737-747 4TH AVENUE BROOKLYN, NEW YORK BLOCK 652, LOT 1

PHASE II ENVIRONMENTAL SITE ASSESSMENT (ASTM 1903-11)

PREPARED FOR:

Totem Group, LLC. 55 Washington St., Suite 710 Brooklyn, NY 11201 tucker@totembrooklyn.com

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

Jennifer Lewis, PG, Senior Project Manager James P. Rhodes, PG, COO

PWGC Project Number: TOT1802

JenniferL@pwgrosser.com JimR@pwgrosser.com

PHASE II ENVIRONMENTAL SITE ASSESSMENT 737-747 4TH AVENUE, BROOKLYN, NY

TABL	E OF CO	NTENTS	PAGE
1.0	INTRO	ODUCTION	1
2.0	BACK	GROUND	2
	2.1	Site Description and Features	2
	2.2	Physical Setting	
	2.3	Site History and Land Use	
	2.4	Adjacent Property Land Use	2
	2.5	Summary of Previous Assessments	2
		2.5.1 Phase I Environmental Site Assessment Report (March 2018)	3
3.0	WOR	K PERFORMED AND RATIONALE	4
	3.1	Scope of Assessment	4
	3.2	Soil Quality Evaluation	
		3.2.1 Soil Boring Protocol	4
		3.2.2 Sample Collection Protocol	5
		3.2.3 Soil Analytical Results	5
	3.3	Groundwater Quality Evaluation	6
		3.3.1 Sampling Collection Protocol	6
		3.3.2 Groundwater Analytical Results	7
4.0	CONC	CLUSIONS	8
5.0	SIGN	ATURE OF ENVIRONMENTAL PROFESSIONAL	9
6.0	REFE	RENCES	10
7.0	LIMIT	TATIONS	11

PHASE II ENVIRONMENTAL SITE ASSESSMENT 737-747 4TH AVENUE, BROOKLYN, NY

FIGURES

APPENDIX C

Groundwater Sampling Logs

FIGURES	
FIGURE 1	Site Location Map
FIGURE 2	Site Plan
FIGURE 3	Site Plan VOC Exceedances
TABLES	
TABLE 1	Soil Sample Analytical Results – VOCs and SVOCs
TABLE 2	Well Monitoring Field Data
TABLE 3	Groundwater Sample Analytical Results – VOCs and SVOCs
APPENDICES	
APPENDIX A	Soil Boring Logs
APPENDIX B	Laboratory Analytical Reports

iii

ACRONYM	DEFINITION
ASP	Analytical Services Protocol
ASTM	American Society for Testing and Materials
CFR	Code of Federal Regulations
DER	Department of Environmental Remediation
ELAP	Environmental Laboratory Approval Program
EM	Electromagnetic
ESA	Environmental Site Assessment
GQS	Groundwater Quality Standard
GV	Guidance Value
NYCRR	New York Codes, Rules, and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PCB	Polychlorinated Biphenyl
PID	Photo-ionization Detector
PWGC	P.W. Grosser Consulting, Inc.
QA/QC	Quality Assurance / Quality Control
REC	Recognized Environmental Condition
SCO	Soil Cleanup Objective
SVOC	Semi-volatile Organic Compound
USCS	Unified Soil Classification System
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VOC	Volatile Organic Compound

1.0 INTRODUCTION

Totem Group, LLC (Client) retained P.W. Grosser Consulting, Inc. (PWGC) to prepare a Phase II Environmental Site Assessment (ESA) for the property located at 737-747 4th Avenue in Brooklyn NY. The purpose of the Phase II ESA was to further evaluate recognized environmental conditions (RECs) identified in the Phase I ESA to obtain sound, scientifically valid data concerning actual property conditions.

Work was conducted in accordance with the American Society for Testing and Materials (ASTM) Standard E 1903-11 (Standard Practices for Environmental Site Assessment: Phase II Environmental Site Assessment Process) and in substantial conformance with the New York State Department of Environmental Conservation's (NYSDEC's) Division of Environmental Remediation's (DER's) Technical Guidance for Site Investigation and Remediation, May 2010 (DER-10).

2

2.0 BACKGROUND

2.1 Site Description and Features

The subject property consists of one parcel located at 737-747 4th Avenue in the Greenwood Heights

neighborhood of Brooklyn, NY. The property is identified in the Brooklyn Tax Map as Block 652, Lot 1. The subject

property measures approximately 15,017 square feet and is improved with a Dunkin Donuts and an asphalt

paved parking lot. A Site Location Map is included as Figure 1 and a Site Plan is included as Figure 2.

2.2 Physical Setting

The topography of the site and surrounding area was reviewed from the USGS 7.5-minute series topographic

map for the Brooklyn quadrangle. The property elevation is approximately 35 feet above the National Geodetic

Vertical Datum (NGVD). Regional physiographic conditions are summarized below.

2.3 Site History and Land Use

Historical usage of the subject property indicates that it was first developed between 1906 and 1924 and used

as a gasoline and auto repair service station up until at least 1997, was under construction from at least 2001 to

2003, and was used for commercial purposes from at least 2004 to 2015. Historical usage of the subject property

is indicative of potential RECs because of the presence of gasoline tanks and an auto repair shop.

2.4 Adjacent Property Land Use

Review of historical information reviewed for the properties surrounding the subject property indicate that the

area has been sparsely developed since at least 1888 and nearly fully developed since at least 1924. Surrounding

properties have been used primarily as retail or industrial uses, including gasoline stations and electrical

substations.

2.5 Summary of Previous Assessments

The subject property and neighboring properties have undergone several ESAs related to an open New York

State Department of Environmental Conservation (NYSDEC) spill reported in 1993. Spill #93-05122 was opened

when oil was observed seeping through the wall of the subway tunnel adjacent to the subject property. Each of

these ESAs performed were conducted under the oversight of the NYSDEC and by their approved contractors;

summaries of the ESAs are included in PWGC's Phase I ESA. There were approximately 25 monitoring wells

installed on the subject property or on the adjacent sidewalk along 25th Street as part of these ESAs.

3

2.5.1 Phase I Environmental Site Assessment Report (March 2018)

A Phase I ESA was prepared for the subject property in March 2018 by PWGC. The Phase I ESA identified the following RECs associated with subject property:

- The site was historically utilized as a gasoline service station and auto repair shop for approximately 8 decades. This long history of usage has resulted in the site's inclusion in several environmental databases and the installation of numerous monitoring wells throughout the subject property and surrounding areas related to an active spill being investigated and remediated by the NYSDEC. Information from the NYSDEC indicates that there was likely some minor gasoline contamination in the soils beneath the site and that there is gasoline contamination in the groundwater beneath the site. It is unlikely that the plume of oil associated with spill #93-05122 originated from the subject property; however, there is the potential that the gasoline impact in the groundwater is originating from the subject property and/or other nearby properties. The presence of gasoline contamination beneath the site is considered a REC.
- The two closed on-site spill numbers appeared to be minimal in nature and actual spills or leaks of significant product was not identified. Due to the closed status of these spills, they are HRECs.
- Several off-site properties have been identified that have the potential to affect environmental conditions beneath the subject property related to the migration of groundwater and soil vapor beneath the subject property, most notably in the form of spill #93-05122. Due to the open status of these spills and their known migration onto the subject property, their presence is considered a REC.

The Phase I ESA recommended that a Phase II ESA be performed at subject property.

4

3.0 WORK PERFORMED AND RATIONALE

3.1 Scope of Assessment

The Phase II ESA included the following tasks:

Soil Quality Evaluation

Groundwater Quality Evaluation

3.2 Soil Quality Evaluation

To characterize soil quality, soil borings were installed throughout the subject property. This work was

conducted on May 24, 2018. Boring locations were focused in areas of potential concern as identified by the

Phase I ESA. A total of seven soil borings were installed during the investigation. Soil boring locations are

illustrated on Figure 3. Figure 3 also includes the approximate locations of the former tank field and pump

island.

3.2.1 Soil Boring Protocol

Coastal Environmental Solutions, Inc. of Medford, NY provided environmental drilling services during the

investigation. A Geoprobe 6610 drill rig was utilized to install the environmental soil borings. Prior to performing

each soil boring, 10-mil polyethylene sheeting, sufficiently large to hold the anticipated number of soil cores was

laid on the ground in the area where each soil boring was performed.

Soils were collected continuously from ground surface to an approximate depth of 25 feet below surface grade.

The soil cores were placed on the 10-mil polyethylene sheeting in the order they came out of the ground. The

acetate liners were cut open and the soil core was screened for the presence of volatile organic vapors, which

are commonly associated with petroleum products and industrial solvents, utilizing a photo-ionization detector

(PID). Each soil core was classified by a hydrogeologist using the Unified Soil Classification System (USCS). A soil

boring log was developed for each location (Appendix A) and includes the characterization and screening data.

Soils generally consisted of historic fill material in the first 2 to 5 feet of the boring with medium to fine grained

sands at deeper depths. Groundwater was encountered around 22 feet in each boring. The lowest PID readings

were obtained in soil borings SB005, SB006, and SB007 - these borings are located in the northern and eastern

portions of the property. PID readings for the borings located in the western and southern portions of the

property (SB001 through SB004) were low through most of the vadose zone, but higher readings were obtained

closer to the water table with the highest reading obtained from SB003 at 500 ppm at the water table. Petroleum

5

odors were observed in borings SB001 through SB004 that followed the PID readings with stronger odors observed closer to the water table.

3.2.2 Sample Collection Protocol

Since gross impact was not observed in the vadose zone in the seven soil borings, samples were collected from the 2 foot interval above the groundwater table. Samples were analyzed for the following chemical analysis:

Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method

8260, CP-51 list

Semi-Volatile Organic Compounds (SVOCs) by USEPA Method 8270, CP-51 list

The samples were limited to the CP-51 lists of compounds as this list specifically targets compounds related to gasoline and fuel oil. Samples collected for volatile organic analysis were collected directly from the acetate liners utilizing encore sampling devices. The remaining sample volumes were transferred to a stainless-steel bowl and homogenized. Once homogenized, samples were transferred to laboratory supplied glassware and packed in a cooler with ice and shipped under proper chain-of-custody procedures to Alpha Analytical Laboratories of Westborough, Massachusetts (Alpha), a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory, for the above analysis following NYSDEC Analytical Services Protocol (ASP)-Category A Deliverables.

NYSDEC Analytical Services Protocol (ASP)-Category A Delive

3.2.3 Soil Analytical Results

Soil analytical results were compared to the NYSDEC's Title 6 New York Codes, Rules, and Regulations (NYCRR)

Part 375 and Final Commissioner Policy, CP-51 Soil Cleanup Levels (SCOs) for fuel oil contaminated sites.

VOCs were detected at concentrations exceeding CP-51 SCOs in two of the soil borings, SB002 and SB004, which are located closest to 25th Street with the highest concentrations observed in SB004 (total VOC [TVOC] concentration of 247.8 mg/kg). According to the historic ESAs, groundwater flow direction is towards the north or northwest, indicating that SB004 is located on the up-gradient side of the property. Benzene was non-detect

or contained an estimated concentration less than the reporting limit in each of the samples.

SVOCs were non-detect or less than CP-51 SCOs in each of the seven soil samples.

Analytical results are detailed in Table 1 and the complete laboratory analytical report is included in Appendix

B. Figure 3 contains a spider diagram of VOC exceedances of CP-51 SCOs.

3.3 Groundwater Quality Evaluation

To characterize groundwater quality, groundwater samples were collected throughout the subject property.

Groundwater sampling locations were focused in areas of potential concern as identified by the Phase I ESA and

were collected from the previously installed monitoring wells. A total of ten groundwater samples were collected

during the investigation. Eight of the groundwater samples were collected on April 6, 2018 and based upon

those results, two additional groundwater samples were collected on May 24, 2018. Groundwater sampling

locations are illustrated on Figure 3. The monitoring wells that were selected were in areas of concern, such as

near the former tank field and pump island, areas where light non-aqueous phase liquid (LNAPL) had been

encountered during the NYSDEC's investigations, and up-gradient and down-gradient of the site to determine

general groundwater quality migrating on-site and off-site.

3.3.1 Sampling Collection Protocol

Prior to sampling, groundwater monitoring of the wells consisted of collecting and recording depth to water,

depth to LNAPL if applicable, and total well depth measurements for the selected monitoring wells at the site.

Water levels were collected using a Solinst Oil / Water Interface Probe or equivalent which was decontaminated

between each well. LNAPL was detected in three of the monitoring wells: MW-8, MW-8A, and MW-31. Wells

MW-8 and MW-8A are located in the sidewalk along 25th Street and MW-31 is located on the up-gradient side

of the property. LNAPL thicknesses were between 0.85 feet and 1.42 feet and consisted of oil. Groundwater

field data is detailed on Table 2.

Following the well gauging, wells were purged using a decontaminated submersible pump fitted with disposal

polyethylene tubing. During purging, the groundwater parameters pH, temperature, conductivity, oxygen

reduction potential (ORP), turbidity, and dissolved oxygen were recorded with a Horiba U52 water quality

instrument. When purging was complete, the Horiba was disconnected and the groundwater sample was

collected directly from the downhole tubing and placed in pre-cleaned laboratory-supplied glassware and stored

in a cooler on ice for transport to Alpha. Groundwater samples were analyzed for the following:

VOCs by USEPA Method 8260, CP-51 list

SVOCs by USEPA Method 8270, CP-51 list

Copies of the groundwater sampling data sheets containing the field parameters recorded and purge volumes

for each sampling point are attached in **Appendix C**.

3.3.2 Groundwater Analytical Results

Groundwater analytical results were compared to NYSDEC groundwater quality standards (GQS) / guidance

values (GVs) specified in 6 NYCRR Part 703.

Monitoring wells MW-1, MW-3, MW-80, MW-81, and MW-90 were each non-detect for VOCs. Each of these

wells is located on the north or eastern side of the property. MW-1, MW-3, and MW-80 are located down-

gradient of the former tank field and/or the former pump island. MW-89 is also in the vicinity of the former

pump island and contained minor VOC detections at concentrations less than GQS. Wells MW-84, MW-94, MW-

6, and MW-86 each contained exceedances of at least one VOC GQS with MW-94 containing the highest

concentrations (TVOC concentration of 1,077 μ g/L). MW-94 is located on the up-gradient side of the property;

MW-84 is located down-gradient of MW-94 and contains a benzene concentration of 300 μg/L which is an order

of magnitude higher than the detectable benzene concentrations in the other samples.

There were several SVOCs detected at low level concentrations exceeding GQS in each sample except the one

from MW-94; an elevated concentration of Naphthalene in MW-94 raised the reporting limits for each of the

compounds in MW-94 to levels higher than most of the detectable concentrations in the other samples.

Naphthalene is a compound that exhibits characteristics of both VOCs and SVOCs; the detected concentration

in the SVOC sample is similar to the detected concentration in the VOC sample.

Analytical results are detailed in Table 3 and the complete laboratory analytical report is included in Appendix

B. Figure 3 contains a spider diagram of VOC exceedances of GQS.

7

8

4.0 CONCLUSIONS

Based upon the recommendations of a March 2018 Phase I ESA prepared by PWGC, a Phase II was conducted.

The Phase II ESA included an evaluation of soil and groundwater quality. The field work was conducted between

April and May 2018.

Seven soil borings were conducted on-site. PID readings and olfactory observations indicated that impact was

not observed in the vadose zone, but higher readings and stronger odors were obtained closer to the

groundwater table. The highest PID readings were obtained at the groundwater table and in the borings closest

to the up-gradient side of the property. VOCs were detected at concentrations exceeding CP-51 SCOs in two of

the soil borings, SB002 and SB004, which are located closest to 25th Street with the highest concentrations

observed in SB004 (TVOC concentration of 247.8 mg/kg). SVOC impact was not identified.

Ten previously installed groundwater monitoring wells were gauged and sampled. LNAPL was observed in three

of the wells located on the up-gradient side of the property or on the adjacent sidewalk, measuring between

0.85 feet and 1.42 feet and consisting of oil. Groundwater analytical results indicated that VOC impact to the

groundwater is limited to the up-gradient portion of the property and SVOC impact is observed site-wide at low

level concentrations exceeding the GQS.

As NYSDEC indicated that they are in the process of closing Spill #93-05122, PWGC recommends no further action

at this time.

5.0 SIGNATURE OF ENVIRONMENTAL PROFESSIONAL

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in Section 312.10 of 40 CFR 312. I have the specific qualifications based on education, training and experience to assess a property of the nature, history and setting of the subject property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR 312.

Jennifer Lewis, PG Senior Project Manager

James P. Rhodes, PG COO

Report Completion Date: August 2, 2018

6.0 REFERENCES

6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1 to 375-4 & 375-6.

6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.

CP-51 / Soil Cleanup Guidance.

DER-10 / Technical Guidance for Site Investigation and Remediation.

Standard practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process, ASTM Standard E 1903-11.

PWGC, Phase I ESA, March 2018.

7.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on the data described in this report.

These opinions have been arrived at in accordance with currently accepted engineering and hydrogeologic standards and practices applicable to this location, and are subject to the following inherent limitations:

- The data presented in this report are from visual inspections and examination of records prepared by others. The passage of time, manifestation of latent conditions, or occurrence of future events may require further exploration of the site, analysis of data, and re-evaluation of the findings, observations, and conclusions presented in this report.
- 2. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. The scope of work was defined by the request of the client.
- 3. No warranty or guarantee, whether expressed or implied, is made with respect to the data reported, findings, observations, or conclusions. These are based solely upon site conditions in existence at the time of the investigation, and other information obtained and reviewed by PWGC.
- 4. The conclusions presented in this report are professional opinions based on data described in this report.

 They are intended only for the purpose, site location, and project indicated. This report is not a definitive study of contamination at the site and should not be interpreted as such.
- 5. This report is based, in part, on information supplied to PWGC by third-party sources. While efforts have been made to substantiate this third-party information, PWGC cannot attest to the completeness or accuracy of information provided by others.

FIGURES

TABLES

TABLE 1 Soil Analytical Data VOC and SVOC CP-51

737-747 4th Avenue, Brooklyn, NY

						Avenue, Bro								
Client Sample ID:	NYSDEC (1)	SB001		SB002	2	SB003		SB004	1	SB005		SB006		SB007
Sample Depth:	CP-51 Soil Cleanup	20-22'		20-22	'	20-22		20-22	'	20-22'		20-22'		20-22'
Laboratory ID:	Levels	L1819421	-01	L1819421	L-02	L1819421	03	L1819421	L-04	L1819421-0	05	L1819421-	06	L1819421-07
Sampling Date:	2000	5/24/20	18	5/24/20	18	5/24/20	18	5/24/20	18	5/24/2018		5/24/2018		5/24/2018
Volatile Organic Compounds	s (mg/kg)													
1,2,4-Trimethylbenzene	3.6	0.048	U	0.25	U	0.027	U	65		0.17		0.0046		0.00016 U
1,3,5-Trimethylbenzene	8.4	0.041	U	0.22	U	0.023	U	21	J	0.0086		0.0014	J	0.00013 U
Benzene	0.06	0.049	U	0.26	U	0.028	U	1.4	U	0.00021	U	0.00037	J	0.00016 U
Ethylbenzene	1.0	0.044	U	0.23	U	0.024	U	6.5	J	0.00071	J	0.00034	J	0.00014 U
Isopropylbenzene	2.3	0.52		3.4		0.049	J	3.5	J	0.017		0.00086		0.00016 U
Methyl tert butyl ether	0.93	0.039	U	0.21	U	0.022	U	1.1	U	0.00017	U	0.00012	U	0.00013 U
n-Butylbenzene	12	1.2		11		0.045	J	8.4		0.00025	U	0.003		0.00019 U
n-Propylbenzene	3.9	1.1		7.7		0.11	J	7.7		0.033		0.002		0.00018 U
Naphthalene	12	0.32	J	1.5	J	0.24	J	75		0.016	J	0.032		0.00016 J
o-Xylene	0.26	0.086	U	0.46	U	0.048	U	4.4	J	0.00037	U	0.00028	U	0.00028 U
p-Isopropyltoluene	10	0.052	U	0.38	J	0.034	J	5.7	J	0.037		0.00087		0.00017 U
p/m-Xylene	0.26	0.09	U	0.48	U	0.05	U	20		0.0031		0.00075	J	0.00029 U
sec-Butylbenzene	11	0.81		8.2		0.1	J	6.6	J	0.052		0.0015		0.00018 U
tert-Butylbenzene	5.9	0.11	J	0.91	J	0.035	U	1.8	U	0.011		0.00022	J	0.0002 U
Toluene	0.7	0.05	U	0.26	U	0.028	U	1.4	U	0.00021	U	0.00042	J	0.0002 J
Xylenes, Total	0.26	0.086	U	0.46	U	0.048	U	24	J	0.0031		0.00075	J	0.00028 U
Semi-Volatile Organic Comp	ounds (mg/kg)													
Acenaphthene	20	0.32		4		0.96		6.2		0.23		0.019	U	0.019 U
Acenaphthylene	100	0.031	U	0.32	U	0.029	U	0.15	U	0.033	U	0.028	U	0.028 U
Anthracene	100	0.13		1.3		0.43		2		0.095	J	0.035	U	0.036 U
Benzo(a)anthracene	1	0.073	J	0.23	U	0.021	U	0.11	U	0.024	U	0.02	U	0.021 U
Benzo(a)pyrene	1	0.054	J	0.5	U	0.046	U	0.24	U	0.052	U	0.044	U	0.045 U
Benzo(b)fluoranthene	1	0.12		0.34	U	0.032	U	0.16	U	0.036	U	0.03	U	0.031 U
Benzo(ghi)perylene	100	0.046	J	0.24	U	0.022	U	0.11	U	0.025	U	0.021	U	0.022 U
Benzo(k)fluoranthene	0.8	0.032	U	0.33	U	0.03	U	0.16	U	0.034	U	0.029	U	0.029 U
Chrysene	1	0.1	J	0.21	U	0.02	U	0.1	U	0.022	U	0.02	J	0.019 U
Dibenzo(a,h)anthracene	0.33	0.023	U	0.24	U	0.022	U	0.11	U	0.024	U	0.021	U	0.021 U
Fluoranthene	100	0.21		0.26	J	0.057	J	0.31	J	0.024	U	0.033	J	0.021 U
Fluorene	30	0.59		8.3		1.7		12		0.45		0.019	J	0.018 U
Indeno(1,2,3-cd)pyrene	0.5	0.053	J	0.28	U	0.026	U	0.14	U	0.03	U	0.025	U	0.026 U
Phenanthrene	100	1.2		16		3.1		22		0.93		0.052	J	0.022 U
Pyrene	100	0.21		1	J	0.2		1.3		0.062	J	0.029	J	0.018 U

Notes:

- (1) NYSDEC CP-51 Soil Cleanup Guidance, Table 3, dated Oct 2010.
- U The analyte was analyzed for, but was not detected above the reported sample quantification limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Highlighted text denotes concentrations exceeding NYSDEC CP-51 SCO

TABLE 2 Well Monitoring Field Data

737-747 4th Ave, Brooklyn, NY

Well Designation	Date	Depth to Product (ft bmp)	Depth to Water (ft bmp)	Depth to Bottom (ft bmp)	Product Thickness (ft)
MW-32A	4/6/2018	NP	23.29	25.5	0.00
MW-31	4/6/2018	23.56	24.64	36.2	1.08
MW-32B	4/6/2018	NP	22.02	23.2	0.00
MW-87	4/6/2018	NP	22.15	33.8	0.00
MW-8	4/6/2018	21.40	22.82	32.0	1.42
MW-8A	4/6/2018	22.61	23.46	30.5	0.85
MW-9	4/6/2018	NP	23.60	28.9	0.00
MW-6	5/24/2018	NP	22.15	33.0	0.00
MW-86	5/24/2018	NP	22.76	NM	0.00

TABLE 3 Groundwater Sample Data VOCs and SVOCs

737-747 4th Ave, Brooklyn, NY

LOCATION SAMPLING DATE	NYSDEC AWQS ¹	MW-1	18	MW-3	18	MW-8 4/6/201	18	MW-8: 4/6/201	- L8	MW-8 4/6/20	18	MW-89 4/6/2018		MW-90 4/6/201	18	MW-9 4/6/20	18	MW-6	18	MW-86 5/24/2018
LAB SAMPLE ID Volatile Organic Compounds	by HSEBA mat	L1812045		L181204	5-02	L1812045	p-U3	L1812045)-U4	L181204	5-05	L1812045-(טנ	L1812045)-U/	L181204	5-08	L181942	L-U8	L1819421-09
1,2,4-Trimethylbenzene	5	2.5	ιι μg/ L U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	210		0.7	U	0.7 U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	57		0.7	U	0.7 U
Benzene	1	0.5	Ü	0.5	U	0.5	U	0.5	U	300		0.33	J	0.5	U	12		20		32
Ethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	81		0.7	U	0.7 U
Isopropylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.4	J	2.6	Ť	2.5	U	13		3.7		11
Methyl tert butyl ether	10	2.5	Ü	2.5	U	2.5	U	2.5	U	6.2	U	0.76	J	2.5	U	10	U	1.5	J	0.75 J
n-Butvlbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	Ū	2.5	U	6.5	J	0.7	Ū	6.2
n-Propylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.9	J	1.4	J	2.5	U	20		3.3		18
Naphthalene	10	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	300		0.99	J	2.2 J
o-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	130		1.5	J	0.7 U
p-Isopropyltoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	7.2	J	0.7	U	0.7 U
p/m-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	200		0.7	U	0.7 U
sec-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	1.3	J	2.5	U	8.3	J	1.4	J	6.4
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	2.5	U	2.5	U	10	U	0.8	J	1.4 J
Toluene	5	2.5	U	2.5	U	2.5	U	2.5	U	3.6	J	2.5	U	2.5	U	32		0.9	J	0.7 U
Semi-Volatile Organic Compo	ounds by USEP	A method 8	8270 ir	n μg/L																
Acenaphthene	20	0.1	U	0.12		1	U	0.1	U	1.4		1.9		1.4		9.1		3.2		5
Acenaphthylene	NS	0.1	U	0.1	U	1	U	0.1	U	0.1	U	0.1	U	0.21		3.2		0.69		0.03 U
Anthracene	50	0.1	U	0.1	U	1.3		0.1	U	0.61		0.16		0.13		2		0.43		1.3
Benz(a)anthracene	0.002	0.14		0.04	J	18		0.14		0.78		0.07	J	0.2		0.5	U	0.03	J	0.05 J
Benzo(a)pyrene	ND	0.18		0.05	J	24		0.3		0.61		0.08	J	0.15		0.5	U	0.04	U	0.05 J
Benzo(b)fluoranthene	0.002	0.44		0.14		62		0.84		2.3		0.32		0.52		0.5	U	0.09	J	0.11
Benzo(ghi)perylene	NS	0.23		0.1		29		1		0.83		0.16		0.23		0.5	U	0.04	U	0.04 U
Benzo(k)fluoranthene	0.002	0.13		0.1	U	19		0.19		0.49		0.08	J	0.12		0.5	U	0.04	U	0.04 U
Chrysene	0.002	0.19		0.08	J	43		0.34		1.6		0.23		0.4		0.5	U	0.08	J	0.11
Dibenzo(a,h)anthracene	NS	0.1	U	0.1	U	6.5		0.14		0.18		0.1	U	0.04	J	0.5	U	0.04	U	0.04 U
Fluoranthene	50	0.29		0.07	J	60		0.37		2.6		0.27		0.84		0.37	J	0.12		0.21
Fluorene	50	0.1	U	0.1	U	0.72	J	0.1	U	2.3		2.2		1.8		16		4.2		6.8
Indeno(1,2,3-cd)Pyrene	0.002	0.18		0.07	J	32		0.72		0.72		0.12		0.19		0.5	U	0.04	U	0.04 U
Naphthalene	10	0.1	U	0.1	U	1	U	0.1	U	0.74		0.1	U	0.06	J	130		NA		NA
Phenanthrene	50	0.1	U	0.1	U	4.9		0.13		4.2		0.56		0.08	J	25		3.2		9.5
Pyrene	50	0.24		0.07	J	38		0.31		2		0.25		0.61		1.4		0.32		0.82

Notes:

1 - Ambient Water Quality Standards (AWQS), NYSDEC TOGS 1.1.1 Shaded text indicates exceedance of the NYDEC AWQS

U - Not detected at the reported detection limit for the sample.

J - Estimated value

ND - Non-detectable

NS - No standard established

NA - Not analyzed

APPENDIX A SOIL BORING LOGS

PROJECT #:	TOT1802		PW	CC C				
SITE ADDRESS:	737-747 4th Avenue, Brooklyn, NY		Strategic E	nvironmental Eng	gineering Solutions			
BORING ID:	SB001	25	DEPTH (FT		CORE LENGTH (FT):			
WELL ID:	N/A	BORING D	DIAMETER	(IN):	WELL DIAMETER (IN):			
DRILLING CONTRACTOR	Coastal Environmental Solutions, Inc.	DATE STA 05/24/2			DATE FINISHED: 05/24/2018			
DRILLING METHOD:	Direct Push	TIME STA 08:00	RTED:		TIME FINISHED: 08:30			
DRILLING EQUIPMENT:	Geoprobe 6610	LATITUDE N/A	:		LONGITUDE:			
SAMPLING METHOD:	Macrocore	PROJECT	MANAGE r Lewis		LOGGED BY: Nick Russell			
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL USCS KEY	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	WELL C	ONSTRUCTION NLS AND/OR NG REMARKS			
2-	Sand - Medium to Fine - broken concrete and rocks	0.3	2-					
8-	Sand - Medium to Fine	2.1	6— 8— -					
12-	Sand - Clay Mixtures	2.5	12-					
16— - 18—		3.1	16—					
20	Sand - Silt Mixtures	56.5	20-					
26 P.W. Grosser Consu	Ilting End of Boring Depth (feet): 25	Water 1	26 Table Sy	mbol: ▼	Page 1 of 1			

PROJECT #:	TOT1802		PW		
SITE ADDRESS:	737-747 4th Avenue, Brooklyn, NY		Strategic E	nvironmental Er	ngineering Solutions
BORING ID:	SB002	BORING I	DEPTH (FT	·):	CORE LENGTH (FT):
WELL ID:	N/A	BORING I	DIAMETER	(IN):	WELL DIAMETER (IN):
DRILLING CONTRACTO	R: Coastal Environmental Solutions, Inc.	DATE STARTED:			DATE FINISHED:
DRILLING METHOD:	Direct Push	TIME STA	RTED:		05/24/2018 TIME FINISHED:
		08:40	Ē:		09:00 LONGITUDE:
DRILLING EQUIPMENT	σουριούο συτο	N/A PROJECT	MANAGE	R:	N/A LOGGED BY:
SAMPLING METHOD:	Macrocore		r Lewis		Nick Russell
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL USCS	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	DET	CONSTRUCTION AILS AND/OR ING REMARKS
2-	Brick, concrete & rock fill	1.1	0 - 2-		
4-	Tight, compact fines	2.1	4—		
	Brick. concrete & rocks	2.1			
8-		2.1	8-		
12-	Sand, clay mixtures - tightly compacted, strong odor	39	12-		
16-			16—		
18-		37.2	18—		
20	Loose, compact medium fines - odor detected		20-		
24-		152	22-		
26			26		
P.W. Grosser Cons	sulting End of Boring Depth (feet): 25	Water	Table Sy	mbol: 🔽	Page 1 of 1

PROJECT #:			TOT1802		PW	GC				
SITE ADDRES	SS:		737-747 4th Avenue, Brooklyn, NY			nvironmental Er	ngineering Solutions CORE LENGTH (FT):			
BORING ID:			SB003	25			5			
WELL ID:			N/A	BORING I	DIAMETER	! (IN):	WELL DIAMETER (IN): N/A			
DRILLING CO	NTRAC	TOR:	Coastal Environmental Solutions, Inc.	DATE STA 05/24/2			DATE FINISHED: 05/24/2018			
DRILLING ME	THOD:		Direct Push	TIME STA 09:05	RTED:		TIME FINISHED: 09:20			
DRILLING EQUIPMENT:			Geoprobe 6610	LATITUDE N/A	Ξ:		LONGITUDE:			
SAMPLING M	ETHOD	:	Macrocore	PROJECT MANAGER: LOGGED BY: Jennifer Lewis Nick Russell						
DEPTH (feet) RECOVERY INTERVAL	SAMPLE	USCS KEY	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	DET	CONSTRUCTION AILS AND/OR ING REMARKS			
0 - 2—			Brick, concrete & rock	0.5	2—					
4-			Tightly compacted, moist fines	0.5	4-					
6			Brick, concrete & rock	0.5	6					
10-					- 10-					
12-			Tightly compacted, dry fines	0.5	12-					
14—					14-					
16—					16—					
18—			Loose fines - some medium fines	35	18—					
20-			Dry, loose, compacted, blackish sands	109	20-					
22—			y, , ,		22—					
24—			Tightly compacted, moist fines	500	24-					
26					26					
P.W. Gross	ser Co	nsu	Iting End of Boring Depth (feet): 25	Water	Гable Sy	mbol: 🔽	Page 1 of 1			

PROJECT #:	TOT1802		PWGC							
SITE ADDRESS:	737-747 4th Avenue, Brooklyn, NY		Strategic Er	nvironmental En	igineering Solutions					
BORING ID:	SB004	25	DEPTH (FT	-	CORE LENGTH (FT):					
WELL ID:	N/A	BORING I	DIAMETER	(IN):	WELL DIAMETER (IN): N/A					
DRILLING CONTRACT	OR: Coastal Environmental Solutions, Inc.	DATE STA 05/24/2			DATE FINISHED: 05/24/2018					
DRILLING METHOD:	Direct Push	TIME STA			TIME FINISHED:					
		09:25 LATITUDE	<u>:</u> :		09:50 LONGITUDE:					
DRILLING EQUIPMENT	Geoprobe 6610	N/A	MANAGE	D.	N/A LOGGED BY:					
SAMPLING METHOD:	Macrocore	Jennife	Nick Russell							
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL USCS	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	DETA	CONSTRUCTION AILS AND/OR ING REMARKS					
2—	Brick, concrete & rock	4.2	2—							
4-	Medium fines with some reddish sand	4.2	4-							
6-	Tightly compacted, dry fines	14.6	6-							
8	Firm, compacted, dry, medium fines	10.1	8-							
10-			- 10-							
12—	Tightly compacted dry fines	56.2	12-							
14			14—							
16—		24.0	16—							
18—	Firm, medium, dry fines	34.9	18—							
20		148	20-							
22-	Moist, tightly compacted fines	167	22-							
26			24—							
P.W. Grosser Con	sulting End of Boring Depth (feet): 25	Water 7	Γable Sy	mbol: 🔽	Page 1 of 1					

PROJECT #:		OT1802		PWGC							
SITE ADDRESS:	7:	37-747 4th Avenue, Brooklyn, NY			nvironmental E	ngineering Solutions CORE LENGTH (FT):					
BORING ID:	S	B005	25		-	5					
WELL ID:	N	/A	BORING I	DIAMETER	(IN):	WELL DIAMETER (IN):					
DRILLING CONTRAC	TOR: C	oastal Environmental Solutions, Inc.	DATE STA 05/24/2			DATE FINISHED: 05/24/2018					
DRILLING METHOD:		irect Push	TIME STA	RTED:		TIME FINISHED:					
DRILLING EQUIPMEI			09:55	:		10:15 LONGITUDE:					
		eoprobe 6610	N/A PROJECT	MANAGE	R:	N/A LOGGED BY:					
SAMPLING METHOD): V	lacrocore	Jennife	r Lewis		Nick Russell					
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL	USCS KEY	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	DET	CONSTRUCTION FAILS AND/OR LING REMARKS					
0 - 2—		Brick, concrete & rock fill	0.9	2—							
4-		Tight, compact fines	0.9	4-							
6— - 8—				6— - 8—							
10—		Firm, medium, dry fines	0.9	10-							
12— - 14—				12-							
16— -				16—							
18—		Tight, compact fines	0.9	18—							
20-			30.2	20-							
22— - 24—		Moist, compact fines	2.3	22-							
26	1:1:			26							
P.W. Grosser Co	nsulti	ng End of Boring Depth (feet): 25	Water 1	∟ ∠o ⊥ Γable Sy	mbol: V	Page 1 of 1					

PROJECT #:	TOT1802		PW		Ŀ					
SITE ADDRESS:	737-747 4th Avenue, Brooklyn, NY		Strategic Environmental Engineering Solutions							
BORING ID:	SB006	25			CORĔ LENGTH (FT): 5					
WELL ID:	N/A	BORING 2	DIAMETER	(IN):	WELL DIAMETER (IN):					
DRILLING CONTRACT	OR: Coastal Environmental Solutions, I	DATE ST			DATE FINISHED:					
DRILLING METHOD:	Direct Push	TIME STA	ARTED:		05/24/2018 TIME FINISHED:					
		10:25 LATITUD	E:		10:45 LONGITUDE:					
DRILLING EQUIPMEN	Geoprobe 6610	N/A	T MANAGEI	p.	N/A LOGGED BY:					
SAMPLING METHOD:	Macrocore		er Lewis		Nick Russell					
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL USCS	DESCRIPTION NAME (USCS): color, moist, plasticit gravel, odor	y, PID Reading (ppm)	DEPTH (feet)	DETAI	ONSTRUCTION LS AND/OR IG REMARKS					
2-	Brick, concrete & rock fill	1.2	2—							
4-	Tight, compact fines, moist	0.9	4-							
6—	Medium fines with some reddish sa	nd 0.9	6-							
8-	Medium fines	0.5	8-							
10-			10-							
12-			12-							
14-			14-							
16—			16—							
18-	Medium fines with some reddish sa	nd 1.1	18-							
20			20-							
22-			22-							
24-			24—							
26			26							
P.W. Grosser Con	sulting End of Boring Depth (feet): 2	25 Water	Table Sy	mbol: ▼	Page 1 of 1					

PROJECT #:	TOT1802		PWGC S		
SITE ADDRESS:	737-747 4th Avenue, Brooklyn, NY	- 1		vironmental Engineering Solutions	
BORING ID:	SB007	25		5	
WELL ID:	N/A	BORING D	DIAMETER (I	(IN): WELL DIAMETER (IN): N/A	
DRILLING CONTRACTO	DR: Coastal Environmental Solutions, Inc.	DATE STARTED: 05/24/2018		DATE FINISHED: 05/24/2018	
DRILLING METHOD:	Direct Push	TIME STARTED: 10:55		TIME FINISHED:	
DRILLING EQUIPMENT		LATITUDE: LO		LONGITUDE:	
SAMPLING METHOD:	Macrocore		PROJECT MANAGER: LOGGE		
			r Lewis	Nick Russell	
DEPTH (feet) RECOVERY INTERVAL SAMPLE INTERVAL USCS	DESCRIPTION NAME (USCS): color, moist, plasticity, gravel, odor	PID Reading (ppm)	DEPTH (feet)	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS	
0	Brick, concrete & rock fill	0.6	0 _		
2-			2-		
4-			4-		
6			6-		
8-	Moist, tightly packed fine sands	0.6	8-		
10			10—		
12-			12-		
14-			14-		
16	Dry, fine sands	0.6	16—		
18-			18—		
20-			20—		
22-			22-		
24—	Moist, fine sands	0.6	24—		
26			26		
P.W. Grosser Con	sulting End of Boring Depth (feet): 25	Water T	able Sym	mbol: ▼ Page 1 of 1	

APPENDIX B LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1812045

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

04/16/18

Bohemia, NY 11716

ATTN: Jennifer Lewis Phone: (631) 589-6353

Project Name: TOT1801
Project Number: TOT1801

Report Date:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TOT1801 **Project Number:** TOT1801

Lab Number: L1812045 **Report Date:** 04/16/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1812045-01	MW-1	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 08:30	04/06/18
L1812045-02	MW-3	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 09:00	04/06/18
L1812045-03	MW-80	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 08:00	04/06/18
L1812045-04	MW-81	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 07:43	04/06/18
L1812045-05	MW-84	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 10:05	04/06/18
L1812045-06	MW-89	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 09:30	04/06/18
L1812045-07	MW-90	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 07:15	04/06/18
L1812045-08	MW-94	WATER	737-747 4TH AVE., BROOKLYN, NY	04/06/18 10:50	04/06/18

Project Name:TOT1801Lab Number:L1812045Project Number:TOT1801Report Date:04/16/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Serial_No:04161810:13

 Project Name:
 TOT1801
 Lab Number:
 L1812045

 Project Number:
 TOT1801
 Report Date:
 04/16/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics by SIM

L1812045-03: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/16/18

Mclusso Compps Melissa Cripps

ORGANICS

VOLATILES

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-01 Date Collected: 04/06/18 08:30

Client ID: MW-1 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 16:19

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-02 Date Collected: 04/06/18 09:00

Client ID: MW-3 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 16:48

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-03 Date Collected: 04/06/18 08:00

Client ID: MW-80 Date Received: 04/06/18
Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 17:16

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-04 Date Collected: 04/06/18 07:43

Client ID: MW-81 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 17:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	98	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-05 D Date Collected: 04/06/18 10:05

Client ID: MW-84 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 19:09

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	300		ug/l	1.2	0.40	2.5	
Toluene	3.6	J	ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	ND		ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	2.4	J	ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	2.9	J	ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	95	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-06 Date Collected: 04/06/18 09:30

Client ID: MW-89 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 18:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Benzene	0.33	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.76	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	1.3	J	ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	2.6		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	1.4	J	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	96	70-130	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-07 Date Collected: 04/06/18 07:15

Client ID: MW-90 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 18:41

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	98	70-130	

04/06/18

Date Received:

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-08 D Date Collected: 04/06/18 10:50

Client ID: MW-94

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/11/18 19:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Benzene	12		ug/l	2.0	0.64	4	
Toluene	32		ug/l	10	2.8	4	
Ethylbenzene	81		ug/l	10	2.8	4	
Methyl tert butyl ether	ND		ug/l	10	2.8	4	
p/m-Xylene	200		ug/l	10	2.8	4	
o-Xylene	130		ug/l	10	2.8	4	
n-Butylbenzene	6.5	J	ug/l	10	2.8	4	
sec-Butylbenzene	8.3	J	ug/l	10	2.8	4	
tert-Butylbenzene	ND		ug/l	10	2.8	4	
Isopropylbenzene	13		ug/l	10	2.8	4	
p-Isopropyltoluene	7.2	J	ug/l	10	2.8	4	
Naphthalene	300		ug/l	10	2.8	4	
n-Propylbenzene	20		ug/l	10	2.8	4	
1,3,5-Trimethylbenzene	57		ug/l	10	2.8	4	
1,2,4-Trimethylbenzene	210		ug/l	10	2.8	4	

Surrogate	% Recovery	cceptance Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	97	70-130	

 Project Name:
 TOT1801
 Lab Number:
 L1812045

 Project Number:
 TOT1801
 Report Date:
 04/16/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/11/18 10:12

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	Westborough Lab	o for sample(s):	01-08 Batch:	WG1105695-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	98		70-130		
Dibromofluoromethane	99		70-130		

Project Name: TOT1801
Project Number: TOT1801

Lab Number: L1812045

Report Date: 04/16/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-08 Batch:	WG1105695-3	WG1105695-4			
Benzene	96		95		70-130	1	20	
Toluene	92		91		70-130	1	20	
Ethylbenzene	91		90		70-130	1	20	
Methyl tert butyl ether	93		92		63-130	1	20	
p/m-Xylene	90		90		70-130	0	20	
o-Xylene	90		90		70-130	0	20	
n-Butylbenzene	97		94		53-136	3	20	
sec-Butylbenzene	94		93		70-130	1	20	
tert-Butylbenzene	94		92		70-130	2	20	
Isopropylbenzene	92		90		70-130	2	20	
p-Isopropyltoluene	96		95		70-130	1	20	
Naphthalene	91		90		70-130	1	20	
n-Propylbenzene	92		91		69-130	1	20	
1,3,5-Trimethylbenzene	91		90		64-130	1	20	
1,2,4-Trimethylbenzene	92		91		70-130	1	20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	100	99	70-130

SEMIVOLATILES

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-01 Date Collected: 04/06/18 08:30

Client ID: MW-1 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 14:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-	-SIM - Westborough Lab)				
Acenaphthene	ND		ug/l	0.10	0.04	1
Fluoranthene	0.29		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.14		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.18		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.44		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.13		ug/l	0.10	0.04	1
Chrysene	0.19		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.23		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.18		ug/l	0.10	0.04	1
Pyrene	0.24		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	55	21-120	
Phenol-d6	40	10-120	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	80	15-120	
2,4,6-Tribromophenol	79	10-120	
4-Terphenyl-d14	95	41-149	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-02 Date Collected: 04/06/18 09:00

Client ID: MW-3 Date Received: 04/06/18 Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 14:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Assessables	0.40		,,	0.40	0.04	_
Acenaphthene	0.12		ug/l	0.10	0.04	1
Fluoranthene	0.07	J	ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.14		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	0.08	J	ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.10		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.07	J	ug/l	0.10	0.04	1
Pyrene	0.07	J	ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	62	10-120
4-Terphenyl-d14	77	41-149

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-03 D Date Collected: 04/06/18 08:00

Client ID: MW-80 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/11/18 14:39

Analyst: KL

Result	Qualifier	Units	RL	MDL	Dilution Factor	
- Westborough La	ab					
ND		ug/l	1.0	0.35	10	
60		ug/l	1.0	0.38	10	
ND		ug/l	1.0	0.43	10	
18		ug/l	1.0	0.18	10	
24		ug/l	1.0	0.39	10	
62		ug/l	1.0	0.16	10	
19		ug/l	1.0	0.42	10	
43		ug/l	1.0	0.38	10	
ND		ug/l	1.0	0.35	10	
1.3		ug/l	1.0	0.35	10	
29		ug/l	1.0	0.42	10	
0.72	J	ug/l	1.0	0.37	10	
4.9		ug/l	1.0	0.15	10	
6.5		ug/l	1.0	0.39	10	
32		ug/l	1.0	0.40	10	
38		ug/l	1.0	0.40	10	
	- Westborough Land ND 60 ND 18 24 62 19 43 ND 1.3 29 0.72 4.9 6.5 32	- Westborough Lab ND 60 ND 18 24 62 19 43 ND 1.3 29 0.72 J 4.9 6.5 32	- Westborough Lab ND ug/l 60 ug/l ND ug/l 18 ug/l 24 ug/l 62 ug/l 19 ug/l 43 ug/l A3 ug/l ND ug/l 1.3 ug/l 29 ug/l 0.72 J ug/l 4.9 ug/l 6.5 ug/l 32 ug/l	- Westborough Lab ND ug/l 1.0 60 ug/l 1.0 ND ug/l 1.0 18 ug/l 1.0 24 ug/l 1.0 62 ug/l 1.0 19 ug/l 1.0 43 ug/l 1.0 ND ug/l 1.0 10 43 ug/l 1.0 29 ug/l 1.0 29 ug/l 1.0 29 ug/l 1.0 4.9 ug/l 1.0	- Westborough Lab ND ug/l 1.0 0.35 60 ug/l 1.0 0.38 ND ug/l 1.0 0.43 18 ug/l 1.0 0.18 24 ug/l 1.0 0.39 62 ug/l 1.0 0.16 19 ug/l 1.0 0.16 19 ug/l 1.0 0.42 43 ug/l 1.0 0.38 ND ug/l 1.0 0.35 1.3 ug/l 1.0 0.35 29 ug/l 1.0 0.35 29 ug/l 1.0 0.35 29 ug/l 1.0 0.42 4.9 ug/l 1.0 0.37 4.9 ug/l 1.0 0.37 4.9 ug/l 1.0 0.39 32 ug/l 1.0 0.39	ND ug/l 1.0 0.35 10 60 ug/l 1.0 0.38 10 ND ug/l 1.0 0.43 10 18 ug/l 1.0 0.18 10 24 ug/l 1.0 0.39 10 62 ug/l 1.0 0.16 10 19 ug/l 1.0 0.42 10 43 ug/l 1.0 0.35 10 ND ug/l 1.0 0.35 10 1.3 ug/l 1.0 0.35 10 1.3 ug/l 1.0 0.35 10 29 ug/l 1.0 0.35 10 29 ug/l 1.0 0.35 10 29 ug/l 1.0 0.35 10 4.9 ug/l 1.0 0.37 10 4.9 ug/l 1.0 0.37 10 4.9 ug/l 1.0 0.39 10 6.5 ug/l 1.0 0.39 10 6.5 ug/l 1.0 0.39 10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	65	41-149

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-04 Date Collected: 04/06/18 07:43

Client ID: MW-81 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 15:18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SII	M - Westborough Lal	b				
Assessabilities	ND			0.40	0.04	
Acenaphthene	ND		ug/l	0.10	0.04	1
Fluoranthene	0.37		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.14		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.30		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.84		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.19		ug/l	0.10	0.04	1
Chrysene	0.34		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	1.0		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	0.13		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.14		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.72		ug/l	0.10	0.04	1
Pyrene	0.31		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	51	10-120
4-Terphenyl-d14	88	41-149

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-05 Date Collected: 04/06/18 10:05

Client ID: MW-84 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 15:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-	SIM - Westborough Lab)				
Acenaphthene	1.4		ug/l	0.10	0.04	1
Fluoranthene	2.6		ug/l	0.10	0.04	1
Naphthalene	0.74		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.74		ug/l	0.10	0.04	1
Benzo(a)pyrene	0.61		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	2.3		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.49		ug/l	0.10	0.04	1
Chrysene	1.6		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	0.61		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.83		ug/l	0.10	0.04	1
Fluorene	2.3		ug/l	0.10	0.04	1
Phenanthrene	4.2		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.18		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.72		ug/l	0.10	0.04	1
Pyrene	2.0		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	52	21-120	
Phenol-d6	39	10-120	
Nitrobenzene-d5	79	23-120	
2-Fluorobiphenyl	75	15-120	
2,4,6-Tribromophenol	55	10-120	
4-Terphenyl-d14	94	41-149	

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-06 Date Collected: 04/06/18 09:30

Client ID: MW-89 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 16:09

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	1.9		//	0.10	0.04	1
·			ug/l			·
Fluoranthene	0.27		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.07	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.08	J	ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.32		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.08	J	ug/l	0.10	0.04	1
Chrysene	0.23		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	0.16		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.16		ug/l	0.10	0.04	1
Fluorene	2.2		ug/l	0.10	0.04	1
Phenanthrene	0.56		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.12		ug/l	0.10	0.04	1
Pyrene	0.25		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	103	41-149

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-07 Date Collected: 04/06/18 07:15

Client ID: MW-90 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/08/18 23:49
Analytical Date: 04/10/18 16:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
						,
Acenaphthene	1.4		ug/l	0.10	0.04	1
Fluoranthene	0.84		ug/l	0.10	0.04	1
Naphthalene	0.06	J	ug/l	0.10	0.04	1
Benzo(a)anthracene	0.20		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.15		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.52		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	0.12		ug/l	0.10	0.04	1
Chrysene	0.40		ug/l	0.10	0.04	1
Acenaphthylene	0.21		ug/l	0.10	0.04	1
Anthracene	0.13		ug/l	0.10	0.04	1
Benzo(ghi)perylene	0.23		ug/l	0.10	0.04	1
Fluorene	1.8		ug/l	0.10	0.04	1
Phenanthrene	0.08	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.04	J	ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	0.19		ug/l	0.10	0.04	1
Pyrene	0.61		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	76	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	84	41-149

Project Name: TOT1801 Lab Number: L1812045

Project Number: TOT1801 Report Date: 04/16/18

SAMPLE RESULTS

Lab ID: L1812045-08 D Date Collected: 04/06/18 10:50

Client ID: MW-94 Date Received: 04/06/18

Sample Location: 737-747 4TH AVE., BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/13/18 21:02
Analytical Date: 04/15/18 12:34

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	9.1		ug/l	0.50	0.18	5	
Fluoranthene	0.37	J	ug/l	0.50	0.19	5	
Naphthalene	130		ug/l	0.50	0.22	5	
Benzo(a)anthracene	ND		ug/l	0.50	0.09	5	
Benzo(a)pyrene	ND		ug/l	0.50	0.20	5	
Benzo(b)fluoranthene	ND		ug/l	0.50	0.08	5	
Benzo(k)fluoranthene	ND		ug/l	0.50	0.21	5	
Chrysene	ND		ug/l	0.50	0.19	5	
Acenaphthylene	3.2		ug/l	0.50	0.18	5	
Anthracene	2.0		ug/l	0.50	0.18	5	
Benzo(ghi)perylene	ND		ug/l	0.50	0.21	5	
Fluorene	16		ug/l	0.50	0.18	5	
Phenanthrene	25		ug/l	0.50	0.08	5	
Dibenzo(a,h)anthracene	ND		ug/l	0.50	0.20	5	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.50	0.20	5	
Pyrene	1.4		ug/l	0.50	0.20	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	33	21-120
Phenol-d6	24	10-120
Nitrobenzene-d5	60	23-120
2-Fluorobiphenyl	46	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	54	41-149

 Project Name:
 TOT1801
 Lab Number:
 L1812045

 Project Number:
 TOT1801
 Report Date:
 04/16/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/10/18 09:56

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 04/08/18 23:49

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/l	MS-SIM - Westbo	orough Lab	for sample	e(s): 01-07	Batch: WG	1104635-1
Acenaphthene	ND		ug/l	0.10	0.04	
Fluoranthene	ND		ug/l	0.10	0.04	
Naphthalene	0.07	J	ug/l	0.10	0.04	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	
Chrysene	ND		ug/l	0.10	0.04	
Acenaphthylene	ND		ug/l	0.10	0.04	
Anthracene	ND		ug/l	0.10	0.04	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	
Fluorene	ND		ug/l	0.10	0.04	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	
Pyrene	ND		ug/l	0.10	0.04	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	82	41-149

 Project Name:
 TOT1801
 Lab Number:
 L1812045

 Project Number:
 TOT1801
 Report Date:
 04/16/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/14/18 15:27

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 04/13/18 21:02

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/N	/IS-SIM - Westbo	rough Lab for sai	mple(s): 08	Batch: WG11064	20-1
Acenaphthene	ND	ug/l	0.10	0.04	
Fluoranthene	ND	ug/l	0.10	0.04	
Naphthalene	ND	ug/l	0.10	0.04	
Benzo(a)anthracene	ND	ug/l	0.10	0.02	
Benzo(a)pyrene	ND	ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.04	
Chrysene	ND	ug/l	0.10	0.04	
Acenaphthylene	ND	ug/l	0.10	0.04	
Anthracene	ND	ug/l	0.10	0.04	
Benzo(ghi)perylene	ND	ug/l	0.10	0.04	
Fluorene	ND	ug/l	0.10	0.04	
Phenanthrene	ND	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.04	
Pyrene	ND	ug/l	0.10	0.04	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	63	10-120
4-Terphenyl-d14	77	41-149

Project Name: TOT1801
Project Number: TOT1801

Lab Number: L1812045

Report Date: 04/16/18

	LCS	L	CSD		%Recove	ry		RPD	
arameter	%Recovery	Qual %Re	ecovery	Qua	I Limits	RPD	Qual	Limits	
emivolatile Organics by GC/MS-SIM - \	Westborough Lab A	ssociated sample(s):	01-07	Batch:	WG1104635-2	WG1104635-3			
Acenaphthene	76		85		40-140	11		40	
Fluoranthene	82		73		40-140	12		40	
Naphthalene	71		78		40-140	9		40	
Benzo(a)anthracene	75		83		40-140	10		40	
Benzo(a)pyrene	76		85		40-140	11		40	
Benzo(b)fluoranthene	81		92		40-140	13		40	
Benzo(k)fluoranthene	72		81		40-140	12		40	
Chrysene	73		80		40-140	9		40	
Acenaphthylene	70		78		40-140	11		40	
Anthracene	79		85		40-140	7		40	
Benzo(ghi)perylene	78		76		40-140	3		40	
Fluorene	82		89		40-140	8		40	
Phenanthrene	77		84		40-140	9		40	
Dibenzo(a,h)anthracene	80		78		40-140	3		40	
Indeno(1,2,3-cd)pyrene	79		76		40-140	4		40	
Pyrene	78		86		40-140	10		40	

Project Name: TOT1801

Lab Number:

L1812045

Project Number: TOT1801

Report Date:

04/16/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-07 Batch: WG1104635-2 WG1104635-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
2-Fluorophenol	51	62	21-120	
Phenol-d6	38	44	10-120	
Nitrobenzene-d5	69	75	23-120	
2-Fluorobiphenyl	73	79	15-120	
2,4,6-Tribromophenol	63	76	10-120	
4-Terphenyl-d14	80	88	41-149	

Project Name: TOT1801
Project Number: TOT1801

Lab Number: L1812045

Report Date: 04/16/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
ananetei	7011CCCVC1 y	Quai	, or 1000101 y	Quai Liiiits	Kr D	Quai Liints
emivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated sam	nple(s): 08 Batch:	WG1106420-2 WG1106	420-3	
Acenaphthene	67		80	40-140	18	40
Fluoranthene	72		87	40-140	19	40
Naphthalene	54		66	40-140	20	40
Benzo(a)anthracene	63		78	40-140	21	40
Benzo(a)pyrene	66		81	40-140	20	40
Benzo(b)fluoranthene	71		87	40-140	20	40
Benzo(k)fluoranthene	73		91	40-140	22	40
Chrysene	64		80	40-140	22	40
Acenaphthylene	62		74	40-140	18	40
Anthracene	66		80	40-140	19	40
Benzo(ghi)perylene	32	Q	46	40-140	36	40
Fluorene	70		84	40-140	18	40
Phenanthrene	62		77	40-140	22	40
Dibenzo(a,h)anthracene	42		59	40-140	34	40
Indeno(1,2,3-cd)pyrene	38	Q	53	40-140	33	40
Pyrene	65		79	40-140	19	40

Project Name: TOT1801 **Project Number:** TOT1801

Lab Number: L1812045

Report Date:

04/16/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 08 Batch: WG1106420-2 WG1106420-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	41	50	21-120
Phenol-d6	31	38	10-120
Nitrobenzene-d5	55	65	23-120
2-Fluorobiphenyl	52	61	15-120
2,4,6-Tribromophenol	80	94	10-120
4-Terphenyl-d14	65	77	41-149

Project Name: TOT1801 **Lab Number:** L1812045 Project Number: TOT1801

Report Date: 04/16/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Information					Final				Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1812045-01A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-01B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-01C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-01D	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-01E	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-02A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-02B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-02C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-02D	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-02E	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-03A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-03B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-03C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-03D	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-03E	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-04A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-04B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-04C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L1812045-04D	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-04E	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
	L1812045-05A	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
	L1812045-05B	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)

Lab Number: L1812045

Report Date: 04/16/18

Project Name:TOT1801Project Number:TOT1801

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L1812045-05C	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-05D	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-05E	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-06A	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-06B	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-06C	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-06D	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-06E	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-07A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
L1812045-07B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
L1812045-07C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
L1812045-07D	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-07E	Amber 1000ml unpreserved	Α	7	7	2.9	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-08A	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-08B	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-08C	Vial HCl preserved	В	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1812045-08D	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)
L1812045-08E	Amber 1000ml unpreserved	В	7	7	2.1	Υ	Absent		NYTCL-8270-SIM(7)

Project Name:TOT1801Lab Number:L1812045Project Number:TOT1801Report Date:04/16/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name: TOT1801 Lab Number: L1812045
Project Number: TOT1801 Report Date: 04/16/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: TOT1801 Lab Number: L1812045
Project Number: TOT1801 Report Date: 04/16/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дігна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker to Tonawanda, NY 14150: 275 Co	Way	05	Pag	T-10		Date !		4)	1/18		ALPHA Job# U \$12045	
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Deliv	verable:					Billing Information	-
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name:					1 50	ASP-	1	YEAR	ASP	-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:737-	JUT Lith	1.00	. V 140	M/V	-1 1		6 (1 File)		-			î.
# 11 E W	No. of Concession, Name of Street, or other Designation, Name of Street, Original Property and Name of Stree			TVE, Dro	CEIY/I,	101	ᅱ늗		(1 File)] EQU	IS (4 File)	PO#	
Client Information Project # TOT 1801							10000	Other						
Client: PWG-C (Use Project name as Project #) ⊠						Regi	ulatory l	Requiren	ient			Disposal Site Information	1	
Address: 630 Johnson Aue Project Manager: Jennifer Lewis								NY TO	GS		NY Pa	art 375	Please identify below location	n of
Bonemia, N		ALPHAQuote #:		- No che				AWQ S	tandards		NY C	P-51	applicable disposal facilities.	
Phone: 631-589	-6353	Turn-Around Time		4 5				NY Res	tricted Us	е [Other		Disposal Facility:	
Fax:		Standard	d 🛪	Due Date:				NY Uni	estricted l	Jse			□ NJ □ NY	
Email: Jean Carl	DAMONT COLUMN	Rush (only if pre approved		# of Days:				9.5	wer Disci				Other:	
These samples have b			-	ir or buya.			ANA	ANALYSIS						+
Other project specific				_			Ana	L1919		_	_		Sample Filtration	0
outer project apcoint	o requirementa/comm	ienta.										1 1	Done	1
l							S	S					Lab to do	a)
Discourse of the second	741						00	9					Lab to do	83
Please specify Metals	s or IAL.				0		18	3	1	-				В
					Warmen and the second		1.	U)[(Please Specify below)	t
ALPHA Lab ID		omala ID	Collection		Sample Sampler's		1∺	2	SNA				BANGO CELEBROSCA STOCK CONTO	1
(Eab Use Only)	36	mple ID	Date	Time	Matrix	Initials	2	5		1/			Sample Specific Comments	·
12045-01		mw-I	4-6-18	0830	GW	KC	X	A		1/	1			5
-02		MW-3	10.10	0900	1	7	1	1	\rightarrow	+/-				- 2
-63		MW-80		0000					\rightarrow		-		12	-H
							-		_	1	-		1	
-04		MW-81		0743			1	H	_	-		X		
-05		mw-84		1005									1/1/1/	
-06		mw-89		0930							/		100	11
-07		mW-90		0715										
-08		mw-94	V	1050	V	V	V	V						V
	100	0										_		
	4//								_	+				-
Preservative Code:	Container Code	Westhorn: Certification N	o: MA035				_		_	+		_		\perp
A = None B = HCI	P = Plastic	Westboro: Certification No: MA935 Container				tainer Type	W	17		CONTRACT		Please print clearly, leg		
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification No: MA015					0	0 13					and completely. Sample	es can
D = H ₂ SO ₄	G = Glass			- 1	P	reservative	13	A					not be logged in and turnaround time clock w	ton Iliv
E = NaOH	B = Bacteria Cup		4		-	STATESANTANA		11					start until any ambiguitie	3777
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished 8	By/ /	Date/T	ime	3	Receiv	ed By:	-	7	Date/	Time	resolved. BY EXECUTIV	NG
$H = Na_2S_2O_3$	E = Encore	July 1	ma 1	1110/08	1505	Pau	Por	wi	ella	4/1	2/15	2/51	THIS COC, THE CLIEN	
K/E = Zn Ac/NaOH	D = BOD Bottle	Pa, Umacro	elles	11018 =	2009	Rome	2	37	11	and the second liverage in con-	DILA	21:30	HAS READ AND AGRE	
O = Other	1	Dungo of	-	17718	100	1	-	- 17	()				TO BE BOUND BY ALP TERMS & CONDITIONS	10,000,000
Form No: 01-25 HC (rev. 3)	1. Sept. 2013)	Charles And		4710	Jan	-			_	7/7	1/8	2200	(See reverse side.)	٠.
The or Lotto flav. of	o oupr zo roj									.1				

ANALYTICAL REPORT

Lab Number: L1819421

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN: Jennifer Lewis Phone: (631) 589-6353

Project Name: TOT1802
Project Number: TOT1802
Report Date: 06/04/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TOT1802 **Project Number:** TOT1802

Lab Number: L1819421 **Report Date:** 06/04/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1819421-01	SB001-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 08:30	05/25/18
L1819421-02	SB002-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 09:00	05/25/18
L1819421-03	SB003-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 09:20	05/25/18
L1819421-04	SB004-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 09:50	05/25/18
L1819421-05	SB005-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 10:15	05/25/18
L1819421-06	SB006-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 10:45	05/25/18
L1819421-07	SB007-20-22	SOIL	737-747 4TH AVE., BROOKLYN NY	05/24/18 11:30	05/25/18
L1819421-08	MW-6	WATER	737-747 4TH AVE., BROOKLYN NY	05/24/18 08:15	05/25/18
L1819421-09	MW-86	WATER	737-747 4TH AVE., BROOKLYN NY	05/24/18 12:20	05/25/18
L1819421-10	TRIP BLANK	WATER	737-747 4TH AVE., BROOKLYN NY	05/24/18 00:00	05/25/18

Project Name:TOT1802Lab Number:L1819421Project Number:TOT1802Report Date:06/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TOT1802Lab Number:L1819421Project Number:TOT1802Report Date:06/04/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The Project Number was specified by the client.

L1819421-10: At the client's request, the sample was not analyzed.

Volatile Organics

L1819421-01, -02, -03, and -04: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1819421-05: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (178%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased. L1819421-05 was analyzed as a High Level Methanol in order to quantitate the sample within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial Low Level analysis. The results of both analyses are reported. Differences were noted between the results of the original analysis and the re-analysis on dilution which have been attributed to vial discrepancies. Further re-analysis could not be performed due to the existing vials being compromised.

Semivolatile Organics

L1819421-02 and -04: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/04/18

Molusa Cripps Melissa Cripps

ALPHA

ORGANICS

VOLATILES

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-01 D Date Collected: 05/24/18 08:30

Client ID: SB001-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/31/18 21:00

Analyst: MV Percent Solids: 82%

Result	Qualifier	Units	RL	MDL	Dilution Factor
estborough Lab					
ND		ug/kg	260	49.	4
ND		ug/kg	380	50.	4
ND		ug/kg	260	44.	4
ND		ug/kg	510	39.	4
ND		ug/kg	510	90.	4
ND		ug/kg	510	86.	4
ND		ug/kg	510	86.	4
1200		ug/kg	260	58.	4
810		ug/kg	260	56.	4
110	J	ug/kg	1300	63.	4
520		ug/kg	260	50.	4
ND		ug/kg	260	52.	4
320	J	ug/kg	1300	35.	4
1100		ug/kg	260	55.	4
ND		ug/kg	1300	41.	4
ND		ug/kg	1300	48.	4
	ND N	ND 1200 810 110 J 520 ND 320 J 1100 ND	ND ug/kg 1200 ug/kg 810 ug/kg 110 J ug/kg ND ug/kg ND ug/kg 1100 ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	ND ug/kg 260 ND ug/kg 380 ND ug/kg 260 ND ug/kg 260 ND ug/kg 510 1200 ug/kg 260 810 ug/kg 260 810 ug/kg 260 ND ug/kg 1300 520 ug/kg 260 ND ug/kg 260	ND ug/kg 260 49. ND ug/kg 380 50. ND ug/kg 260 44. ND ug/kg 510 39. ND ug/kg 510 90. ND ug/kg 510 86. ND ug/kg 510 86. 1200 ug/kg 510 86. 1200 ug/kg 260 58. 810 ug/kg 260 56. 1110 J ug/kg 1300 63. 520 ug/kg 260 50. ND ug/kg 260 52. 320 J ug/kg 1300 35. 1100 ug/kg 260 55. ND ug/kg 1300 35.

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	112	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-02 D Date Collected: 05/24/18 09:00

Client ID: SB002-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/31/18 21:26

Analyst: MV Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035	- Westborough Lab					
Benzene	ND		ug/kg	1400	260	20
Toluene	ND		ug/kg	2000	260	20
Ethylbenzene	ND		ug/kg	1400	230	20
Methyl tert butyl ether	ND		ug/kg	2700	210	20
p/m-Xylene	ND		ug/kg	2700	480	20
o-Xylene	ND		ug/kg	2700	460	20
Xylenes, Total	ND		ug/kg	2700	460	20
n-Butylbenzene	11000		ug/kg	1400	310	20
sec-Butylbenzene	8200		ug/kg	1400	300	20
tert-Butylbenzene	910	J	ug/kg	6800	340	20
Isopropylbenzene	3400		ug/kg	1400	260	20
p-Isopropyltoluene	380	J	ug/kg	1400	280	20
Naphthalene	1500	J	ug/kg	6800	190	20
n-Propylbenzene	7700		ug/kg	1400	290	20
1,3,5-Trimethylbenzene	ND		ug/kg	6800	220	20
1,2,4-Trimethylbenzene	ND		ug/kg	6800	250	20

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	119	70-130	
Dibromofluoromethane	114	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-03 D Date Collected: 05/24/18 09:20

Client ID: SB003-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/31/18 21:51

Analyst: MV Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Benzene	ND		ug/kg	140	28.	2
Toluene	ND		ug/kg	220	28.	2
Ethylbenzene	ND		ug/kg	140	24.	2
Methyl tert butyl ether	ND		ug/kg	290	22.	2
p/m-Xylene	ND		ug/kg	290	50.	2
o-Xylene	ND		ug/kg	290	48.	2
Xylenes, Total	ND		ug/kg	290	48.	2
n-Butylbenzene	45	J	ug/kg	140	33.	2
sec-Butylbenzene	100	J	ug/kg	140	31.	2
tert-Butylbenzene	ND		ug/kg	720	35.	2
Isopropylbenzene	49	J	ug/kg	140	28.	2
p-Isopropyltoluene	34	J	ug/kg	140	29.	2
Naphthalene	240	J	ug/kg	720	20.	2
n-Propylbenzene	110	J	ug/kg	140	31.	2
1,3,5-Trimethylbenzene	ND		ug/kg	720	23.	2
1,2,4-Trimethylbenzene	ND		ug/kg	720	27.	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	113	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-04 D Date Collected: 05/24/18 09:50

Client ID: SB004-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/31/18 22:17

Analyst: MV Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	- Westborough Lab					
Benzene	ND		ug/kg	7200	1400	100
Toluene	ND		ug/kg	11000	1400	100
Ethylbenzene	6500	J	ug/kg	7200	1200	100
Methyl tert butyl ether	ND		ug/kg	14000	1100	100
p/m-Xylene	20000		ug/kg	14000	2500	100
o-Xylene	4400	J	ug/kg	14000	2400	100
Xylenes, Total	24000	J	ug/kg	14000	2400	100
n-Butylbenzene	8400		ug/kg	7200	1600	100
sec-Butylbenzene	6600	J	ug/kg	7200	1600	100
tert-Butylbenzene	ND		ug/kg	36000	1800	100
Isopropylbenzene	3500	J	ug/kg	7200	1400	100
p-Isopropyltoluene	5700	J	ug/kg	7200	1400	100
Naphthalene	75000		ug/kg	36000	990	100
n-Propylbenzene	7700		ug/kg	7200	1500	100
1,3,5-Trimethylbenzene	21000	J	ug/kg	36000	1200	100
1,2,4-Trimethylbenzene	65000		ug/kg	36000	1300	100

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	114	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-05 Date Collected: 05/24/18 10:15

Client ID: SB005-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/01/18 17:13

Analyst: PK Percent Solids: 77%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Benzene	ND		ug/kg	1.1	0.21	1
Toluene	ND		ug/kg	1.6	0.21	1
Ethylbenzene	0.71	J	ug/kg	1.1	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.17	1
p/m-Xylene	3.1		ug/kg	2.2	0.38	1
o-Xylene	ND		ug/kg	2.2	0.37	1
Xylenes, Total	3.1		ug/kg	2.2	0.37	1
n-Butylbenzene	ND		ug/kg	1.1	0.25	1
sec-Butylbenzene	52		ug/kg	1.1	0.24	1
tert-Butylbenzene	11		ug/kg	5.5	0.27	1
Isopropylbenzene	17		ug/kg	1.1	0.21	1
p-Isopropyltoluene	37		ug/kg	1.1	0.22	1
Naphthalene	640	Е	ug/kg	5.5	0.15	1
n-Propylbenzene	33		ug/kg	1.1	0.24	1
1,3,5-Trimethylbenzene	8.6		ug/kg	5.5	0.18	1
1,2,4-Trimethylbenzene	170		ug/kg	5.5	0.20	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	178	Q	70-130	
Dibromofluoromethane	101		70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-05 Date Collected: 05/24/18 10:15

Client ID: SB005-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/04/18 10:02

Analyst: MV Percent Solids: 77%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 High - Westborough Lab								
Naphthalene	16	J	ug/kg	390	11.	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	106		70-130
Toluene-d8	96		70-130
4-Bromofluorobenzene	96		70-130
Dibromofluoromethane	104		70-130

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: Date Collected: 05/24/18 10:45

Client ID: SB006-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/01/18 00:00

Analyst: MV Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab							
Benzene	0.37	J	ug/kg	0.82	0.16	1	
Toluene	0.42	J	ug/kg	1.2	0.16	1	
Ethylbenzene	0.34	J	ug/kg	0.82	0.14	1	
Methyl tert butyl ether	ND		ug/kg	1.6	0.12	1	
p/m-Xylene	0.75	J	ug/kg	1.6	0.29	1	
o-Xylene	ND		ug/kg	1.6	0.28	1	
Xylenes, Total	0.75	J	ug/kg	1.6	0.28	1	
n-Butylbenzene	3.0		ug/kg	0.82	0.19	1	
sec-Butylbenzene	1.5		ug/kg	0.82	0.18	1	
tert-Butylbenzene	0.22	J	ug/kg	4.1	0.20	1	
Isopropylbenzene	0.86		ug/kg	0.82	0.16	1	
p-Isopropyltoluene	0.87		ug/kg	0.82	0.16	1	
Naphthalene	32		ug/kg	4.1	0.11	1	
n-Propylbenzene	2.0		ug/kg	0.82	0.18	1	
1,3,5-Trimethylbenzene	1.4	J	ug/kg	4.1	0.13	1	
1,2,4-Trimethylbenzene	4.6		ug/kg	4.1	0.15	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	115	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-07 Date Collected: 05/24/18 11:30

Client ID: SB007-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/01/18 00:26

Analyst: MV Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - West	Volatile Organics by 8260/5035 - Westborough Lab							
Benzene	ND		ug/kg	0.83	0.16	1		
Toluene	0.20	J	ug/kg	1.2	0.16	1		
Ethylbenzene	ND		ug/kg	0.83	0.14	1		
Methyl tert butyl ether	ND		ug/kg	1.7	0.13	1		
p/m-Xylene	ND		ug/kg	1.7	0.29	1		
o-Xylene	ND		ug/kg	1.7	0.28	1		
Xylenes, Total	ND		ug/kg	1.7	0.28	1		
n-Butylbenzene	ND		ug/kg	0.83	0.19	1		
sec-Butylbenzene	ND		ug/kg	0.83	0.18	1		
tert-Butylbenzene	ND		ug/kg	4.2	0.20	1		
Isopropylbenzene	ND		ug/kg	0.83	0.16	1		
p-Isopropyltoluene	ND		ug/kg	0.83	0.17	1		
Naphthalene	0.16	J	ug/kg	4.2	0.12	1		
n-Propylbenzene	ND		ug/kg	0.83	0.18	1		
1,3,5-Trimethylbenzene	ND		ug/kg	4.2	0.13	1		
1,2,4-Trimethylbenzene	ND		ug/kg	4.2	0.16	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	115	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-08 Date Collected: 05/24/18 08:15

Client ID: MW-6 Date Received: 05/25/18
Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/29/18 22:45

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Benzene	20		ug/l	0.50	0.16	1	
Toluene	0.90	J	ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	1.5	J	ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	1.5	J	ug/l	2.5	0.70	1	
Xylenes, Total	1.5	J	ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	1.4	J	ug/l	2.5	0.70	1	
tert-Butylbenzene	0.80	J	ug/l	2.5	0.70	1	
Isopropylbenzene	3.7		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	0.99	J	ug/l	2.5	0.70	1	
n-Propylbenzene	3.3		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	89	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-09 Date Collected: 05/24/18 12:20

Client ID: MW-86 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/31/18 13:46

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westbo	Volatile Organics by GC/MS - Westborough Lab							
Benzene	32		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	0.75	J	ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
Xylenes, Total	ND		ug/l	2.5	0.70	1		
n-Butylbenzene	6.2		ug/l	2.5	0.70	1		
sec-Butylbenzene	6.4		ug/l	2.5	0.70	1		
tert-Butylbenzene	1.4	J	ug/l	2.5	0.70	1		
Isopropylbenzene	11		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
Naphthalene	2.2	J	ug/l	2.5	0.70	1		
n-Propylbenzene	18		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	90	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/29/18 20:53

Analyst: AD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough La	b for sample(s): 08	Batch:	WG1120784-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

	Acceptance				
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	95	70-130			
Toluene-d8	102	70-130			
4-Bromofluorobenzene	104	70-130			
Dibromofluoromethane	92	70-130			

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/31/18 09:00

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	G - Westborough Lab	o for sample(s): 09	Batch:	WG1121178-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	92	70-130

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/31/18 20:35

Analyst: MKS

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lat	o for sample(s):	01-04 Batch:	WG1121385-5	
Benzene	ND	ug/k	g 50	9.6	
Toluene	ND	ug/k	g 75	9.8	
Ethylbenzene	ND	ug/k	g 50	8.5	
Methyl tert butyl ether	ND	ug/k	g 100	7.6	
p/m-Xylene	ND	ug/k	g 100	18.	
o-Xylene	ND	ug/k	g 100	17.	
Xylenes, Total	ND	ug/k	g 100	17.	
n-Butylbenzene	ND	ug/k	g 50	11.	
sec-Butylbenzene	ND	ug/k	g 50	11.	
tert-Butylbenzene	ND	ug/k	g 250	12.	
Isopropylbenzene	ND	ug/k	g 50	9.7	
p-Isopropyltoluene	ND	ug/k	g 50	10.	
Naphthalene	ND	ug/k	g 250	6.9	
n-Propylbenzene	ND	ug/k	g 50	11.	
1,3,5-Trimethylbenzene	ND	ug/k	g 250	8.0	
1,2,4-Trimethylbenzene	ND	ug/k	g 250	9.3	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	114	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/31/18 20:35

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL	
/olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	06-07	Batch:	WG1121389-5	
Benzene	ND		ug/kg	1.0		0.19	
Toluene	ND		ug/kg	1.5		0.20	
Ethylbenzene	ND		ug/kg	1.0		0.17	
Methyl tert butyl ether	ND		ug/kg	2.0		0.15	
p/m-Xylene	ND		ug/kg	2.0		0.35	
o-Xylene	ND		ug/kg	2.0		0.34	
Xylenes, Total	ND		ug/kg	2.0		0.34	
n-Butylbenzene	ND		ug/kg	1.0		0.23	
sec-Butylbenzene	ND		ug/kg	1.0		0.22	
tert-Butylbenzene	ND		ug/kg	5.0		0.25	
Isopropylbenzene	ND		ug/kg	1.0		0.19	
p-Isopropyltoluene	ND		ug/kg	1.0		0.20	
Naphthalene	ND		ug/kg	5.0		0.14	
n-Propylbenzene	ND		ug/kg	1.0		0.22	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0		0.16	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0		0.19	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	107		70-130		
Toluene-d8	96		70-130		
4-Bromofluorobenzene	101		70-130		
Dibromofluoromethane	114		70-130		

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/01/18 08:50

Analyst: MV

Parameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035 -	Westborough	Lab for san	nple(s):	05	Batch:	WG1121549-5
Benzene	ND		ug/kg		1.0	0.19
Toluene	ND		ug/kg		1.5	0.20
Ethylbenzene	ND		ug/kg		1.0	0.17
Methyl tert butyl ether	ND		ug/kg		2.0	0.15
p/m-Xylene	ND		ug/kg		2.0	0.35
o-Xylene	ND		ug/kg		2.0	0.34
Xylenes, Total	ND		ug/kg		2.0	0.34
n-Butylbenzene	ND		ug/kg		1.0	0.23
sec-Butylbenzene	ND		ug/kg		1.0	0.22
tert-Butylbenzene	ND		ug/kg		5.0	0.25
Isopropylbenzene	ND		ug/kg		1.0	0.19
p-Isopropyltoluene	ND		ug/kg		1.0	0.20
Naphthalene	ND		ug/kg		5.0	0.14
n-Propylbenzene	ND		ug/kg		1.0	0.22
1,3,5-Trimethylbenzene	ND		ug/kg		5.0	0.16
1,2,4-Trimethylbenzene	ND		ug/kg		5.0	0.19

		Acceptance	
Surrogate	%Recovery Qu	alifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	100	70-130	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/04/18 09:36

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lab	for sample	e(s): 05	Batch:	WG1122159-5	
Naphthalene	ND		ug/kg	250	6.9	

		Acceptance					
Surrogate	%Recovery Qualifi	er Criteria					
1.2 Dishlarasthana d4	400	70.420					
1,2-Dichloroethane-d4	108	70-130					
Toluene-d8	95	70-130					
4-Bromofluorobenzene	98	70-130					
Dibromofluoromethane	105	70-130					

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 08	Batch: WG11	20784-3	WG1120784-4			
Benzene	88		82		70-130	7		20
Toluene	92		87		70-130	6		20
Ethylbenzene	89		86		70-130	3		20
Methyl tert butyl ether	92		93		63-130	1		20
p/m-Xylene	90		85		70-130	6		20
o-Xylene	90		85		70-130	6		20
n-Butylbenzene	95		89		53-136	7		20
sec-Butylbenzene	94		89		70-130	5		20
tert-Butylbenzene	91		86		70-130	6		20
Isopropylbenzene	95		89		70-130	7		20
p-Isopropyltoluene	91		87		70-130	4		20
Naphthalene	80		83		70-130	4		20
n-Propylbenzene	99		93		69-130	6		20
1,3,5-Trimethylbenzene	95		89		64-130	7		20
1,2,4-Trimethylbenzene	78		72		70-130	8		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	95	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	105	104	70-130
Dibromofluoromethane	93	92	70-130

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
arameter	78Necovery	Quai	7011CCCVC1Y	Quai	Lillits	KFD	Quai	Lillits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 09	Batch: WG	1121178-3	WG1121178-4			
Benzene	100		99		70-130	1		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		100		70-130	0		20
Methyl tert butyl ether	110		110		63-130	0		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
n-Butylbenzene	110		100		53-136	10		20
sec-Butylbenzene	100		100		70-130	0		20
tert-Butylbenzene	100		100		70-130	0		20
Isopropylbenzene	100		100		70-130	0		20
p-Isopropyltoluene	100		100		70-130	0		20
Naphthalene	91		98		70-130	7		20
n-Propylbenzene	110		110		69-130	0		20
1,3,5-Trimethylbenzene	100		100		64-130	0		20
1,2,4-Trimethylbenzene	84		83		70-130	1		20

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	95	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	105	103	70-130
Dibromofluoromethane	93	91	70-130

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1121385-3	WG1121385-4			
Benzene	93		89		70-130	4		30
Toluene	82		79		70-130	4		30
Ethylbenzene	88		84		70-130	5		30
Methyl tert butyl ether	102		100		66-130	2		30
p/m-Xylene	87		84		70-130	4		30
o-Xylene	88		84		70-130	5		30
n-Butylbenzene	89		85		70-130	5		30
sec-Butylbenzene	87		83		70-130	5		30
tert-Butylbenzene	85		81		70-130	5		30
Isopropylbenzene	86		82		70-130	5		30
p-Isopropyltoluene	87		82		70-130	6		30
Naphthalene	94		91		70-130	3		30
n-Propylbenzene	88		84		70-130	5		30
1,3,5-Trimethylbenzene	87		83		70-130	5		30
1,2,4-Trimethylbenzene	87		84		70-130	4		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	107	108	70-130	
Toluene-d8	96	96	70-130	
4-Bromofluorobenzene	100	101	70-130	
Dibromofluoromethane	115	115	70-130	

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	06-07	Batch:	WG112138	9-3 WG112138	9-4			
Benzene	93		89)		70-130	4		30	
Toluene	82		79			70-130	4		30	
Ethylbenzene	88		84			70-130	5		30	
Methyl tert butyl ether	102		10	0		66-130	2		30	
p/m-Xylene	87		84			70-130	4		30	
o-Xylene	88		84			70-130	5		30	
n-Butylbenzene	89		85			70-130	5		30	
sec-Butylbenzene	87		83	1		70-130	5		30	
tert-Butylbenzene	85		81			70-130	5		30	
Isopropylbenzene	86		82			70-130	5		30	
p-Isopropyltoluene	87		82			70-130	6		30	
Naphthalene	94		91			70-130	3		30	
n-Propylbenzene	88		84			70-130	5		30	
1,3,5-Trimethylbenzene	87		83			70-130	5		30	
1,2,4-Trimethylbenzene	87		84			70-130	4		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	108	70-130
Toluene-d8	96	96	70-130
4-Bromofluorobenzene	100	101	70-130
Dibromofluoromethane	115	115	70-130

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

Parameter	LCS %Recovery	Qual	LCSD %Recover	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	05 Batch:	WG1121549-3	WG1121549-4			
Benzene	101		99		70-130	2		30
Toluene	103		101		70-130	2		30
Ethylbenzene	102		101		70-130	1		30
Methyl tert butyl ether	95		95		66-130	0		30
p/m-Xylene	101		99		70-130	2		30
o-Xylene	99		98		70-130	1		30
n-Butylbenzene	106		103		70-130	3		30
sec-Butylbenzene	106		103		70-130	3		30
tert-Butylbenzene	104		101		70-130	3		30
Isopropylbenzene	102		100		70-130	2		30
p-Isopropyltoluene	106		103		70-130	3		30
Naphthalene	99		99		70-130	0		30
n-Propylbenzene	104		102		70-130	2		30
1,3,5-Trimethylbenzene	104		101		70-130	3		30
1,2,4-Trimethylbenzene	105		102		70-130	3		30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	95	93	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	96	96	70-130

Project Name: TOT1802 **Project Number:** TOT1802

Lab Number:

L1819421

Report Date:

06/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	05 Batch: WG1	122159-3	WG1122159-4			
Naphthalene	88		90		70-130	2	30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	108	108	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	95	93	70-130
Dibromofluoromethane	102	104	70-130

SEMIVOLATILES

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-01 Date Collected: 05/24/18 08:30

Client ID: SB001-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/02/18 07:32

Analyst: EK Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	320		ug/kg	160	21.	1	
Fluoranthene	210		ug/kg	120	23.	1	
Benzo(a)anthracene	73	J	ug/kg	120	23.	1	
Benzo(a)pyrene	54	J	ug/kg	160	49.	1	
Benzo(b)fluoranthene	120		ug/kg	120	34.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1	
Chrysene	100	J	ug/kg	120	21.	1	
Acenaphthylene	ND		ug/kg	160	31.	1	
Anthracene	130		ug/kg	120	39.	1	
Benzo(ghi)perylene	46	J	ug/kg	160	24.	1	
Fluorene	590		ug/kg	200	20.	1	
Phenanthrene	1200		ug/kg	120	24.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1	
Indeno(1,2,3-cd)pyrene	53	J	ug/kg	160	28.	1	
Pyrene	210		ug/kg	120	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	99	23-120	
2-Fluorobiphenyl	95	30-120	
4-Terphenyl-d14	80	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-02 D Date Collected: 05/24/18 09:00

Client ID: SB002-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/03/18 20:19

Analyst: PS Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - We	Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	4000		ug/kg	1600	210	10		
Fluoranthene	260	J	ug/kg	1200	240	10		
Benzo(a)anthracene	ND		ug/kg	1200	230	10		
Benzo(a)pyrene	ND		ug/kg	1600	500	10		
Benzo(b)fluoranthene	ND		ug/kg	1200	340	10		
Benzo(k)fluoranthene	ND		ug/kg	1200	330	10		
Chrysene	ND		ug/kg	1200	210	10		
Acenaphthylene	ND		ug/kg	1600	320	10		
Anthracene	1300		ug/kg	1200	400	10		
Benzo(ghi)perylene	ND		ug/kg	1600	240	10		
Fluorene	8300		ug/kg	2000	200	10		
Phenanthrene	16000		ug/kg	1200	250	10		
Dibenzo(a,h)anthracene	ND		ug/kg	1200	240	10		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	1600	280	10		
Pyrene	1000	J	ug/kg	1200	200	10		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	55	23-120	
2-Fluorobiphenyl	78	30-120	
4-Terphenyl-d14	56	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-03 Date Collected: 05/24/18 09:20

Client ID: SB003-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/01/18 15:23

Analyst: CB Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	960		ug/kg	150	20.	1	
Fluoranthene	57	J	ug/kg	110	22.	1	
Benzo(a)anthracene	ND		ug/kg	110	21.	1	
Benzo(a)pyrene	ND		ug/kg	150	46.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	
Chrysene	ND		ug/kg	110	20.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	430		ug/kg	110	37.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	1700		ug/kg	190	18.	1	
Phenanthrene	3100		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	200		ug/kg	110	19.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	87	23-120	
2-Fluorobiphenyl	81	30-120	
4-Terphenyl-d14	60	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-04 D Date Collected: 05/24/18 09:50

Client ID: SB004-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/03/18 20:44

Analyst: PS Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	6200		ug/kg	780	100	5	
Fluoranthene	310	J	ug/kg	580	110	5	
Benzo(a)anthracene	ND		ug/kg	580	110	5	
Benzo(a)pyrene	ND		ug/kg	780	240	5	
Benzo(b)fluoranthene	ND		ug/kg	580	160	5	
Benzo(k)fluoranthene	ND		ug/kg	580	160	5	
Chrysene	ND		ug/kg	580	100	5	
Acenaphthylene	ND		ug/kg	780	150	5	
Anthracene	2000		ug/kg	580	190	5	
Benzo(ghi)perylene	ND		ug/kg	780	110	5	
Fluorene	12000		ug/kg	970	94.	5	
Phenanthrene	22000		ug/kg	580	120	5	
Dibenzo(a,h)anthracene	ND		ug/kg	580	110	5	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	780	140	5	
Pyrene	1300		ug/kg	580	96.	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	50	23-120	
2-Fluorobiphenyl	68	30-120	
4-Terphenyl-d14	57	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-05 Date Collected: 05/24/18 10:15

Client ID: SB005-20-22 Date Received: 05/25/18
Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/01/18 16:16

Analyst: CB Percent Solids: 77%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	230		ug/kg	170	22.	1
Fluoranthene	ND		ug/kg	130	24.	1
Benzo(a)anthracene	ND		ug/kg	130	24.	1
Benzo(a)pyrene	ND		ug/kg	170	52.	1
Benzo(b)fluoranthene	ND		ug/kg	130	36.	1
Benzo(k)fluoranthene	ND		ug/kg	130	34.	1
Chrysene	ND		ug/kg	130	22.	1
Acenaphthylene	ND		ug/kg	170	33.	1
Anthracene	95	J	ug/kg	130	41.	1
Benzo(ghi)perylene	ND		ug/kg	170	25.	1
Fluorene	450		ug/kg	210	21.	1
Phenanthrene	930		ug/kg	130	26.	1
Dibenzo(a,h)anthracene	ND		ug/kg	130	24.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	170	30.	1
Pyrene	62	J	ug/kg	130	21.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	92	23-120	
2-Fluorobiphenyl	79	30-120	
4-Terphenyl-d14	61	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-06 Date Collected: 05/24/18 10:45

Client ID: SB006-20-22 Date Received: 05/25/18
Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/01/18 16:42

Analyst: CB Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	ND		ug/kg	140	19.	1	
Fluoranthene	33	J	ug/kg	110	21.	1	
Benzo(a)anthracene	ND		ug/kg	110	20.	1	
Benzo(a)pyrene	ND		ug/kg	140	44.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1	
Chrysene	20	J	ug/kg	110	19.	1	
Acenaphthylene	ND		ug/kg	140	28.	1	
Anthracene	ND		ug/kg	110	35.	1	
Benzo(ghi)perylene	ND		ug/kg	140	21.	1	
Fluorene	19	J	ug/kg	180	18.	1	
Phenanthrene	52	J	ug/kg	110	22.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1	
Pyrene	29	J	ug/kg	110	18.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	91	23-120	
2-Fluorobiphenyl	74	30-120	
4-Terphenyl-d14	62	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-07 Date Collected: 05/24/18 11:30

Client ID: SB007-20-22 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/31/18 09:03

Analytical Date: 06/01/18 17:09

Analyst: CB Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/kg	150	19.	1	
Fluoranthene	ND		ug/kg	110	21.	1	
Benzo(a)anthracene	ND		ug/kg	110	21.	1	
Benzo(a)pyrene	ND		ug/kg	150	45.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1	
Chrysene	ND		ug/kg	110	19.	1	
Acenaphthylene	ND		ug/kg	150	28.	1	
Anthracene	ND		ug/kg	110	36.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	ND		ug/kg	180	18.	1	
Phenanthrene	ND		ug/kg	110	22.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	ND		ug/kg	110	18.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	76	23-120	
2-Fluorobiphenyl	65	30-120	
4-Terphenyl-d14	59	18-120	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-08 Date Collected: 05/24/18 08:15

Client ID: MW-6 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/28/18 00:31
Analytical Date: 05/29/18 13:32

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	1 - Westborough La	ab					
Acenaphthene	3.2		ug/l	0.10	0.04	1	
Fluoranthene	0.12		ug/l	0.10	0.04	1	
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1	
Benzo(b)fluoranthene	0.09	J	ug/l	0.10	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1	
Chrysene	0.08	J	ug/l	0.10	0.04	1	
Acenaphthylene	0.69		ug/l	0.10	0.04	1	
Anthracene	0.43		ug/l	0.10	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1	
Fluorene	4.2		ug/l	0.10	0.04	1	
Phenanthrene	3.2		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1	
Pyrene	0.32		ug/l	0.10	0.04	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	66	15-120	
4-Terphenyl-d14	78	41-149	

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: L1819421-09 Date Collected: 05/24/18 12:20

Client ID: MW-86 Date Received: 05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/28/18 00:31
Analytical Date: 05/29/18 13:59

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	5.0		ug/l	0.10	0.03	1		
Fluoranthene	0.21		ug/l	0.10	0.04	1		
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1		
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.04	1		
Benzo(b)fluoranthene	0.11		ug/l	0.10	0.02	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1		
Chrysene	0.11		ug/l	0.10	0.04	1		
Acenaphthylene	ND		ug/l	0.10	0.03	1		
Anthracene	1.3		ug/l	0.10	0.03	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1		
Fluorene	6.8		ug/l	0.10	0.04	1		
Phenanthrene	9.5		ug/l	0.10	0.01	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1		
Pyrene	0.82		ug/l	0.10	0.04	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	63		23-120	
2-Fluorobiphenyl	60		15-120	
4-Terphenyl-d14	72		41-149	

 Project Name:
 TOT1802
 Lab Number:
 L1819421

 Project Number:
 TOT1802
 Report Date:
 06/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 05/29/18 09:04

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 05/28/18 00:31

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S-SIM - Westbo	orough Lab	for sample	e(s): 08-09	Batch: WG	1120026-1
Acenaphthene	ND		ug/l	0.10	0.04	
Fluoranthene	ND		ug/l	0.10	0.04	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	
Chrysene	ND		ug/l	0.10	0.04	
Acenaphthylene	ND		ug/l	0.10	0.04	
Anthracene	ND		ug/l	0.10	0.04	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	
Fluorene	ND		ug/l	0.10	0.04	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	
Pyrene	ND		ug/l	0.10	0.04	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	51	23-120	
2-Fluorobiphenyl	53	15-120	
4-Terphenyl-d14	81	41-149	

 Project Name:
 TOT1802
 Lab Number:
 L1819421

 Project Number:
 TOT1802
 Report Date:
 06/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D
Analytical Date: 06/01/18 20:34

Analyst: CB

Extraction Method: EPA 3546 Extraction Date: 05/31/18 09:03

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	- Westborougl	h Lab for s	ample(s):	01-07	Batch:	WG1121002-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	98		19.
Benzo(a)anthracene	ND		ug/kg	98		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		28.
Benzo(k)fluoranthene	ND		ug/kg	98		26.
Chrysene	ND		ug/kg	98		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	98		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	98		20.
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	98		16.

Tentatively Identified Compounds			
Total TIC Compounds	168	J	ug/kg
Aldol Condensates	168	J	ug/kg

Project Name: TOT1802 Lab Number: L1819421

Project Number: TOT1802 Report Date: 06/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 06/01/18 20:34 Extraction Date: 05/31/18 09:03

Analyst: CB

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s):01-07Batch:WG1121002-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	80	25-120
Phenol-d6	83	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	85	30-120
2,4,6-Tribromophenol	81	10-136
4-Terphenyl-d14	84	18-120

L1819421

Lab Control Sample Analysis Batch Quality Control

Project Name: TOT1802
Project Number: TOT1802

iality Control Lab Number:

Report Date: 06/04/18

	LCS		LCSD		%Recove	-		RPD	
arameter	%Recovery	Qual %R	ecovery	Qua	I Limits	RPD	Qual	Limits	
emivolatile Organics by GC/MS-SIM -	Westborough Lab	Associated sample(s)	: 08-09	Batch:	WG1120026-2	WG1120026-3			
Acenaphthene	78		83		40-140	6		40	
Fluoranthene	80		86		40-140	7		40	
Benzo(a)anthracene	72		78		40-140	8		40	
Benzo(a)pyrene	74		75		40-140	1		40	
Benzo(b)fluoranthene	74		74		40-140	0		40	
Benzo(k)fluoranthene	76		78		40-140	3		40	
Chrysene	74		79		40-140	7		40	
Acenaphthylene	75		80		40-140	6		40	
Anthracene	77		82		40-140	6		40	
Benzo(ghi)perylene	78		78		40-140	0		40	
Fluorene	82		87		40-140	6		40	
Phenanthrene	73		78		40-140	7		40	
Dibenzo(a,h)anthracene	80		80		40-140	0		40	
Indeno(1,2,3-cd)pyrene	78		79		40-140	1		40	
Pyrene	77		83		40-140	8		40	

Surrogate	LCS %Recovery Quai	LCSD I %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	75	79	23-120
2-Fluorobiphenyl	69	73	15-120
4-Terphenyl-d14	77	82	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: TOT1802
Project Number: TOT1802

Lab Number: L1819421

Report Date: 06/04/18

arameter	LCS %Recovery	Qual	LCSE %Recov	%. Qual	Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westborou	·							
Acenaphthene	89		88		31-137	1		50
Fluoranthene	92		90		40-140	2		50
Benzo(a)anthracene	88		87		40-140	1		50
Benzo(a)pyrene	93		91		40-140	2		50
Benzo(b)fluoranthene	87		94		40-140	8		50
Benzo(k)fluoranthene	93		82		40-140	13		50
Chrysene	88		86		40-140	2		50
Acenaphthylene	92		93		40-140	1		50
Anthracene	92		92		40-140	0		50
Benzo(ghi)perylene	91		89		40-140	2		50
Fluorene	92		90		40-140	2		50
Phenanthrene	90		88		40-140	2		50
Dibenzo(a,h)anthracene	92		92		40-140	0		50
Indeno(1,2,3-cd)pyrene	94		94		40-140	0		50
Pyrene	91		92		35-142	1		50

Survey made	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qua	l %Recovery Qual	
2-Fluorophenol	78	74	25-120
Phenol-d6	80	79	10-120
Nitrobenzene-d5	74	73	23-120
2-Fluorobiphenyl	78	79	30-120
2,4,6-Tribromophenol	82	79	10-136
4-Terphenyl-d14	78	76	18-120
			ANALYTICAL

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** TOT1802

Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-01 05/24/18 08:30 Client ID: SB001-20-22 Date Received: 05/25/18

Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.3		%	0.100	NA	1	-	05/29/18 09:46	121,2540G	JK

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** TOT1802

Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-02 05/24/18 09:00 Client ID: SB002-20-22 Date Received: 05/25/18

Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	80.8		%	0.100	NA	1	-	05/29/18 09:46	121,2540G	JK

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** 06/04/18 TOT1802

Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-03 05/24/18 09:20 Client ID: SB003-20-22 Date Received: 05/25/18

Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	85.7		%	0.100	NA	1	-	05/29/18 09:46	121,2540G	JK

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** TOT1802

Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-04 05/24/18 09:50

Client ID: SB004-20-22 Date Received: 05/25/18 Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Nestborough Lab)								
Solids, Total	84.0		%	0.100	NA	1	-	05/29/18 23:35	121,2540G	FN

Project Name: Lab Number: TOT1802 L1819421 **Project Number:**

Report Date: 06/04/18 TOT1802

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-05 05/24/18 10:15

Client ID: SB005-20-22 Date Received: 05/25/18 Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	77.2		%	0.100	NA	1	-	05/29/18 23:35	121,2540G	FN

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** TOT1802

Report Date: 06/04/18

SAMPLE RESULTS

Lab ID: Date Collected: L1819421-06 05/24/18 10:45

Client ID: SB006-20-22 Date Received: 05/25/18 Not Specified Sample Location: 737-747 4TH AVE., BROOKLYN NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	90.9		%	0.100	NA	1	-	05/29/18 23:35	121,2540G	FN

Project Name: Lab Number: TOT1802 L1819421 **Project Number:** 06/04/18 TOT1802

Report Date:

SAMPLE RESULTS

Lab ID: L1819421-07 Client ID:

Date Collected:

05/24/18 11:30

SB007-20-22

Date Received:

05/25/18

Sample Location: 737-747 4TH AVE., BROOKLYN NY

Not Specified Field Prep:

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	88.2		%	0.100	NA	1	-	05/29/18 23:35	121,2540G	FN

Lab Duplicate Analysis Batch Quality Control

Project Name: TOT1802 **Project Number:** TOT1802

Lab Number: L18

L1819421

Report Date: 06/04/18

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-03	QC Batch ID:	WG1120187-1	QC Sample:	L1818780-11	Client ID:	DUP Sample
Solids, Total	81.7		78.4	%	4		20
General Chemistry - Westborough Lab A	Associated sample(s): 04-07	QC Batch ID:	WG1120405-1	QC Sample:	L1819448-01	Client ID:	DUP Sample
Solids, Total	94.7		93.8	%	1		20

Project Name: TOT1802 Lab Number: L1819421 Project Number: TOT1802

Report Date: 06/04/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1819421-01A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-01B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-01C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-01D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-01E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-02A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-02B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-02C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-02D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-02E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-03A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-03B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-03C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-03D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-03E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-04A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-04B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-04C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-04D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-04E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-05A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260H-G(14),NYCP51-8260HLW-G(14)

Lab Number: L1819421 **Report Date:** 06/04/18

Project Name: TOT1802Project Number: TOT1802

			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L1819421-05B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260H-G(14),NYCP51-8260HLW-G(14)
L1819421-05C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260H-G(14),NYCP51-8260HLW-G(14)
L1819421-05D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-05E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-06A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-06B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-06C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-06D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-06E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-07A	Vial MeOH preserved	Α	NA		2.6	Υ	Absent		NYCP51-8260HLW-G(14)
L1819421-07B	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-07C	Vial water preserved	Α	NA		2.6	Υ	Absent	26-MAY-18 07:30	NYCP51-8260HLW-G(14)
L1819421-07D	Plastic 2oz unpreserved for TS	Α	NA		2.6	Υ	Absent		TS(7)
L1819421-07E	Glass 120ml/4oz unpreserved	Α	NA		2.6	Υ	Absent		NYCP51-PAH(14)
L1819421-08A	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-08B	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-08C	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-08D	Amber 1000ml unpreserved	В	NA		2.4	Υ	Absent		NYCP51-PAHSIM(7)
L1819421-08E	Amber 1000ml unpreserved	В	NA		2.4	Υ	Absent		NYCP51-PAHSIM(7)
L1819421-09A	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-09B	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-09C	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYCP51-8260-G(14)
L1819421-09D	Amber 1000ml unpreserved	В	NA		2.4	Υ	Absent		NYCP51-PAHSIM(7)
L1819421-09E	Amber 1000ml unpreserved	В	NA		2.4	Υ	Absent		NYCP51-PAHSIM(7)
L1819421-10A	Vial HCl preserved	В	NA		2.4	Υ	Absent		ARCHIVE()
L1819421-10B	Vial HCl preserved	В	NA		2.4	Υ	Absent		ARCHIVE()

Project Name: TOT1802 Lab Number: L1819421
Project Number: TOT1802 Report Date: 06/04/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name: TOT1802 Lab Number: L1819421
Project Number: TOT1802 Report Date: 06/04/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:TOT1802Lab Number:L1819421Project Number:TOT1802Report Date:06/04/18

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Manafield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information	lay	05	Pag	e 1 of Z		Date R in La		512	લાક		ALPHA Job# LISI 9421 Billing Information		
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	The state of the s	162					ASP-A			ASP-B		The Control of the Co		
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: ToTI		tth Acc	0 /	AL.	1 =		of Pillar	H		4 FR. V	Same as Client Info		
240 00 KGA 115 SA		Project Location: 737		for Aug.	Braklyn	NK	1 11	EQuIS	(1 File)	_ ⊔	EQuIS (4 File)	PO#		
Client Information		Project # TOTI6	- Personal					Other							
Client: PWGC		(Use Project name as Pro					Regu	latory R	-	ent			Disposal Site Information		
	noson que. St.7	Project Manager: 52/	nfor L	CWS			1 🗀	NY TOG		Ц	NY Part 3		Please identify below location	of	
	11716	ALPHAQuote #:						AWQ Sta	ındards	\bowtie	NY CP-51	ti:	applicable disposal facilities.		
Phone: 631-58	1-6353	Turn-Around Time						NY Rest	icted Use		Other		Disposal Facility:		
Fax:		Standard	and the same of th	Due Date				NY Unre	stricted U	se			NJ NY		
Email: Jennific-L	o pulgrasser. Lay	Rush (only if pre approved)		# of Days				NYC Sev	ver Disch	arge			Other:		
These samples have b	peen previously analyze	d by Alpha					ANA	YSIS					Sample Filtration	1	
Other project specific	c requirements/comm	ents:					1	9					Done	o t	
							CP-S	15.		1			Lab to do	a	
							0	Cp.					Preservation	10.4	
Please specify Metals	s or TAL.						0	\sim					Lab to do	В	
							10	N					(Please Specify below)	.0	
ALPHA Lab ID		27/32	Colle	ection	Sample	Sampler's	ن ا	ğ					(reads opening merchy	4	
(Lab Use Only)	Sar	mple ID	Date	Time	Matrix	Initials	13	5					Sample Specific Comments	-	
19491-01	S.6001-20	-7.2	5-24-18	-	<	NR	×	-	_	+	\rightarrow	+	cample openio comments	5	
-62	< A007-20		2-51-10	100	1	101-	100000	*	+	+		_		13	-
703	58003-70	-77		920			×	-	+	+	_	_		+	-
-64	5Bay 4 - 20	77				-	×	×		+-	_	_		-11	-
				950		-	<		-	-	_	+-		+1	_
-05	S6005-20			1015		-	~	X	-	+		+		-	_
-06	58006-20	- Mallion of the last of the l		1045			7	×	+	-	-	-			_
-07	58007-70	-24	V	1130	4	4	~	×	_	+		-		1	-
								_		\perp					
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification No	o: MA935		Con	tainer Type							Please print clearly, legi	bly	
B = HCI	A = Amber Glass	Mansfield: Certification No	o: MA015			турс							and completely. Sample		i
C = HNO ₃	V = Vial G = Glass					reservative							not be logged in and	III was	
D = H ₂ SO ₄ E = NaOH	B = Bacteria Cup		1.749			1696i vative							turnaround time clock wi start until any ambiguitie		
F = MeOH	C = Cube	Relinquished E	By:	Date/	Time	0	Receiv	ed By:			Date/Tin	ne	resolved, BY EXECUTIN		
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	O = Other E = Encore	Nim Vann		5-24-19	1 1630			AV	L	3/2	1/18		THIS COC, THE CLIEN		
K/E = Zn Ac/NaOH	D = BOD Bottle	132		5 7 CV	4918		_	1	10	5	SVE	211	HAS READ AND AGRE		
O = Other		1400	12/	3/26/16	-		ice	4	4	56	1/80	1:20	TO BE BOUND BY ALP TERMS & CONDITIONS		
Form No: 01-25 HC (rev. 3	(0. Sept. 2013)			21 40/15	46	11/2	co c	-		U/OR	1100	(-~)	(See reverse side.)		
Page 59 of 61	o ospero ioj					W	_		د	1				_	١

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	of Z	0.1	Date Red in Lab		12611	8	ALPHA Job# LIBIQUZI	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Information	1000				Deliv	erables				Billing Information	
FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: TOT	2081	0			1 1	ASP-A			P-B	Same as Client Info)
The same of the sa	1000	Project Location: [37-		u brow	Klyn N	1		EQuIS (1	File)	EC	lulS (4 File)	PO#	
Client Information	1500	Project # TOTIS		7490	20 -202			Other					
Client: PWCC		(Use Project name as Pr	roject #)				Regu	latory Rec	uiremen	1		Disposal Site Information	n
	suc. St.7	Project Manager: 5<	novier l	-cws				NY TOGS		NY	Part 375	Please identify below location	on of
Bothema NY		ALPHAQuote #:						AWQ Stand	dards	NY	CP-51	applicable disposal facilities.	6000 K
Phone: 631-57	9-6353	Turn-Around Time						NY Restrict	ted Use	Oth	er	Disposal Facility:	***************************************
Fax:		Standard	B	Due Date:				NY Unrestr	icted Use			□ NJ □ NY	
Email: Jennifer	@ pw/cosurco	Rush (only if pre approved		# of Days:				NYC Sewe	r Discharg	je		Other:	
These samples have be	een previously analyze	ed by Alpha					ANA	LYSIS				Sample Filtration	T
Other project specific	requirements/comm	ents:					To	7			TT		0
							19-9	3				☐ Done ☐ Lab to do	a
							2	00	1 1			Preservation	10
Please specify Metals	or TAL.						1	-	1 1		1 1	Lab to do	В
	ALPERA LA VALORA CA						5	3	1 1	- 1			100
AT DUAL Lab ID			Call	ection		_	1 X	S	1 1			(Please Specify below)	100
ALPHA Lab ID (Lab Use Only)	Sar	nple ID		1	Sample Matrix	Sampler's Initials	3	3	1 1				
A CONTRACTOR OF STREET, STREET	1011	2	Date	Time				-1	+	_	-	Sample Specific Comments	100
19491-08	MW-		5-24-14		GW	NK	8	>	\perp				3
-09	Mw-1		4	1220	1	4	X	×	+				3
70	Trip Blank						×		\perp				
													\neg
	J								T				
										\neg			+
													+
	Container Code	Westboro: Certification N	o: MA935					_	+-+	$\overline{}$		100 C C C C C C C C C C C C C C C C C C	_
	P = Plastic	Mansfield: Certification N			Con	tainer Type			1 1			Please print clearly, leg	
	V = Vial	Marisheld, Certification N	0. IVIAU 13			-		_	+	-	-	and completely. Sample not be logged in and	es can
TEV 100 1000 TO TO THE T	G = Glass				P	reservative	9 1		1 1	- 1		turnaround time clock v	will not
77	B = Bacteria Cup C = Cube											start until any ambiguiti	
50 C 100 T 100 T 100 C 1	O = Other	Relinquished E		Date/T	-		Receiv	ed By:			e/Time	resolved. BY EXECUTI	ING
H = Na ₂ S ₂ O ₃	E = Encore	VW WW	1	5-51-4	1650	2	11	MAC	1	175	181259	THIS COC, THE CLIEN	
NE - ZII AGNAON	D = BOD Bottle	9		5256	1950	1	1	21	Att !	5/23	15 711	HAS READ AND AGRE TO BE BOUND BY ALE	
O = Other		//	1	2/2/19		NA	10	Conti	10	9/26/19	80125	TERMS & CONDITION	100000000000000000000000000000000000000
Form No: 01-25 HC (rev. 30	-Sept-2013)			0 0011	.10	1	H	0	1	71-117	00.00	(See reverse side.)	
age 60 of 61	- 10					1		-	/				

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\Charlie\2018\180601A\

Data File: VC180601A23.D

Acq On : 1 Jun 2018 5:13 pm

Operator : CHARLIE:PK

Sample : 11819421-05,31,5.9,5,,b
Misc : WG1121549,ICAL14685
ALS Vial : 23 Sample Multiplier: 1

Quant Time: Jun 01 20:50:34 2018

Quant Method: I:\VOLATILES\Charlie\2018\180601A\C_180501_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Wed May 02 18:34:14 2018

Response via : Initial Calibration

Sub List : 8260-NYTCL - Megamix plus Diox180601A\VC180601A01.D•

C_180501_8260.m Fri Jun 01 21:08:05 2018

APPENDIX C GROUNDWATER SAMPLING LOGS

P.W. GROSSER CONSULTING, Inc **Well Sampling Log** Well Designation: MW-1 KC Sampled By: Site Address: Project Manager: Jennifer Lewis 737-747 4th Ave, Brooklyn, NY Project Name: Project Number: TOT1802 Totem Reference Elevation (ft): Well Use: NM Monitoring/Observation Depth to Product (ft): NP Product Elevation (ft): NM Depth to Water (ft): 23.09 Groundwater Elevation (ft): NM Depth to Bottom (ft): Bottom Elevation (ft): NM 31.00 Height of Water Column (ft): NM Well Diameter (in): 4 Standing Water Volume (gal): NM Calculated Purge Volume (gal): N/A 4/6/2018 8:09 Sample Date: Begin Purge Time: Sample Time: 8:30 Complete Purge Time: 8:24 Purge Method: Low Flow - Grundfos Sample Method: Low Flow - Grundfos Purge Rate (gpm): 0.20 Purge Time (min): 15 Actual Purge Volume (gal): Casing Volumes Removed: N/A 3 Clear Sample Appearance: Odors Observed: None Notes: **Analytical Laboratory:** Alpha Analytical Date Shipped: Headspace (ppm) **Analyses Requested:** VOC (CP-51); SVOC (CP-51)

				Field Indica	ator Paramete	rs		
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO	
		(°C)		NTU	mV	(mS/cm)	mg/L	
1	8:09	17.15	6.54	764	50	4.44	0	
2	8:12	17.18	6.58	328	30	4.15	0	
3	8:15	17.21	6.62	89.1	4	3.58	3.91	
4	8:18	17.74	6.63	50.8	0	3.34	1.77	
5	8:21	17.82	6.61	44.4	-2	3.28	3.28	
6	8:24	17.86	6.61	36.9	-3	3.30	3.34	

P.W. GROSSER CONSULTING, Inc

Well Designati					ampling Log				
•	on:		·	MW-3		Sampled By:			KC
Site Address:			737-747 4th	Ave, Brooklyn, I	NY	Project Manag	_	Jennif	er Lewis
Project Name:	:			Totem		Project Numb	er:	TO	T1802
Doforomoo Flor	uotion (ft).			NIN 4	Well Hee			Manitorina	/Observation
Reference Ele				NM NP	Well Use:	ation (ft).			
Depth to Produ			,		Product Elev				MM
Depth to Wate				23.65		r Elevation (ft):			NM
Depth to Botto		۸.		86.50 NM	Bottom Eleva Well Diameter			ľ	NM 4
Height of Wate							~a\.		4
Standing Water	er volume (g	aı):		NM (2010		Purge Volume (gai):		1/A
Sample Date:				5/2018	Begin Purge				3:38
Sample Time:	l.			9:00	Complete Pu	_			3:53
Purge Method				v - Grundfos	Sample Met				- Grundfos
Purge Rate (gr		.		0.20	Purge Time (15
Actual Purge \):		3		mes Removed:			I/A
Sample Appe				Clear	Odors Obser	vea:		IN	one
Analytical Lab	=		•	Analytical	Notes:				
Date Shipped:				5/2018					
Headspace (p Analyses Requ	•			NA					
					<u> </u>				
		T - T			ator Paramete				
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO		
		(°C)		Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
1	8:38	(°C) 15.14	7.07	Turbidity NTU 78	ORP mV -50	Cond. (mS/cm) 4.56	mg/L 1.19		
1 2	8:38 8:41	(°C) 15.14 16.56	7.07 6.71	Turbidity NTU 78 14	ORP mV -50 -25	Cond. (mS/cm) 4.56 4.52	mg/L 1.19 0		
1 2 3	8:38 8:41 8:44	(°C) 15.14 16.56 17.37	7.07 6.71 6.69	Turbidity NTU 78 14 20.3	ORP mV -50 -25	Cond. (mS/cm) 4.56 4.52 4.34	mg/L 1.19 0 0		
1 2 3 4	8:38 8:41 8:44 8:47	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69	Turbidity NTU 78 14 20.3 19.4	ORP mV -50 -25 -28 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23	mg/L 1.19 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4	8:38 8:41 8:44 8:47	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69	Turbidity NTU 78 14 20.3 19.4	ORP mV -50 -25 -28 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23	mg/L 1.19 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		
1 2 3 4 5	8:38 8:41 8:44 8:47 8:50	(°C) 15.14 16.56 17.37 17.49	7.07 6.71 6.69 6.69 6.68	Turbidity NTU 78 14 20.3 19.4 15.6	ORP mV -50 -25 -28 -29 -29	Cond. (mS/cm) 4.56 4.52 4.34 4,23 4.04	mg/L 1.19 0 0 0 0		

P.W. GROSSER CONSULTING, Inc **Well Sampling Log** Well Designation: MW-80 KC Sampled By: Site Address: Jennifer Lewis 737-747 4th Ave, Brooklyn, NY Project Manager: Project Name: Project Number: TOT1802 Totem Reference Elevation (ft): Well Use: NM Monitoring/Observation NΡ Product Elevation (ft): Depth to Product (ft): NM Depth to Water (ft): Groundwater Elevation (ft): NM 24.65 Depth to Bottom (ft): Bottom Elevation (ft): NM 32.90 Height of Water Column (ft): NM Well Diameter (in): 4 Standing Water Volume (gal): NMCalculated Purge Volume (gal): N/A 4/6/2018 Sample Date: Begin Purge Time: NΑ Sample Time: 8:00 Complete Purge Time: NA Purge Method: Low Flow - Grundfos Sample Method: Low Flow - Grundfos Purge Rate (gpm): NM Purge Time (min): NA Actual Purge Volume (gal): Casing Volumes Removed: N/A 0 Sample Appearance: Turbid Odors Observed: Organic **Analytical Laboratory:** Alpha Analytical Notes: Purged dry almost instantly; took grab sample when well recharged; sheen on sample water Date Shipped: 4/6/2018 Headspace (ppm) NA **Analyses Requested:** VOC (CP-51); SVOC (CP-51) Field Indicator Parameters Reading Time Temp. рΗ Turbidity ORP DO Cond. (°C) NTU mV (mS/cm) mg/L 2 3 4 5 6

P.W. GROSSER CONSULTING, Inc **Well Sampling Log** Well Designation: MW-81 KC Sampled By: Site Address: Jennifer Lewis 737-747 4th Ave, Brooklyn, NY Project Manager: Project Name: Project Number: TOT1802 Totem Reference Elevation (ft): Well Use: NM Monitoring/Observation Depth to Product (ft): NP Product Elevation (ft): NM Depth to Water (ft): Groundwater Elevation (ft): NM 24.72 Depth to Bottom (ft): 37.00 Bottom Elevation (ft): NM Height of Water Column (ft): NM Well Diameter (in): 4 Standing Water Volume (gal): NM Calculated Purge Volume (gal): N/A 4/6/2018 7:28 Sample Date: Begin Purge Time: Sample Time: 7:43 Complete Purge Time: 7:43

Sample Method:

Purge Time (min):

Odors Observed:

Casing Volumes Removed:

Low Flow - Grundfos

15

N/A

None

Sample Appearance: Notes: **Analytical Laboratory:** Alpha Analytical

Low Flow - Grundfos

0.20

3

Clear

Date Shipped: 4/6/2018 Headspace (ppm) NA

Analyses Requested:

Purge Method:

Purge Rate (gpm):

VOC (CP-51); SVOC (CP-51)

Actual Purge Volume (gal):

				Field Indica	tor Doromata	rc		
					ator Paramete	ers		
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO	
		(°C)		NTU	mV	(mS/cm)	mg/L	
1	7:28	15.88	7.69	168	-107	0.694	2.88	
2	7:31	17.07	6.97	109	-16	0.644	0.07	
3	7:34	17.5	6.86	94.3	8	0.633	0.14	
4	7:37	17.76	6.83	71.5	27	0.602	0.62	
5	7:40	17.72	6.84	58.6	42	0.572	1.14	
6	7:43	17.89	6.84	44.7	50	0.564	1.27	

P.W. GROSSER CONSULTING, Inc.

P.W. GR	O22FK	CON20	ILIING,	INC						
				Well S	Sampling Log					
Well Designation	on:			MW-84		Sampled By:			KC	
Site Address:			737-747 4th	n Ave, Brooklyn,	, NY	Project Manag	ger:	Jennifer Lewis		
Project Name:				Totem		Project Numb	er:	TC	T1802	
Reference Elev	vation (ft):			NM	Well Use:			Monitoring	/Observation	
				NP		ration (ft):		Monitoring/Observatio NM		
Depth to Product (ft): Depth to Water (ft):			,	21.64	Product Elevation (ft): Groundwater Elevation (ft):			NM		
Depth to Wate Depth to Botto				31.50	Bottom Eleva			NM		
Height of Wate		*).		NM	Well Diamet	• •			4	
Standing Wate				NM		er (111). Purge Volume (9	70l):	N/A		
Sample Date:	i volume (g	jai).		6/2018	Begin Purge		yaı).			
								9:45		
Sample Time: Purge Method				10:05 w - Grundfos	Complete Po			10:00 Low Flow - Grundfos		
_										
Purge Rate (gr		۸.		0.27	_	Purge Time (min): Casing Volumes Removed:			15 N/A	
Actual Purge \):		4 Clear				Petroleum		
Sample Appea Analytical Lab										
-	_		-	Analytical 6/2018	Notes:	sneen on pui	ge water; we	ii vauit dooi ii	грай зпаре	
Date Shipped:			4/0	NA						
Headspace (p Analyses Requ	-			IVA						
				Field Indi	cator Paramete	ers				
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO			
		(°C)		NTU	mV	(mS/cm)	mg/L			
1	9:45	15.93	6.5	292	-50	0.983	0			
2	9:48	17.4	6.4	90.5	-50	1.05	0			
3	9:51	17.97	6.44	52.5	-58	1.05	0			
4	9:54	17.93	6.47	45.8	-65	1.09	0			
5	9:57	18.02	6.48	49.0	-69	1.14	0			
6	10:00	18.06	6.49	47.5	-72	1.17	0			

P.W. GROSSER CONSULTING, Inc

				Well Sa	mpling Log					
Well Designati	on:			MW-89		Sampled By:			KC	
Site Address:			737-747 4th	n Ave, Brooklyn, N	۱Y	Project Mana	ger:	Jennit	fer Lewis	
Project Name:	:			Totem		Project Numb	er:	TO	T1802	
2	u. (a)			N.N.4	haz ii ii				/01 !!	
Reference Ele				NM	Well Use:	(0)		Monitoring/Observatio		
Depth to Produ			,	NP	Product Elevation (ft):			NM		
Depth to Water (ft):				20.76	Groundwater Elevation (ft):			NM		
Depth to Bottom (ft):				35.10	Bottom Eleva			NM		
leight of Wate				NM	Well Diamete	` '	N		4	
tanding Wate		aı):		NM		Purge Volume (gai):		N/A	
ample Date:				6/2018	Begin Purge				9:13	
ample Time:				9:30	Complete Pu	_		9:28		
Purge Method				w - Grundfos	Sample Met			Low Flow - Grundfos		
Purge Rate (g	•		0.33		Purge Time (min):			15		
Actual Purge \):		5	Casing Volumes Removed:			N/A		
ample Appe				Clear	Odors Observed:			None		
Analytical Lab	-		=	Analytical	Notes:					
Date Shipped:			4/0	6/2018						
leadspace (p	=			NA						
Analyses Req ı VOC (CP-51);		- >								
				Field Indica	ator Paramete	ers				
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO			
		(°C)		NTU	mV	(mS/cm)	mg/L			
1	9:13	16.90	6.96	45.4	-75	0.42	0	1		
2	9:16	16.94	6.73	39.5	-88	0.417	0	1		
3	9:19	17.14	6.71	26.1	-91	0.415	0	1		
4	9:22	17.24	6.7	14.8	-94	0.416	0			
5	9:25	17.13	6.7	15.2	-95	0.416	0			
6	9:28	17.11	6.71	14.5	-95	0.417	0			
							_			
								1		

P.W. GROSSER CONSULTING, Inc **Well Sampling Log** MW-90 KC Well Designation: Sampled By: Site Address: Jennifer Lewis 737-747 4th Ave, Brooklyn, NY Project Manager: Project Name: Totem Project Number: TOT1802 Reference Elevation (ft): NM Well Use: Monitoring/Observation NP Product Elevation (ft): Depth to Product (ft): NM Depth to Water (ft): 23.09 Groundwater Elevation (ft): NM Depth to Bottom (ft): Bottom Elevation (ft): NM33.50 Height of Water Column (ft): NM Well Diameter (in): 4 Standing Water Volume (gal): NM Calculated Purge Volume (gal): N/A 4/6/2018 7:01 Sample Date: Begin Purge Time: Sample Time: 7:15 Complete Purge Time: 7:13 Low Flow - Grundfos Sample Method: Low Flow - Grundfos Purge Method: Purge Rate (gpm): 0.21 Purge Time (min): 12 Actual Purge Volume (gal): 2.5 Casing Volumes Removed: N/A Sample Appearance: Clear Odors Observed: None Alpha Analytical Notes: MW-32A on original sampling plan had absorbent sock Analytical Laboratory: in 2" well. Purged dry almost instantly, unable to sample. Date Shipped: 4/6/2018 MW-90 right next to MW-32A. Headspace (ppm) NA **Analyses Requested:** VOC (CP-51); SVOC (CP-51)

				Field Indica	ator Parameter	rs		
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO	
		(°C)		NTU	mV	(mS/cm)	mg/L	
1	7:01	17.21	6.62	155.0	-86	3.050	0.00	
2	7:04	17.37	6.55	52.5	-84	3.080	0.00	
3	7:07	18.26	6.57	84.3	-92	3.04	0.00	
4	7:10	18.54	6.58	55.3	-98	3.06	0.00	
5	7:13	18.57	6.58	49.0	-100	3.05	0.00	

P.W. GROSSER CONSULTING, Inc **Well Sampling Log** MW-94 KC Well Designation: Sampled By: Site Address: Jennifer Lewis 737-747 4th Ave, Brooklyn, NY Project Manager: Project Name: Totem Project Number: TOT1802 Reference Elevation (ft): NM Well Use: Monitoring/Observation NΡ Product Elevation (ft): Depth to Product (ft): NM Depth to Water (ft): Groundwater Elevation (ft): NM 23.50 Depth to Bottom (ft): Bottom Elevation (ft): NM26.80 Height of Water Column (ft): NM Well Diameter (in): 2 Standing Water Volume (gal): NM Calculated Purge Volume (gal): N/A 4/6/2018 10:23 Sample Date: Begin Purge Time: Sample Time: 10:50 Complete Purge Time: 10:24 Purge Method: Low Flow - Grundfos Sample Method: Low Flow - Grundfos Purge Rate (gpm): 0.25 Purge Time (min): Actual Purge Volume (gal): 0.25 Casing Volumes Removed: N/A Sample Appearance: Odors Observed: Organic Turbid Notes: Purged dry after 1 reading; collected grab sample **Analytical Laboratory:** Alpha Analytical when well recharged; well had sock in it Date Shipped: 4/6/2018 Headspace (ppm) NA **Analyses Requested:** VOC (CP-51); SVOC (CP-51) Field Indicator Parameters Reading Time Temp. рΗ Turbidity ORP Cond. DO (°C) NTU mV (mS/cm) mg/L 10:23 13.67 6.71 >1000 -37 2.7

P.W. GROSSER CONSULTING, Inc

r.vv. GR	OSSER	CONSC	JEHNG,	IIIC						
				Well S	ampling Log					
Well Designati	on:			MW-80		Sampled By:			NR	
Site Address:			737-747 4th	Ave, Brooklyn,	NY	Project Manag	ger:	Jennifer Lewis		
Project Name:	:			Totem		Project Numb	er:	TOT1802		
Reference Ele	vation (ft):			NM	Well Use:			Monitoring	/Observation	
Depth to Produ	uct (ft):			NP	Product Elev	ation (ft):		NM		
Depth to Wate	er (ft):		2	22.15	Groundwate	er Elevation (ft):		NM		
Depth to Botto	om (ft):			33.0	Bottom Eleva	ation (ft):		NM		
Height of Wate	er Column (f	t):		NM	Well Diamet	er (in):			4	
Standing Wate	er Volume (g	jal):		NM	Calculated I	Purge Volume (gal):	I	N/A	
Sample Date:			5/2	4/2018	Begin Purge	Time:		-	7:54	
Sample Time:			C	08:15	Complete Po	urge Time:		8	3:12	
Purge Method	:		Low Flov	v - Grundfos	Sample Met	hod:		Low Flow	v - Grundfos	
Purge Rate (g _l	pm):		(0.14	Purge Time ((min):			18	
Actual Purge \	Volume (gal)):		2.5	Casing Volu	mes Removed:		N/A		
Sample Appe	arance:				Odors Obser	rved:				
Analytical Lab	oratory:		Alpha	Analytical	Notes:					
Date Shipped:	:		5/2	4/2018						
Headspace (p	opm)			NA						
Analyses Requ										
VOC (CP-51);	SVOC (CP-5	1)								
				Field Indic	cator Paramete	ers				
Reading	Time	Temp.	рН	Turbidity	ORP	Cond.	DO			
		(°C)		NTU	mV	(mS/cm)	mg/L			
1	7:54	18.91	6.67	24	-81	3.36	.53			
2	7:57	18.90	6.66	20.9	-81	3.39	.11			
3	8:00	19.01	6.65	22	-89	3.47	0			
4	8:03	19.12	6.65	23.4	-90	3.47	0			
5	8:06	19.13	6.65	21	-91	3.49	0			
6	8:09	19.25	6.64	21.4	-92	3.48	0			
7	8:12	19.27	6.64	22.2	-92	3.48	0			
8	8:15	19.26	665	21.6	-92	3.49	0			
		1								
				1						

P.W. GROSSER CONSULTING, Inc.

				Well S	Sampling Log					
Well Designati	on:			MW-86		Sampled By:			NR	
Site Address:			737-747 4th	Ave, Brooklyn,	NY	Project Mana	ger:	Jennifer Lewis		
Project Name:				Totem		Project Numb	er:	TO	T1802	
Reference Ele	vation (ft):			NM	Well Use:			Monitoring/Observation		
Depth to Produ	uct (ft):			NP	Product Elev	ation (ft):	NM			
Depth to Wate	er (ft):		2	22.76	Groundwate	er Elevation (ft):	NM			
Depth to Botto	m (ft):			NM	Bottom Eleva	ation (ft):	NM			
Height of Wate	er Column (ft	:):		NM	Well Diamet	er (in):	2			
Standing Wate	er Volume (g	al):		NM	Calculated I	Purge Volume (gal):	1	N/A	
Sample Date:			5/2	4/2018	Begin Purge	Time:		1	1:54	
Sample Time:			1	2:20	Complete Po	urge Time:		1:	2:18	
Purge Method	:		Low Flov	v - Grundfos	Sample Met	hod:		Low Flow	r - Grundfos	
Purge Rate (g _l	pm):		(0.25	Purge Time (min):			1	
Actual Purge \	Volume (gal)) :	(0.25	Casing Volu	mes Removed:	N	N/A		
Sample Appe	arance:				Odors Obser	ved:				
Analytical Lab	oratory:		Alpha	Analytical	Notes:					
Date Shipped:			5/2	4/2018						
Headspace (p	pm)			NA						
Analyses Requ	uested:									
				Etald la di						
Dooding	Timo	Tomp	nll		ORP	Cond.	DO	1		
Reading	Time	Temp.	рН	Turbidity NTU	mV	(mS/cm)				
1	11:54	(°C)	6.78	435	-90	3.05	mg/L 0	+		
2	11:57	22.15	6.75	355	-87	3.07	0	+		
3	12:00	20.35	6.70	134	-86	3.07	0	1		
4	12:03	20.08	6.69	104	-86	3.17	0			
5	12:06	19.89	6.66	58.6	-87	3.22	0	1		
6	12:09	20.05	6.66	59.5	-87	3.22	0			
7	12:12	19*.99	6.63	51.9	-86	3.25	0			
8	12:15	20.05	6.62	50.2	-86	3.26	0	1		
9	12:18	20.02	6.62	50.4	-86	3.27	0	1		
•				33	+			1		
-								1		
								1		
								1		
						+				
						+				
		1			1	1				