

BROWNFIELD CLEANUP PROGRAM APPLICATION

205 Park Avenue Brooklyn, New York

February 25, 2021

GZA GeoEnvironmental of New York

104 West 29th Steet, 10th floor | New York, NY 10001 212-594-8140

31 Offices Nationwide www.gza.com

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 104 West 29th Street 10th Floor New York, NY 10001 212.594.8140

Brownfield Cleanup Program Application

205 Park Avenue (Block 2033, Lot 50) Brooklyn, New York

TABLE OF CONTENTS

Application

Attachment A

Section I. Requestor Authorization to Conduct Business in New York State

Attachment B

Section II. Project Description

Attachment C

Section III. Properties Environmental History

III.1 Reports (Provided in Part 2)

III.2 Tables C1-C4

III.3 Figures C1-C6

Attachment D

Section IV. Property Information

IV.2 Property Maps

Figure 1 USGS Site Location Map

Figure 2 Site Plan – adjacent streets and roadways

Figure 3 Site Aerial – adjacent property use and owner information

Figure 4 Surrounding Land Usage

City Tax Map Site Survey Map

Attachment E

Section IV. Property Information

IV.10 Property Description Narrative

Photographs

Attachment F

Section VI. Current Property Owner/Operator Information

Attachment G

Section VII. Requestor Eligibility Information

Attachment H

Section IX. Contact List Information

Attachment I

Section X.2 Current Use

Section X.3 Anticipated Post Remediation Use

Attachment J

Section X.4 and Section X.6 Environmental Assessment Statement Environmental Assessment Statement Report (Provided in Part 2)

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

DEC requires an application to request major changes to the description of the property set forth in a
Brownfield Cleanup Agreement, or "BCA" (e.g., adding a significant amount of new property, or adding
property that could affect an eligibility determination due to contamination levels or intended land use).
Such application must be submitted and processed in the same manner as the original application,
including the required public comment period. Is this an application to amend an existing BCA?

Yes	No	If y	es, provide existing site n	umber:			_	
ART A (note:	application is sep	arated into	Parts A and B for DEC revi	ew pur		BCP App F	Rev 11	
Section I. Re	questor Informati	on - See In	structions for Further Guid	lance	D BCP SITE	EC USE ONLY = #:		
NAME								
ADDRESS								
CITY/TOWN			ZIP CODE					
PHONE		FAX		E-MAIL				
Depar above entity Enviro to do l be pro Do all individu of Second	 If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted to the New York State Department of Environmental Conservation (DEC) with the application to document that the requestor is authorized to do business in NYS. Please note: If the requestor is an LLC, the members/owners names need to be provided on a separate attachment. See Attachment A Do all individuals that will be certifying documents meet the requirements detailed below? Yes No Individuals that will be certifying BCP documents, as well as their employers, meet the requirements of Section 1.5 of <u>DER-10: Technical Guidance for Site Investigation and Remediation</u> and Article 145 of New York State Education Law. Documents that are not properly certified will be not approved under the BCP. 							
Section II. Pr	oject Description							
1. What stage	e is the project star	ting at?	Investigation		F	Remediation		
at a minim Analysis a	num is required to b and Remedial Work	e attached, l Plan are als	at the remediation stage, a R resulting in a 30-day public o so attached (see DER-10 / To guidance) then a 45-day pub	ommen echnica	t period. I Guidano	If an Alternativ ce for Site	/es	
2. If a final R	IR is included, plea	ise verify it n	neets the requirements of Er	nvironme	ental Cor	nservation Law	1	
(ECL) Article	27-1415(2):	Yes	No					
3. Please att	ach a short descrip	tion of the o	verall development project, i	ncluding	g:			
• the da	ate that the remedia	al program is	to start; and	See Atta	achment B			
• the da	ate the Certificate o	f Completion	is anticipated					

Section	Ш.	Property	's	Environmental	History
Section		riopeity	•	LIIVII OIIIII EIILAI	i iiətdi y

All applications **must include** an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish that the site requires remediation and contamination of environmental media on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the property. To the extent that existing information/studies/reports are available to the requestor, please attach the following (*please submit the information requested in this section in electronic format only*):

- 1. Reports: an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (ASTM E1903). Please submit a separate electronic copy of each report in Portable Document Format (PDF). Please do not submit paper copies of supporting documents.

 See Attachment C
- 2. SAMPLING DATA: INDICATE KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. LABORATORY REPORTS SHOULD BE REFERENCED AND COPIES INCLUDED.

Contaminant Category	Soil	Groundwater	Soil Gas		
Petroleum					
Chlorinated Solvents					
Other VOCs					
SVOCs					
Metals					
Pesticides					
PCBs					
Other*					
*Please describe:					

3. FOR EACH IMPACTED MEDIUM INDICATED ABOVE, INCLUDE A SITE DRAWING INDICATING:

- SAMPLE LOCATION
- DATE OF SAMPLING EVENT
- KEY CONTAMINANTS AND CONCENTRATION DETECTED
- FOR SOIL, HIGHLIGHT IF ABOVE REASONABLY ANTICIPATED USE
- FOR GROUNDWATER, HIGHLIGHT EXCEEDANCES OF 6NYCRR PART 703.5
- FOR SOIL GAS/ SOIL VAPOR/ INDOOR AIR, HIGHLIGHT IF ABOVE MITIGATE LEVELS ON THE NEW YORK STATE DEPARTMENT OF HEALTH MATRIX

THESE DRAWINGS ARE TO BE REPRESENTATIVE OF ALL DATA BEING RELIED UPON TO MAKE THE CASE THAT THE SITE IS IN NEED OF REMEDIATION UNDER THE BCP. DRAWINGS SHOULD NOT BE BIGGER THAN 11" X 17". THESE DRAWINGS SHOULD BE PREPARED IN ACCORDANCE WITH ANY GUIDANCE PROVIDED.

ARE THE REQUIRED MAPS INCLUDED WITH THE APPLICATION?*

(*answering No will result in an incomplete application)

Yes

No

4	INDICATE PAST	LAND USES (CHECK	ΔΙΙ	$TH\Delta T$	APPI '	Y۱

Coal Gas Manufacturing	Manufacturing	Agricultural Co-op	Dry Cleaner
Salvage Yard	Bulk Plant	Pipeline	Service Station
Landfill	Tannery	Electroplating	Unknown

Other:_____

Section IV. Property Information - See Instructions	s for Fu	rther Guida	nce		
PROPOSED SITE NAME					
ADDRESS/LOCATION					
CITY/TOWN ZIP C	ODE				
MUNICIPALITY(IF MORE THAN ONE, LIST ALL):					
COUNTY	S	ITE SIZE (AC	RES)		
LATITUDE (degrees/minutes/seconds)	LONG	ITUDE (degre	es/minutes/se	econds)	u
Complete tax map information for all tax parcels included proposed, please indicate as such by inserting "P/O" in finclude the acreage for that portion of the tax parcel in the PER THE APPLICATION INSTRUCTIONS.	ont of th	e lot number	in the approp	riate box belo	ow, and only
Parcel Address		Section No.	Block No.	Lot No.	Acreage
Do the proposed site boundaries correspond to tag If no, please attach an accurate map of the propose		etes and bo	unds?	Yes	No
2. Is the required property map attached to the applic (application will not be processed without map)	cation?	See Attachme	nt D	Yes	No
3. Is the property within a designated Environmental (See DEC's website for more information)	Zone (E	n-zone) purs	suant to Tax Ye	, , ,	5)?
If yes, ic	dentify c	ensus tract :			
Percentage of property in En-zone (check one):	0-49	1% 5	50-99%	100%)
Is this application one of multiple applications for a project spans more than 25 acres (see additional of the second secon					opment es No
If yes, identify name of properties (and site numbe applications:	rs if ava	ilable) in rela	ated BCP		
5. Is the contamination from groundwater or soil vapor subject to the present application?	or solely	emanating f	rom propert	y other than Ye	
 Has the property previously been remediated purs ECL Article 56, or Article 12 of Navigation Law? If yes, attach relevant supporting documentation. 	uant to	Titles 9, 13, o	or 14 of ECL	. Article 27, [°] Ye	
7. Are there any lands under water? If yes, these lands should be clearly delineated on	the site	map.		Υe	es No

Se	ction IV. Property Information (continued)			
8.	Are there any easements or existing rights of way the lf yes, identify here and attach appropriate information	•	these area Yes	s? No
	Easement/Right-of-way Holder	<u>Descri</u>	<u>ption</u>	
9.	List of Permits issued by the DEC or USEPA Relatin information)	g to the Proposed Site (type here	e or attach	
	Type Issuing Agenc	<u>/</u>	Description	
10.	Property Description and Environmental Assessment the proper format of <u>each</u> narrative requested.	nt – please refer to application i	instructior	ns for
	Are the Property Description and Environmental As in the prescribed format ?	sessment narratives included Attachment E	Yes	s No
	Note: Questions 11 through 13 only pertain to sites locate	d within the five counties comprising	New York C	ity
11	Is the requestor seeking a determination that the sit credits?		tax Yes	s No
	If yes, requestor must answer questions on the supp	plement at the end of this form.		
12	Is the Requestor now, or will the Requestor in that the property is Upside Down?	he future, seek a determinatio	n Ye	s No
13	If you have answered Yes to Question 12, abort of the value of the property, as of the date of aphypothetical condition that the property is not capplication?	oplication, prepared under the		es No
p: a	OTE: If a tangible property tax credit determinati articipate in the BCP, the applicant may seek this certificate of completion by using the BCP Amer ligibility under the underutilized category.	determination at any time bef	ore issuar	nce of
If a	ny changes to Section IV are required prior to applica	tion approval, a new page, initial	ed by each	requesto
mu	st be submitted.			
Initi	als of each Requestor:			

BCP application - PART B(note: application is separated into Parts A and B for DEC review purposes) DEC USE ONLY Section V. Additional Requestor Information **BCP SITE NAME:** BCP SITE #: See Instructions for Further Guidance NAME OF REQUESTOR'S AUTHORIZED REPRESENTATIVE **ADDRESS** CITY/TOWN ZIP CODE FAX **PHONE** E-MAIL NAME OF REQUESTOR'S CONSULTANT **ADDRESS** CITY/TOWN ZIP CODE PHONE FAX E-MAIL NAME OF REQUESTOR'S ATTORNEY **ADDRESS** CITY/TOWN ZIP CODE **PHONE FAX** E-MAIL Section VI. Current Property Owner/Operator Information – if not a Requestor OWNERSHIP START DATE: **CURRENT OWNER'S NAME ADDRESS** CITY/TOWN ZIP CODE **FAX** E-MAIL **PHONE CURRENT OPERATOR'S NAME ADDRESS** ZIP CODE CITY/TOWN PHONE FAX E-MAIL PROVIDE A LIST OF PREVIOUS PROPERTY OWNERS AND OPERATORS WITH NAMES, LAST KNOWN ADDRESSES AND TELEPHONE NUMBERS AS AN ATTACHMENT. DESCRIBE REQUESTOR'S RELATIONSHIP, TO EACH PREVIOUS OWNER AND OPERATOR, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND PREVIOUS OWNER AND OPERATOR. IF NO RELATIONSHIP, PUT "NONE". See Attachment F IF REQUESTOR IS NOT THE CURRENT OWNER, DESCRIBE REQUESTOR'S RELATIONSHIP TO THE CURRENT OWNER, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND THE **CURRENT OWNER.** Section VII. Requestor Eligibility Information (Please refer to ECL § 27-1407) If answering "yes" to any of the following questions, please provide an explanation as an attachment. 1. Are any enforcement actions pending against the requestor regarding this site? No 2. Is the requestor subject to an existing order for the investigation, removal or remediation of contamination at the site? 3. Is the requestor subject to an outstanding claim by the Spill Fund for this site? Any questions regarding

whether a party is subject to a spill claim should be discussed with the Spill Fund Administrator. Yes No

Section VII. Requestor Eligibility Information (continued)

- 4. Has the requestor been determined in an administrative, civil or criminal proceeding to be in violation of i) any provision of the ECL Article 27; ii) any order or determination; iii) any regulation implementing Title 14; or iv) any similar statute, regulation of the state or federal government? If so, provide an explanation on a separate attachment.

 Yes No
- 5. Has the requestor previously been denied entry to the BCP? If so, include information relative to the application, such as name, address, DEC assigned site number, the reason for denial, and other relevant information.

 Yes No
- 6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving the handling, storing, treating, disposing or transporting of contaminants? Yes No
- 7. Has the requestor been convicted of a criminal offense i) involving the handling, storing, treating, disposing or transporting of contaminants; or ii) that involves a violent felony, fraud, bribery, perjury, theft, or offense against public administration (as that term is used in Article 195 of the Penal Law) under federal law or the laws of any state?

 Yes No
- 8. Has the requestor knowingly falsified statements or concealed material facts in any matter within the jurisdiction of DEC, or submitted a false statement or made use of or made a false statement in connection with any document or application submitted to DEC?

 Yes No
- 9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.9 (f) that committed an act or failed to act, and such act or failure to act could be the basis for denial of a BCP application? Yes No
- 10. Was the requestor's participation in any remedial program under DEC's oversight terminated by DEC or by a court for failure to substantially comply with an agreement or order? Yes No
- 11. Are there any unregistered bulk storage tanks on-site which require registration?

 Yes No

THE REQUESTOR MUST CERTIFY THAT HE/SHE IS EITHER A PARTICIPANT OR VOLUNTEER IN ACCORDANCE WITH ECL 27-1405 (1) BY CHECKING ONE OF THE BOXES BELOW:

PARTICIPANT

A requestor who either 1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum or 2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.

VOLUNTEER

A requestor other than a participant, including a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.

NOTE: By checking this box, a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site certifies that he/she has exercised appropriate care with respect to the hazardous waste found at the facility by taking reasonable steps to: i) stop any continuing discharge; ii) prevent any threatened future release; iii) prevent or limit human, environmental, or natural resource exposure to any previously released hazardous waste.

See Attachment G

If a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site, submit a statement describing why you should be considered a volunteer – be specific as to the appropriate care taken.

Sec	ction VII. Requestor Eligibility Information (continued)		
	questor Relationship to Property (check one): Previous Owner		
be	equestor is not the current site owner, proof of site access sufficient to complete the rer submitted . Proof must show that the requestor will have access to the property before sig d throughout the BCP project, including the ability to place an easement on the site. Is this Yes. No	ning the	e BCA
No	te: a purchase contract does not suffice as proof of access.		
NO	te. a purchase contract does not suffice as proof of access.		
Sec	ction VIII. Property Eligibility Information - See Instructions for Further Guidance		
1.	Is / was the property, or any portion of the property, listed on the National Priorities List? If yes, please provide relevant information as an attachment.	Vaa	No
2	Is / was the property, or any portion of the property, listed on the NYS Registry of Inactive	Yes	No
	Hazardous Waste Disposal Sites pursuant to ECL 27-1305? If yes, please provide: Site # Class #	Yes	No
	Is / was the property subject to a permit under ECL Article 27, Title 9, other than an Interim facility? If yes, please provide: Permit type: EPA ID Number: Permit expiration date:	Yes	No No
	Date permit issued: Permit expiration date:		
4.	If the answer to question 2 or 3 above is yes, is the site owned by a volunteer as defined u 1405(1)(b), or under contract to be transferred to a volunteer? Attach any information availarequestor related to previous owners or operators of the facility or property and their financincluding any bankruptcy filing and corporate dissolution documentation.	able to	the
5.	Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 1 If yes, please provide: Order #	7 Title 1 Yes	10? No
6.	Is the property subject to a state or federal enforcement action related to hazardous waste If yes, please provide explanation as an attachment.	or petr	oleum? No

Section IX. Contact List Information

To be considered complete, the application must include the Brownfield Site Contact List in accordance with DER-23 / Citizen Participation Handbook for Remedial Programs. Please attach, at a minimum, the names and addresses of the following:

See Attachment H

- 1. The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.
- 2. Residents, owners, and occupants of the property and properties adjacent to the property.
- 3. Local news media from which the community typically obtains information.
- 4. The public water supplier which services the area in which the property is located.
- 5. Any person who has requested to be placed on the contact list.
- 6. The administrator of any school or day care facility located on or near the property.
- 7. The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.

Section X. Land Use Factors	
1. What is the current municipal zoning designation for the site? What uses are allowed by the current zoning? (Check boxes, below) Residential Commercial Industrial If zoning change is imminent, please provide documentation from the appropriate zoning.	g authority.
Current Use: Residential Commercial Industrial Vacant Recreational (capply) See Attachment I Attach a summary of current business operations or uses, with an emphasis on icapossible contaminant source areas. If operations or uses have ceased, provide the	
3. Reasonably anticipated use Post Remediation: Residential Commercial Indust that apply) Attach a statement detailing the specific proposed use.	rial (check all
If residential, does it qualify as single family housing? See Attachment I	Yes No
4. Do current historical and/or recent development patterns support the proposed use?	Yes No
	See Attachment J
5. Is the proposed use consistent with applicable zoning laws/maps? Briefly explain below, or attach additional information and documentation if necessary.	Yes No
6. Is the proposed use consistent with applicable comprehensive community master plans, local waterfront revitalization plans, or other adopted land use plans? Briefly explain below, or attach additional information and documentation if necessary.	Yes No

XI. Statement of Certifica	tion and Signatures
(By requestor who is an in	dividual)
Agreement (BCA) within 60 conditions set forth in the Lin the event of a conflict bein a site-specific BCA, the information provided on this	yed, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup of days of the date of DEC's approval letter; (2) to the general terms and DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that tween the general terms and conditions of participation and the terms contained terms in the site-specific BCA shall control. Further, I hereby affirm that is form and its attachments is true and complete to the best of my knowledge and of false statement made herein is punishable as a Class A misdemeanor pursuant and Law.
Date:	Signature:
Print Name:	
authorized by that entity to all subsequent amendmen direction. If this application the date of DEC's approva DER-32, Brownfield Clean between the general terms the terms in the site-specifiform and its attachments is false statement made here Penal Law.	(title) of Howard (entity); that I am make this application and execute the Brownfield Cleanup Agreement (BCA) and its; that this application was prepared by me or under my supervision and its approved, I acknowledge and agree: (1) to execute a BCA within 60 days of letter; (2) to the general terms and conditions set forth in the up Program Applications and Agreements; and (3) that in the event of a conflict and conditions of participation and the terms contained in a site-specific BCA, it because the best of my knowledge and belief. I am aware that any in is punishable as a Class A misdemeanor pursuant to Section 210.45 of the
contents, and one co (PDF), must be sent	paper copy of the application form with original signatures and table of implete electronic copy in final, non-fillable Portable Document Format to:

- Division of Environmental Remediation
 625 Broadway
 Albany, NY 12233-7020

PLEASE DO NOT SUBMIT PAPER COPIES OF SUPPORTING DOCUMENTS. Please provide a hard copy of ONLY the application form and a table of contents.

FOR DEC USE ONLY		
BCP SITE T&A CODE:	LEAD OFFICE:	

Supplemental Questions for Sites Seeking Tangible Property Credits in New

York City ONLY. Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27 1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 11

Property is in Bronx, Kings, New York, Queens, or Richmond counties.				
Requestor seeks a determination that the site is eligible for the tangible property credit component of brownfield redevelopment tax credit.				
Please answer questions below and provide documentation necessary to support answers.				
Is at least 50% of the site area located within ar Please see <u>DEC's website</u> for more information		ax Law 21 Yes	(b)(6)? No	
2. Is the property upside down or underutilized as	defined below? Upside Down?	Yes	No	
	Underutilized?	Yes	No	

From ECL 27-1405(31):

"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.

From 6 NYCRR 375-3.2(I) as of August 12, 2016: (Please note: Eligibility determination for the underutilized category can only be made at the time of application)

375-3.2:

- (I) "Underutilized" means, as of the date of application, real property on which no more than fifty percent of the permissible floor area of the building or buildings is certified by the applicant to have been used under the applicable base zoning for at least three years prior to the application, which zoning has been in effect for at least three years; and
- (1) the proposed use is at least 75 percent for industrial uses; or
- (2) at which:
- (i) the proposed use is at least 75 percent for commercial or commercial and industrial uses;
- (ii) the proposed development could not take place without substantial government assistance, as certified by the municipality in which the site is located; and
- (iii) one or more of the following conditions exists, as certified by the applicant:
- (a) property tax payments have been in arrears for at least five years immediately prior to the application;
- (b) a building is presently condemned, or presently exhibits documented structural deficiencies, as certified by a professional engineer, which present a public health or safety hazard; or (c) there are no structures.
- "Substantial government assistance" shall mean a substantial loan, grant, land purchase subsidy, land purchase cost exemption or waiver, or tax credit, or some combination thereof, from a governmental entity.

Supplemental Questions for Sites Seeking Tangible Property Credits in New York City (continued)

3. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the New York City Department of Housing, Preservation and Development; the New York State Housing Trust Fund Corporation; the New York State Department of Housing and Community Renewal; or the New York State Housing Finance Agency, though other entities may be acceptable pending Department review). Check appropriate box, below:

Project is an Affordable Housing Project - Regulatory Agreement Attached;

Project is Planned as Affordable Housing, But Agreement is Not Yet Available* (*Checking this box will result in a "pending" status. The Regulatory Agreement will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.);

This is Not an Affordable Housing Project.

From 6 NYCRR 375- 3.2(a) as of August 12, 2016:

- (a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
- (1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' households annual gross income.
- (2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for home owners at a defined maximum percentage of the area median income.
- (3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

BCP Application Summary (for DEC use only)							
Site Name: City:		Site Address: County:			Zip:		
Tax Block & Lot Section (if applicable):	Block	ς:		Lo	ot:		
Requestor Name: City:			Req Zip:	uestor A	ddress:	Email:	
Requestor's Representative (for Name: City:	billing pur Addre	•	z	ip:		Email:	
Requestor's Attorney Name: City:	Addre	ss:	Z	lip:		Email:	
Requestor's Consultant Name: City:	Addre	ss:	Ž	Zip:		Email:	
Percentage claimed within an Er	n-Zone:	0%	< 50 %	6	50-99%	1009	%
DER Determination: Agree	ee [Disagree					
Requestor's Requested Status:	Volur	nteer	Partic	ipant			
DER/OGC Determination: Notes:	Agree	Disa	gree				
For NYC Sites, is the Reques	tor Seekir	ng Tangib	le Prop	erty Cre	dits:	Yes	No
Does Requestor Claim Prop	erty is Up	side Dowi	n:	Yes	No		
DER/OGC Determination: Notes:	Agree	Disagr	ee	Undeterr	mined		
Does Requestor Claim Prop	erty is Un	derutilize	d:	Yes	No		
DER/OGC Determination: Notes:	Agree	Disag	ree	Undete	rmined		
Does Requestor Claim Affor	dable Hou	ısing Stat	us:	Yes	No	Planned	, No Contract
DER/OGC Determination: Notes:	Agree	D	isagree	Uı	ndetermi		

ATTACHMENT A

Attachment A-1

Section I. Additional Requestor Information

Requestor: 462 Lexington LLC

Owner's name: Bruchy Lefkowitz

Members/owners names are listed on the NYS Department of State's Corporation & Business Entity Database. *Bruchy Lefkowitz (100%) is the sole owner of this entity.*

Is the requestor authorized to conduct business in New York State (NYS)? YES (See Attachment A) Do all individuals that will be certifying documents meet the requirements detailed in Section 1.5 of DER-10: Technical Guidance for Site Investigation and Remediation and Article 145 of New York State Education Law? YES

Entity Information Page 1 of 2

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through January 5, 2021.

Selected Entity Name: 462 LEXINGTON LLC

Selected Entity Status Information

Current Entity Name: 462 LEXINGTON LLC

DOS ID #: 3386450

Initial DOS Filing Date: JULY 11, 2006

County: KINGS

Jurisdiction: NEW YORK

Entity Type: DOMESTIC LIMITED LIABILITY COMPANY

Current Entity Status: ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity)

462 LEXINGTON LLC 89 BARTLETT ST BROOKLYN, NEW YORK, 11206

Registered Agent

NONE

This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address (es) of the original members, however this

Entity Information Page 2 of 2

information is not recorded and only available by viewing the certificate.

*Stock Information

of Shares Type of Stock \$ Value per Share

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing Date Name Type Entity Name

JUL 11, 2006 Actual 462 LEXINGTON LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

ATTACHMENT B

Attachment B

Section II.3 Description of Development Project

Introduction

The Site is located at 205 Park Avenue in the Wallabout section in Brooklyn, New York and is identified as Block 2033 and Lot 50 on the New York City Tax Map. The Site is about 12,808 square feet and is bounded by a vacant lot and residential building to the north, Brooklyn Queens Expressway to the south, Vespa Brooklyn/Aprilia/Moto Guzzi Brooklyn/Second Repair, a motorcycle and motor scooter dealer and private residences to the east, and residential buildings, to the west. Pedestrian sidewalks surround the Site on the western, eastern, and southern sides. The Site is a vacant lot and is unused by the current owner.

<u>Description of Anticipated Development</u>

The proposed future use of the Site will consist of one new 9 story mixed-use commercial-residential building which will cover approximately 86% of the Site. 14% of the Site will be used for a courtyard located in the central northern area, and a terrace on the third floor which will be covered with pavers. The proposed building would rise to about 126 feet in height and include a full height cellar level requiring excavation of the entire Site to a depth of approximately 14 ft below grade. The building will contain commercial uses, a community facility, recreation space, and parking. The building will also include 25% mandatory affordable housing units (90 residential dwelling units, including 23 affordable apartments). The total project includes about 61,224 sf of residential space, 9,169 sf of commercial space, and 1,157 sf of community facility. The current zoning designation is R7D/C2-4. The proposed use is consistent with existing zoning for the property.

The redevelopment of the Site would turn a vacant and contaminated property into a productive, safe use that is compatible with the surrounding suburban neighborhood. The current zoning of the property allows the intended reuse. The area surrounding the Site consists of a mix of residential and commercial properties

Overall the State of New York and the county of Brooklyn/Kings stand to gain from the remediation and redevelopment of this contaminated property. However, the site has environmental impacts that will hinder development and needs to be deemed an eligible brownfield in order to processed with any planned re-use.

Anticipated Timeline for Site Remediation and Development

The remedial investigation is anticipated to begin on or around 6/1/2021. Remediation is anticipated to begin on and around 8/1/2021. The anticipated date for the Certificate of Completion is 12/1/2022. The anticipated project schedule is as follows:

May 1, 2021	Approval of Remedial Investigation Work Plan
June 1, 2021	Implementation of Remedial Investigation Work Plan
July 1, 2021	Remedial Investigation Report/Remedial Action Work Plan
August 1, 2021	Commencement of Remediation under the RAWP and construction.
May 1, 2022	Submission of Final Engineering Report
September 1, 2022	Completion of Building Construction
December 1, 2022	Certificate of Completion

ATTACHMENT C

Attachment C

Section III. Property's Environmental History

Section III.1 Reports

GZA has completed the following Phase I and Phase II environmental investigation reports for the Site:

- Phase I Environmental Site Assessment, 205 Park Avenue, GZA, March 2019
- Phase II remedial Investigations Report, 205 Park Avenue, GZA, February 29, 2020

In December 2020, GZA performed a supplemental remedial investigation designed to collect additional data to evaluate the potential impact of Recognized Environmental Conditions (RECs) on Site. The information presented in these reports and the data collected from supplemental remedial investigation are summarized below. Electronic copies of these reports are included in this attachment.

2019 Phase I

In May 2019, GZA completed a Phase I Environmental Site Assessment (ESA) for the Site in accordance with the scope and limitations of ASTM Practice E1527-13. The Phase I ESA identified the following RECs:

- The Site is a NYC E-Designated property with environmental requirements related to air, noise, and hazardous materials that must be investigated and addressed before a building permit can be obtained for the property's redevelopment.
- The Site has been historically identified by city directories as a dry cleaner and auto service facility.

2020 Remedial Investigation Report

In 2020, 462 Lexington, LLC retained GZA to perform a Phase II Site investigation to evaluate any potential impacts caused by the RECs identified during the Phase I. GZA performed the following scope of work:

- 1. Advancement of 10 soil borings at locations across the project Site, and collection of 20 soil samples for chemical analysis from the soil borings to evaluate environmental soil quality;
- Installation of five temporary groundwater monitoring wells at locations on the Site to establish groundwater flow and collection of five groundwater samples for chemical analysis to evaluate groundwater quality;
- 3. Installation of seven soil vapor probes around the Site's perimeter and collection of seven soil vapor samples for chemical analysis.

All samples were sent to Alpha Analytical, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. Electronic copies of the laboratory reports for GZA's investigation are included in this attachment.

Soil – The soil sampling locations and results are shown in a figure and table following this narrative. Soil/fill samples collected during the RI were compared to the NYSDEC Part 375 Unrestricted Use (UU) Soil Cleanup Objectives (SCOs) and Restricted Residential (RR) SCOs. Soil/fill samples results showed:

- Semi-Volatile Organic Compounds (SVOCs) including benz(a)anthracene (1.9 mg/kg), benzo(a)pyrene (1.9 mg/kg), benzo(b)fluoranthene (2.5 mg/kg), benzo(k)fluoranthene (0.9 mg/kg), chrysene (1.5 mg/kg), and indeno(1,2,3-cd)pyrene (1.3 mg/kg) were detected above their respective UUSCOs at a depth of 15.5 to 16 ft below ground surface (bgs) at soil boring location SB-5. Of these SVOCs, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene also exceeded their respective RRSCOs.
- Copper (78.1 mg/kg) exceeded UUSCOs at 15 to 15.5 ft bgs at location SB-3.
- Pesticides including 4,4'-DDE (0.0215 mg/kg), 4,4'-DDD (0.00938 mg/kg), and 4,4'-DDT (0.0464 mg/kg) were detected exceeding their respective UUSCOs at 5.5 to 6 ft bgs at location SB-6.

Groundwater – The groundwater sampling locations and results are shown in a figure and table following this narrative. The groundwater samples taken from temporary wells installed across the Site were compared to NYSDEC Part 703.5 Groundwater Quality Standards (GQS). Groundwater samples results showed:

- \circ Tetrachloroethene (PCE) was detected above GQS in all groundwater samples and ranged from 6 to 20 μ g/L.
- \circ SVOCs including benzo(a)anthracene (max. of 0.39 μg/L), benzo(a)pyrene (max. of 0.36 μg/L) benzo(b)fluoranthene (max. of 0.43 μg/L), benzo(k)fluoranthene (max. of 0.15 μg/L), chrysene (max. of 0.35 μg/L), and indeno(1,2,3-cd)pyrene (max. of 0.24 μg/L) were detected above their respective GQS in all five samples.
- \circ Pesticide dieldrin was detected above GQS in three of the groundwater samples with the highest estimated concentration of 0.022 μ g/L.
- Several total metals were detected above GQS in one or more of the groundwater samples, including aluminum, barium, beryllium, cadmium, chromium, iron, lead, magnesium, manganese, nickel, selenium, and thallium. These compounds were found in groundwater samples from across the entire Site. Concentrations of antimony ranged from 2,960 to 29,100 ug/L, concentrations of iron ranged from 1,380 to 36,400 ug/L, concentrations of manganese ranged from 640.3 to 294,500 ug/L. Barium, beryllium, cadmium, chromium, lead, magnesium, nickel, selenium, and thallium were detected at concentrations of 3,059 ug/L, 6.89 ug/L, 6.84 ug/L, 254.2 ug/L, 335.9 ug/L, 70,600 ug/L, 316.7 ug/L, 37.5 ug/L, and 0.95 ug/L. Manganese was detected at a concentration of 888 μg/L exceeding its GQS of 600 μg/L in dissolved groundwater.
- The groundwater sample from (TW-1) contained perfluorooctanoic Acid (PFOA) and perfluorooctanesulfonic Acid (PFOS) at the concentrations of 93.4 nanogram per liter (ng/L) and 32.4 ng/L, above their respective screening levels of 10 ng/L under NYSDEC's Part 375 Remedial Programs. TW-1 exhibited PFOA and PFOS at the combined concentration of 126 ng/L, below its screening level of 500 ng/ under NYSDEC's Part 375 Remedial Programs.
- 1,4-Dioxane was detected in TW -1 at an estimated concentration of 0.097 μg/L.

Soil Vapor - The soil vapor sampling points and results are shown in a figure and table following this narrative. The soil vapor samples taken were compared to the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York and Soil Vapor/Indoor Air decision matrices A through C (updated May 2017). Concentrations of petroleum-related VOCs (BTEX) ranged from 16.97 μ g/m³ to 43.37 μ g/m³. Overall, the highest reported concentration was for acetone (309 μ g/m³). PCE was detected in all of the

soil vapor samples and ranged from 55 $\mu g/m^3$ to 209 $\mu g/m^3$. Trichloroethene (TCE) was detected in 7 of 8 samples and ranged in concentration from 1.4 $\mu g/m^3$ to 23.8 $\mu g/m^3$. Carbon tetrachloride (max. of 5.25 $\mu g/m^3$), cis-1,2-Dichloroethene (max. of 2.45 $\mu g/m^3$), and 1,1,1- trichloroethane (TCA) (max. of 3.13 $\mu g/m^3$) were detected in one or more of the soil vapor samples. Concentrations of PCE and TCE are above the NYSDOH Guidance matrix and requires mitigation.

2020 Supplemental Remedial Investigation

In December 2020, GZA performed a supplemental investigation designed to collect additional soil data to evaluate the potential impact of RECs on Site. Three random shallow soil samples were collected from the 2' to 2.5' bgs intervals from the Site. All the supplemental soil samples were sent to Alpha Analytical, a NYSDOH ELAP certified laboratory. Electronic copies of the laboratory reports for GZA's investigation are included in this attachment (Lab Report L2055577).

Soil – The soil sampling locations and results are shown in a figure and table following this narrative. The soil analytical results were compared to the UUSCOs and RRSCOs. Soil/fill samples results showed:

- SVOCs including benzo(b)fluoranthene (1.2 mg/kg) and indeno(1,2,3-cd)pyrene (0.67 mg/kg) were detected above their respective RRSCOs at a depth of 2.5 to 3 ft bgs at soil boring location PARK AVE 5.
- Mercury (0.882 mg/kg) exceeded RRSCOs at 2.5 to 3 ft bg at location PARK AVE 3. Although not in exceedance of RRSCOs, various metals, including nickel, lead, and zinc exceeded the UUSCOs in all the three shallow soil samples.
- Two of the three supplemental samples contained SVOC or metal concentrations above their respective RRSCOs indicating the upper 4 feet is impacted by fill material related contaminants in addition to the deeper soils documented in the Phase II Site Investigation.

Section III.2 Sampling Data

Tables C-1 through C-4 summarize known contaminants and the media which are known to be affected as documented in the above referenced reports and supplemental investigation.

Section III.3 Site Drawings

Figures C-1 through C-6 present Site plans that show the location of known contaminants on Site by media.

Figures C-1 through C-6

LEGEND:

SITE BOUNDARY

SOIL BORING LOCATION

SOIL VAPOR IMPLANT LOCATION

SOIL BORING LOCATION CONVERTED TO TEMPORARY WELL POINT

SUPPLEMENTAL SOIL BORINGS

NOTES:

1. BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

NO.	ISSUE/DESCRIPTION	BY	DATE
	,		

NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZACOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S
LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON
HE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR
SE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF ZA. ANY
RANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN
PRESS CONSENTIOR CZA. WILL BE AT THE JISEP'S SOLE RISK AND WITHOUT AND PRICK OF LABILITY TO CZA.

205 PARK AVENUE BROOKLYN, NEW YORK

SAMPLE LOCATION PLAN

PREPARED BY:		PREPARED FOR:	
Engine	Environmental of NY ers and Scientists ww.gza.com	462 LEXINO	GTON, LLC.
PROJ MGR: ZS	REVIEWED BY: ZS	CHECKED BY: DW	FIGURE
DESIGNED BY: ZS	DRAWN BY: MT	SCALE: 1" = 40'	4
DATE:	PROJECT NO.	REVISION NO.	l l
MARCH 2021	12.0076834.10		SHEET NO.

LOCATION NYSDEC TOGS	TW-5	
SAMPLING DATE	Standards and	1/7/2020
LAB SAMPLE ID	Guidance	L2000635-02
SAMPLE DEPTH (ft.)	Values-GA	28 ft bgs
		μg/l
Vola	tile Organics	
Tetrachloroethene	5	6
Chloroform	7	36
Semivo	latile Organics	
Benzo(a)anthracene	0.002	0.39
Benzo(a)pyrene	0	0.36
Benzo(b)fluoranthene	0.002	0.43
Benzo(k)fluoranthene	0.002	0.15
Chrysene	0.002	0.35
Indeno(1,2,3-cd)pyrene	0.002	0.24
Total Metals		
Aluminum, Total	2000	13,800
Iron, Total	600	26,800
Lead, Total	50	81.89
Manganese, Total	600	2,121

LOCATION	NYSDEC TOGS	TW-4
SAMPLING DATE	Standards and	1/7/2020
LAB SAMPLE ID	Guidance	L2000635-01
SAMPLE DEPTH (ft.)	Values-GA	33 ft bgs
		μg/l
Vola	tile Organics	
Tetrachloroethene	5	8.7
Chloroform	7	34
Semivo	latile Organics	
Benzo(a)anthracene	0.002	0.05J
Benzo(a)pyrene	0	0.03J
Benzo(b)fluoranthene	0.002	0.04J
Benzo(k)fluoranthene	0.002	0.02J
Chrysene	0.002	0.03J
Indeno(1,2,3-cd)pyrene	0.002	0.03J
То		
Aluminum, Total	2000	2,960
Iron, Total	600	5,320
Manganese, Total	600	676.8

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE DEPTH (ft.)	NYSDEC TOGS Standards and Guidance Values-GA	TW-3 1/8/2020 L2000844-03 33 ft bgs
Vol	atile Organics	1 0.
Tetrachloroethene	5	20
Semi	olatile Organics	
Benzo(a)anthracene	0.002	0.1J
Benzo(a)pyrene	0	0.08J
Benzo(b)fluoranthene	0.002	0.11
Benzo(k)fluoranthene	0.002	0.04J
Chrysene	0.002	0.07J
Indeno(1,2,3-cd)pyrene	0.002	0.05J
T	otal Metals	
Aluminum, Total	2000	3,320
Iron, Total	600	6,860
Manganese, Total	600	917
Thallium, Total	0.5	0.95J
Organo	chlorine Pesticides	
Dieldrin	0.004	0.018J

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE DEPTH (ft.)	NYSDEC TOGS Standards and Guidance Values-GA	TW-2 1/8/2020 L2000844-02 33 ft bgs
Volati	le Organics	рв/1
Tetrachloroethene	5	10
Semivol	atile Organics	
Benzo(a)anthracene	0.002	0.03J
Benzo(a)pyrene	0	0.02J
Benzo(b)fluoranthene	0.002	0.03J
Benzo(k)fluoranthene	0.002	0.01J
Chrysene	0.002	0.02J
Indeno(1,2,3-cd)pyrene	0.002	0.02J
Tot	al Metals	
Iron, Total	600	1,640
Manganese, Total	600	640.3
Organochl	orine Pesticides	
Dieldrin	0.004	0.009J

LOCATION		TW-1
SAMPLING DATE	NYSDEC TOGS Standards and	1/6/2020, 1/8/2020
LAB SAMPLE ID	Guidance Values-GA	L2000844-01,L2000463-09
SAMPLE DEPTH (ft.)		28 ft bgs
		μg/l
	Volatile Organics	
Tetrachloroethene	5	18
	Semivolatile Organics	
Benzo(a)anthracene	0.002	0.08J
Benzo(a)pyrene	0	0.06J
Benzo(b)fluoranthene	0.002	0.09J
Benzo(k)fluoranthene	0.002	0.04J
Chrysene	0.002	0.06J
Indeno(1,2,3-cd)pyrene	0.002	0.06J
	Total Metals	
Aluminum, Total	2000	29,100
Barium, Total	2000	3,059
Beryllium, Total	3	6.89
Chromium, Total	100	254.2
Iron, Total	600	36,400
Lead, Total	50	335.9
Magnesium, Total	35000	70,600
Manganese, Total	600	29,450
Nickel, Total	200	316.7
Selenium, Total	20	37.5
	Dossolved Metals	
Manganese, Dissolved	600	888
0	rganochlorine Pesticide	s
Dieldrin	0.004	0.022J

LEGEND:

SITE BOUNDARY

SOIL BORING LOCATION TO BE CONVERTED TO TEMPORARY WELL POINT

THIS VALUE EXCEEDS NYSDEC TOGS STANDARDS AND GUIDANCE VALUES-GA

J INDICATES ESTIMATED VALUE

μg/I MICROGRAMS PER LITER

NOTES:

1. BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

NO.	ISSUE/DESCRIPTION	BY	DATE

NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA COENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON IE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR EAT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OZA. ANY MANSER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN DRAWING THE PRIOR WRITTEN DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN

205 PARK AVENUE BROOKLYN, NEW YORK

GROUNDWATER SAMPLE EXCEEDANCES

PREPARED BY:		PREPARED FOR:	
GZA GeoEnvironmental of NY Engineers and Scientists www.gza.com		462 LEXINGTON, LLC.	
PROJ MGR: ZS	REVIEWED BY: ZS	CHECKED BY: DW	FIGURE
DESIGNED BY: ZS	DRAWN BY: MT	SCALE: 1" = 40'	2
DATE:	PROJECT NO.	REVISION NO.	3
MARCH 2021	12.0076834.10		SHEET NO.

LOCATION	SG-8 (5-6')	SG-8 (20-21')					
SAMPLING DATE	1/8/2020	1/9/2020					
LAB SAMPLE ID	L2000840-06	L2001065-03					
Volatile Organics in Air	ug/i	13					
Dichlorodifluoromethane	1.9	2.73					
1,3-Butadiene	2.57	3.85					
Acetone	109	309					
Trichlorofluoromethane	ND	1.98					
Isopropanol	3.71	ND					
Tertiary butyl Alcohol	1.69	ND					
Carbon disulfide	2.98	1.42					
1,1-Dichloroethane	ND	1.41					
2-Butanone	5.84	9.59					
Chloroform	19.8	288					
Tetrahydrofuran	5.84	2.28					
n-Hexane	4.72	5.57					
1,1,1-Trichloroethane	2.48	2.55					
Benzene	2.97	3.26					
Carbon tetrachloride	3.48	5.25					
Cyclohexane	0.733	0.919					
Trichloroethene	1.42	11.3					
Heptane	2.86	3.33					
Toluene	11	12.9					
2-Hexanone	ND	0.84					
Tetrachloroethene	55.4	181					
Ethylbenzene	2.44	3.08					
p/m-Xylene	8.9	10.9					
o-Xylene	2.88	3.45					
1,3,5-Trimethylbenzene	0.988	ND					
1,2,4-Trimethylbenzene	4.58	2.62					

LOCATION	SG-7 (20-21')
SAMPLING DATE	1/8/2020
LAB SAMPLE ID	L2000840-05
Volatile Organics in Air	ug/m3
Dichlorodifluoromethane	1.93
1,3-Butadiene	1.05
Acetone	105
Trichlorofluoromethane	1.2
Isopropanol	3.24
Carbon disulfide	1.82
2-Butanone	6.43
Chloroform	133
Tetrahydrofuran	5.22
n-Hexane	3.48
1,1,1-Trichloroethane	1.37
Benzene	2.58
Carbon tetrachloride	2.07
Cyclohexane	1.1
Bromodichloromethane	1.45
Trichloroethene	12.6
2,2,4-Trimethylpentane	1.02
Heptane	2.7
Toluene	15.4
Tetrachloroethene	134
Ethylbenzene	3.65
p/m-Xylene	11.6
o-Xylene	3.71
1,2,4-Trimethylbenzene	4.53

LOCATION	SG-5 (20-21')
SAMPLING DATE	1/8/2020
LAB SAMPLE ID	L2000840-03
Volatile Organics in Air	ug/m3
Dichlorodifluoromethane	2.62
1,3-Butadiene	13.1
Ethanol	10.5
Acetone	59.9
Isopropanol	3.61
Tertiary butyl Alcohol	2.38
Carbon disulfide	31
2-Butanone	8.76
cis-1,2-Dichloroethene	2.45
Chloroform	54.7
Tetrahydrofuran	5.43
n-Hexane	9.13
Benzene	14.6
Carbon tetrachloride	1.43
Cyclohexane	5.47
Trichloroethene	18.3
Heptane	6.48
4-Methyl-2-pentanone	2.09
Toluene	14.7
2-Hexanone	1.05
Tetrachloroethene	174
Ethylbenzene	2.57
p/m-Xylene	8.82
o-Xylene	2.68
1,2,4-Trimethylbenzene	3.89

SAMPLING DATE	1/8/2020	1/8/2020
LAB SAMPLE ID	L2000840-04	L2001065-04
Volatile Organics in Air	ug/	m3
Dichlorodifluoromethane	2.52	3.09
1,3-Butadiene	1.12	0.832
Ethanol	20.9	18.2
Acetone	138	144
Trichlorofluoromethane	1.42	2.11
Isopropanol	4.57	3
Tertiary butyl Alcohol	4.61	4.79
Carbon disulfide	1.82	1.4
2-Butanone	5.96	5.19
Chloroform	11.5	15.9
Tetrahydrofuran	6.31	4.78
n-Hexane	4.05	2.66
1,1,1-Trichloroethane	ND	1.12
Benzene	2.42	1.84
Carbon tetrachloride	ND	1.39
Cyclohexane	0.833	ND
Trichloroethene	8.6	11.4
2,2,4-Trimethylpentane	1.18	ND
Heptane	2.48	1.84
Toluene	11.4	8.89
Tetrachloroethene	88.8	209
Ethylbenzene	1.82	2.22
p/m-Xylene	6.25	7.38
o-Xylene	2.07	2.21
1,2,4-Trimethylbenzene	4.61	3.07
1,3-Dichlorobenzene	1.73	1.88

SG-6 (20-21') SG-6 (20-21') DUP

LOCATION

LOCATION	SG-3 (20-21')						
SAMPLING DATE	1/8/2020						
LAB SAMPLE ID	L2000840-02						
Volatile Organics in Air	Result						
Dichlorodifluoromethane	2.13						
1,3-Butadiene	5.75						
Acetone	76.7						
Isopropanol	2.14						
Carbon disulfide	10.3						
2-Butanone	4.6						
cis-1,2-Dichloroethene	1.8						
Chloroform	58.6						
Tetrahydrofuran	5.99						
n-Hexane	6.45						
1,1,1-Trichloroethane	3.13						
Benzene	6.01						
Carbon tetrachloride	2.56						
Cyclohexane	1.42						
Trichloroethene	23.8						
Heptane	3.78						
Toluene	15.9						
Tetrachloroethene	182						
Ethylbenzene	3.25						
p/m-Xylene	11.4						
o-Xylene	3.51						
1,2,4-Trimethylbenzene	4						

LOCATION	SG-2 (5-6')	SG-2 (20-21')				
SAMPLING DATE	1/8/2020	1/9/2020				
LAB SAMPLE ID	L2000840-01	L2001065-02				
Volatile Organics in Air	u	ug/m3				
Dichlorodifluoromethane	1.65	2.24				
1,3-Butadiene	ND	0.794				
Ethanol	ND	9.93				
Acetone	62	161				
Trichlorofluoromethane	ND	1.69				
Isopropanol	3.07	2.16				
Tertiary butyl Alcohol	ND	3.55				
Methylene chloride	1.8	ND				
Carbon disulfide	ND	1.14				
2-Butanone	3.13	3.86				
Chloroform	ND	3.22				
Tetrahydrofuran	4.36	3.51				
n-Hexane	1.6	3.45				
Benzene	1.11	2.06				
Trichloroethene	ND	1.6				
Heptane	1.08	2.03				
Toluene	7.99	7.99				
Tetrachloroethene	25.1	41.8				
Ethylbenzene	1.84	1.27				
p/m-Xylene	7.43	4.34				
o-Xylene	2.42	1.31				
1,2,4-Trimethylbenzene	4.51	1.9				

LOCATION	SG-1 (20-21')
SAMPLING DATE	1/9/2020
LAB SAMPLE ID	L2001065-01
Volatile Organics in Air	ug/m3
Dichlorodifluoromethane	2.38
1,3-Butadiene	1.72
Acetone	94.8
Trichlorofluoromethane	1.43
Carbon disulfide	2.11
2-Butanone	2.88
Chloroform	33.2
Tetrahydrofuran	2.85
n-Hexane	3.7
Benzene	2.3
Cyclohexane	0.812
Trichloroethene	9.46
Heptane	2.25
Toluene	10.2
Tetrachloroethene	113
Ethylbenzene	2.02
p/m-Xylene	6.73
o-Xylene	1.95
1,2,4-Trimethylbenzene	1.47

LEGEND:

SITE BOUNDARY

SOIL VAPOR IMPLANT LOCATION

 $_{\mbox{\scriptsize ND}}$ INDICATES COMPOUND ANALYZED FOR BUT NOT DETECTED

BOLD COMPOUND DETECTED IN SAMPLE

ug/m3 MICROGRAM PER CUBIC METER OR AIR

NOTES:

 BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOEN/IRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION DETERMINED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN

205 PARK AVENUE BROOKLYN, NEW YORK

SOIL VAPOR DETECTIONS

PREPARED BY:		PREPARED FOR:	
Engine	Environmental of NY ers and Scientists ww.gza.com	462 LEXINO	GTON, LLC.
PROJ MGR: ZS	REVIEWED BY: ZS	CHECKED BY: DW	FIGURE
DESIGNED BY: ZS	DRAWN BY: MT	SCALE: 1" = 40'	4
DATE: MARCH 2021	PROJECT NO. 12.0076834.10	REVISION NO.	SHEET NO.

LEGEND:

--- SITE BOUNDARY

SOIL BORING LOCATION

SOIL VAPOR IMPLANT LOCATION

SOIL BORING LOCATION CONVERTED TO TEMPORARY WELL POINT

SUPPLEMENTAL SOIL BORINGS

NOTES:

1. BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

NO.	ISSUE/DESCRIPTION	BY	DATE

NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT. THIS DRAWING IS THE SOLE PROPERTY OF GZA. OCENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON IE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR E AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OZA. ANY NAMSEER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN DREESS CONSENTING CS. WILLIAM OF THE PRIOR WRITTEN AND THE PROPERS OF THE PRIOR WRITTEN AND THE PRIOR WRITTEN AND THE PROPERS OF THE PROP

> 205 PARK AVENUE BROOKLYN, NEW YORK

CROSS-SECTION LOCATIONS

PREPARED BY:		PREPARED FOR:								
Engineer	Environmental, Inc. s and Scientists w.gza.com	462 LEXINO	GTON, LLC.							
PROJ MGR: ZS	REVIEWED BY: ZS	CHECKED BY: DW	FIGURE							
DESIGNED BY: ZS	DRAWN BY: MT	SCALE: 1" = 40'	E							
DATE:		REVISION NO.) J							
MARCH 2021	12.0076834.10		SHEET NO.							

Tables C-1 through C-4

Table 1: Soil Analytical Results 205 Park Avenue Brooklyn, New York

SAMPLE ID			SB-1 (15.5-1	6') SB-1 (6.5-7') SB-2 (16-16.5')				I SB-2	(3.5-4'	۱ [SB-3 (15-15.5)	'\	SB-3 (7-7.5')		SB-4 (15-15.5')		SB-4 (3-3.5')		SB-5 (15.5-16	'\	SB-5 (5.5-6')		SB-6 (5.5-6')	SB-6 (15.5-16		
SAMPLING DATE	NYS Part 375	NYS Part 375	1/6/2020 1/6/2020		- 1	/ 	1/7/2020	, -	2020	+	1/7/2020	+	1/7/2020	_	1/6/2020	/ 	1/6/2020	′	1/6/2020	+	1/6/2020	+	1/7/2020		/7/2020	
LAB SAMPLE ID	Restricted-	Unrestricted	L2000463-02 L2000463-01)1	L2000632-02		632-0°	1	L2000632-04		L2000632-0	13	L2000463-04	1.	2000463-0	3	L2000463-06		L2000463-05	+	L2000632-05		000632-06		
SAMPLE DEPTH (fbgs)	Residential	0111001110100	15.5-16	=	6.5-7	- -	16-16.5		5-4	╧╁╴	15-15.5	+	7-7.5	_	15-15.5	╁═	3-3.35	_	15.5-16	+	5.5-6	ť	5.5-6		15.5-16	
(ge,			Result	Q	Result	IQ	Result IC) Res		Q	Result	Q	Result	Q	Result Q	2	Result	Q		Q	Result C	2	Result Q		esult Q	
General Chemistry				H		H				Ť		+				1				Ť		+				
Solids, Total (%)	-	-	96.6	П	93.7		94.3	91	3	+	92.3	+	92.5		95	1	91.6		92	7	93.3	+	92.4	g	97.2	
Volatile Organics by EPA 5035	(ma/ka)			-				•		_	•					_				_		+				
Methylene chloride	100	0.05	0.005	U	0.005	lυl	0.0052 L	0.00	46	υl	0.0046	υl	0.0042	U	0.0045 U	ار	0.0042	U	0.0048	U	0.0047 L	J	0.0041 U	0.	.0059 U	
1,1-Dichloroethane	26	0.27		Ū	0.001	Ū	0.001 L	0.00		Ū	0.00092	Ū	0.00084	Ū	0.0009 U		0.00085	U		Ū	0.00094 L	J	0.00083 U		.0012 U	
Chloroform	49	0.37	0.0015	U	0.0015	U	0.0016 L	0.00		U	0.0014	U	0.0013	U	0.0013 U		0.0013	U	0.0014	U	0.0014 L	丌	0.0012 U		.0018 U	
Carbon tetrachloride	2.4	0.76		U	0.001	U	0.001 L	0.00		U	0.00092	U	0.00084	U	0.0009 U		0.00085	U	0.00096	U	0.00094 L	丌	0.00083 U		.0012 U	
1,2-Dichloropropane	-	-	0.001	U	0.001	U	0.001 L	0.00	091	U	0.00092	U	0.00084	U	0.0009 U	J (0.00085	U	0.00096	U	0.00094 L	J	0.00083 U	0.	.0012 U	
Dibromochloromethane	-	-	0.001	U	0.001	U	0.001 L	0.00	091	U	0.00092	U	0.00084	U	0.0009 U	J (0.00085	U	0.00096	U	0.00094 L	J	0.00083 U	0.	.0012 U	
1,1,2-Trichloroethane	-	-	0.001	U	0.001	U	0.001 L	0.00	091	U	0.00092	U	0.00084	U	0.0009 U	J (0.00085	U	0.00096	U	0.00094 L	J	0.00083 U	0.	.0012 U	
Tetrachloroethene	19	1.3	0.00036	J	0.0005	U	0.00052 L	0.00	046	U	0.00046	U	0.00042	U	0.00045 U	J (0.00042	U	0.00026	J	0.00047 L	J	0.00041 U	0.0	00059 U	
Chlorobenzene	100	1.1	0.0005	U	0.0005	U	0.00052 L	0.00	046	U	0.00046	U	0.00042	U	0.00045 U	J (0.00042	U	0.00048	U	0.00047 L	J	0.00041 U	0.0	00059 U	
Trichlorofluoromethane	-	-	0.004	U	0.004	U	0.0042 L	0.00	36	U	0.0037	U	0.0034	U	0.0036 U	J	0.0034	U	0.0038	U	0.0038 L	J	0.0033 U	0.	.0047 U	
1,2-Dichloroethane	3.1	0.02	0.001	U	0.001	U	0.001 L	0.00	091	U	0.00092	U	0.00084	U	0.0009 U	J (0.00085	U	0.00096	U	0.00094 L	J	0.00083 U		.0012 U	
1,1,1-Trichloroethane	100	0.68	0.0005	U	0.0005	U	0.00052 L	0.00	046	U	0.00046	U	0.00042	U	0.00045 U	J (0.00042	U	0.00048	U	0.00047 L	J	0.00041 U	0.0	00059 U	
Bromodichloromethane	-	-	0.0005	U	0.0005	U	0.00052 L	0.00		U	0.00046	U	0.00042	U	0.00045 U		0.00042	U	0.00048	U	0.00047 L	J	0.00041 U		00059 U	
trans-1,3-Dichloropropene	-	ı	0.001	U	0.001	U	0.001 L	0.00	091	U	0.00092	U	0.00084	J	0.0009 U	J (0.00085	U	0.00096	U	0.00094 L	J	0.00083 U	0.	.0012 U	
cis-1,3-Dichloropropene	-	ı	0.0005	U	0.0005	U	0.00052 L	0.00)46	U	0.00046	U	0.00042	J	0.00045 U	J (0.00042	U	0.00048	U	0.00047 L	J	0.00041 U	0.0	00059 U	
1,3-Dichloropropene, Total	-	·	0.0005	U	0.0005	U	0.00052 L	0.00	046	U	0.00046	U	0.00042	U	0.00045 U	J (0.00042	U	0.00048	U	0.00047 L	J	0.00041 U		00059 U	
1,1-Dichloropropene	-	-	0.0005	U	0.0005	U	0.00052 L	0.00		U	0.00046	U	0.00042	U	0.00045 U		0.00042	U	0.00048	U	0.00047 L	J	0.00041 U		00059 U	
Bromoform	-	-	0.004	U	0.004	U	0.0042 L	0.00		U	0.0037	U	0.0034	U	0.0036 U		0.0034	U	0.0038	U	0.0038 L	J	0.0033 U		.0047 U	
1,1,2,2-Tetrachloroethane	-	-	0.0005	U	0.0005	U	0.00052 L	0.00		U	0.00046	U	0.00042	U	0.00045 U		0.00042	U	0.00044	J	0.00047 L	J	0.00041 U		00059 U	
Benzene	4.8	0.06	0.00018	J	0.0005	U	0.00052 L	0.00		U	0.00046	U	0.00042	U	0.00045 U		0.00042	U	0.00048	U	0.00047 L	<u> </u>	0.00041 U		00059 U	
Toluene	100	0.7		U	0.001	U	0.001 L	0.00		U	0.00092	U	0.00084	U	0.0009 U	_	0.00085	U	0.00096	U	0.00094 L	<u> </u>	0.00083 U		.0012 U	
Ethylbenzene	41	1		J	0.001	U	0.001 L	0.00	_	U	0.00092	U	0.00084	U	0.0009 U		0.00085	U	0.0000	U	0.00094 L	1	0.00083 U		.0012 U	
Chloromethane	-	-		U	0.004	U	0.0042 L	0.00	_	U	0.0037	U	0.0034	U	0.0036 U	_	0.0034	U		U	0.0038 L	<u> </u>	0.0033 U		.0047 U	
Bromomethane	-	-		U	0.002	U	0.0021 L	0.00		<u>U</u>	0.0018	U	0.0017	<u> </u>	0.0018 U		0.0017	U	0.00.0	U	0.0019 L	4	0.0016 U		.0024 U	
Vinyl chloride	0.9	0.02		U	0.001	U	0.001 L	0.00		U	0.00092	U	0.00084	0	0.0009 U	_	0.00085	U	0.0000	U	0.00094 L	4	0.00083 U		.0012 U	
Chloroethane	-	-		U	0.002		0.0021 L	0.00		니	0.0018	U	0.0017) :	0.0018 U		0.0017	U	0.00.0	U	0.0019 L	1	0.0016 U		.0024 U	
1,1-Dichloroethene	100	0.33		U	0.001	U	0.001 L	0.00	_	川	0.00092	ᆝ	0.00084	0 :	0.0009 U	_	0.00085	U	0.00096	뷔	0.00094 L	4	0.00083 U		.0012 U	
trans-1,2-Dichloroethene	100	0.19	0.0015	IJ	0.0015	U	0.0016 L	0.00		비	0.0014	U	0.0013 0.00042) :	0.0013 U	_	0.0013	U	0.0014	IJ	0.0014 L	1	0.0012 U		.0018 U	
Trichloroethene 1,2-Dichlorobenzene	21 100	0.47	0.0000	U	0.0005 0.002	0	0.00052 L 0.0021 L	0.00		川	0.00046 0.0018	U	0.00042) :	0.00045 U 0.0018 U		0.00042	U	0.00010	U	0.00047 L 0.0019 L	_	0.00041 U 0.0016 U		.00059 U	
1,3-Dichlorobenzene	49	1.1 2.4		U	0.002		0.0021 L	0.00	_	띪	0.0018	П	0.0017) =	0.0018 U		0.0017	11		U	0.0019 L	_	0.0016 U		.0024 U	
1,4-Dichlorobenzene	13	1.8		U	0.002		0.0021 L	0.00		H		J	0.0017) =	0.0018 U		0.0017	П		Ü	0.0019 L	_	0.0016 U		.0024 U	
Methyl tert butyl ether	100	0.93		U	0.002		0.0021 L	0.00		띪	0.00018	 	0.0017	7 =	0.0018 U		0.0017	J		U	0.0019 L	_	0.0016 U		.0024 U	
p/m-Xylene	-	0.93		J		띪	0.0021 L	0.00		귀	0.0018	귀	0.0017	기드	0.0018 U		0.0017	<u>ا</u>		U	0.0019 L	_	0.0016 U		.0024 U	
o-Xylene	-	-		J	0.002	ᆔ	0.0021 C	0.00		ᇤ	0.00092	끍	0.0017	거=	0.0009 U		0.0017	IJ	0.0019	ਜ਼	0.00094 L	╫	0.00083 U		.0024 U	
Xylenes, Total	100	0.26		J		ŭl-	0.001 L	0.00		ŭl	0.00092	Ü	0.00084		0.0009 U		0.00085	Ü	0.00096	前	0.00094 L	1	0.00083 U		.0012 U	
cis-1,2-Dichloroethene	100	0.25		U	0.001	ÜΠ	0.001 L	0.00		ΰŀ	0.00092	Ü	0.00084	Ü	0.0009 U	_	0.00085	U	0.00096	Ü	0.00094 L		0.00083 U		.0012 U	
1,2-Dichloroethene, Total	-	-		U	0.001	ÜΠ	0.001 L	0.00		υ	0.00092	Ū	0.00084	Ū	0.0009 U	_	0.00085	U	0.00096	Ü	0.00094 L		0.00083 U		.0012 U	
Dibromomethane	-	-		Ü	0.002	ΙΰΙ	0.0021 L	0.00		υl	0.0018	Ū	0.0017	Ū	0.0018 U		0.0017	Ū		Ü	0.0019 L		0.0016 U		.0012 U	
Styrene	-	-		Ū	0.001	υl	0.001 L	0.00		Ū	0.00092	U	0.00084	Ū	0.0009 U		0.00085	Ū	0.00096	U	0.00094 L	_	0.00083 U		.0012 U	
Dichlorodifluoromethane	-	-		Ū	0.01	ul	0.01 L	+		υl	0.0092	U	0.0084	U	0.009 U		0.0085	U		Ū	0.0094 L	_	0.0083 U		0.012 U	
Acetone	100	0.05	0.014	П	0.01	ul	0.01 L	_		υl	0.005	J	0.0084	U	0.009 U		0.0085	U		Ū	0.0094 L	_	0.0083 U		0.012 U	
Carbon disulfide	-	-		U		U	0.01 L	0.00		U	0.0092	U	0.0084	U	0.009 U		0.0085	U		U	0.0094 L	_	0.0083 U).012 U	
2-Butanone	100	0.12		J		U	0.01 L	0.00		U	0.0092	U	0.0084	U	0.009 U		0.0085	U		U	0.0094 L	_	0.0083 U).012 U	
Vinyl acetate	-	-		U		U	0.01 L	0.00		υ	0.0092	U	0.0084	U	0.009 U		0.0085	U		U	0.0094 L	_	0.0083 U).012 U	
4-Methyl-2-pentanone	-	-		U		U	0.01 L	0.00		U	0.0092	U	0.0084	U	0.009 U		0.0085	U		U	0.0094 L	_	0.0083 U).012 U	
1,2,3-Trichloropropane	-	-		U		U	0.0021 L	_		U	0.0018	U		U			0.0017	U		U	0.0019 L	_	0.0016 U		.0024 U	

1/13/2021 Page 1 of 10

Table 1: Soil Analytical Results 205 Park Avenue Brooklyn, New York

SAMDI E ID	AMPLE ID SB-1 (15.5-16') SB-1 (6.5-7') SB-2 (16-16.5'							י\ ר	CD 2 /2 E 4!\	LCD	SB-3 (15-15.5')		SB-3 (7-7.5')		SB-4 (15-15.5')		CD 4/2 2 E	\ T	CD E (4E E 4C	ΛĪ	SB-5 (5.5-6')	SB-6 (5.5-6')			SB-6 (15.5-16')
SAMPLING DATE	NYS Part 375	NYS Part 375	1/6/2020 1/6/2020) 3	1/7/2020		1/7/2020	_	1/7/2020	4	1/7/2020	')	1/6/2020	4	SB-4 (3-3.5' 1/6/2020	/ 	SB-5 (15.5-16 1/6/2020	4	1/6/2020	1/7/2020		+3	1/7/2020	
LAB SAMPLE ID	Restricted-			L2000463-02 L2000463-01		14			L2000632-01		000632-04	+	L2000632-0	12	L2000463-04		L2000463-03		L2000463-06		L2000463-05		L2000632-05	-	L2000632-06
SAMPLE DEPTH (fbgs)	Residential	Unrestricted	15.5-16	<u> </u>	6.5-7	"	16-16.5	┼	3.5-4		15-15.5	+	7-7.5	<u>၊၁</u>	15-15.5	+	3-3.35	<u>၁</u>	15.5-16	-	5.5-6	╁	5.5-6	-	15.5-16
OAMI EE DEI III (1893)				ΙQ		o	Result C	0	Result Q		Result (0		Q		2		Q		Q	Result Q		Result (-	Result Q
2-Hexanone	_	_	0.01	U	0.01	III	0.01 L	11	0.0091 U	_	0.0092	 	0.0084	H	0.009 L	1	0.0085	H		III	0.0094 U		0.0083 l	ī	0.012 U
Bromochloromethane	_	_	0.002	Ü	0.002	H	0.0021 L	_	0.0031 U	_	0.0032		0.0007	Ξ	0.003 C	+	0.0003	П	0.0030	ਜ਼	0.0034 U	Н	0.0005 C	╬	0.0024 U
2,2-Dichloropropane	_	_	0.002	Ü	0.002	H	0.0021 L	_	0.0018 U	_	0.0018		0.0017	Ξ	0.0018 U	+	0.0017	П	0.0019	ਜ਼	0.0019 U	Н	0.0016 l	╬	0.0024 U
1,2-Dibromoethane	_	_	0.002	Ü	0.002	iil	0.0021 L	_	0.00091 U		.00092	ij	0.00084	Ξ	0.0009	1	0.00017	П	0.00096	ᆔ	0.00094 U	╁	0.00083 L	1	0.0012 U
1,3-Dichloropropane	_	_	0.001	Ü	0.002	iil	0.0021 L	_	0.00031 U	_	0.00032	ij	0.0007	Ξ	0.0018 L	1	0.0017	П	0.0019	ᆔ	0.00034 U	╁	0.0006 U	1	0.0012 U
1,1,1,2-Tetrachloroethane	_	_	0.002	ü	0.0005	ü	0.00021 L	_	0.00046 U	_	.00046	ij	0.00042	П	0.00045 L	1	0.00017	П	0.00048	ü	0.00047 U		0.00041 U	1	0.00059 U
Bromobenzene	_	_	0.002	ü	0.002	ü	0.00002 L	_	0.0018 U	+	0.0018	IJ	0.0017	IJ	0.0018 L	1	0.0017	U	0.0019	ü	0.0019 U	Н	0.0016 l	1	0.0024 U
n-Butylbenzene	100	12	0.00024	J.	0.001	ü	0.0021 L	_	0.00091 U		.00092	IJ	0.00084	IJ	0.0009 L	1	0.00085	U	0.00096	ü	0.00094 U	Н	0.00083 U	1	0.0012 U
sec-Butylbenzene	100	11	0.001	Ü	0.001	ü	0.001 L		0.00091 U	_	.00092	IJ	0.00084	IJ	0.0009 L	1	0.00085	U	0.00035	.	0.00094 U	H	0.00083 l	1	0.0012 U
tert-Butylbenzene	100	5.9	0.002	Ü	0.002	ü	0.0021 L	_	0.0018 U	_	0.0018	IJ	0.0017	IJ	0.0018 L	1	0.0017	U	0.0019	ü	0.0019 U	H	0.0016 l	1	0.0024 U
o-Chlorotoluene	-	-	0.002	Ü	0.002	Ü	0.0021 L	_	0.0018 U	_	0.0018	IJ	0.0017	IJ	0.0018 L	J	0.0017	IJ	0.0019	Ü	0.0019 U	t	0.0016 l	<u>, </u>	0.0024 U
p-Chlorotoluene	_	-	0.002	Ū	0.002	Ū	0.0021 L	_	0.0018 U	_	0.0018	υĺ	0.0017	Ū	0.0018 L	ال	0.0017	Ū	0.0019	υĪ	0.0019 U	t	0.0016 l	ار	0.0024 U
1,2-Dibromo-3-chloropropane	-	-	0.002	ΙÚ	0.003	υl	0.0021 L	_	0.0027 U		0.0027	Ū	0.0025	U	0.0027 L	ال	0.0026	U	0.0029	Ū	0.0028 U	t	0.0025 l		0.0035 U
Hexachlorobutadiene	_	-	0.004	Ū	0.004	Ū	0.0042 L		0.0036 U		0.0037	υĺ	0.0034	Ū	0.0036 L	ال	0.0034	Ū	0.0038	υĪ	0.0038 U	t	0.0033 l	ار	0.0047 U
Isopropylbenzene	-	-	0.001	Ū	0.001	Ū	0.001 L	_	0.00091 U	_	.00092	Ü	0.00084	Ū	0.0009 L	J	0.00085	Ú	0.00096	Ū	0.00094 U	T	0.00083 l	J	0.0012 U
p-Isopropyltoluene	-	-	0.001	Ū	0.001	Ū	0.001 L	_	0.00091 U	_	.00092	Ū	0.00084	Ū	0.0009 L	J	0.00085	U	0.0064	Ť	0.00094 U	t	0.00083 U	J	0.0012 U
Naphthalene	100	12	0.0042	Ħ	0.004	υ	0.0042 L	_	0.0036 U	_	0.0037	U	0.0034	U	0.0036 L	J	0.0034	U	0.0038	υ	0.0038 U		0.0033 l	J	0.0047 U
Acrylonitrile	-	-	0.004	U	0.004	U	0.0042 L	U	0.0036 U	ı c	0.0037	U	0.0034	U	0.0036 L	J	0.0034	U	0.0038	U	0.0038 U		0.0033 l	J	0.0047 U
n-Propylbenzene	100	3.9	0.00025	J	0.001	U	0.001 L		0.00091 U	_	.00092	U	0.00084	U	0.0009 L	J	0.00085	U	0.00096	U	0.00094 U		0.00083 l	J	0.0012 U
1,2,3-Trichlorobenzene	-	-	0.002	U	0.002	U	0.0021 L		0.0018 U	_).0018 I	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	υ	0.0019 U		0.0016 l	J	0.0024 U
1,2,4-Trichlorobenzene	-	-	0.002	U	0.002	U	0.0021 L	U	0.0018 U) C).0018 I	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
1,3,5-Trimethylbenzene	52	8.4	0.00024	J	0.002	U	0.0021 L	U	0.0018 U) C).0018 I	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
1,2,4-Trimethylbenzene	52	3.6	0.0014	J	0.002	U	0.0021 L	U	0.0018 U) C).0018 I	U	0.0017	U	0.0018 L	J	0.0017	U	0.0032		0.0019 U		0.0016 l	J	0.0024 U
1,4-Dioxane	13	0.1	0.081	U	0.08	U	0.084 L	U	0.073 U) (0.073 l	U	0.067	U	0.072 l	J	0.068	U	0.077	U	0.075 U		0.066 l	J	0.095 U
p-Diethylbenzene	-	-	0.00072	J	0.002	U	0.0021 L	U	0.0018 U) C).0018 I	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
p-Ethyltoluene	-	-	0.00058	J	0.002	U	0.0021 L	U	0.0018 U) C).0018 l	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
1,2,4,5-Tetramethylbenzene	-	-	0.00051	J	0.002	U	0.0021 L	U	0.0018 U) C).0018 l	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
Ethyl ether	-	-	0.002	U	0.002	U	0.0021 L	U	0.0018 U	J C).0018 l	U	0.0017	U	0.0018 L	J	0.0017	U	0.0019	U	0.0019 U		0.0016 l	J	0.0024 U
trans-1,4-Dichloro-2-butene	-	-	0.005	U	0.005	U	0.0052 L	U	0.0046 U	J C).0046 I	U	0.0042	U	0.0045 L	J	0.0042	U	0.0048	U	0.0047 U		0.0041 l	J	0.0059 U
Semivolatile Organics by GC/N	IS (mg/kg)																								
Acenaphthene	100	20	0.14	U	0.14	U	0.14 L	U	0.14 U	<u>'</u>	0.14	U	0.14	U	0.14 L	J	0.14	U	0.26		0.14 U		0.14 l	J	0.13 U
1,2,4-Trichlorobenzene	-	-	0.17	U		U		U	0.18 U	_	0.18	U	0.18	U	0.17 l	J		U		U	0.17 U		0.18 l	J	0.17 U
Hexachlorobenzene	1.2	0.33		U		U		U	0.11 U	_	0.11	U		U		_		U		U	0.1 U	-	0.11 l	J	0.1 U
Bis(2-chloroethyl)ether	-	-		U	0.16	U		U	0.16 U	_	0.16	U		U		-		U		U	0.16 U	_	0.16 l	7	0.15 U
2-Chloronaphthalene	-	-		U	0.18	U	0.18 L	U	0.18 U	_	0.18	U		U		IJ		U		U	0.17 U	_	0.18 l	7	0.17 U
1,2-Dichlorobenzene	100	1.1	0.17	U	0.18	U	0.18 L	U	0.18 U	_	0.18	U		U		IJ		U		U	0.17 U	_	0.18 l	<u> </u>	0.17 U
1,3-Dichlorobenzene	49	2.4	0.17	U	0.18	U	0.18 L	U	0.18 U	_	0.18	U	0.18	U	0.17 L	_		U		U	0.17 U	_	0.18 l	ᆚ	0.17 U
1,4-Dichlorobenzene	13	1.8	0.17	U	0.18	U	0.18 L	U	0.18 U	_	0.18	U	0.18	U	0.17 L	-		U		U	0.17 U	_	0.18 l	1	0.17 U
3,3'-Dichlorobenzidine	-	-	0.17	U	0.18	U	0.18 L	U	0.18 U	_	0.18	U		U		-		U		U	0.17 U	_	0.18 l	<u> </u>	0.17 U
2,4-Dinitrotoluene	-	-	0.17	U	0.18	U	0.18 L	<u> </u>	0.18 U	_	0.18	U		U		_		U		U	0.17 U	_	0.18 l	ᆜ	0.17 U
2,6-Dinitrotoluene	-	-	0.17	U	0.18	U	0.18 L	<u> </u>	0.18 U	_	0.18	U		U		儿	0.18	U		U	0.17 U	_	0.18 l	ᆜ	0.17 U
Fluoranthene	100	100	0.19	╁	0.1	U	0.1 L	U L	0.11 U	_	0.11	U		U		ᆡ		U	3.5	+	0.1 U	_	0.11 l	7	0.1 U
4-Chlorophenyl phenyl ether	-	-	0.17	۱	0.18	U	0.18 L	U	0.18 U	_	0.18	U		U		_		U		U	0.17 U	_	0.18 l	1	0.17 U
4-Bromophenyl phenyl ether	-	-	0.17	U	0.18	U	0.18 L	<u> </u>	0.18 U		0.18	니		U		_		U		U	0.17 U	_	0.18 l	-	0.17 U
Bis(2-chloroisopropyl)ether	-	-	0.2	U	0.21	U	0.21 L	<u> </u>	0.22 U	_	0.21	니		U		ᆡ		U		U	0.21 U	_	0.21 l	-	0.2 U
Bis(2-chloroethoxy)methane	-	-	0.18	H	0.19	U	0.19 L	<u> </u>	0.2 U	_	0.19	U		U		7	0.2	U		U	0.19 U	_	0.19 l	1	0.18 L
Hexachlorobutadiene	-	-	0.17	U	0.18	U	0.18 L	<u> </u>	0.18 U		0.18	니	0.18	U	0.17 L	ᆡ		U		U	0.17 U	_	0.18 U	1	0.17 L
Hexachlorocyclopentadiene	-	-	0.49	U	0.5	U	0.5 L	<u> </u>	0.52 U	_	0.51	니		U		ᆡ		U		U	0.5 U	-	0.51 l	-	0.48 L
Hexachloroethane	-	-	0.14	U	0.14	U	0.14 L	<u> </u>	0.14 U	_	0.14	니	0.14	U	0.14 L	ᆡ	0.14	U		U	0.14 U	-	0.14 l	-	0.13 L
Isophorone	-	-	0.15	U	0.16	U	0.16 L	U	0.16 U	'	0.16	U	0.16	U	0.15 Լ	J	0.16	U	0.16	U	0.16 U	1	0.16 ใ	ال	0.15 L

1/13/2021 Page 2 of 10

Table 1: Soil Analytical Results 205 Park Avenue Brooklyn, New York

SAMPLE ID				(ים	SB-1 (6.5-7'	ı) İçi	B-2 (16-16.5	י) כו	B-2 (3.5-4')	I CD.	2 (15 15 5	\ T	SB-3 (7-7.5')	\ T	SB-4 (15-15.5'	:'\	SP_4 (2-2 5')		SB-5 (15.5-16	'\ T	SB-5 (5.5-6')		SB-6 (5.5-6')	CD	3-6 (15.5-16')	
SAMPLING DATE	NYS Part 375	NYS Part 375	SB-1 (15.5-16') 1/6/2020		1/6/2020	/ 31	1/7/2020		1/7/2020		SB-3 (15-15.5') 1/7/2020		1/7/2020		1/6/2020		SB-4 (3-3.5') 1/6/2020		1/6/2020		1/6/2020		1/7/2020		1/7/2020	
LAB SAMPLE ID	Restricted-	Unrestricted	L2000463-02		L2000463-0	1 1	L2000632-02		L2000632-01		L2000632-04		L2000632-03		L2000463-04		L2000463-03		L2000463-06		L2000463-05		L2000632-05		L2000632-06	
SAMPLE DEPTH (fbgs)	Residential	Officed	15.5-16		6.5-7	- -	16-16.5		3.5-4		15-15.5		7-7.5		15-15.5		3-3.35		15.5-16		5.5-6		5.5-6		15.5-16	
Orum EE BEI III (1898)			Result	lo	Result	Q	Result (Result Q		Result (0	Result (0		Q	Result	Q		Q	Result (+	Result C		Result Q	
Naphthalene	100	12		U		U	0.18 U		0.18 U		0.18 U	1	0.18	11	0.17 U	11	0.18	11	0.12	7	0.17 l	_	0.18 L		0.17 U	
Nitrobenzene	-	-	_	U		U	0.16 l		0.16 U		0.16 U		0.16 U	ij	0.17 C	iil	0.16	П	-	Ü	0.17 U		0.16 L	1	0.17 U	
NDPA/DPA	_	_		Ü		υl		u	0.14 U		0.14 U		0.10 t	IJ	0.14 U	U	0.14	IJ	00	ü	0.14 U		0.14 L		0.13 U	
n-Nitrosodi-n-propylamine	_	-		Ü	-	ŭl		U	0.11 U		0.18 U	IJ	0.11 U	Ü	0.17 U	Ü	0.18	IJ	****	Ü	0.17 U		0.18 L		0.17 U	
Bis(2-ethylhexyl)phthalate	-	-		Ü		Ŭ	0.18 l	ŭ l-	0.18 U		0.18 U	IJ	0.18 U	U	0.17 U	U	0.18	IJ		Ü	0.17 l		0.18 L		0.17 U	
Butyl benzyl phthalate	-	-		Ū		U	0.18 U	Ŭ	0.18 U		0.18 l	U	0.18 l	U	0.17 U	U	0.18	U		Ü	0.17 l		0.18 L		0.17 U	
Di-n-butylphthalate	-	-		Ū		υl	0.18 l	Ŭ	0.18 U		0.18 l	U	0.18 U	Ū	0.17 U	Ū	0.18	Ū		Ū	0.17 l		0.18 L		0.17 U	
Di-n-octylphthalate	-	-		Ū		Ū		Ū	0.18 U	J	0.18 l	Ū	0.18 l	Ū	0.17 l	Ū	0.18	Ū		Ū	0.17 l		0.18 L	1	0.17 U	
Diethyl phthalate	-	-		U		υ		u	0.18 U	ı 🗆	0.18 l	U	0.18 l	U	0.17 l	U	0.18	U		U	0.17 l		0.18 L	i	0.17 U	
Dimethyl phthalate	-	-		U		υ	0.18 l	u	0.18 U	ı 🗆	0.18 l	U	0.18 l	U	0.17 l	U	0.18	U		U	0.17 l		0.18 L	i	0.17 U	
Benzo(a)anthracene	1	1		J	0.1	U	0.1 l	υ	0.11 U	1	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	1.9	寸	0.1 l		0.11 L	i	0.1 U	
Benzo(a)pyrene	1	1	0.069	J	0.14	U	0.14 l	u	0.14 U	J	0.14 l	U	0.14 l	U	0.14 l	U	0.14	U	1.9	T	0.14 l		0.14 L		0.13 U	
Benzo(b)fluoranthene	1	1	0.094	J	0.1	U	0.1 l	U	0.11 U	J	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	2.5		0.1 l	J	0.11 L	ı	0.1 U	
Benzo(k)fluoranthene	3.9	0.8	0.041	J	0.1	U	0.1 l	U	0.11 U	J	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	0.9		0.1 l	J	0.11 L		0.1 U	
Chrysene	3.9	1	0.072	J	0.1	U	0.1 l	U	0.11 U	J	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	1.5		0.1 l		0.11 L		0.1 U	
Acenaphthylene	100	100	0.14	U	0.14	U	0.14 l	U	0.14 U	J	0.14 l	U	0.14 l	U	0.14 l	U	0.14	U	0.12	J	0.14 l	J	0.14 L	l	0.13 U	
Anthracene	100	100	0.039	J	0.1	U	0.1 l	U	0.11 U	J	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	0.56		0.1 l		0.11 L	l	0.1 U	
Benzo(ghi)perylene	100	100	0.049	J	0.14	U	0.14 l	U	0.14 U	J	0.14 l	U	0.14 l	U	0.14 l	U	0.14	U	1.3		0.14 l		0.14 L	l	0.13 U	
Fluorene	100	30	0.016	J	0.18	U	0.18 l	U	0.18 U	J	0.18 l	U	0.18 เ	U	0.17 l	U	0.18	U	0.22		0.17 l		0.18 L	ı İ	0.17 U	
Phenanthrene	100	100	0.18	Ш	U	U	0.1 l	U	0.11 U		0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	2.1		0.1 l		0.11 L	l l	0.1 U	
Dibenzo(a,h)anthracene	0.33	0.33	_	U	U	U	0.1 l	U	0.11 U		0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	0.27		0.1 l		0.11 L	l l	0.1 U	
Indeno(1,2,3-cd)pyrene	0.5	0.5		J	0	U	0.14 l	U	0.14 U		0.14 l	U	0.14 l	U	0.14 l	U	0.14	U	1.3	4	0.14 l		0.14 L		0.13 U	
Pyrene	100	100	0.16	Ш		U	0	U	0.11 U	<u> </u>	0.11 l	U	0.11 l	U	0.1 l	U	0.11	U	3	_	0.1 l		0.11 L		0.1 U	
Biphenyl	-	-		U		U	0.4 l	U	0.42 U	4	0.4 l	U	0.4 l	U	0.39 l	U	0.41	U	0.41	U	0.4 l		0.41 L		0.38 U	
4-Chloroaniline	-	-		U	00	U	0.18 l	U .	0.18 U		0.18 l	U	0.18 U	U	0.17 l	U	0.18	U	00	U	0.17 l		0.18 L		0.17 U	
2-Nitroaniline	-	-		U	0.10	U	0.18 l	U	0.18 U		0.18 l	U	0.18 U	U	0.17 l	U	0.18	U		U	0.17 l		0.18 L	<u> </u>	0.17 U	
3-Nitroaniline	-	-		U	0.10	U	0.18 l	<u> </u>	0.18 U		0.18 l	U	0.18 l	U	0.17 l	U .	0.18	ᆡ		U	0.17 l		0.18 L	<u>' </u>	0.17 U	
4-Nitroaniline	-	7		U	01.0	U	0.18 l		0.18 U	_	0.18 U		0.18 l	U	0.17 l	U	0.18 0.18	U		뷔		_	0.18 L	<u>' </u>	0.17 U	
Dibenzofuran 2-Methylnaphthalene	59	7		U	00	U U	0.18 l 0.21 l		0.18 U 0.22 U		0.18 U		0.18 U	U	0.17 U	<u> </u>	0.18	H	0.1 0.055	쉬	0.17 l 0.21 l	_	0.18 L 0.21 L	' <u> </u> 	0.17 U 0.2 U	
1,2,4,5-Tetrachlorobenzene	_	_	V-=	U		U	0.21 0 0.18 l		0.22 U	-	0.21 0.18 l		0.21 0 0.18 l	П	0.21 C	11	0.22	11	0.033	11	0.21 0.17 l	_	0.21 C	1	0.2 U	
Acetophenone	_			U	0.10		0.40		0.18 U		0.40		0.18 U	H	0.47	H	0.40	H	0.18	ਜ਼	0.17 l		0.18 L	<u>' </u>	0.17 U	
2,4,6-Trichlorophenol	_	_		U		U		U U	0.10 U			IJ		U		U		U		Ü	0.1 U		0.10 L		0.1 U	
p-Chloro-m-cresol	-	-		U	0.18	U		U U	0.11 U		0.11 U	U	0.11 t	U	0.17 l	Ü		U		Ü	0.17 l		0.11 C		0.17 U	
2-Chlorophenol	-	-		Ü	0.18	υĺ	0.18 l	υ l	0.18 U	_	0.18 l	Ú	0.18 l	Ū	0.17 l	Ū	-	U	0.18	Ū	0.17 l		0.18 L		0.17 U	
2,4-Dichlorophenol	-	-		Ü	0.16	υl	0.16 l	u	0.16 U	_	0.16 l	Ü	0.16 l	Ū	0.15 l	Ū	-	U		Ü	0.16 l		0.16 L		0.15 U	
2,4-Dimethylphenol	-	-		Ū	0.18	υl		Ū	0.18 U	_	0.18 l	U	0.18 l	U	_	U		Ü		Ū	0.17 l		0.18 L	1	0.17 U	
2-Nitrophenol	-	-		Ū	0.38	U		Ū	0.39 U	_	0.38 l	U	0.38 l	U	0.37 l	U		U		Ū	0.38 l		0.39 L	ı	0.36 U	
4-Nitrophenol	-	-	0.24	U	0.24	U	0.25 l	U	0.25 U	_	0.25 l	U	0.25 l	U	0.24 l	U	0.25	U		U	0.24 l		0.25 L		0.24 U	
2,4-Dinitrophenol	-	-	0.82	U	0.84	U	0.84 l	U	0.87 U	_	0.85 l	U	0.85 l	U	0.83 l	U	0.87	U	0.86	U	0.84 l		0.86 L		0.81 U	
4,6-Dinitro-o-cresol	-	-	0.44	U	0.46	U	0.46 l	U	0.47 U	J	0.46 l	U	0.46 l	U	0.45 l	U	0.47	U	0.47	U	0.45 l		0.46 L		0.44 U	
Pentachlorophenol	6.7	0.8		U	0.14	U	0.14 l	U	0.14 U	J	0.14 l	U	0.14 l	U	0.14 l	U	0.14	U	0.14	U	0.14 l		0.14 L		0.13 U	
Phenol	100	0.33		U		U		U	0.18 U	_	0.18 l	U	0.18 l	U	****	U		U		U	0.17 l		0.18 L		0.17 U	
2-Methylphenol	100	0.33		U		U	0.18 l	U	0.18 U	_	0.18 l	U	0.18 เ	U	0.17 l	U		U		U	0.17 l		0.18 L		0.17 U	
3-Methylphenol/4-Methylphenol	100	0.33		U	0.25	U	0.25 l	U	0.26 U	_	0.26 l	U	0.26 l	U	0.25 l	U		U	0.26	U	0.25 l		0.26 L		0.24 U	
2,4,5-Trichlorophenol	-	-		U	0.18	U	0.18 l	U	0.18 U	_	0.18 l	U	0.18 l	U	0.17 l	U		U		U	0.17 l		0.18 L		0.17 U	
Benzoic Acid	-	-		U	0.57	U		U	0.59 U	_	0.57 l	U	0.58 l	U	0.56 l	U		U		U	0.56 l		0.58 L		0.54 U	
Benzyl Alcohol	-	-		U	0.18	U		U	0.18 U	_	0.18 l	U	0.18 l	U	-	U		U		U	0.17 l		0.18 L	1	0.17 U	
Carbazole	-	-		J		U	0.18 l	U	0.18 U		0.18 l	U	0.18 U	U	0.17 l	U		U	0.23		0.17 l		0.18 L		0.17 U	
1,4-Dioxane	13	0.1	0.026	U	0.026	U	0.026 l	U	0.027 U	י וי	0.026 l	υl	0.027 l	U	0.026 ใ	U	0.027	U	0.027	U	0.026 ไ	4	0.027 L	Ί.	0.025 U	

1/13/2021 Page 3 of 10

CAMPLEID			CD 4 /45 5 4/	cı\ I	CD 4 /C F 7	n L	CD 2 /4C 4C E	ı, I	CD 2 (2 E 41)	T	CD 2 /4E 4E E	A I	CD 2 /7 7 EI		CD 4 (45 45 51)	\	CD 4 /2 2 EI	\	CD E /4E E 4C	\ T		CD C /E	E (1)	CD C (45 5 40)
SAMPLE ID SAMPLING DATE	NYS Part 375	NYS Part 375	SB-1 (15.5-16 1/6/2020	0)	SB-1 (6.5-7) 1/6/2020	7	SB-2 (16-16.5 1/7/2020	7	1/7/2020	ľ	SB-3 (15-15.5' 1/7/2020	<u>)</u>	SB-3 (7-7.5') 1/7/2020	4	SB-4 (15-15.5') 1/6/2020	<u>) </u>	SB-4 (3-3.5' 1/6/2020)	SB-5 (15.5-16' 1/6/2020	7	SB-5 (5.5-6') 1/6/2020	SB-6 (5		SB-6 (15.5-16')
LAB SAMPLE ID	Restricted-			, 		4		+		╁	L2000632-04	+	L2000632-03	+		+.		_		+		L200063	-	1/7/2020
SAMPLE DEPTH (fbgs)	Residential	Unrestricted	<u>L2000463-03</u> 15.5-16	╧┤	<u>L2000463-0</u> 6.5-7	<u>"</u>	L2000632-02 16-16.5	4	<u>L2000632-01</u> 3.5-4	+	15-15.5	+	7-7.5	<u>²</u>	<u>L2000463-04</u> 15-15.5	╁	<u> </u>	<u>ခ</u>	<u>L2000463-06</u> 15.5-16	+	<u>L2000463-05</u> 5.5-6	5.5-		<u>L2000632-06</u> 15.5-16
SAMPLE BEFTH (1898)				Q		Q		a	Result Q	+	Result (Q	Result Q	+		Q		Q	Result Q			
Ourrens ablesine Bestisides but	00 (m m/lsm)		Nesuit	Q	Result	Q	Result	ω	ivesuit d	<u>'</u>	ivesuit i	×	ixesuit	×	ivesuit G	<u> </u>	Nesuit	Q	Nesuit	Q	ivesuit &	Nesui		i Kesuit (
Organochlorine Pesticides by		0.04	0.00164	111	0.0017	ш	0.00460	П	0.0047	П	0.00466	П	0.00472		0.00166	П	0.00167	111	0.00169	ш	0.00460 111	0.0016	7 1	I 0.00464 II
Delta-BHC	100	0.04	0.00164	-	0.0017	U	0.00169	빆	0.0017 L	#	0.00166	U	0.00173	U III	0.00166 U	_	0.00167	-	0.00168	뛰	0.00168 U	0.0016		0.00164
Lindane	1.3	0.1 0.02	0.000684	-	0.000706		0.000705	띩	0.000708 L	1	0.000693	_	0.000719	-	0.000693 U	+	0.000696	-	0.000701	띩	0.000701 U	0.00069		0.000682 U
Alpha-BHC Beta-BHC	0.48 0.36	0.02	0.000684 0.00164		0.000706 0.0017		0.000705 U	띩	0.000708 L 0.0017 L	#	0.000693	<u> </u>	0.000719 U	<u>' </u>	0.000693 U 0.00166 U	_	0.000696	-	0.000701 0.00168	뛰	0.000701 U 0.00168 U	0.00069		0.000682 U 0.00164 U
	2.1	0.036	0.00164	끔	0.0017	H	0.00169	쒸	0.0017 C	#	0.00166	<u> </u>	0.00173	<u> </u>	0.00166 U	_	0.00167 0.000835	H		쒸	0.00166 U	0.0018		0.000819
Heptachlor Aldrin	0.097	0.042	0.00062	끔	0.000646	H	0.000646	쒸	0.000649 C	1	0.000832 U 0.00166 U	<u> </u>	0.00065 t	<u> </u>	0.000632 U	+	0.000635	H	0.000841 0.00168	쒸	0.000841 U	0.00063		0.00164
Heptachlor epoxide	0.091	0.005	0.00104	$\frac{\circ}{11}$	0.0017		0.00109	쒸	0.0017 C	+	0.00100		0.00173 U	 	0.00100 U	_	0.00107	H	0.00108	띪	0.00168 U	0.0016		0.00307
Endrin	11	0.014	0.00308	$\frac{\circ}{\Box}$	0.00318		0.00317	쒸	0.00318 C	╬	0.00312	<u> </u>	0.00324 0 0.000719 U	H	0.00312 U	_	0.00313	-	0.00313	띪	0.00313 U	0.00069		0.00307
Endrin aldehyde	11	0.014	0.000084	$\frac{\circ}{\Box}$	0.000700		0.000703	쒸	0.000708 C	╬	0.00208	<u> </u>	0.000719 U	H	0.000093 U	_	0.00209	-	0.000701	띪	0.000701 U	0.0000		0.00205
Endrin ketone	_	-	0.00203	$\frac{\circ}{11}$	0.00212		0.00211	쒸	0.00212 C	+	0.00208		0.00210 U	 	0.00208 U	_	0.00209	H	0.0021	띪	0.0021 U	0.0020		0.00203
Dieldrin	0.2	0.005	0.00104	퓌	0.0017	띪	0.00109	壯	0.0017 C	╫	0.00106	 	0.00173 U	밁	0.00100 U	_	0.00107	퓌	0.00105	귀	0.00168 U	0.0010		0.00102
4,4'-DDE	8.9	0.003	0.00102	퓌	0.00106	띪	0.00108	壯	0.00106 C	╫	0.00104	 	0.00108 U	밁	0.00104 U	_	0.00104	퓌	0.00103	귀	0.00103 U	0.0010		0.00102 U
4,4'-DDD	13	0.0033	0.00164	퓌	0.0017	띪	0.00169	壯	0.0017 L	╫	0.00166	 	0.00173 U	밁	0.00166 U	_	0.00167	퓌	0.00168	귀	0.00168 U	0.0213		0.00164 U
4,4'-DDT	7.9	0.0033	0.00164	퓌	0.0017	띪	0.00169	壯	0.0017 C	╫	0.00166	 	0.00173 U	밁	0.00166 U	_	0.00167	퓌	0.00168	귀	0.00168 U	0.0464		0.00164 C
Endosulfan I	24	2.4	0.00308	H	0.00318	H	0.00317	壯	0.00318 C	╫	0.00312	 	0.00324 0 0.00173 U	귀	0.00312 U	_	0.00313	귀	0.00313	띪	0.00313 U	0.0016		0.00307
Endosulfan II	24	2.4	0.00164	핆	0.0017	H	0.00169	귀	0.0017 L	+	0.00166		0.00173 U	ij	0.00166 U	_	0.00167	H	0.00168	ដ	0.00168 U	0.0016		0.00164
Endosulfan sulfate	24	2.4	0.000684	퓌	0.00077	H	0.00705	끍	0.00077 C	╫	0.000693	.	0.00173	H	0.000693 U	_	0.000696	H	0.000701	끍	0.000701 U	0.00069		0.000682
Methoxychlor	_	2.7	0.00308	퓌	0.000700	H	0.000703	끍	0.000700 C	╫	0.00033	1	0.00324 U	H	0.00312 U	+-	0.00313	H	0.00315	끍	0.00315 U	0.00003		0.00307
Toxaphene	_	_	0.0308	H	0.0318	iil	0.00317	ᆔ	0.00318 L	╫	0.0312		0.0324 l	ij	0.0312 U	1	0.00313	П	0.0315	H	0.0315 U	0.0314		0.0307
cis-Chlordane	4.2	0.094	0.00205	H	0.0010	iil	0.00211	ᆔ	0.00212 L	╫	0.00208		0.0024 U	ij	0.00208 U	1	0.00209	П	0.0021	H	0.0021 U	0.0041		0.00205
trans-Chlordane	-	-	0.00205	ü	0.00212	ij	0.00211	ü	0.00212 U	1	0.00208	ı	0.00216 U	IJ	0.00208 U	-	0.00209	IJ	0.0021	ü	0.0021 U	0.0028		0.00205 U
Chlordane	-	-		Ü	0.0138	Ü	0.0137	Ü	0.0138 L	1	0.0135	IJ	0.014 U	IJ	0.0135 U	1	0.0136	Ü		ΰ	0.0137 U	0.0136		0.0133 U
Polychlorinated Biphenyls by 0	GC (ma/ka)		0.00.000					_		_		_				_								
Aroclor 1016	1	0.1	0.034	υl	0.0347	IJΙ	0.0342	υĪ	0.0349 L	JΓ	0.0359	υĪ	0.0342 U	υĪ	0.0342 U	J	0.0359	U	0.0359	υĪ	0.0349 U	0.0342	2 U	0.0341 l
Aroclor 1221	1	0.1		Ū	0.0347	Ū	0.0342	Ū	0.0349 L	1	0.0359	U	0.0342 l	Ū	0.0342 U	J	0.0359	U		Ū	0.0349 U	0.0342		0.0341 l
Aroclor 1232	1	0.1	0.034	Ū	0.0347	Ū	0.0342	Ū	0.0349 L	J	0.0359	U	0.0342 l	Ū	0.0342 U	j	0.0359	Ū	0.0359	Ū	0.0349 U	0.0342		0.0341 l
Aroclor 1242	1	0.1	0.034	Ū	0.0347	Ū	0.0342	Ū	0.0349 L	1	0.0359	U	0.0342 l	U	0.0342 U	J	0.0359	U	0.0359	Ū	0.0349 U	0.0342		0.0341 l
Aroclor 1248	1	0.1	0.034	U	0.0347	U	0.0342	u	0.0349 L	ı	0.0359	U	0.0342 l	U	0.0342 U	J	0.0359	U	0.0359	U	0.0349 U	0.0342		0.0341 l
Aroclor 1254	1	0.1	0.034	Ū	0.0347	Ū	0.0342	Ū	0.0349 L	1	0.0359	U	0.0342 l	Ū	0.0342 U	J	0.0359	U	0.0359	Ū	0.0349 U	0.0342		0.0341 l
Aroclor 1260	1	0.1	0.034	U	0.0347	U	0.0342	U	0.0349 L	J	0.0359	U	0.0342 l	U	0.0342 U	J	0.0359	U	0.0359	υ	0.0349 U	0.0342		0.0341 l
Aroclor 1262	1	0.1	0.034	U		U	0.0342	U	0.0349 L	J	0.0359	U	0.0342 เ	U	0.0342 U	J	0.0359	U	0.0050	U	0.0349 U	0.0342		0.0341 l
Aroclor 1268	1	0.1		U		U	0.0342	U	0.0349 L	ı	0.0359	U		U	0.0342 U	J	0.0359	U		U	0.0349 U	0.0342		0.0341 l
PCBs, Total	1	0.1	0.034	U		U	0.0342	U	0.0349 L	丌	0.0359	U	0.0342 l	U	0.0342 U	J	0.0359	U	0.0359	U	0.0349 U			0.0341 l
Total Metals (mg/kg)							•	•	•		-		•				•		•				•	
Aluminum, Total	-	-	4730		4000		3760	T	5700	T	3900	T	4660		3560		7740		3670	T	5530	5310		1660
Antimony, Total	-	-	3.98	U	4.12	U	4.08	U	0.577 J	ij	0.415	J	4.28 l	U	4.02 U	J	4.18	U	4.28	U	4.25 U	0.35	J	3.92 l
Arsenic, Total	16	13	2.69		6.47		1.92		3.8		1.85		1.18		1.13		2.26		1.46	_	1.66	2.31		0.901
Barium, Total	400	350	33.4		26.4		15.6		22.4	Ι	24.5		28.5		30		26.4		29.3	J	21.1	17.6		13.4
Beryllium, Total	72	7.2	0.159	J	0.157	J	0.196	J	0.284 J	J	0.156	J	0.197	J	0.137 J	J	0.301	J	0.197	J	0.178 J	0.228	J	0.102
Cadmium, Total	4.3	2.5	0.796	U	0.825	U	0.236	J	0.334 J	J	0.389	J	0.308	J	0.805 U	J	0.836	U	0.855	U	0.849 U	0.293	J	0.157
Calcium, Total	-	-	3800		1200		352		544	floor	2130		600		602		653		802	$oxed{oxed}$	1490	604		472
Chromium, Total	-	-	16.2		12.9	\coprod	6.6		9.56		9.62	$oldsymbol{\mathbb{I}}$	11.7		11.2		12.5		12.7	$oxed{oxed}$	8.87	8.67		5.12
Cobalt, Total	-	-	5.31		5.44	Ш	3.52	$oxed{J}$	5.15		7.3		5.35		3.36		5.37		5.22		4.7	5.59		2.57
Copper, Total	270	50	19		17.4	Ш	5.9		6.45		78.1		11.2		15.8		11.3		11.7		12.1	11.9		5.91
Iron, Total	-	-	12000		12200	Ш	8180		13800		13400		10700		9770		15100		11300		9940	10200)	5510
Lead, Total	400	63	16.6		15.4	\coprod	1.77	J	3.25 J	ı	4.73	\int	2.6	J	5.26		4.42		6.25	$oldsymbol{ol}}}}}}}}}}}}}}$	5.73	2.55	J	0.705
Magnesium, Total	-	-	2480		1760		1260		1410	floor	1750		1630		1380		2240		1600	$oxed{oxed}$	1950	1910		962
Manganese, Total	2000	1600	362		298		155		196	floor	276		244		84.3		137		274	$oxed{oxed}$	226	217		150
Mercury, Total	0.81	0.18	0.067	U	0.079	U	0.066	U	0.069 L	J	0.068	U	ا 860.0	U	0.071 U	J	0.086	U	0.088	U	0.074 U	0.068	U	0.065 l

1/13/2021 Page 4 of 10

SAMPLE ID	NYS Part 375		SB-1 (15.5-1	6')	SB-1 (6.5-7') [SB-2 (16-16.5	5')	SB-2 (3.5-4'))	SB-3 (15-15.5	5')	SB-3 (7-7.5	5')	SB-4 (15-15.5')	') SI	B-4 (3-3.5'))	SB-5 (15.5-16	i')	SB-5 (5.5-6')	SB-6 (5.5-6'))	SB-6 (15.5-16')
SAMPLING DATE	Restricted-	NYS Part 375	1/6/2020		1/6/2020		1/7/2020		1/7/2020		1/7/2020		1/7/2020		1/6/2020		1/6/2020		1/6/2020		1/6/2020		1/7/2020		1/7/2020
LAB SAMPLE ID	Residential	Unrestricted	L2000463-0	2	L2000463-0	1	L2000632-02	2	L2000632-0	1	L2000632-0	<u>1</u>	L2000632-0	<u>)3</u>	L2000463-04	<u>L2</u>	2000463-03	3	L2000463-06	<u> </u>	L2000463-0	5	L2000632-05	2	L2000632-06
SAMPLE DEPTH (fbgs)	Residential		15.5-16		6.5-7		16-16.5		3.5-4		15-15.5		7-7.5		15-15.5		3-3.35		15.5-16		5.5-6		5.5-6		15.5-16
			Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result C	3	Result	Q	Result	Q	Result	Q	Result	Q	Result Q
Nickel, Total	310	30	14		12.3		10.7		8.3		24.6		12.3		8.79		12.5		25.1		11.2		15.3		6.18
Potassium, Total	-	-	1030		954		234		291		1040		785		584		610		614		598		439		249
Selenium, Total	180	3.9	0.31	J	0.297	J	1.63	U	1.67	U	1.73	U	1.71	U	1.61 L	J	1.67	U	0.222	J	1.7	U	1.63	U	1.57 U
Silver, Total	180	2	0.796	J	0.825	U	0.816	U	0.836	U	0.864	U	0.855	U	0.805 L	J	0.836	U	0.855	U	0.849	U	0.815	U	0.784 U
Sodium, Total	-	-	107	J	62.3	J	20.6	J	24	J	161	J	47.3	J	98 J	J	44.1	J	70.5	J	64.2	J	45.1	J	35.1 J
Thallium, Total	-	-	1.59	U	1.65	U	1.63	U	1.67	U	1.73	U	1.71	U	1.61 L	J	1.67	U	1.71	U	1.7	U	1.63	U	1.57 U
Vanadium, Total	-	-	18.8		20		10.4		14.9		21.5		15.7		17.3		24.8		19.8		12.8		12.8		6.7
Zinc, Total	10000	109	37.7		52.3		45.3		36.8		35.3		23.4		20.8		24.5		24.7	۷d	27.4		25		10.2

Notes:

Q = Qualifier

U = Indicates compound analyzed for but not detected

- J = Indicates estimated value for TICs and all results when detected below the RL
- I The lower value for the two columns has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- = No Standard

fbgs = feet below ground surface

Bold = Compound detected in sample

Value exceeds one or more criteria

RL is greater than one or more criteria

1/13/2021 Page 5 of 10

SAMPLE ID			SB-6 (15.5-16	םו וחוי	SB-7 (15-15.5'	\	SB-7 (6-6.5')	SB-8 (15.5-1	6')	SB-8 (5.5-6')		SB-9 (15-15.5')	Т	SB-9 (3.5-4')		SB-10 (2-2.5')	To	SB-10 (2-2.5)DU	ID	SB-10 (15-15.5')
SAMPLING DATE	NYS Part 375	NYS Part 375	1/7/2020		1/7/2020	' 	1/7/2020	1/6/2020	0)	1/6/2020	<u>'</u>	1/7/2020	+	1/7/2020		1/7/2020	+	1/7/2020	JF	1/7/2020
LAB SAMPLE ID	Restricted-	Unrestricted	L2000632-		L2000632-08	-	L2000632-07	L2000463-0	•	L2000463-07	,	L2000632-10	+	L2000632-09		L2000632-11	+	L2000632-13	-	L2000632-12
SAMPLE DEPTH (fbgs)	Residential	Officeu	15.5-16	14	15-15.5	-	6-6.5	15.5-16	<u>o</u>	5.5-6	_	15-15.5	+	3.5-4	_	2-2.5	+	2-2.5	+	15-15.5
OAMI EL DEI III (IDGS)			Result	I Q		Q		Q Result	Q		IQ		Q	Result	Q	Result IC	+	Result	G	Result Q
General Chemistry			Rooult	+ ~	Robalt	\dashv	Roban	Rooun	Ť	Rooun	H	rtoourt	+	Rooun	H	- Rooult	╁	rtoourt	\dashv	rtoouit q
Solids, Total (%)	I -	-	97		95.2		94.8	94.9		91	+	95.4	+	92.7		86.3	t	87.3		97
Volatile Organics by EPA 5035	(ma/ka)		<u> </u>		.		55	3			<u> </u>		_	V		00.0	_	55		<u>.</u>
Methylene chloride	100	0.05	0.0053	U	0.0048	U	0.005	J 0.0047	U	0.0041	ΙυΙ	0.0044	υl	0.0048	U	0.0052 L	J	0.0042	U	0.0044 U
1,1-Dichloroethane	26	0.27	0.001	U		IJ	0.00099	J 0.00095	U	0.00083	IJ		U	0.00097	U	0.001 L]	0.00084	U	0.00088 U
Chloroform	49	0.37	0.0016	Ü		Ū	0.0015	J 0.0014	Ū		Ū		Ū	0.0014	Ū	0.0016 L		0.0012	Ū	0.0013 U
Carbon tetrachloride	2.4	0.76	0.001	Ū	0.00095	U	0.00099	J 0.00095	U	0.00083	Ū		Ū	0.00097	Ū	0.001 L	1	0.00084	Ū	0.00088 U
1,2-Dichloropropane	-	-	0.001	U	0.00095	U	0.00099	J 0.00095	U	0.00083	U		U	0.00097	U	0.001 L	ı	0.00084	U	0.00088 U
Dibromochloromethane	-	-	0.001	U	0.00095	U	0.00099	J 0.00095	U	0.00083	U	0.00088	U	0.00097	U	0.001 L	J	0.00084	U	0.00088 U
1,1,2-Trichloroethane	-	-	0.001	U	0.00095	U	0.00099	J 0.00095	U	0.00083	U		U	0.00097	U	0.001 L	J	0.00084	U	0.00088 U
Tetrachloroethene	19	1.3	0.00053	U	0.00028	J	0.0005	J 0.00047	U		U	0.00077	\neg	0.00048	U	0.00052 L	J	0.00042	U	0.0012
Chlorobenzene	100	1.1	0.00053	U	0.00048	U	0.0005	J 0.00047	U	0.00041	U	0.00044	U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
Trichlorofluoromethane	-	-	0.0042	U	0.0038	U	0.004	J 0.0038	U	0.0033	U	0.0035	U	0.0039	U	0.0042 L	J	0.0034	U	0.0035 U
1,2-Dichloroethane	3.1	0.02	0.001	U	0.00095	U	0.00099	J 0.00095	U	0.00083	U	0.00088	U	0.00097	U	0.001 L	J	0.00084	U	0.00088 U
1,1,1-Trichloroethane	100	0.68	0.00053	U	0.00048	U	0.0005	J 0.00047	U	0.00041	U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
Bromodichloromethane	-	-	0.00053	U	0.000.0	U	0.0005	J 0.00047	U	0.00041	U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
trans-1,3-Dichloropropene	-	-	0.001	U	0.00095	U	0.00099	J 0.00095	U	0.00083	U	0.00088	U	0.00097	U	0.001 L	J	0.00084	J	0.00088 U
cis-1,3-Dichloropropene	-	-	0.00053	U	0.00048	U	0.0005	J 0.00047	U	0.00041	U		U	0.00048	U	0.00052 L	J	0.00042	J	0.00044 U
1,3-Dichloropropene, Total	-	-	0.00053	U	0.000.0	U	0.0005	J 0.00047	U		U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
1,1-Dichloropropene	-	-	0.00053	U	0.00010	U	0.0005	J 0.00047	U	0.00041	U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
Bromoform	-	-	0.0042	U		U	0.004	J 0.0038	U	0.0033	U		U	0.0039	U	0.0042 L	J	0.0034	U	0.0035 U
1,1,2,2-Tetrachloroethane	-	-	0.00053	U	0.000.0	U	0.0005	J 0.00047	U	0.00041	U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
Benzene	4.8	0.06	0.00053	U	0.000.0	U	0.0005	J 0.00047	U		U		U	0.00048	U	0.00052 L	J	0.00042	U	0.00044 U
Toluene	100	0.7	0.001	U		U	0.00099	J 0.00095	U		U		U	0.00097	U	0.001 L	1		U	0.00088 U
Ethylbenzene	41	1	0.001	U		U	0.00099	J 0.00095	U		U		U		U	0.001 L	1		U	0.00088 U
Chloromethane	-	-	0.0042	U		U	0.00.	J 0.0038	U		U		J	0.0039	U	0.0042 L	<u>/ </u>		U	0.0011 J
Bromomethane	-	-	0.0021	U		U	0.00=	J 0.0019	U		U		U	0.0019	U	0.0021 L	4	0.0017	U	0.0018 U
Vinyl chloride	0.9	0.02	0.001	U		U	0.00099	J 0.00095	U		U		U		U	0.001 L	4		U	0.00088 U
Chloroethane	-	-	0.0021	U		U	0.002	J 0.0019	U		U		U	0.0019	U	0.0021 L	4	0.0017	U	0.0018 U
1,1-Dichloroethene trans-1.2-Dichloroethene	100	0.33	0.001	U		U	0.00099	J 0.00095 J 0.0014	U		U		U	0.00097	U	0.001 L	#		U	0.00088 U 0.0013 U
, , , , , , , , , , , , , , , , , , , ,		0.19 0.47	0.0016 0.00053	U		U		J 0.0014 J 0.00047	П		11		U U	0.0014 0.00048	U	0.0016 L 0.00052 L	#	0.0012 0.00042	0	0.0013 U 0.00044 U
Trichloroethene 1,2-Dichlorobenzene	21 100	1.1	0.00033	U		U	0.0003	J 0.00047	U		U		U		U		#		U	0.00044 U
1,3-Dichlorobenzene	49	2.4	0.0021	U		U		J 0.0019	U		111		U		U		╫		U	0.0018 U
1,4-Dichlorobenzene	13	1.8	0.0021	U		U		J 0.0019	U		П		U		U		╫		U	0.0018 U
Methyl tert butyl ether	100	0.93	0.0021	U		U		J 0.0019	U		П		U		U		╫		U	0.0018 U
p/m-Xylene	-	-	0.0021	U		U		J 0.0019	U		III		U		U		╫		U	0.0018 U
o-Xylene	-	-	0.001	Ü		U	0.00099	J 0.00095	U		ü		Ü		U		+		U	0.00088 U
Xylenes, Total	100	0.26	0.001	Ū		U	0.00099	J 0.00095	U		Ü		U		U		j		U	0.00088 U
cis-1,2-Dichloroethene	100	0.25	0.001	Ū		Ū	0.00099	J 0.00095	Ū		Ü		Ü		U		,		Ü	0.00088 U
1,2-Dichloroethene, Total	-	-	0.001	U		Ū	0.00099	J 0.00095	Ū		Ū		Ū		Ū		1		Ū	0.00088 U
Dibromomethane	-	-	0.0021	Ū		Ū	0.002	J 0.0019	U		Ū		Ü		U		1		Ü	0.0018 U
Styrene	-	-	0.001	Ū		Ū	0.00099	J 0.00095	Ū		Ū		Ū		Ū		亣		Ū	0.00088 U
Dichlorodifluoromethane	-	-	0.01	U		U	0.0099	J 0.0095	U		U		U		Ū		朩		U	0.0088 U
Acetone	100	0.05	0.01	U		U		J 0.0095	U		U		J		U		1		U	0.0088 U
Carbon disulfide	-	-	0.01	U		U		J 0.0095	U		U		Ū		Ū	0.01 L	1		U	0.0088 U
2-Butanone	100	0.12	0.01	U		U		J 0.0095	U		U		U		U		1		U	0.0088 U
Vinyl acetate	-	-	0.01	U		U		J 0.0095	U		U		U	0.0097	U	0.01 L	J		U	0.0088 U
4-Methyl-2-pentanone	-	-	0.01	U		U		J 0.0095	U		U		U	0.0097	U	0.01 L	J	0.0084	U	0.0088 U
1,2,3-Trichloropropane	-	-	0.0021	U	0.0019	U	0.002	J 0.0019	U	0.0016	U		U	0.0019	U	0.0021 L	J	0.0017	U	0.0018 U
			-					-	-				_							

1/13/2021 Page 6 of 10

SAMPLE ID			SB-6 (15.5-16')DUP	SB-7 (15-15.5')	SB-7 (6-6.5')	SB-8 (15.5-16')	SB-8 (5.5-6')	SB-9 (15-15.5')	SB-9 (3.5-4')	SB-10 (2-2.5')	SB-10 (2-2.5)DUP	SB-10 (15-15.5')
SAMPLING DATE	NYS Part 375	NYS Part 375	1/7/2020	1/7/2020	1/7/2020	1/6/2020	1/6/2020	1/7/2020	1/7/2020	1/7/2020	1/7/2020	1/7/2020
LAB SAMPLE ID	Restricted-	Unrestricted	L2000632-14	L2000632-08	L2000632-07	L2000463-08	L2000463-07	L2000632-10	L2000632-09	L2000632-11	L2000632-13	L2000632-12
SAMPLE DEPTH (fbgs)	Residential	Officieu	15.5-16	15-15.5	6-6.5	15.5-16	5.5-6	15-15.5	3.5-4	2-2.5	2-2.5	15-15.5
OAMI EE DEI III (Ibgs)			Result Q	Result Q			Result Q		Result Q	Result Q		
2-Hexanone			0.01 U	0.0095 U			0.0083 U	0.0088 U	0.0097 U	0.01 U		0.0088 U
Bromochloromethane	_	_	0.0021 U	0.0093 U	0.0039 U		0.0003 U	0.0038 U	0.0097 U	0.0021 U		0.0038 U
2,2-Dichloropropane	_		0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U		0.0018 U
1,2-Dibromoethane	_	_	0.0021 U	0.00019 U	0.002 U		0.00010 U	0.00088 U	0.00097 U	0.0021 U	0.00017 U	0.00088 U
1,3-Dichloropropane	_	_	0.001 U	0.00093 U	0.002 U		0.00065 U	0.0008 U	0.0019 U	0.001 U		0.0008 U
1,1,1,2-Tetrachloroethane	_	_	0.0021 U	0.00048 U	0.002 U		0.00010 U	0.00044 U	0.00048 U	0.00052 U	0.00017 U	0.00044 U
Bromobenzene	_	_	0.0021 U	0.0019 U	0.002 U	0.000	0.0016 U	0.00044 U	0.0019 U	0.00032 U		0.00044 U
n-Butylbenzene	100	12	0.001 U	0.00095 U	0.00099 U		0.00083 U	0.00088 U	0.00097 U	0.001 U	0.00084 U	0.00088 U
sec-Butylbenzene	100	11	0.001 U	0.00095 U	0.00099 U		0.00083 U	0.00088 U	0.00097 U	0.001 U	0.00084 U	0.00088 U
tert-Butylbenzene	100	5.9	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
o-Chlorotoluene	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
p-Chlorotoluene	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U		0.0018 U
1,2-Dibromo-3-chloropropane	-	-	0.0032 U	0.0028 U	0.003 U		0.0025 U	0.0026 U	0.0029 U	0.0031 U	0.0025 U	0.0026 U
Hexachlorobutadiene	-	-	0.0042 U	0.0038 U	0.004 U		0.0033 U	0.0035 U	0.0039 U	0.0042 U	0.0034 U	0.0035 U
Isopropylbenzene	-	-	0.001 U	0.00095 U	0.00099 U		0.00083 U	0.00088 U	0.00097 U	0.001 U	0.00084 U	0.00088 U
p-Isopropyltoluene	-	-	0.001 U	0.00095 U	0.00099 U	0.00095 U	0.00083 U	0.00088 U	0.00097 U	0.001 U	0.00084 U	0.00088 U
Naphthalene	100	12	0.0042 U	0.0038 U	0.004 U	0.0038 U	0.0033 U	0.0035 U	0.0039 U	0.0042 U	0.0034 U	0.0035 U
Acrylonitrile	-	-	0.0042 U	0.0038 U	0.004 U	0.0038 U	0.0033 U	0.0035 U	0.0039 U	0.0042 U	0.0034 U	0.0035 U
n-Propylbenzene	100	3.9	0.001 U	0.00095 U	0.00099 U	0.00095 U	0.00083 U	0.00088 U	0.00097 U	0.001 U	0.00084 U	0.00088 U
1,2,3-Trichlorobenzene	-	-	0.0021 U	0.0019 U	0.002 U	0.0019 U	0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
1,2,4-Trichlorobenzene	-	-	0.0021 U	0.0019 U	0.002 U	0.0019 U	0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
1,3,5-Trimethylbenzene	52	8.4	0.0021 U	0.0019 U	0.002 U	0.0019 U	0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
1,2,4-Trimethylbenzene	52	3.6	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
1,4-Dioxane	13	0.1	0.084 U	0.076 U	0.079 U		0.066 U	0.07 U	0.077 U	0.084 U	0.067 U	0.07 U
p-Diethylbenzene	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
p-Ethyltoluene	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
1,2,4,5-Tetramethylbenzene	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
Ethyl ether	-	-	0.0021 U	0.0019 U	0.002 U		0.0016 U	0.0018 U	0.0019 U	0.0021 U	0.0017 U	0.0018 U
trans-1,4-Dichloro-2-butene	-	-	0.0053 U	0.0048 U	0.005 U	0.0047 U	0.0041 U	0.0044 U	0.0048 U	0.0052 U	0.0042 U	0.0044 U
Semivolatile Organics by GC/	, ` ` ` ` ` 	00	0.40	I 044 III	1 044 111	1 044 111	0.44	1 044 [11]	0.44	0.45	1 045 111	0.40
Acenaphthene	100	20	0.13 U	0.14 U	0.14 U		0.14 U	0.14 U	0.14 U	0.15 U	0.15 U	0.13 U
1,2,4-Trichlorobenzene	- 4.0	- 0.00	0.17 U	0.17 U	0.17 U	0.17 U	0.18 U	0.17 U				0.17 U
Hexachlorobenzene Ris(2 chloroethyl) ethor	1.2	0.33	0.1 U 0.15 U	0.1 U 0.16 U	0.1 U 0.16 U		0.11 U 0.16 U	0.1 U 0.16 U		0.11 U 0.17 U		0.1 U 0.15 U
Bis(2-chloroethyl)ether 2-Chloronaphthalene		-	0.15 U	0.16 U	0.16 U		0.16 U	0.16 U				0.15 U
1,2-Dichlorobenzene	100	1.1	0.17 U	0.17 U			0.18 U	0.17 U				0.17 U
1,3-Dichlorobenzene	49	2.4	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
1,4-Dichlorobenzene	13	1.8	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
3,3'-Dichlorobenzidine	-	-	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
2,4-Dinitrotoluene	-	-	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U		0.19 U		0.17 U
2,6-Dinitrotoluene	-	-	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
Fluoranthene	100	100	0.1 U	0.1	0.1 U		0.035 J			0.11 U		
4-Chlorophenyl phenyl ether	-	-	0.17 U	0.17 U			0.18 U	0.17 U				0.17 U
4-Bromophenyl phenyl ether	-	-	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
Bis(2-chloroisopropyl)ether	-	-	0.2 U	0.21 U	0.21 U		0.22 U	0.21 U				0.2 U
Bis(2-chloroethoxy)methane	-	-	0.18 U	0.19 U	0.19 U		0.2 U	0.19 U			0.2 U	0.18 U
Hexachlorobutadiene	-	-	0.17 U	0.17 U	0.17 U		0.18 U	0.17 U				0.17 U
Hexachlorocyclopentadiene	-	-	0.48 U	0.49 U	0.5 U		0.52 U	0.49 U		0.54 U		0.48 U
Hexachloroethane	-	-	0.13 U	0.14 U	0.14 U		0.14 U	0.14 U		0.15 U		0.13 U
Isophorone	-	-	0.15 U	0.16 U	0.16 U	0.15 U	0.16 U	0.16 U	0.16 U	0.17 U	0.17 U	0.15 U

1/13/2021 Page 7 of 10

SAMPLE ID			CD 6 /15 5 16	מווחוי	CD 7 /4E 4E 8	Ξ'\	SD 7 /6 6 E'\		CD 0 (1E E 16')		CD 0 /E E 6'\		CD 0 /15 15 5'\		SB-9 (3.5-4')		CD 10 (2 2 5!)	ler	2 40 /2 2 5\D	ומוו	SD 10 /15 15 5'\
SAMPLING DATE	NYS Part 375	NYS Part 375	SB-6 (15.5-16 1/7/2020	_	SB-7 (15-15.5 1/7/2020)	SB-7 (6-6.5') 1/7/2020		SB-8 (15.5-16') 1/6/2020	+	SB-8 (5.5-6') 1/6/2020		SB-9 (15-15.5') 1/7/2020	+	1/7/2020		SB-10 (2-2.5') 1/7/2020	30	3-10 (2-2.5)D 1/7/2020	UP 3	SB-10 (15-15.5') 1/7/2020
LAB SAMPLE ID	Restricted-		L2000632-		L2000632-0		L2000632-07		L2000463-08	+	L2000463-07		L2000632-10	+	L2000632-09		L2000632-11	-	L2000632-1	,	L2000632-12
SAMPLE DEPTH (fbgs)	Residential	Unrestricted	15.5-16		15-15.5	<u>•</u>	6-6.5		15.5-16	+	5.5-6		15-15.5	+	3.5-4		2-2.5		2-2.5	2	15-15.5
SAMPLE DEFITT (1093)			Result	T Q	Result	ΙQ		Q	Result	+		Q		1		Q	Result (1	Result	IQ	Result Q
Naphthalene	100	12	0.17	U	0.17	U		U	0.17 U		0.18	y =	0.17 L			U	0.19 U	_	0.19	11	0.17 U
Nitrobenzene	100	12	0.17	U	0.17	1		U	0.17 0.15 U		0.16	7	0.17 C	_		U	0.19 U	_	0.19	111	0.17 U
NDPA/DPA	_	-	0.13	U	0.16	111		U	0.13 U		0.10	끔	0.14 L	_		U	0.17 C	_	0.17	111	0.13 U
n-Nitrosodi-n-propylamine	_	_	0.13	U	0.17	Hill		U	0.14 0		0.14	끔	0.14 C	_		U	0.19 U	_	0.19	111	0.13 U
Bis(2-ethylhexyl)phthalate	_	_	0.17	Ū	0.17	Hill		U	0.17 U		0.18	끍	0.17 U	_		U	0.19 U	_	0.19	Hill	0.17 U
Butyl benzyl phthalate		_	0.17	Ū	0.17	Hill		U	0.17	╁	0.10	H	0.17 U	_		U	0.19 U	_	0.19	Hill	0.17 U
Di-n-butylphthalate	_	_	0.17	Ü	0.17	l ül		U	0.17 U	1	0.18	IJ	0.17 L	_		U		1	0.19	lül -	0.17 U
Di-n-octylphthalate	_	_	0.17	Ū	0.17	I ii		U	0.17 U		0.18	ij	0.17 L	_		U		1	0.19	lül -	0.17 U
Diethyl phthalate	_	_	0.17	Ū	0.17	I ii		U	0.17 U		0.18	ij	0.17 L	_		U		1	0.19	lül-	0.17 U
Dimethyl phthalate	-	-	0.17	Ū	0.17	Till		U	0.17 U		0.18	Ü	0.17 L	_		U	0.19 L	_	0.19	iil	0.17 U
Benzo(a)anthracene	1	1	0.1	Ū	0.056	J		Ü	0.034		0.021	J		_		U	0.11 l	_	0.11	Ü	0.1 U
Benzo(a)pyrene	1	1	0.13	Ū	0.055	l [U	0.14 U		0.14	Ū	0.14 L	_		U	0.15 L	_	0.15	l ūl	0.13 U
Benzo(b)fluoranthene	1	1	0.1	Ū	0.06	ازا		U	0.039		0.11	Ū	0.1 L	_		U	0.11 L	_	0.11	l ūl	0.1 U
Benzo(k)fluoranthene	3.9	0.8	0.1	Ū	0.041	J		U	0.1 l		0.11	Ü		_		U	0.11 l	_	0.11	ΙυΙ	0.1 U
Chrysene	3.9	1	0.1	Ū	0.052	J		U	0.03	_	0.11	Ū	0.1 L	_		U	0.11 l	_	0.11	Ū	0.1 U
Acenaphthylene	100	100	0.13	Ū	0.14	Ū		U	0.14 l		0.14	Ū	0.14 L	_		U	0.15 l	_	0.15	Ū	0.13 U
Anthracene	100	100	0.1	U	0.1	U		U	0.1 l	_	0.11	U	0.1 L	_		U	0.11 l	_	0.11	U	0.1 U
Benzo(ghi)perylene	100	100	0.13	U	0.049	IJ		U	0.022	J	0.14	U	0.14 L	_		U	0.15 l	_	0.15	U	0.13 U
Fluorene	100	30	0.17	U	0.17	U		U	0.17 l	J	0.18	U	0.17 L	_		U	0.19 l	_	0.19	U	0.17 U
Phenanthrene	100	100	0.1	U	0.056	J		U		丌	0.11	U	0.1 L	_		U	0.11 l	_	0.11	U	0.1 U
Dibenzo(a,h)anthracene	0.33	0.33	0.1	U	0.1	U		U	0.1 l	_	0.11	U	0.1 L	J		U	0.11 l	_	0.11	U	0.1 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.13	U	0.041	J		U	0.14 l	J	0.14	U	0.14 L	J		U	0.15 l	_	0.15	U	0.13 U
Pyrene	100	100	0.1	U	0.09	J		U	0.061	J	0.032	J	0.1 L	J	0.1	U	0.11 l	_	0.021	J	0.1 U
Biphenyl	-	-	0.38	U	0.39	U	0.4	U	0.39 l	J	0.41	U	0.39 L	J	0.4	U	0.43 l	J	0.43	U	0.38 U
4-Chloroaniline	-	-	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	U	0.17 L	J	0.17	U	0.19 l	J	0.19	U	0.17 U
2-Nitroaniline	-	-	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	U	0.17 L	J	0.17	U	0.19 l	J	0.19	U	0.17 U
3-Nitroaniline	-	-	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	U	0.17 L	J	0.17	U	0.19 l	J	0.19	U	0.17 U
4-Nitroaniline	-	-	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	J	0.17 L	J	0.17	J	0.19 l	J	0.19	U	0.17 U
Dibenzofuran	59	7	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	J	0.17 L	J	0.17	U	0.19 l	J	0.19	U	0.17 U
2-Methylnaphthalene	-	-	0.2	U	0.21	U		U	0.2 l	_	0.22	U	0.21 L	J	0.21	U	0.23 l	J	0.23	U	0.2 U
1,2,4,5-Tetrachlorobenzene	-	-	0.17	U	0.17	U	0.17	U	0.17 l	J	0.18	U	0.17 L	J	0.17	U	0.19 l	ال	0.19	U	0.17 U
Acetophenone	-	-	0.17	U	0.17	U		U	0.17 l			U				U		J	0.19	U	0.17 U
2,4,6-Trichlorophenol	-	-	0.1	U	0.1	U		U	0.1 l			U		_		U	0.11 l	_	0.11	U	0.1 U
p-Chloro-m-cresol	-	-	0.17	U	0.17	U		U	0.17 l			U		_		U		<u> </u>	0.19	U	0.17 U
2-Chlorophenol	-	-	0.17	U	0.17	U		U	0.17 l			U		_		U		J	0.19	U	0.17 U
2,4-Dichlorophenol	-	-	0.15	U	0.16	U		U	0.15 l			U		_		U	0.17 l	_	0.17	U	0.15 U
2,4-Dimethylphenol	-	-	0.17	U	0.17	U		U	0.17 l			U		_		U	0.19 l	_	0.19	U	0.17 U
2-Nitrophenol	-	-	0.36	U	0.37	U		U	0.37 l			U		_		U		<u> </u>	0.41	U	0.36 U
4-Nitrophenol	-	-	0.23	U	0.24	U		U	0.24 l			U		_		U		<u> </u>	0.26	U	0.24 U
2,4-Dinitrophenol	-	-	0.8	U	0.83	ĮU		U	0.82 l			U		_		U		ال	0.91	IU	0.81 U
4,6-Dinitro-o-cresol	-	-	0.44	U	0.45	U		U	0.45 l			U		_		U		<u> </u>	0.49	U	0.44 U
Pentachlorophenol	6.7	0.8	0.13	U	0.14	U		U	0.14 l			U		_		U		1	0.15	IU	0.13 U
Phenol O Mathematical	100	0.33	0.17	U	0.17	U		U	0.17 U			U		_		U		1	0.19	IU III	0.17 U
2-Methylphenol	100	0.33	0.17	U	0.17	U		U	0.17 l			U		_		U		<u> </u>	0.19	빈	0.17 U
3-Methylphenol/4-Methylphenol	100	0.33	0.24	U	0.25	U		U	0.25 l			U		_		U		<u> </u>	0.27	IU	0.24 U
2,4,5-Trichlorophenol	-	-	0.17	U	0.17	U		U	0.17 l			U		_		U		<u> </u>	0.19	U	0.17 U
Benzoic Acid	-	-	0.54	U	0.56	IU.		U	0.56 U			U		_		U		<u> </u>	0.61	IUI	0.54 U
Benzyl Alcohol	-	-	0.17	U	0.17	10		U	0.17 l	_		U		_		U		<u> </u>	0.19	IUI	0.17 U
Carbazole 1,4-Dioxane	13	0.1	0.17 0.025	U	0.17 0.026	I U		U	0.17 l 0.026 l			U				U		<u> </u>	0.19 0.028	IU III	0.17 U 0.025 U
1,7°DIUAANE	13	J 0.1	0.020	U	0.020	U	0.020	U	0.026 l	7	0.021	U	0.026 L	۱۲	0.020	U	0.020	ᅦ	0.020	U	0.025 U

1/13/2021 Page 8 of 10

SAMPLE ID			CD 6 /15 5 16	מווחיי	CD 7 /15 15 5	<u>ا</u> ۱۷	CD 7 (6 6 5')		CD 0 /1E E 16'\		SD 0 /E E 6'\	+	SD 0 /15 15 5'\	T	SD 0 /2 5 4'\		SD 10 /2 2	ı\ le	P 40 /2 2 E\F	ומוו	CD 10 /15 15 5'\
SAMPLE ID SAMPLING DATE	NYS Part 375	NYS Part 375	SB-6 (15.5-16 1/7/2020		SB-7 (15-15.5 1/7/2020)	SB-7 (6-6.5') 1/7/2020	-	SB-8 (15.5-16') 1/6/2020	,	SB-8 (5.5-6') 1/6/2020	+	SB-9 (15-15.5')	╀	SB-9 (3.5-4') 1/7/2020		SB-10 (2-2.5 1/7/2020) 3	3B-10 (2-2.5)D 1/7/2020	OP :	SB-10 (15-15.5') 1/7/2020
	Restricted-					+				١.		+	1/7/2020	+				4		_	
LAB SAMPLE ID SAMPLE DEPTH (fbgs)	Residential	Unrestricted	<u>L2000632-</u> 15.5-16		<u>L2000632-08</u> 15-15.5	<u> </u>	<u>L2000632-07</u> 6-6.5	+	<u>L2000463-08</u> 15.5-16	<u> </u>	<u>-2000463-07</u> 5.5-6	+	<u>L2000632-10</u> 15-15.5	+	<u>L2000632-09</u> 3.5-4	-	<u>L2000632-1</u> 2-2.5	1	<u>L2000632-1</u> 2-2.5	3	<u>L2000632-12</u> 15-15.5
SAMPLE DEFTH (IDGS)			Result	Q	Result	IQ		Q	Result Q		Result Q	+	Result C	+		Q	Result	IQ	Result	IQ	Result Q
Organischlering Posticides by	CC (ma/ka)		Result	Q	Nesuit	Q	Nesuit	Q	ivesuit &		ivesuit G	×	ivesuit 6	<u> </u>	Nesuit	Q	Nesuit	Q	Nesuit	Q	Nesult Q
Organochlorine Pesticides by	· · · · · ·	0.04	0.00456	- 11	0.00462	Lut	0.00164	ш	0.00462		0.00175	П	0.00465		0.00165	111	0.00102	Tril	0.00102	Tril	0.00455
Delta-BHC	100		0.00156	U	0.00162	10		U	0.00163 U 0.000678 U		0.00175 U	4	0.00165 L	4	0.00.00	U	0.00182	U	0.00182	10	0.00155 U
Lindane	1.3	0.1	0.000652	U	0.000677	10	0.00000	U	0.000010		0.000731 U	#	0.000686 L	 -	0.000688	11	0.00076	10	0.00076		0.000647 U
Alpha-BHC	0.48	0.02 0.036	0.000652 0.00156	U	0.000677	111	0.00000	U	0.000678 U		0.000731 U 0.00175 U	#	0.000686 U	 -	0.000688 0.00165	11	0.00076 0.00182	- 101	0.00076 0.00182	10	0.000647 U 0.00155 U
Beta-BHC	2.1	0.036	0.00130	U	0.00162 0.000813	H	0.00.0.	U	0.00163 U 0.000814 U		0.00173 U	+	0.000824 L	 		H		10	0.00162	111	0.00135 U
Heptachlor Aldrin	0.097	0.042		U		H	0.0000=	U			0.000877 U	+	0.000824 C	 	0.000826	H	0.000912 0.00182	10	0.000912	111	
Heptachlor epoxide	0.097	0.005	0.00156 0.00293	U	0.00162 0.00305	H		U	0.00163 U 0.00305 U		0.00173 U	+	0.00165 C	+	0.00165 0.0031	U	0.00162	111	0.00162	111	0.00155 U 0.00291 U
Endrin	11	0.014	0.00293	U	0.00303	H		U	0.00303 U		0.00329 U	+	0.00309 C	+	0.0031	-	0.00342	111	0.00342	111	0.00291 U
Endrin aldehyde	11	0.014	0.000032	U	0.000077	H		U	0.000078 U		0.000731 U	+	0.000086 C	 	0.00206		0.00076	111	0.00076	1	0.000047 U
	<u> </u>	_	0.00193	U	0.00203	H		U	0.00203 U		0.00219 U	+	0.00200 C	 	0.00200	Н	0.00228	- 111	0.00228	111	0.00194 U
Endrin ketone Dieldrin	0.2	0.005	0.00136	U	0.00102	11		U	0.00103 U		0.00173 U	╫	0.00103 L	╫	0.00103	띪	0.00162		0.00162	11	0.00133 U
4,4'-DDE	8.9	0.003	0.000977	U	0.00102	11		U	0.00102 U		0.0011 U	╫	0.00103 C	╫	0.00103	띪	0.00114	111	0.00114	111	0.00097 U
4,4'-DDD	13	0.0033	0.00156	U	0.00162	11		U	0.00163 U		0.00175 U	╫	0.00165 L	╫	0.00165	띪	0.00182	111	0.00182	111	0.00155 U
4,4'-DDT	7.9	0.0033	0.00138	U	0.00162	11		U	0.00163 U		0.00173 U	╫	0.00165 C	╫	0.00165	띪	0.00162		0.00162	111	0.00155 U
Endosulfan I	24	2.4	0.00293	U	0.00303	11		U	0.00303 U		0.00329 U	╫	0.00309 C	╫	0.0031	띪	0.00342	111	0.00342		0.00291 U
Endosulfan II	24	2.4	0.00156	U	0.00162	H		U	0.00163 U	+	0.00175 U	╫	0.00165 L	╫	0.00165	H	0.00182	Hill	0.00182	Ш	0.00155 U
Endosulfan sulfate	24	2.4	0.000652	U	0.000677	H		U	0.000678 U		0.000731 U	╫	0.000686 L	╫	0.000688	H	0.00076	111	0.00076	Hill	0.000647 U
Methoxychlor		2.7	0.00293	U	0.00305	H	0.00000	U	0.00305 U		0.000731 U	╫	0.00309 L	╫		U	0.00070	111	0.00070	Hill	0.00291 U
Toxaphene	_	_	0.0293	U	0.0305	H		U	0.0305 U		0.0329 U	╫	0.0309 L	╫		U	0.00342	Hill	0.00342	Ш	0.0291 U
cis-Chlordane	4.2	0.094	0.00195	U	0.00203	H		U	0.00203 U		0.00219 U	╫	0.00206 L	1		U	0.00228	 	0.00228	III	0.00194 U
trans-Chlordane		-	0.00195	U	0.00203	u		U	0.00203 U		0.00219 U	1	0.00206 L	1		IJ	0.00228	III	0.00228	iii	0.00194 U
Chlordane	-	-	0.0127	Ū	0.0132	Ü		U	0.0132 U		0.0142 U	1	0.0134 L]		Ü	0.0148	Ü	0.0148	Ü	0.0126 U
Polychlorinated Biphenyls by	GC (ma/ka)							_	3.3.32		3.3.1.	_									
Aroclor 1016	1	0.1	0.0332	U	0.0334	ΙυΙ	0.0351	U	0.0346 U		0.0365 U	J	0.0348 L	J	0.0347	U	0.0371	U	0.0374	Tul	0.0331 U
Aroclor 1221	1	0.1	0.0332	U	0.0334	Ū		U	0.0346 U		0.0365 U	J	0.0348 L	_		Ū	0.0371	Ū	0.0374	Ū	0.0331 U
Aroclor 1232	1	0.1	0.0332	Ū	0.0334	Ū		U	0.0346 U		0.0365 U	J	0.0348 L	_		Ū	0.0371	ΙŪ	0.0374	Ū	0.0331 U
Aroclor 1242	1	0.1	0.0332	U	0.0334	Ū		U	0.0346 U		0.0365 U	J	0.0348 L	_		Ū	0.0371	Ū	0.0374	Ū	0.0331 U
Aroclor 1248	1	0.1	0.0332	U	0.0334	U		U	0.0346 U		0.0365 U	J	0.0348 L	_		U	0.0371	U	0.0374	U	0.0331 U
Aroclor 1254	1	0.1	0.0332	Ū	0.00689	J		U	0.0346 U	1	0.0365 U	J	0.0348 L	J	0.0347	Ū	0.0371	Ū	0.0374	Ū	0.0331 U
Aroclor 1260	1	0.1	0.0332	Ū	0.0334	Ū		U	0.0346 U		0.0365 U	J	0.0348 L	1		Ū	0.0371	Ū	0.0374	Ū	0.0331 U
Aroclor 1262	1	0.1	0.0332	U	0.0334	Ū		U	0.0346 U	1	0.0365 U	J	0.0348 L	1		Ū	0.0371	Ū	0.0374	Ū	0.0331 U
Aroclor 1268	1	0.1	0.0332	U	0.0334	U		U	0.0346 U		0.0365 U	J	0.0348 L			U	0.0371	U	0.0374	U	0.0331 U
PCBs, Total	1	0.1	0.0332	Ū	0.00689	J		Ū	0.0346 U		0.0365 U	J	0.0348 L	_		Ū	0.0371	Ū	0.0374	U	0.0331 U
Total Metals (mg/kg)																					
Aluminum, Total	-	-	1930		4360	П	3650	Т	3380		4240	T	3070	T	5530	П	7840		9420		2140
Antimony, Total	-	-	4.09	U	0.507	J		U	4.11 U		4.32 U	J	4.03 L	J	4.27	U	1.04	J	0.686	J	3.97 U
Arsenic, Total	16	13	0.729	J	1.99		1.24		1.69		1.61		1.26	Ţ	1.69		5.47	\prod	5	$\Box \top$	0.985
Barium, Total	400	350	14.1		41.3	П	33.2		26.6		26.2		22		44.8		17.2	\prod	38.1		18.1
Beryllium, Total	72	7.2	0.115	J	0.319	J	0.178	J	0.214 J		0.138 J	J	0.161 J	ı	0.307	J	0.241	J	0.422	J	0.111 J
Cadmium, Total	4.3	2.5	0.164	J	0.417	J	0.267	J	0.822 U		0.863 U	J	0.258 J	ī	0.282	J	0.491	J	0.607	J	0.191 J
Calcium, Total	-	-	501		2120		626		938		967	Ι	776	Γ	530		784		745		638
Chromium, Total	-	-	5.13		14.6		11		13.6		9.13		10	Ι	11		19.1		15.3		5.2
Cobalt, Total	-	-	2.44		5.6		4.78		4.17		4.07		4.47		5.54		6.36		11.3		3.37
Copper, Total	270	50	7.66		21		11.3		13.9		9.19		10	Ι	10.8		9.9		16.6		7.61
Iron, Total	-	-	6080		12300	Ш	9000		10100		9520		8980		10600	Ш	19800		22600		6650
Lead, Total	400	63	0.393	J	23.3	Ш		J	6.97		8.37	$oldsymbol{ol}}}}}}}}}}}}}}}$	2.07 J	ıΓ	2.56	J	5.87	\prod	6.44	Ш	1.25 J
Magnesium, Total	-	-	915		3560	\prod	1580		1700		1710	$oldsymbol{\mathbb{I}}$	1780	Ι	1830		1970		2910		1120
Manganese, Total	2000	1600	143		568	Ш	268		254		153		210	Ĺ	352	П	178	\prod	510	\coprod	220
Mercury, Total	0.81	0.18	0.065	U	0.066	U	0.066	U	0.086 U		0.085 U	_ ال	0.066 L	ᅦ	0.068	U	0.073	U	0.072	U	0.065 U

1/13/2021 Page 9 of 10

Table 1: Soil Analytical Results 205 Park Avenue Brooklyn, New York

SAMPLE ID	NYS Part 375		SB-6 (15.5-16	S')DUP	SB-7 (15-15.5'	')	SB-7 (6-6.5'))	SB-8 (15.5-16')		SB-8 (5.5-6')		SB-9 (15-15.5')	SB-9 (3.5-4')		SB-10 (2-2.5')	SB-10 (2-2.5)DU	JP S	SB-10 (15-15.5')
SAMPLING DATE	Restricted-	NYS Part 375	1/7/2020)	1/7/2020		1/7/2020		1/6/2020		1/6/2020		1/7/2020		1/7/2020		1/7/2020		1/7/2020		1/7/2020
LAB SAMPLE ID	Residential	Unrestricted	L2000632	<u>-14</u>	L2000632-08		L2000632-07	7	L2000463-08		L2000463-07		L2000632-10		L2000632-09		L2000632-11		L2000632-13		L2000632-12
SAMPLE DEPTH (fbgs)	Residential		15.5-16		15-15.5		6-6.5		15.5-16		5.5-6		15-15.5		3.5-4		2-2.5		2-2.5		15-15.5
			Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q
Nickel, Total	310	30	6.42		23.2		19.5		15.8		8.15		13.9		12.5		9.21		17.8		8.37
Potassium, Total	-	•	250		710		534		651		377		590		665		398		497		250
Selenium, Total	180	3.9	1.64	U	1.63	J	1.62	U	1.64 l	U	1.73	U	1.61	U	1.71	U	0.304	J	1.76	U	1.59 U
Silver, Total	180	2	0.819	U	0.817	כ	0.808	U	0.822 l	U	0.863	U	0.806	U	0.853	U	0.893	U	0.88	U	0.794 U
Sodium, Total	-	ı	62.5	J	90.2	7	108	J	92	J	35.6	J	71.1	J	190		26.5	J	49.7	J	49.8 J
Thallium, Total	-	ı	1.64	U	1.63	J	1.62	U	1.64 l	U	1.73	U	1.61	U	1.71	U	1.78	U	1.76	U	1.59 U
Vanadium, Total	-	-	7.2	•	20		16.8		16.3		11.8		13.7		15.9		22.7		38.4		7.99
Zinc, Total	10000	109	11	·	49		19.8		29.1		30.3		22.1		21.2		28.8		35.5		13.5

Notes:

Q = Qualifier

- U = Indicates compound analyzed for but not detected
- J = Indicates estimated value for TICs and all results when detected below the RL
- I The lower value for the two columns has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- = No Standard

fbgs = feet below ground surface

Bold = Compound detected in sample

Value exceeds one or more criteria

RL is greater than one or more criteria

1/13/2021 Page 10 of 10

SAMPLE ID		1	ΓW-1	TW-1 [NIID	TW-	2	TW-	.2	TW-3 [סוור	TW-4	1	TW-	5	FIELD E	SI VNK	FIELD BI	VNK	TRIP B	N N IK
SAMPLING DATE	NY-TOGS-		0, 1/8/2020	1/8/20	_	1/8/20		1/8/20		1/8/20		1/7/20		1/7/20		1/8/2		1/6/20		1/8/2	
LAB SAMPLE ID	GA		01.L2000463-09	L200084	_	L200084		L200084		L200084		L200063		L200063		L20008		L200046		L20008	
EAD GAIN EE ID		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
1,4 Dioxane by 8270D-SIM		Result	ILE.	resuit	111	resure	1112	resur	I I I	Result	- 112	Result	11.	resure	1112	Result	11.2	Result	- 112	Result	+
1,4-Dioxane	T -	0.097J	0.144	ND	0.144	_	_		_	_	-	_	_	_	_	ND	0.144		_	_	4
Volatile Organics by GC/MS	<u> </u>	0.0973	0.144	ND	0.144						_		_	_		I ND	0.144			<u> </u>	
Methylene chloride	5	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	_	T -	ND	2.5
1,1-Dichloroethane	5	ND ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	ND ND	2.5	<u> </u>	+ -	ND ND	2.5
Chloroform	7	2.3J	2.5	-	-	2.2J	2.5	3.2	2.5	3.1	2.5	34	2.5	36	2.5	ND ND	2.5	-	+ -	ND	2.5
Carbon tetrachloride	5	ND	0.5	_	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5		+ -	ND	0.5
1.2-Dichloropropane	1	ND	1	-	-	ND	1	ND	1	ND	1	ND	1	ND ND	1	ND ND	1		+ -	ND	1
Dibromochloromethane	50	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	_	-	ND	0.5
1,1,2-Trichloroethane	1	ND	1.5	-	-	ND	1.5	ND	1.5	ND	1.5	ND	1.5	ND	1.5	ND	1.5	_	-	ND	1.5
Tetrachloroethene	5	18	0.5	-	-	10	0.5	20	0.5	21	0.5	8.7	0.5	6	0.5	ND	0.5	-	-	ND	0.5
Chlorobenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Trichlorofluoromethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,2-Dichloroethane	0.6	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	ND	0.5
1,1,1-Trichloroethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Bromodichloromethane	50	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-		ND	0.5
trans-1,3-Dichloropropene	0.4	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-		ND	0.5
cis-1,3-Dichloropropene	0.4	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	ND	0.5
1,3-Dichloropropene, Total	-	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	ND	0.5
1,1-Dichloropropene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Bromoform	50	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	ND	2
1,1,2,2-Tetrachloroethane	5	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	ND	0.5
Benzene	1	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	ND	0.5
Toluene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Ethylbenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Chloromethane	-	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Bromomethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Vinyl chloride	2	ND	1	-	-	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	-	-	ND	1
Chloroethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,1-Dichloroethene	5	ND ND	0.5 2.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND ND	0.5	-	-	ND	0.5 2.5
trans-1,2-Dichloroethene Trichloroethene	5	0.86	0.5	-	-	ND 0.57	2.5 0.5	ND 0.98	2.5 0.5	ND 1	2.5 0.5	ND 0.4J	2.5 0.5	ND 0.4J	2.5 0.5	ND ND	2.5 0.5	-	+ -	ND ND	0.5
1,2-Dichlorobenzene	3	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	<u> </u>	+	ND	2.5
1,3-Dichlorobenzene	3	ND ND	2.5	-	-	ND	2.5	ND ND	2.5	ND	2.5	ND ND	2.5	ND ND	2.5	ND	2.5	<u> </u>	+ -	ND ND	2.5
1,4-Dichlorobenzene	3	ND ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	_	+ -	ND	2.5
Methyl tert butyl ether	10	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5		-	ND	2.5
p/m-Xylene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	_	-	ND	2.5
o-Xylene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Xylenes, Total	-	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
cis-1,2-Dichloroethene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,2-Dichloroethene, Total	-	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Dibromomethane	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
1,2,3-Trichloropropane	0.04	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Acrylonitrile	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
Styrene	930	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Dichlorodifluoromethane	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
Acetone	50	ND	5	-	-	2.2J	5	ND	5	ND	5	ND	5	1.6J	5	ND	5	-	-	ND	5
Carbon disulfide	60	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
2-Butanone	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
Vinyl acetate	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
4-Methyl-2-pentanone	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
2-Hexanone	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	ND	5
Bromochloromethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
2,2-Dichloropropane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,2-Dibromoethane	0.0006	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	ND	2
1,3-Dichloropropane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,1,1,2-Tetrachloroethane	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Bromobenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
n-Butylbenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5

1/13/2021 Page 1 of 5

SAMPLE ID		1 7	ΓW-1	TW-1 D	IID I	TW-	2	TW-	3	TW-3 [DIID	l TW-	1	TW-	; [FIELD B	I VNK	FIELD BLA	VVIK	TRIP BL	ANK
SAMPLING DATE	NY-TOGS-		0, 1/8/2020	1/8/20	_	1/8/20		1/8/20	-	1/8/20		1/7/20	-	1/7/20		1/8/20	_,	1/6/202		1/8/20	
LAB SAMPLE ID	GA		1,L2000463-09	L200084		L200084		L200084		L200084		L200063		L200063		L200084		L2000463		L200084	
EAD OATH EE ID		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
sec-Butylbenzene	5	ND	2.5	- Toourt		ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
tert-Butylbenzene	5	ND ND	2.5			ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
o-Chlorotoluene	5	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	ND	2.5	ND	2.5	<u> </u>	-	ND	2.5
p-Chlorotoluene	5	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND ND	2.5	ND	2.5	ND	2.5	<u> </u>		ND	2.5
1.2-Dibromo-3-chloropropane	0.04	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	<u>-</u>	- 1	ND	2.5
Hexachlorobutadiene	0.5	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	- 1	ND	2.5
Isopropylbenzene	5	ND	2.5		-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	- 1	ND	2.5
p-Isopropyltoluene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	_	-	ND	2.5
Naphthalene	10	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	- 1	ND	2.5
n-Propylbenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,2,3-Trichlorobenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	- 1	ND	2.5
1,2,4-Trichlorobenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,3,5-Trimethylbenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,2,4-Trimethylbenzene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
1,4-Dioxane	-	ND	250	-	-	ND	250	ND	250	ND	250	ND	250	ND	250	ND	250	-	-	ND	250
p-Diethylbenzene	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	ND	2
p-Ethyltoluene	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	ND	2
1,2,4,5-Tetramethylbenzene	5	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	ND	2
Ethyl ether	-	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
trans-1,4-Dichloro-2-butene	5	ND	2.5	-	-	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	-	-	ND	2.5
Semivolatile Organics by GC/MS																					
1,2,4-Trichlorobenzene	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Bis(2-chloroethyl)ether	1	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
1,2-Dichlorobenzene	3	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
1,3-Dichlorobenzene	3	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
1,4-Dichlorobenzene	3	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
3,3'-Dichlorobenzidine	5	ND	5	-		ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
2,4-Dinitrotoluene	5	ND ND	5 5	-	-	ND ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether	5	ND ND	2		-	ND ND	5 2	ND ND	5 2	ND ND	5 2	ND ND	5 2	ND ND	5 2	ND ND	5 2	-	-	-	-
4-Bromophenyl phenyl ether	-	ND	2			ND	2	ND	2	ND	2	ND ND	2	ND	2	ND	2	<u> </u>	-	-	-
Bis(2-chloroisopropyl)ether	5	ND	2			ND	2	ND	2	ND	2	ND ND	2	ND	2	ND	2				-
Bis(2-chloroethoxy)methane	5	ND	5		- 1	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5		- 1	_	-
Hexachlorocyclopentadiene	5	ND	20	-	-	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20	-	-	-	_
Isophorone	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	_	- 1	_	_
Nitrobenzene	0.4	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	_	-	_	-
NDPA/DPA	50	ND	2	- 1	- 1	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	- 1	-	-
n-Nitrosodi-n-propylamine	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Bis(2-ethylhexyl)phthalate	5	1.8J	3	-	-	ND	3	2.1J	3	1.9J	3	ND	3	2.2J	3	2.9J	3	-	-	-	-
Butyl benzyl phthalate	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Di-n-butylphthalate	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Di-n-octylphthalate	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Diethyl phthalate	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-]
Dimethyl phthalate	50	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Biphenyl	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
4-Chloroaniline	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
2-Nitroaniline	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	
3-Nitroaniline	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	<u> </u>
4-Nitroaniline	5	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
Dibenzofuran	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
1,2,4,5-Tetrachlorobenzene	5	ND	10	-		ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	-	-	-	-
Acetophenone	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	
2,4,6-Trichlorophenol	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	-	-	-
p-Chloro-m-cresol	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
2-Chlorophenol	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	-	-	-
2,4-Dichlorophenol	2	ND	5	-	-	ND	5	ND	5	ND ND	5	ND	5	ND	5	ND	5	-	-	-	-
2,4-Dimethylphenol	2	ND ND	5	-	-	ND ND	5	ND	5		5	ND ND	5	ND	5	ND	5	-	-	-	-
2-Nitrophenol	-		10	-	-		10	ND	10	ND	10	ND	10	ND	10	ND	10	-	-	-	-
4-Nitrophenol	-	ND	10	-	-	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	-	-	-	-

1/13/2021 Page 2 of 5

SAMPLE ID		1	ΓW-1	TW-1 [DUP	TW-	2	TW-	3	TW-3 [DUP	TW-4	4 [TW-	5	FIELD B	LANK	FIELD BL	.ANK	TRIP BL	LANK
SAMPLING DATE	NY-TOGS-	1/6/202	0, 1/8/2020	1/8/20	20	1/8/20	20	1/8/20	20	1/8/20	020	1/7/20	20	1/7/20		1/8/20	20	1/6/202	20	1/8/20	
LAB SAMPLE ID	GA		1,L2000463-09	L200084		L200084	4-02	L200084		L200084		L200063		L200063	35-02	L200084		L2000463		L200084	
		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
2,4-Dinitrophenol	2	ND	20	-	-	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20	-	-	-	-
4.6-Dinitro-o-cresol	-	ND	10	-	-	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	-	+ -	-	_
Phenol	2	ND ND	5	-	_	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	+ -	-	
2-Methylphenol	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	+ -	-	_
3-Methylphenol/4-Methylphenol	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5		+ -	_	 -
2,4,5-Trichlorophenol	-	ND	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	-	+ -	-	_
Benzoic Acid	_	ND	50	_	_	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50		+ -	_	 -
Benzyl Alcohol	-	ND	2	-	-	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	+ -	-	-
Carbazole	-	ND	2	-	_	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	-	+ -	-	 -
Semivolatile Organics by GC/MS-SIM	<u> </u>	112				110						112		110		112	-				
Acenaphthene	20	ND	0.1	-	- 1	ND	0.1	0.02J	0.1	ND	0.1	ND	0.1	0.03J	0.1	ND	0.1	-	Τ.	_	Τ -
2-Chloronaphthalene	10	ND	0.2	-	-	ND	0.2	ND	0.1	ND	0.1	ND	0.1	ND	0.2	ND	0.2	-	+ -	_	+ -
Fluoranthene	50	0.16	0.2	-	-	0.05J	0.2	0.18	0.2	0.03J	0.2	0.09J	0.2	0.55	0.2	ND ND	0.2	<u> </u>	+ -	-	-
Hexachlorobutadiene	0.5	ND	0.5	-	-	ND	0.1	ND	0.1	ND	0.5	ND	0.1	ND	0.5	ND	0.5	<u> </u>	+ -		 -
Naphthalene	10	0.09J	0.3	_	-	ND	0.3	0.05J	0.5	ND	0.3	ND	0.5	0.08J	0.3	ND	0.3	-	+ -	-	-
Benzo(a)anthracene	0.002	0.09J	0.1	_	-	0.03J	0.1	0.033 0.1J	0.1	ND	0.1	0.05J	0.1	0.003	0.1	ND	0.1		+ -		+ -
Benzo(a)pyrene	0.002	0.06J	0.1	-	-	0.03J	0.1	0.08J	0.1	ND	0.1	0.03J	0.1	0.36	0.1	ND	0.1	<u>-</u>	+ -	_	+ -
Benzo(b)fluoranthene	0.002	0.00J	0.1	-	-	0.023 0.03J	0.1	0.11	0.1	0.01J	0.1	0.033 0.04J	0.1	0.43	0.1	ND	0.1	<u> </u>	+ -		+ -
Benzo(k)fluoranthene	0.002	0.033 0.04J	0.1	_	-	0.033 0.01J	0.1	0.04J	0.1	ND	0.1	0.04J	0.1	0.45	0.1	ND	0.1	<u>-</u>	+ -	-	+ -
Chrysene	0.002	0.043 0.06J	0.1	_	-	0.01J	0.1	0.07J	0.1	ND	0.1	0.023 0.03J	0.1	0.35	0.1	ND	0.1	<u> </u>	+ -	-	+ -
Acenaphthylene	-	0.00J	0.1	-	-	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.07J	0.1	ND	0.1	<u>-</u>	+ -	-	+ -
Anthracene	50	0.023 0.04J	0.1	-	-	ND	0.1	0.03J	0.1	ND	0.1	0.02J	0.1	0.073 0.08J	0.1	ND ND	0.1	<u> </u>	+ -	_	+ -
Benzo(ghi)perylene	-	0.04J	0.1	-	-	0.02J	0.1	0.05J	0.1	ND	0.1	0.02J	0.1	0.26	0.1	ND	0.1	-	 -	_	-
Fluorene	50	0.00J	0.1	-	-	ND	0.1	0.02J	0.1	ND	0.1	0.03J	0.1	0.03J	0.1	ND ND	0.1	-	+ -	_	-
Phenanthrene	50	0.16	0.1	-	-	0.05J	0.1	0.13	0.1	0.03J	0.1	0.020	0.1	0.41	0.1	0.02J	0.1	-	+ -	_	-
Dibenzo(a,h)anthracene	-	0.01J	0.1	-	-	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.06J	0.1	ND	0.1	-	1 -	-	-
Indeno(1,2,3-cd)pyrene	0.002	0.06J	0.1	-	-	0.02J	0.1	0.05J	0.1	ND	0.1	0.03J	0.1	0.24	0.1	ND	0.1	-	-	-	-
Pyrene	50	0.13	0.1	-	-	0.04J	0.1	0.15	0.1	0.02J	0.1	0.07J	0.1	0.71	0.1	ND	0.1	-	 -	-	-
2-Methylnaphthalene	-	ND	0.1	-	-	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.03J	0.1	ND	0.1	-	 -	-	 -
Pentachlorophenol	2	0.4J	0.8	-	-	ND	0.8	0.3J	0.8	0.3J	0.8	0.24J	0.8	0.38J	0.8	0.32J	0.8	-	1 -	-	<u> </u>
Hexachlorobenzene	0.04	ND	0.8	-	-	ND	0.8	ND	0.8	ND	0.8	ND	0.8	ND	0.8	ND	0.8	-	1 -	-	<u> </u>
Hexachloroethane	5	ND	0.8	-	-	ND	0.8	ND	0.8	ND	0.8	ND	0.8	ND	0.8	ND	0.8	-	1 -	-	-
Organochlorine Pesticides by GC			<u> </u>										<u> </u>						<u> </u>		
Delta-BHC	0.04	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	Τ -	-	-
Lindane	0.05	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Alpha-BHC	0.01	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Beta-BHC	0.04	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Heptachlor	0.04	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Aldrin	0	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Heptachlor epoxide	0.03	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Endrin	0	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
Endrin aldehyde	5	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
Endrin ketone	5	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
Dieldrin	0.004	0.022J	0.029	-	-	0.009J	0.029	0.018J	0.029	0.021J	0.029	ND	0.029	ND	0.029	ND	0.029	-		-	-
4,4'-DDE	0.2	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
4,4'-DDD	0.3	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
4,4'-DDT	0.2	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	
Endosulfan I	-	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
Endosulfan II	-	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
Endosulfan sulfate	-	ND	0.029	-	-	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	ND	0.029	-	-	-	-
Methoxychlor	35	ND	0.143	-	-	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	-	-	-	-
Toxaphene	0.06	ND	0.143	-	-	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	-	-	-	
cis-Chlordane	-	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	-
trans-Chlordane	-	ND	0.014	-	-	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	ND	0.014	-	-	-	
Chlordane	0.05	ND	0.143	-	-	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	ND	0.143	-	-	-	-
Polychlorinated Biphenyls by GC																					
Aroclor 1016	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	-	-
Aroclor 1221	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	-	-
Aroclor 1232	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	-	-
								_			_								_		

1/13/2021 Page 3 of 5

SAMPLE ID		Т Т	ΓW-1	TW-1 [UIP	TW-	-2 I	TW-	3	TW-3	DUP	l TW-	.4	TW-	5	FIELD B	I ANK	FIELD B	ΙΔΝΚ	TRIP B	ΙΔΝΚ
SAMPLING DATE	NY-TOGS-		0, 1/8/2020	1/8/20		1/8/20		1/8/20		1/8/20	_	1/7/20		1/7/20	-	1/8/20		1/6/20		1/8/2	
LAB SAMPLE ID	GA		01,L2000463-09	L200084	-	L20008		L200084		L20008		L200063	-	L200063		L20008		L200046		L20008	
	<u>'</u>	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Aroclor 1242	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	-	
Aroclor 1248	0.09	ND ND	0.083	-	-	ND ND	0.083	ND	0.083	ND	0.083	ND ND	0.083	ND	0.083	ND ND	0.083	-	-	_	+
Aroclor 1254	0.09	ND ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	_	+ -
Aroclor 1260	0.09	ND	0.083	-	-	ND	0.083	0.064J	0.083	ND	0.083	ND	0.083	ND	0.083	0.064J	0.083	-	_	-	-
Aroclor 1262	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	-	-	-	-
Aroclor 1268	0.09	ND	0.083	-	-	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	ND	0.083	_	-	-	-
PCBs, Total	-	ND	0.083	-	-	ND	0.083	0.064J	0.083	ND	0.083	ND	0.083	ND	0.083	0.064J	0.083	-	-	-	-
Total Metals	•	•																	•		
Aluminum, Total	2000	29100	10	-	-	781	10	3320	10	761	10	2960	10	13800	10	41.7	10	-	1 -	-	Τ -
Antimony, Total	6	ND	4	-	-	0.5J	4	0.53J	4	ND	4	ND	4	ND	4	ND	4	-	-	_	-
Arsenic, Total	50	16.51	0.5	-	-	1.22	0.5	3.98	0.5	1.12	0.5	2	0.5	8.22	0.5	ND	0.5	-	-	-	-
Barium, Total	2000	3059	0.5	-	-	136	0.5	210.9	0.5	136.7	0.5	108.1	0.5	305.4	0.5	2.46	0.5	-	-	-	-
Beryllium, Total	3	6.89	0.5	-	-	0.16J	0.5	0.45J	0.5	0.1J	0.5	0.21J	0.5	0.95	0.5	ND	0.5	-	-	-	† -
Cadmium, Total	10	6.84	0.2	-	-	0.25	0.2	0.22	0.2	0.11J	0.2	0.1J	0.2	0.42	0.2	ND	0.2	-	-	-	-
Calcium, Total	-	240000	100	-	-	81900	100	90900	100	91600	100	38200	100	41500	100	127	100	-	-	-	-
Chromium, Total	100	254.2	1	-	-	5.8	1	12.52	1	4.17	1	7.5	1	34.71	1	0.88J	1	-		-	-
Cobalt, Total	-	172.7	0.5	-	-	3.73	0.5	11.75	0.5	2.8	0.5	3.99	0.5	19.58	0.5	ND	0.5	-	-	-	-
Copper, Total	1000	433	1	-	-	12.53	1	17.96	1	4.12	1	10.24	1	59.66	1	2.24	1	-	-	-	-
Iron, Total	600	36400	50	-	-	1640	50	6860	50	1380	50	5320	100	26800	100	49.1J	50	-		-	-
Lead, Total	50	335.9	1	-	-	7.8	1	15.45	1	3.75	1	7.84	1	81.89	1	4.5	1	-	-	-	-
Magnesium, Total	35000	70600	70	-	-	33900	70	29500	70	28500	70	9820	70	20000	70	26.4J	70	-	-	-	-
Manganese, Total	600	29450	10	ı	-	640.3	1	917	1	333.7	1	676.8	1	2121	1	1.71	1	-	-	ı	-
Mercury, Total	1.4	ND	0.2	-	-	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	-	-	-	-
Nickel, Total	200	316.7	2	-	-	27.07	2	84.71	2	27.13	2	20.63	2	80.91	2	0.58J	2	-	-	-	-
Potassium, Total	-	16000	100	-	-	8350	100	7990	100	7910	100	5080	100	6050	100	ND	100	-	-	-	-
Selenium, Total	20	37.5	5	-	-	2.32J	5	4.2J	5	2.05J	5	1.98J	5	4.88J	5	ND	5	-	-	-	-
Silver, Total	100	0.18J	0.4	-	-	ND	0.4	ND	0.4	ND	0.4	ND	0.4	ND	0.4	ND	0.4	-	-	-	-
Sodium, Total	-	268000	100	-	-	154000	100	217000	100	224000	100	161000	100	173000	100	207	100	-	-	-	-
Thallium, Total	0.5	0.39J	0.5	-	-	0.22J	1	0.95J	1	0.37J	1	ND	1	0.23J	1	0.3J	1	-	-	-	-
Vanadium, Total	-	53.41	5	-	-	3.35J	5	11.96	5	3.62J	5	7.73	5	37.77	5	ND	5	-	-	-	-
Zinc, Total	5000	510.4	10	-	-	52.39	10	35.97	10	8.19J	10	20.52	10	98.14	10	ND	10	-	-	-	-
Dissolved Metals	1						T 10 T						1			1	 				
Aluminum, Dissolved	2000	53.9	10	-	-	3.31J	10	6.16J	10	28.5	10	6.96J	10	91.1	10	-	-	-	-	-	-
Antimony, Dissolved	6	0.53J	4	-	-	ND	4	ND 0.401	4	ND 0.451	4	ND	4	ND	4	-	-	-	-	-	↓
Arsenic, Dissolved	50	0.18J	0.5	-	-	0.2J	0.5	0.43J	0.5	0.45J	0.5	0.21J	0.5	0.48J	0.5	-	-	-		-	-
Barium, Dissolved	2000	235.3	0.5	-	-	104.4	0.5	96.4	0.5	101.6	0.5	58.37	0.5	50.03	0.5	-	-	-	-	-	-
Beryllium, Dissolved	3	ND	0.5	-	-	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	-	-	-		-	-
Cadmium, Dissolved	10	0.14J	0.2	-	-	0.14J	0.2	0.07J	0.2	0.06J	0.2	0.06J	0.2	ND	0.2	-	-	-	-	-	- -
Calcium, Dissolved	- 400	83400	100	-	-	76900	100	88300	100	88800	100	38900	100	30500	100	-	-	-	-	-	-
Chromium, Dissolved	100	1.99	7	-	-	1.86	1 0.5	2.12	7	2.17	1	1.81	1 0.5	2.83	1	-	-	-	-	-	-
Cobalt, Dissolved	1000	0.62	0.5	-	-	0.63	0.5	0.44J	0.5	0.49J	0.5	0.64	0.5	0.25J	0.5	-	-	-	-	-	-
Copper, Dissolved Iron, Dissolved	1000 600	1.1 109	50	-	-	0.7J ND	1 50	0.73J 19.8J	50	0.81J 70.5	50	0.46J ND	50	0.8J 153		-	-	-	-	-	+
Lead, Dissolved	50	ND	1	-	-	ND ND	50	ND	50	ND	50	ND ND	1	0.42J	50	-		<u>-</u>	+ -	-	-
Magnesium, Dissolved	35000	34200	70	-	-	31800	70	27400	70	26700	70	6750	70	9420	70	-		-			 -
Manganese, Dissolved	600	888	1	-	-	370.1	10	116.9	10	138.4	1	448	1	50.89	10	-	- -	<u> </u>	 	-	-
Mercury, Dissolved	1.4	ND	0.2	-	-	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	<u> </u>	-	<u> </u>	-		-
Nickel, Dissolved	200	7.42	2	-	-	10.79	2	10.78	2	11.94	2	7.09	2	2.35	2	-		<u> </u>	-	-	 -
Potassium, Dissolved	-	6240	100	-	-	8110	100	7910	100	7680	100	4290	100	2830	100	<u> </u>	-	<u> </u>	 -	-	+
Selenium, Dissolved	20	2.87J	5	-	-	ND	5	ND	5	ND	5	ND	5	ND	5	-	- -	<u> </u>	-	-	-
Silver, Dissolved	100	ND	0.4	-	-	ND ND	0.4	ND	0.4	ND	0.4	ND ND	0.4	ND	0.4	_	-	-	-	-	-
Sodium, Dissolved	-	168000	100	-	-	155000	100	228000	100	220000	100	120000	100	157000	100	-	-	-	-	-	-
Thallium, Dissolved	0.5	ND	1	-	-	ND	1	ND	1	ND	1	ND	1	ND	1	_	-	-	-	-	+ -
Vanadium, Dissolved	- 0.5	ND ND	5	-	-	ND ND	5	ND	5	ND	5	ND ND	5	ND	5	-	-	<u> </u>	 -	_	+
Zinc, Dissolved	5000	ND ND	10	-	-	3.89J	10	ND ND	10	ND	10	ND ND	10	ND	10	_	-	-	-	-	+
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DIL						3.000		.,,,		1,15		,5		.,,5							
Perfluorobutanoic Acid (PFBA)	-	0.0193	0.00194	-	-	-	Τ - Τ	-	-	-	T -	-	Τ - Τ	-	T -	-	T - T	ND	0.00179	-	Τ -
Perfluoropentanoic Acid (PFPeA)	-	0.0532	0.00194	-	-	-	+ - 1	-	-	-	١.	-	+ - 1	-	-	-	-	ND	0.00179	-	-
Perfluorobutanesulfonic Acid (PFBS)	-	0.00544	0.00194	-	-	-	1 - 1	-	-	-	١.	-	+ - +	-	-	-	-	ND	0.00179	-	-
Sings of the first		U.UUUTT	0.00107						I		1	I			I	L		טויו	3.00173		

1/13/2021 Page 4 of 5

SAMPLE ID	NY-TOGS-	1	ΓW-1	TW-1 [DUP	TW-	2	TW-	3	TW-3 [DUP	TW-4	4	TW-	5	FIELD B	LANK	FIELD BL	ANK	TRIP BL	_ANK
SAMPLING DATE		1/6/202	0, 1/8/2020	1/8/20	020	1/8/20	20	1/8/20	20	1/8/20)20	1/7/20	20	1/7/20	20	1/8/20	020	1/6/202	20	1/8/20	ງ20
LAB SAMPLE ID	GA	L2000844-0	1,L2000463-09	L20008	44-0 <u>5</u>	L200084	4-02	L200084	 4-03	L200084	<u> 14-04</u>	L200063	<u>5-01</u>	L200063	<u> 5-02</u>	L20008	<u>44-06</u>	L200046	<u>3-10</u>	L200084	<u>44-07</u>
		Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Perfluorohexanoic Acid (PFHxA)	-	0.0339	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.000344 J	0.00179	-	-
Perfluoroheptanoic Acid (PFHpA)	-	0.0145	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorohexanesulfonic Acid (PFHxS)	-	0.00572	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorooctanoic Acid (PFOA)	-	0.0934	0.00194	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	-	ND	0.00194	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluoroheptanesulfonic Acid (PFHpS)	-	ND	0.00194	1	-	ı	-	1	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorononanoic Acid (PFNA)	-	0.00368	0.00194	-	-	1	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorooctanesulfonic Acid (PFOS)	-	0.0324	0.00194	1	-	ı	-	1	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorodecanoic Acid (PFDA)	-	ND	0.00194	-	-	1	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	-	ND	0.00194	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeF	-	ND	0.00194	-	-	1	-	•	-	-	-	-	-	-	-	-	-	ND	0.00179	1	-
Perfluoroundecanoic Acid (PFUnA)	-	ND	0.00194	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
Perfluorodecanesulfonic Acid (PFDS)	-	ND	0.00194	-	-	1	-	•	-	-	-	-	-	-	-	-	-	ND	0.00179	1	-
Perfluorooctanesulfonamide (FOSA)	-	ND	0.00194	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	ı	-
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOS	-	ND	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.000857 J	0.00179	ı	-
Perfluorododecanoic Acid (PFDoA)	-	ND	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	-	-
Perfluorotridecanoic Acid (PFTrDA)	-	ND	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	-	-
Perfluorotetradecanoic Acid (PFTA)	-	ND	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	-	-
PFOA/PFOS, Total	-	0.126	0.00194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND	0.00179	1	-

Notes:

RL = Reporting Limit

ND = Indicates compound analyzed for but not detected

J = Indicates estimated value for TICs and all results when detected below the RL

- = No Standard

Units in ug/L, unless otherwise noted

Bold = Compound detected in sample

Value exceeds one or more criteria
RL is greater than one or more criteria

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

1/13/2021 Page 5 of 5

LOCATION				SG-1	(20-21')	SG-2	(5-6')	SG-2	(20-21')	SG-3 (2	20-21')	SG-5 ((20-21')	SG-6	(20-21')	DUP 1 SG (1-8-	20 \ 20-21'	SG-7	(20-21')	SG-8	3 (5-6')	SG-8 (20-21')
SAMPLING DATE	NY-SSC-A	NY-SSC-B	NY-SSC-C	-	/2020	1/8/2	<u> </u>		2020	1/8/2			2020		/2020	1/8/202			/2020		/2020	,	2020
LAB SAMPLE ID	5557.				1065-01	L20008			065-02	L20008			1840-03		0840-04	L200106	-		0840-05	1	0840-06		065-03
Volatile Organics in Air				Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Dichlorodifluoromethane	-	-	-	2.38	0.989	1.65	0.989	2.24	0.989	2.13	0.989	2.62	0.989	2.52	0.989	3.09	0.989	1.93	0.989	1.9	0.989	2.73	0.989
Chloromethane	-	-	-	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413	ND	0.413
Freon-114	-	-	-	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4	ND	1.4
Vinyl chloride	-	-	6	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511	ND	0.511
1,3-Butadiene	-	-	-	1.72	0.442	ND	0.442	0.794	0.442	5.75	0.442	13.1	0.442	1.12	0.442	0.832	0.442	1.05	0.442	2.57	0.442	3.85	0.442
Bromomethane	-	-	-	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777	ND	0.777
Chloroethane	-	-	-	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528	ND	0.528
Ethanol	-	-	-	ND	9.42	ND	9.42	9.93	9.42	ND	9.42	10.5	9.42	20.9	9.42	18.2	9.42	ND	9.42	ND	9.42	ND	9.42
Vinyl bromide	-	-	-	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874	ND	0.874
Acetone	-	-	-	94.8	2.38	62	2.38	161	2.38	76.7	2.38	59.9	2.38	138	2.38	144	2.38	105	2.38	109	2.38	309	2.38
Trichlorofluoromethane	-	-	-	1.43	1.12	ND	1.12	1.69	1.12	ND	1.12	ND	1.12	1.42	1.12	2.11	1.12	1.2	1.12	ND	1.12	1.98	1.12
Isopropanol	-	-	-	ND	1.23	3.07	1.23	2.16	1.23	2.14	1.23	3.61	1.23	4.57	1.23	3	1.23	3.24	1.23	3.71	1.23	ND	1.23
1,1-Dichloroethene	6	-	-	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793
Tertiary butyl Alcohol	-	-	-	ND	1.52	ND	1.52	3.55	1.52	ND	1.52	2.38	1.52	4.61	1.52	4.79	1.52	ND	1.52	1.69	1.52	ND	1.52
Methylene chloride	-	100	-	ND	1.74	1.8	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74
3-Chloropropene	-	-	-	ND 244	0.626	ND	0.626	ND	0.626	ND 40.2	0.626	ND	0.626	ND 4.00	0.626	ND 4.4	0.626	ND 4.00	0.626	ND	0.626	ND 4.42	0.626
Carbon disulfide	-	-	-	2.11	0.623	ND	0.623	1.14	0.623	10.3	0.623	31	0.623	1.82	0.623	1.4	0.623	1.82	0.623	2.98	0.623	1.42	0.623
Freon-113	-	-	-	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53	ND	1.53
trans-1,2-Dichloroethene	-	-	-	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND	0.793	ND ND	0.793	ND	0.793	ND	0.793	ND	0.793
1,1-Dichloroethane	-	-	-	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND ND	0.809	ND	0.809	ND	0.809	1.41	0.809
Methyl tert butyl ether	-	-	-	ND 2.00	0.721	ND 2.42	0.721	ND 2.00	0.721	ND 4.6	0.721	ND 0.70	0.721	ND F.OC	0.721	ND 5.40	0.721	ND C 42	0.721	ND 5.04	0.721	ND 0.50	0.721
2-Butanone cis-1.2-Dichloroethene	6	-	-	2.88	1.47	3.13	1.47	3.86	1.47	4.6	1.47	8.76	1.47	5.96	1.47	5.19	1.47	6.43	1.47 0.793	5.84	1.47	9.59	1.47 0.793
Ethyl Acetate	6	-	-	ND ND	0.793	ND ND	0.793 1.8	ND ND	0.793 1.8	1.8 ND	0.793 1.8	2.45 ND	0.793 1.8	ND ND	0.793	ND ND	0.793 1.8	ND ND	1.8	ND ND	0.793 1.8	ND ND	1.8
Chloroform	-	-	-	33.2	0.977	ND	0.977	3.22	0.977	58.6	0.977	54.7	0.977	11.5	0.977	15.9	0.977	133	0.977	19.8	0.977	288	0.977
Tetrahvdrofuran	-	-	-	2.85	1.47	4.36	1.47	3.51	1.47	5.99	1.47	5.43	1.47	6.31	1.47	4.78	1.47	5.22	1.47	5.84	1.47	2.28	1.47
1.2-Dichloroethane	-	_	_	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809	ND	0.809
n-Hexane	_		<u> </u>	3.7	0.705	1.6	0.705	3.45	0.705	6.45	0.705	9.13	0.705	4.05	0.705	2.66	0.705	3.48	0.705	4.72	0.705	5.57	0.705
1,1,1-Trichloroethane	-	100	_	ND	1.09	ND	1.09	ND	1.09	3.13	1.09	ND	1.09	ND	1.09	1.12	1.09	1.37	1.09	2.48	1.09	2.55	1.09
Benzene	-	-	_	2.3	0.639	1.11	0.639	2.06	0.639	6.01	0.639	14.6	0.639	2.42	0.639	1.84	0.639	2.58	0.639	2.97	0.639	3.26	0.639
Carbon tetrachloride	6			ND	1.26	ND	1.26	ND	1.26	2.56	1.26	1.43	1.26	ND	1.26	1.39	1.26	2.07	1.26	3.48	1.26	5.25	1.26
Cyclohexane	-	-	-	0.812	0.688	ND	0.688	ND	0.688	1.42	0.688	5.47	0.688	0.833	0.688	ND	0.688	1.1	0.688	0.733	0.688	0.919	0.688
1,2-Dichloropropane	-	-	-	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924	ND	0.924
Bromodichloromethane	-	-	-	ND	1.34	ND	1.34	ND	1.34	ND	1.34	ND	1.34	ND	1.34	ND	1.34	1.45	1.34	ND	1.34	ND	1.34
1,4-Dioxane	-	-	-	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721	ND	0.721
Trichloroethene	6			9.46	1.07	ND	1.07	1.6	1.07	23.8	1.07	18.3	1.07	8.6	1.07	11.4	1.07	12.6	1.07	1.42	1.07	11.3	1.07
2,2,4-Trimethylpentane	-	-	-	ND	0.934	ND	0.934	ND	0.934	ND	0.934	ND	0.934	1.18	0.934	ND	0.934	1.02	0.934	ND	0.934	ND	0.934
Heptane	-	-	-	2.25	0.82	1.08	0.82	2.03	0.82	3.78	0.82	6.48	0.82	2.48	0.82	1.84	0.82	2.7	0.82	2.86	0.82	3.33	0.82
cis-1,3-Dichloropropene	-	-	-	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908
4-Methyl-2-pentanone	-	-	-	ND	2.05	ND	2.05	ND	2.05	ND	2.05	2.09	2.05	ND	2.05	ND	2.05	ND	2.05	ND	2.05	ND	2.05
trans-1,3-Dichloropropene	-	-	-	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908	ND	0.908
1,1,2-Trichloroethane	-	-	-	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09	ND	1.09
Toluene	-	-	-	10.2	0.754	7.99	0.754	7.99	0.754	15.9	0.754	14.7	0.754	11.4	0.754	8.89	0.754	15.4	0.754	11	0.754	12.9	0.754
2-Hexanone	-	-	-	ND	0.82	ND	0.82	ND	0.82	ND	0.82	1.05	0.82	ND	0.82	ND	0.82	ND	0.82	ND	0.82	0.84	0.82
Dibromochloromethane	-	-	-	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7	ND	1.7
1,2-Dibromoethane	-	-	-	ND	1.54	ND 05.4	1.54	ND	1.54	ND	1.54	ND	1.54	ND	1.54	ND	1.54	ND	1.54	ND 55.4	1.54	ND	1.54
Tetrachloroethene		100		113	1.36	25.1	1.36	41.8	1.36	182	1.36	174	1.36	88.8	1.36	209	1.36	134	1.36	55.4	1.36	181 ND	1.36
Chlorobenzene	-	-	-	ND 2.02	0.921	ND 4.94	0.921	ND	0.921	ND 3.35	0.921	ND 2.57	0.921	ND 4.92	0.921	ND	0.921	ND 3.65	0.921	ND 2.44	0.921	ND	0.921
Ethylbenzene	-	-	-	2.02	0.869	1.84	0.869	1.27	0.869	3.25	0.869	2.57	0.869	1.82	0.869	2.22 7.38	0.869	3.65	0.869	2.44	0.869	3.08	0.869
p/m-Xylene Bromoform	-	-	-	6.73	1.74	7.43	1.74	4.34	1.74	11.4	1.74	8.82	1.74	6.25	1.74	7.38 ND	1.74	11.6	1.74	8.9	1.74	10.9	1.74
Bromoform Styrono	-	-	-	ND ND	2.07 0.852	ND	2.07 0.852	ND ND	2.07 0.852	ND	2.07 0.852	ND ND	2.07 0.852	ND	2.07 0.852	ND ND	2.07 0.852	ND ND	2.07 0.852	ND	2.07 0.852	ND ND	2.07 0.852
Styrene 1,1,2,2-Tetrachloroethane	-	-	-	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37	ND ND	1.37
	-	-	-	1.95	0.869	2.42	0.869	1.31	0.869	3.51	0.869	2.68	0.869	2.07	0.869	2.21	0.869	3.71	0.869	2.88	0.869	3.45	0.869
o-Xylene 4-Ethyltoluene	-	-	-		0.869	ND	0.869		0.869	ND	0.869	2.68 ND	0.869		0.869	ND	0.869	ND	0.869	2.88 ND	0.869		0.869
1,3,5-Trimethylbenzene	-	-	_	ND ND	0.983	ND ND	0.983	ND ND	0.983	ND ND	0.983	ND ND	0.983	ND ND	0.983	ND ND	0.983	ND ND	0.983	0.988	0.983	ND ND	0.983
1,2,4-Trimethylbenzene	-	-	-	1.47	0.983	4.51	0.983	1.9	0.983	4	0.983	3.89	0.983	4.61	0.983	3.07	0.983	4.53	0.983	4.58	0.983	2.62	0.983
Benzyl chloride	-	-	-	ND	1.04	4.51 ND	1.04	ND	1.04	ND	1.04	3.69 ND	1.04	ND	1.04	ND	1.04	4.53 ND	1.04	4.36 ND	1.04	ND	1.04
1,3-Dichlorobenzene		_	_	ND ND	1.04	ND	1.04	ND ND	1.04	ND	1.04	ND	1.04	1.73	1.04	1.88	1.04	ND	1.04	ND	1.04	ND	1.04
1,5-DICHIOIODENZENE	-		_	חאר	1.2	טאו	1.∠	רואר	1.2	טאו	1.2	רואף	1.2	1./3	1.2	1.00	1.2	ן ואט	1.2	ן ואט	1.2	טאו	1.2

1/11/2021 Page 1 of 2

LOCATION				SG-1 (20-21')	SG-2	(5-6')	SG-2 (2	20-21')	SG-3 (20-21')	SG-5 (20-21')	SG-6 (20-21')	DUP 1 SG (1-8-	20) 20-21'	SG-7 ((20-21')	SG-8	(5-6')	SG-8 (2	20-21')
SAMPLING DATE	NY-SSC-A	NY-SSC-B	NY-SSC-C	1/9/2	2020	1/8/	2020	1/9/2	2020	1/8/2	2020	1/8/2	2020	1/8/2	2020	1/8/202	20	1/8/	2020	1/8/2	2020	1/9/2	2020
LAB SAMPLE ID				L2001	065-01	L2000	840-01	L20010	065-02	L2000	840-02	L2000	840-03	L20008	840-04	L200106	5-04	L2000	840-05	L2000	840-06	L20010)65-03
Volatile Organics in Air				Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
1,4-Dichlorobenzene	-	-	-	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2
1,2-Dichlorobenzene	-	-	-	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2	ND	1.2
1,2,4-Trichlorobenzene	-	-	-	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48	ND	1.48
Hexachlorobutadiene	-	-	-	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13	ND	2.13

Notes:

RL = Reporting Limit

ND = Indicates compound analyzed for but not detected

- = No Standard

Units in ug/m3

Bold = Compound detected in sample

Value exceeds one or more criteria

NY-SSC-A: New York DOH Matrix A Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

NY-SSC-B: New York DOH Matrix B Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

NY-SSC-C: New York DOH Matrix C Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

1/11/2021 Page 2 of 2

Table 4: Supplemental Soil Analytical Results 205 Park Avenue Brooklyn, New York

LOCATION					PARK AVE 3		PARK AVE 5		PARK AVE 8	
SAMPLING DATE	†	NYS Part 375			12/11/2020		12/11/2020		12/11/2020	
LAB SAMPLE ID	CasNum	Restricted-	NYS Part 375	Units	L2055577-01		L2055577-02		L2055577-03	
SAMPLE TYPE	Custvani	Residential	Unrestricted	Omio	SOIL		SOIL		SOIL	
SAMPLE DEPTH (ft.)	†	- Noordonna			2.5-3		2.5-3		2.5-3	
Silvin EE EET 111 (tu)					Results	RL	Results	RL	Results	RL
General Chemistry					resuits	- KL	Results	- KL	Results	- KE
Solids, Total	NONE			%	77.9	0.1	87.6	0.1	79.2	0.1
Semivolatile Organics by GC/MS	HOILE			70	77.0	0.1	07.0	0.1	10.2	0.1
Acenaphthene	83-32-9	100	20	mg/kg	ND	0.17	0.12J	0.15	0.051J	0.17
Fluoranthene	206-44-0	100		mg/kg	0.26	0.13	1.9	0.11	1	0.12
Naphthalene	91-20-3	100		mg/kg	ND	0.21	0.1J	0.19	0.039J	0.21
Benzo(a)pyrene	50-32-8	1		mg/kg	0.12J	0.17	0.96	0.15	0.52	0.17
Benzo(b)fluoranthene	205-99-2	1		mg/kg	0.15	0.13	1.2	0.11	0.68	0.12
Benzo(k)fluoranthene	207-08-9	3.9		mg/kg	0.055J	0.13	0.42	0.11	0.21	0.12
Chrysene	218-01-9	3.9		mg/kg	0.13	0.13	0.92	0.11	0.5	0.12
Acenaphthylene	208-96-8	100		mg/kg	ND	0.17	0.1J	0.15	0.1J	0.17
Anthracene	120-12-7	100		mg/kg	0.046J	0.13	0.3	0.11	0.16	0.12
Benzo(ghi)perylene	191-24-2	100		mg/kg	0.084J	0.17	0.67	0.15	0.4	0.17
Fluorene	86-73-7	100	30	mg/kg	ND	0.21	0.11J	0.19	0.049J	0.21
Phenanthrene	85-01-8	100	100	mg/kg	0.21	0.13	1.2	0.11	0.58	0.12
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	mg/kg	0.08J	0.17	0.67	0.15	0.39	0.17
Pyrene	129-00-0	100	100	mg/kg	0.23	0.13	1.6	0.11	0.86	0.12
1-Methylnaphthalene	90-12-0			mg/kg	ND	0.21	0.03J	0.19	ND	0.21
2-Methylnaphthalene	91-57-6			mg/kg	ND	0.25	0.032J	0.22	ND	0.25
Total Metals										
Aluminum, Total	7429-90-5			mg/kg	5880	10.1	5010	8.77	5840	9.56
Antimony, Total	7440-36-0			mg/kg	ND	5.05	ND	4.39	1.71J	4.78
Arsenic, Total	7440-38-2	16	13	mg/kg	3.65	1.01	3.96	0.877	3.4	0.956
Barium, Total	7440-39-3	400	350	mg/kg	53.4	1.01	128	0.877	142	0.956
Beryllium, Total	7440-41-7	72	7.2	mg/kg	0.374J	0.505	0.281J	0.439	0.316J	0.478
Cadmium, Total	7440-43-9	4.3	2.5	mg/kg	0.364J	1.01	0.649J	0.877	0.583J	0.956
Calcium, Total	7440-70-2			mg/kg	14300	10.1	38800	8.77	8140	9.56
Chromium, Total	7440-47-3			mg/kg	14.2	1.01	12	0.877	17.2	0.956
Cobalt, Total	7440-48-4			mg/kg	6.63	2.02	5.79	1.75	7.78	1.91
Copper, Total	7440-50-8	270		mg/kg	18	1.01	23.6	0.877	24.6	0.956
Iron, Total	7439-89-6			mg/kg	12400	5.05	16000	4.39	14400	4.78
Lead, Total	7439-92-1	400	63	mg/kg	37.7	5.05	118	4.39	103	4.78
Magnesium, Total	7439-95-4			mg/kg	3590	10.1	4030	8.77	3040	9.56
Manganese, Total	7439-96-5	2000		mg/kg	287	1.01	403	0.877	312	0.956
Mercury, Total	7439-97-6	0.81		mg/kg	0.822	0.08	0.208	0.072	0.183	0.081
Nickel, Total	7440-02-0	310	30	mg/kg	31.6	2.53	20.2	2.19	33	2.39
Potassium, Total	7440-09-7			mg/kg	899	253	752	219	990	239
Selenium, Total	7782-49-2	180		mg/kg	ND	2.02	0.72J	1.75	0.354J	1.91
Silver, Total	7440-22-4	180	2	mg/kg	ND	1.01	ND	0.877	ND	0.956
Sodium, Total	7440-23-5			mg/kg	118J	202	194	175	144J	191
Thallium, Total	7440-28-0			mg/kg	ND	2.02	ND	1.75	ND	1.91
Vanadium, Total	7440-62-2			mg/kg	22.3	1.01	20.3	0.877	25.8	0.956
Zinc, Total	7440-66-6	10000	109	mg/kg	49.7	5.05	124	4.39	120	4.78

Table 4: Supplemental Soil Analytical Results 205 Park Avenue Brooklyn, New York

Notes:

Q = Qualifier

U = Indicates compound analyzed for but not detected

J = Indicates estimated value for TICs and all results when detected below the RL

I - The lower value for the two columns has been reported due to obvious interference.

P - The RPD between the results for the two columns exceeds the method-specified criteria.

- = No Standard

fbgs = feet below ground surface

Bold = Compound detected in sample

Value exceeds NYS Part 375 Restricted- Residential criteria

RL is greater than one or more criteria

Electronic Copies

Existing Environmental Reports (provided in Part 2)

ATTACHMENT D

Attachment D

Section IV.2 Property Maps

The following property maps are provided for the Site:

- USGS Site Location Map (Figure 1)
- Site Plan showing adjacent streets and roadways (Figure 2)
- Site Aerial providing adjacent property use and owner information (Figure 3)
- Surrounding Land Usage (Figure 4)
- County of Kings/Brooklyn Tax Map showing proposed Brownfields property line
- Site Survey Map

LEGEND:

--- SITE BOUNDARY

NOTES:

1. BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

NO.	ISSUE/DESCRIPTION	BY	DATE

ILESS SPECIFICALLY STATED BY WRITTEN AGREEMENT. THIS DRAWING IS THE SOLE PROPERTY OF GZA COENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON EDRAWING, THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY ANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN DRESS CONSENTED THE

205 PARK AVENUE BROOKLYN, NEW YORK

SITE PLAN

PREPARED BY:		PREPARED	PREPARED FOR:					
	SeoEnvironmental of ineers and Scientis www.gza.com		462 LEXINGTON, LLC.					
PROJ MGR: ZS	REVIEWED BY: Z	S CHECKED B	Y: DW	FIGURE				
DESIGNED BY: ZS	DRAWN BY: P	B/MT SCALE:	1" = 40'	2				
DATE: JANUARY 20	PROJECT NO. 12.0076834	REVISION	NO.	SHEET NO.				

LEGEND:

SITE BOUNDARY

ADJACENT PARCEL

NOTES:

 BASE MAP DEVELOPED FROM 2019 GOOGLE EARTH PROFESSIONAL WITH AN IMAGERY DATE OF 6/15/2018.

ISSUE/DESCRIPTION	BY	DATE
	ISSUE/DESCRIPTION	ISSUE/DESCRIPTION BY

NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, HIS DRAWING IS THE SOLE PROPERTY OF CZA'S CEDNIPROMNEMATAL, INC. (62A). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY CZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON IE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTREED IN ANY MANNER FOR SE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF CZA. ANY ANASFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN PRESS CONSENT OF CZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LABLITY TO GZA.

> 205 PARK AVENUE BROOKLYN, NEW YORK

ADJACENT PROPERTY USE AND OWNER INFORMATION

I								
PREPARED BY:			PREPARED FOR:					
	Engine	Environmental of NY ers and Scientists www.gza.com	462 LEXINGTON, LLC.					
PROJ MGR:	ZS	REVIEWED BY: ZS	CHECKED BY: DW	FIGURE				
DESIGNED BY:	ZS	DRAWN BY: LN	SCALE: 1" = 40'	2				
DATE:		PROJECT NO.	REVISION NO.	3				
LJANUARY	2021	12 0076834 10		SHEET NO				

NOTES

THE BASE MAP WAS DEVELOPED FROM DATA OBTAINED FROM NEW YORK CITY PLANNING WEBSITE https://zola.planning.nyc.gov

LEGEND

— SITE BOUNDARY

500 FOOT RADIUS

- One & Two Family Buildings
- Multi-Family Walk-Up Buildings
- Multi-Family Elevator Buildings
- Mixed Residential & Commercial Buildings
- Commercial & Office Buildings
- Industrial & Manufacturing
- Transportation & Utility
- Public Facilities & Institutions
- Open Space & Outdoor Recreation
- Parking Facilities
- Vacant Land
- Other

١٥.	ISSUE/DESCRIPTION	BY	DATE	

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED OF THE DRAWING THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTRED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

205 PARK AVENUE BROOKLYN, NEW YORK

SURROUNDING LAND USAGE

PREPARED BY:		PREPARED FOR:					
Engine	Environmental of NY ers and Scientists ww.gza.com	462 LEXINGTON, LLC.					
PROJ MGR: ZS	REVIEWED BY: DW	CHECKED BY:	FIGURE				
DESIGNED BY: ZS	DRAWN BY: PB	SCALE: 1" = 150'	1				
DATE:	PROJECT NO.	REVISION NO.	4				
JANUARY 2020	12.0076834.10		SHEET NO.				

NYC Digital Tax Map

Effective Date : 01-28-2016 10:11:47 End Date : Current

Brooklyn Block: 2033

Legend

Streets

Miscellaneous TextPossession Hooks

----- Boundary Lines

1 Lot Face Possession Hooks

----- Regular

------ Underwater

Tax Lot Polygon

Condo Number
Tax Block Polygon

Property boundary

ATTACHMENT E

Attachment E

Section IV. 10 Property Description Narrative

Location:

The Site is located at 205 Park Avenue in the Wallabout section in Brooklyn, New York and is identified as Block 2033 and Lot 50 on the New York City Tax Map. The Site is bounded by a vacant lot and residential building to the north, Park Avenue and Brooklyn Queens Expressway to the south, Vanderbilt Avenue, Vespa Brooklyn/Aprilia/Moto Guzzi and private residences to the east, and Clermont Avenue and residential buildings to the west. Pedestrian sidewalks surround the Site on the western, eastern, and southern sides. The Site is a vacant lot and is unused by the current owner.

Site Features:

The Site us vacant lot with no buildings. Photographs showing the current Site conditions are provided as an attachment to this narrative.

Current Zoning and Land Use:

The Site is approximately 12,808-square feet and is identified as Block 2033, Lot 50 on the New York City Tax Map. The Site is currently vacant and is zoned for R7D/C2-4. The Site is currently zoned for commercial and residential use. The proposed use is consistent with existing zoning for the property.

The surrounding parcels are currently used for a mixture of commercial establishments and residential housing. Establishments to the north and west include residential apartments. Establishments to the east include residences and a motorcycle/motor scooter repair and dealership. To the south is the Brooklyn Queens expressway, followed by residences to the southwest, residences and vacant property used for parking to the south, and vacant property to the southeast.

Past Use of the Site:

The Site has been developed since at least 1887 with two- and three-story dwellings and three 3-story stores. The Site has had multiple tenants and uses throughout the years, including a meat market, drug store/pharmacy, stationary shop, bake shop, barber shop, grocery store, private residences, and various other commercial establishments. A dry cleaner (known as Park Dollars Cleaners) operated on site in the 1920s and 1930s. An auto service facility (Known as Harris Auto Service) operated on site in the 1960s. The Site had been owned and operated by Administration of General Services until 2001¹. In 2002, title and interest in the property was transferred to Kathy Jules-Elysee. In 2002, title and interest in the property was transferred to Yeshivas Bais Limude, Hashem Jewish Center. In 2007, title and interest in the property was transferred to 462 Lexington LLC. However, the Site has remained vacant Since 2001 for about 20 years and all buildings on Site were demolished in April 2017.

Operations involving dry cleaners and auto service garages typically utilize chemical agents, petroleum and/or hazardous materials, the discharge of which may have adversely impacted the environmental

¹ The ownership start date of Administration of General Services is unknown.

quality of the property. Therefore, the historical use of the Site as a dry cleaner and an auto service facility represented a Recognized Environmental Condition (REC).

Site Geology and Hydrogeology:

Subsurface soil at the Site consisted of contaminated soils and historic fill, which was primarily comprised of brick, concrete, asphalt and other debris in a brown silty-sand matrix. The layer of contaminated soils and historic fill extended to a depth ranging from ground surface to approximately 17 feet below grade.

The average depth to groundwater is 24.4 bgs and the range in depth is 23.8 ft bgs to 24.8 ft bgs. Based on United States Geologic Survey (USGS) geological survey (Water-Table Altitude in Kings and Queens Counties, New York, March 1997) groundwater flow is generally from south to north although groundwater gradient on Site is relatively flat beneath the Site.

Environmental Assessment:

Based upon investigations conducted to date, the primary contaminants of concern for the Site include semi-volatile organic compounds (SVOCs), pesticides, and metals in soils. In addition, since elevated concentrations of chlorinated volatile organic compounds (cVOCs) were observed throughout the site in groundwater and soil gas, soil may contain cVOCs in deep intervals above groundwater surface which requires additional investigation.

Soils – The soil analytical results were compared to the NYSDEC Part 375 Unrestricted Use (UU) Soil Cleanup Objectives (SCOs) and Restricted Residential (RR) SCOs. Various SVOCs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene, were detected in exceedance of both the UUSCOs and the RRSCOs across the entire Site. Metals, including mercury, nickel, lead, and zinc, exceeded one or both standards in shallow samples on Site. Additional metals not in exceedance of the standards were detected across the entire Site. Pesticides including 4,4'-DDE, 4,4'-DDD, and 4,4'-DDT were detected exceeding their respective UUSCOs in one sample.

Groundwater – The groundwater samples taken from temporary wells installed across the Site were compared to NYSDEC Part 703.5 Groundwater Quality Standards (GQS). Several total metals were detected above GQS in one or more of the groundwater samples, including aluminum, barium, beryllium, cadmium, chromium, iron, lead, magnesium, manganese, nickel, selenium, and thallium. SVOCs including benzo(a)anthracene, benzo(a)pyrene benzo(b)fluoranthene, benzo(k), chrysene, and indeno(1,2,3-cd)pyrene were detected above their respective GQS in all groundwater samples. Pesticide dieldrin was detected above GQS in three of the groundwater samples. Additionally, PFAs were tested in one of groundwater samples. In addition, Perfluorooctanoic Acid (PFOA) and perfluorooctanesulfonic Acid (PFOS) were detected at the concentrations above their respective screening levels of 10 ng/L under NYSDEC's Part 375 Remedial Programs. The combined concertation of PFOA and PFOS was detected below its screening level of 500 ng/ under NYSDEC's Part 375 Remedial Programs.

Soil Gas – The soil vapor samples taken were compared to the New York State Department of Health (NYSDOH) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York and Soil Vapor/Indoor Air decision matrices A through C (updated May 2017). PCE was detected in all of the soil vapor samples (ranged from $55 \, \mu g/m^3$ to $209 \, \mu g/m^3$). Trichloroethene (TCE) was detected in 7 of 8 samples (ranged in concentration from $1.4 \, \mu g/m^3$ to $23.8 \, \mu g/m^3$). Concentrations of PCE and TCE are above the NYSDOH Guidance matrix and requires mitigation.

Other potential sources - Other potential sources of contamination: Other potential sources of contamination on Site that have yet to be investigated include supplemental soil samples from 0 to 4 ft bgs intervals and deep soil samples from 25 feet below grade to the water table; PFAS/PFOA, Source area of the cVOCs impacted soil gas and groundwater, and off site migration of cVOCs. These areas of concern will be investigated during the remedial investigation.

PHOTOGRAPHS

Client Name: 462 Lexington LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No.

Date: 4/18/19

Direction Photo Taken:

West

Description:

View of the Site from the eastern fence line.

Photo No.

2

Date: 4/18/19

Direction Photo Taken:

East

Description:

View of the Site from the western fence line.

Client Name: 462 Lexington LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No.

Date: 4/18/19

Direction Photo Taken:

Northwest

Description:

Debris in the northeastern corner of the Site.

Photo No.

1

Date: 4/18/19

Direction Photo Taken:

South

Description:

Debris and view of the southeastern corner of the Site.

Client Name: 462 Lexington LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No. 5

Date: 1/6/20

Direction Photo Taken:

West

Description:

View of Site from the east.

Photo No.

Date:

4/18/19

Direction Photo Taken:

Northeast

Description:

Residences, adjoining the Site to the north.

Client Name: 462 Lexington LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No. Date: 7 4/18/19

Direction Photo Taken:

Southwest

Description:

Residences, adjoining the Site to the north.

Photo No. Date: 8 4/18/19

Direction Photo Taken:

West

Description:

Brooklyn Queens Expressway, adjoining the Site to the south.

Client Name: 462 Lexington LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No.

Date: 4/18/19

Direction Photo Taken:

South

Description:

Parking, vacant lots, and residences, adjoining the Site to the south.

Photo No.

10

Date: 4/18/19

Direction Photo Taken:

East

Description:

Motorcycle and motor scooter repair facility, adjoining the Site to the east.

Client Name: 462 Lexington, LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No. Date: 11 4/18/19

Direction Photo Taken:

Northeast

Description:

Residences, adjoining the Site to the east.

 Photo No.
 Date:

 12
 4/18/19

Direction Photo Taken:

West

Description:

Residences and vacant lot for billboard support pillar, adjoining the Site to the west.

Photographic Log

Client Name: 462 Lexington, LLC

Site Location: 205 Park Avenue, Brooklyn, NY

Project No. 12.0076834.10

Photo No. Date: 13 4/18/19

Direction Photo Taken:

West

Description:

Auto repair facility in the Site vicinity located approximately 365 feet to the northwest of the Site.

ATTACHMENT F

Attachment F

Section VI. Current Property Owner/Operator Information:

Current Property Owner:

462 Lexington LLC 89 Bartlett Street Brooklyn, New York 11206

Requestor's relationship to current owner: Requestor is the current owner

Previous Property Owners/Operators Information:

Previous Owners/Operators

Previous Owner	Contact	Address	Requestor's Relationship to Owner/Operator	Date of Ownership or Operation
462 Lexington LLC*	Bruchy Lefkowitz	44 Lorimer Street Brooklyn, NY 11206	Owner	2/26/2007 to Present
		(Prior Listed)		
Yeshivas Bais Limude,	Not Available	430 Kent Avenue	None	12/18/2002 to 2/26/2007
Hashem Jewish Center*		Brooklyn, NY 11211		
Kathy Jules-Elysee*	Not Available	33-45 92 nd Street Jackson Heights, NY 11372	None	11/08/2001 to 12/18/2002
Administration of	Not Available	10 Causeway Street	None	Unknown to 11/08/2001
General Services*		Boston, MA 02114		

^{*}Owner is presumed operator

ATTACHMENT G

Attachment G

Section VII. Requestor Eligibility Information

The Requestor seeks to enter the into the Brownfield Cleanup Program as a Volunteer.

Under ECL § 27-1405(1)(b) and 6 NYCRR §375-3.2(c)(2), a Volunteer is defined as follows:

"Volunteer" shall mean an applicant other than a participant, including without limitation a person whose liability arises solely as a result of such person's ownership or operation of or involvement with the site subsequent to the disposal or discharge of contaminants, provided however, such person exercises appropriate care with respect to contamination found at the facility by taking reasonable steps to:

- (i) stop any continuing release;
- (ii) prevent any threatened future release; and
- (iii) prevent or limit human, environmental, or natural resource exposure to any previously released contamination.

While the remaining portions of the Site were acquired without a prior Phase I Environmental Site Assessment, Requestor took ownership after any potential discharge of contaminants and acted with appropriate care.

In anticipation of redeveloping the Site, GZA GeoEnvironmental of New York conducted a Phase I of the Site in March 2019. Noting RECs such as past use as a dry cleaner and auto service facility, GZA subsequently sampled Site soils, groundwater, soil gas, and indoor air in a December 2020 Phase II investigation and prepared a February 29, 2020 Phase II Report. GZA also reported the findings of this remedial investigation to NYC OER in a January 2020 Remedial Investigation Report submitted to New York City Office of Environmental Remediation to resolve the "E" Designation on the Site. After confirmation of Site contamination and subsequent conversations with NYSDEC, applicant/current owner now seeks entry into the Brownfield Cleanup Program to further investigate and remediate the Site.

ATTACHMENT H

Brownfield Cleanup Program Application 205 Park Avenue Block 2033, Lot 50 Brooklyn, New York

Attachment H

Section IX. Contact List Information

The following contact list of interested parties was developed to keep the community informed and involved during the Brownfield Cleanup Program process at the Site. The list includes citizens groups; local, state, and federal officials; local news media; and others. Contacts will be reviewed periodically and updated as appropriate. The contact list is as follows:

Office of the Mayor of New York City:

Mayor Bill de Blasio City Hall New York, NY 10007 Phone: 311 or 212-NEW-YORK outside NYC

Chief Executive Officer and Planning Board Chairpeople:

Brooklyn County

Eric Adams Brooklyn Borough President 209 Joralemon Street Brooklyn, New York, 11201

Marisa Lago Chair/Director of City Planning – New York City Planning Commission 16 Court Street, 7th Floor Brooklyn, New York 11241-0103 718-780-8280

Kenneth J. Knuckles, Esq. Vice Chairman – Bronx City Planning Commission 16 Court Street, 7th Floor Brooklyn, New York 11241-0103 718-780-8280

Additional Commissioners of the New York City Planning Commission include: David J. Burney, Allen P. Cappelli, Alfred C. Cerullo III, Michelle de la Uz, Joseph Douek, Richard W. Eaddy, Hope Knight, Anna Hayes Levin, Orlando Marin, Larisa Ortiz, and Raj Rampershad

Brooklyn Community Board 2

Chairperson: Lenue Singletary District Manager: Robert Perris 350 Jay Street, 8th Floor Brooklyn, NY 11201 Phone: 718-596-5410

Residents, owners, and occupants of the property and properties adjacent to the property:

Site Property Address: 205 Park Avenue	Adjacent Property Address: 69 Vanderbilt Avenue
Owner: 462 Lexington LLC	Owner: Louis A. Somma
89 Bartlett Street	
Brooklyn, NY 11206	
Adjacent Property Address: 42 Clermont Avenue	Adjacent Property Address: 217 Park Avenue
Owner: Workable Clermont LLC	Owner: 215 Park Avenue, LLC
185 Van Brunt Street, Suite 205	2740 Belcastro Street
Brooklyn, NY 11231	Las Vegas, NV 89117
Adjacent Property Address: 193 Park Avenue	Adjacent Property Address: 47 Vanderbilt Avenue
Owner: US National Bank Association	Owner: Nations Holding Corp
3217 South Decker Lake Drive	35 N. Tyson Avenue
Salt Lake City, UT 84119	Floral Park, NY 11001
Adjacent Property Address: 62 Clermont Avenue	Adjacent Property Address: 45 Vanderbilt Avenue
Owner: 62 Clermont Avenue, LLC	Owner: Wesley L. Aytch
148 Beach 9 th Street, Unit 2A	
Far Rockaway, NY 11691	
Adjacent Property Address: 65 Clermont Avenue	Adjacent Property Address: 42 Vanderbilt Avenue
Owner: Clermont Park Associates, LLC	Owner: Navy Green-PACC Housing Development
1619 51st Street	Fund Company
Brooklyn, NY 11204	201 Dekalb Avenue
	Brooklyn, NY 11205
Adjacent Property Address: 66 Vanderbilt Avenue	Adjacent Property Address: 45 Clermont Avenue
Owner: Iglesia Pentecostal Arca De Salvacion Inc	Owner: Navy Green R3 Partnership HDFC, Inc
72 Vanderbilt Avenue, Brooklyn, NY 11205	316 Douglass Street, 2 nd Floor
	Brooklyn, NY 11217

<u>Local News Media from which the community typically obtains information:</u>

News12 Brooklyn

1 Media Crossways Woodbury, NY 11797 https://brooklyn.news12.com/

Brooklyn Daily Eagle

16 Court Street Brooklyn, NY 11241 https://brooklyneagle.com/

Brooklyn Paper

One Metrotech Center, Third Floor Brooklyn, NY 11201 https://www.brooklynpaper.com/

The Brooklyn Reader

(646) 664-7081

https://www.bkreader.com/

The public water supplier which services the area in which the property is located:

NYC Department of Environmental Protection 59-17 Junction Boulevard, 13th Floor Flushing, New York 11373

Any person who has requested to be placed on the site contact list:

None at present.

The administrator of any school or day care facility located on or near the property:

Dr. Susan S. McKinney Secondary School of the Arts, 0.27 miles west Edgar Lin, Principal 101 Park Avenue Brooklyn, NY 11205 Phone: 718-834-6760

The Charles A. Dorsey School, PS 067, 0.36 miles west Amanda Davis, Administrator 51 St Edwards Street Brooklyn, NY 11205 Phone: 718-834-6756

PS 020 The Clinton Hill School, 0.36 miles south Lena Barbera, Principal 225 Adelphi Street Brooklyn, NY 11205 Phone: 718-834-6744

Dillon Child Study Care Center, 0.37 miles south Susan Straut Collard, Director 239 Vanderbilt Avenue Brooklyn, NY 11205 Phone: 718-940-5678

Saint Luke's Academy Pre-School, 0.45 miles southeast Bart Baldwin, Head of School 259 Washington Avenue Brooklyn, NY 11205

Phone: 718-622-5612

Child Study Center of New York Inc, 0.27 miles south

Brownfield Cleanup Program Application 205 Park Avenue Block 2033, Lot 50 Brooklyn, New York

James Magalee, Executive Director & CEO 167 Clermont Avenue Brooklyn, NY 11205 Phone: 718-854-3710

Trilok Fusion Center for Arts, 0.25 miles southeast Audrey Jackman, Chair 143 Waverly Avenue Brooklyn, NY 11205 Phone: 718-797-1700

Open Your Wings Daycare Center, 0.20 miles south

Administrator: N/A 381 Myrtle Avenue Brooklyn, NY 11205 Phone: 718-852-7020

Carousel Children's Center, 0.20 miles south Erica James, Administrator 150 Clermont Avenue Brooklyn, NY 11205 Phone: 718-596-7912

PS 046 Edward C Blum, 0.13 miles south Maria Guzman, Principal 100 Clermont Avenue Brooklyn, NY 11205 Phone: 718-834-7694

Benjamin Banneker Academy, 0.13 miles southeast Kinsley Kwateng, Principal 77 Clinton Avenue Brooklyn, NY 11205 Phone: 718-797-3702

The location of a document repository for the project (e.g., local library):

Brooklyn Public Library – Marcy Branch 617 DeKalb Avenue at Nostrand Avenue Brooklyn, NY 11216 Phone: 718-935-0032

In addition, attached is a copy of a letter received from the repository acknowledging that it agrees to act as the document repository for the property.

Built on trust.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

55 Lane Road Suite 407 Fairfield, NJ 07004 T: 973.774.3300 F: 973.774.3350 January 11, 2021

Lenue Singletary, Chairperson Brooklyn Community Board 2 350 Jay Street, 8th Floor Brooklyn, NY 11201

Re: Brownfield Cleanup Program Application

Site Name: 205 Park Avenue

Site Address: 205 Park Avenue, Brooklyn, NY 11205

Requestor: 462 Lexington, LLC

Dear Mr. Singletary:

We represent our client, 462 Lexington, LLC, in their anticipated Brownfield Cleanup Program application for the above-referenced site at 205 Park Avenue, Brooklyn, NY 11205. It is a requirement of the NYS Department of Environmental Conservation that we supply them with a letter certifying that the local community board is willing and able to serve as a repository for all documents pertaining to the cleanup of this property. Please sign below if you are able to certify that the Brooklyn Community Board 2, located at 350 Jay Street, Brooklyn, NY 11201, would be willing and able to act as a document repository for this Brownfield Cleanup Program project. If you have any questions, please contact me at (862)-246-0480.

Very truly yours,

GZA GeoEnvironmental, Inc.

Casey McGuffy

Assistant Project Manager

Email: Casey.McGuffy@gza.com

Phone: (862)-246-0480 Fax: (973)-774-3350

Yes, the Brooklyn Community Board 2 is willing and able to act as a public repository for documents related to the cleanup of the property at 205 Park Avenue, Brooklyn, NY, under the NYS Brownfield Cleanup Program.

42	
(Signature)	(Date)
(Print Name and Title)	

Zhan Shu

From: BK02 Communityboard <BK02@cb.nyc.gov>

Sent: Monday, January 11, 2021 2:42 PM

To: Casey McGuffy
Cc: Zhan Shu

Subject: Re: Brooklyn Community Board 2 - Request for Document Repository

Greetings:

Brooklyn Community Board is a depository and will accept the documents for 205 Park Avenue. However, due to the pandemic, the office is operating remotely. Documents should be submitted digitally if at all possible. Thank you

From: Casey McGuffy <Casey.McGuffy@gza.com>

Sent: Monday, January 11, 2021 11:38 AM **To:** BK02 Communityboard <BK02@cb.nyc.gov>

Cc: Zhan Shu <Zhan.Shu@gza.com>

Subject: Brooklyn Community Board 2 - Request for Document Repository

Good morning,

I'm contacting you regarding a Brownfield Cleanup Program application that we are submitting for our client, 462 Lexington LLC. The NYS DEC requests that the local community board serve as a repository for documents pertaining to the cleanup of the property located at 205 Park Avenue, Brooklyn, NY. Please see attached for a company letter requesting the Brooklyn Community Board 2 serve as a repository for the site. Please review, sign, and send back to me if the Brooklyn Community Board 2 is willing and able to serve as this repository.

If you have any questions, you can reach me at my cell phone number listed below.

Thank you,

Casey McGuffy

Assistant Project Manager

GZA | 55 Lane Road, Suite 407 | Fairfield, NJ 07004

o: 973.774.3325 | c: 862.246.0480 | casey.mcguffy@gza.com | www.gza.com | LinkedIn

* Please note: Our office is currently working remotely. I can be reached at 862.246.0480.

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.gza.com.

Built on trust.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

MANAGEMENY

55 Lane Road
Suite 407
Fairfield, NJ 07004
T: 973-774-3300
F: 973-774-3350

www.gza.com

January 8, 2021

Marcia McGibbon, Managing Librarian Brooklyn Public Library – Marcy Branch 617 DeKalb Avenue at Nostrand Avenue Brooklyn, NY 11216

Re: Brownfield Cleanup Program Application

Site Name: 205 Park Avenue

Site Address: 205 Park Avenue, Brooklyn, NY 11205

Requestor: 462 Lexington, LLC

Dear Ms. McGibbon:

We represent our client, 462 Lexington, LLC, in their anticipated Brownfield Cleanup Program application for the above-referenced site at 205 Park Avenue, Brooklyn, NY 11205. It is a requirement of the NYS Department of Environmental Conservation that we supply them with a letter certifying that the local library is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below if you are able to certify that the Marcy branch of the Brooklyn Public Library, located at 617 DeKalb Avenue at Nostrand Avenue, Brooklyn, NY 11216, would be willing and able to act as the public repository for this Brownfield Cleanup Program project. If you have any questions, please contact me at (862)-246-0480.

Very truly yours,

GZA GeoEnvironmental, Inc.

Casev McGuffy

Assistant Project Manager

Casey McGuffy

Email: Casey.McGuffy@gza.com

Phone: (862)-246-0480 Fax: (973)-774-3350

Yes, the Marcy Branch of the Brooklyn Public Library is willing and able to act as a public repository for documents related to the cleanup of the property at 205 Park Avenue, Brooklyn, NY, under the NYS Brownfield Cleanup Program.

(Signature)

1/8/21 (Date)

MARCIA MCG IBBON, NLS (Print Name and Title)

ATTACHMENT I

Brownfield Cleanup Program Application 205 Park Avenue Block 2033, Lot 50 Brooklyn, New York

Attachment I

Section X.2 Current Use

All buildings on the Site were demolished in April 2017. The Site has remained vacant for about 20 years and is unused by the current owner.

Section X.3 Anticipated Post Remediation Use

The proposed future use of the Site will consist of one new 9 story mixed-use commercial-residential building which will cover approximately 86% of the Site. 14% of the Site will be used for a courtyard located in the central northern area, and a terrace on the third floor which will be covered with pavers. The proposed building would rise to about 126 feet in height and include a full height cellar level requiring excavation of the entire Site to a depth of approximately 14 ft below grade. The building will contain commercial uses, a community facility, recreation space, and parking. The building will also accommodate 90 residential dwelling units, including 23 affordable apartments. The total project includes about 61,224 sf of residential space, 9,169 sf of commercial space, and 1,157 sf of community facility.

ATTACHMENT J

CITY PLANNING COMMISSION CITY OF NEW YORK

OFFICE OF THE CHAIR

March 12, 2018

NEGATIVE DECLARATION

Project Identification CEQR No. 15DCP083K

ULURP Nos. 170164ZMK, N170165ZRK

SEQRA Classification: Unlisted

Lead Agency

City Planning Commission 120 Broadway, 31st Floor New York, NY 10271

Contact: Robert Dobruskin

(212) 720-3423

Name, Description and Location of Proposal:

205 Park Avenue Rezoning

The Applicant, 462 Lexington Avenue LLC, seeks a Zoning Map Amendment to rezone a property located on the southern portion of Park Avenue between Vanderbilt Avenue and Clermont Avenue, facing the Brooklyn Queens Expressway (I-278) (Brooklyn Block 2033, Lot 50), from an M1-2 manufacturing district to an R7D/C2-4 district; and a Zoning Text Amendment pursuant to Appendix F of the New York City Zoning Resolution (ZR) to establish a Mandatory Inclusionary Housing (MIH) area coterminous with the proposed rezoning area. The two actions, collectively the "Proposed Actions," would facilitate a proposal by the Applicant to develop an 8-story, approximately 81,465 gsf mixed-use residential and commercial building on a property located at 205 Park Avenue (Block 2033, Lot 50, the project site) in the Wallabout neighborhood of Brooklyn Community District (CD) 2. The proposed building would rise to 95 feet in height, and contain approximately 7,908 gsf of retail space on the ground floor and approximately 73,557 gsf of residential floor area on the second through eighth floors. The building is expected to include 70 Dwelling Units, of which up to 17 would be affordable pursuant to MIH. The Applicant's intended development would also include 35 parking spaces, all of which would be located in the cellar of the proposed building and which would be accessed via a curb cut along Vanderbilt Avenue. The building would also contain 35 enclosed bicycle parking spaces.

The project site, which was previously developed with a three-story commercial building, is

205 Park Avenue Rezoning CEQR No. 15DCP083K *Negative Declaration*

currently vacant. The site is currently located within an M1-2 zoning district, which allows light manufacturing and commercial uses (Use Groups 4-14 and 17) at a floor area ratio (FAR) of 2.0; and community facilities uses (Use Groups 3 and 4) up to an FAR of 4.8. The proposed rezoning to R7D/C2-4 and proposed text amendment would allow residential development up to 5.6 FAR as well as commercial uses up to 2.0 FAR.

The proposed project is anticipated to be completed by 2020.

To avoid the potential for significant adverse impacts related to hazardous materials, air quality, and noise an (E) designation (E-464) has been incorporated into the Proposed Actions, as described below.

The (E) designation requirements related to hazardous materials are noted below:

Block 2033, Lot 50 Task 1-Sampling Protocol

The applicant submits to OER, for review and approval, a Phase I of the site along with a soil, groundwater and soil vapor testing protocol, including a description of methods and a site map with all sampling locations clearly and precisely represented. If site sampling is necessary, no sampling should begin until written approval of a protocol is received from OER. The number and location of samples should be selected to adequately characterize the site, specific sources of suspected contamination (i.e., petroleum based contamination and non-petroleum based contamination), and the remainder of the site's condition. The characterization should be complete enough to determine what remediation strategy (if any) is necessary after review of sampling data. Guidelines and criteria for selecting sampling locations and collecting samples are provided by OER upon request.

Task 2-Remediation Determination and Protocol

A written report with findings and a summary of the data must he submitted to OER after completion of the testing phase and laboratory analysis for review and approval. After receiving such results, a determination is made by OER if the results indicate that remediation is necessary. If OER determines that no remediation is necessary, written notice shall be given by OER.

If remediation is indicated from test results, a proposed remediation plan must be submitted to OER for review and approval. The applicant must complete such remediation as determined necessary by OER. The applicant should then provide proper documentation that the work has been satisfactorily completed.

A construction-related health and safety plan should be submitted to OER and would

be implemented during excavation and construction activities to protect workers and the community from potentially significant adverse impacts associated with contaminated soil, groundwater and/or soil vapor. This plan would be submitted to OER prior to implementation.

The (E) designation text related to air quality is as follows:

Block 2033, Lot 50

Any new development on the above-referenced property must ensure that the HVAC stack(s) is located at highest tier and at least 95 feet above grade to avoid any significant adverse air quality impacts.

The (E) designation text related to noise is as follows:

Block 2033, Lot 50

To ensure an acceptable interior noise environment, future residential/commercial uses must provide a closed-window condition with a minimum of 35 dBA window/wall attenuation on all facades facing south (Park Avenue) or west (Clermont Avenue) and 28 dBA of attenuation on all facades facing east (Vanderbilt Avenue) to maintain an interior noise level of 45 dBA. To maintain a closed-window condition, an alternate means of ventilation must also be provided. Alternate means of ventilation includes, but is not limited to, air conditioning.

Supporting Statement:

The above determination is based on an environmental assessment which finds that:

- 1. The (E) designation (E-464) would ensure that the Proposed Action would not result in significant adverse impacted related to hazardous material, air quality and noise.
- 2. No other significant effect on the environment which would require an Environmental Impact Statement are foreseeable.

Statement of No Significant Effect:

The Environmental Assessment and Review Division of the Department of City Planning, on behalf of the City Planning Commission, has completed its technical review of the Environmental Assessment Statement, dated March 9, 2018, prepared in connection with the ULURP Application (Nos. 170164ZMK and N170165ZRK). The City Planning Commission has determined that the proposed action will have no significant effect on the quality of the environment.

This Negative Declaration has been prepared in accordance with Article 8 of the Environmental

205 Park Avenue Rezoning CEQR No. 15DCP083K *Negative Declaration*

Conservation Law 6NYCRR part 617.

Robert Dobskin

Should you have any questions pertaining to this Negative Declaration, you may contact Rachel Antemi at (212) 720-3621.

Robert Dobruskin, Director

Environmental Assessment & Review Division

Department of City Planning

Date: March 12, 2018

Date: March 9, 2018

Marisa Lago, Chair

City Planning Commission

Brownfield Cleanup Program Application
205 Park Avenue
Block 2033, Lot 50
Brooklyn, New York

Electronic Copies

Environmental Assessment Statement

(Provided in Part 2)