltoluene	102	98	70-130	4	30	
Naphthalene	84	87	70-130	4	30	
Acrylonitrile	109	110	70-130	1	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westbore	ough Lab Associated sample(s	s): 04 Batch: W	G789623-1 WG789623-2			
Diisopropyl Ether	104	106	66-130	2	30	
Tert-Butyl Alcohol	80	81	70-130	1	30	
n-Propylbenzene	104	100	70-130	4	30	
1,2,3-Trichlorobenzene	93	95	70-130	2	30	
1,2,4-Trichlorobenzene	96	97	70-130	1	30	
1,3,5-Trimethylbenzene	102	99	70-130	3	30	
1,2,4-Trimethylbenzene	101	98	70-130	3	30	
Methyl Acetate	106	106	51-146	0	30	
Ethyl Acetate	98	102	70-130	4	30	
Acrolein	86	81	70-130	6	30	
Cyclohexane	110	101	59-142	9	30	
1,4-Dioxane	95	98	65-136	3	30	
Freon-113	117	104	50-139	12	30	
p-Diethylbenzene	104	100	70-130	4	30	
p-Ethyltoluene	105	102	70-130	3	30	
1,2,4,5-Tetramethylbenzene	96	95	70-130	1	30	
Tetrahydrofuran	101	104	66-130	3	30	
Ethyl ether	107	108	67-130	1	30	
trans-1,4-Dichloro-2-butene	102	101	70-130	1	30	
Methyl cyclohexane	106	98	70-130	8	30	
Ethyl-Tert-Butyl-Ether	100	102	70-130	2	30	

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	ed sample(s):	04	Batch:	WG789623-1	WG789623-2				
Tertiary-Amyl Methyl Ether	91			93		70-130	2		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	103		105		70-130	
Toluene-d8	96		94		70-130	
4-Bromofluorobenzene	94		92		70-130	
Dibromofluoromethane	101		101		70-130	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westbo	rough Lab Associated sample(s)	: 01-03 Batch:	WG789624-1 WG789624-2			
Methylene chloride	98	93	70-130	5	30	
1,1-Dichloroethane	100	93	70-130	7	30	
Chloroform	96	91	70-130	5	30	
Carbon tetrachloride	104	96	70-130	8	30	
1,2-Dichloropropane	97	94	70-130	3	30	
Dibromochloromethane	87	88	70-130	1	30	
2-Chloroethylvinyl ether	77	79	70-130	3	30	
1,1,2-Trichloroethane	91	90	70-130	1	30	
Tetrachloroethene	110	103	70-130	7	30	
Chlorobenzene	102	100	70-130	2	30	
Trichlorofluoromethane	98	86	70-139	13	30	
1,2-Dichloroethane	77	76	70-130	1	30	
1,1,1-Trichloroethane	101	93	70-130	8	30	
Bromodichloromethane	87	86	70-130	1	30	
trans-1,3-Dichloropropene	85	85	70-130	0	30	
cis-1,3-Dichloropropene	94	93	70-130	1	30	
1,1-Dichloropropene	110	99	70-130	11	30	
Bromoform	90	89	70-130	1	30	
1,1,2,2-Tetrachloroethane	85	85	70-130	0	30	
Benzene	108	102	70-130	6	30	
Toluene	105	101	70-130	4	30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by 8260/5035 - Westborou	gh Lab Associa [.]	ted sample(s):	01-03	Batch:	WG789624-	1 WG789624-2			
Ethylbenzene	105		1(00		70-130	5		30
Chloromethane	90		8	0		52-130	12		30
Bromomethane	98		8	8		57-147	11		30
Vinyl chloride	104		9	0		67-130	14		30
Chloroethane	107		9	7		50-151	10		30
1,1-Dichloroethene	120		1()4		65-135	14		30
trans-1,2-Dichloroethene	115		1()5		70-130	9		30
Trichloroethene	108		1()2		70-130	6		30
1,2-Dichlorobenzene	96		9	5		70-130	1		30
1,3-Dichlorobenzene	103		1(00		70-130	3		30
1,4-Dichlorobenzene	99		9	8		70-130	1		30
Methyl tert butyl ether	87		8	4		66-130	4		30
p/m-Xylene	111		1()6		70-130	5		30
o-Xylene	106		1()3		70-130	3		30
cis-1,2-Dichloroethene	109		1()3		70-130	6		30
Dibromomethane	87		8	7		70-130	0		30
Styrene	105		1()3		70-130	2		30
Dichlorodifluoromethane	81		6	9		30-146	16		30
Acetone	66		6	5		54-140	2		30
Carbon disulfide	82		6	9		59-130	17		30
2-Butanone	71		7	0		70-130	1		30

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associat	ed sample(s):	01-03 Batc	n: WG789624-	1 WG789624-2				
Vinyl acetate	72		69	Q	70-130	4		30	
4-Methyl-2-pentanone	71		71		70-130	0		30	
1,2,3-Trichloropropane	80		79		68-130	1		30	
2-Hexanone	66	Q	65	Q	70-130	2		30	
Bromochloromethane	106		102		70-130	4		30	
2,2-Dichloropropane	100		91		70-130	9		30	
1,2-Dibromoethane	90		89		70-130	1		30	
1,3-Dichloropropane	86		85		69-130	1		30	
1,1,1,2-Tetrachloroethane	95		94		70-130	1		30	
Bromobenzene	100		97		70-130	3		30	
n-Butylbenzene	110		101		70-130	9		30	
sec-Butylbenzene	112		104		70-130	7		30	
tert-Butylbenzene	109		101		70-130	8		30	
o-Chlorotoluene	100		95		70-130	5		30	
p-Chlorotoluene	99		95		70-130	4		30	
1,2-Dibromo-3-chloropropane	75		76		68-130	1		30	
Hexachlorobutadiene	113		106		67-130	6		30	
Isopropylbenzene	107		102		70-130	5		30	
p-Isopropyltoluene	111		104		70-130	7		30	
Naphthalene	86		85		70-130	1		30	
Acrylonitrile	88		87		70-130	1		30	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westbord	ough Lab Associa	ted sample(s):	01-03 Batch:	WG789624-7	1 WG789624-2				
Diisopropyl Ether	90		86		66-130	5		30	
Tert-Butyl Alcohol	66	Q	64	Q	70-130	3		30	
n-Propylbenzene	108		100		70-130	8		30	
1,2,3-Trichlorobenzene	96		96		70-130	0		30	
1,2,4-Trichlorobenzene	103		100		70-130	3		30	
1,3,5-Trimethylbenzene	104		99		70-130	5		30	
1,2,4-Trimethylbenzene	102		98		70-130	4		30	
Methyl Acetate	82		79		51-146	4		30	
Ethyl Acetate	84		80		70-130	5		30	
Acrolein	77		76		70-130	1		30	
Cyclohexane	122		108		59-142	12		30	
1,4-Dioxane	78		79		65-136	1		30	
Freon-113	123		107		50-139	14		30	
p-Diethylbenzene	110		106		70-130	4		30	
p-Ethyltoluene	110		106		70-130	4		30	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		30	
Tetrahydrofuran	78		76		66-130	3		30	
Ethyl ether	100		96		67-130	4		30	
trans-1,4-Dichloro-2-butene	76		75		70-130	1		30	
Methyl cyclohexane	126		111		70-130	13		30	
Ethyl-Tert-Butyl-Ether	87		84		70-130	4		30	

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

	LCS		LCS	SD	9	6Recovery			RPD
Parameter	%Recovery	Qual	%Reco	overy	Qual	Limits	RPD	Qual	Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	d sample(s):	01-03	Batch:	WG789624-1	WG789624-2			
Tertiary-Amyl Methyl Ether	87		8	6		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
	74		74		70.400	
1,2-Dichloroethane-d4	74		74		70-130	
Toluene-d8	96		96		70-130	
4-Bromofluorobenzene	92		92		70-130	
Dibromofluoromethane	94		93		70-130	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated sampl	e(s): 07-08 Batch: N	WG789639-1 WG789639-2			
Methylene chloride	91	82	70-130	10	20	
1,1-Dichloroethane	116	105	70-130	10	20	
Chloroform	119	108	70-130	10	20	
2-Chloroethylvinyl ether	88	80	70-130	10	20	
Carbon tetrachloride	109	100	63-132	9	20	
1,2-Dichloropropane	105	96	70-130	9	20	
Dibromochloromethane	102	91	63-130	11	20	
1,1,2-Trichloroethane	100	93	70-130	7	20	
Tetrachloroethene	108	98	70-130	10	20	
Chlorobenzene	99	90	75-130	10	20	
Trichlorofluoromethane	122	113	62-150	8	20	
1,2-Dichloroethane	107	98	70-130	9	20	
1,1,1-Trichloroethane	115	106	67-130	8	20	
Bromodichloromethane	108	97	67-130	11	20	
trans-1,3-Dichloropropene	111	99	70-130	11	20	
cis-1,3-Dichloropropene	98	88	70-130	11	20	
1,1-Dichloropropene	109	101	70-130	8	20	
Bromoform	107	96	54-136	11	20	
1,1,2,2-Tetrachloroethane	90	81	67-130	11	20	
Benzene	107	97	70-130	10	20	
Toluene	110	100	70-130	10	20	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	07-08 Batch: N	VG789639-1	WG789639-2			
Ethylbenzene	103		94		70-130	9	20	
Chloromethane	51	Q	43	Q	64-130	17	20	
Bromomethane	74		64		39-139	14	20	
Vinyl chloride	75		68		55-140	10	20	
Chloroethane	102		90		55-138	13	20	
1,1-Dichloroethene	108		99		61-145	9	20	
trans-1,2-Dichloroethene	111		100		70-130	10	20	
Trichloroethene	107		98		70-130	9	20	
1,2-Dichlorobenzene	84		77		70-130	9	20	
1,3-Dichlorobenzene	89		82		70-130	8	20	
1,4-Dichlorobenzene	91		84		70-130	8	20	
Methyl tert butyl ether	100		91		63-130	9	20	
p/m-Xylene	101		92		70-130	9	20	
o-Xylene	94		86		70-130	9	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Dibromomethane	97		89		70-130	9	20	
1,2,3-Trichloropropane	104		99		64-130	5	20	
Acrylonitrile	91		82		70-130	10	20	
Diisopropyl Ether	108		98		70-130	10	20	
Tert-Butyl Alcohol	88		83		70-130	6	20	
Styrene	94		86		70-130	9	20	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery G	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated sam	ple(s): 07-08 Batch:	WG789639-1	WG789639-2			
Dichlorodifluoromethane	45	42		36-147	7	2)
Acetone	87	75		58-148	15	2)
Carbon disulfide	97	87		51-130	11	2)
2-Butanone	98	85		63-138	14	2)
Vinyl acetate	96	87		70-130	10	2)
4-Methyl-2-pentanone	76	70		59-130	8	2)
2-Hexanone	80	73		57-130	9	2)
Acrolein	87	78		40-160	11	2)
Bromochloromethane	108	98		70-130	10	2)
2,2-Dichloropropane	117	105		63-133	11	2)
1,2-Dibromoethane	94	86		70-130	9	2)
1,3-Dichloropropane	102	93		70-130	9	2)
1,1,1,2-Tetrachloroethane	110	100		64-130	10	2)
Bromobenzene	90	82		70-130	9	2)
n-Butylbenzene	75	70		53-136	7	2)
sec-Butylbenzene	73	69	Q	70-130	6	2)
tert-Butylbenzene	76	70		70-130	8	2)
o-Chlorotoluene	102	92		70-130	10	2)
p-Chlorotoluene	95	86		70-130	10	2)
1,2-Dibromo-3-chloropropane	84	77		41-144	9	2)
Hexachlorobutadiene	72	68		63-130	6	2)

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	07-08 I	Batch:	WG789639-1	WG789639-2				
Isopropylbenzene	93			86		70-130	8		20	
p-Isopropyltoluene	73			68	Q	70-130	7		20	
Naphthalene	86			79		70-130	8		20	
n-Propylbenzene	91			84		69-130	8		20	
1,2,3-Trichlorobenzene	92			86		70-130	7		20	
1,2,4-Trichlorobenzene	88			83		70-130	6		20	
1,3,5-Trimethylbenzene	92			85		64-130	8		20	
1,2,4-Trimethylbenzene	86			79		70-130	8		20	
Methyl Acetate	95			87		70-130	9		20	
Ethyl Acetate	96			87		70-130	10		20	
Cyclohexane	102			95		70-130	7		20	
Ethyl-Tert-Butyl-Ether	102			94		70-130	8		20	
Tertiary-Amyl Methyl Ether	95			87		66-130	9		20	
1,4-Dioxane	100			91		56-162	9		20	
Freon-113	114			105		70-130	8		20	
p-Diethylbenzene	74			68	Q	70-130	8		20	
p-Ethyltoluene	90			82		70-130	9		20	
1,2,4,5-Tetramethylbenzene	82			74		70-130	10		20	
Ethyl ether	100			91		59-134	9		20	
trans-1,4-Dichloro-2-butene	103			87		70-130	17		20	
lodomethane	67	Q		63	Q	70-130	6		20	

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	07-08	Batch:	WG789639-1	WG789639-2				
Methyl cyclohexane	98			93		70-130	5		20	

	LCS	LCS LCSD %Recovery Qual %Recovery			Acceptance	
Surrogate	%Recovery			Qual	Criteria	
1,2-Dichloroethane-d4	99		100		70-130	
Toluene-d8	109		109		70-130	
4-Bromofluorobenzene	96		97		70-130	
Dibromofluoromethane	109		108		70-130	

SEMIVOLATILES

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-01	Date Collected:	05/30/15 14:40
Client ID:	EB07_10-12	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/31/15 01:33
Analytical Date:	05/31/15 16:22		
Analyst:	KR		
Percent Solids:	77%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Acenaphthene	ND		ug/kg	170	44.	1
1,2,4-Trichlorobenzene	ND		ug/kg	210	70.	1
Hexachlorobenzene	ND		ug/kg	130	40.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	60.	1
2-Chloronaphthalene	ND		ug/kg	210	70.	1
1,2-Dichlorobenzene	ND		ug/kg	210	70.	1
1,3-Dichlorobenzene	ND		ug/kg	210	68.	1
1,4-Dichlorobenzene	ND		ug/kg	210	65.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	57.	1
2,4-Dinitrotoluene	ND		ug/kg	210	46.	1
2,6-Dinitrotoluene	ND		ug/kg	210	55.	1
Fluoranthene	ND		ug/kg	130	39.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	65.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	49.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	75.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	65.	1
Hexachlorobutadiene	ND		ug/kg	210	60.	1
Hexachlorocyclopentadiene	ND		ug/kg	610	140	1
Hexachloroethane	ND		ug/kg	170	39.	1
Isophorone	ND		ug/kg	190	57.	1
Naphthalene	ND		ug/kg	210	71.	1
Nitrobenzene	ND		ug/kg	190	51.	1
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	170	45.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	64.	1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	210	56.	1
Butyl benzyl phthalate	ND		ug/kg	210	42.	1
Di-n-butylphthalate	ND		ug/kg	210	41.	1
Di-n-octylphthalate	ND		ug/kg	210	53.	1
Diethyl phthalate	ND		ug/kg	210	45.	1
Dimethyl phthalate	ND		ug/kg	210	54.	1

				Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET			Lab Nu	mber:	L1511932	
Project Number:	170366001			Report	Date:	06/01/15	
•		SAMPLE RESUL	LTS	•			
Lab ID:	L1511932-01			Date Coll	ected:	05/30/15 14:40	
Client ID:	EB07_10-12			Date Rec		05/30/15	
Sample Location:	130 ST. FELIX STREET,	BROOKLYN NY		Field Pre	p:	Not Specified	
Parameter		Result Qualifier	· Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westboroug	lh Lab					
Benzo(a)anthracene		ND	ug/kg	130	42.	1	
Benzo(a)pyrene		ND	ug/kg	170	52.	1	
Benzo(b)fluoranthene		ND	ug/kg	130	43.	1	
Benzo(k)fluoranthene		ND	ug/kg	130	41.	1	
Chrysene		ND	ug/kg	130	42.	1	
Acenaphthylene		ND	ug/kg	170	40.	1	
Anthracene		ND	ug/kg	130	36.	1	
Benzo(ghi)perylene		ND	ug/kg	170	44.	1	
Fluorene		ND	ug/kg	210	61.	1	
Phenanthrene		ND	ug/kg	130	42.	1	
Dibenzo(a,h)anthracene		ND	ug/kg	130	41.	1	
Indeno(1,2,3-cd)Pyrene		ND	ug/kg	170	48.	1	
Pyrene		ND	ug/kg	130	42.	1	
Biphenyl		ND	ug/kg	490	71.	1	
4-Chloroaniline		ND	ug/kg	210	56.	1	
2-Nitroaniline		ND	ug/kg	210	60.	1	
3-Nitroaniline		ND	ug/kg	210	59.	1	
4-Nitroaniline		ND	ug/kg	210	58.	1	
Dibenzofuran		ND	ug/kg	210	72.	1	
2-Methylnaphthalene		ND	ug/kg	260	68.	1	
1,2,4,5-Tetrachlorobenze	ne	ND	ug/kg	210	66.	1	
Acetophenone		ND	ug/kg	210	66.	1	
2,4,6-Trichlorophenol		ND	ug/kg	130	40.	1	
P-Chloro-M-Cresol		ND	ug/kg	210	62.	1	
2-Chlorophenol		ND	ug/kg	210	65.	1	
2,4-Dichlorophenol		ND	ug/kg	190	69.	1	
2,4-Dimethylphenol		ND	ug/kg	210	64.	1	
2-Nitrophenol		ND	ug/kg	460	67.	1	
4-Nitrophenol		ND	ug/kg	300	69.	1	
2,4-Dinitrophenol		ND	ug/kg	1000	290	1	
4,6-Dinitro-o-cresol		ND	ug/kg	560	78.	1	
Pentachlorophenol		ND	ug/kg	170	46.	1	
Phenol		ND	ug/kg	210	63.	1	
2-Methylphenol		ND	ug/kg	210	69.	1	
3-Methylphenol/4-Methylp	phenol	ND	ug/kg	310	70.	1	
2,4,5-Trichlorophenol		ND	ug/kg	210	69.	1	
Benzoic Acid		ND	ug/kg	690	220	1	
Benzyl Alcohol		ND	ug/kg	210	66.	1	
Carbazole		ND	ug/kg	210	46.	1	

						Serial_No	o:06011519:38	
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPLI	E RESULTS	5				
Lab ID:	L1511932-01				Date Col	lected:	05/30/15 14:40	
Client ID:	EB07_10-12				Date Red	ceived:	05/30/15	
Sample Location:	130 ST. FELIX STREE	T, BROOKL`	YN NY		Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westborou	ugh Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	89		25-120
Phenol-d6	97		10-120
Nitrobenzene-d5	92		23-120
2-Fluorobiphenyl	104		30-120
2,4,6-Tribromophenol	116		10-136
4-Terphenyl-d14	117		18-120

		Serial_No:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932
Project Number:	170366001	Report Date: 06/01/15
	SAMPLE RESULTS	
Lab ID:	L1511932-02 D	Date Collected: 05/30/15 13:25
Client ID:	EB09_4.5-5.5	Date Received: 05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specified
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270D	Extraction Date: 05/31/15 01:33
Analytical Date:	05/31/15 18:05	
Analyst:	KR	
Percent Solids:	70%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Acenaphthene	1900		ug/kg	740	190	4
1,2,4-Trichlorobenzene	ND		ug/kg	930	300	4
Hexachlorobenzene	ND		ug/kg	560	170	4
Bis(2-chloroethyl)ether	ND		ug/kg	840	260	4
2-Chloronaphthalene	ND		ug/kg	930	300	4
1.2-Dichlorobenzene	ND		ug/kg	930	300	4
1,3-Dichlorobenzene	ND		ug/kg	930	290	4
1,4-Dichlorobenzene	ND		ug/kg	930	280	4
3,3'-Dichlorobenzidine	ND		ug/kg	930	250	4
2,4-Dinitrotoluene	ND		ug/kg	930	200	4
2,6-Dinitrotoluene	ND		ug/kg	930	240	4
Fluoranthene	23000		ug/kg	560	170	4
4-Chlorophenyl phenyl ether	ND		ug/kg	930	280	4
4-Bromophenyl phenyl ether	ND		ug/kg	930	210	4
Bis(2-chloroisopropyl)ether	ND		ug/kg	1100	330	4
Bis(2-chloroethoxy)methane	ND		ug/kg	1000	280	4
Hexachlorobutadiene	ND		ug/kg	930	260	4
Hexachlorocyclopentadiene	ND		ug/kg	2600	600	4
Hexachloroethane	ND		ug/kg	740	170	4
Isophorone	ND		ug/kg	840	250	4
Naphthalene	3200		ug/kg	930	310	4
Nitrobenzene	ND		ug/kg	840	220	4
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	740	200	4
n-Nitrosodi-n-propylamine	ND		ug/kg	930	280	4
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	930	240	4
Butyl benzyl phthalate	ND		ug/kg	930	180	4
Di-n-butylphthalate	ND		ug/kg	930	180	4
Di-n-octylphthalate	ND		ug/kg	930	230	4
Diethyl phthalate	ND		ug/kg	930	200	4
Dimethyl phthalate	ND		ug/kg	930	240	4

					ç	Serial_N	0:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
	11000001	SAMPL		S			00/01/10
Lab ID:	L1511932-02 D				Date Col	lected.	05/30/15 13:25
Client ID:	EB09_4.5-5.5				Date Red		05/30/15
Sample Location:	130 ST. FELIX STREET	, BROOKL	YN NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organi	cs by GC/MS - Westborou	gh Lab					
Benzo(a)anthracene		17000		ug/kg	560	180	4
Benzo(a)pyrene		17000		ug/kg	740	230	4
Benzo(b)fluoranthene		21000		ug/kg	560	190	4
Benzo(k)fluoranthene		7900		ug/kg	560	180	4
Chrysene		18000		ug/kg	560	180	4
Acenaphthylene		2200		ug/kg	740	170	4
Anthracene		5000		ug/kg	560	150	4
Benzo(ghi)perylene		12000		ug/kg	740	190	4
Fluorene		1600		ug/kg	930	270	4
Phenanthrene		16000		ug/kg	560	180	4
Dibenzo(a,h)anthracene		3600		ug/kg	560	180	4
Indeno(1,2,3-cd)Pyrene		10000		ug/kg	740	210	4
Pyrene		23000		ug/kg	560	180	4
Biphenyl		410	J	ug/kg	2100	310	4
4-Chloroaniline		ND		ug/kg	930	240	4
2-Nitroaniline		ND		ug/kg	930	260	4
3-Nitroaniline		ND		ug/kg	930	260	4
4-Nitroaniline		ND		ug/kg	930	250	4
Dibenzofuran		1500		ug/kg	930	310	4
2-Methylnaphthalene		1200		ug/kg	1100	300	4
1,2,4,5-Tetrachlorobenzen	e	ND		ug/kg	930	290	4
Acetophenone		ND		ug/kg	930	290	4
2,4,6-Trichlorophenol		ND		ug/kg	560	180	4
P-Chloro-M-Cresol		ND		ug/kg	930	270	4
2-Chlorophenol		ND		ug/kg	930	280	4
2,4-Dichlorophenol		ND		ug/kg	840	300	4
2,4-Dimethylphenol		ND		ug/kg	930	280	4
2-Nitrophenol		ND		ug/kg	2000	290	4
4-Nitrophenol		ND		ug/kg	1300	300	4
2,4-Dinitrophenol		ND		ug/kg	4500	1300	4
4,6-Dinitro-o-cresol		ND		ug/kg	2400	340	4
Pentachlorophenol		ND		ug/kg	740	200	4
Phenol		ND		ug/kg	930	280	4
2-Methylphenol		ND		ug/kg	930	300	4
3-Methylphenol/4-Methylph	nenol	ND		ug/kg	1300	300	4
2,4,5-Trichlorophenol		ND		ug/kg	930	300	4
Benzoic Acid		ND		ug/kg	3000	940	4
Benzyl Alcohol		ND		ug/kg	930	290	4
Carbazole		1900		ug/kg	930	200	4
				5.5			

					S	Serial_No	0:06011519:38	
Project Name:	130 ST. FELIX STREE	T			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPL	E RESULTS	5				
Lab ID:	L1511932-02	D			Date Coll	ected:	05/30/15 13:25	
Client ID:	EB09_4.5-5.5				Date Rec	eived:	05/30/15	
Sample Location:	130 ST. FELIX STRE	ET, BROOKL	YN NY		Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbor	ough Lab						

% Recovery	Qualifier	Acceptance Criteria	
61		25-120	
67		10-120	
72		23-120	
73		30-120	
67		10-136	
74		18-120	
	61 67 72 73 67	61 67 72 73 67	% Recovery Qualifier Criteria 61 25-120 67 10-120 72 23-120 73 30-120 67 10-136

			Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREE	ET	Lab Number:	L1511932
Project Number:	170366001		Report Date:	06/01/15
		SAMPLE RESULTS		
Lab ID:	L1511932-03	D	Date Collected:	05/30/15 10:35
Client ID:	EB10_1-2		Date Received:	05/30/15
Sample Location:	130 ST. FELIX STRE	EET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D		Extraction Date:	05/31/15 01:33
Analytical Date:	05/31/15 17:39			
Analyst:	KR			
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Acenaphthene	ND		ug/kg	300	76.	2
1,2,4-Trichlorobenzene	ND		ug/kg	370	120	2
Hexachlorobenzene	ND		ug/kg	220	69.	2
Bis(2-chloroethyl)ether	ND		ug/kg	330	100	2
2-Chloronaphthalene	ND		ug/kg	370	120	2
1,2-Dichlorobenzene	ND		ug/kg	370	120	2
1,3-Dichlorobenzene	ND		ug/kg	370	120	2
1,4-Dichlorobenzene	ND		ug/kg	370	110	2
3,3'-Dichlorobenzidine	ND		ug/kg	370	98.	2
2,4-Dinitrotoluene	ND		ug/kg	370	80.	2
2,6-Dinitrotoluene	ND		ug/kg	370	95.	2
Fluoranthene	110	J	ug/kg	220	68.	2
4-Chlorophenyl phenyl ether	ND		ug/kg	370	110	2
4-Bromophenyl phenyl ether	ND		ug/kg	370	85.	2
Bis(2-chloroisopropyl)ether	ND		ug/kg	440	130	2
Bis(2-chloroethoxy)methane	ND		ug/kg	400	110	2
Hexachlorobutadiene	ND		ug/kg	370	100	2
Hexachlorocyclopentadiene	ND		ug/kg	1000	240	2
Hexachloroethane	ND		ug/kg	300	67.	2
Isophorone	ND		ug/kg	330	98.	2
Naphthalene	ND		ug/kg	370	120	2
Nitrobenzene	ND		ug/kg	330	88.	2
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	300	78.	2
n-Nitrosodi-n-propylamine	ND		ug/kg	370	110	2
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	370	97.	2
Butyl benzyl phthalate	ND		ug/kg	370	72.	2
Di-n-butylphthalate	ND		ug/kg	370	71.	2
Di-n-octylphthalate	ND		ug/kg	370	91.	2
Diethyl phthalate	ND		ug/kg	370	78.	2
Dimethyl phthalate	ND		ug/kg	370	94.	2

						Serial_N	0:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu		L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMPI		S			00,01,10
Lab ID:	L1511932-03 D				Date Col	lected.	05/30/15 10:35
Client ID:	EB10_1-2				Date Red		05/30/15
Sample Location:	130 ST. FELIX STREET	, BROOK	LYN NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organic	cs by GC/MS - Westborou	gh Lab					
				"	000	70	0
Benzo(a)anthracene		ND ND		ug/kg	220	72. 90.	2
Benzo(a)pyrene		ND		ug/kg	300 220	90. 75.	
Benzo(b)fluoranthene				ug/kg			2
Benzo(k)fluoranthene		ND		ug/kg	220	71.	2
Chrysene		ND		ug/kg	220	73.	2
Acenaphthylene		ND		ug/kg	300	69.	2
Anthracene		ND		ug/kg	220	62.	2
Benzo(ghi)perylene		ND		ug/kg	300	77.	2
Fluorene		ND		ug/kg	370	110	2
Phenanthrene		ND		ug/kg	220	72.	2
Dibenzo(a,h)anthracene		ND		ug/kg	220	72.	2
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	300	82.	2
Pyrene		96	J	ug/kg	220	72.	2
Biphenyl		ND		ug/kg	840	120	2
4-Chloroaniline		ND		ug/kg	370	98.	2
2-Nitroaniline		ND		ug/kg	370	100	2
3-Nitroaniline		ND		ug/kg	370	100	2
4-Nitroaniline		ND		ug/kg	370	100	2
Dibenzofuran		ND		ug/kg	370	120	2
2-Methylnaphthalene		ND		ug/kg	440	120	2
1,2,4,5-Tetrachlorobenzene	9	ND		ug/kg	370	110	2
Acetophenone		ND		ug/kg	370	110	2
2,4,6-Trichlorophenol		ND		ug/kg	220	70.	2
P-Chloro-M-Cresol		ND		ug/kg	370	110	2
2-Chlorophenol		ND		ug/kg	370	110	2
2,4-Dichlorophenol		ND		ug/kg	330	120	2
2,4-Dimethylphenol		ND		ug/kg	370	110	2
2-Nitrophenol		ND		ug/kg	800	120	2
4-Nitrophenol		ND		ug/kg	520	120	2
2,4-Dinitrophenol		ND		ug/kg	1800	510	2
4,6-Dinitro-o-cresol		ND		ug/kg	960	140	2
Pentachlorophenol		ND		ug/kg	300	79.	2
Phenol		ND		ug/kg	370	110	2
2-Methylphenol		ND		ug/kg	370	120	2
3-Methylphenol/4-Methylph	enol	ND		ug/kg	530	120	2
2,4,5-Trichlorophenol		ND		ug/kg	370	120	2
Benzoic Acid		ND		ug/kg	1200	370	2
Benzyl Alcohol		ND		ug/kg	370	110	2
Carbazole		ND		ug/kg	370	80.	2

					S	Serial_No	p:06011519:38	
Project Name:	130 ST. FELIX STRE	ET			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPL	E RESULTS	5				
Lab ID:	L1511932-03	D			Date Coll	ected:	05/30/15 10:35	
Client ID:	EB10_1-2				Date Rec	eived:	05/30/15	
Sample Location:	130 ST. FELIX STR	EET, BROOKL	_YN NY		Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbo	orough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	70		25-120	
Phenol-d6	76		10-120	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	81		30-120	
2,4,6-Tribromophenol	79		10-136	
4-Terphenyl-d14	86		18-120	

		Serial_No:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932
Project Number:	170366001	Report Date: 06/01/15
	SAMPLE RESUL	TS
Lab ID:	L1511932-04 D2	Date Collected: 05/30/15 12:40
Client ID:	EB12_7-9	Date Received: 05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specified
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270D	Extraction Date: 05/31/15 19:11
Analytical Date:	06/01/15 13:37	
Analyst:	AS	
Percent Solids:	84%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	IS - Westborough Lab					
Fluoranthene	600000		ug/kg	12000	3800	105
Phenanthrene	620000		ug/kg	12000	4000	105
Pyrene	480000		ug/kg	12000	4000	105

		Serial_No:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932
Project Number:	170366001	Report Date: 06/01/15
	SAMPLE RESUL	rs
Lab ID:	L1511932-04 D	Date Collected: 05/30/15 12:40
Client ID:	EB12_7-9	Date Received: 05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specified
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270D	Extraction Date: 05/31/15 19:11
Analytical Date:	06/01/15 12:21	
Analyst:	AS	
Percent Solids:	84%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	58000		ug/kg	8200	2100	52.5
1,2,4-Trichlorobenzene	ND		ug/kg	10000	3400	52.5
Hexachlorobenzene	ND		ug/kg	6100	1900	52.5
Bis(2-chloroethyl)ether	ND		ug/kg	9200	2900	52.5
2-Chloronaphthalene	ND		ug/kg	10000	3300	52.5
1,2-Dichlorobenzene	ND		ug/kg	10000	3400	52.5
1,3-Dichlorobenzene	ND		ug/kg	10000	3200	52.5
1,4-Dichlorobenzene	ND		ug/kg	10000	3100	52.5
3,3'-Dichlorobenzidine	ND		ug/kg	10000	2700	52.5
2,4-Dinitrotoluene	ND		ug/kg	10000	2200	52.5
2,6-Dinitrotoluene	ND		ug/kg	10000	2600	52.5
Fluoranthene	520000	E	ug/kg	6100	1900	52.5
4-Chlorophenyl phenyl ether	ND		ug/kg	10000	3100	52.5
4-Bromophenyl phenyl ether	ND		ug/kg	10000	2400	52.5
Bis(2-chloroisopropyl)ether	ND		ug/kg	12000	3600	52.5
Bis(2-chloroethoxy)methane	ND		ug/kg	11000	3100	52.5
Hexachlorobutadiene	ND		ug/kg	10000	2900	52.5
Hexachlorocyclopentadiene	ND		ug/kg	29000	6600	52.5
Hexachloroethane	ND		ug/kg	8200	1900	52.5
Isophorone	ND		ug/kg	9200	2700	52.5
Naphthalene	110000		ug/kg	10000	3400	52.5
Nitrobenzene	ND		ug/kg	9200	2400	52.5
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	8200	2200	52.5
n-Nitrosodi-n-propylamine	ND		ug/kg	10000	3000	52.5
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	10000	2700	52.5
Butyl benzyl phthalate	ND		ug/kg	10000	2000	52.5
Di-n-butylphthalate	ND		ug/kg	10000	2000	52.5
Di-n-octylphthalate	ND		ug/kg	10000	2500	52.5
Diethyl phthalate	ND		ug/kg	10000	2200	52.5
Dimethyl phthalate	ND		ug/kg	10000	2600	52.5

		Serial_No:06011519:38					p:06011519:38
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
,		SAMPL	E RESULTS	6			00/01/10
Lab ID:	L1511932-04 D				Date Coll	ected:	05/30/15 12:40
Client ID:	EB12_7-9				Date Rec		05/30/15
Sample Location:	130 ST. FELIX STREET	r, brooki	_YN NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westborou	idh Lab					
		.9					
Benzo(a)anthracene		270000		ug/kg	6100	2000	52.5
Benzo(a)pyrene		260000		ug/kg	8200	2500	52.5
Benzo(b)fluoranthene		270000		ug/kg	6100	2100	52.5
Benzo(k)fluoranthene		190000		ug/kg	6100	2000	52.5
Chrysene		270000		ug/kg	6100	2000	52.5
Acenaphthylene		42000		ug/kg	8200	1900	52.5
Anthracene		140000		ug/kg	6100	1700	52.5
Benzo(ghi)perylene		180000		ug/kg	8200	2100	52.5
Fluorene		76000		ug/kg	10000	2900	52.5
Phenanthrene		520000	E	ug/kg	6100	2000	52.5
Dibenzo(a,h)anthracene		60000		ug/kg	6100	2000	52.5
Indeno(1,2,3-cd)Pyrene		170000		ug/kg	8200	2300	52.5
Pyrene		430000	E	ug/kg	6100	2000	52.5
Biphenyl		14000	J	ug/kg	23000	3400	52.5
4-Chloroaniline		ND		ug/kg	10000	2700	52.5
2-Nitroaniline		ND		ug/kg	10000	2900	52.5
3-Nitroaniline		ND ND		ug/kg	10000	2800	52.5
4-Nitroaniline Dibenzofuran		71000		ug/kg	10000	2800 3400	52.5
2-Methylnaphthalene		50000		ug/kg ug/kg	12000	3300	52.5
1,2,4,5-Tetrachlorobenze	ne	ND		ug/kg	10000	3200	52.5
Acetophenone		ND		ug/kg	10000	3200	52.5
2,4,6-Trichlorophenol		ND		ug/kg	6100	1900	52.5
P-Chloro-M-Cresol		ND		ug/kg	10000	3000	52.5
2-Chlorophenol		ND		ug/kg	10000	3100	52.5
2,4-Dichlorophenol		ND		ug/kg	9200	3300	52.5
2,4-Dimethylphenol		3800	J	ug/kg	10000	3000	52.5
2-Nitrophenol		ND		ug/kg	22000	3200	52.5
4-Nitrophenol		ND		ug/kg	14000	3300	52.5
2,4-Dinitrophenol		ND		ug/kg	49000	14000	52.5
4,6-Dinitro-o-cresol		ND		ug/kg	27000	3800	52.5
Pentachlorophenol		ND		ug/kg	8200	2200	52.5
Phenol		3900	J	ug/kg	10000	3000	52.5
2-Methylphenol		ND		ug/kg	10000	3300	52.5
3-Methylphenol/4-Methylp	phenol	8100	J	ug/kg	15000	3400	52.5
2,4,5-Trichlorophenol		ND		ug/kg	10000	3300	52.5
Benzoic Acid		ND		ug/kg	33000	10000	52.5
Benzyl Alcohol		ND		ug/kg	10000	3200	52.5
Carbazole		100000		ug/kg	10000	2200	52.5

					S	Serial_No	o:06011519:38	
Project Name:	130 ST. FELIX STREI	ET			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPL	E RESULTS	6				
Lab ID:	L1511932-04	D			Date Coll	ected:	05/30/15 12:40	
Client ID:	EB12_7-9				Date Rec	eived:	05/30/15	
Sample Location:	130 ST. FELIX STRE	EET, BROOKL	YN NY		Field Pre	o:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbo	rough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	0	Q	25-120
Phenol-d6	0	Q	10-120
Nitrobenzene-d5	0	Q	23-120
2-Fluorobiphenyl	0	Q	30-120
2,4,6-Tribromophenol	0	Q	10-136
4-Terphenyl-d14	0	Q	18-120

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-05	Date Collected:	05/30/15 12:00
Client ID:	EB13_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/31/15 01:33
Analytical Date:	05/31/15 17:13		
Analyst:	KR		
Percent Solids:	90%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Acenaphthene	180		ug/kg	150	38.	1
1,2,4-Trichlorobenzene	ND		ug/kg	180	61.	1
Hexachlorobenzene	ND		ug/kg	110	34.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	52.	1
2-Chloronaphthalene	ND		ug/kg	180	60.	1
1,2-Dichlorobenzene	ND		ug/kg	180	61.	1
1,3-Dichlorobenzene	ND		ug/kg	180	58.	1
1,4-Dichlorobenzene	ND		ug/kg	180	56.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1
2,4-Dinitrotoluene	ND		ug/kg	180	40.	1
2,6-Dinitrotoluene	ND		ug/kg	180	47.	1
Fluoranthene	2400		ug/kg	110	34.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	56.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	42.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	65.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	56.	1
Hexachlorobutadiene	ND		ug/kg	180	52.	1
Hexachlorocyclopentadiene	ND		ug/kg	530	120	1
Hexachloroethane	ND		ug/kg	150	34.	1
Isophorone	ND		ug/kg	170	49.	1
Naphthalene	200		ug/kg	180	61.	1
Nitrobenzene	ND		ug/kg	170	44.	1
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	150	39.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	55.	1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	180	48.	1
Butyl benzyl phthalate	ND		ug/kg	180	36.	1
Di-n-butylphthalate	ND		ug/kg	180	36.	1
Di-n-octylphthalate	ND		ug/kg	180	45.	1
Diethyl phthalate	ND		ug/kg	180	39.	1
Dimethyl phthalate	ND		ug/kg	180	47.	1

	Serial_No:06011519:38					p:06011519:38	
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
··· , ····		SAMPLE	RESULT	S			00/01/10
Lab ID:	L1511932-05				Date Coll	ected:	05/30/15 12:00
Client ID:	EB13_7-9				Date Rec		05/30/15
Sample Location:	130 ST. FELIX STREET	BROOKLYN	N NY		Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westboroug	gh Lab					
Benzo(a)anthracene		900			110	36.	1
Benzo(a)pyrene		840		ug/kg ug/kg	150	45.	1
Benzo(b)fluoranthene		1000		ug/kg	110	37.	1
Benzo(k)fluoranthene		370		ug/kg	110	35.	1
Chrysene		910			110	36.	1
Acenaphthylene		150		ug/kg	150	30.	1
Acenaphthylene		460		ug/kg	110	34.	1
Benzo(ghi)perylene		570		ug/kg ug/kg	150	31.	1
Fluorene		200			180	53.	1
Phenanthrene		2000		ug/kg	110	36.	1
Dibenzo(a,h)anthracene		150		ug/kg ug/kg	110	36.	1
Indeno(1,2,3-cd)Pyrene		480			150	41.	1
Pyrene		2000		ug/kg	110	36.	1
Biphenyl		ND		ug/kg	420	61.	1
4-Chloroaniline		ND		ug/kg ug/kg	180	49.	1
2-Nitroaniline		ND		ug/kg	180	52.	1
3-Nitroaniline		ND		ug/kg	180	51.	1
4-Nitroaniline		ND		ug/kg	180	50.	1
Dibenzofuran		170	J	ug/kg	180	62.	1
2-Methylnaphthalene		93	J	ug/kg	220	59.	1
1,2,4,5-Tetrachlorobenze	ne	ND		ug/kg	180	57.	1
Acetophenone		ND		ug/kg	180	57.	1
2,4,6-Trichlorophenol		ND		ug/kg	110	35.	1
P-Chloro-M-Cresol		ND		ug/kg	180	54.	1
2-Chlorophenol		ND		ug/kg	180	56.	1
2,4-Dichlorophenol		ND		ug/kg	170	60.	1
2,4-Dimethylphenol		ND		ug/kg	180	55.	1
2-Nitrophenol		ND		ug/kg	400	58.	1
4-Nitrophenol		ND		ug/kg	260	60.	1
2,4-Dinitrophenol		ND		ug/kg	890	250	1
4,6-Dinitro-o-cresol		ND		ug/kg	480	68.	1
Pentachlorophenol		ND		ug/kg	150	40.	1
Phenol		ND		ug/kg	180	55.	1
2-Methylphenol		ND		ug/kg	180	60.	1
3-Methylphenol/4-Methyl	phenol	ND		ug/kg	270	61.	1
2,4,5-Trichlorophenol		ND		ug/kg	180	60.	1
Benzoic Acid		ND		ug/kg	600	190	1
Benzyl Alcohol		ND		ug/kg	180	57.	1
Carbazole		240		ug/kg	180	40.	1

					:	Serial_No	p:06011519:38	
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPLI	E RESULTS	5				
Lab ID:	L1511932-05				Date Col	llected:	05/30/15 12:00	
Client ID:	EB13_7-9				Date Re	ceived:	05/30/15	
Sample Location:	130 ST. FELIX STREE	T, BROOKL	YN NY		Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westborou	ugh Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	89		25-120	
Phenol-d6	95		10-120	
Nitrobenzene-d5	95		23-120	
2-Fluorobiphenyl	97		30-120	
2,4,6-Tribromophenol	98		10-136	
4-Terphenyl-d14	103		18-120	

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00
Client ID:	DUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D	Extraction Date:	05/31/15 01:33
Analytical Date:	05/31/15 16:48		
Analyst:	KR		
Percent Solids:	75%		

A-Definition ND ug/kg 220 56. 1 Fluoranthene ND ug/kg 130 40. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 260 78. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 62. 1 Hexachlorootchoxylmethane ND ug/kg 630 140 1 Hexachlorootchane ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 NitrosoDi-h-propylamine ND ug/kg 220 68. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg </th <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2.4.Trichlorobenzene ND ug/kg 220 72. 1 Hexachlorobenzene ND ug/kg 130 41. 1 Bisl2-Chloroethyljether ND ug/kg 200 62. 1 2-Chloronephthalene ND ug/kg 220 72. 1 2-Chlorobenzene ND ug/kg 220 70. 1 1.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 68. 1 2.4-Dinitrotoluene ND ug/kg 130 40. 1 E-Lonitrotoluene ND ug/kg 220 67.	Semivolatile Organics by GC/MS - W	Vestborough Lab					
1,2.4.Trichlorobenzene ND ug/kg 220 72. 1 Hexachlorobenzene ND ug/kg 130 41. 1 Bisl2-Chloroethyljether ND ug/kg 200 62. 1 2-Chloronephthalene ND ug/kg 220 72. 1 2-Chlorobenzene ND ug/kg 220 70. 1 1.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 68. 1 2.4-Dinitrotoluene ND ug/kg 130 40. 1 E-Lonitrotoluene ND ug/kg 220 67.	Acenaphthene	ND		ia/ka	180	45	1
ND Ug/kg 130 41. 1 Bis(2-chloroaehyl)eher ND Ug/kg 200 62. 1 2-Chloroaehyl)eher ND Ug/kg 220 72. 1 1,2-Dichlorobenzene ND Ug/kg 220 72. 1 1,3-Dichlorobenzene ND Ug/kg 220 70. 1 1,4-Dichlorobenzene ND Ug/kg 220 67. 1 3.5-Dichlorobenzidine ND Ug/kg 220 67. 1 2,4-Dinitrotoluene ND Ug/kg 220 58. 1 Flooranthene ND Ug/kg 220 56. 1 Flooranthene ND Ug/kg 220 57. 1 4-Chorophenyl phenyl ether ND Ug/kg 280 78. 1 Bis(2-chlorosehoxyl)wethane ND Ug/kg 280 78. 1 Hoxachlorobutadiene ND Ug/kg 630 140 1 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
ND Ug/kg 200 62. 1 2-Chloronaphthalene ND Ug/kg 220 72. 1 2-Chloronaphthalene ND Ug/kg 220 72. 1 1,2-Dichlorobenzene ND Ug/kg 220 72. 1 1,3-Dichlorobenzene ND Ug/kg 220 70. 1 1,4-Dichlorobenzene ND Ug/kg 220 67. 1 3.3-Dichlorobenzene ND Ug/kg 220 68. 1 2,4-Dintrotoluene ND Ug/kg 220 66. 1 2,6-Dintrotoluene ND Ug/kg 220 67. 1 4-Chorophenyl phenyl ether ND Ug/kg 220 67. 1 4-Chorophenyl phenyl ether ND Ug/kg 240 67. 1 Bis(2-chloroisopropylbether ND Ug/kg 280 78. 1 Bis(2-chloroisopropylbether ND Ug/kg 630 140							
ND ug/kg 220 72. 1 1,2-Dichlorobenzene ND ug/kg 220 72. 1 1,3-Dichlorobenzene ND ug/kg 220 70. 1 1,4-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzene ND ug/kg 220 67. 1 3.4-Dichlorobenzidine ND ug/kg 220 65. 1 2.4-Dinitrotoluene ND ug/kg 130 40. 1 2.6-Dinitrotoluene ND ug/kg 220 67. 1 4-Chorophenyl phenyl ether ND ug/kg 220 67. 1 18/2-chloroboxymethane ND ug/kg 240 67. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
1.2-Dichlorobenzene ND ug/kg 220 72. 1 1.3-Dichlorobenzene ND ug/kg 220 70. 1 1.4-Dichlorobenzene ND ug/kg 220 67. 1 3.3-Dichlorobenzidine ND ug/kg 220 68. 1 2.4-Dinitrotoluene ND ug/kg 220 66. 1 2.6-Dinitrotoluene ND ug/kg 220 67. 1 2.6-Dinitrotoluene ND ug/kg 220 67. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Storophenyl phenyl ether ND ug/kg 220 67. 1 4-Bis(2-chlorophenyl phenyl ether ND ug/kg 240 67. 1 Bis(2-chlorophenyl phenyl ether ND ug/kg 240 67. 1 Hexachlorobutodiene ND ug/kg 240 67. 1 Isig(2-chlorobethxy)methane ND ug/kg 240 67. 1 Isig(2-chlorobethxy)methane							
1,3-Dichlorobenzene ND ug/kg 220 70. 1 1,4-Dichlorobenzene ND ug/kg 220 67. 1 3,3-Dichlorobenzidine ND ug/kg 220 59. 1 2,4-Dinitrotoluene ND ug/kg 220 48. 1 2,6-Dinitrotoluene ND ug/kg 130 40. 1 2,6-Dinitrotoluene ND ug/kg 220 66. 1 Fluoranthene ND ug/kg 220 67. 1 4-Chorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 200 78. 1 4-Bromophenyl phenyl ether ND ug/kg 200 62. 1 4-Bromophenyl phenyl ether ND ug/kg 200 59. 1 Hexachlorobutadiene ND ug/k	· ·						
A-Dichlorobenzene ND ug/kg 220 67. 1 3,3'-Dichlorobenzidine ND ug/kg 220 59. 1 2,4-Dinitrotoluene ND ug/kg 220 48. 1 2,6-Dinitrotoluene ND ug/kg 220 56. 1 2,6-Dinitrotoluene ND ug/kg 220 56. 1 Fluoranthene ND ug/kg 220 67. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 67. 1 8is(2-chlorotoisopropyl)ether ND ug/kg 260 78. 1 8is(2-chlorothoxy)methane ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocethane ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg <td>1.3-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>220</td> <td>70.</td> <td>1</td>	1.3-Dichlorobenzene	ND			220	70.	1
3.3-Dichlorobenzidine ND ug/kg 220 59. 1 2.4-Dinitrotoluene ND ug/kg 220 48. 1 2.4-Dinitrotoluene ND ug/kg 220 56. 1 2.6-Dinitrotoluene ND ug/kg 220 56. 1 Fluoranthene ND ug/kg 220 67. 1 4-Chlorophenyl phenyl ether ND ug/kg 260 78. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Bis(2-chloroothoxy)methane ND ug/kg 220 62. 1 Hexachlorobutadiene ND ug/kg 630 140 1 Hexachloroothane ND ug/kg 630 140 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 59. 1 Nitrobenzene ND ug/kg 200 58. 1 Nitrobenzene ND ug/kg 220 66. <t< td=""><td>1.4-Dichlorobenzene</td><td>ND</td><td></td><td></td><td></td><td>67.</td><td>1</td></t<>	1.4-Dichlorobenzene	ND				67.	1
A-Dinitrotoluene ND ug/kg 220 48. 1 2,6-Dinitrotoluene ND ug/kg 220 56. 1 Fluoranthene ND ug/kg 130 40. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 200 58. 1 Bis(2-Ethylhexyl)phthalate <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
P2.6-DinitrotolueneNDug/kg22056.1FluorantheneNDug/kg13040.14-Chlorophenyl etherNDug/kg22067.14-Bromophenyl etherNDug/kg26078.1Bis(2-chloroisopropyl)etherNDug/kg24067.1Bis(2-chloroisopropyl)etherNDug/kg22062.1HexachlorobutadieneNDug/kg23063.1401HexachloropclopentadieneNDug/kg6301401IsophoroneNDug/kg20059.1NitrobenzeneNDug/kg20052.1NitrosoDiPhenylAmine(NDPA)/DPANDug/kg20052.1Bis(2-Ethylhexyl)phthalateNDug/kg22066.1Bis(2-Ethylhexyl)phthalateNDug/kg22068.1Di-n-butylphthalateNDug/kg22058.1Bis(2-Ethylhexyl)phthalateNDug/kg22068.1Di-n-butylphthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22058.1Di-n-butylphthalateNDug/kg22058.1Di-n-butylphthalateNDug/kg22058.1Di-n-butylphthalateNDug/kg22058.1Di-n-butylphthalateNDug/kg22054	2,4-Dinitrotoluene	ND			220	48.	1
Fluoranthene ND ug/kg 130 40. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 220 51. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 67. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 67. 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 200 59. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 59. 1 Nitrobenzene ND ug/kg 200 52. 1 Nitrobenzene ND ug/kg 200 52. 1 Nitrobenzene ND ug/kg 200 58. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 20. <td< td=""><td>2,6-Dinitrotoluene</td><td>ND</td><td></td><td></td><td>220</td><td>56.</td><td>1</td></td<>	2,6-Dinitrotoluene	ND			220	56.	1
4-Chlorophenyl phenyl ether ND ug/kg 220 67. 1 4-Bromophenyl phenyl ether ND ug/kg 260 78. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 Hexachlorobutadiene ND ug/kg 230 62. 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 200 59. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 Nitrobenzene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 220 66. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 58. 1 Din-obtylphthalate ND ug/kg 220 58. 1 Din-octylphthalate ND ug/	Fluoranthene	ND			130	40.	1
Arbor ND ug/kg 220 51. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 78. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 67. 1 -texachlorobthadiene ND ug/kg 220 62. 1 -texachlorocyclopentadiene ND ug/kg 630 140 1 -texachlorochtadiene ND ug/kg 630 140 1 -texachlorochtadiene ND ug/kg 200 59. 1 -texachlorochtane ND ug/kg 200 59. 1 -texachlorochtane ND ug/kg 200 52. 1 Naphthalene ND ug/kg 200 52. 1 Nitrosodi-n-propylarnine ND ug/kg 220 66. 1 Nitrosodi-n-propylarnine ND ug/kg 220 58. 1 Suly berzyl phthalate ND ug/kg 220	4-Chlorophenyl phenyl ether	ND			220	67.	1
Bis(2-chloroisopropyl)ether ND ug/kg 260 78. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 67. 1 Hexachlorobutadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 180 40. 1 Hexachloroethane ND ug/kg 200 59. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 Nitrosodi-n-propylamine ND ug/kg 220 58. 1 Butyl benzyl phthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg <t< td=""><td>4-Bromophenyl phenyl ether</td><td>ND</td><td></td><td></td><td>220</td><td>51.</td><td>1</td></t<>	4-Bromophenyl phenyl ether	ND			220	51.	1
Bis(2-chloroethoxy)methane ND ug/kg 240 67. 1 Hexachlorobutadiene ND ug/kg 220 62. 1 Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 180 40. 1 Hexachloroethane ND ug/kg 200 59. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 Nitrosodi-n-propylamine ND ug/kg 220 66. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 58. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg 220 42. 1 Di-n-octylphthalate ND ug/kg	Bis(2-chloroisopropyl)ether	ND			260	78.	1
Hexachlorocyclopentadiene ND ug/kg 630 140 1 Hexachlorocyclopentadiene ND ug/kg 180 40. 1 Hexachlorocyclopentadiene ND ug/kg 200 59. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 Nitrobenzene ND ug/kg 180 46. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 220 66. 1 n-Nitrosodi-n-propylamine ND ug/kg 220 58. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg 220 43. 1 Di-n-octylphthalate ND ug/kg 220 54. 1 Di-n-octylphthalate ND ug/kg 220 54. 1	Bis(2-chloroethoxy)methane	ND			240	67.	1
Hexachloroethane ND ug/kg 180 40. 1 Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 59. 1 Naphthalene ND ug/kg 200 52. 1 Nitrobenzene ND ug/kg 180 46. 1 n-Nitrosodi-n-propylamine ND ug/kg 220 58. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 58. 1 Di-n-butylphthalate ND ug/kg 220 58. 1 Di-n-octylphthalate ND ug/kg 220 58. 1 Di-n-octylphthalate ND ug/kg 220 42. 1 Di-n-octylphthalate ND ug/kg 220 54. 1	Hexachlorobutadiene	ND	L	ug/kg	220	62.	1
Isophorone ND ug/kg 200 59. 1 Naphthalene ND ug/kg 220 73. 1 Nitrobenzene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 n-Nitrosodi-n-propylamine ND ug/kg 220 58. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 58. 1 Di-n-butylphthalate ND ug/kg 220 43. 1 Di-n-octylphthalate ND ug/kg 220 42. 1 Di-n-octylphthalate ND ug/kg 220 42. 1	Hexachlorocyclopentadiene	ND	L	ug/kg	630	140	1
Naphthalene ND ug/kg 220 73. 1 Nitrobenzene ND ug/kg 200 52. 1 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 180 46. 1 n-Nitrosodi-n-propylamine ND ug/kg 220 66. 1 Bis(2-Ethylhexyl)phthalate ND ug/kg 220 58. 1 Di-n-butylphthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg 220 43. 1 Di-n-butylphthalate ND ug/kg 220 54. 1 Di-n-octylphthalate ND ug/kg 220 54. 1	Hexachloroethane	ND	L	ug/kg	180	40.	1
NitrobenzeneNDug/kg20052.1NitrosoDiPhenylAmine(NDPA)/DPANDug/kg18046.1n-Nitrosodi-n-propylamineNDug/kg22066.1Bis(2-Ethylhexyl)phthalateNDug/kg22058.1Butyl benzyl phthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22042.1Di-n-butylphthalateNDug/kg22054.1Di-n-butylphthalateNDug/kg22054.1Di-n-butylphthalateNDug/kg22047.1	Isophorone	ND	ι	ug/kg	200	59.	1
NitrosoDiPhenylAmine(NDPA)/DPANDug/kg18046.1n-Nitrosodi-n-propylamineNDug/kg22066.1Bis(2-Ethylhexyl)phthalateNDug/kg22058.1Butyl benzyl phthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22042.1Di-n-octylphthalateNDug/kg22054.1Di-n-octylphthalateNDug/kg22054.1Di-n-butylphthalateNDug/kg22047.1	Naphthalene	ND	ι	ug/kg	220	73.	1
NDug/kg22066.1Bis(2-Ethylhexyl)phthalateNDug/kg22058.1Butyl benzyl phthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22042.1Di-n-octylphthalateNDug/kg22054.1Di-n-octylphthalateNDug/kg22054.1Di-n-octylphthalateNDug/kg22054.1	Nitrobenzene	ND	ι	ug/kg	200	52.	1
Bis (2-Ethylhexyl)phthalateNDug/kg22058.1Butyl benzyl phthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22042.1Di-n-octylphthalateNDug/kg22054.1Di-n-otylphthalateNDug/kg22054.1	NitrosoDiPhenylAmine(NDPA)/DPA	ND	ι	ug/kg	180	46.	1
Butyl benzyl phthalateNDug/kg22043.1Di-n-butylphthalateNDug/kg22042.1Di-n-octylphthalateNDug/kg22054.1Diethyl phthalateNDug/kg22047.1	n-Nitrosodi-n-propylamine	ND	ι	ug/kg	220	66.	1
Di-n-butylphthalateNDug/kg22042.1Di-n-octylphthalateNDug/kg22054.1Diethyl phthalateNDug/kg22047.1	Bis(2-Ethylhexyl)phthalate	ND	ι	ug/kg	220	58.	1
Di-n-octylphthalateNDug/kg22054.1Diethyl phthalateNDug/kg22047.1	Butyl benzyl phthalate	ND	ι	ug/kg	220	43.	1
Diethyl phthalate ND ug/kg 220 47. 1	Di-n-butylphthalate	ND	L	ug/kg	220	42.	1
	Di-n-octylphthalate	ND	ι	ug/kg	220	54.	1
Dimethyl phthalate ND ug/kg 220 56. 1	Diethyl phthalate	ND	ι	ug/kg	220	47.	1
	Dimethyl phthalate	ND	ι	ug/kg	220	56.	1

				S	Serial_N	o:06011519:38		
Project Name:	130 ST. FELIX STREET			Lab Nu	mber:	L1511932		
Project Number:	170366001			Report	Date:	06/01/15		
,		SAMPLE RESULT	ГS					
Lab ID:	L1511932-06			Date Coll	ected:	05/30/15 00:00		
Client ID:	DUP01_053015			Date Rec	eived:	05/30/15		
Sample Location:	130 ST. FELIX STREET,	BROOKLYN NY		Field Pre	p:	Not Specified		
Parameter		Result Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Benzo(a)anthracene		ND	ug/kg	130	43.	1		
Benzo(a)pyrene		ND	ug/kg	180	54.	1		
Benzo(b)fluoranthene		ND	ug/kg	130	44.	1		
Benzo(k)fluoranthene		ND	ug/kg	130	42.	1		
Chrysene		ND	ug/kg	130	43.	1		
Acenaphthylene		ND	ug/kg	180	41.	1		
Anthracene		ND	ug/kg	130	37.	1		
Benzo(ghi)perylene		ND	ug/kg	180	46.	1		
Fluorene		ND	ug/kg	220	63.	1		
Phenanthrene		ND	ug/kg	130	43.	1		
Dibenzo(a,h)anthracene		ND	ug/kg	130	43.	1		
Indeno(1,2,3-cd)Pyrene		ND	ug/kg	180	49.	1		
Pyrene		ND	ug/kg	130	43.	1		
Biphenyl		ND	ug/kg	500	73.	1		
4-Chloroaniline		ND	ug/kg	220	58.	1		
2-Nitroaniline		ND	ug/kg	220	62.	1		
3-Nitroaniline		ND	ug/kg	220	61.	1		
4-Nitroaniline		ND	ug/kg	220	60.	1		
Dibenzofuran		ND	ug/kg	220	74.	1		
2-Methylnaphthalene		ND	ug/kg	260	70.	1		
1,2,4,5-Tetrachlorobenze	ne	ND	ug/kg	220	68.	1		
Acetophenone		ND	ug/kg	220	68.	1		
2,4,6-Trichlorophenol		ND	ug/kg	130	42.	1		
P-Chloro-M-Cresol		ND	ug/kg	220	64.	1		
2-Chlorophenol		ND	ug/kg	220	67.	1		
2,4-Dichlorophenol		ND	ug/kg	200	71.	1		
2,4-Dimethylphenol		ND	ug/kg	220	66.	1		
2-Nitrophenol		ND	ug/kg	480	69.	1		
4-Nitrophenol		ND	ug/kg	310	71.	1		
2,4-Dinitrophenol		ND	ug/kg	1000	300	1		
4,6-Dinitro-o-cresol		ND	ug/kg	570	81.	1		
Pentachlorophenol		ND	ug/kg	180	47.	1		
Phenol 2-Methylphopol		ND	ug/kg	220	65. 71	1		
2-Methylphenol	shanal	ND	ug/kg	220	71.	1		
3-Methylphenol/4-Methylp		ND	ug/kg	320	72.	1		
2,4,5-Trichlorophenol Benzoic Acid		ND ND	ug/kg	220 710	71. 220	1		
		ND	ug/kg	220	68.			
Benzyl Alcohol			ug/kg			1		
Carbazole		ND	ug/kg	220	47.	1		

					Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET				Lab Nu	umber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMPI		6				
Lab ID:	L1511932-06				Date Co	llected:	05/30/15 00:00	
Client ID:	DUP01_053015				Date Re	ceived:	05/30/15	
Sample Location:	130 ST. FELIX STREE	T, BROOKI	LYN NY		Field Prep:		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westboro	ugh Lab						

Surrogate % Recovery Qualifie	
2-Fluorophenol 48	25-120
Phenol-d6 52	10-120
Nitrobenzene-d5 53	23-120
2-Fluorobiphenyl 56	30-120
2,4,6-Tribromophenol 63	10-136
4-Terphenyl-d14 68	18-120

		Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932			
Project Number:	170366001	Report Date:	06/01/15			
	SAMPLE RESULTS					
Lab ID:	L1511932-07	Date Collected:	05/30/15 16:35			
Client ID:	MW11_053015	Date Received:	05/30/15			
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified			
Matrix:	Water	Extraction Metho	d:EPA 3510C			
Analytical Method:	1,8270D	Extraction Date:	05/31/15 02:40			
Analytical Date:	05/31/15 17:11					
Analyst:	KR					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.21	1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.41	1		
1,2-Dichlorobenzene	ND		ug/l	2.0	0.30	1		
1,3-Dichlorobenzene	ND		ug/l	2.0	0.35	1		
1,4-Dichlorobenzene	ND		ug/l	2.0	0.32	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	0.48	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.0	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.89	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.36	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.43	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.60	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.60	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.58	1		
Isophorone	ND		ug/l	5.0	0.79	1		
Nitrobenzene	ND		ug/l	2.0	0.40	1		
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	2.0	0.34	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0	0.93	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.1	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.77	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.2	1		
Diethyl phthalate	ND		ug/l	5.0	0.39	1		
Dimethyl phthalate	ND		ug/l	5.0	0.33	1		
Biphenyl	ND		ug/l	2.0	0.24	1		
4-Chloroaniline	ND		ug/l	5.0	0.84	1		
2-Nitroaniline	ND		ug/l	5.0	0.96	1		
3-Nitroaniline	ND		ug/l	5.0	0.67	1		
4-Nitroaniline	ND		ug/l	5.0	0.83	1		
Dibenzofuran	ND		ug/l	2.0	0.22	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.36	1		

					Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREE	Т			Lab Nu	mber:	L1511932	
Project Number:	170366001				Report	Date:	06/01/15	
		SAMP		6				
Lab ID: Client ID: Sample Location:	L1511932-07 MW11_053015 130 ST. FELIX STRE	ET, BROOK	LYN NY		Date Col Date Ree Field Pre	ceived:	05/30/15 16:35 05/30/15 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbor	ough Lab						
Acetophenone		ND		ug/l	5.0	0.43	1	
2,4,6-Trichlorophenol		ND		ug/l	5.0	0.78	1	
P-Chloro-M-Cresol		ND		ug/l	2.0	0.54	1	
2-Chlorophenol		ND		ug/l	2.0	0.58	1	
2,4-Dichlorophenol		ND		ug/l	5.0	0.56	1	
2,4-Dimethylphenol		ND		ug/l	5.0	0.58	1	
2-Nitrophenol		ND		ug/l	10	1.0	1	
4-Nitrophenol		ND		ug/l	10	1.1	1	
2,4-Dinitrophenol		ND		ug/l	20	1.4	1	
4,6-Dinitro-o-cresol		ND		ug/l	10	1.4	1	
Phenol		ND		ug/l	5.0	0.27	1	
2-Methylphenol		ND		ug/l	5.0	0.70	1	
3-Methylphenol/4-Methylp	henol	ND		ug/l	5.0	0.72	1	
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.75	1	
Benzoic Acid		ND		ug/l	50	1.0	1	
Benzyl Alcohol		ND		ug/l	2.0	0.68	1	
Carbazole		ND		ug/l	2.0	0.37	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	32		21-120
Phenol-d6	23		10-120
Nitrobenzene-d5	70		23-120
2-Fluorobiphenyl	79		15-120
2,4,6-Tribromophenol	84		10-120
4-Terphenyl-d14	91		41-149

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-07	Date Collected:	05/30/15 16:35
Client ID:	MW11_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	05/31/15 02:41
Analytical Date:	05/31/15 14:04		
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.20	0.06	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.07	1			
Fluoranthene	0.05	J	ug/l	0.20	0.04	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.07	1			
Naphthalene	ND		ug/l	0.20	0.06	1			
Benzo(a)anthracene	ND		ug/l	0.20	0.06	1			
Benzo(a)pyrene	ND		ug/l	0.20	0.07	1			
Benzo(b)fluoranthene	ND		ug/l	0.20	0.07	1			
Benzo(k)fluoranthene	ND		ug/l	0.20	0.07	1			
Chrysene	ND		ug/l	0.20	0.05	1			
Acenaphthylene	ND		ug/l	0.20	0.05	1			
Anthracene	ND		ug/l	0.20	0.06	1			
Benzo(ghi)perylene	ND		ug/l	0.20	0.07	1			
Fluorene	ND		ug/l	0.20	0.06	1			
Phenanthrene	0.10	J	ug/l	0.20	0.06	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.07	1			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20	0.08	1			
Pyrene	ND		ug/l	0.20	0.06	1			
2-Methylnaphthalene	ND		ug/l	0.20	0.06	1			
Pentachlorophenol	ND		ug/l	0.80	0.19	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.07	1			

					Serial_N	o:06011519:38	
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMPL	E RESULTS	6			
Lab ID:	L1511932-07				Date Co	llected:	05/30/15 16:35
Client ID:	MW11_053015				Date Re	ceived:	05/30/15
Sample Location:	130 ST. FELIX STREET	T, BROOKL	YN NY		Field Prep:		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS-SIM - West	oorough La	b				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	34		21-120	
Phenol-d6	23		10-120	
Nitrobenzene-d5	82		23-120	
2-Fluorobiphenyl	78		15-120	
2,4,6-Tribromophenol	94		10-120	
4-Terphenyl-d14	72		41-149	

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-08	Date Collected:	05/30/15 00:00		
Client ID:	GWDUP01_053015	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Water	Extraction Metho	d:EPA 3510C		
Analytical Method:	1,8270D	Extraction Date:	05/31/15 02:40		
Analytical Date:	05/31/15 17:36				
Analyst:	KR				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.21	1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.41	1		
1,2-Dichlorobenzene	ND		ug/l	2.0	0.30	1		
1,3-Dichlorobenzene	ND		ug/l	2.0	0.35	1		
1,4-Dichlorobenzene	ND		ug/l	2.0	0.32	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	0.48	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.0	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.89	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.36	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.43	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.60	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.60	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.58	1		
Isophorone	ND		ug/l	5.0	0.79	1		
Nitrobenzene	ND		ug/l	2.0	0.40	1		
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	2.0	0.34	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0	0.93	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.1	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.77	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.2	1		
Diethyl phthalate	ND		ug/l	5.0	0.39	1		
Dimethyl phthalate	ND		ug/l	5.0	0.33	1		
Biphenyl	ND		ug/l	2.0	0.24	1		
4-Chloroaniline	ND		ug/l	5.0	0.84	1		
2-Nitroaniline	ND		ug/l	5.0	0.96	1		
3-Nitroaniline	ND		ug/l	5.0	0.67	1		
4-Nitroaniline	ND		ug/l	5.0	0.83	1		
Dibenzofuran	ND		ug/l	2.0	0.22	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.36	1		

			Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
		SAMP		6			
Lab ID:	L1511932-08				Date Col		05/30/15 00:00
Client ID:	GWDUP01_053015				Date Ree		05/30/15
Sample Location:	130 ST. FELIX STREET	, BROOK	LYN NY		Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	ics by GC/MS - Westborou	igh Lab					
Acetophenone		ND		ug/l	5.0	0.43	1
2,4,6-Trichlorophenol		ND		ug/l	5.0	0.78	1
P-Chloro-M-Cresol		ND		ug/l	2.0	0.54	1
2-Chlorophenol		ND		ug/l	2.0	0.58	1
2,4-Dichlorophenol		ND		ug/l	5.0	0.56	1
2,4-Dimethylphenol		ND		ug/l	5.0	0.58	1
2-Nitrophenol		ND		ug/l	10	1.0	1
4-Nitrophenol		ND		ug/l	10	1.1	1
2,4-Dinitrophenol		ND		ug/l	20	1.4	1
4,6-Dinitro-o-cresol		ND		ug/l	10	1.4	1
Phenol		ND		ug/l	5.0	0.27	1
2-Methylphenol		ND		ug/l	5.0	0.70	1
3-Methylphenol/4-Methyl	bhenol	ND		ug/l	5.0	0.72	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.75	1
Benzoic Acid		ND		ug/l	50	1.0	1
Benzyl Alcohol		ND		ug/l	2.0	0.68	1
Carbazole		ND		ug/l	2.0	0.37	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	32		21-120
Phenol-d6	22		10-120
Nitrobenzene-d5	75		23-120
2-Fluorobiphenyl	82		15-120
2,4,6-Tribromophenol	89		10-120
4-Terphenyl-d14	93		41-149

	Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-08	Date Collected:	05/30/15 00:00		
Client ID:	GWDUP01_053015	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Water	Extraction Metho	d:EPA 3510C		
Analytical Method:	1,8270D-SIM	Extraction Date:	05/31/15 02:41		
Analytical Date:	05/31/15 14:29				
Analyst:	MW				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.20	0.06	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.07	1			
Fluoranthene	0.04	J	ug/l	0.20	0.04	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.07	1			
Naphthalene	ND		ug/l	0.20	0.06	1			
Benzo(a)anthracene	ND		ug/l	0.20	0.06	1			
Benzo(a)pyrene	ND		ug/l	0.20	0.07	1			
Benzo(b)fluoranthene	ND		ug/l	0.20	0.07	1			
Benzo(k)fluoranthene	ND		ug/l	0.20	0.07	1			
Chrysene	ND		ug/l	0.20	0.05	1			
Acenaphthylene	ND		ug/l	0.20	0.05	1			
Anthracene	ND		ug/l	0.20	0.06	1			
Benzo(ghi)perylene	ND		ug/l	0.20	0.07	1			
Fluorene	ND		ug/l	0.20	0.06	1			
Phenanthrene	0.10	J	ug/l	0.20	0.06	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.07	1			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20	0.08	1			
Pyrene	ND		ug/l	0.20	0.06	1			
2-Methylnaphthalene	ND		ug/l	0.20	0.06	1			
Pentachlorophenol	ND		ug/l	0.80	0.19	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.07	1			

					Serial_No:06011519:38		
Project Name:	130 ST. FELIX STREET				Lab Nu	mber:	L1511932
Project Number:	170366001				Report	Date:	06/01/15
SAMPLE RESULTS							
Lab ID:	L1511932-08				Date Col	lected:	05/30/15 00:00
Client ID:	GWDUP01_053015				Date Red	eived:	05/30/15
Sample Location:	130 ST. FELIX STREE	T, BROOKL	YN NY		Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	32		21-120	
Phenol-d6	21		10-120	
Nitrobenzene-d5	82		23-120	
2-Fluorobiphenyl	76		15-120	
2,4,6-Tribromophenol	93		10-120	
4-Terphenyl-d14	70		41-149	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
Mothod Blank Analysis					

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/31/15 15:06	Extraction Date:	05/31/15 01:33
Analyst:	KR		

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	sample(s):	01-03,05-06	Batch:	WG789446-1
Acenaphthene	ND		ug/kg	130	34.	
1,2,4-Trichlorobenzene	ND		ug/kg	160	53.	
Hexachlorobenzene	ND		ug/kg	98	30.	
Bis(2-chloroethyl)ether	ND		ug/kg	150	46.	
2-Chloronaphthalene	ND		ug/kg	160	53.	
1,2-Dichlorobenzene	ND		ug/kg	160	53.	
1,3-Dichlorobenzene	ND		ug/kg	160	51.	
1,4-Dichlorobenzene	ND		ug/kg	160	50.	
3,3'-Dichlorobenzidine	ND		ug/kg	160	43.	
2,4-Dinitrotoluene	ND		ug/kg	160	35.	
2,6-Dinitrotoluene	ND		ug/kg	160	42.	
Fluoranthene	ND		ug/kg	98	30.	
4-Chlorophenyl phenyl ether	ND		ug/kg	160	50.	
4-Bromophenyl phenyl ether	ND		ug/kg	160	37.	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	57.	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	49.	
Hexachlorobutadiene	ND		ug/kg	160	46.	
Hexachlorocyclopentadiene	ND		ug/kg	460	100	
Hexachloroethane	ND		ug/kg	130	30.	
Isophorone	ND		ug/kg	150	43.	
Naphthalene	ND		ug/kg	160	54.	
Nitrobenzene	ND		ug/kg	150	39.	
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	130	34.	
n-Nitrosodi-n-propylamine	ND		ug/kg	160	48.	
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	160	43.	
Butyl benzyl phthalate	ND		ug/kg	160	32.	
Di-n-butylphthalate	ND		ug/kg	160	31.	
Di-n-octylphthalate	ND		ug/kg	160	40.	
Diethyl phthalate	ND		ug/kg	160	34.	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
Mothod Blank Analysis					

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/31/15 15:06	Extraction Date:	05/31/15 01:33
Analyst:	KR		

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	S - Westboroug	gh Lab for s	ample(s):	01-03,05-06	Batch:	WG789446-
Dimethyl phthalate	ND		ug/kg	160	41.	
Benzo(a)anthracene	ND		ug/kg	98	32.	
Benzo(a)pyrene	ND		ug/kg	130	40.	
Benzo(b)fluoranthene	ND		ug/kg	98	33.	
Benzo(k)fluoranthene	ND		ug/kg	98	31.	
Chrysene	ND		ug/kg	98	32.	
Acenaphthylene	ND		ug/kg	130	30.	
Anthracene	ND		ug/kg	98	27.	
Benzo(ghi)perylene	ND		ug/kg	130	34.	
Fluorene	ND		ug/kg	160	47.	
Phenanthrene	ND		ug/kg	98	32.	
Dibenzo(a,h)anthracene	ND		ug/kg	98	32.	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	130	36.	
Pyrene	ND		ug/kg	98	32.	
Biphenyl	ND		ug/kg	370	54.	
4-Chloroaniline	ND		ug/kg	160	43.	
2-Nitroaniline	ND		ug/kg	160	46.	
3-Nitroaniline	ND		ug/kg	160	45.	
4-Nitroaniline	ND		ug/kg	160	44.	
Dibenzofuran	ND		ug/kg	160	54.	
2-Methylnaphthalene	ND		ug/kg	200	52.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	50.	
Acetophenone	ND		ug/kg	160	50.	
2,4,6-Trichlorophenol	ND		ug/kg	98	31.	
P-Chloro-M-Cresol	ND		ug/kg	160	47.	
2-Chlorophenol	ND		ug/kg	160	49.	
2,4-Dichlorophenol	ND		ug/kg	150	53.	
2,4-Dimethylphenol	ND		ug/kg	160	48.	
2-Nitrophenol	ND		ug/kg	350	51.	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Method Blank Analysis		

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/31/15 15:06	Extraction Date:	05/31/15 01:33
Analyst:	KR		

Result	Qualifier	Units	RL	MDL	
- Westboroug	h Lab for s	ample(s):	01-03,05-06	Batch:	WG789446-
ND		ug/kg	230	53.	
ND		ug/kg	780	220	
ND		ug/kg	420	60.	
ND		ug/kg	130	35.	
ND		ug/kg	160	48.	
ND		ug/kg	160	52.	
ND		ug/kg	230	53.	
ND		ug/kg	160	53.	
ND		ug/kg	530	160	
ND		ug/kg	160	50.	
ND		ug/kg	160	35.	
	- Westboroug ND	- Westborough Lab for s ND	- Westborough Lab for sample(s): ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	ND ug/kg 230 ND ug/kg 780 ND ug/kg 420 ND ug/kg 130 ND ug/kg 160 ND ug/kg 160	ND ug/kg 230 53. ND ug/kg 780 220 ND ug/kg 420 60. ND ug/kg 130 35. ND ug/kg 160 48. ND ug/kg 160 52. ND ug/kg 160 53. ND ug/kg 530 160 ND ug/kg 160 50.

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
2-Fluorophenol	80		25-120			
Phenol-d6	85		10-120			
Nitrobenzene-d5	81		23-120			
2-Fluorobiphenyl	85		30-120			
2,4,6-Tribromophenol	100		10-136			
4-Terphenyl-d14	112		18-120			

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Mathed Diants Analysia		

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 05/31/15 15:55 KR Extraction Method: EPA 3510C Extraction Date: 05/31/15 02:40

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	07-08	Batch:	WG789448-1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.21
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.41
1,2-Dichlorobenzene	ND		ug/l	2.0		0.30
1,3-Dichlorobenzene	ND		ug/l	2.0		0.35
1,4-Dichlorobenzene	ND		ug/l	2.0		0.32
3,3'-Dichlorobenzidine	ND		ug/l	5.0		0.48
2,4-Dinitrotoluene	ND		ug/l	5.0		1.0
2,6-Dinitrotoluene	ND		ug/l	5.0		0.89
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.36
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.43
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.60
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.60
Hexachlorocyclopentadiene	ND		ug/l	20		0.58
Isophorone	ND		ug/l	5.0		0.79
Nitrobenzene	ND		ug/l	2.0		0.40
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	2.0		0.34
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0		0.93
Butyl benzyl phthalate	ND		ug/l	5.0		1.1
Di-n-butylphthalate	ND		ug/l	5.0		0.77
Di-n-octylphthalate	ND		ug/l	5.0		1.2
Diethyl phthalate	ND		ug/l	5.0		0.39
Dimethyl phthalate	ND		ug/l	5.0		0.33
Biphenyl	ND		ug/l	2.0		0.24
4-Chloroaniline	ND		ug/l	5.0		0.84
2-Nitroaniline	ND		ug/l	5.0		0.96
3-Nitroaniline	ND		ug/l	5.0		0.67
4-Nitroaniline	ND		ug/l	5.0		0.83
Dibenzofuran	ND		ug/l	2.0		0.22

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Mathad Blank Analysia		

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 05/31/15 15:55 KR Extraction Method: EPA 3510C Extraction Date: 05/31/15 02:40

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	07-08	Batch:	WG789448-1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.36
Acetophenone	ND		ug/l	5.0		0.43
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.78
P-Chloro-M-Cresol	ND		ug/l	2.0		0.54
2-Chlorophenol	ND		ug/l	2.0		0.58
2,4-Dichlorophenol	ND		ug/l	5.0		0.56
2,4-Dimethylphenol	ND		ug/l	5.0		0.58
2-Nitrophenol	ND		ug/l	10		1.0
4-Nitrophenol	ND		ug/l	10		1.1
2,4-Dinitrophenol	ND		ug/l	20		1.4
4,6-Dinitro-o-cresol	ND		ug/l	10		1.4
Phenol	ND		ug/l	5.0		0.27
2-Methylphenol	ND		ug/l	5.0		0.70
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.72
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.75
Benzoic Acid	ND		ug/l	50		1.0
Benzyl Alcohol	ND		ug/l	2.0		0.68
Carbazole	ND		ug/l	2.0		0.37

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
2-Fluorophenol	38		21-120			
•						
Phenol-d6	27		10-120			
Nitrobenzene-d5	79		23-120			
2-Fluorobiphenyl	82		15-120			
2,4,6-Tribromophenol	90		10-120			
4-Terphenyl-d14	101		41-149			

05/31/15 02:41

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932	
Project Number:	170366001	Report Date:	06/01/15	
Mathed Diank Analysia				

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	05/31/15 12:25	Extraction Date:	05/31/15 02:4
Analyst:	MW		

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC	/MS-SIM - Westbo	orough Lab for sam	ple(s): 07-08	Batch:	WG789449-1
Acenaphthene	ND	ug/l	0.20	0.06	5
2-Chloronaphthalene	ND	ug/l	0.20	0.07	,
Fluoranthene	ND	ug/l	0.20	0.04	Ļ
Hexachlorobutadiene	ND	ug/l	0.50	0.07	,
Naphthalene	ND	ug/l	0.20	0.06	5
Benzo(a)anthracene	ND	ug/l	0.20	0.06	5
Benzo(a)pyrene	ND	ug/l	0.20	0.07	,
Benzo(b)fluoranthene	ND	ug/l	0.20	0.07	•
Benzo(k)fluoranthene	ND	ug/l	0.20	0.07	,
Chrysene	ND	ug/l	0.20	0.05	5
Acenaphthylene	ND	ug/l	0.20	0.05	5
Anthracene	ND	ug/l	0.20	0.06	5
Benzo(ghi)perylene	ND	ug/l	0.20	0.07	,
Fluorene	ND	ug/l	0.20	0.06	5
Phenanthrene	ND	ug/l	0.20	0.06	5
Dibenzo(a,h)anthracene	ND	ug/l	0.20	0.07	,
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20	0.08	3
Pyrene	ND	ug/l	0.20	0.06	6
2-Methylnaphthalene	ND	ug/l	0.20	0.06	6
Pentachlorophenol	ND	ug/l	0.80	0.19	
Hexachlorobenzene	ND	ug/l	0.80	0.01	
Hexachloroethane	ND	ug/l	0.80	0.07	,

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Method Blank Analysis Batch Quality Control	5	
Analytical Method:	1 8270D-SIM	Extraction Method	1 EPA 3510C

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	05/31/15 12:25	Extraction Date:	05/31/15 02:41
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	<u> </u>
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s):	07-08	Batch:	WG789449-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	30	21-120
Phenol-d6	20	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	74	41-149

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Mathad Dlauk Analysia		

Analytical Method:	1,8270D
Analytical Date:	05/31/15 20:12
Analyst:	AS

Extraction Method: EPA 3546 Extraction Date: 05/31/15 12:44

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	04	Batch:	WG789477-1
Acenaphthene	ND		ug/kg		130	34.
1,2,4-Trichlorobenzene	ND		ug/kg		160	54.
Hexachlorobenzene	ND		ug/kg		98	30.
Bis(2-chloroethyl)ether	ND		ug/kg		150	46.
2-Chloronaphthalene	ND		ug/kg		160	53.
1,2-Dichlorobenzene	ND		ug/kg		160	54.
1,3-Dichlorobenzene	ND		ug/kg		160	52.
1,4-Dichlorobenzene	ND		ug/kg		160	50.
3,3'-Dichlorobenzidine	ND		ug/kg		160	44.
2,4-Dinitrotoluene	ND		ug/kg		160	35.
2,6-Dinitrotoluene	ND		ug/kg		160	42.
Fluoranthene	ND		ug/kg		98	30.
4-Chlorophenyl phenyl ether	ND		ug/kg		160	50.
4-Bromophenyl phenyl ether	ND		ug/kg		160	38.
Bis(2-chloroisopropyl)ether	ND		ug/kg		200	58.
Bis(2-chloroethoxy)methane	ND		ug/kg		180	50.
Hexachlorobutadiene	ND		ug/kg		160	46.
Hexachlorocyclopentadiene	ND		ug/kg		470	100
Hexachloroethane	ND		ug/kg		130	30.
Isophorone	ND		ug/kg		150	44.
Naphthalene	ND		ug/kg		160	54.
Nitrobenzene	ND		ug/kg		150	39.
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg		130	34.
n-Nitrosodi-n-propylamine	ND		ug/kg		160	49.
Bis(2-Ethylhexyl)phthalate	ND		ug/kg		160	43.
Butyl benzyl phthalate	ND		ug/kg		160	32.
Di-n-butylphthalate	ND		ug/kg		160	32.
Di-n-octylphthalate	ND		ug/kg		160	40.
Diethyl phthalate	ND		ug/kg		160	34.

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Mathad Dlauk Analysia		

Analytical Method:	1,8270D
Analytical Date:	05/31/15 20:12
Analyst:	AS

Extraction Method: EPA 3546 Extraction Date: 05/31/15 12:44

arameter	Result	Qualifier	Units	F	RL	MDL	
emivolatile Organics by GC/N	NS - Westboroug	h Lab for s	ample(s):	04	Batch:	WG789477-	1
Dimethyl phthalate	ND		ug/kg	1	60	42.	
Benzo(a)anthracene	ND		ug/kg	ę	98	32.	
Benzo(a)pyrene	ND		ug/kg	1	30	40.	
Benzo(b)fluoranthene	ND		ug/kg	ę	98	33.	
Benzo(k)fluoranthene	ND		ug/kg	ç	98	31.	
Chrysene	ND		ug/kg	ę	98	32.	
Acenaphthylene	ND		ug/kg	1	30	31.	
Anthracene	ND		ug/kg	ę	98	27.	
Benzo(ghi)perylene	ND		ug/kg	1	30	34.	
Fluorene	ND		ug/kg	1	60	47.	
Phenanthrene	ND		ug/kg	ę	98	32.	
Dibenzo(a,h)anthracene	ND		ug/kg	ę	98	32.	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	1	30	36.	
Pyrene	ND		ug/kg	ę	98	32.	
Biphenyl	ND		ug/kg	3	70	54.	
4-Chloroaniline	ND		ug/kg	1	60	43.	
2-Nitroaniline	ND		ug/kg	1	60	46.	
3-Nitroaniline	ND		ug/kg	1	60	45.	
4-Nitroaniline	ND		ug/kg	1	60	44.	
Dibenzofuran	ND		ug/kg	1	60	55.	
2-Methylnaphthalene	ND		ug/kg	2	00	52.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	1	60	51.	
Acetophenone	ND		ug/kg	1	60	51.	
2,4,6-Trichlorophenol	ND		ug/kg	ę	98	31.	
P-Chloro-M-Cresol	ND		ug/kg	1	60	47.	
2-Chlorophenol	ND		ug/kg	1	60	49.	
2,4-Dichlorophenol	ND		ug/kg	1	50	53.	
2,4-Dimethylphenol	ND		ug/kg	1	60	49.	
2-Nitrophenol	ND		ug/kg	3	50	51.	

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Mothed Plank Analysis		

Analytical Method:	1,8270D
Analytical Date:	05/31/15 20:12
Analyst:	AS

Extraction Method: EPA 3546 Extraction Date: 05/31/15 12:44

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - \	Vestboroug	n Lab for s	ample(s):	04 Batch:	WG789477-1	
4-Nitrophenol	ND		ug/kg	230	53.	
2,4-Dinitrophenol	ND		ug/kg	780	220	
4,6-Dinitro-o-cresol	ND		ug/kg	420	60.	
Pentachlorophenol	ND		ug/kg	130	35.	
Phenol	ND		ug/kg	160	48.	
2-Methylphenol	ND		ug/kg	160	53.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	54.	
2,4,5-Trichlorophenol	ND		ug/kg	160	53.	
Benzoic Acid	ND		ug/kg	530	160	
Benzyl Alcohol	ND		ug/kg	160	50.	
Carbazole	ND		ug/kg	160	35.	

Acceptance					
%Recovery	Qualifier	Criteria			
68		25-120			
72		10-120			
71		23-120			
73		30-120			
80		10-136			
79		18-120			
	68 72 71 73 80	%Recovery Qualifier 68 72 71 73 80 80	%Recovery Qualifier Criteria 68 25-120 72 10-120 71 23-120 73 30-120 80 10-136		

Lab Control Sample Analysis

Batch Quality Control

Project Number: 170366001

Lab Number: L1511932 Report Date: 06/01/15

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05-06 Batch: WG789446-2 WG789446-3 31-137 Acenaphthene 87 76 13 50 1,2,4-Trichlorobenzene 79 72 38-107 9 50 Hexachlorobenzene 79 40-140 50 92 15 Bis(2-chloroethyl)ether 50 80 72 40-140 11 2-Chloronaphthalene 79 40-140 12 50 89 40-140 50 1.2-Dichlorobenzene 74 70 6 1,3-Dichlorobenzene 70 68 40-140 3 50 1.4-Dichlorobenzene 70 68 28-104 3 50 3.3'-Dichlorobenzidine 40-140 50 108 83 26 2.4-Dinitrotoluene Q 28-89 50 102 86 17 2.6-Dinitrotoluene 40-140 17 50 98 83 Fluoranthene 97 84 40-140 14 50 4-Chlorophenyl phenyl ether 78 40-140 50 89 13 4-Bromophenyl phenyl ether 40-140 50 93 80 15 Bis(2-chloroisopropyl)ether 40-140 50 82 75 9 Bis(2-chloroethoxy)methane 40-117 50 88 79 11 Hexachlorobutadiene 80 72 40-140 11 50 Hexachlorocyclopentadiene 107 99 40-140 8 50 Hexachloroethane 50 70 68 40-140 3 82 40-140 50 Isophorone 92 11 Naphthalene 77 40-140 50 83 8

Lab Control Sample Analysis Batch Quality Control

Project Number: 170366001 Lab Number: L1511932

Report Date: 06/01/15

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	, RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associat	ed sample(s): 01-03,05-0	6 Batch: WG789446-2 \	NG789446-3		
Nitrobenzene	83	76	40-140	9	50	
NitrosoDiPhenylAmine(NDPA)/DPA	95	80	36-157	17	50	
n-Nitrosodi-n-propylamine	90	80	32-121	12	50	
Bis(2-Ethylhexyl)phthalate	109	93	40-140	16	50	
Butyl benzyl phthalate	111	94	40-140	17	50	
Di-n-butylphthalate	102	87	40-140	16	50	
Di-n-octylphthalate	115	96	40-140	18	50	
Diethyl phthalate	93	80	40-140	15	50	
Dimethyl phthalate	93	80	40-140	15	50	
Benzo(a)anthracene	94	79	40-140	17	50	
Benzo(a)pyrene	99	86	40-140	14	50	
Benzo(b)fluoranthene	94	82	40-140	14	50	
Benzo(k)fluoranthene	91	78	40-140	15	50	
Chrysene	89	77	40-140	14	50	
Acenaphthylene	92	81	40-140	13	50	
Anthracene	97	84	40-140	14	50	
Benzo(ghi)perylene	94	81	40-140	15	50	
Fluorene	92	79	40-140	15	50	
Phenanthrene	89	78	40-140	13	50	
Dibenzo(a,h)anthracene	98	83	40-140	17	50	
Indeno(1,2,3-cd)Pyrene	77	68	40-140	12	50	

Project Number: 170366001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01-03,05-06	Batch:	WG789446-2 WG7	789446-3		
Pyrene	96		82		35-142	16		50
Biphenyl	88		78		54-104	12		50
4-Chloroaniline	97		84		40-140	14		50
2-Nitroaniline	103		87		47-134	17		50
3-Nitroaniline	79		66		26-129	18		50
4-Nitroaniline	97		82		41-125	17		50
Dibenzofuran	90		79		40-140	13		50
2-Methylnaphthalene	86		77		40-140	11		50
1,2,4,5-Tetrachlorobenzene	84		76		40-117	10		50
Acetophenone	84		76		14-144	10		50
2,4,6-Trichlorophenol	95		85		30-130	11		50
P-Chloro-M-Cresol	96		82		26-103	16		50
2-Chlorophenol	84		76		25-102	10		50
2,4-Dichlorophenol	91		81		30-130	12		50
2,4-Dimethylphenol	98		87		30-130	12		50
2-Nitrophenol	93		83		30-130	11		50
4-Nitrophenol	101		87		11-114	15		50
2,4-Dinitrophenol	77		62		4-130	22		50
4,6-Dinitro-o-cresol	101		84		10-130	18		50
Pentachlorophenol	107		90		17-109	17		50
Phenol	81		70		26-90	15		50

Project Number: 170366001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	, RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westb	oorough Lab Associa	ated sample(s):	01-03,05-06	Batch:	WG789446-2 V	VG789446-3			
2-Methylphenol	90		79		30-130.	13		50	
3-Methylphenol/4-Methylphenol	92		82		30-130	11		50	
2,4,5-Trichlorophenol	95		82		30-130	15		50	
Benzoic Acid	29		22		10-66	27		50	
Benzyl Alcohol	92		81		40-140	13		50	
Carbazole	96		82		54-128	16		50	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	85		76		25-120	
Phenol-d6	90		80		10-120	
Nitrobenzene-d5	87		79		23-120	
2-Fluorobiphenyl	92		82		30-120	
2,4,6-Tribromophenol	102		87		10-136	
4-Terphenyl-d14	101		84		18-120	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	07-08	Batch:	WG7894	148-2 WG789448	-3		
1,2,4-Trichlorobenzene	64		65			39-98	2		30
Bis(2-chloroethyl)ether	76		77			40-140	1		30
1,2-Dichlorobenzene	64		64			40-140	0		30
1,3-Dichlorobenzene	61		61			40-140	0		30
1,4-Dichlorobenzene	62		61			36-97	2		30
3,3'-Dichlorobenzidine	90		93			40-140	3		30
2,4-Dinitrotoluene	93		96			24-96	3		30
2,6-Dinitrotoluene	93		96			40-140	3		30
4-Chlorophenyl phenyl ether	84		86			40-140	2		30
4-Bromophenyl phenyl ether	84		88			40-140	5		30
Bis(2-chloroisopropyl)ether	82		82			40-140	0		30
Bis(2-chloroethoxy)methane	81		83			40-140	2		30
Hexachlorocyclopentadiene	55		55			40-140	0		30
Isophorone	81		84			40-140	4		30
Nitrobenzene	79		79			40-140	0		30
NitrosoDiPhenylAmine(NDPA)/DPA	87		89			40-140	2		30
n-Nitrosodi-n-propylamine	83		84			29-132	1		30
Bis(2-Ethylhexyl)phthalate	99		100			40-140	1		30
Butyl benzyl phthalate	102		102			40-140	0		30
Di-n-butylphthalate	97		99			40-140	2		30
Di-n-octylphthalate	94		94			40-140	0		30

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Associa	ted sample(s):	07-08 Batch	n: WG789448-2 WG789448	-3		
Diethyl phthalate	88		90	40-140	2	30	
Dimethyl phthalate	90		92	40-140	2	30	
Biphenyl	83		85	54-104	2	30	
4-Chloroaniline	62		62	40-140	0	30	
2-Nitroaniline	90		94	52-143	4	30	
3-Nitroaniline	64		68	25-145	6	30	
4-Nitroaniline	78		82	51-143	5	30	
Dibenzofuran	86		89	40-140	3	30	
1,2,4,5-Tetrachlorobenzene	79		80	2-134	1	30	
Acetophenone	81		82	39-129	1	30	
2,4,6-Trichlorophenol	85		89	30-130	5	30	
P-Chloro-M-Cresol	79		83	23-97	5	30	
2-Chlorophenol	66		67	27-123	2	30	
2,4-Dichlorophenol	82		84	30-130	2	30	
2,4-Dimethylphenol	73		70	30-130	4	30	
2-Nitrophenol	77		80	30-130	4	30	
4-Nitrophenol	41		43	10-80	5	30	
2,4-Dinitrophenol	69		72	20-130	4	30	
4,6-Dinitro-o-cresol	84		88	20-164	5	30	
Phenol	29		30	12-110	3	30	
2-Methylphenol	61		62	30-130	2	30	

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Devenuetor	LCS	Qual	LCSD %Recovery	Qual	%Recovery	000	Qual	RPD Limite
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associa	ated sample(s)	: 07-08 Batch	n: WG7894	48-2 WG789448-3			
3-Methylphenol/4-Methylphenol	56		59		30-130	5		30
2,4,5-Trichlorophenol	87		91		30-130	4		30
Benzoic Acid	15		17		10-110	13		30
Benzyl Alcohol	57		58		15-110	2		30
Carbazole	94		95		55-144	1		30

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
40		41		21-120	
29		31		10-120	
83		85		23-120	
91		92		15-120	
96		97		10-120	
99		99		41-149	
	40 29 83 91 96	%Recovery Qual 40 29 83 91 96 96	%Recovery Qual %Recovery 40 41 29 31 83 85 91 92 96 97	%Recovery Qual %Recovery Qual 40 41 - <td>%Recovery Qual %Recovery Qual Criteria 40 41 21-120 29 31 10-120 83 85 23-120 91 92 15-120 96 97 10-120</td>	%Recovery Qual %Recovery Qual Criteria 40 41 21-120 29 31 10-120 83 85 23-120 91 92 15-120 96 97 10-120

Lab Control Sample Analysis

Batch Quality Control

Project Number: 170366001

Lab Number: L1511932 Report Date: 06/01/15

LCSD LCS %Recovery RPD %Recovery Limits %Recovery Qual RPD Limits Parameter Qual Qual Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 07-08 Batch: WG789449-2 WG789449-3 Acenaphthene 62 68 37-111 40 9 2-Chloronaphthalene 61 67 40-140 9 40 Fluoranthene 40-140 40 68 73 7 Hexachlorobutadiene 40 54 59 40-140 9 Naphthalene 61 40-140 9 40 56 Benzo(a)anthracene 40-140 40 71 79 11 Benzo(a)pyrene 72 80 40-140 11 40 Benzo(b)fluoranthene 76 40-140 40 71 7 Benzo(k)fluoranthene 40-140 40 68 81 17 40-140 40 Chrysene 67 76 13 Acenaphthylene 71 40-140 10 40 64 Anthracene 68 75 40-140 10 40 Benzo(ghi)perylene 88 40-140 40 75 16 Fluorene 40-140 40 65 73 12 Phenanthrene 40-140 40 66 75 13 Dibenzo(a,h)anthracene 84 40-140 40 72 15 Indeno(1,2,3-cd)Pyrene 64 71 40-140 10 40 Pyrene 67 71 26-127 6 40 2-Methylnaphthalene 40-140 40 61 67 9 9-103 40 Pentachlorophenol 63 69 9 Hexachlorobenzene 78 40-140 11 40 70

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS-SIM - We	stborough Lab Asso	ciated sample((s): 07-08	Batch: WG	6789449-2 WG789	9449-3	
Hexachloroethane	53		57		40-140	7	40

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	29		33		21-120	
Phenol-d6	20		23		10-120	
Nitrobenzene-d5	69		77		23-120	
2-Fluorobiphenyl	65		73		15-120	
2,4,6-Tribromophenol	80		83		10-120	
4-Terphenyl-d14	70		76		41-149	

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s)	: 04 Batch:	WG789477-2 WG789477-3			
Acenaphthene	75		77	31-137	3	50	
1,2,4-Trichlorobenzene	71		71	38-107	0	50	
Hexachlorobenzene	79		83	40-140	5	50	
Bis(2-chloroethyl)ether	71		72	40-140	1	50	
2-Chloronaphthalene	79		81	40-140	3	50	
1,2-Dichlorobenzene	71		71	40-140	0	50	
1,3-Dichlorobenzene	69		68	40-140	1	50	
1,4-Dichlorobenzene	68		68	28-104	0	50	
3,3'-Dichlorobenzidine	109		114	40-140	4	50	
2,4-Dinitrotoluene	78		83	28-89	6	50	
2,6-Dinitrotoluene	81		85	40-140	5	50	
Fluoranthene	86		89	40-140	3	50	
4-Chlorophenyl phenyl ether	78		80	40-140	3	50	
4-Bromophenyl phenyl ether	80		82	40-140	2	50	
Bis(2-chloroisopropyl)ether	74		74	40-140	0	50	
Bis(2-chloroethoxy)methane	79		80	40-117	1	50	
Hexachlorobutadiene	72		71	40-140	1	50	
Hexachlorocyclopentadiene	53		60	40-140	12	50	
Hexachloroethane	62		62	40-140	0	50	
Isophorone	83		84	40-140	1	50	
Naphthalene	75		75	40-140	0	50	

Project Number: 170366001 Lab Number: L1511932 06/01/15

arameter	LCS %Recovery Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	tborough Lab Associated sample(s	s): 04 Batch:	WG789477-2	WG789477-3		
Nitrobenzene	74	74		40-140	0	50
NitrosoDiPhenylAmine(NDPA)/DPA	81	83		36-157	2	50
n-Nitrosodi-n-propylamine	78	80		32-121	3	50
Bis(2-Ethylhexyl)phthalate	84	84		40-140	0	50
Butyl benzyl phthalate	95	97		40-140	2	50
Di-n-butylphthalate	85	87		40-140	2	50
Di-n-octylphthalate	94	94		40-140	0	50
Diethyl phthalate	79	81		40-140	3	50
Dimethyl phthalate	79	81		40-140	3	50
Benzo(a)anthracene	79	81		40-140	3	50
Benzo(a)pyrene	83	84		40-140	1	50
Benzo(b)fluoranthene	80	80		40-140	0	50
Benzo(k)fluoranthene	74	74		40-140	0	50
Chrysene	74	76		40-140	3	50
Acenaphthylene	82	84		40-140	2	50
Anthracene	84	85		40-140	1	50
Benzo(ghi)perylene	80	84		40-140	5	50
Fluorene	82	83		40-140	1	50
Phenanthrene	77	78		40-140	1	50
Dibenzo(a,h)anthracene	83	85		40-140	2	50
Indeno(1,2,3-cd)Pyrene	81	84		40-140	4	50

Project Number: 170366001 Lab Number: L1511932 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	04 Batch:	WG789477-2	WG789477-3		
Pyrene	85		87		35-142	2	50
Biphenyl	78		79		54-104	1	50
4-Chloroaniline	78		77		40-140	1	50
2-Nitroaniline	92		94		47-134	2	50
3-Nitroaniline	83		86		26-129	4	50
4-Nitroaniline	88		89		41-125	1	50
Dibenzofuran	79		81		40-140	3	50
2-Methylnaphthalene	76		78		40-140	3	50
1,2,4,5-Tetrachlorobenzene	72		75		40-117	4	50
Acetophenone	77		77		14-144	0	50
2,4,6-Trichlorophenol	84		88		30-130	5	50
P-Chloro-M-Cresol	84		86		26-103	2	50
2-Chlorophenol	74		76		25-102	3	50
2,4-Dichlorophenol	80		81		30-130	1	50
2,4-Dimethylphenol	88		92		30-130	4	50
2-Nitrophenol	76		78		30-130	3	50
4-Nitrophenol	83		87		11-114	5	50
2,4-Dinitrophenol	24		33		4-130	32	50
4,6-Dinitro-o-cresol	26		38		10-130	38	50
Pentachlorophenol	99		104		17-109	5	50
Phenol	69		71		26-90	3	 50

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associa	ated sample(s):	: 04 Bate	ch: WG789477-2	2 WG789477-3				
2-Methylphenol	79		81		30-130.	3		50	
3-Methylphenol/4-Methylphenol	82		83		30-130	1		50	
2,4,5-Trichlorophenol	86		88		30-130	2		50	
Benzoic Acid	48		54		10-66	12		50	
Benzyl Alcohol	80		82		40-140	2		50	
Carbazole	82		84		54-128	2		50	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	72		73		25-120	
Phenol-d6	77		77		10-120	
Nitrobenzene-d5	76		77		23-120	
2-Fluorobiphenyl	77		79		30-120	
2,4,6-Tribromophenol	83		87		10-136	
4-Terphenyl-d14	81		85		18-120	

PCBS

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-01	Date Collected:	05/30/15 14:40
Client ID:	EB07_10-12	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 19:17	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	77%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND			40.4	2.22	1	•		
			ug/kg	42.1	3.33	I	A		
Aroclor 1221	ND		ug/kg	42.1	3.88	1	A		
Aroclor 1232	ND		ug/kg	42.1	4.94	1	Α		
Aroclor 1242	ND		ug/kg	42.1	5.15	1	Α		
Aroclor 1248	ND		ug/kg	42.1	3.55	1	А		
Aroclor 1254	ND		ug/kg	42.1	3.46	1	А		
Aroclor 1260	ND		ug/kg	42.1	3.21	1	А		
Aroclor 1262	ND		ug/kg	42.1	2.09	1	А		
Aroclor 1268	ND		ug/kg	42.1	6.11	1	А		
PCBs, Total	ND		ug/kg	42.1	2.09	1	А		

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	76		30-150	A			
Decachlorobiphenyl	87		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В			
Decachlorobiphenyl	96		30-150	В			

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-02	Date Collected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 19:34	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	70%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Arcelor 1016	ND			47.4	3.72	1	^			
Aroclor 1016			ug/kg	47.1		I	A			
Aroclor 1221	ND		ug/kg	47.1	4.34	1	A			
Aroclor 1232	ND		ug/kg	47.1	5.52	1	Α			
Aroclor 1242	ND		ug/kg	47.1	5.76	1	А			
Aroclor 1248	ND		ug/kg	47.1	3.97	1	А			
Aroclor 1254	ND		ug/kg	47.1	3.87	1	А			
Aroclor 1260	ND		ug/kg	47.1	3.59	1	А			
Aroclor 1262	ND		ug/kg	47.1	2.33	1	А			
Aroclor 1268	ND		ug/kg	47.1	6.82	1	А			
PCBs, Total	ND		ug/kg	47.1	2.33	1	А			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А			
Decachlorobiphenyl	83		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В			
Decachlorobiphenyl	64		30-150	В			

		Serial_N	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-03	Date Collected:	05/30/15 10:35
Client ID:	EB10_1-2	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 19:50	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	90%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	36.2	2.86	1	А			
Aroclor 1221	ND		ug/kg	36.2	3.34	1	A			
Aroclor 1232	ND		ug/kg	36.2	4.24	1	А			
Aroclor 1242	ND		ug/kg	36.2	4.43	1	А			
Aroclor 1248	ND		ug/kg	36.2	3.05	1	А			
Aroclor 1254	ND		ug/kg	36.2	2.97	1	А			
Aroclor 1260	ND		ug/kg	36.2	2.76	1	А			
Aroclor 1262	ND		ug/kg	36.2	1.79	1	А			
Aroclor 1268	ND		ug/kg	36.2	5.24	1	А			
PCBs, Total	ND		ug/kg	36.2	1.79	1	А			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	86		30-150	A			
Decachlorobiphenyl	77		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	91		30-150	В			
Decachlorobiphenyl	105		30-150	В			

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-04	Date Collected:	05/30/15 12:40
Client ID:	EB12_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 20:07	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	84%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	38.8	3.06	1	A			
Aroclor 1221	ND		ug/kg	38.8	3.58	1	A			
Aroclor 1232	ND		ug/kg	38.8	4.55	1	А			
Aroclor 1242	ND		ug/kg	38.8	4.75	1	А			
Aroclor 1248	ND		ug/kg	38.8	3.27	1	А			
Aroclor 1254	ND		ug/kg	38.8	3.19	1	А			
Aroclor 1260	ND		ug/kg	38.8	2.96	1	А			
Aroclor 1262	ND		ug/kg	38.8	1.92	1	А			
Aroclor 1268	ND		ug/kg	38.8	5.62	1	А			
PCBs, Total	ND		ug/kg	38.8	1.92	1	А			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	34		30-150	A			
Decachlorobiphenyl	44		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	34		30-150	В			
Decachlorobiphenyl	48		30-150	В			

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-05	Date Collected:	05/30/15 12:00
Client ID:	EB13_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 20:23	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	90%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	36.4	2.88	1	А			
Aroclor 1221	ND		ug/kg	36.4	3.36	1	A			
Aroclor 1232	ND		ug/kg	36.4	4.27	1	А			
Aroclor 1242	ND		ug/kg	36.4	4.46	1	А			
Aroclor 1248	ND		ug/kg	36.4	3.08	1	А			
Aroclor 1254	ND		ug/kg	36.4	3.00	1	А			
Aroclor 1260	ND		ug/kg	36.4	2.78	1	А			
Aroclor 1262	ND		ug/kg	36.4	1.81	1	А			
Aroclor 1268	ND		ug/kg	36.4	5.28	1	А			
PCBs, Total	ND		ug/kg	36.4	1.81	1	А			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	76		30-150	A			
Decachlorobiphenyl	72		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	81		30-150	В			
Decachlorobiphenyl	101		30-150	В			

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00
Client ID:	DUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A	Extraction Date:	05/30/15 23:54
Analytical Date:	05/31/15 20:40	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
Percent Solids:	75%	Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ualka	44.0	3.48	1	А		
			ug/kg			1			
Aroclor 1221	ND		ug/kg	44.0	4.06	•	A		
Aroclor 1232	ND		ug/kg	44.0	5.16	1	A		
Aroclor 1242	ND		ug/kg	44.0	5.39	1	A		
Aroclor 1248	ND		ug/kg	44.0	3.71	1	A		
Aroclor 1254	ND		ug/kg	44.0	3.62	1	A		
Aroclor 1260	ND		ug/kg	44.0	3.35	1	A		
Aroclor 1262	ND		ug/kg	44.0	2.18	1	Α		
Aroclor 1268	ND		ug/kg	44.0	6.38	1	Α		
PCBs, Total	ND		ug/kg	44.0	2.18	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	A
Decachlorobiphenyl	52		30-150	А
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	72		30-150	В

		Serial_No	0:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-07	Date Collected:	05/30/15 16:35
Client ID:	MW11_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method	d:EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	05/31/15 02:39
Analytical Date:	05/31/15 17:55	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
		Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Arealan 1010				0.000	0.055	4	•		
Aroclor 1016	ND		ug/l	0.083	0.055	1	A		
Aroclor 1221	ND		ug/l	0.083	0.053	1	Α		
Aroclor 1232	ND		ug/l	0.083	0.031	1	А		
Aroclor 1242	ND		ug/l	0.083	0.060	1	А		
Aroclor 1248	ND		ug/l	0.083	0.051	1	А		
Aroclor 1254	ND		ug/l	0.083	0.034	1	А		
Aroclor 1260	ND		ug/l	0.083	0.032	1	А		
Aroclor 1262	ND		ug/l	0.083	0.029	1	А		
Aroclor 1268	ND		ug/l	0.083	0.038	1	А		
PCBs, Total	ND		ug/l	0.083	0.029	1	А		
			~y,1	2.000		•			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	78 Necovery	Quanner	Cinteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	49		30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	45		30-150	А

		Serial_No	p:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-08	Date Collected:	05/30/15 00:00
Client ID:	GWDUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method	d:EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	05/31/15 02:39
Analytical Date:	05/31/15 18:11	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	05/31/15
		Cleanup Method:	EPA 3660B
		Cleanup Date:	05/31/15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab						
	ND			0.000	0.055		
Aroclor 1016	ND		ug/l	0.083	0.055	1	A
Aroclor 1221	ND		ug/l	0.083	0.053	1	А
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	ND		ug/l	0.083	0.032	1	А
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	ND		ug/l	0.083	0.029	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	52		30-150	В
2,4,5,6-Tetrachloro-m-xylene	72		30-150	А
Decachlorobiphenyl	48		30-150	А

L1511932

06/01/15

Lab Number:

Report Date:

05/31/15

Project Name:130 ST. FELIX STREETProject Number:170366001

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8082A
Analytical Date:	05/31/15 18:28
Analyst:	JT

Extraction Method:EPA 3546Extraction Date:05/30/15 23:54Cleanup Method:EPA 3665ACleanup Date:05/31/15Cleanup Method:EPA 3660BCleanup Date:05/31/15

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01-06	Batch:	WG789	439-1
Aroclor 1016	ND		ug/kg	31.7		2.50	А
Aroclor 1221	ND		ug/kg	31.7		2.92	А
Aroclor 1232	ND		ug/kg	31.7		3.71	А
Aroclor 1242	ND		ug/kg	31.7		3.88	А
Aroclor 1248	ND		ug/kg	31.7		2.67	А
Aroclor 1254	ND		ug/kg	31.7		2.60	А
Aroclor 1260	ND		ug/kg	31.7		2.41	А
Aroclor 1262	ND		ug/kg	31.7		1.57	А
Aroclor 1268	ND		ug/kg	31.7		4.59	А
PCBs, Total	ND		ug/kg	31.7		1.57	А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	84		30-150	A
Decachlorobiphenyl	98		30-150	А
2,4,5,6-Tetrachloro-m-xylene	94		30-150	В
Decachlorobiphenyl	109		30-150	В

L1511932

06/01/15

Lab Number:

Report Date:

05/31/15

Project Name:130 ST. FELIX STREETProject Number:170366001

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8082A
Analytical Date:	05/31/15 17:05
Analyst:	JT

Extraction Method:EPA 3510CExtraction Date:05/31/15 02:39Cleanup Method:EPA 3665ACleanup Date:05/31/15Cleanup Method:EPA 3660BCleanup Date:05/31/15

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	07-08	Batch:	WG789	9450-1
Aroclor 1016	ND		ug/l	0.083		0.055	А
Aroclor 1221	ND		ug/l	0.083		0.053	А
Aroclor 1232	ND		ug/l	0.083		0.031	А
Aroclor 1242	ND		ug/l	0.083		0.060	А
Aroclor 1248	ND		ug/l	0.083		0.051	А
Aroclor 1254	ND		ug/l	0.083		0.034	А
Aroclor 1260	ND		ug/l	0.083		0.032	А
Aroclor 1262	ND		ug/l	0.083		0.029	А
Aroclor 1268	ND		ug/l	0.083		0.038	А
PCBs, Total	ND		ug/l	0.083		0.029	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	84		30-150	В
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А
Decachlorobiphenyl	72		30-150	А

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

	LCS		LCSD	%F	Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	oorough Lab Associa	ited sample(s)	: 01-06 Batch	: WG789439-2	WG789439-3	3			
Aroclor 1016	78		80		40-140	3		50	А
Aroclor 1260	83		86		40-140	4		50	А

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	88		88		30-150	А	
Decachlorobiphenyl	101		102		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	95		97		30-150	В	
Decachlorobiphenyl	112		115		30-150	В	

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

	LCS		LCSD	9	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - W	estborough Lab Associa	ted sample(s)	: 07-08 Batch:	WG789450	-2 WG789450-3	3			
Aroclor 1016	80		83		40-140	3		50	А
Aroclor 1260	86		92		40-140	6		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		79		30-150	В
Decachlorobiphenyl	86		88		30-150	В
2,4,5,6-Tetrachloro-m-xylene	71		72		30-150	А
Decachlorobiphenyl	78		80		30-150	А

PESTICIDES

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-01	Date Collected: 05	/30/15 14:40		
Client ID:	EB07_10-12	Date Received: 05	/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: No	ot Specified		
Matrix:	Soil	Extraction Method:EF	PA 3546		
Analytical Method:	1,8081B	Extraction Date: 05	/31/15 00:50		
Analytical Date:	06/01/15 12:37	Cleanup Method: EF	PA 3620B		
Analyst:	GP	Cleanup Date: 05	/31/15		
Percent Solids:	77%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - V	Vestborough Lab						
Delta-BHC	ND		ug/kg	2.06	0.403	1	А
Lindane	ND		ug/kg	0.858	0.384	1	А
Alpha-BHC	ND		ug/kg	0.858	0.244	1	А
Beta-BHC	ND		ug/kg	2.06	0.781	1	А
Heptachlor	ND		ug/kg	1.03	0.462	1	А
Aldrin	ND		ug/kg	2.06	0.725	1	А
Heptachlor epoxide	ND		ug/kg	3.86	1.16	1	А
Endrin	ND		ug/kg	0.858	0.352	1	А
Endrin ketone	ND		ug/kg	2.06	0.530	1	А
Dieldrin	ND		ug/kg	1.29	0.644	1	А
4,4'-DDE	ND		ug/kg	2.06	0.476	1	А
4,4'-DDD	ND		ug/kg	2.06	0.735	1	А
4,4'-DDT	ND		ug/kg	3.86	1.66	1	А
Endosulfan I	ND		ug/kg	2.06	0.487	1	А
Endosulfan II	ND		ug/kg	2.06	0.688	1	А
Endosulfan sulfate	ND		ug/kg	0.858	0.409	1	А
Methoxychlor	ND		ug/kg	3.86	1.20	1	А
Toxaphene	ND		ug/kg	38.6	10.8	1	А
cis-Chlordane	ND		ug/kg	2.58	0.718	1	А
trans-Chlordane	ND		ug/kg	2.58	0.680	1	А
Chlordane	ND		ug/kg	16.7	6.82	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	84		30-150	В
2,4,5,6-Tetrachloro-m-xylene	73		30-150	А
Decachlorobiphenyl	59		30-150	А

	Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-01	Date Collected:	05/30/15 14:40		
Client ID:	EB07_10-12	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Metho	d:EPA 8151A		
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21		
Analytical Date:	05/31/15 20:01				
Analyst:	SS				
Percent Solids:	77%				
Methylation Date:	05/31/15 06:26				

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
/estborough Lab						
ND		ug/kg	214	26.0	1	А
ND		ug/kg	214	13.3	1	А
ND		ug/kg	214	11.8	1	А
	Vestborough Lab ND ND	Vestborough Lab ND ND	/estborough Lab ND ug/kg ND ug/kg	/estborough Lab ND ug/kg 214 ND ug/kg 214	ND ug/kg 214 26.0 ND ug/kg 214 13.3	ND ug/kg 214 26.0 1 ND ug/kg 214 13.3 1

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column	
DCAA	68		30-150	А	
DCAA	60		30-150	В	

	Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932			
Project Number:	170366001	Report Date: 06/01/15			
	SAMPLE RESULTS				
Lab ID:	L1511932-02	Date Collected: 05/30/15 13:25			
Client ID:	EB09_4.5-5.5	Date Received: 05/30/15			
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specified			
Matrix:	Soil	Extraction Method:EPA 3546			
Analytical Method:	1,8081B	Extraction Date: 05/31/15 00:50			
Analytical Date:	06/01/15 12:53	Cleanup Method: EPA 3620B			
Analyst:	GP	Cleanup Date: 05/31/15			
Percent Solids:	70%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	2.25	0.440	1	A
Lindane	ND		ug/kg	0.937	0.419	1	А
Alpha-BHC	ND		ug/kg	0.937	0.266	1	А
Beta-BHC	ND		ug/kg	2.25	0.853	1	А
Heptachlor	ND		ug/kg	1.12	0.504	1	А
Aldrin	ND		ug/kg	2.25	0.792	1	А
Heptachlor epoxide	ND		ug/kg	4.22	1.26	1	А
Endrin	ND		ug/kg	0.937	0.384	1	А
Endrin ketone	ND		ug/kg	2.25	0.579	1	А
Dieldrin	ND		ug/kg	1.40	0.703	1	А
4,4'-DDE	ND		ug/kg	2.25	0.520	1	А
4,4'-DDD	ND		ug/kg	2.25	0.802	1	А
4,4'-DDT	ND		ug/kg	4.22	1.81	1	А
Endosulfan I	ND		ug/kg	2.25	0.531	1	А
Endosulfan II	ND		ug/kg	2.25	0.751	1	А
Endosulfan sulfate	ND		ug/kg	0.937	0.446	1	А
Methoxychlor	ND		ug/kg	4.22	1.31	1	А
Toxaphene	ND		ug/kg	42.2	11.8	1	А
cis-Chlordane	ND		ug/kg	2.81	0.783	1	А
trans-Chlordane	ND		ug/kg	2.81	0.742	1	А
Chlordane	ND		ug/kg	18.3	7.45	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	В
Decachlorobiphenyl	72		30-150	В
2,4,5,6-Tetrachloro-m-xylene	65		30-150	А
Decachlorobiphenyl	124		30-150	А

	Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-02	Date Collected:	05/30/15 13:25		
Client ID:	EB09_4.5-5.5	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Method: EPA 8151A			
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21		
Analytical Date:	05/31/15 20:21				
Analyst:	SS				
Percent Solids:	70%				
Methylation Date:	05/31/15 06:26				

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
estborough Lab						
ND		ug/kg	233	28.3	1	A
ND		ug/kg	233	14.5	1	А
ND		ug/kg	233	12.8	1	А
	estborough Lab ND ND	ND ND	estborough Lab ND ug/kg ND ug/kg	ND ug/kg 233 ND ug/kg 233	ND ug/kg 233 28.3 ND ug/kg 233 14.5	ND ug/kg 233 28.3 1 ND ug/kg 233 14.5 1

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
DCAA	78		30-150	А
DCAA	73		30-150	В

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-03	Date Collected:	05/30/15 10:35		
Client ID:	EB10_1-2	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Method	d:EPA 3546		
Analytical Method:	1,8081B	Extraction Date:	05/31/15 00:50		
Analytical Date:	06/01/15 13:08	Cleanup Method:	EPA 3620B		
Analyst:	GP	Cleanup Date:	05/31/15		
Percent Solids:	90%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC	- Westborough Lab						
Delta-BHC	ND		ug/kg	1.75	0.343	1	А
Lindane	ND		ug/kg	0.730	0.326	1	А
Alpha-BHC	ND		ug/kg	0.730	0.207	1	А
Beta-BHC	ND		ug/kg	1.75	0.664	1	А
Heptachlor	ND		ug/kg	0.876	0.393	1	А
Aldrin	ND		ug/kg	1.75	0.617	1	А
Heptachlor epoxide	ND		ug/kg	3.28	0.985	1	А
Endrin	ND		ug/kg	0.730	0.299	1	А
Endrin ketone	ND		ug/kg	1.75	0.451	1	А
Dieldrin	ND		ug/kg	1.09	0.547	1	А
4,4'-DDE	ND		ug/kg	1.75	0.405	1	А
4,4'-DDD	ND		ug/kg	1.75	0.625	1	А
4,4'-DDT	ND		ug/kg	3.28	1.41	1	А
Endosulfan I	ND		ug/kg	1.75	0.414	1	А
Endosulfan II	ND		ug/kg	1.75	0.585	1	А
Endosulfan sulfate	ND		ug/kg	0.730	0.347	1	А
Methoxychlor	ND		ug/kg	3.28	1.02	1	А
Toxaphene	ND		ug/kg	32.8	9.19	1	А
cis-Chlordane	ND		ug/kg	2.19	0.610	1	А
trans-Chlordane	ND		ug/kg	2.19	0.578	1	А
Chlordane	ND		ug/kg	14.2	5.80	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	66		30-150	В
2,4,5,6-Tetrachloro-m-xylene	67		30-150	А
Decachlorobiphenyl	50		30-150	А

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-03	Date Collected:	05/30/15 10:35		
Client ID:	EB10_1-2	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Metho	d:EPA 8151A		
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21		
Analytical Date:	05/31/15 20:40				
Analyst:	SS				
Percent Solids:	90%				
Methylation Date:	05/31/15 06:26				

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Westborough Lab						
ND		ug/kg	184	22.4	1	А
ND		ug/kg	184	11.5	1	А
ND		ug/kg	184	10.2	1	А
	Westborough Lab ND ND	ND ND	Westborough Lab ND ND Ug/kg	Westborough Lab ug/kg 184 ND ug/kg 184	Westborough Labug/kg18422.4NDug/kg18411.5	ND ug/kg 184 22.4 1 ND ug/kg 184 11.5 1

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
DCAA	69		30-150	A
DCAA	64		30-150	В

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number: L1511932			
Project Number:	170366001	Report Date: 06/01/15			
	SAMPLE RESULTS				
Lab ID:	L1511932-04	Date Collected: 05/30/15 12:40			
Client ID:	EB12_7-9	Date Received: 05/30/15			
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specified			
Matrix:	Soil	Extraction Method:EPA 3546			
Analytical Method:	1,8081B	Extraction Date: 05/31/15 00:50			
Analytical Date:	06/01/15 13:24	Cleanup Method: EPA 3620B			
Analyst:	GP	Cleanup Date: 05/31/15			
Percent Solids:	84%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/kg	1.88	0.368	1	А
Lindane	ND		ug/kg	0.782	0.350	1	A
Alpha-BHC	ND		ug/kg	0.782	0.222	1	А
Beta-BHC	ND		ug/kg	1.88	0.712	1	А
Heptachlor	ND		ug/kg	0.938	0.421	1	А
Aldrin	ND		ug/kg	1.88	0.661	1	А
Heptachlor epoxide	ND		ug/kg	3.52	1.06	1	А
Endrin	ND		ug/kg	0.782	0.321	1	А
Endrin ketone	ND		ug/kg	1.88	0.483	1	А
Dieldrin	ND		ug/kg	1.17	0.586	1	А
4,4'-DDE	ND		ug/kg	1.88	0.434	1	А
4,4'-DDD	ND		ug/kg	1.88	0.669	1	А
4,4'-DDT	ND		ug/kg	3.52	1.51	1	А
Endosulfan I	ND		ug/kg	1.88	0.443	1	А
Endosulfan II	ND		ug/kg	1.88	0.627	1	А
Endosulfan sulfate	ND		ug/kg	0.782	0.372	1	А
Methoxychlor	ND		ug/kg	3.52	1.09	1	А
Toxaphene	ND		ug/kg	35.2	9.85	1	А
cis-Chlordane	ND		ug/kg	2.34	0.654	1	А
trans-Chlordane	ND		ug/kg	2.34	0.619	1	А
Chlordane	ND		ug/kg	15.2	6.22	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	В
Decachlorobiphenyl	764	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	136		30-150	А

		Serial_N	o:06011519:38
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	SAMPLE RESULTS		
Lab ID:	L1511932-04	Date Collected:	05/30/15 12:40
Client ID:	EB12_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified
Matrix:	Soil	Extraction Metho	d:EPA 8151A
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21
Analytical Date:	05/31/15 21:00		
Analyst:	SS		
Percent Solids:	84%		
Methylation Date:	05/31/15 06:26		

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
estborough Lab						
ND		ug/kg	196	23.9	1	A
ND		ug/kg	196	12.2	1	А
ND		ug/kg	196	10.8	1	А
	estborough Lab ND ND	ND ND	estborough Lab ND ug/kg ND ug/kg	estborough Lab ND ug/kg 196 ND ug/kg 196	ND ug/kg 196 23.9 ND ug/kg 196 12.2	ND ug/kg 196 23.9 1 ND ug/kg 196 12.2 1

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
DCAA	56		30-150	А
DCAA	53		30-150	В

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number: L151193	32		
Project Number:	170366001	Report Date: 06/01/1	5		
	SAMPLE RESULTS				
Lab ID:	L1511932-05	Date Collected: 05/30/15 12	2:00		
Client ID:	EB13_7-9	Date Received: 05/30/15			
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep: Not Specifie	ed		
Matrix:	Soil	Extraction Method: EPA 3546			
Analytical Method:	1,8081B	Extraction Date: 05/31/15 00):50		
Analytical Date:	06/01/15 13:39	Cleanup Method: EPA 3620B	3		
Analyst:	GP	Cleanup Date: 05/31/15			
Percent Solids:	90%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Organochlorine Pesticides by GC - Westborough Lab								
Delta-BHC	ND		ug/kg	1.77	0.347	1	А	
Lindane	ND		ug/kg	0.739	0.330	1	A	
Alpha-BHC	ND		ug/kg	0.739	0.210	1	A	
Beta-BHC	ND		ug/kg	1.77	0.672	1	A	
Heptachlor	ND		ug/kg	0.887	0.398	1	A	
Aldrin	ND		ug/kg	1.77	0.624	1	А	
Heptachlor epoxide	ND		ug/kg	3.32	0.998	1	А	
Endrin	ND		ug/kg	0.739	0.303	1	А	
Endrin ketone	ND		ug/kg	1.77	0.457	1	А	
Dieldrin	ND		ug/kg	1.11	0.554	1	А	
4,4'-DDE	ND		ug/kg	1.77	0.410	1	А	
4,4'-DDD	ND		ug/kg	1.77	0.632	1	А	
4,4'-DDT	ND		ug/kg	3.32	1.43	1	А	
Endosulfan I	ND		ug/kg	1.77	0.419	1	А	
Endosulfan II	ND		ug/kg	1.77	0.593	1	А	
Endosulfan sulfate	ND		ug/kg	0.739	0.352	1	А	
Methoxychlor	ND		ug/kg	3.32	1.03	1	Α	
Toxaphene	ND		ug/kg	33.2	9.31	1	Α	
cis-Chlordane	ND		ug/kg	2.22	0.618	1	Α	
trans-Chlordane	ND		ug/kg	2.22	0.585	1	А	
Chlordane	ND		ug/kg	14.4	5.87	1	А	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	124		30-150	В
2,4,5,6-Tetrachloro-m-xylene	64		30-150	А
Decachlorobiphenyl	49		30-150	А

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-05	Date Collected:	05/30/15 12:00		
Client ID:	EB13_7-9	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Metho	d:EPA 8151A		
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21		
Analytical Date:	06/01/15 14:38				
Analyst:	SS				
Percent Solids:	90%				
Methylation Date:	05/31/15 06:26				

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Chlorinated Herbicides by GC - Westborough Lab							
ND		ug/kg	184	22.3	1	A	
ND		ug/kg	184	11.4	1	А	
ND		ug/kg	184	10.1	1	А	
	estborough Lab ND ND	ND ND	ND ug/kg ND ug/kg	ND ug/kg 184 ND ug/kg 184	ND ug/kg 184 22.3 ND ug/kg 184 11.4	ND ug/kg 184 22.3 1 ND ug/kg 184 11.4 1	

Surrogate	% Recovery	Acceptance % Recovery Qualifier Criteria			
DCAA	65		30-150	A	
DCAA	58		30-150	В	

		Serial_No:06011519:38			
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00		
Client ID:	DUP01_053015	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Metho	d:EPA 3546		
Analytical Method:	1,8081B	Extraction Date:	05/31/15 00:50		
Analytical Date:	06/01/15 13:55	Cleanup Method:	EPA 3620B		
Analyst:	GP	Cleanup Date:	05/31/15		
Percent Solids:	75%	·			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	2.12	0.414	1	А
Lindane	ND		ug/kg	0.882	0.394	1	А
Alpha-BHC	ND		ug/kg	0.882	0.250	1	А
Beta-BHC	ND		ug/kg	2.12	0.802	1	А
Heptachlor	ND		ug/kg	1.06	0.474	1	А
Aldrin	ND		ug/kg	2.12	0.745	1	А
Heptachlor epoxide	ND		ug/kg	3.97	1.19	1	А
Endrin	ND		ug/kg	0.882	0.362	1	А
Endrin ketone	ND		ug/kg	2.12	0.545	1	А
Dieldrin	ND		ug/kg	1.32	0.661	1	А
4,4'-DDE	ND		ug/kg	2.12	0.489	1	А
4,4'-DDD	ND		ug/kg	2.12	0.755	1	А
4,4'-DDT	ND		ug/kg	3.97	1.70	1	А
Endosulfan I	ND		ug/kg	2.12	0.500	1	А
Endosulfan II	ND		ug/kg	2.12	0.707	1	А
Endosulfan sulfate	ND		ug/kg	0.882	0.420	1	А
Methoxychlor	ND		ug/kg	3.97	1.23	1	А
Toxaphene	ND		ug/kg	39.7	11.1	1	А
cis-Chlordane	ND		ug/kg	2.64	0.737	1	А
trans-Chlordane	ND		ug/kg	2.64	0.698	1	А
Chlordane	ND		ug/kg	17.2	7.01	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	51		30-150	В
2,4,5,6-Tetrachloro-m-xylene	76		30-150	А
Decachlorobiphenyl	50		30-150	А

	Serial_No:06011519:38				
Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932		
Project Number:	170366001	Report Date:	06/01/15		
	SAMPLE RESULTS				
Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00		
Client ID:	DUP01_053015	Date Received:	05/30/15		
Sample Location:	130 ST. FELIX STREET, BROOKLYN NY	Field Prep:	Not Specified		
Matrix:	Soil	Extraction Metho	d:EPA 8151A		
Analytical Method:	1,8151A	Extraction Date:	05/30/15 22:21		
Analytical Date:	05/31/15 21:39				
Analyst:	SS				
Percent Solids:	75%				
Methylation Date:	05/31/15 06:26				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column					
Chlorinated Herbicides by GC - Westborough Lab												
2,4-D	ND		ug/kg	221	26.9	1	А					
2,4,5-T	ND		ug/kg	221	13.8	1	А					
2,4,5-TP (Silvex)	ND		ug/kg	221	12.2	1	А					
2,4,5-TP (Silvex)	ND		ug/kg	221	12.2		1					

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
DCAA	84		30-150	А
DCAA	77		30-150	В

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15
	Method Blank Batch Quality	•	

Analytical Method: Analytical Date: Analyst:	1,8151A 05/31/15 19:03 SS	Extraction Method: Extraction Date:	EPA 8151A 05/30/15 22:21
Methylation Date:	05/31/15 06:26		

Parameter	Result	Qualifier	Units	RL	MDL	Column
Chlorinated Herbicides by GC - W	estborough L	ab for sam	ple(s):	01-06 Batch:	WG789434-1	Í
2,4-D	ND		ug/kg	162	19.8	А
2,4,5-T	ND		ug/kg	162	10.1	А
2,4,5-TP (Silvex)	ND		ug/kg	162	8.97	А

			Acceptance)
Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	65		30-150	A
DCAA	58		30-150	В

Project Name:	130 ST. FELIX STREET	Lab Number:	L1511932
Project Number:	170366001	Report Date:	06/01/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8081B 06/01/15 11:51 GP Extraction Method:EPA 3546Extraction Date:05/31/15 00:50Cleanup Method:EPA 3620BCleanup Date:05/31/15

arameter	Result	Qualifier	Units	RL		MDL	Column
rganochlorine Pesticides	by GC - Westborou	gh Lab for s	sample(s):	01-06	Batch:	WG789	445-1
Delta-BHC	ND		ug/kg	1.52		0.299	А
Lindane	ND		ug/kg	0.635		0.284	А
Alpha-BHC	ND		ug/kg	0.635		0.180	А
Beta-BHC	ND		ug/kg	1.52		0.578	А
Heptachlor	ND		ug/kg	0.762		0.342	А
Aldrin	ND		ug/kg	1.52		0.537	А
Heptachlor epoxide	ND		ug/kg	2.86		0.858	А
Endrin	ND		ug/kg	0.635		0.260	А
Endrin ketone	ND		ug/kg	1.52		0.393	А
Dieldrin	ND		ug/kg	0.953		0.476	А
4,4'-DDE	ND		ug/kg	1.52		0.353	А
4,4'-DDD	ND		ug/kg	1.52		0.544	А
4,4'-DDT	ND		ug/kg	2.86		1.23	А
Endosulfan I	ND		ug/kg	1.52		0.360	А
Endosulfan II	ND		ug/kg	1.52		0.510	А
Endosulfan sulfate	ND		ug/kg	0.635		0.302	А
Methoxychlor	ND		ug/kg	2.86		0.889	А
Toxaphene	13.2	J	ug/kg	28.6		8.00	А
cis-Chlordane	ND		ug/kg	1.90		0.531	А
trans-Chlordane	ND		ug/kg	1.90		0.503	А
Chlordane	ND		ug/kg	12.4		5.05	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	85		30-150	В
2,4,5,6-Tetrachloro-m-xylene	91		30-150	А
Decachlorobiphenyl	77		30-150	А

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 Report Date: 06/01/15

	LCS		L	CSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
Chlorinated Herbicides by GC - W	/estborough Lab Associated	sample(s):	01-06	Batch:	WG789434-2	WG789434-3				
2,4-D	69			73		30-150	6		30	А
2,4,5-T	69			67		30-150	3		30	А
2,4,5-TP (Silvex)	72			70		30-150	3		30	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
DCAA	69		67		30-150	Α
DCAA	64		63		30-150	В

Lab Control Sample Analysis

Batch Quality Control

Project Number: 170366001

Lab Number: L1511932 Report Date: 06/01/15

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits Column %Recovery Qual Parameter Qual Qual Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-06 Batch: WG789445-2 WG789445-3 Delta-BHC 68 73 30-150 30 А 7 Lindane 75 78 30-150 4 30 А Alpha-BHC 80 30-150 30 А 77 4 Beta-BHC 30 А 81 99 30-150 20 Heptachlor 86 30-150 30 А 83 4 Aldrin 30-150 30 А 85 85 0 Heptachlor epoxide 76 77 30-150 1 30 А Endrin 90 94 30-150 30 А 4 Endrin ketone 30-150 30 А 68 70 3 Dieldrin 87 30-150 30 87 0 А 4.4'-DDE 88 30-150 2 30 А 90 4,4'-DDD 84 86 30-150 2 30 А 4,4'-DDT 92 99 30-150 30 А 7 Endosulfan I 30-150 0 30 А 81 81 Endosulfan II 83 30-150 30 82 1 А Endosulfan sulfate 70 30-150 30 А 68 3 Methoxychlor 82 83 30-150 1 30 А cis-Chlordane 78 78 30-150 0 30 А 82 30-150 30 А trans-Chlordane 81 1

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932

Report Date: 06/01/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Organochlorine Pesticides by GC - Westbor	ough Lab Associa	ated sample((s): 01-06 Batch	: WG789	445-2 WG789445	5-3			

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	68		74		30-150	В	
Decachlorobiphenyl	87		79		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	85		84		30-150	А	
Decachlorobiphenyl	66		72		30-150	А	

METALS

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	77%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	rep:	Not S	pecified	
Client ID:	EB07_	_10-12					Date Re	eceived:	05/30/	15	
Lab ID:	L1511	932-01					Date Co	ollected:	05/30/	15 14:40	
				SAMP	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	15	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	imber:	L1511	932	

Total Metals - Wes	stborough L	ab							
Aluminum, Total	7100		mg/kg	10	2.0	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Antimony, Total	ND		mg/kg	5.1	0.81	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Arsenic, Total	1.1		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Barium, Total	53		mg/kg	1.0	0.30	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Beryllium, Total	0.31	J	mg/kg	0.51	0.10	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	1.0	0.07	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Calcium, Total	1300		mg/kg	10	3.0	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Chromium, Total	18		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Cobalt, Total	6.6		mg/kg	2.0	0.51	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Copper, Total	16		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Iron, Total	15000		mg/kg	5.1	2.0	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	5.1	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Magnesium, Total	2400		mg/kg	10	1.0	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Manganese, Total	370		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.10	0.02	1	05/31/15 12:31 05/31/15 15:15 EPA 7471B	1,7471B	DB
Nickel, Total	15		mg/kg	2.5	0.40	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Potassium, Total	1300		mg/kg	250	40.	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Selenium, Total	ND		mg/kg	2.0	0.30	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Sodium, Total	270		mg/kg	200	30.	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	2.0	0.40	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Vanadium, Total	24		mg/kg	1.0	0.10	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH
Zinc, Total	34		mg/kg	5.1	0.71	2	06/01/15 09:34 06/01/15 12:32 EPA 3050B	1,6010C	JH

	Regult	Qualifici	Units		MDL		•				Analyst
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Date Analyzed	Prep Method	Method	Analyst
Percent Solids:	70%					Dilution	Date	Data	Dron	Analytical	
Matrix:	Soil										
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Client ID:	EB09_	4.5-5.5					Date Re	eceived:	05/30/	'15	
Lab ID:	L1511	932-02					Date Co	ollected:	05/30/	15 13:25	
				SAMPI	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	15	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	

Total Metals - Westborough Lab

I otal Metals - Wes	tborough La	D					
Aluminum, Total	6200		mg/kg	11	2.2	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Antimony, Total	2.3	J	mg/kg	5.6	0.89	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Arsenic, Total	12		mg/kg	1.1	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Barium, Total	860		mg/kg	1.1	0.34	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Beryllium, Total	0.26	J	mg/kg	0.56	0.11	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Cadmium, Total	0.95	J	mg/kg	1.1	0.08	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Calcium, Total	45000		mg/kg	11	3.4	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Chromium, Total	24		mg/kg	1.1	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Cobalt, Total	4.7		mg/kg	2.2	0.56	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Copper, Total	42		mg/kg	1.1	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Iron, Total	15000		mg/kg	5.6	2.2	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Lead, Total	2800		mg/kg	5.6	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Magnesium, Total	4100		mg/kg	11	1.1	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Manganese, Total	390		mg/kg	1.1	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Mercury, Total	0.90		mg/kg	0.09	0.02	1	05/31/15 12:31 05/31/15 15:31 EPA 7471B 1,7471B DB
Nickel, Total	16		mg/kg	2.8	0.45	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Potassium, Total	920		mg/kg	280	45.	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Selenium, Total	0.75	J	mg/kg	2.2	0.34	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Silver, Total	0.72	J	mg/kg	1.1	0.22	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Sodium, Total	120	J	mg/kg	220	34.	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Thallium, Total	ND		mg/kg	2.2	0.45	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Vanadium, Total	22		mg/kg	1.1	0.11	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH
Zinc, Total	1200		mg/kg	5.6	0.78	2	06/01/15 09:34 06/01/15 13:12 EPA 3050B 1,6010C JH

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	rep:	Not S	pecified	
Client ID:	EB10_	_1-2					Date Re	eceived:	05/30/	15	
Lab ID:	L1511	932-03					Date Co	ollected:	05/30/	15 10:35	
				SAMP	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	'15	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	

Total Metals - Westborough Lab

Total Metals - Wes	stoorougn L	ab						
Aluminum, Total	6100		mg/kg	8.6	1.7	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Antimony, Total	1.6	J	mg/kg	4.3	0.69	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Arsenic, Total	16		mg/kg	0.86	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Barium, Total	370		mg/kg	0.86	0.26	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Beryllium, Total	0.28	J	mg/kg	0.43	0.09	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Cadmium, Total	0.10	J	mg/kg	0.86	0.06	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Calcium, Total	26000		mg/kg	8.6	2.6	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Chromium, Total	16		mg/kg	0.86	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Cobalt, Total	5.5		mg/kg	1.7	0.43	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Copper, Total	28		mg/kg	0.86	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Iron, Total	13000		mg/kg	4.3	1.7	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Lead, Total	620		mg/kg	4.3	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Magnesium, Total	2700		mg/kg	8.6	0.86	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Manganese, Total	250		mg/kg	0.86	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Mercury, Total	0.25		mg/kg	0.08	0.02	1	05/31/15 12:31 05/31/15 15:33 EPA 7471B 1,7471B	DB
Nickel, Total	13		mg/kg	2.2	0.34	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Potassium, Total	1300		mg/kg	220	34.	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Selenium, Total	0.40	J	mg/kg	1.7	0.26	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Silver, Total	ND		mg/kg	0.86	0.17	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Sodium, Total	100	J	mg/kg	170	26.	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Thallium, Total	ND		mg/kg	1.7	0.34	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Vanadium, Total	22		mg/kg	0.86	0.09	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH
Zinc, Total	510		mg/kg	4.3	0.60	2	06/01/15 09:34 06/01/15 13:16 EPA 3050B 1,6010C	JH

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Client ID:	EB12_	_7-9					Date Re	eceived:	05/30/	15	
Lab ID:	L1511	932-04					Date Co	ollected:	05/30/	15 12:40	
				SAMP	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	15	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	

Total Metals - Westborough Lab

I otal Metals - Wes	stoorough La	ар					
Aluminum, Total	5800		mg/kg	9.0	1.8	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Antimony, Total	1.1	J	mg/kg	4.5	0.72	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Arsenic, Total	8.6		mg/kg	0.90	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Barium, Total	720		mg/kg	0.90	0.27	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Beryllium, Total	0.24	J	mg/kg	0.45	0.09	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Cadmium, Total	0.93		mg/kg	0.90	0.06	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Calcium, Total	22000		mg/kg	9.0	2.7	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Chromium, Total	32		mg/kg	0.90	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Cobalt, Total	4.7		mg/kg	1.8	0.45	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Copper, Total	64		mg/kg	0.90	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Iron, Total	12000		mg/kg	4.5	1.8	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Lead, Total	2000		mg/kg	4.5	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Magnesium, Total	4600		mg/kg	9.0	0.90	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Manganese, Total	260		mg/kg	0.90	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Mercury, Total	1.7		mg/kg	0.09	0.02	1	05/31/15 12:31 05/31/15 15:35 EPA 7471B 1,7471B DB
Nickel, Total	20		mg/kg	2.3	0.36	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Potassium, Total	1000		mg/kg	230	36.	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Selenium, Total	1.3	J	mg/kg	1.8	0.27	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Silver, Total	0.21	J	mg/kg	0.90	0.18	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Sodium, Total	220		mg/kg	180	27.	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Thallium, Total	ND		mg/kg	1.8	0.36	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Vanadium, Total	32		mg/kg	0.90	0.09	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH
Zinc, Total	620		mg/kg	4.5	0.63	2	06/01/15 09:34 06/01/15 13:20 EPA 3050B 1,6010C JH

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	130 S	T. FELIX S	TREET, I	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Client ID:	EB13_	_7-9					Date Re	eceived:	05/30/	15	
Lab ID:	L1511	932-05					Date Co	ollected:	05/30/	15 12:00	
				SAMPI	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	15	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	

Total Metals - Wes	stborough L	.ab							
Aluminum, Total	7800		mg/kg	8.5	1.7	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Antimony, Total	ND		mg/kg	4.2	0.68	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Arsenic, Total	4.4		mg/kg	0.85	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Barium, Total	140		mg/kg	0.85	0.25	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Beryllium, Total	0.30	J	mg/kg	0.42	0.09	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.85	0.06	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Calcium, Total	14000		mg/kg	8.5	2.5	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Chromium, Total	17		mg/kg	0.85	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Cobalt, Total	5.6		mg/kg	1.7	0.42	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Copper, Total	20		mg/kg	0.85	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Iron, Total	14000		mg/kg	4.2	1.7	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Lead, Total	130		mg/kg	4.2	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Magnesium, Total	2800		mg/kg	8.5	0.85	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Manganese, Total	270		mg/kg	0.85	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Mercury, Total	0.42		mg/kg	0.07	0.02	1	05/31/15 12:31 05/31/15 15:36 EPA 7471B	1,7471B	DB
Nickel, Total	13		mg/kg	2.1	0.34	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Potassium, Total	1300		mg/kg	210	34.	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Selenium, Total	0.53	J	mg/kg	1.7	0.25	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.85	0.17	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Sodium, Total	160	J	mg/kg	170	25.	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.7	0.34	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Vanadium, Total	25		mg/kg	0.85	0.09	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH
Zinc, Total	140		mg/kg	4.2	0.59	2	06/01/15 09:34 06/01/15 13:24 EPA 3050B	1,6010C	JH

	14544	000.00		SAMPI	LE RES	OLIS		. 11	05/00	4 5 00.00	
Lab ID:	-	932-06					Date Co	ollected:	05/30/	15 00:00	
Client ID:	DUP0	1_053015					Date Re	eceived:	05/30/	/15	
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Matrix:	Soil										
Percent Solids:	75%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst

Total Metals - Wes	stborough L	ab						
Aluminum, Total	9800		mg/kg	10	2.0	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Antimony, Total	ND		mg/kg	5.1	0.81	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Arsenic, Total	1.2		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Barium, Total	73		mg/kg	1.0	0.30	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Beryllium, Total	0.42	J	mg/kg	0.51	0.10	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Cadmium, Total	ND		mg/kg	1.0	0.07	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Calcium, Total	1700		mg/kg	10	3.0	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Chromium, Total	25		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Cobalt, Total	8.6		mg/kg	2.0	0.51	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Copper, Total	21		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Iron, Total	20000		mg/kg	5.1	2.0	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Lead, Total	ND		mg/kg	5.1	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Magnesium, Total	3200		mg/kg	10	1.0	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Manganese, Total	380		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Mercury, Total	ND		mg/kg	0.09	0.02	1	05/31/15 12:31 05/31/15 15:38 EPA 7471B 1,7471B	DВ
Nickel, Total	16		mg/kg	2.5	0.40	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Potassium, Total	2000		mg/kg	250	40.	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Selenium, Total	ND		mg/kg	2.0	0.30	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Silver, Total	ND		mg/kg	1.0	0.20	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Sodium, Total	450		mg/kg	200	30.	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Thallium, Total	ND		mg/kg	2.0	0.40	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Vanadium, Total	33		mg/kg	1.0	0.10	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH
Zinc, Total	50		mg/kg	5.1	0.71	2	06/01/15 09:34 06/01/15 13:27 EPA 3050B 1,6010C	JH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water										
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Client ID:	MW11	_053015					Date Re	eceived:	05/30/	06/01/15 05/30/15 16:35 05/30/15	
Lab ID:	L1511	932-07					Date Co	ollected:	05/30/	15 16:35	
				SAMPI	LE RES	ULTS					
Project Number:	17036	6001					Report	Date:	06/01/	06/01/15 05/30/15 16:35	
Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	tborough	Lab									
Aluminum, Total	1.02		mg/l	0.200	0.034	20	06/01/15 11:26	06/01/15 13:29	EPA 3005A	1,6020A	BM
Antimony, Total	0.0015	J	mg/l	0.0020	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Arsenic, Total	0.0010		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Barium, Total	0.1258		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Beryllium, Total	ND		mg/l	0.0005	0.0002	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Cadmium, Total	0.0001	J	mg/l	0.0002	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Calcium, Total	67.0		mg/l	2.00	0.640	20	06/01/15 11:26	06/01/15 13:29	EPA 3005A	1,6020A	BM
Chromium, Total	0.0627		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Cobalt, Total	0.0021		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Copper, Total	0.0073		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Iron, Total	3.09		mg/l	0.050	0.012	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Lead, Total	0.0022		mg/l	0.0010	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Magnesium, Total	29.3		mg/l	0.070	0.022	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Manganese, Total	0.1606		mg/l	0.0005	0.0003	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	06/01/15 08:59	06/01/15 12:15	EPA 7470A	1,7470A	DB
Nickel, Total	0.0392		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Potassium, Total	5.04		mg/l	0.150	0.019	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Selenium, Total	0.001	J	mg/l	0.005	0.001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Silver, Total	0.0001	J	mg/l	0.0004	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Sodium, Total	51.6		mg/l	4.00	0.322	20	06/01/15 11:26	06/01/15 13:29	EPA 3005A	1,6020A	BM
Thallium, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Vanadium, Total	0.0033	J	mg/l	0.0050	0.0006	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Zinc, Total	0.1238		mg/l	0.0100	0.0026	1	06/01/15 11:26	06/01/15 13:25	EPA 3005A	1,6020A	BM
Dissolved Metals -	Westboro	ough Lab									
Aluminum, Dissolved	0.042		mg/l	0.010	0.002	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM
Antimony, Dissolved	0.0016	J	mg/l	0.0020	0.0001	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM
Arsenic, Dissolved	0.0005	J	mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM
Barium, Dissolved	0.1042		mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0005	0.0002	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	06/01/15 12:35	06/01/15 15:44	EPA 3005A	1,6020A	BM

Analyst

Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	
Project Number:	17036	6001					Report	Date:	06/01/	15	
				SAMPL	LE RES	ULTS					
Lab ID:	L1511	932-07					Date Co	ollected:	05/30/	15 16:35	
Client ID:	MW11	_053015					Date Re	eceived:	05/30/	15	
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Matrix:	Water										
						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst

69.3		mg/l	2.00	0.640	20	06/01/15 12:35 06/01/15 15:47 EPA 3005A 1,6020	A BM
0.0041		mg/l	0.0010	0.0003	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
0.0004	J	mg/l	0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
0.0017		mg/l	0.0010	0.0003	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
0.058		mg/l	0.050	0.012	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
ND		mg/l	0.0010	0.0001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
26.2		mg/l	0.070	0.022	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
0.0669		mg/l	0.0005	0.0003	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
ND		mg/l	0.00020	0.00006	1	06/01/15 09:03 06/01/15 12:28 EPA 7470A 1,7470	A DB
0.0075		mg/l	0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
4.49		mg/l	0.150	0.019	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
ND		mg/l	0.005	0.001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
0.0002	J	mg/l	0.0004	0.0001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
62.8		mg/l	4.00	0.322	20	06/01/15 12:35 06/01/15 15:47 EPA 3005A 1,6020	A BM
ND			0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
ND			0.0050	0.0006	1	06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020	A BM
	J	•					
	0.0041 0.0004 0.0017 0.058 ND 26.2 0.0669 ND 0.0075 4.49 ND 0.0002 62.8 ND	0.0041 0.0004 J 0.0017 0.058 ND 26.2 0.0669 ND 0.0075 4.49 ND 0.0075 4.49 ND 0.0002 J 62.8 ND ND	0.0041 mg/l 0.0004 J mg/l 0.0017 mg/l 0.058 mg/l ND mg/l 26.2 mg/l 0.0669 mg/l ND mg/l 0.0075 mg/l 4.49 mg/l 0.0002 J mg/l 62.8 mg/l ND mg/l	0.0041 mg/l 0.0010 0.0004 J mg/l 0.0005 0.0017 mg/l 0.0010 0.058 mg/l 0.050 ND mg/l 0.0010 26.2 mg/l 0.0005 ND mg/l 0.0005 ND mg/l 0.0005 ND mg/l 0.00020 0.0075 mg/l 0.0005 4.49 mg/l 0.150 ND mg/l 0.005 0.0002 J mg/l 0.0005 0.0002 J mg/l 0.0004 62.8 mg/l 4.00 ND ND mg/l 0.0005 ND	0.0041 mg/l 0.0010 0.0003 0.0004 J mg/l 0.0005 0.0001 0.0017 mg/l 0.0010 0.0003 0.058 mg/l 0.050 0.012 ND mg/l 0.0010 0.0001 26.2 mg/l 0.070 0.022 0.0669 mg/l 0.0005 0.0003 ND mg/l 0.0005 0.0003 ND mg/l 0.0005 0.0003 ND mg/l 0.0005 0.0003 ND mg/l 0.0005 0.0001 0.0075 mg/l 0.0005 0.0001 4.49 mg/l 0.150 0.019 ND mg/l 0.0004 0.0001 62.8 mg/l 4.00 0.322 ND mg/l 0.0050 0.0001 62.8 mg/l 0.0050 0.0006	0.0041 mg/l 0.0010 0.0003 1 0.0004 J mg/l 0.0005 0.0001 1 0.0017 mg/l 0.0010 0.0003 1 0.058 mg/l 0.050 0.012 1 ND mg/l 0.0010 0.0001 1 26.2 mg/l 0.070 0.022 1 0.0669 mg/l 0.0005 0.0003 1 ND mg/l 0.0005 0.0003 1 0.0669 mg/l 0.0005 0.0003 1 ND mg/l 0.0005 0.0006 1 0.0075 mg/l 0.0005 0.0001 1 4.49 mg/l 0.150 0.001 1 0.0002 J mg/l 0.0005 0.0001 1 62.8 mg/l 4.00 0.322 20 ND mg/l 0.0005 0.0001 1 62.8 mg/l	0.0041 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 0.0004 J mg/l 0.0005 0.0001 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 0.0017 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 0.058 mg/l 0.050 0.012 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 0.058 mg/l 0.050 0.012 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 ND mg/l 0.0010 0.0001 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 0.0669 mg/l 0.0005 0.0003 1 06/01/15 12:35 06/01/15 15:44 EPA 3005A 1,6020 ND mg/l 0.000

Project Name:	130 ST. FELIX STREET		Lab Nur	mber:	L1511	932
Project Number:	170366001		Report	Date:	06/01/	15
	SAMPLE RES	SULTS				
Lab ID:	L1511932-08		Date Co	llected:	05/30/	'15 00:00
Client ID:	GWDUP01_053015		Date Re	ceived:	05/30/	'15
Sample Location:	130 ST. FELIX STREET, BROOKLYN		Field Pre	ep:	Not S	pecified
Matrix:	Water					
		Dilution	Date	Date	Prep	Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analyst
Total Metals - Wes	tborough	Lab									
Aluminum, Total	0.952		mg/l	0.200	0.034	20	06/01/15 11:26	06/01/15 13:35	EPA 3005A	1,6020A	BM
Antimony, Total	0.0008	J	mg/l	0.0020	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Arsenic, Total	0.001		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Barium, Total	0.1143		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Beryllium, Total	ND		mg/l	0.0005	0.0002	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Calcium, Total	53.1		mg/l	2.00	0.640	20	06/01/15 11:26	06/01/15 13:35	EPA 3005A	1,6020A	BM
Chromium, Total	0.0411		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Cobalt, Total	0.0014		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Copper, Total	0.0061		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Iron, Total	2.42		mg/l	0.050	0.012	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Lead, Total	0.0017		mg/l	0.0010	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Magnesium, Total	24.3		mg/l	0.070	0.022	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Manganese, Total	0.1300		mg/l	0.0005	0.0003	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Mercury, Total	ND		mg/l	0.00020	0.00006	5 1	06/01/15 08:59	06/01/15 12:22	EPA 7470A	1,7470A	DB
Nickel, Total	0.0236		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Potassium, Total	4.50		mg/l	0.150	0.019	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Selenium, Total	0.001	J	mg/l	0.005	0.001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Silver, Total	0.0002	J	mg/l	0.0004	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Sodium, Total	46.6		mg/l	4.00	0.322	20	06/01/15 11:26	06/01/15 13:35	EPA 3005A	1,6020A	BM
Thallium, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Vanadium, Total	0.0023	J	mg/l	0.0050	0.0006	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Zinc, Total	0.1436		mg/l	0.0100	0.0026	1	06/01/15 11:26	06/01/15 13:32	EPA 3005A	1,6020A	BM
Dissolved Metals -	Westbord	ugh Lab									
Aluminum, Dissolved	0.022		mg/l	0.010	0.002	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM
Antimony, Dissolved	0.0009	J	mg/l	0.0020	0.0001	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM
Arsenic, Dissolved	0.0004	J	mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM
Barium, Dissolved	0.1019		mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0005	0.0002	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	06/01/15 12:35	06/01/15 15:56	EPA 3005A	1,6020A	BM

Analyst

Project Name:	130 S	T. FELIX S	TREET				Lab Nu	mber:	L1511	932	
Project Number:	17036	6001					Report	Date:	06/01/	15	
				SAMPI	LE RES	ULTS					
Lab ID:	L1511	932-08					Date Co	ollected:	05/30/	15 00:00	
Client ID:	GWD	JP01_0530)15				Date Re	eceived:	05/30/	15	
Sample Location:	130 S	T. FELIX S	TREET,	BROOK	LYN		Field Pr	ep:	Not Sp	pecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys

MDL

	Quanner						Analys
65.9		mg/l	2.00	0.640	20	06/01/15 12:35 06/01/15 15:59 EPA 3005A 1,6020/	A BM
0.0017		mg/l	0.0010	0.0003	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
0.0003	J	mg/l	0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
0.0059		mg/l	0.0010	0.0003	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
0.037	J	mg/l	0.050	0.012	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
0.0001	J	mg/l	0.0010	0.0001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
23.8		mg/l	0.070	0.022	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
0.0604		mg/l	0.0005	0.0003	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
ND		mg/l	0.00020	0.00006	1	06/01/15 09:03 06/01/15 12:39 EPA 7470A 1,7470A	A DB
0.0042		mg/l	0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020A	A BM
4.24		mg/l	0.150	0.019	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
ND		mg/l	0.005	0.001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
ND		mg/l	0.0004	0.0001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
54.2		mg/l	4.00	0.322	20	06/01/15 12:35 06/01/15 15:59 EPA 3005A 1,6020/	A BM
ND		mg/l	0.0005	0.0001	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
ND		mg/l	0.0050	0.0006	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
0.0058	J	mg/l	0.0100	0.0026	1	06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/	A BM
	0.0017 0.0003 0.0059 0.037 0.0001 23.8 0.0604 ND 0.0042 4.24 ND ND 54.2 ND 54.2 ND	0.0017 0.0003 J 0.0059 0.037 J 0.0001 J 23.8 0.0604 ND 0.0042 4.24 ND ND 54.2 ND ND 54.2 ND	0.0017 mg/l 0.0003 J mg/l 0.0059 mg/l 0.037 J mg/l 0.0017 J mg/l 0.0059 mg/l 0.001 0.001 J mg/l 0.0001 J mg/l 0.0001 J mg/l 0.0604 mg/l ND mg/l ND mg/l ND mg/l S4.2 mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l	0.0017 mg/l 0.0010 0.0003 J mg/l 0.0005 0.0059 mg/l 0.0010 0.037 J mg/l 0.0010 0.0001 J mg/l 0.0010 0.0017 J mg/l 0.0010 0.037 J mg/l 0.0010 0.0001 J mg/l 0.0010 23.8 mg/l 0.0005 ND mg/l 0.0005 ND mg/l 0.0005 ND mg/l 0.005 ND mg/l 0.0004 54.2 mg/l 4.00 ND mg/l 0.0055 ND mg/l 0.0055	0.0017 mg/l 0.0010 0.0003 0.0003 J mg/l 0.0010 0.0003 0.0059 mg/l 0.0010 0.0003 0.037 J mg/l 0.050 0.012 0.0001 J mg/l 0.050 0.012 0.0001 J mg/l 0.0010 0.0001 23.8 mg/l 0.070 0.022 0.0604 mg/l 0.0005 0.0003 ND mg/l 0.0005 0.0001 4.24 mg/l 0.150 0.019 ND mg/l 0.0004 0.0001 S4.2 mg/l 0.0004 0.0001 ND mg/l 0.0004 0.0001 S4.2 mg/l 0.0005 0.0001 ND mg/l 0.0055 0.0001 ND mg/l 0.0055 0.0001 MD mg/l 0.0055 0.0006	0.0017 mg/l 0.0010 0.0003 1 0.0003 J mg/l 0.0010 0.0003 1 0.0003 J mg/l 0.0005 0.0001 1 0.0059 mg/l 0.0010 0.0003 1 0.037 J mg/l 0.050 0.012 1 0.0001 J mg/l 0.0010 0.0001 1 23.8 mg/l 0.070 0.022 1 0.0604 mg/l 0.0005 0.0003 1 ND mg/l 0.0005 0.0006 1 0.0042 mg/l 0.005 0.0011 1 4.24 mg/l 0.150 0.019 1 ND mg/l 0.0004 0.0001 1 54.2 mg/l 0.005 0.0001 1 ND mg/l 0.0005 0.0001 1 ND mg/l 0.0055 0.0001 1 <t< td=""><td>0.0017 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0003 J mg/l 0.0005 0.0001 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0059 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.037 J mg/l 0.050 0.012 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0001 J mg/l 0.050 0.012 1 06/01/15 15:56 EPA 3005A 1,6020/ 0.0001 J mg/l 0.0010 0.0011 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 23.8 mg/l 0.0005 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ ND mg/l 0.0005</td></t<>	0.0017 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0003 J mg/l 0.0005 0.0001 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0059 mg/l 0.0010 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.037 J mg/l 0.050 0.012 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 0.0001 J mg/l 0.050 0.012 1 06/01/15 15:56 EPA 3005A 1,6020/ 0.0001 J mg/l 0.0010 0.0011 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ 23.8 mg/l 0.0005 0.0003 1 06/01/15 12:35 06/01/15 15:56 EPA 3005A 1,6020/ ND mg/l 0.0005

Parameter

Result

Qualifier

Units

RL

06/01/15 14:28 06/01/15 15:51 EPA 3015

06/01/15 14:28 06/01/15 15:51 EPA 3015

Project Name:	130 S	T. FELIX S	TREET				Lab Nun	nber:	L15119	32	
Project Number:	17036	6001					Report I	Date:	06/01/1	5	
-				SAMPL	E RES	JLTS	-				
Lab ID:	L1511	932-09					Date Col	llected:	05/30/1	5 15:50	
Client ID:	DRUN	<i>I_</i> 053015					Date Re	ceived:	05/30/1	5	
Sample Location:	130 S	T. FELIX S	FREET,	, BROOKL	YN		Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil						TCLP/SF	PLP Ext. Dat	e: 05/30/1	5 23:58	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EP	A 1311 -	Westborou	gh Lab								
Arsenic, TCLP	ND		mg/l	1.0	0.02	1	06/01/15 14:28	06/01/15 15:51	EPA 3015	1,6010C	JH
Barium, TCLP	0.73		mg/l	0.50	0.03	1	06/01/15 14:28	06/01/15 15:51	EPA 3015	1,6010C	JH
Cadmium, TCLP	ND		mg/l	0.10	0.01	1	06/01/15 14:28	06/01/15 15:51	EPA 3015	1,6010C	JH
Chromium, TCLP	0.08	J	mg/l	0.20	0.02	1	06/01/15 14:28	06/01/15 15:51	EPA 3015	1,6010C	JH
Lead, TCLP	0.03	J	mg/l	0.50	0.02	1	06/01/15 14:28	06/01/15 15:51	EPA 3015	1,6010C	JH
Mercury, TCLP	ND		mg/l	0.0010	0.0003	1	06/01/15 09:08	06/01/15 12:59	EPA 7470A	1,7470A	DB

1,6010C

1,6010C

JH

JH

Selenium, TCLP

Silver, TCLP

ND

ND

mg/l

mg/l

0.50

0.10

0.03

0.02

1

1

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Method Blank Analysis Batch Quality Control

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westbor	ough Lab fo	or sample(s): 01-06	Batch:	WG78	9474-1				
Mercury, Total	ND		mg/kg	0.08	0.02	1	05/31/15 12:31	05/31/15 15:11	1,7471B	DB
			P	Prep Info	rmatio	n				
			Digestion I			7471B				
			9							
Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbor	ough Lab fo	or sample((s): 07-08	Batch:	WG78	9545-1				
Mercury, Total	ND		mg/l	0.00020	0.0000	6 1	06/01/15 08:59	06/01/15 12:11	1,7470A	DB
			F	Prep Info	ormatio	n				
			Digestion I			7470A				
Parameter						Dilution	Date	Date	Analytical	
	Result C	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	
Dissolved Metals - Wes		·				Factor G789546-1	•			
		·				G789546-1	•		Method	
Dissolved Metals - Wes	stborough L	·	mple(s): 07 mg/l	7-08 Ba	atch: W 0.00006	G789546-1 5 1		Analyzed	Method	Analyst
Dissolved Metals - Wes	stborough L	ab for sar	mple(s): 07 mg/l	7-08 Ba 0.00020 Prep Info	atch: W 0.00006 ormatic	G789546-1 5 1		Analyzed	Method	Analyst
Dissolved Metals - Wes	stborough L	ab for sar	nple(s): 07 mg/l F	7-08 Ba 0.00020 Prep Info	atch: W 0.00006 ormatic	G789546-1		Analyzed 06/01/15 12:24	Method	DB
Dissolved Metals - Wes Mercury, Dissolved Parameter	stborough L ND Result (ab for sar	nple(s): 07 mg/l F Digestion I Units	7-08 Ba 0.00020 Prep Infc Method: RL	atch: W 0.00000 ormatio EPA MDL	G789546-1 n 7470A Dilution Factor	Date Prepared	Analyzed 06/01/15 12:24 Date	Method 1,7470A Analytical	DB
Dissolved Metals - Wes Mercury, Dissolved Parameter TCLP Metals by EPA 1	stborough L ND Result (ab for sar	nple(s): 07 mg/l F Digestion I Units	7-08 Ba 0.00020 Prep Infc Method: RL	atch: W 0.00000 ormatio EPA MDL	G789546-1 n 7470A Dilution Factor	Date Prepared	Analyzed 06/01/15 12:24 Date	Method 1,7470A Analytical Method	DB
Dissolved Metals - Wes Mercury, Dissolved	stborough L ND Result (1311 - Westb	ab for sar	nple(s): 07 mg/l P Digestion I Units ab for sam mg/l	7-08 Ba 0.00020 Prep Infc Wethod: RL	atch: W 0.00000 ormatic EPA MDL 09 Ba 0.0003	G789546-1 1 n 7470A Dilution Factor tch: WG78 1	Date Prepared 9551-1	Analyzed 06/01/15 12:24 Date Analyzed	Method 1,7470A Analytical Method	Analyst DB Analyst

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbe	orough Lab for samp	ole(s): 01-06	Batch	: WG78	9581-1				
Aluminum, Total	ND	mg/kg	4.0	0.80	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Antimony, Total	ND	mg/kg	2.0	0.32	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Barium, Total	ND	mg/kg	0.40	0.12	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Calcium, Total	ND	mg/kg	4.0	1.2	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Cobalt, Total	ND	mg/kg	0.80	0.20	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Iron, Total	ND	mg/kg	2.0	0.80	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Magnesium, Total	ND	mg/kg	4.0	0.40	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Manganese, Total	ND	mg/kg	0.40	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Potassium, Total	ND	mg/kg	100	16.	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.12	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Sodium, Total	ND	mg/kg	80	12.	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.16	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Vanadium, Total	ND	mg/kg	0.40	0.04	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	06/01/15 09:34	06/01/15 12:24	1,6010C	JH

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - West	borough La	b for sar	nple(s): ()7-08 Ba	atch: W	/G789582-1				
Aluminum, Dissolved	0.003	J	mg/l	0.010	0.002	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Antimony, Dissolved	0.0007	J	mg/l	0.0020	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Barium, Dissolved	0.0001	J	mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Method Blank Analysis Batch Quality Control

Beryllium, Dissolved	ND		mg/l	0.0005	0.0002	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Calcium, Dissolved	ND		mg/l	0.100	0.032	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Chromium, Dissolved	0.0005	J	mg/l	0.0010	0.0003	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Cobalt, Dissolved	ND		mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Copper, Dissolved	ND		mg/l	0.0010	0.0003	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Iron, Dissolved	ND		mg/l	0.050	0.012	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Lead, Dissolved	ND		mg/l	0.0010	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Magnesium, Dissolved	ND		mg/l	0.070	0.022	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Manganese, Dissolved	ND		mg/l	0.0005	0.0003	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Nickel, Dissolved	0.0002	J	mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Potassium, Dissolved	0.111	J	mg/l	0.150	0.019	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Selenium, Dissolved	ND		mg/l	0.005	0.001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Silver, Dissolved	0.0005		mg/l	0.0004	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Sodium, Dissolved	0.024	J	mg/l	0.200	0.016	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0005	0.0001	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0050	0.0006	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM
Zinc, Dissolved	0.0057	J	mg/l	0.0100	0.0026	1	06/01/15 12:35	06/01/15 14:05	1,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
TCLP Metals by EPA 13	311 - Wes	tborough L	ab for sar	mple(s):	09 Ba	tch: WG78	9685-1			
Arsenic, TCLP	ND		mg/l	1.0	0.02	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Barium, TCLP	0.05	J	mg/l	0.50	0.03	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Cadmium, TCLP	ND		mg/l	0.10	0.01	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Chromium, TCLP	ND		mg/l	0.20	0.02	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Lead, TCLP	ND		mg/l	0.50	0.02	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Selenium, TCLP	ND		mg/l	0.50	0.03	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH
Silver, TCLP	ND		mg/l	0.10	0.02	1	06/01/15 14:28	06/01/15 15:43	3 1,6010C	JH

Prep Information

Digestion Method: EPA 3015 TCLP/SPLP Extraction Date: 05/30/15 23:58

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbo	rough Lab fo	or sample(s): 07-08	Batch:	WG789	9724-1				
Aluminum, Total	ND		mg/l	0.010	0.002	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Antimony, Total	0.0004	J	mg/l	0.0020	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Arsenic, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Barium, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Beryllium, Total	ND		mg/l	0.0005	0.0002	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Calcium, Total	ND		mg/l	0.100	0.032	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Chromium, Total	ND		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Cobalt, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Copper, Total	ND		mg/l	0.0010	0.0003	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Iron, Total	ND		mg/l	0.050	0.012	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Lead, Total	ND		mg/l	0.0010	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Magnesium, Total	ND		mg/l	0.070	0.022	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Manganese, Total	ND		mg/l	0.0005	0.0003	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Nickel, Total	0.0002	J	mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Potassium, Total	0.035	J	mg/l	0.150	0.019	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Selenium, Total	ND		mg/l	0.005	0.001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Silver, Total	ND		mg/l	0.0004	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Sodium, Total	ND		mg/l	0.200	0.016	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Thallium, Total	ND		mg/l	0.0005	0.0001	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Vanadium, Total	ND		mg/l	0.0050	0.0006	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM
Zinc, Total	ND		mg/l	0.0100	0.0026	1	06/01/15 11:26	06/01/15 13:19	1,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 Report Date: 06/01/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Westborough Lab Associated san	nple(s): 01-06	Batch: WC	G789474-2 SRM	Lot Numbe	er: D088-540				
Mercury, Total	105		-		72-128	-			
Total Metals - Westborough Lab Associated san	nple(s): 07-08	Batch: WC	G789545-2						
Mercury, Total	107		-		80-120	-			
Dissolved Metals - Westborough Lab Associated	d sample(s): 07	-08 Batch	ו: WG789546-2						
Mercury, Dissolved	90		-		70-130	-			
TCLP Metals by EPA 1311 - Westborough Lab	Associated sam	ple(s): 09	Batch: WG78955	1-2					
Mercury, TCLP	104		-		80-120	-			

Lab Control Sample Analysis

Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Parameter Total Metals - Westborough Lab Associated sample(s): 01-06 Batch: WG789581-2 SRM Lot Number: D088-540 Aluminum, Total 80 48-151 --Antimony, Total 187 1-208 --Arsenic, Total 79-121 96 --Barium, Total 83-117 88 --Beryllium, Total 91 83-117 --Cadmium, Total 93 83-117 --Calcium, Total 89 81-119 --Chromium, Total 80-120 92 --Cobalt, Total 84-115 92 --Copper, Total 98 81-118 --Iron, Total 89 45-155 -Lead. Total 82 81-117 --Magnesium, Total 88 76-124 --Manganese, Total 81-118 88 -Nickel, Total 93 83-117 --Potassium, Total 89 71-129 --Selenium, Total 97 78-122 --Silver, Total 93 75-124 --Sodium, Total 90 72-127 --Thallium, Total 90 80-120 --Vanadium, Total 92 78-122 -

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 Report Date: 06/01/15

Parameter	LCS %Recovery	LCSI %Recov	······,	RPD	RPD Limits
Total Metals - Westborough Lab	Associated sample(s): 01-06	Batch: WG789581-2	SRM Lot Number: D088-540		
Zinc, Total	92		82-118	-	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number: L1511932 Report Date: 06/01/15

LCS LCSD %Recovery **RPD** Limits %Recovery %Recovery Limits RPD Parameter Dissolved Metals - Westborough Lab Associated sample(s): 07-08 Batch: WG789582-2 Aluminum, Dissolved 108 80-120 -Antimony, Dissolved 103 80-120 --Arsenic, Dissolved 80-120 93 --Barium, Dissolved 80-120 98 --Beryllium, Dissolved 102 80-120 --Cadmium, Dissolved 116 80-120 --Calcium, Dissolved 99 80-120 --Chromium, Dissolved 80-120 98 -Cobalt, Dissolved 80-120 95 --Copper, Dissolved 86 80-120 --Iron, Dissolved 96 80-120 -Lead. Dissolved 98 80-120 --Magnesium, Dissolved 114 80-120 --Manganese, Dissolved 80-120 93 -Nickel, Dissolved 91 80-120 --Potassium, Dissolved 110 80-120 --Selenium, Dissolved 97 80-120 --Silver, Dissolved 90 80-120 -Sodium, Dissolved 111 80-120 --Thallium, Dissolved 92 80-120 --Vanadium, Dissolved 100 80-120 -

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 Report Date: 06/01/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westborough Lab Associat	ed sample(s): 07-08	Batch: WG789582-2			
Zinc, Dissolved	93	-	80-120	-	
TCLP Metals by EPA 1311 - Westborough Lab	Associated sample(s)	09 Batch: WG789685-2			
Arsenic, TCLP	108	-	75-125	-	20
Barium, TCLP	100	-	75-125	-	20
Cadmium, TCLP	118		75-125	-	20
Chromium, TCLP	95		75-125	-	20
Lead, TCLP	100	-	75-125	-	20
Selenium, TCLP	108	-	75-125	-	20
Silver, TCLP	98		75-125	-	20

Lab Control Sample Analysis

Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Parameter Total Metals - Westborough Lab Associated sample(s): 07-08 Batch: WG789724-2 Aluminum, Total 101 80-120 -Antimony, Total 96 80-120 --Arsenic, Total 80-120 95 --Barium, Total 80-120 92 --Beryllium, Total 100 80-120 --Cadmium, Total 109 80-120 --Calcium, Total 95 80-120 --Chromium, Total 80-120 104 --Cobalt, Total 80-120 98 --Copper, Total 93 80-120 --Iron, Total 94 80-120 -Lead. Total 98 80-120 --Magnesium, Total 106 80-120 --Manganese, Total 80-120 93 -Nickel, Total 95 80-120 --Potassium, Total 105 80-120 --Selenium, Total 107 80-120 --Silver, Total 80-120 86 --Sodium, Total 98 80-120 --Thallium, Total 92 80-120 --Vanadium, Total 95 80-120 -

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab As	sociated sample(s): 07-08	Batch: WG789724-2			
Zinc, Total	97	-	80-120	-	

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Jound	MSD %Recovery Qu	Recovery al Limits	RPD Qua	RPD al Limits
Total Metals - Westb	orough Lab Associated	sample(s): 0	1-06 QC	Batch ID: WG	789474-4	QC S	Sample: L1511932-0	01 Client ID:	EB07_10-12	2
Mercury, Total	ND	0.19	0.24	126	Q	-	-	80-120	-	20
Total Metals - Westb	orough Lab Associated	sample(s): (7-08 QC	Batch ID: WG	789545-4	QC S	Sample: L1511932-0	07 Client ID:	MW11_0530	015
Mercury, Total	ND	0.005	0.00488	98		-	-	75-125	-	20
Dissolved Metals - W	/estborough Lab Associa	ated sample	(s): 07-08	QC Batch ID:	WG78954	46-4	QC Sample: L15119	932-07 Clien	t ID: MW11_	_053015
Mercury, Dissolved	ND	0.005	0.00499	100		-	-	75-125	-	20
TCLP Metals by EPA	1311 - Westborough La	ab Associate	ed sample(s	s): 09 QC Ba	tch ID: WO	G78955	1-4 QC Sample:	L1511932-09	Client ID: [DRUM_0530
Mercury, TCLP	ND	0.025	0.0262	105		-	-	80-120	-	20

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932

Report Date: 06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westboroug	h Lab Associated	sample(s):	01-06 QC	Batch ID: WG7	789581-4	QC S	ample: L1511932-01	Client ID:	EB07_10-12	
Aluminum, Total	7100	200	7400	150	Q	-	-	75-125	-	20
Antimony, Total	ND	49.9	40	80		-	-	75-125	-	20
Arsenic, Total	1.1	12	11	83		-	-	75-125	-	20
Barium, Total	53.	200	210	79		-	-	75-125	-	20
Beryllium, Total	0.31J	4.99	4.2	84		-	-	75-125	-	20
Cadmium, Total	ND	5.09	4.0	78		-	-	75-125	-	20
Calcium, Total	1300	998	2000	70	Q	-	-	75-125	-	20
Chromium, Total	18.	20	32	70	Q	-	-	75-125	-	20
Cobalt, Total	6.6	49.9	45	77		-	-	75-125	-	20
Copper, Total	16.	25	35	76		-	-	75-125	-	20
Iron, Total	15000	99.8	14000	0	Q	-	-	75-125	-	20
Lead, Total	ND	50.9	39	76		-	-	75-125	-	20
Magnesium, Total	2400	998	3100	70	Q	-	-	75-125	-	20
Manganese, Total	370	49.9	380	20	Q	-	-	75-125	-	20
Nickel, Total	15.	49.9	51	72	Q	-	-	75-125	-	20
Potassium, Total	1300	998	2100	80		-	-	75-125	-	20
Selenium, Total	ND	12	9.9	83		-	-	75-125	-	20
Silver, Total	ND	30	25	83		-	-	75-125	-	20
Sodium, Total	270	998	1100	83		-	-	75-125	-	20
Thallium, Total	ND	12	7.9	66	Q	-	-	75-125	-	20
Vanadium, Total	24.	49.9	63	78		-	-	75-125	-	20

		Matrix Spike Analysis Batch Quality Control		
Project Name:	130 ST. FELIX STREET	Batch Quality Control	Lab Number:	L1511932
Project Number:	170366001		Report Date:	06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s): C	1-06 QC	Batch ID: WG78	89581-4 QC S	Sample: L1511932-01	Client ID:	EB07_10-12	
Zinc, Total	34.	49.9	70	72	Q -	-	75-125	-	20

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 **Report Date:** 06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	/ RPD	RPD Limits
Dissolved Metals - Westbo	rough Lab Assoc	iated sample	e(s): 07-08	QC Batch ID:	WG789582-4	QC Sample: L1511	932-07 Clier	nt ID: MW1	1_053015
Aluminum, Dissolved	0.042	2	1.88	92	-	-	75-125	-	20
Antimony, Dissolved	0.0016J	0.5	0.4908	98	-	-	75-125	-	20
Arsenic, Dissolved	0.0005J	0.12	0.1158	96	-	-	75-125	-	20
Barium, Dissolved	0.1042	2	1.960	93	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.0463	93	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.0533	104	-	-	75-125	-	20
Calcium, Dissolved	69.3	10	63.6	0	Q -	-	75-125	-	20
Chromium, Dissolved	0.0041	0.2	0.1702	83	-	-	75-125	-	20
Cobalt, Dissolved	0.0004J	0.5	0.4692	94	-	-	75-125	-	20
Copper, Dissolved	0.0017	0.25	0.2295	91	-	-	75-125	-	20
Iron, Dissolved	0.058	1	0.811	75	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.4991	98	-	-	75-125	-	20
Magnesium, Dissolved	26.2	10	34.0	78	-	-	75-125	-	20
Manganese, Dissolved	0.0669	0.5	0.5084	88	-	-	75-125	-	20
Nickel, Dissolved	0.0075	0.5	0.4526	89	-	-	75-125	-	20
Potassium, Dissolved	4.49	10	16.6	121	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.137	114	-	-	75-125	-	20
Silver, Dissolved	0.0002J	0.05	0.0291	58	Q -	-	75-125	-	20
Sodium, Dissolved	62.8	10	61.3	0	Q -	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1121	93	-	-	75-125	-	20
Vanadium, Dissolved	ND	0.5	0.4808	96	-	-	75-125	-	20

Bat

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westbor	ough Lab Associa	ated sample	e(s): 07-08	QC Batch ID: WG	789582-4 QC	Sample: L1511	932-07 Client	ID: MW1	1_053015
Zinc, Dissolved	0.0079J	0.5	0.4756	95	-	-	75-125	-	20
TCLP Metals by EPA 1311	- Westborough La	ab Associat	ted sample(s): 09 QC Batch I	D: WG789685-4	QC Sample:	L1511932-09	Client ID:	DRUM_05301
Arsenic, TCLP	ND	1.2	1.3	108	-	-	75-125	-	20
Barium, TCLP	0.73	20	21	101	-	-	75-125	-	20
Cadmium, TCLP	ND	0.51	0.61	120	-	-	75-125	-	20
Chromium, TCLP	0.08J	2	2.0	100	-	-	75-125	-	20
Lead, TCLP	0.03J	5.1	5.2	102	-	-	75-125	-	20
Selenium, TCLP	ND	1.2	1.4	117	-	-	75-125	-	20
Silver, TCLP	ND	0.5	0.51	102	-	-	75-125	-	20

Project Name: 130 ST. FELIX STREET

Project Number: 170366001 Lab Number: L1511932 **Report Date:** 06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ⁼ound	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westboroug	h Lab Associated	sample(s):	07-08 QC	Batch ID: WG	789724-4	QC S	ample: L1511932-07	Client ID:	MW11_0	53015
Aluminum, Total	1.02	2	3.13	106		-	-	75-125	-	20
Antimony, Total	0.0015J	0.5	0.5020	100		-	-	75-125	-	20
Arsenic, Total	0.0010	0.12	0.1054	87		-	-	75-125	-	20
Barium, Total	0.1258	2	1.988	93		-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.0476	95		-	-	75-125	-	20
Cadmium, Total	0.0001J	0.051	0.0597	117		-	-	75-125	-	20
Calcium, Total	67.0	10	73.1	61	Q	-	-	75-125	-	20
Chromium, Total	0.0627	0.2	0.2314	84		-	-	75-125	-	20
Cobalt, Total	0.0021	0.5	0.4826	96		-	-	75-125	-	20
Copper, Total	0.0073	0.25	0.2481	96		-	-	75-125	-	20
Iron, Total	3.09	1	2.99	0	Q	-	-	75-125	-	20
Lead, Total	0.0022	0.51	0.5188	101		-	-	75-125	-	20
Magnesium, Total	29.3	10	30.6	13	Q	-	-	75-125	-	20
Manganese, Total	0.1606	0.5	0.6072	89		-	-	75-125	-	20
Nickel, Total	0.0392	0.5	0.5101	94		-	-	75-125	-	20
Potassium, Total	5.04	10	15.1	101		-	-	75-125	-	20
Selenium, Total	0.001J	0.12	0.102	85		-	-	75-125	-	20
Silver, Total	0.0001J	0.05	0.0335	67	Q	-	-	75-125	-	20
Sodium, Total	51.6	10	58.0	64	Q	-	-	75-125	-	20
Thallium, Total	ND	0.12	0.1106	92		-	-	75-125	-	20
Vanadium, Total	0.0033J	0.5	0.5385	108		-	-	75-125	-	20

Project Name:	130 ST. FELIX ST	REET			x Spike Analysis ch Quality Control	S	Lab Number:	L1511932
Project Number:	170366001	MS	MS	MS	Med	1405	Report Date:	06/01/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westb	orough Lab Associated	sample(s):	07-08 QC	Batch ID: WG78	9724-4 QC S	Cample: L1511932-0	7 Client ID:	MW11_0	53015
Zinc, Total	0.1238	0.5	0.5362	82	-	-	75-125	-	20

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	Native Sample	Duplicate Sample	Units	RPD Q	ual RPD Limits
Total Metals - Westborough Lab Associated sample(s):	01-06 QC Batch ID:	WG789474-3 QC Sample	: L1511932-01	Client ID:	EB07_10-12
Mercury, Total	ND	ND	mg/kg	NC	20
Total Metals - Westborough Lab Associated sample(s):	07-08 QC Batch ID:	WG789545-3 QC Sample	: L1511932-07	Client ID:	MW11_053015
Mercury, Total	ND	ND	mg/l	NC	20
Dissolved Metals - Westborough Lab Associated sample	e(s): 07-08 QC Batcl	h ID: WG789546-3 QC Sa	mple: L151193	32-07 Client	ID: MW11_053015
Mercury, Dissolved	ND	ND	mg/l	NC	20
TCLP Metals by EPA 1311 - Westborough Lab Associat	ed sample(s): 09 Q0	C Batch ID: WG789551-3	QC Sample: L	1511932-09	Client ID: DRUM_053015
Mercury, TCLP	ND	ND	mg/l	NC	20

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number: Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
tal Metals - Westborough Lab Associated sample(s):	01-06 QC Batch ID:	WG789581-3 QC Sample	: L1511932-01	Client ID:	: EB07_10-12
Aluminum, Total	7100	7100	mg/kg	0	20
Antimony, Total	ND	ND	mg/kg	NC	20
Arsenic, Total	1.1	1.1	mg/kg	0	20
Barium, Total	53.	53	mg/kg	0	20
Beryllium, Total	0.31J	0.32J	mg/kg	NC	20
Cadmium, Total	ND	ND	mg/kg	NC	20
Calcium, Total	1300	1300	mg/kg	0	20
Chromium, Total	18.	17	mg/kg	6	20
Cobalt, Total	6.6	6.8	mg/kg	3	20
Copper, Total	16.	15	mg/kg	6	20
Iron, Total	15000	14000	mg/kg	7	20
Lead, Total	ND	ND	mg/kg	NC	20
Magnesium, Total	2400	2400	mg/kg	0	20
Manganese, Total	370	380	mg/kg	3	20
Nickel, Total	15.	14	mg/kg	7	20
Potassium, Total	1300	1300	mg/kg	0	20
Selenium, Total	ND	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20
Sodium, Total	270	270	mg/kg	0	20

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	RPD Limits	
Total Metals - Westborough Lab Associated sa	mple(s): 01-06 QC Batch	ID: WG789581-3 Q	C Sample: L1511932-	01 Client ID	: EB07_10-12	
Thallium, Total	ND	ND	mg/kg	NC	20	
Vanadium, Total	24.	24	mg/kg	0	20	
Zinc, Total	34.	33	mg/kg	3	20	

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number: Report Date:

arameter	Native Sample	Duplicate Sampl	le Units	RPD	RPD Limits
issolved Metals - Westborough Lab	Associated sample(s): 07-08 QC Bat	ch ID: WG789582-3	QC Sample: L151	1932-07 Clien	t ID: MW11_053015
Aluminum, Dissolved	0.042	0.051	mg/l	19	20
Antimony, Dissolved	0.0016J	0.0010J	mg/l	NC	20
Arsenic, Dissolved	0.0005J	0.0003J	mg/l	NC	20
Barium, Dissolved	0.1042	0.1037	mg/l	0	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	0.0041	0.0042	mg/l	2	20
Cobalt, Dissolved	0.0004J	0.0003J	mg/l	NC	20
Copper, Dissolved	0.0017	0.0009J	mg/l	NC	20
Iron, Dissolved	0.058	0.062	mg/l	6	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Magnesium, Dissolved	26.2	25.1	mg/l	4	20
Manganese, Dissolved	0.0669	0.0682	mg/l	2	20
Nickel, Dissolved	0.0075	0.0074	mg/l	1	20
Potassium, Dissolved	4.49	4.52	mg/l	1	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	0.0002J	0.0001J	mg/l	NC	20
Thallium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	0.0007J	mg/l	NC	20

Project Name: 130 ST. FELIX STREET Project Number: 170366001

Lab Number: Report Date:

Parameter	Native Sa	Imple	Duplicate Sam	ple Units	RPD	RPD Limits
Dissolved Metals - Westborough Lab Associated sample(s): 07-08	QC Batch ID:	WG789582-3	QC Sample: L15	11932-07 Clie	ent ID: MW11_053015
Zinc, Dissolved	0.0079	IJ	0.0070J	mg/l	NC	20
Dissolved Metals - Westborough Lab Associated sample(s): 07-08	QC Batch ID:	WG789582-3	QC Sample: L15	1932-07 Clie	ent ID: MW11_053015
Calcium, Dissolved	69.3		69.9	mg/l	1	20
Sodium, Dissolved	62.8		65.4	mg/l	4	20
ICLP Metals by EPA 1311 - Westborough Lab Associate	d sample(s	s): 09 QC Ba	tch ID: WG7896	685-3 QC Sample	: L1511932-0	09 Client ID: DRUM_05301
Arsenic, TCLP	ND		ND	mg/l	NC	20
Barium, TCLP	0.73		0.70	mg/l	4	20
Cadmium, TCLP	ND		ND	mg/l	NC	20
Chromium, TCLP	0.08J		0.08J	mg/l	NC	20
Lead, TCLP	0.03J	l	0.02J	mg/l	NC	20
Selenium, TCLP	ND		ND	mg/l	NC	20
Silver, TCLP	ND		ND	mg/l	NC	20
Fotal Metals - Westborough Lab Associated sample(s): 0	7-08 QC	Batch ID: WG	789724-3 QC	Sample: L151193	2-07 Client I	D: MW11_053015
Aluminum, Total	1.02		1.07	mg/l	5	20
Calcium, Total	67.0		68.4	mg/l	2	20
Sodium, Total	51.6		57.4	mg/l	11	20

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number: L Report Date: 0

arameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Westborough Lab	Associated sample(s):	07-08 QC Batch ID:	WG789724-3 QC Sample	e: L1511932-07	Client ID:	MW11_053015
Antimony, Total		0.0015J	0.0010J	mg/l	NC	20
Arsenic, Total		0.0010	0.0007	mg/l	25	Q 20
Barium, Total		0.1258	0.1190	mg/l	6	20
Beryllium, Total		ND	ND	mg/l	NC	20
Cadmium, Total		0.0001J	0.0001J	mg/l	NC	20
Chromium, Total		0.0627	0.0373	mg/l	51	Q 20
Cobalt, Total		0.0021	0.0014	mg/l	43	Q 20
Copper, Total		0.0073	0.0066	mg/l	10	20
Iron, Total		3.09	2.31	mg/l	29	Q 20
Lead, Total		0.0022	0.0017	mg/l	24	Q 20
Magnesium, Total		29.3	27.5	mg/l	6	20
Manganese, Total		0.1606	0.1395	mg/l	14	20
Nickel, Total		0.0392	0.0227	mg/l	53	Q 20
Potassium, Total		5.04	4.98	mg/l	1	20
Selenium, Total		0.001J	0.001J	mg/l	NC	20
Silver, Total		0.0001J	0.0003J	mg/l	NC	20
Thallium, Total		ND	ND	mg/l	NC	20
Vanadium, Total		0.0033J	0.0023J	mg/l	NC	20
Zinc, Total		0.1238	0.1178	mg/l	5	20

INORGANICS & MISCELLANEOUS

 Project Name:
 130 ST. FELIX STREET
 Lab Number:
 L1511932

 Project Number:
 170366001
 Report Date:
 06/01/15

Lab ID:	L1511932-01	Date Collected:	05/30/15 14:40
Client ID:	EB07_10-12	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chromium, Trivalent	17	J	mg/kg	1.0	1.0	1	-	06/01/15 12:32	107,-	
Solids, Total	77.4		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	ND		mg/kg	1.2	0.28	1	05/31/15 16:50	06/01/15 10:00	1,9010C/9012B	ML
Chromium, Hexavalent	0.58	J	mg/kg	1.0	0.21	1	05/31/15 13:15	06/01/15 10:50	1,7196A	JT

 Project Name:
 130 ST. FELIX STREET
 Lab Number:
 L1511932

 Project Number:
 170366001
 Report Date:
 06/01/15

Lab ID:	L1511932-02	Date Collected:	05/30/15 13:25
Client ID:	EB09_4.5-5.5	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chromium, Trivalent	23	J	mg/kg	1.1	1.1	1	-	06/01/15 13:12	107,-	
Solids, Total	70.4		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	0.62	J	mg/kg	1.3	0.31	1	05/31/15 16:50	06/01/15 10:01	1,9010C/9012B	ML
Chromium, Hexavalent	0.96	J	mg/kg	1.1	0.23	1	05/31/15 13:15	06/01/15 10:51	1,7196A	JT

Project Name:130 ST. FELIX STREETLab Number:Project Number:170366001Report Date:

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Lab ID:	L1511932-03	Date Collected:	05/30/15 10:35
Client ID:	EB10_1-2	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ıb								
Chromium, Trivalent	16	J	mg/kg	0.89	0.89	1	-	06/01/15 13:16	107,-	
Solids, Total	89.8		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	ND		mg/kg	1.1	0.25	1	05/31/15 16:50	06/01/15 10:02	1,9010C/9012B	ML
Chromium, Hexavalent	0.31	J	mg/kg	0.89	0.18	1	05/31/15 13:15	06/01/15 10:52	1,7196A	JT

 Project Name:
 130 ST. FELIX STREET

 Project Number:
 170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Lab ID:	L1511932-04	Date Collected:	05/30/15 12:40
Client ID:	EB12_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chromium, Trivalent	32	J	mg/kg	0.95	0.95	1	-	06/01/15 13:20	107,-	
Solids, Total	84.3		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	0.75	J	mg/kg	1.1	0.26	1	05/31/15 16:50	06/01/15 10:03	1,9010C/9012B	ML
Chromium, Hexavalent	0.33	J	mg/kg	0.95	0.19	1	05/31/15 13:15	06/01/15 10:53	1,7196A	JT

 Project Name:
 130 ST. FELIX STREET
 Lab Number:

 Project Number:
 170366001
 Report Date:

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Lab ID:	L1511932-05	Date Collected:	05/30/15 12:00
Client ID:	EB13_7-9	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chromium, Trivalent	17	J	mg/kg	0.89	0.89	1	-	06/01/15 13:24	107,-	
Solids, Total	89.5		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	ND		mg/kg	1.0	0.24	1	05/31/15 16:50	06/01/15 10:05	1,9010C/9012B	ML
Chromium, Hexavalent	0.30	J	mg/kg	0.89	0.18	1	05/31/15 13:15	06/01/15 10:54	1,7196A	JT

 Project Name:
 130 ST. FELIX STREET
 Lab Number:
 L1511932

 Project Number:
 170366001
 Report Date:
 06/01/15

Lab ID:	L1511932-06	Date Collected:	05/30/15 00:00
Client ID:	DUP01_053015	Date Received:	05/30/15
Sample Location:	130 ST. FELIX STREET, BROOKLYN	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chromium, Trivalent	24	J	mg/kg	1.1	1.1	1	-	06/01/15 13:27	107,-	
Solids, Total	74.9		%	0.100	NA	1	-	05/30/15 22:37	30,2540G	MR
Cyanide, Total	ND		mg/kg	1.3	0.30	1	05/31/15 16:50	06/01/15 10:06	1,9010C/9012B	ML
Chromium, Hexavalent	0.53	J	mg/kg	1.1	0.21	1	05/31/15 13:15	06/01/15 10:56	1,7196A	JT

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511932

 Report Date:
 06/01/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for san	nple(s): 01	-06 Ba	tch: WO	G789475-1				
Chromium, Hexavalent	ND	mg/kg	0.80	0.16	1	05/31/15 13:15	06/01/15 10:48	1,7196A	JT
General Chemistry - We	estborough Lab for san	nple(s): 01	-06 Ba	tch: WO	G789504-1				
Cyanide, Total	ND	mg/kg	0.97	0.23	1	05/31/15 16:50	06/01/15 09:52	1,9010C/9012	B ML

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 01-06	Batch: WG78947	5-2				
Chromium, Hexavalent	84	-		80-120	-		20
General Chemistry - Westborough Lab As	sociated sample(s): 01-06	Batch: WG78950	4-2 WG7	89504-3			
Cyanide, Total	114	108		80-120	3		35

					-	ke Analy ality Cont						
Project Name:	130 ST. FELIX ST	REET				,		I	Lab Numbei	r:	L151	1932
Project Number:	170366001							I	Report Date	:	06/0 ⁻	1/15
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits

	•			-	-40.000				L uui
General Chemistry - Westboro	ough Lab Assoc	iated samp	le(s): 01-06	QC Batch ID:	WG789475-5	QC Sample:	L1511932-05 C	lient ID: E	B13_7-9
Chromium, Hexavalent	0.30J	1110	1000	90	-	-	75-125	-	20
General Chemistry - Westboro EB12_7-9	ough Lab Assoc	iated samp	le(s): 01-06	QC Batch ID:	WG789504-4	WG789504-5	QC Sample: L15	11932-04	Client ID:
Cyanide, Total	0.75J	12	13	100	12	97	65-135	8	35

Project Name:	130 ST. FELIX STREET	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1511932
Project Number:	170366001		Report Date:	06/01/15

Parameter	Native San	nple D	Duplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	: WG789435-1	QC Sample: I	L1511932-01	Client ID:	EB07_10-12
Solids, Total	77.4		77.5	%	0		20
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	: WG789475-4	QC Sample:	L1511932-05	Client ID:	EB13_7-9
Chromium, Hexavalent	0.30J		0.38J	mg/kg	NC		20

Project Name: 130 ST. FELIX STREET Project Number: 170366001

Lab Number: L1511932 Report Date: 06/01/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: 05/30/2015 21:57

Cooler Information Custody Seal Cooler A Absent

7.	7.000111
В	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1511932-01A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-01B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-01C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-01D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)
L1511932-01E	Glass 500ml/16oz unpreserved	A	N/A	3.9	Y	Absent	BE-TI(180),NYTCL- 8270(14),TCN-9010(14),AS- TI(180),BA-TI(180),AG- TI(180),HERB-APA(14),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TRICR- CALC(30),CU-TI(180),PB- TI(180),SB-TI(180),SE- TI(180),SB-TI(180),SE- TI(180),NYTCL-8081(14),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),HEXCR- 7196(30),K-TI(180),NA-TI(180)
L1511932-02A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-02B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-02C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-02D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)
L1511932-02E	Glass 500ml/16oz unpreserved	А	N/A	3.9	Y	Absent	BE-TI(180),NYTCL-

BE-TI(180),NYTCL-8270(14),TCN-9010(14),AS-TI(180),BA-TI(180),AG-TI(180),HERB-APA(14),AL-TI(180),CR-TI(180),NI-TI(180),CR-TI(180),NI-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),SB-TI(180),SE-TI(180),NYTCL-8081(14),V-TI(180),NYTCL-8081(14),V-TI(180),RE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CD-TI(180),HEXCR-7196(30),K-TI(180),NA-TI(180)

Project Name:130 ST. FELIX STREETProject Number:170366001

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1511932-03A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-03B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-03C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-03D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)
L1511932-03E	Glass 500ml/16oz unpreserved	A	N/A	3.9	Y	Absent	BE-TI(180),NYTCL- 8270(14),TCN-9010(14),AS- TI(180),BA-TI(180),AG- TI(180),HERB-APA(14),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TRICR- CALC(30),CU-TI(180),PB- TI(180),SB-TI(180),SE- TI(180),SB-TI(180),SE- TI(180),NYTCL-8081(14),V- TI(180),RE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),HEXCR- 7196(30),K-TI(180),NA-TI(180)
L1511932-04A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-04B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-04C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-04D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)
L1511932-04E	Glass 500ml/16oz unpreserved	A	N/A	3.9	Y	Absent	BE-TI(180),NYTCL- 8270(14),TCN-9010(14),AS- TI(180),BA-TI(180),AG- TI(180),HERB-APA(14),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TRICR- CALC(30),CU-TI(180),PB- TI(180),SB-TI(180),SE- TI(180),SE-TI(180),SE- TI(180),NYTCL-8081(14),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),HEXCR- 7196(30),K-TI(180),NA-TI(180)
L1511932-05A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-05B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-05C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-05D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)

Project Name:130 ST. FELIX STREETProject Number:170366001

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1511932-05E	Glass 500ml/16oz unpreserved	A	N/A	3.9	Υ	Absent	BE-TI(180),NYTCL- 8270(14),TCN-9010(14),AS- TI(180),BA-TI(180),AG- TI(180),HERB-APA(14),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TRICR- CALC(30),CU-TI(180),PB- TI(180),SB-TI(180),SE- TI(180),SB-TI(180),SE- TI(180),NYTCL-8081(14),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),HEXCR- 7196(30),K-TI(180),NA-TI(180)
L1511932-06A	Vial MeOH preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-06B	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-06C	Vial water preserved	А	N/A	3.9	Y	Absent	NYTCL-8260HLW(14)
L1511932-06D	Plastic 2oz unpreserved for TS	А	N/A	3.9	Y	Absent	TS(7)
L1511932-06E	Glass 500ml/16oz unpreserved	A	N/A	3.9	Y	Absent	BE-TI(180),NYTCL- 8270(14),TCN-9010(14),AS- TI(180),BA-TI(180),AG- TI(180),HERB-APA(14),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TRICR- CALC(30),CU-TI(180),PB- TI(180),SB-TI(180),SE- TI(180),SE-TI(180),SE- TI(180),PTCL-8081(14),V- TI(180),FE-TI(180),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),HEXCR- 7196(30),K-TI(180),NA-TI(180)
L1511932-07A	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-07B	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-07C	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-07D	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1511932-07E	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1511932-07F	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8082-1200ML(7)
L1511932-07G	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8082-1200ML(7)

Project Name:130 ST. FELIX STREETProject Number:170366001

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1511932-07H	Plastic 500ml HNO3 preserved	В	<2	3.2	Y	Absent	BA-6020T(180),FE- 6020T(180),SE-6020T(180),TL- 6020T(180),CA-6020T(180),CR- 6020T(180),K-6020T(180),NI- 6020T(180),CU-6020T(180),NA- 6020T(180),BE-6020T(180),PB- 6020T(180),BE-6020T(180),MN- 6020T(180),AS-6020T(180),SB- 6020T(180),AC-6020T(180),AG- 6020T(180),AL-6020T(180),CD- 6020T(180),HG-T(28),MG- 6020T(180),CO-6020T(180)
L1511932-07I	Glass 500ml/16oz unpreserved	В	7	3.2	Y	Absent	-
L1511932-07X	Plastic 120ml HNO3 preserved spl	В	<2	3.2	Y	Absent	CU-6020S(180),K- 6020S(180),SE-6020S(180),V- 6020S(180),MN-6020S(180),BE- 6020S(180),CO- 6020S(180),MG-6020S(180),ZN- 6020S(180),CA-6020S(180),CR- 6020S(180),CA-6020S(180),BA- 6020S(180),NA-6020S(180),NI- 6020S(180),AG-6020S(180),AS- 6020S(180),SB-6020S(180),AL- 6020S(180),CD-6020S(180),HG- S(28)
L1511932-08A	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-08B	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-08C	Vial HCI preserved	В	N/A	3.2	Y	Absent	NYTCL-8260(14)
L1511932-08D	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1511932-08E	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1511932-08F	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8082-1200ML(7)
L1511932-08G	Amber 1000ml unpreserved	В	7	3.2	Y	Absent	NYTCL-8082-1200ML(7)
L1511932-08H	Plastic 500ml HNO3 preserved	В	<2	3.2	Y	Absent	BA-6020T(180),FE- 6020T(180),SE-6020T(180),TL- 6020T(180),CA-6020T(180),CR- 6020T(180),K-6020T(180),NI- 6020T(180),ZV-6020T(180),PB- 6020T(180),BE-6020T(180),MN- 6020T(180),AS-6020T(180),AG- 6020T(180),V-6020T(180),AG- 6020T(180),AL-6020T(180),CD- 6020T(180),HG-T(28),MG- 6020T(180),CO-6020T(180)
L1511932-08I	Glass 500ml/16oz unpreserved	В	7	3.2	Y	Absent	-

Project Name:130 ST. FELIX STREETProject Number:170366001

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1511932-08X	Plastic 120ml HNO3 preserved spl	В	<2	3.2	Υ	Absent	CU-6020S(180),K- 6020S(180),SE-6020S(180),V- 6020S(180),MN-6020S(180),BE- 6020S(180),CO- 6020S(180),CA-6020S(180),ZN- 6020S(180),CA-6020S(180),BA- 6020S(180),RE-6020S(180),BA- 6020S(180),PB-6020S(180),NL- 6020S(180),AG-6020S(180),AL- 6020S(180),SB-6020S(180),AL- 6020S(180),CD-6020S(180),HG- S(28)
L1511932-09A	Glass 250ml/8oz unpreserved	В	N/A	3.2	Y	Absent	-
L1511932-09X	Plastic 120ml HNO3 preserved spl	В	<2	3.2	Y	Absent	CD-CI(180),AS-CI(180),BA- CI(180),HG-C(28),PB- CI(180),CR-CI(180),SE- CI(180),AG-CI(180)
L1511932-09X9	Tumble Vessel	В	N/A	3.2	Y	Absent	-

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number: L1511932

Report Date: 06/01/15

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

Report Format: DU Report with 'J' Qualifiers

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number: L1511932

Report Date: 06/01/15

Data Qualifiers

- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: 130 ST. FELIX STREET Project Number: 170366001
 Lab Number:
 L1511932

 Report Date:
 06/01/15

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 107 Alpha Analytical In-house calculation method.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK	Service Centers			Dee										
	CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105		of			Rec'd ab	5-	30-1	5	ALPH	A Job# 511932	
Westborough, MA 0158	,	Project Information					Delin	aveble			California	-	A DESCRIPTION OF THE OWNER OWNE		-
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300			Protor				erable						nformation	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: 130 9 Project Location: 130 9			WINH IN			ASP-						me as Client Info	D
Client Information					KLTIN IN-	1	- =		S (1 File	∋)	EQL	IS (4 File) PO# (7	70366001	
Client Information		Project # 17036600		1				Other			1				
Client: LANGAN		(Use Project name as P					Regu	latory	Require	ement			Disposa	al Site Information	ป
Address: 360 W 315	ST, SIT FL	Project Manager: Joss	EPH GOOD					NY TO	GS		X NY P	art 375	Please id	lentify below locatio	n of
MY NY	10001	ALPHAQuote #:						AWQ S	Standard	s	NY C	P-51	applicable	e disposal facilities.	
Phone: 212-479-	-5400	Turn-Around Time					ĺΠ	NY Re	stricted I	Jse	Othe		Disposal	Facility:	••••••
Fax: 212-479	-5444	Standar	d 🗌	Due Date:			1 -	NY Un	restricted	Use			∏ NJ	NY	
Email: jgood @land	gan-com	Rush (only if pre approved	X (t	# of Days:		ع		NYC S	ewer Dis	charge			Othe		
These samples have	been previously analyze	d by Alpha					ANAL	ALC: NOT		ge					
	ic requirements/comm			1				ney			1			Filtration	- 0
				5			21 \	Part	-	P			Don	-	t
						EM	Page	37	9 3	Per	2		Lab Preserv		a
Please specify Meta	Is or TAI					8	1 0 m	2		1	¥		Lab		
							1	10	in in	NA I	METHLS				В
			1				10	1			2		(Please	Specify below)	t
ALPHA Lab ID (Lab Use Only)	Sar	nple ID	Col	lection	Sample	Sampler's	45 5/30/15	E		THIN	-				t
			Date	ate Time		Matrix Initials		+2 开 里 ト			Tel			pecific Comments	e l
11932-01	EB07-10-12		5/30/15	14:40	SOIL	AT	X								5
02	EB09_4.5-5.	S	1	13:25	1	1	X								5
03	EB10- 1-2			10:35			X								5
04	EB12_7-9			12:40		+ +	X								2
05	EB13-7-9			12:00		++		-+							5
	DUP01-05301	5	5/30/15	12-00		AT	X								5
07	MW11_05301	and the second se	5/30/15	26	SOIL	1	×		_	-		<u> </u>			5
٩Å	GWDUPO1-0		the second se	16:35	WATER	AT				Ķ.				0.11	9
09			5/30/15			AT			-2	<				Filterd	9
	DRUM-05301	<u>></u>	5 30 15	15:50	SOIL	AT				×			Cab	Filterad	1
Preservative Code:	Container Code												1		
A = None	P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type							Please	print clearly, legi	ibly
B = HCI C = HNO3		Mansfield: Certification N	o: MA015	1	0011	tainer rype		1						mpletely. Sample	
$D = H_2 SO_4$	V = Vial G = Glass					0	Λ						not be l	logged in and	
E = NaOH	B = Bacteria Cup				Р	reservative								und time clock w	
F = MeOH	C = Cube	Relinquished E	Bv:	Date/T	ime		eceive	d By:			, Date/	Timo		ntil any ambiguitie d. BY EXECUTIN	
$G = NaHSO_4$ H = Na ₂ S ₂ O ₃	O = Other E = Encore	City K. 1		5/20/15	16:50	1 Mater	ALIC	A	11 .	1.	Date/		TUDO	OC, THE CLIEN	
VE = Zn Ac/NaOH	D = BOD Bottle	Han Babo hi	111			angen a	and the	H.	The	100	112	1675	HAS RE	EAD AND AGRE	ES
D = Other	F	And Chillen . 1	11-30	0/90/16 Z	02491	Mu	m	Un		1 5.8	0-15	20:49		BOUND BY ALP	
orm No: 01 05 U.O. (0.0								/					& CONDITIONS	S.
Form No: 01-25 HC (rev. 3	0-Sept-2013)			the second se	6								(See re	verse side.)	

ANALYTICAL REPORT

Lab Number:	L1511934
Client:	Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727
ATTN: Phone:	Joe Good (212) 479-5448
Project Name:	130 ST. FELIX STREET
Project Number: Report Date:	170366001 06/02/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:06021513:01

 Project Name:
 130 ST. FELIX STREET

 Project Number:
 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1511934-01	SV01	SOIL_VAPOR	BROOKLYN, NY	05/30/15 11:30	05/30/15
L1511934-02	SV02	SOIL_VAPOR	BROOKLYN, NY	05/30/15 11:51	05/30/15
L1511934-03	SV03	SOIL_VAPOR	BROOKLYN, NY	05/30/15 14:31	05/30/15
L1511934-04	AMB_053015	AIR	BROOKLYN, NY	05/30/15 13:58	05/30/15

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 130 ST. FELIX STREET Project Number: 170366001
 Lab Number:
 L1511934

 Report Date:
 06/02/15

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on May 29, 2015. The canister certification results are provided as an addendum.

Samples L1511934-01 and -02 results for Acetone should be considered estimated due to co-elution with a non-target peak.

Sample L1511934-01 The presence of 2,2,4-Triemthylpentane could not be determined in this sample due to a non-target compound interfering with the identification and quantification of this compound.

Samples L1511934-01 and -02 elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 06/02/15

AIR

L1511934

06/02/15

Lab Number:

Report Date:

 Project Name:
 130 ST. FELIX STREET

 Project Number:
 170366001

SAMPLE RESULTS

Lab ID:	L1511934-01 D
Client ID:	SV01
Sample Location: Matrix:	BROOKLYN, NY Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	06/01/15 22:23
Analyst:	MB

Date Collected:05/30/15 11:30Date Received:05/30/15Field Prep:Not Specified

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Man	sfield Lab								
Dichlorodifluoromethane	ND	0.500		ND	2.47			2.5	
Chloromethane	ND	0.500		ND	1.03			2.5	
Freon-114	ND	0.500		ND	3.49			2.5	
Vinyl chloride	ND	0.500		ND	1.28			2.5	
1,3-Butadiene	0.708	0.500		1.57	1.11			2.5	
Bromomethane	ND	0.500		ND	1.94			2.5	
Chloroethane	ND	0.500		ND	1.32			2.5	
Ethanol	14.6	6.25		27.5	11.8			2.5	
Vinyl bromide	ND	0.500		ND	2.19			2.5	
Acetone	34.5	2.50		82.0	5.94			2.5	
Trichlorofluoromethane	ND	0.500		ND	2.81			2.5	
sopropanol	3.42	1.25		8.41	3.07			2.5	
1,1-Dichloroethene	ND	0.500		ND	1.98			2.5	
Tertiary butyl Alcohol	8.00	1.25		24.3	3.79			2.5	
Methylene chloride	ND	1.25		ND	4.34			2.5	
3-Chloropropene	ND	0.500		ND	1.57			2.5	
Carbon disulfide	142	0.500		442	1.56			2.5	
Freon-113	ND	0.500		ND	3.83			2.5	
trans-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5	
1,1-Dichloroethane	ND	0.500		ND	2.02			2.5	
Methyl tert butyl ether	ND	0.500		ND	1.80			2.5	
2-Butanone	3.98	1.25		11.7	3.69			2.5	
cis-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5	
Ethyl Acetate	ND	1.25		ND	4.50			2.5	

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

Lab ID: Client ID: Sample Location:	L1511934-01 SV01 BROOKLYN, N	D	ppbV			Date	Collecte Receive Prep:		05/30/15 11:30 05/30/15 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	n Air - Mansfield L	.ab							
Chloroform		ND	0.500		ND	2.44			2.5
Tetrahydrofuran		ND	1.25		ND	3.69			2.5
1,2-Dichloroethane		ND	0.500		ND	2.02			2.5
n-Hexane		3.95	0.500		13.9	1.76			2.5
1,1,1-Trichloroethane		ND	0.500		ND	2.73			2.5
Benzene		1.36	0.500		4.34	1.60			2.5
Carbon tetrachloride		ND	0.500		ND	3.15			2.5
Cyclohexane		4.00	0.500		13.8	1.72			2.5
1,2-Dichloropropane		ND	0.500		ND	2.31			2.5
Bromodichloromethane		ND	0.500		ND	3.35			2.5
1,4-Dioxane		ND	0.500		ND	1.80			2.5
Trichloroethene		ND	0.500		ND	2.69			2.5
2,2,4-Trimethylpentane		ND	0.500		ND	2.34			2.5
Heptane		2.14	0.500		8.77	2.05			2.5
cis-1,3-Dichloropropene		ND	0.500		ND	2.27			2.5
4-Methyl-2-pentanone		1.38	1.25		5.66	5.12			2.5
trans-1,3-Dichloroprope	ne	ND	0.500		ND	2.27			2.5
1,1,2-Trichloroethane		ND	0.500		ND	2.73			2.5
Toluene		11.5	0.500		43.3	1.88			2.5
2-Hexanone		ND	0.500		ND	2.05			2.5
Dibromochloromethane		ND	0.500		ND	4.26			2.5
1,2-Dibromoethane		ND	0.500		ND	3.84			2.5
Tetrachloroethene		ND	0.500		ND	3.39			2.5
Chlorobenzene		ND	0.500		ND	2.30			2.5
Ethylbenzene		3.95	0.500		17.2	2.17			2.5
p/m-Xylene		18.8	1.00		81.7	4.34			2.5
Bromoform		ND	0.500		ND	5.17			2.5
Styrene		9.05	0.500		38.5	2.13			2.5

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

Lab ID: Client ID: Sample Location:	L1511934-01 SV01 BROOKLYN, I	D	-			Date Date Field			
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in	Air - Mansfield L	_ab							
1,1,2,2-Tetrachloroethar	ne	ND	0.500		ND	3.43			2.5
o-Xylene		8.62	0.500		37.4	2.17			2.5
4-Ethyltoluene		3.26	0.500		16.0	2.46			2.5
1,3,5-Trimethylbenzene		4.89	0.500		24.0	2.46			2.5
1,2,4-Trimethylbenzene		17.6	0.500		86.5	2.46			2.5
Benzyl chloride		ND	0.500		ND	2.59			2.5
1,3-Dichlorobenzene		ND	0.500		ND	3.01			2.5
1,4-Dichlorobenzene		ND	0.500		ND	3.01			2.5
1,2-Dichlorobenzene		ND	0.500		ND	3.01			2.5
1,2,4-Trichlorobenzene		ND	0.500		ND	3.71			2.5
Hexachlorobutadiene		ND	0.500		ND	5.33			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	86		60-140

L1511934

06/02/15

Lab Number:

Report Date:

Project Name:130 ST. FELIX STREETProject Number:170366001

SV02

MB

L1511934-02 D

BROOKLYN, NY

06/01/15 22:55

Soil_Vapor 48,TO-15

Lab ID:

Matrix:

Analyst:

Client ID:

Sample Location:

Anaytical Method: Analytical Date: SAMPLE RESULTS

Date Collected:05/30/15 11:51Date Received:05/30/15Field Prep:Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
/olatile Organics in Air - Mansfi	eld Lab							
Dichlorodifluoromethane	ND	0.667		ND	3.30			3.333
Chloromethane	ND	0.667		ND	1.38			3.333
Freon-114	ND	0.667		ND	4.66			3.333
/inyl chloride	ND	0.667		ND	1.71			3.333
,3-Butadiene	1.08	0.667		2.39	1.48			3.333
Bromomethane	ND	0.667		ND	2.59			3.333
Chloroethane	ND	0.667		ND	1.76			3.333
Ethanol	36.9	8.33		69.5	15.7			3.333
/inyl bromide	ND	0.667		ND	2.92			3.333
Acetone	64.1	3.33		152	7.91			3.333
richlorofluoromethane	ND	0.667		ND	3.75			3.333
sopropanol	5.72	1.67		14.1	4.10			3.333
,1-Dichloroethene	ND	0.667		ND	2.64			3.333
ertiary butyl Alcohol	8.42	1.67		25.5	5.06			3.333
Nethylene chloride	ND	1.67		ND	5.80			3.333
B-Chloropropene	ND	0.667		ND	2.09			3.333
Carbon disulfide	218	0.667		679	2.08			3.333
Freon-113	ND	0.667		ND	5.11			3.333
rans-1,2-Dichloroethene	ND	0.667		ND	2.64			3.333
,1-Dichloroethane	ND	0.667		ND	2.70			3.333
Nethyl tert butyl ether	ND	0.667		ND	2.40			3.333
2-Butanone	12.8	1.67		37.8	4.93			3.333
is-1,2-Dichloroethene	ND	0.667		ND	2.64			3.333
Ethyl Acetate	ND	1.67		ND	6.02			3.333

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

SAMPLE RESULTS

Lab ID:L1511934-0Client ID:SV02Sample Location:BROOKLYN		D IY ppbV			Date	Date Collected Date Received Field Prep: ug/m3		05/30/15 11:51 05/30/15 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Fastan
Volatile Organics in	Air - Mansfield L	.ab							
Chloroform		ND	0.667		ND	3.26			3.333
Tetrahydrofuran		6.84	1.67		20.2	4.93			3.333
1,2-Dichloroethane		ND	0.667		ND	2.70			3.333
n-Hexane		14.0	0.667		49.3	2.35			3.333
1,1,1-Trichloroethane		ND	0.667		ND	3.64			3.333
Benzene		1.47	0.667		4.70	2.13			3.333
Carbon tetrachloride		ND	0.667		ND	4.20			3.333
Cyclohexane		2.25	0.667		7.74	2.30			3.333
1,2-Dichloropropane		ND	0.667		ND	3.08			3.333
Bromodichloromethane		ND	0.667		ND	4.47			3.333
1,4-Dioxane		ND	0.667		ND	2.40			3.333
Trichloroethene		ND	0.667		ND	3.58			3.333
2,2,4-Trimethylpentane		2.10	0.667		9.81	3.12			3.333
Heptane		5.48	0.667		22.5	2.73			3.333
cis-1,3-Dichloropropene		ND	0.667		ND	3.03			3.333
4-Methyl-2-pentanone		3.77	1.67		15.5	6.84			3.333
trans-1,3-Dichloroprope	ne	ND	0.667		ND	3.03			3.333
1,1,2-Trichloroethane		ND	0.667		ND	3.64			3.333
Toluene		11.1	0.667		41.8	2.51			3.333
2-Hexanone		ND	0.667		ND	2.73			3.333
Dibromochloromethane		ND	0.667		ND	5.68			3.333
1,2-Dibromoethane		ND	0.667		ND	5.13			3.333
Tetrachloroethene		1.16	0.667		7.87	4.52			3.333
Chlorobenzene		ND	0.667		ND	3.07			3.333
Ethylbenzene		4.85	0.667		21.1	2.90			3.333
p/m-Xylene		21.4	1.33		93.0	5.78			3.333
Bromoform		ND	0.667		ND	6.90			3.333
Styrene		8.30	0.667		35.3	2.84			3.333

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1511934-02 SV02 BROOKLYN, N	D				Date	Collecte Receive Prep:		05/30/15 11:51 05/30/15 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	S RL MD	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield L	ab							
1,1,2,2-Tetrachloroethar	ie	ND	0.667		ND	4.58			3.333
o-Xylene		10.1	0.667		43.9	2.90			3.333
4-Ethyltoluene		3.21	0.667		15.8	3.28			3.333
1,3,5-Trimethylbenzene		4.80	0.667		23.6	3.28			3.333
1,2,4-Trimethylbenzene		16.3	0.667		80.1	3.28			3.333
Benzyl chloride		ND	0.667		ND	3.45			3.333
1,3-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,4-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,2-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,2,4-Trichlorobenzene		ND	0.667		ND	4.95			3.333
Hexachlorobutadiene		ND	0.667		ND	7.11			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	85		60-140

L1511934

06/02/15

Lab Number:

Report Date:

Project Name:130 ST. FELIX STREETProject Number:170366001

SAMPLE RESULTS

Lab ID:	L1511934-03
Client ID:	SV03
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	06/01/15 23:30
Analyst:	MB

Date Collected:05/30/15 14:31Date Received:05/30/15Field Prep:Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.340	0.200		1.68	0.989			1
Chloromethane	0.570	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	87.3	2.50		164	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	57.7	1.00		137	2.38			1
Trichlorofluoromethane	0.276	0.200		1.55	1.12			1
Isopropanol	11.5	0.500		28.3	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	19.5	0.500		59.1	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	4.92	0.200		15.3	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	2.24	0.500		6.61	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

SAMPLE RESULTS

Client ID: SV03					Date	Date Collected: Date Received: Field Prep: ug/m3		05/30/15 14:31 05/30/15 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Feeten
Volatile Organics in	Air - Mansfield La	ab							
Chloroform		0.209	0.200		1.02	0.977			1
Tetrahydrofuran		0.601	0.500		1.77	1.47			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		0.843	0.200		2.97	0.705			1
1,1,1-Trichloroethane		0.239	0.200		1.30	1.09			1
Benzene		0.721	0.200		2.30	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		0.590	0.200		2.03	0.688			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		1.58	0.200		7.38	0.934			1
Heptane		1.06	0.200		4.34	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		7.22	0.200		27.2	0.754			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Tetrachloroethene		0.448	0.200		3.04	1.36			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		2.75	0.200		11.9	0.869			1
p/m-Xylene		12.2	0.400		53.0	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		5.74	0.200		24.4	0.852			1

Project Name: 130 ST. FELIX STREET Project Number: 170366001

Lab Number:	L1511934
Report Date:	06/02/15

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1511934-03 SV03 BROOKLYN, NY	(Date Collected: Date Received: Field Prep:			05/30/15 14:31 05/30/15 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL Qualifier		. Factor
Volatile Organics in	n Air - Mansfield La	b							
1,1,2,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
o-Xylene		6.02	0.200		26.1	0.869			1
4-Ethyltoluene		2.39	0.200		11.7	0.983			1
1,3,5-Trimethylbenzene		3.26	0.200		16.0	0.983			1
1,2,4-Trimethylbenzene		13.1	0.200		64.4	0.983			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		0.765	0.200		4.60	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	81		60-140

L1511934

06/02/15

Lab Number:

Report Date:

 Project Name:
 130 ST. FELIX STREET

 Project Number:
 170366001

SAMPLE RESULTS

Lab ID:	L1511934-04
Client ID:	AMB_053015
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	06/01/15 16:20
Analyst:	MB

Date Collected:05/30/15 13:58Date Received:05/30/15Field Prep:Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Dichlorodifluoromethane	0.212	0.200		1.05	0.989			1
Chloromethane	0.636	0.200		1.31	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	6.84	2.50		12.9	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.70	1.00		13.5	2.38			1
Trichlorofluoromethane	0.434	0.200		2.44	1.12			1
Isopropanol	0.804	0.500		1.98	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: 130 ST. FELIX STREET Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

SAMPLE RESULTS

Client ID: AMB_05301		L1511934-04 AMB_053015 BROOKLYN, NY ppbV				Date Collected: Date Received: Field Prep: ug/m3			05/30/15 13:58 05/30/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Feeter
Volatile Organics in	Air - Mansfield La	ab							
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		0.237	0.200		0.835	0.705			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		1.19	0.200		5.56	0.934			1
Heptane		0.257	0.200		1.05	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		1.09	0.200		4.11	0.754			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Tetrachloroethene		ND	0.200		ND	1.36			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		0.648	0.400		2.81	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1

Project Name:	130 ST. FELIX STREET
Project Number:	170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1511934-04 AMB_053015 BROOKLYN, NY	,				Date Field	Collecte Receive Prep:		05/30/15 13:58 05/30/15 Not Specified
_	-		ppbV			ug/m3		• •••	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in	Air - Mansfield La	b							
1,1,2,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
o-Xylene		0.244	0.200		1.06	0.869			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene		0.276	0.200		1.36	0.983			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	81		60-140
Bromochloromethane	82		60-140
chlorobenzene-d5	68		60-140

Report Date: 06/02/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/01/15 13:58

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab for samp	ole(s): 01-	04 Batch:	WG78968	34-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Report Date: 06/02/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/01/15 13:58

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for sam	ple(s): 01-	04 Batch:	: WG78968	84-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

Report Date: 06/02/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/01/15 13:58

		ppbV						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	04 Batch:	WG78968	34-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Batch Quality Control

Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG789684-3 Chlorodifluoromethane 88 70-130 --Propylene 93 70-130 --Dichlorodifluoromethane 70-130 76 --70-130 Chloromethane 94 --1,2-Dichloro-1,1,2,2-tetrafluoroethane 104 70-130 --Methanol 70-130 79 --Vinyl chloride 98 70-130 --1.3-Butadiene 98 70-130 --Butane 70-130 89 --Bromomethane 102 70-130 --Chloroethane 92 70-130 --Ethyl Alcohol 90 70-130 --Dichlorofluoromethane 90 70-130 --Vinyl bromide 103 70-130 --Acrolein 70-130 96 --100 70-130 Acetone --Acetonitrile 87 70-130 --70-130 Trichlorofluoromethane 104 -iso-Propyl Alcohol 70-130 101 --Acrylonitrile 70-130 89 --Pentane 90 70-130 --

Batch Quality Control

Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG789684-3 Ethyl ether 83 70-130 --1,1-Dichloroethene 93 70-130 -tert-Butyl Alcohol 97 70-130 --Methylene chloride 70-130 97 --3-Chloropropene 102 70-130 --Carbon disulfide 70-130 99 --1,1,2-Trichloro-1,2,2-Trifluoroethane 105 70-130 -trans-1.2-Dichloroethene 90 70-130 --1.1-Dichloroethane 70-130 99 --Methyl tert butyl ether 100 70-130 --Vinyl acetate Q 70-130 174 --2-Butanone 95 70-130 -cis-1.2-Dichloroethene 110 70-130 --Ethyl Acetate 100 70-130 --Chloroform 104 70-130 --Tetrahydrofuran 70-130 88 --2,2-Dichloropropane 96 70-130 --70-130 1,2-Dichloroethane 101 -n-Hexane 70-130 87 --Isopropyl Ether 82 70-130 --Ethyl-Tert-Butyl-Ether 86 70-130 --

Batch Quality Control

Project Number: 170366001

Lab Number: L1511934 Report Date: 06/02/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG789684-3 1,1,1-Trichloroethane 96 70-130 --1,1-Dichloropropene 90 70-130 --Benzene 92 70-130 --Carbon tetrachloride 70-130 97 --Cyclohexane 70-130 86 --Tertiary-Amyl Methyl Ether 70-130 86 --Dibromomethane 86 70-130 --1,2-Dichloropropane 92 70-130 --Bromodichloromethane 70-130 95 --1,4-Dioxane 70-130 90 --Trichloroethene 100 70-130 --2,2,4-Trimethylpentane 89 70-130 --Methyl Methacrylate 86 70-130 --Heptane 70-130 84 -cis-1,3-Dichloropropene 102 70-130 --4-Methyl-2-pentanone 70-130 86 -trans-1,3-Dichloropropene 86 70-130 --1,1,2-Trichloroethane 70-130 96 --Toluene 70-130 100 --1,3-Dichloropropane 70-130 93 --2-Hexanone 100 70-130 --

Batch Quality Control

Project Number: 170366001

Lab Number: L1511934 Report Date: 06/02/15

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits %Recovery Qual Qual Parameter Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG789684-3 Dibromochloromethane 104 70-130 --1,2-Dibromoethane 107 70-130 --**Butyl Acetate** 87 70-130 --Octane 92 70-130 --Tetrachloroethene 108 70-130 --1,1,1,2-Tetrachloroethane 70-130 100 --Chlorobenzene 108 70-130 --Ethylbenzene 104 70-130 -p/m-Xylene 70-130 104 --Bromoform 108 70-130 --Styrene 107 70-130 --1,1,2,2-Tetrachloroethane 104 70-130 -o-Xylene 105 70-130 --1,2,3-Trichloropropane 70-130 98 --Nonane (C9) 70-130 91 --Isopropylbenzene 103 70-130 --Bromobenzene 97 70-130 -o-Chlorotoluene 70-130 102 -n-Propylbenzene 70-130 104 -p-Chlorotoluene 101 70-130 --4-Ethyltoluene 101 70-130 --

Batch Quality Control

Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Qual Qual Qual Parameter Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG789684-3 1,3,5-Trimethylbenzene 105 70-130 -tert-Butylbenzene 104 70-130 --1,2,4-Trimethylbenzene 110 70-130 --Decane (C10) 99 70-130 --Benzyl chloride 112 70-130 --1.3-Dichlorobenzene 70-130 117 --1,4-Dichlorobenzene 117 70-130 -sec-Butylbenzene 103 70-130 -p-Isopropyltoluene 70-130 98 _ -1,2-Dichlorobenzene 70-130 114 -n-Butylbenzene 107 70-130 --1,2-Dibromo-3-chloropropane 104 70-130 --Undecane 102 70-130 --Dodecane (C12) 118 70-130 --1,2,4-Trichlorobenzene 127 70-130 --Naphthalene 118 70-130 --1,2,3-Trichlorobenzene 119 70-130 --70-130 Hexachlorobutadiene 115 --

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number:

 Lab Number:
 L1511934

 Report Date:
 06/02/15

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s): 01-04	QC Batch ID: WG789684-5	QC Sample:	L1511634-01	Client ID:	DUP Sample
Dichlorodifluoromethane	ND	ND	ppbV	NC		25
Chloromethane	ND	ND	ppbV	NC		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	33.8	32.3	ppbV	5		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	37.4	35.6	ppbV	5		25
Trichlorofluoromethane	ND	ND	ppbV	NC		25
iso-Propyl Alcohol	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
tert-Butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number:

L1511934 Report Date: 06/02/15

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG789684-5	QC Sample:	L1511634-01	Client ID: DUP Sample
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
2-Butanone	3.33	3.28	ppbV	2	25
cis-1,2-Dichloroethene	5.08	4.92	ppbV	3	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	4.32	4.22	ppbV	2	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	5.97	5.77	ppbV	3	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG789684-5	QC Sample:	L1511634-01	Client ID: DUP Sample
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.743	0.800	ppbV	7	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	208	213	ppbV	2	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	1.47	1.55	ppbV	5	25

Project Name:130 ST. FELIX STREETProject Number:170366001

 Lab Number:
 L1511934

 Report Date:
 06/02/15

RPD Parameter Native Sample Duplicate Sample Units RPD Limits Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 QC Batch ID: WG789684-5 QC Sample: L1511634-01 Client ID: DUP Sample Benzyl chloride ND NC ND ppbV 25 ppbV NC 1,3-Dichlorobenzene ND ND 25 1,4-Dichlorobenzene ND ND ppbV NC 25 1,2-Dichlorobenzene ND ND ppbV NC 25 NC 1,2,4-Trichlorobenzene ND ND ppbV 25 NC 25 Hexachlorobutadiene ND ND ppbV

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Serial_No:06021513:01 Lab Number: L1511934

Report Date: 06/02/15

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1511934-01	SV01	0150	#30 SV	05/29/15	204492		-	-	-	Pass	17.8	17.9	1
L1511934-01	SV01	2042	2.7L Can	05/29/15	204492	L1510674-01	Pass	-29.8	-5.4	-	-	-	-
L1511934-02	SV02	0002	#16 AMB	05/29/15	204492		-	-	-	Pass	17.9	21.8	20
L1511934-02	SV02	518	2.7L Can	05/29/15	204492	L1510674-01	Pass	-29.9	-7.8	-	-	-	-
L1511934-03	SV03	0471	#30 SV	05/29/15	204492		-	-	-	Pass	18	18.1	1
L1511934-03	SV03	2015	2.7L Can	05/29/15	204492	L1510674-01	Pass	-30.0	-12.1	-	-	-	-
L1511934-04	AMB_053015	0675	#16 AMB	05/29/15	204492		-	-	-	Pass	17.9	18.5	3
L1511934-04	AMB_053015	1993	6.0L Can	05/29/15	204492	L1509822-01	Pass	-29.6	-20.7	-	-	-	-

Serial_No:06021513:01 Lab Number: L1509822

Report Date: 06/02/15

Project Name:

Project Number: CANISTER QC BAT

Lab ID:	L1509822-01	Date Collected:	05/07/15 11:00
Client ID:	CAN 594 SHELF 48	Date Received:	05/07/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	05/09/15 17:01		
Analyst:	MR		

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number:

L1509822

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1509822-01 CAN 594 SHE	LF 48	ррЬУ				Collecte Receive Prep:		05/07/15 11:00 05/07/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	F 4
Volatile Organics in A	Air - Mansfield Lat)							
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trif	luoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	;	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Isopropyl Ether		ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Eth	er	ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1509822

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1509822-01 CAN 594 SHEI	_F 48	ppbV				Collecte Receive Prep:		05/07/15 11:00 05/07/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	— .
Volatile Organics in <i>I</i>	Air - Mansfield Lab)							
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl Acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane (C9)		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1509822

Report Date: 06/02/15

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1509822-01 CAN 594 SHEL	_F 48					Collecte Receive Prep:		05/07/15 11:00 05/07/15 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in A	Air - Mansfield Lab	I							
o-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
p-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane (C10)		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane (C12)		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

							Serial_	_No:060	21513:01
Project Name:						La	ab Num	ber: լ	_1509822
Project Number:	CANISTER QC	BAT				R	eport D	ate: (06/02/15
		Air Can	ister Ce	rtificatio	on Results	5			
Lab ID:	L1509822-01					Date	Collecte	d:	05/07/15 11:00
Client ID:	CAN 594 SHEL	F 48				Date	Receive	d:	05/07/15
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

% Recovery

91

86

89

Qualifier

Acceptance Criteria

60-140

60-140

60-140

Volatile Organics in Air - Mansfield Lab

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Serial_No:06021513:01 Lab Number: L1509822

Report Date: 06/02/15

Project Name:

Project Number: CANISTER QC BAT

Lab ID:	L1509822-01	Date Collected:	05/07/15 11:00
Client ID:	CAN 594 SHELF 48	Date Received:	05/07/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	05/09/15 17:01		
Analyst:	MR		

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number:

L1509822

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1509822-01 CAN 594 SHEL	.F 48	ppbV				Collecte Receive Prep:		05/07/15 11:0 05/07/15 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	ir by SIM - Mansfi								
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	Э	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1509822

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1509822-01 CAN 594 SHEI	_F 48				Date Date Field			
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in n-Butylbenzene	Air by SIM - Mansf		0.000			4.40			4
1,2,4-Trichlorobenzene		ND ND	0.200		ND ND	1.10 0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	88		60-140

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Project Name:

Project Number: CANISTER QC BAT

Lab ID:	L1510674-01	Date Collected:	05/14/15 18:00
Client ID:	CAN 177 SHELF 1	Date Received:	05/15/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	05/15/15 15:27		
Analyst:	RY		

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1510674-01 CAN 177 SHEI	LF 1	ppbV				Collecte Receive Prep:		05/14/15 18:0 05/15/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	-
Volatile Organics in A	Air - Mansfield Lab)							
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trif	luoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	;	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Isopropyl Ether		ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Eth	er	ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1
Trichloroethene		ND	0.200		ND	1.07			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1510674-01 CAN 177 SHE	LF 1	ppbV			Date Collected: Date Received: Field Prep: ug/m3			
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution r Factor
Volatile Organics in A	Air - Mansfield Lat)							
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	าย	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl Acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane (C9)		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1
o-Chlorotoluene		ND	0.200		ND	1.04			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Air Canister Certification Results

Lab ID: L1510674-01 Client ID: CAN 177 SH Sample Location:		.F 1				Date Received: Field Prep:			05/14/15 18:00 05/15/15 Not Specified
Denematan		Desults	ppbV		Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Parameter Volatile Organics in A	ir - Mansfield Lab	Results	RL	MDL	Results	RL	WDL	Quaime	
n-Propylbenzene			0.000		ND	0.000			4
p-Chlorotoluene		ND	0.200		ND	0.983			1
•		ND	0.200		ND	1.04			
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane (C10)		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloroprop	bane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane (C12)		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

							Serial_	_No:060	21513:01
Project Name:						Li	ab Num	ber:	L1510674
Project Number:	CANISTER QC	BAT				R	eport D	ate:	06/02/15
		Air Can	ister Ce	rtificatio	on Results	5			
Lab ID:	L1510674-01					Date	Collecte	d:	05/14/15 18:00
Client ID:	CAN 177 SHEL	.F 1				Date	Receive	d:	05/15/15
Sample Location:						Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	. Factor

MDL

Acceptance Criteria Internal Standard Qualifier % Recovery 96 1,4-Difluorobenzene 60-140 Bromochloromethane 86 60-140 chlorobenzene-d5 94 60-140

RL

Results

Parameter

Volatile Organics in Air - Mansfield Lab

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Project Name:

Project Number: CANISTER QC BAT

Lab ID:	L1510674-01	Date Collected:	05/14/15 18:00
Client ID:	CAN 177 SHELF 1	Date Received:	05/15/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	05/15/15 15:27		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Number: CANISTE

CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Client ID: CAN 177 SH Sample Location:		L1510674-01 CAN 177 SHELF 1 ppbV					Collecte Receive Prep:		05/14/15 18:0 05/15/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	F 4
Volatile Organics in A	Air by SIM - Mansf	ield Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Number: CANISTER QC BAT

Serial_No:06021513:01 Lab Number: L1510674

Report Date: 06/02/15

Lab ID: Client ID: Sample Location:	L1510674-01 CAN 177 SHEL	.F 1	ppbV				Collecte Receive Prep:		05/14/15 18:00 05/15/15 Not Specified
Parameter		Results	RL	MDL	Results	RL MD		Qualifie	Dilution Factor
Volatile Organics in A	ir by SIM - Mansfi	eld Lab							
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	96		60-140

Project Name:130 ST. FELIX STREETProject Number:170366001

Lab Number: L1511934 Report Date: 06/02/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A

Absent

Container Info	ormation			Temp		
Container ID	Container Type	Cooler	рΗ	deg C Pres	Seal	Analysis(*)
L1511934-01A	Canister - 2.7 Liter	N/A	NA	Y	Absent	TO15-LL(30)
L1511934-02A	Canister - 2.7 Liter	N/A	NA	Y	Absent	TO15-LL(30)
L1511934-03A	Canister - 2.7 Liter	N/A	NA	Y	Absent	TO15-LL(30)

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number: L1511934

Report Date: 06/02/15

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

Report Format: Data Usability Report

Serial_No:06021513:01

Project Name: 130 ST. FELIX STREET

Project Number: 170366001

Lab Number: L1511934

Report Date: 06/02/15

Data Qualifiers

- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: 130 ST. FELIX STREET Project Number: 170366001
 Lab Number:
 L1511934

 Report Date:
 06/02/15

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:06021513:01

	AIR AN	IALY	SIS	PA		OF	Date R	ec'd in La	b: 6	11/1	5		AL	.PHA	Jol	s#:レ151	11934
ANALTICAL	CHAIN OF CUSTODY	Project	Informat	ion	_		Repor	t Inform	ation -	Data D	eliveral	oles	В	lling	Info	rmation	
320 Forbes Blvd, Mans TEL: 508-822-9300 F				0.5t.Fe		int		{					X	Same	as Cli	ent info PO #	170366001
Client Information		Project Lo	ocation:	Stooklyn				Ξx	o okoru						alan saidi.	·····	
Client: Langara E		Project #:	1702	21005-1411 66001	1.04			Criteria Ch (Default base	-	latory Crite	eria Indicate	d)	1				
Client: Langan E Address: 360 We	A 2 15t		_ 1703	se Goo	4		_)ther Form AIL (stand		eport)			R	egula	tory	Requirement	s/Report Limits
		ALPHA G		Jie (190	<u></u>			itional De					Sta	te/Fe	đ	Program	Criteria
Phone: ZIZ - 479	NY 10001	Turn-A	round Tir	me			Report	to: (if differen	t than Project	Manager)					_		
Fax: 217 - 479																	
Email: atachia		C Standa	rd 🎽	RUSH (only c	confirmed if pre-ap	proved!)								A	NAL	YSIS	
These samples have t	been previously analyzed by Alpha	Date Due	e :		Time: と	t-hr								Π	/		
	cific Requirements/Comn	nents:					<u> </u>									' / / /	
		,											12		0		
		olum	nns E	Below	/ Mus	st Be	Fill	ed C	Dut			14 17 19			TO-132 GASES	1/10-10	
ALPHA Lab ID				ollecti		Final		Sampler's	s Can		I D - Flow Controller	-144	70-15 SIL			5	
(Lab Use Only)	Sample ID	Date	Start Time	End Time				Initials	Size	Can	Controller	2/2	2/2	₹ /2	5/2	メントン /Sample Co	omments (i.e. PID)
1/934.01	SVOI	5/30/15	9:28	11:30	- 30-42	-4.89	s√	AT	2.72	2042	0150	X			·		
OE a	SVOR	Í	9:51		-30.44	-7.74	5∨	AT	2.71	518	0002	X		_			
03	5003	:	12:31	14:31	-30.32	-11.85	SN	AT	2.71	2015	0471	X		Ļ			
Singling				14:31	-20.32	-11.85							+				
	MB-0530/5		9:58		1		0.0	A	11	1000	2195	X					
<u>04</u>	MB_053015	· V	1.50	13:58	-30.14	-10.07	HIK	AT_	0-	1713	0675	^			+ -		
						1							+	_			
													+		-		U
	······															`	
				·						 							
a the second											Ĩ						
*SAMPLE N	MATRIX CODES SV	A = Ambien V = Soil Var her = Please	or/Landfill					2	Container	• Туре				1		completely. S	learly, legibly and amples can not be turnaround time
		Relinquis	shed By:		Dat	e/Time) p ege	ived By:	A A .			Date/T	ime:		clock will not	start until any ambl-
	Celby	fort.	0.1	11	7/30/	5 16:50	ICAN .	Jalo -	t j	K/	651	30/1	5 ;	16-	YC .		subject to Alpha's
Formage 5200 (152m-09)	Parki	- VC	X K	#3	5/3///	7 24.3	1/1/	you	MA	- AN	60 IY	1/8		221	200	See reverse s	