

QUARTERLY GROUNDWATER MONITORING REPORT

NYSDEC SITE NUMBER: C224319 205 PARK AVENUE BROOKLYN, NEW YORK

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

55 Lane Road Suite 407 Fairfield, NJ 07004 T: 973:774-3300 F: 973:774-3350 www.gza.com

PREPARED FOR:

462 Lexington, LLC 89 Bartlett Street Brooklyn, NY 11206

PREPARED BY:

Goldberg-Zoino Associates of New York, P.C. d/b/a GZA GeoEnvironmental of New York (GZA) 104 West 29th Street, 10th Floor New York, New York 10001 212-594-8140

May 22, 2023 File No. 12.0076834.20

Mr. Rafi Alam New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 11th Floor Albany, NY 12233-7020

Re: Quarterly Groundwater Monitoring Report

205 Park Avenue BCP Site Number: C224319

205 Park Avenue Brooklyn, New York

Dear Mr. Alam,

Attached is the 1st Quarterly Groundwater Monitoring Report (QGMR) done in 2023 for the above referenced site prepared by Goldberg-Zoino Associates of New York P.C. d/b/a GZA GeoEnvironmental of New York. (GZA) on behalf of 462 Lexington LLC. The quarterly groundwater sampling event was completed on March 8, 2023.

The next groundwater sampling event will be performed in May 2023. If you have any questions, please contact us at 973-774-3321.

Sincerely,

GZA GeoEnvironmental

Zhan Shu, Ph.D., P.E.,

Project Manager

David M. Winslow, Ph.D., P.G.

Principal

Ernest R. Hanna, P.E. Consultant Reviewer

Cc:

Lefkowitz, 462 Lexington LLC

G. Burke, Director, Remedial Bureau B

FORMER CASCADE LAUNDRY

QUARTERLY MONITORING REPORT

Site Address: 205 Park Avenue Regulatory Agency: NYSDEC

Brooklyn, New York Regulatory Contact: Mr. Rafi Alam

Consultant: GZA GeoEnvironmental (GZA)

205 Park Avenue Contact: Bruchy Lefkowitz GZA Project Manager: Zhan Shu

Report Date: April 2023

Current Status: Site Management

Monitoring Period: January 1, 2023 through March 31, 2023

Groundwater Monitoring Summary:

Number of Wells On-Site:

Gauging Frequency: Quarterly Sampling Frequency: Quarterly

Groundwater Depth: 13.9-14.1 below Top of Inner Casing

Groundwater Flow: North - Northeast

Work Performed:

- Gauged groundwater monitoring wells
- Sampled groundwater in monitoring wells
- Submitted collected groundwater samples for analysis

Groundwater Gauging and Sampling

On March 8, 2023, GZA collected groundwater samples from three groundwater monitoring wells, designated as PT-1 through PT-3, using low-flow methods with dedicated tubing. Prior to sampling each monitoring well, its headspace was screened using a photoionization detector (PID), the water level was measured using an electronic water level meter, and the well was purged utilizing a low-flow peristaltic pump with dedicated Teflon® or Teflon®-lined polyethylene tubing connected to a transparent flow cell. Groundwater from each well was purged using low flow pumping rates to limit drawdown of the water level. Wells were purged until turbidity, pH, temperature, dissolved oxygen, and specific conductivity stabilized. Field measurements, taken from the flow cell, were

recorded in the field logbook during and after purging, and before sampling. Purging was performed with the pump intake placed at about the middle of the well screen so that stagnant water in the well was removed, while not stirring up sediment that may have accumulated on the bottom of the well. Purge volumes were monitored and recorded on the Groundwater Sampling Forms, which are included in **Attachment A**. It is noted that monitoring well MW-5 was damaged during site construction and cannot be sampled, it will be reinstalled before the next sampling event.

Completed sample labels were affixed to the sides of the laboratory provided sample bottles. Following purging, groundwater samples were collected at each of the three monitoring wells sampled. Once the sample bottles were filled, they were immediately placed in a cooler with ice (in Ziploc plastic bags to prevent leaking) to maintain the samples at below 4°C. The sample collected from monitoring well PT-1 through PT-3 were submitted to Alpha Analytical, a NYSDOH ELAP laboratory, for VOCs (including 1,4 Dioxane) analysis. The duplicate sample (DUP) was collected from PT-3.

GZA compared the analytical sample test results to the New York State Department of Environmental Conservation, Ambient Ground Water Quality Standard (NYSDEC TOGS 1.1.1 AWQS). The summary of detected compounds is presented in **Table 1.** The full laboratory analytical reports are included in **Attachment B**.

GW Sampling Results

Based on the investigation results from the three wells sampled, groundwater flows in the north-northeast direction.

Tetrachloroethene (PCE) was detected in the downgradient wells PT-1 through PT-3 at concentrations of 62 μ g/L, 46 μ g/L, and 31 μ g/L, respectively, at concentrations above its AWQS of 5 μ g/L. Trichloroethene (TCE) was detected below its AWQS of 5 μ g/L in the three downgradient wells.

Based on these results, the cVOCs detected in the groundwater are consistent with previous Site measurements and consistent with the upgradient off-site source documented in the Remedial Investigation and the Remedial Action Work Plan.

Table 1 Groundwater Analytical Results

Table 1 - March 2023 Groundwater Sampling Results
462 Lexington LLC
205 Park Avenue
Brooklyn, NY

LOCATION			I		PT-1	1	PT-2)	PT-3	1	PT-3 DUI	·
SAMPLING DATE					3/8/2023		3/8/2023		3/8/2023		3/8/2023	
LAB SAMPLE ID	CasNum	NY-AWQS	NY-TOGS-GA	Units	L2312234-03		L2312234-04		L2312234-0		L2312234-02	
SAMPLE TYPE		111 7111 40	111 1000 011	00	WATER		WATER		WATER		WATER	
SAMPLE DEPTH (ft.)					WAILE	<u> </u>	WAILE	<u> </u>	WATER		WATER	-
SAMI LE DEI III (II.)					Results	Oual	Results	Oual	Results	Oual	Results	Oual
Volatile Organics by GC/MS					11050110	- Quin	11050110		resures	Quu.	resures	- Quiii
Methylene chloride	75-09-2	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1.1-Dichloroethane	75-34-3	5	5	ug/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
Chloroform	67-66-3	7		ua/l	5	-	5	-	4.3		4.5	
Carbon tetrachloride	56-23-5	5	5	ua/l	0.17	J	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	78-87-5	1	1	ug/l	1	U	1	U	1	U	1	Ü
Dibromochloromethane	124-48-1	50		ug/l	0.5	Ü	0.5	Ü	0.5	Ü	0.5	Ü
1.1.2-Trichloroethane	79-00-5	1		ug/l	1.5	U	1.5	U	1.5	U	1.5	U
Tetrachloroethene	127-18-4	5		ua/l	62	-	46	-	31		31	
Chlorobenzene	108-90-7	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
Trichlorofluoromethane	75-69-4	5		ug/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
1.2-Dichloroethane	107-06-2	0.6		ug/l	0.5	Ü	0.5	U	0.5	U	0.5	Ü
1,1,1-Trichloroethane	71-55-6	5		ug/l	2.5	Ü	2.5	Ü	2.5	Ü	2.5	Ü
Bromodichloromethane	75-27-4	50		ug/l	0.5	Ü	0.5	Ū	0.5	Ū	0.5	Ü
trans-1,3-Dichloropropene	10061-02-6	0.4		ug/l	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,3-Dichloropropene	10061-01-5	0.4		ug/l	0.5	Ü	0.5	Ü	0.5	Ü	0.5	Ü
1,3-Dichloropropene, Total	542-75-6			ug/l	0.5	Ü	0.5	Ü	0.5	Ü	0.5	Ū
1,1-Dichloropropene	563-58-6	5	5	ua/l	2.5	Ü	2.5	U	2.5	U	2.5	Ü
Bromoform	75-25-2	50		ug/l	2	Ü	2	Ü	2	Ü	2	Ü
1,1,2,2-Tetrachloroethane	79-34-5	5		ug/l	0.5	Ü	0.5	Ü	0.5	Ü	0.5	Ü
Benzene	71-43-2	1		ug/l	0.5	Ü	0.5	U	0.5	Ū	0.5	Ü
Toluene	108-88-3	5		ug/l	2.5	Ü	2.5	U	2.5	U	2.5	Ü
Ethylbenzene	100-41-4	5		ug/l	2.5	Ü	2.5	Ü	2.5	Ü	2.5	Ü
Chloromethane	74-87-3			ug/l	2.5	Ü	2.5	U	2.5	U	2.5	Ü
Bromomethane	74-83-9	5	5	ua/l	2.5	Ü	2.5	U	2.5	U	2.5	Ü
Vinyl chloride	75-01-4	2		ug/l	1	Ü	1	Ü	1	Ü	1	Ü
Chloroethane	75-00-3	5		ug/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
1.1-Dichloroethene	75-35-4	5		ua/l	0.5	U	0.5	Ū	0.5	Ū	0.5	U
trans-1,2-Dichloroethene	156-60-5	5	5	ug/l	2.5	Ü	2.5	Ū	2.5	Ū	2.5	Ü
Trichloroethene	79-01-6	5		ug/l	2.6	-	2		1.4	-	1.4	
1.2-Dichlorobenzene	95-50-1	3		ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1.3-Dichlorobenzene	541-73-1	3		ug/l	2.5	Ü	2.5	Ū	2.5	Ū	2.5	Ū
1,4-Dichlorobenzene	106-46-7	3		ug/l	2.5	Ü	2.5	Ū	2.5	Ū	2.5	Ü
Methyl tert butyl ether	1634-04-4	10		ua/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
p/m-Xylene	179601-23-1	5	5	ug/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
o-Xylene	95-47-6	5		ug/l	2.5	Ü	2.5	Ü	2.5	Ü	2.5	Ü
Xylenes, Total	1330-20-7	-	-	ug/l	2.5	U	2.5	Ū	2.5	Ū	2.5	U
cis-1,2-Dichloroethene	156-59-2	5	5	ug/l	2.5	Ü	2.5	U	2.5	U	2.5	Ü
1,2-Dichloroethene, Total	540-59-0			ug/l	2.5	Ü	2.5	Ū	2.5	Ū	2.5	Ū
Dibromomethane	74-95-3	5	5	ug/l	5	U	5	U	5	Ū	5	U
1,2,3-Trichloropropane	96-18-4	0.04		- 3	2.5	Ü	2.5	Ü	2.5	Ü	2.5	Ü
Acrylonitrile	107-13-1	5		ug/l	5	Ü	5	Ü	5	U	5	Ü
Styrene	100-42-5	5			2.5	Ü	2.5	Ū	2.5	U	2.5	Ü
Dichlorodifluoromethane	75-71-8	5		ug/l	5	U	5	U	5	U	5	Ū
Acetone	67-64-1	50		ug/l	5	Ü	5	Ü	5	Ü	5	Ü

Table 1 - March 2023 Groundwater Sampling Results
462 Lexington LLC
205 Park Avenue
Brooklyn, NY

LOCATION					PT-1		PT-2		PT-3	3	PT-3 DUF	,
SAMPLING DATE					3/8/2023		3/8/2023	}	3/8/2023	3	3/8/2023	3
LAB SAMPLE ID	CasNum	NY-AWQS	NY-TOGS-GA	Units	L2312234-03		L2312234-04	ļ	L2312234-0	1	L2312234-02	2
SAMPLE TYPE					WATER		WATER		WATER	₹	WATER	·
SAMPLE DEPTH (ft.)												
					Results	Qual	Results	Qual	Results	Qual	Results	Qual
Carbon disulfide	75-15-0	60	60	ug/l	5	U	5	U	5	U	5	U
2-Butanone	78-93-3	50	50	ug/l	5	U	5	U	5	U	5	U
Vinyl acetate	108-05-4			ug/l	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone	108-10-1			ug/l	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	50	50	ug/l	5	U	5	U	5	U	5	U
Bromochloromethane	74-97-5	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
2,2-Dichloropropane	594-20-7	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	106-93-4	0.0006	0.0006	ug/l	2	U	2	U	2	U	2	U
1,3-Dichloropropane	142-28-9	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,1,1,2-Tetrachloroethane	630-20-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
Bromobenzene	108-86-1	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
n-Butylbenzene	104-51-8	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
sec-Butylbenzene	135-98-8	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
tert-Butylbenzene	98-06-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
o-Chlorotoluene	95-49-8	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
p-Chlorotoluene	106-43-4	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	96-12-8	0.04	0.04	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
Hexachlorobutadiene	87-68-3	0.5	0.5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
Isopropylbenzene	98-82-8	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
p-Isopropyltoluene	99-87-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
Naphthalene	91-20-3	10	10	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
n-Propylbenzene	103-65-1	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	87-61-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trichlorobenzene	120-82-1	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,3,5-Trimethylbenzene	108-67-8	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	95-63-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dioxane	123-91-1			ug/l	250	U	250	U	250	U	250	U
p-Diethylbenzene	105-05-5			ug/l	2	U	2	U	2	U	2	U
p-Ethyltoluene	622-96-8			ug/l	2	U	2	U	2	U	2	U
1,2,4,5-Tetramethylbenzene	95-93-2	5	5	ug/l	2	U	2	U	2	U	2	U
Ethyl ether	60-29-7			ug/l	2.5	U	2.5	U	2.5	U	2.5	U
trans-1,4-Dichloro-2-butene	110-57-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U

Notes:

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

Yellow highlight indicates that the concentration exceeds the applicable standard.

Gray highlight indicates that the method detection limit is greater than the applicable standard.

- J The value is estimated.
- U Not detected above the method detection.

FIGURES

Figure 1 Site Location Map

Figure 2 Groundwater Exceedances

ATTACHMENT A

Low Flow Sampling Data Sheets

Low Fl	ow Mon	itoring	Well Pu	irge Fo	rm						
		PT-1									GZN
Well Num	The state of the s	1 ,			-		D. /	2-8	7-22		/
State Pern Project Na		205 Da	-M - A) .	-	Sampling		C 70 /	meleurs		
Project No		000 V	76834.0	2 ₀	-	Weather Sampled		DIMM/	Theras ,		
l'iojective	amber.	12:00	1685-1.0		-	Sampled	Dy.				
						Well In	formatio	n		Othory	
	: X Mo	nitor	Other:			Well Cor	struction:	PV	CSteel	Other:	
	neter (in):	8	121			Well Scr	eened inter	val: _'/_ t	0 27 feet bel	low 11C	
	vel (ft below h (ft below	TIC):	27	1 2	-	Product	uspace Kea Level-if nr	esent (ft be	low TIC)		
	s (Odor, we			<u>ر، ر</u>	-	1100000	эстек и р				
	,										
-					I	Purging 1	nformat	ion			
Purge Me	thod:	Low Flow	Ot	her:					Pump Start	Time:	
Pump:	Subme	rsible Pum	p (2-inch)	Peris	staltic _	_Other:_		Cound	Neum	Other:	
Pump inta	ake depth (f	ft below TI	C): Teffen) line	Purge wa	iter discha	rged to: _	_Ground .	NewDed	icated	
I ubing:	Polye	etnyiene _	1 enon-	ine	Other						
Time	Temp	pН	D.O.	Cond.	ORP	Turbidity		DTW		Notes	
(НН:ММ)	(°C)	(S.U.)	(mg/L)	(mS/cm)	(mV)	(NTU)	-				
1015	13.57	7.79	3.76		228	107	175	14.1			
1020	141.602	7.62	3.08	1.15	214	115	135	14.31			
1025	14.59	7.81	2.66	1.15	195	143	175	14.31			
1030	121,34	7.87	1.81	1.16	191	154	175	14.31			
1035	1410	7.86	1.64	1.16	192	131	175	14.32			
1040	1413	7.86	161	1.17	193	105	175	14,34			
1075	14 16	7.85	1,63	115	193	87.0	175	14.33			
	141,21	7.85		1112	192	86.4	175	141.35			
1050	14.27	-	1.40	1.17	142	82.1	125	14.35			
1055	14.21	7.85	1,74	(11)	1102	00.1	1//	1 1702			
											
								-			
	ν.										
		2									
				al	1000-00-00-01						
1105	14.27	7.85	151	1.17	147	798	175	14,30		POST-SAMPLING M	EASUREMENTS
	ıme Purged		~ 6			Quality M	eter(s):		()-5000. (besteek turbid	moter
INDICATO	R PARAMETEI	RS HAVE STAF	BLIZED WHE	N 3 CONSEC	UTIVE READ	INGS ARE W	/ITHIN: +/- (Conductivity and Tempe	
Redox Pot	ential; +/-10%	6 for turbidity	values grea	ter than 1 N	TU; +/-10%	for Dissolve	d Oxygen.				
	ula in a second				S. S	Sample I	nformati	on		¥	
	ter Sample	Field ID:	6.	T-1	Times	11.00					
Sampling'	Time: Method: _	Same as		pling End Other:	ı ime:	1102	7				
Dunlicate	Sample Col	lected?	Yes X		DUP ID:			Samp	ling Time:		
Sampling	Observation	ns:									
									-		

Low Fl	low Mon	itoring \	Vell Pu	rge Fór	m						1
Well Num	her	PT-S	_					0.5	8 02		GZN
State Peri	009000000000000000000000000000000000000	110				Sampling	Date:	91	8-23		
Project Na	_	205	Para A	vene		Weather:			indows		
Project No	umber:		06832			Sampled I	Ву:	52	1		
¥*79 = 2.						Wall Ind			Prostant to the		
Well Type	: Mor	nitor (Other:			Well Cons	struction:	n PVC	Steel (Other:	
Well Dian	neter (in):	7		, 1		Well Scre	ened inter	val: _Q to	Leffeet below TIC		_
	vel (ft below		14.	04		PID Head	space Rea	ding (ppm):	013		
	th (ft below's (Odor, we		etc.):	2,5		Product L	evel-if pre	esent (ft belo	ow TIC)		
	(5401) 110	condition	-								
				A HOUSE			er managen	on		Francis	
Purge Me	thod:	Low Flow	Oth	A 111					D C4 470	· · · · · · · · · · · · · · · · · · ·	
Pump: _	X Subme	rsible Pum	(2-inch)	Peris	taltic _	_Other:_			DrumOther:	· · · · · ·	
Pump inta	ake depth (fi	t below TIC	Taffan I	(Purge wa	ter dischai	rged to: _	_Ground S	∑DrumOther: NewDedicated		
r doing.		inyiene	1 e11011-1	ine(otner:			- /r	NewDedicated		
Time	Temp	pН	D.O.	Cond.	ORP	Turbidity	Rate	DTW		Notes	
(HH:MM)		(S.U.)	(mg/L)	(mS/cm)	(mV)	(NTU)	(mL/min)				
1435	14,70	7.68	7.12	215	217	409	175	14.05			
1040	1-1.7)	7.65	3.32	1.24	212	303	175	14.05			
1145	14,51	7.76	3,57	1.23	213	217	175	141.05			
1150	4.60	7.77	3.28	1.22	214	107	175	141.05			
1153	14.59	7.76	2.99	1.22	216	[1]	175	14.05			
1200	114.60	7.72	2.89	1.23	216	110	175	14.05			
1205	14.62	7.74	2.88	1.22	B18	91.7	175	141.06			
1210	14.69	7.77	2.81	1,23	218	89.8	175	14.05			
la15	141.77	7.78	2.79	1.23	218	88,4	175	14.05			
1220	14.7)	7.78	2.76	1.23	218	89.4	75	14.05			
1025										-	
1230											
				**							
						1					
					1			-			
<u> </u>	 				 	1	 	 			-
-	-				 			+			
	· · ·				 				 		
					 	-	+	+			
-	-	-			 	+	+		 		
1000	111 7/	722	7 77	1.23	018	81.10	135	10 /		5-5	
P72	114,76		2.77			186.6		14.05	POST	SAMPLING MEA	SUREMENTS
	lume Purge		1.2		_	r Quality N	, ,				
Redox Pr	OR PARAMETI otential; +/-10	ERS HAVE STA 1% for turbidi	ABLIZED WHI ty values gre	ater than 1	LUTIVE REA NTU; +/-109	DINGS ARE 1 % for Dissolv	WITHIN: +/- red Oxvgen	· 0.1 for pH; +	-/-3% for Specific Condu	ictivity and Temperat	ure; +/-10 mV for
NEGOV E						Sample 1		ion			
Groundy	water Samp	le Field ID:	SEAS OF LAND	PT-	2	~ampie	MIVI IUAL	AUH.			
Sampling	o Time:	1200	Sa	mpling En	d Time:	1224	_				
Sampling	g Method:	Same a	s Above Yes	Other:	DUP ID			Came	ling Tieses		
Duplicat	e Sample Co g Observati	ons:	165		DOT ID	•		Samp	oling Time:		
Samplin	g Observati										

Low Flo	ow Mon	A	Well Pu	rge For	m						CT
Well Numl State Perm Project Na Project Nu	nit No.; me:	205 P	EN A.	pe 70		Sampling Weather: Sampled I	Date:	3-1	7-23 /inela	xs	GZN
Water Lev Well Depti	: Mor	TIC):	13,9			Well Scre PID Head	struction: ened inter- space Rea	△ PV	29 feet b	elOther:elow TIC	
Purge Met Pump: Pump inta	thod: Subme ike denth (f	_Low Flow rsible Pum t below TIO	Oth p (2-inch) D: \ \ \	er:Peris	taltic	_Other:_	rged to:	Ground	-	rt Time: 8/5	
Time (HH:MM)	Temp (°C)	pH (S.U.)	D.O.	Cond. (mS/cm)	ORP (mV)	Turbidity (NTU)	Rate (mL/min)	DTW (ft)		Notes	
	14.67	7.73	5.91	1.04	184	635	150	13.94			
820	14.78	7.69	5.11	1.04	193	421 337	150	13,90			
830	41.65	7.68	4.58	1.03	200	293	150	1390			
835	141.39	7.70	3.57	1.04	202	282	150	13.90			
840	14.85	7.67	4.35	1.04	204	218	150	13.9			
545	15.12	7.67	4.20	1.04	206	188	150	139			
850	15.23	7.68	4.06	1.05	200	142	150	13.9			
960	14.95	7.69	2.98	1.05	207	125	150	13.9			
905	14,94	7.69	2.94	1,05	209	107	150	13.9			
910	14.69	9.69	2.96	1.05	210	104	150	139			
915	14.90	7.69	9.95	1.04	205	100	150	13.9			
919	14,90	7.04	2.91	1,05	207	96.4	150	13.9		POST-SAMPLING MEA	SUREMENTS
INDICATO Redox Po	tential; +/-10	RS HAVE STA % for turbidit	ABLIZED WHI	EN 3 CONSEC	CUTIVE REA NTU; +/-109	% for Dissolv	WITHIN: +/- ed Oxygen	0.1 for pH;		5000, Geo Heeh Tu cific Conductivity and Temperat	
	ater Sampl			PT-		Sample 1	nformat	ion			
Sampling Sampling	Time: Method:	4,17 X Same a	Sa s Above _	mpling En Other:	d Time:	9:19		C	pling Time:	9:21	
	Sample Co Observation		d_Yes	No	DUP ID	: UV[Sam	ping time:	1,00	

ATTACHMENT B

Laboratory Data Packages

ANALYTICAL REPORT

Lab Number: L2312234

Client: GZA GeoEnvironmental, Inc.

55 Lane Road

Suite 407

Fairfield, NJ 07004

205 PARK AVENUE

ATTN: Zhan Shu

Phone: (201) 744-0118

Project Number: 12.0076834.20

•

Report Date: 03/14/23

Project Name:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

 Lab Number:
 L2312234

 Report Date:
 03/14/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2312234-01	PT-3	WATER	205 PARK AVENUE, BROOKLYN, NY	03/08/23 09:17	03/08/23
L2312234-02	DUP	WATER	205 PARK AVENUE, BROOKLYN, NY	03/08/23 09:20	03/08/23
L2312234-03	PT-1	WATER	205 PARK AVENUE, BROOKLYN, NY	03/08/23 11:00	03/08/23
L2312234-04	PT-2	WATER	205 PARK AVENUE, BROOKLYN, NY	03/08/23 12:22	03/08/23

Project Name: 205 PARK AVENUE Lab Number: L2312234
Project Number: 12.0076834.20 Report Date: 03/14/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 205 PARK AVENUE **Project Number:** 12.0076834.20

Lab Number: L2312234

Report Date: 03/14/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 03/14/23

ORGANICS

VOLATILES

03/08/23 09:17

Not Specified

03/08/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Lab Number: L2312234

Date Collected:

Date Received:

Field Prep:

Report Date: 03/14/23

Lab ID: L2312234-01

Client ID: PT-3

Sample Location: 205 PARK AVENUE, BROOKLYN, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/11/23 13:08

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	4.3		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	31		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2312234

03/14/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

L2312234-01

PT-3

SAMPLE RESULTS

Date Collected: 03/08/23 09:17

Lab Number:

Report Date:

Date Received: 03/08/23

Sample Location: Field Prep: Not Specified 205 PARK AVENUE, BROOKLYN, NY

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Trichloroethene	1.4	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: 205 PARK AVENUE Lab Number: L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

SAMPLE RESULTS

Lab ID: L2312234-01 Date Collected: 03/08/23 09:17

Client ID: PT-3 Date Received: 03/08/23

Sample Location: 205 PARK AVENUE, BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	109	70-130	

03/08/23 09:20

Not Specified

03/08/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Lab Number: L2312234

Report Date: 03/14/23

Date Collected:

Date Received:

Field Prep:

Lab ID: L2312234-02 Client ID: DUP

Sample Location: 205 PARK AVENUE, BROOKLYN, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/11/23 13:30

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	4.5		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	31		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2312234

03/14/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Lab ID: L2312234-02

Client ID: DUP

Sample Location: 205 PARK AVENUE, BROOKLYN, NY

Date Collected: 03/08/23 09:20 Date Received: 03/08/23

Lab Number:

Report Date:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Trichloroethene	1.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

SAMPLE RESULTS

Lab ID: L2312234-02 Date Collected: 03/08/23 09:20

Client ID: DUP Date Received: 03/08/23

Sample Location: 205 PARK AVENUE, BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	110	70-130	

L2312234

03/08/23 11:00

Not Specified

03/08/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 03/14/23

Lab ID: L2312234-03 Client ID: PT-1

Sample Location: 205 PARK AVENUE, BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/11/23 13:53

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	5.0		ug/l	2.5	0.70	1	
Carbon tetrachloride	0.17	J	ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	62		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2312234

03/14/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L2312234-03 03/08/23 11:00

Client ID: PT-1 Date Received: 03/08/23 Sample Location: Field Prep: Not Specified 205 PARK AVENUE, BROOKLYN, NY

-ap.o - op						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	2.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

SAMPLE RESULTS

Lab ID: L2312234-03 Date Collected: 03/08/23 11:00

Client ID: PT-1 Date Received: 03/08/23 Sample Location: 205 PARK AVENUE, BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	110	70-130	

L2312234

03/08/23 12:22

Not Specified

03/08/23

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 03/14/23

Lab ID: L2312234-04

Client ID: PT-2

Sample Location: 205 PARK AVENUE, BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/11/23 14:15

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	5.0		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	46		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

SAMPLE RESULTS

Report Date: 03/14/23

Lab ID: L2312234-04

Client ID: PT-2

Sample Location: 205 PARK AVENUE, BROOKLYN, NY Date Collected: 03/08/23 12:22

Lab Number:

Field Prep:

Date Received: 03/08/23

Not Specified

L2312234

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	2.0		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
	ND ND		ug/l	2.5	0.70	1
p/m-Xylene	ND ND		ug/l	2.5	0.70	
o-Xylene			ug/l			
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

SAMPLE RESULTS

Lab ID: L2312234-04 Date Collected: 03/08/23 12:22

Client ID: PT-2 Date Received: 03/08/23 Sample Location: 205 PARK AVENUE, BROOKLYN, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	112	70-130	

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/11/23 12:46

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1754356-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/11/23 12:46

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1754356-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 205 PARK AVENUE **Lab Number:** L2312234

Project Number: 12.0076834.20 **Report Date:** 03/14/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/11/23 12:46

Analyst: LAC

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	01-04 Batch:	WG1754356-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

	Acceptance
%Recovery	Qualifier Criteria
100	70-130
100	70-130
91	70-130
111	70-130
	100 100 91

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

Lab Number: L2312234

Report Date: 03/14/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: W0	G1754356-3 WG1754356-4		
Methylene chloride	91		93	70-130	2	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	100		100	63-132	0	20
1,2-Dichloropropane	95		99	70-130	4	20
Dibromochloromethane	94		95	63-130	1	20
1,1,2-Trichloroethane	95		99	70-130	4	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	100		100	62-150	0	20
1,2-Dichloroethane	96		97	70-130	1	20
1,1,1-Trichloroethane	99		100	67-130	1	20
Bromodichloromethane	92		96	67-130	4	20
trans-1,3-Dichloropropene	82		84	70-130	2	20
cis-1,3-Dichloropropene	86		89	70-130	3	20
1,1-Dichloropropene	97		100	70-130	3	20
Bromoform	86		89	54-136	3	20
1,1,2,2-Tetrachloroethane	83		84	67-130	1	20
Benzene	100		100	70-130	0	20
Toluene	99		100	70-130	1	20
Ethylbenzene	94		97	70-130	3	20
Chloromethane	90		92	64-130	2	20
Bromomethane	79		77	39-139	3	20

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

Lab Number: L2312234

Report Date: 03/14/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1754356-3	WG1754356-4			
Vinyl chloride	100		110		55-140	10	20	
Chloroethane	100		110		55-138	10	20	
1,1-Dichloroethene	93		99		61-145	6	20	
trans-1,2-Dichloroethene	96		99		70-130	3	20	
Trichloroethene	110		110		70-130	0	20	
1,2-Dichlorobenzene	99		100		70-130	1	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	98		89		63-130	10	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	96		100		70-130	4	20	
1,2,3-Trichloropropane	92		93		64-130	1	20	
Acrylonitrile	100		100		70-130	0	20	
Styrene	95		100		70-130	5	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	120		120		58-148	0	20	
Carbon disulfide	99		100		51-130	1	20	
2-Butanone	84		84		63-138	0	20	
Vinyl acetate	58	Q	60	Q	70-130	3	20	
4-Methyl-2-pentanone	74		74		59-130	0	20	
2-Hexanone	70		72		57-130	3	20	

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

Lab Number: L2312234

Report Date: 03/14/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch:	WG1754356-3	WG1754356-4			
Bromochloromethane	110		110		70-130	0	20	
2,2-Dichloropropane	84		87		63-133	4	20	
1,2-Dibromoethane	92		93		70-130	1	20	
1,3-Dichloropropane	92		95		70-130	3	20	
1,1,1,2-Tetrachloroethane	98		100		64-130	2	20	
Bromobenzene	98		99		70-130	1	20	
n-Butylbenzene	92		94		53-136	2	20	
sec-Butylbenzene	93		96		70-130	3	20	
tert-Butylbenzene	91		94		70-130	3	20	
o-Chlorotoluene	81		83		70-130	2	20	
p-Chlorotoluene	92		94		70-130	2	20	
1,2-Dibromo-3-chloropropane	84		83		41-144	1	20	
Hexachlorobutadiene	89		90		63-130	1	20	
Isopropylbenzene	90		93		70-130	3	20	
p-Isopropyltoluene	90		92		70-130	2	20	
Naphthalene	84		86		70-130	2	20	
n-Propylbenzene	92		94		69-130	2	20	
1,2,3-Trichlorobenzene	92		94		70-130	2	20	
1,2,4-Trichlorobenzene	89		91		70-130	2	20	
1,3,5-Trimethylbenzene	93		95		64-130	2	20	
1,2,4-Trimethylbenzene	92		94		70-130	2	20	
1,4-Dioxane	84		86		56-162	2	20	
p-Diethylbenzene	88		90		70-130	2	20	

Project Name: 205 PARK AVENUE

Project Number: 12.0076834.20

Lab Number:

L2312234

Report Date:

03/14/23

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04	Batch:	WG1754356-3	WG1754356-4				
p-Ethyltoluene	92			93		70-130	1		20	
1,2,4,5-Tetramethylbenzene	75			80		70-130	6		20	
Ethyl ether	95			96		59-134	1		20	
trans-1,4-Dichloro-2-butene	73			74		70-130	1		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	97	96	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	89	89	70-130
Dibromofluoromethane	104	104	70-130

Serial_No:03142316:08

Project Name: Lab Number: L2312234 205 PARK AVENUE **Project Number:** 12.0076834.20

Report Date: 03/14/23

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2312234-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-01C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-03C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-04B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-04C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2312234-04C	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)

Project Name: Lab Number: 205 PARK AVENUE L2312234 **Project Number: Report Date:** 12.0076834.20 03/14/23

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 205 PARK AVENUE
 Lab Number:
 L2312234

 Project Number:
 12.0076834.20
 Report Date:
 03/14/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 205 PARK AVENUE
 Lab Number:
 L2312234

 Project Number:
 12.0076834.20
 Report Date:
 03/14/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:03142316:08

 Project Name:
 205 PARK AVENUE
 Lab Number:
 L2312234

 Project Number:
 12.0076834.20
 Report Date:
 03/14/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03142316:08

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	lay	5	Page	-		Date Re in Lal	c'd	19	/23	ALPHA JOB# 2 2 3	, 4
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information			The same		Delive	erables	100	1		Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3286	Project Name: 205	TPark	Avenus	2			ASP-A		_	ASP-B	Same as Client Info	
1 AX. 300-030-3183	PAA. 500-022-3200	Project Location: 20	5 Pert	2 Avenu	e, Brok	Yn. NY	K	EQuIS (1 File)		EQuIS (4 File)	PO#	
Client Information		Project# 12.00	76854	,20	C			Other					
Client: G2A GCC	Environmental	(Use Project name as Pr					Regul	latory Re	quiremer	nt		Disposal Site Information	
Address: 55 lane			noun Sh	Ü				NY TOGS			NY Part 375	Please identify below location of	of
Suite 402, fair		ALPHAQuote #:	-/-				₩.	AWQ Star	ndards		NY CP-51	applicable disposal facilities.	
Phone: 201-21		Turn-Around Time		51 (198)		NU III		NY Restri	cted Use		Other	Disposal Facility:	
Fax:	9.170	Standard	V	Due Date:		-	lП	NY Unres	tricted Use	, —		□ NJ □ NY	
Email: Zhan Shu	XO 9 Zca Com			# of Days:			lπ	NYC Sew	er Dischar	ae		Other:	
These samples have be		All the second s		ii oi bajo.			ANAL					Sample Filtration	T
Other project specific i							-	1				Done	0
Please specify Metals o	or TAL.						Cs					Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID	Ça	mple ID	Colle	ection	Sample	Sampler's	2		1				1
(Lab Use Only)	Sai	mple ID	Date	Time	Matrix	Initials	$\overline{}$					Sample Specific Comments	е
12234-01	PT-3		3-8-23	9:17	6W	SM	X					A410	
10074-011	P 1-3		0 25	V. (/	0 10		100				1 1		
62	- F		0 25		1	1	-		+				
62	DUP PT-1		0 0 25	9:20	100		X		+				Ŧ
03	DUP PT-1		3025	9:20	1		-						+
62	DUP PT-1			9:20		1	X						
03	DUP PT-1			9:20		1	X						
03	DUP PT-1			9:20		1	X						
62 03	DUP PT-1			9:20		1	X						
62 03	DUP PT-1			9:20		1	X						
62 03	DUP PT-1			9:20			X						
Preservative Code: A = None B = HCl	Out P PT-1 PT-2 Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N	D: MA935	9:20		tainer Type	XXX					Please print clearly, legit and completely. Samples	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P Plastic P Amber Glass V = Vial G = Glass G = Bacteria Cup		D: MA935	9:20	Con	1	XXX					and completely. Samples not be logged in and turnaround time clock will start until any ambiguities	s can Il not s are
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH	Container Code P Plastic A = Amber Glass V = Vial G = Glass	Mansfield: Certification No.	o: MA935 o: MA015	9:20 11:00 12:22	Con	tainer Type	X X X	ed By:			Date/Time/	and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTIN	s can Il not s are IG
Preservative Code: 03	Container Code P Plastic A Amber Glass V Vial B Bacteria Cup C Cube	Relinquished E	o: MA935 o: MA015	9:20 11:00 12:22	Con	tainer Type	X X X V B		1)	3/9	3/03/05	and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGRES	s can Il not s are IG
Preservative Code: A = None B = HCI C = HNO3 D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ E = Zn Ac/NaOH	Container Code Plastic Amber Glass Signature G	Relinquished E	o: MA935 o: MA015	9:20 11:00 12:22	Con	tainer Type	X X X X Pecceiv	E ar	1)	3/8	123 210	and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH	Il not s are IG F ES HA'S
Preservative Code: A = None B = HCI C = HNO ₃ O = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ E	Container Code PT-1 PT-2 Container Code P = Plastic A = Amber Glass F = Vial B = Glass B = Bacteria Cup C = Cube C = Cube C = Cube D = Other E = Encore D = BOD Bottle	Mansfield: Certification No.	o: MA935 o: MA015	9:20 11:00 12:22	Con Prime 3 V4 45	tainer Type	X X X X Pecceiv		1)	38	123 210	and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE	Il not s are IG F ES HA'S