REMEDIAL INVESTIGATION REPORT

for

1607 SURF AVENUE BROOKLYN, NEW YORK

Prepared For:

Coney Island Associates Phase 2 LLC c/o BFC Partners 150 Myrtle Ave, 2nd Floor Brooklyn, New York

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

May 2021

Langan Project No. 170599501

LANGAN

21 Penn Piaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • Ohio • Florida • Texas • Colorado • Arizona • Washington • California Athens • Calgary • Dubai • London • Panama

TABLE OF CONTENTS

1.0	INTRODUCTION			
2.0	SITE F	HYSICAL CHARACTERISTICS	3	
	2.1	Site Description	3	
	2.2	Surrounding Property Land Use	3	
	2.3	Site Physical Conditions6	5	
		2.3.1 Topography6		
		2.3.2 Regional Geology		
		2.3.3 Regional Hydrogeology 6 2.3.4 Wetlands 7		
3.0		ACKGROUND		
5.0	3.1	Historical Site Usage		
	3.2	Proposed Redevelopment Plan		
	3.3	Summary of Previous Environmental Investigations		
	3.4	Summary of Potential Areas of Concern		
4.0		DIAL INVESTIGATION		
T. V	4.1	Geophysical Survey and Utility Location		
	4.2	Soil Investigation		
	7.6	4.2.1 Soil Boring Investigation Methodology		
		4.2.3 Soil Sampling Methodology		
	4.3	Groundwater Investigation		
		4.3.1 Monitoring Well Installation and Development Methodology15	5	
		4.3.2 Groundwater Sampling15	5	
	4.4	Soil Vapor Investigation	5	
		4.4.1 Soil Vapor Point Installation16		
		4.4.2 Soil Vapor Sampling and Analysis		
	4.5	4.4.3 Ambient Air Sampling and Analysis		
	4.5	Quality Control Sampling		
		4.5.1 Soil QA/QC Samples		
		4.5.3 Soil Vapor QA/QC Samples		
	4.6	Data Validation		
		4.6.1 Data Usability Summary Report Preparation)	
	4.7	Field Equipment Decontamination		
	4.8	Investigation-Derived Waste Management		
5.0	FIELD	OBSERVATIONS AND ANALYTICAL RESULTS	<u>></u>	
	5.1	Geophysical Investigation Findings	<u>></u>	
	5.2	Geology and Hydrogeology22		
		5.2.1 Historic Fill)	
		5.2.2 Native Soil Layers		
		5.2.3 Bedrock	2	

		5.2.4	Hydrogeology	
			Surface Water and Drainage	
	5.3		indings	
		5.3.1	Soil Boring Field Observations	
		5.3.2	Analytical Results	
	5.4		ndwater Findings	
		5.4.1 5.4.2	Field Observations	
	5.5	-	apor Findings	
	0.0		Soil Vapor Analytical Data	
	5.6		y Control Results	
	5.7		Jsability	
	5.8		ation of Potential Areas of Concern	
	0.0	5.8.1	AOC 1: Historic Fill	-
		5.8.2	AOC 2: Historical Manufacturing Facility	
		5.8.3	AOC 3: Historical Automobile Repair Shop and Machine Shop	
		5.8.4	AOC 4: Historical Use of Adjoining Properties	
6.0	QUAL	ITATIV	E HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	37
	6.1	Curre	nt Conditions	37
	6.2	Propo	sed Conditions	37
	6.3	Sumn	nary of Environmental Conditions	37
	6.4	Conce	ptual Site Model	38
		6.4.1	Potential Sources of Contamination	38
		6.4.2	Exposure Media	38
		6.4.3	Receptor Populations	39
	6.5	Poten	tial Exposure Pathways – On-Site	39
		6.5.1	Current Conditions	
		6.5.2	Construction/Remediation Conditions	
		6.5.3	Proposed Future Conditions	
	6.6		tial Exposure Pathways – Off-Site	
	6.7	Evalua	ation of Human Health Exposure	41
		6.7.1	Current Conditions	
		6.7.2	Construction/Remediation Activities	
		6.7.3 6.7.4	Proposed Future Conditions Human Health Exposure Assessment Conclusions	
7.0		-	D EXTENT OF CONTAMINATION	
7.0				
	7.1		ontamination	
	7.2		ndwater Contamination	
• •	7.3		apor Contamination	
8.0			NS	
9.0	REFERENCES47			

TABLES

- Table 2 Monitoring Well Construction Summary
- Table 3 Groundwater Elevation Data
- Table 4Soil Sample Analytical Results
- Table 5
 Soil Sample Analytical Results Emerging Contaminants
- Table 6Groundwater Sample Analytical Results
- Table 7
 Groundwater Sample Analytical Results Emerging Contaminants
- Table 8Soil Vapor Sample Analytical Results

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Adjacent Property and Surrounding Land Use
Figure 4	Groundwater Contour Map
Figure 5	Sample Location Map and Potential Areas of Concern
Figure 6	Subsurface Profiles
Figure 7	Soil Analytical Results
Figure 8	Groundwater Contours and Analytical Results
Figure 9	Soil Vapor Analytical Results

APPENDICES

- Appendix A Previous Environmental Reports
- Appendix B Geophysical Survey Reports
- Appendix C Soil Boring Logs
- Appendix D Well Construction Logs
- Appendix E Groundwater Sampling Logs
- Appendix F Soil Vapor Construction and Sampling Logs
- Appendix G Data Usability Summary Reports
- Appendix H Laboratory Analytical Reports

\\angan.com\\data\\YC\\data5\170599501\Project Data_Discipline\Environmental\Reports\RIR\1607 Surf Avenue RIR_FINAL 2021-05-05.docx

LIST OF ACRONYMS

Acronym	Definition			
AAI	All Appropriate Inquiries			
AGV	Air Guidance Values			
AOC	Area of Concern			
AST	Aboveground Storage Tank			
ASTM ADDVeground Storage Tank ASTM ASTM International				
BCA	Brownfield Cleanup Agreement			
BCP	Brownfield Cleanup Program			
bgs	Below Grade Surface			
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes			
CAMP	Community Air Monitoring Program			
COC	Contaminants of Concern			
CSM	Conceptual Site Model			
CVOC	Chlorinated Volatile Organic Compound			
DER	Division of Environmental Remediation			
DOT	Department of Transportation			
DUSR	Data Usability Summary Report			
E-Designation	Environmental Designation			
el Elevation				
ELAP	Environmental Laboratory Approval Program			
USEPA Environmental Protection Agency				
EPH Extractable Petroleum Hydrocarbons				
ESA	Environmental Site Assessment			
eV	Electron Volt			
FEMA Federal Emergency Management Agency				
FIRM Flood Insurance Rate Map				
FWRIA Fish and Wildlife Resources Impact Analysis				
GPR	Ground Penetrating Radar			
GQS	Groundwater Quality Standards			
HASP	Health and Safety Plan			
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectrometry			
IDW	Investigation-Derived Waste			
L/min	Liters per Minute			
LNAPL Light Non-Aqueous Phase Liquid				
LTANK Leaking Tanks				
μg/m ³ Micrograms per Cubic Meter				
µg/L	Micrograms per Liter			
mg/kg	Milligrams per Kilogram			
MS/MSD	Matrix Spike/Matrix Spike Duplicate			

Acronym	Definition		
NAPL	Non-Aqueous Phase Liquid		
NAVD88	North American Vertical Datum of 1988		
NTU	Nephelometric Turbidity Units		
NYCRR	New York City Rules and Regulations		
NYSDOH	New York State Department of Health		
NYSDEC	New York State Department of Environmental Conservation		
PAH	Polycyclic Aromatic Hydrocarbons		
PBS	Petroleum Bulk Storage		
РСВ	Polychlorinated Biphenyls		
PCE	Tetrachloroethene		
PG	Restricted Protection of Groundwater		
PFAS	Per- and Polyfluoroalkyl Substances		
PFC	Perfluorinated Chemicals		
PFOA	Perfluorooctanoic acid		
PFOS	Perfluorooctanesulfonic acid		
PID	Photoionization Detector		
PPE	Personal Protective Equipment		
Ppb	Parts per billion		
ppm	Parts per million		
ppt	Parts per trillion		
PVC	Polyvinyl Chloride		
QA/QC	Quality Assurance/Quality Control		
RAWP	Remedial Action Work Plan		
RCRA	Resource Conservation and Recovery Act (RCRA)		
REC	Recognized Environmental Concerns		
RI	Remedial Investigation		
RIR	Remedial Investigation Report		
RIWP	Remedial Investigation Work Plan		
RURR	Restricted Use – Restricted-Residential		
RU	Restricted Use – Residential		
SCO	Soil Cleanup Objective		
SGVs	Ambient Water Quality Standards and Guidance Values for		
	Class GA water		
SVOC	Semivolatile Organic Compound		
TAL	Target Analyte List		
TCE	Trichloroethene		
TCL	Target Compound List		
TCLP	Toxicity Characteristic Leaching Procedure		
TOGS	Technical and Operational Guidance Series		
USEPA	United Stated Environmental Protection Agency		
USGS	United States Geological Survey		

Acronym	Definition
UST	Underground Storage Tank
UU	Unrestricted Use
VOC	Volatile Organic Compound

CERTIFICATION

I, Michael D. Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules, and Regulations Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Michael D. Burke, PG, CHMM

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of Coney Island Phase 2 LLC (the Applicant) for the proposed development located at 1607 Surf Avenue (Block 7062, Lot 28) in the Coney Island neighborhood of Brooklyn, New York (the site). The Volunteer plans to remediate the site in conjunction with a new affordable housing development under the New York State Brownfield Cleanup Program (BCP), pursuant to Brownfield Cleanup Agreement (BCA) Index No. C224313-10-20 with the New York State Department of Environmental Conservation (NYSDEC), executed on November 11, 2020, for Site No. C224313. The site was assigned an E-Designation (E-229) for hazardous materials and noise as part of the Coney Island Rezoning (City Environmental Quality Review # 08DME007K). Sites with E-Designations are subject to environmental review by the New York City Mayor's Office of Environmental Remediation (NYCOER).

This RIR presents environmental data and findings from the Remedial Investigation (RI) conducted from February 5, 2020 to February 20, 2020 and supplemental soil vapor investigations conducted on December 3, 2020 and March 2, 2021. The RI was completed by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, DPC (Langan) and was conducted in accordance with Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-1, 3.8, 6.8, NYSDEC Division of Environmental Remediation (DER) Program Policy: Technical Guidance for Site Investigation and Remediation (DER-10), and applicable New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, with updates. The objectives of this RI include:

- Define the nature and extent of contamination in soil, soil vapor and groundwater at or emanating from the site
- Generate sufficient data to evaluate the remedial action alternatives and prepare a Remedial Action Work Plan (RAWP) to be implemented concurrently with site redevelopment
- Generate sufficient data to evaluate the actual and potential threats to human health and the environment

The remainder of this report is organized as follows:

- Section 2.0 describes the site setting and physical characteristics
- Section 3.0 describes the site background including results of previous investigations and identified areas of concern (AOC)
- Section 4.0 presents the investigation field procedures
- Section 5.0 describes the field observations and analytical results

- Section 6.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors
- Section 7.0 presents the nature and extent of contamination in all site media as determined through the field investigation and analysis of environmental samples
- Section 8.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The site is located at 1607 Surf Avenue in the Coney Island neighborhood of Brooklyn, New York and is identified as Block 7062, Lot 28¹ on the department of Finance Tax Map. A site location map is provided as Figure 1. The site encompasses an area of approximately 59,393 square-feet (1.36 acres), is improved with an asphalt-paved parking lot and is bound by Surf Avenue to the south followed by MCU Park, West 16th Street to the east followed by a vacant parcel and several parking lots, West 17th Street to the west followed by a commercial office building and a parking lot, and a parking lot to the north. A site plan is provided in Figure 2.

2.2 Surrounding Property Land Use

The site is located in a mixed-use area with commercial and residential uses, vacant properties, parking lots, and public parks. The following is a summary of surrounding property usage:

Dissetter	Adjoining and Adjacent Properties			Surrounding Properties	
Direction	Block No. Lot No. Description				
South	7073	101	Surf Avenue followed by MCU/Steeplechase Park	A public park followed by Coney Island Beach and the Lower New York Bay.	
North	7062	14	Parking Lot	Residential, commercial, mixed- use residential and commercial properties followed by Mermaid Avenue. Coney Island Creek.	
	7061	16	West 17th Street followed by a one-story commercial office building	Residential, commercial, and mixed-use residential and	
West		20	West 17th Street followed by a parking lot	commercial properties, public facilities and institutions,	
		21	West 17th street followed by a parking lot	parking facilities, and vacant land.	
		12	West 16th Street followed by a parking lot		
	7063	41	West 16th Street followed by a parking lot		
East		40	West 16th Street followed by a vacant lot	Residential, commercial, and mixed-use residential and	
		39	West 16th Street followed by a vacant lot	commercial properties, vacant land, parking facilities, and an	
		38	West 16th Street followed by a parking lot	industrial property.	
		35	West 16th Street followed by a vacant lot		

¹ The site was formerly comprised of Block 7062, Lots 25, 28, and 34. All three lots are now merged into Block 7062, Lot 28.

Public infrastructure (storm drains, sewers, and underground utility lines) exists within the streets surrounding the site.

Land use within a half-mile radius is urban and includes residential, commercial, institutional, utility/transportation, light industrial buildings and public parks and beaches. The nearest ecological receptor is the Lower New York Bay, located about 1,400 feet south of the site. Adjacent properties and land uses are shown on Figure 3. Sensitive receptors, as defined in DER-10, located within a half mile of the site include those listed below:

Number	Name (Approximate distance from site)	Address	
1	MCU/Steeplechase Park (about 100 feet south of the site)	Surf Avenue between West 16 th Street and West 21 st Street Brooklyn, NY 11224	
2	Our Lady of Solace School Day Care Center (about 518 feet northwest of site)	2865 West 19 th Street Brooklyn, NY 11224	
3	Brooklyn Public Library, Coney Island Branch (about 666 feet northwest of the site)	1901 Mermaid Avenue Brooklyn, NY 11224	
4	Abe Stark Skating Rink (about 0.17 miles south of the site)	Surf Avenue between West 19 th Street and West 20 th Street Brooklyn, NY 11224	
5	Coney Island Museum (about 0.21 miles southeast of the site)	1208 Surf Avenue Brooklyn, NY 11224	
6	Luna Park Neighborhood Senior Center (about 0.22 miles northeast of the site)	2880 West 12 th Street Brooklyn, NY 11224	
7	Santos White Garden (about 0.22 miles northwest of the site)	Surf Avenue and West 21 st Street Brooklyn, NY 11224	
8	PAL La Puerta Abierta Pre-K and Day Care Center (about 0.24 miles northwest of the site)	2864 West 21 st Street Brooklyn, NY 11224	
9	Neptune Playground (about 0.24 miles northeast of the site)	West 12 th Street between Neptune Avenue and Surf Avenue Brooklyn, NY 11224	
10	National Association of Family Development Centers, Inc. (about 0.24 miles northeast of the site)	2840 West 12 th Street Brooklyn, NY 11224	
11	PS 90 Edna Cohen School and Pre-K (about 0.24 miles northeast of the site)	2840 West 12 th Street Brooklyn, NY 11224	

Number	Name (Approximate distance from site)	Address	
12	Luna Playground (about 0.30 miles east of the site)	Surf Avenue between West 12 th Street and West 8 th Street Brooklyn, NY 11224	
13	Dvora, Inc. Day Care Center (about 0.35 miles northeast of the site)	2817 West 12 th Street Brooklyn, NY 11224	
14	PAL Carey Gardens Day Care Center (about 0.36 miles southwest of the site)	2964 West 23 rd Street Brooklyn, NY 11224	
15	Police Athletic League Day Care Center (about 0.36 miles west of the site)	2964 West 23 rd Street Brooklyn, NY 11224	
16	The Cyclone at Coney Island (about 0.37 miles southeast of the site)	Surf Avenue and West 10 th Street Brooklyn, NY 11224	
17	Carey Gardens Boys and Girls Club (about 0.38 miles southwest of the site)	2315 Surf Avenue Brooklyn, NY 11224	
18	Harbour House Neighborhood Senior Center (about 0.43 miles southwest of the site)	3024 West 24 th Street Brooklyn, NY 11224	
19	Surf Playground (about 0.47 miles southwest of the site)	Surf Avenue between West 25 th Street and West 27 th Street Brooklyn, NY 11224	
20	P.S. 288 The Shirley Tanyhill Universal Pre-K (about 0.47 miles southwest of the site)	2950 West 25 th Street Brooklyn, NY 11224	
21	Coney Island Beach and Boardwalk (about 0.48 miles west of the site)	Corbin Place to W 37 th Street	
22	I.S 239 Mark Twain School (about 0.48 miles northwest of the site)	2401 Neptune Avenue Brooklyn, NY 11224	
24	Poseidon Playground (about 0.49 miles southwest of the site)	Surf Avenue between West 25 th Street and West 27 th Street Brooklyn, NY 11224	

2.3 Site Physical Conditions

2.3.1 Topography

According to monitoring well survey measurements obtained by Langan on February 20, 2020, site surface elevations (el) range from about el 6.95 feet² (at the northeast corner of the site) to el 7.94 feet (on the southeast corner). The topography of the site and surrounding area is generally level.

2.3.2 Regional Geology

Soil and bedrock stratigraphy throughout Brooklyn typically consist of a layer of historic fill that overlies glacial till, decomposed unconsolidated bedrock, and bedrock. The glacial till deposits, also known as ground moraine, are a widespread dense layer of till material that typically consists of clay, silt, sand, gravel and boulders. According to the "Surficial Geologic Map of New York" by the New York State Museum State Geological Survey, the surficial geology at the site consists of proglacial fluvial deposits of outwash sand and gravel. According to the "Geologic Map of New York – Lower Hudson Sheet" by the University of the State of New York, geology at the site consists of coastal plain deposits of silty clay, sandy clay, sand and gravel. Bedrock was not encountered during the RI. According to a geotechnical investigation completed by Langan in the vicinity of the site, the minimum depth of bedrock is expected to be at depths greater than 600 feet below grade surface (bgs).

2.3.3 Regional Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeologic network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, coverage by impervious surfaces, and subsurface structures. Other factors influencing groundwater include depth to bedrock, the presence of anthropogenic fill, and variability in local geology and groundwater sources or sinks. Groundwater flow within the regional overburden material is anticipated to be to the south, towards Coney Island Beach and the Lower New York Bay. Groundwater flow within overburden material located on the site flows in a southeasterly direction, according to groundwater elevation measurements obtained by Langan on February 20, 2020. Groundwater contours are shown on Figure 4.

² Elevations in this RIR refer to North American Vertical Datum of 1988 (NAVD88), which is about 1.1 feet above mean sea level at Sandy Hook, NJ.

2.3.4 Wetlands

Wetlands on or near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands map. There are no wetlands on or adjacent to the site.

3.0 SITE BACKGROUND

This section describes historical site use, the proposed redevelopment, and provides a summary of the findings from previous environmental investigations. Potential Areas of Concern (AOCs) were developed based on a review of the previous reports and are summarized in Section 3.4.

3.1 Historical Site Usage

Historical Sanborn Fire Insurance Maps indicate that the site was largely undeveloped with the southeastern part developed with residential dwellings, a shed, and a store in 1895. By 1906, the southern part of the site was developed with stores, sheds, and Johnstown Flood Auditorium. By 1930, the property was primarily developed with the Tilyou Theater, storefronts, and an automobile repair facility on the eastern part of the property. Site conditions appear generally the same by 1950 except a machine shop is identified on the eastern part of the property and a manufacturing facility and the machine shop are no longer identified although the Tilyou Theater remains along with stores, a wholesale produce shop, and automobile parking. Site conditions in 1966 are similar to those depicted in 1968. By 1977, the Tilyou Theater is no longer seen and by 1981 the wholesale produce shop is no longer depicted. Following 2001, the site appears as a vacant lot with automobile parking. Site conditions appear generally the same to 2007. City Directory documents also provide additional prior site usage detail including a photo studio (1934-1970), a printing studio/business (1934-1970), an exterminator (1934-1945), and a machinist/machine works (1928-1970).

3.2 Proposed Redevelopment Plan

Current plans call for the development of a new ten-story, mixed-use residential and commercial building with a footprint of about 42,500 square feet and approximately 23,600 square feet of open-air parking. All of the new residential units will be designated as affordable housing. The proposed development will include a slab-on-grade ground level with about 12,000 square feet of tenant amenity space (i.e. package room, lounge area) and utilities, about 10,900 square feet of commercial space, and an approximately 9,000 square foot community day care. The first floor of the new development will include about 25,150 square feet of residential space as well as amenities (i.e., laundry, kids area, gym, courtyard) and utility room. The second through tenth floors of the new development will be occupied by residential units.

3.3 Summary of Previous Environmental Investigations

The following previous environmental reports and investigations were reviewed as part of this RIR and are summarized below. The reports are included in Appendix A.

• Phase I Environmental Site Assessment (ESA), prepared by Hillman Consulting, LLC (Hillman), Dated May 31, 2018

- Phase II Investigation Report prepared by Hillman, Dated June 13, 2018
- Geotechnical Memorandum, prepared by GeoDesign, Inc. (GeoDesign), Dated August 6, 2018

Phase I Environmental Site Assessment, prepared by Hillman, Dated June 13, 2018

The Phase I ESA was completed in accordance with ASTM International (ASTM) Standard E1527-13 and the United States Environmental Protection (USEPA) All Appropriate Inquiries (AAI) Rule. The following recognized environmental conditions (REC) were identified:

• <u>REC 1 - Historical On-Site Operations</u>: The site historically operated as an automobile repair facility in 1930, a manufacturing facility in 1950, and a machine shop between 1928 and 1970. Additionally, operations identified on the property from city directories include a photo studio, print and publishing business, exterminator, machinist, and iron/machine works. Two 1,000-gallon tanks associated with the Tilyou Theatre, operating from 1926 to 1973, were also identified; however, it should be noted that the tanks appear to be water tanks and not petroleum storage tanks. Hillman also identified the potential for buried petroleum tanks associated with former business operations on the property, though evidence of these tanks were not identified during the Phase I ESA. Leaks or spills of petroleum products, solvents, and/or other hazardous materials associated with former business operations may have adversely affected soil, groundwater and/or soil vapor at the site.

Adjacent and surrounding site uses of concern were also identified including dry cleaners to the north (1950-2007) and west (1965-2006) and a railroad (1895-1906) to the north.

Phase II Investigation Report, prepared by Hillman Consulting LLC, Dated May 31, 2018

Hillman completed a Phase II Investigation in May 2018 to determine if soil, groundwater, and soil vapor conditions were impacted as a result of the historical site use as an automobile repair facility, manufacturing facility, and machine shop. The Phase II was completed at the site and at the adjoining site to the west located at Block 7061 Lots 14, 20, and 27; however, only the investigation scope and results for the site are discussed herein. The investigation included advancement of five soil borings, installation of one temporary groundwater monitoring well, installation of two temporary soil vapor sample probes, and collection of soil, groundwater, and soil vapor samples. Field observations and laboratory analytical results are summarized below:

- <u>Geology/Hydrogeology</u>: Historic fill was encountered between 3 and 6 feet bgs. Fill was underlain by native sands to the termination depth of borings at 10 feet bgs. Groundwater was encountered between 6 and 8 feet bgs.
- <u>Soil</u>: Five soil borings were advanced up to 10 feet bgs using a track-mounted GeoProbe© rig in the northeastern (SB3), northwestern (SB1), southeastern (SB2), southwestern (SB5), and central (SB4) part of the site. SB1 was installed in the vicinity of the former

manufacturing building and SB3 was installed in the vicinity of the former automobile repair and machine shop. No evidence of petroleum impacts (e.g., staining, odors or photoionization detector [PID] readings above background) was observed during the soil boring investigation. Soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), and metals. No VOCs or PCBs were detected above NYSDEC Part 375 Soil Cleanup Objectives (SCOs). Polycyclic aromatic hydrocarbons (PAHs), a subset of SVOCs, and metals were identified in exceedance of the NYSDEC Part 375 Unrestricted Use (UU) SCOs and Restricted Use Restricted-Residential (RURR) SCOs. Pesticides were detected in exceedance of the UU SCOs but below the RURR SCOs. Hillman attributed the elevated concentrations of PAHs and metals with the presence of historic fill.

- <u>Groundwater</u>: The temporary groundwater monitoring well was installed in the northeastern corner of the site at the SB3 boring location in the vicinity of the former automobile repair and machine shop. The groundwater sample was analyzed for VOCs, SVOCs, pesticides, PCBs, and metals (total and dissolved). No VOCs, PCBs, or pesticides were detected in exceedance above NYCRR Part 703.5 and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA water (collectively known as NYSDEC SGVs). PAHs and one metal (sodium, both total and dissolved) were detected in exceedance of the SGVs. Hillman attributed the elevated concentrations of PAHs in groundwater to the presence of suspended solids (presumably, from the historic fill layer). Hillman also attributed the elevated concentrations of total and dissolved sodium to regional groundwater conditions as the site is located in close proximity to the Lower New York Bay.
- <u>Soil Vapor</u>: Two temporary soil vapor points were installed in the northwestern (SV1) and southeastern (SV2) part of the site. SV1 was installed in the vicinity of the former manufacturing building and contained tetrachloroethylene (PCE) at 27,000 µg/m³, trichloroethylene (TCE) at 620 µg/m³, and cis-1,2-dichloroethylene (cis-1,2DCE) at 32 µg/m³. As these compounds were not detected in exceedance of the regulatory criteria in soil or groundwater, Hillman attributed these elevated soil vapor concentrations to a non-sampled part of the site or an off-site source.

Geotechnical Memorandum, prepared by GeoDesign, Dated 6 August 2018

GeoDesign completed a geotechnical investigation to determine subsurface conditions and provide geotechnical recommendations. The investigation included advancement of 20 soil borings and installation of two temporary groundwater monitoring wells. The investigation revealed that the site stratigraphy generally consists of an approximately 3.5 to 13.5 feet thick historic fill layer underlain by loose to dense sands to a depth of at least 150 feet. Groundwater was measured at approximately 6.5 feet bgs. GeoDesign recommended either a shallow mat foundation or a pile-supported deep foundation.

3.4 Summary of Potential Areas of Concern

Based on site observations, the site development history, and the findings of the previous environmental reports, potential AOCs were identified and investigated during this RI and are described in detail below. A Potential AOC map is provided on Figure 5.

Potential AOC 1: Historic Fill

Material from unknown sources may have been used as backfill during various phases of the site development history. According to boring logs from the 2018 Geotechnical Memorandum prepared by GeoDesign, the fill layer extends between 3.5 and 13.5 feet bgs across the site. According to boring logs from the 2018 Phase II Investigation Report performed by Hillman, the fill layer extends between 3 and 6 feet bgs across the site. Soil samples collected during the investigation identified PAHs and metals, including lead and mercury, in fill exceeding the RURR SCOs.

Potential AOC 2: Historical Manufacturing Facility

The northwestern part of the site historically operated as a manufacturer (1950). During the 2018 Phase II Investigation by Hillman, chlorinated solvents, including PCE and TCE, were detected in soil vapor in the northwestern part of the site at concentrations that would typically warrant mitigation. Chlorinated solvents associated with this former use may also be present in soil and groundwater. In addition, releases of petroleum products and/or other hazardous materials associated with manufacturing during the on-site operations may have adversely affected soil, groundwater and/or soil vapor.

Potential AOC 3: Historical Automobile Repair Shop and Machine Shop

The eastern part of the site historically operated as an automobile repair facility (1930) and a machine shop (1928-1970). In advertent releases of petroleum products, solvents, and/or other hazardous materials associated with automobile repair and machinery during the on-site operations may have adversely affected soil, groundwater and/or soil vapor.

Potential AOC 4 Historical Use of Adjoining Properties

Historical uses of adjoining and surrounding properties included dry cleaners to the north (1950-2007) and west (1965-2006) of the site. Undocumented spills or releases of chlorinated solvents or hazardous substances associated with historical uses of these nearby properties may have adversely affected groundwater or soil vapor beneath the site.

4.0 REMEDIAL INVESTIGATION

The RI was primarily completed from February 5, 2020 to February 20, 2020; however, two supplemental soil vapor investigations were completed on December 3, 2020 and March 2, 2021 at the request of the NYSDEC and NYSDOH to determine if impacted soil vapor is potentially emanating beyond the site boundary and is impacting surrounding properties. The purpose of the RI was to investigate potential AOCs and to determine, to the extent practical, the nature and extent of contamination in soil, groundwater, and soil vapor. The scope of the RI included the field tasks listed below to supplement the data and findings of previous investigations. A summary of samples collected and rationale for each investigation point in relation to the potential AOCs is provided in Table 1. Sample locations are presented on Figure 5.

The RI consisted of the following:

- A geophysical survey to identify potential USTs, underground structures, and utilities
- Advancement of 20 soil borings to depths between 10 and 15 feet bgs, from which 62 soil samples (including 3 quality assurance/quality control [QA/QC] duplicate samples) were collected
- Installation of 12 groundwater monitoring wells and collection of 13 groundwater samples (including one QA/QC duplicate sample) from each well location
- Survey and gauging of monitoring wells to evaluate groundwater elevation and flow direction
- Installation of 25 temporary soil vapor probes and collection of 27 soil vapor samples (including two QA/QC duplicate samples) and 4 ambient air samples

The RI was conducted in accordance with NYCRR DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) and the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006) with updates. The supplemental soil vapor investigations were completed on December 3, 2020 and March 2, 2021 in accordance with the NYSDEC-approved Supplemental Soil Vapor Investigation Work Plans dated November 17, 2020 and February 24, 2021, respectively.

4.1 Geophysical Survey and Utility Location

On February 5, 2020, NOVA Geophysical Services Inc. (NOVA) of Douglaston, New York completed a geophysical survey under the supervision of a Langan field geologist. NOVA used ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities near each boring location. Borings were relocated as necessary to avoid subsurface utilities and anomalies (other subsurface impediments). A copy of the geophysical survey report presenting these findings is included in Appendix B.

4.2 Soil Investigation

4.2.1 Soil Boring Investigation Methodology

Twenty soil borings (SB-1 through SB-20) were completed during the RI by Aquifer Drilling & Testing (ADT) of Mineola, New York. Boring locations were selected to evaluate potential AOCs listed in Section 3.4 and to supplement the previous environmental investigations. All borings were advanced with direct push methodologies using a Geoprobe® 7822DT drill rig. A map showing the boring locations is presented on Figure 5. The following table indicates which borings are associated with each potential AOC.

Potential AOC	Associated Soil Borings
PAOC 1 – Historic Fill	SB-1 through SB-20
PAOC 2 – Historic Manufacturing Facility	SB-1, SB-4, SB-5
PAOC 3 – Historic Automobile Repair and Machine Shop	SB-7, SB-12, SB-13
PAOC 4 – Historical Use of Adjoining Properties	SB-2, SB-3, SB-4, SB-6, SB-8, SB-10, SB-14

The soil borings were advanced to between 10 and 15 feet bgs, as summarized below:

- Boring SB-1 and borings SB-3 through SB-16 were advanced to 15 feet bgs
- Borings SB-2 was advanced to 10 feet bgs due to refusal encountered
- Borings SB-17 through SB-20 were advanced to 12 feet bgs

Discrete soil samples were collected from the surface to the final depth of each boring and were visually classified for soil type, grain size, texture, and moisture content. Samples were collected in 4-foot long acetate liners from the direct push Geoprobe® 7822DT.

The soil was screened for visual, olfactory, and instrumental evidence of environmental impacts and was visually classified for soil type, grain size, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a PID equipped with a 10.6-electron volt (eV) lamp. A Langan engineer documented the work, logged the soil type, screened the soil samples for environmental impacts, and collected environmental samples for laboratory analyses. Soil boring logs are presented in Appendix C. Following sample collection, twelve borings (SB-1, SB-3, SB-5, SB-7, SB-8, SB-9, SB-10, SB-13, SB-15, SB-17, SB-18, and SB-20) were converted to groundwater monitoring wells. Soil cuttings were backfilled into the original boring locations that were not converted into permanent monitoring wells or used to reach appropriate depth for installation of groundwater monitoring wells.

4.2.3 Soil Sampling Methodology

During implementation of the RI, 59 grab soil samples were collected for laboratory analysis. A minimum of three grab soil samples were collected for laboratory analysis from each boring location to investigate potential AOCs and to provide vertical and horizontal delineation of identified impacts, with the exception of SB-2 where refusal was encountered at a shallower depth (10 feet bgs) than the bottom of the fill layer; as such, a native layer sample was not collected. In addition, nine QA/QC samples (including three duplicates, three matrix spike/matrix spike duplicate [MS/MSD] samples, and three field blanks) were collected. For AOC 1, samples were collected within the historic fill material. For AOCs 2, 3 and 4, samples were collected from historic fill, from native and/or fill material at the groundwater interface, and/or from native material below the groundwater interface.

Samples submitted for VOC analysis were collected directly from the acetate liner via laboratorysupplied Terra Core soil samplers. The remaining sample volume was homogenized and placed in appropriate laboratory-supplied containers for all additional analyses. A dedicated pair of nitrile gloves were donned to collect each per- and polyfluoroalkyl substances (PFAS) sample in order to limit cross-contamination. The sample containers were labeled, placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of 4 ± 2 °C). The sample coolers were picked up and delivered via courier under standard chain-of-custody protocol to Alpha Analytical Laboratories, Inc. (Alpha) in Westborough, Massachusetts, a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory (ELAP ID No. 11148).

Soil samples from all of the borings were analyzed for Part 375/Target Compound List (TCL) VOCs and SVOCs, PCBs, pesticides, herbicides, Part 375/Target Analyte List (TAL) metals including hexavalent chromium, trivalent chromium, and total cyanide, as well as emerging contaminants (including 1,4-dioxane and PFAS). A sample summary is provided as Table 1.

4.3 Groundwater Investigation

A Langan field engineer documented conversion of 12 soil borings into permanent groundwater monitoring wells by ADT. One groundwater sample was collected from each monitoring well to characterize groundwater conditions and to investigate potential groundwater impacts associated with the AOCs. One duplicate groundwater sample was also collected. Groundwater monitoring wells were installed to investigate potential impacts to groundwater associated with the identified AOCs and to characterize groundwater conditions.

Twelve of the borings (SB-1, SB-3, SB-5, SB-7, SB-8, SB-9, SB-10, SB-13, SB-15, SB-17, SB-18, and SB-20) were converted into groundwater monitoring wells: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW10, MW-11, and MW-12, respectively.

4.3.1 Monitoring Well Installation and Development Methodology

Following completion of soil borings, the monitoring wells were constructed using 2-inch diameter polyvinyl chloride (PVC) riser pipes attached to 10 foot-long 0.01-inch slotted screens. Monitoring wells were constructed so that the well screen straddled the observed groundwater table. The well annulus around the screen of each well was backfilled with No. 2 sand up to six-inches above the screen. Approximately six-inches of hydrated bentonite seal was installed above the sand pack, and the borehole annulus was backfilled with soil cuttings to the surface. The monitoring wells were finished with flush-mount metal manhole covers encased in concrete.

Following installation, each well was surged and developed with a submersible pump until the water became clear (having turbidity less than 50 Nephelometric Turbidity Units [NTU]). Purged groundwater was stored in labeled 55-gallon drums and staged on-site for future disposal.

Monitoring well locations are presented on Figure 5, construction details are included in Table 2, and construction logs are found in Appendix D.

The top of casing elevations of the groundwater monitoring wells were surveyed by Langan on February 20, 2020. A Langan field engineer also completed synoptic groundwater gauging on February 20, 2020 using a Solinst 122 oil/water interface probe. Groundwater elevations ranged from el 0.04 to el 0.81 NAVD88 and are presented in Table 3. A groundwater contour map based on the synoptic groundwater levels of the wells is presented as Figure 4.

4.3.2 Groundwater Sampling

Groundwater samples were collected at least one week following well development on February 14, 2020 and between February 18, 2020 and February 20, 2020. Samples were collected in accordance with the procedures in the USEPA's low-flow groundwater sampling procedure ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, January 19, 2010) to allow for collection of a representative sample. Monitoring wells were purged and physical and chemical parameters (e.g., temperature, dissolved oxygen, oxygen reduction potential, and turbidity) were allowed to stabilize to ranges specified in the USEPA guidance before they were sampled. Monitoring wells were not gauged for static water levels or drawdown during purging due to PFAS sample collection.

Wells were sampled using a peristaltic pump with dedicated high density polyethylene (HDPE) tubing. VOC samples were collected using dedicated Teflon bailers after all other analytes were collected, including PFAS, to prevent cross contamination. Purge water was containerized into labeled 55-gallon drums for off-site disposal. Groundwater sampling logs are included in Appendix E.

Twelve groundwater samples (one sample from each well) were collected into laboratorysupplied glassware, packed with ice to maintain a temperature of 4°C, and transported via courier service to Alpha Analytical Laboratories under chain-of-custody protocol. In addition, three QA/QC samples (including one duplicates, one MS/MSD sample, and one field blank) were collected. Groundwater samples were analyzed for Part 375/TCL VOCs, SVOCs, and PCBs, Part 375/TAL total and dissolved metals, pesticides, and herbicides, and for emerging contaminants (including 1,4-dioxane and PFAS). A dedicated pair of nitrile gloves were donned to collect each PFAS sample in order to limit cross-contamination.

In addition, groundwater testing was performed during the RI to support the identification and evaluation of remedial alternatives. The results of the additional analyses were used to inform the remedial alternatives analysis section of the RAWP.

4.4 Soil Vapor Investigation

NYSDEC DER-10 requires an assessment of soil vapor for contaminated sites to evaluate the health risk associated with potential exposure to VOCs through vapor intrusion into occupied spaces. Fifteen soil vapor points (SV-1 through SV-15) were installed throughout the property to identify impacts potentially associated with historic site use or adjacent site use on February 12 and 13, 2020. AOC 2 was investigated by the installation of soil vapor point SV-2. AOC 3 was investigated by the installation of soil vapor point SV-2. AOC 3 was investigated by the installation of soil vapor point SV-2. AOC 3 was investigated by the installation of soil vapor point SV-2. AOC 3 was investigated by the installation of soil vapor points SV-1, SV-2, SV-4, SV-6, and SV-9. AOC 5 was investigated by the installation of soil vapor points SV-1, SV-2, SV-4, SV-6, and SV-10. At the request of the NYSDEC and NYSDOH, ten additional soil vapor points were installed along the site boundaries on December 3, 2020 (SV-16 through SV-22) and March 2, 2021 (SV-23 through SV-25) to assess the potential for impacted soil vapor emanating from the site to impact surrounding properties. Two ambient air samples were collected in February 2020 and two ambient air samples and two duplicate samples were collected in December 2020 and March 2021 for QA/QC purposes. Soil vapor sample locations are presented on Figure 5.

4.4.1 Soil Vapor Point Installation

All soil vapor points were installed at about 5 feet bgs or refusal using either a Geoprobe[®] 7822DT drill rig by ADT (February 2020), a Geoprobe[®] 6610DT drill rig by AARCO Environmental Services (December 2020), or hand auger by Lakewood Environmental Services Corporation (March 2021). A polyethylene vapor implant (2 inches in diameter, and approximately 6 inches in length) was threaded to Teflon-lined, polyethylene tubing (1/4-inch diameter) and lowered to the bottom of the hole in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. A sand filter pack was installed around the screen implant by pouring No. 2 sand into the annulus. The remainder of the annulus was filled to grade surface with a hydrated bentonite seal. Soil vapor construction/sampling logs are provided in Appendix F.

4.4.2 Soil Vapor Sampling and Analysis

As a QA/QC measure, an inert tracer gas (helium) was introduced into an above-grade sampling chamber to ensure that the soil vapor and sub-slab vapor sampling points were properly sealed above the target sampling depth, thereby preventing subsurface infiltration of ambient air. Direct readings of less than 10 percent helium in the sampling tube were considered sufficient to verify a tight seal at each sample point.

Each soil vapor point was purged using a MultiRAE meter at a rate less than 0.2 liters per minute (L/min) to evacuate a minimum of three sample tubing volumes prior to sample collection. The purged soil vapor was also monitored for VOCs and the values were recorded. After purging was completed, the soil vapor samples were collected into laboratory-supplied, batch-certified Summa[®] canisters. Soil vapor samples were collected into 2.7-liter or 6-liter Summa[®] canisters that were calibrated for a sampling rate between about 0.023 L/min and 0.05 L/min for 2 to 4 hours of sampling. Soil vapor construction/sampling logs are provided in Appendix F.

Summa[®] canisters were labeled and transported via courier to Alpha in Westborough, Massachusetts, a NYSDOH ELAP-certified laboratory (ELAP ID #11148), under standard chain-of-custody protocol. Soil vapor air samples were analyzed for VOCs by USEPA Method TO-15.

4.4.3 Ambient Air Sampling and Analysis

Ambient air samples were collected concurrently with soil vapor sampling at about 40 inches above ground to evaluate external influences on soil vapor quality.

Ambient air sampling was conducted in general accordance with the NYSDOH October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in New York. Prior to sample collection, the areas were screened using a MultiRAE meter to identify potential sources of organic vapors that may interfere with sampling. The ambient air samples collected in February 2020 were collected into laboratory-supplied, batch-certified, 6-liter Summa[®] canisters calibrated for a rate of 0.0125 L/min over an 8-hour sampling period. The ambient air sample collected in December 2020 was collected into a laboratory-supplied, batch-certified, 2.7-liter Summa[®] canister calibrated for a rate of 0.023 L/min over a 2-hour sampling period. The ambient air sample collected in March 2021 was collected into a laboratory-supplied, batch-certified, batch-certified, 6-liter Summa[®] canister calibrated for a rate of 0.05 L/min over a 2-hour sampling period.

Summa[®] canisters were labeled and transported via courier to Alpha in Westborough, Massachusetts, a NYSDOH ELAP-certified laboratory (ELAP ID #11148), under standard chainof-custody protocol. Ambient air samples were analyzed for VOCs by USEPA Method TO-15.

4.5 Quality Control Sampling

Field blanks, trip blanks, field duplicate samples, and MS/MSD samples were collected and submitted for laboratory analysis for QA/QC purposes. QA/QC samples are detailed in Table 1 and are summarized below:

4.5.1 Soil QA/QC Samples

- Three field duplicate samples
- Three MS/MSD samples
- Three field rinsate blanks
- Three trip blanks

4.5.2 Groundwater QA/QC Samples

- One field duplicate samples
- One MS/MSD samples
- One field rinsate blanks
- Three trip blanks

4.5.3 Soil Vapor QA/QC Samples

- Four ambient air samples
- Two field duplicate sample

Field rinsate blanks were collected to determine the effectiveness of the decontamination procedures for the groundwater sampling equipment and the cleanliness of unused neoprene gloves and acetate liners used to collect soil samples. Field rinsate blank samples consisted of deionized, distilled water provided by the laboratory that has passed through the sampling apparatus. Field rinsate blank samples were analyzed for the same list of analytes as the corresponding sampling event and sample matrix.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes. MS/MSD samples were collected from the same material as the primary sample by splitting the volume of the homogenized sample collected in the field into three sample containers.

The field duplicates were collected to assess the precision of the analytical methods relative to the sample matrix. The duplicates were collected from the same material as the primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

The trip blank samples were collected to assess the potential for contamination of the sample containers and samples during the trip from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) that is sealed by the laboratory when the empty sample containers are shipped to the field, and unsealed and analyzed by the laboratory when the sample shipment is received from the field. The trip blank samples were analyzed for VOCs.

4.6 Data Validation

Analytical data was submitted to a Langan validator for review in accordance with USEPA and NYSDEC validation protocols. Data usability summary reports (DUSR) and the data validator's credentials are provided in Appendix G.

4.6.1 Data Usability Summary Report Preparation

A DUSR was prepared for each delivery group following data validation. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain-of-custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For each of the organic analytical methods, the following was assessed:

- Holding times
- Instrument tuning
- Instrument calibrations
- Blank results
- System monitoring compounds or surrogate recovery compounds (as applicable)
- Internal standard recovery results
- MS/MSD results
- Target compound identification
- Chromatogram quality
- Compound quantization and reported detection limits
- System performance
- Results verification

For each of the inorganic compounds, the following was assessed:

- Holding times
- Calibrations
- Blank results
- Interference check sample
- Laboratory check samples
- Duplicates
- Matrix Spike
- Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) QC
- ICP serial dilutions
- Results verification and reported detection limits

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

After data validation was complete, validated data was used to prepare the tables and figures included in this report.

4.7 Field Equipment Decontamination

A peristaltic pump with dedicated tubing was used to sample each groundwater monitoring well. The groundwater sampling equipment, including a water quality meter, were cleaned with Alconox and rinsed with deionized water between sampling locations during groundwater sample collection. Decontamination occurred at the sampling locations and all liquids were temporarily contained in 5 gallon. Decontamination wastewater was placed in 55-gallon DOT-approved drums for future off-site disposal at a permitted facility.

4.8 Investigation-Derived Waste Management

Groundwater investigation-derived wastes (IDW) were containerized in 55-gallon, DOT-approved drums. Decontamination and well development/purging fluids were placed in DOT-approved fluid drums with closed tops. All drums were properly labeled, sealed, and waste characterized as necessary. Drums were removed on November 12, 2020 and disposed of off-site at Dale Transfer Corporation, in West Babylon, NY.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

5.1 Geophysical Investigation Findings

Geophysical anomalies consistent with utilities (i.e., gas and electric lines) were identified throughout the site. No anomalies resembling USTs were identified. A copy of the February 12, 2020 Geophysical Engineering Survey Report is included in Appendix B.

5.2 Geology and Hydrogeology

Provided below is a description of the geological and hydrogeological observations made during the RI. A groundwater contour map is provided as Figure 4, and cross-sectional diagrams showing inferred soil profiles are shown on Figure 6. Boring logs are provided in Appendix C.

5.2.1 Historic Fill

The asphalt-paved surfaces are underlain by a historic fill layer that extends from surface grade to between about 2 to 10 feet bgs. The fill layer was most shallow in the southeastern part of the site (SB-15 and SB-16) and deepest in the northern part of the site (SB-2). The historic fill predominantly consists of brown and black, fine-grained sand with varying amounts of gravel, silt, asphalt, brick, coal, slag, glass, ceramics and/or concrete.

5.2.2 Native Soil Layers

Fill material is underlain by a native tan or gray, fine-grained sand layer observed to the bottom of each boring location (approximately el -4.1 to el -8.1 NAVD88), with varying amounts of gravel, silt, and clay. Native material was not observed in soil boring SB-2 located in the northern-central part of the site, where refusal was encountered at 10 feet bgs.

5.2.3 Bedrock

Bedrock was not encountered during this RI. According to a geotechnical investigation completed by Langan in the vicinity of the site, the minimum depth of bedrock is expected to be at depths greater than 600 feet bgs.

5.2.4 Hydrogeology

Synoptic groundwater level measurements were collected on February 20, 2020. Depth to groundwater was measured between about 5.98 to 6.85 feet bgs, with corresponding groundwater elevations ranging from about el 0.04 to el 0.81 NAVD88. The groundwater elevation is highest in the western region of the site and appears to flow southeast towards Coney Island Beach and the Lower New York Bay. The relative progression of the contours demonstrates a horizontal flow pattern across the site, with a downward vertical gradient toward the southeast. Groundwater elevations are summarized in Table 3, and a groundwater contour map is presented as Figure 4.

5.2.5 Surface Water and Drainage

The site is primarily improved with asphalt-paved surfaces that are impervious to rainwater. Areas of discontinuous asphalt were observed throughout the site which are subject to rainwater infiltration during storm events. Runoff from the surrounding area typically drains through catch basins into city sewers.

5.3 Soil Findings

5.3.1 Soil Boring Field Observations

Petroleum-like impacts, as evidenced by odors, staining, and/or PID readings above background, were not encountered during this RI.

5.3.2 Analytical Results

Sixty-two grab soil samples, including three field duplicates, were collected and analyzed for Part 375/TCL VOCs and SVOCs, PCBs, pesticides, and herbicides, Part 375/TAL metals including hexavalent chromium, trivalent chromium, and total cyanide, as well as emerging contaminants (including 1,4-dioxane and PFAS). A summary of laboratory detections for soil samples collected during the RI is provided in Table 4 (VOCs, SVOCs, pesticides, herbicides, PCBs and inorganics) with comparisons to NYSDEC Part 375 UU SCOs, RURR SCOs, and Restricted Protection of Groundwater (PG) SCOs and Table 5 (emerging contaminants including 1,4-dioxane and PFAS). Full laboratory reports for the RI are included in Appendix H. Soil sample results that exceed SCOs for samples collected during the RI are shown on Figure 7.

The following contaminants were detected at concentrations exceeding NYSDEC Part 375 UU (normal text), RURR (bolded) and/or PG SCOs (underlined text):

VOCs

Acetone was detected at a concentration exceeding the UU and PG SCOs in the soil sample from SB-16 between 5 and 7 feet bgs. Acetone is a common laboratory contaminant and its presence is not likely indicative of a release. PCE was detected at a concentration exceeding the UU,

RURR, and PG SCOs in one soil sample from soil boring SB-1 collected at a depth of 2 to 4 feet bgs. The following table provides a summary of VOCs that were detected above UU, RURR, and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Acetone	<u>0.062 mg/kg</u> in SB-16_5-7		UU: 0.05 mg/kg RURR: 100 mg/kg PG: 0.05 mg/kg	1 of 62
PCE	75 mg/kg in SB-1_2-4		UU: 1.3 mg/kg RURR: 19 mg/kg PG: 1.3 mg/kg	1 of 62

1. Concentrations in regular face exceed Unrestricted Use SCOs.

2. Concentrations in boldface exceed RURR SCOs.

3. Concentrations that are underlined exceed Restricted Use PG SCOs.

SVOCs

Eight PAHs and one additional SVOC (3 & 4 methylphenol) were detected at concentrations exceeding the UU, RURR, and/or PG SCOs in thirteen samples from soil borings SB-1, SB-2, SB-7, SB-10, SB-11, SB-12, SB-16, SB-17, SB-18, SB-19, and SB-20 collected at depths ranging from 0 to 12 feet bgs. PAH impacted material is confined within the historic fill layer with the exception of samples collected from SB-10 from 5 to 7 feet bgs and SB-11 from 6 to 8 feet bgs, which straddle the historic fill and native interface, and SB-17 from 5 to 7 feet bgs and SB-18 from 10 to 12 feet bgs, which were collected from the native layer. The compound 3 & 4 methylphenol was only detected in the sample collected in SB-7 from 0 to 2 feet bgs. The following table provides a summary of PAHs that were detected above UU, RURR, and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
3 & 4 Methylphenol (m&p Cresol)	<u>0.6 mg/kg</u> in SB-7_0-2		UU: 0.33 mg/kg RURR: 100 mg/kg PG: 0.33 mg/kg	1 of 62
Benzo(a)anthracene	<u>1.2 mg/kg</u> in SB-12_0-2 and SB-18_10-12	36 mg/kg in SB-2_6-8	UU: 1 mg/kg RURR: 1 mg/kg PG: 1 mg/kg	12 of 62
Benzo(a)pyrene	1.2 mg/kg in SB-11_6-8	34 mg/kg in SB-2_6-8	UU: 1 mg/kg RURR: 1 mg/kg PG: 22 mg/kg	11 of 62
Benzo(b)fluoranthene	1.2 mg/kg in SB-18_10-12	43 mg/kg in SB-2_6-8	UU: 1 mg/kg RURR: 1 mg/kg PG: 1.7 mg/kg	13 of 62
Benzo(k)fluoranthene	0.88 mg/kg in SB-10_5-7	<u>15 mg/kg</u> in SB-2_6-8	UU: 0.8 mg/kg RURR: 3.9 mg/kg PG: 1.7 mg/kg	8 of 62

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Chrysene	<u>1.1 mg/kg</u> in SB-12_0-2	32 mg/kg in SB-2_6-8	UU: 1 mg/kg RURR: 3.9 mg/kg PG: 1 mg/kg	12 of 62
Dibenzo(a,h)anthracene	0.88 mg/kg in SB-1_2-4	4.3 mg/kg in SB-2_6-8	UU: 0.33 mg/kg RURR: 0.33 mg/kg PG: 1,000 mg/kg	6 of 62
Indeno(1,2,3-cd)pyrene	0.57 mg/kg in SB18_10-12	21 mg/kg in SB-2_6-8	UU: 0.5 mg/kg RURR: 0.5 mg/kg PG: 8.2 mg/kg	13 of 62
Naphthalene	<u>15 mg/kg</u> in SB-7_0-2		UU: 12 mg/kg RURR: 100 mg/kg PG: 12 mg/kg	1 of 62

1. Concentrations in regular face exceed Unrestricted Use SCOs.

2. Concentrations in boldface exceed RURR SCOs.

3. Concentrations that are underlined exceed Restricted Use PG SCOs.

Pesticides

Three pesticides were detected at concentrations exceeding the UU SCO in thirteen samples from soil borings SB-1, SB-2, SB-6, SB-7, SB-9, SB-10, SB-11, SB-12, SB-16, SB-18, SB-19, and SB-20 collected at depths ranging from 0 to 8 feet bgs. No pesticides were detected above RURR or PG SCOs. The following table provides a summary of the pesticides that were detected above the UU SCO:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
4,4'-DDD	0.0035 mg/kg in SB-18_2-4	0.0286 mg/kg in SB-7_0-2	UU: 0.0033 mg/kg RURR: 13 mg/kg PG: 14 mg/kg	7 of 62
4,4'-DDE	0.00398 mg/kg in SB-1_0-2	0.163 mg/kg in SB-7_0-2	UU: 0.0033 mg/kg RURR: 8.9 mg/kg PG: 17 mg/kg	9 of 62
4,4'-DDT	0.00374 mg/kg in SB-6_5-7	0.242 mg/kg in SB-7_0-2	UU: 0.0033 mg/kg RURR: 7.9 mg/kg PG: 136 mg/kg	12 of 62

1. Concentrations in regular face exceed Unrestricted Use SCOs.

Herbicides

No herbicides were detected at concentrations exceeding the UU, RURR and/or PG SCOs.

PCBs

No PCBs were detected at concentrations exceeding the UU, RURR and/or PG SCOs.

Inorganics

Six metals were detected at concentrations exceeding the UU, RURR, and/or PG SCOs in thirteen samples from soil borings SB-1, SB-2, SB-6, SB-11, SB-12, SB-13, SB-16, SB-17, SB-18, SB-19, and SB-20 collected at depths ranging from 0 to 11 feet bgs. The following table provides a summary of metals that were detected above UU, RURR, and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Barium	356 mg/kg in SB-2_6-8	730 mg/kg in SB-1_2-4	UU: 350 mg/kg RURR: 400 mg/kg PG: 820 mg/kg	2 of 62
Cadmium	<u>10.4 mg/kg</u> in SB-1_2-4		UU: 2.5 mg/kg RURR: 4.3 mg/kg PG: 7.5 mg/kg	1 of 62
Copper	51.5 mg/kg in SB-19_2-4	55.7 mg/kg in SB-18_2-4	UU: 50 mg/kg RURR: 270 mg/kg PG: 1,720 mg/kg	2 of 62
Lead	64.2 mg/kg in SB-11_6-8			12 of 62
Mercury	0.262 mg/kg in SB-1_2-4	0.54 mg/kg in SB-20_0-2	UU: 0.18 mg/kg RURR: 0.81 mg/kg PG: 0.73 mg/kg	5 of 62
Zinc	113 mg/kg in SB-17_5-7	932 mg/kg in SB-19_2-4	UU: 109 mg/kg RURR: 10,000 mg/kg PG: 2,480 mg/kg	8 of 62

1. Concentrations in regular face exceed Unrestricted Use SCOs.

2. Concentrations in boldface exceed Restricted-Residential (RURR) SCOs.

3. Concentrations that are underlined exceed Restricted Use PG SCOs.

Emerging Contaminants (1,4-dioxane and PFAS: 21-Compound List)

Sixty-two soil samples (including three duplicates) were sampled for emerging contaminants polyfluoroalkyl substances (PFAS) and 1,4-dioxane per NYSDEC's initiative to understand the presence of these constituents in the environment across New York State. There are currently no NYSDEC SCOs for these compounds in soil, however, analytical results for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were compared to the NYSDEC Part 375 January 2021 Remedial Programs Guidelines for Sampling and Analysis of PFAS UU, RURR, and

PG Guidance Values. PFOS was detected above the UU Guidance Value in eight soil samples collected from seven soil borings (SB-1, SB-2, SB-3, SB-12, SB-17, SB-19 and SB-20) between surface grade and 8 feet bgs. PFOS concentrations above the UU Guidance Value ranged between 1 part per billion (ppb) in SB-1 from 2 to 4 feet bgs and 2.66 ppb in SB-20 from 2 to 4 feet bgs. PFOA was detected above the UU Guidance Value at 0.679 ppb in SB-20 between 2 and 4 feet bgs, only. The compound 1,4-dioxane was not detected in soil samples. Analytical results are shown in Table 5.

5.4 Groundwater Findings

5.4.1 Field Observations

Monitoring wells were gauged for non-aqueous phase liquid (NAPL) with an oil-water interface probe. NAPL was not encountered in monitoring wells. PID headspace readings ranged from 0.0 ppm to 1.6 ppm (highest reading in monitoring well MW-1) during groundwater sampling. Depth to groundwater was measured between about 5.98 to 6.85 feet bgs, with corresponding groundwater elevations ranging from about el 0.04 to el 0.81 NAVD88. Groundwater generally flows to the southeast.

5.4.2 Analytical Data

Thirteen groundwater samples, including one QA/QC duplicate, were collected and analyzed for Part 375/TCL VOCs, SVOCs, pesticides, herbicides, and PCBs, Part 375/TAL total and dissolved metals, and for emerging contaminants (including 1,4-dioxane and PFAS). A summary of the groundwater sample laboratory detections compared to NYSDEC Title 6 NYCRR Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA water (collectively known as NYSDEC SGVs) is presented in Table 6. Emerging contaminant data including 1,4-dioxane and PFAS results are presented in Table 7. Groundwater contours, sample locations, and results that exceed the NYSDEC SGVs are presented on Figure 8.

The following contaminants were detected at concentrations exceeding the NYSDEC SGVs:

VOCs

A groundwater sample collected from MW-1 contained concentrations of one VOC above NYSDEC SGVs, as shown in the following table:

Parameter	Minimum Detected Concentration above SGVs	Maximum Detected Concentration above SGVs	SGVs	Frequency of Detection above SGVs
PCE	10 μg/L in MW-1_021820		5 µg/L	1 of 13

SVOCs

Groundwater samples collected from the MW-3, MW-4, MW-6, MW-7, MW-10, and MW-11 contained concentrations of up to six PAHs above the NYSDEC SGVs, as shown in the following table:

Parameter	Minimum Detected Concentration above SGVs	Maximum Detected Concentration above SGVs	SGVs	Frequency of Detection above SGVs
Benzo(a)anthracene	0.02 µg/L in MW-10_021920	0.07 μg/L in MW-11_021920	0.002 µg/L	4 of 13
Benzo(a)pyrene	0.02 µg/L in MW-7_021820	0.05 µg/L in MW-6_021420	0 µg/L	3 of 13
Benzo(b)fluoranthene	0.02 μg/L n MW-3_021820, MW- 4_021420, and MW- 7_021820	0.07 μg/L in MW-6_021420	0.002 µg/L	5 of 13
Benzo(k)fluoranthene	0.01 μg/L in MW-3_021820	0.02 µg/L in MW-6_021420 and MW-11_021920	0.002 µg/L	3 of 13
Chrysene	0.04 μg/L in MW-6_021420	0.06 µg/L in MW-11_021920	0.002 µg/L	2 of 13
Indeno(1,2,3-cd)pyrene	0.02 μg/L in MW-3_021820 and MW-7_021820	0.03 μg/L in MW-6_021420 and MW-11_021920	0.002 µg/L	4 of 13

Pesticides

Pesticides were not detected above the NYSDEC SGVs in any groundwater samples.

Herbicides

Herbicides were not detected above the NYSDEC SGVs in any groundwater samples.

PCBs

PCBs were not detected above the NYSDEC SGVs in any groundwater samples.

Total Metals

Groundwater samples collected from all monitoring wells contained concentrations of two or more of four total metals that exceeded the NYSDEC SGVs in groundwater samples as shown in the following table:

Parameter	Minimum Detected Concentration above NYSDEC SGVs	Maximum Detected Concentration above NYSDEC SGVs	NYSDEC SGVs	Frequency of Detection above NYSDEC SGVs
Antimony	36.4 in MW-1	•	3 μg/L	1 of 13
Iron	449 μg/L in MW-11_021920	14,300 μg/L in MW-5_021820	300 µg/L	13 of 13
Manganese	441.9 μg/L in MW-3_021820	1,668 µg/L in MW-7_021820	300 µg/L	4 of 13
Sodium	22,500 μg/L in MW-11_021920	323,000 μg/L in MW-4_021420	20,000 µg/L	13 of 13

Dissolved Metals

Groundwater samples collected from all monitoring wells contained concentrations of two or more of four dissolved metals that exceeded the NYSDEC SGVs as shown in the following table:

Parameter	Minimum Detected Concentration above NYSDEC SGVs	Maximum Detected Concentration above NYSDEC SGVs	NYSDEC SGVs	Frequency of Detection above NYSDEC SGVs
Antimony	3.24 μg/L in MW-7_021820	34.73 μg/L in MW-1_021820	3 µg/L	2 of 13
Iron	397 μg/L in MW-11_021920	14,200 μg/L in MW-5_021820	300 µg/L	13 of 13
Manganese	470.3 μg/L in MW-3_021820	1,599 μg/L in MW-7_021820	300 µg/L	4 of 13
Sodium	26,100 μg/L in MW-11_021920	303,000 µg/L in MW-3_021820	20,000 µg/L	13 of 13

Emerging Contaminants (1,4-dioxane and PFAS: 21-Compound List)

Groundwater samples collected from all monitoring wells were sampled for emerging contaminants PFAS and 1,4-dioxane per NYSDEC's initiative to understand the presence of these constituents in the environment across New York State. There are no NYSDEC TOGS SGVs for these compounds, however, analytical results were compared to the NYSDEC Part 375 January 2021 Remedial Programs Guidelines for Sampling and Analysis of PFAS Guidance Values and the 1,4-dioxane drinking water maximum contaminant level (MCL) adopted by New York State. PFOS was detected above the Guidance Value in all monitoring wells, except MW-4,

between 21.8 nanograms per liter (ng/L), or parts per trillion (ppt), in MW-9 and 67.1 ppt in MW-8. PFOA was detected above the Guidance Value in all monitoring wells between 11.6 ppt in MW-11 and 42.6 ppt in MW-4. Other individual PFAS and total PFAS were not detected above the Guidance Values. The compound 1,4-dioxane was not detected in any of the groundwater samples. Analytical results are shown in Table 7.

5.5 Soil Vapor Findings

Twenty-five soil vapor samples, four outdoor ambient air samples, and two duplicate samples were collected and submitted for laboratory analysis for USEPA TO-15 VOCs. No standard currently exists for soil vapor samples in New York State. Soil vapor sample results are summarized in Table 8. The soil vapor sample results are shown on Figure 9, and the laboratory analytical reports can be found in Appendix H.

5.5.1 Soil Vapor Analytical Data

Total VOCs in soil vapor samples ranged from 51.02 μ g/m³ in SV-9 to 27,490 μ g/m³ in SV-2. Total VOCs in the outdoor ambient air samples were detected at between 1.07 μ g/m³ and 10.85 μ g/m³. VOCs detected in soil vapor samples include:

- 1,1,1-Trichloroethane (1,1,1-TCA)
- 1,2,4-Trimethylbenzene
- 2,2,4-Trimethylpentane
- Acetone
- Chloroform
- Dichlorodifluoromethane
- M,P-Xylene
- n-Hexane
- PCE
- Styrene
- Trans-1,2-Dichloroethene
- TCE

- 1,1-Dichloroethane
 - 1,3,5-Trimethylbenzene (Mesitylene)
- 2-Hexanone
- Benzene
- Cis-1,2-DCE
- Ethylbenzene
- Ethanol
- Methyl Ethyl Ketone (2-Butanone)
- o-Xylene (1,2-Dimethylbenzene)
- Toluene
- Tetrahydrofuran

- 1,1-DCE
- 1,3-Butadiene
- 4-Ethyltoluene
- Carbon Disulfide
- Cyclohexane
- Isopropanol
- Ethyl Acetate
- Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)
- n-Heptane
- Tert-Butyl Alcohol
- Total Xylenes
- Trichlorofluoromethane
- Vinyl Chloride

The VOC chloromethane was detected in all four ambient air samples, although this analyte was not detected in any soil vapor samples collected. Methylene chloride was detected in the ambient air sample collected in December 2020, but in no other soil vapor or ambient air samples collected. Of the VOCs listed above, acetone, dichlorodifluoromethane, isopropanol, n-hexane, and/or trichlorofluoromethane were also detected in the ambient air samples collected in December 2021. No other VOCs were detected in the ambient air samples.

PCE was detected in all soil vapor samples. PCE concentrations ranged from 2.76 μ g/m³ in SV-11 to 23,200 μ g/m³ at SV-2. PCE's daughter products were also detected in select locations: TCE from 3.65 μ g/m³ in SV-6 to 1,900 μ g/m³ in SV-2; cis-1,2-DCE from 2 μ g/m³ in SV-24 to 2,390 μ g/m³ in SV-2; 1,1-DCE from 1.35 μ g/m³ in SV-22 to 1.37 μ g/m³ in SV-6; and vinyl chloride at 22.2 μ g/m³ in SV-6. PCE, TCE, cis-1,2-DCE, 1,1-DCE, and vinyl chloride were not detected in the ambient air samples. 1,1,1-TCA was detected in twelve soil vapor samples at concentrations ranging from 1.36 μ g/m³ in SV-3 to 8.51 μ g/m³ in SV-12.

Petroleum-related compounds including benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in soil vapor at concentrations ranging from about 3.11 μ g/m³ in SV-14 to 146.7 μ g/m³ in SV-21.

5.6 Quality Control Results

Duplicates, MS/MSDs, field rinsate blanks, and trip blanks were collected during the RI and are detailed in Table 1. The duplicates, field blanks, and MS/MSD sample pairs for soil and groundwater were collected at a frequency of 1 per 20 primary samples. Quality control sample results were evaluated during data validation, and the laboratory analytical reports are provided in Appendix H.

5.7 Data Usability

Category B laboratory reports for soil, groundwater, soil vapor, and air samples were provided by Alpha and were forwarded to Langan's data validator. DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

The data were determined to be acceptable. Completeness, defined as the percentage of analytical results that are judged to be valid, is 100 percent. No major deficiencies were identified. All data is considered useable as qualified.

5.8 Evaluation of Potential Areas of Concern

This section discusses the results of the RI with respect to the potential AOCs described in detail in Section 3.4. AOC locations are shown on Figure 5.

5.8.1 AOC 1: Historic Fill

Historic fill material located throughout the site contains VOCs, SVOCs (including PAHs), metals, and pesticides at concentrations above the Part 375 UU, RURR, and/or PG SCOs. The historic fill layer, which was identified during the RI to depths ranging from about 2 to 10 feet bgs, was most shallow in the southeastern part of the site (SB-15 and SB-16) and deepest in the northern part of the site (SB-2). Additionally, historic fill was identified to depths of up to 13.5 feet during the Geotechnical Investigation completed by GeoDesign. The historic fill predominantly consists of brown and black, fine-grained sand with varying amounts of gravel, silt, asphalt, brick, coal, slag, glass, ceramics and/or concrete. A summary of the analytical results from historic fill for AOC 1 is summarized as follows:

AOC 1 - Soil

- One VOC (PCE) was detected above the Part 375 UU, PG, and RURR SCOs in historic fill in SB-1 located in the northwestern part of the site. Although within the historic fill layer, this contaminant is more likely associated with AOC 2, and is not a constituent of historic fill material.
- Nine SVOCs (3 & 4 methylphenol, benzo(a)anthracene, benzo(a)pyrene, • benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and naphthalene) were detected above the Part 375 UU, RURR and/or PG SCOs in samples collected from the historic fill layer in soil borings SB-1, SB-2, SB-7, SB-10, SB-11, SB-12, SB-16, SB-18, SB-19, and SB-20.
- Metals, including barium, cadmium, copper, lead, mercury, and zinc were detected above the UU, RURR and/or PG SCOs in samples collected from the historic fill layer in soil borings SB-1, SB-2, SB-11, SB-12, SB-13, SB-16, SB-18, SB-19 and SB-20.
- Pesticides, including 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT, were detected above UU SCOs in samples collected from the historic fill layer in soil borings SB-1, SB-2, SB-7, SB-10, SB-11, SB-12, SB-16, SB-18, SB-19, and SB-20.
- Total PCBs and herbicides were not detected above UU SCOs in soil samples collected from historic fill.

AOC 1 - Groundwater

- Six PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene) were detected above the SGVs in groundwater samples.
- Metals (including antimony, iron, manganese, and sodium) were detected at concentrations above the NYSDEC SGVs in groundwater samples. Antimony, iron, manganese, and sodium were detected in dissolved groundwater samples above SGVs and are characteristic of naturally-occurring groundwater conditions.

AOC 1 – Soil Vapor

• Historic fill does not appear to have impacted soil vapor.

AOC 1 - Conclusions

Historic fill, which is ubiquitous across the site footprint, was encountered to depths ranging from 2 to 10 feet bgs during the RI. VOCs, SVOCs, metals, and pesticides were detected at concentrations above the Part 375 UU, PG and/or RURR SCOs in samples within and below the historic fill layer, with the deepest exceedance identified at 12 feet bgs. Concentrations of PAHs and metals are likely associated with the general quality of the fill placed at the site or historical industrial uses of the site.

Similar compounds detected in soil were also identified in groundwater at concentrations above NYSDEC SGVs. The source of SVOCs in groundwater is historic fill material. Antimony, iron, manganese, and sodium is likely associated with brackish conditions, due to the site's proximity to the Lower New York Bay. The analytical data indicate that the contaminants associated with historic fill have not impacted soil vapor.

5.8.2 AOC 2: Historical Manufacturing Facility

Releases of petroleum products, solvents, and/or other hazardous materials associated with the historical manufacturing operations may have adversely affected soil, groundwater and/or soil vapor. A summary of the findings for AOC 2 is provided below:

AOC 2 - Soil

- Petroleum-related VOCs were not detected at concentrations above the UU SCOs. Petroleum impacts, including PID readings above background, odors, or staining, were not encountered during the RI.
- VOCs were not detected above the UU, PG, or RURR SCOs in SB-4 or SB-5 located along the southern perimeter of the former manufacturing building. PCE was detected above the UU, PG, and RURR SCOs in SB-1 located within the extents of the former manufacturing building. PCE has historically been used as a metal degreaser in manufacturing operations.
- SVOCs, pesticides, and metals in soil were detected at concentrations exceeding the UU, RURR and/or PG SCOs at SB-1, only; but at concentrations generally more representative of historic fill material than at concentrations representative of a release associated with historical operations.

AOC 2 - Groundwater

- Petroleum-related VOCs were not detected at concentrations above the SGVs.
- VOCs were not detected above the SGVs in MW-3, which is collocated with SB-5. PCE was detected above the SGVs in MW-1, which is collocated with SB-1.
- SVOCs and/or metals (including antimony, iron, manganese, and sodium) were detected at concentrations above the SGVs in MW-1 and/or MW-3. Antimony, iron, manganese, and sodium were also detected in dissolved groundwater samples above the SGVs and are characteristic of naturally-occurring groundwater conditions.

AOC 2 – Soil Vapor

- BTEX was detected between 4 µg/m³ in SV-24 and 110 µg/m³ in SV-16. BTEX was not detected in SV-2; however, this may have been the result of a 63x dilution factor that was required due to elevated concentrations of CVOCs (discussed below), resulting in elevated reporting limits for BTEX.
- PCE was detected in SV-3 at 4.52 μg/m³ and SV-25 at 50.7 μg/m³, respectively. Elevated concentrations of PCE were detected in SV-2 (23,200 μg/m³), SV-16 (1,970 μg/m³), SV-23 (161 μg/m³), and SV-24 (2,010 μg/m³). Elevated concentrations of TCE were detected in SV-2 (1,900 μg/m³), SV-16 (56.4 μg/m³), SV-23 (20.6 μg/m³), and SV-24 (49.3 μg/m³). Elevated concentrations of cis-1,2-DCE were detected in SV-2 (2,390 μg/m³) and in SV-23 (48 μg/m³), only.

AOC 2 Conclusions

Concentrations of several PAHs, pesticides, and metals in soil and/or groundwater are likely associated with the general quality of the historic fill material and not the historical site uses.

Petroleum-like impacts were not observed in soil or groundwater, and petroleum-related VOCs were not detected above the UU, PG, or RURR SCOs in soil or SGVs in groundwater within AOC 2. Based on these results, a petroleum release associated with the historical manufacturing operations has not been identified.

PCE was detected in soil and groundwater samples collected within the extents of the former manufacturing building at concentrations above the UU, PG, and RURR SCOs and SGVs, respectively. Elevated concentrations of PCE and daughter products were also detected in soil vapor. As such, the former manufacturing building is likely a source of CVOCs in soil, groundwater, and soil vapor.

5.8.3 AOC 3: Historical Automobile Repair Shop and Machine Shop

Releases of petroleum products, solvents, and/or other hazardous materials associated with the historical manufacturing and automobile repair operations may have adversely affected soil, groundwater and/or soil vapor. A summary of the findings for AOC 3 is provided below:

AOC 3 - Soil

- VOCs were not detected at concentrations above the UU SCOs. Apparent impacts, including PID readings above background, odors, or staining, were not encountered during the RI.
- Concentrations of SVOCs identified in the shallow sample collected from SB-7 were significantly greater than other samples in this AOC and may be the result of a release related to the former use. SVOC concentrations in the remaining samples are more likely associated with historic fill.
- Pesticides and metals in soil were detected at concentrations exceeding the UU, RURR and/or PG SCOs at locations completed within the extents of the former automobile repair shop and machine shop (SB-7, SB-12, SB-13); but at concentrations generally more representative of historic fill material than at concentrations representative of a release associated with historical operations.

AOC 3 - Groundwater

- Petroleum-related VOCs were not detected at concentrations above the SGVs.
- The PAH benzo(b)fluoranthene was detected at a concentration exceeding the NYSDEC SGVs in MW-4, which is collocated with SB-7. Benzo(b)fluoranthene was also detected in soil at this location, which may be the source of this SVOC in groundwater.
- Metals (including iron and sodium) were detected at concentrations above the SGVs in groundwater samples collected across AOC 3. Iron and sodium were also detected in dissolved groundwater samples above the SGVs and are characteristic of naturallyoccurring groundwater conditions.

AOC 3 – Soil Vapor

- BTEX was detected in SV-5, SV-9, and SV-18 at concentrations ranging from 7.66 $\mu g/m^3$ to 124.4 $\mu g/m^3.$
- PCE was detected in SV-5, SV-9, and SV-18 at concentrations ranging from 4.69 μg/m³ to 25.4 μg/m³.

AOC 3 Conclusions

Concentrations of SVOCs, pesticides, and metals are likely associated with the general quality of the historic fill material, with the exception of SVOCs SB-7, which may be related to historical site uses.

Petroleum-like impacts were not observed in soil or groundwater, and VOCs were not detected above the UU, PG, or RURR SCOs in soil or SGVs in groundwater within AOC 3.

Detections of BTEX and CVOCs have been identified in soil vapor that are not indicative of a release from the former automobile repair shop and machine shop.

Therefore, impacts have not been detected in soil, groundwater, or soil vapor that could be attributed to AOC 3.

5.8.4 AOC 4: Historical Use of Adjoining Properties

Dry cleaners occupied the adjoining property to the west (1965-2006) and surrounding property to the north (1950-2007). A summary of the findings for AOC 4 is provided below:

AOC 4 - Soil

• CVOCs were not detected at concentrations above the UU SCOs in SB-4, SB-8, SB-10, or SB-14 (nearest to the dry cleaners to the west) or SB-2, SB-3, or SB-6 (nearest to the dry cleaners to the north).

AOC 4 - Groundwater

• Based on the groundwater flow direction determined during the RI, the only upgradient site that represents a potential source for groundwater impacts is the former dry cleaners to the west of the site. CVOCs were not detected at concentrations above the SGVs at the monitoring well locations down-gradient of this dry cleaners (e.g. MW-5, MW-7).

AOC 4 – Soil Vapor

• PCE was detected in all soil vapor samples, with the maximum concentration detected at SV-2, which is collocated with SB-4.

AOC 4 Conclusions

Neither soil, soil vapor nor groundwater have been impacted by the adjoining and surrounding dry cleaner sites. Off-site dry cleaners may have impacted subsurface conditions at the site.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site.

6.1 Current Conditions

The site is located at 1607 Surf Avenue in the Coney Island neighborhood of Brooklyn, New York and is identified as Block 7062, Lot 28 on the department of Finance Tax Map. A site location map is provided as Figure 1. The site is currently an asphalt-paved parking lot and encompasses an area of about 59,393 square-feet (1.36 acres). The site is bound by Surf Avenue to the south followed by MCU Park, West 16th Street to the east followed by a vacant parcel and several parking lots, West 17th Street to the west followed by a commercial office building and a parking lot, and a parking lot to the north.

6.2 Proposed Conditions

Current plans call for the development a new ten-story, mixed-use residential and commercial building with a footprint of 42,500 square feet and approximately 23,600 square feet of open-air parking. All of the new residential units will be designated as affordable housing. The new development will include a slab-on-grade ground level with about 12,000 square feet of tenant amenity space (i.e. package room, lounge area) and utilities, about 10,900 square feet of commercial space, and an approximately 9,000 square foot community day care. The first floor of the new development will include about 25,150 square feet of residential space as well as amenities (i.e., laundry, kids area, gym, courtyard) and a utility room. The second through tenth floors of the new development will be occupied by residential units.

6.3 Summary of Environmental Conditions

AOCs include historic fill as well as CVOC impacts in soil, groundwater, and soil vapor associated with historical site use. COCs associated with the AOCs include VOCs, SVOCs, pesticides, and metals.

VOCs, SVOCs, metals and pesticides were detected at concentrations above the Part 375 UU, RURR and/or PG SCOs in samples collected from historic fill. PAHs and metals were detected at concentrations that are typical of historic fill material in New York City, with the exception of SVOCs in SB-7, which may be associated with a release from the former auto repair.

CVOCs were detected in soil and groundwater at concentrations above the applicable soil and groundwater standards in the northwestern part of the site. CVOCs were also detected in soil vapor samples across the site, with a concentration four orders of magnitude greater in the northwestern part of the site, relative to other parts of the site. These impacts are likely indicative of an on-site release from the former manufacturing building.

6.4 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the RI and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways.

6.4.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include historic fill and historical site manufacturing and automobile repair/machine shop usage.

Historic fill material encountered beneath surface cover to depths ranging from about 2 to 10 feet bgs originated from unidentified source areas and was placed as backfill at an unknown time, prior to the current site use as a parking lot. SVOCs and metals detected at concentrations above the Part 375 UU, PG and RURR SCOs are related to the nature of the historic fill.

CVOCs were detected in soil vapor, and PCE was detected in soil and groundwater above the applicable soil and groundwater standards. In addition, PAHs were detected in soil and groundwater above applicable soil and groundwater standards near the eastern portion of the site. These impacts are likely related to an on-site release from the former manufacturing building in the northwestern part of the site and the historical automobile repair/machine shop within the eastern portion of the site.

6.4.2 Exposure Media

Impacted media include soil, groundwater, and soil vapor. Analytical data suggests that historic fill and native soil contains SVOCs, metals and pesticides up to about 12 feet bgs in exceedance of UU SCOs. Historic fill-related PAHs and metals were detected across the site. Groundwater was observed at depths ranging from 5.98 to 6.85 feet bgs, and impacts include VOCs, SVOCs, and metals. Soil vapor is impacted with CVOCs including PCE and daughter products, with the highest concentrations detected in the northwestern part of the site.

6.4.3 Receptor Populations

The site is currently an asphalt-paved parking lot. Under future conditions, human receptors may include construction and remediation workers, authorized guests visiting the site, and the public adjacent to the site, as well as potential future building occupants.

6.5 Potential Exposure Pathways – On-Site

6.5.1 Current Conditions

Human exposure to contaminated soil is limited as an impermeable asphalt cover is present throughout the site. In places where asphalt may be compromised due to cracks in the surface cover, human exposure is limited to site owners, operators (car parking attendants), and guests who are parking their cars. Cars are parked on site by an attendant and access is restricted by a metal fence and/or locked gates; therefore, human exposure to contaminated soil is limited. The potential pathway is through dermal absorption, inhalation and ingestion.

Groundwater in this area of New York City is not used as a potable water source. There is a potential exposure pathway during groundwater sampling associated with site investigation. The potential pathway for site investigation workers is through dermal absorption and ingestion.

Soil vapor is impacted by CVOCs. The site is an open-air parking lot, impacted soil vapor may migrate vertically through the subsurface and dissipate and dilute with ambient air; as such, there is no potential exposure pathway under current conditions.

6.5.2 Construction/Remediation Conditions

Construction and remediation may result in potential exposures to site contaminants in the absence of a Health and Safety Plan (HASP) and a Community Air Monitoring Plan (CAMP). Construction and remedial activities will likely include excavation and off-site disposal of impacted soil, and construction of foundation components. In the absence of a HASP and CAMP, this scenario presents the potential for exposure of soil contaminants to construction and remediation workers via dermal absorption, ingestion, and inhalation of vapors and particulate matter. This exposure pathway will be marginalized through the implementation of the HASP, CAMP, and vapor and dust suppression techniques.

6.5.3 Proposed Future Conditions

Currently, the contemplated project includes a mixed-use residential and commercial development. Although the site is anticipated to undergo a Track 1 cleanup, new development will incorporate a cover system across the site and vapor mitigation measures. These measures will prevent human exposure to impacted soil and groundwater and potential soil vapor intrusion.

There is no pathway for ingesting groundwater COCs, since the site and surrounding areas obtain their drinking water supply from surface water reservoirs located upstate and not from groundwater. If a Track 1 cleanup is not achieved an environmental easement will be placed on the site and groundwater use will be restricted to prevent exposure to residual contamination.

If necessary, institutional controls will require maintenance of engineering controls and will serve to further mitigate exposure under future conditions.

6.6 Potential Exposure Pathways – Off-Site

Soil vapor may migrate off-site vertically through the subsurface and dissipate and dilute with ambient air in instances where the site surface is compromised or during site construction/remediation. It is unknown if a complete exposure pathway exists for off-site soil vapor intrusion.

The potential off-site migration of site soil contaminants is not expected to result in a complete exposure pathway for current, construction and remediation, or future conditions for the following reasons:

- The site is located in an urban area and predominantly covered with continuous relatively impervious surface covering.
- During site remediation and construction, the following protective measures will be implemented:
 - A site-specific HASP including a CAMP will be implemented to protect on-site personnel and to monitor the perimeter of the site to mitigate off-site migration of particulates and VOCs during construction.
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.

There is no pathway for ingesting groundwater COCs, since the site and surrounding areas obtain their drinking water supply from surface water reservoirs located upstate and not from groundwater.

6.7 Evaluation of Human Health Exposure

Based upon the CSM and the review of environmental data, partial on-site exposure pathways appear to be present under current conditions, and in the absence of institutional and engineering controls, complete on-site exposure pathways could potentially exist in construction/remediation and future conditions.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population.

6.7.1 Current Conditions

Contaminant sources include historic fill with varying concentrations of SVOCs, metals, and pesticides, PAH-impacted groundwater and CVOC-impacted soil, groundwater, and soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), and existing soil vapor contaminants (inhalation). Under current conditions, the likelihood of human exposure is limited, as 1) site access is restricted to employees, ownership and authorized visitors; 2) impermeable asphalt-paved surfaces cover the site; 3) the site is an open-air parking lot and impacted soil vapor that migrates vertically would be diluted with ambient air; and 4) the site is not a source of drinking water.

6.7.2 Construction/Remediation Activities

During development and remediation, the contaminant sources are the same as for current conditions. Points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that will be encountered during excavation. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of organic vapors arising from contaminated soil and groundwater, and inhalation of dust arising from contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to prevent off-site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

6.7.3 Proposed Future Conditions

For the proposed future conditions a Track 1 cleanup is anticipated. If a Track 1 cleanup is not feasible, residual contaminants may remain on-site and would, to a lesser extent include those listed under current conditions. In this scenario, if institutional and/or engineering controls are

not implemented, points of exposure include potential cracks in the foundation or slab of the proposed development, and exposure during any future soil-disturbing activities. Routes of exposure would be limited to inhalation of vapors entering the buildings. The receptor population includes potential building tenants and/or employees, visitors and maintenance workers. The possible routes of exposure can be avoided or mitigated by the installation of engineering controls, such as soil vapor mitigation measures and/or a site capping system, and the implementation of institutional controls, such as a Site Management Plan (SMP).

6.7.4 Human Health Exposure Assessment Conclusions

- Under current conditions, there is a marginal risk for exposure. The primary exposure pathways are dermal contact, ingestion and inhalation of soil, soil vapor, or groundwater by authorized site visitors in instances where the integrity of the impermeable site cover is compromised or during site investigation. The exposure risks can be avoided or minimized by following the appropriate HASP and vapor and dust suppression measures, and by implementing a CAMP during intrusive activities.
- 2. In the absence of engineering controls, there is a moderate risk of exposure during the construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion and inhalation of contaminated soil, groundwater or soil vapor by construction workers.
 - b. Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the site.

These can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression, and site security measures outlined in a site-specific HASP.

- 3. The existence of a complete exposure pathway for site contaminants to human receptors under future conditions is unlikely, as contaminant sources will likely be removed during site development, and if any residual soil remains, the impermeable foundation cover would serve as a cap. Regional groundwater is not used as a potable water source in New York City, so exposure to regional groundwater contaminants is unlikely. The potential pathway for soil vapor intrusion into the building would be eliminated or addressed through the use of soil vapor mitigation measures (e.g., vapor barrier, submembrane depressurization system, or ventilated parking garage) if a Track 1 is not achieved, thereby minimizing the risk of exposure to any residual contaminated sub-slab soil vapor.
- 4. It is unknown if a complete exposure pathway exists for off-site soil vapor intrusion. However, it is unlikely that a complete exposure pathway exists for the migration of site contaminants to off-site human receptors for current, construction phase, or future

conditions. Monitoring and control measures would be used during remediation and construction to prevent completion of this pathway. Under future conditions, the site will be remediated and, if necessary, engineering controls may be implemented (e.g., site-wide cap and a waterproofing/ vapor barrier) to prevent completion of this pathway.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater and soil vapor contamination. The nature and extent of the contamination is derived from a combination of field observations and analytical data that were discussed in Section 5.0.

7.1 Soil Contamination

Historic fill predominantly consisting of brown and black, fine-grained sand with varying amounts of gravel, brick, coal, slag, glass, ceramics and/or concrete was encountered at depths ranging from about 2 to 10 feet bgs. SVOCs, metals, and pesticides detected at concentrations above the Part 375 UU, PG, and/or RURR SCOs are likely related to the quality of historic fill, with the exception of SVOCs in SB-7, which may be related to the former use as an auto repair facility.

PCE was detected above the Part 375 UU, PG, and RURR SCOs in SB-1 located within the extents of the former manufacturing building in the northwestern part of the site. PCE impacts in soil have been attributed to potential degreasing operations associated with this historical site use.

7.2 Groundwater Contamination

Evaluation of the groundwater analytical results identified VOCs, SVOCs, and naturally occurring metals above the SGVs. SVOCs were detected across the site at concentrations above TOGS SGVs; the source of SVOCs is historic fill and/or historical uses of the site. Metals, including antimony, iron, manganese, and sodium were also detected across the site but are naturally occurring and present in groundwater throughout New York City.

PCE was detected above the NYSDEC SGV in the groundwater sample collected from SB-1/MW-1 in the former manufacturing building. Similar to soil, the presence of PCE in groundwater at this location is attributed to historical degreasing operations associated with historical manufacturing use.

7.3 Soil Vapor Contamination

PCE and daughter products (including TCE, cis-1,2-DCE, and vinyl chloride) were identified in soil vapor, primarily in the northwestern part of the site. The corresponding elevated concentrations of PCE in soil and groundwater in this area are the source of CVOCs in soil vapor.

8.0 CONCLUSIONS

- <u>Stratigraphy:</u> The stratigraphy observed during the RI consists of a historic fill layer that extends from surface grade to depths ranging from 2 to 10 feet bgs, although observations of fill extending down to 13.5 feet were documented during a previous geotechnical investigation. The historic fill predominantly consists of brown and black, fine-grained sand with varying amounts of gravel, brick, coal, slag, glass, ceramics and/or concrete. Fill material is underlain by a native tan or gray, fine-grained sand layer observed to the bottom of each boring location (approximately el -4.1 to el -8.1 NAVD88), with varying amounts of gravel, silt, and clay. Native material was not observed in the soil boring located in the western-central part of the site, where refusal was encountered at 10 feet bgs. Bedrock was not encountered in any of the soil borings.
- <u>Hydrogeology</u>: Depth to groundwater was measured between about 5.98 to 6.85 feet bgs, with corresponding groundwater elevations ranging from about el 0.04 to el 0.81 NAVD88. The groundwater elevation is highest in the western part of the site and appears to flow southeast towards Coney Island Beach and the Lower New York Bay.
- 3. <u>Historic Fill:</u> Historic fill material was identified below surface cover to depths ranging from 2 to 10 feet bgs. Contaminants related to historic fill material were identified up to 12 feet bgs and include SVOCs, metals, and pesticides, which were detected at concentrations above UU, RURR and/or PG SCOs within this layer. The detected concentrations are generally typical of historic fill material in New York City, with the exception of SVOCs in SB-7, which may be related to the former site use in this location.
- 4. <u>Groundwater</u>: Concentrations of SVOCs identified above the SGVs are attributed to historic fill material. Dissolved metals in groundwater samples above SGVs and are characteristic of regional groundwater conditions. PAHs in groundwater may also be attributed to historical site use as an automobile repair/machine shop facility.
- 5. <u>CVOC-Impacted Soil, Groundwater, and Soil Vapor</u>: PCE impacts in soil and groundwater have been identified in the northwestern part of the site, and are attributed to potential on-site degreasing operations associated with the former manufacturing building in this area. PCE and its daughter products were also identified in soil vapor at higher concentrations in this area.
- 6. Sufficient analytical data were gathered during the RI, together with previous studies, to establish soil cleanup levels and to develop a remedy for the Site. The final remedy will be detailed in the forthcoming Remedial Action Work Plan (RAWP) to be prepared in accordance with NYS BCP guidelines. The remedy will need to address historic fill

impacted with metals, SVOCs, and pesticides and CVOC-impacted soil, groundwater, and soil vapor.

9.0 REFERENCES

- 1. Phase I ESA, prepared by Hillman Consulting LLC, dated 31 May 2018
- 2. Phase II Investigation Report prepared by Hillman Consulting LLC, dated 13 June 2018
- Supplemental Soil Vapor Investigation Work Plan, prepared by Langan, dated November 17, 2020
- Supplemental Soil Vapor Investigation Work Plan, prepared by Langan, dated February 24, 2021
- 5. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006, revised May 2017
- 6. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004
- 7. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010
- 8. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998
- 9. United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010
- 10. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006
- Baskerville, Charles A. United States Geological Survey. "Bedrock and Engineering Geologic Maps of Bronx County and Parts of New York and Queens Counties, New York." 1992
- Federal Emergency Management Agency Flood Insurance Rate Map, (Map Number 3604970093, Panel 93, Suffix G), effective November 16, 1983 and revised December 5, 2013

TABLES

LANGAN

Table 1 Proposed Sample Summary Remedial Investigation Work Plan 1607 Surf Avenue Brooklyn, New York Langan Project No. 170599501

						SOIL			
No.	Sample Name	Sample Type	Boring Location	Target Sample Depth	Date	Time	Sample Depth (feet bgs)	Rationale	Analysis
1	SB-1_0-2_020620		2000000	Upper 2 feet of historic fill		9:55:00 AM	0 to 2	Site Wide Assessment	
2	SB-1_2-4_020620		SB-1	Historic fill layer	2/6/2020	10:05:00 AM	2 to 4	Investigate AOC 1 and AOC 2	
3	SB-1_6-8_020620			Native soil layer and groundwater Interface		10:15:00 AM	6 to 8	Site Wide Assessment Investigate AOC 2	1
4	SB-2_0-2_021120			Upper 2 feet of historic fill		2:50:00 PM	0 to 2		1
5	SB-2_6-8_021120		SB-2	Historic fill layer and groundwater interface	2/11/2020	3:00:00 PM	6 to 8	Site Wide Assessment Investigate AOC 1 and AOC 5	
6	SB-3_0-2_020720			Upper 2 feet of historic fill		8:50:00 AM	0 to 2		
7	SB-3_6-8_020720		SB-3	Native soil layer and groundwater Interface	2/7/2020	9:00:00 AM	6 to 8	Site Wide Assessment	1
8	SB-3_9-11_020720			Saturated native soil layer		9:10:00 AM	9 to 11	Investigate AOC 5	
9	SB-4_0-2_020620			Upper 2 feet of historic fill		11:25:00 AM	0 to 2	Site Wide Assessment Investigate AOC 1, AOC 2, AOC 4, and AOC 5	1
10	SB-4_6-8_020620		SB-4	Native soil layer and groundwater Interface		11:35:00 AM	6 to 8	Site Wide Assessment	1
11	SB-4_10-12_020620			Saturated native soil layer	2/6/2020	11:45:00 AM	10 to 12	Investigate AOC 2, AOC 4, and AOC 5	
12	SB-5_0-2_020620			Upper 2 feet of historic fill	2/0/2020	8:00:00 AM	0 to 2	Site Wide Assessment Investigate AOC 1 and AOC 2	
13	SB-5_5-7_020620		SB-5	Native soil layer and groundwater Interface		8:10:00 AM	5 to 7	Site Wide Assessment	
14	SB-5_10-12_020620			Saturated native soil layer		8:20:00 AM	10 to 12	Investigate AOC 2	
15	SB-6_0-2_021120			Upper 2 feet of historic fill		8:20:00 AM	0 to 2	Site Wide Assessment Investigate AOC 1 and AOC 5	_
16	SB-6_5-7_021120		SB-6	Native soil layer and groundwater Interface	2/11/2020	8:30:00 AM	5 to 7	Site Wide Assessment	
17	SB-6_9-11_021120			Saturated native soil layer		8:40:00 AM	9 to 11	Investigate AOC 5	_
18	SB-7_0-2_020720			Upper 2 feet of historic fill		11:30:00 AM	0 to 2	Site Wide Assessment Investigate AOC 1 and AOC 3	4
19	SB-7_5-7_020720		SB-7	Native soil layer and groundwater Interface	2/7/2020	11:40:00 AM	5 to 7	Site Wide Assessment Investigate AOC 3	
20	SB-7_9-11_020720			Saturated native soil layer		11:50:00 AM	9 to 11	-	4
21	SB-8_0-2_020620			Upper 2 feet of historic fill		12:40:00 PM	0 to 2	Site Wide Assessment Investigate AOC 1 and AOC 5	4
22	SB-8_2-4_020620		SB-8	Native soil layer and groundwater Interface	2/6/2020	12:40:00 PM	2 to 4	Site Wide Assessment Investigate AOC 5	
23	SB-8_10-12_020620			Saturated native soil layer		12:50:00 PM	10 to 12	Site Wide Assessment	4
24	SB-9_0-2_021120		05 -	Upper 2 feet of historic fill	0/44/2001	2:05:00 PM	0 to 2	Investigate AOC 1	4
25	SB-9_6-8_021120		SB-9	Native soil layer and groundwater Interface	2/11/2020	2:15:00 PM	6 to 8	Site Wide Assessment	
26	SB-9_9-11_021120	·		Saturated native soil layer		2:25:00 PM	9 to 11		-
27	SB-10_0-2_020620		SB-10	Upper 2 feet of historic fill Historic fill layer, native soil layer, and groundwater	2/0/2020	2:40:00 PM	0 to 2	Site Wide Assessment Investigate AOC 1 and AOC 5	
28 29	SB-10_5-7_020620 SB-10_10-12_020620		3B-10	interface Saturated native soil layer	2/6/2020	2:50:00 PM	5 to 7	Site Wide Assessment	-
30	SB-11_0-2_021120	Grab		Upper 2 feet of historic fill		3:00:00 PM 11:10:00 AM	10 to 12 0 to 2	Investigate AOC 5	-
30	SB-11_0-2_021120 SB-11_6-8_021120	Giab	SB-11	Historic fill layer, native soil layer, and groundwater	2/11/2020	11:20:00 AM	6 to 8	Site Wide Assessment Investigate AOC 1	
32	SB-11_9-11_021120		0011	interface Saturated native soil layer	2/11/2020	11:30:00 AM	9 to 11	Site Wide Assessment	-
33	SB-12_0-2_020720			Upper 2 feet of historic fill		1:10:00 PM	0 to 2	Site Wide Assessment	-
34	SB-12_5-7_020720		SB-12	Native soil layer and groundwater Interface	2/7/2020	1:20:00 PM	5 to 7	Investigate AOC 1 and AOC 3	Part 375-list ² of VOCs. SVOCs
35	SB-12_10-12_020720			Saturated native soil layer	_,.,	1:30:00 PM	10 to 12	Site Wide Assessment Investigate AOC 3	PCBs, Pesticides/Herbicides*, Metals, 1,4-dioxane, and PFAS
36	SB-13_0-2_021020			Upper 2 feet of historic fill		8:20:00 AM	0 to 2		-
37	SB-13_4-6_021020		SB-13	Historic fill layer, native soil layer, and groundwater	2/10/2020	8:30:00 AM	4 to 6	Site Wide Assessment Investigate AOC 1 and AOC 3	
38	SB-13_9-11_021020			interface Saturated native soil layer		8:40:00 AM	9 to 11	Site Wide Assessment	-
39	SB-14_0-2_021120			Upper 2 feet of historic fill		1:00:00 PM	0 to 2	Investigate AOC 3 Site Wide Assessment	-
40	SB-14_6-8_021120		SB-14	Native soil layer and groundwater Interface	2/11/2020	1:10:00 PM	6 to 8	Investigate AOC 1 and AOC 5 Site Wide Assessment	1
41	SB-14_9-11_021120			Saturated native soil layer		1:20:00 PM	9 to 11	Investigate AOC 5	
42	SB-15_0-2_021020			Upper 2 feet of historic fill		1:20:00 PM	0 to 2	Site Wide Assessment Investigate AOC 1	1
43	SB-15_6-8_021020		SB-15	Native soil layer and groundwater Interface	2/10/2020	1:30:00 PM	6 to 8		1
44	SB-15_10-12_021020			Saturated native soil layer		1:40:00 PM	10 to 12	Site Wide Assessment	
45	SB-16_0-2_021120			Upper 2 feet of historic fill		9:25:00 AM	0 to 2	Site Wide Assessment Investigate AOC 1	1
46	SB-16_5-7_021120		SB-16	Native soil layer and groundwater Interface	2/11/2020	9:35:00 AM	5 to 7		1
47	SB-16_9-11_021120			Saturated native soil layer		9:45:00 AM	9 to 11	Site Wide Assessment	
48	SB-17_0-2_020520			Upper 2 feet of historic fill		2:05:00 PM	0 to 2	Site Wide Assessment Investigate AOC 1	1
49	SB-17_5-7_020520		SB-17	Native soil layer and groundwater Interface		2:10:00 PM	5 to 7		1
50	SB-17_9-11_020520			Saturated native soil layer		2:15:00 PM	9 to 11	Site Wide Assessment	
51	SB-18_0-2_020520		_	Upper 2 feet of historic fill		12:05:00 PM	0 to 2	Site Wide Assessment	
52	SB-18_2-4_020520		SB-18	Historic fill layer		12:10:00 PM	2 to 4	Investigate AOC 1	
53	SB-18_10-12_020520			Saturated native soil layer	2/5/2020	12:15:00 PM	10 to 12	Site Wide Assessment	
54	SB-19_0-2_020520			Upper 2 feet of historic fill	2/0/2020	11:00:00 AM	0 to 2	Site Wide Assessment	
55	SB-19_2-4_020520		SB-19	Historic fill layer		11:10:00 AM	2 to 4	Investigate AOC 1	1
56	SB-19_6-8_020520			Native soil layer and groundwater Interface	ļ	11:15:00 AM	6 to 8	Site Wide Assessment	1
57	SB-20_0-22-520			Upper 2 feet of historic fill		9:00:00 AM	0 to 2	Site Wide Assessment	
58	SB20_2-4_020520		SB-20	Historic fill layer		9:05:00 AM	2 to 4	Investigate AOC 1	1
59	SB-20_6-8_020520			Native soil layer and groundwater Interface		9:10:00 AM	6 to 8	Site Wide Assessment	4
60	SODUP01_020620		SB-1	Native soil layer and groundwater Interface	2/6/2020	10:15:00 AM	6 to 8	4	
61	SODUP02_021020	Duplicate	SB-15		2/10/2020	1:40:00 PM	10 to 12	4	
62	SODUP03_021120		SB-6		2/11/2020	8:40:00 AM	9 to 11	4	
63	SB-4_10-12_020620		SB-4	Saturated native soil layer	2/6/2020	11:45:00 AM	10 to 12	4	
64	SB-11_9-11_021120	MS/MSD	SB-11		2/11/2020	11:30:00 AM	9 to 11	4	
65	SB-16_9-11_021120		SB-16		2/11/2020	9:45:00 AM	9 to 11	QA/QC	
ļ	FB01_020620				2/6/2020	3:30:00 PM	NA	4	
ļ	FB02_021020	Field Blank			2/10/2020	3:05:00 PM	NA	4	
NA	FB03_021120		NA	NA	2/11/2020	3:30:00 PM	NA	4	
ļ	TB01_020620				2/6/2020	NA	NA	4	
	TB02_021020	Trip Blank		2/1		NA	NA	4	Part 375 VOCs
ŀ	TB03_021120	I			2/11/2020	NA	NA		

Table 1 Proposed Sample Summary Remedial Investigation Work Plan

1607 Surf Avenue Brooklyn, New York Langan Project No. 170599501

					GRO	DUNDWATER			
No.	Sample Name	Sample Type	Boring Location	Target Sample Depth	Date	Time	Well Screen Interval (feet bgs)	Rationale	Analysis
1	MW-1_021820		SB-1		2/18/2020	9:45:00 AM	(1001 590)	Site Wide Assessment Investigate AOC 2	
2	MW-2_021420		SB-3		2/14/2020	10:25:00 AM		Site Wide Assessment	
3	MW-3_021820		SB-5		2/18/2020	12:20:00 PM	-	Investigate AOC 5 Site Wide Assessment	1
4	MW-4_021420		SB-7		2/14/2020	11:25:00 AM	-	Investigate AOC 2 Site Wide Assessment	-
5	MW-5_021820		SB-8		2/18/2020	1:45:00 PM		Investigate AOC 3 Site Wide Assessment	1
			SB-9			1:30:00 PM		Investigate AOC 5	
6	MW-6_021420	Grab			2/14/2020		-	Site Wide Assessment Site Wide Assessment	-
7	MW-7_021820		SB-10	Center of water column	2/18/2020	3:10:00 PM	2 to 12	Investigate AOC 5 Site Wide Assessment	TCL VOCs and SVOCs, PCBs, TAL Metals (Total and
8	MW-8_021920		SB-13		2/19/2020	9:30:00 AM	-	Investigate AOC 3	Dissolved), Pesticides, Herbicides,1,4-dioxane, and
9	MW-9_021420		SB-15		2/14/2020	2:50:00 PM	-		PFAS
10	MW-10_021920		SB-17		2/19/2020	2:25:00 PM	-	Site Wide Assessment	
11	MW-11_021920		SB-18		2/19/2020	1:00:00 PM	-		
12	MW-12_021920		SB-20		2/19/2020	11:05:00 AM			
13	GWDUP01_021920	Duplicate	SB-13		2/19/2020	9:30:00 AM			
14	MW-1_021820	MS/MSD	SB-1		2/18/2020	9:45:00 AM			
15	GWFB01_021920	Field Blank	NA		2/19/2020	2:55:00 PM			
	GWTB01_021420	Trip Blank	NA		2/14/2020	NA		QA/QC	
NA	GWTB02_021820	Trip Blank	NA	NA	2/18/2020	NA	NA		TCL VOCs
·	GWTB03_021920						-		
	GW1B03_021920	Trip Blank	NA		2/19/2020	R AND AMBIENT A	P		
No.	Sample Name	Sample Type	Boring	Target Sample Depth	Date	Time	Sample Depth	Rationale	Analysis
		Sample Type	Location	l arget Sample Depth			(feet bgs)	Site Wide Assessment	Anaiysis
1	SV-1_021220		SB-2		2/12/2020	11:27:00 AM	-	Investigate AOC 5 Site Wide Assessment	-
2	SV-2_021320		SB-4		2/13/2020	10:43:00 AM	-	Investigate AOC 2, AOC 4, and AOC 5 Site Wide Assessment	-
3	SV-3_021220		SB-5			2:17:00 PM	-	Investigate AOC 2 Site Wide Assessment	-
4	SV-4_021220		SB-6		2/12/2020	11:55:00 AM	-	Investigate AOC 5	_
5	SV-5_021220		SB-7			12:53:00 PM		Site Wide Assessment Investigate AOC 3	
6	SV-6_021320		SB-8		2/13/2020	11:36:00 AM		Site Wide Assessment Investigate AOC 5	
7	SV-7_021220		SB-9			10:46:00 AM		Site Wide Assessment	
8	SV-8_021220		SB-11		2/12/2020	10:41:00 AM			
9	SV-9_021220		SB-12			11:15:00 AM		Site Wide Assessment Investigate AOC 3	
10	SV-10_021320		SB-14		2/13/2020	12:27:00 PM		Site Wide Assessment Investigate AOC 5	
11	SV-11_021220		SB-15			1:36:00 PM		ž	
12	SV-12_021220	Grab	SB-16		2/12/2020	1:14:00 PM			
13	SV-13_021320		SB-17			10:26:00 AM		Site Wide Assessment	
14	SV-14_021320		SB-18	One to two feet above the groundwater interface	2/13/2020	1:00:00 PM	5		
15	SV-15_021320		SB-19			10:14:00 AM			
16	SV-16_120320		NA			1:43:00 PM			TO-15 VOCs
10	SV-17_120320		NA			12:34:00 PM			
17	SV-17_120320		NA			12:34:00 PM			
			NA						
19	SV-19_120320				12/3/2020	12:01:00 PM			
20	SV-20_120320		NA			11:57:00 PM			
21	SV-21_120320		NA			2:01:00 PM		Site Wide Assessment Potential for Off-Site Soil Vapor Impacts Assessment	
22	SV-22_120320		NA			1:33:00 PM		, crontal to: of one con reportingates Assessment	
23	DUP01_120320	Duplicate	NA			12:34:00 PM			
24	SV-23_030221		NA			1:38:00 PM			
25	SV-24_030221		NA		3/2/2021	1:36:00 PM]		
26	DUP-01_030221	Duplicate	NA		-, 2, 2 0 2 1	1:36:00 PM]		
27	SV-25_030221		NA			1:49:00 PM			
28	AA01_021220		AA01		2/12/2020	1:07:00 PM]
29	AA02_021320	1	AA02		2/13/2020	11:45:00 AM			
30	AA01_120320	Grab	AA01	NA	12/3/2020	1:27:00 PM	NA	Ambient Air Quality	
31	AA-01_030221		AA01		3/2/2021	1:39:00 PM			
	Concern (AOCs):	1		I		1			1

Areas of Concern (AOCs): AOC-1 Historice Fill AOC-2 Historical Manufacturing Facility AOC-3 Historical Automobile Repair and Machine Shop AOC-4 PCE and TCE Impacted Soil Vapor AOC-5 Historical Site Use of Adjoining Properties

 Notes:

 1. AOC 1 encompasses the entire site footprint

 2. Soil samples to be analyzed for New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-list compounds.

 5. VOC = volatile organic compound

 7. PCB = polychlorinated biphenyl

 8. TCL = Target Compound List

 9. TAL = Target Compound List

 10. QA/QC = quality assurace/quality control

 11. NA = not applicable

 12. PFAS = perfluorinated chemicals

Table 2 Monitoring Well Construction Summary

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Well ID	Date Installed	Equipment Used	Associated Soil Boring	Inner Well Diameter	Total Well Depth	Screened Interval	Screen Length	Screen Material	Riser Interval	Riser Material	Sand Pack Interval	Bentonite Seal Interval	Top of Riser Elevation
				(inches)	(feet bgs)	(feet bgs)	(feet)		(feet bgs)		(feet bgs)	(feet bgs)	(NAVD88)
MW-1	2/6/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-1	2	12	2 to 12	10	0.01-inch slotted PVC	0.25 to 2	PVC	1.5 to 12	1 to 1.5	6.70
MW-2	2/7/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-3	2	12	2 to 12	10	0.01-inch slotted PVC	0.22 to 2	PVC	1.5 to 12	1 to 1.5	6.80
MW-3	2/6/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-5	2	12	2 to 12	10	0.01-inch slotted PVC	0.27 to 2	PVC	1.5 to 12	1 to 1.5	7.44
MW-4	2/7/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-7	2	12	2 to 12	10	0.01-inch slotted PVC	0.23 to 2	PVC	1.5 to 12	1 to 1.5	6.92
MW-5	2/6/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-8	2	12	2 to 12	10	0.01-inch slotted PVC	0.5 to 2	PVC	1.5 to 12	1 to 1.5	7.10
MW-6	2/11/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-9	2	12	2 to 12	10	0.01-inch slotted PVC	0.35 to 2	PVC	1.5 to 12	1 to 1.5	7.36
MW-7	2/6/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-10	2	12	2 to 12	10	0.01-inch slotted PVC	0.26 to 2	PVC	1.5 to 12	1 to 1.5	7.05
MW-8	2/10/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-13	2	12	2 to 12	10	0.01-inch slotted PVC	0.45 to 2	PVC	1.5 to 12	1 to 1.5	6.87
MW-9	2/10/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-15	2	12	2 to 12	10	0.01-inch slotted PVC	0.33 to 2	PVC	1.5 to 12	1 to 1.5	7.22
MW-10	2/5/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-17	2	12	2 to 12	10	0.01-inch slotted PVC	0.32 to 2	PVC	1.5 to 12	1 to 1.5	7.62
MW-11	2/5/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-18	2	12	2 to 12	10	0.01-inch slotted PVC	0.26 to 2	PVC	1.5 to 12	1 to 1.5	7.02
MW-12	2/5/2020	Geoprobe 7822 DT with 4-inch Hollow Stem Auger	SB-20	2	12	2 to 12	10	0.01-inch slotted PVC	0.22 to 2	PVC	1.5 to 12	1 to 1.5	6.89

<u>Notes:</u>

1. PVC = Polyvinyl Chloride

2. bgs = below ground surface

3. NAVD88 = North American Vertical Datum of 1988

4. Well elevations are based on a survey performed by Langan on 20 February 2020.

5. All elevations are in reference to the North American Vertical Datum of 1988 (NAVD88).

Table 3 Groundwater Elevation Data

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Well ID	Well Elevation	Depth to Water	Groundwater Elevation	PID reading (ppm)
MW-1	6.70	5.98	0.72	1.6
MW-2	6.80	6.54	0.26	0.0
MW-3	7.44	6.74	0.70	0.0
MW-4	6.92	6.65	0.27	0.2
MW-5	7.10	6.29	0.81	0.8
MW-6	7.36	6.78	0.58	0.0
MW-7	7.05	6.28	0.77	0.3
MW-8	6.87	6.63	0.24	0.0
MW-9	7.22	6.72	0.50	0.0
MW-10	7.62	6.83	0.79	0.0
MW-11	7.02	6.39	0.63	0.0
MW-12	6.89	6.85	0.04	0.0

Notes:

1. PID = Photoionization Detection

2. Well elevations are based on a survey performed by Langan on 20 February 2020.

3. All elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

4. Well elevations and depth to water readings were measured to a marked location at the top of each well casing.

5. Depth to water readings are measured in feet below top of the well casing.

6. Depth to water readings were taken on 20 February 2020.

7. PID readings were taken during groundwater sample collection between 14 February 2020 and 19 February 2020.

Location				SB-1	SB-1	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-3	SB-4	SB-4	SB-4
Location Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-1 0-2 020620	SB-1 2-4 020620	SB-1 6-8 020620	SODUP01 020620	SB-2 0-2 021120	SB-2 6-8 021120	SB-3 0-2 020720	SB-3 SB-3 6-8 020720	SB-3 9-11 020720	SB-4 0-2 020620	SB-4_6-8_020620	SB-4 SB-4 10-12 020620
•	375	375 Restricted	375 Protection	L2005543-16	L2005543-17	L2005543-18	L2005543-28	L2006176-16	L2006176-17	L2005791-01	L2005791-02	L2005791-03	L2005543-19	L2005543-20	L2005543-21
Laboratory ID Sample Date	Unrestricted	Use Residentia	l of	2/6/2020	2/6/2020	2/6/2020	2/6/2020	2/11/2020	2/11/2020	2/7/2020	2/7/2020	2/7/2020	2/6/2020	2/6/2020	2/6/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	2-4	6-8	6-8	0-2	6-8	0-2	6-8	9-11	0-2	6-8	10-12
Volatile Organic Compounds (mg/kg)				0-2	2-4	0-0	0-0	0-2	0-0	0-2	0-0	3-11	0-2	0-0	10-12
1,2,4,5-Tetramethylbenzene	~	~	~	0.0022 U.	0.66 U	0.0024 U	0.0022 U	0.0023 U	0.016 J	0.0021 UJ	0.0023 U	0.0022 U	0.11 UJ	0.0022 U	0.002 U
1,2-Dichlorobenzene	1.1	100	1 1	0.0022 U.	0.66 U	0.0024 U	0.0022 U	0.0023 U	0.047 J	0.0021 UJ	0.0023 U	0.0022 U	0.11 UJ	0.0022 U	0.002 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	8.4	0.0022 U.		0.0024 UJ	0.0022 U	0.0023 U		0.0021 UJ	0.0023 U	0.0022 U	0.11 UJ	0.0022 U.	
1,4-Dichlorobenzene	1.8	13	1.8	0.0022 U.		0.0024 U	0.0022 U	0.0023 U		0.0021 UJ	0.0023 U	0.0022 U	0.11 UJ		
1,4-Diethyl Benzene	~	~	~	0.0022 U	0.66 U	0.0024 U	0.0022 U	0.0023 U	0.024 J	0.0021 U	0.0023 U	0.0022 U	0.11 U	0.0022 U	0.002 U
2-Hexanone	~	~	~	0.011 U	3.3 U	0.012 U	0.011 U	0.012 U	0.85 U	0.01 U	0.011 U	0.011 U	0.53 U	0.011 U	
Acetone	0.05	100	0.05	0.011 U	3.3 U	0.012 U	0.011 U	0.012 J	0.85 U	0.01 UJ	0.011 UJ	0.011 UJ	0.53 U	0.011 U	0.025
Benzene	0.06	4.8	0.06	0.00056 U	0.16 U	0.00059 U	0.00055 U	0.00058 U	0.042 U	0.00052 U	0.00057 U	0.00055 U	0.026 U	0.00055 U	0.0005 U
Carbon Disulfide	~	~	~	0.011 U.		0.012 UJ	0.011 U	0.012 U	0.85 U	0.01 UJ	0.011 UJ	0.011 UJ	0.53 UJ		
Chloroform	0.37	49	0.37	0.00019 J	0.49 U	0.0018 U	0.0016 U	0.0017 U	0.13 U	0.00089 J	0.0017 U	0.0016 U	0.08 U	0.0016 U	0.0015 U
Cis-1,2-Dichloroethene	0.25	100	0.25	0.0011 U		0.0012 U	0.0011 U	0.0012 U		0.001 U	0.0011 U	0.0011 U	0.16 J	0.0023	0.0016
Cymene	~	~	~	0.0011 U.	0.33 U	0.0012 U	0.0011 U	0.0012 U	0.085 U	0.001 UJ	0.0011 U	0.0011 U	0.053 UJ		
Ethylbenzene	1	41	1	0.0011 U.		0.0012 UJ	0.0011 U	0.0012 U		0.001 U	0.0011 U	0.0011 U	0.053 UJ	0.0011 U.	
M,P-Xylene	~	~	~	0.0022 U	0.66 U	0.0024 U	0.0022 U	0.0023 U		0.0021 U	0.0023 U	0.0022 U	0.11 U	0.0022 U	
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.12	0.011 U	3.3 U	0.012 U	0.011 U	0.012 U	0.85 U	0.01 U	0.011 U	0.011 U	0.53 U	0.011 U	0.01 U
Naphthalene	12	100	12	0.0045 U.		0.0048 U	0.0044 U	0.0046 U	2.3	0.0042 UJ	0.0045 U	0.0044 U	0.21 UJ	0.0044 U	
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.0011 U	0.33 U	0.0012 U	0.0011 U	0.0012 U	0.085 U	0.001 U	0.0011 U	0.0011 U	0.053 U	0.0011 U	0.001 U
Tetrachloroethene (PCE)	1.3	19	1.3	0.0013 J	<u>75</u>	0.0058 J	0.012 J	0.00073 J	0.042 UJ	0.0012 J	0.00057 U	0.00055 U	0.24 J	0.017	0.0025
Toluene	0.7	100	0.7	0.002 J	0.33 U	0.0012 UJ	0.0012 U	0.0012 U	0.085 U	0.0012 U	0.0011 U	0.0011 U	0.053 UJ		
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	0.0011 U	0.33 U	0.0012 U	0.0011 U	0.0012 U	0.085 U	0.001 U	0.0011 U	0.0011 U	0.16 J	0.0023	0.0016
Total Xylenes	0.26	100	1.6	0.0011 U	0.33 U	0.0012 U	0.0011 U	0.0012 U		0.001 U	0.0011 U	0.0011 U	0.053 U	0.0011 U	
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0017 U	0.49 U	0.0012 U	0.0016 U	0.0012 U	0.13 U	0.0016 U	0.0017 U	0.0016 U	0.08 U	0.0016 U	
Trichloroethene (TCE)	0.47	21	0.47	0.00056 U	0.29	0.00059 U	0.00036 J	0.00058 U	0.042 U	0.00052 U	0.00057 U	0.00055 U	0.026 U	0.0018	0.00028 J
Semivolatile Organic Compounds (mg/kg)	0.47	21	0.47	0.00000 0	0.20	0.00000 0	0.00000 0	0.00000 0	0.042 0	0.00002 0	0.00007 0	0.00000 0	0.020 0	0.0010	0.00020 0
2-Methylnaphthalene	~	~	~	4.1 U	0.32 J	0.22 U	0.23 U	2.1 U	1.2 J	2.1 U	0.24 U	0.25 U	6.1 U	0.23 U	0.25 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.33	5 U	2.7 U	0.27 U	0.28 U	2.6 U	3 U	2.6 U	0.28 U	0.3 U	7.3 U	0.28 U	
Acenaphthene	20	100	98	2.8 U	0.8 J	0.15 U	0.16 U	1.4 U	5.6	1.4 U	0.16 U	0.17 U	4.1 U	0.16 U	
Acenaphthylene	100	100	107	2.8 U	0.51 J	0.15 U	0.16 U	1.4 U	4.1	1.4 U	0.16 U	0.17 U	4.1 U	0.16 U	
Anthracene	100	100	1000	2.1 U	2.3	0.11 U	0.12 U	1.1 U	14	1.1 U	0.12 U	0.13 U	3 U	0.12 U	0.12 U
Benzo(a)Anthracene	1	1	1	2.1 U	<u>5.8</u>	0.065 J	0.1 J	1.1 U	36	0.4 J	0.12 U	0.13 U	3 U	0.12 U	
Benzo(a)Pyrene	1	1	22	2.8 U	5.4	0.075 J	0.099 J	1.4 U	34	0.49 J	0.16 U	0.17 U	4.1 U	0.16 U	
Benzo(b)Fluoranthene	1	1	1.7	2.1 U	7	0.1 J	0.12	1.1 U	43	0.62 J	0.12 U	0.13 U	3 U	0.12 U	0.12 U
Benzo(g,h,i)Perylene	100	100	1000	2.8 U	3.4	0.057 J	0.07 J	1.4 U	19	0.46 J	0.16 U	0.17 U	4.1 U	0.16 U	0.16 U
Benzo(k)Fluoranthene	0.8	3.9	1.7	2.1 U	2.6	0.033 J	0.053 J	1.1 U	15	1.1 U	0.12 U	0.13 U	3 U	0.12 U	0.12 U
Benzyl Butyl Phthalate	~	~	~	3.4 U	1.9 U	0.19 U	0.19 U	1.8 U	2.1 U	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Biphenyl (Diphenyl)	~	~	~	7.9 U	4.3 U	0.42 U	0.44 U	4.1 U	4.8 U	4 U	0.45 U	0.48 U	12 U	0.44 U	
Bis(2-Ethylhexyl) Phthalate	~	~	~	3.4 U	1.9 U	0.19 U	0.19 U	1.8 U	2.1 U	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	
Carbazole	~	~	~	3.4 U		0.19 U	0.19 U	1.8 U	3.9	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Chrysene	1	3.9	1	2.1 U	5.3	0.07 J	0.11 J	1.1 U	32	0.45 J	0.12 U	0.13 U	3 U	0.12 U	0.12 U
Dibenz(a,h)Anthracene	0.33	0.33	1000	2.1 U	0.88 J	0.11 U	0.12 U	1.1 U	4.3	1.1 U	0.12 U	0.13 U	3 U	0.12 U	
Dibenzofuran	7	59	210	3.4 U	0.69 J	0.19 U	0.19 U	1.8 U	2.8	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	
Di-N-Butyl Phthalate	~	~	~	3.4 U	0.62 J	0.19 U	0.19 U	1.8 U	2.1 U	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Fluoranthene	100	100	1000	2.1 U		0.13	0.2	1.1 U	74	0.73 J	0.12 U	0.13 U	3 U	0.12 U	
Fluorene	30	100	386	3.4 U	0.87 J	0.19 U	0.19 U	1.8 U	5.9	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2	2.8 U	3.7	0.054 J	0.07 J	1.4 U	<u>21</u>	0.37 J	0.16 U	0.17 U	4.1 U	0.16 U	0.16 U
Naphthalene	12	100	12	3.4 U	0.72 J	0.19 U	0.19 U	1.8 U	3.4	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Pentachlorophenol	0.8	6.7	0.8	2.8 U	1.5 U	0.15 U	0.16	1.4 U	1.7 U	1.4 U	0.16 UJ	0.17 UJ	4.1 U	0.16 U	0.16 U
Phenanthrene	100	100	1000	2.1 U	9.5	0.084 J	0.14	1.1 U	45	0.5 J	0.12 U	0.13 U	3 U	0.12 U	0.12 U
Phenol	0.33	100	0.33	3.4 U	1.9 U	0.19 U	0.19 U	1.8 U	2.1 U	1.8 U	0.2 U	0.21 U	5.1 U	0.2 U	0.2 U
Pyrene	100	100	1000	2.1 U		0.12 J	0.22 J	1.1 U		0.69 J	0.12 U	0.13 U	3 U		
<u> </u>				0			0	• 0	+				• • •		

Location				SB-1	SB-1	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-3	SB-4	SB-4	SB-4
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-1 0-2 020620	SB-1 2-4 020620	SB-1 6-8 020620	SODUP01 020620		SB-2 6-8 021120	SB-3 0-2 020720	SB-3 6-8 020720	SB-3 9-11 020720	SB-4 0-2 020620	SB-4_6-8_020620	SB-4 10-12 020620
Laboratory ID	375	375 Restricted		L2005543-16	L2005543-17	L2005543-18	L2005543-28	L2006176-16	L2006176-17	L2005791-01	L2005791-02	L2005791-03	L2005543-19	L2005543-20	L2005543-21
Sample Date	Unrestricted	Use Residential	of	2/6/2020	2/6/2020	2/6/2020	2/6/2020	2/11/2020	2/11/2020	2/7/2020	2/7/2020	2/7/2020	2/6/2020	2/6/2020	2/6/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	2-4	6-8	6-8	0-2	6-8	0-2	6-8	9-11	0-2	6-8	10-12
Pesticides (mg/kg)															
4,4'-DDD	0.0033	13	14	0.0163 U	0.00494	0.00174 U	0.00182 U	0.0168 L	0.00748 J	0.00823 UJ	0.00183 UJ	0.00198 UJ	0.0158 U	0.00179 U	0.0019 U
4,4'-DDE	0.0033	8.9	17	0.0163 U	0.00398	0.00174 U	0.00182 U	0.0168 L	0.0116 J	0.00268 J	0.00183 UJ	0.00198 UJ	0.0158 U	0.00179 U	0.0019 U
4,4'-DDT	0.0033	7.9	136	0.0306 U	0.0112	0.00327 U	0.00341 U	0.0314 L	0.00799 J	0.0154 UJ	0.00343 UJ	0.0037 UJ	0.0297 U	0.00336 U	0.00356 U
Alpha Chlordane	0.094	4.2	2.9	0.0204 U	0.00103 J	0.00218 U	0.00227 U	0.0209 L	0.00252 U	0.0103 U	0.00229 U	0.00247 U	0.0198 U	0.00224 U	0.00237 U
Chlordane (alpha and gamma)	~	~	~	0.136 U	0.0151 U	0.0145 U	0.0151 U	0.14 L	0.0168 U	0.0686 U	0.0152 U	0.0165 U	0.132 U	0.0149 U	0.0158 U
Dieldrin	0.005	0.2	0.1	0.0102 U	0.00113 U	0.00109 U	0.00114 U	0.0105 L	0.00126 U	0.00514 UJ	0.00114 UJ	0.00124 UJ	0.00991 U	0.00112 U	0.00119 U
Gamma Chlordane	~	~	~	0.0204 U	0.00145 J	0.00218 U	0.00227 U	0.0209 L	0.00252 U	0.0103 UJ	0.00229 UJ	0.00247 UJ	0.0198 U	0.00224 U	0.00237 U
Heptachlor	0.042	2.1	0.38	0.00815 U	0.000905 U	0.000871 U	0.000909 U	0.00838 L	0.00101 U	0.00411 UJ	0.000916 UJ	0.000988 UJ	0.00793 U	0.000896 U	0.00095 U
Heptachlor Epoxide	~	~	~	0.0306 U	0.00339 U	0.00327 U	0.00341 U	0.0314 L	0.00378 U	0.0154 U	0.00343 U	0.0037 U	0.0297 U	0.00336 U	0.00356 U
Toxaphene	~	~	~	0.306 U	0.0339 U	0.0327 U	0.0341 U	0.314 U	J 0.0378 U.	J 0.154 U	0.0343 U	0.037 U	0.297 U	0.0336 U	0.0356 U
Herbicides (mg/kg)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)															
PCB-1242 (Aroclor 1242)	~	~	~	0.0348 U	0.038 U	0.0364 U	0.0376 U	0.0343 L	0.04 U	0.0339 U	0.0375 U	0.0409 U	0.0328 U	0.0384 U	0.0396 U
PCB-1254 (Aroclor 1254)	~	~	~	0.00586 J	0.0277 J	0.0364 U	0.0376 U	0.0343 L	0.0193 J	0.0339 U	0.0375 U	0.0409 U	0.0328 U	0.0384 U	0.0396 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0348 U	0.0366 J	0.0364 U	0.0376 U	0.0343 L	0.0174 J	0.0181 J	0.0375 U	0.0409 U	0.0328 U	0.0384 U	0.0396 U
PCB-1268 (Aroclor 1268)	~	~	~	0.0348 U	0.038 U	0.0364 U	0.0376 U	0.0343 L	0.04 U	0.0339 U	0.0375 U	0.0409 U	0.0328 U	0.0384 U	0.0396 U
Total PCBs	0.1	1	3.2	0.00586 J	0.0643 J	0.0364 U	0.0376 U	0.0343 L	0.0367 J	0.0181 J	0.0375 U	0.0409 U	0.0328 U	0.0384 U	0.0396 U
Inorganics (mg/kg)															
Aluminum	~	~	~	1,830	3,430	549	550	997	6,260	1,750	602	918	1,140	620	887
Antimony	~	~	~	0.606 J	3.47 J	2.91 J	2.5 J	4.28 U	0.916 J	0.632 J	4.54 U	5.05 U	0.553 J	4.7 U	4.66 U
Arsenic	13	16	16	2.19	5.11	0.361 J	0.907 U.	1.34	4.9	1.52	0.717 J	0.788 J	1.88	0.357 J	0.55 J
Barium	350	400	820	9.07	730	5.96 J	7.61 J	9.21	356	17.2	6.18	2.4	7.9	3.71	3.54
Beryllium	7.2	72	47	0.083 J	0.281 J	0.035 J	0.454 U.	0.094 J	0.376 J	0.186 J	0.045 J	0.061 J	0.087 J	0.038 J	0.466 U
Cadmium	2.5	4.3	7.5	0.158 J	<u>10.4</u>	0.088 J	0.907 U.	0.855 L	0.224 J	0.186 J	0.908 U	1.01 U	0.134 J	0.103 J	0.932 U
Calcium	~	~	~	90,800	28,300	414 J	404 J	94,200	36,400	17,000	444	233	106,000	369	719 J
Chromium, Hexavalent	1	110	19	0.843 U	0.926 U	0.901 U	0.938 U	0.87 L	0.394 J	0.857 U	0.394 J	1.02 U	0.833 U	0.944 U	0.991 UJ
Chromium, Total	~	~	~	5.33	11.9	4.51 J	3.34 J	2.65	18.1	6.44	4.27	2.55	3.4 U	3.64 U	5.94
Chromium, Trivalent	~	~	~	5.3	12	4.5 J	3.3 J	2.6	18 J	6.4	3.9 J	2.6	3.4	3.6	5.9
Cobalt	~	~	~	2.67	3.68	0.563 J	0.517 J	1.51 J	3.51	3.62	0.608 J	0.889 J	2.13	0.648 J	0.997 J
Copper	50	270	1720	12.9	39.6	2.07 J	3.93 J	6.83	42.8	17.9	1.71	1.82	6.51	0.705 J	1.78
Cyanide	27	27	40	0.96 U	0.48 J	1.1 U	1.1 U	1 U	J 0.43 J	1 UJ	1.1 UJ	1.2 UJ	1 U	1.1 U	1.2 U
Iron	~	~	~	5,790	10,100	1,100 J	1,080 J	3,760	8,850	10,600	1,380	1,830	4,640	1,200	2,010
Lead	63	400	450	7.7	<u>3,110</u>	28.6 J	38.1 J	11.5	193	22.3	5.29	0.92 J	6.2	1.9 J	1.4 J
Magnesium	~	~	~	41,500	10,000	230 J	245 J	50,300	3,460	9,620	259	436	47,400	267	492
Manganese	1600	2000	2000	109	181	12.8 J	11.8 J	93.3	156	55.8	15.7	13.8	107	15.4	19
Mercury	0.18	0.81	0.73	0.086 U	0.262	0.081 U	0.094 U	0.069 L	0.113	0.077 U	0.096 U	0.101 U	0.07 U	0.097 U	0.1 U
Nickel	30	310	130	4.99	15.1	2.2 UJ	1.26 J	3.12	16.9	6.38	1.1 J	3.71	3.98	2.35 U	4.07
Potassium	~	~	~	281	457	105 J	114 J	298	612	501	110 J	137 J	280	112 J	167 J
Selenium	3.9	180	4	0.614 J	0.416 J	1.76 UJ	0.272 J	1.71 L	2.04 U	1.62 U	1.82 U	2.02 U	0.435 J	1.88 U	1.86 U
Silver	2	180	8.3	0.83 U	0.462 J	0.88 U	0.907 U	0.855 L	1.02 U	0.81 U	0.908 U	1.01 U	0.79 U	0.94 U	0.932 U
Sodium	~	~	~	220	181 U	176 UJ	33.8 J	81.9 J	505	102 J	27.2 J	47.3 J	252	188 U	66.8 J
Vanadium	~	~	~	36.3	20.8	2.69	2.55	19.4	19.8	29.9	3.63	3.76	25.8	3.06	3.67
Zinc	109	10000	2480	30.1	619	52.8	57.2	13.7	361	78.8	56.6	16	14.9	42.6	28.9
General Chemistry (%)															
Solids, Percent	~	~	~	94.9	86.4	88.8	85.3	91.9	78.6	93.3	83.8	78.1	96	84.7	80.7
Total Solids	~	~	~	94.9	86.4	88.8	85.3	91.9	78.6	93.3	83.8	78.1	96	84.7	80.7

Location				SB-5	SB-5	SB-5	SB-6	SB-6	SB-6	SB-6	SB-7	SB-7	SB-7	SB-8	SB-8	SB-8
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-5 0-2 020620	SB-5_5-7_020620	SB-5 10-12 020620	SB-6 0-2 021120	SB-6 5-7 021120	SB-6 9-11 021120	SODUP03 021120	SB-7 0-2 020720	SB-7 5-7 020720	SB-7 9-11 020720	SB-8 0-2 020620	SB-8 5-7 020620	SB-8 10-12 020620
Laboratory ID	375	375 Restricted	375 Protection	L2005543-13	L2005543-14	L2005543-15	L2006176-01	L2006176-02	L2006176-03	L2006176-20	L2005791-04	L2005791-05	L2005791-06	L2005543-22	L2005543-23	L2005543-24
Sample Date	Unrestricted	Use Residential	of	2/6/2020	2/6/2020	2/6/2020	2/11/2020	2/11/2020	2/11/2020	2/11/2020	2/7/2020	2/7/2020	2/7/2020	2/6/2020	2/6/2020	2/6/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	5-7	10-12	0-2	5-7	9-11	9-11	0-2	5-7	9-11	0-2	5-7	10-12
Volatile Organic Compounds (mg/kg)				0-2	5-1	10-12	0-2	5-7	5-11	5-11	0-2	3-7	J-11	0-2	5-7	10-12
1,2,4,5-Tetramethylbenzene	~	~	~	0.0023 UJ	0.0025 U	0.002 U	0.0021 U	0.0019 U	0.002 U	0.0022 U	0.0028 UJ	0.0024 U	0.0024 U	0.0021 UJ	0.0024 U	0.002 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0023 UJ	0.0025 U	0.002 U	0.0021 U	0.0019 U	0.002 U	0.0022 U	0.0028 UJ	0.0024 U	0.0024 U	0.0021 UJ	0.0024 U	0.002 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	8.4	0.0023 UJ	0.0025 UJ	0.002 UJ	0.0021 U	0.0019 U	0.002 U	0.0022 U	0.0028 UJ	0.0024 U		0.0021 UJ	0.0024 U	0.002 U
1,4-Dichlorobenzene	1.8	13	1.8	0.0023 UJ	0.0025 U	0.002 U	0.0021 U	0.0019 U	0.002 U	0.0022 U	0.0028 UJ	0.0024 U	0.0021 0	0.0021 UJ	0.0024 U	0.002 U
1,4-Diethyl Benzene	1.0	10	1.0	0.0023 U	0.0025 U	0.002 U	0.0021 U	0.0019 U	0.002 U	0.0022 U	0.0028 U	0.0024 U		0.0021 U	0.0024 U	0.002 U
2-Hexanone	~	~	~	0.012 U	0.0025 U	0.002 0	0.011 U	0.0097 U	0.002 U	0.0022 0	0.014 U	0.012 U		0.0021 U	0.012 U	0.002 0
Acetone	0.05	100	0.05	0.022	0.012 U	0.011	0.025 J	0.0097 U	0.014 J	0.04 J	0.014 UJ	0.012 UJ		0.044 J	0.012 U	
Benzene	0.06	4.8	0.06	0.00058 U	0.00062 U	0.00051 U	0.0025 J	0.00048 U	0.00049 U	0.00055 U	0.0007 U	0.00059 U		0.00052 U	0.00061 U	0.00051 U
Carbon Disulfide	0.00	4.0	0.00	0.012 UJ	0.012 UJ	0.00 UJ	0.011 U	0.0097 U	0.0099 UJ	0.00033 0	0.014 UJ	0.00033 0 0.012 UJ	J 0.012 UJ	0.00032 0	0.012 U	0.0055 J
Chloroform	0.37	~ 49	0.37	0.0012 03	0.0012 03	0.00039 J	0.0016 U	0.0037 0	0.0035 U	0.0016 U	0.0021 U	0.0012 05		0.0016 U	0.0012 U	0.0015 U
		40	0.25	0.0018 U	0.0018 U	0.001 U	0.0010 U	0.00097 U		0.0010 U	0.0021 U	0.0018 U		0.0010 U	0.0018 U	0.0015 U
Cis-1,2-Dichloroethene Cymene	0.25	100	0.25	0.0012 UJ	0.0012 U	0.001 U	0.0011 U	0.00097 U	0.00099 U 0.00099 U	0.0011 U	0.0014 UJ	0.0012 U		0.001 UJ	0.0012 U	0.001 U
Ethylbenzene	~ 1	~ 41	~ 1	0.0012 UJ	0.0012 UJ	0.001 UJ	0.0011 U	0.00097 U	0.00099 U	0.0011 U	0.0014 U	0.0012 U	0.0012 U	0.001 U	0.0012 U	0.001 U
M,P-Xylene		41				0.001 UJ	0.0011 U	0.00097 U	0.00099 0 0.002 U	0.0011 0 0.0022 U	0.0014 U	0.0012 U		0.001 U	0.0012 U 0.0024 U	0.001 U
Methyl Ethyl Ketone (2-Butanone)	~ 0.12	~ 100	~ 0.12	0.0023 U 0.012 U	0.0025 U 0.012 U	0.002 U 0.01 U	0.0021 U	0.0019 U	0.002 U 0.0099 UJ	0.0022 U 0.0059 J	0.0028 U 0.014 U	0.0024 U	0.0024 0	0.0021 U 0.012 J	0.0024 U	0.002 U 0.0038 J
Naphthalene	12	100	12	0.0047 UJ	0.0049 U	0.0041 U	0.0042 U	0.0039 U	0.0099 0J 0.004 U	0.0059 J 0.0044 U	0.0014 J	0.0047 U		0.0012 J	0.0049 U	0.0038 J 0.0041 U
	12	100	12	0.0047 0J 0.0012 U	0.0049 U 0.0012 U	0.0041 U	0.0042 0 0.0011 U	0.00097 U	0.0004 U		0.0014 J	0.0047 0 0.0012 U		0.0042 0J 0.001 U	0.0049 U	0.0041 U
o-Xylene (1,2-Dimethylbenzene) Tetrachloroethene (PCE)	~ 1.3	~ 19	~ 1.3	0.00012 U	0.00012 U	0.0001 U	0.00053 UJ		0.00099 UJ	0.0011 U 0.00055 UJ	0.0014 U	0.00012 U	0.00012 U	0.0001 U	0.00012 U	
	0.7		0.7													0.00001 0
Toluene	0.7	100	0.7				0.0011 U		0.00099 U 0.00099 U	0.0011 U		0.0012 0	0.0012 0	0.001 U		
Total 1,2-Dichloroethene (Cis and Trans)	~	~ 100	~ 1.6	0.0012 U 0.0012 U	0.0012 0	0.001 0	0.0011 U 0.0011 U		0.00000 0	0.0011 U	0.0014 U 0.0014 U	0.0012 0	0.0012 0	0.001 U		
Total Xylenes	0.26 0.19	100	1.6 0.19		0.0012 0	0.001 U 0.0015 U	0.0011 U 0.0016 U	0.00097 U 0.0014 U	0.00099 U 0.0015 U	0.0011 U 0.0016 U		0.0012 0	0.0012 0	0.001 U 0.0016 U	0.0012 U 0.0018 U	0.001 U 0.0015 U
Trans-1,2-Dichloroethene		100			0.0010 0											
Trichloroethene (TCE)	0.47	21	0.47	0.00058 U	0.00062 U	0.00051 U	0.00053 U	0.00048 U	0.00049 U	0.00055 U	0.0007 U	0.00059 U	0.00059 U	0.00052 U	0.00061 U	0.00051 U
Semivolatile Organic Compounds (mg/kg)				0	0.00	0.04		0.004	0.04	0.05	0.7	0.01	0.04	0.4	0.00	0.04
2-Methylnaphthalene	~	~	~	2 U	0.22 U 0.27 U	0.24 U	2.2 U	0.024 J	0.24 U	0.25 U	3.7	0.21 U	0.24 U	6.1 U	0.22 U	0.24 U 0.29 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.33	2.4 U	0.27 0	0.29 U	2.6 U	0.27 U	0.28 U 0.16 U	0.3 U	<u>0.6</u> J	0.26 U 0.14 U		7.3 U	0.27 U	
Acenaphthene	20	100	98 107	1.4 U 1.4 U	0.10 0	0.022 J	1.4 U	0.06 J 0.15 U		0.16 U	10	0.14 0	0.007 0	4.1 U	0.15 U 0.15 U	0.16 U 0.16 U
Acenaphthylene	100	100	-	1.4 U 1 U	0.15 U 0.11 U	0.16 U	1.4 U	0.10	0.10 0	0.16 U	0.3 J	0.14 U 0.11 U		4.1 U		•••••
Anthracene	100	100	1000		0.11 0	0.046 J	1.1 U	0.16	0.12 0	0.12 U	14	0 0	0.000 0	3 0		
Benzo(a)Anthracene	1	1	1	1 U	0.095 J	0.14	0.24 J	0.51	0.065 J	0.072 J	<u>22</u>	0.023 J	0.09 J	3 U	0.11 U 0.15 U	0.023 J 0.16 U
Benzo(a)Pyrene	1	1	22	1.4 U 1 U	0.086 J	0.12 J	1.4 U	0.54	0.073 J	0.076 J	21	0.14 0	0.083 J	4.1 U	0.10	
Benzo(b)Fluoranthene	100	1	1.7		0.12	0.15	0.34 J	0.66	0.09 J	0.16 J	<u>26</u>	0.11 U	0.000 0	3 0		
Benzo(g,h,i)Perylene	100	100	1000	1.4 U 1 U	0.054 J	0.057 J	0.25 J	0.32	0.046 J	0.054 J	12	0.14 U 0.11 U	0.046 J	4.1 U	0.15 U 0.11 U	0.16 U
Benzo(k)Fluoranthene	0.8	3.9	1.7	, 0	0.046 J	0.058 J	1.1 U	0.22	0.033 J	0.049 J	<u>8.2</u>	0.11 0	0.0+1 0	3 U		0.12 U 0.2 U
Benzyl Butyl Phthalate	~	~	~	1.7 U	0.19 U	0.2 U	1.8 U	0.19 U	0.2 U	0.2 U	1.9 U	0.18 U	0.2 0	5.1 U	0.19 U	
Biphenyl (Diphenyl) Big(2, 5thulbaug), Bhthalata	~	~	~	3.9 U	0.43 U	0.46 U	4.2 U	0.43 U 0.19 U	0.45 U	0.47 U	0.9 J	0.4 U 0.18 U	0.47 U	12 U	0.42 U 0.19 U	0.46 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	1.7 U	0.19 U	0.2 U	1.8 U	0.10 0	0.2 U 0.2 U	0.2 U	1.9 U	0.10 0	0.2 0	5.1 U	0.10	0.2 U 0.2 U
Carbazole	~	~	~	1.7 U	0.19 U	0.2 U	1.8 U	0.11 J	0.2 0	0.2 U	7.3	0.18 U	0.028 J	5.1 U	0.19 U	• •
	0.00	3.9	1000	1 U	0.1 J	0.12	0.28 J	0.53	0.076 J	0.22 J	<u>19</u>	0.018 J	0.08 J	3 U	0.11 U	0.12 U
Dibenz(a,h)Anthracene	0.33	0.33	1000	1 U	0.11 U	0.12 U	1.1 U	0.077 J	0.12 UJ	0.044 J	3.2	0.11 U	0.12 U	3 U	0.11 U	0.12 U
Dibenzofuran	/	59	210	1.7 U	0.19 U	0.022 J	1.8 U	0.06 J	0.2 U	0.2 U	5.4	0.18 U	0.02 0	5.1 U	0.19 U	0.2 U
Di-N-Butyl Phthalate	~	~	~	1.7 U	0.19 U	0.2 U	1.8 U	0.19 U	0.2 U	0.2 U	1.9 U	0.18 U	0.2 0	5.1 U	0.19 U	0.2 U
Fluoranthene	100	100	1000	1 U	0.21	0.28	0.46 J	1.3	0.14	0.11 J	48	0.044 J	0.2	3 U	0.11 U	0.041 J
Fluorene	30	100	386	1.7 U	0.19 U	0.2 U	1.8 U	0.081 J	0.2 U	0.2 U	8.7	0.18 U	0.000 0	5.1 U	0.19 U	0.2 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2	1.4 U	0.056 J	0.056 J	1.4 U	0.35	0.048 J	0.049 J	<u>13</u>	0.14 U	0.000 0	4.1 U	0.15 U	0.16 U
Naphthalene	12	100	12	1.7 U	0.19 U	0.028 J	1.8 U	0.037 J	0.2 U	0.2 U	<u>15</u>	0.18 U		5.1 U	0.19 U	0.2 U
Pentachlorophenol	0.8	6.7	0.8	1.4 U	0.15 U	0.16 U	1.4 U	0.15 U	0.16 U	0.16 U	1.5 UJ	0.14 UJ	J 0.16 UJ	4.1 U	0.15 U	0.16 U
Phenanthrene	100	100	1000	1 U	0.13	0.14	0.22 J	1	0.072 J	0.062 J	47	0.044 J	0.19	3 U	0.11 U	0.024 J
Phenol	0.33	100	0.33	1.7 U	0.19 U	0.2 U	1.8 U	0.19 U	0.2 U	0.2 U	0.29 J	0.18 U	0.2 0	5.1 U	0.19 U	0.2 U
Pyrene	100	100	1000	1 U	0.17	0.26	0.42 J	1	0.14	0.16	37	0.034 J	0.15	3 U	0.11 U	0.036 J
								· · · · · · · · · · · · · · · · · · ·	-					· · · · · · · · · · · · · · · · · · ·		

Location				SB-5	SB-5	SB-5	SB-6	SB-6	SB-6	SB-6	SB-7	SB-7	SB-7	SB-8	SB-8	SB-8
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-5_0-2_020620	SB-5_5-7_020620	SB-5_10-12_020620	SB-6_0-2_021120	SB-6_5-7_021120	SB-6_9-11_021120	SODUP03_021120	SB-7_0-2_020720	SB-7_5-7_020720	SB-7_9-11_020720	SB-8_0-2_020620	SB-8_5-7_020620	SB-8_10-12_020620
Laboratory ID	375	375 Restricted Use Residential	375 Protection	L2005543-13	L2005543-14	L2005543-15	L2006176-01	L2006176-02	L2006176-03	L2006176-20	L2005791-04	L2005791-05	L2005791-06	L2005543-22	L2005543-23	L2005543-24
Sample Date	Unrestricted Use SCOs	SCOs	or Groundwater	2/6/2020	2/6/2020	2/6/2020	2/11/2020	2/11/2020	2/11/2020	2/11/2020	2/7/2020	2/7/2020	2/7/2020	2/6/2020	2/6/2020	2/6/2020
Sample Depth (feet bgs)	Use SCUs	5008	Groundwater	0-2	5-7	10-12	0-2	5-7	9-11	9-11	0-2	5-7	9-11	0-2	5-7	10-12
Pesticides (mg/kg)																
4,4'-DDD	0.0033	13	14	0.0157 U	0.00179 U	0.00197 U	0.0174 U	0.00175 U	0.00188 U	0.00194 U	0.0286 J	0.00164 UJ	0.00187 UJ	0.0158 U	0.0017 U	0.00186 UJ
4,4'-DDE	0.0033	8.9	17	0.0157 U	0.00179 U	0.00197 U	0.0174 U	0.00215	0.00188 U	0.00194 U	0.163 J	0.00164 UJ	0.00105 J	0.0158 U	0.0017 U	0.00186 UJ
4,4'-DDT	0.0033	7.9	136	0.0294 U	0.00336 U	0.0037 U	0.0326 U	0.00374	0.00353 U	0.00364 U	0.242 J	0.00308 UJ	0.0035 UJ	0.0297 U	0.00318 U	0.00349 U
Alpha Chlordane	0.094	4.2	2.9	0.0196 U	0.00224 U	0.00247 U	0.0218 U	0.00219 U	0.00235 U	0.00243 U	0.0116 U	0.00205 U	0.00233 U	0.0198 U	0.00212 U	0.00233 U
Chlordane (alpha and gamma)	~	~	~	0.131 U	0.015 U	0.0164 U	0.145 U	0.0146 U	0.0157 U	0.0162 U	0.0771 U	0.0137 U	0.0156 U	0.132 U	0.0141 U	0.0155 U
Dieldrin	0.005	0.2	0.1	0.0098 U	0.00112 U	0.00123 U	0.0109 U	0.0011 U	0.00118 U	0.00121 U	0.00578 UJ	0.00102 UJ	0.00117 UJ	0.00989 U	0.00106 U	0.00116 UJ
Gamma Chlordane	~	~	~	0.0196 U	0.00224 U	0.00247 U	0.0218 U	0.00219 U	0.00235 U	0.00243 U	0.0116 UJ	0.00205 UJ	0.00233 UJ	0.0198 U	0.00212 U	0.00233 U
Heptachlor	0.042	2.1	0.38	0.00784 U	0.000897 U	0.000987 U	0.0087 U	0.000877 U	0.000941 U	0.000971 U	0.00462 UJ	0.00082 UJ	0.000933 UJ	0.00791 U	0.000848 U	0.000931 U
Heptachlor Epoxide	~	~	~	0.0294 U	0.00336 U	0.0037 U	0.0326 U	0.00329 U	0.00353 U	0.00364 U	0.0173 U	0.00308 U	0.0035 U	0.0297 U	0.00318 U	0.00349 U
Toxaphene	~	~	~	0.294 U	0.135 P	0.037 U	0.326 UJ	0.0329 UJ	0.0353 UJ	0.0364 U	0.173 U	0.0308 U	0.035 U	0.297 U	0.0318 U	0.0349 U
Herbicides (mg/kg)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)																
PCB-1242 (Aroclor 1242)	~	~	~	0.0329 U	0.0376 U	0.0408 U	0.0363 U	0.0366 U	0.04 U	0.0409 U	0.0381 U	0.0343 U	0.0405 U	0.0337 U	0.0362 U	0.0388 U
PCB-1254 (Aroclor 1254)	~	~	~	0.0036 J	0.0376 U	0.0408 U	0.0363 U	0.0366 U	0.04 U	0.0409 U	0.0381 U	0.0343 U	0.0405 U	0.0337 U	0.0362 U	0.0388 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0329 U	0.0376 U	0.0408 U	0.0623	0.0366 U	0.04 U	0.0409 U	0.00917 J	0.0343 U		0.0337 U	0.0362 U	0.0388 U
PCB-1268 (Aroclor 1268)	~	~	~	0.0329 U	0.0376 U	0.0408 U	0.0363 U	0.0366 U	0.04 U	0.0409 U	0.0381 U	0.0343 U	0.0405 U	0.0337 U	0.0362 U	0.0388 U
Total PCBs	0.1	1	3.2	0.0036 J	0.0376 U	0.0408 U	0.0623	0.0366 U	0.04 U	0.0409 U	0.00917 J	0.0343 U	0.0405 U	0.0337 U	0.0362 U	0.0388 U
Inorganics (mg/kg)																
Aluminum	~	~	~	1,330	1,460	1,580	1,740	2,720	918 J	1,050 J	1,880	470	911	1,830	448	1,100
Antimony	~	~	~	0.669 J	4.5 U	0.598 J	4.48 U	4.43 U	4.79 U	4.99 U	0.556 J	4.18 U	4.73 U	3.94 U	4.43 U	4.68 U
Arsenic	13	16	16	2.28	1.33	1.46	1.85	2.13	0.738 J	0.838 J	2.89	0.669 J	0.7 J	2.93	0.248 J	0.804 J
Barium	350	400	820	9	8.01	5.62	16.2	27.1	6.82 J	8.59 J	19.7	2.07	2.59	9.94	5.51	3.66
Beryllium	7.2	72	47	0.074 J	0.072 J	0.08 J	0.143 J	0.097 J	0.479 UJ	0.04 J	0.188 J	0.034 J	0.038 J	0.095 J	0.443 U	0.468 U
Cadmium	2.5	4.3	7.5	0.149 J	0.135 J	0.997 U	0.895 U	0.886 U	0.959 U	0.998 U	0.17 J	0.837 U	0.946 U	0.789 U	0.886 U	0.935 U
Calcium	~	~	~	101,000	1,200	1,410	104,000	8,780	1,030 J	3,020 J	28,700	318	347	89,400	331	488
Chromium, Hexavalent	1	110	19	0.826 U	0.913 U	1 U	0.902 U	0.915 U	0.368 J	0.468 J	0.942 U	0.865 U	0.989 U	0.838 U	0.901 U	0.966 U
Chromium, Total	~	~	~	2.45 U	4.64	4.4	4.53	7.44	6.71 J	5.26 J	4.88	2.85	2.9	4.27	3.18	5.58
Chromium, Trivalent	~	~	~	2.4	4.6	4.4	4.5	7.4	6.3 J	4.8 J	4.9	2.8	2.9	4.3	3.2	5.6
Cobalt	~	~	~	2.77	1.4 J	1.52 J	2.44	1.93	0.92 J	1.06 J	3.24	0.536 J	0.871 J	2.86	0.425 J	1.19 J
Copper	50	270	1720	25	3.65	3.54	20.1	10.7	3.81 J	5.06 J	12	0.477 J	1.08	23.6	0.496 J	1.76
Cyanide	27	27	40	0.95 U	1 U	1.2 U	1.1 UJ	1.1 UJ	1.2 UJ	1.2 UJ	1.2 UJ		1.2 UJ		1.1 U	1.2 U
Iron	~ 63	~	~	6,570	3,740	3,890	5,890	5,100	2,010 J	2,380 J	9,460	1,160 1,66 J	1,930	6,550	889	2,640
Lead	63	400	450	6.25 44,300	14.1 672	16.6 849	18.9	27.5 2,020	22 503 J	25.6 714 J	22.2 14,300	1.66 J 208	1.6 J 431	8.75	1.9 J 210	1.91 J 610
Magnesium	~	~	~				46,400							44,000		
Manganese	1600	2000	2000 0.73	117	55.2	42.5 0.092 U	120 0.071 U	68.5 0.059 J	22.5 J 0.077 UJ	31.2 J 0.366 J	64.9 0.075 U	15.6 0.075 U	17 0.091 U	96.4	13.7 0.076 U	33.1 0.087 U
Mercury	0.18 30	0.81		0.081 U	0.089 U					0.366 J 3	0.075 U 6.16			0.083 U		3.84
Nickel	30	310	130	3.98 374	4.82 340	5.26 339	5.23	7.05 484	3.28 190 J	-		0.82 J	3.34	5.08	1.02 J	
Potassium	~ 3.9	~ 180	~	374 0.487 J	340 1.8 U	339 1.99 U	353 0.242 J	484 1.77 U	190 J 1.92 U	208 J 2 U	535 1.79 U	90.4 J 1.67 U	165 J 0.274 J	353	90.2 J 1.77 U	236 1.87 U
Selenium	3.9		-					0.886 U	0.959 U					0.26 J	0.886 U	
Silver	2	180	8.3	0.826 U	0.9 U	0.997 U	0.895 U			0.998 U	0.000 0	0.007 0	0.946 U	0.789 U		0.935 U
Sodium	~	~	~	229	180 U	222	124 J	70.2 J	102 J	109 J	97.7 J	27.1 J	99.7 J	262	34.4 J	195
Vanadium	~	~	~	25.4	5.38	5.82	19.8	8.72	5.38	5.65	29.4	3	3.6	35.2	2.86	4.2
Zinc General Chemistry (%)	109	10000	2480	15.6	14.2	18.1	88.7	34	15.5	19.3	32	8.78	7.22	15.2	11.5	11.3
General Chemistry (%)				06.0	07.6	70.0	00.7	87.4	81.6	70.1	04.0	02 F	00.0	0F 4	00.0	00.0
Solids, Percent	~	~	~	96.8 96.8	87.6 87.6	79.8 79.8	88.7 88.7	87.4 87.4	81.6 81.6	79.1 79.1	84.9 84.9	92.5 92.5	80.9 80.9	95.4 95.4	88.8 88.8	82.8 82.8
Total Solids	~	~	~	90.0	0.10	/3.0	00./	07.4	0.10	/9.1	04.J	92.9	00.9	90.4	00.0	02.0

I contian				SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-12	SB-12	SB-12
Location Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-9 0-2 021120	SB-9 6-8 021120	SB-9 9-11 021120	SB-10		0 SB-10 10-12 02062	SB-11 0-2 021120	SB-11 6-8 021120				SB-12 SB-12 10-12 020720
• • •	375	375 Restricted	375 Protection	L2006176-13	L2006176-14	L2006176-15	L2005543-25	L2005543-26	L2005543-27	L2006176-07	L2006176-08	L2006176-09	L2005791-07	L2005791-08	L2005791-09
Laboratory ID	Unrestricted	Use Residentia	l of	2/11/2020	2/11/2020	2/11/2020	2/6/2020	2/6/2020	2/6/2020	2/11/2020	2/11/2020	2/11/2020	2/7/2020	2/7/2020	2/7/2020
Sample Date	Use SCOs	SCOs	Groundwater	0-2	6-8	9-11	0-2	5-7	10-12	0-2	6-8	9-11	0-2	5-7	10-12
Sample Depth (feet bgs) Volatile Organic Compounds (mg/kg)				0-2	0-0	3-11	0-2	5-7	10-12	0-2	0-0	3-11	0-2	5-7	10-12
1,2,4,5-Tetramethylbenzene				0.0022 U	0.0021 U	0.0023 U	0.0024 U	0.0021 L	J 0.0024 U	0.002 U	0.0022 U	0.0023 U	0.0021 UJ	0.0022 U	0.0022 U
1,2-Dichlorobenzene	~ 1.1	~ 100	~ 1.1	0.0022 U	0.0021 U	0.0023 U	0.0024 U	0.0021 0		0.002 U	0.0022 U	0.0023 U	0.0021 UJ	0.0022 U	0.0022 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	8.4	0.0022 U	0.0021 U	0.0023 U	0.0024 U		J 0.0024 U	0.002 U	0.0022 U			0.0022 U	0.0022 U
1,4-Dichlorobenzene	1.8	13	0.4 1.8	0.0022 U	0.0021 U	0.0023 U	0.0024 U				0.0022 U			0.0022 U	0.0022 U
1,4-Diethyl Benzene	1.0	15	1.0									0.0023 U		0.0022 U	0.0022 U
2-Hexanone	~	~	~	0.0022 U 0.011 U	0.0021 U 0.011 U	0.0023 U 0.011 U	0.0024 U 0.012 U			0.002 U 0.0098 U	0.0022 U 0.011 U	0.0023 U	0.0021 U 0.011 U	0.0022 0 0.011 U	0.0022 0 0.011 U
	~ 0.05	~ 100	~ 0.05	0.011 U	0.011 U	0.011 U	0.036	0.011 0	J 0.012 0	0.0098 U	0.025	0.012 0 0.0079 J	0.011 UJ	0.011 UJ	0.011 UJ
Acetone	0.05	4.8	0.05	0.00055 U	0.00054 U	0.00056 U	0.00061 U		J 0.00061 U	0.00049 U	0.00056 U		0.00053 U	0.00056 U	0.00055 U
Benzene Carbon Disulfide	0.06	4.0	0.06	0.00055 U 0.011 U	0.00054 0 0.011 U	0.00056 U 0.011 U	0.00001 U		J 0.00081 U	0.0098 U	0.00056 U 0.011 U	0.00058 U 0.012 U	0.00053 0 0.011 UJ	0.00056 U 0.011 UJ	0.00055 U 0.011 UJ
	~ 0.37	~ 49	~ 0.37		0.0016 U										0.0016 U
Chloroform				0.0002 J				0.0016 U	0.0010 0	0.0015 U	0.0017 0		0.0002 J	0.0017 0	
Cis-1,2-Dichloroethene	0.25	100	0.25	0.0011 U	0.0011 U	0.0011 U 0.0011 U	0.0012 U 0.0012 U		J 0.0012 U J 0.0012 U	0.00000 0	0.0011 U		0.0011 U	0.0011 0	0.0011 U 0.0011 U
	~	~ 41	~ 1	0.0011 U	0.0011 U 0.0011 U	0.0011 0	0.0012 0	0.0011	0.0012 0	0.00000 0	0.0011 0		0.0011 UJ	0.0011 0	
Ethylbenzene M,P-Xylene		41	1	0.0011 U	0.0011 0		0.0012 U 0.0024 U		J 0.0012 U J 0.0024 U	0.00098 U 0.002 U					0.0011 U 0.0022 U
	~	~	~	0.0022 U	0.0021 U		0.0024 U 0.0077 J			0.002 U			0.0021 U		0.0022 U 0.011 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.12	0.011 U	0.011 U			0.011 U	J 0.012 U		0.0037 J 0.0045 U		0.011 U	0.011 0	0.0044 U
Naphthalene	12	100	12	0.0044 U 0.0011 U	0.0011 J	0.0045 U 0.0011 U		0.0043 U	U 0.0049 U	0.0000 0	010010 0	0.0046 U 0.0012 U		0.0011 0	
o-Xylene (1,2-Dimethylbenzene)	~	~ 10	~ 1 0	0.0011 0	0.0011 U			0.0011 U	J 0.0012 U	0.00098 U	0.0011 0		0.0011 U	0.0011 U	
Tetrachloroethene (PCE)	1.3	19	1.3	0.00055 UJ	0.00054 UJ 0.0011 U	0.00056 UJ 0.0011 U	0100001 0	0.00054 U	0.00001 0	0.000+0 00	0.00056 UJ 0.0011 U		0.00053 U	0.00056 U	
Toluene	0.7	100	0.7	0.0011 U	0.0011 0		0.00066 J 0.0012 U	0.0011 U	J 0.0012 U	0.00098 U			0.0011 U	0.0011 U	
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	0.0011 U	0.0011 U	0.0011 U		0.0011 U	J 0.0012 U	0.00000 0	0.0011 U 0.0011 U		0.0011 U	0.0011 U	
Total Xylenes Trans-1,2-Dichloroethene	0.26 0.19	100 100	1.6 0.19	0.0011 U 0.0016 U	0.0011 U 0.0016 U	0.0011 U 0.0017 U	0.0012 U 0.0018 U	0.0011 U 0.0016 U	J 0.0012 U J 0.0018 U	0.00098 U 0.0015 U		0.0012 U 0.0017 U	0.0011 U	0.0011 U 0.0017 U	0.0011 U 0.0016 U
											0.0017 0		0.0016 U		
Trichloroethene (TCE)	0.47	21	0.47	0.00055 U	0.00054 U	0.00056 U	0.00061 U	0.00054 U	J 0.00061 U	0.00049 U	0.00056 U	0.00058 U	0.00053 U	0.00056 U	0.00055 U
Semivolatile Organic Compounds (mg/kg)				0.4	0.04	0.24 U	6.2 U	0.005	0.05	0.1	0.07	0.24 U	0.4	0.01	0.04
2-Methylnaphthalene	~	~	~	2.1 U	0.24 U 0.28 U	0.21 0		0.065 J	0.25 U	2.1 U 2.6 U	0.07 J 0.28 U		2.1 U	0.21 U	0.24 U 0.29 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.33	2.5 U					J 0.3 U 0.17 U	2.6 U 1.4 U	0.28 U 0.13 J		2.6 U	0.25 U 0.14 U	
Acenaphthene	20	100	98 107	1.4 U	0.10 0			0.22		-			1.4 U		
Acenaphthylene	100	100		1.4 U	0.16	0.10 0		0.17	0.17 U		0.18 0.35	0.10 0	1.4 U	0.14 0	0.16 U 0.12 U
	100	100	1000	1 U	0.073 J	0.12 0	0.1 0	0.87	0.13 U 0.13 U	0	0.35	0.12 0	1.1 U	0.1 U	
	1	1			0.33	0.025 J 0.16 U		<u>2.1</u>	0.10 0	0.58 J 0.52 J	<u>1.3</u> 1.2	0.12 U	<u>1.2</u>	0.1 0	0.12 U 0.16 U
Benzo(a)Pyrene Benzo(b)Fluoranthene	1	1	22 1.7	1.4 U	0.32 0.48	0.16 U 0.12 U	4.1 U 3.1 U	1.9	0.17 U 0.13 U	0.62 J	1.2	0.16 U 0.12 U	1.3 J 1.5	0.14 U 0.1 U	0.16 U 0.12 U
	100	100				0.12 0		<u>2.4</u>							
Benzo(g,h,i)Perylene Benzo(k)Fluoranthene	100	100	1000 1.7	1.4 U	0.2 0.17	0.16 U 0.12 U	4.1 U <i>3.1</i> U	1.3 0.88	0.17 U 0.13 U	0.39 J 1.1 U	0.71 0.47	0.16 U 0.12 U	0.85 J 0.54 J	0.14 U 0.1 U	0.16 U 0.12 U
	0.8	3.9	1.7	1.7 U	0.17 0.2 U		3.7 U 5.1 U	0.044	0.13 U 0.21 U	1.7 U	-	0.12 U 0.2 U	0.54 J 1.8 U	0.1 U	0.12 U 0.2 U
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	~	~	~	1.7 U 3.9 U	0.2 U 0.45 U	0.2 U 0.46 U	5.1 U 12 U	0.044 . 0.4 l		1.8 U 4 U	0.2 U 0.45 U	0.2 U 0.45 U	1.8 U 4.1 U	0.17 U 0.39 U	0.2 U 0.46 U
Biphenyi (Diphenyi) Bis(2-Ethylhexyl) Phthalate	~	~	~	3.9 U 1.7 U	0.45 U 0.2 U	0.46 U 0.2 U	5.1 U	0.4 U	J 0.48 U J 0.21 U		0.45 U 0.2 U	0.45 U 0.2 U	4.1 U 1.8 U	0.39 U 0.17 U	0.46 U 0.2 U
Carbazole	~	~	~	1.7 U 1.7 U	0.2 0 0.041 J	0.2 U	5.1 U		0.21 U	1.8 U	0.2 U 0.18 J	0.2 U	1.8 U	0.17 U	0.2 U
	~ 1	~ 3.9	~ 1	1.7 U	0.041 J	0.2 U 0.021 J	5.1 U 3.1 U	0.32	0.21 U	0.52 J		0.2 U		0.17 U	0.2 U 0.12 U
Chrysene	0.22		1000	1 U	0.34 0.06 J	0.021 J 0.12 U	3.1 U 3.1 U	<u> </u>	0.13 U	0.52 J 1.1 U	<u>1.2</u> 0.19	0.12 U	<u>1.1</u> 1.1 ∪	0.1 U	0.12 U 0.12 U
Dibenz(a,h)Anthracene Dibenzofuran	0.33	0.33 59	210	17 U	0.06 J		3.7 U 5.1 U	0.29 0.18	0.13 U 0.21 U	1.7 U		0.12 U 0.2 U	1.7 U	0.1 U	0.12 U 0.2 U
Dibenzoturan Di-N-Butyl Phthalate	/	29	210	1.7 U 1.7 U	0.036 J 0.2 U	0.2 U 0.2 U	5.1 U	0.18	0.21 U 0.21 U	1.8 U	0.17 J 0.2 U	0.2 U	1.8 U	0.17 U	0.2 U
	~ 100	~ 100	~ 1000	1.7 U	0.2 0	0.2 0	5.1 U 3.1 U		0.21 U		2.7		2.3		0.2 U 0.12 U
Fluoranthene			1000	1 U 1.7 U		0.051 J 0.2 U		4.2 0.23		0.88 J 1.8 U				••••	
Fluorene	30 0 F	100	386		0.04 J	0.2 0	0.1		0.21 U	110 0	0.29	0.2 0	1.8 U 0.82 J	0.17 U	
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2 12	1.4 U	0.24	0.10		1.2	0.17 U	0.39 J 1.8 U	0.76	0.10 0		0.14 0	
Naphthalene	12	100	. –	1.7 U	0.034 J	0.2 0	•••••••	0.13	0.21 U		0.29		1.8 U	0.1.7	
Pentachlorophenol	0.8	6.7	0.8	1.4 U	0.10 0	0.10 0		0.14 L	0.17 0	1.4 0	0.10 0	0.10	1.4 U	0.14 UJ	
Phenanthrene	100	100	1000	1 U	0.43	0.028 J	3.1 U	3.4	0.13 U	0.3 J	1.5	0.12 U	1.1	0.1 U	••••
Phenol	0.33	100	0.33	1.7 U	0.2 U	0.2 U	5.1 U	0.18 l	J 0.21 U	1.8 U	0.2 U	0.2 U	1.8 U	0.17 U	0.2 U
Pyrene	100	100	1000	1 U	0.53	0.038 J	3.1 U	3.7	0.13 U	0.79 J	2.5	0.12 U	2.2	0.1 U	0.12 U

Location				SB-9	SB-9	SB-9		SB-10		SB-10		SB-10		SB-11	SB-	11	SB-11		SB-12		SB-12		SB-12	
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-9 0-2 021120	SB-9 6-8 021120		120	SB-10 0-2 020	620		520 S	B-10 10-12 02062	20 51	B-11 0-2 021120	SB-11 6-8		SB-11 9-11 02	21120	SB-12 0-2 020	720	SB-12 5-7 020	0720 S		020720
Laboratory ID	375	375 Restricted	375 Protection	L2006176-13	L2006176-14	L2006176-1		L2005543-25		L2005543-26		L2005543-27		L2006176-07	L20061	_	L2006176-0		L2005791-07		L2005791-0		L2005791-	
Sample Date	Unrestricted	Use Residentia	of	2/11/2020	2/11/2020	2/11/2020		2/6/2020		2/6/2020		2/6/2020		2/11/2020	2/11/2	2020	2/11/2020)	2/7/2020		2/7/2020		2/7/2020	0
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	6-8	9-11		0-2		5-7		10-12		0-2	6-8	3	9-11		0-2		5-7		10-12	
Pesticides (mg/kg)																								
4,4'-DDD	0.0033	13	14	0.0161 L	0.0067	0.00192	U	0.016	U	0.00126	J	0.00196 UJ	J	0.017 U	0.0127		0.00186	U	0.00849	UJ	0.00156	UJ	0.00193	UJ
4,4'-DDE	0.0033	8.9	17	0.0161	0.00794	0.00192	U	0.016	U	0.00598		0.00131 J	-	0.017 U	0.0060	9	0.00186	U	0.00849	UJ	0.00156	UJ	0.00193	UJ
4,4'-DDT	0.0033	7.9	136	0.0303	0.0118	0.00361	U		UJ	0.00579		0.00368 U		0.0318 U	0.0026		0.00348	U	0.00785	J	0.00293	UJ	0.00362	UJ
Alpha Chlordane	0.094	4.2	2.9	0.0202	J 0.00238 L	J 0.00241	Ū	0.0201	U	0.00202	U	0.00245 U		0.0212 U	0.0023		0.00232	Ū	0.0106	Ū	0.00196	U	0.00241	U
Chlordane (alpha and gamma)	~	~	~	0.134 L	J 0.0159 L	J 0.016	U	0.134	U	0.0134	U	0.0164 U		0.141 U	0.0159		0.0155	U	0.0707	U	0.013	U	0.0161	U
Dieldrin	0.005	0.2	0.1	0.0101	J 0.00119 L	J 0.0012	U	0.01	U	0.00101	U	0.00123 UJ	J	0.0106 U	0.0011		0.00116	U	0.00351	J	0.000978	UJ	0.00121	UJ
Gamma Chlordane	~	~	~	0.0202 L	J 0.00238 L	J 0.00241	U	0.0201	U	0.00152	J	0.00245 U		0.0212 U	0.00238		0.00232	U	0.0106	UJ	0.00196	UJ	0.00241	UJ
Heptachlor	0.042	2.1	0.38	0.00807 L	J 0.000953 L	J 0.000963	U	0.00802	U	0.000807	U	0.000982 U		0.00849 U	0.00095	i4 U	0.000928	U	0.00424	UJ	0.000782	UJ	0.000966	UJ
Heptachlor Epoxide	~	~	~	0.0303 L		J 0.00361	U	0.0301	U	0.00303	U	0.00368 U		0.0318 U	0.00358		0.00348	U	0.0159	U	0.00293	U	0.00362	U
Toxaphene	~	~	~	0.303 U	J 0.0357 U		UJ	0.301	U	0.0303	U	0.0368 U		0.318 UJ	0.0358	UJ	0.0348	U	0.159	U	0.0293	U	0.0362	U
Herbicides (mg/kg)				ND	ND	ND		ND		ND		ND		ND	ND		ND		ND		ND		ND	
Polychlorinated Biphenyls (mg/kg)																								
PCB-1242 (Aroclor 1242)	~	~	~	0.0339 L	J 0.0382 L	J 0.0406	U	0.033	UJ	0.034	U	0.0408 U		0.0347 U	0.0194	. J	0.0383	U	0.0339	U	0.0334	U	0.0397	U
PCB-1254 (Aroclor 1254)	~	~	~	0.0339 L	J 0.0382 L	J 0.0406	U	0.033	UJ	0.034	U	0.0408 U		0.0347 U	0.0395	U U	0.0383	U	0.0339	U	0.0334	U	0.0397	U
PCB-1260 (Aroclor 1260)	~	~	~	0.0142	0.0382 U	J 0.0406	U	0.033	UJ	0.034	U	0.0408 U		0.0314 J	0.00823	3 J	0.0383	U	0.032	J	0.0334	U	0.0397	U
PCB-1268 (Aroclor 1268)	~	~	~	0.0339 L	J 0.0382 L	J 0.0406	U	0.033	UJ	0.034	U	0.0408 U		0.0347 U	0.0395	i U	0.0383	U	0.0128	J	0.0334	U	0.0397	U
Total PCBs	0.1	1	3.2	0.0142	0.0382 U	J 0.0406	U	0.033	UJ	0.034	U	0.0408 U		0.0314 J	0.0276	i J	0.0383	U	0.0448	J	0.0334	U	0.0397	U
Inorganics (mg/kg)																								
Aluminum	~	~	~	1,910	831	1,200		1,790		1,010		748		1,170	807		1,200		1,420		422		1,200	
Antimony	~	~	~	4 L	J 4.66 L	J 4.7	U	3.94	U	4.16	U	4.81 U	1	0.326 J	4.74	U	4.76	U	1.14	J	4.12	U	4.69	U
Arsenic	13	16	16	1.51	0.55	J 0.507	J	1.64		0.458	J	0.26 J		2.11	0.834	J	1.11		2.28		0.601	J	1.24	
Barium	350	400	820	16.7	12.8	4.17		8.79		7.41		2.97		16.5	19.2		4.28		36.9		2.2		3.24	
Beryllium	7.2	72	47	0.08	0.037	J 0.056	J	0.063	J	0.033	J	0.481 U		0.114 J	0.038	J	0.048	J	0.112	J	0.033	J	0.066	J
Cadmium	2.5	4.3	7.5	0.799 L	J 0.933 L	J 0.94	U	0.787	U	0.832	U	0.963 U		0.816 U	0.948	U	0.952	U	0.241	J	0.823	U	0.939	U
Calcium	~	~	~	91,000	2,740	321		93,600		5,490		282		93,200	2,240		428		33,000		325		367	
Chromium, Hexavalent	1	110	19	0.375	0.509	J 0.994	U	0.832	U	01010	U	1.02 U		0.398 J	0.316	J	0.959	U	0.346	J	0.832	U	0.988	U
Chromium, Total	~	~	~	3.21	4.15	4.39		3.47		3.3		3.2		3.48	4.77		5.03		6.34		2.88		4.19	
Chromium, Trivalent	~	~	~	2.8 .	J 3.6 J	J 4.4		3.5		3.3		3.2		3.1 J	4.4	J	5		6	J	2.9		4.2	
Cobalt	~	~	~	2.86	0.737 .	J 1.15	J	3.4		1.6	J	0.684 J		2.47	0.73	J	0.771	J	2.08		0.518	J	1.34	J
Copper	50	270	1720	25	3	1.74		22.4		23.6		1.66		16.2	5.9		2.54		16.3		0.346	J	2.36	
Cyanide	27	27	40	1 U			UJ	1	U		U	1.2 U		1 UJ	1.2	UJ	1.1	UJ	1.1	UJ	1	UJ	1.1	UJ
Iron	~	~	~	6,660	1,730	2,320		7,170		3,780		1,480		5,650	1,870		2,180		6,680		1,150		2,690	
Lead	63	400	450	20.7	10.4	1.28	J	6.11		16.6		1.14 J		25	64.2		7.34		102		1.65	J	1.43	J
Magnesium	~	~	~	45,600	456	610		39,700		1,530		373		43,000	647		574		18,800		192		565	
Manganese	1600	2000	2000	140	24.8	18.3		120		67.6		14.7		113	19.7		17.3		101		18.7		21.5	
Mercury	0.18	0.81	0.73	0.066 L	J 0.077 L	0.070	U	0.078	U	0.073	U	0.099 U		0.067 U	0.076	U	0.075	U	0.163		0.073	U	0.097	U
Nickel	30	310	130	4.52	1.6 .	5.24		4.34		3.28		2.72		4.66	2.25	J	3.27		5.94		0.642	J	5.34	
Potassium	~	~	~	330	148	231	J	286		134	J	149 J		365	143	J	236	J	232		69	J	228	J
Selenium	3.9	180	4	1.6 L	J 1.87 L		U	1.57	U	0.516	J	1.92 U		0.286 J	1.9	U	1.9	U	1.72	U	1.65	U	1.88	U
Silver	2	180	8.3	0.799 L	J 0.933 L	J 0.94	U	0.787	U	0.002	U	0.963 U		0.816 U	0.948	U	0.952	U	0.86	U	0.823	U	0.939	U
Sodium	~	~	~	209	55.9	46.3	J	140	J	32.5	J	25.6 J		102 J	66.7	J	56	J	56.7	J	17.8	J	50.1	J
Vanadium	~	~	~	32.8	4.87	4.95		28.7		4.29		2.89		22.7	4.3		4.37		18.2		2.91		5.21	
Zinc	109	10000	2480	27.6	48.7	18.8		23.4		35.4		8.11		30.6	41.8		9.19		69.4		7.14		17.1	
General Chemistry (%)																								
Solids, Percent	~	~	~	95.9	82.5	80.5		96.1		94.2		78.1		93	82.4		83.4		92.6		96.2		81	
Total Solids	~	~	~	95.9	82.5	80.5		96.1		94.2		78.1		93	82.4		83.4		92.6		96.2		81	

Location				SB-13	SB-13	SB-13	SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15	SB-16	SB-16	SB-16
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-13 0-2 021020	SB-13 4-6 021020	SB-13 9-11 021020	SB-14 0-2 021120	SB-14 6-8 021120	SB-14 9-11 021120	SB-15 0-2 021020	SB-15 6-8 021020	SB-15 10-12 02102	SODUP02 021020	SB-16 0-2 021120	SB-16 5-7 021120	SB-16 9-11 021120
Laboratory ID	375	375 Restricted	375 Protection	L2005961-01	L2005961-02	L2005961-03	L2006176-10	L2006176-11	L2006176-12	L2005961-04	L2005961-05	L2005961-06	L2005961-09	L2006176-04	L2006176-05	L2006176-06
Sample Date	Unrestricted	Use Residential	of	2/10/2020	2/10/2020	2/10/2020	2/11/2020	2/11/2020	2/11/2020	2/10/2020	2/10/2020	2/10/2020	2/10/2020	2/11/2020	2/11/2020	2/11/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	4-6	9-11	0-2	6-8	9-11	0-2	6-8	10-12	10-12	0-2	5-7	9-11
Volatile Organic Compounds (mg/kg)																
1,2,4,5-Tetramethylbenzene	~	~	~	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
1,2-Dichlorobenzene	1.1	100	1.1	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	8.4	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
1,4-Dichlorobenzene	1.8	13	1.8	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
1,4-Diethyl Benzene	~	~	~	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
2-Hexanone	~	~	~	0.01 UJ	0.011 UJ	0.01 UJ	0.01 U	0.011 U	0.012 U	0.012 UJ	0.0099 UJ	0.011 UJ	0.01 U	0.012 U	0.011 U	0.012 U
Acetone	0.05	100	0.05	0.01 UJ	0.011 UJ	0.01 UJ	0.03 J	0.0072 J	0.0088 J	0.009 J	0.0099 UJ	0.011 UJ	0.01 U	0.008 J	0.062	0.018
Benzene	0.06	4.8	0.06	0.00051 U	0.00054 U	0.00053 U	0.00051 U	0.00055 U	0.00059 U	0.00058 U	0.00049 U	0.00053 U	0.0005 U	0.00061 U	0.00057 U	0.00059 U
Carbon Disulfide	~	~	~	0.01 U	0.011 U	0.01 U	0.01 U	0.011 U	0.012 U	0.012 U	0.0099 U	0.011 U	0.01 U	0.012 U	0.011 U	0.012
Chloroform	0.37	49	0.37	0.0015 U	0.0016 U	0.0016 U	0.0015 U	0.0017 U	0.0018 U	0.0017 U	0.0015 U	0.0016 U	0.0015 U	0.0018 U	0.00016 J	0.00016 J
Cis-1,2-Dichloroethene	0.25	100	0.25	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Cymene	~	~	~	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Ethylbenzene	1	41	1	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
M,P-Xylene	~	~	~	0.002 U	0.0022 U	0.0021 U	0.002 U	0.0022 U	0.0024 U	0.0023 U	0.002 U	0.0021 U	0.002 U	0.0024 U	0.0023 U	0.0024 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.12	0.01 UJ	0.011 UJ	0.01 UJ	0.01 U	0.011 U	0.012 U	0.012 UJ	0.0099 UJ	0.011 UJ	0.01 U	0.012 U	0.011 U	0.012 U
Naphthalene	12	100	12	0.004 U	0.0044 U	0.0042 U	0.0041 U	0.0044 U	0.0047 U	0.0046 U	0.004 U	0.0042 U	0.004 U	0.0049 U	0.0046 U	0.0047 U
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Tetrachloroethene (PCE)	1.3	19	1.3	0.00051 U	0.00054 U	0.00053 U	0.00051 UJ	0.00055 UJ	0.00059 UJ	0.00058 U	0.00049 U	0.00053 U	0.0005 U	0.00061 UJ	0.00057 UJ	0.00059 UJ
Toluene	0.7	100	0.7	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Total Xylenes	0.26	100	1.6	0.001 U	0.0011 U	0.001 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00099 U	0.0011 U	0.001 U	0.0012 U	0.0011 U	0.0012 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0015 U	0.0016 U	0.0016 U	0.0015 U	0.0017 U	0.0018 U	0.0017 U	0.0015 U	0.0016 U	0.0015 U	0.0018 U	0.0017 U	0.0018 U
Trichloroethene (TCE)	0.47	21	0.47	0.00051 U	0.00054 U	0.00053 U	0.00051 U	0.00055 U	0.00059 U	0.00058 U	0.00049 U	0.00053 U	0.0005 U	0.00061 U	0.00057 U	0.00059 U
Semivolatile Organic Compounds (mg/kg)																
2-Methylnaphthalene	~	~	~	2.1 U	0.21 U	0.24 U	2.2 U	0.24 U	0.25 U	0.63 U	0.22 U	0.24 U	0.23 U	2.2 U	0.21 U	0.26 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.33	2.5 U	0.25 U	0.29 U	2.6 U	0.28 U	0.3 U	0.75 U	0.27 U	0.29 U	0.28 U	2.7 U	0.25 U	0.31 U
Acenaphthene	20	100	98	1.4 U	0.14 U	0.16 U	1.4 U	0.16 U	0.16 U	0.42 U	0.15 U		0.15 U	1.5 U	0.14 U	0.17 U
Acenaphthylene	100	100	107	1.4 U	0.14 U	0.16 U	1.4 U	0.16 U	0.16 U	0.42 U	0.15 U		0.15 U	1.5 U	0.14 U	0.17 U
Anthracene	100	100	1000	1 U	0.1 U	0.12 U	1.1 U	0.12 U	0.12 U	0.31 U	0.11 U	0.12 U	0.12 U	1.1 U	0.1 U	0.13 U
Benzo(a)Anthracene	1	1	1	0.34 J 1.4 U	0.039 J	0.12 U	1.1 U	0.12 U 0.16 U	0.12 U 0.16 U	0.31 U	0.11 U 0.15 U	0.12 U 0.16 U	0.12 U 0.15 U	<u>1.7</u>	0.1 U 0.14 U	0.13 U 0.17 U
Benzo(a)Pyrene Benzo(b)Fluoranthene	1	1	22 1.7	1.4 U 0.48 J	0.042 J 0.051 J	0.16 U 0.12 U	1.4 U 1.1 U	0.16 U 0.12 U	0.16 U 0.12 U	0.42 U 0.31 U	0.15 U 0.11 U	0.10 0	0.15 U 0.12 U	1.9 2.3	0.14 U 0.1 U	0.17 U 0.13 U
	100	100	1000			0.12 U	1.4 U	0.12 0 0.16 U	0.12 U	0.42 U	0.11 U		0.12 U	<u>2.3</u> 1.1 J	0.14 U	0.13 0 0.17 U
Benzo(g,h,i)Perylene Benzo(k)Fluoranthene	0.8	3.9	1.7	0.27 J 1 U	0.039 J 0.1 U	0.18 U	1.4 U	0.18 U	0.16 U	0.42 U	0.15 U		0.15 U	0.73 J	0.14 U	0.17 U
Benzyl Butyl Phthalate	0.0	J.J	1.7	1.7 U	0.1 U	0.12 U	1.7 U	0.12 U	0.12 U	0.52 U	0.11 U	02 0	0.12 U	1.9 U	0.17 U	0.13 U 0.22 U
Biphenyl (Diphenyl)	~	~	~	4 U	0.4 U	0.46 U	4.2 U	0.45 U	0.2 U	1.2 U	0.43 U	0.2 U	0.44 U	4.2 U	0.39 U	0.22 0 0.49 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	1.7 U	0.4 U	0.40 U	4.2 U	0.43 U	0.47 U	0.36 J	0.43 U		0.19 U	4.2 U	0.17 U	0.43 0 0.22 U
Carbazole	~	~	~	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U		0.19 U	1.9 U	0.17 U	0.22 U
Chrysene	1	3.9	1	0.33 J	0.047 J	0.12 U	0.19 J	0.12 U	0.12 U	0.13 J	0.13 U	0.12 U	0.12 U	<u>1.6</u>	0.1 U	0.12 U
Dibenz(a,h)Anthracene	0.33	0.33	1000	1 U	0.1 U	0.12 U	1.1 U	0.12 U	0.12 U	0.31 U	0.11 U		0.12 U	0.28 J	0.1 U	0.13 U
Dibenzofuran	7	59	210	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U	0.2 U	0.12 U	1.9 U	0.17 U	0.22 U
Di-N-Butyl Phthalate	~	~	~	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U	0.2 U	0.19 U	1.9 U	0.17 U	0.22 U
Fluoranthene	100	100	1000	0.61 J	0.073 J	0.12 U	1.1 U	0.12 U	0.12 U	0.31 U	0.11 U		0.12 U	3.5	0.1 U	0.13 U
Fluorene	30	100	386	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U	0.2 U	0.19 U	1.9 U	0.17 U	0.22 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2	0.26 J	0.024 J	0.16 U	1.4 U	0.16 U	0.16 U	0.42 U	0.15 U		0.15 U	1.2 J	0.14 U	0.17 U
Naphthalene	12	100	12	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U	0.2 U	0.19 U	1.9 U	0.17 U	0.22 U
Pentachlorophenol	0.8	6.7	0.8	1.4 U	0.14 U	0.16 U	1.4 U	0.16 U	0.16 U	0.42 U	0.15 U	0.16 U	0.15 U	1.5 U	0.14 U	0.17 U
Phenanthrene	100	100	1000	0.29 J	0.043 J	0.12 U	1.1 U	0.12 U	0.12 U	0.31 U	0.11 U	0.12 U	0.12 U	1.8	0.1 U	0.13 U
Phenol	0.33	100	0.33	1.7 U	0.17 U	0.2 U	1.8 U	0.2 U	0.2 U	0.52 U	0.19 U	0.2 U	0.19 U	1.9 U	0.17 U	0.22 U
Pyrene	100	100	1000	0.57 J	0.074 J	0.12 U	0.21 J	0.12 U	0.12 U	0.072 J	0.11 U	0.12 U	0.12 U	3.2	0.1 U	0.13 U
	-					·										

Location				SB-13	SB-13	SB-13		SB-14	SB-14		SB-14	SB-15	SB-15	SB-15	SB-15	SB-16	SB-16	SB-16
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-13 0-2 021020	SB-13 4-6 021020	SB-13 9-11 021	020 SB-	14 0-2 021120	SB-14 6-8 021	1120	SB-14 9-11 021120			SB-15 10-12 0210			SB-16 5-7 02112	
Laboratory ID	375	375 Restricted	375 Protection	L2005961-01	L2005961-02	L2005961-03		2006176-10	L2006176-1		L2006176-12	L2005961-04	L2005961-05	L2005961-06	L2005961-09	L2006176-04	L2006176-05	L2006176-06
Sample Date	Unrestricted	Use Residential	of	2/10/2020	2/10/2020	2/10/2020		2/11/2020	2/11/2020		2/11/2020	2/10/2020	2/10/2020	2/10/2020	2/10/2020	2/11/2020	2/11/2020	2/11/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	4-6	9-11		0-2	6-8		9-11	0-2	6-8	10-12	10-12	0-2	5-7	9-11
Pesticides (mg/kg)																		
4,4'-DDD	0.0033	13	14	0.00167 U	0.00161 U	0.00186	U	0.0174 U	0.00181	U	0.00198 U	0.0161 U	0.00177 U	0.00188 L	J 0.00179 L	0.00171 U	0.00161	J 0.00204 U
4,4'-DDE	0.0033	8.9	17	0.00142 J	0.00161 U	0.00186	U	0.0174 U	0.00181	U	0.00198 U	0.0161 U	0.00177 U	0.00188 L	J 0.00179 L	0.00229	0.00161	J 0.00204 U
4,4'-DDT	0.0033	7.9	136	0.00312 U	0.00302 U	0.00348	U	0.0325 U	0.00339	U	0.00371 U	0.0302 U	0.00331 U	0.00352	J 0.00336 L	0.00625	0.00302	J 0.00383 U
Alpha Chlordane	0.094	4.2	2.9	0.00208 U	0.00201 U	0.00232	U	0.0217 U	0.00226	U	0.00247 U	0.0201 U	0.00221 U	0.00235 L	J 0.00224 L	0.0129	0.00201	J 0.00256 U
Chlordane (alpha and gamma)	~	~	~	0.0139 U	0.0134 U	0.0155	U	0.145 U	0.0151	U	0.0165 U	0.134 U	0.0147 U	0.0157 L	J 0.0149 L	0.0802	0.0134	J 0.017 U
Dieldrin	0.005	0.2	0.1	0.00104 U	0.00101 U	0.00116	U	0.0108 U	0.00113	U	0.00124 U	0.01 U	0.0011 U	0.00117 L	J 0.00112 L	0.00107 U	0.00101	J 0.00128 U
Gamma Chlordane	~	~	~	0.00208 U	0.00201 U	0.00232	U	0.0217 U	0.00226	U	0.00247 U	0.0201 U	0.00221 U	0.00235 L	J 0.00224 L	0.00846 J	0.00201	J 0.00256 U
Heptachlor	0.042	2.1	0.38	0.000834 U	0.000806 U	0.000929	UC	0.00868 U	0.000904	U	0.000989 U	0.00804 U	0.000884 U	0.00094 L	J 0.000896 L	0.000857 U	0.000806	J 0.00102 U
Heptachlor Epoxide	~	~	~	0.00312 U	0.00302 U	0.00348	U	0.0325 U	0.00339	U	0.00371 U	0.0302 U	0.00331 U	0.00352 L	J 0.00336 L	0.00321 U	0.00302	J 0.00383 U
Toxaphene	~	~	~	0.0312 U	0.0302 U	0.0348	U	0.325 UJ	0.0339	UJ	0.0371 UJ	0.302 U	0.0331 U	0.0352 L	J 0.0336 L	0.0321 UJ	0.0302	JJ 0.0383 U
Herbicides (mg/kg)				ND	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)																		
PCB-1242 (Aroclor 1242)	~	~	~	0.0337 U	0.0339 U	0.0398	U	0.0364 U	0.0386	U	0.0417 U	0.0346 U	0.0372 U	0.0399	J 0.0379 L	0.0357 U	0.0334	J 0.0429 U
PCB-1254 (Aroclor 1254)	~	~	~	0.0337 U	0.0339 U	0.0398		0.0364 U	0.0386	U	0.0417 U	0.0346 U	0.0372 U	0.0399 L	J 0.0379 L	0.0357 U		J 0.0429 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0176 J	0.0339 U	0.0398).00978 J	0.0386	U	0.0417 U	0.0346 U	0.0372 U	0.0399 L	J 0.0379 L	0.0357 U	0.0334	J 0.0429 U
PCB-1268 (Aroclor 1268)	~	~	~	0.0337 U	0.0339 U	0.0398	U	0.0364 U	0.0386	U	0.0417 U	0.0346 U	0.0372 U	0.0399	J 0.0379 L	0.0357 U	0.0334	J 0.0429 U
Total PCBs	0.1	1	3.2	0.0176 J	0.0339 U	0.0398).00978 J	0.0386	U	0.0417 U	0.0346 U	0.0372 U	0.0399 L	J 0.0379 L	0.0357 U	0.0334	J 0.0429 U
Inorganics (mg/kg)																		
Aluminum	~	~	~	2,430	588	932		1,090	552		958	910	433	1,700 J	447 .	3,210	406	1,200
Antimony	~	~	~	0.766 J	4.07 U	4.58	U	4.26 U	4.55	U	4.92 U	1.02 J	0.489 J	4.86 L	J 4.51 L	4.26 U	4	J 5.04 U
Arsenic	13	16	16	2.48	1.19	1.12		1.3	0.309	J	0.541 J	1.88	0.908	1.34	0.866	1.92	0.799	J 0.937 J
Barium	350	400	820	58.8	7.69	2.94		14.4	4.17		2.43	6.1	2.37	4.19	2.47 .	157	2.08	3.52
Beryllium	7.2	72	47	0.421 U	0.407 U	0.458	U	0.094 J	0.455	U	0.492 U	0.409 U	0.436 U	0.486 L	J 0.451 L	0.153 J	0.4	J 0.05 J
Cadmium	2.5	4.3	7.5	0.497 J	0.098 J	0.917	U	0.852 U	0.909	U	0.984 U	0.147 J	0.873 U	0.116	0.902 L	0.852 U	0.799	J 1.01 U
Calcium	~	~	~	22,300	2,480	1,050		72,300	398		227	95,500	304	479	327 .	23,300	304	361
Chromium, Hexavalent	1	110	19	0.847 U	0.838 U	0.976	U	0.346 J	0.443	J	1.01 U	0.847 U	0.914 U	0.978 L	J 0.934 L	0.292 J	0.272	J 1.06 UJ
Chromium, Total	~	~	~	7.2	8.98	4.24		4.26	4.1		3.8	2.73	3.11	5.2 .	3.01 J	6.85	3	4.58
Chromium, Trivalent	~	~	~	7.2	8.8 J	4.2		3.9 J	3.6	J	3.8	2.5 J	3.1	4.9	2.8 J	6.6 J	2.7	J 4.6
Cobalt	~	~	~	3.17	1.06 J	1.13	J	1.41 J	0.564	J	0.886 J	2.28	0.515 J	1.86 J	0.55 J	3.99	0.392	J 1.05 J
Copper	50	270	1720	23.4	2.55	1.63		9.68	0.391	J	1.23	10.7	0.471 J	1.8 J	0.505	23.8	0.559	J 1.35
Cyanide	27	27	40	1 UJ	0.96 UJ	1.1	UJ	1.1 UJ	1.2	UJ	1.2 UJ	I 1 UJ	1.1 U.	J 1.2 U	J 1.1 U	J 1.1 UJ	0.96	JJ 1.3 UJ
Iron	~	~	~	6,810	2,640	2,210		3,440	1,310		1,770	4,970	1,100	3,970	1,150 J	7,700	945	2,530
Lead	63	400	450	124	11.9	2.71	J	25.2	2.14	J	1.08 J	6.77	1.79 J	2.27 .	1.65 .	77.4	1.42	J 1.51 J
Magnesium	~	~	~	11,300	1,120	861		43,200	251		475	48,900	210	810 .	214 .	10,600	184	588
Manganese	1600	2000	2000	136	39	18.2		94.1	21		17.2	113	13.4	33 .	14.9	115	11.1	26.8
Mercury	0.18	0.81	0.73	0.138	0.067 U	0.085	U	0.07 U	0.075	U	0.079 U	0.074 U	0.093 U	0.092 L	J 0.089 L	0.116	0.066	J 0.083 U
Nickel	30	310	130	8.36	1.54 J	3.91		3.74	1.01	J	4.14	2.98	0.76 J	5.92	0.857 J	8.87	0.767	J 4.09
Potassium	~	~	~	286	101 J	155	J	254	120	J	185 J	225	94.3 J	323 .	91.7 .	461	84.7	J 250 J
Selenium	3.9	180	4	0.362 J	1.63 U	0.376	J	0.247 J	1.82	U	1.97 U	0.564 J	0.279 J	1.94 L	J 0.262 J	1.7 U	1.6	J 2.02 U
Silver	2	180	8.3	0.842 U	0.813 U	0.917	U	0.852 U	0.909	U	0.984 U	0.817 U	0.873 U	0.971 L	J 0.902 L	0.852 U	0.799	J 1.01 U
Sodium	~	~	~	168 U	163 U	183	U	92.4 J	28.7	J	41.4 J	163 U	175 U	194 L	J 180 L	222	21.6	J 117 J
Vanadium	~	~	~	18	7.77	5.2		14.5	3.92		3.62	28.6	2.85	6.56	2.9 .	23.9	2.63	3.95
Zinc	109	10000	2480	120	16.6	10.1		26.2	13.5		6.23	13.2	13.2	16.1	13.3	72.3	13.9	10
General Chemistry (%)																		
Solids, Percent	~	~	~	94.4	95.4	82		89.6	83.5		79.2	94.4	87.5	81.8	85.6	89	95.6	75.8
Total Solids	~	~	~	94.4	95.4	82		89.6	83.5		79.2	94.4	87.5	81.8	85.6	89	95.6	75.8

Location				SB-17	SB-17	SB-17	SB-18	SB-18	SB-18	SB-19	SB-19	SB-19	SB-20	SB-20	SB-20
Sample ID	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-17 0-2 020520	SB-17 5-7 020520		SB-18 0-2 020520	SB-18 2-4 020520			SB-19 2-4 020520	SB-19 6-8 020520	SB-20 0-2 020520	SB-20 2-4 020520	SB-20 6-8 020520
Laboratory ID	375	375 Restricted	375 Protection	L2005543-10	L2005543-11	L2005543-12	L2005543-07	L2005543-08	L2005543-09	L2005543-04	L2005543-05	L2005543-06	L2005543-01	L2005543-02	L2005543-03
Sample Date	Unrestricted	Use Residential	of	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020
Sample Depth (feet bgs)	Use SCOs	SCOs	Groundwater	0-2	5-7	9-11	0-2	2-4	10-12	0-2	2-4	6-8	0-2	2-4	6-8
Volatile Organic Compounds (mg/kg)						•			10 12						00
1,2,4,5-Tetramethylbenzene	~	~	~	0.0003 J	0.0022 U	0.0023 U	0.0026 UJ	0.0023 U	0.0026 U	0.0035 U	0.0028 U	0.0024 U	0.002 U	0.0032 U	0.0026 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0023 U	0.0022 U	0.0023 U	0.0026 UJ	0.0023 U	0.0026 U	0.0035 U	0.0028 U	0.0024 U	0.002 U	0.0032 U	0.0026 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	8.4	0.0012 J	0.0022 UJ	0.0023 UJ	0.0026 UJ	0.0023 UJ		0.0035 UJ	0.0028 UJ		0.002 UJ	0.0032 UJ	0.0026 UJ
1,4-Dichlorobenzene	1.8	13	1.8	0.0012 J	0.0022 U	0.0023 U	0.0026 UJ	0.0023 U	0.0020 U	0.0035 U	0.0028 U			0.0032 U	0.0026 U
1,4-Diethyl Benzene	1.0	~	1.0	0.001 J	0.0022 U	0.0023 U	0.0026 U	0.0023 U	0.0026 U	0.0035 U	0.0028 U	0.0024 U	0.002 U	0.0032 U	0.0026 U
2-Hexanone	~	~	~	0.001 U	0.011 U	0.012 U	0.013 U	0.012 U		0.018 U	0.014 U	0.012 U		0.016 U	0.013 U
Acetone	0.05	100	0.05	0.009 J	0.011 U	0.012 U	0.0064 J	0.012 U	0.013 U	0.021	0.0072 J	0.012 U		0.016 U	0.013 U
Benzene	0.06	4.8	0.06	0.00023 J	0.00056 U	0.00058 U	0.00064 U	0.00058 U	0.00064 U	0.00088 U	0.0007 U		0.00054	0.00081 U	0.00064 U
Carbon Disulfide	0.00	4.0 ~	0.00	0.011 UJ	0.011 UJ	0.00000 UJ	0.013 UJ	0.012 UJ		0.018 UJ	0.014 UJ		0.01 UJ	0.016 UJ	0.013 UJ
Chloroform	0.37	49	0.37	0.0017 U	0.00016 J	0.0012 00	0.0019 U	0.0012 U		0.0026 U	0.0021 U		0.0015 U	0.0024 U	0.0019 U
Cis-1,2-Dichloroethene	0.25	100	0.37	0.0017 U	0.0010 J	0.0018 U	0.0013 U	0.0018 U		0.0020 U	0.0021 U			0.0024 0 0.0016 U	0.0013 U
Cymene	~	~	~	0.00021 J	0.0011 U	0.0012 U	0.0013 UJ	0.0012 U	0.0013 U	0.0018 U	0.0014 U	0.0012 U	0.001 U	0.0016 U	0.0013 U
Ethylbenzene	1	~ 41	1	0.00021 J	0.0011 UJ	0.0012 UJ	0.0013 UJ	0.0012 UJ		0.0018 UJ	0.0014 UJ		0.00075 J	0.0016 UJ	0.0013 UJ
M,P-Xylene	~	~	~	0.0023 U	0.0022 U	0.0012 03	0.0013 UJ	0.0012 03 0.0023 U		0.0018 U	0.0014 03 0.0028 U		0.0036	0.0032 U	0.0013 0J
Methyl Ethyl Ketone (2-Butanone)	0.12	~ 100	0.12	0.0023 0	0.0022 0 0.011 U	0.0023 U	0.013 U	0.012 U	0.013 U	0.0035 U	0.0028 U	0.012 U	0.0030 0.01 U	0.016 U	0.013 U
Naphthalene	12	100	12	0.0046 U	0.026	0.0047 U	0.0051 UJ	0.00091 J	0.0052 U	0.018 U	0.0027 J	0.0048 U	0.004 U	0.0016 J	0.0051 U
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.0011 U	0.020 0.0011 U	0.0012 U	0.0013 U	0.0012 U	0.0013 U	0.0018 U	0.0014 U	0.0012 U	0.0015	0.0016 U	0.0013 U
Tetrachloroethene (PCE)	1.3	19	1.3	0.0018	0.00054 J	0.00058 U	0.00064 U	0.00058 U	0.00064 U	0.00088 U	0.0007 U		0.0005 U	0.00081 U	0.00064 U
Toluene	0.7	100	0.7	0.0010 UJ	0.0011 UJ	0.00030 UJ	0.0013 UJ	0.0012 UJ		0.0018 UJ	0.0014 UJ		0.001 UJ		0.0013 UJ
Total 1,2-Dichloroethene (Cis and Trans)	0.7	100	0.7	0.0011 U	0.0011 U	0.0012 U	0.0013 U	0.0012 U	0.0013 U	0.00071 J	0.00045 J	0.0012 U	0.001 U	0.0016 U	0.0004 J
Total Xylenes	0.26	100	1.6	0.0011 U	0.0011 U	0.0012 U	0.0013 U	0.0012 U	0.0013 U	0.0018 U	0.0014 U	0.0012 U	0.0051	0.0016 U	0.0013 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0017 U	0.0017 U	0.0012 U	0.0019 U	0.0012 U	0.0019 U	0.00071 J	0.00045 J	0.0012 U	0.0015 U	0.0024 U	0.0004 J
Trichloroethene (TCE)	0.47	21	0.47	0.00057 U	0.00056 U	0.00058 U	0.00064 U	0.00058 U	0.00064 U	0.00088 U	0.0007 U	0.0006 U	0.0005 U	0.00081 U	0.00064 U
Semivolatile Organic Compounds (mg/kg)	0.47	21	0.47	0.00037 0	0.00030 0	0.00030 0	0.00004 0	0.000000 0	0.00004 0	0.00000 0	0.0007 0	0.0000 0	0.0005 0	0.00001 0	0.00004 0
2-Methylnaphthalene	~	~	~	3.3 U	0.49 J	0.24 U	2.1 U	0.23 J	0.026 J	2 11	0.27 J	0.22 U	1.1 U	0.026 J	0.24 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.33	3.9 U	2.5 U	0.29 U	2.5 U	1 U	0.28 U	2.4 U	2.5 U	0.27 U	1.3 U	0.26 U	0.24 U
Acenaphthene	20	100	98	2.2 U	2.6	0.16 U	1.4 U	0.6	0.1 J	1.3 U	1.9	0.15 U	0.18 J	0.063 J	0.16 U
Acenaphthylene	100	100	107	2.2 U	0.5 J	0.16 U	1.4 U	0.93	0.093 J	1.3 U	1.8	0.15 U	0.48 J	0.095 J	0.16 U
Anthracene	100	100	1000	1.6 U	7.2	0.12 U	1 U	1.7	0.35	1 U	4.7	0.11 U	0.56	0.2	0.12 U
Benzo(a)Anthracene	1	1	1	0.31 J	22	0.12 U	0.97 J	6.7	1.2	0.32 J	18	0.11 U	<u>2.1</u>	0.65	0.12 U
Benzo(a)Pyrene	1	1	22	2.2 U	20	0.16 U	1 J	6.7	1	1.3 U	17	0.15 U	2.1	0.59	0.16 U
Benzo(b)Fluoranthene	1	1	1.7	1.6 U	28	0.12 U	1.4	9.3	1.2	0.38 J	22	0.11 U	<u>2.5</u>	0.78	0.12 U
Benzo(g,h,i)Perylene	100	100	1000	2.2 U	13	0.16 U	0.72 J	4.5	0.54	0.22 J	10	0.15 U	1.2	0.38	0.16 U
Benzo(k)Fluoranthene	0.8	3.9	1.7	1.6 U	10	0.12 U	0.44 J	2.7	0.4	1 U	7.6	0.11 U	1.1	0.29	0.12 U
Benzyl Butyl Phthalate	~	~	~	2.7 U	1.8 U	0.2 U	1.8 U	0.71 U	0.2 U	1.7 U	1.8 U	0.19 U	7.1	0.18 U	0.2 U
Biphenyl (Diphenyl)	~	~	~	6.2 U	4 U	0.45 U	4 U	1.6 U	0.45 U	3.8 U	4 U	0.42 U	2 U	0.41 U	0.45 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	2.7 U	1.8 U	0.2 U	1.8 U	0.71 U	0.2 U	1.7 U	1.8 U	0.19 U	74	0.17 J	0.2 U
Carbazole	~	~	~	2.7 U	4.7	0.2 U	1.8 U	0.99	0.12 J	1.7 U	1.6 J	0.19 U	0.3 J	0.098 J	0.2 U
Chrysene	1	3.9	1	0.33 J	<u>21</u>	0.12 U	0.91 J	<u>6.9</u>	1.2	0.4 J	15	0.11 U	2.2	0.63	0.12 U
Dibenz(a,h)Anthracene	0.33	0.33	1000	1.6 U	3.5	0.12 U	1 U	1.1	0.13	1 U	2.2	0.11 U	0.33 J	0.087 J	0.12 U
Dibenzofuran	7	59	210	2.7 U	1.8	0.2 U	1.8 U	0.49 J	0.072 J	1.7 U	0.74 J	0.19 U	0.11 J	0.042 J	0.2 U
Di-N-Butyl Phthalate	~	~	~	2.7 U	1.8 U	0.2 U	1.8 U	0.71 U	0.2 U	1.7 U	1.8 U	0.19 U	0.89 U	0.18 U	0.2 U
Fluoranthene	100	100	1000	0.59 J	41	0.12 U	1.4	14	2.1	0.6 J	34	0.11 U	4.4	1.3	0.12 U
Fluorene	30	100	386	2.7 U	2.9	0.2 U	1.8 U	0.6 J	0.13 J	1.7 U	1.6 J	0.19 U	0.2 J	0.07 J	0.2 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2	2.2 U	<u>14</u>	0.16 U	0.68 J	4.8	0.57	1.3 U	<u>11</u>	0.15 U	1.3	0.39	0.16 U
Naphthalene	12	100	12	2.7 U	1.1 J	0.2 U	1.8 U	0.65 J	0.052 J	1.7 U	0.72 J	0.19 U	0.11 J	0.047 J	0.2 U
Pentachlorophenol	0.8	6.7	0.8	2.2 U	1.4 U	0.16 U	1.4 U	0.57 U	0.16 U	1.3 U	1.4 U	0.15 U	0.71 U	0.14 U	0.16 U
Phenanthrene	100	100	1000	0.38 J	30	0.12 U	0.44 J	9	1.3	0.3 J	17	0.11 U	2.8	0.87	0.12 U
Phenol	0.33	100	0.33	2.7 U	1.8 U	0.2 U	1.8 U	0.71 U	0.2 U	1.7 U	1.8 U	0.19 U	0.89 U	0.18 U	0.2 U
Pyrene	100	100	1000	0.61 J	35	0.12 U	1.3	12	2.4	0.53 J	28	0.11 U	4	1.2	0.12 U
	.00			0.07	+	0.12		+ ·~	+		+		4 · ·		02

Location	NYSDEC Part	NYSDEC Part	NYSDEC Part	SB-17	SB-17	SB-17	SB-18	SB-18	SB-18	SB-19	SB-19	SB-19	SB-20	SB-20	SB-20
Sample ID	375	375 Restricted		SB-17_0-2_020520	SB-17_5-7_020520	SB-17_9-11_020520			SB-18_10-12_020520		SB-19_2-4_020520	SB-19_6-8_020520		SB-20_2-4_020520	SB-20_6-8_020520
Laboratory ID	Unrestricted	Use Residentia	of	L2005543-10	L2005543-11	L2005543-12	L2005543-07	L2005543-08	L2005543-09	L2005543-04	L2005543-05	L2005543-06	L2005543-01	L2005543-02	L2005543-03
Sample Date	Use SCOs	SCOs	Groundwater	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020
Sample Depth (feet bgs)			Croananato	0-2	5-7	9-11	0-2	2-4	10-12	0-2	2-4	6-8	0-2	2-4	6-8
Pesticides (mg/kg)															
4,4'-DDD	0.0033	13	14	0.00166 U	0.00166 U	0.00187 U	0.016 U	0.0035 J	0.00183 U	0.0155 U	0.00847 U	0.0018 U	0.00195	0.00945	0.00184 U
4,4'-DDE	0.0033	8.9	17	0.00227 J	0.00166 U	0.00187 U	0.016 U	0.0127 J	0.00183 U	0.0155 U	0.0183	0.0018 U	0.00266 J	0.0252	0.00184 U
4,4'-DDT	0.0033	7.9	136	0.00312 U	0.00312 U	0.00351 U	0.03 U	0.0152 J	0.00343 U	0.0291 U	0.0382	0.00337 U	0.0159	0.0294	0.00345 U
Alpha Chlordane	0.094	4.2	2.9	0.0106 J	0.00208 U	0.00234 U	0.02 U	0.00211 U		0.0194 U	0.0106 U	0.00224 U		0.0129 J	0.0023 U
Chlordane (alpha and gamma)	~	~	~	0.158	0.0139 U	0.0156 U	0.133 U	0.0141 U		0.129 U	0.0706 U	0.015 U	0.0482	0.104	0.0153 U
Dieldrin	0.005	0.2	0.1	0.00104 U	0.00104 U	0.00117 U	0.00999 U	0.00105 U	0.00114 U	0.0097 U	0.00529 U	0.00112 U	0.00198 J	0.00106 U	0.00115 U
Gamma Chlordane	~	~	~	0.0165 J	0.00208 U	0.00234 U	0.02 U	0.00211 U		0.0194 U	0.00331 J	0.00224 U	0.00432 J	0.0118 J	0.0023 U
Heptachlor	0.042	2.1	0.38	0.000832 U	0.000833 U	0.000936 U	0.00799 U	0.000844 U	0.000914 U	0.00776 U	0.00423 U	0.000898 U	0.000844 U	0.000555 J	0.000919 U
Heptachlor Epoxide	~	~	~	0.00312 U	0.00312 U	0.00351 U	0.03 U	0.00316 U		0.0291 U	0.0159 U	0.00337 U	0.00128 J	0.00319 U	0.00345 U
Toxaphene	~	~	~	0.0312 U	0.0312 U	0.0351 U	0.3 U	0.0316 U		0.291 U	0.159 U	0.0337 U	0.0316 U	0.0319 U	0.0345 U
Herbicides (mg/kg)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)															
PCB-1242 (Aroclor 1242)	~	~	~	0.0354 U	0.0342 U	0.0394 U	0.0344 U	0.0361 U		0.032 U	0.0344 U	0.0359 U	0.0354 U	0.0352 U	0.0392 U
PCB-1254 (Aroclor 1254)	~	~	~	0.0352 J	0.0342 U	0.0394 U	0.0344 U	0.00901 J	0.0395 U	0.032 U	0.0166 J	0.0359 U	0.0416	0.0352 U	0.0392 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0354 U	0.0129 J	0.0394 U	0.011 J	0.0361 U		0.032 U	0.0175 J	0.0359 U	0.0448	0.0352 U	0.0392 U
PCB-1268 (Aroclor 1268)	~	~	~	0.0354 U	0.0342 U	0.0394 U	0.0344 U	0.0361 U		0.032 U	0.0344 U	0.0359 U	0.0354 U	0.0352 U	0.0392 U
Total PCBs	0.1	1	3.2	0.0352 J	0.0129 J	0.0394 U	0.011 J	0.00901 J	0.0395 U	0.032 U	0.0341 J	0.0359 U	0.0864	0.0352 U	0.0392 U
Inorganics (mg/kg)															
Aluminum	~	~	~	3,730	2,360	410	2,180	3,630	654	901	7,780	378	4,970	2,950	493
Antimony	~	~	~	0.569 J	0.64 J	4.68 U	0.758 J	1.17 J	4.82 U	0.654 J	1.71 J	4.4 U		1.29 J	4.65 U
Arsenic	13	16	16	4.1	2.22	0.936 U	2.29	4.29	0.801 J	2.42	5.01	0.326 J	5.43 J	2.56	0.53 J
Barium	350	400	820	29	71.8	2.16	18.4	203	10.2	13.1	304	3.32	198 J	113	5.8
Beryllium	7.2	72	47	0.175 J	0.168 J	0.468 U	0.112 J	0.222 J	0.039 J	0.1 J	0.306 J	0.44 U	0.279 J	0.144 J	0.465 U
Cadmium	2.5	4.3	7.5	0.166 J	0.345 J	0.936 U	0.192 J	0.393 J	0.106 J	0.108 J	0.719 J	0.88 U	0.671 J	1.03	0.158 J
Calcium	~	~	~	44,700	17,600	239	66,300	24,500	992	103,000	51,000	248	38,700	22,100	514
Chromium, Hexavalent	1	110	19	0.881 U	0.864 U	0.983 U	0.848 U	0.882 U		0.815 U	0.234 J	0.917 U	0.879 U	0.887 U	0.957 U
Chromium, Total	~	~	~	12.9	14.1	2.12 U	4.56	10.6	3.3 U	3.61 U	17.3	3.45 U	14.3	7.53	4.47
Chromium, Trivalent	~	~	~	13	14	2.1	4.6	11	3.3	3.6	17 J	3.4	14	7.5	4.5
Cobalt	~	~	~	3.09	2.03	0.384 J	3.69	2.54	0.694 J	1.95	2.53	0.405 J	5.17	2.47	0.577 J
Copper	50	270	1720	16.5	22	0.477 J	43	55.7	14.3	18.1	51.5	0.598 J	37	40.8	17
Cyanide	27	27	40	1 U	-	1.1 U	0.39 J	0.44 J	1.2 U	0.99 UJ	0.38 J	1 U	1 U	1 U	1.1 U
Iron	~	~	~	8,240	6,350	818	8,620	8,830	1,680	4,920	12,300	960	15,100 J	10,900	1,450
Lead	63	400	450	23.5	149	1 J	29.4	443	47.5	20.8	209	1.3 J	325 J	366	136
Magnesium	~	~	~	15,200	3,960	187	31,700	1,810	377	51,700	12,000	180	14,300	1,460	178
Manganese	1600	2000	2000	127	101	8.66	106	98.6	14.7	123	146	10.3	195 J	126	18.2
Mercury	0.18	0.81	0.73	0.086 U	0.127	0.086 U	0.075 U	0.364	0.106	0.066 U	0.112	0.078 U	0.54	0.443	0.095 U
Nickel	30	310	130	8.59	6.44	2.34 U	4.8	8.11	2.41 U	4.5	15.4	2.2 U	14.8	8.81	2.33 U
Potassium	~	~	~	657	288	89.8 J	397	592	116 J	257	521	80 J	895	496	94.7 J
Selenium	3.9	180	4	1.75 U	1.68 U	1.87 U	0.311 J	0.478 J	1.93 U	0.639 J	0.471 J	1.76 U		0.391 J	1.86 U
Silver	2	180	8.3	0.875 U	0.842 U	0.936 U	0.798 U	0.854 U	0.000 0	0.77 U	0.355 J	0.88 U		1.63	0.419 J
Sodium	~	~	~	259	186	187 U	160 U	177	193 U	154 U	657	176 U	247	170 U	186 U
Vanadium	~	~	~	15.3	11.6	2.09	28.2	11	3.73	21.6	20.3	2.19	19.4	8.04	4.96
Zinc	109	10000	2480	33.6	113	19.9	37.9	213	54.4	20.9	932	9.7	251 J	497	33.2
General Chemistry (%)															
Solids, Percent	~	~	~	90.8	92.6	81.4	94.3	90.7	82.8	98.2	93.8	87.2	91	90.2	83.6
Total Solids	~	~	~	90.8	92.6	81.4	94.3	90.7	82.8	98.2	93.8	87.2	91	90.2	83.6

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375.

2. Criterion comparisons for 3- & 4-methylphenol (m&p cresol) are provided for reference. Promulgated SCOs are for 3-methylphenol (m-cresol) and 4-methylphenol (p-cresol).

3. Only detected analytes are shown in the table.

4. Detected analytical results above Unrestricted Use SCOs are bolded.

5. Detected analytical results above Restricted Use Residential SCOs are shaded.

6. Detected analytical results above Protection of Groundwater are underlined.

7. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.

8. Sample SODUP01_020620, SODUP02_021020, and SODUP03_021120 are duplicate samples of SB-1_6-8_020620, SB-15_10-12_021020, and SB-6_9-11_021120, respectively. 9. \sim = Regulatory limit for this analyte does not exist

10. bgs = below grade surface

11. % = percent

12. ND = Not detected

Qualifiers:

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise. U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 5 Soil Summary Report Soil Sample Emerging Contaminant Analytical Results

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalky! Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-1 SB-1_0-2_02062 L2005543-16 2/6/2020 0-2	0	SB-1 SB-1_2-4_0206 L2005543-17 2/6/2020 2-4		SB-1 SB-1_6-8_0206 L2005543-18 2/6/2020 6-8		SB-1 SODUP01_0200 L2005543-28 2/6/2020 6-8		SB-2 SB-2_0-2_021 L2006176-1 2/11/2020 0-2	16	SB-2 SB-2_6-8_0211 L2006176-17 2/11/2020 6-8		SB-3 SB-3_0-2_0207 L2005791-0 2/7/2020 0-2		SB-3 SB-3_6-8_0207 L2005791-02 2/7/2020 6-8	-	SB-3 SB-3_9-11_02072 L2005791-03 2/7/2020 9-11	
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	~	~	0.105	J	0.116	J	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
N-methyl perfluorooctane- sulfonamidoacetic Acid (NMeFOSAA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorobutanoic acid (PFBA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorodecanoic Acid (PFDA)	~	~	~	0.994	U	0.163	J	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorododecanoic Acid (PFDoA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluoroheptanoic acid (PFHpA)	~	~	~	0.994	U	0.064	J	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	UJ	1.1	UJ	1.15	UJ
Perfluorohexanoic Acid (PFHxA)	~	~	~	0.135	J	0.301	J	0.053	J	0.058	J	0.063	J	0.067	J	0.067	J	1.1	U	1.15	U
Perfluorononanoic Acid (PFNA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	0.168	J	1	J	0.239	J	0.306	J	0.361	J	1.03	J	1.16	J	0.208	J	1.15	U
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	0.05	J	0.086	J	0.994	U	1.07	U	1.04	U	0.116	J	0.078	J	0.049	J	1.15	U
Perfluoropentanoic Acid (PFPeA)	~	~	~	0.116	J	0.349	J	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	0.994	U	0.107	J	0.994	U	1.07	U	1.04	U	1.19	U	0.064	J	1.1	U	1.15	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	0.994	U	1.03	U	0.994	U	1.07	U	1.04	U	1.19	U	1.04	U	1.1	U	1.15	U
Total PFOA and PFOS	~	~	~	0.218	J	1.09	J	0.239	J	0.306	J	0.361	J	1.15	J	1.24	J	0.257	J	1.15	U

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalkyl Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-4 SB-4_0-2_020620 L20055543-19 2/6/2020 0-2		SB-4 SB-4_6-8_020620 L2005543-20 2/6/2020 6-8		SB-4 SB-4_10-12_02062 L2005543-21 2/6/2020 10-12	20	SB-5 SB-5_0-2_0206 L2005543-13 2/6/2020 0-2	20	SB-5 SB-5_5-7_0206 L2005543-14 2/6/2020 5-7		SB-5 SB-5_10-12_0206 L2005543-15 2/6/2020 10-12		SB-6 SB-6_0-2_021 L2006176-0 2/11/2020 0-2	1	SB-6 SB-6_5-7_0211 L2006176-02 2/11/2020 5-7	-	SB-6 SB-6_9-11_021120 L2006176-03 2/11/2020 9-11	D
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
N-methyl perfluorooctane- sulfonamidoacetic Acid (NMeFOSAA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorobutanoic acid (PFBA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorodecanoic Acid (PFDA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorododecanoic Acid (PFDoA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluoroheptanoic acid (PFHpA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	UJ	1.05	UJ	1.12	U	1.07	UJ	1.08	UJ	1.08	UJ
Perfluorohexanoic Acid (PFHxA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	0.092	J	1.08	U	1.08	U
Perfluorononanoic Acid (PFNA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	0.317	J	1.08	U	1.12	U	0.432	J	0.18	J	1.12	U	0.399	J	0.415	J	1.08	U
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	0.062	J	1.08	U	1.12	U	0.058	J	0.077	J	1.12	U	0.094	J	0.056	J	1.08	U
Perfluoropentanoic Acid (PFPeA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	0.074	J	1.08	U	1.08	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	0.964	U	1.08	U	1.12	U	0.974	U	1.05	U	1.12	U	1.07	U	1.08	U	1.08	U
Total PFOA and PFOS	~	~	~	0.379	J	1.08	U	1.12	U	0.49	J	0.257	J	1.12	U	0.493	J	0.471	J	1.08	U

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalkyl Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	Restricted Use Residential	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-6 SODUP03_021120 L2006176-20 2/11/2020 9-11	SB-7 SB-7_0-2_020720 L2005791-04 2/7/2020 0-2	SB-7 SB-7_5-7_020720 L2005791-05 2/7/2020 5-7	SB-7 SB-7_9-11_020720 L2005791-06 2/7/2020 9-11	SB-8 SB-8_0-2_020620 L2005543-22 2/6/2020 0-2	SB-8 SB-8_5-7_020620 L2005543-23 2/6/2020 5-7	SB-8 SB-8_10-12_020620 L2005543-24 2/6/2020 10-12	SB-9 SB-9_0-2_021120 L2006176-13 2/11/2020 0-2	SB-9 SB-9_6-8_021120 L2006176-14 2/11/2020 6-8
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~			1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1
N-methyl perfluorooctane- sulfonamidoacetic Acid (NEtroSAA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorobutanoic acid (PFBA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorodecanoic Acid (PFDA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorododecanoic Acid (PFDoA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluoroheptanesulfonic Acid (PFD0A)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluoroheptanoic acid (PFHpA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	1.22 U	1.11 UJ	0.98 UJ	1.13 UJ	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorohexanoic Acid (PFHxA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	0.055 J	1.04 U	1.18 U	0.988 U	1.1 U
Perfluorononanoic Acid (PFNA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorooctanesulfonamide (FOSA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorooctanesulfonic Acid (PFOS)	~ 0.88	~ 0 0	~ 3.7	1.22 U	0.24 J	0.98 0 0.253 J	1.13 U	0.214 J	0.376 J	1.18 U	0.988 U 0.426 J	1.1 0
Perfluorooctanoic Acid (PFOA)	0.66	0.0	3.7 1.1	1.22 U	1.11 U	0.253 J	1.13 U	1.02 U	0.044 J	1.18 U	0.988 U	0.046 J
Perfluoropentanoic Acid (PEPeA)	0.00	0.0	1.1	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1
Perfluorotetradecanoic Acid (PFTA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
Perfluorotridecanoic Acid (PTrDA)	~	~	~	1.22 U	1.11 U	0.98 U	1.13 U	1.02 U	1.04 U	1.18 U	0.988 U	1.1 0
	~	~	~		-						0.988 U	1.1 U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	1.22 U 1.22 U	1.11 U	0.98 U	1.13 U 1.13 U	1.02 U 1.02 U	1.04 U 1.04 U	1.18 U 1.18 U	0.988 U	1.1 U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~		1.11 U	0.98 U						1.1 U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS) Total PFOA and PFOS	~	~	~	1.22 U 1.22 U	1.11 U 0.24 J	0.98 U 0.324 J	1.13 U 1.13 U	1.02 U 0.214 J	1.04 U 0.42 J	1.18 U 1.18 U	0.988 U 0.426 J	1.1 U 0.046 J
TOTAL FLOA AND FLOS	~	~	~	1.ZZ U	0.24 J	0.324 J	1.13 U	0.214 J	0.4Z J	1.16 U	0.420 J	0.040 J

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalkyl Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-9 SB-9_9-11_021120 L2006176-15 2/11/2020 9-11	SB-10 SB-10_0-2_020620 L2005543-25 2/6/2020 0-2	SB-10 SB-10_5-7_020620 L2005543-26 2/6/2020 5-7	SI	SB-10 B-10_10-12_02062 L2005543-27 2/6/2020 10-12	:0	SB-11 SB-11_0-2_021120 L2006176-07 2/11/2020 0-2		SB-11 B-11_6-8_021120 L2006176-08 2/11/2020 6-8	SB-11_ L20 2/	SB-11 9-11_0211 06176-09 11/2020 9-11	20	SB-12 SB-12_0-2_0207 L2005791-07 2/7/2020 0-2	20	SB-12 SB-12_5-7_02072 L2005791-08 2/7/2020 5-7	20
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	~	~	1.15 L	0.982 L	1 1		0.105	1	0.966 U		1.18 U	1	.16	11	1.06	11	0.936	
N-methyl perfluorooctane- sulfonamidoacetic Acid (NEtroSAA)	~	ĩ	~	1.15 U				1.16	1	0.966 U		1.18 U		.16		1.06		0.936	
Perfluorobutanesulfonic Acid (PFBS)	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.15 U				1.16		0.966 U		1.18 U		.16	11	1.06	11	0.936	11
Perfluorobutanoic acid (PFBA)	~	~	~	1.15 U	0.002			1.16	Ú	0.966 U		1.18 U		.16	Ű	1.06	U U	0.936	U
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	1.15 U				1.16	U U	0.966 U		1.18 U		.16	Ŭ	1.06	Ŭ	0.936	
Perfluorodecanoic Acid (PEDA)	~	~	~	1.15 U	0.002			1.16	Ú	0.966 U		1.18 U		.16	Ű	0.132	J	0.936	U
Perfluorododecanoic Acid (PFDoA)	~	~	~	1.15 L		1 1	Ŭ	1.16	Ŭ	0.966 U		1.18 U		.16	Ŭ	0.086	J	0.936	Ŭ
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	1.15 U		1 1	Ŭ	1.16	Ŭ	0.966 U		1.18 U		.16	Ŭ	1.06	Ŭ	0.936	Ŭ
Perfluoroheptanoic acid (PFHpA)	~	~	~	1.15 U		1 1	U	1.16	Ŭ	0.966 U		1.18 U		.16	Ŭ	1.06	Ŭ	0.936	Ŭ
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	1.15 L		1 1	Ŭ	1.16	U	0.966 UJ	J	1.18 U.	J 1	.16	UJ	1.06	UJ	0.936	UJ
Perfluorohexanoic Acid (PFHxA)	~	~	~	1.15 L	0.065	1 U	U	1.16	U	0.078 J	-	1.18 U	1	.16	U	0.064	J	0.936	U
Perfluorononanoic Acid (PFNA)	~	~	~	1.15 L	0.982 L	I 1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	1.15 L	0.982 L	I 1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	1.15 L	0.982 L	0.196 J	J	1.16	U	0.781 J		1.18 U	1	.16	U	1.06		0.16	J
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	1.15 L	0.982 L	I 1 U	U	1.16	U	0.064 J		1.18 U	1	.16	U	0.089	J	0.084	J
Perfluoropentanoic Acid (PFPeA)	~	~	~	1.15 L	0.982 L	1 U	U	1.16	U	0.047 J		1.18 U	1	.16	U	1.06	U	0.936	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	1.15 L	0.982 L	l 1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	1.15 L	0.982 L	1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	1.15 L	0.982 L	l 1 U	U	1.16	U	0.095 J		1.18 U	1	.16	U	0.104	J	0.936	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	1.15 L	0.982 L	l 1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	1.15 L	0.982 L	I 1 U	U	1.16	U	0.966 U		1.18 U	1	.16	U	1.06	U	0.936	U
Total PFOA and PFOS	~	~	~	1.15 L	0.982 L	0.196 J	J	1.16	U	0.845 J		1.18 U	1	.16	U	1.15	J	0.244	J

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalkyl Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-12 SB-12_10-12_020720 L2005791-09 2/7/2020 10-12	SB-13 SB-13_0-2_021020 L2005961-01 2/10/2020 0-2	SB-13 SB-13_4-6_021020 L2005961-02 2/10/2020 4-6		SB-13 -13_9-11_02102 L2005961-03 2/10/2020 9-11	20	SB-14 SB-14_0-2_02112 L2006176-10 2/11/2020 0-2	20	SB-14 SB-14_6-8_02112 L2006176-11 2/11/2020 6-8	20	SB-14 SB-14_9-11_021 L2006176-12 2/11/2020 9-11		SB-15 SB-15_0-2_0210; L2005961-04 2/10/2020 0-2	20	SB-15 SB-15_6-8_0210; L2005961-05 2/10/2020 6-8	20
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	~	~	1.09 L	0.105 J	1 1	1	1.11	11	0.99	11	1.11	11	1 1		0.959	11	1.06	
N-methyl perfluorooctane- sulfonamidoacetic Acid (NET OSAA)	~	ĩ	ĩ	1.09 L	0.999 U	1 1		1.11		0.99		1.11		1.1		0.959		1.00	
Perfluorobutanesulfonic Acid (PFBS)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.09 L		1 1	1	1.11	11	0.99	11	1.11	11	1.1		0.959		1.00	11
Perfluorobutanoic acid (PFBA)	~	~	~	1.09 L	0.000 0	1 1	1	1.11	U U	0.99		1.11	Ŭ.	1.1		0.096	1	1.06	11
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	1.00		1 1	1	1.11	Ŭ	0.99	U U	1.11	Ŭ	1.1		0.959	Ŭ	1.06	
Perfluorodecanoic Acid (PFDA)	~	~	~	1.00	0.000 0	1 1	1	1.11	U U	0.99	U U	1.11	U U	1.1	U U	0.959	U U	1.06	U
Perfluorododecanoic Acid (PFDoA)	~	~	~	1.09 L		1 U	J	1.11	Ŭ	0.99	Ŭ	1.11	Ŭ	1.1	Ŭ	0.959	Ŭ	1.06	Ŭ
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	1.09 L		1 U	_	1.11	Ū	0.99	Ū	1.11	Ū	1.1	Ū	0.959	Ū	1.06	Ū
Perfluoroheptanoic acid (PFHpA)	~	~	~	1.09 L		1 U	_ _	1.11	Ū	0.99	Ū	1.11	Ū	1.1	Ŭ	0.959	Ŭ	1.06	Ŭ
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	1.09 U		1 U	J	1.11	U	0.99	UJ	1.11	U	1.1	U	0.959	U	1.06	U
Perfluorohexanoic Acid (PFHxA)	~	~	~	1.09 L		1 U	J	1.11	U	0.99	U	0.06	J	1.1	U	0.959	U	1.06	U
Perfluorononanoic Acid (PFNA)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	1.09 L	0.865 J	0.564 J	J	1.11	U	0.558	J	0.368	J	1.1	U	0.346	J	1.06	U
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	0.132	J
Perfluoropentanoic Acid (PFPeA)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	1.09 L	0.126 J	1 U	J	1.11	U	0.083	J	1.11	U	1.1	U	0.959	U	1.06	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	1.09 L	0.999 U	1 U	J	1.11	U	0.99	U	1.11	U	1.1	U	0.959	U	1.06	U
Total PFOA and PFOS	~	~	~	1.09 L	0.865 J	0.564 J	J	1.11	U	0.558	J	0.368	J	1.1	U	0.346	J	0.132	J

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalkyl Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-15 SB-15_10-12_021020 L2005961-06 2/10/2020 10-12	SB-15 SODUP02_021020 L2005961-09 2/10/2020 10-12	0 SI	SB-16 B-16_0-2_021120 L2006176-04 2/11/2020 0-2	0	SB-16 SB-16_5-7_0211: L2006176-05 2/11/2020 5-7	20	SB-16 SB-16_9-11_021 L2006176-00 2/11/2020 9-11		SB-17 SB-17_0-2_02052 L2005543-10 2/5/2020 0-2	20	SB-17 SB-17_5-7_020 L2005543-11 2/5/2020 5-7		SB-17 SB-17_9-11_02(L2005543-12 2/5/2020 9-11		SB-18 SB-18_0-2_020 L2005543-0 2/5/2020 0-2	07
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	r	1	11	1.04		1.01	11	0.96		1.24	11	0.088		1.02		1.11	11	1.02	· · · · · · · · · · · · · · · · · · ·
N-methyl perfluorooctane- sulfonamidoacetic Acid (NEtroSAA)	~	~	~	1.1 U	1.04	0		0	0.96	0	1.24	0	0.997	J	1.02	0	1.11	0	1.02	0
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	1.1 U	1.04	U	1.01 1.01	0	0.96	0	1.24	0	0.997	UJ	1.02	U	1.11	0	1.02	0
Perfluorobutanoic acid (PFBS)	~	~	~	1.1 U	1.04	U	1.01	0		0	1.24	0	0.997	0	1.02	U	1.11	0	1.02 NA	0
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	1.1 U	-	0	1.01	0	0.96	0	1.24	0	0.997	0	1.02	0		U	1.02	
	~	~	~	1.1 U	1.04	U		U	0.96	U		0		0		U	1.11	0		0
Perfluorodecanoic Acid (PFDA)	~	~	~	1.1 U	1.04	U	0.082	J	0.96	U	1.24 1.24	0	0.997 0.997	0	0.089	J	1.11	0	1.02	0
Perfluorododecanoic Acid (PFDoA)	~	~	~	1.1 U	1.04	0	1.01	0	0.96	0		0		0	1.02	U	1.11	0	1.02	0
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Perfluoroheptanoic acid (PFHpA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	0.056	J	1.11	U	1.02	U
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	1.1 U	1.04	U	1.01	UJ	0.96	UJ	1.24	UJ	0.997	UJ	1.02	UJ	1.11	UJ	1.02	U
Perfluorohexanoic Acid (PFHxA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.068	J	0.101	J	1.11	U	0.061	J
Perfluorononanoic Acid (PFNA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	1.1 U	1.04	U	1.01	U	0.15	J	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	1.1 U	1.04	U	0.648	J	0.69	J	1.24	U	0.201	J	1.05		1.11	U	0.146	J
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	1.1 U	01127	J	1.01	U	0.152	J	1.24	U	0.164	J	0.407	J	1.11	U	1.02	U
Perfluoropentanoic Acid (PFPeA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	0.058	J	1.11	U	1.02	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	1.1 U	1.04	U	0.069	J	0.96	U	1.24	U	0.997	U	0.066	J	1.11	U	0.058	J
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	1.1 U	1.04	U	1.01	U	0.96	U	1.24	U	0.997	U	1.02	U	1.11	U	1.02	U
Total PFOA and PFOS	~	~	~	1.1 U	0.127	J	0.648	J	0.842	J	1.24	U	0.365	J	1.46	J	1.11	U	0.146	J

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Per and Polyfluoroalky! Substances (ppb)	NYSDEC Part 375 Unrestricted Use Guidance Values	NYSDEC Part 375 Restricted Use Residential Guidance Values	NYSDEC Part 375 Protection of Groundwater Guidance Values	SB-18 SB-18_2-4_020520 L2005543-08 2/5/2020 2-4	D	SB-18 SB-18_10-12_02 L2005543-0 2/5/2020 10-12		SB-19 SB-19_0-2_02052 L2005543-04 2/5/2020 0-2	20	SB-19 SB-19_2-4_020520 L2005543-05 2/5/2020 2-4	SB-19 SB-19_6-8_020524 L2005543-06 2/5/2020 6-8	0	SB-20 SB-20_0-2_020520 L2005543-01 2/5/2020 0-2	D	SB-20 SB-20_2-4_020520 L2005543-02 2/5/2020 2-4	SB SB-20_6- L2005 2/5/ 6	8_020520 543-03 2020
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	0.149 J	1.13	U
N-methyl perfluorooctane- sulfonamidoacetic Acid (NMeFOSAA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorobutanoic acid (PFBA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorodecanesulfonic Acid (PFDS)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorodecanoic Acid (PFDA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	0.111	J	1.05 U	1.13	U
Perfluorododecanoic Acid (PFDoA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluoroheptanesulfonic Acid (PFHpS)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluoroheptanoic acid (PFHpA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	0.052 J	1.13	U
Perfluorohexanesulfonic Acid (PFHxS)	~	~	~	0.974	UJ	1.16	UJ	0.934	UJ	1.02 U.	1.09	UJ	1.03	UJ	0.066 J	1.13	UJ
Perfluorohexanoic Acid (PFHxA)	~	~	~	0.053	J	1.16	U	0.934	U	0.075 J	1.09	U	0.064	J	0.062 J	1.13	U
Perfluorononanoic Acid (PFNA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorooctanesulfonamide (FOSA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	8.8	3.7	0.486	J	1.16	U	0.246	J	0.98 J	1.09	U	1.08		2.66	0.216	6 J
Perfluorooctanoic Acid (PFOA)	0.66	6.6	1.1	0.162	J	1.16	U	0.06	J	0.322 J	1.09	U	0.07	J	0.679 J	0.098	3 J
Perfluoropentanoic Acid (PFPeA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorotetradecanoic Acid (PFTA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluorotridecanoic Acid (PFTrDA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Perfluoroundecanoic Acid (PFUnA)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	0.058	J	1.05 U	1.13	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	~	~	~	0.974	U	1.16	U	0.934	U	1.02 U	1.09	U	1.03	U	1.05 U	1.13	U
Total PFOA and PFOS	~	~	~	0.648	J	1.16	U	0.306	J	1.3 J	1.09	U	1.15	J	3.34 J	0.314	ł J

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Part 375 Remedial Programs Guidelines for Sampling and Analysis of Per- and Polyfluoroalkyl Substances (PFAS) Unrestricted Use, Restricted Use Residential and Protection of Groundwater Guidance Values (Janurary 2021).

2. Detected analytical results above Unrestricted Use Guidance Values are bolded.

3. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.

4. Sample SODUP01_020620 is a duplicate sample of SB-1_6-8_020620; sample SODUP02_021020 is a duplicate sample of SB-15_10-12_021020; and sample SODUP03_021120 is a duplicate sample of SB-6_9-11_021120.

5. \sim = Regulatory limit for this analyte does not exist

6. bgs = below grade surface

7. ppb = parts per billion

Qualifiers:

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 6 Groundwater Summary Report Groundwater Sample Analytical Results

Location		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-8	MW-9	MW-10	MW-11	MW-12
Sample ID	NYSDEC	MW-1 021820	MW-2 021420	MW-3 021820	MW-4 021420	MW-5 021820	MW-6 021420	MW-7_021820	MW-8_021920	GWDUP01 021920	MW-9 021420	MW-10 021920	MW-11 021920	MW-12 021920
Laboratory ID	SGVs	L2007256-01	L2006934-01	L2007256-02	L2006934-02	L2007256-03	L2006934-03	L2007256-04	L2007457-01	L2007457-05	L2006934-04	L2007457-04	L2007457-03	L2007457-02
Sample Date	0013	2/18/2020	2/14/2020	2/18/2020	2/14/2020	2/18/2020	2/14/2020	2/18/2020	2/19/2020	2/19/2020	2/14/2020	2/19/2020	2/19/2020	2/19/2020
Volatile Organic Compounds (µg/L)		2/10/2020	2/14/2020	2/10/2020	2/14/2020	2/10/2020	2/14/2020	2/10/2020	2/10/2020	2, 10, 2020	2/14/2020	2/10/2020	2/10/2020	2/10/2020
1,2-Dichlorobenzene	3	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Cis-1,2-Dichloroethene	5	2.6	2.5 U	2.5 U	2.5 U	0.82 J	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
Cymene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U		2.5 U	2.5 U	1.1 J	2.5 U
Naphthalene	10	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ		2.5 UJ	2.5 U		2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
Tert-Butyl Methyl Ether	10	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.3 J	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
Tetrachloroethene (PCE)	5	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
Total 1,2-Dichloroethene (Cis and Trans)	°	2.6	2.5 U	2.5 U	2.5 U	0.82 J	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
Trichloroethene (TCE)	5	1.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
Vinyl Chloride	2	0.21 J	1 1	1 U	1 UJ	1 U	1 1.1	1 1	1		1 UJ	1 1	1 U	1 U
Semivolatile Organic Compounds (µg/L)	2	0.21 0			1 00		1 00				1 00			1 0
1,2,4,5-Tetrachlorobenzene	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U.	J 10 U	10 U	10 UJ	10 UJ	10 UJ
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	5 1	5 0		5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	2 11	2 U	2 U	2 U	2 U	2 U	2 11	2 U		2 11	2 11	2 U	2 U
1,3-Dichlorobenzene	3	2 1	2 U	2 11	2 U	2 1	2 11	2 1	2 0		2 U	2 1	2 U	2 U
1,4-Dichlorobenzene	3	2 11	2 U	2 U	2 U	2 U	2 1	2 11	2 0		2 U	2 U	2 U	2 U
1,4-Dioxane (P-Dioxane)	o ~	0.144 U	0.15 U	0.144 U	0.156 U	0.15 U	0.163 U	0.144 U	0.156 U		0.156 U	0.144 U	0.144 U	0.15 U
2,3,4,6-Tetrachlorophenol		NA	NA	NA 0	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	~	5 11	5 U	5 U	5 U	5 U	5 11	5 11	5 U		5 U	5 11	5 U	5 U
2,4,6-Trichlorophenol	~	5 1	5 U	5 U	5 U	5 U	5 0	5 0	5 U	° °	5 0	5 1	5 U	5 U
2,4-Dichlorophenol	1	5 1	5 U	5 U	5 U	5 U	5 1	5 0	5 0		5 1	5 1	5 U	5 U
2,4-Dimethylphenol	1	5 0	5 U.	5 U	5 UJ	5 U	5 UJ	5 0	5 0		5 UJ	5 1	5 U	5 U
2,4-Dinitrophenol	1	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	° °	20 U	20 U	20 U	20 U
2,4-Dinitrophenol	5	5 11	5 U	5 U	5 U	5 U	5 U	5 1	5 U		5 U	5 U	5 U	5 U
2,6-Dinitrotoluene	5	5 1	5 U	5 U	5 U	5 U	5 U	5 0	5 0		5 U	5 U	5 U	5 U
2-Chloronaphthalene	10	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	° °	0.2 U	0.2 U	0.2 U	0.2 U
2-Chlorophenol	10	0.2 0	0.2 U	2 U	2 U	2 U	2 U	2 U	2 U		2 U	0.2 U	2 U	2 U
2-Methylnaphthalene	~	0.1 U	0.02 J	0.1 U	0.11	0.1 U	0.04 J	0.03 J	0.1 U		0.03 J	0.1 U	0.04 J	0.1 U
Acenaphthene	~ 20	0.1 U	0.02 J	0.04 J	0.15	0.1 U	0.04 J	0.03 J	0.1 U	0.1 0	0.03 J	0.1 U	0.19	0.1 U
Acenaphthylene	20	0.1 U	0.02 J	0.04 J	0.02 J	0.1 U		0.02 J	0.1 U		0.1 U	0.1 U	0.19 0.1 U	0.1 U
Anthracene	~ 50	0.1 U	0.03 J	0.06 J	0.02 J	0.05 J	0.04 J	0.05 J	0.02 J	0.02 J	0.03 J	0.02 J	0.11	0.1 U
Benzo(a)Anthracene	0.002	0.1 U	0.03 J	0.00 J	0.1 U	0.1 U	0.04 J	0.03 J	0.02 J		0.03 J	0.02 J	0.11 0.07 J	0.1 U
Benzo(a)Pyrene	0.002	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.03 J	0.1 U		0.1 U	0.1 U		0.1 U
Benzo(b)Fluoranthene	0.002	0.1 U	0.1 U	0.02 J	0.7 U	0.1 U	0.05 J	0.02 J	0.1 U		0.1 U	0.1 U	0.05 J	0.1 U
Benzo(g,h,i)Perylene	0.002	0.1 U	0.1 U	0.02 J	0.1 U	0.1 U	0.03 J	0.02 J	0.1 U		0.1 U	0.1 U	0.03 J	0.1 U
Benzo(k)Fluoranthene	~ 0.002	0.1 U	0.1 U	0.02 J	0.1 U	0.1 U	0.03 J	0.01 J	0.1 U		0.1 U	0.1 U	0.03 J	0.1 U
Benzoic Acid	0.002	50 UJ	50 U	50 UJ	50 U	50 UJ		50 UJ	50 U		50 U	50 U	50 U	50 U
Bis(2-Ethylhexyl) Phthalate	~ 5	1.8 J	3 U	3 U	3 U	3 U	3 U	3 U	3 0		3 U	3 U	3 U	3 U
Caprolactam	5	NA J	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Chrysene	~ 0.002	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.04 J	0.1 U	0.1 U		0.1 U	0.1 U	0.06 J	0.1 U
Dibenz(a,h)Anthracene	0.002	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.01 J	0.1 U
Fluoranthene	~ 50	0.1 U	0.1 0	0.03 J	0.1 U 0.08 J	0.1 U	0.12	0.1 U	0.1 U	011 0	0.1 U	0.1 0	0.3	0.1 U
	50 50	0.1 U	0.03 J		0.08 5	0.1 U	0.12 0.04 J	0.08 J	0.1 U		0.1 U	0.1 U	0.3	0.1 U
Fluorene			0.1 U	0.02 J			0.04 J	0.04 J				0.1 U	0.14 0.03 J	0.1 U
Indeno(1,2,3-c,d)Pyrene Naphthalene	0.002 10	0.1 U 0.1 U	0.1 U	0.02 J	0.1 U 0.62	0.1 U 0.1 U	0.03 J	0.02 J	0.1 U 0.1 U	•••••	0.1 U 0.1 U	0.1 U	0.03 J	0.1 U
	10 50									0.1				
Phenanthrene	50 50	0.1 U 0.1 U	0.05 J 0.03 J	0.05 J 0.05 J	0.29	0.1 U 0.1 U	0.12	0.12	0.1 U. 0.1 U		0.03 J	0.04 J 0.11	0.38	
Pyrene	UC	0.1 U	0.03 J	0.05 J	0.06 J	0.1 U	0.11	0.05 J	0.1 U	0.1 U	0.03 J	U.11	0.25	0.1 U

Table 6 Groundwater Summary Report Groundwater Sample Analytical Results

Location		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-8	MW-9	MW-10	MW-11	MW-12
Sample ID	NYSDEC	MW-1_021820	MW-2 021420	MW-3 021820	MW-4 021420	MW-5 021820	MW-6 021420	MW-7 021820	MW-8 021920	GWDUP01 021920	MW-9 021420	MW-10 021920	MW-11 021920	MW-12 021920
Laboratory ID	SGVs	L2007256-01	L2006934-01	L2007256-02	L2006934-02	L2007256-03	L2006934-03	L2007256-04	L2007457-01	L2007457-05	L2006934-04	L2007457-04	L2007457-03	L2007457-02
Sample Date	0013	2/18/2020	2/14/2020	2/18/2020	2/14/2020	2/18/2020	2/14/2020	2/18/2020	2/19/2020	2/19/2020	2/14/2020	2/19/2020	2/19/2020	2/19/2020
•		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Pesticides (µg/L)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND ND	ND
Herbicides (µg/L)			ND	ND	ND ND	ND	ND		ND		ND	ND ND	ND ND	ND ND
Polychlorinated Biphenyls (µg/L)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Inorganics (µg/L)		2.04	4.5	2.05	F.0	10 U	0.06	4.07	4.00	10	4.06	4.00	E 40	
Aluminum (Dissolved)	~	3.94 J	4.5 J	3.95 J	5.8 J	10 0	8.96 J	4.07 J	4.32 J	10 UJ	4.26 J	4.08 J	5.49 J	3.66 J
Aluminum	~	6.46 J	13.9 U	2110	11.8 U	22.1	286	29.8	10 U		10 U	10 0	12.4 U	11.2 U
Antimony (Dissolved)	3	34.73	2.6 J	0.51 J	4 U	4 U 4 U		3.24 J	1.25 J	0.63 J	0.56 J	0.59 J	1.15 J	0.8 J
Antimony	3	36.4	1.83 J	0.55 J	4 U		0.44 J	0.53 J	0.83 J	0.49 J	0.57 J	4 U	0.85 J	0.46 J
Arsenic (Dissolved)	25	13.91	7.33	5.66	8.82	18.21	4.15	6.68	3.23	3.39	1.89	2	3.01	5.59
Arsenic	25	14.16	7.03	5.97	7.13	19.6	4.26	6.32	3.69	3.55	1.86	1.54	2.88	5.95
Barium (Dissolved)	1000	37.28	62.59	34.26	28.97	23.93	54.22	44.84	19.5 J	22.82 J	21.56	24.27	22.79	32.37
	1000	37.63	63.2	31.97	27.67	22.48	54.22	43.42	19.46 J	18.8 J	19.38	20.34	16.43	27.06
Cadmium (Dissolved)	5	1.15	0.18 J	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U		0.2 U	0.33	0.2 U	0.06 J
Cadmium	5	1.11	0.19 J	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U		0.2 U	0.31	0.2 U	0.07 J
Calcium (Dissolved)	~	73,200	146,000	155,000	150,000	68,600	134,000	139,000	196,000 J	206,000 J	160,000	58,100	33,000	139,000
Calcium	~	74,200	150,000	143,000	160,000	66,900	143,000	145,000	195,000 J	192,000 J	174,000	54,600	29,300	131,000
Chromium, Hexavalent	50	10 U	10 U	3 J	10 U	10 U		10 U	10 U		10 U	10 U	10 U	10 U
Chromium, Total (Dissolved)	50	0.33 J	0.24 J	0.66 J	0.25 J	0.83 J	0.2 J	0.25 J	1 U.		0.29 J	0.46 J	1 U	1 U
Chromium, Total	50	0.38 J	0.99 J	0.59 J	0.39 J	1.04	2.23	0.59 J	0.33 J	0.29 J	0.34 J	0.69 J	1 U	0.33 J
Cobalt (Dissolved)	~	0.81	0.77	0.5 U	0.5 U	0.5 U		1.72	0.36 J	0.32 J	0.45 J	1.84	0.36 J	0.4 J
Cobalt	~	0.74	0.75	0.5 U	0.5 U	0.5 U		1.75	0.31 J	0.27 J	0.55	1.55	0.34 J	0.35 J
Copper (Dissolved)	200	0.64 J	3.33	0.46 J	0.47 J	0.64 J	1.9	1.7	0.46 J	1.43 J	1.44	2.66	2.25	1.95
Copper	200	0.82 J	2.05	1 U	1 U	1 U		1.24	0.66 J	0.59 J	1 U	1.21	0.9 J	0.95 J
Cyanide	200	3 J	16	2 J	2 J	2 J	5 U	5 U	3 J	1 J	5 U	2 J	5 U	2 J
Iron (Dissolved)	300	5,370	1,090	1,630	1,680	14,200	1,070	3,830	1,090 J	1,170 J	2,220	2,120	397	2,450
Iron	300	5,420	1,260	1,540	1,740	14,300	1,490	3,790	1,240 J	1,160 J	2,350	2,010	449	2,490
Lead (Dissolved)	25	1 U	0.88 J	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Lead	25	1 U	0.89 J	0.47 J	1 U	1 U	0.92 J	0.37 J	1 U		1 U	1 U	0.82 J	1 U
Magnesium (Dissolved)	35000	5,970	20,600	23,300	30,000	11,200	19,600	15,400	23,400 J	24,900 J	24,400	8,010	7,770	34,200
Magnesium	35000	6,230	20,900	24,100	28,000	11,300	19,800	15,600	24,000	24,000	24,800	7,640	6,920	32,900
Manganese (Dissolved)	300	271.1	74.52	470.3	57.56	1,010	76.79	1,599	76.4 J	81.88 J	666.6	158.1	33.97	83.03
Manganese	300	274.9	81.42	441.9	62.86	1,012	84.01	1,668	77.98 J	69.94 J	707	142	29.49	78.9
Nickel (Dissolved)	100	3.21	3.15	0.96 J	0.79 J	0.62 J	1.46 J	2.38	1.6 J	1.56 J	1.17 J	6.06	1.6 J	2.13
Nickel	100	3.3	3.05	0.9 J	0.69 J	0.74 J	2.13	2.27	1.84 J	1.52 J	1.38 J	5.39	1.35 J	1.88 J
Potassium (Dissolved)	~	5,710	13,600	21,900	27,100	8,840	15,400	8,060	18,500 J	19,600 J	15,500	7,090	3,890	17,000
Potassium	~	5,830	13,900	20,400	28,100	8,500	16,500	8,270	18,500 J	18,400 J	16,100	6,530	3,410	16,200
Selenium (Dissolved)	10	5 U	3.44 J	5 U	5 U	5 U		5 U			5 U	5 U	5 U	5 U
Selenium	10	5 U	3.05 J	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U	5 U	5 U
Sodium (Dissolved)	20000	97,500	79,000	303,000	268,000	110,000	84,200	35,700	122,000 J	128,000 J	93,800	62,900	26,100	164,000
Sodium	20000	131,000 J	96,700	259,000	323,000	93,400	106,000	32,700	104,000 J	106,000 J	116,000	49,300	22,500	133,000
Vanadium (Dissolved)	~	4.43 J	10.99	1.91 J	2.17 J	2.81 J	1.87 J	1.81 J	2.06 J	2.06 J	5 U	5 U	2.76 J	2.32 J
Vanadium	~	4.27 J	10.9	2.3 J	1.94 J	3.03 J	2.58 J	1.93 J	2.12 J	2.06 J	5 U	5 U	2.3 J	1.89 J
Zinc (Dissolved)	2000	280.2	85.56	10 U	6.77 J	10 U	11.58	6.16 J	5.44 J	6.97 J	6.76 J	324.7	41.6	22.8
Zinc	2000	285.4	77.42	10 U	5.87 J	10 U	12.47	5.68 J	7.03 J	5.86 J	4.02 J	318.9	37.12	22.07

Table 6 **Groundwater Summary Report Groundwater Sample Analytical Results**

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Notes:

1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

2. Criterion comparisons for total xylenes and m,p-xylene are provided for reference. Promulgated NYSDEC SGVs are for o-xylene, m-xylene, and p-xylene.

- 3. Only detected analytes are shown in the table.
- 4. Detected analytical results above NYSDEC SGVs are bolded and shaded.
- 5. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.
- 6. Sample GWDUP01_021920 is a duplicate sample of MW-8_021920.
- 7. \sim = Regulatory limit for this analyte does not exist
- 8. μ g/L = micrograms per liter
- 9. NA = Not analyzed
- 10. ND = Not detected

Qualifiers:

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamir

Table 7 Groundwater Summary Report Groundwater Sample Emerging Contaminant Analytical Results

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Location Sample ID Laboratory ID Sample Date Semivolatile Organic Compounds (ng/L)	NYSDEC January 2021 Guidance Values	MW-1 MW-1_021 L2007256 2/18/202	1820 -01	MW-2 MW-2_021420 L2006934-01 2/14/2020	MW-3 MW-3_021 L2007256 2/18/202	820 02	MW-4 MW-4_02142 L2006934-0 2/14/2020	2	MW-5 MW-5_02182 L2007256-03 2/18/2020	-	MW-6 MW-6_0214 L2006934-0 2/14/2020	3	MW-7 MW-7_0218 L2007256-0 2/18/2020	4	MW-8 MW-8_021920 L2007457-01 2/19/2020	-	MW-8 GWDUP01_021 L2007457-05 2/19/2020	5	MW-9 MW-9_02142 L2006934-0 2/14/2020	4	MW-10 MW-10_021920 L2007457-04 2/19/2020		MW-11 MW-11_02192 L2007457-03 2/19/2020	-	MW-12 MW-12_021920 L2007457-02 2/19/2020
1.4-Dioxane (P-Dioxane)	1.000	144	U	150 L	144	U	156	U	150	U	163	U	144	U	156	U	144	U	156	U	144	U	144	U	150 U
Per and Polyfluoroalkyl Substances (ng/L)																									
N-ethyl perfluorooctane- sulfonamidoacetic Acid (NEtFOSAA)	100	1.88	U	1.85 L	1.87	U	0.913	J	1.94	U	1.87	U	1.86	U	1.88	UJ	1.88	UJ	1.87	U	1.95	UJ	1.87	UJ	1.9 UJ
N-methyl perfluorooctane- sulfonamidoacetic Acid (NMeFOSAA)	100	1.88	U	1.85 U	J 1.87	U	1.89	UJ	1.94	U	1.87	UJ	1.86	U	1.88	U	1.88	U	1.87	UJ	1.95	U	1.87	U	1.9 U
Perfluorobutanesulfonic Acid (PFBS)	100	3.85		4.04	4.04		3.05		3.33		4.69		3.24		4.71		4.81		2.38		9.65		2.85		3.19
Perfluorobutanoic acid (PFBA)	100	11.4		4	8.46		6.16		5.84		7.18		4.97		6.91		7.3		6.16		13.8		3.4		5.65
Perfluorodecanesulfonic Acid (PFDS)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Perfluorodecanoic Acid (PFDA)	100	0.748	J	0.444 J	0.985	J	1.89	U	1.22	J	1.01	J	1.22	J	0.771	J	0.688	J	0.667	J	1.28	J	3.45		0.65 J
Perfluorododecanoic Acid (PFDoA)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Perfluoroheptanesulfonic Acid (PFHpS)	100	1.88	U	1.85 L	1.87	UJ	1.89	U	1.94	UJ	1.87	U	1.86	UJ	1.88	U	1.74	J	1.87	U	1.95	U	1.87	U	0.722 J
Perfluoroheptanoic acid (PFHpA)	100	7.77		5.46	6.48		6.82		4.31		3.45		3.91		4.41		4.2		4.29		13.7		4.95		4.51
Perfluorohexanesulfonic Acid (PFHxS)	100	2.77		8.29 J	6.75		1.89	UJ	4.84		1.87	UJ	2.9		2.5		3.35		1.87	UJ	3.14		1.19	J	2.99
Perfluorohexanoic Acid (PFHxA)	100	14.6		3.82	8.82		6.01		4.93		4.42		5.42		5.11		4.91		5		25.2		4.66		4.35
Perfluorononanoic Acid (PFNA)	100	1.94		3.56	3.54	J	2.02		2.54	J	2.82		4.8	J	2		1.99		2.19		5.16		3.12		2.8
Perfluorooctanesulfonamide (FOSA)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Perfluorooctanesulfonic Acid (PFOS)	10	28.1	J	47.3	50.2	J	9.44		62.1	J	26		37.1	J	58.4	J	67.1	J	21.8		28.2		62.8		21.9
Perfluorooctanoic Acid (PFOA)	10	16.3		39.6	39.3	J	42.6		37.5	J	19.2		13.7	J	26.1	J	28.3	J	29.6		34.6		11.6		25.8
Perfluoropentanoic Acid (PFPeA)	100	18.9		3.48	10.3		6.61		7.81	_	5.36		7.08		5.91		6.16		6.59		19		7.32		4.79
Perfluorotetradecanoic Acid (PFTA)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Perfluorotridecanoic Acid (PFTrDA)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Perfluoroundecanoic Acid (PFUnA)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	100	1.88	U	1.85 L	1.87	U	1.89	U	1.94	U	1.87	U	1.86	U	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	100	2.5	J	1.85 L	26.6	J	1.89	U	25.4	J	1.87	U	17	J	1.88	U	1.88	U	1.87	U	1.95	U	1.87	U	1.9 U
Total PFOA and PFOS	~	44.4		86.9	89.5		52		99.6		45.2		50.8		84.5	J	95.4	J	51.4		62.8		74.4		47.7
Total PFAS	500	109		120	166		83.6		160		74.1		101		117		131		78.7		154		105		77.4

Notes:
1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Part 375 Remedial

Programs Guidelines for Sampling and Analysis of Per- and Polyfluoroalkyl Substances (PFAS) (January 2021) and the 1,4-Dioxane value reflects the

drinking water maximum contaminant level (MCL) adopted by New York State for public water systems (July 2020). Pursuant to Part 375-1.7(f)(2), the NYSDEC will treat the MCL as relevant and appropriate and will consider this value in remedy selection.

2. Detected analytical results above NYSDEC January 2021 Guidance Values are bolded and shaded.

3. Analytical results with reporting limits (RL) above NYSDEC January 2021 Guidance Values are italicized.

4. Sample GWDUP01_021920 is a duplicate sample of MW-8_021920.

5. ~ = Regulatory limit for this analyte does not exist

6. ng/l = nanograms per liter

Qualifiers:

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Location	AA01		AA01_032	21	AA01_122	20	AA02		SV-1		SV-2		SV-3		SV-4		SV-5		SV-6		SV-7	
Sample ID	AA01_0212	20	AA-01_030	221	AA01_1203	20	AA02_0213	20	SV-1_021220	D	SV-2_0213	20	SV-3_02122	0	SV-4_02122	20	SV-5_0212	20	SV-6_0213	20	SV-7_0212	220
Laboratory ID	L2006386-0	07	L2110268-	-04	L2053758-	09	L2006636-)4	L2006386-04	L	L2006636-	03	L2006386-0	9	L2006386-0	05	L2006386-0	06	L2006636-	05	L2006386	-02
Sample Date	2/12/2020)	3/2/202	1	12/3/202	0	2/13/202)	2/12/2020		2/13/202	0	2/12/2020		2/12/2020	D	2/12/2020	0	2/13/202	0	2/12/202	20
Sample Type	AA		AA		AA		AA		SV		SV		SV		SV		SV		SV		SV	
Volatile Organic Compounds (µg/m³)																						
1,1,1-Trichloroethane	2.7	U	1.09	U	1.09	U	3.18	U	1.09	U	68.7	U	1.36		2.7		1.09	U	1.09	U	2.27	
1,1-Dichloroethane	2	U	0.809	U	0.809	U	2.36	U	0.809	U	51	U	0.809	U	0.809	U	0.809	U	1.33		1.62	U
1,1-Dichloroethene	1.96	U	0.793	U	0.793	U	2.31	U	0.793	U	50	U	0.793	U	0.793	U	0.793	U	1.37		1.59	U
1,2,4-Trimethylbenzene	2.43	U	0.983	U	0.983	U	2.86	U	2.99		61.9	U	2.15		2.29		1.91		1.92		3.59	
1,3,5-Trimethylbenzene (Mesitylene)	2.43	U	0.983	U	0.983	U	2.86	U	1.3		61.9	U	0.983	U	0.983	U	0.983	U	0.983	U	2.95	
1,3-Butadiene	1.1	U	0.442	U	0.442	U	1.29	U	0.442	U	27.9	U	0.442	U	0.478		0.442	U	4.16		5.77	
2,2,4-Trimethylpentane	2.31	U	0.934	U	0.934	U	2.72	U	2.47		58.9	U	2.94		0.934	U	0.934	U	0.934	U	1.87	U
2-Hexanone	2.03	U	0.82	U	0.82	U	2.39	U	0.82	U	51.6	U	0.82	U	0.82	U	0.82	U	0.82	U	1.64	U
4-Ethyltoluene	2.43	U	0.983	U	0.983	U	2.86	U	0.983	U	61.9	U	0.983	U	0.983	U	0.983	U	0.983	U	1.97	U
Acetone	5.89	U	5.39		3.21		6.91	U	107		150	U	11.9		25.4		10.4		24.9		20.9	
Benzene	1.58	U	0.639	U	0.639	U	1.86	U	7.32		40.3	U	0.748		3.11		0.639	U	2.37		7.12	
Carbon Disulfide	1.54	U	0.623	U	0.623	U	1.81	U	11.4		39.2	U	2.44		12.4		0.623	U	47.6		27.7	
Chloroform	2.42	U	0.977	U	0.977	U	2.84	U	0.977	U	61.5	U	0.977	U	0.977	U	0.977	U	0.977	U	1.95	U
Chloromethane	1.07		0.855		0.888		1.29		0.413	U	26	U	0.413	U	0.413	U	0.413	U	0.413	U	0.826	U
Cis-1,2-Dichloroethene	1.96	U	0.793	U	0.793	U	2.31	U	0.793	U	2,390		0.793	U	0.793	U	0.793	U	21.8		4.08	
Cyclohexane	1.7	U	0.688	U	0.688	U	2	U	0.688	U	43.4	U	0.688	U	1.36		0.688	U	43		2.35	
Dichlorodifluoromethane	2.45	U	2.26		2.09		2.88	U	22.8		62.3	U	93.5		234		117		35.2		114	
Ethanol	23.4	U	9.42	U	9.42	U	27.5	U	9.42	U	594	U	9.42	U	9.42	U	9.42	U	9.42	U	18.8	U
Ethyl Acetate	4.47	U	1.8	U	1.8	U	5.26	U	1.8	U	114	U	1.8	U	1.8	U	1.8	U	1.8	U	3.6	U
Ethylbenzene	2.15	U	0.869	U	0.869	U	2.53	U	6.56		54.7	U	1.11		1.69		0.869	U	1.37		1.92	
Isopropanol	3.05	U	1.23	U	1.87		3.59	U	1.4		77.4	U	1.23	U	1.23	U	1.23	U	1.23	U	2.46	U
M,P-Xylene	4.3	U	1.74	U	1.74	U	5.04	U	14.7		109	U	4.34		6.25		3.84		5.04		6.6	
Methyl Ethyl Ketone (2-Butanone)	3.66	U	1.47	U	1.47	U	4.31	U	8.32		92.9	U	1.47	U	7.43		1.47	U	5.72		10	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanol	5.08	U	2.05	U	2.05	U	5.98	U	2.05	U	129	U	2.05	U	2.05	U	2.05	U	2.05	U	4.1	U
Methylene Chloride	4.31	U	1.74	U	1.84		5.07	U	1.74	U	109	U	1.74	U	1.74	U	1.74	U	1.74	U	3.47	U
n-Heptane	2.03	U	0.82	U	0.82	U	2.39	U	1.07		51.6	U	0.82	U	2.71		0.82	U	36.1		220	
n-Hexane	1.74	U	0.705	U	0.952		2.05	U	2.46		44.4	U	0.705	U	2.66		0.705	U	40.2		329	
o-Xylene (1,2-Dimethylbenzene)	2.15	U	0.869	U	0.869	U	2.53	U	6.43		54.7	U	1.47		2.29		1.35		1.94		3.13	
Styrene	2.11	U	0.852	U	0.852	U	2.48	U	0.852	U	53.6	U	0.852	U	0.852	U	0.852	U	0.852	U	1.7	U
Tert-Butyl Alcohol	3.76	U	1.52	U	1.52	UJ	4.43	U	1.52	U	95.5	U	1.52	U	1.52	U	1.52	U	3.4		3.03	U
Tetrachloroethene (PCE)	3.36	U	1.36	U	1.36	U	3.95	U	5.23		23,200		4.52		3.62		5.45		7.12		18.3	
Tetrahydrofuran	3.66	U	1.47	U	1.47	U	4.31	U	1.47	U	92.9	U	1.47	U	1.47	U	1.47	U	1.47	U	2.95	U
Toluene	1.87	U	0.754	U	0.754	U	2.19	U	17.1		47.5	U	14.5		8.55		2.45		5.2		6.41	
Total Xylenes	2.15	U	0.869	U	0.869	U	NA		21.2		NA		5.82		8.56		5.21		NA		9.73	1
Trans-1,2-Dichloroethene	1.96	U	0.793	U	0.793	U	2.31	U	0.793	U	50	U	0.793	U	0.793	U	0.793	U	0.793	U	1.59	U
Trichloroethene (TCE)	2.66	U	1.07	U	1.07	U	3.13	U	1.07	U	1,900		1.07	U	1.07	U	1.07	U	3.65		2.15	U
Trichlorofluoromethane	2.78	U	1.24		1.12	U	3.27	U	2.13		70.8	U	1.33		5.73		1.64		1.12	U	7.81	
Vinyl Chloride	1.27	U	0.511	U	0.511	U	1.49	U	0.511	U	32.2	U	0.511	U	0.511	U	0.511	U	22.2		1.02	U

Location Sample ID Laboratory ID Sample Date Sample Type	SV-8 SV-8_0212 L2006386- 2/12/202 SV	01	SV-9 SV-9_0212 L2006386- 2/12/202 SV	03	SV-10 SV-10_021 L2006636 2/13/202 SV	-06	SV-11 SV-11_021 L2006386- 2/12/202 SV	10	SV-12 SV-12_021 L2006386 2/12/202 SV	-08	SV-13 SV-13_0213 L2006636- 2/13/202 SV	02	SV-14 SV-14_0213 L2006636-0 2/13/2020 SV)7	SV-15 SV-15_021 L2006636- 2/13/202 SV	·01	SV-16 SV-16_120 L2053758 12/3/202 SV	320 -01	SV-17 SV-17_120 L2053758 12/3/20 SV)320 -02	SV-17 DUP01_12 L2053758 12/3/20 SV	20320 8-08 020
Volatile Organic Compounds (µg/m³)	0.44		1.00		1.00		F 0F		0.51		F 40		1.00		0.00	I	4 5 4		4.4.4		4.45	
1,1,1-Trichloroethane	3.41	U	1.09	U U	1.09	U	5.25		8.51		5.43		1.09	U	3.26		4.54	U	4.14		4.45	
1,1-Dichloroethane	2.53	U	0.809	-	0.809	U	0.809	U	0.809	U	0.809	U	0.809	U U	0.809	U	3.37	U	0.809	U	0.809	U
1,1-Dichloroethene	2.48	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	3.3	U	0.793	U	0.793	U
1,2,4-Trimethylbenzene	6.78		1.7		2.17		1.89		3.05		2.11		1.22		1.75		12.9	U	16		15.2	
1,3,5-Trimethylbenzene (Mesitylene)	7.82		0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	4.1	U	4.23		4.23	
1,3-Butadiene	2.05		0.442	U	0.489		0.442	U	0.442	U	0.442	U	0.442	U	0.442	U	3.5		0.719		0.542	
2,2,4-Trimethylpentane	2.92	U	0.934	U	0.934	U	0.934	U	0.934	U	0.934	U	0.934	U	0.934	U	47.2		2.36		2.68	
2-Hexanone	2.56	U	0.82	U	6.07		0.82	U	7.54		0.82	U	0.82	U	0.82	U	4.26		2.93	J	1.89	J
4-Ethyltoluene	3.07	U	0.983	U	0.983	U	0.983	U	1		0.983	U	0.983	U	0.983	U	4.1	U	4.65		4.97	
Acetone	27.1		11.3		28.7		17.1		24.7		10		16.7		6.53		295		128		112	
Benzene	6.2		0.639	U	1.93		0.674		0.639	U	0.639	U	0.639	U	0.639	U	4.19		2.24		2.19	
Carbon Disulfide	37.7		0.623	U	5.98		2.76		0.623	U	1.64		0.685		0.623	U	2.72		3.1		2.97	
Chloroform	3.05	U	0.977	U	0.977	U	0.977	U	0.977	U	0.977	U	1.44		0.977	U	4.07	U	1.91		2.29	
Chloromethane	1.29	U	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	1.72	U	0.413	U	0.413	U
Cis-1,2-Dichloroethene	2.48	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	3.3	U	0.793	U	0.793	U
Cyclohexane	2.91		0.688	U	2.7		0.688	U	0.688	U	0.688	U	0.688	U	0.688	U	5.71		1.2		1.35	
Dichlorodifluoromethane	84.6		13.9		16.6		309		21.9		4		4.23		170		4.12	U	6.77		6.38	
Ethanol	29.4	U	9.42	U	9.42	U	9.42	U	9.42	U	9.42	U	9.42	U	9.42	U	39.2	U	21.9		12.9	
Ethyl Acetate	5.62	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	7.5	U	1.8	U	3.89	
Ethylbenzene	3.65		1.1		1.11		0.986		2.1		1		0.869	U	1.11		10.6		13.5		14.6	
Isopropanol	3.83	U	1.23	U	1.23	U	1.23	U	1.23	U	1.23	U	1.23	U	1.23	U	5.11	U	5.95	J	10.5	J
M,P-Xylene	37.7		4.86		4.1		4.43		7.99		4.34		1.74		4.52		44.3		52.6		56.5	
Methyl Ethyl Ketone (2-Butanone)	28.4		1.47	U	14		2.85		22.8		1.47	U	1.62		1.47	U	79.3		8.76		6.75	
Methyl Isobutyl Ketone (4-Methyl-2-Pentano	6.39	U	2.05	U	2.05	U	2.05	U	2.05	U	2.05	U	2.05	U	2.05	U	8.52	U	5.04		4.18	
Methylene Chloride	5.42	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	7.23	U	1.74	U	1.74	U
n-Heptane	212		0.82	U	3.33		0.82	U	3.4		0.82	U	0.82	U	0.82	U	9.3		5.49		5.57	
n-Hexane	193		0.705	U	2.3		0.705	U	0.758		0.705	U	0.705	U	0.835		15.5		6.59		6.59	
o-Xylene (1,2-Dimethylbenzene)	23.1		1.6		1.5		1.45		2.8		1.5		0.869	U	1.51		16.3		19.8		21	
Styrene	2.66	U	0.852	U	0.852	U	0.852	U	0.852	U	0.852	U	0.852	U	0.852	U	3.55	U	1.57		1.69	
Tert-Butyl Alcohol	4.73	U	1.52	U	1.52	U	1.52	U	3.03		1.52	U	1.52	U	1.52	U	6.31	UJ	6.76	J	3.94	J
Tetrachloroethene (PCE)	14.2		4.69		7.8		2.76		14		12		27.7		7.46		1,970		30.3		30.4	
Tetrahydrofuran	4.6	U	1.47	U	1.47	U	1.47	U	1.47	U	1.47	U	1.47	U	1.47	U	6.13	U	3.95		3.57	
Toluene	19.3		3.37		3.23		3.22		5.43		3.01		1.37		4.45		34.4		39.2		44.5	
Total Xylenes	60.8		6.47		NA		5.86		10.8		NA		NA		NA		60.8		72.5		77.3	
Trans-1,2-Dichloroethene	2.48	U	0.793	U	0.793	U	0.793	U	1.3		0.793	U	0.793	U	0.793	U	3.3	U	0.793	U	0.793	U
Trichloroethene (TCE)	3.36	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	56.4		1.07	U	1.07	U
Trichlorofluoromethane	4.32		2.03		1.12	U	1.46		11.4		12.5		27.8		2.38		4.68	U	1.17		1.17	
Vinyl Chloride	1.6	U	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	2.13	U	0.511	U	0.511	U

Location	SV-18		SV-19		SV-20		SV-21		SV-22		SV-23		SV-24		SV-24	•	SV-25	5
Sample ID	SV-18 120	320	SV-19 120	320	SV-20 120	320	SV-21 120	0320	SV-22 1203	320	SV-23 0302	221	SV-24 0302	221	DUP-01 03	0221	SV-25 030	0221
Laboratory ID	L2053758-	03	L2053758	-04	L2053758	-05	L2053758	-06	L2053758-	07	L2110268-	01	L2110268-	02	L2110268	8-05	L2110268	3-03
Sample Date	12/3/202	0	12/3/202	20	12/3/202	20	12/3/202	20	12/3/202	0	3/2/2021		3/2/2021		3/2/202	21	3/2/202	21
Sample Type	sv		sv		sv		SV		SV		SV		SV		sv		sv	
Volatile Organic Compounds (µg/m³)														_				
1,1,1-Trichloroethane	1.09	U	4.92		1.09	U	1.93		5.41		1.09	U	1.09	U	4.96	U	1.09	U
1,1-Dichloroethane	0.809	U	0.809	U	0.809	U	0.809	U	0.809	U	0.809	U	0.809	U	3.68	U	0.809	U
1,1-Dichloroethene	0.793	U	0.793	U	0.793	U	0.793	U	1.35		0.793	U	0.793	U	3.6	U	0.793	U
1,2,4-Trimethylbenzene	11.9		11.9		16.2		12.7		12.7		0.983	U	1.06		4.47	U	1.13	
1,3,5-Trimethylbenzene (Mesitylene)	3.21		3.2		4.4		3.72		3.5		0.983	U	0.983	U	4.47	U	0.983	U
1,3-Butadiene	4.31		0.442	U	0.442	U	0.88		1.36		5.57		0.442	U	2.01	U	1.73	
2,2,4-Trimethylpentane	2.38		5		1.7		3.21		47.6		1.21		0.934	U	4.25	U	4.76	
2-Hexanone	0.82	U	1.79		0.82	U	0.82	U	1.94		4.26		4.1		3.73	U	4.43	
4-Ethyltoluene	3.47		3.35		5.21		4.59		4.25		0.983	U	0.983	U	4.47	U	0.983	U
Acetone	77.2		69.6		33.5		108		58.9		24.7		14.9		10.8	U	15.2	
Benzene	3.8		1.64		1.94		2.77		5.49		3.87		0.639	U	2.9	U	1.35	
Carbon Disulfide	4.48		1.48		0.984		3.99		1.79		2.45		0.623	U	2.83	U	1.66	
Chloroform	0.977	U	1.62		0.977	U	1.12		1.79		0.977	U	1.89		4.44	U	0.977	U
Chloromethane	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	0.413	U	1.88	U	0.413	U
Cis-1,2-Dichloroethene	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	48		2		3.6	U	0.793	U
Cyclohexane	1.98		2.49		0.699		1.66		5.09		3.09		1.69		3.13	U	3.07	
Dichlorodifluoromethane	22.6		12.8		4.7		3.27		5.09		12.5		3.28		4.49	U	3.45	
Ethanol	9.42	U	10.3		9.42	U	9.42	U	9.44		9.42	U	9.42	U	42.8	U	9.42	U
Ethyl Acetate	1.8	U	1.8	U	1.94		1.8	U	1.8	U	1.8	U	1.8	U	8.18	U	1.8	U
Ethylbenzene	12.8		10.3		13.7		15.3		12.9		1.3		1.12		3.95	U	1.28	
Isopropanol	1.23	U	1.74		1.23	U	1.47		2.37		1.23	U	1.84		5.58	U	1.23	U
M,P-Xylene	47.8		40.7		53.4		56.5		50		3.33		2.92		7.91	U	3.48	
Methyl Ethyl Ketone (2-Butanone)	11.2		4.51		1.78		3.48		7.31		47.5		59	J	21.7	J	35.4	
Methyl Isobutyl Ketone (4-Methyl-2-Pentano	2.05	U	2.85		2.05	U	2.05	U	3.27		2.05	U	2.05	U	9.3	U	2.05	U
Methylene Chloride	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	7.89	U	1.74	U
n-Heptane	6.07		3.68		4.22		6.93		5		2.36		0.82	U	3.73	U	3.97	
n-Hexane	6.59		4.23		3.4		7.51		5.99		5.11		0.705	U	3.2	U	5.53	
o-Xylene (1,2-Dimethylbenzene)	17.8		15.6		20.6		20.6		18.8		1.14		1.06		3.95	U	1.29	
Styrene	1.34		1.23		1.58		1.5		1.51		0.852	U	1.12		3.87	U	0.852	U
Tert-Butyl Alcohol	2.32	J	4.18	J	1.52	UJ	2.04	J	3.64	J	4.34		1.52	U	6.88	U	1.52	U
Tetrachloroethene (PCE)	25.4		20.8		26.5		30.6		30.1		161		2,010		1,880		50.7	
Tetrahydrofuran	1.47	U	1.47	U	1.47	U	1.47	U	2.52		1.47	U	1.47	U	6.69	U	1.47	U
Toluene	42.2		29.6		39.6		51.3		36.9		5.99		4.07		3.7		5.16	
Total Xylenes	65.6		56		73.8		77.3		68.6		4.47		3.98		3.95	U	4.78	
Trans-1,2-Dichloroethene	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	1.93		0.793	U	3.6	U	0.793	U
Trichloroethene (TCE)	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	20.6		49.3		44.4		1.07	U
Trichlorofluoromethane	2.1		17.8		19.9		9.55		3.73		1.12	U	2.42		5.11	U	1.22	
Vinyl Chloride	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	0.511	U	2.32	U	0.511	U

1607 Surf Avenue Brooklyn, New York Langan Project No.: 170599501

Notes:

1. Ambient air sample analytical results are shown for reference only.

2. Only detected analytes are shown in the table.

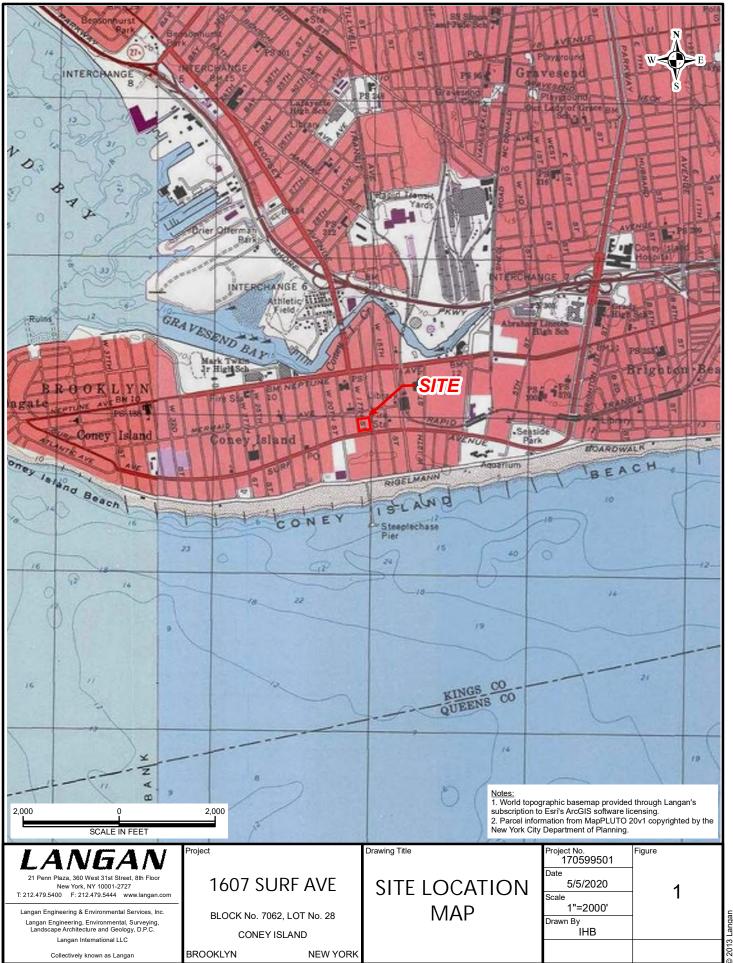
- 3. Analytical results with reporting limits (RL) above the minimum soil vapor concentrations recommending mitigation are italicized.
- 4. Sample DUP01_120320 is a duplicate of parent sample SV-17_120320 and sample DUP-01_030221 is a duplicate sample of SV-24_030221.

5. μ g/m³ = micrograms per cubic meter

6. AA = Ambient Air

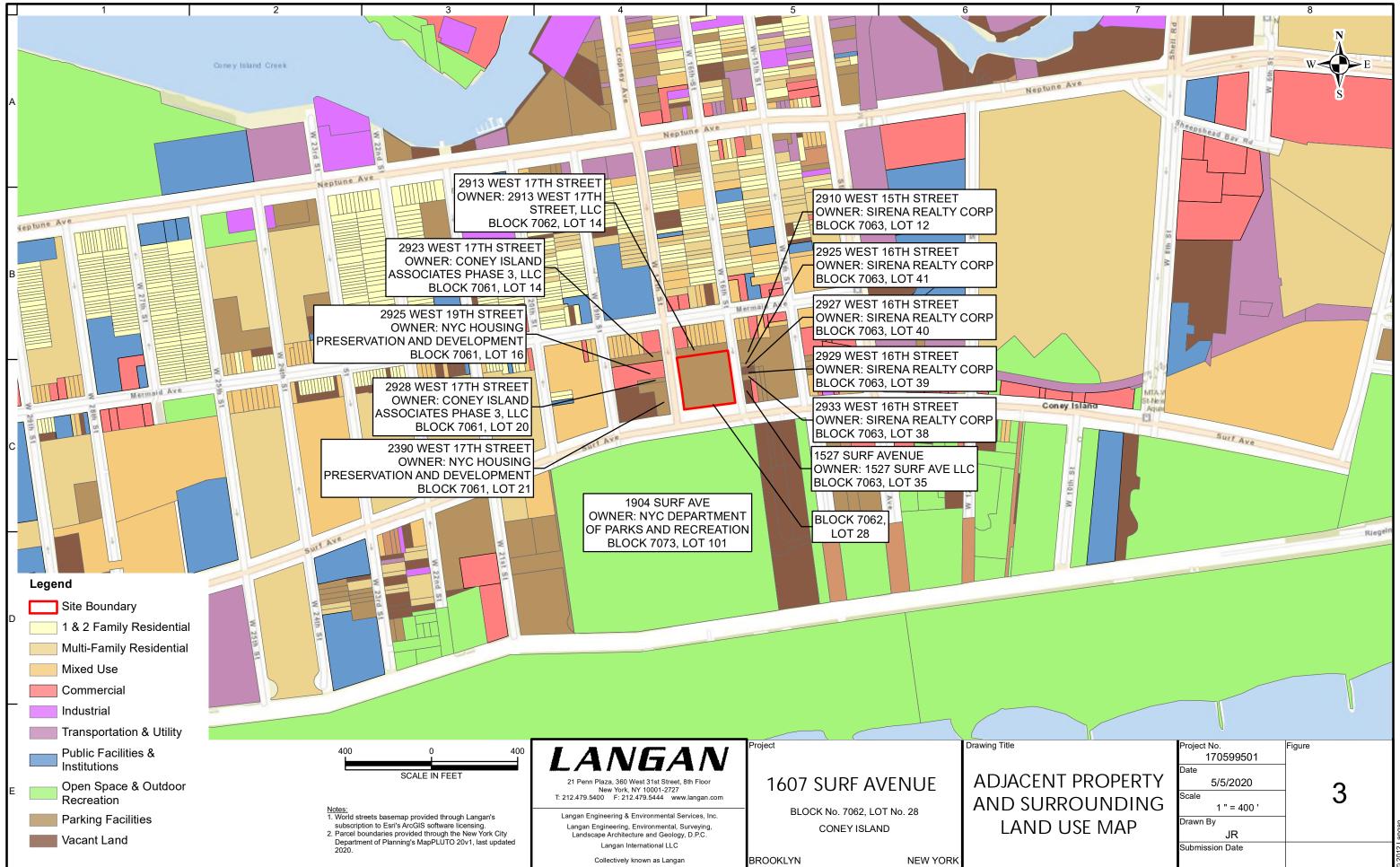
7. SV = Soil Vapor

Qualifiers:


J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

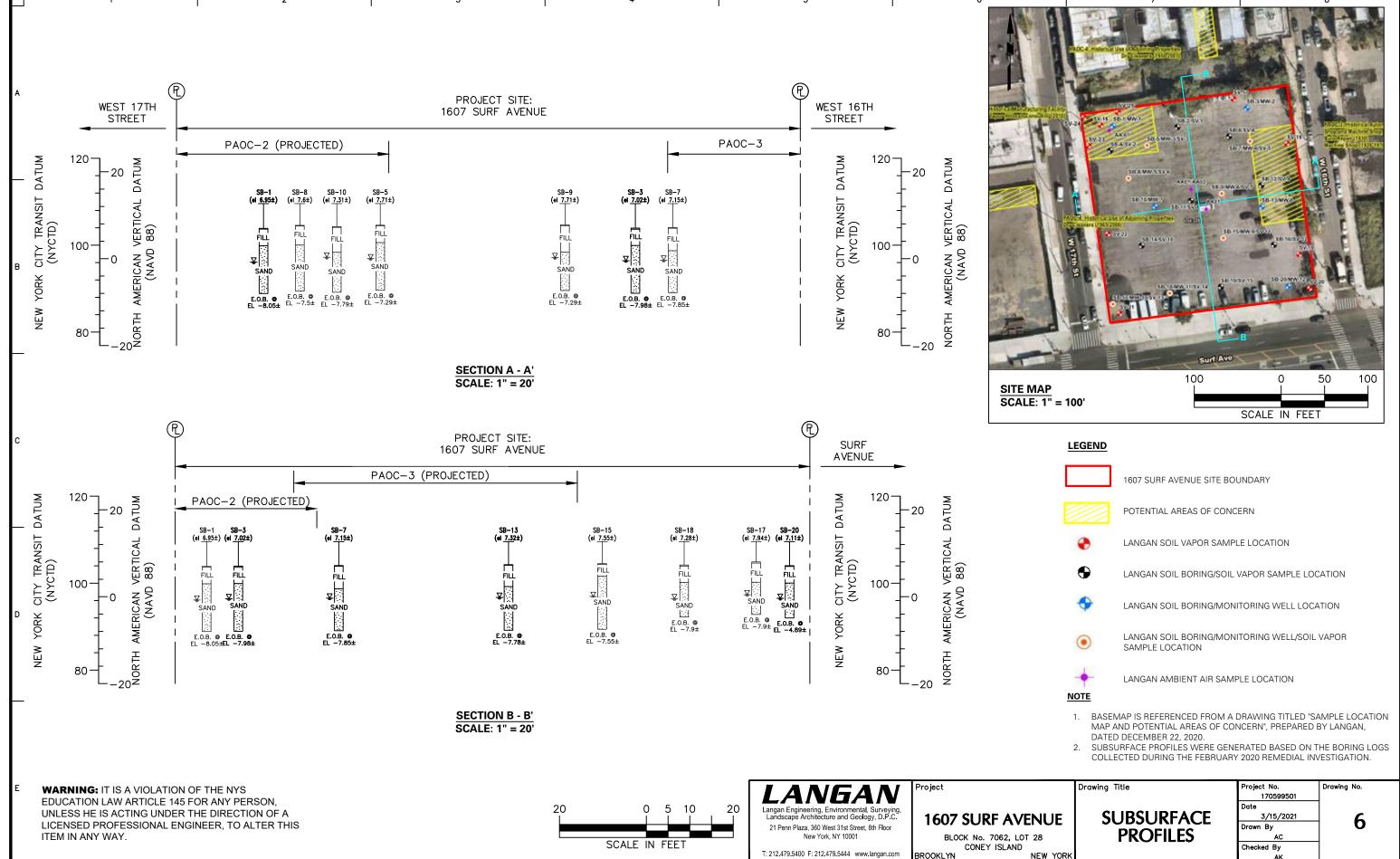
UJ = The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

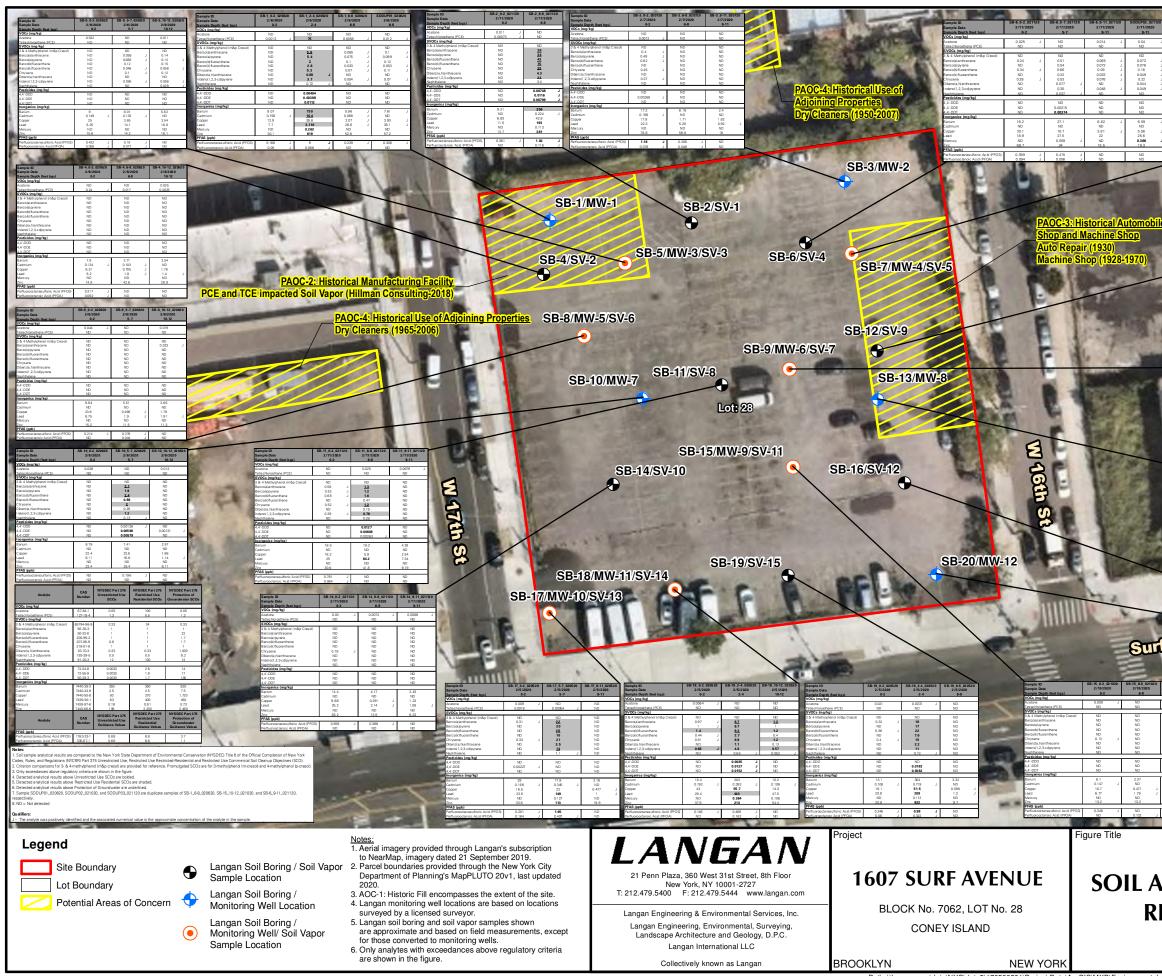
U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.


FIGURES

LANGAN

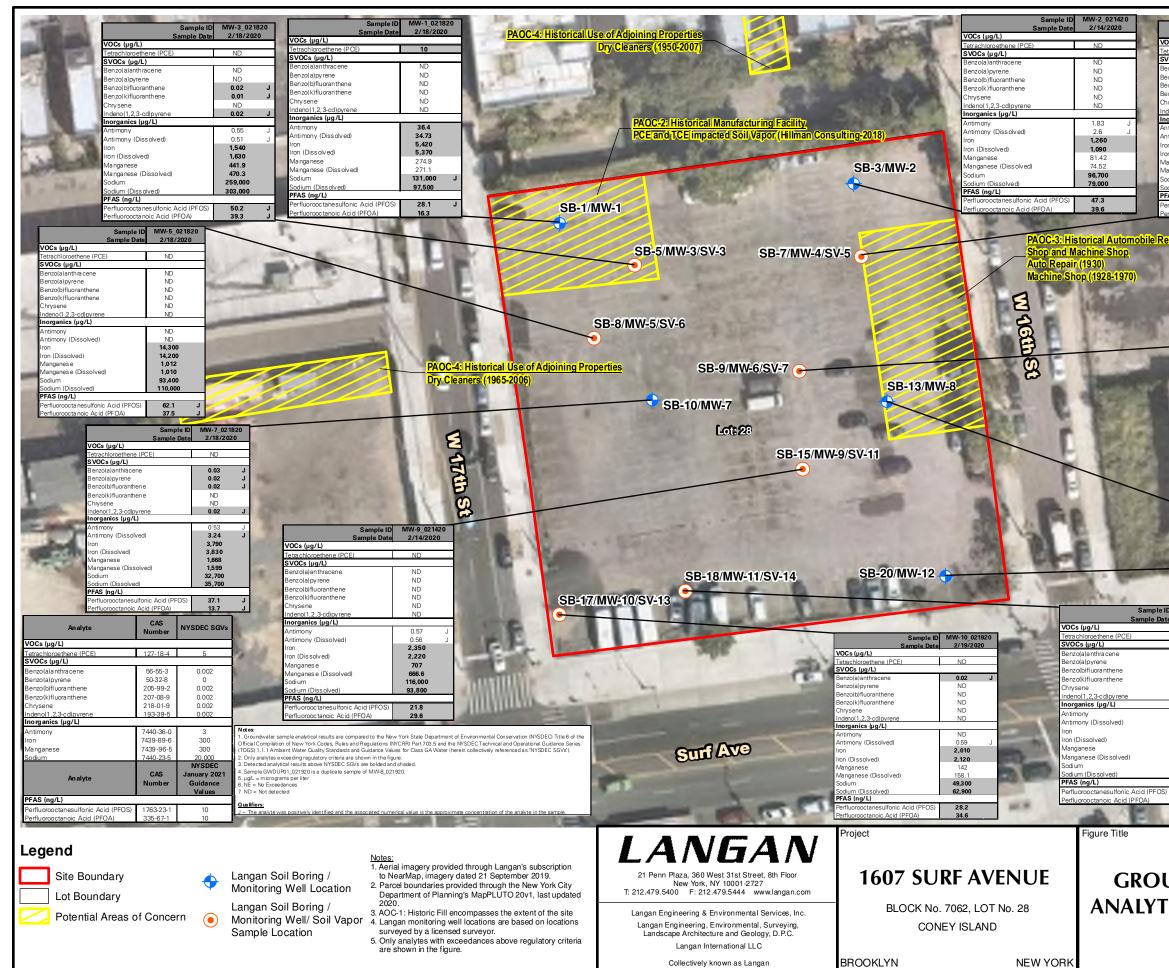
Path: \\langan.com\data\NYC\data5\170599501\Project Data\ArcGIS\MXD\Environmental_Figures\2020-03 - RIR\Figure 1 - Site Location Map.mxd Date: 5/5/2020 User: aruane Time: 11:42:39 AM




ronmental Figures/2020-12 - Revised RIR/Figure 5 - Sample Location Map and Potential Areas of Concern.mxd Date: 3/11/2021 User: ibaker Time: 4:33

A CONTRACTOR OF	STORAGE SHA
Project No.	Figure
170599501	
Date	
3/11/2021	F
Scale	5
1 " = 50 '	
Drawn By	
IHB	
Submission Date	

Filename: \\langan.com\data\NYC\data5\170599501\Project Data\CAD\01\SheetFiles\Environmental\170599501-NI201-01


102.dwa	Date: 3/15/2021	Time: 21:00	User: lesmail	Style Table:	Langan.stb	Lavout: Subsurface	Profile

120 Sample ID 58-7, 0-2, 020720 58-7, 5-7, 020720	SB-7_9-11_020720 2/7/2020	and the second	Sec.	13	N	25
5 ample 10 58-7.6-7.00720 58-7.5-7.00720 5 ample Date 2770200 2777220 5 ample Date 0-2 2777220 5 UVC6. [mm/kg] 0-2 5-7 1 VC6. [mm/kg] ND Tatachoofbane (PCE) ND ND	2/7/2020 9-11 ND	ATTAC	alle	W		E
Site Site <th< th=""><th>ND 0.09 J 0.083 J 0.098 J</th><th>and the second</th><th>Bene</th><th></th><th>V I</th><th></th></th<>	ND 0.09 J 0.083 J 0.098 J	and the second	Bene		V I	
J Diberz(a,h)anthracene 3.2 ND Indeno(1,2,3-cd)pyrene 13 ND	U 0.098 U 0.041 U 0.08 U 0.08 U 0.08 U 0.053 U 0.053 U 0.053	Sample ID	SB-12_0-2_020720 2/7/2020	SB-12_5-7_020720 2/7/2020	SB-12_10-12_020720	1
Nachhäine 15 ND Pesticides (mg/lg) 4,4: DDD 0.0286 J ND 4,4: DD 0.168 J ND 4,4: DD 0.168 J ND 4,4: DD 0.168 J ND	0.049 J ND 0.00105 J ND	Sample Date Sample Depth (feet bgs) VDCs (mg/kg) Acetone Tetachloroathene (PCE)	2/7/2020 0-2 ND	2/7/2020 5-7 ND	2/7/2020 10-12 ND	
Inorganics (mg/lig) Bailum 19.7 2.07 Cadrium 0.17 ND J Coppar 12 0.477 J Lead 2.2.2 1.66 J	2.59 ND 1.08	SVOCs (mg/kg) 3 & 4 Methylphenol (m&p Cresol) Benzo(a)anthra cene	ND <u>1.2</u> 1.3 J	ND ND	ND ND ND	
J Marcury ND ND Zinc 32 8.78 PF65 (ppb) Pedfungetations And JPEOS 0.24 0.253 1	ND 7.22	Berzold/Juranthene Berzolk/fluoranthene Chrysene Diberz (a, handhracene Indeno(1, 2,3-cd) pyrene	1.5 0.54 J 1.1 ND 0.82 J	ND ND ND ND	ND ND ND ND	
Pertuercoctuncic Acid (FFOA) ND 0.071 J	ND	Pesticides (mg/kg) 4,4-DDD 4,4-DDE	ND ND ND	ND ND ND	ND ND	1
N	2	4,4'-DDT Inorganics (mg/kg) Barium Cadmium Copper	0.00785 J 36.9 0.241 J 16.3	2.2 ND	ND 3.24 ND 2.36	1
and i want	X	Lead Mercury Zinc PFAS (ppb)	102 0.163 69.4	1.65 J ND 7.14	1.43 J ND 17.1	
<mark>ile Repair</mark>	5	Perfluoroactanesulfonic Acid (PFOS) Perfluoroactaneic Acid (PFOA) Sample ID Sample Date Sample Date Sample Dath (feet bgs)	1.06 0.089 J SB-9_0-2_021120 2/11/2020	0.16 J 0.084 J SB-9_6-8_021120 2/11/2020	ND ND SB-9_9-11_021120 2/11/2020	
	200	VOCs (mg/kg) Acetone Tetrachloroethene (PCE)	0-2 0.014 J ND	6-8 ND ND	9-11 ND ND	
		SVOCs (mg/kg) 3 & 4 Methylphenol (m&p Cresol) Benzolajantracene Benzolajoyrene Benzolbifluoranthene	ND ND ND ND	ND 0.33 0.32 0.48	ND 0.025 J ND ND	-
P P I P I P I P I P I P I P I P I P I P		Benzojk/fluoranthene Chrysene Dibers(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene	ND ND ND ND	0.17 0.34 0.06 J 0.24 0.034 J	ND 0.021 J ND ND ND	r
		Pesticides (mg/kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT	ND ND ND	0.0067 0.00794 0.0118	ND ND ND	8
第二日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Inorganics (mg/kg) Barium Cadmium Copper Lead	16.7 ND 25 20.7	12.8 ND 3 10.4	4.17 ND 1.74 1.28 J	-
AND A DESCRIPTION OF		Mercury Zinc PFAS (ppb) Perfluoroctanesulfonic Acid (PFOS) Perfluoroctanesic Acid (PFOA)	ND 27.6 0.426 J	ND 48.7 ND 0.046	ND 18.8 ND	3
194		Sample ID Sample Date Sample Depth (feet bgs)	SB-13_0-2_021020 2/10/2020 0-2	SB-13_4-6_021020 2/10/2020 4-6	SB-13_9-11_021020 2/10/2020 9-11	1
A STATE	139	Acetone Tetrachloroethene (PCE) SVOCs (mg/kg)	ND ND	ND ND ND	ND ND ND	3
E Ton Man	State of	3 & 4 Methylphenol (m&p Cresd) Benzolalenthracene Benzolalpyrene Benzolkifluoranthene Benzolkifluoranthene Chrysene	0.34 J ND 0.48 J ND 0.33 J	0.039 J 0.042 J 0.051 J ND 0.047 J	ND ND ND ND	-
Land Harrison		Diberz(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene Pesticides (mg/kg) 4,4-DDD	ND 0.26 J ND ND	ND 0.024 J ND ND	ND ND ND	1
	12	4,4'-DDE 4,4'-DDT Inorganics (mg/kg) Barium Cadmium	0.00142 J ND 58.8	ND ND 7.69 0.098 J	ND ND 2.94 ND	1
ALC: MAN		Copper Lead Mercury Zinc	0.497 J 23.4 124 0.138 120	2.55 11.9 ND 16.6	ND 1.63 2.71 J ND 10.1	-
		PFAS (ppb) Perfluorocctanesulfonic Acid (PFOS) Perfluorocctanesic Acid (PFOA) Sample ID	0.865 J ND SB-16_0-2_021120 2/11/2020	0.564 J ND 58-16_5-7_021120 2/11/2020	ND ND 88-16_9-11_021120 2/11/2020 9-11	-
	CO.	Sample Depth (feet bgs) VOCs (mg/kg) Acetone Tetrachioroethene (PCE)	0.008 J ND	2/11/2020 5-7 0.062 ND	2/11/2020 9-11 0.018 ND	-
2. Alexand	Sea.	SVOCa (mg/kg) 3 & 4 Methylphanol (m8p Cresid) Benzolelarthracene Benzolelphyrene Benzolelphuranthene	ND 1.7 1.9 2.3	ND ND ND ND	ND ND ND	-
	1	Benzo(kifluoranthene Chrysene Diberzia, hjanthracene Inderol 1, 2,3-cdipyrene Naphthalene	0.73 J 1.6 0.28 J 1.2 J ND	ND ND ND ND	ND ND ND ND	1
		4.4'-DDE 4.4'-DDE 4.4'-DDT Inorganics (mg/kg)	ND 0.00229 0.00625	ND ND ND	ND ND ND	1
SO OF	THE	Barium Cadmium Copper Lead Mercury	157 ND 23.8 77.4 0.116	2.08 ND 0.559 J 1.42 J ND	3.52 ND 1.35 1.51 J ND	
f Ave	_	Zinc PFAS (opb) Perfluorooctanesulfonic Acid (PFOS) Perfluorooctanoic Acid (PFOA)	72.3 0.648 J ND	13.9 0.69 J 0.152 J	ND ND	10
	350-	Sample ID Sample Date Sample Depth (feet bgs) VOCs (mg/kg)	SB-20_0-2_020520 2/5/2020 0-2	SB-20_2-4_020520 2/5/2020 2-4	SB-20_6-8_020520 2/5/2020 6-8	
5 58-15, 10-12, 02 W20 SODUP92, 021020 2/10/2020 2/10/2020	our p	Actione Tetrachloroethene (PCE) SVOCs (mg/kg) 3 & 4 Methylphenol (m&p Cresol) Benzo(a)anthracene	ND ND 2.1	ND ND 0.65 0.59	ND ND ND ND	
2110/2020 2110/2020 10-12 10-12 ND ND ND ND	-	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dihenzia blanthranene	ND 2.1 2.5 1.1 2.2 0.32	0.59 0.78 0.29 0.63 0.087 J	ND ND ND ND	
ND ND ND ND ND ND ND ND	1	Indeno(1, 23-cd)pyrene Nachthalane Pesticides (mg/kg) 4,4:-DDD 4,4:-DDE	0.33 J 1.3 0.11 J 0.00195 0.00266 J	0.39 0.047 J	ND ND ND	2
IO IO NO NO NO NO NO NO NO NO NO NO IO NO IO NO IO NO IO NO IO NO		4,4°-DDE 4,4°-DDT Inorganics (mg/kg) Barium Cadmium	0.00266 J 0.0159 198 J 0.671 J	0.0252 0.0294 113 1.03	ND ND 5.8 0.158 J	2
ND ND ND ND ND ND ND ND	11	Copper Lead Mercury Zinc	37 325 J 0.54 251 J	40.8 366 0.443 497	17 136 ND 33.2	1
4.19 J 2.47 J J 1.16 J NO J 2.27 J 1.65 J J 2.27 J 1.65 J	50	PFAS (ppb) Perfluorocctanesulfonic Acid (PFOS) Perfluorocctanoic Acid (PFOA)	1.08 0.07 J	2.66 0.679 J	0.216 J 0.098 J	50
J 227 J 1.85 J NO NO NO J NO NO 0.127 J						
	Project No		CALE IN			
	17	0599501				
	Date 4/	28/2021		_	7	
ANALYTICAL	Scale			1	,	
ESULTS	Drawn By	1 " = 50 '	_			
		IHB				
	Submissio	on Date				

) 2012 Langa

Path: \\langan.com\data\NYC\data5\170599501\Project Data\ArcGISMXD\Environmental_Figures\2020-12 - Revised RIR\Figure 7 - Soil Analytical Results.mxd Date: 4/28/2021 User: aruane Time: 4:10:35 PM

Path: \langan.com\data\NYC\data5\170599501\Project Data\ArcGIS\MXD\Environmental_Figures\2020-12 - Revised RIR\Figure 8 - Groundwater Contours and Analytical Results.mxd Date: 4/28/2021 User: aruane Time: 1:39:34 PM

Sample ID Sample Date	
Cs (µg/L)	
achloroethene (PCE)	ND
DCs (µg/L)	
nzo(a)an thrace ne	ND
izo(a)py rene	ND
nzo(b)fluoranthene	0.02 J
nzo(k)fluoranthene	ND
ysene	ND
eno(1,2,3-cd)pyrene	ND
rganics (µg/L)	
imony	ND
imony (Dissolved)	ND
	1,740
(Dissolved)	1,680
nga nes e	62.86
nganese (Dissolved)	57.56
lium	323,000
lium (Dissolved)	268,000
AS (ng/L)	
fluorooctanesulfonic Acid (PFOS)	9.44
fluorooctanoic Acid (PFOA)	42.6
and the second s	

22 Farth In	W<		E
		V	12
		Š	-
		0	
	Sample ID	MW-6_0214	
	ample Date	2/14/202	0
VOCs (µg/L)			
Tetrachloroethene (PCE) SVOCs (µg/L)		ND	
Benzo(a)anthracene		0.06	J
Benzo(a)animacene Benzo(a)pyrene		0.05	J
Benzo(b)fluoranthene		0.05	J
Benzo(k)fluoranthene		0.02	J
Chrvsene		0.02	J
Indeno(1,2,3-cd) pyrene		0.03	J
Inorganics (µg/L)		0.00	
Antimony		0.44	J
Antimony (Dissolved)		0.44	J
Iron		1,490	
Iron (Dissolved)		1,070	
Manganese		84.01	
Manganese (Dissolved)		76.79	
Sodium		106,000	
Sodium (Dissolved)		84,200	
PFAS (ng/L)			
Perfluorooctanesulfonic A		26	
Perfluorooctanoic Acid (P	FOA)	19.2	

s	Sample ID ample Date	MW-8_021 2/19/202		GWDUP01_02 2/19/202	
VOCs (µg/L)					
Tetrachloroethene (PCE)		ND		ND	
SVOCs (µg/L)					
Benzo(a) an thra cene		ND		ND	
Benzo(a)pyrene		ND		ND	
Benzo(b)fluoranthene		ND		ND	
Benzo(k)fluoranthene		ND		ND	
Chrysene		ND		ND	
Indeno(1,2,3-cd)pyrene		ND		ND	
Inorganics (µg/L)					
Antimony		0.83	J	0.49	J
Antimony (Dissolved)		1.25	J	0.63	J
Iron		1,2 40	J	1, 160	J
Iron (Dissolved)		1,090	J	1, 170	J
Manganese		77.98	J	69.94	J
Manganese (Dissolved)		76.4	J	81.88	J
Sodium		104,000	J	106,000	J
Sodium (Dissolved)		122,000	J	128,000	J
PFAS (ng/L)					
	cid (PFOS)	58.4	J	67.1	J
Perfluorooctanesulfonic A		26.1	J	28.3	

	1.10		VOCs (µg/L)		CONCERNS !!
			Tetrachloroethene (PCE)	ND	and the second second
		-	SVOCs (µg/L)		100
ID	MW-11_021		Benzo(a)an thracene	ND	100 100
te	2/19/202	20	Benzo(a)py rene	ND	Contraction of the local division of the loc
			Benzo(b)fluoranthene	ND	A CONTRACTOR OF THE OWNER
	ND		Benzo(k)fluoranthene	ND	And a second
			Chrysene	ND	100 million (1990)
	0.07	J	Indeno(1,2,3-cd)pyrene	ND	the second second second
	0.03	J	In organics (µg/L)		
	0.05	J	Antimony	0.46 J	
	0.02	J	Antimony (Dissolved)	0.8 J	and the second se
	0.06	J	Iron	2,490	Contraction of the
	0.03	J	Iron (Dissolved)	2,450	
			Manganese	78.9	CONTRACTOR OF THE
	0.85	J	Manganese (Dissolved)	83.03	100 C
	1.15	J	Sodium	133,000	10. 10.
	449		Sodium (Dissolved)	164,000	
	397		PFAS (ng/L)		
	29.49		Perfluorooctanes ulfonic Aci	d (PFOS) 21.9	C 84
	33.97		Perfluorooctanoic Acid (PFC	DA) 25.8	The second second
	22,500		1 +1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A DOMESTIC OF THE OWNER OF	and and
	26,100		and the second sec	and the second second	
			50	0	50
;)	62.8		and the second s	i	
	11.6		ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER		-
	1.0	1		SCALE IN FEET	
	- 100	*	And the second se		A Design of the local division of the local
			and the second second	and the second second	A DESCRIPTION OF

GROUNDWATER ANALYTICAL RESULTS

SCALE	IN FEET
170599501 Date 4/28/2021 Scale	Figure 8
1 " = 50 ' Drawn By IHB Submission Date	

APPENDIX A

PREVIOUS ENVIRONMENTAL REPORTS (Submitted Under Separate Cover)

LANGAN

APPENDIX B

GEOPHYSICAL SURVEY REPORTS

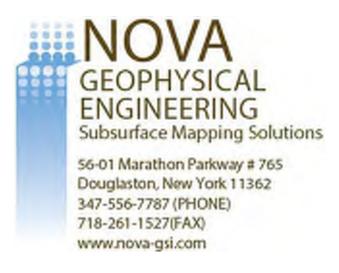
LANGAN

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224

NOVA PROJECT NUMBER:

20-1640


DATED:

February 12, 2020

PREPARED FOR: LANGAN

21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001-2727

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS 56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.novagsi.com

February 12, 2020

Allyson Kritzer Senior Staff Engineer *LANGAN* 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001-2727 P: 973.560.4289 | E: <u>akrizter@langan.com</u>

> Re: Geophysical Engineering Survey (GES) Report Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224

Dear Ms. Kritzer,

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 1607 Surf Avenue, Brooklyn, New York 11224 (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

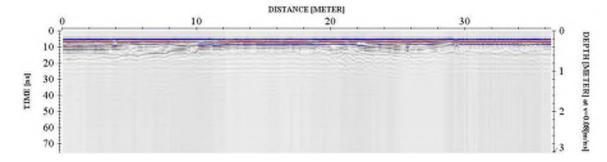
NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify utilities, underground storage tanks and other substructures on February 5th, 2020.

The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the

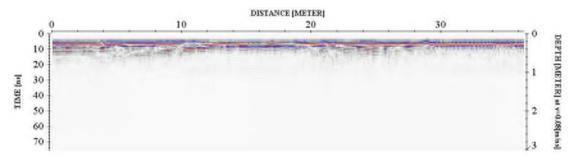
subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

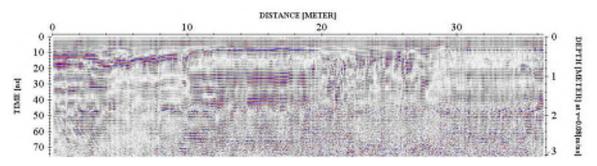

GEOPHYSICAL METHODS

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was used to help determine the locations of utilities within the survey area.

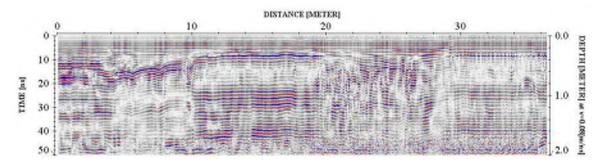
EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.

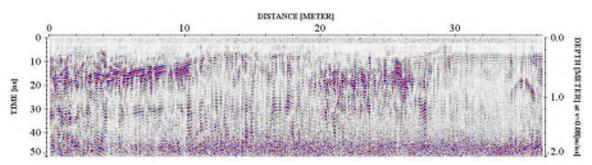

DATA PROCESSING

In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.



Step 1. Import Raw RAMAC data to standard processing format


Step 2. Remove instrument noise (dewow)


Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and represents the subsurface anomalies much more accurately.

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Cloudy, Rain

Temperature: 37° F

Surface: Asphalt, Concrete

Limitations: The geophysical noise level at the site was moderate due to being located in a semiurban environment and active drilling.

RESULTS

The results of the geophysical engineering survey (GES) identified the following at the project site:

- Anomalies resembling potential subsurface utilities (such as electric and gas) were identified within the survey area.
- No large geophysical anomalies resembling an underground storage tank (UST) were identified during the GES.
- A geophysical anomaly resembling an unknown utility line was identified on site. Shown on Survey Plan.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were marked in the onsite mark out.

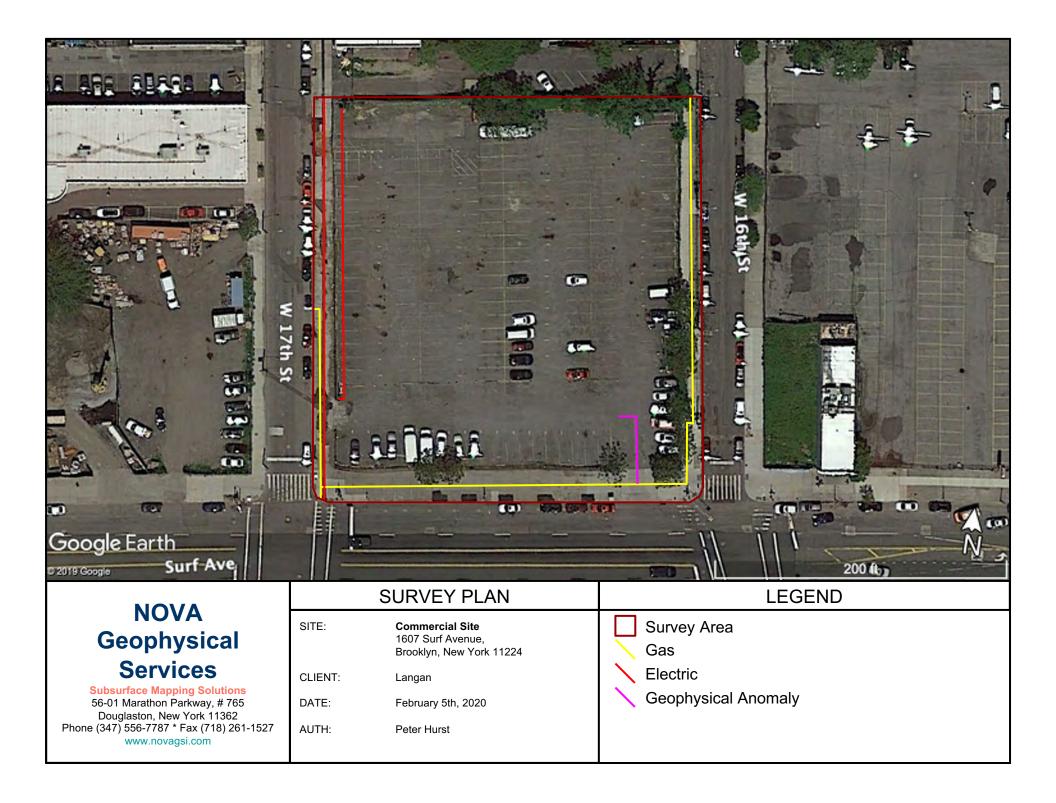
If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

Sweet Call

Levent Eskicakit, P.G., E.P. Project Engineer


Attachments:

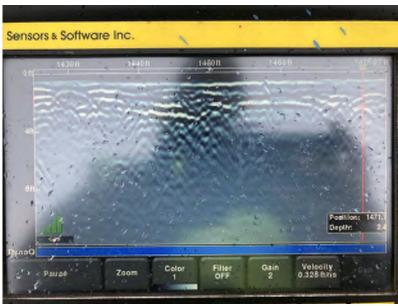
Location Map

Survey Plan

Geophysical Images

V 23 C 1 V 23 C 1 COOGLE EAT		enter de la constant	Werry St U000 ft
NOVA	L	OCATION MAP	LEGEND
Geophysical	SITE:	Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224	
Services	CLIENT:	Langan	
Subsurface Mapping Solutions 56-01 Marathon Parkway, # 765 Douglaston, New York 11362	DATE:	February 5th, 2020	
Douglaston, New York 11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.novagsi.com	AUTH:	Peter Hurst	

GEOPHYSICAL IMAGES Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224 February 5th, 2020



Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224 February 5th, 2020

Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224 February 5th, 2020

Commercial Site 1607 Surf Avenue, Brooklyn, New York 11224 February 5th, 2020

1607 Surf Avenue, Brooklyn, New York 11224 February 5th, 2020

APPENDIX C

SOIL BORING LOGS

LANGAN

L	4	NG/	4/V		Log	of E	Boring			SE	3-1			Sheet	1	of	1
Project						Pr	oject No.										
Location		1607 Surf Avenue				E	evation a	nd D	atum		599501						
		Brooklyn, NY									5 ft NA	VD88					
Drilling (Compa	ny				Da	ate Starte	d					Date	Finished			
Drilling E	auinm	Aquifer Drilling & Tes	sting (ADT)			C	ompletior	Der	oth		2/6/20		Rock	Depth	2/6/	20	
Diming L	-quipii	Geoprobe 7822DT					Simplotion	Dop			15 ft		rtoon	Dopti	1	NA	
Size and	Туре					Nu	umber of	Sam	ples	Dist	urbed	3	Ur	ndisturbed NA	Core		NA
Casing [Diamet	er (in)		Ca	asing Depth (ft)	w	ater Leve	el (ft.))	Firs				ompletion	24 F	IR.	
Casing F	lamme	NA NA	Weight (Ibs)	NA	Drop (in) NA		illing For			$ \nabla$	-	7.8		<u> </u>	Ţ		NA
Sampler		4-ft Acetate Lined Ma		INA.	INA.	-	alal En ain		Α	DT/L	uke Ca	ballero)				
Sampler Sampler Sampor	Hamn		Weight (lbs)	NA	Drop (in) NA	1	eld Engin	eer	1.	anaa	n/Patrio	ok Stor	llev				
7				INA		_			(Sa	mple Da	ata	an				
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	cov.	Penetr. resist BL/6in	Pll Read		(Drilling Flui	emarks	of Casir	ng,
ĕÿ	+7.0						L o -	Nu	E.	Re	Pe BL	(ppi		Fluid Loss, Dri	Iling Resis	stance,	etc.)
	+6.8	ASPHALT R1A (0-22") Black	to dark brown gra	velly fine	SAND glass		Ē	-				0.	n				
		coal fragment (dry)		,	, g ,		- 1 -					0.		Collect SB-	1 0-2	02062	20
							Ē		DRE			0.	D	Collect OD-	1_0-2_	02002	0
							- 2 -	ž	MACROCORE	28"		0.	C				
							Ē	_	MACF			0.	D				
		R1B (22-28") Redo	diah brown fina S		o fino graval		- 3 -					0.	D	Collect SB-	1 2-4	02062	20
		coal fragment, bric	sk (dry) [FILL]	AND, SOM	e fine gravel,		-					0.	D				
	+3.0	R2A (0-20.5") Tan	to light grey fine ?	SAND. tra	ce fine gravel		- 4 -	-				0.	C				
		(moist)		,	3		-	1				0.	D				
							- 5 -	-				0.	D				
							-		CORE			0.	D				
							- 6 -	22	MACROCORE	22"		0.	D				
							Ē	-	MA			0.	C				
							- 7 -	1				0.	D	Collect SB-	1_6-8_	02062	20
		R2B (20.5-22") Ta	on to light grov find		aco fino gravol	$\overline{\Delta}$	7 <u>-</u>					0.					
		(wet)			-		- 8 -					0.					
		R3 (0-36") Grey to	purplish-grey fine	e SAND (v	vet)		F _	-				0.					
							- 9 -	-	щ			0.					
							- 10 -	8	DCOF	36"		0.					
									MACROCORE	õ		0.					
							- - 11 -	-	Σ			0.					
							E					0.					
					4)		- 12 -					0.					
		R4 (0-30") Dark gr	ey line SAND, Ira	ice silt (We	u)		-					0.					
							- 13 -		ORE			0.	D				
							-	5	MACROCORE	30"		0.	D				
							- 14 -		MAC			0.	D				
							E					0.	C				
	-8.1						- 15 -	-						End of bori			
							Ē							Borehole ba			
							- 16 -							well MW-1			Ŭ
							- 										
							- 17 -				·						

L	A	NEA	4 /V		Log	of	Boring			SE	3-2			Sheet	1	of	1
Project						Pi	roject N	Э.									
Location		1607 Surf Avenue				E	evation	and D	atum		59950´	1					
		Brooklyn, NY								7.7	1 ft NA	VD88					
Drilling (Compa					D	ate Star	ted					Date	Finished			
Drilling E	Equipm	Aquifer Drilling & Tes nent	sting (ADT)			С	ompletic	on Dep	oth		2/7/20		Rock	k Depth	2	2/7/20	
		Geoprobe 7822DT						'			10 ft					NA	
Drilling E Size and Casing E	I Туре	of Bit 2-in Direct Push				N	umber c	f Sam	ples	Dist	turbed	2	U	ndisturbed NA		Core	NA
Casing D	Diamet	ter (in)		С	asing Depth (ft)	1.0	ater Le	ol (ft	\	Firs			C	ompletion	2	24 HR.	
Casing H	Jomm	NA	Weight (lbs)		Drop (in)		rilling Fo			$ \Sigma$		7.5		Y NA		<u> </u>	NA
Sampler				NA	NA	_				ADT/L	uke Ca	aballero	,				
Sampler		4-ft Acetate Lined Ma	acrocore Weight (lbs)		Drop (in)	_ Fi	eld Eng	ineer									
	патт	NA NA	Weight (185)	NA	NA				L	anga	n/Patri mple D	ck Stov	all				
MATERIAL SYMBOL	Elev.		Sample Desc	ription			Dept	าษั	e			PIE Read)		ema		
SYN	(ft) +7.7		Sample Desc	npton			Scale	Number	Type	Rec (in	Penetr. resist BL/6in	Read (ppr	ling n)	(Drilling Flui Fluid Loss, Dri	a, De illing F	Resistance	ing, e, etc.)
	+7.6	- ASPHALT						-									
		R1 (0-36") Black g brick, concrete (dry	ravelly fine SANE), glass, c	oal fragment,		È.	-				0.0					
			<i>y</i> /[]				- 1 E	-	ш			0.0		Collect SB-	-2_0-	2_0211	20
							-	1_	COR	Ŧ.,		0.0					
							2		MACROCORE	36"		0.0					
							È ,	-	MA			0.0					
							- 3	-				0.0					
							4	-				0.0					
		R2A (0-17.5") Gre	ey fine GRAVEL, b	prick (mois	st) [FILL]		- 4	-				0.0					
							- 5	-				0.0					
							Ę	4	ЗE			0.0					
							6		ocol	20"		0.0					
							F	1	MACROCORE	2		0.0					
							E 7	_	≥			0.0		Collect CD	26	0 0011	20
				huist (\sum	7					0.0		Collect SB-	-2_0-	0_0211	20
		R2B (17.5-20") Gr	-				- 8	-				0.0					
		R3 (0-24") Grey to	Ted line GRAVE	L (wet) [FI	ILLJ		E	-	DRE			0.0)				
							- 9	-182	MACROCORE	24"		0.0)				
							E	-	MACI			0.0)				
	-2.3						÷ 10	1						End of bori	ng a	t 10 feet	bgs
							F	-						due to refu backfilled v	sal. I	Borehole	÷
							- 11	-						non-impact	ted I	DW and	
							-	-						patched wi	th co	ncrete.	
							- 12	-									
							E	-									
							- 13	-									
							E	-									
							- 14	-									
							Ę	-									
							- 15 -	-									
							-	4									
							- 16	-									
							È	=							_		
							<u>→</u> 17										

	_/	4			Boring			SB-3			Sheet 1	of	1
Proje	ect		1607 Surf Avenue	Pr	oject No).		17059950	1				
Loca	ation			EI	evation a	and D	atum		•				
Drilli	ina C	ompa	Brooklyn, NY	D	ate Start	ed		7.02 ft NA	VD88	Date I	Finished		
			Aquifer Drilling & Testing (ADT)					2/7/20)			2/7/20	
Drilli	ing E	quipm		C	ompletio	n Dep	oth	45.6		Rock	Depth		
Size	and	Туре			umber of	fSom	nloc	15 f Disturbed		Un	disturbed	NA Core	
Keport: Log - LANGAN Size	ing D	iamet	2-in Direct Push er (in) Casing Depth (ft)	-				First	3	Co	NA mpletion	24 HR.	NA
			NA NA		ater Lev		·	$\overline{\Sigma}$	7.5		NA	Ţ	NA
∑ ≤ Sam		amme		-	ining i o	ioma		DT/Luke C	aballero)			
Sam	·	Hamm	4-ft Acetate Lined Macrocore	Fi	eld Engi	neer		-					
			NA NA NA NA				L	angan/Patr Sample D		/all			
MATERIAL WATERIAL WATERIAL	SYMBOL	Elev. (ft) +7.0	Sample Description		Depth Scale		Type	Recov. (in) Penetr. resist BL/6in	PI Read (pp	ling	(Drilling Fluid, I Fluid Loss, Drillin	n arks Depth of Cas g Resistance	ing, e, etc.)
	\propto	+6.8			+- 0 - -	-							
	\bigotimes		R1A (0-16") Black to dark brown gravelly fine SAND, coal fragment, brick (dry) [FILL]			_			0. 0.		Callest CD 2	0 0 0007	200
\$	\bigotimes				È.		DRE		0.		Collect SB-3_	_0-2_0207	20
	\bigotimes		R1B (16-36") Dark brown fine SAND, some fine gravel, brick, ceramic, coal fragment (dry) [FILL]		- 2	-12	MACROCORE	36"	0.				
	\bigotimes				F	-	MACI		0.	0			
	\bigotimes				- 3	-			0.	0			
2	\bigotimes	+3.0			Ē.	-			0.	0			
	÷÷×	+3.0	R2A (0-21") Light tan to grey fine SAND, trace fine gravel (moist)		<u>+</u> 4	-			0.				
₩ ₩			(moist)		- 5	_			0. 0.				
70-07					E		RE		0.				
207/2	: :				- 6	22	MACROCORE	24"	0.				
					F	-	MACI		0.	0			
				~	7	-			0.	0	Collect SB-3	_6-8_0207	20
			R2B (21-24") Light tan to grey fine SAND, trace fine gravel	Ā	F	-			0.	0			
			(wet) R3 (0-42") Light grey fine SAND (wet)		- 8	-			0.				
					- 9	_			0. 0.				
					E		RE		0.				
					- 10	-122	MACROCORE	42"	0.		Collect SB-3	9-11 020	720
					-	-	MAC		0.	0			
					- 11	-			0.	0			
ONEC					Ē	-			0.	0			
			R4 (0-36") Grey fine SAND, some silt, trace clay (wet)		- 12	-			0.				
ICRAC(- 13	-	RE		0. 0.				
1/1/6					Ē	- 4	MACROCORE	30"	0.				
					- 14	1	MACF		0.				
					E	-			0.	0			
		-8.0			- 15	-			-		End of boring		
N COM					Ē	-					Borehole bac and converte		
					- 16 -	-					well MW-2.		
					Ē 17 -	-							

Lo	oject																
			1607 Surf Avenue				Pr	oject No			170	599501	1				
Dr	cation						El	evation a	and D	atum		00000	•				
	illing C		Brooklyn, NY				Da	ate Start	ed		6.9	5 ft NA		Date F	Finished		
. 1			Aquifer Drilling & Test	ting (ADT)								2/6/20		Duito	, monou	2/6/20	
Dr	illing E						Co	ompletio	n Dep	oth		45.6		Rock I	Depth	N1.A	
Si	ze and	Туре					NI	umber of	Som	nloo	Dist	15 ft urbed		Un	disturbed	NA Core	
Dr Siz	asing D		2-in Direct Push er (in)			Casing Depth (ft)	+				Firs	t	3	Со	NA mpletion	24 HR.	NA
			NA	Weight (Ibs)		NA Drop (in)		ater Lev illing Fo		·	$ $ ∇	-	7.8		<u> </u>	Ţ	NA
Sa	asing H ampler				NA	NA		ining i o	roma		DT/L	uke Ca	aballero)			
S	ampler		4-ft Acetate Lined Ma	Weight (lbs)		Drop (in)	Fie	eld Engi	neer								
			NA		NA	NA				L		n/Patrie mple Da		all	_		
Sa Sa	MATERIAL SYMBOL	Elev. (ft) +7.0		Sample Descr	ription			Depth Scale		Type	Recov. (in)	Penetr. resist BL/6in	Pli Read (pp	ling	Rer (Drilling Fluid, Fluid Loss, Drillir	narks Depth of Ca ng Resistand	sing, æ, etc.)
\otimes	****	+6.8	ASPHALT R1A (0-34") Black t	to dark brown gro	volly fino	SAND brick		- 0 -	-				0.	<u>_</u>			
\otimes			coal fragment, slag		veny nne	SAND, DIICK,		- - 1	-				0. 0.		Collect SB-4	0 2 020	820
								E		ORE			0.		Collect SD-4	_0-2_020	020
								2	- 22	MACROCORE	46"		0.	C			
\otimes										MAC			0.	D			
\otimes			R1B (34-46") Tan to coal fragment (dry)	o grey fine SAND [FILL]	, some fi	ne gravel, glass,		- 3	-				0.	D			
\otimes		+3.0	3 ()/					4	-				0.				
			R2A (0-30") Tan to	grey fine SAND ((moist)			- 4	-				0.				
								- 5	-				0.				
								Ē	-	ORE			0.	D			
<u> </u> :								6	- 22	MACROCORE	32"		0.	C			
								-	-	MAC			0.	0			
								- 7	-				0.		Collect SB-4	_6-8_020	620
			R2B (30-32") Tan to	o grey fine SAND	(wet)		$\overline{\Delta}$,_ 8	-				0. 0.				
			R3 (0-24") Dark gre	ey fine SAND, tra	ce silt (w	et)							0.				
								- 9	-				0.				
								-	-	ORE			0.	C			
								- 10	32	MACROCORE	24"		0.	C			
									-	MA			0.				
								- 11 -	-				0.		Collect SB-4	_10-12_0	20620
				Nu fine CAND				- 12	1				0.				
			R4 (0-32") Dark gre	ey line Sand, sor	ne siit, ti	ace clay (wel)		F	-				0.				
								- 13	-	ORE			0.	D			
									- R	MACROCORE	32"		0.	D			
								14	-	MA			0.				
		-8.1						- 15	1				0.	D			
							_	- 15 -	-						End of boring Borehole bac	kfilled wit	h No. 2
								16	-						sand and nor and patched		
								-	-								

L	A		of E	Boring			SB-5			Sheet 1	of	1
Project		1607 Surf Avenue	Pr	oject No.			17059950	1				
Locatior	ı		El	evation a	nd D	atum	1					
Drilling	Compa	Brooklyn, NY	Da	ate Starte	d		7.71 ft NA	VD88	Date I	Finished		
		Aquifer Drilling & Testing (ADT)			-		2/6/20		Date .	linenea	2/6/20	
Drilling	Equipm		Co	ompletior	l Dep	oth	45.9		Rock	Depth	N14	
Size and	d Type		NI	umber of	Sam	nlos	15 ft Disturbed		Un	disturbed	NA Core	
Size and Casing I	Diamet	2-in Direct Push er (in) Casing Depth (ft)				<u> </u>	First	3	Co	MA mpletion	24 HR.	NA
	Jomm	NA NA NA er		ater Leve	• • •	·	ĮΣ	7.8		<u> </u>	Ī	NA
E Casing l Casing l Sample				ining i oi	oma		DT/Luke Ca	aballero)			
% Sample		4-ft Acetate Lined Macrocore	Fie	eld Engin	eer							
		NA NA NA NA				L	angan/Patri Sample D		/all	_		
MATERIAL Symbol SYMBOL	Elev. (ft) +7.7	Sample Description		Depth Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	PI Read (pp	ling	(Drilling Fluid, I Fluid Loss, Drillin	1arks Depth of Casi g Resistance	ing, , etc.)
	+7.6	─ ASPHALT R1A (0-20") Black gravelly fine SAND, concrete, brick (dry)		- 0 -	-			0	0			
Ĭ		[FILL]		F - 1 -				0. 0.		Collect SB-5	0.2.0206	20
\$						ORE		0.		Collect SD-5	_0-2_0200	20
		R1B (20-46") BRICK AND CONCRETE		- 2 -	Ε	MACROCORE	46"	0.	0			
				E		MAC		0.	0			
				- 3 -				0.	0			
Ĭ	+3.7			Ē				0.				
		R2A (0-18.75") Tan to grey fine SAND, trace fine gravel (moist)		- 4 -	-			0. 0.				
Ē ₩				- 5 -				0.				
				F		ORE		0.				
				- 6 -	22	MACROCORE	20"	0.	0	Collect SB-5	6-8_0206	20
						MAC		0.	0			
				- 7 -				0.	0			
		R2B (18.75-20") Tan to grey fine SAND, trace fine gravel (wet)	Ā	/_ 				0.				
		R3 (0-24") Dark grey fine SAND (wet)		- 8 -				0. 0.				
				- 9 -				0.				
≝				Ē		ORE		0.	0			
				- 10 -	22	MACROCORE	24"	0.	0			
				Ē		MAC		0.	0			
				- 11 - -				0.		Collect SB-5_	_10-12_02	0620
				- 12 -				0.				
		R4 (0-30") Dark grey fine SAND, trace silt (wet)						0. 0.				
RRCD				- 13 -		ORE		0.				
				F	2	MACROCORE	30"	0.	0			
				- 14 -		MAC		0.	0			
				F.				0.	0			
	-7.3			- 15 - -						End of boring Borehole bac		
				- 16 -						and converted well MW-3.		
ANGA												
				لے ₁₇ –	1							

				Boring				SB-6			Sheet 1	of	1
Project		1607 Surf Avenue	Pr	roject N	lo.		1	70599501					
Location			EI	levatior	and D	Datu	ım						
Drilling (Brooklyn, NY	Di	ate Sta	rted		7	7.15 ft NA	VD88	Date I	Finished		
		Aquifer Drilling & Testing (ADT)						2/11/20		Date .		2/11/20	
Drilling E			C	omplet	on De	pth		45.0		Rock	Depth		
Size and	Туре			umber	of Son			15 ft Disturbed		Un	disturbed	NA Core	
Casing D		2-in Direct Push er (in) Casing Depth (ft)	_			·		irst	3	Co	NA mpletion	24 HR.	NA
		NA NA		/ater Le	`	<u> </u>		$\overline{\Delta}$	7.5		_ NA	Ī	NA
Casing F Sampler				inning i	oreme		AD.	T/Luke Ca	ballero)			
Sampler		4-ft Acetate Lined Macrocore	Fi	eld En	gineer								
J		NA NA NA NA						igan/Patrie Sample Da		/all			
Sampler Sampler SAMBOL SAMBOL	Elev. (ft) +7.2	Sample Description		Dep Sca		H	Type	(in) Penetr. resist BL/6in	PI Read (pp	ling	(Drilling Fluid, I Fluid Loss, Drilling	n arks Depth of Cas g Resistance	ing, e, etc.)
	+7.0	ASPHALT R1A (0-20") Black gravelly fine SAND, glass, ceramic (dry)		÷ 0	-				0	0			
		[FILL]		F 1	_				0. 0.		Collect SB-6	0 2 0211	20
				-	-	ORE			0.		Collect SD-0_	0-2_0211	20
				- 2	-12	MACROCORE		36"	0.	0			
		R1B (20-36") Tan to grey fine SAND, some fine gravel, concrete, brick, coal fragment (dry) [FILL]		E		MAC			0.	0			
				- 3	-				0.	0			
				F,	-				0.				
	+2.7	R2A (0-4") Tan to black gravelly fine SAND [FILL]		– 4 –	-				0. 0.				
		R2B (4-31.5") Grey fine SAND, trace silt (moist)		- 5	-				0.				
						ORE			0.				
				- 6	- 22	MACROCORE		36	0.	0	Collect SB-6_	6-8 0211	20
				Ē	-	MAC			0.	0			
			∇	- 7 7	-				0.	0			
		R2C (31.5-36") Grey fine SAND, trace silt (wet)	<u> </u>	- 	-				0.				
		R3 (0-36") Grey fine SAND, some silt (wet)		- 8	-				0. 0.				
				- 9	_				0.				
				-	-	ORE	5		0.				
				- 10		MACROCORE		36	0.	0	Collect SB-6_	9-11_021	120
					-	MAC			0.	0			
				- 11					0.				
				- 12	-				0.				
		R4 (0-36") Grey fine SAND, some silt (wet)		- 12	-				0. 0.				
				- 13	_	RE			0.				
				-	- 12	MACROCORE		36"	0.				
				- 14		MAC			0.	0			
									0.	0			
	-7.9_			+ 15 - - - 16							End of boring Borehole back sand and non and patched v	<pre>kfilled with -impacted</pre>	No. 2 IDW

	4	NG/	4/V		Log		Boring			SE	3-7			Sheet	1	of	1
Project		1007 Curf Augure				Pr	oject No).		470		4					
Location	1	1607 Surf Avenue				Ele	evation a	and D	atum		599502	I					
	2	Brooklyn, NY								7.1	5 ft NA			<u></u>			
Drilling (Jompa	Aquifer Drilling & Tes	sting (ADT)			Da	ate Start	ea			2/7/20		Date	Finished		2/7/20	
Drilling E	Equipm					Co	ompletio	n Dep	oth		2/1/20		Rock	Depth		2/1/20	
		Geoprobe 7822DT								1 = 1	15 ft					NA	
Size and	Туре	of Bit 2-in Direct Push				Nu	umber of	f Sam	ples	Dist	turbed	3	Ur	ndisturbed N		Core	NA
Casing [er (in) NA		Ca	asing Depth (ft) NA	w	ater Lev	el (ft.))	Firs		7.5		mpletion		24 HR.	NA
Casing H	lamm	^e NA	Weight (lbs)	NA	Drop (in) NA	Dr	illing Fo	remai								_	
Sampler		4-ft Acetate Lined Ma	acrocore			– Fié	eld Engi	neer	Α	NDT/L	uke Ca	aballero)				
Sampler	Hamr		Weight (lbs)	NA	Drop (in) NA	1' "			I	anda	n/Patri	ck Stov	all				
L AL					101					Sa	mple D	ata	un		Rema	arko	
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale		Type	i co v.	Penetr. resist BL/6in	PII Read) ling	Drilling Fl Fluid Loss, D			sing,
M _N	+7.2						L 0 -	N	Ē.	Re	Pe Pe	(ppr	n)	Fluid Loss, D	rilling	Resistanc	e, etc.)
\times	+7.0	ASPHALT R1A (0-16") Black	to dark brown gra	velly fine 9	SAND alass		Ę	-				0.0	h				
>>>		(dry) [FILL]	to dant brown gre		c, . 10, 91000		- 1	-				0.0					700
			to brown first OAA		fine another -		È.	-	RE			0.0		Collect SI	5-7_U	-2_0207	20
		R1B (16-42") Tan fragment, brick (dr	to brown tine SAN (FILL)	ש, some ו	me gravel, coal		2	12	MACROCORE	42"		0.0					
							Ē	1	ACR	Т		0.0					
							- 3	-	2			0.0					
							Ē	-				0.0					
			Land Grand CAN	-			- 4	-				0.0					
		R2A (0-12") Tan to (dry) [FILL]	o brown fine SANI	J, some fil	ne gravel, brick			-				0.0					
							- 5	-				0.0					
	+1.8	R2B (12-31.5") Lig	ght tan fine SAND	(moist)				-	RE			0.0					
		. , -	-	. ,			- 6	22	SOCC	36"		0.0)	Collect SI	2.7 F	7 0207	720
								1	MACROCORE	.,		0.0		Collect Of	J-7_C	-1_0201	20
							- 7	-	~			0.0					
			abt top fing SAND	(wot)		$\overline{\Delta}$	r_ 1_	-				0.0)				
		R2C (31.5-36") Lig	-		+)		- 8	-	-			0.0)				
		R3 (0-30") Dark gr	ey line SAND, tra		()		-	-				0.0)				
							- 9	-				0.0)				
							F	-	ORE			0.0)				
							- 10	- 22	MACROCORE	30"		0.0)	Collect SI	3-7 9	-11 020)720
							F	-	MAC			0.0)				-
							- 11	-				0.0)				
							F	-				0.0)				
		R4 (0-36") Dark gr	rev fine SAND so	me silt_tra	ce clav (wet)		- 12	1	+		$\left \right $	0.0)				
			,		, (,		F	-				0.0)				
							- 13	-	ORE			0.0)				
							Ē	- ¥	MACROCORE	36"		0.0)				
							14	-	MAC			0.0)				
							Ē	-				0.0)				
·····	-7.9						15				$\left \right $			End of bo			
							Ē	-						Borehole and conve			
							- 16	-						well MW-			
							Ē	-									
							<u> </u>							1			

L	4	NEA	4/V		Log	of I	Boring			SE	3-8			Sheet	1	of	1
Project		1007.0				Pr	oject No			470	500504						
Location	1	1607 Surf Avenue				EI	evation a	nd D	atum		599501						
Drilling (Brooklyn, NY					ate Starte			7.6	ft NAV		Data	Finished			
Drining		Aquifer Drilling & Tes	sting (ADT)					[,] u			2/6/20		Dale	Tillislied		2/6/20	
Drilling E	Equipm	ent	<u>, , , , , , , , , , , , , , , , , , , </u>			C	ompletior	n Dep	oth		2/0/20		Rock	Depth	-		
Size and		Geoprobe 7822DT				_				Dist	15 ft urbed		Un	ndisturbed		NA Core	
		2-in Direct Push				Nu	umber of	Sam	ples			3		N	4		NA
Casing [NA			asing Depth (ft) NA		ater Leve	• •		Firs 		7.8		mpletion		24 HR. 	NA
Casing I		ĨNA	Weight (Ibs)	NA	Drop (in) NA	Di	illing For	emai				hallara					
Sampler		4-ft Acetate Lined Ma				Fi	eld Engir	neer	A		uke Ca	aballerc)				
Sampler	Hamn	ner NA	Weight (lbs)	NA	Drop (in) NA				La	anga	n/Patrie mple Da	ck Stov	all				
MATERIAL SYMBOL	Elev.		Sample Descr	rintion			Depth	ber	ø			PI)		Rema		
SYN	(ft) +7.6		Sample Desci	npuon			Scale	Number	Type	Reco (in)	Penetr. resist BL/6in	Read (ppr	ling n)	(Drilling Fl Fluid Loss, D	rilling F	Pth of Cas Resistanc	e, etc.)
****	+7.4						⊨ 0 - ⊑	-									
		R1A (0-26") Black fragment, brick (dr		velly fine	SAND, coal		- 1 -	_				0.0					
							- '	-	RE			0.0 0.0		Collect SE	8-8_0	-2_0206	520
							- 2 -	2	soco	46"		0.0					
		R1B (26-46") Light concrete (dry) [FIL		some fine	e gravel, brick,		-	1	MACROCORE	7		0.0					
			-]				- 3 -	-				0.0)				
							-	-				0.0)				
		R2A (0-6") Dark gr	rey gravelly fine S/	AND, coal	l (dry) [FILL]		- 4 -	-				0.0)				
~~~~	+3.1	R2B (6-45") Light	grey fine SAND (n	noist)			- - -					0.0	)				
							- 5 -	-	щ			0.0					
							-	22	COR	48"		0.0					
							- 6 - -	- 22	MACROCORE	4		0.0 0.0		Collect SE	8-8_5	-7_0206	620
							- 7 -	-	Z			0.0					
						$\nabla$						0.0					
		R2C (45-48") Light			ct)	<u> </u>	- 8 -					0.0	)				
		R3 (0-24") Dark gr	ey line SAND, soi		er)		-	-				0.0	)				
							- 9 -	-				0.0	)				
							Ē.	1	COR	<u>.</u>		0.0					
							- 10 -	R3	MACROCORE	24"		0.0					
							- - 11 -	-	Ŵ			0.0 0.0				0.40.00	
												0.0		Collect SE	8-8_1	0-12_02	20620
		R4 (0-28") Dark gr	roy find SAND co	mo cilt tra	aco clay (wot)		- 12 -	-				0.0					
		14 (0-20 ) Daik gi	ey line onid, soi	ne siit, ue	ace clay (wet)		-	-				0.0	)				
							- 13 -	-	ORE			0.0	)				
							-  -	<b>4</b>	MACROCORE	28"		0.0	)				
							- 14 -		MA			0.0					
	-7.4							-				0.0	)				
	-'						- 15 - -	-						End of bo Borehole			
							- - 16 -	1						and conve well MW-	erted t		
															<i>.</i>		
							E 17 -	-									

	A	NEA	<b>4/V</b>		Log		Boring			S	3-9			Sheet	1	of	1
Project		1607 Surf Avenue				Pr	oject N	lo.		170	59950 [,]	1					
Location	1	1007 Sull Avenue				EI	evation	and D	atun	n							
Drilling (	Compa	Brooklyn, NY				Da	ate Sta	rted		7.7	'1 ft NA		Date	Finished			
Ű		Aquifer Drilling & Tes	sting (ADT)							2	2/11/20					2/11/20	
Drilling I	Equipm					Co	ompleti	on De	oth		45.8		Rock	Depth		N14	
Size and	1 Туре					NI	umber	of Som		Dis	15 ft turbed		Ur	ndisturbed		NA Core	
Casing [	Diamet	2-in Direct Push		С	asing Depth (ft)	-				Firs	t	3	Co	I ompletion	NA	24 HR.	NA
-		NA	Moight (lba)		NA		ater Le	`	·	$\overline{\Sigma}$		7.5			NA	Ţ	NA
Casing I Sampler		^e NA	Weight (Ibs)	NA	Drop (in) NA		illing F	orema		ADT/I	_uke Ca	aballero	<b>,</b>				
Sampler		4-ft Acetate Lined Ma	acrocore Weight (lbs)		Drop (in)	Fi	eld Eng	gineer					•				
Sampler	nam I	NA		NA	NA				L	_anga Sa	an/Patri ample D	<u>ck Stov</u> ata	/all				
MATERIAL SYMBOL	Elev.		Sample Desc	ription			Dept	h ba	e			PI	D	(Drilling	Rem		sina
	(ft) +7.7						Scal	n b Number	Tvpe	Rec (ir	Penetr. resist BL/6in	Read (ppi		(Drilling Fluid Loss	Drilling	g Resistanc	e, etc.)
	+7.6	ASPHALT R1A (0-26") Black	gravelly fine SAN	D alass	coal fragment		ŧ	-				0.	n				
		brick (dry) [FILL]	graveny nine e/ av	D, 91000,	ooa nagmont,		- 1	_				0.		Collect	SB-0	0-2 021	120
							Ē	-	ORE			0.		Collect	50-5_	0-2_021	120
							- 2	-15	MACROCORE	36"		0.	0				
							-	-	MAC			0.	0				
		R1B (26-36") Grey	fine GRAVEL, br	rick (dry) [	FILL]		- 3	-				0.	0				
							Ē.	-				0.					
		R2A (0-20") Grey f	fine GRAVEL, brid	ck (dry) [F	ILL]		- 4	-				0.					
							- 5	_				0. 0.					
							Ē	-	RE			0.					
	+1.5						- 6	- 22	MACROCORE	36"		0.					
		R2B (20-31.5") Lig	ht tan fine SAND	, trace fin	e gravel (moist)			-	MACF			0.	0				
						<u> </u>	- 7	-				0.	0	Collect	SB-9_	6-8_021	120
		R2C (31.5-36") Lig	ght tan fine SAND	, trace fin	e gravel (wet)	Ţ	Ē	-				0.	0				
		R3 (0-38") Grey fin	ne SAND, trace si	lt (wet)			- 8	-				0.	0				
							F _	-				0.					
							- 9	-	RE			0. 0.					
							- - 10		000	38"		0.		Collect	28.0	9-11_02	1120
								-	MACROCORE			0.		Collect	50-5_	5-11_02	1120
							- 11	-				0.	0				
							E	-				0.	0				
		R4 (0-36") Grey to	brown fine SANE	), some si	It, trace fine		- 12	+	+			0.	0				
		gravel (wet)					-	-	щ			0.					
							- 13 -	- 42 42	MACROCORE	36"		0.					
							- 14	-	ACRC	Ř		0. 0.					
	]						È '	-	Σ			0.					
	-7.3						- - 15	1				0.	-	End of F	orina	at 15 fee	t bas
							Ę	Ŧ						Borehol	e back	filled to	12 feet
							- 16	-						well MW		l into moi	nong
							È	1									
L	1						<u>└</u> 17			1	1			1			

		NG	<b>-1/V</b>		Log		oring			SB	-10			Sheet	1	of	1
Project		4007.0.4				Pro	ject No			470							
Location	1	1607 Surf Avenue				Ele	vation a	nd D	atum		59950´	1					
		Brooklyn, NY								7.3	1 ft NA						
Drilling (	Compa					Dat	te Starte	ed					Date I	Finished			
Drilling I	Eauipn	Aquifer Drilling & Tement	sting (ADT)			Co	mpletio	ו Dec	oth		2/6/20		Rock	Depth	2/6/	20	
	- 11	Geoprobe 7822DT									15 ft				1	NA	
Size and	І Туре					Nu	mber of	Sam	ples	Dist	urbed		Un	disturbed	Core		
Casing [	Diamet	2-in Direct Push er (in) NA		C	Casing Depth (ft) NA	Wa	ater Lev	el (ft.)	)	Firs		3	Co	mpletion NA	24 H	IR.	NA
Casing I	lamm		Weight (Ibs)	NA	Drop (in) NA		lling Fo			<u> </u>		1			<u>¥</u>		
Sampler		4-ft Acetate Lined M		IN/A	INA INA	╘			Α	DT/L	uke Ca	aballerc	)				
Sampler	Hamr	per	Weight (lbs)	N1A	Drop (in)	_ Fie	ld Engir	neer			n (Detri	ale Otas					
		NA		NA	NA	<u> </u>					mple D	<u>ck Stov</u> ata	all	_			
MATERIAL SYMBOL	Elev.		Sample Descr	ription			Depth Scale	ber	be		etr. ist 6in	PII Read	)	(Drilling Fluid	emarks		a
SY	(ft) +7.3			1				Number	Type	Eeo Teo	Penetr. resist BL/6in	(ppr		Fluid Loss, Dril	ling Resis	stance,	etc.)
****	+7.2						— 0 - -	-									
		R1A (0-24") Black coal fragment (dry		ivelly fine	SAND, glass,	-	-	-				0.0					
		0 ( )	, , , , , , , , , , , , , , , , , , , ,				- 1 · -	_	ш			0.0		Collect SB-	10_0-2_	_0206	20
							-		MACROCORE	5		0.0					
		R1B (24-46") Dark		), some f	ine gravel, brick,		- 2 -	Ε	ACRC	46"		0.0					
		concrete (dry) [FIL	-L]			-	-	-	M			0.0					
							- 3 -	-				0.0					
						-	-	-				0.0					
		R2A (0-14") Light	tan fine SAND, so	me fine g	gravel (dry) [FILL]		- 4 -	-				0.0	)				
							-	-				0.0	)				
							- 5 -	_	ш			0.0					
	+1.5						-		MACROCORE	÷		0.0	)				
		R2B (14-22.5") Gr	rey to tan fine SAN	ID (moist	t)	ł	- 6 -	22	CRO	30"		0.0	)	Collect SB-	10_5-7	_0206	20
	]						-	-	MA			0.0	)				
		R2C (22.5-30") Gi	rey to tan fine SAN	D (wet)		<u> </u>	- 7 -	-				0.0	)				
							-	-				0.0	)				
		R3 (0-28") Light ta	an to grey fine SAN	ND, some	e silt (wet)	-	- 8 -	-				0.0	)				
							-	-				0.0	)				
						ŀ	- 9 -	-	ш			0.0	)				
							-	1_	COR	-		0.0	)				
						ŀ	- 10 ·	28	MACROCORE	28"		0.0	)				
							-	-	MA			0.0					
						ŀ	- 11 ·	-				0.0		Collect SB-	10_10-1	12_02	0620
						ŀ	-	-				0.0					
	]	R4 (0-28") Dark gr	rey fine SAND, sor	me silt, tr	ace clay (wet)	ŀ	- 12 -	-	$\top$			0.0	)				
						-	-	-	ш			0.0	)				
						-	- 13 -	1_	CORI			0.0	)				
							-	- 22	MACROCORE	28"		0.0					
						ŀ	- 14 -	3	MA			0.0	)				
	_					ļ	-	-				0.0	)				
	-7.7						- 15 ·	-						End of borin			
						ŀ	_	-						Borehole ba	ted into		
						ŀ	- 16 -	1						well MW-7.			-
						ļ	_	-									
	1						- 17 -	1	1	1	L			1			

L	A	NGA	AN		Log	of E	Boring			SB	-11			Sheet 1	of	1
Project						Pro	oject No.									
Location	1	1607 Surf Avenue				Fle	evation a	nd Da	atum		599501	1				
		Brooklyn, NY					oranon a				1 ft NA	VD88				
Drilling	Compa					Da	ate Starte	d					Date	Finished		
E Drilling I	auion	Aquifer Drilling & Tes	sting (ADT)			Co	mpletion	Dep	th	2	/11/20		Rock	Depth	2/11/20	
ANG	-40.6.	Geoprobe 7822DT					protion	Dop			15 ft			Dobri	NA	
Size and	1 Туре	of Bit 2-in Direct Push				Nu	mber of	Sam	ples	Dist	urbed	3	Ur	ndisturbed NA	Core	NA
Size and Casing I	Diame			C	Casing Depth (ft) NA	w	ater Leve	l (ft.)		Firs		7		ompletion NA	24 HR.	NA
Casing I	Hamm	^e ÑA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing For	emar						<u> </u>	-	
Sampler		4-ft Acetate Lined Ma	acrocore		L	Fie	eld Engin	eer	A	DT/L	uke Ca	aballero	C			
Sampler	Hamr	ner NA	Weight (Ibs)	NA	Drop (in) NA	1		001	L	anga	n/Patrie	ck Stov	vall			
Casing I Sampler Sampler Naterial Sampler	-		-			-	D. //	<u> </u>		Sa	mple Da	ata		Ren	narks	
MATERIAL SYMBOL	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PI Read	ding	(Drilling Fluid, Fluid Loss, Drillin	Depth of Cas	sing,
	+7.7	- ASPHALT					- o -	ź		Ř	<u>а - п</u>	(pp	m)		y Resistance	e, etc.)
		R1 (0-36") Black gi	ravelly fine SAND	, brick, co	oncrete, glass			-				0.	0			
\$		(dry) [FILL]	-		-		- 1 -					0.	0	Collect SB-17	0-2 02	1120
									ORE			0.	0			
							- 2 -	Ε	MACROCORE	36"		0.	0			
							= :	1	MAC			0.	0			
							- 3 -	-				0.	0			
ž												0.	0			
<		R2A (0-28") Black	gravelly fine SANI	D, brick,	coal fragment,		- 4 -	-				0.	0			
		glass (dry) [FILL]										0.	0			
ž 🗱 🕅							- 5 -					0.	0			
									CORI	-		0.	0			
							6 -	2	MACROCORE	40"		0.	0			
Į	+0.9	D2D (29 20") Croy	to dark growfing		range gilt (maint)	$\neg \nabla$	- ·	1	MA			0.				
		R2B (28-30") Grey R2C (30-40") Grey	to dark grey fine	SAND, tr SAND, tr	race silt (moist)	<u> </u>	- 7 -					0.		Collect SB-17	l_6-8_02´	1120
Į	:						- 8 -	1				0.				
	•	R3 (0-40") Grey fin	ne SAND, some si	lt (wet)								0.				
							- 9 -					0.				
									띮			0. 0.				
	•						- 10 -	R3	000	40"		0.		Collect CD 1		21120
ä ∠									MACROCORE	4		0.		Collect SB-17	1_9-11_02	21120
							- 11 -	-	2			0.				
	•											0.	0			
<u>Ş</u>		R4 (0-36") Dark gro	ev fine SAND sor	ma silt (v	(ot)		- 12 -	-				0.	0			
		Tra (0-50 ) Dark gr										0.	0			
SRCD/	•						- 13 -		ORE			0.	0			
New .							E :	8	MACROCORE	36"		0.	0			
							- 14 -	1	MAC			0.	0			
												0.	0			
	-7.3						- 15 -	-						End of boring	at 15 fee	t bgs.
								1						Borehole bac sand and pat		n No. 2
AIN							- 16 -							concrete.		
TAN							E									
~							└─ 17 ─	-	1	1				1		

L	A		of E	Boring			SB	-12			Sheet 1	of	1
Project			Pr	oject No.									
Location	1	1607 Surf Avenue	El	evation ar	nd Da	atum		599501					
		Brooklyn, NY						2 ft NA	VD88				
Drilling (	Compa	-	Da	ate Starteo	b					Date	Finished		
Drilling E	Equipp	Aquifer Drilling & Testing (ADT)		ompletion	Den	th		2/7/20		Rock	Depth	2/7/20	
	_quipii	Geoprobe 7822DT		Jubieriou	Бер	uı		15 ft		NUCK	Deptin	NA	
Size and	і Туре	of Bit	N	umber of S	Sam	oles	Dist	urbed		Ur	ndisturbed	Core	
Casing [	Diame	2-in Direct Push ter (in) Casing Depth (ft)	-				Firs	t	3	Co	NA ompletion	24 HR.	NA
Drilling E Size and Casing I		NA NA		ater Level	• •		$ $ $\nabla$	-	7		NA	$\bar{\mathbf{\Lambda}}$	NA
Casing		eNA Weight (Ibs) NA Drop (in) NA		illing Fore	emar			uke Ca	ballor				
Sampler Sampler		4-ft Acetate Lined Macrocore	Fi	eld Engine	eer				abalier	,			
Sampler	Hamr	ner NA Weight (Ibs) NA Drop (in) NA				L	anga	n/Patrio	ck Stov	all			
3IAL 30L	Elev.			Depth	5	<u> </u>		mple Da			Rei	narks	
MATERIAL	(ft)	Sample Description		Scale	Number	Type	(in)	Penetr. resist BL/6in	Pll Reac (ppi	ling	(Drilling Fluid, Fluid Loss, Drilli		
	+7.3	- ASPHALT		0 -	z		Ľ.	<u>с</u> – ш	(ppi	11)		5	. ,
		R1A (0-18") Black to dark brown gravelly fine SAND, coal							0.0	D			
		fragment, glass (dry) [FILL]		- 1 -					0.0	C	SB-12_0-2_	020720	
						ORE			0.0	C			
		R1B (18-36") Light tan fine SAND, trace fine gravel, brick, coa	ıl	2 -	Ř	MACROCORE	36"		0.0	C			
		fragment (dry) [FILL]				MAC			0.0	D			
				- 3 -					0.0	D			
									0.0	D			
		R2A (0-12") Light tan to dark brown fine SAND, brick, coal		- 4 -					0.0	C			
		fragment (dry) [FILL]							0.0	C			
	+2.1			- 5 -					0.0	C			
		R2B (12-28.5") Light grey to tan fine SAND (moist)				MACROCORE			0.0	D			
	]			6 -	8	CROC	38"		0.0	D	SB-12_5-7_	020620	
						MAG			0.0	D			
		R2C (28.5-38") Light grey to tan fine SAND (wet)	<u> </u>	- 7 -					0.0	C			
									0.0	D			
		R3 (0-28") Light tan to grey fine SAND, some silt (wet)		- 8 -	-				0.0	D			
									0.0	D			
				- 9 -		ш			0.0	C			
					_	COR	=.		0.0	D			
				- 10 -	RS	MACROCORE	28"		0.0	C			
						MA			0.0				
				- 11 -					0.0		SB-12_10-1	2_020620	
									0.0				
		R4 (0-20") Tan to grey fine SAND, some silt (wet)		- 12 -					0.0				
				- 13 -		Ë			0.0				
					R4	MACROCORE	28"		0.0				
				- 14 -		ACR	3		0.0				
						Σ			0.0 0.0				
	-7.7			- - 15 -					0.0				
											End of boring Borehole bac		
				- 16 -	1						sand and no and patched	n-impacted	IDW
				-									0.0.
<u> </u>				E 17 -									

	L	A	NGA	<b>A/V</b>		Log	of E	Boring	J _			SB	-13			Sheet	1	of	1
Γ	Project						Pro	oject N	0.										
+	Location	1	1607 Surf Avenue				Ele	evation	and	Da			599501						
			Brooklyn, NY									7.3	2 ft NA						
	Drilling (	Compa					Da	te Star	ted			~	140/00		Date	Finished	0	140/00	
AN	Drilling E	Equipm	Aquifer Drilling & Tes	sting (ADT)			Co	mpleti	on De	ept	h		/10/20		Rock	Depth	2	/10/20	
UNA ANG	-		Geoprobe 7822DT										15 ft					NA	
- Bo	Size and	І Туре	of Bit 2-in Direct Push				Nu	mber o	of Sa	mp	les	Dist	urbed	3	Ur	ndisturbed	NA	Core	NA
epc	Casing [		ter (in) NA		C	asing Depth (ft) NA		ater Le				First		7.5		ompletion		24 HR. 卫	NA
5	Casing H	lamm	^e ÑA	Weight (Ibs)	NA	Drop (in) NA	Dri	illing F	orem	an									
42 AI	Sampler	•	4-ft Acetate Lined Ma				Fie	eld Eng	ineei	r	A	DI/L	uke Ca	ballero	)				
7:58:	Sampler	Hamr	ner NA	Weight (Ibs)	NA	Drop (in) NA		C			La	anga	n/Patrie	ck Stov	/all				
2020	OL	Elev.						Dont	h .	_		Sa	mple Da	ata		_	Rema	arks	
3/25/2020 7:58:42 AM	MATERIAL SYMBOL	(ft)		Sample Descr	ription			Dept Scal	e	Number	Type	(in)	Penetr. resist BL/6in	PI Read	ding	(Drilling Fluid Loss	Fluid, De	pth of Cas	ing,
	~ ~ ~ ~ ~	+7.3	- ASPHALT					— o		Ż	•	£	с - п	(pp	m)		, D		, 0.0.)
E.G			R1A (0-18") Black	to dark brown gra	velly fine	SAND, glass,	_/	_	-					0.	0				
₹F Ø			brick (dry) [FILL]					- 1	-					0.	0	Collect	SB-13	0-2_021	020
INS 2								_	-		ORE			0.	0		_	·· _·	
1/160			R1B (18-40") Light	t tan fine SAND, tr	race fine g	gravel (dry) [FILL	]	2	- 2	r	MACROCORE	40"		0.	0				
<b>O</b> E								-	-		MAC			0.	0				
d 1 1 0 1								- 3	-					0.	0				
NCES								-	-					0.	0				
≝ľ			R2A (0-12") Dark g	arev to dark brown	n fine SAN	ND. trace fine		- 4	+	_				0.	0				
MED			gravel (dry) [FILL]	<u>.</u>		,		-	-					0.	0				
2 RE	××××	+2.3	R2B (12-42") Light	t tan fine SAND (n	noist)			- 5	-					0.	0	Collect	SB-13_	4-6_021	020
20-0					,			-	-		ORE			0.	0			_	
3S/2(								- 6		2	MACROCORE	48"		0.	0				
<u><u></u></u>								-	-		MAC			0.	0				
								- 7	-					0.	0				
ATA			R2C (42-48") Light	t tan fine SAND (v	vet)		Ţ	-	-					0.	0				
WN			R3A (0-20") Grey t	to tan fine SAND,	trace fine	gravel (wet)		- 8	+					0.	0				
NIR(									-					0.	0				
								- 9	-					0.	0				
E									-	_	CORI			0.	0				
DISC								- 10		ř	MACROCORE	32"		0.	0	Collect	SB-13_	9-11_02	1020
ATA/			R3B (20-32") Grey	fine SAND, some	e silt (wet)	)		L 	-		MA			0.		Root fib	ers		
D LC								- 11						0.					
OUE								-	-					0.					
11/PR			R4 (0-36") Grey fir	ne SAND, some si	lt, trace c	lay (wet)		- 12	1					0.					
59950									-		щ			0.					
11705								- 13		4	COR	5		0.					
ATA5										צ	MACROCORI	36"		0.					
, ZCID								- 14	-		Ŵ			0.					
TAIN	<u> </u>	-7.7						- - - 45	1					0.	U				
MDA							_	- 15	-									it 15 feet illed to 1	
L.CO								- 16	_							and cor	verted i	into mon	
ILANGAN COMIDATANYCIDATA5170599501PROJECT DATAL DISCIPLINE/EW/IRONMENTAL/GINTLOGS/2020-02 REMEDIAL INVESTIGATION/1607 SURF AVE GPL									4							well MV	v-ð.		
¶]								E 17											

		NG/	<b>4/V</b>		Log		Boring				SB	-14			Sheet	1	of	1
Project		4007.0				Pro	oject N	lo.			470							
Location	1	1607 Surf Avenue				Ele	vatior	n and	Dat		170	599501						
		Brooklyn, NY									7.3 ⁻	1 ft NA	VD88					
Drilling	Compa	-				Da	te Sta	rted						Date	Finished			
Drilling I	Equipr	Aquifer Drilling & Te	sting (ADT)				mplet	ion De	anth	2	2	/11/20		Rock	Depth	2/1	1/20	
Dinnig	_quipii	Geoprobe 7822DT					mpiot		spu			15 ft			Dopui		NA	
Size and	1 Туре	of Bit				Nu	mber	of Sa	mnl		Dist	urbed		Un	ndisturbed	С	ore	
Drilling I Size and Casing I	Diamet	2-in Direct Push			Casing Depth (ft)	_					First		3	Co	NA ompletion	24	1 HR.	NA
		NÀ			NA		ater Le				$\overline{\nabla}$		7.5		NA NA		Ţ	NA
Casing I		^e NA	Weight (Ibs)	NA	Drop (in) NA	Dri	lling F	orem	an		<b>\T</b> /1		1 11					
Sampler	-	4-ft Acetate Lined M				Fie	ld En	gineer	r	AL		ике Са	ballero	)				
Sampler	Hamr	ner NA	Weight (lbs)	NA	Drop (in) NA					La	ingai	n/Patrio	ck Stov	all				
OLAL	<b>_</b>					-	Dare	41- 1	_			nple Da			R	emar	ks	
Casing I Sampler Sampler Naterial	Elev. (ft)		Sample Desci	ription			Dep Sca			Type	ecov.	Penetr. resist BL/6in	PII Read	ing	(Drilling Flui Fluid Loss, Dri	d, Dep	th of Cas	ing,
	+7.3						— 0	-	Z	-	۳ - ۳	4 <u>= </u>	(ppr	n)	Fluid Loss, Dil	ning Ro	esistance	e, etc.)
	+7.2	ASPHALT R1A (0-14") Black	gravelly fine SAN	D, coal fr	agment, brick.		_	-					0.0	)				
		glass (dry) [FILL]	5 ,	,	5 , ,		- - 1	_					0.0		Collect SB-	1/ 0	2 021	120
			t top fine CAND	omo fino	aroual briek		-	-		ORE			0.0		Collect OD-	14_0	-2_021	120
		concrete (dry) [FII	nt tan fine SAND, s _L]	some tine	gravel, brick,		- 2	- 2	-	MACROCORE	36"		0.0					
			-				-	-		AACF	.,		0.0					
							- - 3	_		~			0.0					
								-					0.0					
				<b>C O A N</b>			- 4	_					0.0					
		gravel, brick, coal	tan to dark brown fragment (dry) [FII	fine SAN LL]	ID, some fine		-	-					0.0					
		0	0 ()/1				_ 5	_					0.0					
	+1.7						_	-		ШШ			0.0					
		R2B (16-35") Gre	y to dark grey fine	SAND (n	noist)		_ 6	- 6	y	000	40"		0.0					
	1						_	-		MACROCORE	7		0.0					
							_ — 7	_		2			0.0		Collect SR	11 6	0 021	120
					0	$\overline{\Delta}$		-					0.0		Collect SB-	14_0	-0_021	120
			y to dark grey fine				- - 8	_					0.0					
		R3 (0-40") Dark g	rey to grey fine SA	ND, trace	e silt (wet)		-	-					0.0					
							- 9	_					0.0					
							-	-		R			0.0					
							- - 10	16	2	000	40"		0.0		Collect SP	11 0	11 02	1120
								-		MACROCORE	Р		0.0		Collect SB-	14_9	-11_02	.1120
							- - 11	_		2			0.0					
								-					0.0					
	]				: 14 ( 4)		_ 12						0.0					
		rx4 (U-30") Dark g	rey to grey fine SA	טאט, som	e siit (Wet)			1					0.0					
							_ — 13			RE			0.0					
								10	ţ	MACROCORE	30"		0.0					
							- - 14	-		AACF			0.0					
								Ē	ľ	<			0.0					
	-7.7						_ 15	, _	$\downarrow$				0.0		End of bori	na ot	15 fact	bas
								1							End of bori Borehole b	ackfill	ed with	No. 2
							- 16	-							sand and n and patche			
								-										
							- 17	· <u> </u>										

		NG/			Log		Boring	-			SB	-15			Sheet	1	of	1
Project		1607 Surf Avenue				Pr	oject N	lo.			170	-00-04						
Location	1	1607 Surf Avenue				El	evatior	n and	Dat		170	599501						
		Brooklyn, NY				_					7.5	5 ft NA						
Drilling (	Compa	•				Da	ate Sta	rted			~	140/00		Date	Finished	0/4	0/20	
Drilling I	Equipn	Aquifer Drilling & Tent	sting (ADT)			Co	ompleti	ion De	eptl	h	2	/10/20		Rock	Depth	2/1	0/20	
		Geoprobe 7822DT										15 ft					NA	
Size and	1 Туре	of Bit 2-in Direct Push				Nu	umber	of Sa	mp	les	Dist	urbed	3	Un	ndisturbed NA	Co	ore	NA
Casing [		er (in) NA		C	Casing Depth (ft) NA	w	ater Le	evel (f	ť.)		First	t	7.5	_	ompletion NA		HR.	NA
Casing I	Hamm	^e NA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing F	orem	an									
Sampler	r	4-ft Acetate Lined M	acrocore			Fie	eld Eng	aineer	r	AL	JI/L	uke Ca	ballero					
Sampler	r Hamr	ner NA	Weight (Ibs)	NA	Drop (in) NA			5		La	angai	n/Patrio	ck Stov	all				
J. L	-										Sar	mple Da	ata		Re	emarl	(5	
MATERIAL SYMBOL	Elev. (ft) +7.6		Sample Descr	ription			Dep Scal		Number	Type	Recov. (in)	Penetr. resist BL/6in	PIE Read (ppr	ing	(Drilling Fluid Fluid Loss, Dril	l, Depti	n of Cas	ing, e, etc.)
****	+7.4	ASPHALT R1A (0-30") Black	to dark brown gra	vellv fine	SAND, glass,		- 0 -						0.0	)				
		brick, coal fragmer		·,	, g,		- 1	_					0.0		Collect SB-	15 0	2 021	020
	$\mathbf{i}$						Ē	-		DRE			0.0		COllect OD-	15_0-	2_021	020
							- 2	- 2	r	MACROCORE	40"		0.0	)				
							Ē	-		MACF	,		0.0	)				
××××	+4.7	R1B (30-40") Ligh	t tan fine SAND, tr	ace fine	gravel (dry)		- 3	_					0.0	)				
		. , -					Ē	-					0.0	)				
		R2A (0-31.5") Ligh	at tap fing SAND (r	moist)			- 4	-					0.0	)				
		RZA (0-31.5 ) LIGI	It tan line SAND (I	noist)			Ē	-					0.0	)				
							- 5	-					0.0	)				
							Ē	-		ORE			0.0	)				
							- 6	- 6	2	SOCC	36"		0.0	)				
							Ē	-		MACROCORE			0.0	)				
							- 7	_		-			0.0	)	Collect SB-	15 6-	8 021	020
		R2B (31.5-36") Lig	abt top fing SAND	(wot)		$\overline{\Delta}$	r L	-					0.0	)		10_0	0_021	020
		R3 (0-36") Tan to	-	. ,	ailt (wat)		- 8	-					0.0	)				
		13 (0-30 ) Tail 10	uaik grey inte SAN	ND, liace	Sil (WEL)		Ē	Ţ					0.0					
							- 9	-					0.0	)				
							F	-		ORE			0.0	)				
							- 10		2	MACROCORE	36"		0.0	)				
							F	4		MAC			0.0	)				
							- 11	-					0.0	)	Collect SB-	15 10	)-12 0	21020
							F	4					0.0	)		_ `		-
		R4 (0-36") Dark gi	rev fine SAND sor	ne silt_tr	ace clay (wet)		- 12	: 1		-			0.0	)				
			-,				F	4					0.0	)				
							- 13	-		ORE			0.0	)				
							F	2	Ž	MACROCORE	36"		0.0	)				
							- 14	. –]		MAC			0.0	)				
							F	4					0.0	)				
	-7.5						- 15	-		_					End of borir	ng at '	15 feet	bgs.
							E	4							Borehole ba	ackfille	ed to 1	2 feet
							- 16	-							well MW-9.	.cu ii li		loning
							F	4										
							上 ₁₇	1_										

		NG/			Log		Boring			SB	-16			Sheet	1	of	1
Project		1607 Surf Avenue				Pr	oject No	).		170	599501	1					
Location	1	1607 Sull Avenue				Ele	evation	and D	atum		59950	I					
	_	Brooklyn, NY								7.2	ft NAV						
Drilling (	Compa					Da	ate Start	ed		~	144/00		Date	Finished	0/4	4/00	
Drilling I	Equipn	Aquifer Drilling & Te	esting (ADT)			Co	mpletio	n Dep	oth	2	2/11/20		Rock	Depth	2/1	1/20	
Ū		Geoprobe 7822DT					·				15 ft			·		NA	
Size and	I Туре	of Bit 2-in Direct Push				Nu	imber o	f Sam	ples	Dist	urbed	3	Un	ndisturbed NA	Co	ore	NA
Casing [		ter (in) NA		C	asing Depth (ft) NA	w	ater Lev	el (ft.)	)	Firs	t	7.5		ompletion NA		HR.	NA
Casing I	lamm	^e NA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing Fo	remai									
Sampler	•	4-ft Acetate Lined M	lacrocore			Fie	eld Engi	neer	A	DT/L	uke Ca	aballero	)				
Sampler	Hamr	^{mer} NA	Weight (Ibs)	NA	Drop (in) NA		U		L	.anga	n/Patri	ck Stov	all				
JL	<b>_</b>		·				Dauth			Sa	mple Da	ata		R	emarl	(5	
MATERIAL SYMBOL	Elev. (ft) +7.2		Sample Descri	iption			Depth Scale		Type	Recov. (in)	Penetr. resist BL/6in	PIE Read (ppr	ing	(Drilling Flui Fluid Loss, Dri	d, Dept	n of Casi	ng, , etc.)
	+7.0	ASPHALT R1A (0-22") Black	to brown gravelly f	ine SAN	D. concrete.		- 0 ·	-				0.0	)				
		ceramic, coal frag	ment, brick (dry) [F	ILL]	_,,		- 1	_				0.0		Collect SB-	16 0-	2 021	120
								-	RE			0.0		Collect OD-	10_0-	2_021	120
	+5.1						2	-12	MACROCORE	36"		0.0	)				
		R1B (22-40") Ligh	nt tan fine SAND, tra	ace fine	gravel (dry)		E	-	MACF			0.0	)				
							- 3	_				0.0	)				
							E	-				0.0	)				
		P2A (0.31.5") Lia	ht tan fine SAND (n	noist)			- 4	-				0.0	)				
		R2A (0-31.5 ) Ligi	ni tan nine sand (n	noist)			E	-				0.0	)				
							- 5	-				0.0	)				
							Ē	-	<b>JRE</b>			0.0	)				
							- 6	22	SOCO	38"		0.0	)	Collect SB-	16 5-	7 021	120
							E	-	MACROCORE			0.0	)				
							- 7	-				0.0	)				
		R2R (31 5-36") Li	ght tan fine SAND (	(wet)		Ţ	F	-				0.0	)				
			rey to tan fine SAN		silt (wet)		- 8	-				0.0	)				
		No (0-00 ) Eight g		D, l'acc	Siit (Wet)		F	-				0.0	)				
							- 9	-				0.0	)				
							F	-	ORE			0.0	)				
							- 10	- 22	MACROCORE	34"		0.0	)	Collect SB-	16 9-	11 02	1120
							F	-	MAC			0.0	)		_	_	
							- 11	-				0.0	)				
							F	1				0.0	)				
		R4 (0-36") Darv o	rey fine SAND, som	ne silt (w	vet)		- 12	1	+			0.0	)				
		. , , , , , , , , , , , , , , , , , , ,	, ,	(	,		E	-				0.0	)				
							- 13	-	ORE			0.0	)				
							E	2	MACROCORE	36"		0.0	)				
							- 14	-	MAC			0.0	)				
							E	-				0.0	)				
·····	-7.8						- 15	+	+					End of bori			
							Ē	-						Borehole based and n			
							- 16	-						and patche			
							E	-									
							<del>ل</del> 17 -										

_			NGA			Log		Boring			SB	-17			Sheet 1	of	1
P	roject		1607 Surf Avenue				Pr	oject No.			170	599501	I				
Ľ	ocation						Ele	evation a	nd D	atum	l						
	rilling C	Compa	Brooklyn, NY				Da	te Starte	d		7.9	4 ft NA	VD88	Date I	Finished		
			Aquifer Drilling & Test	ting (ADT)								2/5/20				2/5/20	
D	rilling E	Equipn	nent Geoprobe 7822DT				Co	mpletion	Dep	th		12 ft		Rock	Depth	NA	
	ize and	Туре	of Bit				NI	Imber of	Sam	ples	Dist	urbed		Un	disturbed	Core	
	asing D	Diame	2-in Direct Push ter (in)		C	asing Depth (ft)	-	ater Leve			Firs		3	Co	NA mpletion	24 HR.	NA
	asing F	lamm	NA er	Weight (Ibs)		Drop (in)		illing For	· /		$ $ $\nabla$		7.5		NA	<u> </u>	NA
s	ampler				NA	NA	L			A	.DT/L	uke Ca	aballero	)			
	ampler	Hamr	4-ft Acetate Lined Ma ner NA	Weight (lbs)	NA	Drop (in) NA	Fie	eld Engin	eer		anda	n/Patri	ck Sta	llev			
	۲L					11/1	1				Sa	mple Da		an	Bor	narks	
:	MATERIAL SYMBOL	Elev. (ft) +7.9		Sample Descr	iption			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PI Read (pp	ling	(Drilling Fluid, Fluid Loss, Drillir		sing, e, etc.)
$\mathbb{R}$	****	+7.7	ASPHALT R1A (0-10") Brown	fine SAND trace	fine grav	vel brick							0.	n			
			concrete, coal fragn R1B (10-20") Grey	ment (dry) [FILL]	•			- 1 -					0.		Collect SB-1	7 0-2 020	1520
			(dry) [FILL]	TITLE SAIND, SOTTE	e nne gra	vei, coai fragment			-	ORE			0.	0			
			R1C (20-36") Tan te	o black fine SAN	D, glass,	brick (dry) [FILL]		- 2 -	Ε	MACROCORE	36"		0.	0			
			× ,							MA			0.				
								- 3 -					0. 0.				
					and a factor			- 4 -	1				0.				
		+3.3	R2A (0-6") Tan to b										0.				
Ż			R2B (6-33.25") Tan	n to grey fine SAN	ID (moist	.)		- 5 -					0.	0			
										CORE	-		0.	0			
200								6 -	2	MACROCORE	38"		0.		Collect SB-1	7_5-7_020	0520
								- 7 -		Ŵ			0. 0.				
				on to grov find SA		,	Ţ						0.				
			R2C (33.25-38") Ta R3 (0-36") Tan to g			)		8 -	-	-			0.	0			
				, - <b>,</b> (	/								0.	0			
								- 9 -		щ			0.				
								- 10 -	R3	MACROCORE	36"		0.				
										ACR	Ś		0. 0.		Collect SB-1	r_9-11_02	20520
								- 11 -		2			0.				
													0.	0			
	<u></u>	-4.1						- 12 - - 12 - - 13 -	-						End of boring Borehole cor monitoring w	verted into	ວັ
								- 14 -	1								
								- 15 -	1								
2MIC																	
5772								- 16 -	1								

L	4	NG/	<b>4/V</b>		Log	of E	Borin	g _			SB	-18			Sheet	(	of	1
Project						Pr	oject N	NO.										
Location	1	1607 Surf Avenue				El	evatior	n and I	Dat		170	599501						
		Brooklyn, NY									7.28	3 ft NA	VD88					
Drilling (	Compa	-				Da	ate Sta	rted						Date I	Finished		20	
Z Drilling E	Equipm	Aquifer Drilling & Tea	sting (ADT)			Co	omplet	ion De	eptł	n		2/5/20		Rock	Depth	2/5/2	20	
	_	Geoprobe 7822DT										12 ft					A	
Size and	Ilype	of Bit 2-in Direct Push				Νι	umber	of Sar	mpl	les	Disti	urbed	3	Un	disturbed NA	Core		NA
Negorial Casing I		NA	1	C	asing Depth (ft) NA		ater Le				First ∑		7.8		mpletion NA	24 HI 		NA
: Casing I		^e NA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing F	-orem	an	٨٢	ו/דר	uke Ca	bollore					
3/25/2020 7:58:59 AM ARTERIAL SYMBOL SYMBOL		4-ft Acetate Lined M				Fie	eld Eng	gineer	-	AL	J1/L		aballer	,				
Sampler	Hamr	ner NA	Weight (Ibs)	NA	Drop (in) NA					La	inga	n/Patrio	ck Stov	/all	1			
3/25/202 MATERIAL SYMBOL	Elev.			:			Dep	th a	Ū	۵.		nple Da	ata Pl	D		marks		
: <b>2</b>	(ft) +7.3		Sample Descr	iption			Sca — 0	th le		Type	Reco (in)	Penetr. resist BL/6in	Read (ppi	ling	(Drilling Fluid Fluid Loss, Drill	, Depth of ing Resis	f Casing tance, e	g, etc.)
E.GPJ	+7.0	ASPHALT R1 (0-36") Black to	o tan fine SAND, s	ome fine	gravel, brick,			-					0.	0				
		coal fragment (dry	) [FILL]		-		- 1	_					0.	0	Refusal at 1	0 feet b	oas. bo	orina
							-	-		ORE			0.	0	offset 2 feel	west	J-,	
							- 2	-12	2	MACROCORE	36"		0.	0	Collect SB-	18_0-2_	02052	20
Ē							E	-		MAC			0.	0				
							- 3	_					0.	0	Collect SB-	18_2-4_	02052	20
Ž							-	-					0.	0				
	+3.3	R2A (0-18.75") Lig	ght tan fine SAND	(moist)			<u> </u>	-					0.					
EME							È _	-					0.					
1-02 F							- 5	-		Ë			0.					
12020							- 6	- 6	4	DCOF	20"		0. 0.					
068							-	- "	-	MACROCORE	2		0.					
							- 7	_	1	Σ			0.					
						$\nabla$							0.					
MEN		R2B (18.75-20") L	ight tan fine SANE	(wet)	( )	<u> </u>	- 8	-					0.					
NON		R3 (0-22") Tan to	dark grey fine SAN	ID, wood	(wet)		-						0.					
NEN.							- 9	_					0.	0				
BLINE							F	-		ORE			0.	0				
OISCI							- 10	) <u>–</u> "	2	MACROCORE	22"		0.	0				
								-		MAG			0.	0				
TDA							- 11	_					0.	0	Collect SB-	18_10-1	2_02	0520
OIE	47						Ē						0.	0				
	-4.7						- 12 -	2 +							End of borir Borehole co			ogs.
19950							-								monitoring			
5/170							- 13 -	, _										
ATA							E 14	-										
IYCIE							- 14 -											
ATAIN							- - 15											
MDM							Ē											
							- 16	; -										
ANG							Ē											
]							上 ₁₇	. 土										

L	A	NE/	<b>4</b> /V		Log	of E	Boring			SB	-19			Sheet 1	of	1
Project						Pr	oject No	).								
Location	1	1607 Surf Avenue				El	evation	and D	atum		599501	1				
		Brooklyn, NY								7.2	8 ft NA		-			
Drilling (	Jompa	Aquifer Drilling & Tes	sting (ADT)			Da	ate Start	ea			2/5/20		Date	Finished	2/5/20	
Drilling B	Equipn					Co	mpletio	n Dep	oth		2/0/20		Rock	Depth	2/3/20	
Size and		Geoprobe 7822DT								Dict	12 ft urbed			ndisturbed	NA Core	
		2-in Direct Push				Νι	imber o	f Sam	ples			3		NA		NA
Drilling F Size and Lindey		NA		C	asing Depth (ft) NA		ater Lev			Firs 		7.8		ompletion	24 HR. <u> </u>	NA
: Casing I		^e NA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing Fo	rema			uke Ca	ballore				
Sampler		4-ft Acetate Lined Ma				Fie	eld Engi	neer	P		uke Ca	aballer	)			
3/25/2020 7:59:02 AM ATTERIAL SYMBOL SYMBOL	Hamr	^{ner} NA	Weight (Ibs)	NA	Drop (in) NA			_	L	anga	n/Patri	ck Stov	all	_		
5/202 RIAL BOL	Elev.		Querra la Dura en	··· 4 · - ··			Depth	ē	0		mple Da	PI	)	Rer	narks	
3/25/202 MATERIAL SYMBOL	(ft) +7.3		Sample Descr	ipuon			Scale	Number	Type	(in)	Penetr. resist BL/6in	Read (ppr	ling	(Drilling Fluid, Fluid Loss, Drillir	Depth of Ca ng Resistanc	sing, æ, etc.)
	+7.0	ASPHALT				_	- 0 ·	-								
$\frac{1}{2}$		R1 (0-30") Black to coal fragment (dry		ome fine	gravel, brick,			-				0.0				
		5 ( ),	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				- 1 -	-	Щ			0.0		Collect SB-19	9_0-2_02	0520
							- 2	12	OCOF	30"		0.0				
								-	MACROCORE	ŝ		0.0				
<u>5</u>							- 3	_	2			0.0		Collect SB-19	0 2 4 02	0520
								-				0.0		Collect 3D-1	9_2-4_02	0020
≅ XXXX	+3.3	R2A (0-26.25") Lig	nht tan fine SAND	(moist)			4					0.0	D			
MEDI		1 (2-20.20 ) Ele		(moist)			F	-				0.0	D			
							5	-				0.0	D			
07070							E		CORE			0.0	D			
Z S S							- 6	-22	MACROCORE	38"		0.0	D			
							Ē_	-	MA			0.0				
ALIG							- 7	-				0.0		Collect SB-19	9_6-8_02	0520
VEN		R2B (26.25-28") L	ight tan fine SAND	) (wet)		$\overline{\Delta}$	- 8	_				0.0				
NOP I I I I I I I I I I I I I I I I I I I		R3 (0-28") Tan to	dark grey fine SAN	ID (wet)			- 0	-				0.0 0.0				
ENVI							- 9	_				0.0				
								-	ORE			0.0				
							- 10	22	MACROCORE	28"		0.0	D			
							Ę	-	MACI			0.0	D			
							- 11	-				0.0	C			
							E	-				0.0	D			
	-4.7						12	-						End of boring		
88501							Ē	-						Borehole bac sand and nor		
1705							- 13	-						and patched	with conc	rete.
AIA5								-								
YCID							- 14	-								
							- 15	-								
							Ē	-								
							- 16	-								
ANGA							E	-								
]							上 ₁₇ .	+								

		NG/			LOG		Boring			SB	-20		S	Sheet ´	1	of	
Project						Pro	oject No.										
ocation		1607 Surf Avenue				Ele	evation a	nd Da	atum		59950 ⁻	1					
		Brooklyn, NY								7.1 ⁻	1 ft NA	VD88					
rilling Co						Da	te Starte	d					ate Fir	nished			
rilling Ed		Aquifer Drilling & Tegent	sting (ADT)			Co	mpletior	Dep	th		2/5/20		ock De	epth	2/5	5/20	
	• •	Geoprobe 7822DT					mpionor	Dop			12 ft			- Pui		NA	
ize and	Туре с					Nu	mber of	Sam	oles	Dist	urbed	3	Undis	sturbed NA	Co		NA
asing Di	iamete	er (in)		C	Casing Depth (ft)	- N/	ater Leve	J (ft )		First	t			pletion		HR.	
asing Ha		NA r	Weight (lbs)		Drop (in)		Iling For			$  \nabla$		7.5	Ţ	NA	<u> </u>	<u> </u>	NA
ampler				NA	NA	_	5			DT/L	uke Ca	aballero					
ampler I		4-ft Acetate Lined M	acrocore Weight (lbs)		Drop (in)	Fie	eld Engin	eer									
		NA		NA	NA				L	anga Sai	n/Patri mple D	ck Stoval ata					
	Elev.		Sample Desc	rintion			Depth	ber	ЭС						mark		na
SYI	(ft) +7.1		Campie Beee	npuon			Scale	Number	Type	Rec (in	Penetr. resist BL/6in	Reading (ppm)	3	(Drilling Fluid Fluid Loss, Drill	ing Res	sistance,	etc.)
	+7.0	ASPHALT		c.			_ 0 _										
		R1 (0-32") Black to coal fragment (dry		some tine	e gravel, DrICK,		- 1 -					0.0					
							- '		RE			0.0 0.0		Collect SB-2	20_0-2	2_0205	J20
							- 2 -	2	MACROCORE	32"		0.0					
								- <b>L</b>	ACR	ო		0.0					
							- 3 -	_	2			0.0		Collect SB-2	20.2	1 0204	520
												0.0		Collect 3D-2	20_2-	4_0200	,20
	+3.1_	R2A (0-24.5") Ligh	at tap find to grow	fino SANI	D (moist)		- 4 -					0.0					
		RZA (0-24.5 ) Ligi	it tan fine to grey	IIIIe SAIN	D (MOISE)		_					0.0					
							- 5 -					0.0					
									ORE			0.0					
							6 -	22	MACROCORE	28"		0.0					
									MAC			0.0					
							- 7 -					0.0		Collect SB-2	20_6-6	8_0205	520
		R2B (24.5-28") Lig	ght tan fine to grey	y fine SAN	ND (wet)	Ā						0.0					
		R3 (0-32") Light to	o dark grey fine SA	AND (wet)	)		- 8 -	_				0.0					
												0.0					
							- 9 -		Щ			0.0					
							- 10	R	COF	32"		0.0					
							- 10 -		MACROCORE	3,		0.0					
							- - - 11 -		Σ			0.0 0.0					
							- ''					0.0					
	-4.9_						- 12 -					0.0		End of borir	na ot 1	2 fact	haa
														Borehole co	nverte	ed to	-
							- 13 -							monitoring	vell M	IW-12.	
							_ 14 -										
							_										
							- 15 -										
							- 16 -										
1	1						F .	-	1	1							

### **APPENDIX D**

WELL CONSTRUCTION LOGS

LANGAN

# LANGAN

#### WELL CONSTRUCTION SUMMARY

Well No. MW-1

PROJECT	PROJECT NO.
1607 Surf Avenue	170599501
LOCATION	GROUND ELEVATION (ft NAVD88)
Brooklyn, NY	6.95
DRILLING AGENCY	DATE STARTED DATE FINISHED
ADT	2/6/2020 2/6/2020
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822 DT	Luke Caballero
SIZE AND TYPE OF BIT	LANGAN REP.
4-inch Hollow Stem Auger	Patrick Stovall
METHOD OF INSTALLATION	
ADT drilled SB-1 to 15' bgs. Borehole was backfilled with a com	nbination of IDW and Filpro #2 sand. ADT advanced a 4-inch hollow
stem auger to 12 feet bgs. After the PVC well screen and riser	were installed, the annulus was backfilled with Fipro #2 clean sand
and sealed with bentonite above the well pack. A flushmount m	

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER	TYPE OF	BACKFILL MATERIAI	L		
Solid Schedule 40	PVC	2-inch	Combi	ination of non-	-impacte	ed IDW and Filpro #2	Sand
TYPE OF SCREEN		DIAMETER	TYPE OF	SEAL MATERIAL		· · ·	
Schedule 40 0.01-i	nch slotted PVC	2-inch	Hydrat	ted bentonite	chips		
BOREHOLE DIAMETER			TYPE OF	FILTER MATERIAL			
4-inch			Filpro	#2 Sand			
TOP OF CASING	<b>elevation (ft navd88)</b> 6.70	) DEPTH (ft bgs) 0.25		WELL DETAILS		SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD88)	) DEPTH (ft bgs)					
	5.95	1.00		<b>н</b> м	1anhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD88)	) DEPTH (ft bgs)					0.25
	5.45	1.50	Riser —	<b>→</b>			
TOP OF SCREEN	ELEVATION (ft NAVD88)	) DEPTH (ft bgs)			Seal		1.00
	4.95	2.00					
BOTTOM OF BORING	ELEVATION (ft NAVD88)	) DEPTH (ft bgs)					1.50
	-8.05	15.00					
SCREEN LENGTH							2.00
		10 feet					
SLOT SIZE							
		0.01-inch					
GRO	UNDWATER ELEV	ATIONS					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)					
0.72	2/20/2020	5.98					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)	PVC				
			Screen				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)					
					Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)		-	Pack		
		-					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)					
				Sand	and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATER (ft bgs)		ID'	W		
							15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

bgs = below ground surface

# LANGAN

#### WELL CONSTRUCTION SUMMARY

Well No. MW-2

PROJECT	PROJECT NO.
1607 Surf Avenue	170599501
LOCATION	GROUND ELEVATION (ft NAVD88)
Brooklyn, NY	7.02
DRILLING AGENCY	DATE STARTED DATE FINISHED
ADT	2/7/2020 2/7/2020
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822 DT	Luke Caballero
SIZE AND TYPE OF BIT	LANGAN REP.
4-inch Hollow Stem Auger	Patrick Stovall
METHOD OF INSTALLATION	
ADT drilled SB-3 to 15' bgs. Borehole was backfilled with a combin	ation of IDW and Filpro #2 sand. ADT advanced a 4-inch hollow
stem auger to 12 feet bgs. After the PVC well screen and riser wer	re installed, the annulus was backfilled with Fipro #2 clean sand
and sealed with bentonite above the well pack. A flushmount man	

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL		
Solid Schedule 40	PVC	2-inch		Comb	pination of	of non-impact	ed IDW and Filpro #2	Sand
TYPE OF SCREEN		DIAMETER		TYPE OF	SEAL MAT	ERIAL		
Schedule 40 0.01-i	nch slotted PVC	2-inch		Hydra	ated ben ⁻	tonite chips		
BOREHOLE DIAMETER				TYPE OF	FILTER MA	TERIAL		
4-inch				Filpro	#2 Sand	1		
TOP OF CASING	ELEVATION (ft NAVD) 6.80	88)	DEPTH (ft bgs) 0.22		WELL DE	TAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					
	6.02		1.00			◀ Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.22
	5.52		1.50	Riser —				
TOP OF SCREEN	ELEVATION (ft NAVD) 5.02	88)	DEPTH (ft bgs) 2.00			<b>◀───</b> Seal		1.00
BOTTOM OF BORING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					1.50
	-7.98		15.00					
SCREEN LENGTH								2.00
			10 feet					
SLOT SIZE			0.01-inch					
GRO	UNDWATER ELE	VATIONS						
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	ER (ft bgs)					
0.26	2/20/2020	6.54						
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	ER (ft bgs)	PVC				
				Screen				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	ER (ft bgs)					
						Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)			Pack		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)	1		Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)		•	IDW		
								15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

bgs = below ground surface

#### WELL CONSTRUCTION SUMMARY

Well No. MW-3

PROJECT NO.
170599501
GROUND ELEVATION (ft NAVD88)
7.71
DATE STARTED DATE FINISHED
2/6/2020 2/6/2020
DRILLER
Luke Caballero
LANGAN REP.
Patrick Stovall
ation of IDW and Filpro #2 sand. ADT advanced a 4-inch hollow
re installed, the annulus was backfilled with Fipro #2 clean sand
hole was concrete installed at ground surface.

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING DIAMETER				TYPE OF BACKFILL MATERIAL					
Solid Schedule 40 PVC 2-inch				Combination of non-impacted IDW and Filpro #2 Sand					
TYPE OF SCREEN DIAMETER					SEAL MAT	ERIAL			
Schedule 40 0.01-i	nch slotted PVC	2-inch		Hydra	ited bent	tonite chips			
BOREHOLE DIAMETER					FILTER MA				
4-inch				Filpro	#2 Sanc	1			
TOP OF CASING	ELEVATION (ft NAVD 7.44	88)	DEPTH (ft bgs) 0.27		WELL DET	AILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)	
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)						
	6.71		1.00			← Manhole		0.00	
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.27	
	6.21		1.50	Riser —	<b></b>				
TOP OF SCREEN	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)			Seal		1.00	
	5.71		2.00						
BOTTOM OF BORING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					1.50	
	-7.29		15.00						
SCREEN LENGTH								2.00	
			10 feet						
SLOT SIZE									
			0.01-inch						
GRO	UNDWATER ELE	VATIONS							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)						
0.70	2/20/2020	6.74							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)	PVC					
				Screen					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)						
						Sand			
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Pack			
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)	1					
						Sand and/or		12.00	
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			IDW			
								15.00	

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-4

PROJECT	PROJECT NO.
1607 Surf Avenue	170599501
LOCATION	GROUND ELEVATION (ft NAVD88)
Brooklyn, NY	7.15
DRILLING AGENCY	DATE STARTED DATE FINISHED
ADT	2/7/2020 2/7/2020
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822 DT	Luke Caballero
SIZE AND TYPE OF BIT	LANGAN REP.
4-inch Hollow Stem Auger	Patrick Stovall
METHOD OF INSTALLATION	
ADT drilled SB-7 to 15' bgs. Borehole was backfilled with a con	nbination of IDW and Filpro #2 sand. ADT advanced a 4-inch hollow
stem auger to 12 feet bgs. After the PVC well screen and riser	were installed, the annulus was backfilled with Fipro #2 clean sand
and sealed with bentonite above the well pack. A flushmount r	nanhole was concrete installed at ground surface.

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL					
	d Schedule 40 PVC 2-inch						ed IDW and Filpro #2	2 Sand			
TYPE OF SCREEN						Combination of non-impacted IDW and Filpro #2 Sand					
Schedule 40 0.01-ir	nch slotted PVC	2-inch		Hydra	nted ben [.]	tonite chips					
BOREHOLE DIAMETER					FILTER MA	-					
4-inch				Filpro	#2 Sand	k					
TOP OF CASING	<b>elevation (ft navds</b> 6.92	38)	DEPTH (ft bgs) 0.23		WELL DE	TAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)			
TOP OF SEAL	ELEVATION (ft NAVD8	38)	DEPTH (ft bgs)								
	6.15		1.00			Manhole		0.00			
TOP OF FILTER	ELEVATION (ft NAVD8	38)	DEPTH (ft bgs)					0.23			
	5.65		1.50	Riser —							
TOP OF SCREEN	<b>elevation (ft navds</b> 5.15	38)	DEPTH (ft bgs) 2.00			<b>∢</b> — Seal		1.00			
BOTTOM OF BORING	ELEVATION (ft NAVD8 -7.85	38)	<b>DEPTH (ft bgs)</b> 15.00					1.50			
SCREEN LENGTH			10 feet					2.00			
GBOI	JNDWATER ELE	ATIONS	0.01-inch	_							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	B (ft bas)								
0.27	2/20/2020	6.65									
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)	PVC Screen							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)			Sand					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Pack					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Sand and/or		12.00			
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			IDW		15.00			

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-5

PROJECT	PROJECT NO.
1607 Surf Avenue	170599501
LOCATION	GROUND ELEVATION (ft NAVD88)
Brooklyn, NY	7.6
DRILLING AGENCY	DATE STARTED DATE FINISHED
ADT	2/6/2020 2/6/2020
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822 DT	Luke Caballero
SIZE AND TYPE OF BIT	LANGAN REP.
4-inch Hollow Stem Auger	Patrick Stovall
METHOD OF INSTALLATION	
ADT drilled SB-8 to 15' bgs. Borehole was backfille	d with a combination of IDW and Filpro #2 sand. ADT advanced a 4-inch hollow
stem auger to 12 feet bgs. After the PVC well scre	en and riser were installed, the annulus was backfilled with Fipro #2 clean san
	ushmount manhole was concrete installed at ground surface.

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL		
	id Schedule 40 PVC 2-inch			Combination of non-impacted IDW and Filpro #2 Sand				
TYPE OF SCREEN					SEAL MAT			
Schedule 40 0.01-ir	nch slotted PVC	2-inch		Hydra	ited bent	tonite chips		
BOREHOLE DIAMETER				TYPE OF	FILTER MA	TERIAL		
4-inch				Filpro	#2 Sanc	ł		
TOP OF CASING	<b>elevation (ft navde</b> 7.10	88)	DEPTH (ft bgs) 0.50	WELL DETAILS			SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					
	6.60		1.00			Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.50
	6.10		1.50	Riser —				
TOP OF SCREEN	ELEVATION (ft NAVDE 5.60	88)	DEPTH (ft bgs) 2.00			Seal		1.00
BOTTOM OF BORING	ELEVATION (ft NAVDE -7.40	88)	<b>DEPTH (ft bgs)</b> 15.00					1.50
SCREEN LENGTH SLOT SIZE			10 feet 0.01-inch					2.00
GROU		VATIONS	0.01-Inch	_				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)	_				
0.81	2/20/2020	6.29						
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)	PVC Screen				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Pack		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	ER (ft bgs)			IDW		15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-6

ich slotted PVC	2-IIICII		Hydrated bentoni TYPE OF FILTER MATERIA Filpro #2 Sand		3	Sand			
ich slotted PVC	Z-IIICII		,		3	Sand			
ich slotted PVC	Z-INCH		Hydrated bentoni	te chips	3	Sand			
	2-inch					Sand			
	DIAMETER		TYPE OF SEAL MATERIAL	TYPE OF SEAL MATERIAL					
OVC	2-inch		Combination of no	on-impa	acted IDW and Filpro #2				
	DIAMETER		TYPE OF BACKFILL MATE	RIAL					
pump to purge up		umes into a 55-ç	gallon drum.						
-						#2 clean san			
-				-					
Auger			Patrick Stovall						
			LANGAN REP.						
			Luke Caballero						
			DRILLER						
			2/11/2020		2/11/2020				
					DATE FINISHED				
				NAVD88)					
	15' bgs. Borehole bet bgs. After the f ntonite above the performer to purge up burged until clear of PVC	15' bgs. Borehole was backfill eet bgs. After the PVC well scr ntonite above the well pack. A PMENT pump to purge up to 3 well vol purged until clear of sediment. DIAMETER PVC 2-inch DIAMETER	15' bgs. Borehole was backfilled with a combiner of bgs. After the PVC well screen and riser we nationate above the well pack. A flushmount mar present poump to purge up to 3 well volumes into a 55-gourged until clear of sediment. DIAMETER PVC 2-inch DIAMETER	7.71 DATE STARTED 2/11/2020 DRILLER Luke Caballero LANGAN REP. Patrick Stovall 15' bgs. Borehole was backfilled with a combination of IDW and F teet bgs. After the PVC well screen and riser were installed, the anintonite above the well pack. A flushmount manhole was concrete PMENT Doump to purge up to 3 well volumes into a 55-gallon drum. DIAMETER PVC 2-inch TYPE OF BACKFILL MATE Combination of n	170599501         GROUND ELEVATION (ft NAVD88)         7.71         DATE STARTED         2/11/2020         DRILLER         Luke Caballero         LANGAN REP.         Patrick Stovall         15' bgs. Borehole was backfilled with a combination of IDW and Filpro #2         15' bgs. Borehole was backfilled with a combination of IDW and Filpro #2         totnite above the Well pack. A flushmount manhole was concrete installed         PMENT         Dump to purge up to 3 well volumes into a 55-gallon drum.         Durged until clear of sediment.         PVC       2-inch	170599501         GROUND ELEVATION (ft NAVD88)         7.71       DATE STARTED       DATE FINISHED         2/11/2020       2/11/2020       2/11/2020         DRILLER         Luke Caballero       LANGAN REP.         Patrick Stovall       Patrick Stovall         15' bgs. Borehole was backfilled with a combination of IDW and Filpro #2 sand. ADT advanced a set bgs. After the PVC well screen and riser were installed, the annulus was backfilled with Fipro shonite above the well pack. A flushmount manhole was concrete installed at ground surface.         PMENT         DUMP to purge up to 3 well volumes into a 55-gallon drum.			

		Filpro	#2 Sand	1		
ELEVATION (ft NAVD88)			WELL DET	AILS	SUMMARY SOIL	DEPTH
7.36	0.35				CLASSIFICATION	(ft bgs)
ELEVATION (ft NAVD88)	DEPTH (ft bgs)					
6.71	1.00			Manhole		0.00
ELEVATION (ft NAVD88)	DEPTH (ft bgs)					0.35
6.21	1.50	Riser —	┝╌┝╸│			
ELEVATION (ft NAVD88)	DEPTH (ft bgs)			Seal		1.00
5.71	2.00					
ELEVATION (ft NAVD88)	DEPTH (ft bgs)					1.50
-7.29	15.00					
						2.00
	10 feet					
	0.01-inch					
UNDWATER ELEVA	ATIONS					
DATE	DEPTH TO WATER (ft bgs)	1				
2/20/2020	6.78					
DATE	DEPTH TO WATER (ft bgs)	PVC				
		Screen				
DATE	DEPTH TO WATER (ft bgs)					
				Sand		
DATE	DEPTH TO WATER (ft bgs)			Pack		
DATE	DEPTH TO WATER (ft bgs)	1				
				Sand and/or		12.00
DATE	DEPTH TO WATER (ft bgs)			IDW		
						15.00
	7.36 ELEVATION (ft NAVD88) 6.71 ELEVATION (ft NAVD88) 6.21 ELEVATION (ft NAVD88) 5.71 ELEVATION (ft NAVD88) -7.29 UNDWATER ELEVA DATE DATE DATE DATE DATE	7.36     0.35       ELEVATION (ft NAVD88)     DEPTH (ft bgs)       6.71     1.00       ELEVATION (ft NAVD88)     DEPTH (ft bgs)       6.21     1.50       ELEVATION (ft NAVD88)     DEPTH (ft bgs)       5.71     2.00       ELEVATION (ft NAVD88)     DEPTH (ft bgs)       5.71     2.00       ELEVATION (ft NAVD88)     DEPTH (ft bgs)       -7.29     15.00       10 feet       0.01-inch       UNDWATER ELEVATIONS       DATE     DEPTH TO WATER (ft bgs)       DATE     DEPTH TO WATER (ft bgs)	ELEVATION (ft NAVD88)       DEPTH (ft bgs)       Filpro         7.36       0.35	ELEVATION (ft NAVD88)       DEPTH (ft bgs)       WELL DET         7.36       0.35       WELL DET         6.71       1.00       ELEVATION (ft NAVD88)       DEPTH (ft bgs)         6.71       1.00       ELEVATION (ft NAVD88)       DEPTH (ft bgs)         6.21       1.50       Riser       Image: Comparison of the series of the	7.36       0.35         ELEVATION (ft NAVD88)       DEPTH (ft bgs)         6.71       1.00         ELEVATION (ft NAVD88)       DEPTH (ft bgs)         6.21       1.50         ELEVATION (ft NAVD88)       DEPTH (ft bgs)         5.71       2.00         ELEVATION (ft NAVD88)       DEPTH (ft bgs)         5.71       2.00         ELEVATION (ft NAVD88)       DEPTH (ft bgs)         7.29       15.00         O.01-inch         UNDWATER ELEVATIONS       DEPTH TO WATER (ft bgs)         2/20/2020       6.78         DATE       DEPTH TO WATER (ft bgs)         Sand       Pack         Sand       Pack	Filpro #2 Sand       ELEVATION (ft NAVD88)     DEPTH (ft bgs)     SUMMARY SOIL       CLASSIFICATION     0.35     CLASSIFICATION       ELEVATION (ft NAVD88)     DEPTH (ft bgs)     Manhole       6.71     1.00     Manhole       ELEVATION (ft NAVD88)     DEPTH (ft bgs)     Seal       6.21     1.50     Riser       ELEVATION (ft NAVD88)     DEPTH (ft bgs)     Seal       5.71     2.00     ELEVATION (ft NAVD88)     DEPTH (ft bgs)       5.71     2.00     Seal       0.01-inch     0.01-inch     0.01-inch       JINDWATER ELEVATIONS     DEPTH TO WATER (ft bgs)     Screen       0.2/20/2020     6.78     C       DATE     DEPTH TO WATER (ft bgs)     Screen       DATE     DEPTH TO WATER (ft bgs)     Screen       DATE     DEPTH TO WATER (ft bgs)     Sand       DATE     DEPTH TO WATER (ft bgs)     Sand

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

### WELL CONSTRUCTION SUMMARY

Well No. MW-7

PROJECT	PROJECT NO.					
1607 Surf Avenue	170599501					
LOCATION	GROUND ELEVATION (ft NAVD88)					
Brooklyn, NY	7.31					
DRILLING AGENCY	DATE STARTED DATE FINISHED					
ADT	2/6/2020 2/6/2020					
DRILLING EQUIPMENT	DRILLER					
Geoprobe 7822 DT	Luke Caballero					
Geoprobe 7822 DT SIZE AND TYPE OF BIT	Luke Caballero LANGAN REP.					

hollow stem auger to 12 feet bgs. After the PVC well screen and riser were installed, the annulus was backfilled with Fipro #2 clean sand and sealed with bentonite above the well pack. A flushmount manhole was concrete installed at ground surface.

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING	PE OF CASING DIAMETER			TYPE OF BACKFILL MATERIAL					
olid Schedule 40 PVC 2-inch			Comb	pination c	of non-impact	ed IDW and Filpro #2	Sand		
TYPE OF SCREEN DIAMETER				TYPE OF SEAL MATERIAL					
Schedule 40 0.01-i	nch slotted PVC	2-inch		Hydra	ated bent	onite chips			
BOREHOLE DIAMETER				-	FILTER MAT				
4-inch				Filpro	#2 Sand				
TOP OF CASING	ELEVATION (ft NAVD 7.05	88)	DEPTH (ft bgs) 0.26		WELL DET.	AILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)	
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)						
	6.31		1.00			Manhole		0.00	
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.26	
	5.81		1.50	Riser —					
TOP OF SCREEN	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)			Seal		1.00	
	5.31		2.00						
BOTTOM OF BORING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					1.50	
	-7.69		15.00						
SCREEN LENGTH								2.00	
			10 feet						
SLOT SIZE									
			0.01-inch						
GRO	UNDWATER ELE	VATIONS							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)						
0.77	2/20/2020	6.28							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)	PVC					
				Screen					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)						
						Sand			
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)			Pack			
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)						
						Sand and/or		12.00	
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATE	R (ft bgs)			IDW			
								15.00	

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-8

PROJECT	PROJECT NO.	
1607 Surf Avenue	170599501	
LOCATION	GROUND ELEVATION (ft NAVD88)	
Brooklyn, NY	7.32	
DRILLING AGENCY	DATE STARTED DATE FINISHED	
ADT	2/10/2020 2/10/2020	
DRILLING EQUIPMENT	DRILLER	
Geoprobe 7822 DT	Luke Caballero	
SIZE AND TYPE OF BIT	LANGAN REP.	
4-inch Hollow Stem Auger	Patrick Stovall	
METHOD OF INSTALLATION		
ADT drilled SB-13 to 15' bgs. Borehole was backfilled v	vith a combination of IDW and Filpro #2 sand. ADT adva	anced a 4-inch
hollow stem auger to 12 feet bgs. After the PVC well s	creen and riser were installed, the annulus was backfill	ed with Fipro #2
clean sand and sealed with bentonite above the well pa		•

#### METHOD OF WELL DEVELOPMENT

ADT used a whale pump to purge up to 3 well volumes into a 55-gallon drum.

Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL		
Solid Schedule 40 F	blid Schedule 40 PVC 2-inch			Combination of non-impacted IDW and Filpro #2 Sand				
TYPE OF SCREEN	TYPE OF SCREEN DIAMETER			TYPE OF	SEAL MATE	ERIAL	•	
Schedule 40 0.01-ir	nch slotted PVC	2-inch		Hydra	ited bent	tonite chips		
BOREHOLE DIAMETER				TYPE OF	FILTER MA	TERIAL		
4-inch				Filpro	#2 Sanc	1		
TOP OF CASING	<b>elevation (ft navd8</b> 6.87	38)	<b>DEPTH (ft bgs)</b> 0.45		WELL DET	TAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD8	38)	DEPTH (ft bgs)					
	6.32		1.00			Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD8	38)	DEPTH (ft bgs)					0.45
	5.82		1.50	Riser —	<b>⊢</b> +•			
TOP OF SCREEN	ELEVATION (ft NAVD8 5.32	38)	DEPTH (ft bgs) 2.00			<b>∢</b> —— Seal		1.00
BOTTOM OF BORING	ELEVATION (ft NAVD8 -7.68	38)	<b>DEPTH (ft bgs)</b> 15.00					1.50
SCREEN LENGTH SLOT SIZE			10 feet					2.00
GBOI	JNDWATER ELE	ATIONS	0.01-inch	_				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	FR (ft bas)					
0.24	2/20/2020	6.63	( 250)					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	ER (ft bgs)	PVC Screen				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)			Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)			Pack		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WATI	ER (ft bgs)			Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WAT	ER (ft bgs)			IDW		15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-9

PROJECT	PROJECT NO.
1607 Surf Avenue	170599501
LOCATION	GROUND ELEVATION (ft NAVD88)
Brooklyn, NY	7.55
DRILLING AGENCY	DATE STARTED DATE FINISHED
ADT	2/10/2020 2/10/2020
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822 DT	Luke Caballero
SIZE AND TYPE OF BIT	LANGAN REP.
4-inch Hollow Stem Auger	Patrick Stovall
METHOD OF INSTALLATION	
ADT drilled SB-15 to 15' bgs. Borehole was backfilled with a comb	ination of IDW and Filpro #2 sand. ADT advanced a 4-inch
hollow stem auger to 12 feet bgs. After the PVC well screen and r	iser were installed, the annulus was backfilled with Fipro #2
clean sand and sealed with bentonite above the well pack. A flush	mount manhole was concrete installed at ground surface.
METHOD OF WELL DEVELOPMENT	
ADT used a whale pump to purge up to 3 well volumes into a 55-c	allon drum.

AD1 used a whale pump to purge up to 3 well volu Groundwater was purged until clear of sediment.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL		
Solid Schedule 40	PVC	2-inch		Comb	bination	of non-impact	ed IDW and Filpro #2	Sand
TYPE OF SCREEN		DIAMETER		_	SEAL MAT			
Schedule 40 0.01-i	nch slotted PVC	2-inch		Hydra	ated ber	ntonite chips		
BOREHOLE DIAMETER				TYPE OF	FILTER M	ATERIAL		
4-inch				Filpro	#2 San	d		
TOP OF CASING	ELEVATION (ft NAVD 7.22	88)	DEPTH (ft bgs) 0.33		WELL DE	TAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					
	6.55		1.00			Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.33
	6.05		1.50	Riser —				
TOP OF SCREEN	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)			Seal		1.00
	5.55		2.00					
BOTTOM OF BORING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					1.50
	-7.45		15.00					
SCREEN LENGTH								2.00
			10 feet					
SLOT SIZE								
			0.01-inch					
GRO	UNDWATER ELE	VATIONS						
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)					
0.50	2/20/2020	6.72						
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)	PVC				
				Screen				
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)					
						Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)			Pack		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)	]				
						Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)			IDW		
								15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-10

		PROJECT NO.	
1607 Surf Avenue		170599501	
LOCATION		GROUND ELEVATION (ft	NAVD88)
Brooklyn, NY		7.94	
DRILLING AGENCY		DATE STARTED	DATE FINISHED
ADT		2/5/2020	2/5/2020
DRILLING EQUIPMENT		DRILLER	
Geoprobe 7822 DT		Luke Caballero	
SIZE AND TYPE OF BIT		LANGAN REP.	
4-inch Hollow Stem Auger		Patrick Stovall	
clean sand and sealed with bentonite	e above the well pag		the annulus was backfilled with Fipro #2 as concrete installed at ground surface.
METHOD OF WELL DEVELOPMENT	· · · · · ·	ck. A flushmount manhole wa	
<b>метнод оf well development</b> ADT used a whale pump to purge up	to 3 well volumes	ck. A flushmount manhole wa	-
иетнор ог well pevelopmenт ADT used a whale pump to purge up Groundwater was purged until clear	to 3 well volumes	ck. A flushmount manhole wa	as concrete installed at ground surface.
метнод ог well development ADT used a whale pump to purge up Groundwater was purged until clear туре ог саsing	o to 3 well volumes of sediment.	ck. A flushmount manhole wa into a 55-gallon drum. <b>TYPE OF BACKFILL MATE</b>	as concrete installed at ground surface.
иетнор ог well development ADT used a whale pump to purge up Groundwater was purged until clear гуре ог casing Solid Schedule 40 PVC	o to 3 well volumes of sediment.	ck. A flushmount manhole wa into a 55-gallon drum. <b>TYPE OF BACKFILL MATE</b>	as concrete installed at ground surface.
	o to 3 well volumes of sediment. DIAMETER 2-inch	ck. A flushmount manhole wa into a 55-gallon drum. <b>TYPE OF BACKFILL MATE</b> Combination of n	as concrete installed at ground surface.
METHOD OF WELL DEVELOPMENT ADT used a whale pump to purge up Groundwater was purged until clear TYPE OF CASING Solid Schedule 40 PVC TYPE OF SCREEN	o to 3 well volumes of sediment. DIAMETER 2-inch DIAMETER	ck. A flushmount manhole wa into a 55-gallon drum. TYPE OF BACKFILL MATE Combination of n TYPE OF SEAL MATERIAL	RIAL on-impacted IDW and Filpro #2 Sand te chips

TYPE OF CASING		DIAMETER		TYPE OF	BACKFI	LM	ATERIAL		
Solid Schedule 40 F	PVC	2-inch		Comb	pinatio	n of	f non-impac	ted IDW and Filpro #2	Sand
TYPE OF SCREEN		DIAMETER			SEAL M				
Schedule 40 0.01-ir	nch slotted PVC	2-inch		Hydra	ated be	ento	onite chips		
BOREHOLE DIAMETER				-	FILTER I		ERIAL		
4-inch				Filpro	#2 Sa	nd	<u>-</u>		
TOP OF CASING	ELEVATION (ft NAVD 7.62	88)	DEPTH (ft bgs) 0.32		WELL	DETA	ILS	SUMMARY SOIL	DEPTH
TOP OF SEAL	30.	20)			1			CLASSIFICATION	(ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)						
	6.94		1.00			ן ו	Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)						0.32
	6.44		1.50	Riser —					
TOP OF SCREEN	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)				Seal		1.00
	5.94		2.00						
BOTTOM OF BORING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)						1.50
	-7.06		15.00						
SCREEN LENGTH				]					2.00
			10 feet						
SLOT SIZE									
			0.01-inch						
GROU	JNDWATER ELE	VATIONS		1					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)	1					
0.79	2/20/2020	6.83							
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)	PVC					
			-	Screen					
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bas)						
							Sand		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bas)			-	Pack		
			3-7				. 2010		
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bgs)						
							Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE	DEPTH TO WA	TER (ft bas)				IDW		
			3-1						15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

#### WELL CONSTRUCTION SUMMARY

Well No. MW-11

PROJECT		PROJECT NO.	
1607 Surf Avenue		170599501	
LOCATION		GROUND ELEVATION (ft NAVD88)	
Brooklyn, NY		7.28	
DRILLING AGENCY		DATE STARTED	DATE FINISHED
ADT		2/5/2020	2/5/2020
DRILLING EQUIPMENT		DRILLER	
Geoprobe 7822 DT		Luke Caballero	
SIZE AND TYPE OF BIT		LANGAN REP.	
4-inch Hollow Stem Auger		Patrick Stovall	
hollow stem auger to 12 feet bgs. Af clean sand and sealed with bentonite <b>METHOD OF WELL DEVELOPMENT</b> ADT used a whale pump to purge up	e above the well pack. A flushr	mount manhole was con	
Groundwater was purged until clear	-		
TYPE OF CASING	DIAMETER	TYPE OF BACKFILL MATERIAL	
Solid Schedule 40 PVC	2-inch	Combination of non-imp	pacted IDW and Filpro #2 Sand
TYPE OF SCREEN	DIAMETER	TYPE OF SEAL MATERIAL	
Schedule 40 0.01-inch slotted PVC	2-inch	Hydrated bentonite chip	DS
BOREHOLE DIAMETER		TYPE OF FILTER MATERIAL	

Schedule 40 0.01-i	nch slotted PVC 2-ir	nch	Hydra	ated ben	tonite chips		
BOREHOLE DIAMETER			TYPE O	F FILTER MA	TERIAL		
4-inch			Filpro	#2 San	d		
TOP OF CASING	<b>elevation (ft navd88)</b> 7.02	DEPTH (ft bgs) 0.26		WELL DE	TAILS	SUMMARY SOIL CLASSIFICATION	DEPTH (ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD88)	DEPTH (ft bgs)					
	6.28	1.00			Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD88)	DEPTH (ft bgs)					0.26
	5.78	1.50	Riser —	┢╧┝╴╽			
TOP OF SCREEN	<b>elevation (ft navd88)</b> 5.28	DEPTH (ft bgs) 2.00			Seal		1.00
BOTTOM OF BORING	elevation (ft navd88) -7.72	<b>DEPTH (ft bgs)</b> 15.00					1.50
	-1.12	15.00					0.00
SCREEN LENGTH		10 feet					2.00
SLOT SIZE							
		0.01-inch					
GRO	UNDWATER ELEVATI	ONS					
elevation (ft navd88) 0.63	DATE DEPT 2/20/2020	r <b>h to water (ft bgs)</b> 6.39					
ELEVATION (ft NAVD88)	DATE DEPT	TH TO WATER (ft bgs)	PVC				
ELEVATION (ft NAVD88)	DATE DEPT	TH TO WATER (ft bgs)	Screen		Sand		
ELEVATION (ft NAVD88)	DATE DEPT	TH TO WATER (ft bgs)			Pack		
ELEVATION (ft NAVD88)	DATE DEPT	TH TO WATER (ft bgs)			Sand and/or		12.00
ELEVATION (ft NAVD88)	DATE DEPT	TH TO WATER (ft bgs)			IDW		
Notes:							15.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

# I ANIFAN

PROJECT				PROJEC				
1607 Surf Avenu	IP			17059				
						N (ft NAVD88)		
Brooklyn, NY				7.11				
DRILLING AGENCY				DATE ST	ARTED		DATE FINISHED	
ADT				2/5/20	)20		2/5/2020	
DRILLING EQUIPMENT				DRILLER				
Geoprobe 7822	DT			Luke	Caballero	C		
SIZE AND TYPE OF BIT				LANGAN	I REP.			
4-inch Hollow St	em Auger			Patric	k Stovall			
METHOD OF INSTALLA	TION							
ADT drilled SB-2	0 to 12' bgs. ADT ac	vanced a 4-	inch hollow stem	auger t	o 12 fee	t bgs. After	the PVC well screen a	nd riser were
installed, the ani	nulus was backfilled	with Fipro #	2 clean sand and	sealed	with ben	tonite abov	e the well pack. A flus	hmount
manhole was co	ncrete installed at gr	ound surfac	e.					
	Ũ							
METHOD OF WELL DEV	ELOPMENT							
ADT used a wha	ale pump to purge up	to 3 well vo	olumes into a 55-	gallon d	rum.			
	as purged until clear			•				
	1 0							
TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL N	IATERIAL		
Solid Schedule 4	10 PVC	2-inch		None				
TYPE OF SCREEN		DIAMETER		TYPE OF	SEAL MATE	RIAL		
Schedule 40 0.0	1-inch slotted PVC	2-inch		Hydra	ted bent	onite chips		
BOREHOLE DIAMETER				TYPE OF	FILTER MA	FERIAL		
4-inch				Filpro	#2 Sand			
TOP OF CASING	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)		WELL DET	AILS	SUMMARY SOIL	DEPTH
	6.89		0.22				CLASSIFICATION	(ft bgs)
TOP OF SEAL	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					
	6.11		1.00			Manhole		0.00
TOP OF FILTER	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)					0.22
	5.61		1.50	Riser —	┝┥			
TOP OF SCREEN	ELEVATION (ft NAVD	88)	DEPTH (ft bgs)			Seal		1.00
	5.11		2.00					
	-							

TOP OF FILTER	ELEVATION (ft NAVD88)	DEPTH (ft bgs)					0.22
	5.61	1.50	Riser —	►			
TOP OF SCREEN	ELEVATION (ft NAVD88)	DEPTH (ft bgs)				Seal	1.00
	5.11	2.00					
BOTTOM OF BORING	ELEVATION (ft NAVD88)	DEPTH (ft bgs)					1.50
	-4.89	12.00					
SCREEN LENGTH		10 feet					2.00
SLOT SIZE		0.01-inch					
GROU	UNDWATER ELEVAT	TIONS					
elevation (ft navd88) 0.04	<b>date de</b> 2/20/2020	PTH TO WATER (ft bgs) 6.85					
ELEVATION (ft NAVD88)	DATE DE	PTH TO WATER (ft bgs)	PVC Screen				
ELEVATION (ft NAVD88)	DATE DE	PTH TO WATER (ft bgs)			_	Sand	
ELEVATION (ft NAVD88)	DATE DE	PTH TO WATER (ft bgs)			-	Pack	
ELEVATION (ft NAVD88)	DATE DE	PTH TO WATER (ft bgs)	]				
ELEVATION (ft NAVD88)	DATE DE	PTH TO WATER (ft bgs)	]				12.00

Notes:

NAVD88 = North American Vertical Datum of 1988

IDW = Investigation Derived Waste

### **APPENDIX E**

### **GROUNDWATER SAMPLING LOGS**

LANGAN

Project	t Information	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	IS	Sampling	nformation
Project Name:	1607 Surf Avenue	Well No:	MW-1	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Cloudy		MW-1_021820
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	MS/MSD
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	n Inner Cap (ppm):	1.6		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ake Depth (ft bgs):	8.00	Sample Date:	2/18/2020
Personnel:	Fatrick Stovall	Interval:	2 10 12		<b>Tubing Diameter:</b>	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	9:45
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <	.31 /	-		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN P	JRGING				•	
9:15	10.37	6.33	2	0.660	170.0	0.00		0.05	0.25	no color, no odor	N/A
9:20	11.62	6.63	-41	0.617	97.3	0.00		0.05	0.5	no color, no odor	N/A
9:25	11.79	6.69	-49	0.609	56.6	0.00		0.1	1	no color, no odor	Ν
9:30	11.67	6.72	-51	0.610	7.7	0.00		0.1	1.25	no color, no odor	N
9:35	11.69	6.73	-53	0.608	2.3	0.00		0.1	1.5	no color, no odor	N
9:40	11.78	6.75	-54	0.605	0.3	0.00		0.05	1.75	no color, no odor	N
9:45	11.81	6.75	-54	0.603	0.0	0.00		0.05	2	no color, no odor	Y
Notes:											
	adings not taken due to PF.										
	ameters are measured in ir	nches.									
3. PID = Photoioniza											
<ol> <li>PPM = Parts per r</li> </ol>	million										

5. pH = Hydrogen ion concentration
6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabilization, samples were collected after one hour of purging.

	ion	Well Informati	on		Equipment Inform	ation	S	ampling Condition	s	Sampling	Information
oiect Number: 170	Surf Avenue	Well No:	MW-2	Water Qua	lity Device Model:	Horiba U-52		Weather:	30s F, Clear		MW-2_021420
	0599501 Wel	ell Depth:	12		Pine Number:	32096		ground PID (ppm):	0.0	Sample(s):	
		Diameter:	2	Pump	Make and Model:	Peri Pump		n Inner Cap (ppm):	0.0		
Sampling Patri	ck Stovall Wel	ell Screen	2 to 12		Pine Number:	10966		ake Depth (ft bgs):	8.00	Sample Date:	2/14/2020
Personnel:		Interval:			Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	10:25
			6	STABILIZATION = 3	successive reading	gs within limits					
1	TEMP PI	ч	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00 °C	Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		etubilizeu.
TIME (+	(+/- 3%)	- 0.1) (+/	/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PU	JRGING					
	8.86 6.4		93	0.621	34.1	0.33		0.05	0.25	no color, no odor	N/A
	10.95 6.8		-32	0.716	146.0	0.00		0.05	0.5	no color, no odor	N/A
	11.48 7.1		-62	0.734	124.0	0.00		0.05	0.75	no color, no odor	N
	11.51 7.1		-66	0.786	19.1	0.00		0.1	1.25	no color, no odor	N
	11.83 7.1		-66	0.815	3.3	0.00		0.1	1.75	no color, no odor	N
	11.71 7.2		-68	0.859	1.3	0.00		0.1	2.25	no color, no odor	N
		.23	-66	0.877	0.8	0.00		0.1	2.75	no color, no odor	N
	11.80 7.2		-66	0.895	0.5	0.00		0.1	3.25	no color, no odor	N
10:05	11.90 7.2		-66	0.908	0.3	0.00		0.1	3.75	no color, no odor	N
	11.76 7.3		-66	0.950	0.3	0.00		0.1	4.25	no color, no odor	N
10:15	12.10 7.2		-67	0.986	0.3	0.00		0.05	4.5	no color, no odor	N
										no color, no odor	N
10:25	12.45 7.2	.29	-70	1.500	1.2	0.00		0.1	5.25	no color, no odor	N
10:20	12.24     7.2       12.45     7.2       taken due to PFAS sampling       e measured in inches.       tor	.28 .29 ng.	-67 -67 -70	0.986 1.000 1.500	0.3 0.4 1.2	0.00 0.00 0.00		0.05	4.5 4.75 5.25	no color, no odor	

Project Number:	ormation	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	s	Sampling	nformation
	1607 Surf Avenue	Well No:	MW-3	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Cloudy		MW-3_021820
	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ake Depth (ft bgs):	8.00	Sample Date:	2/18/2020
Personnel:	T atrick Stovall	Interval:			Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	12:20
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN PU	JRGING					
11:50	12.18	7.30	-65	2.220	80.0	0.00		0.05	0.25	no color, no odor	N/A
11:55	12.49	7.41	-79	2.170	58.2	0.00		0.05	0.5	no color, no odor	N/A
12:00	12.79	7.46	-88	2.100	22.5	0.00	-	0.05	0.75	no color, no odor	N
12:05	13.00	7.46	-94	2.120	5.1	0.00		0.05	1.1	no color, no odor	N
12:10	13.13	7.46	-97	2.120	1.9	0.00		0.05	1.5	no color, no odor	N
12:15	13.12	7.46	-100	2.100	0.3	0.00		0.05	1.75	no color, no odor	N
12:20	13.12	7.46	-103	2.110	0.0	0.00		0.1	2.25	no color, no odor	Y

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabliziation, samples were collected after one hour of purging.

Project Name: 1 Project Number: Site Location:	1607 Surf Avenue		rmation		Equipment Inform	ation	S	ampling Condition	s	Sampling	Information
		Well No:	MW-4	Water Qua	lity Device Model:	Horiba U-52		Weather:	30s F, Clear		MW-4_021420
Site Location:	170599501	Well Depth:	12		Pine Number:	32096	Backg	pround PID (ppm):	0.0	Sample(s):	
	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.2	Ī	
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ke Depth (ft bgs):	8.00	Sample Date:	2/14/2020
Personnel:	Fallick Slovali	Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to Wa	ater Before Purge:		Sample Time:	11:25
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN PU	JRGING					
11:05	11.30	7.90	-90	2.130	3.5	0.69			0	no color, no odor	N/A
11:10	11.87	7.82	-104	2.210	3.3	0.00		0.05	0.25	no color, no odor	N/A
11:15	12.12	7.83	-115	2.260	2.8	0.00		0.1	0.75	no color, no odor	N
11:20	12.05	7.84	-119	2.300	1.9	0.00		0.1	1.25	no color, no odor	N
11:25	11.95	7.84	-121	2.320	1.2	0.00		0.1	1.5	no color, no odor	Y

6. ORP = Oxidation-reduction potential, measured in minimous (my, 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabilization, samples were collected after one hour of purging.

Project Name:         1607 Surf Avenue         Well No:         MW+5         Water Quality Device Model:         Horiba U-52         Weather:         405 F. Cloudy         Ample           Project Number:         170599901         Well Depth:         12         Pine Number:         32096         Background PID (ppm):         0.0         Sample(s):           Site Location:         Brocklyn, NY         Well Diameter:         2         Pump Make and Model:         Peri Pump         PID Beneath Inner Cap (ppm):         0.0         0.8         Sample(s):         2/18/2020           Sampling Personnel:         Patrick Stovall         Well Screen Interval:         2 to 12         Pine Number:         10966         Pump Intake Depth (Ht bgs):         8.00         Sample Time:         2/18/2020           Start at 15:00         Well C+/-0.1)         MV         mS/cm         TUBBIDITY         mg/l         ft				rmation		Equipment Inform	ation	5	ampling Condition	S	Sampling	Information
Tight Location:         Brooklyn, NY         Well Diameter:         2         Pump Make and Model:         Peri Pump         PID Beneath Inner Cap (ppm):         0.8         Control           Sampling Personnel:         Patrick Stovall         Well Diameter:         2 to 12         Pine Number:         10966         Pump Intake Depth (ft bgs):         8.00         Sample Date:         2/18/2020           Personnel:         Prine Number:         10/966         Pump Intake Depth (ft bgs):         8.00         Sample Date:         2/18/2020           Start at 15:00         TEMP         PH         ORP         CONDUCTIVITY mS/cm         TURBIDITY         DO         DTW         Flow Rate (gpm)         Cumulative Discharge Volume (Gal)         NOTES         Stabilized?           TIME         (+/- 3%)         (+/- 0.1)         (+/- 10mV)         (+/- 3%)         ft         mg/l         ft         (gpm)         Cumulative Discharge         NOTES         Stabilized?           13:25         12:10         7.58         -159         0.745         13:3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12:15         7.45         -160         0.710         1.6         0.00          0.05         1	Project Name:	1607 Surf Avenue	Well No:	MW-5	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Cloudy		MW-5_021820
Sampling Personnel:         Patrick Stovall         Well Screen Interval:         2 to 12         Pine Number:         10966         Pump Intake Depth (it bgs):         8.00         Sample Date:         2/18/2020           Personnel:         Patrick Stovall         Interval:         2 to 12         Tubing Diameter:         1/4 ID x 3/8 0D         Depth to Water Before Purge:          Sample Date:         2/18/2020           Start at 15:00         PH         ORP         CONDUCTIVITY         TURBIDITY         DO         DTW         Flow Rate (gpm)         Cumulative Discharge Volume (Gal)         NOTES         Stabilized?           TIME         (+/- 3%)         (+/- 0.1)         (+/- 10W)         (+/- 3%)         5 NTU         mg/l         0.33 ft         -0.13 gpm)         Volume (Gal)         color, odor etc.         Stabilized?           13:25         12:10         7.58         -159         0.745         13:3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12:13         7.48         -160         0.710         1.6         0.00          0.05         1         no color, no odor         N/A           13:40         12:22         7.41         -158         0.695	Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Backg	ground PID (ppm):	0.0	Sample(s):	
Personnel:         Patrick Stovall         Interval:         2 to 12         Tubing Diameter:         1/4 ID x 3/8 OD         Depth to Water Before Purge:          Sample Time:         13:45           Start at 15:00         TEMP °Celsius         PH         ORP mV         CONDUCTIVITY mV         TURBIDITY ntu (+/- 10%) above         DO         DTW ft (gpm)         Flow Rate (gpm)         Cumulative Discharge Volume (Gal)         NOTES         Stabilized?           TIME         (+/- 3%)         (+/- 0.1)         (+/- 10mV)         (+/- 3%)         5 NTU         mg/l (+/- 10%) above         DO         DTW mg/l (+/- 10%) above         Flow Rate (gpm)         NOTES         Stabilized?           13:25         12.10         7.58         -159         0.745         13.3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12.13         7.48         -160         0.734         3.3         0.00          0.1         0.75         no color, no odor         N/A           13:32         12.15         7.45         -160         0.710         1.6         0.00          0.05         1.5         no color, no odor         N/A           13:40         12.22         7.41	Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.8	Ī	
Personnel:         Interval:         Interval:         Tubing Diameter;         1/4/10x3/8 0D         Depth to Water Before Purge;	Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ake Depth (ft bgs):	8.00	Sample Date:	2/18/2020
TEMP °Celsius         PH (+/- 3%)         ORP (+/- 0.1)         CONDUCTIVITY mV         TURBIDITY ntu (+/- 10mV)         DO mtu (+/- 10%) above 5 NTU         DO mg/l (+/- 10%) above 5 NTU         DTW mg/l (+/- 10%) above (+/- 10%) above (-/- 0.33 ft (-/- 0.05)         Flow Rate (gpm) (-/- 0.13 gpm)         NOTES (-/- 0.00 (-/- 0.05)         NOTES (-/- 0.05)	Personnel:	Tatrick Stovall	Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	13:45
Start at 15:00         °Celsius         mV         mS/cm         ntu (+/- 10%) above (+/- 10%) above (-)         ft (gpm)         (Umulative (b) (-)         Deschare (-)         Stabilized?           TIME         (+/- 3%)         (+/- 10m)         (+/- 3%)         ntu (+/- 3%)         mg/l         ft         (gpm)         Dischareg         Dischareg         Stabilized?           TIME         (+/- 3%)         (+/- 10m)         (+/- 3%)         STU         mg/l         0.33 ft         -0.13 gpm)         color, odor etc.         Stabilized?           13:25         12.10         7.58         -159         0.745         13.3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12.13         7.48         -160         0.710         1.6         0.000          0.05         1.1         no color, no odor         N/A           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N					STABILIZATION = 3	3 successive readin	gs within limits					
Start at 15:00         °Celsius         mV         mS/cm         ntu (+/-10%) above         mg/l         ft (+/-10%) above         (gpm)         Discharge Volume (Gal)         Less above volume (Gal)         Stabilized?           TIME         (+/-3%)         (+/-0.1)         (+/-10mV)         (+/-3%)         5NTU         mg/l         Discharge (+/-10%) above         Discharge Volume (Gal)         Discharge Volume (Gal)         notor         color, odor etc.         Stabilized?           13:25         12.10         7.58         -159         0.745         13.3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12.13         7.48         -160         0.710         1.6         0.000          0.05         1.5         no color, no odor         N/A           13:30         12.12         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N		TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
TIME         (+/- 3%)         (+/- 10m)         (+/- 10%) above 5         Drawdown < 0.33 ft         Drawdown < 0.13 gpm)         Drawdown < 0.00 color, odor etc.         Drawdown < 0.00 color, odor etc.         Drawdown < 0.00 color, 00 col	Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)			Stabilized?
TIME         (+/- 3%)         (+/- 10mV)         (+/- 3%)         5 NTU         mg/l         0.33 ft         <0.13 gpm)         color, odor etc.           BEGIN PURGING           13:25         12.10         7.58         -159         0.745         13.3         0.00          0.05         0.025         no color, no odor         N/A           13:30         12.13         7.48         -160         0.734         3.3         0.00          0.1         0.75         no color, no odor         N/A           13:35         12.15         7.45         -160         0.710         1.6         0.00          0.05         1         no color, no odor         N/A           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N						(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		•		otabilizeu:
13:25         12.10         7.58         -159         0.745         13.3         0.00          0.05         0.25         no color, no odor         N/A           13:30         12.13         7.48         -160         0.734         3.3         0.00          0.1         0.75         no color, no odor         N/A           13:35         12.15         7.45         -160         0.710         1.6         0.00          0.05         1         no color, no odor         N           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N	TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)			0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
13:30         12.13         7.48         -160         0.734         3.3         0.00          0.1         0.75         no color, no odor         N/A           13:35         12.15         7.45         -160         0.710         1.6         0.00          0.05         1         no color, no odor         N           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N						BEGIN P	JRGING					
13:35         12.15         7.45         -160         0.710         1.6         0.00          0.05         1         no color, no odor         N           13:40         12.22         7.41         -158         0.695         2.0         0.00          0.05         1.5         no color, no odor         N	13:25	12.10	7.58	-159	0.745	13.3	0.00	-	0.05	0.25	no color, no odor	N/A
13:40 12.22 7.41 -158 0.695 2.0 0.00 0.05 1.5 no color, no odor N		12.13				3.3	0.00			0.75	no color, no odor	N/A
										1		
13:45       12.23       7.40       -157 $0.695$ $0.0$ $0.00$ $$ $0.05$ $1.75$ $no color, no dor       Y         Image: Im$											no color, no odor	
Image: series of the series	13:45	12.23	7.40	-157	0.695	0.0	0.00		0.05	1.75	no color, no odor	Y
Image: state of the state												
Image: state of the state												
Image: second												
Image: second se												
		lings not taken due to PE/	NS compling									
1. Depth to water readings not taken due to PFAS sampling.			ici ica.									
1. Depth to water readings not taken due to PFAS sampling. 2. Well and tubing diameters are measured in inches.												
Notes: 1. Depth to water readings not taken due to PFAS sampling. 2. Well and tubing diameters are measured in inches. 3. PID = Photoionization Detector 4. PPM = Parts per million												
1. Depth to water readings not taken due to PFAS sampling. 2. Well and tubing diameters are measured in inches.		duction potential, measure	ed in millivolts (m\/)									

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabiliziation, samples were collected after one hour of purging.

Project	Information	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	s	Sampling	Information
Project Name:	1607 Surf Avenue	Well No:	MW-6	Water Qua	lity Device Model:	Horiba U-52		Weather:	30s F, Clear		MW-6_021420
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ake Depth (ft bgs):	8.00	Sample Date:	2/14/2020
Personnel:	T atrick Stovall	Interval:	2 10 12		<b>Tubing Diameter:</b>	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	13:30
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		otabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volulile (Gal)	color, odor etc.	
					BEGIN P	JRGING					
12:30	11.36	8.22	-55	0.676	152.0	1.02	-	0.05	0.25	no color, no odor	N/A
12:35	12.13	7.80	-119	0.820	106.0	0.00		0.1	0.75	no color, no odor	N/A
12:40	12.21	7.80	-122	0.854	78.3	0.00	-	0.1	1.25	no color, no odor	Ν
12:45	12.31	7.76	-126	0.874	69.6	0.00		0.05	1.5	no color, no odor	N
12:50	12.37	7.74	-127	0.884	41.2	0.00		0.1	2	no color, no odor	N
12:55	12.31	7.72	-127	0.895	23.3	0.00		0.1	2.5	no color, no odor	N
13:00	12.31	7.72	-129	0.897	19.7	0.00		0.1	3	no color, no odor	N
13:05	12.33	7.72	-129	0.900	8.3	0.00		0.05	3.25	no color, no odor	N
13:10	12.47	7.71	-129	0.900	6.7	0.00		0.1	3.75	no color, no odor	N
13:15	12.28	7.71	-130	0.900	6.1	0.00		0.1	4.25	no color, no odor	N
13:20	12.40	7.70	-130	0.900	5.6	0.00		0.1	4.75	no color, no odor	N
13:25	12.22	7.69	-131	0.910	6.1	0.00		0.1	5.25	no color, no odor	Y
Notes:											
	adings not taken due to PFA										
	ameters are measured in in	iches.									
3. PID = Photoionizat											
4. PPM = Parts per m											
5. pH = Hydrogen ior											
	eduction potential, measure										
	xygen, measured in milligra	ams per liter (mg/L)									
8. DTW = Depth to v	vater										

9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabiliziation, samples were collected after one hour of purging.

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project	t Information	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	S	Sampling	Information
Project Name:	1607 Surf Avenue	Well No:	MW-7	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Cloudy		MW-7_021820
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.3		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ake Depth (ft bgs):	8.00	Sample Date:	2/18/2020
Personnel:	Tatlick Stovall	Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	15:10
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volulile (Gal)	color, odor etc.	
					BEGIN P	JRGING					
14:50	11.49	7.57	-69	0.621	40.4	0.00		0.05	0.25	no color, no odor	N/A
14:55	11.44	7.39	-87	0.679	7.4	0.00		0.05	0.5	no color, no odor	N/A
15:00	11.37	7.37	-91	0.680	4.9	0.00		0.05	0.75	no color, no odor	N
15:05	11.33	7.35	-95	0.680	2.5	0.00		0.05	1	no color, no odor	N
15:10	11.48	7.36	-96	0.682	4.9	0.00		0.05	1.25	no color, no odor	Y
Notes:											
	adings not taken due to PFA										
	ameters are measured in in	iches.									
3. PID = Photoioniza											
4. PPM = Parts per r											
<ol><li>pH = Hydrogen ior</li></ol>	n concentration										

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabliziation, samples were collected after one hour of purging.

Project	t Information	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	s	Sampling	Information
Project Name:	1607 Surf Avenue	Well No:	MW-8	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Clear		MW-8_021920
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Backg	pround PID (ppm):	0.0	Sample(s):	GWDUP01_021920
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ke Depth (ft bgs):	8.00	Sample Date:	2/19/2020
Personnel:	Father Stovall	Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	9:30
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)			Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <	(31)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN P						
9:05	11.63	5.40	-41	1.330	126.0	0.00		0.05	0.25	no color, no odor	N/A
9:10	12.14	5.35	-56	1.290	5.0	0.00		0.1	0.75	no color, no odor	N/A
9:15	12.11	5.32	-48	1.250	1.9	0.00		0.1	1.25	no color, no odor	Ν
9:20	12.17	5.29	-49	1.420	0.0	0.00		0.1	1.75	no color, no odor	N
9:25	12.24	5.28	-50	1.420	0.0	0.00	-	0.1	2.25	no color, no odor	N
9:30	12.27	5.27	-52	1.410	0.0	0.00		0.05	2.5	no color, no odor	Y

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabilization, samples were collected after one hour of purging.

Project	t Information	Well Info	ormation		Equipment Inform	ation	S	ampling Condition	S	Sampling	nformation
Project Name:	1607 Surf Avenue	Well No:	MW-9	Water Qua	lity Device Model:	Horiba U-52		Weather:	30s F, Clear		MW-9_021420
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	n Inner Cap (ppm):	0.0	i i	
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inte	ake Depth (ft bgs):	8.00	Sample Date:	2/14/2020
Personnel:	Father Stovall	Interval:	2 10 12		<b>Tubing Diameter:</b>	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	14:50
				STABILIZATION =	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		•		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PU	JRGING		<b>.</b>		· · ·	
14:05	11.43	7.66	-86	1.240	123.0	0.00		0.05	0.25	no color, no odor	N/A
14:10	11.31	7.60	-101	1.180	50.7	0.00		0.1	0.75	no color, no odor	N/A
14:15	11.56	7.57	-113	1.130	23.0	0.00		0.1	1.25	no color, no odor	Ν
14:20	11.45	7.55	-114	1.150	15.1	0.00		0.1	1.5	no color, no odor	N
14:25	11.64	7.54	-115	1.140	6.5	0.00		0.1	1.75	no color, no odor	N
14:30	11.43	7.49	-113	1.300	5.4	0.00		0.1	2.25	no color, no odor	N
14:35	11.66	7.53	-113	1.310	4.3	0.00		0.05	2.5	no color, no odor	N
14:40	11.80	7.53	-112	1.370	3.5	0.00		0.1	3	no color, no odor	N
14:45	11.71	7.53	-112	1.390	3.2	0.00		0.05	3.25	no color, no odor	N
14:50	11.74	7.52	-111	1.370	2.9	0.00		0.1	3.75	no color, no odor	Y
14.00											
14.00											
14.00											

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabliziation, samples were collected after one hour of purging.

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

	Information	Well Info	ormation		Equipment Inform	ation	S	ampling Condition	S	Sampling	nformation
Project Name:	1607 Surf Avenue	Well No:	MW-10	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Clear		MW-10_021920
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	pround PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966	Pump Inta	ke Depth (ft bgs):	8.00	Sample Date:	2/19/2020
Personnel:	I atrick Stovall	Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	14:25
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volulile (Gal)	color, odor etc.	
					BEGIN PU	JRGING					
14:00	12.57	4.99	50	0.473	7.6	0.00		0.05	0.25	no color, no odor	N/A
14:05	12.31	4.77	58	0.481	3.6	0.00		0.1	0.75	no color, no odor	N/A
14:10	12.21	4.71	48	0.483	1.9	0.00		0.05	1	no color, no odor	N
14:15	12.11	4.65	38	0.485	1.2	0.00	-	0.05	1.25	no color, no odor	N
14:20	12.12	4.63	31	0.482	0.0	0.00		0.05	1.75	no color, no odor	N
14:25	12.05	4.61	29	0.484	0.0	0.00		0.1	2.25	no color, no odor	Y

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabilization, samples were collected after one hour of purging.

Project Name:         1607 Surf Avenue         Well No:           Project Number:         170599501         Well Depth:           Site Location:         Brooklyn, NY         Well Diameter:           Sampling Personnel:         Patrick Stovall         Well Screen Interval:           Start at 15:00         °Celsius         PH           12:10         12:20         5.87           12:15         12:60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04           12:35         12.81         5.02	MW-11 12 2 to 12 ORP mV (+/- 10mV) 69 59 37 22	Pump STABILIZATION = CONDUCTIVITY mS/cm (+/- 3%) 0.186 0.178 0.181	ality Device Model: Pine Number: Make and Model: Pine Number: Tubing Diameter: 3 successive readin TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5 46.5	32096 Peri Pump 10966 1/4/ID x 3/8 OD ngs within limits DO mg/l (+/- 10%) above 0.5 mg/l	PID Beneatl Pump Int	Weather: ground PID (ppm): n Inner Cap (ppm): ake Depth (ft bgs): ater Before Purge: Flow Rate (gpm) <0.13 gpm) 0.05 0.05	40s F, Clear 0.0 0.0 8.00  Cumulative Discharge Volume (Gal) 0.25 0.5	Sample(s): Sample Date: Sample Time: NOTES color, odor etc.	MW-11_021920 2/19/2020 13:00 Stabilized?
Site Location:         Brooklyn, NY         Well Diameter:           Sampling Personnel:         Patrick Stovall         Well Screen Interval:           TEMP Start at 15:00         PH           °Celsius         (+/- 0.1)           12:10         12:20         5.87           12:15         12:60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	2 2 to 12 ORP mV (+/- 10mV) 69 59 37	STABILIZATION =           CONDUCTIVITY           mS/cm           (+/- 3%)           0.186           0.178           0.181	p Make and Model: Pine Number: Tubing Diameter: 3 successive readin TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	Peri Pump 10966 1/4 ID x 3/8 OD ngs within limits DO mg/l (+/- 10%) above 0.5 mg/l URGING 0.00 0.00	PID Beneatl Pump Int. Depth to W DTW ft Drawdown < 0.33 ft	h Inner Cap (ppm): ake Depth (ft bgs): ater Before Purge: Flow Rate (gpm) <0.13 gpm) 0.05	0.0 8.00  Cumulative Discharge Volume (Gal) 0.25	Sample Date: Sample Time: NOTES color, odor etc.	13:00 Stabilized? N/A
Sampling Personnel:         Patrick Stovall         Well Screen Interval:           TEMP Start at 15:00         PH         PH           °Celsius         (+/- 0.1)         (+/- 0.1)           12:10         12:20         5.87           12:15         12:60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	2 to 12 ORP mV (+/- 10mV) 69 59 37	STABILIZATION =           CONDUCTIVITY           mS/cm           (+/- 3%)           0.186           0.178           0.181	Pine Number: Tubing Diameter: 3 successive readin TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	10966 1/4 ID x 3/8 OD 1/4 ID x 3/8 OD	Pump Int: Depth to W DTW ft Drawdown < 0.33 ft	ake Depth (ft bgs): ater Before Purge: Flow Rate (gpm) <0.13 gpm) 0.05	8.00 — Cumulative Discharge Volume (Gal) 0.25	Sample Time: NOTES color, odor etc.	13:00 Stabilized? N/A
TEMP         PH           Start at 15:00         °Celsius           TIME         (+/- 3%)           (+/- 3%)         (+/- 0.1)           12:10         12:20           12:15         12:60           12:20         5.87           12:20         5.19           12:25         12.86           12:30         12.89	ORP mV (+/- 10mV) 69 59 37	CONDUCTIVITY mS/cm (+/- 3%) 0.186 0.178 0.181	Tubing Diameter: 3 successive readin TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	1/4 ID x 3/8 OD ngs within limits DO mg/l (+/- 10%) above 0.5 mg/l URGING 0.00 0.00	Depth to W DTW ft Drawdown < 0.33 ft	ater Before Purge: Flow Rate (gpm) <0.13 gpm) 0.05	Cumulative Discharge Volume (Gal) 0.25	Sample Time: NOTES color, odor etc.	13:00 Stabilized? N/A
TEMP         PH           Start at 15:00         °Celsius           TIME         (+/- 3%)           (+/- 3%)         (+/- 0.1)           12:10         12.20           12:15         12.60           12:20         5.87           12:20         12.21           5.19         12.25           12:30         12.89           5.04	ORP mV (+/- 10mV) 69 59 37	CONDUCTIVITY mS/cm (+/- 3%) 0.186 0.178 0.181	3 successive readin TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	rgs within limits DO mg/l (+/- 10%) above 0.5 mg/l URGING 0.00 0.00	DTW ft Drawdown < 0.33 ft	Flow Rate (gpm) <0.13 gpm) 0.05	Cumulative Discharge Volume (Gal) 0.25	NOTES color, odor etc.	Stabilized? N/A
Start at 15:00         °Celsius         (+/- 0.1)           TIME         (+/- 3%)         (+/- 0.1)           12:10         12:20         5.87           12:15         12:60         5.47           12:20         12.21         5.19           12:25         12:86         5.09           12:30         12.89         5.04	ORP mV (+/- 10mV) 69 59 37	CONDUCTIVITY mS/cm (+/- 3%) 0.186 0.178 0.181	TURBIDITY ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	DO mg/l (+/- 10%) above 0.5 mg/l URGING 0.00 0.00	ft Drawdown < 0.33 ft	(gpm) <0.13 gpm) 0.05	Discharge Volume (Gal) 0.25	color, odor etc.	N/A
Start at 15:00         °Celsius         (+/- 0.1)           TIME         (+/- 3%)         (+/- 0.1)           12:10         12.20         5.87           12:15         12.60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	mV (+/- 10mV) 69 59 37	mS/cm (+/- 3%) 0.186 0.178 0.181	ntu (+/- 10%) above 5 NTU BEGIN P 95.2 72.5	mg/l (+/- 10%) above 0.5 mg/l URGING 0.00 0.00	ft Drawdown < 0.33 ft	(gpm) <0.13 gpm) 0.05	Discharge Volume (Gal) 0.25	color, odor etc.	N/A
TIME         (+/- 3%)         (+/- 0.1)           12:10         12.20         5.87           12:15         12.60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	(+/- 10mV) 69 59 37	(+/- 3%) 0.186 0.178 0.181	(+/- 10%) above 5 NTU BEGIN P 95.2 72.5	(+/- 10%) above 0.5 mg/l URGING 0.00 0.00	0.33 ft	<b>&lt;0.13 gpm)</b>	Discharge Volume (Gal) 0.25	no color, no odor	N/A
TIME         (+/- 3%)         (+/- 0.1)           12:10         12:20         5.87           12:15         12:60         5.47           12:20         12:21         5.19           12:25         12:86         5.09           12:30         12.89         5.04	(+/- 10mV) 69 59 37	(+/- 3%) 0.186 0.178 0.181	(+/- 10%) above 5 NTU BEGIN P 95.2 72.5	(+/- 10%) above 0.5 mg/l URGING 0.00 0.00	0.33 ft	<b>&lt;0.13 gpm)</b>	Volume (Gal)	no color, no odor	N/A
12:10         12.20         5.87           12:15         12.60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	69 59 37	0.186 0.178 0.181	<b>BEGIN P</b> 95.2 72.5	URGING 0.00 0.00		0.05	0.25	no color, no odor	
12:15         12:60         5:47           12:20         12:21         5:19           12:25         12:86         5:09           12:30         12:89         5:04	59 37	0.178 0.181	95.2 72.5	0.00 0.00		0.05			
12:15         12.60         5.47           12:20         12.21         5.19           12:25         12.86         5.09           12:30         12.89         5.04	59 37	0.178 0.181	72.5	0.00					
12:20         12:21         5.19           12:25         12:86         5.09           12:30         12:89         5.04	37	0.181				0.05	05	no color, no odor	
12:25         12.86         5.09           12:30         12.89         5.04			46.5	0.00				110 00101, 110 0001	N/A
12:30 12.89 5.04	22					0.05	0.75	no color, no odor	Ν
		0.190	27.5	0.00		0.05	1.25	no color, no odor	Ν
12:35 12.81 5.02	16	0.193	21.5	0.00		0.05	1.5	no color, no odor	Ν
	13	0.199	15.3	0.00	-	0.1	2	no color, no odor	N
12:40 12.45 5.02	10	0.210	0.4	0.00	-	0.05	2.25	no color, no odor	N
12:45 12.64 4.99	6	0.213	0.2	0.00		0.1	2.75	no color, no odor	Ν
12:50 12.73 4.96	5	0.223	0.0	0.00	-	0.05	3	no color, no odor	N
12:55 12.89 4.96	3	0.229	0.0	0.00		0.1	3.5	no color, no odor	Ν
13:00 12.81 4.95	1	0.228	0.0	0.00		0.05	3.75	no color, no odor	Y

3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabliziation, samples were collected after one hour of purging.

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project	t Information	Well Info	rmation		Equipment Inform	ation	S	ampling Condition	S	Sampling	nformation
Project Name:	1607 Surf Avenue	Well No:	MW-12	Water Qua	lity Device Model:	Horiba U-52		Weather:	40s F, Clear		MW-12_021920
Project Number:	170599501	Well Depth:	12		Pine Number:	32096	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Brooklyn, NY	Well Diameter:	2	Pump	Make and Model:	Peri Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 to 12		Pine Number:	10966		ake Depth (ft bgs):	8.00	Sample Date:	2/19/2020
Personnel:		Interval:	2 10 12		Tubing Diameter:	1/4 ID x 3/8 OD	Depth to W	ater Before Purge:		Sample Time:	11:05
				STABILIZATION = 3	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
Start at 15:00	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	volume (Gai)	color, odor etc.	
					BEGIN P	JRGING					
10:45	12.52	5.34	-4	1.010	270.0	0.00		0.05	0.25	no color, no odor	N/A
10:50	12.61	5.25	-57	1.120	94.5	0.00		0.05	0.5	no color, no odor	N/A
10:55	12.56	5.20	-70	1.200	4.8	0.00		0.15	1.25	no color, no odor	N
11:00	12.59	5.19	-72	1.210	4.9	0.00		0.15	1.5	no color, no odor	N
11:05	12.64	5.18	-76	1.230	1.2	0.00		0.15	1.75	no color, no odor	Y
Notes:											
	adings not taken due to PFA										
	iameters are measured in in	iches.									
3. PID = Photoioniza											
4. PPM = Parts per r											I
5. pH = Hydrogen io											

5. pH = Hydrogen ion concentration 6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemens per centimeter

10. NTU = Nephelometric Turbidity Unit

11. Samples were collected eafter parameter stabilization. If parameters did not reach stabilization, samples were collected after one hour of purging.

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

### **APPENDIX F**

### SOIL VAPOR CONSTRUCTION AND SAMPLING LOGS

LANGAN

Sample Number: SV-1

PROJECT:	PROJECT NO.:					
1607 Surf Avenue	170599501					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Brooklyn, NY	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:					
ADT	2/6/2020 2/6/2020					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:					
Luke Caballero	2/12/2020 2/12/2020					
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe 7822 DT	6-Liter Summa Canister					
INSPECTOR:	SAMPLER:					
Patrick Stovall	Patrick Stovall					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):					
	Temp: 40s F					
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph					
	Precipitation: None					
	Pressure: 29.99 inHg					

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:			RIAL ABOVE SEAL:		
3/8-inch polyethylene tubing		NA			
MPLANT SCREEN TYPE/LENGTH/DIAMETER:			L (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch-long			entonite Chips		
BOREHOLE DIAMETER:			IATERIAL (Sand or Glas	s Beads):	
2-inches	0.02	Filpro #2 sa			
PURGE VOLUME (L):	0.02		PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	10		FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0	SURFACE	SURFACE	SURFACE)	
IELIUM TEST IN BUCKET(%):	22.4%		Top of Seal	0	
IELIUM TEST IN TUBE (PPM):	0%				
SAMPLE START DATE/TIME:	2/12/2020 9:37				
SAMPLE STOP DATE/TIME:	2/12/2020 11:27		Top of Pack	0.5	
FOTAL SAMPLE TIME (MIN):	110				
LOW RATE (L/MIN):	0.055				
VOLUME OF SAMPLE (LITERS):	6				
PID AFTER SAMPLE (PPM):	0.0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	2950				
REGULATOR SERIAL NUMBER:	979				
CAN START VACUUM PRESS. (" HG):	-30.28				
CAN STOP VACUUM PRESS. (" HG):	-3.83				
SAMPLE LOCAT	ION SKETCH				
			~	5	
				5	
				NOTES	
See Sample Lo	cation Plan				

Sample Number: SV-2

PROJECT:	PROJECT NO.:				
1607 Surf Avenue	170599501				
LOCATION:	SURFACE ELEVATION AND DATUM:				
Brooklyn, NY	NA				
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:				
ADT	2/6/2020 2/6/2020				
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:				
Luke Caballero	2/13/2020 2/13/2020				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:				
Geoprobe 7822 DT	6-Liter Summa Canister				
INSPECTOR:	SAMPLER:				
Patrick Stovall	Patrick Stovall				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):				
	Temp: 40s F				
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph				
	Precipitation: Drizzle				
	Pressure: 29.65 inHg				

#### METHOD OF INSTALLATION AND PURGING:

UBING TYPE/DIAMETER:			RIAL ABOVE SEAL:		
/8-inch polyethylene tubing		NA			
MPLANT SCREEN TYPE/LENGTH/DIAMETER:			(Bentonite, Beeswax,	Modeling Clay, etc.):	
-inch-long			entonite Chips		
OREHOLE DIAMETER:			ATERIAL (Sand or Glas	s Beads):	
	0.02	Filpro #2 sa		DEDTU	NOTEO
			PROBE DETAILS	DEPTH	NOTES
URGE FLOW RATE (ML/MIN):	10	r	FILTER, ETC.)	(FEET FROM	
ID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
ELIUM TEST IN BUCKET(%):	21.9%		Top of Seal	0	
ELIUM TEST IN TUBE (PPM):	0%				
AMPLE START DATE/TIME:	2/13/2020 8:45				
AMPLE STOP DATE/TIME:	2/13/2020 10:43		Top of Pack	0.5	
OTAL SAMPLE TIME (MIN):	118				
LOW RATE (L/MIN):	0.051				
OLUME OF SAMPLE (LITERS):	6				
D AFTER SAMPLE (PPM):	0.0				
AMPLE MOISTURE CONTENT:	NA				
AN SERIAL NUMBER:	2572				
EGULATOR SERIAL NUMBER:	778				
AN START VACUUM PRESS. (" HG):	-30.21				
AN STOP VACUUM PRESS. (" HG):	-3.58				
SAMPLE LOCATI	ON SKETCH				
				5	
				5	
				NOTES	
See Sample Loc	ation Plan				

Sample Number: SV-3

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/6/2020 2/6/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:		
Luke Caballero	2/12/2020 2/12/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter Summa Canister		
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patrick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

			TYPE OF MATERIAL ABOVE SEAL:			
/8-inch polyethylene tubing		NA				
MPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):				
-inch-long		Hydrated Bentonite Chips				
OREHOLE DIAMETER:		FILTER PACK MATERIAL (Sand or Glass Beads):				
-inches	0.02	Filpro #2 sa				
URGE VOLUME (L):	0.02		PROBE DETAILS	DEPTH	NOTES	
URGE FLOW RATE (ML/MIN):	10		FILTER, ETC.)	(FEET FROM		
ID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
ELIUM TEST IN BUCKET(%):	22.1%		Top of Seal	0		
ELIUM TEST IN TUBE (PPM):	0%					
AMPLE START DATE/TIME:	2/12/2020 12:17					
AMPLE STOP DATE/TIME:	2/12/2020 14:17		Top of Pack	0.5		
OTAL SAMPLE TIME (MIN):	120					
LOW RATE (L/MIN):	0.05					
OLUME OF SAMPLE (LITERS):	6					
ID AFTER SAMPLE (PPM):	0.0					
AMPLE MOISTURE CONTENT:	NA					
AN SERIAL NUMBER:	1586					
EGULATOR SERIAL NUMBER:	753					
AN START VACUUM PRESS. (" HG):	-30.6					
AN STOP VACUUM PRESS. (" HG):	-3.76					
SAMPLE LOCATI	ON SKETCH					
				5		
				5		
				NOTES		
				110120		
See Sample Loo	cation Plan					

Sample Number: SV-4

PROJECT:	PROJECT NO.:			
1607 Surf Avenue	170599501			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA			
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:			
ADT	2/11/2020	2/11/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:		
Luke Caballero	2/12/2020 2/12/2020			
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:			
Geoprobe 7822 DT	6-Liter Sum	nma Canister		
INSPECTOR:	SAMPLER:			
Patrick Stovall	Patrick	< Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS.	., WIND SPEED AND DIR.):		
	Temp: 40s F			
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph			
	Precipitation: None			
	Pressure: 29.99 inHg			

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:			RIAL ABOVE SEAL:			
3/8-inch polyethylene tubing		NA				
MPLANT SCREEN TYPE/LENGTH/DIAMETER:			(Bentonite, Beeswax,	Modeling Clay, etc.):		
6-inch-long			entonite Chips			
BOREHOLE DIAMETER:		FILTER PACK MATERIAL (Sand or Glass Beads):				
2-inches	0.00	Filpro #2 sa				
PURGE VOLUME (L):	0.02		PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	10	r	FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	21.3%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/12/2020 9:55					
SAMPLE STOP DATE/TIME:	2/12/2020 11:55		Top of Pack	0.5		
FOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.05					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	1800					
REGULATOR SERIAL NUMBER:	352					
CAN START VACUUM PRESS. (" HG):	-30.54					
CAN STOP VACUUM PRESS. (" HG):	-3.42					
SAMPLE LOCAT	ION SKETCH					
				5		
				5		
				NOTES		
See Sample Lo	cation Plan					
See Sample LO						
		1				

Sample Number: SV-5

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/7/2020 2/7/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:		
Luke Caballero	2/12/2020 2/12/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter St	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patr	ick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRE	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips				
6-inch-long						
BOREHOLE DIAMETER:		FILTER PACK MATERIAL (Sand or Glass Beads):				
2-inches		Filpro #2 sar	nd			
PURGE VOLUME (L):	0.02	IMPLANT/PROBE DETAILS DEPTH		NOTES		
PURGE FLOW RATE (ML/MIN):	10	(SEAL, I	FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	22.1%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/12/2020 11:00					
SAMPLE STOP DATE/TIME:	2/12/2020 12:53		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	113					
FLOW RATE (L/MIN):	0.053					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	3327					
REGULATOR SERIAL NUMBER:	1132					
CAN START VACUUM PRESS. (" HG):	-30.41					
CAN STOP VACUUM PRESS. (" HG):	-3.3					
SAMPLE LOCAT	ION SKETCH					
			-	5		
				5		
				NOTES		
See Sample Lo	cation Plan					
<u> </u>	<b>F 1 1 A</b>	<u> </u>				
	ng, Environmental, Survey	-				
21 Penn Plaza, 36	0 West 31st Street, 8th F	loor, New Yor	k, New York 10	001-2727		

Sample Number: SV-6

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/6/2020 2/6/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:		
Luke Caballero	2/13/2020 2/13/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patr	rick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRI	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph		
	Precipitation: Drizzle		
	Pressure: 29.65 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		-	TYPE OF MATERIAL ABOVE SEAL:			
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips FILTER PACK MATERIAL (Sand or Glass Beads):				
6-inch-long						
BOREHOLE DIAMETER:						
2-inches		Filpro #2 sar	nd			
PURGE VOLUME (L):	0.02	IMPLANT/PROBE DETAILS DEPTH		DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	10	(SEAL,	FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	25.1%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/13/2020 9:36					
SAMPLE STOP DATE/TIME:	2/13/2020 11:36		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.05					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	3079					
REGULATOR SERIAL NUMBER:	252					
CAN START VACUUM PRESS. (" HG):	-29.21					
CAN STOP VACUUM PRESS. (" HG):	-4.05					
SAMPLE LOCAT	ION SKETCH					
			-	5		
				5		
				NOTES		
See Sample Lo	cation Plan					
<u> </u>	E 1 4 1 6	· · · · ·	A 1 4 4			
	<b>ng, Environmental, Survey</b> 60 West 31st Street, 8th F	-				

Sample Number: SV-7

PROJECT:	PROJECT NO.:	PROJECT NO.:		
1607 Surf Avenue	170599501	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:			
ADT	2/11/2020 2/11/2020			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:		
Luke Caballero	2/12/2020	2/12/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:			
Geoprobe 7822 DT	6-Liter S	Summa Canister		
INSPECTOR:	SAMPLER:			
Patrick Stovall	Pat	rick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):		
	Temp: 40s F			
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph			
	Precipitation: None			
	Pressure: 29.99 inHg			

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATER	TYPE OF MATERIAL ABOVE SEAL:			
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips FILTER PACK MATERIAL (Sand or Glass Beads):				
6-inch-long						
BOREHOLE DIAMETER:						
2-inches		Filpro #2 sar	nd			
PURGE VOLUME (L):	0.02	IMPLANT/PROBE DETAILS DEPTH		NOTES		
PURGE FLOW RATE (ML/MIN):	10	(SEAL, FILTER, ETC.)		(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	23.1%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/12/2020 8:55					
SAMPLE STOP DATE/TIME:	2/12/2020 10:46		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	111					
FLOW RATE (L/MIN):	0.054					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	3369					
REGULATOR SERIAL NUMBER:	1013					
CAN START VACUUM PRESS. (" HG):	-30.49					
CAN STOP VACUUM PRESS. (" HG):	-3.34					
SAMPLE LOCAT	ION SKETCH					
			-	5		
				NOTES		
See Sample Lo	cation Plan					
· · · ·		<u>.                                    </u>				
	ng, Environmental, Survey	-	-			
21 Penn Plaza, 36	0 West 31st Street, 8th F	-loor, New Yor	k, New York 10	001-2727		

Sample Number: SV-8

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/11/2020 2/11/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:		
Luke Caballero	2/12/2020	2/12/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patr	rick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRI	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

			TYPE OF MATERIAL ABOVE SEAL:			
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips FILTER PACK MATERIAL (Sand or Glass Beads):				
6-inch-long						
<b>BOREHOLE DIAMETER</b> : 2-inches				s Beads):		
	0.00	Filpro #2 sa				
PURGE VOLUME (L):	0.02	IMPLANT/PROBE DETAILS		DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	10	(SEAL, FILTER, ETC.)		(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	22.9%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/12/2020 8:41					
SAMPLE STOP DATE/TIME:	2/12/2020 10:41		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.05					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	1981					
REGULATOR SERIAL NUMBER:	1746					
CAN START VACUUM PRESS. (" HG):	-30.58					
CAN STOP VACUUM PRESS. (" HG):	-4.63					
SAMPLE LOCAT	ION SKETCH					
				5		
			•	NOTES		
See Sample Lo	cation Plan					
Langan Engineerir	ng, Environmental, Survey	ing and Lands	cape Architectur	e, D.P.C.		
	0 West 31st Street, 8th F	-				

Sample Number: SV-9

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/7/2020	2/7/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/12/2020	2/12/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter Summa Canister		
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patrick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER: 6-inch-long BOREHOLE DIAMETER: 2 incheo		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):				
			entonite Chips			
		FILTER PACK MATERIAL (Sand or Glass Beads):				
2-inches		Filpro #2 sand IMPLANT/PROBE DETAILS DEPTH NOTES				
PURGE VOLUME (L):	0.02	IMPLANT/	IMPLANT/PROBE DETAILS		NOTES	
PURGE FLOW RATE (ML/MIN):	10	(SEAL, FILTER, ETC.) SURFACE SURFACE		(FEET FROM SURFACE)		
PID AFTER PURGE (PPM):	0.0					
HELIUM TEST IN BUCKET(%):	22.5%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/12/2020 9:16					
SAMPLE STOP DATE/TIME:	2/12/2020 11:15		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	119					
FLOW RATE (L/MIN):	0.050					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	1905					
REGULATOR SERIAL NUMBER:	1453					
CAN START VACUUM PRESS. (" HG):	-30.33					
CAN STOP VACUUM PRESS. (" HG):	-3.37					
SAMPLE LOCAT	ION SKETCH					
				5		
				5		
				NOTES		
See Sample Lo	cation Plan					
Langan Engineerii	ng, Environmental, Survey	ing and Lands	cape Architectu	re, D.P.C.		
	0 West 31st Street, 8th F	-				

Sample Number: SV-10

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/11/2020	2/11/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/13/2020 2/13/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter Summa Canister		
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patrick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph		
	Precipitation: Drizzle		
	Pressure: 29.65 inHg		

#### METHOD OF INSTALLATION AND PURGING:

		NIA				
	3/8-inch polyethylene tubing		NA			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER: 6-inch-long BOREHOLE DIAMETER: 2 inches		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):				
		,	ntonite Chips			
		FILTER PACK MATERIAL (Sand or Glass Beads):				
2-inches		Filpro #2 sand				
PURGE VOLUME (L):	0.02	IMPLANT/PROBE DETAILS (SEAL, FILTER, ETC.) SURFACE SURFACE		DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	10			(FEET FROM		
PID AFTER PURGE (PPM):	0.0			SURFACE)		
HELIUM TEST IN BUCKET(%):	23.1%	_	Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/13/2020 10:33					
SAMPLE STOP DATE/TIME:	2/13/2020 12:27		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	114					
FLOW RATE (L/MIN):	0.053					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	790					
REGULATOR SERIAL NUMBER:	798					
CAN START VACUUM PRESS. (" HG):	-30.22					
CAN STOP VACUUM PRESS. (" HG):	-2.89					
SAMPLE LOCATI	ON SKETCH					
			-	5		
				J.		
			•	NOTES		
See Sample Loo	cation Plan					
Langan Engineerin	g, Environmental, Survey	ving and Landso	ape Architectur	e, D.P.C.		
	0 West 31st Street, 8th F	-	-			

Sample Number: SV-11

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/10/2020 2/10/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/12/2020 2/12/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter Summa Canister		
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patrick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

3/8-inch polyethylene tubing         IMPLANT SCREEN TYPE/LENGTH/DIAMETER:         6-inch-long         BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       10         PID AFTER PURGE (PPM):       0.0         HELIUM TEST IN BUCKET(%):       24.2%         HELIUM TEST IN TUBE (PPM):       0%         SAMPLE START DATE/TIME:       2/12/2020 11:36         SAMPLE STOP DATE/TIME:       2/12/2020 13:36         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.05         VOLUME OF SAMPLE (LITERS):       6	Hydrated Be FILTER PACK MA Filpro #2 san IMPLANT/P	(Bentonite, Beeswax, ntonite Chips ITERIAL (Sand or Glass d PROBE DETAILS ILTER, ETC.) SURFACE Top of Seal		NOTES
6-inch-long           BOREHOLE DIAMETER:           2-inches           PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         10           PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05	Hydrated Be Filter PACK MA Filpro #2 san IMPLANT/P (SEAL, F	ntonite Chips ITERIAL (Sand or Glass d ROBE DETAILS ILTER, ETC.) SURFACE	Beads): DEPTH (FEET FROM SURFACE)	NOTES
BOREHOLE DIAMETER:           2-inches           PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         10           PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         0.05	FILTER PACK MA Filpro #2 san IMPLANT/P (SEAL, F	ATERIAL (Sand or Glass d ROBE DETAILS ILTER, ETC.) SURFACE	DEPTH (FEET FROM SURFACE)	NOTES
2-inches           PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         10           PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120	Filpro #2 san	ROBE DETAILS RILTER, ETC.) SURFACE	DEPTH (FEET FROM SURFACE)	NOTES
PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         10           PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120	IMPLANT/P (SEAL, F	PROBE DETAILS FILTER, ETC.) SURFACE	(FEET FROM SURFACE)	NOTES
PURGE FLOW RATE (ML/MIN):         10           PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05	(SEAL, F	ILTER, ETC.) SURFACE	(FEET FROM SURFACE)	NOTES
PID AFTER PURGE (PPM):         0.0           HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05	— п	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):         24.2%           HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05	SURFACE			
HELIUM TEST IN TUBE (PPM):         0%           SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05		Top of Seal	0	
SAMPLE START DATE/TIME:         2/12/2020 11:36           SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05				
SAMPLE STOP DATE/TIME:         2/12/2020 13:36           TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05				
TOTAL SAMPLE TIME (MIN):         120           FLOW RATE (L/MIN):         0.05				
FLOW RATE (L/MIN): 0.05	100000000	Top of Pack	0.5	
PID AFTER SAMPLE (PPM): 0				
SAMPLE MOISTURE CONTENT: NA				
CAN SERIAL NUMBER: 3356				
REGULATOR SERIAL NUMBER: 1450				
CAN START VACUUM PRESS. (" HG): -30.48				
CAN STOP VACUUM PRESS. (" HG): -3.72				
SAMPLE LOCATION SKETCH				
		-	5	
			U	
			NOTES	
See Sample Location Plan				
Langan Engineering, Environmental, Survey	ing and I andso	ape Architectur	e. D.P.C.	
21 Penn Plaza, 360 West 31st Street, 8th F			-,	

Sample Number: SV-12

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:		
ADT	2/11/2020 2/11/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/12/2020 2/12/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter Summa Canister		
INSPECTOR:	SAMPLER:		
Patrick Stovall	Patrick Stovall		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-6 mph		
	Precipitation: None		
	Pressure: 29.99 inHg		

#### METHOD OF INSTALLATION AND PURGING:

3/8-inch polyethylene tubing IMPLANT SCREEN TYPE/LENGTH/DIAMETER: 6-inch-long BOREHOLE DIAMETER: 2-inches PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM):	0.02 10 0.0	Hydrated Be FILTER PACK MA Filpro #2 san IMPLANT/F							
6-inch-long BOREHOLE DIAMETER: 2-inches PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN):	10	Hydrated Be FILTER PACK MA Filpro #2 san IMPLANT/F	ntonite Chips <b>TERIAL (Sand or Glass</b> d						
BOREHOLE DIAMETER: 2-inches PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN):	10	FILTER PACK MA Filpro #2 san IMPLANT/F	TERIAL (Sand or Glass d	s Beads):					
2-inches PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN):	10	Filpro #2 san	d	s Beads):					
PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN):	10	IMPLANT/F							
PURGE FLOW RATE (ML/MIN):	10			Filpro #2 sand					
		(SEAL, F	IMPLANT/PROBE DETAILS		NOTES				
PID AFTER PURGE (PPM):	0.0	(SEAL, FILTER, ETC.) SURFACE SURFACE		(FEET FROM					
				SURFACE)					
HELIUM TEST IN BUCKET(%):	20.1%		Top of Seal	0					
HELIUM TEST IN TUBE (PPM):	0%								
SAMPLE START DATE/TIME:	2/12/2020 11:14								
SAMPLE STOP DATE/TIME:	2/12/2020 13:14		Top of Pack	0.5					
TOTAL SAMPLE TIME (MIN):	120								
FLOW RATE (L/MIN):	0.05								
VOLUME OF SAMPLE (LITERS):	6								
PID AFTER SAMPLE (PPM):	0								
SAMPLE MOISTURE CONTENT:	NA								
CAN SERIAL NUMBER:	3386								
REGULATOR SERIAL NUMBER:	1828								
CAN START VACUUM PRESS. (" HG):	-30.69								
CAN STOP VACUUM PRESS. (" HG):	-4.77								
SAMPLE LOCATION	I SKETCH								
			-	5					
				Ũ					
				NOTES					
See Sample Locati	ion Plan								
Langan Engineering.	Environmental, Survey	ving and Landso	ape Architectur	e, D.P.C.					
	Vest 31st Street, 8th F	-	-						

Sample Number: SV-13

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
ADT	2/5/2020	2/5/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/13/2020 2/13/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Pat	rick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph		
	Precipitation: Drizzle		
	Pressure: 29.65 inHg		

#### METHOD OF INSTALLATION AND PURGING:

UBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			. (Bentonite, Beeswax,	Modeling Clay, etc.):		
6-inch-long			ntonite Chips			
BOREHOLE DIAMETER:			ATERIAL (Sand or Glass	s Beads):		
2-inches		Filpro #2 sand				
PURGE VOLUME (L):	0.02	IMPLANT/	PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	10	(SEAL,	FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	20.9%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0%					
SAMPLE START DATE/TIME:	2/13/2020 8:26					
SAMPLE STOP DATE/TIME:	2/13/2020 10:26		Top of Pack	0.5		
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.05					
VOLUME OF SAMPLE (LITERS):	6					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	934					
REGULATOR SERIAL NUMBER:	1171					
CAN START VACUUM PRESS. (" HG):	-30.58					
CAN STOP VACUUM PRESS. (" HG):	-4.46					
SAMPLE LOCAT	ION SKETCH					
			-	5		
				5		
				NOTES		
See Sample Lo	cation Plan					
	<b>ng, Environmental, Survey</b> 60 West 31st Street, 8th F	-				

Sample Number: SV-14

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
ADT	2/5/2020	2/5/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/13/2020 2/13/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Pat	rick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph		
	Precipitation: Drizzle		
	Pressure: 29.65 inHg		

#### METHOD OF INSTALLATION AND PURGING:

UBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:			
3/8-inch polyethylene tubing		NA			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL	. (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch-long			ntonite Chips		
BOREHOLE DIAMETER:			ATERIAL (Sand or Glass	s Beads):	
2-inches		Filpro #2 sand			
PURGE VOLUME (L):	0.02	IMPLANT/	PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	10	(SEAL,	FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):	24.1%		Top of Seal	0	
HELIUM TEST IN TUBE (PPM):	0%				
SAMPLE START DATE/TIME:	2/13/2020 11:12				
SAMPLE STOP DATE/TIME:	2/13/2020 13:00		Top of Pack	0.5	
TOTAL SAMPLE TIME (MIN):	108				
FLOW RATE (L/MIN):	0.056				
VOLUME OF SAMPLE (LITERS):	6				
PID AFTER SAMPLE (PPM):	0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	1978				
REGULATOR SERIAL NUMBER:	1462				
CAN START VACUUM PRESS. (" HG):	-30.08				
CAN STOP VACUUM PRESS. (" HG):	-2.76				
SAMPLE LOCAT	ION SKETCH				
			-	5	
				5	
				NOTES	
See Sample Lo	cation Plan				
l angan Engineerin	ng, Environmental, Survey	ving and Lander	ane Δrchitectu		
	60 West 31st Street, 8th F	-			

Sample Number: SV-15

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
ADT	2/5/2020	2/5/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Luke Caballero	2/13/2020 2/13/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 7822 DT	6-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Patrick Stovall	Pat	rick Stovall	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: N 0-4 mph		
	Precipitation: Drizzle		
	Pressure: 29.65 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:			TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips					
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:							
6-inch-long							
BOREHOLE DIAMETER:		FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inches		Filpro #2 sar	าป	•			
PURGE VOLUME (L):	0.02	IMPLANT/	PROBE DETAILS	DEPTH	NOTES		
PURGE FLOW RATE (ML/MIN):	10	(SEAL,	FILTER, ETC.)	(FEET FROM			
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)			
HELIUM TEST IN BUCKET(%):	22.9%		Top of Seal	0			
HELIUM TEST IN TUBE (PPM):	0%						
SAMPLE START DATE/TIME:	2/13/2020 8:14						
SAMPLE STOP DATE/TIME:	2/13/2020 10:14		Top of Pack	0.5			
TOTAL SAMPLE TIME (MIN):	120						
FLOW RATE (L/MIN):	0.05						
VOLUME OF SAMPLE (LITERS):	6						
PID AFTER SAMPLE (PPM):	0						
SAMPLE MOISTURE CONTENT:	NA						
CAN SERIAL NUMBER:	2973						
REGULATOR SERIAL NUMBER:	1821						
CAN START VACUUM PRESS. (" HG):	-30.11						
CAN STOP VACUUM PRESS. (" HG):	-4.41						
SAMPLE LOCAT	ION SKETCH						
				5			
				0			
				NOTES			
See Sample Lo	cation Plan						
Langan Engineeri	ng, Environmental, Survey	ing and Lands	cape Architectur	re, D.P.C.			
21 Penn Plaza, 36	0 West 31st Street, 8th F	-loor, New Yor	k, New York 10	001-2727			

Sample Number: SV-16

PROJECT:	PROJECT NO .:	PROJECT NO.:		
1607 Surf Avenue	170599501			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA			
DRILLING FIRM OR LANGAN INSTALLER: AARCO Environmental Services Corp.	INSTALLATION DATE STARTED: 12/3/2020	<b>DATE FINISHED</b> : 12/3/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:		
Jose Garcia	12/3/2020 12/3/2020			
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:			
Geoprobe 6610 DT	2.7-Liter S	Summa Canister		
INSPECTOR:	SAMPLER:	SAMPLER:		
Jack Donelan	Jac	k Donelan		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRE	ESS., WIND SPEED AND DIR.):		
	Temp: 40s F			
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph			
	Precipitation: None			
	Pressure: 29.95 inHg			

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):			
6-inch-long		Hydrated Bentonite Chips				
			MATERIAL (Sand or Glas	s Beads):		
2-inches		Filpro #2 sand				
PURGE VOLUME (L):	0.02	IMPLANT	PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200	(SEAL	L, FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	13.2%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0					
SAMPLE START DATE/TIME:	11:43:00 AM					
SAMPLE STOP DATE/TIME:	1:43:00 PM					
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.023					
VOLUME OF SAMPLE (LITERS):	2.7					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	144		Top of Pack	4.5		
REGULATOR SERIAL NUMBER:	1088					
CAN START VACUUM PRESS. (" HG):	-30.90					
CAN STOP VACUUM PRESS. (" HG):	-7.32					
SAMPLE LOCATION SK	ETCH					
				F		
				5		
				NOTES		
				NUTES		
Langan Engineerin	g, Environmental, Surve	ying and Lands	scape Architectu	re, D.P.C.		
	) West 31st Street, 8th					

Sample Number: SV-18

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED: DATE FINISHED: 12/3/2020 12/3/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:		
Jose Garcia	12/3/2020 12/3/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	Summa Canister	
INSPECTOR:	SAMPLER:		
Jack Donelan	Jack	< Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRE	SS., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):				
6-inch-long		Hydrated Bentonite Chips				
BOREHOLE DIAMETER:			ATERIAL (Sand or Glass	s Beads):		
2-inches		Filpro #2 sand				
PURGE VOLUME (L):	0.02		PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200	(SEAL	., FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.1	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	24.7%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0					
SAMPLE START DATE/TIME:	10:12:00 AM					
SAMPLE STOP DATE/TIME:	12:12:00 PM					
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.018					
VOLUME OF SAMPLE (LITERS):	2.7					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	3119		Top of Pack	4.5		
REGULATOR SERIAL NUMBER:	1143					
CAN START VACUUM PRESS. (" HG):	-30.87					
CAN STOP VACUUM PRESS. (" HG):	-7.27					
SAMPLE LOCATION SK	ETCH					
				5		
				3		
				NOTES		
				NOTED		
	g, Environmental, Surve		-			
21 Penn Plaza, 360	) West 31st Street, 8th	Floor, New Yo	ork, New York 10	001-2727		

Sample Number: SV-17

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED: DATE FINISHED: 12/3/2020 12/3/2020		
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Jose Garcia	12/3/2020 12/3/2020		
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	Summa Canister	
INSPECTOR:	SAMPLER:		
Jack Donelan	Jack	k Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRES	S., WIND SPEED AND DIR.):	
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
· - ·	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.): Hydrated Bentonite Chips				
6-inch-long						
BOREHOLE DIAMETER:			ATERIAL (Sand or Glass I	Beads):		
2-inches		Filpro #2 sand				
PURGE VOLUME (L):	0.02	IMPLAN	IT/PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200	(SEA	AL, FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.1	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	15.0%	_	Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0	_				
SAMPLE START DATE/TIME:	10:34:00 AM					
SAMPLE STOP DATE/TIME:	12:34:00 PM					
TOTAL SAMPLE TIME (MIN):	120					
FLOW RATE (L/MIN):	0.023					
VOLUME OF SAMPLE (LITERS):	2.7					
PID AFTER SAMPLE (PPM):	0.0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	3422		Top of Pack	4.5		
REGULATOR SERIAL NUMBER:	1335					
CAN START VACUUM PRESS. (" HG):	-30.61					
CAN STOP VACUUM PRESS. (" HG):	-6.48					
SAMPLE LOCATION SK	(ETCH					
		—	÷	5		
				5		
				NOTES		
				NOTES		
	ıg, Environmental, Surve					
21 Penn Plaza, 360	0 West 31st Street, 8th	Floor, New Yo	rk, New York 100	01-2727		

Sample Number: SV-19

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
AARCO Environmental Services Corp.	12/3/2020	12/3/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Jose Garcia	12/3/2020	12/3/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Jack Donelan	Jack	Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATE	ERIAL ABOVE SEAL:		
3/8-inch polyethylene tubing		NA			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			AL (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch-long			Sentonite Chips		
			ATERIAL (Sand or Glass	s Beads):	
2-inches		Filpro #2 sa	and		
PURGE VOLUME (L):	0.02	IMPLANT	PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	200	(SEAL	., FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):	12.9%		Top of Seal	0	
HELIUM TEST IN TUBE (PPM):	0				
SAMPLE START DATE/TIME:	10:05:00 AM				
- SAMPLE STOP DATE/TIME:	12:01:00 PM				
TOTAL SAMPLE TIME (MIN):	116				
FLOW RATE (L/MIN):	0.023				
VOLUME OF SAMPLE (LITERS):	2.7				
PID AFTER SAMPLE (PPM):	0.0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	2855		Top of Pack	4.5	
REGULATOR SERIAL NUMBER:	0854				
CAN START VACUUM PRESS. (" HG):	-30.89				
CAN STOP VACUUM PRESS. (" HG):	-5.00				
SAMPLE LOCATION SK	ETCH				
		—		r.	
				5	
				NOTES	
				NULES	
Langan Engineerin	g, Environmental, Surve	ving and Lands	scape Architectu	e, D.P.C.	
	) West 31st Street, 8th		-		

Sample Number: SV-20

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
AARCO Environmental Services Corp.	12/3/2020	12/3/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Jose Garcia	12/3/2020	12/3/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Jack Donelan	Jack	Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER: TYPE OF MATERIAL ABOVE SEAL:					
/8-inch polyethylene tubing		NA			
IPLANT SCREEN TYPE/LENGTH/DIAMETER:			L (Bentonite, Beeswax,	Modeling Clay, etc.):	
-inch-long			entonite Chips		
			ATERIAL (Sand or Glass	Beads):	
-inches		Filpro #2 sa			
URGE VOLUME (L):	0.02	IMPLANT/	PROBE DETAILS	DEPTH	NOTES
URGE FLOW RATE (ML/MIN):	200	(SEAL,	FILTER, ETC.)	(FEET FROM	
ID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
ELIUM TEST IN BUCKET(%):	22.1%		Top of Seal	0	
ELIUM TEST IN TUBE (PPM):	0				
AMPLE START DATE/TIME:	9:57:00 AM				
AMPLE STOP DATE/TIME:	11:57:00 PM				
OTAL SAMPLE TIME (MIN):	120				
LOW RATE (L/MIN):	0.017				
OLUME OF SAMPLE (LITERS):	2.7				
ID AFTER SAMPLE (PPM):	0.0				
AMPLE MOISTURE CONTENT:	NA				
AN SERIAL NUMBER:	2373		Top of Pack	4.5	
EGULATOR SERIAL NUMBER:	1265				
AN START VACUUM PRESS. (" HG):	-30.95				
AN STOP VACUUM PRESS. (" HG):	-6.14				
SAMPLE LOCATION SE	KETCH				
			- I	F	
				5	
				NOTES	
				NOTES	

Sample Number: SV-21

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
AARCO Environmental Services Corp.	12/3/2020	12/3/2020	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Jose Garcia	12/3/2020	12/3/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	umma Canister	
INSPECTOR:	SAMPLER:		
Jack Donelan	Jack	Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

3/8-inch polyethylene tubing         IMPLANT SCREEN TYPE/LENGTH/DIAMETER:         6-inch-long         BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       200         PID AFTER PURGE (PPM):       0.2         HELIUM TEST IN BUCKET(%):       14.2%         HELIUM TEST IN BUCKET(%):       12:01:00 PM         SAMPLE START DATE/TIME:       2:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       2:05         REGULATOR SERIAL NUMBER:       1150         CAN SERIAL NUMBER:       -30.74         CAN START VACUUM PRESS. (" HG):       -4.89         SAMPLE LOCATION SKETCH       -4.89	Hydrated Be FILTER PACK MA Filpro #2 sar IMPLANT/F	entonite Chi ATERIAL (Sand	s DEPTH (FEET FROM SURFACE) Seal ()	NOTES
6-inch-long         BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       200         PID AFTER PURGE (PPM):       0.2         HELIUM TEST IN BUCKET(%):       14.2 %         HELIUM TEST IN BUCKET(%):       14.2 %         HELIUM TEST IN BUCKET(%):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89	Hydrated Be FILTER PACK MA Filpro #2 sar IMPLANT/F (SEAL, F	entonite Chi ATERIAL (Sand nd PROBE DETAILS FILTER, ETC.) SURFACE Top of S	ipS or Glass Beads): S DEPTH (FEET FROM SURFACE) Seal O	NOTES
BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       200         PID AFTER PURGE (PPM):       0.2         HELIUM TEST IN BUCKET(%):       14.2%         HELIUM TEST IN BUCKET(%):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89	FILTER PACK MA Filpro #2 sar IMPLANT/F (SEAL, F	ATERIAL (Sand nd PROBE DETAILS FILTER, ETC.) SURFACE Top of S	s DEPTH (FEET FROM SURFACE) Seal ()	1
2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       200         PID AFTER PURGE (PPM):       0.2         HELIUM TEST IN BUCKET(%):       14.2 %         HELIUM TEST IN TUBE (PPM):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89	Filpro #2 sar IMPLANT/F	nd PROBE DETAILS FILTER, ETC.) SURFACE Top of S	S DEPTH (FEET FROM SURFACE) Seal ()	1
PURGE VOLUME (L):0.02PURGE FLOW RATE (ML/MIN):200PID AFTER PURGE (PPM):0.2HELIUM TEST IN BUCKET(%):14.2%HELIUM TEST IN TUBE (PPM):0SAMPLE START DATE/TIME:12:01:00 PMSAMPLE STOP DATE/TIME:2:01:00 PMTOTAL SAMPLE TIME (MIN):120FLOW RATE (L/MIN):0.023VOLUME OF SAMPLE (LITERS):2.7PID AFTER SAMPLE (PPM):0.0SAMPLE MOISTURE CONTENT:NACAN SERIAL NUMBER:205REGULATOR SERIAL NUMBER:1150CAN START VACUUM PRESS. (" HG):-30.74CAN STOP VACUUM PRESS. (" HG):-4.89	IMPLANT/F	PROBE DETAILS FILTER, ETC.) SURFACE Top of \$	(FEET FROM SURFACE) Seal ()	1
PURGE FLOW RATE (ML/MIN):200PID AFTER PURGE (PPM):0.2HELIUM TEST IN BUCKET(%):14.2%HELIUM TEST IN TUBE (PPM):0SAMPLE START DATE/TIME:12:01:00 PMSAMPLE STOP DATE/TIME:2:01:00 PMTOTAL SAMPLE TIME (MIN):120FLOW RATE (L/MIN):0.023VOLUME OF SAMPLE (LITERS):2.7PID AFTER SAMPLE (PPM):0.0SAMPLE MOISTURE CONTENT:NACAN SERIAL NUMBER:205REGULATOR SERIAL NUMBER:1150CAN START VACUUM PRESS. (" HG):-30.74CAN STOP VACUUM PRESS. (" HG):-4.89	(SEAL, F	FILTER, ETC.) SURFACE Top of S	(FEET FROM SURFACE) Seal ()	1
PID AFTER PURGE (PPM):       0.2         HELIUM TEST IN BUCKET(%):       14.2 %         HELIUM TEST IN TUBE (PPM):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89		SURFACE	Seal 0	
HELIUM TEST IN BUCKET(%):       14.2 %         HELIUM TEST IN TUBE (PPM):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89	SURFACE	Top of S	Seal ()	
HELIUM TEST IN BUCKET(%):       0         HELIUM TEST IN TUBE (PPM):       0         SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89				
SAMPLE START DATE/TIME:       12:01:00 PM         SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89		Top of F	Pack 4.5	
SAMPLE STOP DATE/TIME:       2:01:00 PM         TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CCAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89		Top of F	<b>Pack</b> 4.5	
TOTAL SAMPLE TIME (MIN):       120         FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89		Top of F	<b>Pack</b> 4.5	
FLOW RATE (L/MIN):       0.023         VOLUME OF SAMPLE (LITERS):       2.7         PID AFTER SAMPLE (PPM):       0.0         SAMPLE MOISTURE CONTENT:       NA         CAN SERIAL NUMBER:       205         REGULATOR SERIAL NUMBER:       1150         CAN START VACUUM PRESS. (" HG):       -30.74         CAN STOP VACUUM PRESS. (" HG):       -4.89		Top of F	<b>Pack</b> 4.5	
VOLUME OF SAMPLE (LITERS):     2.7       PID AFTER SAMPLE (PPM):     0.0       SAMPLE MOISTURE CONTENT:     NA       CAN SERIAL NUMBER:     205       REGULATOR SERIAL NUMBER:     1150       CAN START VACUUM PRESS. (" HG):     -30.74       CAN STOP VACUUM PRESS. (" HG):     -4.89		Top of F	<b>Pack</b> 4.5	
PID AFTER SAMPLE (PPM):     0.0       SAMPLE MOISTURE CONTENT:     NA       CAN SERIAL NUMBER:     205       REGULATOR SERIAL NUMBER:     1150       CAN START VACUUM PRESS. (" HG):     -30.74       CAN STOP VACUUM PRESS. (" HG):     -4.89		Top of F	<b>Pack</b> 4.5	
SAMPLE MOISTURE CONTENT:     NA       CAN SERIAL NUMBER:     205       REGULATOR SERIAL NUMBER:     1150       CAN START VACUUM PRESS. (" HG):     -30.74       CAN STOP VACUUM PRESS. (" HG):     -4.89		Top of F	Pack 4.5	
CAN SERIAL NUMBER:     205       REGULATOR SERIAL NUMBER:     1150       CAN START VACUUM PRESS. (" HG):     -30.74       CAN STOP VACUUM PRESS. (" HG):     -4.89		Top of F	Pack 4.5	
REGULATOR SERIAL NUMBER:     1150       CAN START VACUUM PRESS. (" HG):     -30.74       CAN STOP VACUUM PRESS. (" HG):     -4.89		Top of F	<b>Pack</b> 4.5	
can start vacuum press. (" hg):     -30.74       can stop vacuum press. (" hg):     -4.89	- - -			
CAN STOP VACUUM PRESS. (" HG): -4.89	-			
	-			
SAMPLE LOCATION SKETCH	-			
	-			
		-	-	
			5	
			NOTES	
			NOTED	

Sample Number: SV-22

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
AARCO Environmental Services Corp.	12/3/2020	12/3/2020	
NSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
Jose Garcia	12/3/2020	12/3/2020	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Geoprobe 6610 DT	2.7-Liter S	Summa Canister	
NSPECTOR:	SAMPLER:		
Jack Donelan	Jac	k Donelan	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
	Temp: 40s F		
Gasoline emissions associated with parking lot operations.	Wind: SW 0-9 mph		
	Precipitation: None		
	Pressure: 29.95 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATE	ERIAL ABOVE SEAL:		
3/8-inch polyethylene tubing		NA			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			AL (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch-long			Sentonite Chips		
			ATERIAL (Sand or Glass	s Beads):	
2-inches		Filpro #2 sa			
PURGE VOLUME (L):	0.02	IMPLANT	PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	200	(SEAL	., FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):	21.3%		Top of Seal	0	
HELIUM TEST IN TUBE (PPM):	0				
SAMPLE START DATE/TIME:	11:33:00 AM				
SAMPLE STOP DATE/TIME:	1:33:00 PM				
TOTAL SAMPLE TIME (MIN):	120				
FLOW RATE (L/MIN):	0.023				
VOLUME OF SAMPLE (LITERS):	2.7		пі		
PID AFTER SAMPLE (PPM):	0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	2554		Top of Pack	4.5	
REGULATOR SERIAL NUMBER:	1263				
CAN START VACUUM PRESS. (" HG):	-30.80				
CAN STOP VACUUM PRESS. (" HG):	-6.38				
SAMPLE LOCATION SK	ETCH				
				5	
				5	
				NOTES	
				NOTES	
Langan Engineerin	g, Environmental, Surve	ying and Lands	scape Architectur	e, D.P.C.	
21 Penn Plaza 360	) West 31st Street, 8th	Floor, New Yo	rk. New York 10	001-2727	

Sample Number: SV-23_030221

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
Lakewood Environmental Services Corp.	3/2/2021	3/2/2021	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
John Vice	3/2/2021	3/2/2021	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Hand Auger	6-Liter Su	umma Canister	
INSPECTOR:	SAMPLER:		
Tomas Monti	Tom	nas Monti	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRE	SS., WIND SPEED AND DIR.):	
	Temp: 30s F		
Gasoline emissions associated with parking lot operations.	Wind: WNW 15-20 mph		
	Precipitation: None		
	Pressure: 30.1 inHg		

#### METHOD OF INSTALLATION AND PURGING:

Lakewood Environmental Services Corp. advanced a hand auger to refusal (2 feet below grade surface [bgs]). Six-inch soil vapor probe installed and borehole backfilled with FilPro #2 Sand. Probe sealed with bentonite to ground surface.

TUBING TYPE/DIAMETER:		TYPE OF MATE	RIAL ABOVE SEAL:		
3/8-inch polyethylene tubing		NA			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			AL (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch-long			entonite Chips		
BOREHOLE DIAMETER:			ATERIAL (Sand or Glass	Beads):	
2-inches		Filpro #2 sa			
PURGE VOLUME (L):	0.02	IMPLANT	/PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	200	(SEAL	, FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0.0	SURFACE	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):	16.9%		Top of Seal	0	
HELIUM TEST IN TUBE (PPM):	0				
- SAMPLE START DATE/TIME:	1:38:00 PM				
- SAMPLE STOP DATE/TIME:	3:36:00 PM				
TOTAL SAMPLE TIME (MIN):	118				
FLOW RATE (L/MIN):	0.051				
- VOLUME OF SAMPLE (LITERS):	6.0				
PID AFTER SAMPLE (PPM):	0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	650		Top of Pack	1.5	
REGULATOR SERIAL NUMBER:	1798				
CAN START VACUUM PRESS. (" HG):	-30.76				
CAN STOP VACUUM PRESS. (" HG):	-4.92				
SAMPLE LOCATION SK	ETCH				
			₩	2	
				2	
				NOTES	
l angan Engineering	g, Environmental, Surve	ving and Lands	scane Architectur	• DPC	
	West 31st Street, 8th		-		

Sample Number: SV-24_030221

PROJECT:	PROJECT NO .:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:	
Lakewood Environmental Services Corp.	3/2/2021	3/2/2021	
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:	
John Vice	3/2/2021	3/2/2021	
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:		
Hand Auger	6-Liter Su	umma Canister	
INSPECTOR:	SAMPLER:		
Tomas Monti	Ton	nas Monti	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRES	S., WIND SPEED AND DIR.):	
	Temp: 30s F		
Gasoline emissions associated with parking lot operations.	Wind: WNW 15-20 mph		
	Precipitation: None		
	Pressure: 30.1 inHg		

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:				
3/8-inch polyethylene tubing		NA				
MPLANT SCREEN TYPE/LENGTH/DIAMETER:			AL (Bentonite, Beeswax, M	odeling Clay, etc.):		
β-inch-long			Bentonite Chips			
BOREHOLE DIAMETER:			MATERIAL (Sand or Glass B	leads):		
2-inches		Filpro #2 s				
PURGE VOLUME (L):	0.02	IMPLAI	NT/PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200	(SE	AL, FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.1	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	15.2%		Top of Seal	0		
HELIUM TEST IN TUBE (PPM):	0					
SAMPLE START DATE/TIME:	1:36:00 PM					
SAMPLE STOP DATE/TIME:	5:12:00 PM					
TOTAL SAMPLE TIME (MIN):	216					
LOW RATE (L/MIN):	0.028					
/OLUME OF SAMPLE (LITERS):	6.0					
PID AFTER SAMPLE (PPM):	0					
SAMPLE MOISTURE CONTENT:	NA					
CAN SERIAL NUMBER:	1621		Top of Pack	4.5		
REGULATOR SERIAL NUMBER:	1334					
CAN START VACUUM PRESS. (" HG):	-30.93					
CAN STOP VACUUM PRESS. (" HG):	-12.97					
SAMPLE LOCATION SKET			+	5		
				NOTES		

Sample Number: SV-25_030221

PROJECT:	PROJECT NO.:			
1607 Surf Avenue	170599501			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA			
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:			
Lakewood Environmental Services Corp.	3/2/2021 3/2/2021			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:			
John Vice	3/2/2021 3/2/2021			
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:			
Hand Auger	6-Liter Summa Canister			
INSPECTOR:	SAMPLER:			
Tomas Monti	Tomas Monti			
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):			
	Temp: 30s F			
Gasoline emissions associated with parking lot operations.	Wind: WNW 15-20 mph			
	Precipitation: None			
	Pressure: 30.1 inHg			

#### METHOD OF INSTALLATION AND PURGING:

Lakewood Environmental Services Corp. advanced a hand auger to refusal (2 feet below grade surface [bgs]). Six-inch soil vapor probe installed and borehole backfilled with FilPro #2 Sand. Probe sealed with bentonite to ground surface.

3/8-inch polyethylene tubing         IMPLANT SCREEN TYPE/LENGTH/DIAMETER:         6-inch-long         BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):         PURGE FLOW RATE (ML/MIN):         200         PID AFTER PURGE (PPM):         0         HELIUM TEST IN BUCKET(%):         HELIUM TEST IN TUBE (PPM):         0         SAMPLE START DATE/TIME:         3:48:00	Hydratec Filter PAC Filpro #2 IMPLA (s surface	RIAL (Bentonite, Beeswax, B Bentonite Chips K MATERIAL (Sand or Glas sand INT/PROBE DETAILS EAL, FILTER, ETC.) SURFACE		NOTES		
S-inch-long SOREHOLE DIAMETER: 2-inches PURGE VOLUME (L): 0.02 PURGE FLOW RATE (ML/MIN): 200 PID AFTER PURGE (PPM): 0 HELIUM TEST IN BUCKET(%): 17.7% HELIUM TEST IN TUBE (PPM): 0 SAMPLE START DATE/TIME: 1:49:00	Hydratec Filter PAC Filpro #2 IMPLA (s surface	Bentonite Chips KMATERIAL (Sand or Glas sand NT/PROBE DETAILS EAL, FILTER, ETC.)	s Beads): DEPTH (FEET FROM	NOTES		
BOREHOLE DIAMETER:         2-inches         PURGE VOLUME (L):       0.02         PURGE FLOW RATE (ML/MIN):       200         PID AFTER PURGE (PPM):       0         HELIUM TEST IN BUCKET(%):       17.7%         HELIUM TEST IN TUBE (PPM):       0         SAMPLE START DATE/TIME:       1:49:00	FILTER PAC Filpro #2 IMPLA (S SURFACE	K MATERIAL (Sand or Glas Sand INT/PROBE DETAILS EAL, FILTER, ETC.)	DEPTH (FEET FROM	NOTES		
2-inches           PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         200           PID AFTER PURGE (PPM):         0           HELIUM TEST IN BUCKET(%):         17.7%           HELIUM TEST IN TUBE (PPM):         0           SAMPLE START DATE/TIME:         1:49:00	Filpro #2 IMPLA (S SURFACE	sand INT/PROBE DETAILS EAL, FILTER, ETC.)	DEPTH (FEET FROM	NOTES		
PURGE VOLUME (L):         0.02           PURGE FLOW RATE (ML/MIN):         200           PID AFTER PURGE (PPM):         0           HELIUM TEST IN BUCKET(%):         17.7%           HELIUM TEST IN TUBE (PPM):         0           SAMPLE START DATE/TIME:         1:49:00	IMPLA (S SURFACE	NT/PROBE DETAILS EAL, FILTER, ETC.)	(FEET FROM	NOTES		
PURGE FLOW RATE (ML/MIN):         200           PID AFTER PURGE (PPM):         0           HELIUM TEST IN BUCKET(%):         17.7%           HELIUM TEST IN TUBE (PPM):         0           SAMPLE START DATE/TIME:         1:49:00	(S SURFACE	EAL, FILTER, ETC.)	(FEET FROM	NOTES		
PID AFTER PURGE (PPM):         0           HELIUM TEST IN BUCKET(%):         17.7%           HELIUM TEST IN TUBE (PPM):         0           SAMPLE START DATE/TIME:         1:49:00	SURFACE					
HELIUM TEST IN BUCKET(%):         17.7%           HELIUM TEST IN TUBE (PPM):         0           SAMPLE START DATE/TIME:         1:49:00	, 	SURFACE	SUBFACE)			
HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME: 1:49:00			0011171027			
SAMPLE START DATE/TIME: 1:49:00		Top of Seal	0			
SAMPLE STOP DATE/TIME: 3:48:00	PM					
	PM					
TOTAL SAMPLE TIME (MIN): 119						
FLOW RATE (L/MIN): 0.050	)					
VOLUME OF SAMPLE (LITERS): 6.0						
PID AFTER SAMPLE (PPM): 0						
SAMPLE MOISTURE CONTENT: NA						
CAN SERIAL NUMBER: 2574		Top of Pack	1.5			
REGULATOR SERIAL NUMBER: 944						
CAN START VACUUM PRESS. (" HG): -31.3						
CAN STOP VACUUM PRESS. (" HG): -5.80						
SAMPLE LOCATION SKETCH						
			2			
		NOTES				

Sample Number: AA-01

PROJECT: 1607 Surf Avenue LOCATION: Brooklyn, NY		PROJECT NO.:	
LOCATION:		170599501	
Brooklyn, NY		SURFACE ELEVATION AND DATUM:	
	1	N/A	
SAMPLER:	s	SAMPLE DATE STARTED:	DATE FINISHED:
Patrick Stovall		2/12/2020	2/12/2020
		TYPE OF SAMPLING DEVICE:	
Patrick Stovall		6-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND Temp: 40s F	SPEED AND DIR.):
Gasoline emissions associated with parking lot operations.		Wind: N 0-6 mph	
	•	Precipitation: None	
		Pressure: 29.99 inHg	
		ontroller was zeroed and valve opened t ring sampling to ensure proper operatio	
SAMPLE DETAIL	S	SAMPLE LOO	CATION SKETCH
	<b>S</b> 40"	SAMPLE LOC	CATION SKETCH
HEIGHT ABOVE GROUND (FT):		SAMPLE LOC	CATION SKETCH
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM):	40"	SAMPLE LOC	CATION SKETCH
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME:	40" 0.0	SAMPLE LOC	CATION SKETCH
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME:	40" 0.0 10:00		CATION SKETCH
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: FOTAL SAMPLE TIME (MIN):	40" 0.0 10:00 13:07		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN):	40" 0.0 10:00 13:07 187		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS):	40" 0.0 10:00 13:07 187 0.032		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM):	40" 0.0 10:00 13:07 187 0.032 6 0.0		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT:	40" 0.0 10:00 13:07 187 0.032 6 0.0 N/A		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER:	40" 0.0 10:00 13:07 187 0.032 6 0.0 N/A 1892		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER: REGULATOR SERIAL NUMBER:	40" 0.0 10:00 13:07 187 0.032 6 0.0 N/A 1892 1477		
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER:	40" 0.0 10:00 13:07 187 0.032 6 0.0 N/A 1892		

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York, New York 10001-2727

Sample Number: AA-02

PROJECT: 1607 Surf Avenue LOCATION: Brooklyn, NY						
<b>location</b> : Brooklyn, NY	1/	<b>OJECT NO</b> .: 70599501				
Brooklyn, NY						
	30 N/					
SAMPLER:		MPLE DATE STARTED:	DATE FINISHED:			
Patrick Stovall		2/13/2020	2/13/2020			
		TYPE OF SAMPLING DEVICE:				
Patrick Stovall		Liter Summar Canister				
POTENTIAL SAMPLE INTERFERENCES:		EATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND EMD: 40s F	SPEED AND DIR.):			
Gasoline emissions associated with parking lot operations.		/ind: N 0-4 mph				
		ecipitation: Drizzle				
		ressure: 29.65 inHg				
canister fitted with an 2-hour flow cont The sample and flow controller were cl						
	s	SAMPLE LOC	CATION SKETCH			
SAMPLE DETAILS	<b>U</b>					
SAMPLE DETAILS	40"					
HEIGHT ABOVE GROUND (FT):	40"					
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM):	40" 0.0					
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME:	40" 0.0 9:41	See Sampi	le Location Plan			
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME:	40" 0.0 9:41 11:45	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN):	40" 0.0 9:41 11:45 124	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN):	40" 0.0 9:41 11:45 124 0.048	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS):	40" 0.0 9:41 11:45 124 0.048 6	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM):	40" 0.0 9:41 11:45 124 0.048 6 0.0	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER:	40" 0.0 9:41 11:45 124 0.048 6 0.0 N/A	See Sampi				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER: REGULATOR SERIAL NUMBER:	40" 0.0 9:41 11:45 124 0.048 6 0.0 N/A 1568	See Sampl				
HEIGHT ABOVE GROUND (FT): PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER:	40" 0.0 9:41 11:45 124 0.048 6 0.0 N/A 1568 918	See Sampl				

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York, New York 10001-2727

Sample Number: AA-01

1607 Surf Avenue		PROJECT NO.:			
			170599501		
DCATION:		SURFACE ELEVATION AND DATUM:			
Brooklyn, NY		N/A			
SAMPLER: AARCO Environmental Services Corp.		SAMPLE DATE STARTED:         DATE FINISHED:           12/3/2020         12/3/2020			
		TYPE OF SAMPLING DEVICE:	12/3/2020		
Jose Garcia		2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES:		WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND S	SPEED AND DIR.):		
		Temp: 40s F			
Gasoline emissions associated with p	parking lot operations.	Wind: SW 0-9 mph Precipitation: None			
		Pressure: 29.95 inHg			
canister fitted with a 2-hour flow cont	rol valve. The flow co	E photoionization detector prior to samplir ontroller was zeroed and the valve was op each hour during sampling to ensure prop	pened to initiate the 2-hour sample		
SAMPLE DETAI	LS	SAMPLE LOC	ATION SKETCH		
HEIGHT ABOVE GROUND (FT):	4				
-	0.0				
ID BEFORE SAMPLE (PPM):	0.0 11:27				
D BEFORE SAMPLE (PPM): SAMPLE START TIME:					
ID BEFORE SAMPLE (PPM): AMPLE START TIME: AMPLE STOP TIME:	11:27	 See Sample	e Location Plan		
ID BEFORE SAMPLE (PPM): AMPLE START TIME: AMPLE STOP TIME: OTAL SAMPLE TIME (MIN):	11:27 13:27	- - - - See Sample	e Location Plan		
ID BEFORE SAMPLE (PPM): AMPLE START TIME: AMPLE STOP TIME: OTAL SAMPLE TIME (MIN): EGULATOR FLOW RATE (L/MIN):	11:27 13:27 120	- - - - - - - - - - - - - - - - - - -	e Location Plan		
VID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): YOLUME OF SAMPLE (LITERS):	11:27 13:27 120 0.023	 See Sample	e Location Plan		
ID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: OTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): YOLUME OF SAMPLE (LITERS): ID AFTER SAMPLE (PPM):	11:27 13:27 120 0.023 2.7	- - - - - - -	e Location Plan		
PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT:	11:27 13:27 120 0.023 2.7 0.0	- - - - - - -	e Location Plan		
PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: FOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER:	11:27 13:27 120 0.023 2.7 0.0 NA	See Sample	e Location Plan		
PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): VOLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER: REGULATOR SERIAL NUMBER: CAN START VACUUM PRESS. (" HG):	11:27 13:27 120 0.023 2.7 0.0 NA 2018	See Sample	e Location Plan		
PID BEFORE SAMPLE (PPM): SAMPLE START TIME: SAMPLE STOP TIME: TOTAL SAMPLE TIME (MIN): REGULATOR FLOW RATE (L/MIN): /OLUME OF SAMPLE (LITERS): PID AFTER SAMPLE (PPM): SAMPLE MOISTURE CONTENT: CAN SERIAL NUMBER: REGULATOR SERIAL NUMBER:	11:27 13:27 120 0.023 2.7 0.0 NA 2018 1716	See Sample	e Location Plan		

Sample Number: AA-01

PROJECT:	PROJECT NO.:		
1607 Surf Avenue	170599501		
LOCATION:	SURFACE ELEVATION AND DATUM:		
Brooklyn, NY	N/A		
SAMPLER: Lakewood Environmental Services Corp.	SAMPLE DATE STARTED:         DATE FINISHED:           3/2/2021         3/2/2021		
INSPECTOR: John Vice	TYPE OF SAMPLING DEVICE: 6-L Summa Canister		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):		
Gasoline emissions associated with parking lot operations.	Temp: 30s F Wind: WNW 15-20 mph Precipitation: None Pressure: 30.1 inHg		

#### METHOD OF INSTALLATION AND SAMPLING:

Langan field screened the sample location with a MultiRAE photoionization detector prior to sampling. Sample consisted of 6-L Summa canister fitted with an 2-hour flow control valve. The flow controller was zeroed and valve opened to initiate the 2-hour sample collection. The sample and flow controller were checked each hour during sampling to ensure proper operation.

SAMPLE DETA	ILS	SAMPLE LOCATION SKETCH
HEIGHT ABOVE GROUND (FT):	4	
PID BEFORE SAMPLE (PPM):	0.0	
SAMPLE START TIME:	13:39	
SAMPLE STOP TIME:	15:37	
TOTAL SAMPLE TIME (MIN):	118	See Sample Location Plan
REGULATOR FLOW RATE (L/MIN):	0.051	
VOLUME OF SAMPLE (LITERS):	6.0	
PID AFTER SAMPLE (PPM):	0.0	
SAMPLE MOISTURE CONTENT:	NA	
CAN SERIAL NUMBER:	3462	
REGULATOR SERIAL NUMBER:	1439	
CAN START VACUUM PRESS. (" HG):	-31.40	
CAN STOP VACUUM PRESS. (" HG):	-5.50	
		NOTES
		Surveying, Landscape Architecture, and Geology D.P.C. treet, 8th Floor, New York, New York 10001-2727

# **APPENDIX G**

## DATA USABILITY SUMMARY REPORTS

LANGAN



### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: March 9, 2020

Re: Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in February 2020 by Langan Engineering and Environmental Services ("Langan") at the 1607 Surf Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D
- Mercury by SW-846 Method 7470A
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

## TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2005543	L2005543-30	FB01_020620	2/6/2020	VOCs, SVOC, SVOC SIM, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide,
L2005543	L2005543-16	SB-1_0-2_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-17	SB-1_2-4_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-18	SB-1_6-8_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-25	SB-10_0-2_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-27	SB-10_10- 12_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-26	SB-10_5-7_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-10	SB-17_0-2_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-11	SB-17_5-7_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-12	SB-17_9-11_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-07	SB-18_0-2_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-09	SB-18_10- 12_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-08	SB-18_2-4_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2005543	L2005543-04	SB-19_0-2_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-05	SB-19_2-4_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-06	SB-19_6-8_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-01	SB-20_0-2_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-02	SB-20_2-4_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-03	SB-20_6-8_020520	2/5/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-19	SB-4_0-2_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-21	SB-4_10-12_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-20	SB-4_6-8_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-13	SB-5_0-2_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-15	SB-5_10-12_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-14	SB-5_5-7_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-22	SB-8_0-2_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2005543	L2005543-24	SB-8_10-12_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-23	SB-8_5-7_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-28	SODUP01_020620	2/6/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005543	L2005543-29	TB01_020620	2/6/2020	VOCs
L2005791	L2005791-07	SB-12_0-2_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-09	SB-12_10- 12_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-08	SB-12_5-7_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-01	SB-3_0-2_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-02	SB-3_6-8_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-03	SB-3_9-11_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-04	SB-7_0-2_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-05	SB-7_5-7_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-06	SB-7_9-11_020720	2/7/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005791	L2005791-10	TB02_020720	2/7/2020	VOCs
L2005961	L2005961-07	FB02_021020	2/10/2020	VOCs, SVOC, SVOC SIM, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide,

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2005961	L2005961-01	SB-13_0-2_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-02	SB-13_4-6_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-03	SB-13_9-11_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-04	SB-15_0-2_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-06	SB-15_10- 12_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-05	SB-15_6-8_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-09	SODUP02_021020	2/10/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2005961	L2005961-08	TB02_021020	2/10/2020	VOCs
L2006176	L2006176-18	FB03_021120	2/11/2020	VOCs, SVOC, SVOC SIM, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide,
L2006176	L2006176-07	SB-11_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-08	SB-11_6-8_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-09	SB-11_9-11_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-10	SB-14_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-11	SB-14_6-8_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2006176	L2006176-12	SB-14_9-11_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-04	SB-16_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-05	SB-16_5-7_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-06	SB-16_9-11_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-16	SB-2_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-17	SB-2_6-8_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-01	SB-6_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-02	SB-6_5-7_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-03	SB-6_9-11_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-13	SB-9_0-2_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-14	SB-9_6-8_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-15	SB-9_9-11_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-20	SODUP03_021120	2/11/2020	VOCs, SVOC, Pests, PCBs, Herbs, PFAS, Metals, Mercury, CrVI, CrIII, Cyanide, %Solids
L2006176	L2006176-19	TB04_021120	2/11/2020	VOCs

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region 1), USEPA Region II SOP #HW-36A, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, trip blank and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

## LANGAN

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
FB01_020620	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
FB01_020620	SW8081B	7421-93-4	Endrin Aldehyde	UJ
FB01_020620	SW8081B	53494-70-5	Endrin Ketone	UJ
FB01_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
FB01_020620	SW8260C	78-93-3	2-Butanone	UJ
FB01_020620	SW8260C	108-10-1	4-Methyl-2-pentanone	UJ
FB01_020620	SW8260C	67-64-1	Acetone	UJ
FB01_020620	SW8260C	107-13-1	Acrylonitrile	UJ
FB01_020620	SW8260C	74-83-9	Bromomethane	UJ
FB01_020620	SW8260C	74-87-3	Chloromethane	UJ
FB01_020620	SW8260C	75-01-4	Vinyl chloride	UJ
FB01_020620	SW8270D	65-85-0	Benzoic Acid	UJ
FB01_020620	E537(M)	307-24-4	Perfluorohexanoic acid (PFHXA)	U (1.82)
FB02_021020	6010D	7439-96-5	Manganese, Total	U (0.01)

### **TABLE 2: VALIDATOR-APPLIED QUALIFICATION**

## LANGAN

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
FB02_021020	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
FB02_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
FB02_021020	SW8260C	67-64-1	Acetone	UJ
FB02_021020	SW8260C	75-15-0	Carbon Disulfide	UJ
FB02_021020	SW8260C	87-68-3	Hexachlorobutadiene	UJ
FB02_021020	SW8260C	91-20-3	Naphthalene	UJ
FB02_021020	SW8260C	75-69-4	Trichlorofluoromethane	UJ
FB02_021020	SW8260C	104-51-8	N-Butylbenzene	UJ
FB02_021020	SW8270D	100-02-7	4-Nitrophenol	UJ
FB02_021020	SW8270D	65-85-0	Benzoic Acid	UJ
FB03_021120	SW8081B	319-85-7	Beta-BHC	UJ
FB03_021120	SW8081B	7421-93-4	Endrin aldehyde	UJ
FB03_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
FB03_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
FB03_021120	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
FB03_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
FB03_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
FB03_021120	SW8260C	74-87-3	Chloromethane	UJ
FB03_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
FB03_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
FB03_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
FB03_021120	SW8260C	108-05-4	Vinyl acetate	UJ
FB03_021120	SW8270D	105-67-9	2,4-Dimethylphenol	UJ
FB03_021120	SW8270D	106-47-8	4-Chloroaniline	UJ
FB03_021120	SW8270D	100-02-7	4-Nitrophenol	UJ
FB03_021120	SW8270D	65-85-0	Benzoic Acid	UJ
FB03_021120	SW8270D	108-60-1	Bis(2-chloroisopropyl)ether	UJ
FB03_021120	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
FB03_021120	SW9012B	57-12-5	Cyanide, Total	UJ
FB03_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
FB03_021120	E537(M)	307-24-4	Perfluorohexanoic acid (PFHXA)	U (1.84)
SB-1_0-2_020620	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 10 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-1_0-2_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-1_0-2_020620	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-1_0-2_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-1_0-2_020620	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-1_0-2_020620	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-1_0-2_020620	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-1_0-2_020620	SW8260C	96-12-8	1,2-Dibromo-3-chloropropane	UJ
SB-1_0-2_020620	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-1_0-2_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-1_0-2_020620	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-1_0-2_020620	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-1_0-2_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-1_0-2_020620	SW8260C	108-86-1	Bromobenzene	UJ
SB-1_0-2_020620	SW8260C	75-25-2	Bromoform	UJ
SB-1_0-2_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-1_0-2_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-1_0-2_020620	SW8260C	67-66-3	Chloroform	J
SB-1_0-2_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-1_0-2_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-1_0-2_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-1_0-2_020620	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-1_0-2_020620	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-1_0-2_020620	SW8260C	91-20-3	Naphthalene	UJ
SB-1_0-2_020620	SW8260C	127-18-4	Tetrachloroethene	J
SB-1_0-2_020620	SW8260C	108-88-3	Toluene	J
SB-1_0-2_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-1_0-2_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-1_0-2_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-1_0-2_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-1_0-2_020620	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-1_0-2_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-1_0-2_020620	SW8260C	98-06-6	Tert-Butylbenzene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-1_0-2_020620	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-1_0-2_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-1_0-2_020620	E537(M)	2991-50-6	N-Ethyl perfluorooctanesulfonamidoaceti c acid (Netfosaa)	J
SB-1_0-2_020620	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (0.994)
SB-1_0-2_020620	E537(M)	2706-90-3	Perfluoropentanoic acid (PFPEA)	J
SB-1_2-4_020620	6010D	7440-23-5	Sodium, Total	U (181)
SB-1_2-4_020620	SW8081B	72-43-5	Methoxychlor	UJ
SB-1_2-4_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-1_2-4_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-1_2-4_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-1_2-4_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-1_2-4_020620	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.03)
SB-1_2-4_020620	E537(M)	2706-90-3	Perfluoropentanoic acid (PFPEA)	J
SB-1_6-8_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-1_6-8_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-1_6-8_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-1_6-8_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-1_6-8_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-1_6-8_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-1_6-8_020620	6010D	7440-38-2	Arsenic, Total	J
SB-1_6-8_020620	6010D	7440-39-3	Barium, Total	J
SB-1_6-8_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-1_6-8_020620	6010D	7440-41-7	Beryllium, Total	J
SB-1_6-8_020620	6010D	7440-43-9	Cadmium, Total	J
SB-1_6-8_020620	6010D	7440-70-2	Calcium, Total	J
SB-1_6-8_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-1_6-8_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-1_6-8_020620	6010D	7440-47-3	Chromium, Total	J
SB-1_6-8_020620	CALC	16065-83-1	Chromium, Trivalent	J
SB-1_6-8_020620	6010D	7440-50-8	Copper, Total	J
SB-1_6-8_020620	SW8260C	100-41-4	Ethylbenzene	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 12 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-1_6-8_020620	6010D	7439-89-6	Iron, Total	J
SB-1_6-8_020620	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-1_6-8_020620	6010D	7439-92-1	Lead, Total	J
SB-1_6-8_020620	6010D	7439-95-4	Magnesium, Total	J
SB-1_6-8_020620	6010D	7439-96-5	Manganese, Total	J
SB-1_6-8_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-1_6-8_020620	6010D	7440-02-0	Nickel, Total	UJ (2.2)
SB-1_6-8_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-1_6-8_020620	SW8270D	129-00-0	Pyrene	J
SB-1_6-8_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-1_6-8_020620	6010D	7782-49-2	Selenium, Total	UJ
SB-1_6-8_020620	6010D	7440-23-5	Sodium, Total	UJ (176)
SB-1_6-8_020620	SW8260C	127-18-4	Tetrachloroethene	J
SB-1_6-8_020620	SW8260C	108-88-3	Toluene	UJ
SB-1_6-8_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-10_0-2_020620	SW8081B	50-29-3	4,4'-DDT	UJ
SB-10_0-2_020620	SW8082A	12674-11-2	Aroclor 1016	UJ
SB-10_0-2_020620	SW8082A	11104-28-2	Aroclor 1221	UJ
SB-10_0-2_020620	SW8082A	11141-16-5	Aroclor 1232	UJ
SB-10_0-2_020620	SW8082A	53469-21-9	Aroclor 1242	UJ
SB-10_0-2_020620	SW8082A	12672-29-6	Aroclor 1248	UJ
SB-10_0-2_020620	SW8082A	11097-69-1	Aroclor 1254	UJ
SB-10_0-2_020620	SW8082A	11096-82-5	Aroclor 1260	UJ
SB-10_0-2_020620	SW8082A	37324-23-5	Aroclor 1262	UJ
SB-10_0-2_020620	SW8082A	11100-14-4	Aroclor 1268	UJ
SB-10_0-2_020620	SW8082A	1336-36-3	PCBs, Total	UJ
SB-10_0-2_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-10_0-2_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-10_10-12_020620	SW8081B	72-54-8	4,4'-DDD	UJ
SB-10_10-12_020620	SW8081B	72-55-9	4,4'-DDE	J
SB-10_10-12_020620	SW8081B	319-86-8	Delta-BHC	UJ
SB-10_10-12_020620	SW8081B	60-57-1	Dieldrin	UJ

LANGAN

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 13 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-10_10-12_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-10_10-12_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-10_10-12_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-10_10-12_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-10_5-7_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-10_5-7_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-10_5-7_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-10_5-7_020620	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-10_5-7_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-10_5-7_020620	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB-11_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-11_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-11_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-11_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-11_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-11_0-2_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-11_0-2_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-11_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-11_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-11_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-11_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-11_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-11_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-11_0-2_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-11_0-2_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-11_0-2_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-11_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-11_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-11_0-2_021120	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (0.966)
SB-11_0-2_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-11_6-8_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-11_6-8_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-11_6-8_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-11_6-8_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-11_6-8_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-11_6-8_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-11_6-8_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-11_6-8_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-11_6-8_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-11_6-8_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-11_6-8_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-11_6-8_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-11_6-8_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-11_6-8_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-11_6-8_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-11_6-8_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-11_6-8_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-11_9-11_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-11_9-11_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-11_9-11_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-11_9-11_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-11_9-11_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-11_9-11_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-11_9-11_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-11_9-11_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-11_9-11_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-11_9-11_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-11_9-11_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-11_9-11_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-11_9-11_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-11_9-11_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-11_9-11_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-11_9-11_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 15 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-12_0-2_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-12_0-2_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-12_0-2_020720	SW8081B	50-29-3	4,4'-DDT	J
SB-12_0-2_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-12_0-2_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-12_0-2_020720	SW8081B	60-57-1	Dieldrin	J
SB-12_0-2_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-12_0-2_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-12_0-2_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-12_0-2_020720	SW8081B	72-20-8	Endrin	UJ
SB-12_0-2_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-12_0-2_020720	SW8081B	58-89-9	Lindane	UJ
SB-12_0-2_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-12_0-2_020720	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-12_0-2_020720	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-12_0-2_020720	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-12_0-2_020720	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-12_0-2_020720	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-12_0-2_020720	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-12_0-2_020720	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-12_0-2_020720	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-12_0-2_020720	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-12_0-2_020720	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-12_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-12_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-12_0-2_020720	SW8260C	67-64-1	Acetone	UJ
SB-12_0-2_020720	SW8260C	108-86-1	Bromobenzene	UJ
SB-12_0-2_020720	SW8260C	75-25-2	Bromoform	UJ
SB-12_0-2_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-12_0-2_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-12_0-2_020720	SW8260C	75-00-3	Chloroethane	UJ
SB-12_0-2_020720	SW8260C	74-87-3	Chloromethane	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-12_0-2_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-12_0-2_020720	SW8260C	60-29-7	Ethyl Ether	UJ
SB-12_0-2_020720	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-12_0-2_020720	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-12_0-2_020720	SW8260C	91-20-3	Naphthalene	UJ
SB-12_0-2_020720	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-12_0-2_020720	SW8260C	75-01-4	Vinyl chloride	UJ
SB-12_0-2_020720	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-12_0-2_020720	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-12_0-2_020720	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-12_0-2_020720	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-12_0-2_020720	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-12_0-2_020720	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-12_0-2_020720	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-12_0-2_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-12_0-2_020720	SW8270D	111-44-4	Bis(2-Chloroethyl)Ether	UJ
SB-12_0-2_020720	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB-12_0-2_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-12_0-2_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-12_10-12_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-12_10-12_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-12_10-12_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-12_10-12_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-12_10-12_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-12_10-12_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-12_10-12_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-12_10-12_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-12_10-12_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-12_10-12_020720	SW8081B	72-20-8	Endrin	UJ
SB-12_10-12_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-12_10-12_020720	SW8081B	58-89-9	Lindane	UJ
SB-12_10-12_020720	SW8081B	5103-74-2	Trans-chlordane	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 17 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-12_10-12_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-12_10-12_020720	SW8260C	67-64-1	Acetone	UJ
SB-12_10-12_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-12_10-12_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-12_10-12_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-12_10-12_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-12_10-12_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-12_10-12_020720	SW8270D	111-44-4	Bis(2-Chloroethyl)Ether	UJ
SB-12_10-12_020720	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB-12_10-12_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-12_10-12_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-12_5-7_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-12_5-7_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-12_5-7_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-12_5-7_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-12_5-7_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-12_5-7_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-12_5-7_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-12_5-7_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-12_5-7_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-12_5-7_020720	SW8081B	72-20-8	Endrin	UJ
SB-12_5-7_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-12_5-7_020720	SW8081B	58-89-9	Lindane	UJ
SB-12_5-7_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-12_5-7_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-12_5-7_020720	SW8260C	67-64-1	Acetone	UJ
SB-12_5-7_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-12_5-7_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-12_5-7_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-12_5-7_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-12_5-7_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-12_5-7_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-12_5-7_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-12_5-7_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-12_5-7_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-13_0-2_021020	6010D	7440-23-5	Sodium, Total	U (168)
SB-13_0-2_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-13_0-2_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SB-13_0-2_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-13_0-2_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-13_0-2_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-13_0-2_021020	SW8260C	67-64-1	Acetone	UJ
SB-13_0-2_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-13_0-2_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-13_0-2_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-13_0-2_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SB-13_0-2_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-13_0-2_021020	E537(M)	307-24-4	Perfluorohexanoic acid (PFHXA)	U (0.999)
SB-13_4-6_021020	6010D	7440-23-5	Sodium, Total	U (163)
SB-13_4-6_021020	SW7196A	18540-29-9	Chromium, Hexavalent	U (0.838)
SB-13_4-6_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-13_4-6_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SB-13_4-6_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-13_4-6_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-13_4-6_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-13_4-6_021020	SW8260C	67-64-1	Acetone	UJ
SB-13_4-6_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-13_4-6_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-13_4-6_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-13_4-6_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SB-13_4-6_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-13_9-11_021020	6010D	7440-23-5	Sodium, Total	U (183)
SB-13_9-11_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-13_9-11_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 19 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-13_9-11_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-13_9-11_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-13_9-11_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-13_9-11_021020	SW8260C	67-64-1	Acetone	UJ
SB-13_9-11_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-13_9-11_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-13_9-11_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-13_9-11_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SB-13_9-11_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-14_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-14_0-2_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-14_0-2_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-14_0-2_021120	SW8151A	94-75-7	2,4-D	UJ
SB-14_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-14_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-14_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-14_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-14_0-2_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-14_0-2_021120	SW8260C	78-93-3	2-Butanone	J
SB-14_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-14_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-14_0-2_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-14_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-14_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-14_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-14_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-14_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-14_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-14_0-2_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-14_0-2_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-14_0-2_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-14_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-14_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-14_0-2_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-14_6-8_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-14_6-8_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-14_6-8_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-14_6-8_021120	SW8151A	94-75-7	2,4-D	UJ
SB-14_6-8_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-14_6-8_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-14_6-8_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-14_6-8_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-14_6-8_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-14_6-8_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-14_6-8_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-14_6-8_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-14_6-8_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-14_6-8_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-14_6-8_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-14_6-8_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-14_6-8_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-14_6-8_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-14_6-8_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-14_9-11_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-14_9-11_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-14_9-11_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-14_9-11_021120	SW8151A	94-75-7	2,4-D	UJ
SB-14_9-11_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-14_9-11_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-14_9-11_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-14_9-11_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
SB-14_9-11_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-14_9-11_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-14_9-11_021120	SW8260C	127-18-4	Tetrachloroethene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-14_9-11_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-14_9-11_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-14_9-11_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-14_9-11_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-14_9-11_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-14_9-11_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-14_9-11_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-14_9-11_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-15_0-2_021020	6010D	7440-23-5	Sodium, Total	U (163)
SB-15_0-2_021020	SW7196A	18540-29-9	Chromium, Hexavalent	U (0.847)
SB-15_0-2_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-15_0-2_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SB-15_0-2_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-15_0-2_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-15_0-2_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-15_0-2_021020	SW8260C	67-64-1	Acetone	J
SB-15_0-2_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-15_0-2_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-15_0-2_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-15_0-2_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-15_10-12_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-15_10-12_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SB-15_10-12_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-15_10-12_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-15_10-12_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-15_10-12_021020	SW8260C	67-64-1	Acetone	UJ
SB-15_10-12_021020	6010D	7429-90-5	Aluminum, Total	J
SB-15_10-12_021020	6010D	7440-39-3	Barium, Total	J
SB-15_10-12_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SB-15_10-12_021020	6010D	7440-70-2	Calcium, Total	J
SB-15_10-12_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-15_10-12_021020	SW7196A	18540-29-9	Chromium, Hexavalent	U (0.978)



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-15_10-12_021020	6010D	7440-47-3	Chromium, Total	J
SB-15_10-12_021020	CALC	16065-83-1	Chromium, Trivalent	J
SB-15_10-12_021020	6010D	7440-48-4	Cobalt, Total	J
SB-15_10-12_021020	6010D	7440-50-8	Copper, Total	J
SB-15_10-12_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-15_10-12_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-15_10-12_021020	6010D	7439-89-6	Iron, Total	J
SB-15_10-12_021020	6010D	7439-95-4	Magnesium, Total	J
SB-15_10-12_021020	6010D	7439-96-5	Manganese, Total	J
SB-15_10-12_021020	6010D	7440-02-0	Nickel, Total	J
SB-15_10-12_021020	6010D	7440-09-7	Potassium, Total	J
SB-15_10-12_021020	6010D	7440-23-5	Sodium, Total	U (194)
SB-15_10-12_021020	6010D	7440-62-2	Vanadium, Total	J
SB-15_10-12_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-15_6-8_021020	6010D	7440-23-5	Sodium, Total	U (175)
SB-15_6-8_021020	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-15_6-8_021020	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SB-15_6-8_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-15_6-8_021020	SW8260C	78-93-3	2-Butanone	UJ
SB-15_6-8_021020	SW8260C	591-78-6	2-Hexanone	UJ
SB-15_6-8_021020	SW8260C	67-64-1	Acetone	UJ
SB-15_6-8_021020	SW8260C	74-87-3	Chloromethane	UJ
SB-15_6-8_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-15_6-8_021020	SW8260C	75-01-4	Vinyl chloride	UJ
SB-15_6-8_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SB-15_6-8_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SB-16_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-16_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-16_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-16_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-16_0-2_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-16_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-16_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-16_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-16_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-16_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-16_0-2_021120	SW8270D	123-91-1	1,4-Dioxane	UJ
SB-16_0-2_021120	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ
SB-16_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-16_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-16_0-2_021120	SW8270D	108-60-1	Bis(2-Chloroisopropyl)Ether	UJ
SB-16_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-16_0-2_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-16_5-7_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-16_5-7_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-16_5-7_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-16_5-7_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-16_5-7_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-16_5-7_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-16_5-7_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-16_5-7_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-16_5-7_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-16_5-7_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-16_5-7_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-16_5-7_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-16_5-7_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-16_5-7_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-16_5-7_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-16_5-7_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-16_9-11_021120	6010D	7440-09-7	Potassium, Total	J
SB-16_9-11_021120	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB-16_9-11_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-16_9-11_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 24 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-16_9-11_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-16_9-11_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-16_9-11_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-16_9-11_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-16_9-11_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-16_9-11_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-16_9-11_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-16_9-11_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-16_9-11_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-16_9-11_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-16_9-11_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-17_0-2_020520	SW8081B	5103-74-2	Trans-chlordane	J
SB-17_0-2_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-17_0-2_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-17_0-2_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-17_0-2_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	J
SB-17_0-2_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-17_0-2_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-17_0-2_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-17_0-2_020520	SW8260C	100-41-4	Ethylbenzene	J
SB-17_0-2_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-17_0-2_020520	SW8260C	108-88-3	Toluene	UJ
SB-17_0-2_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-17_0-2_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-17_0-2_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-17_0-2_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-17_0-2_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-17_0-2_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-17_0-2_020520	E537(M)	2355-31-9	N-Methyl perfluorooctanesulfonamidoaceti c acid (Nmefosaa)	UJ
SB-17_0-2_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 25 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-17_5-7_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-17_5-7_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-17_5-7_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-17_5-7_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-17_5-7_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-17_5-7_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-17_5-7_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-17_5-7_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-17_5-7_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-17_5-7_020520	SW8260C	108-88-3	Toluene	UJ
SB-17_5-7_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-17_5-7_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-17_5-7_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-17_5-7_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-17_5-7_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-17_5-7_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-17_5-7_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-17_9-11_020520	6010D	7440-47-3	Chromium, Total	U (2.12)
SB-17_9-11_020520	6010D	7440-02-0	Nickel, Total	U (2.34)
SB-17_9-11_020520	6010D	7440-23-5	Sodium, Total	U (187)
SB-17_9-11_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-17_9-11_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-17_9-11_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-17_9-11_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-17_9-11_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-17_9-11_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-17_9-11_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-17_9-11_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-17_9-11_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-17_9-11_020520	SW8260C	108-88-3	Toluene	UJ
SB-17_9-11_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-17_9-11_020520	SW8260C	104-51-8	N-Butylbenzene	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 26 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-17_9-11_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-17_9-11_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-17_9-11_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-17_9-11_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-17_9-11_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-18_0-2_020520	6010D	7440-23-5	Sodium, Total	U (160)
SB-18_0-2_020520	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-18_0-2_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-18_0-2_020520	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-18_0-2_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-18_0-2_020520	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-18_0-2_020520	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-18_0-2_020520	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-18_0-2_020520	SW8260C	96-12-8	1,2-Dibromo-3-chloropropane	UJ
SB-18_0-2_020520	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-18_0-2_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-18_0-2_020520	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-18_0-2_020520	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-18_0-2_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-18_0-2_020520	SW8260C	67-64-1	Acetone	J
SB-18_0-2_020520	SW8260C	108-86-1	Bromobenzene	UJ
SB-18_0-2_020520	SW8260C	75-25-2	Bromoform	UJ
SB-18_0-2_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-18_0-2_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-18_0-2_020520	SW8260C	74-87-3	Chloromethane	UJ
SB-18_0-2_020520	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-18_0-2_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-18_0-2_020520	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-18_0-2_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-18_0-2_020520	SW8260C	91-20-3	Naphthalene	UJ
SB-18_0-2_020520	SW8260C	108-88-3	Toluene	UJ
SB-18_0-2_020520	SW8260C	75-01-4	Vinyl chloride	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 27 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-18_0-2_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-18_0-2_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-18_0-2_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-18_0-2_020520	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-18_0-2_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-18_0-2_020520	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-18_0-2_020520	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-18_0-2_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-18_0-2_020520	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.02)
SB-18_10-12_020520	6010D	7440-47-3	Chromium, Total	U (3.3)
SB-18_10-12_020520	6010D	7440-02-0	Nickel, Total	U (2.41)
SB-18_10-12_020520	6010D	7440-23-5	Sodium, Total	U (193)
SB-18_10-12_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-18_10-12_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-18_10-12_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-18_10-12_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-18_10-12_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-18_10-12_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-18_10-12_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-18_10-12_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-18_10-12_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-18_10-12_020520	SW8260C	108-88-3	Toluene	UJ
SB-18_10-12_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-18_10-12_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-18_10-12_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-18_10-12_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-18_10-12_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-18_10-12_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-18_10-12_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-18_2-4_020520	SW8081B	72-54-8	4,4'-DDD	J
SB-18_2-4_020520	SW8081B	72-55-9	4,4'-DDE	J
SB-18_2-4_020520	SW8081B	50-29-3	4,4'-DDT	J

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 28 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-18_2-4_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-18_2-4_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-18_2-4_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-18_2-4_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-18_2-4_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-18_2-4_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-18_2-4_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-18_2-4_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-18_2-4_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-18_2-4_020520	SW8260C	108-88-3	Toluene	UJ
SB-18_2-4_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-18_2-4_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-18_2-4_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-18_2-4_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-18_2-4_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-18_2-4_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-18_2-4_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-19_0-2_020520	6010D	7440-47-3	Chromium, Total	U (3.61)
SB-19_0-2_020520	6010D	7440-23-5	Sodium, Total	U (154)
SB-19_0-2_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-19_0-2_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-19_0-2_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-19_0-2_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-19_0-2_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-19_0-2_020520	SW8260C	78-93-3	2-Butanone	U (18)
SB-19_0-2_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-19_0-2_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-19_0-2_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-19_0-2_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-19_0-2_020520	SW8260C	108-88-3	Toluene	UJ
SB-19_0-2_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-19_0-2_020520	SW8260C	104-51-8	N-Butylbenzene	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 29 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-19_0-2_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-19_0-2_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-19_0-2_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-19_0-2_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-19_0-2_020520	SW9012B	57-12-5	Cyanide, Total	UJ
SB-19_0-2_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-19_2-4_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-19_2-4_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-19_2-4_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-19_2-4_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-19_2-4_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-19_2-4_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-19_2-4_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-19_2-4_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-19_2-4_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-19_2-4_020520	SW8260C	108-88-3	Toluene	UJ
SB-19_2-4_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-19_2-4_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-19_2-4_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-19_2-4_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-19_2-4_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-19_2-4_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-19_2-4_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-19_6-8_020520	6010D	7440-47-3	Chromium, Total	U (3.45)
SB-19_6-8_020520	6010D	7440-02-0	Nickel, Total	U (2.2)
SB-19_6-8_020520	6010D	7440-23-5	Sodium, Total	U (176)
SB-19_6-8_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-19_6-8_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-19_6-8_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-19_6-8_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-19_6-8_020520	SW8260C	123-91-1	1,4-Dioxane	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-19_6-8_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-19_6-8_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-19_6-8_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-19_6-8_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-19_6-8_020520	SW8260C	108-88-3	Toluene	UJ
SB-19_6-8_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-19_6-8_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-19_6-8_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-19_6-8_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-19_6-8_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-19_6-8_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-19_6-8_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-2_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-2_0-2_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-2_0-2_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-2_0-2_021120	SW8151A	94-75-7	2,4-D	UJ
SB-2_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-2_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-2_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-2_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-2_0-2_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-2_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-2_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-2_0-2_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
SB-2_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-2_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-2_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	J
SB-2_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	J
SB-2_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-2_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-2_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-2_0-2_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 31 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-2_0-2_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-2_0-2_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-2_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-2_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-2_0-2_021120	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.04)
SB-2_6-8_021120	SW8081B	72-55-9	4,4'-DDE	J
SB-2_6-8_021120	SW8081B	50-29-3	4,4'-DDT	J
SB-2_6-8_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-2_6-8_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-2_6-8_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-2_6-8_021120	SW8151A	94-75-7	2,4-D	UJ
SB-2_6-8_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-2_6-8_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-2_6-8_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-2_6-8_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
SB-2_6-8_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-2_6-8_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-2_6-8_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-2_6-8_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-2_6-8_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-2_6-8_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-2_6-8_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-2_6-8_021120	SW9012B	57-12-5	Cyanide, Total	J
SB-20_0-2_020520	6010D	7440-38-2	Arsenic, Total	J
SB-20_0-2_020520	6010D	7440-39-3	Barium, Total	J
SB-20_0-2_020520	6010D	7439-89-6	Iron, Total	J
SB-20_0-2_020520	6010D	7439-92-1	Lead, Total	J
SB-20_0-2_020520	6010D	7439-96-5	Manganese, Total	J
SB-20_0-2_020520	6010D	7782-49-2	Selenium, Total	J
SB-20_0-2_020520	6010D	7440-66-6	Zinc, Total	J
SB-20_0-2_020520	SW8151A	93-72-1	2,4,5-TP (Silvex)	UJ
SB-20_0-2_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 32 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-20_0-2_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-20_0-2_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-20_0-2_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-20_0-2_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-20_0-2_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-20_0-2_020520	SW8260C	100-41-4	Ethylbenzene	J
SB-20_0-2_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-20_0-2_020520	SW8260C	108-88-3	Toluene	UJ
SB-20_0-2_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-20_0-2_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-20_0-2_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-20_0-2_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-20_0-2_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-20_0-2_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-20_0-2_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-20_2-4_020520	6010D	7440-23-5	Sodium, Total	U (170)
SB-20_2-4_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-20_2-4_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-20_2-4_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-20_2-4_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-20_2-4_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-20_2-4_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-20_2-4_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-20_2-4_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-20_2-4_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-20_2-4_020520	SW8260C	108-88-3	Toluene	J
SB-20_2-4_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-20_2-4_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-20_2-4_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-20_2-4_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-20_2-4_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-20_2-4_020520	SW8270D	65-85-0	Benzoic Acid	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 33 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-20_2-4_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	J
SB-20_6-8_020520	6010D	7440-02-0	Nickel, Total	U (2.33)
SB-20_6-8_020520	6010D	7440-23-5	Sodium, Total	U (186)
SB-20_6-8_020520	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-20_6-8_020520	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-20_6-8_020520	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-20_6-8_020520	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-20_6-8_020520	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-20_6-8_020520	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-20_6-8_020520	SW8260C	75-00-3	Chloroethane	UJ
SB-20_6-8_020520	SW8260C	100-41-4	Ethylbenzene	UJ
SB-20_6-8_020520	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-20_6-8_020520	SW8260C	108-88-3	Toluene	UJ
SB-20_6-8_020520	SW8260C	75-01-4	Vinyl chloride	UJ
SB-20_6-8_020520	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-20_6-8_020520	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-20_6-8_020520	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-20_6-8_020520	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-20_6-8_020520	SW8270D	65-85-0	Benzoic Acid	UJ
SB-20_6-8_020520	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-3_0-2_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-3_0-2_020720	SW8081B	72-55-9	4,4'-DDE	J
SB-3_0-2_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-3_0-2_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-3_0-2_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-3_0-2_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-3_0-2_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-3_0-2_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-3_0-2_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-3_0-2_020720	SW8081B	72-20-8	Endrin	UJ
SB-3_0-2_020720	SW8081B	76-44-8	Heptachlor	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 34 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-3_0-2_020720	SW8081B	58-89-9	Lindane	UJ
SB-3_0-2_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-3_0-2_020720	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-3_0-2_020720	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-3_0-2_020720	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-3_0-2_020720	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-3_0-2_020720	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-3_0-2_020720	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-3_0-2_020720	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-3_0-2_020720	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-3_0-2_020720	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-3_0-2_020720	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-3_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-3_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-3_0-2_020720	SW8260C	67-64-1	Acetone	UJ
SB-3_0-2_020720	SW8260C	108-86-1	Bromobenzene	UJ
SB-3_0-2_020720	SW8260C	75-25-2	Bromoform	UJ
SB-3_0-2_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-3_0-2_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-3_0-2_020720	SW8260C	75-00-3	Chloroethane	UJ
SB-3_0-2_020720	SW8260C	67-66-3	Chloroform	J
SB-3_0-2_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-3_0-2_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-3_0-2_020720	SW8260C	60-29-7	Ethyl Ether	UJ
SB-3_0-2_020720	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-3_0-2_020720	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-3_0-2_020720	SW8260C	91-20-3	Naphthalene	UJ
SB-3_0-2_020720	SW8260C	127-18-4	Tetrachloroethene	J
SB-3_0-2_020720	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-3_0-2_020720	SW8260C	75-01-4	Vinyl chloride	UJ
SB-3_0-2_020720	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-3_0-2_020720	SW8260C	103-65-1	N-Propylbenzene	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 35 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-3_0-2_020720	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-3_0-2_020720	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-3_0-2_020720	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-3_0-2_020720	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-3_0-2_020720	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-3_0-2_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-3_0-2_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-3_0-2_020720	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.04)
SB-3_0-2_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-3_0-2_020720	E537(M)	1763-23-1	Perfluorooctanesulfonic acid (PFOS)	J
SB-3_6-8_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-3_6-8_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-3_6-8_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-3_6-8_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-3_6-8_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-3_6-8_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-3_6-8_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-3_6-8_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-3_6-8_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-3_6-8_020720	SW8081B	72-20-8	Endrin	UJ
SB-3_6-8_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-3_6-8_020720	SW8081B	58-89-9	Lindane	UJ
SB-3_6-8_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-3_6-8_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-3_6-8_020720	SW8260C	67-64-1	Acetone	UJ
SB-3_6-8_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-3_6-8_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-3_6-8_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-3_6-8_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-3_6-8_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-3_6-8_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-3_6-8_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-3_6-8_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-3_6-8_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-3_9-11_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-3_9-11_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-3_9-11_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-3_9-11_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-3_9-11_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-3_9-11_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-3_9-11_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-3_9-11_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-3_9-11_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-3_9-11_020720	SW8081B	72-20-8	Endrin	UJ
SB-3_9-11_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-3_9-11_020720	SW8081B	58-89-9	Lindane	UJ
SB-3_9-11_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-3_9-11_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-3_9-11_020720	SW8260C	67-64-1	Acetone	UJ
SB-3_9-11_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-3_9-11_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-3_9-11_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-3_9-11_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-3_9-11_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-3_9-11_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB-3_9-11_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-3_9-11_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-3_9-11_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-4_0-2_020620	6010D	7440-47-3	Chromium, Total	U (3.4)
SB-4_0-2_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-4_0-2_020620	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-4_0-2_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 37 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-4_0-2_020620	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-4_0-2_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-4_0-2_020620	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-4_0-2_020620	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-4_0-2_020620	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-4_0-2_020620	SW8260C	96-12-8	1,2-Dibromo-3-chloropropane	UJ
SB-4_0-2_020620	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-4_0-2_020620	SW8260C	540-59-0	1,2-Dichloroethene (Total)	J
SB-4_0-2_020620	SW8260C	540-59-0	1,2-Dichloroethene (Total)	J
SB-4_0-2_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-4_0-2_020620	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-4_0-2_020620	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-4_0-2_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-4_0-2_020620	SW8260C	78-93-3	2-Butanone	U (10)
SB-4_0-2_020620	SW8260C	67-64-1	Acetone	J
SB-4_0-2_020620	SW8260C	108-86-1	Bromobenzene	UJ
SB-4_0-2_020620	SW8260C	75-25-2	Bromoform	UJ
SB-4_0-2_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-4_0-2_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-4_0-2_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-4_0-2_020620	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-4_0-2_020620	SW8260C	98-82-8	lsopropylbenzene	UJ
SB-4_0-2_020620	SW8260C	91-20-3	Naphthalene	UJ
SB-4_0-2_020620	SW8260C	127-18-4	Tetrachloroethene	J
SB-4_0-2_020620	SW8260C	127-18-4	Tetrachloroethene	J
SB-4_0-2_020620	SW8260C	108-88-3	Toluene	UJ
SB-4_0-2_020620	SW8260C	79-01-6	Trichloroethene	J
SB-4_0-2_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-4_0-2_020620	SW8260C	75-01-4	Vinyl chloride	J
SB-4_0-2_020620	SW8260C	156-59-2	Cis-1,2-Dichloroethene	J
SB-4_0-2_020620	SW8260C	156-59-2	Cis-1,2-Dichloroethene	J
SB-4_0-2_020620	SW8260C	104-51-8	N-Butylbenzene	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 38 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-4_0-2_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-4_0-2_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-4_0-2_020620	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-4_0-2_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-4_0-2_020620	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-4_0-2_020620	SW8260C	156-60-5	Trans-1,2-dichloroethene	J
SB-4_0-2_020620	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-4_0-2_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-4_0-2_020620	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (0.964)
SB-4_10-12_020620	6010D	7440-70-2	Calcium, Total	J
SB-4_10-12_020620	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB-4_10-12_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-4_10-12_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-4_10-12_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-4_10-12_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-4_10-12_020620	SW8260C	78-93-3	2-Butanone	U (10)
SB-4_10-12_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-4_10-12_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-4_10-12_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-4_10-12_020620	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-4_10-12_020620	SW8260C	108-88-3	Toluene	UJ
SB-4_10-12_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-4_10-12_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-4_10-12_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-4_10-12_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-4_10-12_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-4_10-12_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-4_6-8_020620	6010D	7440-47-3	Chromium, Total	U (3.64)
SB-4_6-8_020620	6010D	7440-02-0	Nickel, Total	U (2.35)
SB-4_6-8_020620	6010D	7440-23-5	Sodium, Total	U (188)
SB-4_6-8_020620	SW8081B	72-43-5	Methoxychlor	UJ
SB-4_6-8_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 39 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-4_6-8_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-4_6-8_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-4_6-8_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-4_6-8_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-4_6-8_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-4_6-8_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-4_6-8_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-4_6-8_020620	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-4_6-8_020620	SW8260C	108-88-3	Toluene	UJ
SB-4_6-8_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-4_6-8_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-4_6-8_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-4_6-8_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-4_6-8_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-4_6-8_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-5_0-2_020620	6010D	7440-47-3	Chromium, Total	U (2.45)
SB-5_0-2_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-5_0-2_020620	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-5_0-2_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-5_0-2_020620	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-5_0-2_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-5_0-2_020620	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-5_0-2_020620	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-5_0-2_020620	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-5_0-2_020620	SW8260C	96-12-8	1,2-Dibromo-3-chloropropane	UJ
SB-5_0-2_020620	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-5_0-2_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-5_0-2_020620	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-5_0-2_020620	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-5_0-2_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-5_0-2_020620	SW8260C	78-93-3	2-Butanone	U (12)
SB-5_0-2_020620	SW8260C	108-86-1	Bromobenzene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-5_0-2_020620	SW8260C	75-25-2	Bromoform	UJ
SB-5_0-2_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-5_0-2_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-5_0-2_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-5_0-2_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-5_0-2_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-5_0-2_020620	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-5_0-2_020620	SW8260C	98-82-8	lsopropylbenzene	UJ
SB-5_0-2_020620	SW8260C	91-20-3	Naphthalene	UJ
SB-5_0-2_020620	SW8260C	108-88-3	Toluene	UJ
SB-5_0-2_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-5_0-2_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-5_0-2_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-5_0-2_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-5_0-2_020620	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-5_0-2_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-5_0-2_020620	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-5_0-2_020620	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-5_0-2_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-5_0-2_020620	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (0.974)
SB-5_0-2_020620	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-5_10-12_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-5_10-12_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-5_10-12_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-5_10-12_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-5_10-12_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-5_10-12_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-5_10-12_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-5_10-12_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-5_10-12_020620	SW8260C	98-82-8	lsopropylbenzene	UJ
SB-5_10-12_020620	SW8260C	108-88-3	Toluene	UJ
SB-5_10-12_020620	SW8260C	75-01-4	Vinyl chloride	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 41 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-5_10-12_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-5_10-12_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-5_10-12_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-5_10-12_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-5_10-12_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-5_5-7_020620	6010D	7440-23-5	Sodium, Total	U (180)
SB-5_5-7_020620	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-5_5-7_020620	SW8260C	563-58-6	1,1-Dichloropropene	UJ
SB-5_5-7_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-5_5-7_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-5_5-7_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-5_5-7_020620	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-5_5-7_020620	SW8260C	75-00-3	Chloroethane	UJ
SB-5_5-7_020620	SW8260C	100-41-4	Ethylbenzene	UJ
SB-5_5-7_020620	SW8260C	98-82-8	lsopropylbenzene	UJ
SB-5_5-7_020620	SW8260C	108-88-3	Toluene	UJ
SB-5_5-7_020620	SW8260C	75-01-4	Vinyl chloride	UJ
SB-5_5-7_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-5_5-7_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-5_5-7_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-5_5-7_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-5_5-7_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-5_5-7_020620	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-6_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-6_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-6_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-6_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-6_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-6_0-2_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-6_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-6_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-6_0-2_021120	SW8260C	71-43-2	Benzene	J

LANGAN

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 42 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-6_0-2_021120	SW8260C	71-43-2	Benzene	J
SB-6_0-2_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-6_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-6_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-6_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-6_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-6_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-6_0-2_021120	SW8270D	123-91-1	1,4-Dioxane	UJ
SB-6_0-2_021120	SW8270D	88-06-2	2,4,6-Trichlorophenol	UJ
SB-6_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-6_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-6_0-2_021120	SW8270D	108-60-1	Bis(2-Chloroisopropyl)Ether	UJ
SB-6_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-6_0-2_021120	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.07)
SB-6_0-2_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-6_5-7_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-6_5-7_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-6_5-7_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-6_5-7_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-6_5-7_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-6_5-7_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-6_5-7_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-6_5-7_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-6_5-7_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-6_5-7_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-6_5-7_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-6_5-7_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-6_5-7_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-6_5-7_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-6_9-11_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-6_9-11_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ

#### LANGAN

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 43 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-6_9-11_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-6_9-11_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-6_9-11_021120	SW8260C	78-93-3	2-Butanone	UJ
SB-6_9-11_021120	SW8260C	67-64-1	Acetone	J
SB-6_9-11_021120	6010D	7429-90-5	Aluminum, Total	J
SB-6_9-11_021120	6010D	7440-39-3	Barium, Total	J
SB-6_9-11_021120	SW8270D	205-99-2	Benzo(b)fluoranthene	J
SB-6_9-11_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-6_9-11_021120	6010D	7440-41-7	Beryllium, Total	UJ
SB-6_9-11_021120	6010D	7440-70-2	Calcium, Total	J
SB-6_9-11_021120	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-6_9-11_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SB-6_9-11_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-6_9-11_021120	6010D	7440-47-3	Chromium, Total	J
SB-6_9-11_021120	CALC	16065-83-1	Chromium, Trivalent	J
SB-6_9-11_021120	SW8270D	218-01-9	Chrysene	J
SB-6_9-11_021120	6010D	7440-50-8	Copper, Total	J
SB-6_9-11_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-6_9-11_021120	SW8270D	53-70-3	Dibenzo(a,h)anthracene	UJ
SB-6_9-11_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-6_9-11_021120	6010D	7439-89-6	Iron, Total	J
SB-6_9-11_021120	6010D	7439-95-4	Magnesium, Total	J
SB-6_9-11_021120	6010D	7439-96-5	Manganese, Total	J
SB-6_9-11_021120	SW7471B	7439-97-6	Mercury, Total	UJ
SB-6_9-11_021120	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-6_9-11_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-6_9-11_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-6_9-11_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-6_9-11_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-7_0-2_020720	SW8081B	72-54-8	4,4'-DDD	J
SB-7_0-2_020720	SW8081B	72-55-9	4,4'-DDE	J
SB-7_0-2_020720	SW8081B	50-29-3	4,4'-DDT	J

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 44 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-7_0-2_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-7_0-2_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-7_0-2_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-7_0-2_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-7_0-2_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-7_0-2_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-7_0-2_020720	SW8081B	72-20-8	Endrin	UJ
SB-7_0-2_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-7_0-2_020720	SW8081B	58-89-9	Lindane	UJ
SB-7_0-2_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-7_0-2_020720	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-7_0-2_020720	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-7_0-2_020720	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-7_0-2_020720	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-7_0-2_020720	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-7_0-2_020720	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-7_0-2_020720	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-7_0-2_020720	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-7_0-2_020720	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-7_0-2_020720	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-7_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-7_0-2_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-7_0-2_020720	SW8260C	67-64-1	Acetone	UJ
SB-7_0-2_020720	SW8260C	108-86-1	Bromobenzene	UJ
SB-7_0-2_020720	SW8260C	75-25-2	Bromoform	UJ
SB-7_0-2_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-7_0-2_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-7_0-2_020720	SW8260C	75-00-3	Chloroethane	UJ
SB-7_0-2_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-7_0-2_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-7_0-2_020720	SW8260C	60-29-7	Ethyl Ether	UJ
SB-7_0-2_020720	SW8260C	87-68-3	Hexachlorobutadiene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-7_0-2_020720	SW8260C	98-82-8	Isopropylbenzene	UJ
SB-7_0-2_020720	SW8260C	91-20-3	Naphthalene	J
SB-7_0-2_020720	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-7_0-2_020720	SW8260C	75-01-4	Vinyl chloride	UJ
SB-7_0-2_020720	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-7_0-2_020720	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-7_0-2_020720	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-7_0-2_020720	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-7_0-2_020720	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-7_0-2_020720	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-7_0-2_020720	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-7_0-2_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-7_0-2_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB-7_0-2_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-7_0-2_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-7_0-2_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-7_5-7_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-7_5-7_020720	SW8081B	72-55-9	4,4'-DDE	UJ
SB-7_5-7_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-7_5-7_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-7_5-7_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-7_5-7_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-7_5-7_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-7_5-7_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-7_5-7_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-7_5-7_020720	SW8081B	72-20-8	Endrin	UJ
SB-7_5-7_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-7_5-7_020720	SW8081B	58-89-9	Lindane	UJ
SB-7_5-7_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-7_5-7_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-7_5-7_020720	SW8260C	67-64-1	Acetone	UJ
SB-7_5-7_020720	SW8260C	74-83-9	Bromomethane	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 46 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-7_5-7_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-7_5-7_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-7_5-7_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-7_5-7_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-7_5-7_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB-7_5-7_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-7_5-7_020720	SW9012B	57-12-5	Cyanide, Total	UJ
SB-7_5-7_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-7_9-11_020720	SW8081B	72-54-8	4,4'-DDD	UJ
SB-7_9-11_020720	SW8081B	72-55-9	4,4'-DDE	J
SB-7_9-11_020720	SW8081B	50-29-3	4,4'-DDT	UJ
SB-7_9-11_020720	SW8081B	319-84-6	Alpha-BHC	UJ
SB-7_9-11_020720	SW8081B	319-86-8	Delta-BHC	UJ
SB-7_9-11_020720	SW8081B	60-57-1	Dieldrin	UJ
SB-7_9-11_020720	SW8081B	959-98-8	Endosulfan I	UJ
SB-7_9-11_020720	SW8081B	33213-65-9	Endosulfan II	UJ
SB-7_9-11_020720	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB-7_9-11_020720	SW8081B	72-20-8	Endrin	UJ
SB-7_9-11_020720	SW8081B	76-44-8	Heptachlor	UJ
SB-7_9-11_020720	SW8081B	58-89-9	Lindane	UJ
SB-7_9-11_020720	SW8081B	5103-74-2	Trans-chlordane	UJ
SB-7_9-11_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-7_9-11_020720	SW8260C	67-64-1	Acetone	UJ
SB-7_9-11_020720	SW8260C	74-83-9	Bromomethane	UJ
SB-7_9-11_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
SB-7_9-11_020720	SW8260C	74-87-3	Chloromethane	UJ
SB-7_9-11_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-7_9-11_020720	SW8270D	65-85-0	Benzoic Acid	UJ
SB-7_9-11_020720	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB-7_9-11_020720	SW8270D	87-86-5	Pentachlorophenol	UJ
SB-7_9-11_020720	SW9012B	57-12-5	Cyanide, Total	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-7_9-11_020720	E537(M)	355-46-4	Perfluorohexanesulfonic acid (PFHXS)	UJ
SB-8_0-2_020620	SW8082A	12674-11-2	Aroclor 1016	UJ
SB-8_0-2_020620	SW8082A	11104-28-2	Aroclor 1221	UJ
SB-8_0-2_020620	SW8082A	11141-16-5	Aroclor 1232	UJ
SB-8_0-2_020620	SW8082A	53469-21-9	Aroclor 1242	UJ
SB-8_0-2_020620	SW8082A	12672-29-6	Aroclor 1248	UJ
SB-8_0-2_020620	SW8082A	11097-69-1	Aroclor 1254	UJ
SB-8_0-2_020620	SW8082A	11096-82-5	Aroclor 1260	UJ
SB-8_0-2_020620	SW8082A	37324-23-5	Aroclor 1262	UJ
SB-8_0-2_020620	SW8082A	11100-14-4	Aroclor 1268	UJ
SB-8_0-2_020620	SW8082A	1336-36-3	PCBs, Total	UJ
SB-8_0-2_020620	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SB-8_0-2_020620	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SB-8_0-2_020620	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
SB-8_0-2_020620	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
SB-8_0-2_020620	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB-8_0-2_020620	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB-8_0-2_020620	SW8260C	96-12-8	1,2-Dibromo-3-chloropropane	UJ
SB-8_0-2_020620	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB-8_0-2_020620	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
SB-8_0-2_020620	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB-8_0-2_020620	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB-8_0-2_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-8_0-2_020620	SW8260C	78-93-3	2-Butanone	J
SB-8_0-2_020620	SW8260C	591-78-6	2-Hexanone	J
SB-8_0-2_020620	SW8260C	67-64-1	Acetone	J
SB-8_0-2_020620	SW8260C	108-86-1	Bromobenzene	UJ
SB-8_0-2_020620	SW8260C	75-25-2	Bromoform	UJ
SB-8_0-2_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-8_0-2_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-8_0-2_020620	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB-8_0-2_020620	SW8260C	98-82-8	Isopropylbenzene	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 48 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-8_0-2_020620	SW8260C	91-20-3	Naphthalene	UJ
SB-8_0-2_020620	SW8260C	104-51-8	N-Butylbenzene	UJ
SB-8_0-2_020620	SW8260C	103-65-1	N-Propylbenzene	UJ
SB-8_0-2_020620	SW8260C	622-96-8	4-Ethyltoluene	UJ
SB-8_0-2_020620	SW8260C	99-87-6	P-Isopropyltoluene	UJ
SB-8_0-2_020620	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB-8_0-2_020620	SW8260C	98-06-6	Tert-Butylbenzene	UJ
SB-8_0-2_020620	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
SB-8_0-2_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-8_0-2_020620	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (1.02)
SB-8_10-12_020620	SW8081B	72-54-8	4,4'-DDD	UJ
SB-8_10-12_020620	SW8081B	72-55-9	4,4'-DDE	UJ
SB-8_10-12_020620	SW8081B	319-86-8	Delta-BHC	UJ
SB-8_10-12_020620	SW8081B	60-57-1	Dieldrin	UJ
SB-8_10-12_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-8_10-12_020620	SW8260C	74-87-3	Chloromethane	UJ
SB-8_10-12_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-8_10-12_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-8_5-7_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-8_5-7_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SB-9_0-2_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-9_0-2_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-9_0-2_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-9_0-2_021120	SW8151A	94-75-7	2,4-D	UJ
SB-9_0-2_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-9_0-2_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-9_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-9_0-2_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-9_0-2_021120	SW8260C	594-20-7	2,2-Dichloropropane	UJ
SB-9_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-9_0-2_021120	SW8260C	67-64-1	Acetone	J
SB-9_0-2_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 49 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-9_0-2_021120	SW8260C	67-66-3	Chloroform	J
SB-9_0-2_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-9_0-2_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-9_0-2_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-9_0-2_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-9_0-2_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-9_0-2_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-9_0-2_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-9_0-2_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-9_0-2_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-9_0-2_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-9_0-2_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SB-9_0-2_021120	E537(M)	375-22-4	Perfluorobutanoic acid (PFBA)	U (0.988)
SB-9_6-8_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-9_6-8_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-9_6-8_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-9_6-8_021120	SW8151A	94-75-7	2,4-D	UJ
SB-9_6-8_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-9_6-8_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-9_6-8_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-9_6-8_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
SB-9_6-8_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-9_6-8_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-9_6-8_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-9_6-8_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-9_6-8_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-9_6-8_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-9_6-8_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-9_6-8_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-9_6-8_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-9_6-8_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-9_6-8_021120	SW9012B	57-12-5	Cyanide, Total	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 50 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB-9_9-11_021120	SW8081B	8001-35-2	Toxaphene	UJ
SB-9_9-11_021120	SW8151A	93-76-5	2,4,5-T	UJ
SB-9_9-11_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SB-9_9-11_021120	SW8151A	94-75-7	2,4-D	UJ
SB-9_9-11_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB-9_9-11_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB-9_9-11_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
SB-9_9-11_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
SB-9_9-11_021120	SW8260C	74-87-3	Chloromethane	UJ
SB-9_9-11_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB-9_9-11_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SB-9_9-11_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB-9_9-11_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-9_9-11_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB-9_9-11_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SB-9_9-11_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SB-9_9-11_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SB-9_9-11_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SB-9_9-11_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SODUP01_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
SODUP01_020620	6010D	7440-38-2	Arsenic, Total	UJ
SODUP01_020620	6010D	7440-39-3	Barium, Total	J
SODUP01_020620	SW8270D	65-85-0	Benzoic Acid	UJ
SODUP01_020620	6010D	7440-41-7	Beryllium, Total	UJ
SODUP01_020620	6010D	7440-43-9	Cadmium, Total	UJ
SODUP01_020620	6010D	7440-70-2	Calcium, Total	J
SODUP01_020620	SW8260C	74-87-3	Chloromethane	UJ
SODUP01_020620	6010D	7440-47-3	Chromium, Total	J
SODUP01_020620	CALC	16065-83-1	Chromium, Trivalent	J
SODUP01_020620	6010D	7440-50-8	Copper, Total	J
SODUP01_020620	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SODUP01_020620	6010D	7439-89-6	Iron, Total	J

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 51 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SODUP01_020620	6010D	7439-92-1	Lead, Total	J
SODUP01_020620	6010D	7439-95-4	Magnesium, Total	J
SODUP01_020620	6010D	7439-96-5	Manganese, Total	J
SODUP01_020620	SW8081B	72-43-5	Methoxychlor	UJ
SODUP01_020620	6010D	7440-02-0	Nickel, Total	J
SODUP01_020620	SW8270D	129-00-0	Pyrene	J
SODUP01_020620	6010D	7782-49-2	Selenium, Total	J
SODUP01_020620	6010D	7440-23-5	Sodium, Total	J
SODUP01_020620	SW8260C	127-18-4	Tetrachloroethene	J
SODUP02_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
SODUP02_021020	6010D	7429-90-5	Aluminum, Total	J
SODUP02_021020	6010D	7440-39-3	Barium, Total	J
SODUP02_021020	SW8270D	65-85-0	Benzoic Acid	UJ
SODUP02_021020	6010D	7440-70-2	Calcium, Total	J
SODUP02_021020	SW8260C	74-87-3	Chloromethane	UJ
SODUP02_021020	SW7196A	18540-29-9	Chromium, Hexavalent	U (0.934)
SODUP02_021020	6010D	7440-47-3	Chromium, Total	J
SODUP02_021020	CALC	16065-83-1	Chromium, Trivalent	J
SODUP02_021020	6010D	7440-48-4	Cobalt, Total	J
SODUP02_021020	6010D	7440-50-8	Copper, Total	J
SODUP02_021020	SW9012B	57-12-5	Cyanide, Total	UJ
SODUP02_021020	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SODUP02_021020	6010D	7439-89-6	Iron, Total	J
SODUP02_021020	6010D	7439-95-4	Magnesium, Total	J
SODUP02_021020	6010D	7439-96-5	Manganese, Total	J
SODUP02_021020	6010D	7440-02-0	Nickel, Total	J
SODUP02_021020	6010D	7440-09-7	Potassium, Total	J
SODUP02_021020	6010D	7440-23-5	Sodium, Total	U (180)
SODUP02_021020	6010D	7440-62-2	Vanadium, Total	J
SODUP03_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SODUP03_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SODUP03_021120	SW8260C	123-91-1	1,4-Dioxane	UJ



Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Samples Langan Project No.: 170599501 March 9, 2020 Page 52 of 82

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SODUP03_021120	SW8151A	93-76-5	2,4,5-T	UJ
SODUP03_021120	SW8151A	93-72-1	2,4,5-Tp (Silvex)	UJ
SODUP03_021120	SW8151A	94-75-7	2,4-D	UJ
SODUP03_021120	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SODUP03_021120	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
SODUP03_021120	SW8260C	78-93-3	2-Butanone	J
SODUP03_021120	SW8270D	88-75-5	2-Nitrophenol	UJ
SODUP03_021120	SW8270D	534-52-1	4,6-Dinitro-o-cresol	UJ
SODUP03_021120	SW8260C	67-64-1	Acetone	J
SODUP03_021120	6010D	7429-90-5	Aluminum, Total	J
SODUP03_021120	6010D	7440-39-3	Barium, Total	J
SODUP03_021120	SW8270D	205-99-2	Benzo(b)fluoranthene	J
SODUP03_021120	SW8270D	65-85-0	Benzoic Acid	UJ
SODUP03_021120	6010D	7440-41-7	Beryllium, Total	J
SODUP03_021120	6010D	7440-70-2	Calcium, Total	J
SODUP03_021120	SW8260C	75-15-0	Carbon Disulfide	J
SODUP03_021120	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SODUP03_021120	SW8260C	74-87-3	Chloromethane	UJ
SODUP03_021120	6010D	7440-47-3	Chromium, Total	J
SODUP03_021120	CALC	16065-83-1	Chromium, Trivalent	J
SODUP03_021120	SW8270D	218-01-9	Chrysene	J
SODUP03_021120	6010D	7440-50-8	Copper, Total	J
SODUP03_021120	SW9012B	57-12-5	Cyanide, Total	UJ
SODUP03_021120	SW8270D	53-70-3	Dibenzo(a,h)anthracene	J
SODUP03_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SODUP03_021120	6010D	7439-89-6	Iron, Total	J
SODUP03_021120	6010D	7439-95-4	Magnesium, Total	J
SODUP03_021120	6010D	7439-96-5	Manganese, Total	J
SODUP03_021120	SW7471B	7439-97-6	Mercury, Total	J
SODUP03_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
SODUP03_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SODUP03_021120	SW8260C	108-05-4	Vinyl acetate	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TB01_020620	SW8260C	123-91-1	1,4-Dioxane	UJ
TB01_020620	SW8260C	78-93-3	2-Butanone	UJ
TB01_020620	SW8260C	108-10-1	4-Methyl-2-pentanone	UJ
TB01_020620	SW8260C	67-64-1	Acetone	UJ
TB01_020620	SW8260C	107-13-1	Acrylonitrile	UJ
TB01_020620	SW8260C	74-83-9	Bromomethane	UJ
TB01_020620	SW8260C	74-87-3	Chloromethane	UJ
TB01_020620	SW8260C	75-01-4	Vinyl chloride	UJ
TB02_020720	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
TB02_020720	SW8260C	123-91-1	1,4-Dioxane	UJ
TB02_020720	SW8260C	74-83-9	Bromomethane	UJ
TB02_020720	SW8260C	75-15-0	Carbon Disulfide	UJ
TB02_020720	SW8260C	74-87-3	Chloromethane	UJ
TB02_020720	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
TB02_020720	SW8260C	108-05-4	Vinyl acetate	UJ
TB02_020720	SW8260C	75-01-4	Vinyl chloride	UJ
TB02_020720	SW8260C	110-57-6	Trans-1,4-dichloro-2-butene	UJ
TB02_021020	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
TB02_021020	SW8260C	123-91-1	1,4-Dioxane	UJ
TB02_021020	SW8260C	67-64-1	Acetone	UJ
TB02_021020	SW8260C	75-15-0	Carbon Disulfide	UJ
TB02_021020	SW8260C	87-68-3	Hexachlorobutadiene	UJ
TB02_021020	SW8260C	91-20-3	Naphthalene	UJ
TB02_021020	SW8260C	75-69-4	Trichlorofluoromethane	UJ
TB02_021020	SW8260C	104-51-8	N-Butylbenzene	UJ
TB04_021120	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
TB04_021120	SW8260C	75-35-4	1,1-Dichloroethene	UJ
TB04_021120	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
TB04_021120	SW8260C	123-91-1	1,4-Dioxane	UJ
TB04_021120	SW8260C	56-23-5	Carbon tetrachloride	UJ
TB04_021120	SW8260C	74-87-3	Chloromethane	UJ
TB04_021120	SW8260C	75-71-8	Dichlorodifluoromethane	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TB04_021120	SW8260C	127-18-4	Tetrachloroethene	UJ
TB04_021120	SW8260C	75-69-4	Trichlorofluoromethane	UJ
TB04_021120	SW8260C	108-05-4	Vinyl acetate	UJ
SB-20_0-2_020520	SW8081B	72-55-9	4,4'-DDE	J
SB-20_0-2_020520	SW8081B	60-57-1	DIELDRIN	J
SB-20_0-2_020520	SW8081B	5103-71-9	CIS-CHLORDANE	J
SB-20_0-2_020520	SW8081B	5103-74-2	TRANS-CHLORDANE	J
SB-20_2-4_020520	SW8081B	5103-71-9	CIS-CHLORDANE	J
SB-20_2-4_020520	SW8081B	5103-74-2	TRANS-CHLORDANE	J
SB-17_0-2_020520	SW8081B	72-55-9	4,4'-DDE	J
SB-17_0-2_020520	SW8081B	5103-71-9	CIS-CHLORDANE	J
SB-16_0-2_021120	SW8081B	5103-74-2	TRANS-CHLORDANE	J
SB-2_6-8_021120	SW8081B	72-54-8	4,4'-DDD	J

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### **MINOR DEFICIENCIES:**

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

#### L2005543:

The sample SB-18_0-2_020520 exhibited a percent recovery above the UCL for the surrogate 4bromofluorobenzene (134%). The associated results are qualified as "J" based on potential high bias.

The sample SB-1_0-2_020620 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (143%). The associated results are qualified as "J" based on potential high bias.

#### LANGAN

The sample SB-4_0-2_020620 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (157%). The associated results are qualified as "J" based on potential high bias.

The sample SB-8_0-2_020620 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (147%). The associated results are qualified as "J" based on potential high bias.

The MB for batch WG1339501-5 exhibited detections of 2-butanone (2.3 ug/kg) and bromomethane (1.4 ug/kg). The associated results in sample SB-19_0-2_020520, SB-5_0-2_020620, SB-4_0-2_020620, and SB-4_10-12_020620 are qualified as "U" at the reporting limit based on potential blank contamination.

The sample SB-18_0-2_020520 exhibited a percent recovery above the UCL for the internal standard 1,4-dichlorobenzene-d4 (38.06%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB-5_0-2_020620 exhibited a percent recovery above the UCL for the internal standard 1,4-dichlorobenzene-d4 (47.51%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB-1_0-2_020620 exhibited a percent recovery above the UCL for the internal standard 1,4-dichlorobenzene-d4 (30.1%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB-8_0-2_020620 exhibited a percent recovery above the UCL for the internal standard 1,4-dichlorobenzene-d4 (26.51%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB-4_0-2_020620 exhibited a percent recovery above the UCL for the internal standard 1,4-dichlorobenzene-d4 (26.5%). The associated results are qualified as "UJ" based on potential low bias.

The ICAL for instrument VOA123 exhibited a response factor (RF) below the control limit for 1,4dioxane (0.002). The associated results in sample SB-20_0-2_020520, SB-20_2-4_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_2-4_020520, SB-19_6-8_020520, SB-18_0-2_020520, SB-18_2-4_020520, SB-18_10-12_020520, SB-17_0-2_020520, SB-17_5-7_020520, SB-17_9-11_020520, SB-5_0-2_020620, SB-5_5-7_020620, SB-5_10-12_020620, SB-1_0-2_020620, SB-1_6-8_020620, SB-4_0-2_020620, SB-4_6-8_020620, SB-4_10-12_020620, SB-8_0-2_020620, SB-8_5-7_020620, SB-8_10-12_020620, SB-10_0-2_020620, SB-10_5-7_020620,

I ANGAN

SB-10_10-12_020620, and SODUP01_020620 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA104 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample SB-1_2-4_020620 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/10/2020 at 09:14 exhibited %Ds above the control limit for chloromethane (21.8%), vinyl chloride (-20.5%), bromomethane (23.2%), acetone (-40.5%), acrylonitrile (-29.2%), 2-butanone (-28.4%), 1,4-dioxane (-44.4%), and 4-methyl-2-pentanone (-21.3%). The associated results in sample TB01_020620 and FB01_020620 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/11/2020 at 05:36 exhibited %Ds above the control limit for vinyl chloride (20.8%), chloroethane (26.4%), carbon disulfide (20.2%), 1,1-dichloropropene (21.6%), toluene (21%), ethylbenzene (20.4%), isopropylbenzene (21.2%), n-propylbenzene (24.4%), 4-ethyltoluene (20.7%), 1,3,5-trimethylbenzene (21.4%), 1,2,3-trichloropropane (23.1%), secbutylbenzene (23.2%), and n-butylbenzene (25.8%). The associated results in sample SB-20_0-2_020520, SB-20_2-4_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_2-4_020520, SB-18_0-2_020520, SB-18_0-2_020620, SB-18_0-2_020620, SB-10-12_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-2_020620, SB-1_0-12_020620, SB-1_0-2_020620, SB-1_0-12_020620, SB-1_0-12_0

The CCV analyzed on 2/11/2020 at 05:36 exhibited %Ds above the control limit for chloromethane (-36.8%) and dichlorodifluoromethane (-29.3%). The associated results in sample SB-18_0-2_020520, SB-5_0-2_020620, SB-1_0-2_020620, SB-8_0-2_020620, SB-8_10-12_020620, SB-10_5-7_020620, SB-10_10-12_020620, and SODUP01_020620 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/11/2020 at 17:48 exhibited a %D above the control limit for dichlorodifluoromethane (33.9%). The associated results in sample SB-1_2-4_020620 are qualified as "UJ" based on potential indeterminate bias.

### L2005791:

The sample SB-3_0-2_020720 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (145%). The associated results are qualified as "J" based on potential high bias.

The LCS/LCSD for batch WG1340532 exhibited percent recoveries below the LCL for trichlorofluoromethane (46%, 44%), bromomethane (35%, 35%), chloroethane (28%, 26%), and ethyl ether (30%, 31%). The associated results in sample SB-3_0-2_020720, SB-7_0-2_020720, and SB-12_0-2_020720 are qualified as "UJ" based on potential low bias.

The LCSD for batch WG1340532 exhibited a percent recovery below the LCL for vinyl chloride (64%). The associated results in sample SB-3_0-2_020720, SB-7_0-2_020720, and SB-12_0-2_020720 are qualified as "UJ" based on potential low bias.

The sample SB-3_0-2_020720 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (33.5%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-7_0-2_020720 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (46.69%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-12_0-2_020720 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (31.17%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The ICAL for instrument VOA108 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample TB02_020720 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument CHARLIE exhibited a RF below the control limit for 1,4-dioxane (0.005). The associated results in sample SB-3_0-2_020720, SB-7_0-2_020720, and SB-12_0-2_020720 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA126 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample SB-3_0-2_020720, SB-3_6-8_020720, SB-3_9-11_020720, SB-7_0-2_020720, SB-7_5-7_020720, SB-7_9-11_020720, SB-12_0-2_020720, SB-12_5-7_020720, and SB-12_10-12_020720 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 07:42 exhibited %Ds above the control limit for acetone (25.7%), bromomethane (23.1%), carbon disulfide (23.1%), chloromethane (43.7%), and dichlorodifluoromethane (32.7%). The associated results in sample SB-3_0-2_020720, SB-3_6-8_020720, SB-3_9-11_020720, SB-7_0-2_020720, SB-7_5-7_020720, SB-7_9-11_020720, SB-12_0-2_020720, SB-12_5-7_020720, and SB-12_10-12_020720 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 17:10 exhibited %Ds above the control limit for dichlorodifluoromethane (-25.7%), chloromethane (-54.2%), vinyl chloride (-60.1%), bromomethane (42.3%), carbon disulfide (-32.3%), vinyl acetate (-28.8%), 1,4-dioxane (29.5%), trans-1,4-dichloro-2-butene (-26.6%), and 1,2,4,5-tetramethylbenzene (20.3%). The associated results in sample TB02_020720 are qualified as "UJ" based on potential indeterminate bias.

### L2005961:

The LCS/LCSD for batch WG1340487 exhibited a percent recovery below the LCL for 2-butanone (60%, 65%). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-11_021020, SB-15_0-2_021020, SB-15_6-8_021020, and SB-15_10-12_021020 are qualified as "UJ" based on potential low bias.

The ICAL for instrument VOA100 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-11_021020, SB-15_0-2_021020, SB-15_6-8_021020, and SB-15_10-12_021020 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument JACK exhibited a RF below the control limit for 1,4-dioxane (0.004). The associated results in sample FB02_021020 and TB02_021020 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA123 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample SODUP02_021020 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/11/2020 at 04:12 exhibited %Ds above the control limit for 1,2,4,5-tetramethylbenzene (24.6%), acetone (22%), carbon disulfide (21.1%), hexachlorobutadiene (-20.7%), naphthalene (29.9%), trichlorofluoromethane (21.5%), and n-butylbenzene (23.8%). The associated results in sample FB02_021020 and TB02_021020 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/11/2020 at 04:12 exhibited a RF below the control limit for 1,4-dioxane (0.00332). The associated results in sample FB02_021020 and TB02_021020 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 10:44 exhibited %Ds above the control limit for 1,1dichloropropene (21.5%), 1,2-dichloroethane (25.5%), 2-butanone (40%), 2-hexanone (26.6%), acetone (23.3%), chloromethane (-27.2%), dichlorodifluoromethane (-143.6%), and vinyl chloride (-23.3%). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-

11_021020, SB-15_0-2_021020, SB-15_6-8_021020, and SB-15_10-12_021020 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 17:50 exhibited %Ds above the control limit for 1,4-dioxane (-41.4%), chloromethane (-27.5%), and dichlorodifluoromethane (-24.9%). The associated results in sample SODUP02_021020 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 17:50 exhibited a RF below the control limit for 1,4-dioxane (0.00297). The associated results in sample SODUP02_021020 are qualified as "UJ" based on potential indeterminate bias.

### L2006176:

The sample SB-6_0-2_021120 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (153%). The associated results are qualified as "J" based on potential high bias.

The sample SB-11_0-2_021120 exhibited a percent recovery above the UCL for the surrogate 4bromofluorobenzene (141%). The associated results are qualified as "J" based on potential high bias.

The sample SB-14_0-2_021120 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (145%). The associated results are qualified as "J" based on potential high bias.

The sample SB-9_0-2_021120 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (136%). The associated results are qualified as "J" based on potential high bias.

The sample SB-2_0-2_021120 exhibited a percent recovery above the UCL for the surrogate 4-bromofluorobenzene (144%). The associated results are qualified as "J" based on potential high bias.

The LCSD for batch WG1340525 exhibited a percent recovery below the LCL for 1,2,4,5-tetramethylbenzene (69%). The associated results in sample FB03_021120 and TB04_021120 are qualified as "UJ" based on potential low bias.

The sample SB-6_0-2_021120 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (21.36%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-11_0-2_021120 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (26.64%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-14_0-2_021120 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (39.04%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-9_0-2_021120 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (28.33%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The sample SB-2_0-2_021120 exhibited a percent recovery below the LCL for the internal standard 1,4-dichlorobenzene-d4 (31.58%). The associated results are qualified as "J" or "UJ" based on potential high bias or loss of instrument sensitivity.

The ICAL for instrument voa108 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample FB03_021120 and TB04_021120 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument voa123 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-16_9-11_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-11_9-11_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, SB-2_6-8_021120, and SODUP03_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 07:13 exhibited %Ds above the control limit for chloromethane (-48.3%), vinyl chloride (-37.8%), trichlorofluoromethane (23.2%), vinyl acetate (-20.6%), tertbutylbenzene (24.1%), 1,2,4,5-tetramethylbenzene (29.8%), 1,2,4-trichlorobenzene (25.3%), naphthalene (25.6%), and 1,2,3-trichlorobenzene (24.9%). The associated results in sample FB03_021120 and TB04_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/14/2020 at 06:41 exhibited %Ds above the control limit for dichlorodifluoromethane (-42.5%), chloromethane (-27.5%), trichlorofluoromethane (-25%), 1,,1-dichloroethene (-20.2%), vinyl acetate (-20.7%), carbon tetrachloride (-27%), 1,1,1-tetrachloroethane (-22.4%), 1,4-dioxane (-28.1%), and tetrachloroethene (-21.2%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-16_9-11_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-

11_9-11_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, and SODUP03_021120 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/15/2020 at 06:26 exhibited a RF below the control limit for 1,4-dioxane (0.00257). The associated results in sample SB-6_0-2_021120, SB-11_0-2_021120, SB-14_0-2_021120, SB-9_0-2_021120, SB-2_0-2_021120, and SB-16_5-7_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/15/2020 at 06:26 exhibited %Ds above the control limit for dichlorodifluoromethane (-29.5%), chloromethane (-26.1%), trichlorofluoromethane (-23.4%), 1,,1-dichloroethene (-21.9%), 2,2-dichloropropane (-21.4%), carbon tetrachloride (-25.5%), 1,1,1-tetrachloroethane (-23.5%), 1,4-dioxane (-22.4%), and tetrachloroethene (-23.4%). The associated results in sample SB-6_0-2_021120, SB-11_0-2_021120, SB-14_0-2_021120, SB-9_0-2_021120, SB-2_0-2_021120, and SB-16_5-7_021120 are qualified as "UJ" based on potential indeterminate bias.

### SVOCs by SW-846 Method 8270D and 8270D SIM:

### <u>L2005543:</u>

The LCS/LCSD for batch WG1338586 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-20_0-2_020520, SB-20_2-4_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_2-4_020520, SB-19_6-8_020520, SB-18_0-2_020520, SB-18_2-4_020520, SB-18_10-12_020520, SB-17_0-2_020520, SB-17_5-7_020520, SB-18_2-4_020520, SB-18_10-12_020520, SB-17_0-2_020520, SB-17_5-7_020520, SB-17_9-11_020520, SB-5_0-2_020620, SB-5_5-7_020620, SB-5_10-12_020620, SB-1_0-2_020620, SB-1_2-4_020620, SB-4_6-8_020620, SB-4_10-12_020620, and SODUP01_020620 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1338598 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-1_6-8_020620, SB-4_0-2_020620, SB-8_0-2_020620, SB-8_5-7_020620, SB-8_10-12_020620, SB-10_0-2_020620, and SB-10_10-12_020620 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1338650 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample FB01_020620 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1339693 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-10_5-7_020620 are qualified as "UJ" based on potential low bias.

The LCS for batch WG1339693 exhibited a percent recovery below the LCL for hexachlorocyclopentadiene (39%). The associated results in sample SB-10_5-7_020620 are gualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1339693 exhibited a RPD above the control limit for 2,4dinitrophenol (81%). The associated results in sample SB-10_5-7_020620 are qualified as "UJ" based on potential indeterminate bias.

### L2005791:

The LCS/LCSD for batch WG1339001 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-3_6-8_020720, SB-3_9-11_020720, SB-7_0-2_020720, SB-7_5-7_020720, SB-7_9-11_020720, SB-12_0-2_020720, SB-12_5-7_020720, and SB-12_10-12_020720 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 2/12/2020 at 23:53 exhibited %Ds above the control limit for hexachlorocyclopentadiene (35.2%) and pentachlorophenol (27.5%). The associated results in sample SB-3_6-8_020720, SB-3_9-11_020720, SB-12_5-7_020720, SB-7_0-2_020720, SB-7_5-7_020720, and SB-7_9-11_020720 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 21:05 exhibited %Ds above the control limit for bis(2-chloroethyl)ether (36.9%) and di-n-octylphthalate (20.2%). The associated results in sample SB-12_10-12_020720 and SB-12_0-2_020720 are qualified as "UJ" based on potential indeterminate bias.

### L2005961:

The LCS/LCSD for batch WG1339672 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-11_021020, SB-15_6-8_021020, SB-15_10-12_021020, and SODUP02_021020 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 2/17/2020 at 14:09 exhibited %Ds above the control limit for benzoic acid (23.2%) and 4-nitrophenol (21.5%). The associated results in sample FB02_021020 are qualified as "UJ" based on potential indeterminate bias.

### L2006176:

The LCS/LCSD for batch WG1340053 exhibited percent recoveries below the LCL for 2,4dimethylphenol (19%, 11%), 4-chloroaniline (36%, 24%), and benzoic acid (0%). The associated results in sample FB03_021120 are qualified as "UJ" based on potential low bias.

The LCS for batch WG1340053 exhibited percent recoveries below the LCL for bis(2-chloroisopropyl)ether (39%) and hexachlorocyclopentadiene (37%). The associated results in sample FB03_021120 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1340096 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-16_9-11_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-11_9-11_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, SB-2_0-2_02020, SB-2_0-2_0200, SB-2_0-2_0200, SB-2_0-2_0200, SB-2_0-2_0200, SB-2_0-2_000, SB-2_0-2_000, SB-2_0-2_000, SB-2_00, SB-2_

The LCS/LCSD for batch WG1340096 exhibited a RPD above the control limit for 2,4dinitrophenol (60%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-16_9-11_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-11_9-11_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, SB-2_6-8_021120, and SODUP03_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/14/2020 at 21:30 exhibited %Ds above the control limit for 2-nitrophenol (-20.5%), 2,4-dinitrophenol (-20.8%), 4,6-dinitro-o-cresol (-24.3%), and 2,6-dinitrotoluene (-20.1%). The associated results in sample SB-14_6-8_021120, SB-14_9-11_021120, SB-11_9-11_021120, SB-9_9-11_021120, SODUP03_021120, SB-9_6-8_021120, SB-11_6-8_021120, SB-11_0-2_021120, SB-9_0-2_021120, SB-2_0-2_021120, and SB-14_0-2_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/17/2020 at 14:09 exhibited %Ds above the control limit for benzoic acid (23.2%) and 4-nitrophenol (21.5%). The associated results in sample FB03_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/17/2020 at 23:19 exhibited %Ds above the control limit for 2,4,6-trichlorophenol (-21.9%) and bis(2-chloroisopropyl)ether (37.6%). The associated results in

sample SB-16_0-2_021120 and SB-6_0-2_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/18/2020 at 00:08 exhibited a %D above the control limit for 1,4-dioxane (28%). The associated results in sample SB-16_0-2_021120 and SB-6_0-2_021120 are qualified as "UJ" based on potential indeterminate bias.

### PFAS by USEPA Method 537M:

### L2005543:

The MB for batch WG1339379-1 exhibited a detection of perfluorohexanoic acid (PFHxA) (0.708 ng/l). The associated results in sample FB01_020620 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1339404-1 exhibited a detection of perfluorobutanoic acid (PFBA) (0.095 ug/kg). The associated results in samples SB-18_0-2_020520 and SB-5_0-2_020620 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1339405-1 exhibited a detection of PFBA (0.077 ug/kg). The associated results in sample SB-5_10-12_020620, SB-1_0-2_020620, SB-1_2-4_020620, SB-4_0-2_020620, and SB-8_0-2_020620 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCSD for batch WG1339405 exhibited percent recoveries above the UCL for 1h,1h,2h,2hperfluorodecanesulfonic acid (8:2FTS) (142%), 1h,1h,2h,2h-perfluorooctanesulfonic acid (6:2FTS) (150%), perfluorooctanesulfonamide (FOSA) (141%), perfluoropentanoic acid (PFPeA) (133%), perfluorotetradecanoic acid (PFTA) (139%), and perfluorotridecanoic acid (PFTrDA) (144%). The associated results in sample SB-5_10-12_020620, SB-1_0-2_020620, SB-1_2-4_020620, SB-1_6-8_020620, SB-4_0-2_020620, SB-4_6-8_020620, SB-4_10-12_020620, SB-8_0-2_020620, SB-8_5-7_020620, SB-8_10-12_020620, SB-10_0-2_020620, SB-10_5-7_020620, SB-10_10-12_020620, and SODUP01_020620 are qualified as "J" based on potential high bias.

The sample SB-17_0-2_020520 exhibited a percent recovery below the LCL for the surrogate ndeuteriomethylperfluoro-1-octanesulfonamidoacetic acid (d3-nmefosaa) (36%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB-1_0-2_020620 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2FTS) (302%) and n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (d5-netfosaa) (153%). The associated results are qualified as "J" based on potential high bias.

The CCV analyzed on 2/26/2020 at 18:38 exhibited a %D above the control limit for perfluorohexanesulfonic acid-branched (br-PFHxS) (38.6%). The associated results in sample SB-20_0-2_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_2-4_020520, SB-19_6-8_020520, SB-20_2-4_020520, and SB-18_2-4_020520 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/27/2020 at 05:16 exhibited a %D above the control limit for br-PFHxS (41.9%). The associated results in sample SB-18_10-12_020520, SB-17_0-2_020520, SB-17_5-7_020520, SB-17_9-11_020520, SB-5_0-2_020620, and SB-5_5-7_020620 are qualified as "UJ" based on potential indeterminate bias.

### L2005791:

The MB for batch WG1339105-1 exhibited a detection of PFBA (0.096 ug/kg). The associated results in sample SB-3_0-2_020720 are qualified as "U" at the reporting limit based on potential blank contamination.

The CCV analyzed on 2/28/2020 at 03:41 exhibited a %D above the control limit for br-PFHxS (44.1%). The associated results in sample SB-3_6-8_020720, SB-3_9-11_020720, SB-7_0-2_020720, SB-7_5-7_020720, SB-7_9-11_020720, SB-12_0-2_020720, SB-12_5-7_020720, and SB-12_10-12_020720 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/28/2020 at 13:17 exhibited %Ds above the control limit for br-PFHxS (36%) and perfluorooctanesulfonic acid-branched (br-PFOS) (40.5%). The associated results in sample SB-3_0-2_020720 are qualified as "J" or "UJ" based on potential indeterminate bias.

### L2005961:

The FB (FB02_021020) exhibited a detection of perfluorohexanoic acid (PFHxA) (0.345 ng/l). The associated results in sample SB-13_0-2_021020 are qualified as "U" at the reporting limit based on potential blank contamination.

### L2006176:

The MB for batch WG1340251 exhibited a detection of PFHxA (0.34 ng/l). The associated results in sample FB03_021120 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1340330 exhibited a detection of PFBA (0.093 ug/kg). The associated results in sample SB-6_0-2_021120, SB-11_0-2_021120, SB-9_0-2_021120, and SB-2_0-2_021120 are qualified as "U" at the reporting limit based on potential blank contamination.

The CCV analyzed on 2/21/2020 at 07:32 exhibited a %D above the control limit for br-PFHxS (69.7%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-16_9-11_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-11_9-11_021120, and SB-14_0-2_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/21/2020 at 18:44 exhibited a %D above the control limit for br-PFHxS (49.1%). The associated results in sample FB03_021120 are qualified as "UJ" based on potential indeterminate bias.

### Herbicides by SW-846 Method 8151A:

### L2005543:

The CCV analyzed on 2/11/2020 at 16:13 exhibited a %D above the control limit for 2,4,5-TP (Silvex) (17.4%). The associated results in sample SB-20_0-2_020520, SB-20_2-4_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_2-4_020520, SB-19_6-8_020520, SB-18_2-4_020520, SB-18_10-12_020520, SB-17_0-2_020520, SB-17_5-7_020520, SB-17_9-11_020520, SB-5_0-2_020620, SB-5_5-7_020620, SB-5_10-12_020620, SB-1_2-4_020620, SB-1_6-8_020620, SB-4_0-2_020620, and SB-4_6-8_020620 are qualified as "UJ" based on potential indeterminate bias.

### L2006176:

The LCS/LCSD for batch WG1341448 exhibited a RPD above the control limit for 2,4-D (35%). The associated results in sample SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, SB-2_6-8_021120, and SODUP03_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/18/2020 at 10:42 exhibited %Ds above the control limit for 2,4,5-T (-20.2%), 2,4,5-TP (-20.5%), and 2,4-D (-23.7%). The associated results in sample SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, SB-2_0-2_021120, SB-2_6-8_021120, SODUP03_021120 are qualified as "UJ" based on potential indeterminate bias.

### PCBs by SW-846 Method 8082A:

#### L2005543:

The sample SB-10_0-2_020620 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl on the primary and secondary chromatography columns (27%, 26%). The associated results are qualified as "UJ" based on potential low bias.

#### Pesticides by SW-846 Method 8081B:

#### L2005543:

The sample SB-18_2-4_020520 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl (181%). The associated results are qualified as "J" based on potential high bias.

The sample SB-10_0-2_020620 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (11%). The associated results are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1338313 exhibited RPDs above the control limit for Endrin aldehyde (25%), Endrin ketone (22%), and Endosulfan sulfate (21%). The associated results in sample FB01_020620 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/9/2020 at 20:40 exhibited a %D above the control limit for trans-chlordane (20.3%). The associated results in sample SB-17_0-2_020520 are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 2/10/2020 at 12:58 exhibited %Ds above the control limit for delta-BHC (-20.8%), 4,4'-DDE (-34.1%), dieldrin (-20.4%), and 4,4'-DDD (-28.2%). The associated results in sample SB-8_10-12_020620, SB-10_10-12_020620 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/13/2020 at 08:23 exhibited a %D above the control limit for methoxychlor (-29.9%). The associated results in sample SB-1_2-4_020620, SB-4_6-8_020620, and SODUP01_020620 are qualified as "UJ" based on potential indeterminate bias.

The sample SB-20_0-2_020520 exhibited RPDs above the control limit between the primary and secondary GC columns for 4,4'-DDE (62%), dieldrin (64%), cis-chlordane (51%), and trans-chlordane (64%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB-20_2-4_020520 exhibited RPDs above the control limit between the primary and secondary GC columns for cis-chlordane (62%) and trans-chlordane (42%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB-17_0-2_020520 exhibited RPDs above the control limit between the primary and secondary GC columns for 4,4'-DDE (44%) and cis-chlordane (63%). The associated results are qualified as "J" based on potential indeterminate bias.

### L2005791:

The LCS/LCSD for batch WG1338864 exhibited RPDs above the control limit for 4,4'-DDD (33%), 4,4'-DDE (31%), 4,4'-DDT (33%), alpha-BHC (41%), delta-BHC (39%), dieldrin (34%), Endosulfan I (33%), Endosulfan II (32%), Endosulfan sulfate (36%), Endrin (33%), heptachlor (34%), lindane (39%), and trans-chlordane (33%). The associated results in sample SB-3_0-2_020720, SB-3_6-8_020720, SB-3_9-11_020720, SB-7_0-2_020720, SB-7_5-7_020720, SB-7_9-11_020720, SB-12_0-2_020720, SB-12_0-2_020720, SB-12_5-7_020720, and SB-12_10-12_020720 are qualified as "J" or "UJ" based on potential indeterminate bias.

### L2006176:

The sample SB-2_6-8_021120 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl (426%). The associated results are qualified as "J" based on potential high bias.

The LCS/LCSD for batch WG1341017 exhibited RPDs above the control limit for beta-BHC (22%) and Endrin aldehyde (21%). The associated results in sample FB03_021120 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/14/2020 at 19:57 exhibited a %D above the control limit for Endrin aldehyde (30.7%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, SB-11_0-2_021120, SB-11_6-8_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_9-11_021120, SB-2_0-2_021120, and SB-2_6-8_021120 are qualified as "UJ" based on potential indeterminate bias.

The sample SB-16_0-2_021120 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (114%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB-2_6-8_021120 exhibited a RPD above the control limit between the primary and secondary GC columns for 4,4'-DDD (48%). The associated results are qualified as "J" based on potential indeterminate bias.

### Metals by SW-846 Method 6010D:

### L2005543:

The MB for batch WG1338497-1 exhibited a detection of chromium, total (0.436 mg/kg). The associated results in samples SB-19_0-2_020520, SB-19_6-8_020520, SB-18_0-2_020520, SB-17_9-11_020520, SB-5_0-2_020620, SB-4_0-2_020620, and SB-4_6-8_020620 are qualified as "U" at the sample concentration based on potential blank contamination.

The MB for batch WG1338497-1 exhibited detections of nickel, total (0.156 mg/kg) and sodium, total (3.01 mg/kg). The associated results in samples SB-20_2-4_020520, SB-20_6-8_020520, SB-19_0-2_020520, SB-19_6-8_020520, SB-18_0-2_020520, SB-18_10-12_020520, SB-17_9-11_020520, SB-5_5-7_020620, SB-1_2-4_020620, and SB-4_6-8_020620 are qualified as "U" at the reporting limit based on potential blank contamination.

The MS/MSD for batch SB-4_10-12_020620 exhibited a percent recovery below the LCL for calcium, total (63%, 68%). The associated results in sample SB-4_10-12_020620 are qualified as "J" based on potential low bias.

The MS for batch SB-20_0-2_020520 exhibited a percent recovery below the LCL for barium, total (44%). The associated results in sample SB-20_0-2_020520 are qualified as "J" based on potential low bias.

The MS for batch SB-20_0-2_020520 exhibited a percent recovery above the UCL for manganese, total (137%). The associated results in sample SB-20_0-2_020520 are qualified as "J" based on potential high bias.

The laboratory duplicate and parent sample (SB-20_0-2_020520) exhibited RPDs above the control limit for arsenic, total (26%), barium, total (34%), iron, total (36%), lead, total (60%), selenium, total (34%), and zinc, total (68%). The associated results are qualified as "J" based on potential indeterminate bias.

### L2005961:

The MB for batch WG1339689-1 exhibited a detection of sodium, total (1.97 mg/kg). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-11_021020, SB-

15_0-2_021020, SB-15_6-8_021020, SB-15_10-12_021020, and SODUP02_021020 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1339931-1 exhibited detections of calcium, total (0.04 mg/l) and manganese, total (0.006 mg/l). The associated results in sample FB02_021020 are qualified as "U" at the reporting limit based on potential blank contamination.

### L2006176:

The MSD for batch SB-16_9-11_021120 exhibited a percent recovery above the UCL for potassium, total (133%). The associated results in sample SB-16_9-11_021120 are qualified as "J" based on potential high bias.

### Cyanide by SW-846 Method 9012B:

### <u>L2005543:</u>

The MS/MSD for batch SB-19_0-2_020520 exhibited a percent recovery below the LCL for cyanide, total (47%, 45%). The associated results in sample SB-19_0-2_020520 are qualified as "UJ" based on potential low bias.

### L2005961:

The LCS/LCSD for batch WG1339628 exhibited a percent recovery below the LCL for cyanide, total (75%, 76%). The associated results in sample SB-13_0-2_021020, SB-13_4-6_021020, SB-13_9-11_021020, SB-15_0-2_021020, SB-15_6-8_021020, SB-15_10-12_021020, and SODUP02_021020 are qualified as "UJ" based on potential low bias.

#### L2006176:

The LCS/LCSD for batch WG1340945 exhibited a percent recovery below the LCL for cyanide, total (75%, 71%). The associated results in sample SB-6_0-2_021120, SB-6_5-7_021120, SB-6_9-11_021120, SB-16_0-2_021120, SB-16_5-7_021120, and SB-16_9-11_021120 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1341015 exhibited a percent recovery below the LCL for cyanide, total (75%, 71%). The associated results in sample SB-11_0-2_021120, SB-11_6-8_021120, SB-11_9-11_021120, SB-14_0-2_021120, SB-14_6-8_021120, SB-14_9-11_021120, SB-9_0-2_021120, SB-9_6-8_021120, SB-9_9-11_021120, and SB-2_0-2_021120 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1341240 exhibited a percent recovery below the LCL for cyanide, total (67%, 37%). The associated results in sample SB-2_6-8_021120 and SODUP03_021120 are qualified as "J" or "UJ" based on potential low bias.

### Hexavalent Chromium by SW-846 Method 7196A:

### L2005543:

The MS/MSD for batch SB-4_10-12_020620 exhibited a RPD above the control limit for chromium, hexavalent (47%). The associated results in sample SB-4_10-12_020620 are qualified as "UJ" based on potential indeterminate bias.

#### L2005961:

The MB for batch WG1339433 exhibited a detection of chromium, hexavalent (0.26 mg/kg). The associated results in sample SB-13_4-6_021020, SB-15_0-2_021020, SB-15_10-12_021020, and SODUP02_021020 are qualified as "U" at the reporting limit based on potential blank contamination.

#### L2006176:

The MS for batch SB-16_9-11_021120 exhibited a percent recovery below the LCL for chromium, hexavalent (55%, 46%). The associated results in sample SB-16_9-11_021120 are qualified as "UJ" based on potential low bias.

The MS/MSD for batch SB-11_9-11_021120 exhibited a RPD above the control limit for chromium, hexavalent (34%). The associated results in sample SB-11_9-11_021120 are qualified as "UJ" based on potential indeterminate bias.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

#### L2005543:

The MB for batch WG1339861-5 exhibited a detection of methyl tert butyl ether (13 ug/kg). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1340016-10 exhibited detections of bromomethane (1.1 ug/kg) and methyl tert butyl ether (0.2 ug/kg). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1340016-5 exhibited detections of 1,2,3-trichlorobenzene (0.64 ug/kg), 1,2,4-trichlorobenzene (0.36 ug/kg), and hexachlorobutadiene (0.26 ug/kg). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1340310-5 exhibited detections of bromomethane (56 ug/kg) and methyl tert butyl ether (10 ug/kg). The associated results are non-detections. No qualification is necessary.

The LCSD for batch WG1339276 exhibited a percent recovery above the UCL for 2-butanone (140%). The associated results are non-detections. No qualification is necessary.

The MS for batch SB-4 10-12 020620 exhibited percent recoveries outside of control limits for 1,2,3-trichlorobenzene (50%), 1,2,4,5-tetramethylbenzene (46%), 1,2,4-trichlorobenzene (47%), 1,2,4-trimethylbenzene (52%), 1,2-dichlorobenzene (60%), 1,3,5-trimethylbenzene (52%), 1,3dichlorobenzene (54%), 1,4-dichlorobenzene (54%), bromobenzene (68%), dichlorodifluoromethane (162%), ethylbenzene (68%), hexachlorobutadiene (29%),isopropylbenzene (57%), naphthalene (62%), vinyl acetate (55%), n-butylbenzene (32%), npropylbenzene (47%), o-chlorotoluene (54%), p-chlorotoluene (51%), 1,4-diethylbenzene (37%), 4-ethyltoluene (48%), p-isopropyltoluene (41%), p/m-xylene (67%), sec-butylbenzene (43%), and tert-butylbenzene (53%). Qualifications are not applied based solely on MS recoveries for VOCs. Associated LCS/LCSD recoveries were either within QC limits or previously qualified for LCS/LCSD recovery. No further action is necessary.

The CCV analyzed on 2/11/2020 at 05:36 exhibited a RF below the control limit for 1,4-dioxane (0.00234). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/11/2020 at 17:17 exhibited a RF below the control limit for 1,4-dioxane (0.00223). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/11/2020 at 17:48 exhibited a RF below the control limit for 1,4-dioxane (0.00158). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/12/2020 at 18:05 exhibited a RF below the control limit for 1,4-dioxane (0.00209). The associated results were previously qualified. No further action is necessary.

### L2005791:

The LCS/LCSD for batch WG1340718 exhibited percent recoveries above the UCL for chloromethane (150%, 150%) and vinyl chloride (160%, 150%). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 2/13/2020 at 07:42 exhibited a RF below the control limit for 1,4-dioxane (0.00198). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/13/2020 at 14:49 exhibited %Ds above the control limit for chloromethane (-20.8%), vinyl chloride (29.5%), bromomethane (64.6%), chloroethane (71.6%), and ethyl ether (69.4%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/13/2020 at 14:49 exhibited a RF below the control limit for 1,4-dioxane (0.00491). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/13/2020 at 17:10 exhibited a RF below the control limit for 1,4-dioxane (0.00141). The associated results were previously qualified. No further action is necessary.

### L2005961:

The MB for batch WG1340584-5 exhibited a detection of bromomethane (1.5 ug/kg). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1340487 exhibited a percent recovery above the UCL for dichlorodifluoromethane (242%, 237%). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1340584 exhibited a percent recovery above the UCL for 1,4-dioxane (141%, 137%). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 2/13/2020 at 10:44 exhibited a RF below the control limit for 1,4-dioxane (0.00174). The associated results were previously qualified. No further action is necessary.

#### L2006176:

The MB for batch WG1340845 exhibited a detection of bromomethane (1.9 ug/kg). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1340525 exhibited a percent recovery above the UCL for chloromethane (150%, 160%). The associated results are non-detections. No qualification is necessary.

Samples SB-16_9-11 and SB-11_9-11_021120 were used to perform matrix spike/matrix spike duplicate (MS/MSD) analyses for VOCs. While percent recoveries were outside of QC requirements, qualifications are not applied based solely on the findings of the MS/MSD. Since associated LCS/LCSD percent recoveries were within QC requirements, or sample results were

previously qualified due to LCS/LCSD percent recoveries outside of QC requirements, no qualifications are applied based on MS/MSD results.

The CCV analyzed on 2/13/2020 at 07:13 exhibited a RF below the control limit for 1,4-dioxane (0.00165). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/14/2020 at 06:41 exhibited a RF below the control limit for 1,4-dioxane (0.00269). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/17/2020 at 14:38 exhibited a RF below the control limit for 1,4-dioxane (0.00241). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/17/2020 at 14:38 exhibited %Ds above the control limit for 1,4dichlorobutane (20.6%) and 1,2,3-trichloropropane (20.9%). The associated results were previously qualified. No further action is necessary.

### SVOCs by SW-846 Method 8270D and 8270D SIM:

### <u>L2005543:</u>

The sample SB-19_0-2_020520 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%), nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB-19_0-2_020520 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%), nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB-1_0-2_020620 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%), nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB-4_0-2_020620 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%), nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB-8_0-2_020620 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%),

nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB-10_0-2_020620 exhibited percent recoveries below the LCL for the surrogates 2,4,6-tribromophenol (0%), 2-fluorobiphenyl (0%), 2-fluorophenol (0%), 4-terphenyl-d14 (0%), nitrobenzene-d5 (0%), and phenol-d6 (0%). The sample was diluted >10X. No qualification is necessary.

The MS/MSD for batch SB-4_10-12_020620 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results were previously qualified. No further action is necessary.

The MS/MSD performed on sample SB-4_10-12_020620 exhibited percent recoveries outside of recovery criteria. Associated primary results are not qualified based solely on MS/MSD percent recoveries. Since associated LCS recoveries recovered within QC limits, no qualifications are required.

### L2005791:

The sample SB-7_0-2_020720 exhibited a percent recovery below the LCL for the surrogate 2-fluorophenol (22%). The other five surrogates were recovered within the control limits. No qualification is necessary.

### L2005961:

The FB (FB02_021020) exhibited a detection of benzyl alcohol (1.4 UG/L). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1339462 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results were previously qualified. No further action is necessary.

### L2006176:

The sample SB-6_5-7_021120 exhibited a percent recovery below the LCL for the surrogate 2-fluorophenol (20%). The other SB-6_5-7_021120 surrogates were recovered within the control limits. No qualification is necessary.

The FB (FB03_021120) exhibited a detection of benzyl alcohol (1.2 ug/l). The associated results are non-detections. No qualification is necessary.

The LCSD for batch WG1340096 exhibited percent recoveries above the UCL for phenol (96%) and p-chloro-m-cresol (106%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch SB-11_9-11_021120 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results were previously qualified. No further action is necessary.

### PFAS by USEPA Method 537M:

#### L2005543:

The FB (FB01_020620) exhibited a detection of 6:2FTS (1.36 ng/l). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1339379-1 exhibited detections of PFOA/PFOS, total (0.58 ng/l), perfluorooctanoic acid (PFOA) (0.58 ng/l), and PFPeA (0.676 ng/l). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1339405 exhibited a RPD above the control limit for FOSA (33%). The associated results were previously qualified. No further action is necessary.

The MS for batch SB-4_10-12_020620 exhibited a percent recovery above the UCL for 8:2FTS (140%). The associated results were previously qualified. No further action is necessary.

The sample SB-18_0-2_020520 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2FTS) (238%). The associated results are non-detections. No qualification is necessary.

The sample SB-5_0-2_020620 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (360%), 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2FTS) (272%), n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (d5-NEtFOSAA) (171%), and n-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid (d3-NMeFOSAA) (147%). The associated results are non-detections. No qualification is necessary.

The sample SB-4_0-2_020620 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (344%), m2-6:2FTS (198%), and d5-NEtFOSAA (152%). The associated results are non-detections. No qualification is necessary.

The sample SB-8_0-2_020620 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (303%) and d5-NEtFOSAA (150%). The associated results are non-detections. No qualification is necessary.

The sample SB-10_0-2_020620 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (249%) and d5-NEtFOSAA (150%). The associated results are non-detections. No qualification is necessary.

### <u>L2005791:</u>

The LCS/LCSD for batch WG1339105 exhibited a percent recovery above the UCL for 8:2FTS (161%, 146%). The associated results are non-detections. No qualification is necessary.

The LCSD for batch WG1339105 exhibited a percent recovery above the UCL for 6:2FTS (144%). The associated results are non-detections. No qualification is necessary.

The sample SB-3_0-2_020720 exhibited a percent recovery above the UCL for the surrogate m2-8:2FTS (241%). The associated results are non-detections. No qualification is necessary.

The sample SB-3_0-2_020720 exhibited a percent recovery above the UCL for the surrogate d5-NEtFOSAA (143%). The associated results are non-detections. No qualification is necessary.

The sample SB-7_0-2_020720 exhibited a percent recovery above the UCL for the surrogate m2-8:2FTS (195%). The associated results are non-detections. No qualification is necessary.

The sample SB-12_0-2_020720 exhibited a percent recovery above the UCL for the surrogate m2-8:2FTS (193%). The associated results are non-detections. No qualification is necessary.

### L2005961:

The sample SB-15_0-2_021020 exhibited percent recoveries above the UCL for the surrogates m2-6:2FTS (227%), d5-NEtFOSAA (177%), d3-NMeFOSAA (158%), and m2-8:2FTS (413%). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1339844-1 exhibited a detection of PFBA (0.099 ug/kg). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1339931 exhibited a percent recovery above the UCL for 8:2FTS (138%, 154%). The associated results are non-detections. No qualification is necessary.

### L2006176:

The sample SB-6_0-2_021120 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (308%), m2-6:2FTS (183%), d5-NEtFOSAA (153%), and d3-NMeFOSAA (138%). The associated results are non-detections. No qualification is necessary.

The sample SB-11_0-2_021120 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (244%) and d5-NEtFOSAA (143%). The associated results are non-detections. No qualification is necessary.

The sample SB-9_0-2_021120 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (218%) and d5-NEtFOSAA (149%). The associated results are non-detections. No qualification is necessary.

The sample SB-2_0-2_021120 exhibited percent recoveries above the UCL for the surrogates m2-8:2FTS (270%) and d5-NEtFOSAA (158%). The associated results are non-detections. No qualification is necessary.

The MS for batch SB-16_9-11_021120 exhibited a percent recovery above the UCL for 8:2FTS (142%). The associated results are non-detections. No qualification is necessary.

The MS for batch SB-11_9-11_021120 exhibited a percent recovery above the UCL for 8:2FTS (141%). The associated results are non-detections. No qualification is necessary.

### Herbicides by SW-846 Method 8151A:

### L2005543:

The sample SB-20_0-2_020520 exhibited a percent recovery below the LCL for the surrogate DCAA (27%) in column 2. Associated primary results were reported from column 1. No further action is necessary.

### L2005791:

The CCV analyzed on 2/12/2020 at 10:15 exhibited a %D above the control limit for 2,4-D (21.3%). The associated results were previously qualified. No further action is necessary.

### <u>L2005791:</u>

The CCV analyzed on 2/13/2020 at 17:41 exhibited a %D above the control limit for 2,4-D (23.4%) on the secondary chromatography column. Associated primary results were reported from column 1. No further action is necessary.

The CCV analyzed on 2/17/2020 at 21:02 exhibited a %D above the control limit for 2,4-D (22.9%) on the secondary chromatography column. Associated primary results were reported from column 1. No further action is necessary.

### PCBs by SW-846 Method 8082A:

### L2005543:

The sample SB-8_0-2_020620 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (29%) from the secondary column. The associated results are reported from the primary column. No qualification is necessary.

### Pesticides by SW-846 Method 8081B:

### L2005543:

The sample SB-19_0-2_020520 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (29%). The sample was diluted >10X. No qualification is necessary.

The sample SB-18_10-12_020520 exhibited percent recoveries above the UCL for the surrogates 2,4,5,6-tetrachloro-m-xylene (161%) and decachlorobiphenyl (165%). The associated results are non-detections. No qualification is necessary.

The sample SB-17_5-7_020520 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl (173%). The associated results are non-detections. No qualification is necessary.

The sample SB-5_10-12_020620 exhibited a percent recovery above the UCL for the surrogate 2,4,5,6-tetrachloro-m-xylene (650%). The associated results are non-detections. No qualification is necessary.

### L2005791:

The CCV analyzed on 2/14/2020 at 08:15 exhibited a %D above the control limit for beta-BHC (20.3%). The associated results were previously qualified. No further action is necessary.

### L2006176:

The sample SB-2_0-2_021120 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl (152%). The associated results are non-detections. No qualification is necessary.

The sample SODUP03_021120 exhibited a percent recovery above the UCL for the surrogate decachlorobiphenyl (152%). The associated results are non-detections. No qualification is necessary.

### Metals by SW-846 Method 6010D:

### L2005543:

The MB for batch WG1338497-1 exhibited a detection of iron, total (2.11 mg/kg). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1338607-1 exhibited a detection of manganese, total (0.092 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MB for batch WG1339783-1 exhibited a detection of chromium, total (0.04 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch SB-4_10-12_020620 exhibited percent recoveries above the UCL for aluminum, total (173%, 163%) and iron, total (83%, 42%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch SB-20_0-2_020520 exhibited percent recoveries above the UCL for aluminum, total (985%), calcium, total (0%), iron, total (0%), lead, total (0%), magnesium, total (0%), and zinc, total (0%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch SB-20_2-4_020520 exhibited a percent recovery below the LCL for lead, total (0%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

### L2005961:

The FB (FB02_021020) exhibited a detection of manganese, total (0.002 mg/l). The associated results are >10X the contamination. No qualification is necessary.

### L2006176:

The MB for batch WG1340111 exhibited a detection of chromium, total (0.06 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch SB-16_9-11_021120 exhibited percent recoveries above the UCL for aluminum, total (25%, 244%) and iron, total (0%, 420%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch SB-11_9-11_021120 exhibited percent recoveries below the LCL for aluminum, total (5%, 47%) and iron, total (0%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

### Hexavalent Chromium by SW-846 Method 7196A:

### L2005543:

The MS for batch SB-5_5-7_020620 exhibited a percent recovery above the UCL for chromium, hexavalent (154%). The associated results are non-detections. No qualification is necessary.

### COMMENTS:

Three field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50% for soil. The following field duplicate and parent sample pairs were compared to the precision criteria:

- SB-1_6-8_020620 and SODUP01_020620
- SB-15_10-12_021020 and SODUP02_021020
- SB-6_9-11_021120 and SODUP03_021120

The field duplicate and parent sample (SB-1_6-8_020620 and SODUP01_020620) exhibited absolute differences above the RL for barium, total (1.65 mg/kg), calcium, total (10 mg/kg), chromium, total (1.17 mg/kg), chromium, trivalent (1.2 mg/kg), copper, total (1.86 mg/kg), iron, total (20 mg/kg), lead, total (9.5 mg/kg), magnesium, total (15 mg/kg), manganese, total (1 mg/kg), and tetrachloroethene (6.2 ug/kg). The associated results are qualified as "J" based on potential indeterminate bias. The field duplicate and parent sample (SB-1_6-8_020620 and SODUP01_020620) also exhibited RPDs above the control limit for arsenic, total (86%), beryllium, total (171%), cadmium, total (165%), nickel, total (54%), pyrene (59%), selenium, total (146%), and sodium, total (136%). The associated results are qualified as "J" based on potential indeterminate bias.

The field duplicate and parent sample (SB-15_10-12_021020 and SODUP02_021020) exhibited absolute differences above the RL for aluminum, total (1253 mg/kg), barium, total (1.72 mg/kg), calcium, total (152 mg/kg), chromium, total (2.19 mg/kg), chromium, trivalent (2.1 mg/kg), copper, total (1.295 mg/kg), iron, total (2820 mg/kg), magnesium, total (596 mg/kg), manganese, total (18.1 mg/kg), nickel, total (5.063 mg/kg), solids, total (3.8 mg/kg), and vanadium, total (3.66 mg/kg). The associated results are qualified as "J" based on potential indeterminate bias. The field duplicate and parent sample (SB-15_10-12_021020 and SODUP02_021020) also exhibited RPDs above the control limit for cobalt, total (109%) and potassium, total (112%). The associated results are qualified as "J" based on potential indeterminate bias.

The field duplicate and parent sample (SB-6_9-11_021120 and SODUP03_021120) exhibited absolute differences above the RL for acetone (26 ug/kg), aluminum, total (132 mg/kg), barium, total (1.77 mg/kg), calcium, total (1990 mg/kg), carbon disulfide (24 ug/kg), chromium, total (1.45 mg/kg), chromium, trivalent (1.5 mg/kg), chrysene (144 ug/kg), copper, total (1.25 mg/kg), iron, total (370 mg/kg), magnesium, total (211 mg/kg), manganese, total (8.7 mg/kg), and mercury, total (0.366 mg/kg). The associated results are qualified as "J" or "UJ" based on potential indeterminate bias. The field duplicate and parent sample (SB-6_9-11_021120 and SODUP03_021120) also exhibited RPDs above the control limit for 2-butanone (51%), benzo(b)fluoranthene (56%), beryllium, total (169%), and dibenzo(a,h)anthracene (93%). The associated results are qualified as "J" or "UJ" based on potential indeterminate bias.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

**Date:** March 10, 2020

Re: Data Usability Summary Report For 1607 Surf Avenue February 2020 Groundwater Samples Langan Project No.: 170599501

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in February 2020 by Langan Engineering and Environmental Services ("Langan") at the 1607 Surf Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6020B
- Mercury by SW-846 Method 7470A
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2006934	L2006934-05	GWTB01_021420	2/14/2020	VOCs
L2006934	L2006934-01	MW-2_021420	2/14/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2006934	L2006934-02	MW-4_021420	2/14/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2006934	L2006934-03	MW-6_021420	2/14/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2006934	L2006934-04	MW-9_021420	2/14/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007256	L2007256-05	GWTB02_021820	2/18/2020	VOCs
L2007256	L2007256-01	MW-1_021820	2/18/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007256	L2007256-02	MW-3_021820	2/18/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007256	L2007256-03	MW-5_021820	2/18/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007256	L2007256-04	MW-7_021820	2/18/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007457	L2007457-05	GWDUP01_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2007457	L2007457-06	GWFB01_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007457	L2007457-08	GWTB03_021920	2/19/2020	VOCs
L2007457	L2007457-04	MW-10_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007457	L2007457-03	MW-11_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007457	L2007457-02	MW-12_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2007457	L2007457-01	MW-8_021920	2/19/2020	VOCs, SVOC, SVOC SIM, Pesticides, PCBs, Herbicides, PFAS, Metals, Mercury, CrVI, CrIII, and Cyanide
L2006934	L2006934-05	GWTB01_021420	2/14/2020	VOCs

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region 1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "Natio



Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid



and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-2_021420	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.0139)
MW-2_021420	SW6020	7440-28-0	THALLIUM, DISSOLVED	U (0.001)
MW-2_021420	SW6020	7440-28-0	THALLIUM, TOTAL	U (0.001)
MW-2_021420	SW8081B	72-54-8	4,4'-DDD	UJ
MW-2_021420	SW8081B	72-55-9	4,4'-DDE	UJ
MW-2_021420	SW8081B	50-29-3	4,4'-DDT	UJ
MW-2_021420	SW8081B	309-00-2	ALDRIN	UJ
MW-2_021420	SW8081B	319-84-6	ALPHA-BHC	UJ
MW-2_021420	SW8081B	319-85-7	BETA-BHC	UJ
MW-2_021420	SW8081B	57-74-9	CHLORDANE	UJ
MW-2_021420	SW8081B	319-86-8	DELTA-BHC	UJ
MW-2_021420	SW8081B	60-57-1	DIELDRIN	UJ
MW-2_021420	SW8081B	959-98-8	ENDOSULFAN I	UJ
MW-2_021420	SW8081B	33213-65-9	ENDOSULFAN II	UJ
MW-2_021420	SW8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
MW-2_021420	SW8081B	72-20-8	ENDRIN	UJ
MW-2_021420	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-2_021420	SW8081B	53494-70-5	ENDRIN KETONE	UJ
MW-2_021420	SW8081B	76-44-8	HEPTACHLOR	UJ
MW-2_021420	SW8081B	1024-57-3	HEPTACHLOR EPOXIDE	UJ
MW-2_021420	SW8081B	58-89-9	LINDANE	UJ
MW-2_021420	SW8081B	72-43-5	METHOXYCHLOR	UJ
MW-2_021420	SW8081B	8001-35-2	TOXAPHENE	UJ
MW-2_021420	SW8081B	5103-71-9	CIS-CHLORDANE	UJ
MW-2_021420	SW8081B	5103-74-2	TRANS-CHLORDANE	UJ
MW-2_021420	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
MW-2_021420	SW8260C	95-93-2	1,2,4,5- TETRAMETHYLBENZENE	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-2_021420	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-2_021420	SW8260C	591-78-6	2-HEXANONE	UJ
MW-2_021420	SW8260C	75-15-0	CARBON DISULFIDE	UJ
MW-2_021420	SW8260C	74-87-3	CHLOROMETHANE	UJ
MW-2_021420	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-2_021420	SW8260C	75-01-4	VINYL CHLORIDE	UJ
MW-2_021420	SW8270D	105-67-9	2,4-DIMETHYLPHENOL	UJ
MW-2_021420	SW8270D	106-47-8	4-CHLOROANILINE	UJ
MW-2_021420	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-2_021420	SW8270D	100-51-6	BENZYL ALCOHOL	UJ
MW-2_021420	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-2_021420	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-2_021420	E537(M)	2355-31-9	N-METHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NMEFOSAA)	UJ
MW-2_021420	E537(M)	355-46-4	PERFLUOROHEXANESULFONI C ACID (PFHXS)	J
MW-4_021420	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.0118)
MW-4_021420	SW6020	7440-28-0	THALLIUM, TOTAL	U (0.001)
MW-4_021420	SW8081B	72-54-8	4,4'-DDD	UJ
MW-4_021420	SW8081B	72-55-9	4,4'-DDE	UJ
MW-4_021420	SW8081B	50-29-3	4,4'-DDT	UJ
MW-4_021420	SW8081B	309-00-2	ALDRIN	UJ
MW-4_021420	SW8081B	319-84-6	ALPHA-BHC	UJ
MW-4_021420	SW8081B	319-85-7	BETA-BHC	UJ
MW-4_021420	SW8081B	57-74-9	CHLORDANE	UJ
MW-4_021420	SW8081B	319-86-8	DELTA-BHC	UJ
MW-4_021420	SW8081B	60-57-1	DIELDRIN	UJ
MW-4_021420	SW8081B	959-98-8	ENDOSULFAN I	UJ
MW-4_021420	SW8081B	33213-65-9	ENDOSULFAN II	UJ
MW-4_021420	SW8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
MW-4_021420	SW8081B	72-20-8	ENDRIN	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-4_021420	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-4_021420	SW8081B	53494-70-5	ENDRIN KETONE	UJ
MW-4_021420	SW8081B	76-44-8	HEPTACHLOR	UJ
MW-4_021420	SW8081B	1024-57-3	HEPTACHLOR EPOXIDE	UJ
MW-4_021420	SW8081B	58-89-9	LINDANE	UJ
MW-4_021420	SW8081B	72-43-5	METHOXYCHLOR	UJ
MW-4_021420	SW8081B	8001-35-2	TOXAPHENE	UJ
MW-4_021420	SW8081B	5103-71-9	CIS-CHLORDANE	UJ
MW-4_021420	SW8081B	5103-74-2	TRANS-CHLORDANE	UJ
MW-4_021420	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
MW-4_021420	SW8260C	95-93-2	1,2,4,5- TETRAMETHYLBENZENE	UJ
MW-4_021420	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-4_021420	SW8260C	591-78-6	2-HEXANONE	UJ
MW-4_021420	SW8260C	75-15-0	CARBON DISULFIDE	UJ
MW-4_021420	SW8260C	74-87-3	CHLOROMETHANE	UJ
MW-4_021420	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-4_021420	SW8260C	75-01-4	VINYL CHLORIDE	UJ
MW-4_021420	SW8270D	105-67-9	2,4-DIMETHYLPHENOL	UJ
MW-4_021420	SW8270D	106-47-8	4-CHLOROANILINE	UJ
MW-4_021420	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-4_021420	SW8270D	100-51-6	BENZYL ALCOHOL	UJ
MW-4_021420	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-4_021420	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-4_021420	E537(M)	2355-31-9	N-METHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NMEFOSAA)	UJ
MW-4_021420	E537(M)	355-46-4	PERFLUOROHEXANESULFONI C ACID (PFHXS)	UJ
MW-6_021420	SW6020	7440-28-0	THALLIUM, TOTAL	U (0.001)
MW-6_021420	SW8081B	72-54-8	4,4'-DDD	UJ
MW-6_021420	SW8081B	72-55-9	4,4'-DDE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-6_021420	SW8081B	50-29-3	4,4'-DDT	UJ
MW-6_021420	SW8081B	309-00-2	ALDRIN	UJ
MW-6_021420	SW8081B	319-84-6	ALPHA-BHC	UJ
MW-6_021420	SW8081B	319-85-7	BETA-BHC	UJ
MW-6_021420	SW8081B	57-74-9	CHLORDANE	UJ
MW-6_021420	SW8081B	319-86-8	DELTA-BHC	UJ
MW-6_021420	SW8081B	60-57-1	DIELDRIN	UJ
MW-6_021420	SW8081B	959-98-8	ENDOSULFAN I	UJ
MW-6_021420	SW8081B	33213-65-9	ENDOSULFAN II	UJ
MW-6_021420	SW8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
MW-6_021420	SW8081B	72-20-8	ENDRIN	UJ
MW-6_021420	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-6_021420	SW8081B	53494-70-5	ENDRIN KETONE	UJ
MW-6_021420	SW8081B	76-44-8	HEPTACHLOR	UJ
MW-6_021420	SW8081B	1024-57-3	HEPTACHLOR EPOXIDE	UJ
MW-6_021420	SW8081B	58-89-9	LINDANE	UJ
MW-6_021420	SW8081B	72-43-5	METHOXYCHLOR	UJ
MW-6_021420	SW8081B	8001-35-2	TOXAPHENE	UJ
MW-6_021420	SW8081B	5103-71-9	CIS-CHLORDANE	UJ
MW-6_021420	SW8081B	5103-74-2	TRANS-CHLORDANE	UJ
MW-6_021420	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
MW-6_021420	SW8260C	95-93-2	1,2,4,5- TETRAMETHYLBENZENE	UJ
MW-6_021420	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-6_021420	SW8260C	591-78-6	2-HEXANONE	UJ
MW-6_021420	SW8260C	75-15-0	CARBON DISULFIDE	UJ
MW-6_021420	SW8260C	74-87-3	CHLOROMETHANE	UJ
MW-6_021420	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-6_021420	SW8260C	75-01-4	VINYL CHLORIDE	UJ
MW-6_021420	SW8270D	105-67-9	2,4-DIMETHYLPHENOL	UJ
MW-6_021420	SW8270D	106-47-8	4-CHLOROANILINE	UJ
MW-6_021420	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-6_021420	SW8270D	100-51-6	BENZYL ALCOHOL	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-6_021420	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-6_021420	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-6_021420	E537(M)	2355-31-9	N-METHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NMEFOSAA)	UJ
MW-6_021420	E537(M)	355-46-4	PERFLUOROHEXANESULFONI C ACID (PFHXS)	UJ
MW-9_021420	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.01)
MW-9_021420	SW6020	7440-28-0	THALLIUM, TOTAL	U (0.001)
MW-9_021420	SW8081B	72-54-8	4,4'-DDD	UJ
MW-9_021420	SW8081B	72-55-9	4,4'-DDE	UJ
MW-9_021420	SW8081B	50-29-3	4,4'-DDT	UJ
MW-9_021420	SW8081B	309-00-2	ALDRIN	UJ
MW-9_021420	SW8081B	319-84-6	ALPHA-BHC	UJ
MW-9_021420	SW8081B	319-85-7	BETA-BHC	UJ
MW-9_021420	SW8081B	57-74-9	CHLORDANE	UJ
MW-9_021420	SW8081B	319-86-8	DELTA-BHC	UJ
MW-9_021420	SW8081B	60-57-1	DIELDRIN	UJ
MW-9_021420	SW8081B	959-98-8	ENDOSULFAN I	UJ
MW-9_021420	SW8081B	33213-65-9	ENDOSULFAN II	UJ
MW-9_021420	SW8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
MW-9_021420	SW8081B	72-20-8	ENDRIN	UJ
MW-9_021420	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-9_021420	SW8081B	53494-70-5	ENDRIN KETONE	UJ
MW-9_021420	SW8081B	76-44-8	HEPTACHLOR	UJ
MW-9_021420	SW8081B	1024-57-3	57-3 HEPTACHLOR EPOXIDE	
MW-9_021420	SW8081B	58-89-9	LINDANE	UJ
MW-9_021420	SW8081B	72-43-5 METHOXYCHLOR		UJ
MW-9_021420	SW8081B	8001-35-2 TOXAPHENE		UJ
MW-9_021420	SW8081B	5103-71-9	71-9 CIS-CHLORDANE	
MW-9_021420	SW8081B	5103-74-2	TRANS-CHLORDANE	UJ
MW-9_021420	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ

Client Sample ID	Analysis	lysis CAS # Analyte		Validator Qualifier	
MW-9_021420	SW8260C	95-93-2	1,2,4,5- TETRAMETHYLBENZENE	UJ	
MW-9_021420	SW8260C	123-91-1	1,4-DIOXANE	UJ	
MW-9_021420	SW8260C	591-78-6	2-HEXANONE	UJ	
MW-9_021420	SW8260C	75-15-0	CARBON DISULFIDE	UJ	
MW-9_021420	SW8260C	74-87-3	CHLOROMETHANE	UJ	
MW-9_021420	SW8260C	91-20-3	NAPHTHALENE	UJ	
MW-9_021420	SW8260C	75-01-4	VINYL CHLORIDE	UJ	
MW-9_021420	SW8270D	105-67-9	2,4-DIMETHYLPHENOL	UJ	
MW-9_021420	SW8270D	106-47-8	4-CHLOROANILINE	UJ	
MW-9_021420	SW8270D	100-02-7	4-NITROPHENOL	UJ	
MW-9_021420	SW8270D	100-51-6	BENZYL ALCOHOL	UJ	
MW-9_021420	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ	
MW-9_021420	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ	
MW-9_021420	E537(M)	2355-31-9	N-METHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NMEFOSAA)	UJ	
MW-9_021420	E537(M)	355-46-4	PERFLUOROHEXANESULFONI C ACID (PFHXS)	UJ	
GWTB01_021420	SW8260C	123-91-1	1,4-DIOXANE	UJ	
MW-1_021820	SW6020	7440-23-5	SODIUM, TOTAL	J	
MW-1_021820	SW6020	7440-28-0	THALLIUM, DISSOLVED	U (0.001)	
MW-1_021820	SW6020	7440-28-0	THALLIUM, TOTAL	U (0.001)	
MW-1_021820	SW8260C	96-12-8	1,2-DIBROMO-3- CHLOROPROPANE	UJ	
MW-1_021820	SW8260C	594-20-7	2,2-DICHLOROPROPANE	UJ	
MW-1_021820	SW8260C	78-93-3	2-BUTANONE		
MW-1_021820	SW8260C	591-78-6	2-HEXANONE	IEXANONE UJ	
MW-1_021820	SW8260C	67-64-1	ACETONE	UJ	
MW-1_021820	SW8260C	107-13-1	ACRYLONITRILE	YLONITRILE UJ	
MW-1_021820	SW8260C	74-83-9	BROMOMETHANE	UJ	
MW-1_021820	SW8260C	75-00-3	CHLOROETHANE	UJ	

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-1_021820	SW8260C	75-71-8	DICHLORODIFLUOROMETHAN E	UJ
MW-1_021820	SW8270D	95-48-7	2-METHYLPHENOL	UJ
MW-1_021820	SW8270D	88-75-5	2-NITROPHENOL	UJ
MW-1_021820	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-1_021820	SW8270D	65-85-0	BENZOIC ACID	UJ
MW-1_021820	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-1_021820	E537(M)	27619-97-2	1H,1H,2H,2H- PERFLUOROOCTANESULFONI C ACID (6:2FTS)	J
MW-1_021820	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	j
MW-3_021820	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-3_021820	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-3_021820	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-3_021820	SW8270D	95-48-7	2-METHYLPHENOL	UJ
MW-3_021820	SW8270D	88-75-5	2-NITROPHENOL	UJ
MW-3_021820	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-3_021820	SW8270D	65-85-0	BENZOIC ACID	UJ
MW-3_021820	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-3_021820	E537(M)	27619-97-2	1H,1H,2H,2H- PERFLUOROOCTANESULFONI C ACID (6:2FTS)	J
MW-3_021820	E537(M)	375-92-8	PERFLUOROHEPTANESULFONI C ACID (PFHPS)	UJ
MW-3_021820	E537(M)	375-95-1	PERFLUORONONANOIC ACID (PFNA)	J
MW-3_021820	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	J
MW-3_021820	E537(M)	335-67-1	PERFLUOROOCTANOIC ACID (PFOA)	J
MW-5_021820	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-5_021820	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-5_021820	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-5_021820	SW8270D	95-48-7	2-METHYLPHENOL	UJ
MW-5_021820	SW8270D	88-75-5	2-NITROPHENOL	UJ

Client Sample ID	Analysis	sis CAS # Analyte		Validator Qualifier
MW-5_021820	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-5_021820	SW8270D	65-85-0	BENZOIC ACID	UJ
MW-5_021820	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-5_021820	E537(M)	27619-97-2	1H,1H,2H,2H- PERFLUOROOCTANESULFONI C ACID (6:2FTS)	J
MW-5_021820	E537(M)	375-92-8	PERFLUOROHEPTANESULFONI C ACID (PFHPS)	UJ
MW-5_021820	E537(M)	375-95-1	PERFLUORONONANOIC ACID (PFNA)	J
MW-5_021820	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	J
MW-5_021820	E537(M)	335-67-1	PERFLUOROOCTANOIC ACID (PFOA)	J
MW-7_021820	SW6020	7440-28-0	THALLIUM, DISSOLVED	U (0.001)
MW-7_021820	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-7_021820	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-7_021820	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-7_021820	SW8270D	95-48-7	2-METHYLPHENOL	UJ
MW-7_021820	SW8270D	88-75-5	2-NITROPHENOL	UJ
MW-7_021820	SW8270D	100-02-7	4-NITROPHENOL	UJ
MW-7_021820	SW8270D	65-85-0	BENZOIC ACID	UJ
MW-7_021820	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-7_021820	E537(M)	27619-97-2	1H,1H,2H,2H- PERFLUOROOCTANESULFONI C ACID (6:2FTS)	J
MW-7_021820	E537(M)	375-92-8	ΡΕΒΕΙ ΠΟΒΟΗΕΡΤΔΝΕSΗ ΕΟΝΙ	
MW-7_021820	E537(M)	375-95-1		
MW-7_021820	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	J
MW-7_021820	E537(M)	335-67-1 PERFLUOROOCTANOIC ACID (PFOA)		J
GWTB02_021820	SW8260C	123-91-1		
MW-8_021920	SW6020	7429-90-5	ALUMINUM, DISSOLVED	J
MW-8_021920	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.01)

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-8_021920	SW6020	7440-36-0	ANTIMONY, DISSOLVED	J
MW-8_021920	SW6020	7440-36-0	ANTIMONY, TOTAL	J
MW-8_021920	SW6020	7440-39-3	BARIUM, DISSOLVED	J
MW-8_021920	SW6020	7440-39-3	BARIUM, TOTAL	J
MW-8_021920	SW6020	7440-70-2	CALCIUM, DISSOLVED	J
MW-8_021920	SW6020	7440-70-2	CALCIUM, TOTAL	J
MW-8_021920	SW6020	7440-47-3	CHROMIUM, DISSOLVED	UJ
MW-8_021920	SW6020	7440-50-8	COPPER, DISSOLVED	J
MW-8_021920	SW6020	7439-89-6	IRON, DISSOLVED	J
MW-8_021920	SW6020	7439-89-6	IRON, TOTAL	J
MW-8_021920	SW6020	7439-95-4	MAGNESIUM, DISSOLVED	J
MW-8_021920	SW6020	7439-96-5	MANGANESE, DISSOLVED	J
MW-8_021920	SW6020	7439-96-5	MANGANESE, TOTAL	J
MW-8_021920	SW6020	7440-09-7	POTASSIUM, DISSOLVED	J
MW-8_021920	SW6020	7440-09-7	POTASSIUM, TOTAL	J
MW-8_021920	SW6020	7440-23-5	SODIUM, DISSOLVED	J
MW-8_021920	SW6020	7440-23-5	SODIUM, TOTAL	J
MW-8_021920	SW8081B	319-86-8	DELTA-BHC	UJ
MW-8_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-8_021920	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-8_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-8_021920	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-8_021920	SW8270D	95-94-3	1,2,4,5- TETRACHLOROBENZENE	UJ
MW-8_021920	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-8_021920	SW8270DSIM	85-01-8	PHENANTHRENE	UJ
MW-8_021920	SW9012B	57-12-5	7-12-5 CYANIDE, TOTAL	
MW-8_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ
MW-8_021920	E537(M)	TOTPFOAP FOS	PFOA/PFOS, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW-8_021920	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	J
MW-8_021920	E537(M)	335-67-1	PERFLUOROOCTANOIC ACID (PFOA)	J
MW-12_021920	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.0112)
MW-12_021920	SW8081B	319-86-8	DELTA-BHC	UJ
MW-12_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-12_021920	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-12_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-12_021920	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-12_021920	SW8270D	95-94-3	1,2,4,5- TETRACHLOROBENZENE	UJ
MW-12_021920	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-12_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ
MW-11_021920	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.0124)
MW-11_021920	SW8081B	319-86-8	DELTA-BHC	UJ
MW-11_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
MW-11_021920	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-11_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-11_021920	SW8260C	91-20-3	NAPHTHALENE	UJ
MW-11_021920	SW8270D	95-94-3	1,2,4,5- TETRACHLOROBENZENE	UJ
MW-11_021920	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ
MW-11_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ
MW-10_021920	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.01)
MW-10_021920	SW8081B	319-86-8	-8 DELTA-BHC UJ	
MW-10_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE UJ	
MW-10_021920	SW8260C	123-91-1	1,4-DIOXANE	UJ
MW-10_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier	
MW-10_021920	SW8260C	91-20-3	NAPHTHALENE	UJ	
MW-10_021920	SW8270D	95-94-3	1,2,4,5- TETRACHLOROBENZENE	UJ	
MW-10_021920	SW8270D	108-60-1	BIS(2- CHLOROISOPROPYL)ETHER	UJ	
MW-10_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ	
GWDUP01_021920	SW6020	7429-90-5	ALUMINUM, DISSOLVED	UJ	
GWDUP01_021920	SW6020	7429-90-5	ALUMINUM, TOTAL	U (0.01)	
GWDUP01_021920	SW6020	7440-36-0	ANTIMONY, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-36-0	ANTIMONY, TOTAL	J	
GWDUP01_021920	SW6020	7440-39-3	BARIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-39-3	BARIUM, TOTAL	J	
GWDUP01_021920	SW6020	7440-70-2	CALCIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-70-2	CALCIUM, TOTAL	J	
GWDUP01_021920	SW6020	7440-47-3	CHROMIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-50-8	COPPER, DISSOLVED	J	
GWDUP01_021920	SW6020	7439-89-6	IRON, DISSOLVED	J	
GWDUP01_021920	SW6020	7439-89-6	IRON, TOTAL	J	
GWDUP01_021920	SW6020	7439-95-4	MAGNESIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7439-96-5	MANGANESE, DISSOLVED	J	
GWDUP01_021920	SW6020	7439-96-5	MANGANESE, TOTAL	J	
GWDUP01_021920	SW6020	7440-09-7	POTASSIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-09-7	POTASSIUM, TOTAL	J	
GWDUP01_021920	SW6020	7440-23-5	SODIUM, DISSOLVED	J	
GWDUP01_021920	SW6020	7440-23-5	SODIUM, TOTAL	J	
GWDUP01_021920	SW8081B	319-86-8	DELTA-BHC	UJ	
GWDUP01_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE	E UJ	
GWDUP01_021920	SW8260C	123-91-1	-1 1,4-DIOXANE UJ		
GWDUP01_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ	
GWDUP01_021920	SW8260C	91-20-3	NAPHTHALENE	UJ	
GWDUP01_021920	SW8270D	100-02-7	4-NITROPHENOL	UJ	



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
GWDUP01_021920	SW8270DSIM	85-01-8	PHENANTHRENE	J
GWDUP01_021920	SW9012B	57-12-5	CYANIDE, TOTAL	J
GWDUP01_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ
GWDUP01_021920	E537(M)	TOTPFOAP FOS	PFOA/PFOS, TOTAL	J
GWDUP01_021920	E537(M)	1763-23-1	PERFLUOROOCTANESULFONI C ACID (PFOS)	J
GWDUP01_021920	E537(M)	335-67-1	PERFLUOROOCTANOIC ACID (PFOA)	J
GWFB01_021920	SW6020	7440-70-2	CALCIUM, TOTAL	U (0.188)
GWFB01_021920	SW6020	7440-28-0	THALLIUM, DISSOLVED	U (0.001)
GWFB01_021920	SW8081B	319-86-8	DELTA-BHC	UJ
GWFB01_021920	SW8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
GWFB01_021920	SW8260C	123-91-1	1,4-DIOXANE	UJ
GWFB01_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ
GWFB01_021920	SW8260C	91-20-3	NAPHTHALENE	UJ
GWFB01_021920	SW8270D	100-02-7	4-NITROPHENOL	UJ
GWFB01_021920	E537(M)	2991-50-6	N-ETHYL PERFLUOROOCTANESULFONA MIDOACETIC ACID (NETFOSAA)	UJ
GWFB01_021920	E537(M)	307-24-4 PERFLUOROHEXANOIC ACID (PFHXA)		U (1.82)
GWTB03_021920	SW8260C	123-91-1	23-91-1 1,4-DIOXANE	
GWTB03_021920	SW8260C	107-13-1	ACRYLONITRILE	UJ
GWTB03_021920	SW8260C	91-20-3	NAPHTHALENE	UJ

### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

#### L2006934:

The initial calibration (ICAL) for instrument VOA108 exhibited a response factor (RF) below the control limit for 1,4-dioxane (0.002). The associated results in sample GWTB01_021420, MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 2/19/2020 at 08:10 exhibited percent differences (%Ds) above the control limit for chloromethane (-62.7%), vinyl chloride (-31.5%), carbon disulfide (-27.3%), 2-hexanone (21.7%), 1,2,4,5-tetramethylbenzene (22.5%), naphthalene (26%), and 1,2,3-trichlorobenzene (22.3%). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential indeterminate bias.

#### L2007256:

The ICAL for instrument VOA101 exhibited a RF below the control limit for acrylonitrile (0.042). The associated results in sample MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/20/2020 at 18:19 exhibited a RF below the control limit for acrylonitrile (0.04). The associated results in sample MW-1_021820 are qualified as "UJ" based on potential indeterminate bias.

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) for batch WG1343290 exhibited a relative percent difference (RPD) above the control limit for 1,4-dioxane (23%). The associated results in sample MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA108 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample GWTB02_021820 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA122 exhibited a RF below the control limit for 1,4-dioxane (0.002). The associated results in sample MW-1_021820 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/20/2020 at 18:19 exhibited %Ds above the control limit for 1,2-dibromo-3-chloropropane (20.5%), 2,2-dichloropropane (-55.7%), 2-butanone (29.6%), 2-hexanone (23.8%), acetone (33.3%), acrylonitrile (24.5%), bromomethane (60%), chloroethane (29.9%), and dichlorodifluoromethane (-37.2%). The associated results in sample MW-1_021820 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a %D above the control limit for naphthalene (24.6%). The associated results in sample MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L2007457:</u>

The LCS/LCSD for batch WG1343290 exhibited a RPD above the control limit for 1,4-dioxane (23%). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, MW-10_021920, GWDUP01_021920, GWFB01_021920, and GWTB03_021920 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA101 exhibited a RF below the control limit for acrylonitrile (0.042). The associated results in sample MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a %D above the control limit for naphthalene (24.6%). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, MW-10_021920, GWDUP01_021920, GWFB01_021920, and GWTB03_021920 are qualified as "UJ" based on potential indeterminate bias.

### SVOCs by SW-846 Method 8270D and 8270D SIM:

#### L2006934:

The LCS/LCSD for batch WG1341215 exhibited a percent recovery below the lower control limit (LCL) for 4-chloroaniline (37%, 36%). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential low bias.

The LCSD for batch WG1341215 exhibited percent recoveries below the LCL for 2,4dimethylphenol (36%) and benzyl alcohol (32%). The associated results in sample MW-

2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 2/19/2020 at 00:27 exhibited %Ds above the control limit for bis(2-chloroisopropyl)ether (21.1) and 4-nitrophenol (28.7). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/17/2020 at 11:28 exhibited a %D above the control limit for pentachlorophenol (23.8%). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential indeterminate bias.

#### L2007256:

The LCS/LCSD for batch WG1342205 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in sample MW-1_021820, MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 2/20/2020 at 16:19 exhibited %Ds above the control limit for 2methylphenol (-20.3%), 2-nitrophenol (-22%), and 4-nitrophenol (23.2%). The associated results in sample MW-1_021820, MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential indeterminate bias.

The LCSD for batch WG1342207 exhibited a percent recovery below the LCL for pentachlorophenol (33%). The associated results in sample MW-1_021820, MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "UJ" based on potential low bias.

#### <u>L2007457:</u>

The CCV analyzed on 2/21/2020 at 15:54 exhibited %Ds above the control limit for bis(2-chloroisopropyl)ether (31.1%) and 1,2,4,5-tetrachlorobenzene (-23%). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, and MW-10_021920 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/24/2020 at 12:52 exhibited a %D above the control limit for 4-nitrophenol (22.9%). The associated results in sample GWDUP01_021920 and GWFB01_021920 are qualified as "UJ" based on potential indeterminate bias.

#### PFAS by USEPA Method 537M:

#### L2006934:

The CCV analyzed on 2/27/2020 at 12:58 exhibited %Ds above the control limit for perfluorohexanesulfonic acid-branched (br-PFHxS) (46.7%) and n-methyl perfluorooctanesulfonamidoacetic acid-linear (I-NMeFOSAA) (171.6%). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "J" or "UJ" based on potential indeterminate bias.

#### L2007256:

The sample MW-1_021820 exhibited a percent recovery above the upper control limit (UCL) for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2FTS) (312%). The associated results are qualified as "J" based on potential high bias.

The sample MW-3_021820 exhibited a percent recovery above the UCL for the surrogate m2-6:2FTS (317%). The associated results are qualified as "J" based on potential high bias.

The sample MW-5_021820 exhibited a percent recovery above the UCL for the surrogate m2-6:2FTS (304%). The associated results are qualified as "J" based on potential high bias.

The sample MW-7_021820 exhibited a percent recovery above the UCL for the surrogate m2-6:2FTS (269%). The associated results are qualified as "J" based on potential high bias.

The sample MW-3_021820 exhibited a percent recovery above the UCL for the internal standard m2PFOA (43.16%). The associated results are qualified as "J" or "UJ" based on potential low bias.

The sample MW-5_021820 exhibited a percent recovery above the UCL for the internal standard m2PFOA (49.28%). The associated results are qualified as "J" or "UJ" based on potential low bias.

The sample MW-7_021820 exhibited a percent recovery above the UCL for the internal standard m2PFOA (44.21%). The associated results are qualified as "J" or "UJ" based on potential low bias.

The CCV analyzed on 2/27/2020 at 21:00 exhibited a %D above the control limit for perfluorooctanesulfonic acid-branched (br-PFOS) (159.3%). The associated results in sample MW-1_021820, MW-3_021820, MW-5_021820, and MW-7_021820 are qualified as "J" based on potential indeterminate bias.

### <u>L2007457:</u>

The method blank (MB) for batch WG1342736-1 exhibited a detection of perfluorohexanoic acid (PFHxA) (0.34 ng/l). The associated results in sample GWFB01_021920 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCS/LCSD for batch WG1342736 exhibited a RPD above the control limit for n-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) (38%). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, MW-10_021920, GWDUP01_021920, and GWFB01_021920 are qualified as "UJ" based on potential indeterminate bias.

### Pesticides by SW-846 Method 8081B:

#### L2006934:

The LCS/LCSD for batch WG1341204 exhibited RPDs above the control limit for 4,4'-DDD (41%), 4,4'-DDE (39%), 4,4'-DDT (42%), aldrin (37%), alpha-BHC (35%), beta-BHC (36%), delta-BHC (33%), dieldrin (38%), endosulfan I (40%), endosulfan II (28%), endosulfan sulfate (29%), endrin (38%), endrin aldehyde (39%), endrin ketone (36%), heptachlor (34%), heptachlor epoxide (38%), lindane (34%), methoxychlor (37%), cis-chlordane (40%), and trans-chlordane (37%). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "UJ" based on potential indeterminate bias.

### L2007457:

The LCS/LCSD for batch WG1342981 exhibited RPDs above the control limit for delta-BHC (35%) and endrin aldehyde (21%). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, MW-10_021920, GWDUP01_021920, and GWFB01_021920 are qualified as "UJ" based on potential indeterminate bias.

### Metals by SW-846 Method 6020B:

#### L2006934:

The MB for batch WG1342335 exhibited detections of aluminum, total (0.00327 mg/L), manganese, total (0.00301 mg/L), and thallium, total (0.00035 mg/L). The associated results in sample MW-2_021420, MW-4_021420, MW-6_021420, and MW-9_021420 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The MB for batch WG1342675 exhibited a detection of thallium, dissolved (0.00037 mg/L). The associated results in sample MW-2_021420 are qualified as "U" at the reporting limit based on potential blank contamination.

#### L2007256:

The MS for sample MW-1_021820 exhibited a percent recovery below the LCL for magnesium, total (72%). The associated results in sample MW-1_021820 are qualified as "J" based on potential low bias.

The MS/MSD for sample MW-1_021820 exhibited RPDs above the control limit for magnesium, total (25%) and potassium, total (23%). The associated results in sample MW-1_021820 are qualified as "J" based on potential indeterminate bias.

The MB for batch WG1342799-1 exhibited a detection of thallium, dissolved (0.00031 mg/L). The associated results in sample MW-1_021820 and MW-7_021820 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1343138-1 exhibited a detection of thallium, total (0.00014 mg/L). The associated results in sample MW-1_021820 are qualified as "U" at the reporting limit based on potential blank contamination.

The serial dilution for sample MW-1_021820 exhibited a percent difference above 10% for sodium, total (29%). Since the associated result was greater than 50x the MDL, associated sample results were qualified as "J".

### L2007457:

The MB for batch WG1342799-1 exhibited a detection of thallium, dissolved (0.00031 mg/L). The associated results in sample GWFB01_021920 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1343812-1 exhibited a detection of calcium, total (0.0687 mg/L). The associated results in sample GWFB01_021920 are qualified as "U" at the sample concentration based on potential blank contamination.

The FB (GWFB01_021920) exhibited a detection of aluminum, total (0.0106 mg/L). The associated results in sample MW-8_021920, MW-12_021920, MW-11_021920, MW-10_021920, and GWDUP01_021920 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

#### L2006934:

The LCS/LCSD for batch WG1341510 exhibited a percent recovery above the UCL for chloromethane (160%, 150%). The associated results are non-detections. No qualification is necessary.

The LCS for batch WG1341510 exhibited a percent recovery above the UCL for vinyl chloride (150%). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1342282 exhibited a percent recovery above the UCL for chloromethane (160%, 160%). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 2/19/2020 at 08:10 exhibited a RF below the control limit for 1,4-dioxane (0.00162). The associated results were previously qualified. No further action is necessary.

#### L2007256:

The LCS/LCSD for batch WG1342282 exhibited a percent recovery above the UCL for chloromethane (160%, 160%). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch WG1343199 exhibited a percent recovery above the UCL for 2,2dichloropropane (160%, 170%). The associated results are non-detections. No qualification is necessary.

The matrix spike (MS) for batch MW-1_021820 exhibited percent recoveries below the LCL for 2,2-dichloropropane (54%), bromomethane (24%), and dichlorodifluoromethane (150%). Qualifications are not applied based solely on matrix spike/matrix spike duplicate (MS/MSD) recoveries. Results were associated with LCS/LCSD recoveries within quality control (QC) limits or previously qualified based on LCS/LCSD recoveries outside of control limits. No further action is necessary.

The ICAL for instrument VOA101 exhibited a RF below the control limit for 1,4-dioxane (0.001). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/20/2020 at 18:19 exhibited a RF below the control limit for 1,4-dioxane (0.00126). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a RF below the control limit for acrylonitrile (0.043). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a RF below the control limit for 1,4-dioxane (0.00072). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a %D above the control limit for 1,4-dioxane (22.6%). The associated results were previously qualified. No further action is necessary.

#### <u>L2007457:</u>

The ICAL for instrument VOA101 exhibited a RF below the control limit for 1,4-dioxane (0.001). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/21/2020 at 07:01 exhibited RFs below the control limit for acrylonitrile (0.043) and 1,4-dioxane (0.00072). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 2/21/2020 at 07:01 exhibited a %D above the control limit for 1,4-dioxane (22.6%). The associated results were previously qualified. No further action is necessary.

### PFAS by USEPA Method 537M:

### L2006934:

The sample MW-2_021420 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (269%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (296%). The associated results are non-detections. No qualification is necessary.

The sample MW-4_021420 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (314%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (288%). The associated results are non-detections. No qualification is necessary.

The sample MW-6_021420 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (336%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (313%). The associated results are non-detections. No qualification is necessary.

The sample MW-9_021420 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (318%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (329%). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1341235-1 exhibited a detection of perfluorohexanoic acid (PFHxA) (0.36 ng/L). The associated results are >10X the contamination. No qualification is necessary.

### <u>L2007256:</u>

The sample MW-1_021820 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (218%). The associated results are non-detections. No qualification is necessary.

The sample MW-3_021820 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (319%). The associated results are non-detections. No qualification is necessary.

The sample MW-5_021820 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (274%). The associated results are non-detections. No qualification is necessary.

The sample MW-7_021820 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (269%). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1342109-1 exhibited a detection of perfluorohexanoic acid (PFHxA) (0.408 ng/L). The associated results are >10X the contamination. No qualification is necessary.

### <u>L2007457:</u>

The FB (GWFB01_021920) exhibited a detection of perfluoropentanoic acid (PFPeA) (0.364 ng/L). The associated results are >10X the contamination. No qualification is necessary.

The sample MW-8_021920 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (256%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (294%). The associated results are non-detections. No qualification is necessary.

The sample MW-12_021920 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (275%) and 1h,1h,2h,2h-

perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (296%). The associated results are non-detections. No qualification is necessary.

The sample MW-10_021920 exhibited a percent recovery above the UCL for the surrogate 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (253%). The associated results are non-detections. No qualification is necessary.

The sample GWDUP01_021920 exhibited percent recoveries above the UCL for the surrogates 1h,1h,2h,2h-perfluoro[1,2-13c2]decanesulfonic acid (m2-8:2 FTS) (254%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2 FTS) (272%). The associated results are non-detections. No qualification is necessary.

### Metals by SW-846 Method 6020B:

#### L2006934:

The MS/MSD for batch MW-2_021420 exhibited a percent recovery below the LCL for calcium, dissolved (20%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch MW-2_021420 exhibited a percent recovery above the UCL for sodium, dissolved (165%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

#### L2007256:

The MS/MSD for sample MW-1_021820 exhibited percent recoveries above the UCL for calcium, dissolved (134%) and iron, dissolved (173%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for sample MW-1_021820 exhibited a RPD above the control limit for sodium, dissolved (55%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for sample MW-1_021820 exhibited percent recoveries outside of control limits for calcium, total (44%, 72%), iron, total (154%, 116%), and sodium, total (0%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MB for sample WG1342799-1 exhibited a detection of manganese, dissolved (0.00052 mg/L). The associated results are >10X the contamination. No qualification is necessary.

#### <u>L2007457:</u>

The MB for batch WG1342799-1 exhibited a detection of manganese, dissolved (0.00052 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The FB (GWFB01_021920) exhibited detections of barium, dissolved (0.00045 mg/L), barium, total (0.00058 mg/L), iron, total (0.0253 mg/L), magnesium, total (0.0729 mg/L), manganese, total (0.00067 mg/L), and sodium, total (0.0443 mg/L). The associated results are >10X the contamination. No qualification is necessary.

#### COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to the precision criteria:

• MW-8_021920 and GWDUP01_021920

The field duplicate and parent sample (MW-8_021920 and GWDUP01_021920) exhibited RPDs above the control limit for aluminum, dissolved (79%), antimony, dissolved (66%), antimony, total (52%), chromium, dissolved (139%), copper, dissolved (103%), cyanide, total (100%), and phenanthrene (133%). The associated results are qualified as "J" or "UJ" based on potential The field duplicate and parent sample (MW-8_021920 and indeterminate bias. GWDUP01_021920) also exhibited absolute differences above the RL for barium, dissolved (0.00332 mg/L), barium, total (0.00066 mg/L), calcium, dissolved (10 mg/L), calcium, total (3 mg/L), iron, dissolved (0.079 mg/L), iron, total (0.08 mg/L), magnesium, dissolved (1.5 mg/L), manganese, dissolved (0.00548)mg/L),manganese, total (0.00804)mg/L), perfluorooctanesulfonic acid (PFOS) (8.7 ng/L), perfluorooctanoic acid (PFOA) (2.2 ng/l), PFOA/PFOS, total (10.9 ng/L), potassium, dissolved (1.1 mg/L), potassium, total (0.1 mg/L), sodium, dissolved (6 mg/L), and sodium, total (2 mg/L). The associated results are qualified as "J" based on potential indeterminate bias.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

Data Usability Summary Report For 1607 Surf Avenue February 2020 Groundwater Samples Langan Project No.: 170 March 10, 2020 Page 28 of 28

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

**To:** Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

**Date:** February 27, 2020

Re: Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Vapor and Ambient Air Samples Langan Project No.: 170599501

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in February 2020 by Langan Engineering and Environmental Services ("Langan") at the 1607 Surf Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2006386	L2006386-01	SV-8_021220	2/12/2020	VOCs
L2006386	L2006386-02	SV-7_021220	2/12/2020	VOCs
L2006386	L2006386-03	SV-9_021220	2/12/2020	VOCs
L2006386	L2006386-04	SV-1_021220	2/12/2020	VOCs
L2006386	L2006386-05	SV-4_021220	2/12/2020	VOCs
L2006386	L2006386-06	SV-5_021220	2/12/2020	VOCs
L2006386	L2006386-07	AA01_021220	2/12/2020	VOCs
L2006386	L2006386-08	SV-12_021220	2/12/2020	VOCs
L2006386	L2006386-09	SV-3_021220	2/12/2020	VOCs
L2006386	L2006386-10	SV-11_021220	2/12/2020	VOCs
L2006636	L2006636-01	SV-15_021320	2/13/2020	VOCs

### TABLE 1: SAMPLE SUMMARY

Data Usability Summary Report For 1607 Surf Avenue February 2020 Soil Vapor and Ambient Air Samples Langan Project No.: 170 February 27, 2020 Page 2 of 5

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2006636	L2006636-02	SV-13_021320	2/13/2020	VOCs
L2006636	L2006636-03	SV-2_021320	2/13/2020	VOCs
L2006636	L2006636-04	AA02_021320	2/13/2020	VOCs
L2006636	L2006636-05	SV-6_021320	2/13/2020	VOCs
L2006636	L2006636-06	SV-10_021320	2/13/2020	VOCs
L2006636	L2006636-07	SV-14_021320	2/13/2020	VOCs

#### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SV-15_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-13_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-2_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
AA02_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-6_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-10_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-14_021320	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-8_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-7_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-9_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-1_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-4_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-5_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
AA01_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-12_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-3_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SV-11_021220	TO-15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION

### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.



#### VOCs by USEPA Method TO-15:

#### L2006386:

The initial calibration verification (ICV) analyzed on 2/17/2020 at 13:20 exhibited a percent difference (%D) above the control limit for 1,2,4-trichlorobenzene (-31.4%). The associated results in sample SV-8_021220, SV-7_021220, SV-9_021220, SV-1_021220, SV-4_021220, SV-5_021220, AA01_021220, SV-12_021220, SV-3_021220, and SV-11_021220 are qualified as "UJ" based on potential indeterminate bias.

#### L2006636:

The ICV analyzed on 2/14/2020 at 10:31 exhibited a %D above the control limit for 1,2,4trichlorobenzene (-33.5%). The associated results in sample SV-8_021220, SV-7_021220, SV-9_021220, SV-1_021220, SV-4_021220, SV-5_021220, AA01_021220, SV-12_021220, SV-3_021220, and SV-11_021220 are qualified as "UJ" based on potential indeterminate bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by USEPA Method TO-15:

#### L2006386:

The laboratory control sample (LCS) for batch WG1341895 exhibited a percent recovery above the upper control limit (UCL) for 1,2,4-trichlorobenzene (136%). The associated results are non-detections. No qualification is necessary.

#### L2006636:

The LCS for batch WG1342331 exhibited a percent recovery above the UCL for 1,2,4-trichlorobenzene (144%). The associated results are non-detections. No qualification is necessary.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist



1818 Market Street, Suite 3300 Philadelphia, PA 19103 T: 215.845.8900 F: 215.845.8901 Mailing Address: 1818 Market Street, Suite 3300 Philadelphia, PA 19103

To: Lamees Esmail, Langan Senior Staff Engineer

From: Joe Conboy, Langan Staff Chemist

Date: December 14, 2020

Re: Data Usability Summary Report For 1607 Surf Avenue December Soil Vapor Samples Langan Project No.: 170599501

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in December 2020 by Langan Engineering and Environmental Services ("Langan") at the 1607 Surf Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2053758	L2053758-01	SV-16_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-02	SV-17_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-03	SV-18_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-04	SV-19_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-05	SV-20_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-06	SV-21_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-07	SV-22_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-08	DUP01_120320	12/3/2020	VOCs and VOC SIM by TO-15
L2053758	L2053758-09	AA01_120320	12/3/2020	VOCs and VOC SIM by TO-15

### TABLE 1: SAMPLE SUMMARY

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

#### TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SV-16_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-16_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-16_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	UJ
SV-17_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-17_120320	TO15	591-78-6	2-Hexanone	J
SV-17_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-18_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-18_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-19_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-19_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-20_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-20_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-20_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	UJ
SV-21_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-21_120320	TO15	100-44-7	Benzyl Chloride	UJ
SV-22_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-22_120320	TO15	100-44-7	Benzyl Chloride	UJ
DUP01_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
DUP01_120320	TO15	591-78-6	2-Hexanone	J
DUP01_120320	TO15	100-44-7	Benzyl Chloride	UJ
AA01_120320	TO15	120-82-1	1,2,4-Trichlorobenzene	UJ
AA01_120320	TO15	100-44-7	Benzyl Chloride	UJ
AA01_120320	TO15	75-65-0	Tert-Butyl Alcohol	UJ
AA01_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	UJ
WG1443036-4	TO15	75-65-0	Tert-Butyl Alcohol	UJ
WG1443037-4	TO15 SIM	75-65-0	Tert-Butyl Alcohol	UJ
SV-17_120320	TO15	67-63-0	Isopropanol	J
SV-17_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J
SV-18_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J
SV-19_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J
SV-21_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SV-22_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J
DUP01_120320	TO15	67-63-0	Isopropanol	J
DUP01_120320	TO15 SIM	75-65-0	Tert-Butyl Alcohol	J

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by USEPA Method TO-15:

#### L2053758

The laboratory control sample for batch WG1443036-3 exhibited a percent recovery below the lower control limit for tertiary butyl alcohol (67%). The associated results in sample AA01_120320 are qualified as "UJ" based on potential low bias.

The initial calibration for instrument AIRLAB16 exhibited relative standard deviations above the control limit for benzyl chloride (30.79%) and 1,2,4-trichlorobenzene (34.59%). The associated results in sample SV-16_120320, SV-17_120320, SV-18_120320, SV-19_120320, SV-20_120320, SV-21_120320, SV-22_120320, DUP01_120320, and AA01_120320 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification analyzed on 12/9/2020 at 13:14 exhibited a percent drift above the control limit for tertiary butyl alcohol (SIM) (30.1%). The associated results in sample SV-16_120320, SV-17_120320, SV-18_120320, SV-19_120320, SV-20_120320, SV-21_120320, SV-22_120320, DUP01_120320, and AA01_120320 are qualified as "J" or "UJ" based on potential indeterminate bias.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.



#### VOCs by USEPA Method TO-15:

#### L2053758

The laboratory control sample for batch WG1443036-3 exhibited a percent recovery above the upper control limit for bromoform (132%). The associated results are non-detections. No qualification is necessary.

#### **Field Duplicate Summary:**

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 1X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the relative percent difference is less than or equal to 30% for soil. The following field duplicate and parent sample pair was compared to the precision criteria:

• SV-17_120320 and DUP01_120320

The field duplicate and parent sample (SV-17_120320 and DUP01_120320) exhibited relative percent differences above the control limit for 2-hexanone (43.2%), isopropanol (55.3%), and tertiary butyl alcohol (SIM) (52.7%). The associated results are qualified as "J" based on potential indeterminate bias.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Joe Conboy Staff Chemist



1818 Market Street, Suite 3300 Philadelphia, PA 19103 T: 215.845.8900 F: 215.845.8901 Mailing Address: 1818 Market Street, Suite 3300 Philadelphia, PA 19103

To: Lamees Esmail, Langan Senior Staff Engineer

From: Joe Conboy, Langan Staff Chemist

Date: March 10, 2021

Re: Data Usability Summary Report For 1607 Surf Avenue March 2021 Soil Vapor and Ambient Air Samples Langan Project No.: 170599501

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in March 2021 by Langan Engineering and Environmental Services ("Langan") at the 1607 Surf Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L2110268	L2110268-01	SV-23_030221	3/2/21	VOCs
L2110268	L2110268-02	SV-24_030221	3/2/21	VOCs
L2110268	L2110268-03	SV-25_030221	3/2/21	VOCs
L2110268	L2110268-04	AA-01_030221	3/2/21	VOCs
L2110268	L2110268-05	DUP-01_030221	3/2/21	VOCs

### TABLE 1: SAMPLE SUMMARY

#### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program

"National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SV-23_030221	TO_15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-23_030221	TO_15	87-68-3	Hexachlorobutadiene	UJ
SV-24_030221	TO_15	120-82-1	1,2,4-Trichlorobenzene	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SV-24_030221	TO_15	87-68-3	Hexachlorobutadiene	UJ
SV-25_030221	TO_15	120-82-1	1,2,4-Trichlorobenzene	UJ
SV-25_030221	TO_15	87-68-3	Hexachlorobutadiene	UJ
AA-01_030221	TO_15	120-82-1	1,2,4-Trichlorobenzene	UJ
AA-01_030221	TO_15	87-68-3	Hexachlorobutadiene	UJ
DUP-01_030221	TO_15	120-82-1	1,2,4-Trichlorobenzene	UJ
DUP-01_030221	TO_15	87-68-3	Hexachlorobutadiene	UJ
SV-24_030221	TO_15	78-93-3	2-Butanone	J
DUP-01_030221	TO_15	78-93-3	2-Butanone	J

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by USEPA Method TO-15:

The initial calibration verification (ICV) analyzed on 12/21/2020 at 10:29 exhibited percent differences (%Ds) above the control limit for 1,2,4-trichlorobenzene (-34.1%) and hexachlorobutadiene (-35.4%). The associated results in sample SV-23_030221, SV-24_030221, SV-25_030221, AA-01_030221, and DUP-01_030221 are qualified as "J" or "UJ" based on potential indeterminate bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. No other deficiencies were identified.

### FIELD DUPLICATE:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the reporting limit (RL), analytes meet the precision criteria if the absolute difference is less than  $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision



criteria if the relative percent difference (RPD) is less than or equal to 50% for air. The following field duplicate and parent sample pairs were compared to the precision criteria:

• DUP-01_030221 and SV-24_030221

The field duplicate and parent sample (SV-24_030221/DUP-01_030221) exhibited a RPD above the control limit for 2-butanone (92.4%). The associated results are qualified as "J" based on potential indeterminate bias.

### **CONCLUSIONS:**

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Joe Conboy Staff Chemist

## **APPENDIX H**

LABORATORY REPORTS (Submitted Under Separate Cover