

August 11, 2021

One Brooklyn Family Warehousing LLC 97 North 10th Street, 2D Brooklyn, NY 11249

Re: Phase II Environmental Site Investigation

340 Myrtle Avenue – Brooklyn, NY 11205 Block 2073, Lot 21 (the "Site")

OER Project No. 22TMP0009K

Dear Mr. Rands,

Between July 26, 2021 and July 28, 2021, Tenen Environmental, LLC (Tenen) conducted soil, groundwater and sub-slab soil vapor sampling at the above Site on behalf of One Brooklyn Family Warehousing LLC. This investigation was conducted to meet the requirements of the hazardous materials E-designation (E-183) that was placed on the Site as part of the Fort Greene/Clinton Hill Rezoning and Text Amendment (CEQR No. 07DCP066K). This letter report provides a summary of our findings, including the results of the laboratory analysis, conclusions and recommendations.

Background

The Site, located at 340 Myrtle Avenue, Brooklyn, New York (Tax Block 2073, Lot 21) is an irregularly shaped parcel located at the southeast corner of Myrtle Avenue and Carlton Avenue, as shown on Figure 1. The Site is approximately 8,250 square feet (SF) and has approximately 106 feet of frontage along Myrtle Avenue, and 80 feet of frontage along Carlton Avenue. The Site is zoned R7A, denoting a medium-density apartment house district, with a C2-4 commercial overlay. The Site is currently occupied by a one-story commercial building with a full cellar and is occupied by a bedding/bath store and various vacant commercial spaces, including a vacant laundromat. The cellar extends to a depth of approximately 9.5 feet below surface grade (ft-bsg).

The development project consists of a new seven-story mixed-use commercial and residential building with a full cellar that will occupy approximately 7,392-SF, or approximately 90%, of the Site lot. The remainder of the lot will be unexcavated and utilized for an at grade walkway and landscaping. The proposed building will have a total gross square footage of approximately 45,221-SF. The proposed construction will require partial demolition of the existing onsite structure. The foundation slab and foundation sidewalls of the existing onsite structure will remain to be utilized as part of the new building. The existing cellar footprint is the same as the proposed cellar footprint and minimal excavation will be required within the existing cellar to accommodate the installation of pile caps and an elevator pit. The water table was identified at approximately 53 ft-bsg and is not expected to be encountered during redevelopment.

Previous Investigations

A Geotechnical Engineering Report was prepared for the Site by Hartland Engineering, DPC (Hartland) in June 2021. The 2021 Geotechnical Report indicates that uncontrolled fill (silt, gravel, and construction debris) exists onsite from the ground surface to approximately 10 to 13 ft-bsg. The fill layer is underlain by native soil (loose and medium silt), followed by a layer of glacial till.

A Phase I Environmental Site Assessment (ESA) conducted by Tenen in July 2021 identified the following recognized environmental conditions (RECs) in connection with the property:

- The documented presence of historic fill at the Site;
- Historic use of the Site for dry cleaning; and,
- Historic use of the south adjoining property for auto repair and manufacturing.

Geology and Hydrogeology

Based on this investigation, as well as, the aforementioned Hartland investigation, the Site is underlain by a continuous layer of historic fill consisting of silty sand with gravel, concrete debris, brick debris, and plastic debris to a depth of approximately 11.5 ft-bsg. The fill layer is underlain by a native layer of fine grained silty sand with silt lenses throughout to a depth of 20 ft-bsg. The sand and silt layer is underlain by a layer of fine to coarse grained sand transitioning to clayey sand to a depth of 22.5 ft-bsg. The sand layer is underlain by a layer of sandy clay to a depth of 24 ft-bsg. The sandy clay layer is underlain by fine to coarse grained sand to at least 35 ft-bsg. Groundwater at the Site is expected to flow north, towards the East River. Boring and monitoring well construction logs from the Phase II Environmental Site Investigation (ESI) are included in Attachment 1.

Geophysical Investigation

On July 27, 2021, a geophysical survey was performed across the Site by AARCO Environmental Services Inc. (AARCO) and sidewalks adjoining the Site to investigate the presence of any underground storage tanks (USTs) or obstructions and to clear proposed boring locations. No USTs were identified onsite during the performance of the geophysical investigation.

Sample Collection

Soil Vapor

On July 27, 2021, Tenen installed five sub-slab soil vapor points within the Site basement. On July 28, 2021, Tenen collected five sub-slab soil vapor samples (SS-1 through SS-5) from within the Site basement.

Sub-Slab Soil Vapor Sample Designations – July 2021

Sample Name	Sample Type	Sample Location		
		Northeastern portion of		
SS-1	Sub-Slab Soil Vapor	basement, within former dry		
		cleaner footprint		
		Southeastern portion of		
SS-2	Sub-Slab Soil Vapor	basement, within former dry		
		cleaner footprint		
SS-3	Sub-Slab Soil Vapor	Southern portion of basement		
SS-4	Sub-Slab Soil Vapor	Northern portion of basement		
99.5	Sub-Slab Soil Vapor	Northwestern portion of		
SS-5	Suo-Siao Son Vapor	basement		

At each soil vapor sampling location, a ½-inch diameter, two-inch long perforated soil vapor sampling probe (AMS gas vapor probe tip) was placed directly into the soil. All soil vapor sample locations were installed with a hammer-core drill. Access to the sub-slab soil at each soil vapor sampling location was gained by drilling through the top surface material (concrete) using a drill bit. All probes were installed approximately six-inches below the bottom of the existing concrete slab.

The soil vapor sampling probe was connected to dedicated tubing that was extended to grade. In accordance with the New York State Department of Health (NYSDOH) October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (Soil Vapor Guidance) protocols, a tracer gas (helium) was used to verify the integrity of the soil vapor probe. A plastic chamber was sealed above the borehole. The sampling tube was pushed

through the top of the sealed chamber. The atmosphere inside the chamber was enriched with the tracer gas (helium). A portable helium monitor was attached to the sampling tube to measure a vapor sample from the probe for the presence of high concentrations (>10%) of the tracer gas.

Soil vapor was purged from the boring hole by attaching the surface end of the tubing to an air valve and then to a vacuum pump. The vacuum pump removed one to three volumes of air (volume of the sample probe and tube) prior to sample collection. The flow rate for both purging and sample collection did not exceed 0.2 liters per minute.

The soil vapor sample was first screened for organic vapors using a photoionization detector (PID). Pre-sample PID readings from the soil vapor points ranged from 4.9 parts-per-million (ppm) in SS-1 to 234 ppm in SS-2 (both collected within the former dry cleaner footprint). PID readings were not detected in soil vapor point SS-5. Soil vapor samples were collected in 2.7-liter Summa canisters using two-hour regulators and analyzed for volatile organic compounds (VOCs) using EPA Method TO-15.

Field notes were maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after the samples were collected and chain of custody protocols.

Soil

On July 26, 2021, eight soil borings (SB-1 through SB-8) were advanced throughout the Site. Soil boring SB-1 was installed in the exterior yard portion of the Site to a depth of 35 ft-bsg and soil borings SB-2 through SB-8 were installed within the Site basement to a depth of four feet below basement grade (ft-bbg). Soil boring SB-1 was converted to permanent groundwater monitoring well (MW-1). Boring locations are depicted on Figure 2. A table detailing the soil sampling locations and sample designations is included below.

Soil Sample Designation and Descriptions of Location

	Depth Below Sidewalk	Descriptions of Education
Sample Name	or Basement Grade (ft-	Location
~ 	bsg or ft-bbg)	20000
SB-1 (0-2)	0-2	Western perimeter of the exterior portion
SB-1 (2-4)	2-4	of the Site
SB-2 (0-2)	0-2	E-t-manation of the Cita has an ant
SB-2 (2-4)	2-4	Eastern portion of the Site basement
SB-3 (0-2)	0-2	Southeastern portion of the Site basement,
SB-3 (2-4)	2-4	within the former dry cleaner footprint
SB-4 (0-2)	0-2	Southous moution of the Site has amont
SB-4 (2-4)	2-4	Southern portion of the Site basement
SB-5 (0-2)	0-2	Western neution of the Site has eneut
SB-5 (2-4)	2-4	Western portion of the Site basement
SB-6 (0-2)	0-2	North and resident of the City because of
SB-6 (2-4)	2-4	Northern portion of the Site basement
SB-7 (0-2)	0-2	Northwestern nortion of the Site becoment
SB-7 (2-4)	2-4	Northwestern portion of the Site basement
SB-8 (0-2)	0-2	Northeastern portion of the Site basement,
SB-8 (2-4)	2-4	within the former dry cleaner footprint

The boring installation was performed by AARCO utilizing a direct push track-mounted Geoprobe® for the exterior boring and a hand auger for all interior borings. The soil from all borings was screened with a PID, capable of detecting the potential presence of VOCs, from grade to termination depth. PID readings ranged from

0.2 ppm in SB-3 to 1.5 ppm in SB-4. PID readings in soils from SB-1, SB-2, SB-5, SB-6, SB-7, and SB-8 were all non-detect.

For all soil borings, a surface soil sample (0-2 ft-bbg interval for interior borings and 0-2 ft-bsg for the exterior boring) and a subsurface soil sample (2-4 ft-bbg for interior borings and 2-4 ft-bsg for exterior borings) was collected. All samples were collected using disposable equipment and in such a manner as to minimize headspace/vapor leakage within the sampling bottles. Exterior soil boring samples were collected using dedicated acetate liners from five-foot macrocores and interior soil boring samples were collected directly from the hand auger.

No grossly contaminated soil cuttings were encountered during this investigation. Following the completion of the soil sampling, boreholes were backfilled with clean soil cuttings and clean sand. Boring SB-1 was converted to permanent monitoring well MW-1, as detailed in the following section. Boring and monitoring well construction logs are included in Attachment 1.

The soil samples were containerized in accordance with EPA analytical protocols. Each sample was labeled, sealed, and placed in a chilled cooler for shipment to the laboratory. A record of each sample, including notation of any odors, color, and sample matrix, was kept in the sampler's field logbook. A chain of custody was maintained throughout the field sampling, transport of samples to the laboratory and lab analysis. All soil samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), target analyte list (TAL) metals, pesticides, and polychlorinated biphenyls. In addition, soil sample SB-1 (0-2) was also analyzed for 1,4-dioxane, and per- and polyfluoroalkyl substances (PFAS).

Groundwater

On July 27, 2021, (2) two-inch diameter, permanent groundwater monitoring wells were installed using a Geoprobe® sonic rig. Monitoring well MW-1 was installed concurrent with soil boring SB-1 and monitoring well MW-2 was installed via drill and drop without the advancement of a soil boring or the collection of a soil sample. Both monitoring wells were installed to a depth of 65 ft-bsg with a ten-foot screen. Groundwater was measured at depths ranging from approximately 53.24 ft-bsg in MW-1 to 53.3 ft-bsg in MW-2.

Monitoring Well Locations, Sample Designations, and Descriptions of Location

Well Location	Sample Name	Description of Location				
MW-1	MW-1	Western perimeter of the exterior portion of the Site				
MW-2	MW-2	Southern sidewalk of Myrtle Avenue, adjacent to the former onsite dry cleaner				

Monitoring wells MW-1 and MW-2 were developed and sampled on July 28, 2021. A PID was used to measure head-space readings in the wells prior to sampling. Readings were non-detect in both wells. Field instrumentation was employed to measure water temperature, pH, turbidity, and dissolved oxygen in the sampled wells in order to stabilize parameters before sample collection. Sampling was completed using low-flow methodology using a Waterra Hydrolift pump. No visual evidence of petroleum impacts was observed in purged groundwater.

Monitoring well construction logs are included in Attachment 1. Groundwater purge logs are included in Attachment 3.

Deviations

Permanent groundwater monitoring well MW-3 was planned to be installed within the southern sidewalk of Myrtle Avenue, west of MW-2; however, during installation on July 28, 2021, a clear location to install the well

could not be found due to the substantial presence of underground utilities and multiple overhead obstructions. Access restrictions ultimately resulted in abandonment of the installation of MW-3.

Sample Analysis

All samples were sent under chain-of-custody documentation to Alpha Analytical, Inc. (Alpha). Alpha is certified by the NYSDOH Environmental Laboratory Approval Program (ELAP) as LABIDs 11627 and 11148. Sub-slab soil vapor samples were analyzed for VOCs. Soil samples were analyzed for VOCs, SVOCs, TAL metals, pesticides, and PCBs. In addition, soil sample SB-1 (0-2) was also analyzed for 1,4-dioxane and PFAS. Groundwater samples were analyzed for VOCs, SVOCs, total and dissolved metals, pesticides, PCBs, 1,4-dioxane, and PFAS.

Analytical Results

Sub-Slab Soil Vapor

Sub-slab soil vapor results were compared to the NYSDOH Decision Matrices as presented in the NYSDOH Soil Vapor Guidance, October 2006 with May 2017 updates.

Sub-slab soil vapor results are presented in Table 1 and depicted on Figure 3. Laboratory deliverables are included in Attachment 4. The analytical results are summarized below.

CVOCS

A variety of chlorinated VOCs (cVOCs), including tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2dichloroethene (DCE), trans-1,2-DCE, and chloroform were detected in one or more sub-slab soil vapor sample. PCE was detected in all five sub-slab soil vapor samples at concentrations ranging from 1,250 micrograms per cubic meter (ug/m3) in SS-5 to 351,000 ug/m3 in SS-2 (within the former dry cleaner footprint); TCE was detected in four of five sub-slab soil vapor samples at concentrations ranging from 38.2 ug/m3 in SS-4 to 1,410 ug/m3 in SS-3; cis-1,2-DCE and trans-1,2-DCE were detected in one sub-slab soil vapor sample (SS-3) at concentrations of 2,890 ug/m3 and 205 ug/m3, respectively; and, chloroform was detected in three sub-slab soil vapor samples at concentrations ranging from 5.23 ug/m3 in SS-5 to 406 ug/m3 in SS-2. PCE is part of NYSDOH Matrix B and TCE and cis-1,2-DCE are part of NYSDOH Matrix A. Comparison of PCE, TCE, and cis-1,2-DCE concentrations to the applicable NYSDOH Matrix (Matrix B for PCE and Matrix A for TCE and cis-1,2-DCE) indicates that mitigation would be required for PCE at all five sample locations regardless of the potential co-located indoor air concentrations; mitigation would be required for TCE at three sample locations (SS-1, SS-2, and SS-3) regardless of the potential co-located indoor air concentrations; and, mitigation would be required for cis-1,2-DCE at one sample location (SS-3) regardless of the potential co-located indoor air concentration. Trans-1,2-DCE and chloroform are not part of the NYSDOH Decision Matrices. All other cVOCs included on the NYSDOH Decision Matrices, including 1,1-DCE, carbon tetrachloride, 1,1,1-trichloroethane, methylene chloride, and vinyl chloride, were not detected in any sub-slab soil vapor sample.

Petroleum-Related VOCs

One petroleum-related VOC, toluene, was detected at a concentration of 6.1 ug/m3 in SS-5. One chlorobenzene, 1,4-dichlorobenzene, was detected at a concentration of 4.28 ug/m3 in SS-5.

Soil

Soil results were compared to NYSDEC Unrestricted Use SCOs as listed in 6 NYCRR Part 375-6.8(a) and Restricted-Residential Use SCOs as listed in 6 NYCRR Part 375-6.8(b). PFAS analytes were compared to the proposed Unrestricted Use SCOs and Restricted-Residential Use SCOs as listed in the NYSDEC's *Guidelines for Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs* (PFAS Guidelines), January 2021. The Unrestricted Use SCOs are used as a screening value for potential soil impacts and the Restricted-Residential Use SCOs are consistent with the anticipated future use of the Site.

Soil sample results are presented in Tables 2a through 2e and depicted on Figure 4. Laboratory deliverables are included in Attachment 4.

VOCs

The cVOC PCE was detected in one shallow soil sample, SB-3 (0-2), in exceedance of its Unrestricted Use and Restricted-Residential Use SCOs. PCE was also detected at low concentrations, below the Unrestricted Use and Restricted-Residential Use SCOs, in the remaining 15 soil samples and the duplicate sample. PCE was detected at a maximum (max.) concentration of 100 milligrams per kilogram (mg/kg) in SB-3 (0-2), collected from the southern portion of the Site, within the former dry cleaner footprint. PCE has an Unrestricted Use SCO of 1.3 mg/kg and a Restricted-Residential Use SCO of 19 mg/kg. No other VOCs were detected in exceedance of Unrestricted Use or Restricted-Residential Use SCOs in any soil samples.

SVOCs

A variety of SVOCs, specifically polyaromatic hydrocarbons (PAHs), were detected in exceedance of Unrestricted Use SCOs and/or Restricted-Residential Use SCOs in three shallow (0-2 ft-bsg and 0-2 ft-bbg) soil samples. PAHs are common constituents found in historic fill. Chrysene was detected in exceedance of its Unrestricted Use SCO, but below its Restricted-Residential Use SCO, in three samples; benzo(k)fluoranthene was detected in exceedance of its Unrestricted Use SCO, but below its Restricted-Residential Use SCO, in two samples; benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected in exceedance of their Unrestricted Use and Restricted-Residential Use SCOs in three samples; and, dibenzo(a,h)anthracene was detected in exceedance of its Unrestricted Use and Restricted-Residential Use SCOs in two samples. Chrysene was detected at a max. concentration of 3.8 mg/kg in with an Unrestricted Use SCO of 1 mg/kg and a Restricted-Residential Use SCO of 3.9 mg/kg; benzo(k)fluoranthene was detected at a max. concentration of 1.9 mg/kg with an Unrestricted Use SCO of 0.8 mg/kg and a Restricted-Residential Use SCO of 3.9 mg/kg; benzo(a)anthracene was detected at a max. concentration of 4.5 mg/kg with Unrestricted Use and Restricted-Residential Use SCOs of 1 mg/kg; benzo(a)pyrene was detected at a max. concentration of 5.3 mg/kg with Unrestricted Use and Restricted-Residential Use SCOs of 1 mg/kg; benzo(b)fluoranthene was detected at a max. concentration of 6.1 mg/kg with Unrestricted Use and Restricted-Residential Use SCOs of 1 mg/kg; indeno(1,2,3-cd)pyrene was detected at a max. concentration of 4.1 mg/kg with Unrestricted Use and Restricted-Residential Use SCOs of 0.5 mg/kg; and, dibenzo(a,h)anthracene was detected at a max. concentration of 0.96 mg/kg with Unrestricted Use and Restricted-Residential Use SCOs of 0.33 mg/kg. The highest concentration of all SVOCs was detected in SB-3 (0-2). No other SVOCs were detected in exceedance of Unrestricted Use or Restricted-Residential Use SCOs in any soil samples.

Metals

A variety of metals, including copper, lead, mercury, and zinc, were detected in one or more soil samples in exceedance of Unrestricted Use SCOs. Lead and mercury were detected in four soil samples in exceedance of Unrestricted Use SCO; and, copper was detected in one sample in exceedance of its Unrestricted Use SCO. Of these, lead was also detected in exceedance of its Restricted-Residential Use SCO in two samples and mercury was detected in exceedance of its Restricted-Residential Use SCO in one sample. Lead was detected at a max. concentration of 638 mg/kg in SB-1 (2-4) with an Unrestricted Use SCO of 63 mg/kg and a Restricted-Residential Use SCO of 400 mg/kg; mercury was detected at a max. concentration of 1.14 mg/kg in SB-1 (2-4) with an Unrestricted Use SCO of 0.81 mg/kg and a Restricted-Residential Use SCO of 10,000 mg/kg; and, copper was detected at a concentration of 154 mg/kg in SB-1 (2-4) with an Unrestricted Use SCO of 50 mg/kg and a Restricted-Residential Use SCO of 270 mg/kg. No other metals were detected in exceedance of Unrestricted Use or Restricted-Residential Use SCOs in any soil samples.

Pesticides and PCBs

Two pesticides, 4,4'-DDE and 4,4'-DDT, were detected in exceedance of Unrestricted Use SCOs, but below Restricted-Residential Use SCOs, in one or more soil samples. 4,4'-DDE was detected in exceedance of its Unrestricted Use SCO of 0.0033 mg/kg in three samples [max. 0.106 mg/kg in SB-1 (2-4)] and 4,4'-DDT was detected in exceedance of its Unrestricted Use SCO of 0.0033 mg/kg in four samples [max. 0.108 mg/kg in SB-1 (2-4)]. No other pesticides were detected in exceedance of Unrestricted Use SCOs in any soil samples.

One PCB, aroclor 1260, was detected slightly in exceedance of its Unrestricted Use SCO of 0.1 mg/kg in one soil sample, SB-1 (0-2) (concentration of 0.109 mg/kg). In addition, total PCBs were detected slightly in exceedance of their Unrestricted Use SCO in one soil sample, SB-1 (0-2) (concentration of 0.109 mg/kg). No other PCBs were detected in exceedance of Unrestricted Use SCOs in any soil samples.

Pesticides and PCBs were not detected in exceedance of Restricted-Residential Use SCOs in any soil samples.

Emerging Contaminants

One PFAS analyte, perfluorooctanesulfonic acid (PFOS), was detected in exceedance of its proposed Unrestricted Use SCO, but below its Proposed Restricted-Residential Use SCO, in soil sample SB-1 (0-2). PFOS was detected at a concentration of 5.14 nanograms per gram (ng/g) with a proposed Unrestricted Use SCO of 0.88 ng/g and a proposed Restricted-Residential Use SCO of 44 ng/g. No other PFAS analytes were detected in exceedance of the proposed Unrestricted Use or Restricted-Residential Use SCOs in any soil samples.

1,4-Dioxane was not detected in any soil samples.

Groundwater

Groundwater results were compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Water Quality Standards and Guidance Values (Class GA Standards) and NYSDEC's PFAS Guidelines.

Groundwater sample results are presented in Tables 3a through 3e and depicted on Figure 5. Laboratory deliverables are included in Attachment 4.

VOCs

One cVOC, PCE, was detected in exceedance of its Class GA Standard of 5 micrograms per liter (ug/l) in both groundwater samples and the duplicate sample collected. PCE was detected at a max. concentration of 32 ug/l in MW-2 and MW-2_DUP, collected from the southern sidewalk of Myrtle Avenue, adjacent to and anticipated downgradient of, the former onsite dry cleaner. No other VOCs were detected in exceedance of Class GA Standards in any groundwater samples.

SVOCs

A variety of SVOCs, specifically PAHs, were detected slightly in exceedance of their respective Class GA Standards in both groundwater samples and the duplicate sample. Benzo(a)anthracene and benzo(b)fluoranthene were detected in both groundwater samples and the duplicate sample in exceedance of Class GA Standards; benzo(k)fluoranthene was detected in both groundwater samples in exceedance of the Class GA Standard; and, chrysene and indeno(1,2,3-cd)pyrene were detected in one groundwater sample and the duplicate sample in exceedance of Class GA Standards. Benzo(a)anthracene was detected at a max. concentration of 0.11 ug/l; benzo(b)fluoranthene was detected at a max. concentration of 0.08 ug/l; benzo(k)fluoranthene was detected at a max. concentration of 0.09 ug/l; and, indeno(1,2,3-cd)pyrene was detected at a max. concentration of 0.03 ug/l. The highest concentrations of all SVOCs were detected in MW-1, located in the exterior portion of the Site. The Class GA Standard for all aforementioned PAHs is 0.002 ug/l. No other SVOCs were detected in exceedance of Class GA Standards in any groundwater sample.

Total and Dissolved Metals

One metal, chromium, was detected in one total groundwater sample, MW-2, slightly in exceedance of its Class GA Standard. Total chromium was detected at a concentration of 53 ug/l with a Class GA Standard of 50 ug/l. Chromium was not detected in any dissolved groundwater samples. It should also be noted that the duplicate sample collected from MW-2 did not contain concentrations of total chromium in exceedance of the Class GA Standard.

A variety of a naturally-occurring earth metals, including iron, magnesium, manganese, and sodium, were detected in both total groundwater samples and the duplicate sample in exceedance of Class GA Standards. Of these, manganese and sodium were also detected in exceedance of Class GA Standards in both dissolved groundwater samples and the duplicate sample, and magnesium was detected in exceedance of the Class GA Standard in one dissolved groundwater sample. Total iron was detected at a max. concentration of 26,900 ug/l in MW-2 with a Class GA Standard of 300 ug/l; total magnesium was detected at a max. concentration of 39,700 ug/l in MW-2 with a Class GA Standard of 35,000 ug/l; total sodium was detected at a max. concentration of 1,280 ug/l with a Class GA Standard of 300 ug/l; dissolved magnesium was detected at a concentration of 36,400 ug/l in MW-1 with a Class GA Standard of 35,000 ug/l; dissolved magnesium was detected at a max. concentration of 494 ug/l in MW-1 with a Class GA Standard of 300 ug/l; dissolved manganese was detected at a max. concentration of 81,900 ug/l with a Class GA Standard of 20,000 ug/l; and, dissolved sodium was detected at a max. concentration of 81,900 ug/l with a Class GA Standard of 20,000 ug/l. No other total or dissolved metals were detected in exceedance of Class GA Standards in any groundwater sample.

Pesticides and PCBs

Pesticides and PCBs were not detected in exceedance of Class GA Standards in any groundwater samples.

Emerging Contaminants

Two PFAS analytes, PFOS and perfluorooctanoic acid (PFOA), were detected in exceedance of their NYSDEC PFAS Guidelines of 10 nanograms per liter (ng/l) in both groundwater samples and the duplicate sample. PFOS was detected at a max. concentration of 12.2 ng/l in MW-1 and PFOA was detected at a max. concentration of 91 ng/l in MW-2_DUP. However, total PFAS, including PFOS and PFOA, were not detected in exceedance of the NYSDEC PFAS Guideline of 500 ng/l. No other PFAS analytes were detected in exceedance of the NYSDEC PFAS Guidelines.

Low concentrations of 1,4-dioxane were detected in one groundwater sample, MW-2, and the duplicate sample. 1,4-Dioxane was detected at a max. concentration of 0.0747 ug/l in MW-2_DUP. Currently, there is no Class GA Standard for 1,4-dioxane.

Findings and Conclusions

The Phase II Environmental Site Investigation conducted by Tenen indicates the following:

Sub-Slab Soil Vapor:

- The cVOCs PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and chloroform were detected in one or more subslab soil vapor sample across the Site.
- Comparison of PCE, TCE, and cis-1,2-DCE concentrations in sub-slab soil vapor to the NYSDOH Decision Matrices indicates mitigation would be required at all five locations for PCE, at three locations (SS-1, SS-2, and SS-3) for TCE, and at one location (SS-3) for cis-1,2-DCE, regardless of the results of co-located indoor air samples.
- The petroleum-related VOC, toluene, and the chlorobenzene, 1,4-dichlorobenzene, were each detected at low concentrations in one sub-slab soil vapor sample, SS-5.

Soil:

- One cVOC, PCE, was detected in exceedance of its Unrestricted Use and Restricted-Residential Use SCOs in one soil sample, SB-3 (0-2), collected from the southern portion of the Site within the former dry cleaner footprint.
- A variety of SVOCs, specifically PAHs, were detected in exceedance of Unrestricted Use and Restricted-Residential Use SCOs in three shallow (0-2 ft-bsg and 0-2 ft-bbg) soil samples. The constituents and associated concentrations are indicative of the presence of historic fill.
- The metals copper, lead, mercury, and zinc were detected in one or more soil samples in exceedance of Unrestricted Use SCOs. Of these, lead and mercury were also detected in exceedance of Restricted-Residential Use SCOs in one or more samples collected from the exterior portion of the Site.
- The pesticides 4,4'-DDE and 4,4'-DDT were detected in one or more soil samples slightly in exceedance of Unrestricted Use SCOs. Pesticides were not detected in exceedance of Restricted-Residential Use SCOs.
- The PCB aroclor 1260 and total PCBs were detected slightly in exceedance of their Unrestricted Use SCOs in one soil sample, SB-1 (0-2), collected from the exterior portion of the Site. PCBs were not detected in exceedance of Restricted-Residential Use SCOs in any soil sample collected.
- PFOS was detected in exceedance of its proposed Unrestricted Use SCO in soil sample SB-1 (0-2). No other PFAS were detected in exceedance of the proposed Unrestricted Use SCOs in the soil sample. PFAS were not detected in exceedance of the proposed Restricted-Residential Use SCOs in the soil sample.
- 1,4-Dioxane was not detected in any soil sample collected.

Groundwater:

- One cVOC, PCE, was detected in exceedance of its Class GA Standard in both groundwater samples and the duplicate sample, with the highest concentrations occurring in MW-2 and MW-2_DUP, both collected from beneath the northern adjoining sidewalk along Myrtle Avenue, downgradient [anticipated] of the former onsite dry cleaner.
- A variety of SVOCs, specifically PAHs, were detected slightly in exceedance of Class GA Standards in both groundwater samples and the duplicate sample, with the highest concentrations occurring in sample MW-1, collected from the exterior yard portion of the Site.
- One metal, chromium, was detected slightly in exceedance of its Class GA Standard in one total groundwater sample, MW-2. Chromium was not detected in any dissolved groundwater samples.
- A variety of naturally-occurring earth metals were detected in both total and dissolved groundwater samples and the duplicate sample in exceedance of Class GA Standards.
- Pesticides and PCBs were not detected in exceedance of Class GA Standards in any groundwater samples.
- PFOS and PFOA were detected in exceedance of the NYSDEC PFAS Guideline of 10 ng/l in both groundwater samples and the duplicate sample. However, total PFAS, including PFOS and PFOA, were not detected in exceedance of the Class GA Standard of 500 ng/l in any groundwater samples.
- 1,4-Dioxane was detected at low concentrations in one groundwater sample, MW-2, and the duplicate sample. Currently, there is no Class GA Standard for 1,4-dioxane.

Chlorinated VOCs associated with former onsite dry cleaning operations are present in soil, groundwater and soil vapor beneath the Site at concentrations above applicable standards. cVOC impacts were also detected in groundwater downgradient [anticipated] of the Site.

Please contact us if you need any additional information or would like to discuss potential remedial strategies.

Sincerely, Tenen Environmental, LLC Marker an

Matthew Carroll, P.E.

Principal / Environmental Engineer

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Sample Locations Soil Vapor Analytical Results Soil Analytical Results Groundwater Analytical Results
Table 1	Volatile Organic Compounds in Soil Vapor
Table 2a	Volatile Organic Compounds in Soil
Table 2b	Semivolatile Organic Compounds in Soil
Table 2c	Total Metals in Soil
Table 2d	Pesticides and Polychlorinated Biphenyls in Soil
Table 2e	Emerging Contaminants in Soil
Table 3a	Volatile Organic Compounds in Groundwater
Table 3b	Semivolatile Organic Compounds in Groundwater
Table 3c	Total and Dissolved Metals in Groundwater
Table 3d	Pesticides and Polychlorinated Biphenyls in Groundwater
Table 3e	Emerging Contaminants in Groundwater
Attachment 1 Attachment 2 Attachment 3 Attachment 4	Boring and Monitoring Well Construction Logs Soil Vapor Logs Groundwater Purge Logs Laboratory Deliverables

340 Myrtle Avenue – Brooklyn, NY Phase II Environmental Site Investigation Letter Report

Figures

August 2021

Figure

Analyte	NY-AWQS	NY-PFAS
VOCs	με	/l
Tetrachloroethene	5	NS
SVOCs		
Benzo(a)anthracene	0.002	NS
Benzo(b)fluoranthene	0.002	NS
Benzo(k)fluoranthene	0.002	NS
Chrysene	0.002	NS
Indeno(1,2,3-cd)pyrene	0.002	NS
Total Metals		
Chromium, Total	50	NS
Iron, Total	300	NS
Magnesium, Total	35000	NS
Manganese, Total	300	NS
Sodium, Total	20000	NS
Dissolved Metals		
Magnesium, Dissolved	35000	NS
Manganese, Dissolved	300	NS
Sodium, Dissolved	20000	NS
PFAS		
PFOS	NS	10
PFOA	NS	10

Existing conditions in blue

Proposed conditions in black

Legend

Geoprobe Monitoring Well
Geoprobe Soil Boring and
Monitoring Well
Former Dry Cleaner

Site Boundary

340 Myrtle, Cellar Plan Overlay 25jun2021

Nearmap Aerial 3/12/2021

0 10 20 40

340 Myrtle Avenue Brooklyn, New York Block 2073, Lot 21

Tenen Environmental, LLC
121 West 27th Street
Suite 702
New York, NY 10001
O: (646) 606-2332

Drawn By LM	Checked By AP	Date August 2021	Scale As Noted
rawing Title	Giodiluwatel Aliaiytical Results	rawing No	rigure 5

340 Myrtle Avenue – Brooklyn, NY Phase II Environmental Site Investigation Letter Report

Tables

Table 1. Volatile Organic Compounds in Soil Vapor 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

SAMPLING DATE Lab SAMPLE ID Lab SAMPLE I	SS-5	SS-4	SS-3	SS-2	SS-1		LOCATION
LAB SAMPLE ID	7/28/2021		7/28/2021		7/28/2021	Units	
	L2140476-05					Cinto	LAB SAMPLE ID
Dichloroxidiluoromethane ug/m3 ND ND ND ND Chloromethane ug/m3 ND ND ND ND ND Freen-114 ug/m3 ND	Qual	Qual	Qual	Qual	Qual		V1.00 1.0 1
Calconomethane	2.14	NID	NID	ND	ND	/2	
Feoral 14	3.14 ND					•	
Varyl chloride	ND ND		1			·	
1.3-Bundiene	ND ND					•	
Bromomethane	ND ND					·	
Chloroethane ug/m3 ND ND ND ND Ehanol ug/m3 ND ND ND ND ND Vinyl bromide ug/m3 ND ND ND ND ND Acetone ug/m3 ND ND ND ND ND Tricklorofloorendene ug/m3 ND ND ND ND ND Isopropanol ug/m3 ND	ND						
Ethanol	ND						
Vinyl bromide ug/m3 ND ND ND ND Acetone ug/m3 ND ND ND ND ND Trichlorofluoromethane ug/m3 ND	ND						
Acetone	ND						
Trichlorofluoromethane	8.55						Acetone
1.1-Dichloroethene	2.97	ND	ND	ND	ND		Trichlorofluoromethane
Tertiary butyl Alcohol	17.8	ND	ND	ND	28.5	ug/m3	Isopropanol
Methylenc chloride	ND	ND	ND	ND	ND	ug/m3	1,1-Dichloroethene
3-Chloropropene	ND	ND	ND	ND	ND	ug/m3	Tertiary butyl Alcohol
Carbon disulfide ug/m3 ND ND <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ug/m3</td> <td>Methylene chloride</td>	ND	ND	ND	ND	ND	ug/m3	Methylene chloride
Freon-113	ND	ND	ND	ND	ND	ug/m3	3-Chloropropene
trans-1,2-Dichloroethene ug/m3 ND ND 205 ND 1,1-Dichloroethane ug/m3 ND ND <td< td=""><td>5.48</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ug/m3</td><td>Carbon disulfide</td></td<>	5.48	ND	ND	ND	ND	ug/m3	Carbon disulfide
1,1-Dichloroethane	ND	ND	ND	ND	ND	ug/m3	Freon-113
Methyl tert butyl ether	ND	ND	205	ND	ND	ug/m3	
2-Butanone ug/m3 ND ND ND ND cis-1,2-Dichloroethene ug/m3 ND ND 2890 ND cis-1,2-Dichloroethene ug/m3 ND ND ND ND ND Ethyl Acetate ug/m3 ND	ND	ND	ND	ND	ND	ug/m3	1,1-Dichloroethane
cis-1,2-Dichloroethene ug/m3 ND ND 2890 ND Ethyl Acetate ug/m3 ND ND <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ug/m3</td> <td>Methyl tert butyl ether</td>	ND	ND	ND	ND	ND	ug/m3	Methyl tert butyl ether
Ethyl Acetate ug/m3 ND ND ND ND Chloroform ug/m3 161 406 ND ND Tetrahydrofuran ug/m3 ND ND ND ND 1,2-Dichloroethane ug/m3 ND ND ND ND 1,1-Trichloroethane ug/m3 ND ND ND ND Benzene ug/m3 ND ND ND ND Carbon tetrachloride ug/m3 ND ND ND ND Cyclohexane ug/m3 ND ND ND ND ND L2-Dichloropropane ug/m3 ND ND ND ND ND Cyclohexane ug/m3 ND ND ND ND ND ND 1,2-Dichloropropane ug/m3 ND ND <td< td=""><td>ND</td><td></td><td></td><td></td><td></td><td>ug/m3</td><td>2-Butanone</td></td<>	ND					ug/m3	2-Butanone
Chloroform ug/m3 161 406 ND ND ND Tetrahydrofuran ug/m3 ND	ND	ND	2890	ND	ND	ug/m3	cis-1,2-Dichloroethene
Tetrahydrofuran	ND					ug/m3	
1,2-Dichloroethane	5.23						
n-Hexane ug/m3 ND ND ND ND 1,1,1-Trichloroethane ug/m3 ND ND ND ND Benzene ug/m3 ND ND ND ND ND Carbon tetrachloride ug/m3 ND ND ND ND ND Czrolo de tetrachloride ug/m3 ND ND ND ND ND Czrolo de tetrachloride ug/m3 ND ND ND ND ND Cyclohexane ug/m3 ND ND ND ND ND ND Bromodichloropropane ug/m3 ND	ND					•	- · · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	ND					·	
Benzene	ND					·	
Carbon tetrachloride ug/m3 ND ND ND ND ND Cyclohexane ug/m3 ND	ND						
Cyclohexane ug/m3 ND ND ND ND 1,2-Dichloropropane ug/m3 ND ND ND ND ND Bromodichloromethane ug/m3 ND ND ND ND ND 1,4-Dioxane ug/m3 ND ND ND ND ND Trichloroethene ug/m3 ND ND ND ND ND 2,2,4-Trimethylpentane ug/m3 ND ND ND ND ND Heptane ug/m3 ND ND ND ND ND Heptane ug/m3 ND ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND ND ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND	ND ND						
1,2-Dichloropropane	ND ND						
Bromodichloromethane	ND ND						
1,4-Dioxane ug/m3 ND ND ND ND Trichloroethene ug/m3 86.5 650 1410 38.2 2,2,4-Trimethylpentane ug/m3 ND ND ND ND Heptane ug/m3 ND ND ND ND ND Heptane ug/m3 ND	ND ND						
Trichloroethene ug/m3 86.5 650 1410 38.2 2,2,4-Trimethylpentane ug/m3 ND ND ND ND Heptane ug/m3 ND ND ND ND ND cis-1,3-Dichloropropene ug/m3 ND ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND	ND						
2,2,4-Trimethylpentane ug/m3 ND ND ND ND Heptane ug/m3 ND ND ND ND ND cis-1,3-Dichloropropene ug/m3 ND ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND	ND						
Heptane	ND						
cis-1,3-Dichloropropene ug/m3 ND ND ND ND 4-Methyl-2-pentanone ug/m3 ND ND ND ND ND 1,1,2-Trichloropropene ug/m3 ND ND ND ND ND 1,1,2-Trichloroethane ug/m3 ND ND ND ND ND 2-Hexanone ug/m3 ND	ND						* *
4-Methyl-2-pentanone ug/m3 ND ND ND ND trans-1,3-Dichloropropene ug/m3 ND ND ND ND 1,1,2-Trichloroethane ug/m3 ND ND ND ND Toluene ug/m3 ND ND ND ND 2-Hexanone ug/m3 ND ND ND ND 2-Hexanone ug/m3 ND ND ND ND Dibromochloromethane ug/m3 ND ND ND ND Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibleoroethene ug/m3 ND ND ND ND 1,10-Dibleoroethane ug/m3 ND ND ND	ND						•
trans-1,3-Dichloropropene ug/m3 ND ND ND ND 1,1,2-Trichloroethane ug/m3 ND ND ND ND ND Toluene ug/m3 ND ND ND ND ND 2-Hexanone ug/m3 ND ND ND ND ND Dibromochloromethane ug/m3 ND ND ND ND ND 1,2-Dibromocthane ug/m3 ND ND ND ND ND 1,2-Dibromocthane ug/m3 ND ND ND ND ND 1,2-Dibromocthane ug/m3 ND ND ND ND ND Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND	ND						
Toluene ug/m3 ND ND ND ND 2-Hexanone ug/m3 ND ND ND ND ND 2-Hexanone ug/m3 ND ND ND ND ND Dibromochloromethane ug/m3 ND ND ND ND ND 1,2-Dibromoethane ug/m3 ND ND ND ND ND Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND ND p/m-Xylene ug/m3 ND	ND	ND	ND	ND	ND	ug/m3	
2-Hexanone ug/m3 ND ND ND ND Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibromoethane ug/m3 ND ND ND ND 1,2-Dibromoethane ug/m3 ND ND ND ND Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND P/m-Xylene ug/m3 ND ND ND ND Bromoform ug/m3 ND ND ND ND Styrene ug/m3 ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND o-Xylene ug/m3 ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND	ND	ND	ND	ND	ND	ug/m3	1,1,2-Trichloroethane
Dibromochloromethane ug/m3 ND ND ND ND 1,2-Dibromoethane ug/m3 ND ND ND ND Tetrachloroethene ug/m3 351000 Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND o-Xylene ug/m3 ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND 1,3,5-Trimethylbenzene <td< td=""><td>6.1</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ug/m3</td><td>Toluene</td></td<>	6.1	ND	ND	ND	ND	ug/m3	Toluene
1,2-Dibromoethane ug/m3 ND ND ND ND Tetrachloroethene ug/m3 351000 Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 0-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND </td <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ug/m3</td> <td>2-Hexanone</td>	ND	ND	ND	ND	ND	ug/m3	2-Hexanone
Tetrachloroethene ug/m3 351000 Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND Bromoform ug/m3 ND ND ND ND Styrene ug/m3 ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND o-Xylene ug/m3 ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ug/m3</td> <td>Dibromochloromethane</td>	ND	ND	ND	ND	ND	ug/m3	Dibromochloromethane
Tetrachloroethene ug/m3 8140 280000 E 77300 11000 Chlorobenzene ug/m3 ND ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND	ND	ND	ND	ND	ND	ug/m3	1,2-Dibromoethane
Chlorobenzene ug/m3 ND ND ND ND Ethylbenzene ug/m3 ND ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND <td></td> <td></td> <td></td> <td>351000</td> <td></td> <td>ug/m3</td> <td>Tetrachloroethene</td>				351000		ug/m3	Tetrachloroethene
Ethylbenzene ug/m3 ND ND ND ND p/m-Xylene ug/m3 ND ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND ND	1250	11000	77300	280000 E	8140	ug/m3	Tetrachloroethene
p/m-Xylene ug/m3 ND ND ND ND Bromoform ug/m3 ND ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND ND	ND	ND	ND	ND	ND	ug/m3	Chlorobenzene
Bromoform ug/m3 ND ND ND ND Styrene ug/m3 ND ND ND ND ND 1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND ND	ND					·	
Styrene ug/m3 ND	ND					·	
1,1,2,2-Tetrachloroethane ug/m3 ND ND ND ND o-Xylene ug/m3 ND ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND ND	ND					·	
o-Xylene ug/m3 ND ND ND ND 4-Ethyltoluene ug/m3 ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND						•
4-Ethyltoluene ug/m3 ND ND ND ND 1,3,5-Trimethylbenzene ug/m3 ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND					ŭ	
1,3,5-Trimethylbenzene ug/m3 ND ND ND ND 1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND					Ü	
1,2,4-Trimethylbenzene ug/m3 ND ND ND ND Benzyl chloride ug/m3 ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND						
Benzyl chloride ug/m3 ND ND ND ND 1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND						•
1,3-Dichlorobenzene ug/m3 ND ND ND ND	ND						•
	ND						•
	ND						
1,4-Dichlorobenzene ug/m3 ND ND ND ND ND	4.28						
1,2-Dichlorobenzene ug/m3 ND ND ND ND ND	ND						
1,2,4-Trichlorobenzene ug/m3 ND ND ND ND Hexachlorobutadiene ug/m3 ND ND ND ND	ND ND						

Notes:

 $E\!=\!Concentration$ exceeds the calibration curve of the analyzing instrument

ND = Not detected

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NV UNDEC	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NI-UNKES	NY-KESKK	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
General Chemistry								
Solids, Total	NS	NS	%	86.8	87.4	79.5	80	85
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.68	100	mg/kg	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.27	26	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.33	100	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3.6	52	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromoethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND	0.00018 J	ND	ND
1,2-Dichloroethane	0.02	3.1	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	52	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Butanone	0.12	100	mg/kg	ND	ND	ND	ND	ND
2-Hexanone	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NIV INDEC	NIV DECDD	TT *4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
4-Methyl-2-pentanone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acetone	0.05	100	mg/kg	ND	ND	ND	ND	ND
Acrylonitrile	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzene	0.06	4.8	mg/kg	ND	ND	ND	ND	ND
Bromobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromodichloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromoform	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon disulfide	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon tetrachloride	0.76	2.4	mg/kg	ND	ND	ND	ND	ND
Chlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
Chloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Chloroform	0.37	49	mg/kg	0.00014 J	0.00023 J	0.00028 J	0.00025 J	0.00019 J
Chloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	100	mg/kg	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethylbenzene	1	41	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Isopropylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Methyl tert butyl ether	0.93	100	mg/kg	ND	ND	ND	ND	ND
Methylene chloride	0.05	100	mg/kg	ND	ND	ND	ND	ND
n-Butylbenzene	12	100	mg/kg	ND	ND	ND	ND	ND
n-Propylbenzene	3.9	100	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	ND	ND	ND	ND	ND
o-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NIX LINIDEG	NIV DECDD	TI*4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
o-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Ethyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Isopropyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p/m-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
sec-Butylbenzene	11	100	mg/kg	ND	ND	ND	ND	ND
Styrene	NS	NS	mg/kg	ND	ND	ND	ND	ND
tert-Butylbenzene	5.9	100	mg/kg	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	19	mg/kg					
Tetrachloroethene	1.3	19	mg/kg	0.00041 J	0.00071	0.27	0.22	0.026
Toluene	0.7	100	mg/kg	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.19	100	mg/kg	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Trichloroethene	0.47	21	mg/kg	ND	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl chloride	0.02	0.9	mg/kg	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	mg/kg	ND	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

E = Concentration exceeds the calibration range of the instrument

ND = Not detected

NS = No standard

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE	NN LINDES	NIX DECDD	TJ\$4 a	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qual	Qual	Qual	Qual	Qual
General Chemistry								
Solids, Total	NS	NS	%	87.4	81.6	82.9	87.6	82.7
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane	NS	NS	mg/kg	0.024 J	0.00045 J	ND	ND	ND
1,1,1-Trichloroethane	0.68	100	mg/kg	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.27	26	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.33	100	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3.6	52	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromoethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	0.076 J	0.00044 J	0.0011 J	ND	ND
1,2-Dichloroethane	0.02	3.1	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	NS	mg/kg	0.074	ND	0.00033 J	ND	ND
1,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	52	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	0.013 J	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Butanone	0.12	100	mg/kg	ND	ND	ND	ND	ND
2-Hexanone	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE	NN/ INDEC	NIV DECDD	TT *4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qual	Qual	Qual	Qual	Qual
4-Methyl-2-pentanone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acetone	0.05	100	mg/kg	ND	ND	ND	ND	ND
Acrylonitrile	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzene	0.06	4.8	mg/kg	ND	ND	ND	ND	ND
Bromobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromodichloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromoform	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon disulfide	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon tetrachloride	0.76	2.4	mg/kg	ND	ND	ND	ND	ND
Chlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
Chloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Chloroform	0.37	49	mg/kg	0.033 J	0.00039 J	0.0004 J	0.00022 J	0.00028 J
Chloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	100	mg/kg	0.074	ND	0.00033 J	ND	ND
cis-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethylbenzene	1	41	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Isopropylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Methyl tert butyl ether	0.93	100	mg/kg	ND	ND	ND	ND	ND
Methylene chloride	0.05	100	mg/kg	ND	ND	ND	ND	ND
n-Butylbenzene	12	100	mg/kg	ND	ND	ND	ND	ND
n-Propylbenzene	3.9	100	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	0.049 J	ND	ND	ND	ND
o-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE	NIV LINDEC	NY-RESRR	T I • 4 a	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-KESKK	Units	L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qual	Qual	Qual	Qual	Qual
o-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Ethyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Isopropyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p/m-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
sec-Butylbenzene	11	100	mg/kg	ND	ND	ND	ND	ND
Styrene	NS	NS	mg/kg	ND	ND	ND	ND	ND
tert-Butylbenzene	5.9	100	mg/kg	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	19	mg/kg	100	-			
Tetrachloroethene	1.3	19	mg/kg	110 E	0.37	0.29	0.03	0.0074
Toluene	0.7	100	mg/kg	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.19	100	mg/kg	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Trichloroethene	0.47	21	mg/kg	0.16	0.00087	0.0011	ND	ND
Trichlorofluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl chloride	0.02	0.9	mg/kg	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	mg/kg	ND	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

E = Concentration exceeds the calibration range of the instrument

ND = Not detected

NS = No standard

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NIX LINIDEC	NIX DECDD	T I : 4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
General Chemistry								
Solids, Total	NS	NS	%	86.6	85.6	85.6	85.7	83.7
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.68	100	mg/kg	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.27	26	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.33	100	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3.6	52	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromoethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.02	3.1	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	52	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,2-Dichloropropane	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Butanone	0.12	100	mg/kg	ND	ND	ND	ND	ND
2-Hexanone	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NIV LINDES	NW DECDD	TI24	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
4-Methyl-2-pentanone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acetone	0.05	100	mg/kg	ND	ND	ND	ND	ND
Acrylonitrile	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzene	0.06	4.8	mg/kg	ND	ND	ND	ND	ND
Bromobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromodichloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromoform	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon disulfide	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbon tetrachloride	0.76	2.4	mg/kg	ND	ND	ND	ND	ND
Chlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
Chloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Chloroform	0.37	49	mg/kg	0.00025 J	0.00038 J	0.0002 J	0.00027 J	0.00019 J
Chloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	0.25	100	mg/kg	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromochloromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibromomethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Ethylbenzene	1	41	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Isopropylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Methyl tert butyl ether	0.93	100	mg/kg	ND	ND	ND	ND	ND
Methylene chloride	0.05	100	mg/kg	ND	ND	ND	ND	ND
n-Butylbenzene	12	100	mg/kg	ND	ND	ND	ND	ND
n-Propylbenzene	3.9	100	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	ND	ND	ND	ND	ND
o-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NIV LINDES	NY-RESRR	TI:4-a	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-KESKK	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
o-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chlorotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Ethyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Isopropyltoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p/m-Xylene	NS	NS	mg/kg	ND	ND	ND	ND	ND
sec-Butylbenzene	11	100	mg/kg	ND	ND	ND	ND	ND
Styrene	NS	NS	mg/kg	ND	ND	ND	ND	ND
tert-Butylbenzene	5.9	100	mg/kg	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	19	mg/kg					
Tetrachloroethene	1.3	19	mg/kg	0.0016	0.074	0.011	0.0085	0.0025
Toluene	0.7	100	mg/kg	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.19	100	mg/kg	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Trichloroethene	0.47	21	mg/kg	ND	0.0016	ND	ND	ND
Trichlorofluoromethane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Vinyl chloride	0.02	0.9	mg/kg	ND	ND	ND	ND	ND
Xylenes, Total	0.26	100	mg/kg	ND	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

E = Concentration exceeds the calibration range of the instrument

ND = Not detected

NS = No standard

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0-2)	SB-8 (2-4)	
SAMPLING DATE	NIV LINIDEG	NW DECDD	TT •4	7/26/2021	7/26/2021	
LAB SAMPLE ID	NY-UNRES	NY-RESRR	Units	L2140168-16	L2140168-17	
				Qual	Qual	
General Chemistry						
Solids, Total	NS	NS	%	88.5	88.7	
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	
1,1,1-Trichloroethane	0.68	100	mg/kg	ND	ND	
1,1,2,2-Tetrachloroethane	NS	NS	mg/kg	ND	ND	
1,1,2-Trichloroethane	NS	NS	mg/kg	ND	ND	
1,1-Dichloroethane	0.27	26	mg/kg	ND	ND	
1,1-Dichloroethene	0.33	100	mg/kg	ND	ND	
1,1-Dichloropropene	NS	NS	mg/kg	ND	ND	
1,2,3-Trichlorobenzene	NS	NS	mg/kg	ND	ND	
1,2,3-Trichloropropane	NS	NS	mg/kg	ND	ND	
1,2,4,5-Tetramethylbenzene	NS	NS	mg/kg	ND	ND	
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	
1,2,4-Trimethylbenzene	3.6	52	mg/kg	ND	ND	
1,2-Dibromo-3-chloropropane	NS	NS	mg/kg	ND	ND	
1,2-Dibromoethane	NS	NS	mg/kg	ND	ND	
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND	
1,2-Dichloroethane	0.02	3.1	mg/kg	ND	ND	
1,2-Dichloroethene, Total	NS	NS	mg/kg	ND	ND	
1,2-Dichloropropane	NS	NS	mg/kg	ND	ND	
1,3,5-Trimethylbenzene	8.4	52	mg/kg	ND	ND	
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	
1,3-Dichloropropane	NS	NS	mg/kg	ND	ND	
1,3-Dichloropropene, Total	NS	NS	mg/kg	ND	ND	
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND	
1,4-Dioxane	0.1	13	mg/kg	ND	ND	
2,2-Dichloropropane	NS	NS	mg/kg	ND	ND	
2-Butanone	0.12	100	mg/kg	ND	ND	
2-Hexanone	NS	NS	mg/kg	ND	ND	

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0-2)	SB-8 (2-4)	
SAMPLING DATE	NA INDEC	NW DECDE	T T •4	7/26/2021	7/26/2021	
LAB SAMPLE ID	NY-UNRES	NY-RESRR	Units	L2140168-16	L2140168-17	
				Qual	Qual	
4-Methyl-2-pentanone	NS	NS	mg/kg	ND	ND	
Acetone	0.05	100	mg/kg	0.019	ND	
Acrylonitrile	NS	NS	mg/kg	ND	ND	
Benzene	0.06	4.8	mg/kg	ND	ND	
Bromobenzene	NS	NS	mg/kg	ND	ND	
Bromochloromethane	NS	NS	mg/kg	ND	ND	
Bromodichloromethane	NS	NS	mg/kg	ND	ND	
Bromoform	NS	NS	mg/kg	ND	ND	
Bromomethane	NS	NS	mg/kg	ND	ND	
Carbon disulfide	NS	NS	mg/kg	ND	ND	
Carbon tetrachloride	0.76	2.4	mg/kg	ND	ND	
Chlorobenzene	1.1	100	mg/kg	ND	ND	
Chloroethane	NS	NS	mg/kg	ND	ND	
Chloroform	0.37	49	mg/kg	0.00034 J	0.00026 J	
Chloromethane	NS	NS	mg/kg	ND	ND	
cis-1,2-Dichloroethene	0.25	100	mg/kg	ND	ND	
cis-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND	
Dibromochloromethane	NS	NS	mg/kg	ND	ND	
Dibromomethane	NS	NS	mg/kg	ND	ND	
Dichlorodifluoromethane	NS	NS	mg/kg	ND	ND	
Ethyl ether	NS	NS	mg/kg	ND	ND	
Ethylbenzene	1	41	mg/kg	ND	ND	
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	
Isopropylbenzene	NS	NS	mg/kg	ND	ND	
Methyl tert butyl ether	0.93	100	mg/kg	ND	ND	
Methylene chloride	0.05	100	mg/kg	ND	ND	
n-Butylbenzene	12	100	mg/kg	ND	ND	
n-Propylbenzene	3.9	100	mg/kg	ND	ND	
Naphthalene	12	100	mg/kg	ND	ND	
o-Chlorotoluene	NS	NS	mg/kg	ND	ND	

Table 2a. Volatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0-2)	SB-8 (2-4)
SAMPLING DATE	NIX LINDES	NW DECDD	T1	7/26/2021	7/26/2021
LAB SAMPLE ID	N1-UNKES	NY-RESRR	Units	L2140168-16	L2140168-17
				Qual	Qual
o-Xylene	NS	NS	mg/kg	ND	ND
p-Chlorotoluene	NS	NS	mg/kg	ND	ND
p-Diethylbenzene	NS	NS	mg/kg	ND	ND
p-Ethyltoluene	NS	NS	mg/kg	ND	ND
p-Isopropyltoluene	NS	NS	mg/kg	ND	ND
p/m-Xylene	NS	NS	mg/kg	ND	ND
sec-Butylbenzene	11	100	mg/kg	ND	ND
Styrene	NS	NS	mg/kg	ND	ND
tert-Butylbenzene	5.9	100	mg/kg	ND	ND
Tetrachloroethene	1.3	19	mg/kg		
Tetrachloroethene	1.3	19	mg/kg	0.037	0.013
Toluene	0.7	100	mg/kg	ND	ND
trans-1,2-Dichloroethene	0.19	100	mg/kg	ND	ND
trans-1,3-Dichloropropene	NS	NS	mg/kg	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	mg/kg	ND	ND
Trichloroethene	0.47	21	mg/kg	ND	ND
Trichlorofluoromethane	NS	NS	mg/kg	ND	ND
Vinyl acetate	NS	NS	mg/kg	ND	ND
Vinyl chloride	0.02	0.9	mg/kg	ND	ND
Xylenes, Total	0.26	100	mg/kg	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

E = Concentration exceeds the calibration range of the instrument

ND = Not detected

NS = No standard

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NV UNDEC	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	TNY-UNKES	NY-KESKK	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
Semivolatile Organic Compounds								
1,2,4,5-Tetrachlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Methylnaphthalene	NS	NS	mg/kg	0.35	ND	ND	ND	ND
2-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
2-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	NS	mg/kg	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
3-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chloroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acenaphthene	20	100	mg/kg	0.71	0.06 J	ND	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NIX LINIDES	MW DECDD	TI*4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
Acenaphthylene	100	100	mg/kg	0.17	0.072 J	ND	ND	ND
Acetophenone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Anthracene	100	100	mg/kg	1.6	0.17	ND	ND	ND
Benzo(a)anthracene	1	1	mg/kg	3.1	0.68	ND	ND	ND
Benzo(a)pyrene	1	1	mg/kg	2.7	0.63	ND	ND	ND
Benzo(b)fluoranthene	1	1	mg/kg	3.1	0.86	ND	ND	ND
Benzo(ghi)perylene	100	100	mg/kg	1.9	0.4	ND	ND	ND
Benzo(k)fluoranthene	0.8	3.9	mg/kg	1.3	0.2	ND	ND	ND
Benzoic Acid	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Biphenyl	NS	NS	mg/kg	0.12 J	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	NS	mg/kg	ND	ND	ND	0.14 J	ND
Butyl benzyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbazole	NS	NS	mg/kg	0.64	0.073 J	ND	ND	ND
Chrysene	1	3.9	mg/kg	2.5	0.69	ND	ND	ND
Di-n-butylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Di-n-octylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	0.33	mg/kg	0.47	0.1 J	ND	ND	ND
Dibenzofuran	7	59	mg/kg	0.48	0.031 J	ND	ND	ND
Diethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dimethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Fluoranthene	100	100	mg/kg	5.8	1.4	ND	ND	ND
Fluorene	30	100	mg/kg	0.63	0.056 J	ND	ND	ND
Hexachlorobenzene	0.33	1.2	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)
SAMPLING DATE	NV UNDES	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	IN Y-UNKES	NY-KESKK	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05
				Qual	Qual	Qual	Qual	Qual
Indeno(1,2,3-cd)pyrene	0.5	0.5	mg/kg	1.9	0.43	ND	ND	ND
Isophorone	NS	NS	mg/kg	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	0.74	0.04 J	ND	ND	ND
NDPA/DPA	NS	NS	mg/kg	ND	ND	ND	ND	ND
Nitrobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chloro-m-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Pentachlorophenol	0.8	6.7	mg/kg	ND	ND	ND	ND	ND
Phenanthrene	100	100	mg/kg	5.2	0.83	ND	ND	ND
Phenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
Pyrene	100	100	mg/kg	5.4	1.2	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

NS = No standard

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE	NN/ INDEC	NW DECDD	TT *4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNRES	NY-RESKR	Units	L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qual	Qual	Qual	Qual	Qual
Semivolatile Organic Compounds								
1,2,4,5-Tetrachlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	0.36	0.062 J	0.078 J	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	0.047 J	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	0.056 J	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Methylnaphthalene	NS	NS	mg/kg	0.051 J	ND	ND	ND	ND
2-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
2-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	NS	mg/kg	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
3-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chloroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acenaphthene	20	100	mg/kg	0.073 J	ND	ND	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE	NIV LINDEC	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-KESKK	Units	L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qual	Qual	Qual	Qual	Qual
Acenaphthylene	100	100	mg/kg	0.48	ND	ND	ND	ND
Acetophenone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Anthracene	100	100	mg/kg	0.54	ND	ND	ND	ND
Benzo(a)anthracene	1	1	mg/kg	4.5	0.022 J	0.023 J	ND	0.055 J
Benzo(a)pyrene	1	1	mg/kg	5.3	ND	ND	ND	ND
Benzo(b)fluoranthene	1	1	mg/kg	6.1	ND	ND	ND	0.05 J
Benzo(ghi)perylene	100	100	mg/kg	4.1	ND	ND	ND	0.026 J
Benzo(k)fluoranthene	0.8	3.9	mg/kg	1.9	ND	ND	ND	ND
Benzoic Acid	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Biphenyl	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	NS	mg/kg	0.36	ND	ND	ND	ND
Butyl benzyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbazole	NS	NS	mg/kg	0.1 J	ND	ND	ND	ND
Chrysene	1	3.9	mg/kg	3.8	ND	ND	ND	0.049 J
Di-n-butylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Di-n-octylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	0.33	mg/kg	0.96	ND	ND	ND	ND
Dibenzofuran	7	59	mg/kg	0.054 J	ND	ND	ND	ND
Diethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dimethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Fluoranthene	100	100	mg/kg	4.5	0.023 J	0.036 J	ND	0.11 J
Fluorene	30	100	mg/kg	0.061 J	ND	ND	ND	ND
Hexachlorobenzene	0.33	1.2	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID	- NY-UNRES	NY-RESRR	Units	SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)	SB-5 (0-2)
SAMPLING DATE				7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID				L2140168-06	L2140168-07	L2140168-08	L2140168-09	L2140168-10
				Qua	Qual	Qual	Qual	Qual
Indeno(1,2,3-cd)pyrene	0.5	0.5	mg/kg	4.1	ND	ND	ND	0.029 J
Isophorone	NS	NS	mg/kg	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	0.14 J	ND	ND	ND	ND
NDPA/DPA	NS	NS	mg/kg	ND	ND	ND	ND	ND
Nitrobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chloro-m-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Pentachlorophenol	0.8	6.7	mg/kg	ND	ND	ND	ND	ND
Phenanthrene	100	100	mg/kg	1.4	ND	0.024 J	ND	0.075 J
Phenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
Pyrene	100	100	mg/kg	5.6	0.027 J	0.039 J	ND	0.09 J

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

NS = No standard

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NIX LINDES	MW DECDD	TI*4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
Semivolatile Organic Compounds								
1,2,4,5-Tetrachlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dichlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Chlorophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Methylnaphthalene	NS	NS	mg/kg	ND	0.094 J	0.039 J	ND	ND
2-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
2-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
2-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	NS	mg/kg	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
3-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chloroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	mg/kg	ND	ND	ND	ND	ND
4-Nitrophenol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Acenaphthene	20	100	mg/kg	ND	0.19	0.11 J	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NIX LINIDEC	MW DECDD	TI*4	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
Acenaphthylene	100	100	mg/kg	ND	0.13 J	ND	ND	ND
Acetophenone	NS	NS	mg/kg	ND	ND	ND	ND	ND
Anthracene	100	100	mg/kg	ND	0.48	0.3	ND	ND
Benzo(a)anthracene	1	1	mg/kg	ND	1.6	0.68	ND	ND
Benzo(a)pyrene	1	1	mg/kg	ND	1.4	0.53	ND	ND
Benzo(b)fluoranthene	1	1	mg/kg	ND	1.7	0.66	ND	ND
Benzo(ghi)perylene	100	100	mg/kg	ND	0.92	0.33	ND	ND
Benzo(k)fluoranthene	0.8	3.9	mg/kg	ND	0.66	0.25	ND	ND
Benzoic Acid	NS	NS	mg/kg	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Biphenyl	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	NS	mg/kg	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Butyl benzyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Carbazole	NS	NS	mg/kg	ND	0.21	0.11 J	ND	ND
Chrysene	1	3.9	mg/kg	ND	1.5	0.65	ND	ND
Di-n-butylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Di-n-octylphthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	0.33	mg/kg	ND	0.26	0.094 J	ND	ND
Dibenzofuran	7	59	mg/kg	ND	0.12 J	0.075 J	ND	ND
Diethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Dimethyl phthalate	NS	NS	mg/kg	ND	ND	ND	ND	ND
Fluoranthene	100	100	mg/kg	ND	2.7	1.4	ND	ND
Fluorene	30	100	mg/kg	ND	0.19	0.11 J	ND	ND
Hexachlorobenzene	0.33	1.2	mg/kg	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	NS	mg/kg	ND	ND	ND	ND	ND
Hexachloroethane	NS	NS	mg/kg	ND	ND	ND	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)
SAMPLING DATE	NV UNDES	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	IN 1 - UNKES	NY-KESKK	Units	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15
				Qual	Qual	Qual	Qual	Qual
Indeno(1,2,3-cd)pyrene	0.5	0.5	mg/kg	ND	0.96	0.34	ND	ND
Isophorone	NS	NS	mg/kg	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	mg/kg	ND	ND	ND	ND	ND
Naphthalene	12	100	mg/kg	ND	0.23	0.085 J	ND	ND
NDPA/DPA	NS	NS	mg/kg	ND	ND	ND	ND	ND
Nitrobenzene	NS	NS	mg/kg	ND	ND	ND	ND	ND
p-Chloro-m-cresol	NS	NS	mg/kg	ND	ND	ND	ND	ND
Pentachlorophenol	0.8	6.7	mg/kg	ND	ND	ND	ND	ND
Phenanthrene	100	100	mg/kg	ND	2	1.3	ND	ND
Phenol	0.33	100	mg/kg	ND	ND	ND	ND	ND
Pyrene	100	100	mg/kg	ND	2.7	1.2	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0-2)	SB-8 (2-4)
SAMPLING DATE	NIX LINDES	NW DECDD	T I • 4 a	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168-16	L2140168-17
				Qual	Qual
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	NS	mg/kg	ND	ND
1,2,4-Trichlorobenzene	NS	NS	mg/kg	ND	ND
1,2-Dichlorobenzene	1.1	100	mg/kg	ND	ND
1,3-Dichlorobenzene	2.4	49	mg/kg	ND	ND
1,4-Dichlorobenzene	1.8	13	mg/kg	ND	ND
1,4-Dioxane	0.1	13	mg/kg	ND	ND
2,4,5-Trichlorophenol	NS	NS	mg/kg	ND	ND
2,4,6-Trichlorophenol	NS	NS	mg/kg	ND	ND
2,4-Dichlorophenol	NS	NS	mg/kg	ND	ND
2,4-Dimethylphenol	NS	NS	mg/kg	ND	ND
2,4-Dinitrophenol	NS	NS	mg/kg	ND	ND
2,4-Dinitrotoluene	NS	NS	mg/kg	ND	ND
2,6-Dinitrotoluene	NS	NS	mg/kg	ND	ND
2-Chloronaphthalene	NS	NS	mg/kg	ND	ND
2-Chlorophenol	NS	NS	mg/kg	ND	ND
2-Methylnaphthalene	NS	NS	mg/kg	ND	ND
2-Methylphenol	0.33	100	mg/kg	ND	ND
2-Nitroaniline	NS	NS	mg/kg	ND	ND
2-Nitrophenol	NS	NS	mg/kg	ND	ND
3,3'-Dichlorobenzidine	NS	NS	mg/kg	ND	ND
3-Methylphenol/4-Methylphenol	0.33	100	mg/kg	ND	ND
3-Nitroaniline	NS	NS	mg/kg	ND	ND
4,6-Dinitro-o-cresol	NS	NS	mg/kg	ND	ND
4-Bromophenyl phenyl ether	NS	NS	mg/kg	ND	ND
4-Chloroaniline	NS	NS	mg/kg	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	mg/kg	ND	ND
4-Nitroaniline	NS	NS	mg/kg	ND	ND
4-Nitrophenol	NS	NS	mg/kg	ND	ND
Acenaphthene	20	100	mg/kg	ND	ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0)-2)	SB-8 (2-4)
SAMPLING DATE	NIX LINDEG	NW DECDD	TT *4	7/26/20	021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L214016	68-16	L2140168-17
					Qual	Qual
Acenaphthylene	100	100	mg/kg	ND		ND
Acetophenone	NS	NS	mg/kg	ND		ND
Anthracene	100	100	mg/kg	ND		ND
Benzo(a)anthracene	1	1	mg/kg	0.076	J	ND
Benzo(a)pyrene	1	1	mg/kg	0.064	J	ND
Benzo(b)fluoranthene	1	1	mg/kg	0.078	J	ND
Benzo(ghi)perylene	100	100	mg/kg	0.043	J	ND
Benzo(k)fluoranthene	0.8	3.9	mg/kg	ND		ND
Benzoic Acid	NS	NS	mg/kg	ND		ND
Benzyl Alcohol	NS	NS	mg/kg	ND		ND
Biphenyl	NS	NS	mg/kg	ND		ND
Bis(2-chloroethoxy)methane	NS	NS	mg/kg	ND		ND
Bis(2-chloroethyl)ether	NS	NS	mg/kg	ND		ND
Bis(2-chloroisopropyl)ether	NS	NS	mg/kg	ND		ND
Bis(2-ethylhexyl)phthalate	NS	NS	mg/kg	ND		ND
Butyl benzyl phthalate	NS	NS	mg/kg	ND		ND
Carbazole	NS	NS	mg/kg	ND		ND
Chrysene	1	3.9	mg/kg	0.068	J	ND
Di-n-butylphthalate	NS	NS	mg/kg	ND		ND
Di-n-octylphthalate	NS	NS	mg/kg	ND		ND
Dibenzo(a,h)anthracene	0.33	0.33	mg/kg	ND		ND
Dibenzofuran	7	59	mg/kg	ND		ND
Diethyl phthalate	NS	NS	mg/kg	ND		ND
Dimethyl phthalate	NS	NS	mg/kg	ND		ND
Fluoranthene	100	100	mg/kg	0.13		ND
Fluorene	30	100	mg/kg	ND		ND
Hexachlorobenzene	0.33	1.2	mg/kg	ND		ND
Hexachlorobutadiene	NS	NS	mg/kg	ND		ND
Hexachlorocyclopentadiene	NS	NS	mg/kg	ND		ND
Hexachloroethane	NS	NS	mg/kg	ND		ND

Table 2b. Semivolatile Organic Compounds in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-8 (0-2)	SB-8 (2	2-4)
SAMPLING DATE	NIX LINDEC	NY-RESRR	T T *4 ~	7/26/2	021	7/26/20)21
LAB SAMPLE ID	N1-UNKES	NY-KESKK	Units	L214010	68-16	L214016	58-17
				Qual			Qual
Indeno(1,2,3-cd)pyrene	0.5	0.5	mg/kg	0.044	J	ND	
Isophorone	NS	NS	mg/kg	ND		ND	
n-Nitrosodi-n-propylamine	NS	NS	mg/kg	ND		ND	
Naphthalene	12	100	mg/kg	ND		ND	
NDPA/DPA	NS	NS	mg/kg	ND		ND	
Nitrobenzene	NS	NS	mg/kg	ND		ND	
p-Chloro-m-cresol	NS	NS	mg/kg	ND		ND	
Pentachlorophenol	0.8	6.7	mg/kg	ND		ND	
Phenanthrene	100	100	mg/kg	0.094	J	ND	
Phenol	0.33	100	mg/kg	ND		ND	
Pyrene	100	100	mg/kg	0.16		ND	_

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

Table 2c. Total Metals in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID SAMPLING DATE				SB-1 (,	SB-1 (2 7/26/20		SB-2 (0 7/26/20		SB-2 (0-2) 7/26/20	_	SB-2 (2		SB-3 (0 7/26/20		SB-3 (2	
LAB SAMPLE ID	NY-UNRES	NY-RESRR	Units	L21401	-	L214016		L214016		L214016		L214010		L214016		L214016	
LAB SAMIFLE ID				L21401	Qual	L214010	Oual	L214010	Qual	L214010	Qual	L214010	Qual	L214010	Qual	L214010	Qual
Total Metals					Quai		Quai		Quai		Quai		Quai		Quai		Quai
Aluminum	NS	NS	mg/kg	7810	D	12200	D	21200	D	22900	D	16100	D	10600	D	20500	D
Antimony	NS	NS	mg/kg	ND		ND		ND		ND		ND		ND		ND	-
Arsenic	13	16	mg/kg	4.24		6.88		1.96		2.14		1.39		4.11		2.29	
Barium	350	400	mg/kg	204		176		83.6		88.9		31.4		109		90.6	
Beryllium	7.2	72	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Cadmium	2.5	4.3	mg/kg	0.38	J	0.185	J	ND		ND		ND		0.0974	J	ND	
Calcium	NS	NS	mg/kg	5460	D	2410		684		715		559		13300	D	1070	
Chromium	NS	NS	mg/kg	13.7		17.1		20.9		21.1		21.7		13.2		19.8	
Cobalt	NS	NS	mg/kg	0.988		0.946		0.78		0.938		1.24		0.969		1.66	
Copper	50	270	mg/kg	27.5		154		12.6		14.1		13.7		20.6		14.6	
Iron	NS	NS	mg/kg	10300	D	14500	D	15800	D	16900	D	15600	D	13300	D	15100	D
Lead	63	400	mg/kg	465	D	638	D	10.5		11.4		4.33		94.1		31.4	
Magnesium	NS	NS	mg/kg	1520		1510		1690		1760		2000		1440		1670	
Manganese	1600	2000	mg/kg	206		190		426	D	465	D	319	D	326	D	1010	D
Mercury	0.18	0.81	mg/kg	0.606	D	1.14	D	0.0262		0.028		0.00675		0.276		0.0767	
Nickel	30	310	mg/kg	13.3		15.1		16.4		16.9		16.1		12.9		19.2	
Potassium	NS	NS	mg/kg	967		1110		1020		1110		1460		1060		1100	
Selenium	3.9	180	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Silver	2	180	mg/kg	ND		0.194	J	ND		ND		ND		ND		ND	
Sodium	NS	NS	mg/kg	214		154		116		126		117		239		145	
Thallium	NS	NS	mg/kg	ND		ND	ĺ	ND		ND		ND		ND		ND	
Vanadium	NS	NS	mg/kg	16.9		18.6		22.5		23.1		25.1		17.6		22.5	
Zinc	109	10000	mg/kg	317		146		49.8		51.6		46.4		80		83.6	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

D = Diluted

ND = Not detected

Table 2c. Total Metals in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID SAMPLING DATE				SB-4 (97/26/2		SB-4 (2 7/26/20		SB-5 (0 7/26/20		SB-5 (2		SB-6 (0	,	SB-6 (2		SB-7 (0	
LAB SAMPLE ID	NY-UNRES	NY-RESRR	Units	L21401	7	L214016		L214016		L214016		L214016		L214016		L214016	
DAD SAMI LE ID				1.21401	Qual	L214010	Qual	L214010	Qual	L214010	Qual	L214010	Qual	L214010	Qual	L214010	Qual
Total Metals					Quai		Quar		Quin		Quin		Quar		Quar		Quin
Aluminum	NS	NS	mg/kg	21700	D	13900	D	19600	D	18000	D	15800	D	18400	D	19400	D
Antimony	NS	NS	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Arsenic	13	16	mg/kg	3.2		1.55		2.22		1.82		3.59		1.78		2.32	
Barium	350	400	mg/kg	87.6		32.7		83.4		75.7		109		50.9		67.8	
Beryllium	7.2	72	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Cadmium	2.5	4.3	mg/kg	ND		ND		ND		ND		0.145	J	ND		ND	
Calcium	NS	NS	mg/kg	2430		877		917		732		4460		852		954	
Chromium	NS	NS	mg/kg	20.4		20.1		21		22		20.1		28.3		23	
Cobalt	NS	NS	mg/kg	1.44		1.05		1.75		2.24		1.59		1.4		1.38	
Copper	50	270	mg/kg	15.3		10.4		15.5		11.5		26.3		14.6		12.7	
Iron	NS	NS	mg/kg	15500	D	14300	D	13900	D	14600	D	15100	D	16800	D	16000	D
Lead	63	400	mg/kg	19.8		5.44		21		12.7		109		18.5		8.5	
Magnesium	NS	NS	mg/kg	1750		1520		1770		1750		1970		1980		1880	
Manganese	1600	2000	mg/kg	767	D	335	D	702	D	595	D	451	D	351	D	447	D
Mercury	0.18	0.81	mg/kg	0.0882		0.0264		0.0483		0.0221		0.286		0.0355		0.0255	
Nickel	30	310	mg/kg	18.4		13.4		19.5		17.1		18.7		17.3		16.5	
Potassium	NS	NS	mg/kg	1300		1100		1130		1170		1140		1410		1260	
Selenium	3.9	180	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Silver	2	180	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Sodium	NS	NS	mg/kg	230	D	131		159		135		204		140		152	
Thallium	NS	NS	mg/kg	ND		ND		ND		ND		ND		ND		ND	
Vanadium	NS	NS	mg/kg	23.2		23.2		23.2		23.5		20.5		28.2		25.4	
Zinc	109	10000	mg/kg	45.9		31.7		49.1		45		104	_	46.1	_	36.4	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

D = Diluted

ND = Not detected

Table 2c. Total Metals in Soil 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-7 (2	2-4)	SB-8 (0-2)	SB-8 (2	2-4)
SAMPLING DATE	NV UNDEC	NY-RESRR	Units	7/26/20	021	7/26/2	021	7/26/20	021
LAB SAMPLE ID	NY-UNKES	NY-RESKR	Units	L214016	8-15	L21401	68-16	L214016	58-17
					Qual		Qual		Qual
Total Metals									
Aluminum	NS	NS	mg/kg	22400	D	15300	D	13400	D
Antimony	NS	NS	mg/kg	ND		ND		ND	
Arsenic	13	16	mg/kg	1.76		2.87		1.09	
Barium	350	400	mg/kg	72.8		74.7		44	
Beryllium	7.2	72	mg/kg	ND		ND		ND	
Cadmium	2.5	4.3	mg/kg	ND		ND		ND	
Calcium	NS	NS	mg/kg	940		5430	D	700	
Chromium	NS	NS	mg/kg	27.4		16.5		15	
Cobalt	NS	NS	mg/kg	1.57		1.25		0.898	
Copper	50	270	mg/kg	16.3		16		7.7	
Iron	NS	NS	mg/kg	20000	D	14500	D	11600	D
Lead	63	400	mg/kg	7.88		23.8		3.76	
Magnesium	NS	NS	mg/kg	2310		1860		1300	
Manganese	1600	2000	mg/kg	555	D	568	D	490	D
Mercury	0.18	0.81	mg/kg	0.0293		0.0668		0.00957	
Nickel	30	310	mg/kg	19.5		15.2		12.3	
Potassium	NS	NS	mg/kg	1670		1320		813	
Selenium	3.9	180	mg/kg	ND		ND		ND	
Silver	2	180	mg/kg	ND		ND		ND	
Sodium	NS	NS	mg/kg	148	ĺ	281		180	
Thallium	NS	NS	mg/kg	ND		ND		ND	
Vanadium	NS	NS	mg/kg	30.7		20.4		15.7	
Zinc	109	10000	mg/kg	41.9		54.8		27.1	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

D = Diluted

ND = Not detected

Table 2d. Pesticides and Polychlorinated Biphenyls in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-2)	SB-1 (2-4)	SB-2 (0-2)	SB-2 (0-2) DUP	SB-2 (2-4)	SB-3 (0-2)	SB-3 (2-4)	SB-4 (0-2)	SB-4 (2-4)
SAMPLING DATE	NV HNDES	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NI-UNKES	N1-KESKK	Units	L2140168-01	L2140168-02	L2140168-03	L2140168-04	L2140168-05	L2140168-06	L2140168-07	L2140168-08	L2140168-09
				Qual	Qual	Qual	Qual	Qual	Qual	Qual	Qual	Qual
Polychlorinated Biphenyls												
Aroclor 1016	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	0.1	1	mg/kg	0.109	0.0104 J	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	0.1	1	mg/kg	ND	0.00623 J	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	0.1	1	mg/kg	0.109	0.0166 J	ND	ND	ND	ND	ND	ND	ND
Organochlorine Pesticides												
4,4'-DDD	0.0033	13	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.0033	8.9	mg/kg	0.0126	0.106	0.00118 J	0.00221	ND	0.0361	ND	ND	ND
4,4'-DDT	0.0033	7.9	mg/kg	0.0212	0.108	ND	ND	ND	0.0251	ND	ND	ND
Aldrin	0.005	0.097	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.02	0.48	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta-BHC	0.036	0.36	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	NS	NS	mg/kg	ND	ND	ND	ND	ND	0.0704	ND	ND	ND
cis-Chlordane	0.094	4.2	mg/kg	0.00195 J	ND	ND	ND	ND	0.00627	ND	ND	ND
Delta-BHC	0.04	100	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.005	0.2	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2.4	24	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2.4	24	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	2.4	24	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	0.014	11	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	NS	NS	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone	NS	NS	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	0.042	2.1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	NS	NS	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lindane	0.1	1.3	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	NS	NS	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	NS	NS	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-Chlordane	NS	NS	mg/kg	0.00219 J	ND	ND	ND	ND	0.00534	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

Table 2d. Pesticides and Polychlorinated Biphenyls in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-5 (0-2)	SB-5 (2-4)	SB-6 (0-2)	SB-6 (2-4)	SB-7 (0-2)	SB-7 (2-4)	SB-8 (0-2)	SB-8 (2-4)
SAMPLING DATE	NV UNDES	NY-RESRR	Units	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021	7/26/2021
LAB SAMPLE ID	NY-UNKES	NY-KESKK	Units	L2140168-10	L2140168-11	L2140168-12	L2140168-13	L2140168-14	L2140168-15	L2140168-16	L2140168-17
				Qual							
Polychlorinated Biphenyls											
Aroclor 1016	0.1	1	mg/kg	ND							
Aroclor 1221	0.1	1	mg/kg	ND							
Aroclor 1232	0.1	1	mg/kg	ND							
Aroclor 1242	0.1	1	mg/kg	ND							
Aroclor 1248	0.1	1	mg/kg	ND							
Aroclor 1254	0.1	1	mg/kg	ND							
Aroclor 1260	0.1	1	mg/kg	ND							
Aroclor 1262	0.1	1	mg/kg	ND							
Aroclor 1268	0.1	1	mg/kg	ND							
PCBs, Total	0.1	1	mg/kg	ND							
Organochlorine Pesticides											
4,4'-DDD	0.0033	13	mg/kg	ND							
4,4'-DDE	0.0033	8.9	mg/kg	ND	ND	ND	ND	ND	ND	0.0026	0.000472 J
4,4'-DDT	0.0033	7.9	mg/kg	ND	ND	0.0041	ND	ND	ND	ND	ND
Aldrin	0.005	0.097	mg/kg	ND							
Alpha-BHC	0.02	0.48	mg/kg	ND							
Beta-BHC	0.036	0.36	mg/kg	ND							
Chlordane	NS	NS	mg/kg	ND							
cis-Chlordane	0.094	4.2	mg/kg	ND							
Delta-BHC	0.04	100	mg/kg	ND							
Dieldrin	0.005	0.2	mg/kg	ND							
Endosulfan I	2.4	24	mg/kg	ND							
Endosulfan II	2.4	24	mg/kg	ND							
Endosulfan sulfate	2.4	24	mg/kg	ND							
Endrin	0.014	11	mg/kg	ND							
Endrin aldehyde	NS	NS	mg/kg	ND							
Endrin ketone	NS	NS	mg/kg	ND							
Heptachlor	0.042	2.1	mg/kg	ND							
Heptachlor epoxide	NS	NS	mg/kg	ND							
Lindane	0.1	1.3	mg/kg	ND							
Methoxychlor	NS	NS	mg/kg	ND							
Toxaphene	NS	NS	mg/kg	ND							
trans-Chlordane	NS	NS	mg/kg	ND	ND	0.00107 J	ND	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs

Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

J = Estimated value

ND = Not detected

Table 2e. Emerging Contaminants in Soil 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				SB-1 (0-	-2)
SAMPLING DATE	NIV HAIDEG	NIV DECDD	WT *4	7/26/20	21
LAB SAMPLE ID	NY-UNKES	NY-RESRR	Units	L2140168	8-01
					Qual
Semivolatile Organic Compounds					
1,4-Dioxane	0.1	13	mg/kg	ND	
Perfluorinated Alkyl Acids				,	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	NS	NS	ng/g	ND	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	NS	NS	ng/g	ND	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	NS	NS	ng/g	ND	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	NS	NS	ng/g	ND	
Perfluorobutanesulfonic Acid (PFBS)	NS	NS	ng/g	ND	
Perfluorobutanoic Acid (PFBA)	NS	NS	ng/g	ND	
Perfluorodecanesulfonic Acid (PFDS)	NS	NS	ng/g	ND	
Perfluorodecanoic Acid (PFDA)	NS	NS	ng/g	0.109	J
Perfluorododecanoic Acid (PFDoA)	NS	NS	ng/g	ND	
Perfluoroheptanesulfonic Acid (PFHpS)	NS	NS	ng/g	ND	
Perfluoroheptanoic Acid (PFHpA)	NS	NS	ng/g	ND	
Perfluorohexanesulfonic Acid (PFHxS)	NS	NS	ng/g	ND	
Perfluorohexanoic Acid (PFHxA)	NS	NS	ng/g	0.006	J
Perfluorononanoic Acid (PFNA)	NS	NS	ng/g	ND	
Perfluorooctanesulfonamide (FOSA)	NS	NS	ng/g	ND	
Perfluorooctanesulfonic Acid (PFOS)	0.88	44	ng/g	5.14	
Perfluorooctanoic Acid (PFOA)	0.66	33	ng/g	0.0097	J
Perfluoropentanoic Acid (PFPeA)	NS	NS	ng/g	0.0077	J
Perfluorotetradecanoic Acid (PFTA)	NS	NS	ng/g	ND	
Perfluorotridecanoic Acid (PFTrDA)	NS	NS	ng/g	ND	
Perfluoroundecanoic Acid (PFUnA)	NS	NS	ng/g	ND	
PFAS, Total	NS	NS	ng/g	5.2724	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-UNRES SCOs Bold and shaded orange value indicates concentration exceeds NY-RESRR SCOs

NY-UNRES = 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

NY-RESRR = 6 NYCRR Part 375 Restricted-Residential Use Soil Cleanup Objectives

The NY-UNRES and NY-RESRR SCOs for all PFAS analytes are proposed SCOs per NYSDEC'S ampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2021

J = Estimated value

ND = Not detected

Table 3a. Volatile Organic Compounds in Groundwater 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-2	MW-2_DUP	TRIP BLANK
SAMPLING DATE	NIV ANYOR	TT - *4	7/28/2021	7/28/2021	7/28/2021	7/28/2021
LAB SAMPLE ID	NY-AWQS	Units	L2140608-01	L2140608-02	L2140608-03	L2140608-05
			Qual	Qual	Qual	Qual
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	ND	ND
1,1-Dichloroethene	5	ug/l	ND	ND	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	ug/l	ND	ND	ND	ND
1,2-Dichloropropane	1	ug/l	ND	0.22 J	0.17 J	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	ug/l	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND
1,4-Dioxane	NS	ug/l	ND	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	ug/l	ND	ND	ND	ND
Acetone	50	ug/l	ND	ND	ND	ND
Acrylonitrile	5	ug/l	ND	ND	ND	ND
Benzene	1	ug/l	ND	ND	ND	ND
Bromobenzene	5	ug/l	ND	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND	ND
Bromodichloromethane	50	ug/l	ND	ND	ND	ND
Bromoform	50	ug/l	ND	ND	ND	ND
Bromomethane	5	ug/l	ND	ND	ND	ND
Carbon disulfide	60	ug/l	ND	ND	ND	ND
Carbon tetrachloride	5	ug/l	ND	ND	ND	ND
Chlorobenzene	5	ug/l	ND	ND	ND	ND
Chloroethane	5	ug/l	ND	ND	ND	ND
Chloroform	7	ug/l	0.77 J	2 J	1.8 J	ND
Chloromethane	NS	ug/l	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND
Dibromochloromethane	50	ug/l	ND	ND	ND	ND
Dibromomethane	5	ug/l	ND	ND	ND	ND
Dichlorodifluoromethane	5	ug/l	ND	ND	ND	ND

Table 3a. Volatile Organic Compounds in Groundwater 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-2	MW-2 DUP	TRIP BLANK
SAMPLING DATE		A.	7/28/2021	7/28/2021	7/28/2021	7/28/2021
LAB SAMPLE ID	NY-AWQS	Units	L2140608-01	L2140608-02	L2140608-03	L2140608-05
			Qual	Qual	Qual	Qual
Ethyl ether	NS	ug/l	ND	ND	ND	ND
Ethylbenzene	5	ug/l	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ug/l	ND	ND	ND	ND
Isopropylbenzene	5	ug/l	ND	ND	ND	ND
Methyl tert butyl ether	10	ug/l	ND	ND	ND	ND
Methylene chloride	5	ug/l	ND	ND	ND	ND
n-Butylbenzene	5	ug/l	ND	ND	ND	ND
n-Propylbenzene	5	ug/l	ND	ND	ND	ND
Naphthalene	10	ug/l	ND	ND	ND	ND
o-Chlorotoluene	5	ug/l	ND	ND	ND	ND
o-Xylene	5	ug/l	ND	ND	ND	ND
p-Chlorotoluene	5	ug/l	ND	ND	ND	ND
p-Diethylbenzene	NS	ug/l	ND	ND	ND	ND
p-Ethyltoluene	NS	ug/l	ND	ND	ND	ND
p-Isopropyltoluene	5	ug/l	ND	ND	ND	ND
p/m-Xylene	5	ug/l	ND	ND	ND	ND
sec-Butylbenzene	5	ug/l	ND	ND	ND	ND
Styrene	5	ug/l	ND	ND	ND	ND
tert-Butylbenzene	5	ug/l	ND	ND	ND	ND
Tetrachloroethene	5	ug/l	16	32	32	ND
Toluene	5	ug/l	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ug/l	ND	ND	ND	ND
Trichloroethene	5	ug/l	0.21 J	0.56	0.6	ND
Trichlorofluoromethane	5	ug/l	ND	ND	ND	ND
Vinyl acetate	NS	ug/l	ND	ND	ND	ND
Vinyl chloride	2	ug/l	ND	ND	ND	ND
Xylenes, Total	NS	ug/l	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-AWQS

NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

J = Estimated value

ND = Not detected

Table 3b. Semivolatile Organic Compounds in Groundwater 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-2	MW-2 DUP		
SAMPLING DATE			7/28/2021	7/28/2021	7/28/2021		
LAB SAMPLE ID	NY-AWQS	Units	L2140608-01	L2140608-02	L2140608-03		
			Qual	Qual	Qual		
Semivolatile Organic Compounds							
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND	ND	ND		
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND		
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND		
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND		
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND		
2,4,5-Trichlorophenol	NS	ug/l	ND	ND	ND		
2,4,6-Trichlorophenol	NS	ug/l	ND	ND	ND		
2,4-Dichlorophenol	1	ug/l	ND	ND	ND		
2,4-Dimethylphenol	50	ug/l	ND	ND	ND		
2,4-Dinitrophenol	10	ug/l	ND	ND	ND		
2,4-Dinitrotoluene	5	ug/l	ND	ND	ND		
2,6-Dinitrotoluene	5	ug/l	ND	ND	ND		
2-Chlorophenol	NS	ug/l	ND	ND	ND		
2-Methylphenol	NS	ug/l	ND	ND	ND		
2-Nitroaniline	5	ug/l	ND	ND	ND		
2-Nitrophenol	NS	ug/l	ND	ND	ND		
3,3'-Dichlorobenzidine	5	ug/l	ND	ND	ND		
3-Methylphenol/4-Methylphenol	NS	ug/l	ND	ND	ND		
3-Nitroaniline	5	ug/l	ND	ND	ND		
4,6-Dinitro-o-cresol	NS	ug/l	ND	ND	ND		
4-Bromophenyl phenyl ether	NS	ug/l	ND	ND	ND		
4-Chloroaniline	5	ug/l	ND	ND	ND		
4-Chlorophenyl phenyl ether	NS	ug/l	ND	ND	ND		
4-Nitroaniline	5	ug/l	ND	ND	ND		
4-Nitrophenol	NS	ug/l	ND	ND	ND		
Acetophenone	NS	ug/l	ND	ND	ND		
Benzoic Acid	NS	ug/l	7.4 J	ND	ND		
Benzyl Alcohol	NS	ug/l	ND	ND	ND		
Biphenyl	NS	ug/l	ND	ND	ND		
Bis(2-chloroethoxy)methane	5	ug/l	ND	ND	ND		
Bis(2-chloroethyl)ether	1	ug/l	ND	ND	ND		
Bis(2-chloroisopropyl)ether	5	ug/l	ND	ND	ND		
Bis(2-ethylhexyl)phthalate	5	ug/l	ND	ND	ND		
Butyl benzyl phthalate	50	ug/l	ND	ND	ND		
Carbazole	NS	ug/l	ND	ND	ND		
Di-n-butylphthalate	50	ug/l	2.8 J	0.54 J	0.49 J		
Di-n-octylphthalate	50	ug/l	ND 3	ND	ND		
Dibenzofuran	NS	ug/l	ND	ND	ND		
Diethyl phthalate	50	ug/l	ND	ND	ND		
Dimethyl phthalate	50	ug/l	ND	ND	ND		
Hexachlorocyclopentadiene	5	ug/l	ND	ND	ND		
Isophorone	50	ug/l	ND ND	ND ND	ND ND		
n-Nitrosodi-n-propylamine	NS		+		ND		
		ug/l	ND ND	ND ND			
NDPA/DPA	50	ug/l	ND ND	ND ND	ND		
Nitrobenzene	0.4	ug/l	ND ND	ND ND	ND		
p-Chloro-m-cresol Phenol	NS 1	ug/l ug/l	ND ND	ND ND	ND ND		

Table 3b. Semivolatile Organic Compounds in Groundwater 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-	-1	MW-	-2	MW-2	DUP
SAMPLING DATE	NIV AWOS	TT . *4	7/28/20	7/28/2021		021	7/28/2021	
LAB SAMPLE ID	NY-AWQS	Units	L214060	08-01	L214060	08-02	L2140608-03	
				Qual		Qual		Qual
2-Chloronaphthalene	10	ug/l	ND		ND		ND	
2-Methylnaphthalene	NS	ug/l	ND		ND		ND	
Acenaphthene	20	ug/l	0.06	J	ND		ND	
Acenaphthylene	NS	ug/l	ND		ND		ND	
Anthracene	50	ug/l	0.03	J	ND		ND	
Benzo(a)anthracene	0.002	ug/l	0.11		0.02	J	0.02	J
Benzo(a)pyrene	NS	ug/l	0.05	J	ND		ND	
Benzo(b)fluoranthene	0.002	ug/l	0.08	J	0.01	J	0.02	J
Benzo(ghi)perylene	NS	ug/l	0.03	J	ND		ND	
Benzo(k)fluoranthene	0.002	ug/l	0.02	J	0.01	J	ND	
Chrysene	0.002	ug/l	0.09	J	ND		0.01	J
Dibenzo(a,h)anthracene	NS	ug/l	ND		ND		ND	
Fluoranthene	50	ug/l	0.19		0.02	J	ND	
Fluorene	50	ug/l	0.03	J	0.01	J	0.02	J
Hexachlorobenzene	0.04	ug/l	ND		0.01	J	ND	
Hexachlorobutadiene	0.5	ug/l	ND		ND		ND	
Hexachloroethane	5	ug/l	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.002	ug/l	0.03	J	ND		0.01	J
Naphthalene	10	ug/l	ND		ND		ND	
Pentachlorophenol	1	ug/l	ND		ND		ND	
Phenanthrene	50	ug/l	0.31		0.04	J	0.04	J
Pyrene	50	ug/l	0.26		0.02	J	ND	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-AWQS

NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

J = Estimated value

ND = Not detected

Table 3c. Total and Dissolved Metals in Groundwater 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-2	MW-2 DUP
SAMPLING DATE		wv	7/28/2021	7/28/2021	7/28/2021
LAB SAMPLE ID	NY-AWQS	Units	L2140608-01	L2140608-02	L2140608-03
			Qual	Qual	Qual
Total Metals					
Aluminum, Total	NS	ug/l	674	16500	13000
Antimony, Total	3	ug/l	ND	ND	ND
Arsenic, Total	25	ug/l	ND	ND	4
Barium, Total	1000	ug/l	209	317	250
Beryllium, Total	3	ug/l	ND	ND	ND
Cadmium, Total	5	ug/l	ND	1.1	ND
Calcium, Total	NS	ug/l	93100	80200	80900
Chromium, Total	50	ug/l	3	53	40
Cobalt, Total	NS	ug/l	8	18	14
Copper, Total	200	ug/l	7	51	40
Iron, Total	300	ug/l	1520	26900	20000
Lead, Total	25	ug/l	12	19	13
Magnesium, Total	35000	ug/l	39200	39700	38200
Manganese, Total	300	ug/l	690	1280	933
Mercury, Total	0.7	ug/l	ND	ND	ND
Nickel, Total	100	ug/l	18	56	44
Potassium, Total	NS	ug/l	6900	10200	9100
Selenium, Total	10	ug/l	ND	ND	ND
Silver, Total	50	ug/l	ND	ND	ND
Sodium, Total	20000	ug/l	84700	64300	62500
Thallium, Total	0.5	ug/l	ND	ND	ND
Vanadium, Total	NS	ug/l	3	42	32
Zinc, Total	2000	ug/l	11	88	67
Dissolved Metals	2000	45,1	11	00	0,
Aluminum, Dissolved	NS	ug/l	18	21	24
Antimony, Dissolved	3	ug/l	ND	ND	ND
Arsenic, Dissolved	25	ug/l	ND	ND	ND
Barium, Dissolved	1000	ug/l	154	109	109
Beryllium, Dissolved	3	ug/l	ND	ND	ND
Cadmium, Dissolved	5	ug/l	ND	ND	ND
Calcium, Dissolved	NS	ug/l	86000	71000	71200
Chromium, Dissolved	50	ug/l	ND	ND	ND
Cobalt, Dissolved	NS	ug/l	3 J	ND	ND
· · · · · · · · · · · · · · · · · · ·	200	ug/l	ND ND	ND	ND
Copper, Dissolved					
Iron, Dissolved Lead, Dissolved	300 25	ug/l	ND 2 J	ND ND	ND ND
Magnesium, Dissolved	35000	ug/l	36400	30500	30600
		ug/l			
Manganese, Dissolved	300	ug/l	494	345	346
Mercury, Dissolved	0.7	ug/l	ND	ND 4	ND 4
Nickel, Dissolved	100	ug/l	10	4	4
Potassium, Dissolved	NS	ug/l	5800	4900	4800
Selenium, Dissolved	10	ug/l	ND	ND	ND
Silver, Dissolved	50	ug/l	ND	ND	ND 5 0.000
Sodium, Dissolved	20000	ug/l	81900	60100	59600
Thallium, Dissolved	0.5	ug/l	ND	ND	ND
Vanadium, Dissolved	NS	ug/l	ND	2 J	ND
Zinc, Dissolved	2000	ug/l	ND	ND	ND

Notes

Bold and shaded yellow value indicates concentration exceeds NY-AWQS

NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

J = Estimated value

ND = Not detected

Table 3d. Pesticides and Polychlorinated Biphenyls in Groundwater 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-2	MW-2 DUP	
SAMPLING DATE	NW AWOO	T T 1.	7/28/2021	7/28/2021	7/28/2021	
LAB SAMPLE ID	NY-AWQS	Units	L2140608-01	L2140608-02	L2140608-03	
			Qual	Qual	Qual	
Polychlorinated Biphenyls						
Aroclor 1016	0.09	ug/l	ND	ND	ND	
Aroclor 1221	0.09	ug/l	ND	ND	ND	
Aroclor 1232	0.09	ug/l	ND	ND	ND	
Aroclor 1242	0.09	ug/l	ND	ND	ND	
Aroclor 1248	0.09	ug/l	ND	ND	ND	
Aroclor 1254	0.09	ug/l	ND	ND	ND	
Aroclor 1260	0.09	ug/l	ND	ND	ND	
Aroclor 1262	0.09	ug/l	ND	ND	ND	
Aroclor 1268	0.09	ug/l	ND	ND	ND	
PCBs, Total	NS	ug/l	ND	ND	ND	
Organochlorine Pesticides						
4,4'-DDD	0.3	ug/l	ND	ND	ND	
4,4'-DDE	0.2	ug/l	ND	ND	ND	
4,4'-DDT	0.2	ug/l	ND	ND	ND	
Aldrin	NS	ug/l	ND	ND	ND	
Alpha-BHC	0.01	ug/l	ND	ND	ND	
Beta-BHC	0.04	ug/l	ND	ND	ND	
Chlordane	0.05	ug/l	ND	ND	ND	
cis-Chlordane	NS	ug/l	ND	ND	ND	
Delta-BHC	0.04	ug/l	ND	ND	ND	
Dieldrin	0.004	ug/l	ND	ND	ND	
Endosulfan I	NS	ug/l	ND	ND	ND	
Endosulfan II	NS	ug/l	ND	ND	ND	
Endosulfan sulfate	NS	ug/l	ND	ND	ND	
Endrin	NS	ug/l	ND	ND	ND	
Endrin aldehyde	5	ug/l	ND	ND	ND	
Endrin ketone	5	ug/l	ND	ND	ND	
Heptachlor	0.04	ug/l	ND	ND	ND	
Heptachlor epoxide	0.03	ug/l	ND	ND	ND	
Lindane	0.05	ug/l	ND	ND	ND	
Methoxychlor	35	ug/l	ND	ND	ND	
Toxaphene	0.06	ug/l	ND	ND	ND	
trans-Chlordane	NS	ug/l	ND	ND	ND	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-AWQS

NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

ND = Not detected

Table 3e. Emerging Contaminants in Groundwater 340 Myrtle Avenue - Brooklyn, NY

Phase II Environmental Site Investigation Letter Report

CLIENT SAMPLE ID				MW-1	MW-2	MW-2_DUP
SAMPLING DATE	NW AWOS	NIV DEAC	TI*4	7/28/2021	7/28/2021	7/28/2021
LAB SAMPLE ID	NY-AWQS	NY-PFAS	Units	L2140608-01	L2140608-02	L2140608-03
				Qual	Qual	Qual
1,4 Dioxane						
1,4-Dioxane	NS	NS	ug/l	ND	0.0655 J	0.0747 J
Perfluorinated Alkyl Acids						
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	NS	100	ng/l	ND	ND	ND
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	NS	100	ng/l	ND	ND	ND
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	NS	100	ng/l	ND	ND	ND
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	NS	100	ng/l	ND	ND	ND
Perfluorobutanesulfonic Acid (PFBS)	NS	100	ng/l	5.73	6.8	6.95
Perfluorobutanoic Acid (PFBA)	NS	100	ng/l	13.4	11.1	11.1
Perfluorodecanesulfonic Acid (PFDS)	NS	100	ng/l	ND	ND	ND
Perfluorodecanoic Acid (PFDA)	NS	100	ng/l	ND	ND	ND
Perfluorododecanoic Acid (PFDoA)	NS	100	ng/l	ND	ND	ND
Perfluoroheptanesulfonic Acid (PFHpS)	NS	100	ng/l	ND	ND	ND
Perfluoroheptanoic Acid (PFHpA)	NS	100	ng/l	14	15.3	15.5
Perfluorohexanesulfonic Acid (PFHxS)	NS	100	ng/l	7.71	5.94	6.07
Perfluorohexanoic Acid (PFHxA)	NS	100	ng/l	21	21.3	21.4
Perfluorononanoic Acid (PFNA)	NS	100	ng/l	1.24 J	1.78 J	1.79 J
Perfluorooctanesulfonamide (FOSA)	NS	100	ng/l	ND	ND	ND
Perfluorooctanesulfonic Acid (PFOS)	NS	10	ng/l	12.2	10.8	10.9
Perfluorooctanoic Acid (PFOA)	NS	10	ng/l	66.7	89.3	91
Perfluoropentanoic Acid (PFPeA)	NS	100	ng/l	31.2	30.4	30.3
Perfluorotetradecanoic Acid (PFTA)	NS	100	ng/l	ND	ND	ND
Perfluorotridecanoic Acid (PFTrDA)	NS	100	ng/l	ND	ND	ND
Perfluoroundecanoic Acid (PFUnA)	NS	100	ng/l	ND	ND	ND
PFAS, Total	NS	500	ng/l	173.18	192.72	195.01

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-AWQS or NY-PFAS

NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

NY-PFAS = Guidelines for Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2021

J = Estimated value

ND = Not detected

Attachment 1 Boring and Monitoring Well Construction Logs

TE	N	13	lvi	RONMENTAL	Boring No.	SB-1			
Citor		240 8	Armala A	Avenue Breekhm NV	Sheet	1 of 1			
Site: Date:		7/26/2	nyi ne <i>F</i>	Avenue - Brooklyn, NY	Drilling Method: Soil Sampling Method:	Geoprobe 5' Macro-core			
Weat			y, 80-9	0s	DTW:	N/A			
		A. Pla			Driller :	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description				
_ <u>1</u> 2	0.0		SB-1 (0-2)		0-1" - Concrete silty SAND, trace gravel, co 8" (perched water), medium	oncrete, brick, and plastic debris, wet @ dense			
_ 3_	0.0	35"	SB-1 (2-4)						
<u>4</u> 5	0.0								
6_	0.0				n silty SAND, trace gravel, c 6" (perched water), medium	concrete, and brick debris, wet @ 8'10"-dense			
7									
'- 8_	0.0	18"							
_ <u>9</u> 10	0.0								
					10-11'6" - SAA				
11	0.0								
_12 _13	0.0	38"		11'6"-15' - Tan, fine silty	r SAND with silt lenses throu	ighout, moist, medium dense			
_ <u>14</u> _ 15	0.0								
				15-16'9" - Tan, fine to	coarse poorly graded SAND	D, trace gravel, loose, moist			
16	0.0								
17		F4"		16'9'-17'6" - Brown, fine to	medium clayey SAND, trac	e gravel, moist, medium dense			
18	0.0	51"		17'6"-20' - Brown, medium to o	coarse poorly graded SAND,	trave gravel, medium dense, moist			
_ <u>19</u> 	0.0								
21	0.0			20-24' - Brown, medium to co	parse poorly graded SAND, t	trace gravel, medium dense, moist			
22	• •								
23	0.0	47"							
24 25	0.0			24-25' - Brown, medium to co	parse poorly graded SAND, t	trace gravel, medium dense, moist			

TE	-131	EN	П					
	ENVIRONMENTAL				Boring No.	SB-1		
014					Sheet	1 of 1		
Site:					Drilling Method:	Geoprobe		
Date:				0	Soil Sampling Method:	5' Macro-core		
Weat		A. Pla	y, 80-9	US	DTW: Driller :	N/A AARCO		
Obse		A. Pič	ıtt		Driller :	AARCO		
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description			
26	0.0				25-28' - SAA			
27 -28	0.0	36"		28-30' - Tan, fine to medium p	28-30' - Tan, fine to medium poorly graded SAND with silt, trace gravel, medium dense, moist			
29 30	0.0				, -			
31	0.0				30-35' - SAA			
33 34 35					l @ 35 ft-bg, dense material v	vith cobbles		
					EOB @ 35 ft-bg			
SM - S	nd: - Dept - End (Feet Silty S Well-g	of Bor Below and	ing Grade Sand		PID - Photoionization Detect SAA - Same as Above NR - Not Recorded SP - Poorly Graded Sand GP - Poorly Graded Gravel	etor		

CR_2				
SB-2				
1 of 1				
Geoprobe				
ethod: 5' Macro-core				
N/A				
AARCO				
Soil Description				
0-4" - Concrete				
ium silty SAND, trace concrete, medium dense, moist, trace gravel				
SAND, medium dense, moist				
ft-bg				
PID - Photoionization Detector				
SAA - Same as Above NR - Not Recorded				
ed Gravel				
1 (

	TENEN VIRONMENTAL				Boring No.	SB-3			
					Sheet	1 of 1			
Site:		340 N	lyrtle A	Avenue - Brooklyn, NY	Drilling Method:	Geoprobe			
Date:		7/26/2	2021		Soil Sampling Method:	5' Macro-core			
Weat			y, 80-9	0s	DTW:	N/A			
Obse	rver:	A. Pla	itt		Driller:	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description				
	0.0				0-4" - Concrete				
1	0.2		2)	4"-2' - FILL, brown, fine to	o medium silty SAND, medium dense, moist, trace gravel				
2	0.0	100%	SB-3 (0-2)	2-4' - Brown, fir	ne to medium silty SAND, medium dense, moist				
3	0.0	•	€ €			,			
			SB-3 (2-4)						
4	0.0				EOB @ 4 ft-bg				
Notes	S :								
Leger									
		th to W			PID - Photoionization De	etector			
	EOB - End of Boring				SAA - Same as Above				
			Grade		NR - Not Recorded				
SM - S	-				SP - Poorly Graded Sand				
		graded			GP - Poorly Graded Gravel				
GW -	Grour	ndwate	er						

Site:			lyrtle A	RONMENTAL venue - Brooklyn, NY	Boring No. Sheet Drilling Method: Soil Sampling Method	SB-4 1 of 1 Geoprobe 5' Macro-core			
Weat	her:	Sunn	y, 80-9	0s	DTW:	N/A			
Obse	rver:	A. Pla	tt		Driller :	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples	Soil Description					
	4.4				0-4" - Concrete				
. <u>1</u> -	1.1	100%	SB-4 (0-2)	4"-2' - FILL, dark brown fin	e to medium silty SAND,	, medium dense, moist, trace gravel			
3	0.0	10	SB-4 (2-4)	2-4' - Brown, fi	ne to medium silty SANE				
4 Notes	<u>. </u>				EOB @ 4 ft-bg				
Leger DTW EOB - ft-bg - SM - 3	nd: - Dep - End - Feet Silty S Well-ç		ng Grade Sand		PID - Photoionization D SAA - Same as Above NR - Not Recorded SP - Poorly Graded Sa GP - Poorly Graded Gr	nd			

TENENVIRONMENTAL Site: 340 Myrtle Avenue - Brooklyn, NY Date: 7/26/2021					Boring No. Sheet Drilling Method: Soil Sampling Method	SB-5 1 of 1 Geoprobe d: 5' Macro-core			
Weat			y, 80-9	0s	DTW:	N/A			
		A. Pla			Driller :	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description	n			
	0.0				0-4" - Concrete				
. <u>1</u> -	0.0	100%	SB-5 (0-2)	4"-2' - FILL, dark brown, fin	e to medium silty SAND	, medium dense, moist, trace gravel			
3 -	0.0	10	SB-5 (2-4)	2-4' - Brown, fi	ne to medium silty SANE EOB @ 4 ft-bg				
Leger DTW EOB ft-bg - SM -	Notes: Legend: DTW - Depth to Water EOB - End of Boring ft-bg - Feet Below Grade SM - Silty Sand SW - Well-graded Sand GW - Groundwater				PID - Photoionization E SAA - Same as Above NR - Not Recorded SP - Poorly Graded Sa GP - Poorly Graded Gr	Detector			

TE	N	ΕN			Boring No.	SB-6			
	ENVIR			RONMENTAL	Sheet	1 of 1			
Site:	Site: 340 Myrtle Avenue - Brooklyn, NY		Drilling Method:	Geoprobe					
Date:				<u> </u>	Soil Sampling Method	d: 5' Macro-core			
	Weather: Sunny, 80-90s			0s	DTW:	N/A			
Obse	rver:	A. Pla	tt		Driller :	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description	n			
	0.0				0-4" - Concrete				
. <u>1</u> - 2	0.0	%(SB-6 (0-2)	4"-2' - FILL, dark brown, fine to	medium silty SAND, trav	e gravel and brick, medium dense, moist			
3	0.0	100%	SB-6 (2-4)	2-4' - Bn, fin	e to medium silty SAND,	medium dense, moist			
4	0.0				EOB @ 4 ft-bg				
Notes: Legend: DTW - Depth to Water PID - PI EOB - End of Boring SAA - S ft-bg - Feet Below Grade NR - No SM - Silty Sand SP - Po					PID - Photoionization D SAA - Same as Above NR - Not Recorded SP - Poorly Graded Sa GP - Poorly Graded Gr	nd			

the the	ΞN	EL	VI	RONMENTAL _	Boring No. Sheet	SB-7 1 of 1			
Site: Date:		340 N 7/26/2	. .	Avenue - Brooklyn, NY	Drilling Method:	Geoprobe 5' Macro-core			
Weat			<u>2021</u> y, 80-9	00	Soil Sampling Method: DTW:	N/A			
Obse				05	Driller :	AARCO			
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description				
					0-4" - Concrete				
_ <u>1</u> 2	0.0	%(SB-7 (0-2)	4"-2' - FILL, dark brown, fine		ave gravel, medium dense, moist			
3_	0.0	100%	SB-7 (2-4)	2-4' - Brown, fin	fine to medium silty SAND, medium dense, moist				
4	0.0				EOB @ 4 ft-bg				
Leger DTW EOB - ft-bg - SM - 3	Notes: Legend: DTW - Depth to Water EOB - End of Boring ft-bg - Feet Below Grade SM - Silty Sand SW - Well-graded Sand GW - Groundwater				PID - Photoionization De SAA - Same as Above NR - Not Recorded SP - Poorly Graded Sand GP - Poorly Graded Grav	i l			

	IN	Ē١	VI	RONMENTAL .	Boring No. Sheet	SB-8 1 of 1		
Site:		0-10-11	1911107	venue - Brooklyn, NY	Brinning moundar	Geoprobe		
Date:					Soil Sampling Method:	5' Macro-core		
Weat			y, 80-9	0s	DTW:	N/A		
Obse	rver:	A. Pla	att		Driller :	AARCO		
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples		Soil Description			
					0-4" - Concrete			
1	0.0		SB-8 (0-2)	4"-2' - FILL, dark brown, fin	e to medium silty SAND, tra	ce gravel, medium dense, moist		
2		100%		2-4' - Brown, fi	ne to medium silty SAND, m	edium dense. moist		
3_	0.0		SB-8 (2-4)					
4	0.0		S		EOB @ 4 ft-bg			
Notes	s:							
Legei								
DTW - Depth to Water					PID - Photoionization Detector			
EOB - End of Boring ft-bg - Feet Below Grade			_		SAA - Same as Above			
			Grade		NR - Not Recorded			
SM - S			Sand		SP - Poorly Graded Sand			
		jraded idwate	Sand		GP - Poorly Graded Grav	eı		

MONITORING WELL CONSTRUCTION DIAGRAM

MONITORING WELL CONSTRUCTION DIAGRAM

Attachment 2 Soil Vapor Logs

Attachment 2 - Soil Vapor Logs 340 Myrtle Avenue - Brooklyn, NY Phase II Environmental Site Investigation Letter Report

TE	TENENVIRONMENTAL											
Site:			34	40 Myrtle A	venue - B	rooklyn, I	YV					
Weathe	r:			Sui	nny, 70s-8	80s						
Date:					7/28/2021							
Observe	ers:			A. P	latt & H. I	_au						
Sample ID	He (ppm)	PID (ppm) Can ID Flow ID Initial Time Final Time						Final Pressure (in-Hg)				
SS-1	0	4.9	2688	01878	9:38	11:35	-30.05	-9.30				
SS-2	0	234	2825	0851	9:35	11:31	-30.30	-7.47				
SS-3	0	69.3	3205	01093	9:33	11:30	-29.89	-7.06				
SS-4	0	7.6	2238	01346	9:28	11:27	-29.87	-7.62				
SS-5	SS-5 0 0.0 3186 01935 9:25 11:26 -29.82 -7.19											
Not p		ts per mi	llion		in-Hg:	inches m	ercury					

340 Myrtle Avenue – Brooklyn, NY Phase II Environmental Site Investigation Letter Report

Attachment 3 *Groundwater Purge Logs*

Attachment 3 - Groundwater Purge Logs 340 Myrtle Avenue - Brooklyn

GROUNDWATER SAMPLING LOG

Site Name	340 Myrtle Avenue	Date	7/28/2021
Well No.	MW-1	Sample ID	MW-1

Well Diameter	2 inches	Depth to Water	53.24	ft-bg	
Well Screen Interval	55-65 ft-bg	Depth to Bottom	64.8	ft-bg	
Headspace PID	0.0 ppm	•			
Weather	Sunny, 70s-80s				

Pump	Waterra	
Water Quality Meter	Horiba U52	
Total Volume Purged	15 gallons	

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
11:15	20.54	8.01	-48	0.321	613	9.70	0.199
11:25	20.6	8.08	-26	0.404	319	5.14	0.261
11:35	19.76	7.95	-133	0.623	376	5.83	0.399
11:45	19.61	7.80	-66	0.686	275	7.36	0.439
11:55	19.62	7.73	-59	0.753	268	7.38	0.479
12:05	19.61	7.75	-53	0.779	215	7.36	0.500
12:15	19.55	7.69	-43	0.821	220	7.62	0.533

Notes: Began purging at 10:50. Hookup Horiba at 11:15. Purged for over 1 hr, water running clear.

Sampled MW-1 at 12:20 for VOCs, SVOCs, total and dissolved metals, pesticides and PCBs.

Attachment 3 - Groundwater Purge Logs 340 Myrtle Avenue - Brooklyn

GROUNDWATER SAMPLING LOG

Site Name	340 Myrtle Avenue	Date	//2	8/2021	
Well No.	MW-2	Sample ID	N	∕IW-2	
Well Diameter	2 inches	Depth to Water	53.3	ft-bg	
Well Screen Interval	55-65 ft-bg	Depth to Bottom	64.48	ft-bg	

Pump	Waterra
Water Quality Meter	Horiba U52
Total Volume Purged	18 gallons

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
9:45	19.55	8.69	49	0.601	1000	7.55	0.384
9:55	18.52	7.45	71	0.615	1000	4.66	0.394
10:05	18.46	7.37	80	0.641	780	4.20	0.411
10:15	18.30	7.38	75	0.644	877	4.61	0.413
10:25	18.19	7.33	82	0.663	779	4.87	0.424
10:35	18.17	7.34	82	0.667	752	4.81	0.428

Notes: Begin purging at 8:26. Hookup Horiba at 9:43. Water running clear, purged for over 2 hours.

0.0 ppm

Sunny, 70s-80s

Headspace PID

Weather

Sampled MW-2 at 10:35 and MW-2_DUP at 10:40 to be analyzed for VOCs, SVOCs, total and dissolved metals, pesticides, PCBs, PFAS, and 1,4-dioxane.

340 Myrtle Avenue – Brooklyn, NY Phase II Environmental Site Investigation Letter Report

Attachment 4 *Laboratory Deliverables*

ANALYTICAL REPORT

Lab Number: L2140168

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Alana Carroll Phone: (646) 606-2332

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Report Date: 08/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

 Lab Number:
 L2140168

 Report Date:
 08/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140168-01	SB-1 (0-2)	SOIL	BROOKLYN, NY	07/26/21 09:25	07/27/21
L2140168-02	SB-1 (2-4)	SOIL	BROOKLYN, NY	07/26/21 09:30	07/27/21
L2140168-03	SB-2 (0-2)	SOIL	BROOKLYN, NY	07/26/21 11:55	07/27/21
L2140168-04	SB-2 (0-2) DUP	SOIL	BROOKLYN, NY	07/26/21 12:00	07/27/21
L2140168-05	SB-2 (2-4)	SOIL	BROOKLYN, NY	07/26/21 12:05	07/27/21
L2140168-06	SB-3 (0-2)	SOIL	BROOKLYN, NY	07/26/21 12:25	07/27/21
L2140168-07	SB-3 (2-4)	SOIL	BROOKLYN, NY	07/26/21 12:30	07/27/21
L2140168-08	SB-4 (0-2)	SOIL	BROOKLYN, NY	07/26/21 12:50	07/27/21
L2140168-09	SB-4 (2-4)	SOIL	BROOKLYN, NY	07/26/21 12:55	07/27/21
L2140168-10	SB-5 (0-2)	SOIL	BROOKLYN, NY	07/26/21 13:20	07/27/21
L2140168-11	SB-5 (2-4)	SOIL	BROOKLYN, NY	07/26/21 13:25	07/27/21
L2140168-12	SB-6 (0-2)	SOIL	BROOKLYN, NY	07/26/21 13:40	07/27/21
L2140168-13	SB-6 (2-4)	SOIL	BROOKLYN, NY	07/26/21 13:45	07/27/21
L2140168-14	SB-7 (0-2)	SOIL	BROOKLYN, NY	07/26/21 14:10	07/27/21
L2140168-15	SB-7 (2-4)	SOIL	BROOKLYN, NY	07/26/21 14:15	07/27/21
L2140168-16	SB-8 (0-2)	SOIL	BROOKLYN, NY	07/26/21 15:30	07/27/21
L2140168-17	SB-8 (2-4)	SOIL	BROOKLYN, NY	07/26/21 15:35	07/27/21
L2140168-18	FIELD BLANK	WATER	BROOKLYN, NY	07/27/21 10:30	07/27/21
L2140168-19	TRIP BLANK	WATER	BROOKLYN, NY	07/26/21 00:00	07/27/21

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Case Narrative (continued)

Report Submission

August 06, 2021: This final report includes the results of all requested analyses.

August 03, 2021: This is a preliminary report.

The analysis of Total Metals was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L2140168-01: The MeOH fraction of the extraction is reported for Perfluorooctanesulfonamide (FOSA) due to better extraction efficiency of the M8FOSA Surrogate (Extracted Internal Standard).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

tirhelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 08/06/21

ORGANICS

VOLATILES

L2140168

08/06/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

L2140168-01

BROOKLYN, NY

SB-1 (0-2)

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 07/26/21 09:25

Date Received: 07/27/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 08:09

Analyst: MV 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - '	Westborough Lab					
Methylene chloride	ND		ug/kg	5.1	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	0.14	J	ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	0.41	J	ug/kg	0.51	0.20	1
Chlorobenzene	ND		ug/kg	0.51	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.1	0.71	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.51	0.17	1
Bromodichloromethane	ND		ug/kg	0.51	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND		ug/kg	0.51	0.16	1
1,3-Dichloropropene, Total	ND		ug/kg	0.51	0.16	1
1,1-Dichloropropene	ND		ug/kg	0.51	0.16	1
Bromoform	ND		ug/kg	4.1	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.51	0.17	1
Benzene	ND		ug/kg	0.51	0.17	1
Toluene	ND		ug/kg	1.0	0.55	1
Ethylbenzene	ND		ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.1	0.95	1
Bromomethane	ND		ug/kg	2.0	0.59	1
Vinyl chloride	ND		ug/kg	1.0	0.34	1
Chloroethane	ND		ug/kg	2.0	0.46	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
Trichloroethene	ND		//	0.51	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1
1,3-Dichlorobenzene	ND ND		ug/kg	2.0	0.15	1
	ND		ug/kg	2.0		1
1,4-Dichlorobenzene	ND		ug/kg		0.17	
Methyl tert butyl ether			ug/kg	2.0	0.20	1
p/m-Xylene	ND		ug/kg	2.0	0.57	1
o-Xylene	ND		ug/kg	1.0	0.30	1
Xylenes, Total	ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	<u> </u>
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	<u> </u>
Dibromomethane	ND		ug/kg	2.0	0.24	1
Styrene	ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.93	1
Acetone	ND		ug/kg	10	4.9	1
Carbon disulfide	ND		ug/kg	10	4.6	1
2-Butanone	ND		ug/kg	10	2.2	1
Vinyl acetate	ND		ug/kg	10	2.2	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.13	1
2-Hexanone	ND		ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.0	0.21	1
2,2-Dichloropropane	ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	1
1,3-Dichloropropane	ND		ug/kg	2.0	0.17	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.51	0.13	1
Bromobenzene	ND		ug/kg	2.0	0.15	1
n-Butylbenzene	ND		ug/kg	1.0	0.17	1
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
o-Chlorotoluene	ND		ug/kg	2.0	0.19	1
p-Chlorotoluene	ND		ug/kg	2.0	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	1
Hexachlorobutadiene	ND		ug/kg	4.1	0.17	1
Isopropylbenzene	ND		ug/kg	1.0	0.11	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	1
Naphthalene	ND		ug/kg	4.1	0.66	1
Acrylonitrile	ND		ug/kg	4.1	1.2	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - V	Vestborough Lab						
n-Propylbenzene	ND		ug/kg	1.0	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.33	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.28	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.20	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.34	1	
1,4-Dioxane	ND		ug/kg	81	36.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.18	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.39	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	1	
Ethyl ether	ND		ug/kg	2.0	0.35	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.1	1.4	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Lab ID: L2140168-02

Client ID: SB-1 (2-4)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 07/30/21 08:35

Analyst: MKS 87% Percent Solids:

07/26/21 09:30
07/27/21
Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	5.1	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	0.23	J	ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	0.71		ug/kg	0.51	0.20	1
Chlorobenzene	ND		ug/kg	0.51	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.1	0.71	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.51	0.17	1
Bromodichloromethane	ND		ug/kg	0.51	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND		ug/kg	0.51	0.16	1
1,3-Dichloropropene, Total	ND		ug/kg	0.51	0.16	1
1,1-Dichloropropene	ND		ug/kg	0.51	0.16	1
Bromoform	ND		ug/kg	4.1	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.51	0.17	1
Benzene	ND		ug/kg	0.51	0.17	1
Toluene	ND		ug/kg	1.0	0.55	1
Ethylbenzene	ND		ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.1	0.95	1
Bromomethane	ND		ug/kg	2.0	0.59	1
Vinyl chloride	ND		ug/kg	1.0	0.34	1
Chloroethane	ND		ug/kg	2.0	0.46	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	borough Lab					
Trichloroethene	ND		ug/kg	0.51	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.15	1
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1
p/m-Xylene	ND		ug/kg	2.0	0.57	1
o-Xylene	ND		ug/kg	1.0	0.30	1
Xylenes, Total	ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	1
Dibromomethane	ND		ug/kg	2.0	0.24	1
Styrene	ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.93	1
Acetone	ND		ug/kg	10	4.9	1
Carbon disulfide	ND		ug/kg	10	4.6	1
2-Butanone	ND		ug/kg	10	2.2	1
Vinyl acetate	ND		ug/kg	10	2.2	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.13	1
2-Hexanone	ND		ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.0	0.21	1
2,2-Dichloropropane	ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	1
1,3-Dichloropropane	ND		ug/kg	2.0	0.17	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.51	0.13	1
Bromobenzene	ND		ug/kg	2.0	0.15	1
n-Butylbenzene	ND		ug/kg	1.0	0.17	1
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
o-Chlorotoluene	ND		ug/kg	2.0	0.19	1
p-Chlorotoluene	ND		ug/kg	2.0	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	1
Hexachlorobutadiene	ND		ug/kg	4.1	0.17	1
Isopropylbenzene	ND		ug/kg	1.0	0.11	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	1
Naphthalene	ND		ug/kg	4.1	0.66	1
Acrylonitrile	ND		ug/kg	4.1	1.2	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - V	Vestborough Lab						
n-Propylbenzene	ND		ug/kg	1.0	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.33	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.28	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.20	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.34	1	
1,4-Dioxane	ND		ug/kg	81	36.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.18	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.39	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	1	
Ethyl ether	ND		ug/kg	2.0	0.35	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.1	1.4	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

L2140168

07/26/21 11:55

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03

Client ID: SB-2 (0-2)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 07/30/21 09:02

Analyst: **MKS** 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - We	stborough Lab					
Methylene chloride	ND		ug/kg	6.2	2.8	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	0.28	J	ug/kg	1.9	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.28	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.16	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	270		ug/kg	0.62	0.24	1
Chlorobenzene	ND		ug/kg	0.62	0.16	1
Trichlorofluoromethane	ND		ug/kg	5.0	0.86	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.62	0.21	1
Bromodichloromethane	ND		ug/kg	0.62	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.20	1
1,3-Dichloropropene, Total	ND		ug/kg	0.62	0.20	1
1,1-Dichloropropene	ND		ug/kg	0.62	0.20	1
Bromoform	ND		ug/kg	5.0	0.30	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.21	1
Benzene	ND		ug/kg	0.62	0.21	1
Toluene	ND		ug/kg	1.2	0.67	1
Ethylbenzene	ND		ug/kg	1.2	0.18	1
Chloromethane	ND		ug/kg	5.0	1.2	1
Bromomethane	ND		ug/kg	2.5	0.72	1
Vinyl chloride	ND		ug/kg	1.2	0.42	1
Chloroethane	ND		ug/kg	2.5	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.17	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
Trichloroethene	ND		ug/kg	0.62	0.17	1
1,2-Dichlorobenzene	0.18	J	ug/kg	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.18	1
1,4-Dichlorobenzene	ND		ug/kg	2.5	0.21	1
Methyl tert butyl ether	ND		ug/kg	2.5	0.25	1
p/m-Xylene	ND		ug/kg	2.5	0.70	1
o-Xylene	ND		ug/kg	1.2	0.36	1
Xylenes, Total	ND		ug/kg	1.2	0.36	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.22	1
1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.17	1
Dibromomethane	ND		ug/kg	2.5	0.30	1
Styrene	ND		ug/kg	1.2	0.24	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	ND		ug/kg	12	6.0	1
Carbon disulfide	ND		ug/kg	12	5.6	1
2-Butanone	ND		ug/kg	12	2.8	1
Vinyl acetate	ND		ug/kg	12	2.7	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1
1,2,3-Trichloropropane	ND		ug/kg	2.5	0.16	1
2-Hexanone	ND		ug/kg	12	1.5	1
Bromochloromethane	ND		ug/kg	2.5	0.25	1
2,2-Dichloropropane	ND		ug/kg	2.5	0.25	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.35	1
1,3-Dichloropropane	ND		ug/kg	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.62	0.16	1
Bromobenzene	ND		ug/kg	2.5	0.18	1
n-Butylbenzene	ND		ug/kg	1.2	0.21	1
sec-Butylbenzene	ND		ug/kg	1.2	0.18	1
tert-Butylbenzene	ND		ug/kg	2.5	0.15	1
o-Chlorotoluene	ND		ug/kg	2.5	0.24	1
p-Chlorotoluene	ND		ug/kg	2.5	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1
Hexachlorobutadiene	ND		ug/kg	5.0	0.21	1
Isopropylbenzene	ND		ug/kg	1.2	0.14	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.14	1
Naphthalene	ND		ug/kg	5.0	0.81	1
Acrylonitrile	ND		ug/kg	5.0	1.4	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.2	0.21	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.40	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.34	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.5	0.24	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.5	0.42	1	
1,4-Dioxane	ND		ug/kg	99	44.	1	
p-Diethylbenzene	ND		ug/kg	2.5	0.22	1	
p-Ethyltoluene	ND		ug/kg	2.5	0.48	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.5	0.24	1	
Ethyl ether	ND		ug/kg	2.5	0.42	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.2	1.8	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: Date Received: 07/27/21 SB-2 (0-2) DUP Field Prep: Not Specified

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 09:28

Analyst: MKS 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	r - Westborough Lab						
Methylene chloride	ND		ug/kg	5.7	2.6	1	
1,1-Dichloroethane	ND		ug/kg	1.1	0.17	1	
Chloroform	0.25	J	ug/kg	1.7	0.16	1	
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1	
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1	
Dibromochloromethane	ND		ug/kg	1.1	0.16	1	
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.31	1	
Tetrachloroethene	220		ug/kg	0.57	0.22	1	
Chlorobenzene	ND		ug/kg	0.57	0.14	1	
Trichlorofluoromethane	ND		ug/kg	4.6	0.80	1	
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1	
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1	
Bromodichloromethane	ND		ug/kg	0.57	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.31	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.57	0.18	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.57	0.18	1	
1,1-Dichloropropene	ND		ug/kg	0.57	0.18	1	
Bromoform	ND		ug/kg	4.6	0.28	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.57	0.19	1	
Benzene	ND		ug/kg	0.57	0.19	1	
Toluene	ND		ug/kg	1.1	0.62	1	
Ethylbenzene	ND		ug/kg	1.1	0.16	1	
Chloromethane	ND		ug/kg	4.6	1.1	1	
Bromomethane	ND		ug/kg	2.3	0.67	1	
Vinyl chloride	ND		ug/kg	1.1	0.38	1	
Chloroethane	ND		ug/kg	2.3	0.52	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	Vestborough Lab					
Triphlaracthona	ND			0.57	0.16	1
Trichloroethene	ND		ug/kg	2.3	0.16	
1,2-Dichlorobenzene	ND ND		ug/kg	2.3	0.16	1
1,3-Dichlorobenzene			ug/kg			1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.64	1
o-Xylene	ND		ug/kg	1.1	0.33	1
Xylenes, Total	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.16	1
Dibromomethane	ND		ug/kg	2.3	0.27	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.5	1
Carbon disulfide	ND		ug/kg	11	5.2	1
2-Butanone	ND		ug/kg	11	2.5	1
Vinyl acetate	ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.5	1
1,2,3-Trichloropropane	ND		ug/kg	2.3	0.14	1
2-Hexanone	ND		ug/kg	11	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
2,2-Dichloropropane	ND		ug/kg	2.3	0.23	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.32	1
1,3-Dichloropropane	ND		ug/kg	2.3	0.19	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.57	0.15	1
Bromobenzene	ND		ug/kg	2.3	0.17	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.14	1
o-Chlorotoluene	ND		ug/kg	2.3	0.22	1
p-Chlorotoluene	ND		ug/kg	2.3	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.6	0.19	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.6	0.74	1
Acrylonitrile	ND		ug/kg	4.6	1.3	1
• • •	• • •		~a,.,a			

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
n-Propylbenzene	ND		ug/kg	1.1	0.20	1		
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1		
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.31	1		
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1		
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.38	1		
1,4-Dioxane	ND		ug/kg	92	40.	1		
p-Diethylbenzene	ND		ug/kg	2.3	0.20	1		
p-Ethyltoluene	ND		ug/kg	2.3	0.44	1		
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.3	0.22	1		
Ethyl ether	ND		ug/kg	2.3	0.39	1		
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.7	1.6	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

07/26/21 12:05

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2140168-05

Client ID: SB-2 (2-4)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 09:54

Analyst: MKS 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westb	orough Lab					
Methylene chloride	ND		ug/kg	5.5	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	0.19	J	ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	26		ug/kg	0.55	0.21	1
Chlorobenzene	ND		ug/kg	0.55	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.76	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.55	0.18	1
Bromodichloromethane	ND		ug/kg	0.55	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.55	0.17	1
1,3-Dichloropropene, Total	ND		ug/kg	0.55	0.17	1
1,1-Dichloropropene	ND		ug/kg	0.55	0.17	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.55	0.18	1
Benzene	ND		ug/kg	0.55	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.64	1
Vinyl chloride	ND		ug/kg	1.1	0.37	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-05 Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Trichloroethene	ND		ug/kg	0.55	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1
p/m-Xylene	ND		ug/kg	2.2	0.61	1
o-Xylene	ND		ug/kg	1.1	0.32	1
Xylenes, Total	ND		ug/kg	1.1	0.32	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.15	1
Dibromomethane	ND		ug/kg	2.2	0.26	1
Styrene	ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.3	1
Carbon disulfide	ND		ug/kg	11	5.0	1
2-Butanone	ND		ug/kg	11	2.4	1
Vinyl acetate	ND		ug/kg	11	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
1,2,3-Trichloropropane	ND		ug/kg	2.2	0.14	1
2-Hexanone	ND		ug/kg	11	1.3	1
Bromochloromethane	ND		ug/kg	2.2	0.22	1
2,2-Dichloropropane	ND		ug/kg	2.2	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1
1,3-Dichloropropane	ND		ug/kg	2.2	0.18	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.55	0.14	1
Bromobenzene	ND		ug/kg	2.2	0.16	1
n-Butylbenzene	ND		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
o-Chlorotoluene	ND		ug/kg	2.2	0.21	1
p-Chlorotoluene	ND		ug/kg	2.2	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.4	0.18	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.4	0.71	1
Acrylonitrile	ND		ug/kg	4.4	1.2	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-05 Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.36	1	
1,4-Dioxane	ND		ug/kg	87	38.	1	
p-Diethylbenzene	ND		ug/kg	2.2	0.19	1	
p-Ethyltoluene	ND		ug/kg	2.2	0.42	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.2	0.21	1	
Ethyl ether	ND		ug/kg	2.2	0.37	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.5	1.6	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Date Received: 07/27/21 Client ID: SB-3 (0-2) Sample Location: Field Prep: BROOKLYN, NY Not Specified

Result

Sample Depth:

Parameter

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 07/30/21 15:33

Analyst: MKS 87% Percent Solids:

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 H	High - Westborough Lab						
Methylene chloride	ND		ug/kg	330	150	1	
1,1-Dichloroethane	ND		ug/kg	65	9.5	1	
Chloroform	33	J	ug/kg	98	9.2	1	
Carbon tetrachloride	ND		ug/kg	65	15.	1	
1,2-Dichloropropane	ND		ug/kg	65	8.2	1	
Dibromochloromethane	ND		ug/kg	65	9.2	1	
1,1,2-Trichloroethane	ND		ug/kg	65	17.	1	
Tetrachloroethene	110000	E	ug/kg	33	13.	1	
Chlorobenzene	ND		ug/kg	33	8.3	1	
Trichlorofluoromethane	ND		ug/kg	260	45.	1	
1,2-Dichloroethane	ND		ug/kg	65	17.	1	
1,1,1-Trichloroethane	ND		ug/kg	33	11.	1	
Bromodichloromethane	ND		ug/kg	33	7.1	1	
trans-1,3-Dichloropropene	ND		ug/kg	65	18.	1	
cis-1,3-Dichloropropene	ND		ug/kg	33	10.	1	
1,3-Dichloropropene, Total	ND		ug/kg	33	10.	1	
1,1-Dichloropropene	ND		ug/kg	33	10.	1	
Bromoform	ND		ug/kg	260	16.	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	33	11.	1	
Benzene	ND		ug/kg	33	11.	1	
Toluene	ND		ug/kg	65	36.	1	
Ethylbenzene	ND		ug/kg	65	9.2	1	
Chloromethane	ND		ug/kg	260	61.	1	
Bromomethane	ND		ug/kg	130	38.	1	
Vinyl chloride	ND		ug/kg	65	22.	1	
Chloroethane	ND		ug/kg	130	30.	1	
1,1-Dichloroethene	ND		ug/kg	65	16.	1	
trans-1,2-Dichloroethene	ND		ug/kg	98	9.0	1	

Qualifier

Units

RL

MDL

Dilution Factor

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High -	Westborough Lab	1				
Trichloroethene	160		ua/ka	33	9.0	1
1,2-Dichlorobenzene	76	J	ug/kg	130	9.4	1
1,3-Dichlorobenzene	ND	J	ug/kg	130	9.7	1
1,4-Dichlorobenzene	13	J	ug/kg	130	11.	1
Methyl tert butyl ether	ND		ug/kg	130	13.	1
p/m-Xylene	ND		ug/kg	130	37.	1
o-Xylene	ND ND		ug/kg	65	19.	1
<u> </u>	ND ND		ug/kg	65	19.	1
Xylenes, Total	74		ug/kg	65	11.	1
cis-1,2-Dichloroethene			ug/kg			
1,2-Dichloroethene, Total Dibromomethane	74 ND		ug/kg	65	9.0	1
	ND		ug/kg	130	16.	1
Styrene	ND		ug/kg	65	13.	1
Dichlorodifluoromethane	ND		ug/kg	650	60.	1
Acetone	ND		ug/kg	650	310	1
Carbon disulfide	ND		ug/kg	650	300	1
2-Butanone	ND		ug/kg	650	140	1
Vinyl acetate	ND		ug/kg	650	140	1
4-Methyl-2-pentanone	ND		ug/kg	650	84.	1
1,2,3-Trichloropropane	ND		ug/kg	130	8.3	1
2-Hexanone	ND		ug/kg	650	77.	1
Bromochloromethane	ND		ug/kg	130	13.	1
2,2-Dichloropropane	ND		ug/kg	130	13.	1
1,2-Dibromoethane	ND		ug/kg	65	18.	1
1,3-Dichloropropane	ND		ug/kg	130	11.	1
1,1,1,2-Tetrachloroethane	24	J	ug/kg	33	8.6	1
Bromobenzene	ND		ug/kg	130	9.5	1
n-Butylbenzene	ND		ug/kg	65	11.	1
sec-Butylbenzene	ND		ug/kg	65	9.6	1
tert-Butylbenzene	ND		ug/kg	130	7.7	1
o-Chlorotoluene	ND		ug/kg	130	12.	1
p-Chlorotoluene	ND		ug/kg	130	7.1	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	200	65.	1
Hexachlorobutadiene	ND		ug/kg	260	11.	1
Isopropylbenzene	ND		ug/kg	65	7.1	1
p-Isopropyltoluene	ND		ug/kg	65	7.1	1
Naphthalene	49	J	ug/kg	260	42.	1
Acrylonitrile	ND		ug/kg	260	75.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High	n - Westborough Lab						
n-Propylbenzene	ND		ug/kg	65	11.	1	
1,2,3-Trichlorobenzene	ND		ug/kg	130	21.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	130	18.	1	
1,3,5-Trimethylbenzene	ND		ug/kg	130	13.	1	
1,2,4-Trimethylbenzene	ND		ug/kg	130	22.	1	
1,4-Dioxane	ND		ug/kg	5200	2300	1	
p-Diethylbenzene	ND		ug/kg	130	12.	1	
p-Ethyltoluene	ND		ug/kg	130	25.	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	130	12.	1	
Ethyl ether	ND		ug/kg	130	22.	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	330	93.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	96	70-130	

Project Name: Lab Number: 340 MYRTLE AVENUE L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 D Date Collected: 07/26/21 12:25

Date Received: Client ID: 07/27/21 SB-3 (0-2) Sample Location: Field Prep: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Soil 1,8260C Analytical Method: Analytical Date: 08/01/21 13:21

Analyst: **MKS** 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 H	igh - Westborough Lab					
Tetrachloroethene	100000		ug/kg	650	260	20
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			104		-	70-130

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Date Received: 07/27/21 Client ID: SB-3 (2-4) Field Prep: Sample Location: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 10:20

Analyst: MKS 82% Percent Solids:

Volatile Organics by EPA 5035 Low - Westborough Lab ND ug/kg 6.4 2.9 1 1,1-Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0.39 J ug/kg 1.3 0.18 1 Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1-2-Trichloroethane ND ug/kg 1.3 0.34 1 1,1-2-Trichloroethane ND ug/kg 0.64 0.25 1 1,1-2-Trichloroethane ND ug/kg 0.64 0.25 1 Chloroethane ND ug/kg 0.64 0.16 1 1,1-1-Trichloroethane ND ug/kg 0.64 0.21 1 1,1-1-Trichloroethane ND ug/kg 0.64 0.21 1 1,1-1-Trichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0.39 J ug/kg 1.9 0.18 1 Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Chlorobenzene ND ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.25 1 Trichloroethane ND ug/kg 0.64 0.26 1 1,2-Dichloroproethane ND ug/kg 0.64 0.21 1 1,2-Dichloroproethane ND ug/kg 0.64 0.21 1 1,1-Trichloroethane ND ug/kg 0	Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,1-Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0.39 J ug/kg 1.9 0.18 1 Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.16 1 Trichlorofluoromethane ND ug/kg 0.64 0.16 1 1,2-Dichloroethane ND ug/kg 0.64 0.21 1 1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 1,1-Dichloropropene ND ug/kg	Methylene chloride	ND		ug/kg	6.4	2.9	1
Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethane 370 ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 5.1 0.89 1 Trichlorofluoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroptodenane ND ug/kg 0.64 0.21 1 1,2-Dichloroptodenane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.20 1 cis-1,3-Dichloropropene ND ug/kg 0	1,1-Dichloroethane	ND			1.3	0.19	1
Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1-2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethane ND ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.16 1 Trichloroffuoromethane ND ug/kg 1.3 0.33 1 1,2-Dichloroptofuoromethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 cis-1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-1,2-Chertachloroethane ND u	Chloroform	0.39	J	ug/kg	1.9	0.18	1
Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 1,1,2-Trichloroethane 370 ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.16 1 Trichlorofluoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 Bromodichloropropene ND ug/kg 0.64 0.21 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene, Total ND ug/kg 5.1 0.32 1 Bromoform ND ug/kg	Carbon tetrachloride	ND		ug/kg	1.3	0.30	1
1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethene 370 ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.16 1 Trichlorofluoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene, Total ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 0.64 0.20 1 1,1,2,2-Tetrachloroethane ND ug/	1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1
Tetrachloroethene 370 ug/kg 0.64 0.25 1 Chlorobenzene ND ug/kg 0.64 0.16 1 Trichloroftuoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.21 1 Bromodichloropropene ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 1,1-Lochloropropene ND ug/kg 0.64 0.20 1 1,1-Lochloropropene ND ug/kg	Dibromochloromethane	ND		ug/kg	1.3	0.18	1
Chlorobenzene ND ug/kg 0.64 0.16 1 Trichloroftluoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.14 1 Bromodichloropropene ND ug/kg 1.3 0.35 1 trans-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 0.64 0.20 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3	1,1,2-Trichloroethane	ND		ug/kg	1.3	0.34	1
Trichlorofluoromethane ND ug/kg 5.1 0.89 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 1.3 0.70 1 Toluene ND ug/kg 1.3	Tetrachloroethene	370		ug/kg	0.64	0.25	1
1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 5.1 1.2 1 Chloromethane ND ug/kg 2.6 0.75 </td <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.64</td> <td>0.16</td> <td>1</td>	Chlorobenzene	ND		ug/kg	0.64	0.16	1
1,1,1-Trichloroethane ND ug/kg 0.64 0.21 1 Bromodichloromethane ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 5.1 1.2 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75	Trichlorofluoromethane	ND		ug/kg	5.1	0.89	1
Bromodichloromethane ND ug/kg 0.64 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 2.6 0.58 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>1.3</td><td>0.33</td><td>1</td></t<>	1,2-Dichloroethane	ND		ug/kg	1.3	0.33	1
trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 5.1 1.2 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 5.1 1.2 1 Chloromethane ND ug/kg 1.3 0.43 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 1.3 0.43 1	1,1,1-Trichloroethane	ND		ug/kg	0.64	0.21	1
cis-1,3-Dichloropropene ND ug/kg 0.64 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Bromodichloromethane	ND		ug/kg	0.64	0.14	1
1,3-Dichloropropene, Total ND ug/kg 0.64 0.20 1 1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.35	1
1,1-Dichloropropene ND ug/kg 0.64 0.20 1 Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	cis-1,3-Dichloropropene	ND		ug/kg	0.64	0.20	1
Bromoform ND ug/kg 5.1 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	1,3-Dichloropropene, Total	ND		ug/kg	0.64	0.20	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.64 0.21 1 Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	1,1-Dichloropropene	ND		ug/kg	0.64	0.20	1
Benzene ND ug/kg 0.64 0.21 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Bromoform	ND		ug/kg	5.1	0.32	1
Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.64	0.21	1
Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Benzene	ND		ug/kg	0.64	0.21	1
Chloromethane ND ug/kg 5.1 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Toluene	ND		ug/kg	1.3	0.70	1
Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Ethylbenzene	ND		ug/kg	1.3	0.18	1
Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1	Chloromethane	ND		ug/kg	5.1	1.2	1
Chloroethane ND ug/kg 2.6 0.58 1	Bromomethane	ND		ug/kg	2.6	0.75	1
	Vinyl chloride	ND		ug/kg	1.3	0.43	1
1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Chloroethane	ND		ug/kg	2.6	0.58	1
	1,1-Dichloroethene	ND		ug/kg	1.3	0.31	1
trans-1,2-Dichloroethene ND ug/kg 1.9 0.18 1	trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.18	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	borough Lab					
Trichloroethene	0.87		ug/kg	0.64	0.18	1
1,2-Dichlorobenzene	0.44	J	ug/kg	2.6	0.18	1
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.22	1
Methyl tert butyl ether	ND		ug/kg	2.6	0.26	1
p/m-Xylene	ND		ug/kg	2.6	0.72	1
o-Xylene	ND		ug/kg	1.3	0.37	1
Xylenes, Total	ND		ug/kg	1.3	0.37	1
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.22	1
1,2-Dichloroethene, Total	ND		ug/kg	1.3	0.18	1
Dibromomethane	ND		ug/kg	2.6	0.31	1
Styrene	ND		ug/kg	1.3	0.25	1
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1
Acetone	ND		ug/kg	13	6.2	1
Carbon disulfide	ND		ug/kg	13	5.8	1
2-Butanone	ND		ug/kg	13	2.8	1
Vinyl acetate	ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone	ND		ug/kg	13	1.6	1
1,2,3-Trichloropropane	ND		ug/kg	2.6	0.16	1
2-Hexanone	ND		ug/kg	13	1.5	1
Bromochloromethane	ND		ug/kg	2.6	0.26	1
2,2-Dichloropropane	ND		ug/kg	2.6	0.26	1
1,2-Dibromoethane	ND		ug/kg	1.3	0.36	1
1,3-Dichloropropane	ND		ug/kg	2.6	0.21	1
1,1,1,2-Tetrachloroethane	0.45	J	ug/kg	0.64	0.17	1
Bromobenzene	ND		ug/kg	2.6	0.19	1
n-Butylbenzene	ND		ug/kg	1.3	0.21	1
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1
tert-Butylbenzene	ND		ug/kg	2.6	0.15	1
o-Chlorotoluene	ND		ug/kg	2.6	0.24	1
p-Chlorotoluene	ND		ug/kg	2.6	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.9	1.3	1
Hexachlorobutadiene	ND		ug/kg	5.1	0.22	1
Isopropylbenzene	ND		ug/kg	1.3	0.14	1
p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1
Naphthalene	ND		ug/kg	5.1	0.84	1
Acrylonitrile	ND		ug/kg	5.1	1.5	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.3	0.22	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.6	0.41	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.35	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.25	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.43	1	
1,4-Dioxane	ND		ug/kg	100	45.	1	
p-Diethylbenzene	ND		ug/kg	2.6	0.23	1	
p-Ethyltoluene	ND		ug/kg	2.6	0.49	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.6	0.24	1	
Ethyl ether	ND		ug/kg	2.6	0.44	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.4	1.8	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

L2140168

07/26/21 12:50

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08

Client ID: SB-4 (0-2)

BROOKLYN, NY Sample Location:

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 10:46

Analyst: MKS 83% Percent Solids:

Wolatile Organics by EPA 5035 Low - Westborough Lab Methylene chloride ND ug/kg 6.5 3.0 1 1,1-Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0,40 J ug/kg 2.0 0.18 1 Carbon tetrachloride ND ug/kg 1.3 0.30 1 Carbon tetrachloropropane ND ug/kg 1.3 0.16 1 1,2-Dichloropropane ND ug/kg 1.3 0.18 1 1,2-Dichloropropane ND ug/kg 1.3 0.18 1 1,2-Dichloropropane ND ug/kg 1.3 0.38 1 Tetrachloroethane ND ug/kg 0.65 0.26 1 Chlorobertane ND ug/kg 0.65 0.16 1 1,1-Trichloroethane ND ug/kg 0.65 0.22 1 1,1-Trichloroethane ND ug/kg 0.65 0.22 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by EPA 5035 Low	v - Westborough Lab					
1,1 Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0.40 J ug/kg 2.0 0.18 1 Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.35 1 1,1,2-Trichloroethane ND ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 0.65 0.26 1 Trichlorofluoromethane ND ug/kg 0.65 0.16 1 1,1-1-Trichloroethane ND ug/kg 0.65 0.14 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 Bromodichloromethane ND ug/kg 0.65 0.20 1 trans-1,3-Dichloropropene ND ug/k	Methylene chloride	ND		ug/kg	6.5	3.0	1
Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.35 1 Tetrachloroethane ND ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 0.65 0.26 1 Trichlorofulcoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Itans-1,3-Dichloropropene ND ug/kg 0.65 0.22 1 Itans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 I,1-Dichloropropene, Total ND ug/kg </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td></td> <td>1.3</td> <td>0.19</td> <td>1</td>	1,1-Dichloroethane	ND			1.3	0.19	1
Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.35 1 Chlorobenzene ND ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 6.52 0.90 1 Trichloroftuoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloropethane ND ug/kg 6.5 0.22 1 1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.22 1 trans-1,3-Dichloropropene ND ug/kg 0.85 0.20 1 1,1-Dichloropropene, Total ND ug/kg	Chloroform	0.40	J	ug/kg	2.0	0.18	1
Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.35 1 Tetrachloroethane 290 ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 1,1-Dichloropropene ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65	Carbon tetrachloride	ND			1.3	0.30	1
1,1,2-Trichloroethane ND ug/kg 1.3 0.35 1 Tetrachloroethene 290 ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloropropene ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 1,1,1-Z,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 1,1,1,2,2-Tetrachloroethane ND ug	1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1
Tetrachloroethene 290 ug/kg 0.65 0.26 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.21 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg	Dibromochloromethane	ND		ug/kg	1.3	0.18	1
Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.21 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3	1,1,2-Trichloroethane	ND		ug/kg	1.3	0.35	1
Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.36 1 sis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene, Total ND ug/kg 0.65 0.20 1 Bromoform ND ug/kg 0.65 0.21 1 I,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.22 1 I,1-2,2-Tetrachloroethane ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg	Tetrachloroethene	290		ug/kg	0.65	0.26	1
1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.36 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 1,1-Dichloropropene ND ug/kg 0.65 0.22 1 1,1-Dichloropropene ND ug/kg 0.65 0.22 1 1,1-Dichloropropene ND ug/kg	Chlorobenzene	ND		ug/kg	0.65	0.16	1
1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.36 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 2.6 0.59	Trichlorofluoromethane	ND		ug/kg	5.2	0.90	1
Bromodichloromethane ND	1,2-Dichloroethane	ND		ug/kg	1.3	0.33	1
trans-1,3-Dichloropropene ND ug/kg 1.3 0.36 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 5.2 1.2 1 Chloromethane ND ug/kg 5.2 1.2 1 Chloroethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,1,1-Trichloroethane	ND		ug/kg	0.65	0.22	1
cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.65</td> <td>0.14</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.65	0.14	1
1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.36	1
1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	cis-1,3-Dichloropropene	ND		ug/kg	0.65	0.20	1
Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,3-Dichloropropene, Total	ND		ug/kg	0.65	0.20	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,1-Dichloropropene	ND		ug/kg	0.65	0.21	1
Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Bromoform	ND		ug/kg	5.2	0.32	1
Toluene ND ug/kg 1.3 0.71 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.65	0.22	1
Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Benzene	ND		ug/kg	0.65	0.22	1
Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Toluene	ND		ug/kg	1.3	0.71	1
Bromomethane ND ug/kg 2.6 0.76 1 Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Ethylbenzene	ND		ug/kg	1.3	0.18	1
Vinyl chloride ND ug/kg 1.3 0.44 1 Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Chloromethane	ND		ug/kg	5.2	1.2	1
Chloroethane ND ug/kg 2.6 0.59 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Bromomethane	ND		ug/kg	2.6	0.76	1
1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Vinyl chloride	ND		ug/kg	1.3	0.44	1
	Chloroethane	ND		ug/kg	2.6	0.59	1
trans-1,2-Dichloroethene ND ug/kg 2.0 0.18 1	1,1-Dichloroethene	ND		ug/kg	1.3	0.31	1
	trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.18	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - \	Westborough Lab					
T. 11				0.05	0.40	,
Trichloroethene	1.1		ug/kg	0.65	0.18	1
1,2-Dichlorobenzene	1.1	J	ug/kg	2.6	0.19	1
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.22	1
Methyl tert butyl ether	ND		ug/kg	2.6	0.26	1
p/m-Xylene	ND		ug/kg	2.6	0.73	1
o-Xylene	ND		ug/kg	1.3	0.38	1
Xylenes, Total	ND		ug/kg	1.3	0.38	1
cis-1,2-Dichloroethene	0.33	J	ug/kg	1.3	0.23	1
1,2-Dichloroethene, Total	0.33	J	ug/kg	1.3	0.18	1
Dibromomethane	ND		ug/kg	2.6	0.31	1
Styrene	ND		ug/kg	1.3	0.26	1
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1
Acetone	ND		ug/kg	13	6.3	1
Carbon disulfide	ND		ug/kg	13	5.9	1
2-Butanone	ND		ug/kg	13	2.9	1
Vinyl acetate	ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone	ND		ug/kg	13	1.7	1
1,2,3-Trichloropropane	ND		ug/kg	2.6	0.16	1
2-Hexanone	ND		ug/kg	13	1.5	1
Bromochloromethane	ND		ug/kg	2.6	0.27	1
2,2-Dichloropropane	ND		ug/kg	2.6	0.26	1
1,2-Dibromoethane	ND		ug/kg	1.3	0.36	1
1,3-Dichloropropane	ND		ug/kg	2.6	0.22	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.65	0.17	1
Bromobenzene	ND		ug/kg	2.6	0.19	1
n-Butylbenzene	ND		ug/kg	1.3	0.22	1
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1
tert-Butylbenzene	ND		ug/kg	2.6	0.15	1
o-Chlorotoluene	ND		ug/kg	2.6	0.25	1
p-Chlorotoluene	ND		ug/kg	2.6	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.9	1.3	1
Hexachlorobutadiene	ND		ug/kg	5.2	0.22	1
Isopropylbenzene	ND		ug/kg	1.3	0.14	1
p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1
Naphthalene	ND		ug/kg	5.2	0.85	1
Acrylonitrile	ND		ug/kg	5.2	1.5	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.3	0.22	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.6	0.42	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.35	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.25	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.44	1	
1,4-Dioxane	ND		ug/kg	100	46.	1	
p-Diethylbenzene	ND		ug/kg	2.6	0.23	1	
p-Ethyltoluene	ND		ug/kg	2.6	0.50	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.6	0.25	1	
Ethyl ether	ND		ug/kg	2.6	0.44	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.5	1.8	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

07/26/21 12:55

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Date Collected:

Date Received:

Lab ID: L2140168-09

Client ID: SB-4 (2-4)

Sample L

Samp

Matri

Analy

Analytical Date: 07/30/21 11:12

Analyst: **MKS** 88% Percent Solids:

ple Location:	BROOKLYN, NY	Field Prep:	Not Specified
nple Depth:			
rix:	Soil		
lytical Method:	1,8260C		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Methylene chloride	ND		ug/kg	6.0	2.7	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	0.22	J	ug/kg	1.8	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.32	1
Tetrachloroethene	30		ug/kg	0.60	0.23	1
Chlorobenzene	ND		ug/kg	0.60	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.8	0.83	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.31	1
1,1,1-Trichloroethane	ND		ug/kg	0.60	0.20	1
Bromodichloromethane	ND		ug/kg	0.60	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.60	0.19	1
1,3-Dichloropropene, Total	ND		ug/kg	0.60	0.19	1
1,1-Dichloropropene	ND		ug/kg	0.60	0.19	1
Bromoform	ND		ug/kg	4.8	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.60	0.20	1
Benzene	ND		ug/kg	0.60	0.20	1
Toluene	ND		ug/kg	1.2	0.65	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	4.8	1.1	1
Bromomethane	ND		ug/kg	2.4	0.69	1
Vinyl chloride	ND		ug/kg	1.2	0.40	1
Chloroethane	ND		ug/kg	2.4	0.54	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.16	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	Volatile Organics by EPA 5035 Low - Westborough Lab					
Trichloroethene	ND		ua/ka	0.60	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.4	0.10	1
1,3-Dichlorobenzene	ND		ug/kg ug/kg	2.4	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.4	0.20	 1
Methyl tert butyl ether	ND		ug/kg	2.4	0.24	1
p/m-Xylene	ND			2.4	0.67	1
o-Xylene	ND		ug/kg ug/kg	1.2	0.35	1
Xylenes, Total	ND		ug/kg	1.2	0.35	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.33	1
1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.16	1
Dibromomethane	ND		ug/kg	2.4	0.10	 1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND			12	1.1	1
Acetone	ND		ug/kg ug/kg	12	5.7	1
Carbon disulfide	ND			12	5.4	1
2-Butanone	ND		ug/kg	12	2.6	1
Vinyl acetate	ND		ug/kg	12	2.6	1
4-Methyl-2-pentanone	ND		ug/kg ug/kg	12	1.5	1
1,2,3-Trichloropropane	ND		ug/kg	2.4	0.15	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.4	0.24	1
2,2-Dichloropropane	ND		ug/kg	2.4	0.24	1
1,2-Dibriomoethane	ND		ug/kg	1.2	0.33	1
1,3-Dichloropropane	ND		ug/kg ug/kg	2.4	0.33	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.60	0.16	 1
Bromobenzene	ND		ug/kg	2.4	0.17	1
n-Butylbenzene	ND		ug/kg	1.2	0.20	 1
sec-Butylbenzene	ND			1.2	0.17	1
tert-Butylbenzene	ND		ug/kg ug/kg	2.4	0.14	1
o-Chlorotoluene	ND		ug/kg	2.4	0.23	1
p-Chlorotoluene	ND		ug/kg	2.4	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.6	1.2	1
Hexachlorobutadiene	ND		ug/kg	4.8	0.20	
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
Naphthalene	ND		ug/kg	4.8	0.78	
Acrylonitrile	ND		ug/kg	4.8	1.4	
,	ND		ug/kg	1.0		

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
n-Propylbenzene	ND		ug/kg	1.2	0.20	1		
1,2,3-Trichlorobenzene	ND		ug/kg	2.4	0.38	1		
1,2,4-Trichlorobenzene	ND		ug/kg	2.4	0.32	1		
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.23	1		
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.40	1		
1,4-Dioxane	ND		ug/kg	96	42.	1		
p-Diethylbenzene	ND		ug/kg	2.4	0.21	1		
p-Ethyltoluene	ND		ug/kg	2.4	0.46	1		
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.4	0.23	1		
Ethyl ether	ND		ug/kg	2.4	0.41	1		
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.0	1.7	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	106	70-130	

L2140168

07/26/21 13:20

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Report Date: 08/06/21

Lab Number:

Date Collected:

Lab ID: L2140168-10

Client ID: SB-5 (0-2)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 07/30/21 11:38

Analyst: MKS 83% Percent Solids:

Date Received:	07/27/21
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Lo	Volatile Organics by EPA 5035 Low - Westborough Lab						
Methylene chloride	ND		ug/kg	6.6	3.0	1	
1,1-Dichloroethane	ND		ug/kg	1.3	0.19	1	
Chloroform	0.28	J	ug/kg	2.0	0.19	1	
Carbon tetrachloride	ND		ug/kg	1.3	0.31	1	
1,2-Dichloropropane	ND		ug/kg	1.3	0.17	1	
Dibromochloromethane	ND		ug/kg	1.3	0.19	1	
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.36	1	
Tetrachloroethene	7.4		ug/kg	0.66	0.26	1	
Chlorobenzene	ND		ug/kg	0.66	0.17	1	
Trichlorofluoromethane	ND		ug/kg	5.3	0.92	1	
1,2-Dichloroethane	ND		ug/kg	1.3	0.34	1	
1,1,1-Trichloroethane	ND		ug/kg	0.66	0.22	1	
Bromodichloromethane	ND		ug/kg	0.66	0.14	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.36	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.66	0.21	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.66	0.21	1	
1,1-Dichloropropene	ND		ug/kg	0.66	0.21	1	
Bromoform	ND		ug/kg	5.3	0.33	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.66	0.22	1	
Benzene	ND		ug/kg	0.66	0.22	1	
Toluene	ND		ug/kg	1.3	0.72	1	
Ethylbenzene	ND		ug/kg	1.3	0.19	1	
Chloromethane	ND		ug/kg	5.3	1.2	1	
Bromomethane	ND		ug/kg	2.7	0.77	1	
Vinyl chloride	ND		ug/kg	1.3	0.45	1	
Chloroethane	ND		ug/kg	2.7	0.60	1	
1,1-Dichloroethene	ND		ug/kg	1.3	0.32	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.18	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Westborough Lab							
Trichloroethene	ND		ug/kg	0.66	0.18	1	
1,2-Dichlorobenzene	ND		ug/kg	2.7	0.19	1	
1,3-Dichlorobenzene	ND		ug/kg	2.7	0.20	1	
1,4-Dichlorobenzene	ND		ug/kg	2.7	0.23	1	
Methyl tert butyl ether	ND		ug/kg	2.7	0.27	1	
p/m-Xylene	ND		ug/kg	2.7	0.74	1	
o-Xylene	ND		ug/kg	1.3	0.39	1	
Xylenes, Total	ND		ug/kg	1.3	0.39	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.23	1	
1,2-Dichloroethene, Total	ND		ug/kg	1.3	0.18	1	
Dibromomethane	ND		ug/kg	2.7	0.32	1	
Styrene	ND		ug/kg	1.3	0.26	1	
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1	
Acetone	ND		ug/kg	13	6.4	1	
Carbon disulfide	ND		ug/kg	13	6.0	1	
2-Butanone	ND		ug/kg	13	3.0	1	
Vinyl acetate	ND		ug/kg	13	2.9	1	
4-Methyl-2-pentanone	ND		ug/kg	13	1.7	1	
1,2,3-Trichloropropane	ND		ug/kg	2.7	0.17	1	
2-Hexanone	ND		ug/kg	13	1.6	1	
Bromochloromethane	ND		ug/kg	2.7	0.27	1	
2,2-Dichloropropane	ND		ug/kg	2.7	0.27	1	
1,2-Dibromoethane	ND		ug/kg	1.3	0.37	1	
1,3-Dichloropropane	ND		ug/kg	2.7	0.22	1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.66	0.18	1	
Bromobenzene	ND		ug/kg	2.7	0.19	1	
n-Butylbenzene	ND		ug/kg	1.3	0.22	1	
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1	
tert-Butylbenzene	ND		ug/kg	2.7	0.16	1	
o-Chlorotoluene	ND		ug/kg	2.7	0.25	1	
p-Chlorotoluene	ND		ug/kg	2.7	0.14	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.0	1.3	1	
Hexachlorobutadiene	ND		ug/kg	5.3	0.22	1	
Isopropylbenzene	ND		ug/kg	1.3	0.14	1	
p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1	
Naphthalene	ND		ug/kg	5.3	0.86	1	
Acrylonitrile	ND		ug/kg	5.3	1.5	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-10 Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westbo	orough Lab					
n-Propylbenzene	ND		ug/kg	1.3	0.23	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.7	0.43	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.7	0.36	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.7	0.26	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.7	0.44	1
1,4-Dioxane	ND		ug/kg	110	47.	1
p-Diethylbenzene	ND		ug/kg	2.7	0.24	1
p-Ethyltoluene	ND		ug/kg	2.7	0.51	1
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.7	0.25	1
Ethyl ether	ND		ug/kg	2.7	0.45	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.6	1.9	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	107	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: Date Received: 07/27/21 SB-5 (2-4) Field Prep: Sample Location: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 12:04

Analyst: MKS 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	6.1	2.8	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	0.25	J	ug/kg	1.8	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.28	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	1.6		ug/kg	0.61	0.24	1
Chlorobenzene	ND		ug/kg	0.61	0.16	1
Trichlorofluoromethane	ND		ug/kg	4.9	0.85	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.61	0.20	1
Bromodichloromethane	ND		ug/kg	0.61	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.33	1
cis-1,3-Dichloropropene	ND		ug/kg	0.61	0.19	1
1,3-Dichloropropene, Total	ND		ug/kg	0.61	0.19	1
1,1-Dichloropropene	ND		ug/kg	0.61	0.19	1
Bromoform	ND		ug/kg	4.9	0.30	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.61	0.20	1
Benzene	ND		ug/kg	0.61	0.20	1
Toluene	ND		ug/kg	1.2	0.66	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	4.9	1.1	1
Bromomethane	ND		ug/kg	2.4	0.71	1
Vinyl chloride	ND		ug/kg	1.2	0.41	1
Chloroethane	ND		ug/kg	2.4	0.55	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.29	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.17	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - W	estborough Lab						
Trichloroethene	ND		ug/kg	0.61	0.17	1	
1,2-Dichlorobenzene	ND		ug/kg	2.4	0.18	1	
1,3-Dichlorobenzene	ND		ug/kg	2.4	0.18	1	
1,4-Dichlorobenzene	ND		ug/kg	2.4	0.21	1	
Methyl tert butyl ether	ND		ug/kg	2.4	0.25	1	
p/m-Xylene	ND		ug/kg	2.4	0.69	1	
o-Xylene	ND		ug/kg	1.2	0.36	1	
Xylenes, Total	ND		ug/kg	1.2	0.36	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.21	1	
1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.17	1	
Dibromomethane	ND		ug/kg	2.4	0.29	1	
Styrene	ND		ug/kg	1.2	0.24	1	
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1	
Acetone	ND		ug/kg	12	5.9	1	
Carbon disulfide	ND		ug/kg	12	5.6	1	
2-Butanone	ND		ug/kg	12	2.7	1	
Vinyl acetate	ND		ug/kg	12	2.6	1	
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1	
1,2,3-Trichloropropane	ND		ug/kg	2.4	0.16	1	
2-Hexanone	ND		ug/kg	12	1.4	1	
Bromochloromethane	ND		ug/kg	2.4	0.25	1	
2,2-Dichloropropane	ND		ug/kg	2.4	0.25	1	
1,2-Dibromoethane	ND		ug/kg	1.2	0.34	1	
1,3-Dichloropropane	ND		ug/kg	2.4	0.20	1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.61	0.16	1	
Bromobenzene	ND		ug/kg	2.4	0.18	1	
n-Butylbenzene	ND		ug/kg	1.2	0.20	1	
sec-Butylbenzene	ND		ug/kg	1.2	0.18	1	
tert-Butylbenzene	ND		ug/kg	2.4	0.14	1	
o-Chlorotoluene	ND		ug/kg	2.4	0.23	1	
p-Chlorotoluene	ND		ug/kg	2.4	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1	
Hexachlorobutadiene	ND		ug/kg	4.9	0.21	1	
Isopropylbenzene	ND		ug/kg	1.2	0.13	1	
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1	
Naphthalene	ND		ug/kg	4.9	0.80	1	
Acrylonitrile	ND		ug/kg	4.9	1.4	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.2	0.21	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.4	0.39	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.4	0.33	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.24	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.41	1	
1,4-Dioxane	ND		ug/kg	98	43.	1	
p-Diethylbenzene	ND		ug/kg	2.4	0.22	1	
p-Ethyltoluene	ND		ug/kg	2.4	0.47	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.4	0.23	1	
Ethyl ether	ND		ug/kg	2.4	0.42	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.1	1.7	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	105	70-130	

07/26/21 13:40

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Date Collected:

Date Received:

Field Prep:

SAIVIFLE RESUL

Lab ID: L2140168-12

Client ID: SB-6 (0-2)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 14:41

Analyst: MKS
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
olatile Organics by EPA 5035 Low - \	Westborough Lab					
Methylene chloride	ND		ug/kg	5.8	2.6	1
,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	0.38	J	ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
,2-Dichloropropane	ND		ug/kg	1.2	0.14	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
,1,2-Trichloroethane	ND		ug/kg	1.2	0.31	1
etrachloroethene	74		ug/kg	0.58	0.23	1
Chlorobenzene	ND		ug/kg	0.58	0.15	1
richlorofluoromethane	ND		ug/kg	4.6	0.80	1
,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
,1,1-Trichloroethane	ND		ug/kg	0.58	0.19	1
romodichloromethane	ND		ug/kg	0.58	0.13	1
rans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
is-1,3-Dichloropropene	ND		ug/kg	0.58	0.18	1
,3-Dichloropropene, Total	ND		ug/kg	0.58	0.18	1
,1-Dichloropropene	ND		ug/kg	0.58	0.18	1
Bromoform	ND		ug/kg	4.6	0.28	1
,1,2,2-Tetrachloroethane	ND		ug/kg	0.58	0.19	1
Benzene	ND		ug/kg	0.58	0.19	1

ND

ND

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

1

0.63

0.16

1.1

0.67

0.39

0.52

0.28

0.16

1.2

1.2

4.6

2.3

1.2

2.3

1.2

1.7

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Toluene

Ethylbenzene

Chloromethane

Bromomethane

Vinyl chloride

Chloroethane

1,1-Dichloroethene

trans-1,2-Dichloroethene

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	stborough Lab					
Trichloroethene	1.6		ug/kg	0.58	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.65	1
o-Xylene	ND		ug/kg	1.2	0.34	1
Xylenes, Total	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.20	1
1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.16	1
Dibromomethane	ND		ug/kg	2.3	0.28	1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	ND		ug/kg	12	5.6	1
Carbon disulfide	ND		ug/kg	12	5.3	1
2-Butanone	ND		ug/kg	12	2.6	1
Vinyl acetate	ND		ug/kg	12	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
1,2,3-Trichloropropane	ND		ug/kg	2.3	0.15	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
2,2-Dichloropropane	ND		ug/kg	2.3	0.23	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.32	1
1,3-Dichloropropane	ND		ug/kg	2.3	0.19	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.58	0.15	1
Bromobenzene	ND		ug/kg	2.3	0.17	1
n-Butylbenzene	ND		ug/kg	1.2	0.19	1
sec-Butylbenzene	ND		ug/kg	1.2	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.14	1
o-Chlorotoluene	ND		ug/kg	2.3	0.22	1
p-Chlorotoluene	ND		ug/kg	2.3	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
Hexachlorobutadiene	ND		ug/kg	4.6	0.20	1
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
Naphthalene	ND		ug/kg	4.6	0.75	1
Acrylonitrile	ND		ug/kg	4.6	1.3	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.2	0.20	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.32	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.39	1	
1,4-Dioxane	ND		ug/kg	93	41.	1	
p-Diethylbenzene	ND		ug/kg	2.3	0.20	1	
p-Ethyltoluene	ND		ug/kg	2.3	0.44	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.3	0.22	1	
Ethyl ether	ND		ug/kg	2.3	0.40	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.8	1.6	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13

Client ID: SB-6 (2-4) Sample Location:

Field Prep:

Date Collected:

07/26/21 13:45 07/27/21

BROOKLYN, NY

Date Received: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 12:30

Analyst: MKS 86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	0.20	J	ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.13	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	11		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.74	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
1,3-Dichloropropene, Total	ND		ug/kg	0.54	0.17	1
1,1-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.58	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	1.0	1
Bromomethane	ND		ug/kg	2.1	0.62	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.1	0.48	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
Trichloroethene	ND			0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1
1,3-Dichlorobenzene	ND ND		ug/kg	2.1	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.10	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.18	1
	ND		ug/kg	2.1	0.60	1
p/m-Xylene o-Xylene	ND ND		ug/kg	1.1	0.80	1
	ND ND		ug/kg	1.1	0.31	1
Xylenes, Total			ug/kg			
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.15	1
Dibromomethane	ND		ug/kg	2.1	0.26	1
Styrene	ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane .	ND		ug/kg	11	0.98	1
Acetone	ND		ug/kg	11	5.2	1
Carbon disulfide	ND		ug/kg	11	4.9	1
2-Butanone	ND		ug/kg	11	2.4	1
Vinyl acetate	ND		ug/kg	11	2.3	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
1,2,3-Trichloropropane	ND		ug/kg	2.1	0.14	1
2-Hexanone	ND		ug/kg	11	1.3	1
Bromochloromethane	ND		ug/kg	2.1	0.22	1
2,2-Dichloropropane	ND		ug/kg	2.1	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1
1,3-Dichloropropane	ND		ug/kg	2.1	0.18	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.54	0.14	1
Bromobenzene	ND		ug/kg	2.1	0.16	1
n-Butylbenzene	ND		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.1	0.13	1
o-Chlorotoluene	ND		ug/kg	2.1	0.20	1
p-Chlorotoluene	ND		ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.3	0.18	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.3	0.70	1
Acrylonitrile	ND		ug/kg	4.3	1.2	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.1	0.18	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.34	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.29	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.1	0.21	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.1	0.36	1	
1,4-Dioxane	ND		ug/kg	86	38.	1	
p-Diethylbenzene	ND		ug/kg	2.1	0.19	1	
p-Ethyltoluene	ND		ug/kg	2.1	0.41	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.1	0.20	1	
Ethyl ether	ND		ug/kg	2.1	0.36	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.4	1.5	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Lab ID: L2140168-14

Client ID: SB-7 (0-2)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 12:56

Analyst: MKS 86% Percent Solids:

Date Collected:	07/26/21 14:10
Date Received:	07/27/21
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	5.7	2.6	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.17	1
Chloroform	0.27	J	ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.31	1
Tetrachloroethene	8.5		ug/kg	0.57	0.22	1
Chlorobenzene	ND		ug/kg	0.57	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.80	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1
Bromodichloromethane	ND		ug/kg	0.57	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.31	1
cis-1,3-Dichloropropene	ND		ug/kg	0.57	0.18	1
1,3-Dichloropropene, Total	ND		ug/kg	0.57	0.18	1
1,1-Dichloropropene	ND		ug/kg	0.57	0.18	1
Bromoform	ND		ug/kg	4.6	0.28	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.57	0.19	1
Benzene	ND		ug/kg	0.57	0.19	1
Toluene	ND		ug/kg	1.1	0.62	1
Ethylbenzene	ND		ug/kg	1.1	0.16	1
Chloromethane	ND		ug/kg	4.6	1.1	1
Bromomethane	ND		ug/kg	2.3	0.66	1
Vinyl chloride	ND		ug/kg	1.1	0.38	1
Chloroethane	ND		ug/kg	2.3	0.52	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	tborough Lab					
Trichloroethene	ND		ug/kg	0.57	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.64	1
o-Xylene	ND		ug/kg	1.1	0.33	1
Xylenes, Total	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.16	1
Dibromomethane	ND		ug/kg	2.3	0.27	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.5	1
Carbon disulfide	ND		ug/kg	11	5.2	1
2-Butanone	ND		ug/kg	11	2.5	1
Vinyl acetate	ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.5	1
1,2,3-Trichloropropane	ND		ug/kg	2.3	0.14	1
2-Hexanone	ND		ug/kg	11	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.23	1
2,2-Dichloropropane	ND		ug/kg	2.3	0.23	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.32	1
1,3-Dichloropropane	ND		ug/kg	2.3	0.19	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.57	0.15	1
Bromobenzene	ND		ug/kg	2.3	0.17	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.14	1
o-Chlorotoluene	ND		ug/kg	2.3	0.22	1
p-Chlorotoluene	ND		ug/kg	2.3	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.6	0.19	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.6	0.74	1
Acrylonitrile	ND		ug/kg	4.6	1.3	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.1	0.20	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.31	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.38	1	
1,4-Dioxane	ND		ug/kg	92	40.	1	
p-Diethylbenzene	ND		ug/kg	2.3	0.20	1	
p-Ethyltoluene	ND		ug/kg	2.3	0.44	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.3	0.22	1	
Ethyl ether	ND		ug/kg	2.3	0.39	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.7	1.6	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	106	70-130	

07/26/21 14:15

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Date Collected:

Date Received:

Field Prep:

Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15

Client ID: SB-7 (2-4)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

1,8260C Analytical Method:

Analytical Date: 07/30/21 13:22

Analyst: MKS 84% Percent Solids:

Wolatile Organics by EPA 5035 Low - Westborough Lab Methylene chloride ND ug/l 1,1-Dichloroethane ND ug/l Chloroform 0.19 J ug/l Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l ti-1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 1.1 g 1.6 g 1.1 g 1.1 g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	2.5 0.16 0.15 0.25 0.14 0.15 0.29 0.21 0.14	1 1 1 1 1 1 1 1
1,1-Dichloroethane ND ug/l Chloroform 0.19 J ug/l Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethane ND ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 1.1 g 1.6 g 1.1 g 1.1 g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	0.16 0.15 0.25 0.14 0.15 0.29 0.21 0.14	1 1 1 1 1 1 1 1 1 1 1 1
Chloroform 0.19 J ug/l Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 1.6 g 1.1 g 1.1 g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	0.15 0.25 0.14 0.15 0.29 0.21	1 1 1 1 1 1
Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l Bromoform ND ug/l	g 1.1 g 1.1 g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	0.25 0.14 0.15 0.29 0.21 0.14	1 1 1 1 1 1
1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l trans-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l	g 1.1 g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	0.14 0.15 0.29 0.21 0.14	1 1 1 1
Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l	g 1.1 g 1.1 g 0.54 g 0.54 g 4.3	0.15 0.29 0.21 0.14	1 1 1 1
1,1,2-Trichloroethane 1,1,2-Trichloroethane 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l	g 1.1 g 0.54 g 0.54 g 4.3	0.29 0.21 0.14	1 1 1
Tetrachloroethene 2.5 ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 0.54 g 0.54 g 4.3	0.21 0.14	1 1
Chlorobenzene ND ug/N Trichlorofluoromethane ND ug/N 1,2-Dichloroethane ND ug/N 1,1,1-Trichloroethane ND ug/N Bromodichloromethane ND ug/N trans-1,3-Dichloropropene ND ug/N cis-1,3-Dichloropropene ND ug/N 1,3-Dichloropropene ND ug/N 1,3-Dichloropropene ND ug/N 1,3-Dichloropropene ND ug/N 1,1-Dichloropropene ND ug/N 1,1-Dichloropropene ND ug/N 1,1-Dichloropropene ND ug/N 1,1,2,2-Tetrachloroethane ND ug/N	g 0.54 g 4.3	0.14	1
Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,3-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 4.3		
1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	9	0.75	
1,1,1-Trichloroethane ND ug/N Bromodichloromethane ND ug/N trans-1,3-Dichloropropene ND ug/N cis-1,3-Dichloropropene ND ug/N 1,3-Dichloropropene, Total ND ug/N 1,1-Dichloropropene ND ug/N 1,1-Dichloropropene ND ug/N 1,1-Dichloropropene ND ug/N ND ug/N 1,1,2,2-Tetrachloroethane ND ug/N	q 1.1		1
1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l		0.28	1
trans-1,3-Dichloropropene ND ug/l cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l		0.18	1
cis-1,3-Dichloropropene ND ug/l 1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 0.54	0.12	1
1,3-Dichloropropene, Total ND ug/l 1,1-Dichloropropene ND ug/l Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 1.1	0.30	1
1,1-DichloropropeneNDug/NBromoformNDug/N1,1,2,2-TetrachloroethaneNDug/N	g 0.54	0.17	1
Bromoform ND ug/l 1,1,2,2-Tetrachloroethane ND ug/l	g 0.54	0.17	1
1,1,2,2-Tetrachloroethane ND ug/l	g 0.54	0.17	1
	g 4.3	0.27	1
	g 0.54	0.18	1
Benzene ND ug/l	g 0.54	0.18	1
Toluene ND ug/l	g 1.1	0.59	1
Ethylbenzene ND ug/l	g 1.1	0.15	1
Chloromethane ND ug/l		1.0	1
Bromomethane ND ug/l	g 2.2	0.63	1
Vinyl chloride ND ug/l	g 1.1	0.36	1
Chloroethane ND ug/l		0.49	1
1,1-Dichloroethene ND ug/l		0.26	1
trans-1,2-Dichloroethene ND ug/l	g 1.1	0.15	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Trichloroethene	ND		ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1
p/m-Xylene	ND		ug/kg	2.2	0.61	1
o-Xylene	ND		ug/kg	1.1	0.31	1
Xylenes, Total	ND		ug/kg	1.1	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.15	1
Dibromomethane	ND		ug/kg	2.2	0.26	1
Styrene	ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane	ND		ug/kg	11	0.99	1
Acetone	ND		ug/kg	11	5.2	1
Carbon disulfide	ND		ug/kg	11	4.9	1
2-Butanone	ND		ug/kg	11	2.4	1
Vinyl acetate	ND		ug/kg	11	2.3	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
1,2,3-Trichloropropane	ND		ug/kg	2.2	0.14	1
2-Hexanone	ND		ug/kg	11	1.3	1
Bromochloromethane	ND		ug/kg	2.2	0.22	1
2,2-Dichloropropane	ND		ug/kg	2.2	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1
1,3-Dichloropropane	ND		ug/kg	2.2	0.18	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.54	0.14	1
Bromobenzene	ND		ug/kg	2.2	0.16	1
n-Butylbenzene	ND		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
o-Chlorotoluene	ND		ug/kg	2.2	0.21	1
p-Chlorotoluene	ND		ug/kg	2.2	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.3	0.18	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.3	0.70	1
Acrylonitrile	ND		ug/kg	4.3	1.2	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Wes	tborough Lab						
n-Propylbenzene	ND		ug/kg	1.1	0.18	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.29	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.36	1	
1,4-Dioxane	ND		ug/kg	86	38.	1	
p-Diethylbenzene	ND		ug/kg	2.2	0.19	1	
p-Ethyltoluene	ND		ug/kg	2.2	0.42	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.2	0.21	1	
Ethyl ether	ND		ug/kg	2.2	0.37	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.4	1.5	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

07/26/21 15:30

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140168

Report Date: 08/06/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2140168-16

Client ID: SB-8 (0-2)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/30/21 13:48

Analyst: MKS 89% Percent Solids:

Volatile Organics by EPA 5035 Low - Westborough Lab Methylene chloride ND ug/kg 6.5 3.0 1 1,1-Dichloroethane ND ug/kg 1.3 0.19 1 Chloroform 0.34 J ug/kg 1.3 0.18 1 Carbon Letrachloride ND ug/kg 1.3 0.30 1 Carbon Letrachloropropane ND ug/kg 1.3 0.16 1 1,2-Dichloropropane ND ug/kg 1.3 0.18 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.48 1 Chloroberane ND ug/kg 0.55 0.16 1 Trichlorofluoromethane ND ug/kg 0.55 0.16 1 Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,1-Dichloroethane ND ug/kg 1,3 0,19 1 Chloroform 0,34 J ug/kg 1,9 0,18 1 Carbon tetrachloride ND ug/kg 1,3 0,30 1 1,2-Dichloropropane ND ug/kg 1,3 0,16 1 Dibromochloromethane ND ug/kg 1,3 0,34 1 1,1,2-Trichloroethane ND ug/kg 1,3 0,34 1 Tetrachloroethane ND ug/kg 0,65 0,25 1 Chlorobenzene ND ug/kg 0,65 0,16 1 Trichlorofluoromethane ND ug/kg 0,65 0,16 1 Trichloroethane ND ug/kg 0,65 0,22 1 Bromodichloromethane ND ug/kg 0,65 0,24 1 Bromodichloromethane ND ug/kg 0,65 0,24 1 trans-1,3-Dichloropropene ND ug/kg	Methylene chloride	ND		ug/kg	6.5	3.0	1
Carbon tetrachloride ND ug/kg 1.3 0.30 1 1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethane ND ug/kg 0.65 0.25 1 Chlorobenzene ND ug/kg 5.2 0.90 1 Trichlorofubrane ND ug/kg 5.2 0.90 1 1,2-Dichloromethane ND ug/kg 6.5 0.22 1 1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.24 1 Bromodichloromethane ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65	1,1-Dichloroethane	ND			1.3	0.19	1
1,2-Dichloropropane ND ug/kg 1.3 0.16 1 Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethane 37 ug/kg 0.65 0.25 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 5.2 0.90 1 1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloropropene ND ug/kg 0.65 0.22 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg <td< td=""><td>Chloroform</td><td>0.34</td><td>J</td><td>ug/kg</td><td>1.9</td><td>0.18</td><td>1</td></td<>	Chloroform	0.34	J	ug/kg	1.9	0.18	1
Dibromochloromethane ND ug/kg 1.3 0.18 1 1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethane 37 ug/kg 0.65 0.25 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloropropene ND ug/kg 0.65 0.22 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromodichare ND ug/kg 0.65	Carbon tetrachloride	ND		ug/kg	1.3	0.30	1
1,1,2-Trichloroethane ND ug/kg 1.3 0.34 1 Tetrachloroethene 37 ug/kg 0.65 0.25 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.22 1 Bromodichloropropene ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Lochloropropene ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.3</td> <td>0.16</td> <td>1</td>	1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1
Tetrachloroethene 37 ug/kg 0.65 0.25 1 Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene, Total ND ug/kg 0.65 0.20 1 Bromoform ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3	Dibromochloromethane	ND		ug/kg	1.3	0.18	1
Chlorobenzene ND ug/kg 0.65 0.16 1 Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.22 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3	1,1,2-Trichloroethane	ND		ug/kg	1.3	0.34	1
Trichlorofluoromethane ND ug/kg 5.2 0.90 1 1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 0.65 0.22 1 1,1-2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Toluene ND ug/kg	Tetrachloroethene	37		ug/kg	0.65	0.25	1
1,2-Dichloroethane ND ug/kg 1.3 0.33 1 1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 1,1-Dichloropropene ND ug/kg 0.65 0.22 1 1,1-Dichloropropene ND ug/kg 0.65 0.22 1 1,1-Dichloropropene ND ug/kg	Chlorobenzene	ND		ug/kg	0.65	0.16	1
1,1,1-Trichloroethane ND ug/kg 0.65 0.22 1 Bromodichloromethane ND ug/kg 0.65 0.14 1 trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 2.6 0.58	Trichlorofluoromethane	ND		ug/kg	5.2	0.90	1
ND	1,2-Dichloroethane	ND		ug/kg	1.3	0.33	1
trans-1,3-Dichloropropene ND ug/kg 1.3 0.35 1 cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 5.2 1.2 1 Chloromethane ND ug/kg 5.2 1.2 1 Chloromethane ND ug/kg 5.2 1.2 1 Chlorotethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 1.3 0.43 1	1,1,1-Trichloroethane	ND		ug/kg	0.65	0.22	1
cis-1,3-Dichloropropene ND ug/kg 0.65 0.20 1 1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.65</td> <td>0.14</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.65	0.14	1
1,3-Dichloropropene, Total ND ug/kg 0.65 0.20 1 1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.35	1
1,1-Dichloropropene ND ug/kg 0.65 0.21 1 Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	cis-1,3-Dichloropropene	ND		ug/kg	0.65	0.20	1
Bromoform ND ug/kg 5.2 0.32 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,3-Dichloropropene, Total	ND		ug/kg	0.65	0.20	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.65 0.22 1 Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,1-Dichloropropene	ND		ug/kg	0.65	0.21	1
Benzene ND ug/kg 0.65 0.22 1 Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Bromoform	ND		ug/kg	5.2	0.32	1
Toluene ND ug/kg 1.3 0.70 1 Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.65	0.22	1
Ethylbenzene ND ug/kg 1.3 0.18 1 Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Benzene	ND		ug/kg	0.65	0.22	1
Chloromethane ND ug/kg 5.2 1.2 1 Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Toluene	ND		ug/kg	1.3	0.70	1
Bromomethane ND ug/kg 2.6 0.75 1 Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Ethylbenzene	ND		ug/kg	1.3	0.18	1
Vinyl chloride ND ug/kg 1.3 0.43 1 Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Chloromethane	ND		ug/kg	5.2	1.2	1
Chloroethane ND ug/kg 2.6 0.58 1 1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Bromomethane	ND		ug/kg	2.6	0.75	1
1,1-Dichloroethene ND ug/kg 1.3 0.31 1	Vinyl chloride	ND		ug/kg	1.3	0.43	1
	Chloroethane	ND		ug/kg	2.6	0.58	1
trans-1,2-Dichloroethene ND ug/kg 1.9 0.18 1	1,1-Dichloroethene	ND		ug/kg	1.3	0.31	1
	trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.18	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Westborough Lab					
Trichloroethene	ND		ug/kg	0.65	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	2.6	0.19	1
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.22	1
Methyl tert butyl ether	ND		ug/kg	2.6	0.26	1
p/m-Xylene	ND		ug/kg	2.6	0.72	1
o-Xylene	ND		ug/kg	1.3	0.38	1
Xylenes, Total	ND		ug/kg	1.3	0.38	1
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.23	1
1,2-Dichloroethene, Total	ND		ug/kg	1.3	0.18	1
Dibromomethane	ND		ug/kg	2.6	0.31	1
Styrene	ND		ug/kg	1.3	0.25	1
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1
Acetone	19		ug/kg	13	6.2	1
Carbon disulfide	ND		ug/kg	13	5.9	1
2-Butanone	ND		ug/kg	13	2.9	1
Vinyl acetate	ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone	ND		ug/kg	13	1.6	1
1,2,3-Trichloropropane	ND		ug/kg	2.6	0.16	1
2-Hexanone	ND		ug/kg	13	1.5	1
Bromochloromethane	ND		ug/kg	2.6	0.26	1
2,2-Dichloropropane	ND		ug/kg	2.6	0.26	1
1,2-Dibromoethane	ND		ug/kg	1.3	0.36	1
1,3-Dichloropropane	ND		ug/kg	2.6	0.22	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.65	0.17	1
Bromobenzene	ND		ug/kg	2.6	0.19	1
n-Butylbenzene	ND		ug/kg	1.3	0.22	1
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1
tert-Butylbenzene	ND		ug/kg	2.6	0.15	1
o-Chlorotoluene	ND		ug/kg	2.6	0.25	1
p-Chlorotoluene	ND		ug/kg	2.6	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.9	1.3	1
Hexachlorobutadiene	ND		ug/kg	5.2	0.22	1
Isopropylbenzene	ND		ug/kg	1.3	0.14	1
p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1
Naphthalene	ND		ug/kg	5.2	0.84	1
Acrylonitrile	ND		ug/kg	5.2	1.5	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Wes	tborough Lab						
n-Propylbenzene	ND		ug/kg	1.3	0.22	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.6	0.42	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.35	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.25	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.43	1	
1,4-Dioxane	ND		ug/kg	100	45.	1	
p-Diethylbenzene	ND		ug/kg	2.6	0.23	1	
p-Ethyltoluene	ND		ug/kg	2.6	0.50	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.6	0.25	1	
Ethyl ether	ND		ug/kg	2.6	0.44	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.5	1.8	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	98	70-130	

L2140168

07/26/21 15:35

Not Specified

07/27/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Report Date: 08/06/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2140168-17 Client ID: SB-8 (2-4)

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C Analytical Date: 07/30/21 14:15

Analyst: MKS

Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	5.6	2.6	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	0.26	J	ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1
Tetrachloroethene	13		ug/kg	0.56	0.22	1
Chlorobenzene	ND		ug/kg	0.56	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.77	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND		ug/kg	0.56	0.19	1
Bromodichloromethane	ND		ug/kg	0.56	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.56	0.18	1
1,3-Dichloropropene, Total	ND		ug/kg	0.56	0.18	1
1,1-Dichloropropene	ND		ug/kg	0.56	0.18	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.56	0.18	1
Benzene	ND		ug/kg	0.56	0.18	1
Toluene	ND		ug/kg	1.1	0.60	1
Ethylbenzene	ND		ug/kg	1.1	0.16	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.65	1
/inyl chloride	ND		ug/kg	1.1	0.37	1
Chloroethane	ND		ug/kg	2.2	0.50	1

ND

ND

1

1

1.1

1.7

ug/kg

ug/kg

0.26

0.15

1,1-Dichloroethene

trans-1,2-Dichloroethene

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
Trichloroethene	ND		ug/kg	0.56	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1
p/m-Xylene	ND		ug/kg	2.2	0.62	1
o-Xylene	ND		ug/kg	1.1	0.32	1
Xylenes, Total	ND		ug/kg	1.1	0.32	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Total	ND		ug/kg	1.1	0.15	1
Dibromomethane	ND		ug/kg	2.2	0.26	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.4	1
Carbon disulfide	ND		ug/kg	11	5.1	1
2-Butanone	ND		ug/kg	11	2.5	1
Vinyl acetate	ND		ug/kg	11	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
1,2,3-Trichloropropane	ND		ug/kg	2.2	0.14	1
2-Hexanone	ND		ug/kg	11	1.3	1
Bromochloromethane	ND		ug/kg	2.2	0.23	1
2,2-Dichloropropane	ND		ug/kg	2.2	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1
1,3-Dichloropropane	ND		ug/kg	2.2	0.19	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.56	0.15	1
Bromobenzene	ND		ug/kg	2.2	0.16	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
o-Chlorotoluene	ND		ug/kg	2.2	0.21	1
p-Chlorotoluene	ND		ug/kg	2.2	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1
Hexachlorobutadiene	ND		ug/kg	4.4	0.19	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.4	0.72	1
Acrylonitrile	ND		ug/kg	4.4	1.3	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.36	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.37	1	
1,4-Dioxane	ND		ug/kg	89	39.	1	
p-Diethylbenzene	ND		ug/kg	2.2	0.20	1	
p-Ethyltoluene	ND		ug/kg	2.2	0.43	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.2	0.21	1	
Ethyl ether	ND		ug/kg	2.2	0.38	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.6	1.6	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	105	70-130	

L2140168

Project Name: Lab Number: 340 MYRTLE AVENUE

Project Number: Report Date: 340 MYRTLE AVENUE 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-19 Date Collected: 07/26/21 00:00

Client ID: Date Received: 07/27/21 TRIP BLANK Field Prep: Sample Location: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/29/21 19:52

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-19 Date Collected: 07/26/21 00:00

Client ID: TRIP BLANK Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	· Westborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-19 Date Collected: 07/26/21 00:00

Client ID: TRIP BLANK Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	96	70-130	

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/21 19:29

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	19 Batch:	WG1529798-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/21 19:29

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 1	9 Batch:	WG1529798-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168 **Report Date:** 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/29/21 19:29

Analyst: AJK

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 19	Batch:	WG1529798-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	95		70-130		
Toluene-d8	102		70-130		
4-Bromofluorobenzene	104		70-130		
Dibromofluoromethane	95		70-130		

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

arameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035 Low	r - Westboro	ugh Lab fo	or sample(s):	01-05,07-17	Batch:	WG1529836
Methylene chloride	ND		ug/kg	5.0	2.3	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	
Chloroform	0.20	J	ug/kg	1.5	0.14	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	
Dibromochloromethane	ND		ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	
Tetrachloroethene	ND		ug/kg	0.50	0.20	
Chlorobenzene	ND		ug/kg	0.50	0.13	
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	
Bromodichloromethane	ND		ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	
1,3-Dichloropropene, Total	ND		ug/kg	0.50	0.16	
1,1-Dichloropropene	ND		ug/kg	0.50	0.16	
Bromoform	ND		ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	
Benzene	ND		ug/kg	0.50	0.17	
Toluene	ND		ug/kg	1.0	0.54	
Ethylbenzene	ND		ug/kg	1.0	0.14	
Chloromethane	ND		ug/kg	4.0	0.93	
Bromomethane	ND		ug/kg	2.0	0.58	
Vinyl chloride	ND		ug/kg	1.0	0.34	
Chloroethane	ND		ug/kg	2.0	0.45	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	
Trichloroethene	ND		ug/kg	0.50	0.14	

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low 5	- Westbord	ough Lab fo	or sample(s):	01-05,07-17	Batch:	WG1529836
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
Xylenes, Total	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	
Dibromomethane	ND		ug/kg	2.0	0.24	
Styrene	ND		ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND		ug/kg	10	0.92	
Acetone	ND		ug/kg	10	4.8	
Carbon disulfide	ND		ug/kg	10	4.6	
2-Butanone	ND		ug/kg	10	2.2	
Vinyl acetate	ND		ug/kg	10	2.2	
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.13	
2-Hexanone	ND		ug/kg	10	1.2	
Bromochloromethane	ND		ug/kg	2.0	0.20	
2,2-Dichloropropane	ND		ug/kg	2.0	0.20	
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	
1,3-Dichloropropane	ND		ug/kg	2.0	0.17	
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50	0.13	
Bromobenzene	ND		ug/kg	2.0	0.14	
n-Butylbenzene	ND		ug/kg	1.0	0.17	
sec-Butylbenzene	ND		ug/kg	1.0	0.15	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	
o-Chlorotoluene	ND		ug/kg	2.0	0.19	

L2140168

08/06/21

Project Name:340 MYRTLE AVENUELab Number:Project Number:340 MYRTLE AVENUEReport Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low 5	v - Westbord	ough Lab fo	or sample(s):	01-05,07-17	Batch:	WG1529836-
p-Chlorotoluene	ND		ug/kg	2.0	0.11	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Hexachlorobutadiene	ND		ug/kg	4.0	0.17	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	
Naphthalene	ND		ug/kg	4.0	0.65	
Acrylonitrile	ND		ug/kg	4.0	1.2	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
1,4-Dioxane	ND		ug/kg	80	35.	
p-Diethylbenzene	ND		ug/kg	2.0	0.18	
p-Ethyltoluene	ND		ug/kg	2.0	0.38	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	
Ethyl ether	ND		ug/kg	2.0	0.34	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	1.4	

	Acceptance						
Surrogate	%Recovery Qualifier	Criteria					
1,2-Dichloroethane-d4	100	70-130					
Toluene-d8	103	70-130					
4-Bromofluorobenzene	95	70-130					
Dibromofluoromethane	100	70-130					

L2140168

Project Name: Lab Number: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Report Date: 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	06	Batch:	WG1530196-5
Methylene chloride	ND		ug/kg	250		110
1,1-Dichloroethane	ND		ug/kg	50		7.2
Chloroform	10	J	ug/kg	75		7.0
Carbon tetrachloride	ND		ug/kg	50		12.
1,2-Dichloropropane	ND		ug/kg	50		6.2
Dibromochloromethane	ND		ug/kg	50		7.0
1,1,2-Trichloroethane	ND		ug/kg	50		13.
Tetrachloroethene	ND		ug/kg	25		9.8
Chlorobenzene	ND		ug/kg	25		6.4
Trichlorofluoromethane	ND		ug/kg	200		35.
1,2-Dichloroethane	ND		ug/kg	50		13.
1,1,1-Trichloroethane	ND		ug/kg	25		8.4
Bromodichloromethane	ND		ug/kg	25		5.4
trans-1,3-Dichloropropene	ND		ug/kg	50		14.
cis-1,3-Dichloropropene	ND		ug/kg	25		7.9
1,3-Dichloropropene, Total	ND		ug/kg	25		7.9
1,1-Dichloropropene	ND		ug/kg	25		8.0
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		8.3
Benzene	ND		ug/kg	25		8.3
Toluene	ND		ug/kg	50		27.
Ethylbenzene	ND		ug/kg	50		7.0
Chloromethane	ND		ug/kg	200		47.
Bromomethane	ND		ug/kg	100		29.
Vinyl chloride	ND		ug/kg	50		17.
Chloroethane	ND		ug/kg	100		23.
1,1-Dichloroethene	ND		ug/kg	50		12.
trans-1,2-Dichloroethene	ND		ug/kg	75		6.8
Trichloroethene	ND		ug/kg	25		6.8

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168 **Report Date:** 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westboro	ough Lab fo	or sample(s):	06	Batch:	WG1530196-5
1,2-Dichlorobenzene	ND		ug/kg	100		7.2
1,3-Dichlorobenzene	ND		ug/kg	100		7.4
1,4-Dichlorobenzene	ND		ug/kg	100		8.6
Methyl tert butyl ether	ND		ug/kg	100		10.
p/m-Xylene	ND		ug/kg	100		28.
o-Xylene	ND		ug/kg	50		14.
Xylenes, Total	ND		ug/kg	50		14.
cis-1,2-Dichloroethene	ND		ug/kg	50		8.8
1,2-Dichloroethene, Total	ND		ug/kg	50		6.8
Dibromomethane	ND		ug/kg	100		12.
Styrene	ND		ug/kg	50		9.8
Dichlorodifluoromethane	ND		ug/kg	500		46.
Acetone	ND		ug/kg	500		240
Carbon disulfide	ND		ug/kg	500		230
2-Butanone	ND		ug/kg	500		110
Vinyl acetate	ND		ug/kg	500		110
4-Methyl-2-pentanone	ND		ug/kg	500		64.
1,2,3-Trichloropropane	ND		ug/kg	100		6.4
2-Hexanone	ND		ug/kg	500		59.
Bromochloromethane	ND		ug/kg	100		10.
2,2-Dichloropropane	ND		ug/kg	100		10.
1,2-Dibromoethane	ND		ug/kg	50		14.
1,3-Dichloropropane	ND		ug/kg	100		8.4
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		6.6
Bromobenzene	ND		ug/kg	100		7.2
n-Butylbenzene	ND		ug/kg	50		8.4
sec-Butylbenzene	ND		ug/kg	50		7.3
tert-Butylbenzene	ND		ug/kg	100		5.9
o-Chlorotoluene	ND		ug/kg	100		9.6

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 07:13

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westboro	ugh Lab fo	or sample(s):	06	Batch:	WG1530196-5
p-Chlorotoluene	ND		ug/kg	100		5.4
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		50.
Hexachlorobutadiene	ND		ug/kg	200		8.4
Isopropylbenzene	ND		ug/kg	50		5.4
p-Isopropyltoluene	ND		ug/kg	50		5.4
Naphthalene	ND		ug/kg	200		32.
Acrylonitrile	ND		ug/kg	200		58.
n-Propylbenzene	ND		ug/kg	50		8.6
1,2,3-Trichlorobenzene	ND		ug/kg	100		16.
1,2,4-Trichlorobenzene	ND		ug/kg	100		14.
1,3,5-Trimethylbenzene	ND		ug/kg	100		9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100		17.
1,4-Dioxane	ND		ug/kg	4000		1800
p-Diethylbenzene	ND		ug/kg	100		8.8
p-Ethyltoluene	ND		ug/kg	100		19.
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100		9.6
Ethyl ether	ND		ug/kg	100		17.
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		71.

	Accep					
Surrogate	%Recovery Qua	•				
1,2-Dichloroethane-d4	100	70-130				
Toluene-d8	103	70-130				
4-Bromofluorobenzene	96	70-130				
Dibromofluoromethane	100	70-130				

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/01/21 12:55

Analyst: KJD

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westboro	ough Lab fo	or sample(s):	06	Batch:	WG1530618-5
Methylene chloride	ND		ug/kg	250		110
1,1-Dichloroethane	ND		ug/kg	50		7.2
Chloroform	11	J	ug/kg	75		7.0
Carbon tetrachloride	ND		ug/kg	50		12.
1,2-Dichloropropane	ND		ug/kg	50		6.2
Dibromochloromethane	ND		ug/kg	50		7.0
1,1,2-Trichloroethane	ND		ug/kg	50		13.
Tetrachloroethene	ND		ug/kg	25		9.8
Chlorobenzene	ND		ug/kg	25		6.4
Trichlorofluoromethane	ND		ug/kg	200		35.
1,2-Dichloroethane	ND		ug/kg	50		13.
1,1,1-Trichloroethane	ND		ug/kg	25		8.4
Bromodichloromethane	ND		ug/kg	25		5.4
trans-1,3-Dichloropropene	ND		ug/kg	50		14.
cis-1,3-Dichloropropene	ND		ug/kg	25		7.9
1,3-Dichloropropene, Total	ND		ug/kg	25		7.9
1,1-Dichloropropene	ND		ug/kg	25		8.0
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		8.3
Benzene	ND		ug/kg	25		8.3
Toluene	ND		ug/kg	50		27.
Ethylbenzene	ND		ug/kg	50		7.0
Chloromethane	ND		ug/kg	200		47.
Bromomethane	ND		ug/kg	100		29.
Vinyl chloride	ND		ug/kg	50		17.
Chloroethane	ND		ug/kg	100		23.
1,1-Dichloroethene	ND		ug/kg	50		12.
trans-1,2-Dichloroethene	ND		ug/kg	75		6.8
Trichloroethene	ND		ug/kg	25		6.8

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168 **Report Date:** 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/01/21 12:55

Analyst: KJD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	High - Westbord	ough Lab fo	or sample(s):	06	Batch:	WG1530618-5
1,2-Dichlorobenzene	ND		ug/kg	100		7.2
1,3-Dichlorobenzene	ND		ug/kg	100		7.4
1,4-Dichlorobenzene	ND		ug/kg	100		8.6
Methyl tert butyl ether	ND		ug/kg	100		10.
p/m-Xylene	ND		ug/kg	100		28.
o-Xylene	ND		ug/kg	50		14.
Xylenes, Total	ND		ug/kg	50		14.
cis-1,2-Dichloroethene	ND		ug/kg	50		8.8
1,2-Dichloroethene, Total	ND		ug/kg	50		6.8
Dibromomethane	ND		ug/kg	100		12.
Styrene	ND		ug/kg	50		9.8
Dichlorodifluoromethane	ND		ug/kg	500		46.
Acetone	ND		ug/kg	500		240
Carbon disulfide	ND		ug/kg	500		230
2-Butanone	ND		ug/kg	500		110
Vinyl acetate	ND		ug/kg	500		110
4-Methyl-2-pentanone	ND		ug/kg	500		64.
1,2,3-Trichloropropane	ND		ug/kg	100		6.4
2-Hexanone	ND		ug/kg	500		59.
Bromochloromethane	ND		ug/kg	100		10.
2,2-Dichloropropane	ND		ug/kg	100		10.
1,2-Dibromoethane	ND		ug/kg	50		14.
1,3-Dichloropropane	ND		ug/kg	100		8.4
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		6.6
Bromobenzene	ND		ug/kg	100		7.2
n-Butylbenzene	ND		ug/kg	50		8.4
sec-Butylbenzene	ND		ug/kg	50		7.3
tert-Butylbenzene	ND		ug/kg	100		5.9
o-Chlorotoluene	ND		ug/kg	100		9.6

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168 **Report Date:** 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/01/21 12:55

Analyst: KJD

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	06	Batch:	WG1530618-5
p-Chlorotoluene	ND		ug/kg	100		5.4
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		50.
Hexachlorobutadiene	ND		ug/kg	200		8.4
Isopropylbenzene	ND		ug/kg	50		5.4
p-Isopropyltoluene	ND		ug/kg	50		5.4
Naphthalene	ND		ug/kg	200		32.
Acrylonitrile	ND		ug/kg	200		58.
n-Propylbenzene	ND		ug/kg	50		8.6
1,2,3-Trichlorobenzene	ND		ug/kg	100		16.
1,2,4-Trichlorobenzene	ND		ug/kg	100		14.
1,3,5-Trimethylbenzene	ND		ug/kg	100		9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100		17.
1,4-Dioxane	ND		ug/kg	4000		1800
p-Diethylbenzene	ND		ug/kg	100		8.8
p-Ethyltoluene	ND		ug/kg	100		19.
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100		9.6
Ethyl ether	ND		ug/kg	100		17.
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		71.

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	103	70-130

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 19	9 Batch: WG	31529798-3	WG1529798-4			
Methylene chloride	92		92		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	94		94		70-130	0	20	
Carbon tetrachloride	100		99		63-132	1	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	88		88		63-130	0	20	
1,1,2-Trichloroethane	87		86		70-130	1	20	
Tetrachloroethene	94		93		70-130	1	20	
Chlorobenzene	93		93		75-130	0	20	
Trichlorofluoromethane	96		95		62-150	1	20	
1,2-Dichloroethane	94		94		70-130	0	20	
1,1,1-Trichloroethane	96		94		67-130	2	20	
Bromodichloromethane	90		90		67-130	0	20	
trans-1,3-Dichloropropene	83		83		70-130	0	20	
cis-1,3-Dichloropropene	85		86		70-130	1	20	
1,1-Dichloropropene	98		96		70-130	2	20	
Bromoform	76		76		54-136	0	20	
1,1,2,2-Tetrachloroethane	91		92		67-130	1	20	
Benzene	96		96		70-130	0	20	
Toluene	96		95		70-130	1	20	
Ethylbenzene	96		95		70-130	1	20	
Chloromethane	90		90		64-130	0	20	
Bromomethane	56		64		39-139	13	20	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 1	9 Batch: WG	1529798-3	WG1529798-4			
Vinyl chloride	100		98		55-140	2	20	
Chloroethane	98		98		55-138	0	20	
1,1-Dichloroethene	93		94		61-145	1	20	
trans-1,2-Dichloroethene	99		98		70-130	1	20	
Trichloroethene	94		94		70-130	0	20	
1,2-Dichlorobenzene	88		90		70-130	2	20	
1,3-Dichlorobenzene	91		92		70-130	1	20	
1,4-Dichlorobenzene	90		90		70-130	0	20	
Methyl tert butyl ether	90		90		63-130	0	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	90		90		70-130	0	20	
cis-1,2-Dichloroethene	94		94		70-130	0	20	
Dibromomethane	81		82		70-130	1	20	
1,2,3-Trichloropropane	85		88		64-130	3	20	
Acrylonitrile	100		100		70-130	0	20	
Styrene	85		85		70-130	0	20	
Dichlorodifluoromethane	77		76		36-147	1	20	
Acetone	84		86		58-148	2	20	
Carbon disulfide	98		97		51-130	1	20	
2-Butanone	87		85		63-138	2	20	
Vinyl acetate	110		110		70-130	0	20	
4-Methyl-2-pentanone	79		85		59-130	7	20	
2-Hexanone	78		79		57-130	1	20	

Project Name: 340 MYRTLE AVENUE

Lab Number: L2140168

Project Number:	340 MYRTLE AVENUE	Report Date:	08/06/21

arameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS -	Westborough Lab Associated	sample(s): 19	Batch:	WG1529798-3	WG1529798-4			
Bromochloromethane	91		94		70-130	3		20
2,2-Dichloropropane	100		99		63-133	1		20
1,2-Dibromoethane	84		85		70-130	1		20
1,3-Dichloropropane	89		90		70-130	1		20
1,1,1,2-Tetrachloroethane	91		90		64-130	1		20
Bromobenzene	87		89		70-130	2		20
n-Butylbenzene	99		99		53-136	0		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	99		98		70-130	1		20
o-Chlorotoluene	96		94		70-130	2		20
p-Chlorotoluene	94		94		70-130	0		20
1,2-Dibromo-3-chloropropane	73		77		41-144	5		20
Hexachlorobutadiene	100		110		63-130	10		20
Isopropylbenzene	100		99		70-130	1		20
p-Isopropyltoluene	100		100		70-130	0		20
Naphthalene	82		89		70-130	8		20
n-Propylbenzene	98		97		69-130	1		20
1,2,3-Trichlorobenzene	80		89		70-130	11		20
1,2,4-Trichlorobenzene	88		92		70-130	4		20
1,3,5-Trimethylbenzene	96		95		64-130	1		20
1,2,4-Trimethylbenzene	95		94		70-130	1		20
1,4-Dioxane	64		72		56-162	12		20
p-Diethylbenzene	100		100		70-130	0		20

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168 08/06/21

Project Number: 340 MYRTLE AVENUE

Report Date:

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	19 Ba	atch: WG	61529798-3	WG1529798-4				
p-Ethyltoluene	100			98		70-130	2		20	
1,2,4,5-Tetramethylbenzene	100			100		70-130	0		20	
Ethyl ether	91			94		59-134	3		20	
trans-1,4-Dichloro-2-butene	82			83		70-130	1		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	96	96	70-130
Toluene-d8	101	103	70-130
4-Bromofluorobenzene	104	104	70-130
Dibromofluoromethane	97	98	70-130

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: L2140168

Re

Report Date:	08/06/21
--------------	----------

arameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low	- Westborough Lab Asso	ociated sample(s)	: 01-05,07-17	Batch:	WG1529836-3	WG1529836-4	
Methylene chloride	107		102		70-130	5	30
1,1-Dichloroethane	113		108		70-130	5	30
Chloroform	106		101		70-130	5	30
Carbon tetrachloride	109		102		70-130	7	30
1,2-Dichloropropane	109		106		70-130	3	30
Dibromochloromethane	108		105		70-130	3	30
1,1,2-Trichloroethane	109		107		70-130	2	30
Tetrachloroethene	113		110		70-130	3	30
Chlorobenzene	108		106		70-130	2	30
Trichlorofluoromethane	141	Q	130		70-139	8	30
1,2-Dichloroethane	106		102		70-130	4	30
1,1,1-Trichloroethane	110		105		70-130	5	30
Bromodichloromethane	107		103		70-130	4	30
trans-1,3-Dichloropropene	110		109		70-130	1	30
cis-1,3-Dichloropropene	108		105		70-130	3	30
1,1-Dichloropropene	111		105		70-130	6	30
Bromoform	93		92		70-130	1	30
1,1,2,2-Tetrachloroethane	107		105		70-130	2	30
Benzene	108		103		70-130	5	30
Toluene	108		106		70-130	2	30
Ethylbenzene	111		108		70-130	3	30
Chloromethane	151	Q	142	Q	52-130	6	30
Bromomethane	148	Q	142		57-147	4	30

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date:

08/06/21

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
atile Organics by EPA 5035 Low -	Westborough Lab Ass	ociated sample	e(s): 01-05,07-17	Batch:	WG1529836-3	WG1529836-4	
Vinyl chloride	159	Q	151	Q	67-130	5	30
Chloroethane	143		133		50-151	7	30
1,1-Dichloroethene	115		108		65-135	6	30
trans-1,2-Dichloroethene	109		104		70-130	5	30
Trichloroethene	110		104		70-130	6	30
1,2-Dichlorobenzene	104		105		70-130	1	30
1,3-Dichlorobenzene	106		105		70-130	1	30
1,4-Dichlorobenzene	106		106		70-130	0	30
Methyl tert butyl ether	100		94		66-130	6	30
p/m-Xylene	112		110		70-130	2	30
o-Xylene	112		109		70-130	3	30
cis-1,2-Dichloroethene	109		104		70-130	5	30
Dibromomethane	105		98		70-130	7	30
Styrene	112		110		70-130	2	30
Dichlorodifluoromethane	253	Q	237	Q	30-146	7	30
Acetone	102		92		54-140	10	30
Carbon disulfide	118		111		59-130	6	30
2-Butanone	102		94		70-130	8	30
Vinyl acetate	118		110		70-130	7	30
4-Methyl-2-pentanone	90		86		70-130	5	30
1,2,3-Trichloropropane	102		99		68-130	3	30
2-Hexanone	98		90		70-130	9	30
Bromochloromethane	105		100		70-130	5	30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date: 08/06/21

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - West	borough Lab Ass	ociated sample(s)	: 01-05,07-17	Batch:	WG1529836-3	WG1529836-4	
2,2-Dichloropropane	107		102		70-130	5	30
1,2-Dibromoethane	109		106		70-130	3	30
1,3-Dichloropropane	108		104		69-130	4	30
1,1,1,2-Tetrachloroethane	108		108		70-130	0	30
Bromobenzene	101		100		70-130	1	30
n-Butylbenzene	114		114		70-130	0	30
sec-Butylbenzene	112		110		70-130	2	30
tert-Butylbenzene	110		110		70-130	0	30
o-Chlorotoluene	108		108		70-130	0	30
p-Chlorotoluene	108		108		70-130	0	30
1,2-Dibromo-3-chloropropane	93		89		68-130	4	30
Hexachlorobutadiene	108		105		67-130	3	30
Isopropylbenzene	111		111		70-130	0	30
p-Isopropyltoluene	111		110		70-130	1	30
Naphthalene	101		98		70-130	3	30
Acrylonitrile	102		96		70-130	6	30
n-Propylbenzene	110		110		70-130	0	30
1,2,3-Trichlorobenzene	104		103		70-130	1	30
1,2,4-Trichlorobenzene	108		106		70-130	2	30
1,3,5-Trimethylbenzene	109		108		70-130	1	30
1,2,4-Trimethylbenzene	109		108		70-130	1	30
1,4-Dioxane	96		90		65-136	6	30
p-Diethylbenzene	110		111		70-130	1	30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westk	orough Lab Ass	ociated sample(s):	01-05,07-17	Batch:	WG1529836-3	WG1529836-4		
p-Ethyltoluene	108		108		70-130	0		30
1,2,4,5-Tetramethylbenzene	109		108		70-130	1		30
Ethyl ether	123		116		67-130	6		30
trans-1,4-Dichloro-2-butene	106		105		70-130	1		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	95	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	98	97	70-130

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date:

08/06/21

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
tile Organics by EPA 5035 High - V	Vestborough Lab Ass	ociated sample	e(s): 06 Batcl	h: WG1530)196-3 WG15301	96-4	
Methylene chloride	107		102		70-130	5	30
1,1-Dichloroethane	113		108		70-130	5	30
Chloroform	106		101		70-130	5	30
Carbon tetrachloride	109		102		70-130	7	30
1,2-Dichloropropane	109		106		70-130	3	30
Dibromochloromethane	108		105		70-130	3	30
1,1,2-Trichloroethane	109		107		70-130	2	30
Tetrachloroethene	113		110		70-130	3	30
Chlorobenzene	108		106		70-130	2	30
Trichlorofluoromethane	141	Q	130		70-139	8	30
1,2-Dichloroethane	106		102		70-130	4	30
1,1,1-Trichloroethane	110		105		70-130	5	30
Bromodichloromethane	107		103		70-130	4	30
trans-1,3-Dichloropropene	110		109		70-130	1	30
cis-1,3-Dichloropropene	108		105		70-130	3	30
1,1-Dichloropropene	111		105		70-130	6	30
Bromoform	93		92		70-130	1	30
1,1,2,2-Tetrachloroethane	107		105		70-130	2	30
Benzene	108		103		70-130	5	30
Toluene	108		106		70-130	2	30
Ethylbenzene	111		108		70-130	3	30
Chloromethane	151	Q	142	Q	52-130	6	30
Bromomethane	148	Q	142		57-147	4	30

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Volatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 06 Batch: WG1530196-3 WG15301996-4 Vinyl chloride 159 Q 151 Q 67-130 5 30 Chloroethane 143 133 50-151 7 30 1,1-Dichloroethene 115 108 66-135 6 30 trans-1,2-Dichloroethene 110 104 70-130 5 30 Trichloroethene 110 104 70-130 6 30 1,2-Dichlorobenzene 106 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 Methy tert buyl ether 100 94 66-133 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromometh	Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits
Chloroethane 143 133 50-151 7 30 1,1-Dichloroethene 115 108 65-135 6 30 trans-1,2-Dichloroethene 109 104 70-130 5 30 Trichloroethene 110 104 70-130 6 30 1,2-Dichlorobenzene 104 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 1 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 3 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 7 30	olatile Organics by EPA 5035 High - Westb	orough Lab Ass	sociated sample	(s): 06 Ba	tch: WG153	0196-3 WG15301	196-4	
1,1-Dichloroethene 115 108 65-135 6 30 trans-1,2-Dichloroethene 109 104 70-130 5 30 Trichloroethene 110 104 70-130 6 30 1,2-Dichlorobenzene 104 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 0 30 Melthyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 3 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140	Vinyl chloride	159	Q	151	Q	67-130	5	30
trans-1,2-Dichloroethene 109 104 70-130 5 30 Trichloroethene 110 104 70-130 6 30 1,2-Dichlorobenzene 104 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 0 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 c-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140	Chloroethane	143		133		50-151	7	30
Trichloroethene 110 104 70-130 6 30 1,2-Dichlorobenzene 104 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 0 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodiffuoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 30 Carbon disulfide 118 111 5	1,1-Dichloroethene	115		108		65-135	6	30
1,2-Dichlorobenzene 104 105 70-130 1 30 1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 0 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 c-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodiffuoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7	trans-1,2-Dichloroethene	109		104		70-130	5	30
1,3-Dichlorobenzene 106 105 70-130 1 30 1,4-Dichlorobenzene 106 106 70-130 0 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5	Trichloroethene	110		104		70-130	6	30
1.4-Dichlorobenzene 106 106 70-130 0 30 Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3	1,2-Dichlorobenzene	104		105		70-130	1	30
Methyl tert butyl ether 100 94 66-130 6 30 p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3	1,3-Dichlorobenzene	106		105		70-130	1	30
p/m-Xylene 112 110 70-130 2 30 o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30<	1,4-Dichlorobenzene	106		106		70-130	0	30
o-Xylene 112 109 70-130 3 30 cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 Carbon disulfide 118 111 59-130 6 30 Vinyl acetate 118 110 70-130 7 30 Vinyl acetate 102 99 68-130 3 30 Vinyl acetate 102 99 68-130 3 30 30 Vinyl acetate 102 99 90 70-130 99 30 Vinyl acetate 102 90 70-130 99	Methyl tert butyl ether	100		94		66-130	6	30
cis-1,2-Dichloroethene 109 104 70-130 5 30 Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	p/m-Xylene	112		110		70-130	2	30
Dibromomethane 105 98 70-130 7 30 Styrene 112 110 70-130 2 30 Dichlorodiffluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	o-Xylene	112		109		70-130	3	30
Styrene 112 110 70-130 2 30 Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	cis-1,2-Dichloroethene	109		104		70-130	5	30
Dichlorodifluoromethane 253 Q 237 Q 30-146 7 30 Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Dibromomethane	105		98		70-130	7	30
Acetone 102 92 54-140 10 30 Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Styrene	112		110		70-130	2	30
Carbon disulfide 118 111 59-130 6 30 2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Dichlorodifluoromethane	253	Q	237	Q	30-146	7	30
2-Butanone 102 94 70-130 8 30 Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Acetone	102		92		54-140	10	30
Vinyl acetate 118 110 70-130 7 30 4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Carbon disulfide	118		111		59-130	6	30
4-Methyl-2-pentanone 90 86 70-130 5 30 1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	2-Butanone	102		94		70-130	8	30
1,2,3-Trichloropropane 102 99 68-130 3 30 2-Hexanone 98 90 70-130 9 30	Vinyl acetate	118		110		70-130	7	30
2-Hexanone 98 90 70-130 9 30	4-Methyl-2-pentanone	90		86		70-130	5	30
	1,2,3-Trichloropropane	102		99		68-130	3	30
Bromochloromethane 105 100 70-130 5 30	2-Hexanone	98		90		70-130	9	30
	Bromochloromethane	105		100		70-130	5	30

08/06/21

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date:

Project Number:	340 MYRTLE AVENUE	
-----------------	-------------------	--

arameter	LCS %Recovery	LCS Qual %Reco		%Rec Qual Lin	•	Qual	RPD Limits
olatile Organics by EPA 5035 High - We	stborough Lab Asso	ociated sample(s): 06	Batch	: WG1530196-3	WG1530196-4		
2,2-Dichloropropane	107	10	2	70-1	30 5		30
1,2-Dibromoethane	109	10	3	70-1	30 3		30
1,3-Dichloropropane	108	10	4	69-1	30 4		30
1,1,1,2-Tetrachloroethane	108	10	3	70-1	30 0		30
Bromobenzene	101	10)	70-1	30 1		30
n-Butylbenzene	114	11	4	70-1	30 0		30
sec-Butylbenzene	112	11)	70-1	30 2		30
tert-Butylbenzene	110	11)	70-1	30 0		30
o-Chlorotoluene	108	10	3	70-1	30 0		30
p-Chlorotoluene	108	10	3	70-1	30 0		30
1,2-Dibromo-3-chloropropane	93	88		68-1	30 4		30
Hexachlorobutadiene	108	10	5	67-1	30 3		30
Isopropylbenzene	111	11	1	70-1	30 0		30
p-Isopropyltoluene	111	11)	70-1	30 1		30
Naphthalene	101	98		70-1	30 3		30
Acrylonitrile	102	96		70-1	30 6		30
n-Propylbenzene	110	11)	70-1	30 0		30
1,2,3-Trichlorobenzene	104	10	3	70-1	30 1		30
1,2,4-Trichlorobenzene	108	10	3	70-1	30 2		30
1,3,5-Trimethylbenzene	109	10	3	70-1	30 1		30
1,2,4-Trimethylbenzene	109	10	3	70-1	30 1		30
1,4-Dioxane	96	90		65-1	36 6		30
p-Diethylbenzene	110	11	1	70-1	30 1		30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 High - West	borough Lab Ass	ociated sample	e(s): 06 Batch	n: WG153019	96-3 WG15301	96-4			
p-Ethyltoluene	108		108		70-130	0		30	
1,2,4,5-Tetramethylbenzene	109		108		70-130	1		30	
Ethyl ether	123		116		67-130	6		30	
trans-1,4-Dichloro-2-butene	106		105		70-130	1		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	95	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	98	97	70-130

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Wes	tborough Lab Ass	ociated sample	e(s): 06 Batch	n: WG153	0618-3 WG15306	18-4	
Methylene chloride	108		103		70-130	5	30
1,1-Dichloroethane	111		110		70-130	1	30
Chloroform	98		98		70-130	0	30
Carbon tetrachloride	109		107		70-130	2	30
1,2-Dichloropropane	105		106		70-130	1	30
Dibromochloromethane	103		107		70-130	4	30
1,1,2-Trichloroethane	102		106		70-130	4	30
Tetrachloroethene	111		108		70-130	3	30
Chlorobenzene	105		105		70-130	0	30
Trichlorofluoromethane	137		136		70-139	1	30
1,2-Dichloroethane	101		104		70-130	3	30
1,1,1-Trichloroethane	108		107		70-130	1	30
Bromodichloromethane	102		104		70-130	2	30
trans-1,3-Dichloropropene	105		109		70-130	4	30
cis-1,3-Dichloropropene	103		106		70-130	3	30
1,1-Dichloropropene	109		108		70-130	1	30
Bromoform	91		92		70-130	1	30
1,1,2,2-Tetrachloroethane	100		105		70-130	5	30
Benzene	105		105		70-130	0	30
Toluene	105		104		70-130	1	30
Ethylbenzene	107		107		70-130	0	30
Chloromethane	154	Q	150	Q	52-130	3	30
Bromomethane	151	Q	146		57-147	3	30

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westl	oorough Lab As	sociated sample	(s): 06 Batch	: WG153	0618-3 WG15306	18-4	
Vinyl chloride	161	Q	158	Q	67-130	2	30
Chloroethane	143		139		50-151	3	30
1,1-Dichloroethene	113		111		65-135	2	30
trans-1,2-Dichloroethene	108		106		70-130	2	30
Trichloroethene	106		105		70-130	1	30
1,2-Dichlorobenzene	102		102		70-130	0	30
1,3-Dichlorobenzene	104		103		70-130	1	30
1,4-Dichlorobenzene	104		102		70-130	2	30
Methyl tert butyl ether	93		98		66-130	5	30
p/m-Xylene	107		109		70-130	2	30
o-Xylene	105		106		70-130	1	30
cis-1,2-Dichloroethene	105		105		70-130	0	30
Dibromomethane	98		101		70-130	3	30
Styrene	106		108		70-130	2	30
Dichlorodifluoromethane	256	Q	252	Q	30-146	2	30
Acetone	136		102		54-140	29	30
Carbon disulfide	118		115		59-130	3	30
2-Butanone	98		99		70-130	1	30
Vinyl acetate	113		117		70-130	3	30
4-Methyl-2-pentanone	82		88		70-130	7	30
1,2,3-Trichloropropane	95		99		68-130	4	30
2-Hexanone	90		97		70-130	7	30
Bromochloromethane	102		101		70-130	1	30

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date:

08/06/21

arameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - \	Westborough Lab Associa	ited sample(s): 06 Batch	n: WG1530618-3 WG15306	18-4	
2,2-Dichloropropane	108	104	70-130	4	30
1,2-Dibromoethane	102	106	70-130	4	30
1,3-Dichloropropane	100	104	69-130	4	30
1,1,1,2-Tetrachloroethane	106	108	70-130	2	30
Bromobenzene	96	98	70-130	2	30
n-Butylbenzene	113	111	70-130	2	30
sec-Butylbenzene	109	106	70-130	3	30
tert-Butylbenzene	108	106	70-130	2	30
o-Chlorotoluene	103	103	70-130	0	30
p-Chlorotoluene	105	104	70-130	1	30
1,2-Dibromo-3-chloropropane	85	88	68-130	3	30
Hexachlorobutadiene	109	106	67-130	3	30
Isopropylbenzene	108	107	70-130	1	30
p-Isopropyltoluene	109	108	70-130	1	30
Naphthalene	95	96	70-130	1	30
Acrylonitrile	98	102	70-130	4	30
n-Propylbenzene	106	106	70-130	0	30
1,2,3-Trichlorobenzene	101	100	70-130	1	30
1,2,4-Trichlorobenzene	105	103	70-130	2	30
1,3,5-Trimethylbenzene	105	105	70-130	0	30
1,2,4-Trimethylbenzene	106	105	70-130	1	30
1,4-Dioxane	86	96	65-136	11	30
p-Diethylbenzene	109	106	70-130	3	30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westb	orough Lab Ass	ociated sample	e(s): 06 Batch	: WG15306	18-3 WG15306	18-4		
p-Ethyltoluene	104		104		70-130	0		30
1,2,4,5-Tetramethylbenzene	106		104		70-130	2		30
Ethyl ether	116		120		67-130	3		30
trans-1,4-Dichloro-2-butene	100		106		70-130	6		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	100	100	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	96	97	70-130
Dibromofluoromethane	99	98	70-130

SEMIVOLATILES

L2140168

Project Name: 340 MYRTLE AVENUE Lab Number:

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:40

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40
Analytical Date: 07/30/21 10:42

Analyst: CMM Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	710		ug/kg	150	19.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	32.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1	
Fluoranthene	5800		ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	30.	1	
Isophorone	ND		ug/kg	170	24.	1	
Naphthalene	740		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	21.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	65.	1	
Butyl benzyl phthalate	ND		ug/kg	190	47.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	64.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Diethyl phthalate	ND		ua/ka	190	17.	1
Dimethyl phthalate	ND		ug/kg	190	40.	<u>'</u> 1
Benzo(a)anthracene	3100		ug/kg	110	21.	1
	2700		ug/kg	150	46.	
Benzo(a)pyrene			ug/kg			1
Benzo(b)fluoranthene	3100		ug/kg	110	32.	1
Benzo(k)fluoranthene	1300		ug/kg	110	30.	1
Chrysene	2500		ug/kg	110	20.	1
Acenaphthylene	170		ug/kg	150	29.	1
Anthracene	1600		ug/kg	110	37.	1
Benzo(ghi)perylene	1900		ug/kg	150	22.	1
Fluorene	630		ug/kg	190	18.	1
Phenanthrene	5200		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	470		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	1900		ug/kg	150	26.	1
Pyrene	5400		ug/kg	110	19.	1
Biphenyl	120	J	ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	34.	1
2-Nitroaniline	ND		ug/kg	190	36.	1
3-Nitroaniline	ND		ug/kg	190	35.	1
4-Nitroaniline	ND		ug/kg	190	78.	1
Dibenzofuran	480		ug/kg	190	18.	1
2-Methylnaphthalene	350		ug/kg	220	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	62.	1
2-Nitrophenol	ND		ug/kg	410	71.	1
4-Nitrophenol	ND		ug/kg	260	77.	1
2,4-Dinitrophenol	ND		ug/kg	900	88.	1
4,6-Dinitro-o-cresol	ND		ug/kg	490	90.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	190	28.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1
			~9''9		,	·

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-01 Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	610	190	1
Benzyl Alcohol	ND		ug/kg	190	58.	1
Carbazole	640		ug/kg	190	18.	1
1,4-Dioxane	ND		ua/ka	28	8.6	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	72	25-120	
Phenol-d6	84	10-120	
Nitrobenzene-d5	88	23-120	
2-Fluorobiphenyl	84	30-120	
2,4,6-Tribromophenol	79	10-136	
4-Terphenyl-d14	87	18-120	

L2140168

08/06/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

L2140168-01

BROOKLYN, NY

SB-1 (0-2)

SAMPLE RESULTS

Date Collected: 07/26/21 09:25

Lab Number:

Report Date:

Date Received: 07/27/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 07/29/21 22:45

Analyst: HT 87% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 07/29/21 10:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.565	0.026	1
Perfluoropentanoic Acid (PFPeA)	0.077	J	ng/g	0.565	0.052	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.282	0.044	1
Perfluorohexanoic Acid (PFHxA)	0.060	J	ng/g	0.565	0.059	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.282	0.051	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.282	0.068	1
Perfluorooctanoic Acid (PFOA)	0.097	J	ng/g	0.282	0.047	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.565	0.203	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.565	0.154	1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.282	0.085	1
Perfluorooctanesulfonic Acid (PFOS)	5.14		ng/g	0.282	0.147	1
Perfluorodecanoic Acid (PFDA)	0.109	J	ng/g	0.282	0.076	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.565	0.324	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.565	0.228	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.565	0.053	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.565	0.173	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.565	0.095	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.565	0.079	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.565	0.231	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.565	0.061	1
PFOA/PFOS, Total	5.24	J	ng/g	0.282	0.047	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-01 Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	102	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	99	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	116	74-139
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	110	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	103	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	115	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	115	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	136	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	118	61-155
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	71	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	106	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	113	24-159

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-01 Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/29/21 10:57

Analyst: MP Percent Solids: 87%

07/30/21 10:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	d Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.565	0.111	1
Surrogate (Extracted Internal Standard	i)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8F0	DSA)		75			10-117

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 11:04

Analyst: CMM Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	stborough Lab						
Acenaphthene	60	J	ug/kg	150	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	1400		ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	25.	1	
Naphthalene	40	J	ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	65.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Diethyl phthalate	ND		ua/ka	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1
Benzo(a)anthracene	680		ug/kg	110	21.	1
	630		ug/kg	150	46.	
Benzo(a)pyrene			ug/kg			1
Benzo(b)fluoranthene	860		ug/kg	110	32.	1
Benzo(k)fluoranthene	200		ug/kg	110	30.	1
Chrysene	690		ug/kg	110	20.	<u> </u>
Acenaphthylene	72	J	ug/kg	150	29.	1
Anthracene	170		ug/kg	110	37.	1
Benzo(ghi)perylene	400		ug/kg	150	22.	1
Fluorene	56	J	ug/kg	190	18.	1
Phenanthrene	830		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	100	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	430		ug/kg	150	26.	1
Pyrene	1200		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	79.	1
Dibenzofuran	31	J	ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	410	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	910	89.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	91.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	620	190	1
Benzyl Alcohol	ND		ug/kg	190	58.	1
Carbazole	73	J	ug/kg	190	18.	1
1,4-Dioxane	ND		ug/kg	28	8.8	1

% Recovery	Acceptance Qualifier Criteria
70	25-120
76	10-120
88	23-120
79	30-120
78	10-136
71	18-120
	70 76 88 79 78

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 09:36

Analyst: SZ Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	170	22.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1	
2-Chloronaphthalene	ND		ug/kg	210	21.	1	
1,2-Dichlorobenzene	ND		ug/kg	210	37.	1	
1,3-Dichlorobenzene	ND		ug/kg	210	36.	1	
1,4-Dichlorobenzene	ND		ug/kg	210	36.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	210	55.	1	
2,4-Dinitrotoluene	ND		ug/kg	210	42.	1	
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1	
Fluoranthene	ND		ug/kg	120	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	36.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1	
Hexachlorobutadiene	ND		ug/kg	210	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	600	190	1	
Hexachloroethane	ND		ug/kg	170	34.	1	
Isophorone	ND		ug/kg	190	27.	1	
Naphthalene	ND		ug/kg	210	25.	1	
Nitrobenzene	ND		ug/kg	190	31.	1	
NDPA/DPA	ND		ug/kg	170	24.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	72.	1	
Butyl benzyl phthalate	ND		ug/kg	210	52.	1	
Di-n-butylphthalate	ND		ug/kg	210	40.	1	
Di-n-octylphthalate	ND		ug/kg	210	71.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Diestry phinaisie ND ugkg 210 19. 1 1 1 1 1 1 1 1 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Dimensiry phribalates ND ug/kg 210 48. 1 Benzo(al)priene ND ug/kg 120 23. 1 Benzo(al)priene ND ug/kg 120 23. 1 Benzo(k)fluoranthene ND ug/kg 120 33. 1 Benzo(k)fluoranthene ND ug/kg 120 32. 1 Chrysene ND ug/kg 120 32. 1 Anthracene ND ug/kg 120 22. 1 Anthracene ND ug/kg 120 24. 1 Benzo(ghiperylene ND ug/kg 120 24. 1 Fluorene ND ug/kg 120 25. 1 Pleneanthracene ND ug/kg 120 25. 1 Diberzo(a, h)anthracene ND ug/kg 120 25. 1 Diberzo(a, h)anthracene ND ug/kg 120 25. 1 <t< td=""><td colspan="9">Semivolatile Organics by GC/MS - Westborough Lab</td></t<>	Semivolatile Organics by GC/MS - Westborough Lab								
Dimethyl phthalate ND ugkg 210 44 1 Banczo(alphartracene) ND ugkg 120 23 1 Benzzo(alphartracene) ND ugkg 120 23 1 Benzzo(b)fluoranthene ND ugkg 120 35 1 Benzzo(b)fluoranthene ND ugkg 120 32 1 Chrysene ND ugkg 120 32 1 Anthracene ND ugkg 170 32 1 Anthracene ND ugkg 170 32 1 Fluorene ND ugkg 170 24 1 Plorene ND ugkg 120 24 1 Plorene ND ugkg 120 24 1 Diberzo(al-hjanthracene ND ugkg 170 24 1 Plorene ND ugkg 170 24 1 Plemathtracene ND	Diethyl phthalate	ND		ug/kg	210	19.	1		
Benzo(a)synthracene ND ugkg 120 23. 1 Benzo(a)gryrene ND ugkg 170 51. 1 Benzo(b)fluoranthene ND ugkg 120 35. 1 Benzo(b)fluoranthene ND ugkg 120 33. 1 Chrysene ND ugkg 170 32. 1 Acenaphthylane ND ugkg 170 32. 1 Anthacene ND ugkg 170 24. 1 Benzo(ghi)perylene ND ugkg 210 24. 1 Benzo(ghi)perylene ND ugkg 120 24. 1 Fluorene ND ugkg 120 22. 1 Plenanthragene ND ugkg 120 22. 1 Debenzo(a) Apinthracene ND ugkg 120 24. 1 Honauthene ND ugkg 120 24. 1 Honauth	Dimethyl phthalate	ND			210	44.	1		
Benzo(a)pryene NB ug/kg 170 51 1 Benzo(f)Iutoranthene ND ug/kg 120 35 1 Benzo(f)Iutoranthene ND ug/kg 120 32 1 Chrysene ND ug/kg 120 22 1 Aconaphthylore ND ug/kg 120 22 1 Achtracene ND ug/kg 120 24 1 Benzo(ghi)perylene ND ug/kg 120 24 1 Benzo(ghi)perylene ND ug/kg 120 25 1 Phonanthrene ND ug/kg 120 25 1 Phonanthrene ND ug/kg 120 24 1 Diberzo(gh.)perthreaene ND ug/kg 120 24 1 Phonanthrene ND ug/kg 120 24 1 Diberzo(gh.)perthreaene ND ug/kg 120 24 1 <td< td=""><td>Benzo(a)anthracene</td><td>ND</td><td></td><td></td><td>120</td><td>23.</td><td>1</td></td<>	Benzo(a)anthracene	ND			120	23.	1		
Benzo(b)Huoranthene NB ug/kg 120 35. 1 Banzo(b)Huoranthene ND ug/kg 120 33. 1 Chysene ND ug/kg 120 22. 1 Anthracene ND ug/kg 170 32. 1 Anthracene ND ug/kg 170 24. 1 Benzo(ghi)perylene ND ug/kg 170 24. 1 Fluorene ND ug/kg 120 25. 1 Phenanthracene ND ug/kg 120 25. 1 Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrane ND ug/kg 120 24. 1 Pyrene ND ug/kg 120 21. 1 4-Chororantine ND ug/kg 210 38. 1 4-Nitroantiine ND ug/kg 210 36. 1 4-Nitro	Benzo(a)pyrene	ND			170	51.	1		
Benzok/filoranthene ND ug/kg 120 33 1 Chrysene ND ug/kg 120 22 1 Acenaphthylene ND ug/kg 170 32 1 Anthracene ND ug/kg 120 41 1 Benzo(ghijperylene ND ug/kg 170 24 1 Fluorene ND ug/kg 120 25 1 Phenanthrene ND ug/kg 170 25 1 Indenot(1,2,3-cdipyrene ND ug/kg 170 29 1 Indenot(1,2,3-cdipyrene ND ug/kg 170 29 1 Indenot(1,2,3-cdipyrene ND ug/kg 170 29 1 Pyrene ND ug/kg 120 21 1 Hoheraciline ND ug/kg 210 38 1 2-Hittograline ND ug/kg 210 3 1 4-Hittogalinie	Benzo(b)fluoranthene	ND			120	35.	1		
Chrysene ND ug/kg 120 22. 1 Acenaphtylene ND ug/kg 170 32. 1 Anthracene ND ug/kg 170 41. 1 Benzo(ph)perylene ND ug/kg 170 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(gh.)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 24. 1 Pyrene ND ug/kg 120 21. 1 Pyrene ND ug/kg 480 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 4-Chloroaniline ND ug/kg 210 39. 1 2-Nitroaniline ND ug/kg 210 25. 1 4-Nitroaniline	Benzo(k)fluoranthene	ND			120	33.	1		
Anthriacene ND ug/kg 120 41. 1 Benzo(ghi)perylene ND ug/kg 170 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(sh, hathracene ND ug/kg 120 24. 1 Indeno(1,2,3-od)pyrene ND ug/kg 170 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 210 38. 1 4-Chloroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 4-Nitroanili	Chrysene	ND		ug/kg	120	22.	1		
Benzo(ghi)perylene ND ug/kg 170 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(s, h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 21. 1 Pyrene ND ug/kg 480 48. 1 Biphenyl ND ug/kg 210 38. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 32. 1 4-Nitroa	Acenaphthylene	ND		ug/kg	170	32.	1		
Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(a, h)anthracene ND ug/kg 120 24. 1 Indeno(1, 2, 3-cd)pyrene ND ug/kg 170 29. 1 Pyrene ND ug/kg 120 24. 1 Biphenyl ND ug/kg 120 21. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroani	Anthracene	ND		ug/kg	120	41.	1		
Phenanthrene ND ug/kg 120 25. 1 Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 170 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 480 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 38. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 4-Nitroaniline ND ug/kg 210 25. 1 1,2-4-S	Benzo(ghi)perylene	ND		ug/kg	170	24.	1		
Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 170 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 210 38. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 39. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 4-Nitroaniline ND ug/kg 210 20. 1 2-Nit	Fluorene	ND		ug/kg	210	20.	1		
Indeno(1,2,3-cd)pyrene ND	Phenanthrene	ND		ug/kg	120	25.	1		
Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 480 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 2-Methylphaphane ND ug/kg 210 20. 1 2-Abichiorophenol ND ug/kg 210 29. 1 2-A-Dinitropheno	Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1		
Biphenyl	Indeno(1,2,3-cd)pyrene	ND		ug/kg	170	29.	1		
4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 26. 1 2,4-G-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2,4-Dinitrophenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1	Pyrene	ND		ug/kg	120	21.	1		
2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzoturan ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 35. 1 2,4-Dinitrophenol ND ug/kg 210 36. 1 2-Nitrophenol ND ug/kg 210 37. 1 4-Nitrophenol ND ug/kg 450 78. 1 2-Nitrophenol ND ug/kg 450 78. 1 3-Nitrophenol ND ug/kg 450 78. 1 3-Nitrophen	Biphenyl	ND		ug/kg	480	48.	1		
3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 35. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 290 85. 1 4-Nitrophenol ND ug/kg 100 97. 1	4-Chloroaniline	ND		ug/kg	210	38.	1		
4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 40. 1 2,4,6-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 35. 1 2-Chlorophenol ND ug/kg 190 34. 1 2,4-Dinethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 250 85. 1 4-Nitrophenol ND ug/kg 290 85. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitro-o-cresol ND ug/kg 540 100 1 <td>2-Nitroaniline</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>210</td> <td>40.</td> <td>1</td>	2-Nitroaniline	ND		ug/kg	210	40.	1		
Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 40. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 540 100 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1	3-Nitroaniline	ND		ug/kg	210	39.	1		
2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 40. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 250 78. 1 4-Nitrophenol ND ug/kg 250 78. 1 4-Pinitrophenol ND ug/kg 250 75. 1 4-G-Dinitro-o-cresol ND ug/kg 250 75. 1	4-Nitroaniline	ND		ug/kg	210	86.	1		
1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 40. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 4-Nitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 4,6-Dinitro-o-cresol ND ug/kg 170 46. 1 Pentachlorophenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	Dibenzofuran	ND		ug/kg	210	20.	1		
Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 40. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Methylnaphthalene	ND		ug/kg	250	25.	1		
2,4,6-Trichlorophenol ND ug/kg 120 40. 1 p-Chloror-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1		
p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	Acetophenone	ND		ug/kg	210	26.	1		
2-Chlorophenol ND ug/kg 210 25. 1 2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4,6-Trichlorophenol	ND		ug/kg	120	40.	1		
2,4-Dichlorophenol ND ug/kg 190 34. 1 2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	p-Chloro-m-cresol	ND		ug/kg	210	31.	1		
2,4-Dimethylphenol ND ug/kg 210 69. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Chlorophenol	ND		ug/kg	210	25.	1		
2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dichlorophenol	ND		ug/kg	190	34.	1		
4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dimethylphenol	ND		ug/kg	210	69.	1		
2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Nitrophenol	ND		ug/kg	450	78.	1		
4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	4-Nitrophenol	ND		ug/kg	290	85.	1		
Pentachlorophenol ND ug/kg 170 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dinitrophenol	ND		ug/kg	1000	97.	1		
Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	4,6-Dinitro-o-cresol	ND		ug/kg	540	100	1		
2-Methylphenol ND ug/kg 210 32. 1	Pentachlorophenol	ND		ug/kg	170	46.	1		
\$ \$	Phenol	ND		ug/kg	210	31.	1		
3-Methylphenol/4-Methylphenol ND ug/kg 300 33. 1	2-Methylphenol	ND		ug/kg	210	32.	1		
	3-Methylphenol/4-Methylphenol	ND		ug/kg	300	33.	1		

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	210	40.	1
Benzoic Acid	ND		ug/kg	680	210	1
Benzyl Alcohol	ND		ug/kg	210	64.	1
Carbazole	ND		ug/kg	210	20.	1
1,4-Dioxane	ND		ug/kg	31	9.6	1

% Recovery	Acceptance Qualifier Criteria
71	25-120
75	10-120
76	23-120
66	30-120
71	10-136
62	18-120
	71 75 76 66 71

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:40

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40
Analytical Date: 07/30/21 11:26

Analyst: CMM Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Westborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1	
2-Chloronaphthalene	ND		ug/kg	210	20.	1	
1,2-Dichlorobenzene	ND		ug/kg	210	37.	1	
1,3-Dichlorobenzene	ND		ug/kg	210	36.	1	
1,4-Dichlorobenzene	ND		ug/kg	210	36.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	210	55.	1	
2,4-Dinitrotoluene	ND		ug/kg	210	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1	
Fluoranthene	ND		ug/kg	120	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1	
Hexachlorobutadiene	ND		ug/kg	210	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	590	190	1	
Hexachloroethane	ND		ug/kg	160	34.	1	
Isophorone	ND		ug/kg	190	27.	1	
Naphthalene	ND		ug/kg	210	25.	1	
Nitrobenzene	ND		ug/kg	190	31.	1	
NDPA/DPA	ND		ug/kg	160	24.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1	
Bis(2-ethylhexyl)phthalate	140	J	ug/kg	210	72.	1	
Butyl benzyl phthalate	ND		ug/kg	210	52.	1	
Di-n-butylphthalate	ND		ug/kg	210	39.	1	
Di-n-octylphthalate	ND		ug/kg	210	70.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Delity philaisite ND ugkg 210 19.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Dimethyl phthalata	Semivolatile Organics by GC/MS - Westborough Lab								
Dimethyl phthalate ND ug/kg 210 44 1 Banzo(a)prene ND ug/kg 120 23 1 Benzo(b)fluoranthene ND ug/kg 120 35 1 Benzo(b)fluoranthene ND ug/kg 120 35 1 Chrysene ND ug/kg 120 32 1 Chrysene ND ug/kg 120 32 1 Anthracene ND ug/kg 120 32 1 Anthracene ND ug/kg 120 32 1 Benzo(ghliperylene ND ug/kg 120 24 1 Fluorene ND ug/kg 120 24 1 Pleorace (a.lyanthracene ND ug/kg 120 24 1 Diberazo (a.lyanthracene ND ug/kg 120 24 1 Diberazo (a.lyanthracene ND ug/kg 120 21 1 <t< td=""><td>Diethyl phthalate</td><td>ND</td><td></td><td>ug/kg</td><td>210</td><td>19.</td><td>1</td></t<>	Diethyl phthalate	ND		ug/kg	210	19.	1		
Benzo(a)synthracene ND ugkg 120 3. 1 Benzo(a)fyrene ND ugkg 160 50 1 Benzo(b)furoranthene ND ugkg 120 35. 1 Benzo(b)furoranthene ND ugkg 120 33. 1 Chrysene ND ugkg 120 22. 1 Acenaphthylane ND ugkg 120 22. 1 Anthacene ND ugkg 120 24. 1 Berrac(b)fliperylane ND ugkg 120 24. 1 Brown ND ugkg 120 25. 1 Benzo(a)fliperylane ND ugkg 120 24. 1 Fluorene ND ugkg 120 25. 1 Pleanthrage ND ugkg 120 24. 1 Pleanthrage ND ugkg 120 24. 1 Honarthrage <t< td=""><td></td><td>ND</td><td></td><td></td><td>210</td><td>44.</td><td>1</td></t<>		ND			210	44.	1		
Benzo(a)pryrene NB ug/kg 160 50. 1 Benzo(f)Iutoranthene ND ug/kg 120 35. 1 Benzo(f)Iutoranthene ND ug/kg 120 35. 1 Chrysene ND ug/kg 120 22. 1 Acanaphthylene ND ug/kg 160 32. 1 Achthracene ND ug/kg 160 24. 1 Benzos(f)iperylene ND ug/kg 120 20. 1 Flourene ND ug/kg 120 25. 1 Flourene ND ug/kg 120 24. 1 Phenanthrane ND ug/kg 120 24. 1 Diberzo(sh)perthracene ND ug/kg 120 24. 1 Diberzo(sh)perthracene ND ug/kg 120 24. 1 Pyrene ND ug/kg 120 24. 1 Shebra	Benzo(a)anthracene	ND			120	23.	1		
Benzo(b)Huoranthene NB ug/kg 120 35. 1 Banzo(b)Huoranthene ND ug/kg 120 33. 1 Chysene ND ug/kg 120 22. 1 Anthracene ND ug/kg 160 32. 1 Anthracene ND ug/kg 120 40. 1 Benzo(gh)perylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 120 20. 1 Phenanthracene ND ug/kg 120 25. 1 Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrane ND ug/kg 120 24. 1 Pyrene ND ug/kg 120 21. 1 4-Chororaline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 38. 1 4-Nitroan	Benzo(a)pyrene	ND			160	50.	1		
Benzok/filoranthene ND ug/kg 120 33 1 Chrysene ND ug/kg 120 22 1 Acenaphthylene ND ug/kg 120 32 1 Anthracene ND ug/kg 120 40 1 Benzo(ghijperylene ND ug/kg 120 24 1 Fluorene ND ug/kg 120 25 1 Phenanthrene ND ug/kg 160 25 1 Dibenzo(sh)anthracene ND ug/kg 160 29 1 Indeno(1,2,3-cdipyrene ND ug/kg 160 29 1 Pyrene ND ug/kg 160 29 1 Holeno(1,2,3-cdipyrene ND ug/kg 160 29 1 Pyrene ND ug/kg 160 21 1 Holeno(1,2,3-cdipyrene ND ug/kg 210 8 1 Holeno(2,3-decen	Benzo(b)fluoranthene	ND			120	35.	1		
Chrysene ND ug/kg 120 22. 1 Acenaphtylene ND ug/kg 160 32. 1 Anthracene ND ug/kg 120 40. 1 Benzo(phi)perylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 210 26. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(gh.)anthracene ND ug/kg 120 24. 1 Dibenzo(gh.)anthracene ND ug/kg 120 29. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 210 38. 1 4-Chrocaniline ND ug/kg 210 39. 1 4-Nitrosaniline ND ug/kg 210 25. 1 Dibenzofuran	Benzo(k)fluoranthene	ND			120	33.	1		
Anthracene ND ug/kg 120 40. 1 Benzo(ghi)perylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 210 38. 1 4-Chloroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 20. 1 4-Nitroanilin	Chrysene	ND		ug/kg	120	22.	1		
Benzo(ghi)perylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(s, h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 21. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 470 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroa	Acenaphthylene	ND		ug/kg	160	32.	1		
Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Dibenzo(a, h)anthracene ND ug/kg 120 24. 1 Indeno(1, 2, 3-cd)pyrene ND ug/kg 160 29. 1 Pyrene ND ug/kg 120 24. 1 Biphenyl ND ug/kg 120 24. 1 4-Chloroaniline ND ug/kg 210 48. 1 4-Chloroaniline ND ug/kg 210 49. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 26. 1 4-Nitroaniline ND ug/kg 210 26. 1 4-Nitroaniline ND ug/kg 210 26. 1 4-Nitroan	Anthracene	ND		ug/kg	120	40.	1		
Phenanthrene ND ug/kg 120 25. 1 Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 470 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 38. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 26. 1 1-L24,5-Tickloraphanel ND ug/kg 210 22. 1 <td< td=""><td>Benzo(ghi)perylene</td><td>ND</td><td></td><td>ug/kg</td><td>160</td><td>24.</td><td>1</td></td<>	Benzo(ghi)perylene	ND		ug/kg	160	24.	1		
Dibenzo(a,h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 29. 1 Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 470 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 38. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 26. 1 2-Nitroaniline ND ug/kg 210 20. 1 2-Nit	Fluorene	ND		ug/kg	210	20.	1		
Indeno(1,2,3-cd)pyrene ND	Phenanthrene	ND		ug/kg	120	25.	1		
Pyrene ND ug/kg 120 21. 1 Biphenyl ND ug/kg 470 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 2-Methylphaphalene ND ug/kg 210 20. 1 2,4-5-Teitrachlorophenol ND ug/kg 210 26. 1 2,4-Di-	Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1		
Biphenyl	Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	29.	1		
4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 39. 1 2,4-G-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 33. 1 2,4-Dinitrophenol ND ug/kg 190 33. 1 2,4-Dinitrophenol ND ug/kg 450 78. 1	Pyrene	ND		ug/kg	120	21.	1		
2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzoturan ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 39. 1 2-Chlorophenol ND ug/kg 210 39. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 33. 1 2-Chlorophenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 250 35. 1 2-Nitrophenol ND ug/kg 450 78. 1 2-Nitrophenol ND ug/kg 450 78. 1 2-Nitrophenol ND ug/kg 540 78. 1 2-Nitrophenol ND ug/kg 540 100 1 2-Nitrophenol ND ug/kg 160 46. 1 2-Nentalhorophenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 31. 1	Biphenyl	ND		ug/kg	470	48.	1		
3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 210 39. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dinethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 290 85. 1 4-Nitrophenol ND ug/kg 290 85. 1	4-Chloroaniline	ND		ug/kg	210	38.	1		
4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 250 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 <td>2-Nitroaniline</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>210</td> <td>40.</td> <td>1</td>	2-Nitroaniline	ND		ug/kg	210	40.	1		
Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 540 100 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1	3-Nitroaniline	ND		ug/kg	210	39.	1		
2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 250 78. 1 4-Nitrophenol ND ug/kg 250 75. 1 4-Dinitrophenol ND ug/kg 250 75. 1 2,4-Dinitrophenol ND ug/kg 250 75. 1 4-Pinitrophenol ND ug/kg 250 75. 1 2,4-Dinitrophenol ND ug/kg 250 75. 1 4-Robintro-o-cresol ND ug/kg 250 75. 1	4-Nitroaniline	ND		ug/kg	210	86.	1		
1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	Dibenzofuran	ND		ug/kg	210	20.	1		
Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Methylnaphthalene	ND		ug/kg	250	25.	1		
2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloror-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1		
p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	Acetophenone	ND		ug/kg	210	26.	1		
2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4,6-Trichlorophenol	ND		ug/kg	120	39.	1		
2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	p-Chloro-m-cresol	ND		ug/kg	210	31.	1		
2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Chlorophenol	ND		ug/kg	210	24.	1		
2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dichlorophenol	ND		ug/kg	190	33.	1		
4-Nitrophenol ND ug/kg 290 85. 1 2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dimethylphenol	ND		ug/kg	210	68.	1		
2,4-Dinitrophenol ND ug/kg 1000 97. 1 4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2-Nitrophenol	ND		ug/kg	450	78.	1		
4,6-Dinitro-o-cresol ND ug/kg 540 100 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	4-Nitrophenol	ND		ug/kg	290	85.	1		
Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	2,4-Dinitrophenol	ND		ug/kg	1000	97.	1		
Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1	4,6-Dinitro-o-cresol	ND		ug/kg	540	100	1		
2-Methylphenol ND ug/kg 210 32. 1	Pentachlorophenol	ND		ug/kg	160	46.	1		
\$ \$	Phenol	ND		ug/kg	210	31.	1		
3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1	2-Methylphenol	ND		ug/kg	210	32.	1		
	3-Methylphenol/4-Methylphenol	ND		ug/kg	300	32.	1		

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	210	40.	1
Benzoic Acid	ND		ug/kg	670	210	1
Benzyl Alcohol	ND		ug/kg	210	63.	1
Carbazole	ND		ug/kg	210	20.	1
1,4-Dioxane	ND		ug/kg	31	9.5	1

% Recovery	Acceptance Qualifier Criteria
80	25-120
86	10-120
92	23-120
81	30-120
92	10-136
73	18-120
	80 86 92 81 92

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-05 Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

85%

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 11:48
Analyst: CMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	160	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	120	22.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	35.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	34.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	52.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	39.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	ND		ug/kg	120	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	21.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	30.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	560	180	1	
Hexachloroethane	ND		ug/kg	160	31.	1	
Isophorone	ND		ug/kg	180	25.	1	
Naphthalene	ND		ug/kg	190	24.	1	
Nitrobenzene	ND		ug/kg	180	29.	1	
NDPA/DPA	ND		ug/kg	160	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	67.	1	
Butyl benzyl phthalate	ND		ug/kg	190	49.	1	
Di-n-butylphthalate	ND		ug/kg	190	37.	1	
Di-n-octylphthalate	ND		ug/kg	190	66.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-05 Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Diethyl phthalate	ND		ua/ka	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	41.	1
Benzo(a)anthracene	ND ND		ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	47.	1
	ND		ug/kg	120	33.	1
Benzo(b)fluoranthene	ND ND		ug/kg			
Benzo(k)fluoranthene			ug/kg	120	31.	1
Chrysene	ND		ug/kg	120	20.	1
Acenaphthylene	ND		ug/kg	160	30.	1
Anthracene	ND		ug/kg	120	38.	<u> </u>
Benzo(ghi)perylene	ND		ug/kg	160	23.	1
Fluorene	ND		ug/kg	190	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	27.	1
Pyrene	ND		ug/kg	120	19.	1
Biphenyl	ND		ug/kg	440	45.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	38.	1
3-Nitroaniline	ND		ug/kg	190	37.	1
4-Nitroaniline	ND		ug/kg	190	80.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	37.	1
p-Chloro-m-cresol	ND		ug/kg	190	29.	1
2-Chlorophenol	ND		ug/kg	190	23.	1
2,4-Dichlorophenol	ND		ug/kg	180	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	64.	1
2-Nitrophenol	ND		ug/kg	420	73.	1
4-Nitrophenol	ND		ug/kg	270	79.	1
2,4-Dinitrophenol	ND		ug/kg	930	91.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	93.	1
Pentachlorophenol	ND		ug/kg	160	43.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	37.	1
Benzoic Acid	ND		ug/kg	630	200	1
Benzyl Alcohol	ND		ug/kg	190	60.	1
Carbazole	ND		ug/kg	190	19.	1
1,4-Dioxane	ND		ug/kg	29	9.0	1

% Recovery	Acceptance Qualifier Criteria
63	25-120
69	10-120
72	23-120
64	30-120
70	10-136
60	18-120
	63 69 72 64 70

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

CMM 87%

Analyst:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 12:09

Qualifier Units RL MDL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene 73 J 150 19. 1 ug/kg 1,2,4-Trichlorobenzene ND 190 21. ug/kg Hexachlorobenzene ND ug/kg 110 21. 1 Bis(2-chloroethyl)ether ND ug/kg 170 25. 1 2-Chloronaphthalene ND ug/kg 190 19. 1 1,2-Dichlorobenzene 360 ug/kg 190 34. 1 47 J 190 32. 1,3-Dichlorobenzene ug/kg 1 J 1,4-Dichlorobenzene 56 190 33. 1 ug/kg ND 3,3'-Dichlorobenzidine ug/kg 190 50. 1 2,4-Dinitrotoluene ND 190 38. 1 ug/kg 2,6-Dinitrotoluene ND 190 32. 1 ug/kg Fluoranthene 4500 22. ug/kg 110 1 ND 20. 4-Chlorophenyl phenyl ether 190 1 ug/kg 4-Bromophenyl phenyl ether ND 190 29. 1 ug/kg Bis(2-chloroisopropyl)ether ND 220 32. 1 ug/kg ND 200 19. 1 Bis(2-chloroethoxy)methane ug/kg ND Hexachlorobutadiene 190 27. 1 ug/kg ND Hexachlorocyclopentadiene 540 170 1 ug/kg Hexachloroethane ND 150 30. 1 ug/kg ND 24. 1 Isophorone ug/kg 170 140 J 190 23. Naphthalene 1 ug/kg Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND 150 21. 1 ug/kg n-Nitrosodi-n-propylamine ND 190 29. 1 ug/kg Bis(2-ethylhexyl)phthalate 360 190 65. 1 ug/kg ND 47. 1 Butyl benzyl phthalate ug/kg 190 ND Di-n-butylphthalate 190 36. 1 ug/kg Di-n-octylphthalate ND 190 64. 1 ug/kg

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	190	17.	1
Dimethyl phthalate	ND		ug/kg	190	39.	1
Benzo(a)anthracene	4500		ug/kg	110	21.	1
Benzo(a)pyrene	5300		ug/kg	150	46.	1
Benzo(b)fluoranthene	6100		ug/kg	110	32.	1
Benzo(k)fluoranthene	1900		ug/kg	110	30.	1
Chrysene	3800		ug/kg	110	20.	1
Acenaphthylene	480		ug/kg	150	29.	1
Anthracene	540		ug/kg	110	37.	1
Benzo(ghi)perylene	4100		ug/kg	150	22.	1
Fluorene	61	J	ug/kg	190	18.	1
Phenanthrene	1400		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	960		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	4100		ug/kg	150	26.	1
Pyrene	5600		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	34.	1
2-Nitroaniline	ND		ug/kg	190	36.	1
3-Nitroaniline	ND		ug/kg	190	35.	1
4-Nitroaniline	ND		ug/kg	190	78.	1
Dibenzofuran	54	J	ug/kg	190	18.	1
2-Methylnaphthalene	51	J	ug/kg	220	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	62.	1
2-Nitrophenol	ND		ug/kg	400	71.	1
4-Nitrophenol	ND		ug/kg	260	77.	1
2,4-Dinitrophenol	ND		ug/kg	900	88.	1
4,6-Dinitro-o-cresol	ND		ug/kg	490	90.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	190	28.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	610	190	1
Benzyl Alcohol	ND		ug/kg	190	57.	1
Carbazole	100	J	ug/kg	190	18.	1
1,4-Dioxane	ND		ug/kg	28	8.6	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	25-120	
Phenol-d6	79	10-120	
Nitrobenzene-d5	89	23-120	
2-Fluorobiphenyl	85	30-120	
2,4,6-Tribromophenol	24	10-136	
4-Terphenyl-d14	90	18-120	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 12:31

Analyst: CMM
Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	stborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	200	23.	1	
Hexachlorobenzene	ND		ug/kg	120	22.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1	
2-Chloronaphthalene	ND		ug/kg	200	20.	1	
1,2-Dichlorobenzene	62	J	ug/kg	200	36.	1	
1,3-Dichlorobenzene	ND		ug/kg	200	34.	1	
1,4-Dichlorobenzene	ND		ug/kg	200	35.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1	
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1	
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1	
Fluoranthene	23	J	ug/kg	120	23.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	20.	1	
Hexachlorobutadiene	ND		ug/kg	200	29.	1	
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1	
Hexachloroethane	ND		ug/kg	160	32.	1	
Isophorone	ND		ug/kg	180	26.	1	
Naphthalene	ND		ug/kg	200	24.	1	
Nitrobenzene	ND		ug/kg	180	30.	1	
NDPA/DPA	ND		ug/kg	160	23.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1	
Butyl benzyl phthalate	ND		ug/kg	200	50.	1	
Di-n-butylphthalate	ND		ug/kg	200	38.	1	
Di-n-octylphthalate	ND		ug/kg	200	68.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	22	J	ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	49.	1
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	39.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	27	J	ug/kg	120	20.	1
Biphenyl	ND		ug/kg	460	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	38.	1
4-Nitroaniline	ND		ug/kg	200	83.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	24.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	82.	1
2,4-Dinitrophenol	ND		ug/kg	960	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290	31.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Benzoic Acid	ND		ug/kg	650	200	1
Benzyl Alcohol	ND		ug/kg	200	61.	1
Carbazole	ND		ug/kg	200	19.	1
1,4-Dioxane	ND		ua/ka	30	9.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	78	10-120	
Nitrobenzene-d5	84	23-120	
2-Fluorobiphenyl	79	30-120	
2,4,6-Tribromophenol	88	10-136	
4-Terphenyl-d14	79	18-120	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 12:53

Analyst: CMM
Percent Solids: 83%

1,2,4-Trichlorobenzene ND ug/kg 200 23. 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,24-Trichlorobenzene ND	Semivolatile Organics by GC/MS - We	estborough Lab					
1,24-Trichlorobenzene ND	Acenaphthene	ND		ug/kg	160	21.	1
Hexachlorobenzene ND	1,2,4-Trichlorobenzene	ND			200	23.	1
Bis	Hexachlorobenzene	ND			120	22.	1
1.2-Dichlorobenzene 78 J ug/kg 200 36. 1 1.3-Dichlorobenzene ND ug/kg 200 34. 1 1.4-Dichlorobenzene ND ug/kg 200 35. 1 3.3*-Dichlorobenzidine ND ug/kg 200 53. 1 2,4-Dinitrotoluene ND ug/kg 200 40. 1 2,6-Dinitrotoluene ND ug/kg 200 34. 1 Fluoranthene 36 J ug/kg 200 34. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 4-Bis(2-chlorosethoryl)methane ND ug/kg 240 34. 1 Bis(2-chlorosethoxy)methane ND ug/kg 220 20. 1 Hexachlorocyclopentadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene	Bis(2-chloroethyl)ether	ND			180	27.	1
1,3-Dichlorobenzene ND ug/kg 200 34. 1 1,4-Dichlorobenzene ND ug/kg 200 35. 1 3,3'-Dichlorobenzidine ND ug/kg 200 53. 1 2,4-Dinitrotoluene ND ug/kg 200 40. 1 2,6-Dinitrotoluene ND ug/kg 200 34. 1 Fluoranthene 36 J ug/kg 200 34. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 4-Bis(2-chlorosetyplether ND ug/kg 240 34. 1 Bis(2-chlorosethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND	2-Chloronaphthalene	ND		ug/kg	200	20.	1
1.4-Dichlorobenzene ND ug/kg 200 35. 1 3.3-Dichlorobenzidine ND ug/kg 200 53. 1 2,4-Dinitrotoluene ND ug/kg 200 40. 1 2,6-Dinitrotoluene ND ug/kg 200 34. 1 Fluoranthene 36 J ug/kg 200 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 4-Bis(2-chloroispropyl)ether ND ug/kg 200 30. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 34. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND	1,2-Dichlorobenzene	78	J	ug/kg	200	36.	1
ND	1,3-Dichlorobenzene	ND		ug/kg	200	34.	1
2,4-Dinitrotoluene ND ug/kg 200 40. 1 2,6-Dinitrotoluene ND ug/kg 200 34. 1 Fluoranthene 36 J ug/kg 120 23. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 4-Bromophenyl phenyl ether ND ug/kg 200 34. 1 Bis(2-chlorostopyl)gether ND ug/kg 200 29. 1 Hexachlorostopyllophether ND ug/kg 160 32. 1 Hexachlorostylaether	1,4-Dichlorobenzene	ND		ug/kg	200	35.	1
2,6-Dinitrotoluene ND ug/kg 200 34. 1 Fluoranthene 36 J ug/kg 120 23. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 8is(2-chlorospropyl)ether ND ug/kg 240 34. 1 Bis(2-chlorospropyl)ether ND ug/kg 240 34. 1 Bis(2-chlorosthoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorobutadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 180 26. 1 Naphthalene ND ug/kg 180 29. 1 Nitrobenzene ND ug/kg 180 29. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 NDPA/DPA ND ug/kg 160 23. 1 NDPA/DPA ND ug/kg 160 23. 1 NDPA/DPA ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 50. 1	3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
Fluoranthene 36 J ug/kg 120 23. 1 4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 34. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 180 26. 1 Naphthalene ND ug/kg 180 29. 1 ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 NPPA/DPA ND ug/kg 160 23. 1 Sis(2-chloroethane) ND ug/kg 200 31. 1 Sis(2-chloroethane) ND ug/kg 200 69. 1 Sis(2-chloroethane) ND ug/kg 200 69. 1 Sis(2-chloroethane) ND ug/kg 200 69. 1 Sis(2-chloroethane) ND ug/kg 200 50. 1	2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
4-Chlorophenyl phenyl ether ND ug/kg 200 21. 1 4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 34. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 Nitrobenzene ND ug/kg 180 29. 1 Nitrobodi-n-propylamine ND ug/kg 160 23. 1 Bis(2-chloroethane ND ug/kg 180 29. 1 ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 Nn-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
4-Bromophenyl phenyl ether ND ug/kg 200 30. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 34. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 ND Ug/kg 200 31. 1 ND Ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Butyl benzyl phthalate ND ug/kg 200 38. 1	Fluoranthene	36	J	ug/kg	120	23.	1
Bis(2-chloroisopropyl)ether ND ug/kg 240 34. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 180 32. 1 Isophorone ND ug/kg 180 32. 1 Isophorone ND ug/kg 200 24. 1 Naphthalene ND ug/kg 200 24. 1 NDAPA/DPA ND ug/kg 160 23. 1 ND-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 <td>4-Chlorophenyl phenyl ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>200</td> <td>21.</td> <td>1</td>	4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
Bis(2-chloroethoxy)methane ND ug/kg 220 20. 1 Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Isophorone ND ug/kg 200 24. 1 Naphthalene ND ug/kg 200 24. 1 NIcrobenzene ND ug/kg 180 29. 1 NDANDPA/DPA ND ug/kg 200 31. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 </td <td>4-Bromophenyl phenyl ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>200</td> <td>30.</td> <td>1</td>	4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Hexachlorobutadiene ND ug/kg 200 29. 1 Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachloroethane ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 NDPA/DPA ND ug/kg 200 31. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Hexachlorocyclopentadiene ND ug/kg 570 180 1 Hexachlorocyclopentadiene ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Bis(2-chloroethoxy)methane	ND		ug/kg	220	20.	1
Hexachloroethane ND ug/kg 160 32. 1 Isophorone ND ug/kg 180 26. 1 Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Hexachlorobutadiene	ND		ug/kg	200	29.	1
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Naphthalene ND ug/kg 200 24. 1 Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Hexachloroethane	ND		ug/kg	160	32.	1
Nitrobenzene ND ug/kg 180 29. 1 NDPA/DPA ND ug/kg 160 23. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Isophorone	ND		ug/kg	180	26.	1
NDPA/DPA ND ug/kg 160 23. 1 n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Naphthalene	ND		ug/kg	200	24.	1
n-Nitrosodi-n-propylamine ND ug/kg 200 31. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	Nitrobenzene	ND		ug/kg	180	29.	1
Bis(2-ethylhexyl)phthalate ND ug/kg 200 69. 1 Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	NDPA/DPA	ND		ug/kg	160	23.	1
Butyl benzyl phthalate ND ug/kg 200 50. 1 Di-n-butylphthalate ND ug/kg 200 38. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Di-n-butylphthalate ND ug/kg 200 38. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
71	Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-octylphthalate ND ug/kg 200 68. 1	Di-n-butylphthalate	ND		ug/kg	200	38.	1
	Di-n-octylphthalate	ND		ug/kg	200	68.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Diesty philatoise ND ugkg 200 18. 1 1 1 1 1 1 1 1 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dimethyl phthalatata	Semivolatile Organics by GC/MS - Wes	tborough Lab					
Dimentify phthalate ND ug/kg 20 42 1 Benzo(a)(apirthacene 23 J ug/kg 120 22 1 Benzo(b)(fluoranthene ND ug/kg 120 34 1 Benzo(b)(fluoranthene ND ug/kg 120 32 1 Chrysene ND ug/kg 120 32 1 Chrysene ND ug/kg 120 32 1 Anthracene ND ug/kg 120 31 1 Anthracene ND ug/kg 120 33 1 Pluoren ND ug/kg 120 23 1 Plorenzo(ghiperylene ND ug/kg 120 23 1 Plorenzo(ghiperylene	Diethyl phthalate	ND		ug/kg	200	18.	1
Benzo(a)synthracene 23 J ug/kg 120 2. 1 Benzo(a)flyrone ND ug/kg 120 34. 1 Benzo(b)fluoranthene ND ug/kg 120 34. 1 Benzo(b)fluoranthene ND ug/kg 120 32. 1 Chrysene ND ug/kg 120 21. 1 Acenaphthylene ND ug/kg 160 31. 1 Akthracene ND ug/kg 160 23. 1 Benzo(ghi)perylane ND ug/kg 20 19. 1 Fluoranthene ND ug/kg 120 23. 1 Plenanthracene ND ug/kg 120 24. 1 Diberzo(a) parthracene ND ug/kg 120 24. 1 Diberzo(a) parthracene ND ug/kg 120 24. 1 Pyrene 39 J ug/kg 120 26.	Dimethyl phthalate	ND			200	42.	1
Benzo(a)pryrene NB ug/kg 160 49. 1 Benzo(f)fuoranthene ND ug/kg 120 34. 1 Benzo(f)fuoranthene ND ug/kg 120 32. 1 Chrysene ND ug/kg 120 32. 1 Acanaphthylene ND ug/kg 120 39. 1 Anthracene ND ug/kg 160 23. 1 Benzo(ghi)perylene ND ug/kg 200 19. 1 Benzo(ghi)perylene ND ug/kg 200 19. 1 Flourene ND ug/kg 200 19. 1 Phrenanthracene ND ug/kg 100 28. 1 Diberaco(shi)perithracene ND ug/kg 100 28. 1 Diberaco(shi)perithracene ND ug/kg 120 36. 1 Pyrene 30 ug/kg 120 36. 1	Benzo(a)anthracene	23	J		120	22.	1
Benzo(b)fluoranthene NB ug/kg 120 34. 1 Banzo(b)fluoranthene ND ug/kg 120 32. 1 Chysene ND ug/kg 120 21. 1 Anthracene ND ug/kg 160 31. 1 Anthracene ND ug/kg 120 39. 1 Benzo(gh)perylene ND ug/kg 160 23. 1 Fluorene ND ug/kg 120 29. 1 Phenanthracene ND ug/kg 120 24. 1 Dibenzo(a,h)anthracene ND ug/kg 120 23. 1 Indeno(1,2,3-cd)pyrane ND ug/kg 120 23. 1 Pyrene 33 J ug/kg 120 20. 1 4-Chlorosaline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 20 38. 1	Benzo(a)pyrene	ND			160	49.	1
Benzok/filoranthene ND ug/kg 120 32. 1 Chrysene ND ug/kg 120 21. 1 Acenaphthylene ND ug/kg 120 31. 1 Anthracene ND ug/kg 120 39. 1 Benzo(ghijperylene ND ug/kg 120 23. 1 Fluorene ND ug/kg 20 19. 1 Phenanthrene 24 J ug/kg 120 23. 1 Dibenzo(sh)anthracene ND ug/kg 160 28. 1 Indeno(1,2,3-cdipyrene ND ug/kg 160 28. 1 Pyrene 39 J ug/kg 160 28. 1 Biphenyl ND ug/kg 20 38. 1 2-Nitroaniline ND ug/kg 20 38. 1 4-Nitroaniline ND ug/kg 20 28. 1	Benzo(b)fluoranthene	ND			120	34.	1
Chrysene ND ug/kg 120 21. 1 Acenaphtylene ND ug/kg 160 31. 1 Anthracene ND ug/kg 120 39. 1 Benzo(ph)perylene ND ug/kg 100 23. 1 Fluorene ND ug/kg 20 19. 1 Phenanthrene 24 J ug/kg 120 24. 1 Dibenzo(a)(a)anthracene ND ug/kg 120 23. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 23. 1 Pyrene 39 J ug/kg 120 20. 1 Pyrene 39 J ug/kg 20 36. 1 4-Chloroaniline ND ug/kg 20 38. 1 4-Nitroaniline ND ug/kg 20 38. 1 2-Nitroaniline ND ug/kg 20 21. 1	Benzo(k)fluoranthene	ND			120	32.	1
Anthracene ND ug/kg 120 39. 1 Benzo(ghi)penylane ND ug/kg 160 23. 1 Fluorene ND ug/kg 200 19. 1 Debanzo(ghi)penylane ND ug/kg 120 24. 1 Debanzo(ghi)penylane ND ug/kg 120 24. 1 Debanzo(ghi)penylane ND ug/kg 120 24. 1 Debanzo(ghi)penylane ND ug/kg 120 23. 1 Indano(12,3-cd)pyrane ND ug/kg 160 28. 1 Debanzo(ghi)penylane ND ug/kg 160 28. 1 Eliphenyl ND ug/kg 120 20. 1 Eliphenyl ND ug/kg 120 20. 1 Eliphenyl ND ug/kg 200 36. 1 Eliphenyl ND ug/kg 200 38. 1 Eliphenyl ND ug/kg 200 25. 1 Eliphenyl ND ug/kg 200 25. 1 Eliphenyl ND ug/kg 200 26. 1 Eliphenyl ND ug/kg 2	Chrysene	ND		ug/kg	120	21.	1
Benzo(ghi)perylene ND ug/kg 20 19 1 Fluorene ND ug/kg 200 19 1 Phenanthrene 24 J ug/kg 120 24 1 Dibenzo(a,h)anthracene ND ug/kg 120 23 1 Dibenzo(a,h)anthracene ND ug/kg 120 23 1 Pyrene 39 J ug/kg 120 20 1 Biphenyl ND ug/kg 200 36 1 4-Chloroaniline ND ug/kg 200 38 1 2-Nitroaniline ND ug/kg 200 38 1 4-Nitroaniline ND ug/kg 20 32 1 <tr< td=""><td>Acenaphthylene</td><td>ND</td><td></td><td>ug/kg</td><td>160</td><td>31.</td><td>1</td></tr<>	Acenaphthylene	ND		ug/kg	160	31.	1
Fluorene ND ug/kg 200 19. 1 Phenanthrene 24 J ug/kg 120 24. 1 Dibenzo(a,h)anthracene ND ug/kg 120 23. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 28. 1 Pyrene 39 J ug/kg 120 28. 1 Biphenyl ND ug/kg 120 20. 1 4-Chloroaniline ND ug/kg 200 36. 1 2-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 21. 1 </td <td>Anthracene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>120</td> <td>39.</td> <td>1</td>	Anthracene	ND		ug/kg	120	39.	1
Phenanthrene 24 J ug/kg 120 24. 1 Dibenzo(a,h)anthracene ND ug/kg 120 23. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 28. 1 Pyrene 39 J ug/kg 120 20. 1 Biphenyl ND ug/kg 200 36. 1 4-Chloroaniline ND ug/kg 200 38. 1 2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 38. 1 1-Least State St	Benzo(ghi)perylene	ND		ug/kg	160	23.	1
Dibenzo(a,h)anthracene ND ug/kg 120 23. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 28. 1 Pyrene 39 J ug/kg 120 20. 1 Biphenyl ND ug/kg 450 46. 1 4-Chloroaniline ND ug/kg 200 36. 1 2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 24. 1 1,2-4-Strachiorophenole ND ug/kg 200 25. 1 <td>Fluorene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>200</td> <td>19.</td> <td>1</td>	Fluorene	ND		ug/kg	200	19.	1
Indeno(1,2,3-ed)pyrene ND	Phenanthrene	24	J	ug/kg	120	24.	1
Pyrene 39 J ug/kg 120 20. 1 Biphenyl ND ug/kg 450 46. 1 4-Chloroaniline ND ug/kg 200 36. 1 2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 38. 1 2-Methylnaphthalene ND ug/kg 200 24. 1 1,2-4.5-Tetrachlorobenzene ND ug/kg 200 25. 1 2,4-6-Teinthorophenol ND ug/kg 200 30. 1	Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Biphenyl ND ug/kg 450 46. 1 4-Chloroaniline ND ug/kg 200 36. 1 2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 82. 1 1 1.2.4.6.1	Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
4-Chloroaniline ND ug/kg 200 36. 1 2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 82. 1 4-Nitroaniline ND ug/kg 200 19. 1 4-Nitroaniline ND ug/kg 200 24. 1 1 2-Methylnaphtalene ND ug/kg 200 21. 1 1,2,4,5-Tietlachorobenzene ND ug/kg 200 25. 1 2,4,6-Trichlorobenzene ND ug/kg 200 30. 1 2,4-G-Trichlorophenol ND ug/kg 200 30.	Pyrene	39	J	ug/kg	120	20.	1
2-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 82. 1 Dibenzoturan ND ug/kg 200 19. 1 2-Methylnaphthalene ND ug/kg 240 24. 1 1.2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2.4,6-Trichlorophenol ND ug/kg 200 25. 1 2.4,6-Trichlorophenol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 300 30. 1 2-Chlorophenol ND ug/kg 300 66. 1 2-Nitrophenol ND ug/kg 300 81. 1 2-Nitrophenol ND ug/kg 300 30. 1 2-Nentachlorophenol ND ug/kg 300 30. 1	Biphenyl	ND		ug/kg	450	46.	1
3-Nitroaniline ND ug/kg 200 38. 1 4-Nitroaniline ND ug/kg 200 82. 1 Dibenzofuran ND ug/kg 200 19. 1 2-Methylnaphthalene ND ug/kg 240 24. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 200 38. 1 2-Chlorophenol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dinethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 96. 1 4-Pinit	4-Chloroaniline	ND		ug/kg	200	36.	1
4-Nitroaniline ND ug/kg 200 82. 1 Dibenzofuran ND ug/kg 200 19. 1 2-Methylnaphthalene ND ug/kg 240 24. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dinethylphenol ND ug/kg 32. 1 2,4-Dimethylphenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 4-Pinitrophenol ND ug/kg 960 93. 1 <t< td=""><td>2-Nitroaniline</td><td>ND</td><td></td><td>ug/kg</td><td>200</td><td>38.</td><td>1</td></t<>	2-Nitroaniline	ND		ug/kg	200	38.	1
Dibenzofuran ND ug/kg 200 19. 1 2-Methylnaphthalene ND ug/kg 240 24. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1	3-Nitroaniline	ND		ug/kg	200	38.	1
2-Methylnaphthalene ND ug/kg 240 24. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4-Chlorophenol ND ug/kg 960 93. 1 4-G-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 30. 1	4-Nitroaniline	ND		ug/kg	200	82.	1
1,2,4,5-Tetrachlorobenzene ND ug/kg 200 21. 1 Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 4-Nitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 200 30. 1 Pentachlorophenol ND ug/kg 200 30. 1	Dibenzofuran	ND		ug/kg	200	19.	1
Acetophenone ND ug/kg 200 25. 1 2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Pentachlorophenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2-Methylnaphthalene	ND		ug/kg	240	24.	1
2,4,6-Trichlorophenol ND ug/kg 120 38. 1 p-Chloror-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 200 30. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
p-Chloro-m-cresol ND ug/kg 200 30. 1 2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	Acetophenone	ND		ug/kg	200	25.	1
2-Chlorophenol ND ug/kg 200 24. 1 2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
2,4-Dichlorophenol ND ug/kg 180 32. 1 2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2,4-Dimethylphenol ND ug/kg 200 66. 1 2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2-Chlorophenol	ND		ug/kg	200	24.	1
2-Nitrophenol ND ug/kg 430 75. 1 4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2,4-Dichlorophenol	ND		ug/kg	180	32.	1
4-Nitrophenol ND ug/kg 280 81. 1 2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2,4-Dinitrophenol ND ug/kg 960 93. 1 4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2-Nitrophenol	ND		ug/kg	430	75.	1
4,6-Dinitro-o-cresol ND ug/kg 520 96. 1 Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	4-Nitrophenol	ND		ug/kg	280	81.	1
Pentachlorophenol ND ug/kg 160 44. 1 Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	2,4-Dinitrophenol	ND		ug/kg	960	93.	1
Phenol ND ug/kg 200 30. 1 2-Methylphenol ND ug/kg 200 31. 1	4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
2-Methylphenol ND ug/kg 200 31. 1	Pentachlorophenol	ND		ug/kg	160	44.	1
\$ \$	Phenol	ND		ug/kg	200	30.	1
3-Methylphenol/4-Methylphenol ND ug/kg 290 31. 1	2-Methylphenol	ND		ug/kg	200	31.	1
	3-Methylphenol/4-Methylphenol	ND		ug/kg	290	31.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Benzoic Acid	ND		ug/kg	640	200	1
Benzyl Alcohol	ND		ug/kg	200	61.	1
Carbazole	ND		ug/kg	200	19.	1
1,4-Dioxane	ND		ua/ka	30	9.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	25-120
Phenol-d6	77	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	75	10-136
4-Terphenyl-d14	77	18-120

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-09 Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40

Analytical Date: 07/30/21 13:15

Analyst: CMM
Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	ND		ug/kg	150	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	32.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1	
Fluoranthene	ND		ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	24.	1	
Naphthalene	ND		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	64.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-09 Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	46.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	34.	1
2-Nitroaniline	ND		ug/kg	190	36.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	78.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	62.	1
2-Nitrophenol	ND		ug/kg	410	71.	1
4-Nitrophenol	ND		ug/kg	260	77.	1
2,4-Dinitrophenol	ND		ug/kg	910	88.	1
4,6-Dinitro-o-cresol	ND		ug/kg	490	91.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-09 Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	610	190	1
Benzyl Alcohol	ND		ug/kg	190	58.	1
Carbazole	ND		ug/kg	190	18.	1
1,4-Dioxane	ND		ug/kg	28	8.7	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	76	10-120	
Nitrobenzene-d5	79	23-120	
2-Fluorobiphenyl	77	30-120	
2,4,6-Tribromophenol	78	10-136	
4-Terphenyl-d14	64	18-120	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-10 Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:40

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40
Analytical Date: 07/30/21 10:00

Analyst: SZ Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	160	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	200	23.	1	
Hexachlorobenzene	ND		ug/kg	120	22.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1	
2-Chloronaphthalene	ND		ug/kg	200	20.	1	
1,2-Dichlorobenzene	ND		ug/kg	200	36.	1	
1,3-Dichlorobenzene	ND		ug/kg	200	34.	1	
1,4-Dichlorobenzene	ND		ug/kg	200	34.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	200	52.	1	
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1	
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1	
Fluoranthene	110	J	ug/kg	120	23.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1	
Hexachlorobutadiene	ND		ug/kg	200	29.	1	
Hexachlorocyclopentadiene	ND		ug/kg	560	180	1	
Hexachloroethane	ND		ug/kg	160	32.	1	
Isophorone	ND		ug/kg	180	26.	1	
Naphthalene	ND		ug/kg	200	24.	1	
Nitrobenzene	ND		ug/kg	180	29.	1	
NDPA/DPA	ND		ug/kg	160	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	200	30.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	68.	1	
Butyl benzyl phthalate	ND		ug/kg	200	50.	1	
Di-n-butylphthalate	ND		ug/kg	200	37.	1	
Di-n-octylphthalate	ND		ug/kg	200	67.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	55	J	ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	48.	1
Benzo(b)fluoranthene	50	J	ug/kg	120	33.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	49	J	ug/kg	120	20.	1
Acenaphthylene	ND		ug/kg	160	30.	1
Anthracene	ND		ug/kg	120	38.	1
Benzo(ghi)perylene	26	J	ug/kg	160	23.	1
Fluorene	ND		ug/kg	200	19.	1
Phenanthrene	75	J	ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	29	J	ug/kg	160	28.	1
Pyrene	90	J	ug/kg	120	20.	1
Biphenyl	ND		ug/kg	450	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	37.	1
4-Nitroaniline	ND		ug/kg	200	82.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	37.	1
p-Chloro-m-cresol	ND		ug/kg	200	29.	1
2-Chlorophenol	ND		ug/kg	200	23.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	65.	1
2-Nitrophenol	ND		ug/kg	430	74.	1
4-Nitrophenol	ND		ug/kg	280	81.	1
2,4-Dinitrophenol	ND		ug/kg	950	92.	1
4,6-Dinitro-o-cresol	ND		ug/kg	510	95.	1
Pentachlorophenol	ND		ug/kg	160	43.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	31.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S - Westborough Lab						
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1	
Benzoic Acid	ND		ug/kg	640	200	1	
Benzyl Alcohol	ND		ug/kg	200	60.	1	
Carbazole	ND		ug/kg	200	19.	1	
1,4-Dioxane	ND		ug/kg	30	9.1	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	75	10-120	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	67	30-120	
2,4,6-Tribromophenol	70	10-136	
4-Terphenyl-d14	62	18-120	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:40

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40
Analytical Date: 07/30/21 13:36

Analyst: CMM Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	150	19.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	21.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1	
2-Chloronaphthalene	ND		ug/kg	190	18.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	32.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	37.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1	
Fluoranthene	ND		ug/kg	110	21.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	28.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	27.	1	
Hexachlorocyclopentadiene	ND		ug/kg	530	170	1	
Hexachloroethane	ND		ug/kg	150	30.	1	
Isophorone	ND		ug/kg	170	24.	1	
Naphthalene	ND		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	21.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	65.	1	
Butyl benzyl phthalate	ND		ug/kg	190	47.	1	
Di-n-butylphthalate	ND		ug/kg	190	35.	1	
Di-n-octylphthalate	ND		ug/kg	190	64.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Diethyl phthalate	ND		//	190	17.	1
Dimethyl phthalate	ND		ug/kg	190	39.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
	ND		ug/kg	150	46.	
Benzo(a)pyrene			ug/kg			1
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	190	34.	1
2-Nitroaniline	ND		ug/kg	190	36.	1
3-Nitroaniline	ND		ug/kg	190	35.	1
4-Nitroaniline	ND		ug/kg	190	77.	1
Dibenzofuran	ND		ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	62.	1
2-Nitrophenol	ND		ug/kg	400	70.	1
4-Nitrophenol	ND		ug/kg	260	76.	1
2,4-Dinitrophenol	ND		ug/kg	900	87.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	90.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	190	28.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1
,,,			5 5			

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	600	190	1
Benzyl Alcohol	ND		ug/kg	190	57.	1
Carbazole	ND		ug/kg	190	18.	1
1,4-Dioxane	ND		ug/kg	28	8.6	1

% Recovery	Acceptance Qualifier Criteria
81	25-120
88	10-120
91	23-120
85	30-120
94	10-136
83	18-120
	81 88 91 85 94

L2140168

Project Name: 340 MYRTLE AVENUE Lab Number:

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:40

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:40
Analytical Date: 07/30/21 13:58

Analyst: CMM
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	190		ug/kg	150	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	120	22.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	34.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	2700		ug/kg	120	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	550	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	25.	1	
Naphthalene	230		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	65.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1
Benzo(a)anthracene	1600		ug/kg	120	22.	1
Benzo(a)pyrene	1400		ug/kg	150	47.	1
Benzo(b)fluoranthene	1700		ug/kg	120	32.	1
Benzo(k)fluoranthene	660		ug/kg	120	31.	1
Chrysene	1500		ug/kg	120	20.	1
Acenaphthylene	130	J	ug/kg	150	30.	1
Anthracene	480		ug/kg	120	37.	1
Benzo(ghi)perylene	920		ug/kg	150	22.	1
Fluorene	190		ug/kg	190	19.	1
Phenanthrene	2000		ug/kg	120	23.	1
Dibenzo(a,h)anthracene	260		ug/kg	120	22.	1
Indeno(1,2,3-cd)pyrene	960		ug/kg	150	27.	1
Pyrene	2700		ug/kg	120	19.	1
Biphenyl	ND		ug/kg	440	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	80.	1
Dibenzofuran	120	J	ug/kg	190	18.	1
2-Methylnaphthalene	94	J	ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	29.	1
2-Chlorophenol	ND		ug/kg	190	23.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	420	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	920	90.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	92.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	37.	1
Benzoic Acid	ND		ug/kg	620	190	1
Benzyl Alcohol	ND		ug/kg	190	59.	1
Carbazole	210		ug/kg	190	19.	1
1,4-Dioxane	ND		ug/kg	29	8.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	25-120
Phenol-d6	70	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	69	30-120
2,4,6-Tribromophenol	65	10-136
4-Terphenyl-d14	66	18-120

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:42

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:42

Analytical Date: 07/30/21 14:42

Analyst: CMM Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	stborough Lab						
Acenaphthene	110	J	ug/kg	150	20.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
1,2-Dichlorobenzene	ND		ug/kg	190	34.	1	
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1	
1,4-Dichlorobenzene	ND		ug/kg	190	33.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	1400		ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	25.	1	
Naphthalene	85	J	ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	65.	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1
Benzo(a)anthracene	680		ug/kg	110	21.	1
Benzo(a)pyrene	530		ug/kg	150	46.	1
Benzo(b)fluoranthene	660		ug/kg	110	32.	1
Benzo(k)fluoranthene	250		ug/kg	110	30.	1
Chrysene	650		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	300		ug/kg	110	37.	1
Benzo(ghi)perylene	330		ug/kg	150	22.	1
Fluorene	110	J	ug/kg	190	18.	1
Phenanthrene	1300		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	94	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	340		ug/kg	150	26.	1
Pyrene	1200		ug/kg	110	19.	1
Biphenyl	ND		ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	79.	1
Dibenzofuran	75	J	ug/kg	190	18.	1
2-Methylnaphthalene	39	J	ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	31.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	410	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	910	89.	1
4,6-Dinitro-o-cresol	ND		ug/kg	500	91.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	IS - Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Benzoic Acid	ND		ug/kg	620	190	1
Benzyl Alcohol	ND		ug/kg	190	58.	1
Carbazole	110	J	ug/kg	190	18.	1
1,4-Dioxane	ND		ua/ka	28	8.8	1

% Recovery	Acceptance Qualifier Criteria
90	25-120
97	10-120
103	23-120
92	30-120
102	10-136
85	18-120
	90 97 103 92 102

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

CMM 86%

Analyst:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:42

Analytical Date: 07/30/21 15:03

Qualifier Units RL MDL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND 150 20. 1 ug/kg 1,2,4-Trichlorobenzene ND 190 22. ug/kg Hexachlorobenzene ND ug/kg 110 21. 1 Bis(2-chloroethyl)ether ND ug/kg 170 26. 1 2-Chloronaphthalene ND ug/kg 190 19. 1 1,2-Dichlorobenzene ND ug/kg 190 34. 1 ND 190 33. 1,3-Dichlorobenzene ug/kg 1 1,4-Dichlorobenzene ND 190 33. 1 ug/kg 3,3'-Dichlorobenzidine ND ug/kg 190 51. 1 2,4-Dinitrotoluene ND 190 38. 1 ug/kg 2,6-Dinitrotoluene ND 190 33. 1 ug/kg Fluoranthene ND 22. ug/kg 110 1 4-Chlorophenyl phenyl ether ND 190 20. 1 ug/kg 4-Bromophenyl phenyl ether ND 190 29. 1 ug/kg Bis(2-chloroisopropyl)ether ND 230 33. 1 ug/kg ND 19. Bis(2-chloroethoxy)methane 210 1 ug/kg ND Hexachlorobutadiene 190 28. 1 ug/kg ND Hexachlorocyclopentadiene 550 170 1 ug/kg Hexachloroethane ND 150 31. 1 ug/kg ND 25. 1 Isophorone ug/kg 170 ND 190 23. Naphthalene 1 ug/kg Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND 150 22. 1 ug/kg n-Nitrosodi-n-propylamine ND 190 30. 1 ug/kg Bis(2-ethylhexyl)phthalate ND 190 66. 1 ug/kg ND 48. 1 Butyl benzyl phthalate ug/kg 190 ND Di-n-butylphthalate 190 36. 1 ug/kg Di-n-octylphthalate ND 190 65. 1 ug/kg

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Serzo(a)anthracene ND	Parameter Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dimethyl pithalate ND	Semivolatile Organics by GC/MS -	Westborough Lab					
Dimethyl pithalate ND	Diethyl phthalate	ND		ua/ka	190	18.	1
Serzo(a)anthracene ND	Dimethyl phthalate	ND			190		1
Seminode ND Ug/kg 150 47. 1 1 1 1 1 1 1 1 1	Benzo(a)anthracene						1
Renzo(b) fluoranthene ND ug/kg 110 32 1	Benzo(a)pyrene	ND			150	47.	1
Serzo(k)Horanthene ND ug/kg 110 20 1 1 1 1 1 1 1 1 1	Benzo(b)fluoranthene	ND			110	32.	1
Chrysene ND ug/kg 110 20. 1 Keenaghthylene ND ug/kg 150 30. 1 Anthracene ND ug/kg 150 32. 1 Anthracene ND ug/kg 150 22. 1 Anthracene ND ug/kg 150 22. 1 Anthracene ND ug/kg 110 23. 1 Albertzof, Alparthracene ND ug/kg 110 22. 1 Albertzof, Alparthracene ND ug/kg 110 22. 1 Albertzof, Alparthracene ND ug/kg 110 19. 1 Arbyrene ND ug/kg 110 19. 1 Arbyrene ND ug/kg 190 35. 1 Arbyrene ND ug/kg 190 35. 1 Arbyrene ND ug/kg 190 37. 1 Arbyrene <t< td=""><td>Benzo(k)fluoranthene</td><td>ND</td><td></td><td></td><td>110</td><td>31.</td><td>1</td></t<>	Benzo(k)fluoranthene	ND			110	31.	1
Accenaphthylene ND ug/kg 150 30. 1 Anthracene ND ug/kg 110 37. 1 Shenzo(ghi)perylene ND ug/kg 150 22. 1 Fluorene ND ug/kg 110 23. 1 Phenanthrene ND ug/kg 110 23. 1 Abbanzo(a,h)anthracene ND ug/kg 110 22. 1 Adeno(1,2,3-cd)pyrene ND ug/kg 110 22. 1 Adeno(1,2,3-cd)pyrene ND ug/kg 110 19. 1 Pyrene ND ug/kg 140 44. 1 Pyrene ND ug/kg 440 44. 1 Pyrene ND ug/kg 190 37. 1 Cholorophinile ND ug/kg 190 37. 1 Publicoraliline ND ug/kg 190 36. 1 Publicoraliline	Chrysene	ND			110	20.	1
ND	Acenaphthylene	ND			150	30.	1
ND	Anthracene	ND		ug/kg	110	37.	1
Penenanthrene ND ug/kg 110 23. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 150 27. 1 Dibenzo(a,h)anthracene ND ug/kg 150 27. 1 Pyrene ND ug/kg 110 19. 1 Pyrene ND ug/kg 140 44. 1 Chlororalline ND ug/kg 190 35. 1 Chlororalline ND ug/kg 190 37. 1 L-Nitroaniline ND ug/kg 190 36. 1 L-Nitroaniline ND ug/kg 190 23. 1 L-N	Benzo(ghi)perylene	ND		ug/kg	150	22.	1
ND	Fluorene	ND		ug/kg	190	19.	1
ND	Phenanthrene	ND		ug/kg	110	23.	1
ND	Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
ND	Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	27.	1
Public part Public part	Pyrene	ND		ug/kg	110	19.	1
ND	Biphenyl	ND		ug/kg	440	44.	1
ND	4-Chloroaniline	ND		ug/kg	190	35.	1
ND	2-Nitroaniline	ND		ug/kg	190	37.	1
ND	3-Nitroaniline	ND		ug/kg	190	36.	1
ND	4-Nitroaniline	ND		ug/kg	190	79.	1
ND ug/kg 190 20. 1	Dibenzofuran	ND		ug/kg	190	18.	1
ND	2-Methylnaphthalene	ND		ug/kg	230	23.	1
ND	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
ND	Acetophenone	ND		ug/kg	190	24.	1
P-Chlorophenol ND ug/kg 190 23. 1 2,4-Dichlorophenol ND ug/kg 170 31. 1 2,4-Dimethylphenol ND ug/kg 190 63. 1 2-Nitrophenol ND ug/kg 410 72. 1 3-Nitrophenol ND ug/kg 270 78. 1 3-Nitrophenol ND ug/kg 920 89. 1 3-Nitrophenol ND ug/kg 920 89. 1 3-Nothitrophenol ND ug/kg 150 42. 1 3-Nothitrophenol ND ug/kg 150 42. 1 3-Nothitrophenol ND ug/kg 190 29. 1	2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
ND	p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2,4-Dimethylphenol ND ug/kg 190 63. 1 2-Nitrophenol ND ug/kg 410 72. 1 2-Nitrophenol ND ug/kg 270 78. 1 2-Nitrophenol ND ug/kg 920 89. 1 2,4-Dinitrophenol ND ug/kg 500 92. 1 2-Entachlorophenol ND ug/kg 150 42. 1 2-Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1	2-Chlorophenol	ND		ug/kg	190	23.	1
P-Nitrophenol ND ug/kg 410 72. 1 P-Nitrophenol ND ug/kg 270 78. 1 P-Nitrophenol ND ug/kg 920 89. 1 P-Nitrophenol ND ug/kg 500 92. 1 P-entachlorophenol ND ug/kg 150 42. 1 P-entachlorophenol ND ug/kg 190 29. 1 P-henol ND ug/kg 190 29. 1 P-Methylphenol ND ug/kg 190 30. 1	2,4-Dichlorophenol	ND		ug/kg	170	31.	1
ND	2,4-Dimethylphenol	ND		ug/kg	190	63.	1
Pentachlorophenol ND ug/kg 920 89. 1 Pentachlorophenol ND ug/kg 500 92. 1 Phenol ND ug/kg 150 42. 1 Phenol ND ug/kg 190 29. 1 Phenol ND ug/kg 190 30. 1	2-Nitrophenol	ND		ug/kg	410	72.	1
I,6-Dinitro-o-cresol ND ug/kg 500 92. 1 Pentachlorophenol ND ug/kg 150 42. 1 Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1	4-Nitrophenol	ND		ug/kg	270	78.	1
Pentachlorophenol ND ug/kg 150 42. 1 Phenol ND ug/kg 190 29. 1 P-Methylphenol ND ug/kg 190 30. 1	2,4-Dinitrophenol	ND		ug/kg	920	89.	1
Phenol ND ug/kg 190 29. 1 2-Methylphenol ND ug/kg 190 30. 1	4,6-Dinitro-o-cresol	ND		ug/kg	500	92.	1
P-Methylphenol ND ug/kg 190 30. 1	Pentachlorophenol	ND		ug/kg	150	42.	1
	Phenol	ND		ug/kg	190	29.	1
-Methylphenol/4-Methylphenol ND ug/kg 280 30. 1	2-Methylphenol	ND		ug/kg	190	30.	1
	3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

0 1 1 (1) 0 1 1 00 (1) 10	oorough Lab				
Semivolatile Organics by GC/MS - West					
2,4,5-Trichlorophenol	ND	ug/kg	190	37.	1
Benzoic Acid	ND	ug/kg	620	190	1
Benzyl Alcohol	ND	ug/kg	190	59.	1
Carbazole	ND	ug/kg	190	19.	1
1,4-Dioxane	ND	ug/kg	29	8.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	76	25-120	
Phenol-d6	82	10-120	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	78	30-120	
2,4,6-Tribromophenol	82	10-136	
4-Terphenyl-d14	81	18-120	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:42

Analytical Date: 07/30/21 10:23

Analyst: SZ Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	160	20.	1		
1,2,4-Trichlorobenzene	ND		ug/kg	200	23.	1		
Hexachlorobenzene	ND		ug/kg	120	22.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1		
2-Chloronaphthalene	ND		ug/kg	200	20.	1		
1,2-Dichlorobenzene	ND		ug/kg	200	36.	1		
1,3-Dichlorobenzene	ND		ug/kg	200	34.	1		
1,4-Dichlorobenzene	ND		ug/kg	200	35.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1		
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1		
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1		
Fluoranthene	ND		ug/kg	120	23.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1		
Hexachlorobutadiene	ND		ug/kg	200	29.	1		
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1		
Hexachloroethane	ND		ug/kg	160	32.	1		
Isophorone	ND		ug/kg	180	26.	1		
Naphthalene	ND		ug/kg	200	24.	1		
Nitrobenzene	ND		ug/kg	180	29.	1		
NDPA/DPA	ND		ug/kg	160	23.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1		
Butyl benzyl phthalate	ND		ug/kg	200	50.	1		
Di-n-butylphthalate	ND		ug/kg	200	38.	1		
Di-n-octylphthalate	ND		ug/kg	200	68.	1		

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	ND		ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	48.	1
Benzo(b)fluoranthene	ND		ug/kg	120	33.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	39.	1
Benzo(ghi)perylene	ND		ug/kg	160	23.	1
Fluorene	ND		ug/kg	200	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	ND		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	450	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	37.	1
4-Nitroaniline	ND		ug/kg	200	82.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	23.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	81.	1
2,4-Dinitrophenol	ND		ug/kg	950	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	95.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290	31.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1		
Benzoic Acid	ND		ug/kg	640	200	1		
Benzyl Alcohol	ND		ug/kg	200	61.	1		
Carbazole	ND		ug/kg	200	19.	1		
1,4-Dioxane	ND		ug/kg	30	9.1	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	70	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	59	30-120
2,4,6-Tribromophenol	66	10-136
4-Terphenyl-d14	54	18-120

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 07/29/21 11:42

Analytical Date: 07/30/21 15:25

Analyst: CMM
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	150	19.	1		
1,2,4-Trichlorobenzene	ND		ug/kg	180	21.	1		
Hexachlorobenzene	ND		ug/kg	110	21.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1		
2-Chloronaphthalene	ND		ug/kg	180	18.	1		
1,2-Dichlorobenzene	ND		ug/kg	180	33.	1		
1,3-Dichlorobenzene	ND		ug/kg	180	32.	1		
1,4-Dichlorobenzene	ND		ug/kg	180	32.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1		
2,4-Dinitrotoluene	ND		ug/kg	180	37.	1		
2,6-Dinitrotoluene	ND		ug/kg	180	32.	1		
Fluoranthene	130		ug/kg	110	21.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1		
Hexachlorobutadiene	ND		ug/kg	180	27.	1		
Hexachlorocyclopentadiene	ND		ug/kg	530	170	1		
Hexachloroethane	ND		ug/kg	150	30.	1		
Isophorone	ND		ug/kg	170	24.	1		
Naphthalene	ND		ug/kg	180	22.	1		
Nitrobenzene	ND		ug/kg	170	27.	1		
NDPA/DPA	ND		ug/kg	150	21.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	180	29.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	64.	1		
Butyl benzyl phthalate	ND		ug/kg	180	47.	1		
Di-n-butylphthalate	ND		ug/kg	180	35.	1		
Di-n-octylphthalate	ND		ug/kg	180	63.	1		

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	39.	1
Benzo(a)anthracene	76	J	ug/kg	110	21.	1
Benzo(a)pyrene	64	J	ug/kg	150	45.	1
Benzo(b)fluoranthene	78	J	ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	68	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	43	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	94	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	44	J	ug/kg	150	26.	1
Pyrene	160		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	180	34.	1
2-Nitroaniline	ND		ug/kg	180	36.	1
3-Nitroaniline	ND		ug/kg	180	35.	1
4-Nitroaniline	ND		ug/kg	180	77.	1
Dibenzofuran	ND		ug/kg	180	18.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	180	28.	1
2-Chlorophenol	ND		ug/kg	180	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	180	61.	1
2-Nitrophenol	ND		ug/kg	400	70.	1
4-Nitrophenol	ND		ug/kg	260	76.	1
2,4-Dinitrophenol	ND		ug/kg	890	86.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	89.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	180	28.	1
2-Methylphenol	ND		ug/kg	180	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1
o month phonor a month phonor	ND		ug/kg	210	۷۵.	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	180	36.	1
Benzoic Acid	ND		ug/kg	600	190	1
Benzyl Alcohol	ND		ug/kg	180	57.	1
Carbazole	ND		ug/kg	180	18.	1
1,4-Dioxane	ND		ug/kg	28	8.5	1

% Recovery	Acceptance Qualifier Criteria
73	25-120
81	10-120
87	23-120
81	30-120
75	10-136
75	18-120
	73 81 87 81 75

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 07/29/21 11:42

Analytical Method: 1,8270D Extraction Date: 07/29/21 11:42
Analytical Date: 07/30/21 15:47

Analyst: CMM
Percent Solids: 89%

			Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/kg	150	19.	1			
1,2,4-Trichlorobenzene	ND		ug/kg	180	21.	1			
Hexachlorobenzene	ND		ug/kg	110	20.	1			
Bis(2-chloroethyl)ether	ND		ug/kg	160	25.	1			
2-Chloronaphthalene	ND		ug/kg	180	18.	1			
1,2-Dichlorobenzene	ND		ug/kg	180	33.	1			
1,3-Dichlorobenzene	ND		ug/kg	180	32.	1			
1,4-Dichlorobenzene	ND		ug/kg	180	32.	1			
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1			
2,4-Dinitrotoluene	ND		ug/kg	180	37.	1			
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1			
Fluoranthene	ND		ug/kg	110	21.	1			
4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1			
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1			
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1			
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1			
Hexachlorobutadiene	ND		ug/kg	180	27.	1			
Hexachlorocyclopentadiene	ND		ug/kg	520	160	1			
Hexachloroethane	ND		ug/kg	150	30.	1			
Isophorone	ND		ug/kg	160	24.	1			
Naphthalene	ND		ug/kg	180	22.	1			
Nitrobenzene	ND		ug/kg	160	27.	1			
NDPA/DPA	ND		ug/kg	150	21.	1			
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1			
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	63.	1			
Butyl benzyl phthalate	ND		ug/kg	180	46.	1			
Di-n-butylphthalate	ND		ug/kg	180	35.	1			
Di-n-octylphthalate	ND		ug/kg	180	62.	1			

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Diethyl phthalate	ND		//	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
	ND		ug/kg	150	45.	
Benzo(a)pyrene			ug/kg			1
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	
Acenaphthylene	ND		ug/kg	150	28.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	42.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	76.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	22.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	60.	1
2-Nitrophenol	ND		ug/kg	400	69.	1
4-Nitrophenol	ND		ug/kg	260	75.	1
2,4-Dinitrophenol	ND		ug/kg	880	85.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	88.	1
Pentachlorophenol	ND		ug/kg	150	40.	1
Phenol	ND		ug/kg	180	28.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	29.	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Benzoic Acid	ND		ug/kg	590	180	1
Benzyl Alcohol	ND		ug/kg	180	56.	1
Carbazole	ND		ug/kg	180	18.	1
1,4-Dioxane	ND		ug/kg	27	8.4	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	81	25-120	
Phenol-d6	88	10-120	
Nitrobenzene-d5	93	23-120	
2-Fluorobiphenyl	90	30-120	
2,4,6-Tribromophenol	93	10-136	
4-Terphenyl-d14	89	18-120	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168 **Report Date:** 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 07/29/21 20:16

Analyst: HT

Extraction Method: ALPHA 23528
Extraction Date: 07/29/21 10:57

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for s	ample(s): C)1 Batch:	WG1529283-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500	0.023	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500	0.046	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250	0.039	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500	0.053	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250	0.045	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250	0.061	
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250	0.042	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	I ND		ng/g	0.500	0.180	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500	0.136	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250	0.075	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250	0.130	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250	0.067	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.500	0.287	
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500	0.202	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500	0.047	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500	0.153	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500	0.098	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500	0.085	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500	0.070	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500	0.204	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500	0.054	
PFOA/PFOS, Total	ND		ng/g	0.250	0.042	

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 07/29/21 20:16

Analyst: HT

Extraction Method: ALPHA 23528

Extraction Date: 07/29/21 10:57

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01 Batch: WG1529283-1

		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	112	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	119	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	123	74-139
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	120	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	113	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	114	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	116	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	128	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	123	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	119	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	136	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	97	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	135	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19	10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	103	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	118	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	120	24-159

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 07/30/21 08:35 Extraction Date: 07/29/21 10:57

Analyst: MP

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s):
 01
 Batch:
 WG1529283-1

 Perfluoroctanesulfonamide (FOSA)
 ND
 ng/g
 0.500
 0.098

Surrogate (Extracted Internal Standard)

Acceptance
%Recovery Qualifier Criteria

Perfluoro[13C8]Octanesulfonamide (M8FOSA) 87 10-117

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: L2140168

Report Date: 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/30/21 08:24

Analyst: SZ

Extraction Method: EPA 3546 07/29/21 11:40 **Extraction Date:**

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-17	Batch:	WG1529413-1
Acenaphthene	ND		ug/kg	130		17.
1,2,4-Trichlorobenzene	ND		ug/kg	160		19.
Hexachlorobenzene	ND		ug/kg	99		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
1,2-Dichlorobenzene	ND		ug/kg	160		30.
1,3-Dichlorobenzene	ND		ug/kg	160		28.
1,4-Dichlorobenzene	ND		ug/kg	160		29.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	99		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		27.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		42.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

 Lab Number:
 L2140168

 Report Date:
 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/30/21 08:24

Analyst: SZ

Extraction Method: EPA 3546
Extraction Date: 07/29/21 11:40

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	MS - Westborough	n Lab for sa	mple(s):	01-17	Batch:	WG1529413-1
Dimethyl phthalate	ND		ug/kg	160		35.
Benzo(a)anthracene	ND		ug/kg	99		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	99		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	360		62.

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

L2140168

Report Date:

08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/30/21 08:24

Analyst:

SZ

Extraction Method: EPA 3546
Extraction Date: 07/29/21 11:40

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for	sample(s):	01-17	Batch:	WG1529413-1
4-Nitrophenol	ND		ug/kg	230		67.
2,4-Dinitrophenol	ND		ug/kg	790		77.
4,6-Dinitro-o-cresol	ND		ug/kg	430		79.
Pentachlorophenol	ND		ug/kg	130		36.
Phenol	ND		ug/kg	160		25.
2-Methylphenol	ND		ug/kg	160		26.
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.
2,4,5-Trichlorophenol	ND		ug/kg	160		32.
Benzoic Acid	ND		ug/kg	530		170
Benzyl Alcohol	ND		ug/kg	160		50.
Carbazole	ND		ug/kg	160		16.
1,4-Dioxane	ND		ug/kg	25		7.6

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	74	25-120
Phenol-d6	75	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	65	30-120
2,4,6-Tribromophenol	62	10-136
4-Terphenyl-d14	74	18-120

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilutio	n - Mansfield Lab	Associated sample(s): 01	Batch: WG1529283-2		
Perfluorobutanoic Acid (PFBA)	96	-	71-135	-	30
Perfluoropentanoic Acid (PFPeA)	95	-	69-132	-	30
Perfluorobutanesulfonic Acid (PFBS)	98	-	72-128	-	30
Perfluorohexanoic Acid (PFHxA)	96	-	70-132	-	30
Perfluoroheptanoic Acid (PFHpA)	96	-	71-131	-	30
Perfluorohexanesulfonic Acid (PFHxS)	97	-	67-130	-	30
Perfluorooctanoic Acid (PFOA)	98	-	69-133	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	92	-	64-140	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	93	-	70-132	-	30
Perfluorononanoic Acid (PFNA)	97	-	72-129	-	30
Perfluorooctanesulfonic Acid (PFOS)	106	-	68-136	-	30
Perfluorodecanoic Acid (PFDA)	97	-	69-133	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	97	-	65-137	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	100	-	63-144	-	30
Perfluoroundecanoic Acid (PFUnA)	94	-	64-136	-	30
Perfluorodecanesulfonic Acid (PFDS)	100	-	59-134	-	30
Perfluorooctanesulfonamide (FOSA)	95	-	67-137	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	103	-	61-139	-	30
Perfluorododecanoic Acid (PFDoA)	96	-	69-135	-	30
Perfluorotridecanoic Acid (PFTrDA)	119	-	66-139	-	30
Perfluorotetradecanoic Acid (PFTA)	97	-	69-133	-	30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01 Batch: WG1529283-2

Surrogate (Extracted Internal Standard) Perfluoro[13C4]Butanoic Acid (MPFBA) Perfluoro[13C5]Pentanoic Acid (M5PFPEA) Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	115				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	112				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	125				74-139
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	121				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	115				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118				78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	117				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	140				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120				72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	124				79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	115				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	156				19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	102				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	122				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	17				10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	103				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	117				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	123				24-159

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number:

L2140168

Report Date:

08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfield Lab	Associated	sample(s): 01	Batch: W	/G1529283-2				
Perfluorooctanesulfonamide (FOSA)	90		-		67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	86			10-117	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

Report Date: 08/06/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s)	: 01-17 Batch	n: WG1529413-2 WG152	9413-3	
Acenaphthene	72		73	31-137	1	50
1,2,4-Trichlorobenzene	62		65	38-107	5	50
Hexachlorobenzene	59		59	40-140	0	50
Bis(2-chloroethyl)ether	59		62	40-140	5	50
2-Chloronaphthalene	60		61	40-140	2	50
1,2-Dichlorobenzene	60		62	40-140	3	50
1,3-Dichlorobenzene	60		62	40-140	3	50
1,4-Dichlorobenzene	60		62	28-104	3	50
3,3'-Dichlorobenzidine	48		49	40-140	2	50
2,4-Dinitrotoluene	70		73	40-132	4	50
2,6-Dinitrotoluene	73		75	40-140	3	50
Fluoranthene	66		68	40-140	3	50
4-Chlorophenyl phenyl ether	66		67	40-140	2	50
4-Bromophenyl phenyl ether	60		64	40-140	6	50
Bis(2-chloroisopropyl)ether	73		75	40-140	3	50
Bis(2-chloroethoxy)methane	59		62	40-117	5	50
Hexachlorobutadiene	57		58	40-140	2	50
Hexachlorocyclopentadiene	72		70	40-140	3	50
Hexachloroethane	63		65	40-140	3	50
Isophorone	59		61	40-140	3	50
Naphthalene	60		61	40-140	2	50
Nitrobenzene	65		68	40-140	5	50
NDPA/DPA	68		69	36-157	1	50

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recovery ry Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - We	stborough Lab Associ	ated sample(s): 01-17	Batch: WG1529413-2 WG152	9413-3		
n-Nitrosodi-n-propylamine	60	62	32-121	3	50	
Bis(2-ethylhexyl)phthalate	76	80	40-140	5	50	
Butyl benzyl phthalate	79	81	40-140	3	50	
Di-n-butylphthalate	70	74	40-140	6	50	
Di-n-octylphthalate	78	81	40-140	4	50	
Diethyl phthalate	68	70	40-140	3	50	
Dimethyl phthalate	63	62	40-140	2	50	
Benzo(a)anthracene	67	69	40-140	3	50	
Benzo(a)pyrene	63	66	40-140	5	50	
Benzo(b)fluoranthene	63	66	40-140	5	50	
Benzo(k)fluoranthene	65	67	40-140	3	50	
Chrysene	62	66	40-140	6	50	
Acenaphthylene	61	62	40-140	2	50	
Anthracene	66	68	40-140	3	50	
Benzo(ghi)perylene	62	64	40-140	3	50	
Fluorene	66	68	40-140	3	50	
Phenanthrene	66	67	40-140	2	50	
Dibenzo(a,h)anthracene	62	63	40-140	2	50	
Indeno(1,2,3-cd)pyrene	61	63	40-140	3	50	
Pyrene	66	68	35-142	3	50	
Biphenyl	63	64	37-127	2	50	
4-Chloroaniline	43	44	40-140	2	50	
2-Nitroaniline	77	76	47-134	1	50	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: L2140168

Report Date:	08/06/21
--------------	----------

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - West	borough Lab Associ	ated sample(s):	01-17 Batch	n: WG1529413-2 WG15294	13-3	
3-Nitroaniline	65		68	26-129	5	50
4-Nitroaniline	76		78	41-125	3	50
Dibenzofuran	65		66	40-140	2	50
2-Methylnaphthalene	60		59	40-140	2	50
1,2,4,5-Tetrachlorobenzene	60		59	40-117	2	50
Acetophenone	60		62	14-144	3	50
2,4,6-Trichlorophenol	64		64	30-130	0	50
p-Chloro-m-cresol	64		66	26-103	3	50
2-Chlorophenol	71		72	25-102	1	50
2,4-Dichlorophenol	70		73	30-130	4	50
2,4-Dimethylphenol	68		69	30-130	1	50
2-Nitrophenol	92		98	30-130	6	50
4-Nitrophenol	68		71	11-114	4	50
2,4-Dinitrophenol	81		86	4-130	6	50
4,6-Dinitro-o-cresol	84		88	10-130	5	50
Pentachlorophenol	37		40	17-109	8	50
Phenol	63		65	26-90	3	50
2-Methylphenol	70		72	30-130.	3	50
3-Methylphenol/4-Methylphenol	69		70	30-130	1	50
2,4,5-Trichlorophenol	65		67	30-130	3	50
Benzoic Acid	12		16	10-110	29	50
Benzyl Alcohol	63		65	40-140	3	50
Carbazole	67		70	54-128	4	50

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168

Project Number: 340 MYRTLE AVENUE

Report Date:

08/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associat	ed sample(s)	: 01-17 Batch:	WG1529	413-2 WG152941	3-3			
1,4-Dioxane	43		43		40-140	0		50	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	68	69	25-120
Phenol-d6	70	72	10-120
Nitrobenzene-d5	67	68	23-120
2-Fluorobiphenyl	60	61	30-120
2,4,6-Tribromophenol	57	59	10-136
4-Terphenyl-d14	66	68	18-120

Matrix Spike Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Lab Number:

L2140168

Report Date:

08/06/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSE Qual Four	_	Recover Qual Limits	Y RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilution	- Mansfield	d Lab Associa	ated sample(s):	01 QC Batch	D: WG1529283-	3 WG1529283-4	QC Sam	nple: L2139994-01
Perfluorobutanoic Acid (PFBA)	0.032J	5.66	5.56	98	5.61	98	71-135	1	30
Perfluoropentanoic Acid (PFPeA)	0.052J	5.66	5.50	96	5.57	96	69-132	1	30
Perfluorobutanesulfonic Acid (PFBS)	ND	5.02	4.94	98	5.01	99	72-128	1	30
IH,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	5.29	5.92	112	5.88	110	62-145	1	30
Perfluorohexanoic Acid (PFHxA)	0.058J	5.66	5.52	97	5.51	95	70-132	0	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	5.32	5.89	111	5.97	111	73-123	1	30
Perfluoroheptanoic Acid (PFHpA)	ND	5.66	5.44	96	5.55	97	71-131	2	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	5.17	5.05	98	4.94	94	67-130	2	30
Perfluorooctanoic Acid (PFOA)	0.236J	5.66	5.72	97	5.99	101	69-133	5	30
H,1H,2H,2H-Perfluorooctanesulfonic	ND	5.38	5.50	102	5.46	100	64-140	1	30
Perfluoroheptanesulfonic Acid PFHpS)	ND	5.38	5.10	95	4.99	92	70-132	2	30
Perfluorononanoic Acid (PFNA)	ND	5.66	5.62	99	5.58	98	72-129	1	30
Perfluorooctanesulfonic Acid (PFOS)	0.614	5.25	6.10	105	6.17	105	68-136	1	30
Perfluorodecanoic Acid (PFDA)	ND	5.66	5.22	92	5.30	93	69-133	2	30
H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	5.43	5.26	97	5.67	103	65-137	8	30
Perfluorononanesulfonic Acid (PFNS)	ND	5.44	5.33	98	5.59	102	69-125	5	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	5.66	5.70	101	6.09	106	63-144	7	30
Perfluoroundecanoic Acid (PFUnA)	ND	5.66	5.35	95	5.32	93	64-136	1	30
Perfluorodecanesulfonic Acid (PFDS)	ND	5.45	5.30	97	5.44	99	59-134	3	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	5.66	5.65	100	5.77	101	61-139	2	30
Perfluorododecanoic Acid (PFDoA)	ND	5.66	5.30	94	5.45	95	69-135	3	30
Perfluorotridecanoic Acid (PFTrDA)	ND	5.66	6.74	119	6.78	118	66-139	1	30

Matrix Spike Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE*Project Number:* 340 MYRTLE AVENUE

Lab Number:

L2140168

08/06/21

Report Date:

	Native	MS	MS	MS		MSD	MSD	Recover	У		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual	Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilutior	n - Mansfield	Lab Associa	ated sample(s):	01 QC	Batch ID:	WG1529283-3	WG1529283-4	QC Sam	ple: L213	39994-01
Perfluorotetradecanoic Acid (PFTA)	ND	5.66	5.51	97		5.43	95	69-133	1		30

	MS	3	M:	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	142		140		19-175	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	115		114		14-167	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	123		129		20-154	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74		75		34-137	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67		71		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114		116		61-155	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	108		110		75-130	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	110		111		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	104		103		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108		110		78-139	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	109		109		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	110		117		24-159	
Perfluoro[13C4]Butanoic Acid (MPFBA)	101		105		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	99		102		58-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	113		113		79-136	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	108		104		75-130	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	111		106		72-140	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	111		112		74-139	

Matrix Spike Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE*Project Number:* 340 MYRTLE AVENUE

Lab Number:

L2140168

340 MYRTLE AVENUE

Report Date:

08/06/21

	Native	MS	MS	MS		MSD	MSD	Recover	У	RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits	<u>; </u>
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilution	- Mansfield L	ab Assoc	eiated sample(s):	01 QC	Batch ID:	WG1529283-3	WG1529283-4	QC Sam	ple: L2139994-0)1
Perfluorooctanesulfonamide (FOSA)	ND	5.66	5.09	90		5.06	88	67-137	1	30	

	MS	MSD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery Qualifier	% Recovery Qualifier	Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	65	69	10-117	

PCBS

07/30/21

Cleanup Date:

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42
Analytical Date: 07/30/21 10:40 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 10:40 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 87% Cleanup Method: EPA 3660B

Qualifier RL MDL Result Units **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/kg 37.4 3.32 1 Α Aroclor 1221 ND ug/kg 37.4 3.75 Α Aroclor 1232 ND ug/kg 37.4 7.94 1 Α ND 37.4 1 Aroclor 1242 ug/kg 5.05 Α Aroclor 1248 ND ug/kg 37.4 5.62 1 Α ND Aroclor 1254 ug/kg 37.4 4.10 1 Α Aroclor 1260 109 37.4 6.92 1 В ug/kg Aroclor 1262 ND 37.4 4.76 1 Α ug/kg Aroclor 1268 ND 37.4 3.88 1 ug/kg Α PCBs, Total 109 37.4 В 3.32 1 ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	64		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 10:47 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21

Percent Solids: 87% Cleanup Method: EPA 3660B Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		//	20.1	3.39	1	Α
			ug/kg	38.1		ı	
Aroclor 1221	ND		ug/kg	38.1	3.82	1 	Α
Aroclor 1232	ND		ug/kg	38.1	8.08	1	Α
Aroclor 1242	ND		ug/kg	38.1	5.14	1	Α
Aroclor 1248	ND		ug/kg	38.1	5.72	1	Α
Aroclor 1254	ND		ug/kg	38.1	4.17	1	Α
Aroclor 1260	10.4	J	ug/kg	38.1	7.05	1	Α
Aroclor 1262	ND		ug/kg	38.1	4.84	1	Α
Aroclor 1268	6.23	J	ug/kg	38.1	3.95	1	В
PCBs, Total	16.6	J	ug/kg	38.1	3.39	1	В

Surrogato	0/ Danassams	O	Acceptance	0 - 1
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	Α
Decachlorobiphenyl	61		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 10:54

Analyst: AWS

Cleanup Method: EPA 3665A

Cleanup Date: 07/29/21

Cleanup Method: EPA 3660B

Percent Solids: 80% Cleanup Method: EPA 366
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	40.4	3.59	1	Α
Aroclor 1221	ND		ug/kg	40.4	4.05	1	Α
Aroclor 1232	ND		ug/kg	40.4	8.56	1	Α
Aroclor 1242	ND		ug/kg	40.4	5.44	1	Α
Aroclor 1248	ND		ug/kg	40.4	6.06	1	Α
Aroclor 1254	ND		ug/kg	40.4	4.42	1	Α
Aroclor 1260	ND		ug/kg	40.4	7.46	1	Α
Aroclor 1262	ND		ug/kg	40.4	5.13	1	Α
Aroclor 1268	ND		ug/kg	40.4	4.18	1	Α
PCBs, Total	ND		ug/kg	40.4	3.59	1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	48		30-150	А
Decachlorobiphenyl	43		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	52		30-150	В
Decachlorobiphenyl	41		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 11:00 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 80% Cleanup Method: EPA 3660B

Percent Solids: 80% Cleanup Method: EPA 366
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westh	orough Lab						
Aroclor 1016	ND			41.0	3.64	4	Α
Alociol 1016			ug/kg	41.0	3.04	I	A
Aroclor 1221	ND		ug/kg	41.0	4.11	1	Α
Aroclor 1232	ND		ug/kg	41.0	8.69	1	Α
Aroclor 1242	ND		ug/kg	41.0	5.52	1	Α
Aroclor 1248	ND		ug/kg	41.0	6.15	1	Α
Aroclor 1254	ND		ug/kg	41.0	4.48	1	Α
Aroclor 1260	ND		ug/kg	41.0	7.57	1	Α
Aroclor 1262	ND		ug/kg	41.0	5.20	1	Α
Aroclor 1268	ND		ug/kg	41.0	4.24	1	Α
PCBs, Total	ND		ug/kg	41.0	3.64	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	48		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	48		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42
Analytical Date: 07/30/21 11:07 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 11:07 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 85% Cleanup Method: EPA 3660B
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	38.9	3.45	1	Α
Aroclor 1221	ND		ug/kg	38.9	3.90	1	Α
Aroclor 1232	ND		ug/kg	38.9	8.24	1	Α
Aroclor 1242	ND		ug/kg	38.9	5.24	1	Α
Aroclor 1248	ND		ug/kg	38.9	5.83	1	А
Aroclor 1254	ND		ug/kg	38.9	4.25	1	Α
Aroclor 1260	ND		ug/kg	38.9	7.18	1	Α
Aroclor 1262	ND		ug/kg	38.9	4.94	1	Α
Aroclor 1268	ND		ug/kg	38.9	4.03	1	А
PCBs, Total	ND		ug/kg	38.9	3.45	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	52		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	48		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42
Analytical Date: 07/30/21 11:14 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 11:14 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 87% Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	· Westborough Lab						
Aroclor 1016	ND		ug/kg	36.9	3.28	1	Α
Aroclor 1221	ND		ug/kg	36.9	3.70	1	Α
Aroclor 1232	ND		ug/kg	36.9	7.82	1	Α
Aroclor 1242	ND		ug/kg	36.9	4.97	1	Α
Aroclor 1248	ND		ug/kg	36.9	5.53	1	Α
Aroclor 1254	ND		ug/kg	36.9	4.04	1	Α
Aroclor 1260	ND		ug/kg	36.9	6.82	1	Α
Aroclor 1262	ND		ug/kg	36.9	4.68	1	Α
Aroclor 1268	ND		ug/kg	36.9	3.82	1	Α
PCBs, Total	ND		ug/kg	36.9	3.28	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	53		30-150	Α
Decachlorobiphenyl	50		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	51		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42
Analytical Date: 07/30/21 11:22 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 11:22 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 82% Cleanup Method: EPA 3660B

ent Solids: 82% Cleanup Metriod. EPA 300
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/kg	40.3	3.58	1	А
Aroclor 1221	ND		ug/kg	40.3	4.04	1	Α
Aroclor 1232	ND		ug/kg	40.3	8.55	1	Α
Aroclor 1242	ND		ug/kg	40.3	5.43	1	Α
Aroclor 1248	ND		ug/kg	40.3	6.05	1	Α
Aroclor 1254	ND		ug/kg	40.3	4.41	1	Α
Aroclor 1260	ND		ug/kg	40.3	7.45	1	Α
Aroclor 1262	ND		ug/kg	40.3	5.12	1	Α
Aroclor 1268	ND		ug/kg	40.3	4.18	1	Α
PCBs, Total	ND		ug/kg	40.3	3.58	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	52		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	50		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 11:29 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 83% Cleanup Method: EPA 3660B
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westborough Lab							
Aroclor 1016	ND			20 F	3.50	4	Α
Alociol 1016			ug/kg	39.5		I	A
Aroclor 1221	ND		ug/kg	39.5	3.96	1	Α
Aroclor 1232	ND		ug/kg	39.5	8.37	1	Α
Aroclor 1242	ND		ug/kg	39.5	5.32	1	Α
Aroclor 1248	ND		ug/kg	39.5	5.92	1	Α
Aroclor 1254	ND		ug/kg	39.5	4.32	1	Α
Aroclor 1260	ND		ug/kg	39.5	7.29	1	Α
Aroclor 1262	ND		ug/kg	39.5	5.01	1	Α
Aroclor 1268	ND		ug/kg	39.5	4.09	1	Α
PCBs, Total	ND		ug/kg	39.5	3.50	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	51		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	59		30-150	В
Decachlorobiphenyl	49		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-09 Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 11:36 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 88% Cleanup Method: EPA 3660B

Percent Solids: 88% Cleanup Method: EPA 366
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	35.9	3.18	1	А
Aroclor 1221	ND		ug/kg	35.9	3.59	1	Α
Aroclor 1232	ND		ug/kg	35.9	7.60	1	Α
Aroclor 1242	ND		ug/kg	35.9	4.84	1	Α
Aroclor 1248	ND		ug/kg	35.9	5.38	1	Α
Aroclor 1254	ND		ug/kg	35.9	3.92	1	Α
Aroclor 1260	ND		ug/kg	35.9	6.63	1	Α
Aroclor 1262	ND		ug/kg	35.9	4.56	1	Α
Aroclor 1268	ND		ug/kg	35.9	3.72	1	Α
PCBs, Total	ND		ug/kg	35.9	3.18	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
0.450 Tataashlara ayaalaa				
2,4,5,6-Tetrachloro-m-xylene	57		30-150	Α
Decachlorobiphenyl	42		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	59		30-150	В
Decachlorobiphenyl	40		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-10 Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42
Analytical Date: 07/30/21 11:43 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 11:43

Analyst: AWS

Percent Solids: 83%

Cleanup Method: EPA 3665A

Cleanup Date: 07/29/21

Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	40.0	3.56	1	А
Aroclor 1221	ND		ug/kg	40.0	4.01	1	Α
Aroclor 1232	ND		ug/kg	40.0	8.49	1	Α
Aroclor 1242	ND		ug/kg	40.0	5.40	1	Α
Aroclor 1248	ND		ug/kg	40.0	6.00	1	Α
Aroclor 1254	ND		ug/kg	40.0	4.38	1	Α
Aroclor 1260	ND		ug/kg	40.0	7.40	1	Α
Aroclor 1262	ND		ug/kg	40.0	5.08	1	Α
Aroclor 1268	ND		ug/kg	40.0	4.15	1	Α
PCBs, Total	ND		ug/kg	40.0	3.56	1	Α

Surragata	0/ Bassiani	0	Acceptance	0.1
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	Α
Decachlorobiphenyl	61		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	56		30-150	В

07/30/21

Cleanup Date:

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:42

Analytical Date: 07/30/21 11:50 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 87% Cleanup Method: EPA 3660B

Qualifier RL MDL Result Units **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/kg 37.6 3.34 1 Α Aroclor 1221 ND ug/kg 37.6 3.77 Α Aroclor 1232 ND ug/kg 37.6 7.97 1 Α ND 37.6 1 Aroclor 1242 ug/kg 5.07 Α Aroclor 1248 ND ug/kg 37.6 5.64 1 Α ND Aroclor 1254 ug/kg 37.6 4.11 1 Α Aroclor 1260 ND 37.6 6.95 1 Α ug/kg Aroclor 1262 ND 37.6 4.78 1 Α ug/kg Aroclor 1268 ND 37.6 1 ug/kg 3.90 Α PCBs, Total ND 37.6 3.34 1 Α ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	55		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	51		30-150	В

07/30/21

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: L2140168-12 07/26/21 13:40

Date Received: Client ID: SB-6 (0-2) 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 07/29/21 10:42 Analytical Method: 1,8082A

Cleanup Method: EPA 3665A Analytical Date: 07/30/21 11:57 Cleanup Date: 07/29/21 **AWS** Analyst: Cleanup Method: **EPA 3660B** 86% Percent Solids: Cleanup Date:

Qualifier RL MDL Result Units **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/kg 37.9 3.37 1 Α Aroclor 1221 ND ug/kg 37.9 3.80 Α Aroclor 1232 ND ug/kg 37.9 8.04 1 Α ND 1 Aroclor 1242 ug/kg 37.9 5.11 Α Aroclor 1248 ND ug/kg 37.9 5.69 1 Α ND Aroclor 1254 ug/kg 37.9 4.15 1 Α Aroclor 1260 ND 37.9 7.01 1 Α ug/kg Aroclor 1262 ND 37.9 4.82 1 Α ug/kg Aroclor 1268 ND 37.9 1 ug/kg 3.93 Α PCBs, Total ND 37.9 3.37 1 Α ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	55		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:43

Analytical Date: 07/30/21 12:04 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21
Percent Solids: 86% Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	37.9	3.37	1	Α
Aroclor 1221	ND		ug/kg	37.9	3.80	1	Α
Aroclor 1232	ND		ug/kg	37.9	8.04	1	Α
Aroclor 1242	ND		ug/kg	37.9	5.11	1	Α
Aroclor 1248	ND		ug/kg	37.9	5.69	1	Α
Aroclor 1254	ND		ug/kg	37.9	4.15	1	Α
Aroclor 1260	ND		ug/kg	37.9	7.01	1	Α
Aroclor 1262	ND		ug/kg	37.9	4.82	1	Α
Aroclor 1268	ND		ug/kg	37.9	3.93	1	Α
PCBs, Total	ND		ug/kg	37.9	3.37	1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	57		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	52		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:43

Analytical Date: 07/30/21 12:10 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 07/29/21

Percent Solids: 86% Cleanup Method: EPA 3660B Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	38.0	3.38	1	Α
Aroclor 1221	ND		ug/kg	38.0	3.81	1	Α
Aroclor 1232	ND		ug/kg	38.0	8.06	1	Α
Aroclor 1242	ND		ug/kg	38.0	5.12	1	А
Aroclor 1248	ND		ug/kg	38.0	5.70	1	Α
Aroclor 1254	ND		ug/kg	38.0	4.16	1	Α
Aroclor 1260	ND		ug/kg	38.0	7.02	1	Α
Aroclor 1262	ND		ug/kg	38.0	4.83	1	Α
Aroclor 1268	ND		ug/kg	38.0	3.94	1	Α
PCBs, Total	ND		ug/kg	38.0	3.38	1	Α

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	54		30-150	Α
Decachlorobiphenyl	37		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	34		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:43

Analytical Date: 07/30/21 12:17

Analyst: AWS

Cleanup Method: EPA 3665A

Cleanup Date: 07/29/21

Percent Solids: 84%

Cleanup Method: EPA 3660B

Percent Solids: 84% Cleanup Method: EPA 366
Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	39.2	3.48	1	Α
Aroclor 1221	ND		ug/kg	39.2	3.92	1	Α
Aroclor 1232	ND		ug/kg	39.2	8.30	1	Α
Aroclor 1242	ND		ug/kg	39.2	5.28	1	Α
Aroclor 1248	ND		ug/kg	39.2	5.88	1	А
Aroclor 1254	ND		ug/kg	39.2	4.28	1	Α
Aroclor 1260	ND		ug/kg	39.2	7.24	1	Α
Aroclor 1262	ND		ug/kg	39.2	4.97	1	Α
Aroclor 1268	ND		ug/kg	39.2	4.06	1	Α
PCBs, Total	ND		ug/kg	39.2	3.48	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	56		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:43
Analytical Date: 07/30/21 12:25 Cleanup Method: EPA 3665A

Analytical Date: 07/30/21 12:25

Analyst: AWS

Percent Solids: 89%

Cleanup Method: EPA 3665A

Cleanup Date: 07/29/21

Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	37.6	3.34	1	А
Aroclor 1221	ND		ug/kg	37.6	3.77	1	Α
Aroclor 1232	ND		ug/kg	37.6	7.97	1	Α
Aroclor 1242	ND		ug/kg	37.6	5.07	1	Α
Aroclor 1248	ND		ug/kg	37.6	5.64	1	Α
Aroclor 1254	ND		ug/kg	37.6	4.11	1	Α
Aroclor 1260	ND		ug/kg	37.6	6.95	1	Α
Aroclor 1262	ND		ug/kg	37.6	4.77	1	Α
Aroclor 1268	ND		ug/kg	37.6	3.89	1	Α
PCBs, Total	ND		ug/kg	37.6	3.34	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	68		30-150	В
Decachlorobiphenyl	58		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 07/29/21 10:43

Analytical Date: 07/30/21 12:39

Analyst: AWS

Percent Solids: 89%

Cleanup Method: EPA 3665A

Cleanup Date: 07/29/21

Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	36.3	3.22	1	Α
Aroclor 1221	ND		ug/kg	36.3	3.64	1	Α
Aroclor 1232	ND		ug/kg	36.3	7.70	1	Α
Aroclor 1242	ND		ug/kg	36.3	4.90	1	Α
Aroclor 1248	ND		ug/kg	36.3	5.45	1	Α
Aroclor 1254	ND		ug/kg	36.3	3.97	1	Α
Aroclor 1260	ND		ug/kg	36.3	6.71	1	Α
Aroclor 1262	ND		ug/kg	36.3	4.61	1	Α
Aroclor 1268	ND		ug/kg	36.3	3.76	1	Α
PCBs, Total	ND		ug/kg	36.3	3.22	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	58		30-150	В

L2140168

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

Report Date: 08/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 07/30/21 09:08

Analyst: CW

Extraction Method: EPA 3546 07/29/21 10:42 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 07/29/21 Cleanup Method: EPA 3660B

Cleanup Date: 07/30/21

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for sample(s):	01-17	Batch: WG152	9362-1
Aroclor 1016	ND	ug/kg	32.1	2.85	А
Aroclor 1221	ND	ug/kg	32.1	3.22	Α
Aroclor 1232	ND	ug/kg	32.1	6.80	Α
Aroclor 1242	ND	ug/kg	32.1	4.33	Α
Aroclor 1248	ND	ug/kg	32.1	4.81	А
Aroclor 1254	ND	ug/kg	32.1	3.51	Α
Aroclor 1260	ND	ug/kg	32.1	5.93	Α
Aroclor 1262	ND	ug/kg	32.1	4.08	Α
Aroclor 1268	ND	ug/kg	32.1	3.32	Α
PCBs, Total	ND	ug/kg	32.1	2.85	Α

		Acceptance			
Surrogate	%Recovery Qualif	ier Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	64	30-150	Α		
Decachlorobiphenyl	68	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	63	30-150	В		
Decachlorobiphenyl	71	30-150	В		

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140168 08/06/21

Project Number: 340 MYRTLE AVENUE

Report Date:

	LCS		LCSD		%Recovery			RPD	
<u>Parameter</u>	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - West	tborough Lab Associa	ted sample(s)	: 01-17 Batch	: WG152936	62-2 WG15293	62-3			
Aroclor 1016	70		71		40-140	1		50	Α
Aroclor 1260	69		69		40-140	0		50	Α

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67	69	30-150 A
Decachlorobiphenyl	71	70	30-150 A
2,4,5,6-Tetrachloro-m-xylene	66	68	30-150 B
Decachlorobiphenyl	71	71	30-150 B

PESTICIDES

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 16:07 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB
Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - West	borough Lab						
Delta-BHC	ND		ug/kg	1.80	0.352	1	Α
Lindane	ND		ug/kg	0.748	0.334	1	Α
Alpha-BHC	ND		ug/kg	0.748	0.212	1	A
Beta-BHC	ND		ug/kg	1.80	0.681	1	Α
Heptachlor	ND		ug/kg	0.898	0.402	1	Α
Aldrin	ND		ug/kg	1.80	0.632	1	Α
Heptachlor epoxide	ND		ug/kg	3.37	1.01	1	А
Endrin	ND		ug/kg	0.748	0.307	1	Α
Endrin aldehyde	ND		ug/kg	2.24	0.786	1	Α
Endrin ketone	ND		ug/kg	1.80	0.462	1	Α
Dieldrin	ND		ug/kg	1.12	0.561	1	Α
4,4'-DDE	12.6		ug/kg	1.80	0.415	1	А
4,4'-DDD	ND		ug/kg	1.80	0.640	1	А
4,4'-DDT	21.2		ug/kg	3.37	1.44	1	А
Endosulfan I	ND		ug/kg	1.80	0.424	1	Α
Endosulfan II	ND		ug/kg	1.80	0.600	1	А
Endosulfan sulfate	ND		ug/kg	0.748	0.356	1	Α
Methoxychlor	ND		ug/kg	3.37	1.05	1	А
Toxaphene	ND		ug/kg	33.7	9.43	1	Α
cis-Chlordane	1.95	J	ug/kg	2.24	0.625	1	В
trans-Chlordane	2.19	J	ug/kg	2.24	0.592	1	Α
Chlordane	ND		ug/kg	15.0	5.95	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-01 Date Collected: 07/26/21 09:25

Client ID: SB-1 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	Α
Decachlorobiphenyl	91		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В
Decachlorobiphenyl	129		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 20:25 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB
Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - Westb	orough Lab						
Delta-BHC	ND		ug/kg	1.77	0.346	1	Α
Lindane	ND		ug/kg	0.736	0.329	1	Α
Alpha-BHC	ND		ug/kg	0.736	0.209	1	Α
Beta-BHC	ND		ug/kg	1.77	0.670	1	Α
Heptachlor	ND		ug/kg	0.884	0.396	1	Α
Aldrin	ND		ug/kg	1.77	0.622	1	Α
Heptachlor epoxide	ND		ug/kg	3.31	0.994	1	А
Endrin	ND		ug/kg	0.736	0.302	1	Α
Endrin aldehyde	ND		ug/kg	2.21	0.773	1	Α
Endrin ketone	ND		ug/kg	1.77	0.455	1	А
Dieldrin	ND		ug/kg	1.10	0.552	1	Α
4,4'-DDE	106		ug/kg	1.77	0.409	1	В
4,4'-DDD	ND		ug/kg	1.77	0.630	1	А
4,4'-DDT	108		ug/kg	3.31	1.42	1	А
Endosulfan I	ND		ug/kg	1.77	0.417	1	Α
Endosulfan II	ND		ug/kg	1.77	0.590	1	Α
Endosulfan sulfate	ND		ug/kg	0.736	0.350	1	Α
Methoxychlor	ND		ug/kg	3.31	1.03	1	Α
Toxaphene	ND		ug/kg	33.1	9.28	1	Α
cis-Chlordane	ND		ug/kg	2.21	0.616	1	Α
trans-Chlordane	ND		ug/kg	2.21	0.583	1	Α
Chlordane	ND		ug/kg	14.7	5.85	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-02 Date Collected: 07/26/21 09:30

Client ID: SB-1 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	Α
Decachlorobiphenyl	82		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	299	Q	30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 18:29 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Cleanu
Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - We	estborough Lab						
Delta-BHC	ND		ug/kg	2.01	0.394	1	Α
Lindane	ND		ug/kg	0.837	0.374	1	Α
Alpha-BHC	ND		ug/kg	0.837	0.238	1	Α
Beta-BHC	ND		ug/kg	2.01	0.762	1	А
Heptachlor	ND		ug/kg	1.00	0.450	1	Α
Aldrin	ND		ug/kg	2.01	0.708	1	Α
Heptachlor epoxide	ND		ug/kg	3.77	1.13	1	Α
Endrin	ND		ug/kg	0.837	0.343	1	Α
Endrin aldehyde	ND		ug/kg	2.51	0.879	1	Α
Endrin ketone	ND		ug/kg	2.01	0.518	1	Α
Dieldrin	ND		ug/kg	1.26	0.628	1	Α
4,4'-DDE	1.18	J	ug/kg	2.01	0.465	1	В
4,4'-DDD	ND		ug/kg	2.01	0.717	1	Α
4,4'-DDT	ND		ug/kg	3.77	1.62	1	Α
Endosulfan I	ND		ug/kg	2.01	0.475	1	Α
Endosulfan II	ND		ug/kg	2.01	0.672	1	Α
Endosulfan sulfate	ND		ug/kg	0.837	0.399	1	А
Methoxychlor	ND		ug/kg	3.77	1.17	1	Α
Toxaphene	ND		ug/kg	37.7	10.6	1	Α
cis-Chlordane	ND		ug/kg	2.51	0.700	1	А
trans-Chlordane	ND		ug/kg	2.51	0.663	1	Α
Chlordane	ND		ug/kg	16.7	6.66	1	А

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		30-150	Α
Decachlorobiphenyl	80		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	233	Q	30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17
Analytical Date: 07/30/21 18:18 Cleanup Method: EPA 3620B

Analytical Date: 07/30/21 18:18 Cleanup Method: EPA 362
Analyst: KB Cleanup Date: 07/30/21
Percent Solids: 80%

Delta-BHC ND ug/kg 1.95 0.382 1 Lindane ND ug/kg 0.813 0.364 1 Alpha-BHC ND ug/kg 0.813 0.231 1 Beta-BHC ND ug/kg 1.95 0.740 1 Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 0.976 0.438 1 Heptachlor epoxide ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 0.813 0.333 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.95 0.503 1 4,4*DDE 2.21 ug/kg 1.95 0.451 1 4,4*DDT <th>or Column</th> <th>Dilution Factor</th> <th>MDL</th> <th>RL</th> <th>Units</th> <th>Qualifier</th> <th>Result</th> <th>Parameter</th>	or Column	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
Lindane ND ug/kg 0.813 0.364 1 Alpha-BHC ND ug/kg 0.813 0.231 1 Beta-BHC ND ug/kg 1.95 0.740 1 Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 0.813 0.333 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.95 0.503 1 4,4*-DDE 2.21 ug/kg 1.95 0.451 1 4,4*-DDT ND ug/kg 1.95 0.696 1 4,4*-DDT ND ug/kg 1.95 0.696 1 Endosulfan I							stborough Lab	Organochlorine Pesticides by GC - We
Lindane ND ug/kg 0.813 0.364 1 Alpha-BHC ND ug/kg 0.813 0.231 1 Beta-BHC ND ug/kg 1.95 0.740 1 Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.95 0.451 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDT ND ug/kg 1.95 0.696 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan Sulfate	А	1	0.382	1.95	ua/ka		ND	Delta-BHC
Alpha-BHC ND ug/kg 0.813 0.231 1 Beta-BHC ND ug/kg 1.95 0.740 1 Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan Sulfate ND ug/kg 0.813 0.387 1 Endosulf	Α	1	0.364	0.813			ND	Lindane
Beta-BHC ND ug/kg 1.95 0.740 1 Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.95 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.610 1 4,4'-DDT ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Endosulfan	A	1	0.231	0.813			ND	Alpha-BHC
Heptachlor ND ug/kg 0.976 0.438 1 Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.740	1.95			ND	Beta-BHC
Aldrin ND ug/kg 1.95 0.687 1 Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 1.95 0.461 1 Endosulfan I ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.438	0.976			ND	Heptachlor
Heptachlor epoxide ND ug/kg 3.66 1.10 1 Endrin ND ug/kg 0.813 0.333 1 Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan sulfate ND ug/kg 1.95 0.652 1 Methoxychlor ND ug/kg 0.813 0.387 1	Α	1	0.687	1.95			ND	Aldrin
Endrin aldehyde ND ug/kg 2.44 0.854 1 Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	1.10	3.66			ND	Heptachlor epoxide
Endrin ketone ND ug/kg 1.95 0.503 1 Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.333	0.813	ug/kg		ND	Endrin
Dieldrin ND ug/kg 1.22 0.610 1 4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.854	2.44	ug/kg		ND	Endrin aldehyde
4,4'-DDE 2.21 ug/kg 1.95 0.451 1 4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan III ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.503	1.95	ug/kg		ND	Endrin ketone
4,4'-DDD ND ug/kg 1.95 0.696 1 4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan II ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.610	1.22	ug/kg		ND	Dieldrin
4,4'-DDT ND ug/kg 3.66 1.57 1 Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan II ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	В	1	0.451	1.95	ug/kg		2.21	4,4'-DDE
Endosulfan I ND ug/kg 1.95 0.461 1 Endosulfan II ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.696	1.95	ug/kg		ND	4,4'-DDD
Endosulfan II ND ug/kg 1.95 0.652 1 Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	В	1	1.57	3.66	ug/kg		ND	4,4'-DDT
Endosulfan sulfate ND ug/kg 0.813 0.387 1 Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.461	1.95	ug/kg		ND	Endosulfan I
Methoxychlor ND ug/kg 3.66 1.14 1	Α	1	0.652	1.95	ug/kg		ND	Endosulfan II
25.15	Α	1	0.387	0.813	ug/kg		ND	Endosulfan sulfate
Toxaphene ND ug/kg 36.6 10.2 1	Α	1	1.14	3.66	ug/kg		ND	Methoxychlor
	Α	1	10.2	36.6	ug/kg		ND	Toxaphene
cis-Chlordane ND ug/kg 2.44 0.680 1	Α	1	0.680	2.44	ug/kg		ND	cis-Chlordane
trans-Chlordane ND ug/kg 2.44 0.644 1	Α	1	0.644	2.44	ug/kg		ND	trans-Chlordane
Chlordane ND ug/kg 16.3 6.46 1	Α	1	6.46	16.3	ug/kg		ND	Chlordane

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-04 Date Collected: 07/26/21 12:00

Client ID: SB-2 (0-2) DUP Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	Α
Decachlorobiphenyl	97		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	92		30-150	В
Decachlorobiphenyl	380	Q	30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 18:08 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Cleanup
Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - Westk	orough Lab						
Delta-BHC	ND		ug/kg	1.87	0.366	1	Α
Lindane	ND		ug/kg	0.779	0.348	1	A
Alpha-BHC	ND		ug/kg	0.779	0.221	1	Α
Beta-BHC	ND		ug/kg	1.87	0.709	1	Α
Heptachlor	ND		ug/kg	0.935	0.419	1	Α
Aldrin	ND		ug/kg	1.87	0.658	1	Α
Heptachlor epoxide	ND		ug/kg	3.51	1.05	1	Α
Endrin	ND		ug/kg	0.779	0.319	1	Α
Endrin aldehyde	ND		ug/kg	2.34	0.818	1	Α
Endrin ketone	ND		ug/kg	1.87	0.481	1	Α
Dieldrin	ND		ug/kg	1.17	0.584	1	Α
4,4'-DDE	ND		ug/kg	1.87	0.432	1	А
4,4'-DDD	ND		ug/kg	1.87	0.667	1	А
4,4'-DDT	ND		ug/kg	3.51	1.50	1	А
Endosulfan I	ND		ug/kg	1.87	0.442	1	Α
Endosulfan II	ND		ug/kg	1.87	0.625	1	А
Endosulfan sulfate	ND		ug/kg	0.779	0.371	1	А
Methoxychlor	ND		ug/kg	3.51	1.09	1	Α
Toxaphene	ND		ug/kg	35.1	9.82	1	Α
cis-Chlordane	ND		ug/kg	2.34	0.651	1	Α
trans-Chlordane	ND		ug/kg	2.34	0.617	1	Α
Chlordane	ND		ug/kg	15.6	6.19	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-05 Date Collected: 07/26/21 12:05

Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	Α
Decachlorobiphenyl	94		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	88		30-150	В
Decachlorobiphenyl	138		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-06 Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analyst: Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB
Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	1.78	0.348	1	Α
Lindane	ND		ug/kg	0.740	0.331	1	Α
Alpha-BHC	ND		ug/kg	0.740	0.210	1	Α
Beta-BHC	ND		ug/kg	1.78	0.673	1	Α
Heptachlor	ND		ug/kg	0.888	0.398	1	Α
Aldrin	ND		ug/kg	1.78	0.625	1	Α
Heptachlor epoxide	ND		ug/kg	3.33	0.999	1	Α
Endrin	ND		ug/kg	0.740	0.303	1	А
Endrin aldehyde	ND		ug/kg	2.22	0.777	1	А
Endrin ketone	ND		ug/kg	1.78	0.457	1	Α
Dieldrin	ND		ug/kg	1.11	0.555	1	Α
4,4'-DDE	36.1		ug/kg	1.78	0.411	1	Α
4,4'-DDD	ND		ug/kg	1.78	0.634	1	А
4,4'-DDT	25.1		ug/kg	3.33	1.43	1	В
Endosulfan I	ND		ug/kg	1.78	0.420	1	А
Endosulfan II	ND		ug/kg	1.78	0.594	1	А
Endosulfan sulfate	ND		ug/kg	0.740	0.352	1	А
Methoxychlor	ND		ug/kg	3.33	1.04	1	Α
Toxaphene	ND		ug/kg	33.3	9.32	1	А
cis-Chlordane	6.27	Р	ug/kg	2.22	0.619	1	В
trans-Chlordane	5.34		ug/kg	2.22	0.586	1	В
Chlordane	70.4		ug/kg	14.8	5.88	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:25

Client ID: SB-3 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	Α
Decachlorobiphenyl	65		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	540	Q	30-150	В

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-07 Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17
Analytical Date: 07/30/21 17:57 Cleanup Method: EPA 3620B

Analytical Date: 07/30/21 17:57 Cleanup Method: EPA 3620E Analyst: KB Cleanup Date: 07/30/21

Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	- Westborough Lab						
Delta-BHC	ND		ug/kg	1.95	0.381	1	Α
Lindane	ND		ug/kg	0.812	0.363	1	Α
Alpha-BHC	ND		ug/kg	0.812	0.230	1	Α
Beta-BHC	ND		ug/kg	1.95	0.738	1	Α
Heptachlor	ND		ug/kg	0.974	0.437	1	Α
Aldrin	ND		ug/kg	1.95	0.686	1	Α
Heptachlor epoxide	ND		ug/kg	3.65	1.10	1	Α
Endrin	ND		ug/kg	0.812	0.333	1	Α
Endrin aldehyde	ND		ug/kg	2.43	0.852	1	Α
Endrin ketone	ND		ug/kg	1.95	0.502	1	Α
Dieldrin	ND		ug/kg	1.22	0.609	1	Α
4,4'-DDE	ND		ug/kg	1.95	0.450	1	Α
4,4'-DDD	ND		ug/kg	1.95	0.695	1	Α
4,4'-DDT	ND		ug/kg	3.65	1.57	1	Α
Endosulfan I	ND		ug/kg	1.95	0.460	1	Α
Endosulfan II	ND		ug/kg	1.95	0.651	1	Α
Endosulfan sulfate	ND		ug/kg	0.812	0.386	1	Α
Methoxychlor	ND		ug/kg	3.65	1.14	1	Α
Toxaphene	ND		ug/kg	36.5	10.2	1	Α
cis-Chlordane	ND		ug/kg	2.43	0.678	1	Α
trans-Chlordane	ND		ug/kg	2.43	0.643	1	Α
Chlordane	ND		ug/kg	16.2	6.45	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:30

Client ID: SB-3 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	Α
Decachlorobiphenyl	81		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	81		30-150	В
Decachlorobiphenyl	84		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-08 Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 17:46 Cleanup Method: EPA 3620B Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Cle
Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	1.91	0.374	1	А
Lindane	ND		ug/kg	0.795	0.355	1	Α
Alpha-BHC	ND		ug/kg	0.795	0.226	1	Α
Beta-BHC	ND		ug/kg	1.91	0.724	1	Α
Heptachlor	ND		ug/kg	0.954	0.428	1	Α
Aldrin	ND		ug/kg	1.91	0.672	1	Α
Heptachlor epoxide	ND		ug/kg	3.58	1.07	1	Α
Endrin	ND		ug/kg	0.795	0.326	1	Α
Endrin aldehyde	ND		ug/kg	2.38	0.835	1	Α
Endrin ketone	ND		ug/kg	1.91	0.491	1	Α
Dieldrin	ND		ug/kg	1.19	0.596	1	Α
4,4'-DDE	ND		ug/kg	1.91	0.441	1	Α
4,4'-DDD	ND		ug/kg	1.91	0.681	1	Α
4,4'-DDT	ND		ug/kg	3.58	1.53	1	Α
Endosulfan I	ND		ug/kg	1.91	0.451	1	Α
Endosulfan II	ND		ug/kg	1.91	0.638	1	Α
Endosulfan sulfate	ND		ug/kg	0.795	0.378	1	Α
Methoxychlor	ND		ug/kg	3.58	1.11	1	Α
Toxaphene	ND		ug/kg	35.8	10.0	1	Α
cis-Chlordane	ND		ug/kg	2.38	0.665	1	Α
trans-Chlordane	ND		ug/kg	2.38	0.630	1	Α
Chlordane	ND		ug/kg	15.9	6.32	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:50

Client ID: SB-4 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	Α
Decachlorobiphenyl	83		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	84		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 17:35 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Clear Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - We	estborough Lab						
Delta-BHC	ND		ug/kg	1.77	0.347	1	Α
Lindane	ND		ug/kg	0.739	0.330	1	А
Alpha-BHC	ND		ug/kg	0.739	0.210	1	Α
Beta-BHC	ND		ug/kg	1.77	0.672	1	Α
Heptachlor	ND		ug/kg	0.887	0.398	1	Α
Aldrin	ND		ug/kg	1.77	0.624	1	Α
Heptachlor epoxide	ND		ug/kg	3.32	0.997	1	Α
Endrin	ND		ug/kg	0.739	0.303	1	Α
Endrin aldehyde	ND		ug/kg	2.22	0.776	1	Α
Endrin ketone	ND		ug/kg	1.77	0.457	1	Α
Dieldrin	ND		ug/kg	1.11	0.554	1	Α
4,4'-DDE	ND		ug/kg	1.77	0.410	1	Α
4,4'-DDD	ND		ug/kg	1.77	0.632	1	Α
4,4'-DDT	ND		ug/kg	3.32	1.43	1	Α
Endosulfan I	ND		ug/kg	1.77	0.419	1	Α
Endosulfan II	ND		ug/kg	1.77	0.592	1	Α
Endosulfan sulfate	ND		ug/kg	0.739	0.352	1	Α
Methoxychlor	ND		ug/kg	3.32	1.03	1	Α
Toxaphene	ND		ug/kg	33.2	9.31	1	Α
cis-Chlordane	ND		ug/kg	2.22	0.618	1	Α
trans-Chlordane	ND		ug/kg	2.22	0.585	1	Α
Chlordane	ND		ug/kg	14.8	5.87	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-09 Date Collected: 07/26/21 12:55

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83		30-150	Α
Decachlorobiphenyl	103		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В
Decachlorobiphenyl	93		30-150	В

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17
Analytical Date: 07/30/21 17:24 Cleanup Method: EPA 3620B

Analytical Date: 07/30/21 17:24 Cleanup Method: EPA 362
Analyst: KB Cleanup Date: 07/30/21
Percent Solids: 83%

Qualifier Result Units RL MDL **Dilution Factor** Column **Parameter** Organochlorine Pesticides by GC - Westborough Lab Delta-BHC ND ug/kg 1.86 0.364 1 Α Lindane ND 0.774 0.346 Α ug/kg Alpha-BHC ND ug/kg 0.774 0.220 1 Α Beta-BHC ND ug/kg 1.86 0.704 1 Α Heptachlor ND ug/kg 0.929 0.416 1 Α Aldrin ND ug/kg 1.86 0.654 1 Α ND 3.48 1.04 Α Heptachlor epoxide ug/kg 1 Endrin ND 0.774 0.317 1 Α ug/kg ND 1 Endrin aldehyde ug/kg 2.32 0.813 Α ND Endrin ketone 1.86 0.478 1 Α ug/kg Dieldrin ND 1.16 0.580 1 Α ug/kg 4,4'-DDE ND 1.86 0.430 1 ug/kg Α 4,4'-DDD ND 0.663 Α 1.86 1 ug/kg 4,4'-DDT ND ug/kg 3.48 1.49 1 Α Endosulfan I ND 1.86 0.439 1 ug/kg Α Endosulfan II ND 1.86 0.621 1 Α ug/kg Endosulfan sulfate ND 0.774 ug/kg 0.368 1 Α ND 1 Methoxychlor 3.48 1.08 Α ug/kg Toxaphene ND 34.8 9.75 1 Α ug/kg cis-Chlordane ND 2.32 0.647 1 Α ug/kg trans-Chlordane ND 2.32 0.613 1 Α ug/kg Chlordane ND ug/kg 15.5 6.15 1 Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:20

Client ID: SB-5 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	Α
Decachlorobiphenyl	96		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	87		30-150	В
Decachlorobiphenyl	90		30-150	В

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17
Analytical Date: 07/30/21 17:13 Cleanup Method: EPA 3620B

Analytical Date: 07/30/21 17:13 Cleanup Method: EPA 362
Analyst: KB Cleanup Date: 07/30/21
Percent Solids: 87%

Qualifier Result Units RL MDL **Dilution Factor** Column **Parameter** Organochlorine Pesticides by GC - Westborough Lab Delta-BHC ND ug/kg 1.77 0.347 1 Α Lindane ND 0.739 0.330 Α ug/kg Alpha-BHC ND ug/kg 0.739 0.210 1 Α Beta-BHC ND ug/kg 1.77 0.673 1 Α Heptachlor ND ug/kg 0.887 0.398 1 Α Aldrin ND ug/kg 1.77 0.625 1 Α ND 3.33 0.998 1 Α Heptachlor epoxide ug/kg Endrin ND 0.739 0.303 1 Α ug/kg ND 1 Endrin aldehyde ug/kg 2.22 0.776 Α ND Endrin ketone 1.77 0.457 1 Α ug/kg Dieldrin ND 1.11 0.554 1 Α ug/kg 4,4'-DDE ND 0.410 1 ug/kg 1.77 Α 4,4'-DDD ND 0.633 1 Α 1.77 ug/kg 4,4'-DDT ND ug/kg 3.33 1.43 1 Α Endosulfan I ND 1.77 0.419 1 ug/kg Α Endosulfan II ND 1.77 0.593 1 Α ug/kg Endosulfan sulfate ND 0.352 ug/kg 0.739 1 Α ND 1 Methoxychlor 3.33 1.03 Α ug/kg Toxaphene ND 33.3 9.31 1 Α ug/kg cis-Chlordane ND 2.22 0.618 1 Α ug/kg trans-Chlordane ND 2.22 0.585 1 Α ug/kg Chlordane ND ug/kg 14.8 5.88 1 Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		30-150	Α
Decachlorobiphenyl	86		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	79		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:17

Analytical Date: 07/30/21 20:36 Cleanup Method: EPA 3620B Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Cleanup Date: 07/30/2*
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - West	borough Lab						
Delta-BHC	ND		ug/kg	1.75	0.343	1	Α
Lindane	ND		ug/kg	0.730	0.326	1	Α
Alpha-BHC	ND		ug/kg	0.730	0.207	1	A
Beta-BHC	ND		ug/kg	1.75	0.665	1	A
Heptachlor	ND		ug/kg	0.877	0.393	1	A
Aldrin	ND		ug/kg	1.75	0.617	1	Α
Heptachlor epoxide	ND		ug/kg	3.29	0.986	1	Α
Endrin	ND		ug/kg	0.730	0.300	1	Α
Endrin aldehyde	ND		ug/kg	2.19	0.767	1	Α
Endrin ketone	ND		ug/kg	1.75	0.452	1	Α
Dieldrin	ND		ug/kg	1.10	0.548	1	Α
4,4'-DDE	ND		ug/kg	1.75	0.405	1	Α
4,4'-DDD	ND		ug/kg	1.75	0.625	1	Α
4,4'-DDT	4.10		ug/kg	3.29	1.41	1	Α
Endosulfan I	ND		ug/kg	1.75	0.414	1	Α
Endosulfan II	ND		ug/kg	1.75	0.586	1	Α
Endosulfan sulfate	ND		ug/kg	0.730	0.348	1	Α
Methoxychlor	ND		ug/kg	3.29	1.02	1	Α
Toxaphene	ND		ug/kg	32.9	9.20	1	Α
cis-Chlordane	ND		ug/kg	2.19	0.611	1	А
trans-Chlordane	1.07	JP	ug/kg	2.19	0.579	1	Α
Chlordane	ND		ug/kg	14.6	5.81	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	80		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В
Decachlorobiphenyl	109		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:18
Analytical Date: 07/30/21 16:18 Cleanup Method: EPA 3620B

Analytical Date: 07/30/21 16:18 Cleanup Method: EPA 362
Analyst: KB Cleanup Date: 07/30/21
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	1.79	0.351	1	Α
Lindane	ND		ug/kg	0.747	0.334	1	Α
Alpha-BHC	ND		ug/kg	0.747	0.212	1	Α
Beta-BHC	ND		ug/kg	1.79	0.680	1	Α
Heptachlor	ND		ug/kg	0.896	0.402	1	Α
Aldrin	ND		ug/kg	1.79	0.631	1	Α
Heptachlor epoxide	ND		ug/kg	3.36	1.01	1	Α
Endrin	ND		ug/kg	0.747	0.306	1	Α
Endrin aldehyde	ND		ug/kg	2.24	0.784	1	Α
Endrin ketone	ND		ug/kg	1.79	0.462	1	Α
Dieldrin	ND		ug/kg	1.12	0.560	1	Α
4,4'-DDE	ND		ug/kg	1.79	0.414	1	Α
4,4'-DDD	ND		ug/kg	1.79	0.639	1	Α
4,4'-DDT	ND		ug/kg	3.36	1.44	1	Α
Endosulfan I	ND		ug/kg	1.79	0.424	1	Α
Endosulfan II	ND		ug/kg	1.79	0.599	1	Α
Endosulfan sulfate	ND		ug/kg	0.747	0.356	1	Α
Methoxychlor	ND		ug/kg	3.36	1.04	1	Α
Toxaphene	ND		ug/kg	33.6	9.41	1	Α
cis-Chlordane	ND		ug/kg	2.24	0.624	1	Α
trans-Chlordane	ND		ug/kg	2.24	0.592	1	Α
Chlordane	ND		ug/kg	14.9	5.94	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α
Decachlorobiphenyl	82		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В
Decachlorobiphenyl	104		30-150	В

Project Name: Lab Number: 340 MYRTLE AVENUE L2140168

Report Date: **Project Number:** 340 MYRTLE AVENUE 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-14 Date Collected: 07/26/21 14:10

Date Received: Client ID: 07/27/21 SB-7 (0-2) Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 07/29/21 11:18 1,8081B Analytical Method: Cleanup Method: EPA 3620B 07/30/21 17:01

Analytical Date: Cleanup Date: 07/30/21 Analyst: KΒ 86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/kg	1.84	0.360	1	А
Lindane	ND		ug/kg	0.765	0.342	1	Α
Alpha-BHC	ND		ug/kg	0.765	0.217	1	Α
Beta-BHC	ND		ug/kg	1.84	0.696	1	Α
Heptachlor	ND		ug/kg	0.918	0.412	1	Α
Aldrin	ND		ug/kg	1.84	0.646	1	Α
Heptachlor epoxide	ND		ug/kg	3.44	1.03	1	Α
Endrin	ND		ug/kg	0.765	0.314	1	Α
Endrin aldehyde	ND		ug/kg	2.30	0.803	1	Α
Endrin ketone	ND		ug/kg	1.84	0.473	1	Α
Dieldrin	ND		ug/kg	1.15	0.574	1	Α
4,4'-DDE	ND		ug/kg	1.84	0.425	1	Α
4,4'-DDD	ND		ug/kg	1.84	0.655	1	Α
4,4'-DDT	ND		ug/kg	3.44	1.48	1	Α
Endosulfan I	ND		ug/kg	1.84	0.434	1	Α
Endosulfan II	ND		ug/kg	1.84	0.614	1	Α
Endosulfan sulfate	ND		ug/kg	0.765	0.364	1	Α
Methoxychlor	ND		ug/kg	3.44	1.07	1	Α
Toxaphene	ND		ug/kg	34.4	9.64	1	Α
cis-Chlordane	ND		ug/kg	2.30	0.640	1	А
trans-Chlordane	ND		ug/kg	2.30	0.606	1	Α
Chlordane	ND		ug/kg	15.3	6.08	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 14:10

Client ID: SB-7 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	Α
Decachlorobiphenyl	109		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	86		30-150	В
Decachlorobiphenyl	97		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:18

Analytical Date: 07/30/21 16:51 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - We	estborough Lab						
Delta-BHC	ND		ug/kg	1.88	0.369	1	Α
Lindane	ND		ug/kg	0.785	0.351	1	Α
Alpha-BHC	ND		ug/kg	0.785	0.223	1	А
Beta-BHC	ND		ug/kg	1.88	0.715	1	Α
Heptachlor	ND		ug/kg	0.942	0.422	1	Α
Aldrin	ND		ug/kg	1.88	0.664	1	Α
Heptachlor epoxide	ND		ug/kg	3.53	1.06	1	Α
Endrin	ND		ug/kg	0.785	0.322	1	Α
Endrin aldehyde	ND		ug/kg	2.36	0.825	1	А
Endrin ketone	ND		ug/kg	1.88	0.485	1	Α
Dieldrin	ND		ug/kg	1.18	0.589	1	Α
4,4'-DDE	ND		ug/kg	1.88	0.436	1	А
4,4'-DDD	ND		ug/kg	1.88	0.672	1	Α
4,4'-DDT	ND		ug/kg	3.53	1.52	1	А
Endosulfan I	ND		ug/kg	1.88	0.445	1	Α
Endosulfan II	ND		ug/kg	1.88	0.630	1	А
Endosulfan sulfate	ND		ug/kg	0.785	0.374	1	Α
Methoxychlor	ND		ug/kg	3.53	1.10	1	Α
Toxaphene	ND		ug/kg	35.3	9.90	1	Α
cis-Chlordane	ND		ug/kg	2.36	0.657	1	Α
trans-Chlordane	ND		ug/kg	2.36	0.622	1	Α
Chlordane	ND		ug/kg	15.7	6.24	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		30-150	Α
Decachlorobiphenyl	104		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В
Decachlorobiphenyl	89		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:18

Analytical Date: 07/30/21 16:40 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Clea
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/kg	1.80	0.352	1	Α
Lindane	ND		ug/kg	0.749	0.335	1	Α
Alpha-BHC	ND		ug/kg	0.749	0.213	1	А
Beta-BHC	ND		ug/kg	1.80	0.681	1	Α
Heptachlor	ND		ug/kg	0.898	0.403	1	Α
Aldrin	ND		ug/kg	1.80	0.633	1	Α
Heptachlor epoxide	ND		ug/kg	3.37	1.01	1	Α
Endrin	ND		ug/kg	0.749	0.307	1	Α
Endrin aldehyde	ND		ug/kg	2.25	0.786	1	Α
Endrin ketone	ND		ug/kg	1.80	0.463	1	Α
Dieldrin	ND		ug/kg	1.12	0.562	1	Α
4,4'-DDE	2.60		ug/kg	1.80	0.416	1	Α
4,4'-DDD	ND		ug/kg	1.80	0.641	1	Α
4,4'-DDT	ND		ug/kg	3.37	1.44	1	Α
Endosulfan I	ND		ug/kg	1.80	0.424	1	Α
Endosulfan II	ND		ug/kg	1.80	0.600	1	Α
Endosulfan sulfate	ND		ug/kg	0.749	0.356	1	Α
Methoxychlor	ND		ug/kg	3.37	1.05	1	Α
Toxaphene	ND		ug/kg	33.7	9.43	1	Α
cis-Chlordane	ND		ug/kg	2.25	0.626	1	Α
trans-Chlordane	ND		ug/kg	2.25	0.593	1	Α
Chlordane	ND		ug/kg	15.0	5.95	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-16 Date Collected: 07/26/21 15:30

Client ID: SB-8 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	Α
Decachlorobiphenyl	89		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	88		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 07/29/21 11:18

Analytical Date: 07/30/21 16:29 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 07/30/21

Analyst: KB Cleanup Date:
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/kg	1.71	0.335	1	Α
Lindane	ND		ug/kg	0.713	0.319	1	Α
Alpha-BHC	ND		ug/kg	0.713	0.202	1	Α
Beta-BHC	ND		ug/kg	1.71	0.649	1	A
Heptachlor	ND		ug/kg	0.856	0.384	1	Α
Aldrin	ND		ug/kg	1.71	0.602	1	Α
Heptachlor epoxide	ND		ug/kg	3.21	0.963	1	Α
Endrin	ND		ug/kg	0.713	0.292	1	Α
Endrin aldehyde	ND		ug/kg	2.14	0.749	1	Α
Endrin ketone	ND		ug/kg	1.71	0.441	1	Α
Dieldrin	ND		ug/kg	1.07	0.535	1	Α
4,4'-DDE	0.472	J	ug/kg	1.71	0.396	1	В
4,4'-DDD	ND		ug/kg	1.71	0.610	1	Α
4,4'-DDT	ND		ug/kg	3.21	1.38	1	Α
Endosulfan I	ND		ug/kg	1.71	0.404	1	Α
Endosulfan II	ND		ug/kg	1.71	0.572	1	Α
Endosulfan sulfate	ND		ug/kg	0.713	0.339	1	Α
Methoxychlor	ND		ug/kg	3.21	0.998	1	А
Toxaphene	ND		ug/kg	32.1	8.98	1	А
cis-Chlordane	ND		ug/kg	2.14	0.596	1	Α
trans-Chlordane	ND		ug/kg	2.14	0.565	1	Α
Chlordane	ND		ug/kg	14.3	5.67	1	Α

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		30-150	Α
Decachlorobiphenyl	83		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	75		30-150	В

L2140168

Project Name: 340 MYRTLE AVENUE

Report Date: Project Number: 340 MYRTLE AVENUE

08/06/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 07/30/21 18:40

Analyst: KΒ

Extraction Method: EPA 3546 07/29/21 11:17 **Extraction Date:** Cleanup Method: EPA 3620B Cleanup Date: 07/30/21

Parameter	Result	Qualifier	Units	RL		MDL	Column
Organochlorine Pesticides by GC -	- Westboroug	h Lab for	sample(s):	01-17	Batch:	WG15	29397-1
Delta-BHC	ND		ug/kg	1.59		0.312	А
Lindane	ND		ug/kg	0.663		0.296	Α
Alpha-BHC	ND		ug/kg	0.663		0.188	Α
Beta-BHC	ND		ug/kg	1.59		0.603	Α
Heptachlor	ND		ug/kg	0.796		0.357	А
Aldrin	ND		ug/kg	1.59		0.560	Α
Heptachlor epoxide	ND		ug/kg	2.98		0.895	Α
Endrin	ND		ug/kg	0.663		0.272	Α
Endrin aldehyde	ND		ug/kg	1.99		0.696	Α
Endrin ketone	ND		ug/kg	1.59		0.410	Α
Dieldrin	ND		ug/kg	0.995		0.497	Α
4,4'-DDE	ND		ug/kg	1.59		0.368	Α
4,4'-DDD	ND		ug/kg	1.59		0.568	Α
4,4'-DDT	ND		ug/kg	2.98		1.28	Α
Endosulfan I	ND		ug/kg	1.59		0.376	Α
Endosulfan II	ND		ug/kg	1.59		0.532	Α
Endosulfan sulfate	ND		ug/kg	0.663		0.316	Α
Methoxychlor	ND		ug/kg	2.98		0.928	А
Toxaphene	ND		ug/kg	29.8		8.36	Α
cis-Chlordane	ND		ug/kg	1.99		0.554	Α
trans-Chlordane	ND		ug/kg	1.99		0.525	Α
Chlordane	ND		ug/kg	13.3		5.27	Α

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140168

Project Number: 340 MYRTLE AVENUE Report Date: 08/06/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 07/30/21 18:40

Analyst: KB

Extraction Method: EPA 3546
Extraction Date: 07/29/21 11:17
Cleanup Method: EPA 3620B
Cleanup Date: 07/30/21

Parameter Result Qualifier Units RL MDL Column

Organochlorine Pesticides by GC - Westborough Lab for sample(s): 01-17 Batch: WG1529397-1

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	76		30-150	Α	
Decachlorobiphenyl	99		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В	
Decachlorobiphenyl	86		30-150	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140168

roject Number:	340 MYRTLE AVENUE	Report Date:	08/06/21

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC -	Westborough Lab Associ	iated sample(s): 0	1-17 Batch	n: WG1529	9397-2 WG15293	97-3			
Delta-BHC	87		92		30-150	6		30	Α
Lindane	85		95		30-150	11		30	А
Alpha-BHC	88		94		30-150	7		30	Α
Beta-BHC	89		83		30-150	7		30	Α
Heptachlor	96		101		30-150	5		30	Α
Aldrin	90		96		30-150	6		30	Α
Heptachlor epoxide	80		85		30-150	6		30	Α
Endrin	88		93		30-150	6		30	Α
Endrin aldehyde	66		68		30-150	3		30	А
Endrin ketone	98		101		30-150	3		30	А
Dieldrin	91		96		30-150	5		30	А
4,4'-DDE	84		92		30-150	9		30	А
4,4'-DDD	89		95		30-150	7		30	Α
4,4'-DDT	97		96		30-150	1		30	Α
Endosulfan I	79		86		30-150	8		30	А
Endosulfan II	87		90		30-150	3		30	А
Endosulfan sulfate	79		82		30-150	4		30	А
Methoxychlor	109		112		30-150	3		30	А
cis-Chlordane	71		76		30-150	7		30	А
trans-Chlordane	93		99		30-150	6		30	А

L2140168

Lab Control Sample Analysis

Batch Quality Control

Lab Number:

Project Number: 340 MYRTLE AVENUE Report Date:

oort Date: 08/06/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-17 Batch: WG1529397-2 WG1529397-3

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	82	90	30-150 A
Decachlorobiphenyl	104	116	30-150 A
2,4,5,6-Tetrachloro-m-xylene	79	85	30-150 B
Decachlorobiphenyl	88	96	30-150 B

Project Name:

340 MYRTLE AVENUE

INORGANICS & MISCELLANEOUS

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-01
 Date Collected:
 07/26/21 09:25

 Client ID:
 SB-1 (0-2)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	86.8		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-02
 Date Collected:
 07/26/21 09:30

 Client ID:
 SB-1 (2-4)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.4		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-03 Date Collected: 07/26/21 11:55

Client ID: SB-2 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	79.5		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-04
 Date Collected:
 07/26/21 12:00

 Client ID:
 SB-2 (0-2) DUP
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	80.0		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name: 340 MYRTLE AVENUE Lab Number: L2140168 Project Number: 340 MYRTLE AVENUE **Report Date:** 08/06/21

SAMPLE RESULTS

Lab ID: Date Collected: L2140168-05 07/26/21 12:05 Client ID: SB-2 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	85.0		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-06
 Date Collected:
 07/26/21 12:25

 Client ID:
 SB-3 (0-2)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.4		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-07
 Date Collected:
 07/26/21 12:30

 Client ID:
 SB-3 (2-4)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	81.6		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-08
 Date Collected:
 07/26/21 12:50

 Client ID:
 SB-4 (0-2)
 Date Received:
 07/27/21

 Sample Location:
 BROOKLYN, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	82.9		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-09
 Date Collected:
 07/26/21 12:55

 Client ID:
 SB-4 (2-4)
 Date Received:
 07/27/21

Client ID: SB-4 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.6		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-10
 Date Collected:
 07/26/21 13:20

 Client ID:
 SB-5 (0-2)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.7		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-11 Date Collected: 07/26/21 13:25

Client ID: SB-5 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	86.6		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-12 Date Collected: 07/26/21 13:40

Client ID: SB-6 (0-2) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qua	alifier Unit	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab								
Solids, Total	85.6	%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-13 Date Collected: 07/26/21 13:45

Client ID: SB-6 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	85.6		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-14
 Date Collected:
 07/26/21 14:10

 Client ID:
 SB-7 (0-2)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	85.7		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-15 Date Collected: 07/26/21 14:15

Client ID: SB-7 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.7		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

 Lab ID:
 L2140168-16
 Date Collected:
 07/26/21 15:30

 Client ID:
 SB-8 (0-2)
 Date Received:
 07/27/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	88.5		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

SAMPLE RESULTS

Lab ID: L2140168-17 Date Collected: 07/26/21 15:35

Client ID: SB-8 (2-4) Date Received: 07/27/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	88.7		%	0.100	NA	1	-	07/28/21 08:33	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 340 MYRTLE AVENUE L2140168 **Project Number:** 340 MYRTLE AVENUE Report Date: 08/06/21

Parameter	Native Sample	le Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01-17 C	QC Batch ID: WG1528699-1	QC Sample:	L2140168-02	Client ID:	SB-1 (2-4)
Solids, Total	87.4	89.3	%	2		20

Lab Number: L2140168

Report Date: 08/06/21

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140168-01A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-01B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-01C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-01D	Plastic 2oz unpreserved for TS	С	NA		3.5	Υ	Absent		TS(7)
L2140168-01D1	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-01E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-01F	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-01G	Plastic 8oz unpreserved	С	NA		3.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140168-01H	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-01X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-01Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-01Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-02A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-02B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-02C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-02D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-02E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-02F	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-02X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)

Project Name: Project Number:

	340 MYRTLE AVENUE	Lab Number:	L2140168
r:	340 MYRTLE AVENUE	Report Date:	08/06/21

Container	^r Information		Initial	Final	Temp			Frozen	
Container	r ID Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140168-02\	Y Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-02Z	Z Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-03A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-03E	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-030	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-03E	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-03E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-03F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-03>	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-03\	Y Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-03Z	Z Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-04A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-04E	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-040	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-04E	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-04E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-04F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-04	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-04\	Y Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-04Z	Z Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-05A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-05E	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-050	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-05[Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-05E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-05F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Y	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-05>	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)

Serial_No:08062114:28 **Lab Number:** L2140168

Report Date: 08/06/21

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2140168-05Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-05Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-06A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-06B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-06C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-06D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-06E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-06F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-06X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-06Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-06Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-07A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-07B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-07C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-07D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-07E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-07F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-07X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-07Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-07Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-08A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-08B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-08C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-08D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-08E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-08F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Y	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-08X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)

Serial_No:08062114:28 *Lab Number:* L2140168

Report Date: 08/06/21

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140168-08Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-08Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-09A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-09B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-09C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-09D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-09E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-09F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-09X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-09Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-09Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-10A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-10B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-10C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-10D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-10E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-10F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-10X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-10Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-10Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-11A	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-11B	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-11C	5 gram Encore Sampler	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)
L2140168-11D	Plastic 2oz unpreserved for TS	Α	NA		3.6	Υ	Absent		TS(7)
L2140168-11E	Glass 60mL/2oz unpreserved	Α	NA		3.6	Υ	Absent		SUB-TAL 6010(180)
L2140168-11F	Glass 250ml/8oz unpreserved	Α	NA		3.6	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-11X	Vial MeOH preserved split	Α	NA		3.6	Υ	Absent		NYTCL-8260HLW(14)

Serial_No:08062114:28 *Lab Number:* 1 214016

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Lab Number:	L2140168
Report Date:	08/06/21

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2140168-11Y	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-11Z	Vial Water preserved split	Α	NA		3.6	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-12A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-12B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-12C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-12D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-12E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-12F	Glass 250ml/8oz unpreserved	В	NA		4.0	Y	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-12X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-12Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-12Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-13A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-13B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-13C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-13D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-13E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-13F	Glass 250ml/8oz unpreserved	В	NA		4.0	Y	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-13X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-13Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-13Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-14A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-14B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-14C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-14D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-14E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-14F	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-14X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)

Report Date: 08/06/21

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140168-14Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-14Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-15A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-15B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-15C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-15D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-15E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-15F	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-15X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-15Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-15Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-16A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-16B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-16C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-16D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-16E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-16F	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-16X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-16Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-16Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-17A	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-17B	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-17C	5 gram Encore Sampler	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)
L2140168-17D	Plastic 2oz unpreserved for TS	В	NA		4.0	Υ	Absent		TS(7)
L2140168-17E	Glass 60mL/2oz unpreserved	В	NA		4.0	Υ	Absent		SUB-TAL 6010(180)
L2140168-17F	Glass 250ml/8oz unpreserved	В	NA		4.0	Υ	Absent		NYTCL-8270(14),NYTCL-8081(14),NYTCL-8082(365)
L2140168-17X	Vial MeOH preserved split	В	NA		4.0	Υ	Absent		NYTCL-8260HLW(14)

Lab Number: L2140168

Report Date: 08/06/21

Project Name:340 MYRTLE AVENUEProject Number:340 MYRTLE AVENUE

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140168-17Y	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-17Z	Vial Water preserved split	В	NA		4.0	Υ	Absent	28-JUL-21 05:48	NYTCL-8260HLW(14)
L2140168-18A	Vial HCl preserved	D	NA		3.3	Υ	Absent		HOLD-8260(14)
L2140168-18B	Vial HCl preserved	D	NA		3.3	Υ	Absent		HOLD-8260(14)
L2140168-18C	Vial HCl preserved	D	NA		3.3	Υ	Absent		HOLD-8260(14)
L2140168-18D	Plastic 250ml unpreserved	С	NA		3.5	Υ	Absent		HOLD-537(14)
L2140168-18E	Plastic 250ml HNO3 preserved	D	<2	<2	3.3	Υ	Absent		HOLD-SUB()
L2140168-18F	Amber 120ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8082(7)
L2140168-18G	Amber 120ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8082(7)
L2140168-18H	Amber 120ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8081(7)
L2140168-18I	Amber 120ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8081(7)
L2140168-18J	Amber 250ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-1,4DIOX(7)
L2140168-18K	Amber 250ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-1,4DIOX(7)
L2140168-18L	Amber 250ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8270(7)
L2140168-18M	Amber 250ml unpreserved	D	7	7	3.3	Υ	Absent		HOLD-8270(7)
L2140168-19A	Vial HCl preserved	D	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2140168-19B	Vial HCl preserved	D	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2140168-19C	Vial HCl preserved	D	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2140168-19D	Vial HCl preserved	D	NA		3.3	Υ	Absent		NYTCL-8260(14)

Serial_No:08062114:28 **Lab Number:** L2140168 **Report Date:** 08/06/21

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
	TIBA	373-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)	PED - D0	70700 00 5
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
	-··	
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)	DE ADA	
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name: Lab Number: 340 MYRTLE AVENUE L2140168 **Project Number:** 340 MYRTLE AVENUE **Report Date:** 08/06/21

GLOSSARY

Acronyms

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140168Project Number:340 MYRTLE AVENUEReport Date:08/06/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker Walter Walker	ay	95	Page	12		Date I		7	12-	7/21		ALPHA Job#
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable	S					Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 340 /	Yuctle	Avenue			To	ASP-	A		X.	ASP-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Broom	Jelina N	V			1 🗖	EQuI:	S (1 Fi	le)		EQuIS	(4 File)	PO#
Client Information		Project #	In The second	-1			1 1	Other	Same in	2050	_			7.5.00
Client: Tenen E	Jananestal	(Use Project name as Pro	oject#)			_	Regu	latory	_	remen	065	1100	200	Disposal Site Information
Address: 2\ Wes		Project Manager: A. C					100000	NY TO	STATE OF THE PARTY.			NY Par	375	The state of the s
		ALPHAQuote #:	arroll				- 1		Standar	vic	. >	NY CP-		Please identify below location of applicable disposal facilities.
Suite 702 N		S. Commission of the State of t	CITATION AND		Section 2								31	
Phone: 646-606	- 6396	Turn-Around Time		Market Co.	AB ATTO	CONTRACTOR .		NY Re	0.000			Other		Disposal Facility:
Fax:	01	Standard		Due Date:				NY Un						☐ NJ ☐ NY
	atench-engon			# of Days:				-	-	ischarg	6			Other:
	peen previously analyze c requirements/comm						ANA	LYSIS						Sample Filtration
783	B deliverab	80				34	, x	Cs		Pestigales	4	PFAS	- Drokane	Done t Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	Š	SVO	F	女	PCBS	H	5	
(Lab Use Only)		mple 15	Date	Time	Matrix	Initials	>	V	1	5	P	0		Sample Specific Comments
40168- 01	5B-1	(0-2)	7/26/21	9:25	Soil	AP	X	X	X	X	X	X	X	9
702	SB-1	(2-4)		9:30	1		×	×	X	X	X			6
703	58-2	(0-2)		11:55			×	×	×	X	×			
704	53-2	(0-2)_DUP		12:00			1	X	X	X	X			
-05	5B-2	(2-4)		12:05			10	×	X	V	X	\neg	\neg	
-06	58-3 (0-2)		12:25			10	×	X	V	V		_	
-07		2-4)		12:30			10	×	V	0				1
-08	<b-4< td=""><td>(0-2)</td><td></td><td>12:50</td><td></td><td></td><td>1</td><td>0</td><td>\$</td><td>0</td><td>X</td><td>-</td><td>_</td><td></td></b-4<>	(0-2)		12:50			1	0	\$	0	X	-	_	
709	53-4	(2-4)		12:55			-	2	-	0	0	-	_	1
THE RESERVE OF THE PARTY OF THE	5B-5 (11	1	X	2	X	0		-	_	
Preservative Code:	Container Code	0-2)	V	13:20	-	Y	X	^	^	X	^	-	_	
A = None B = HCl C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No) (Con	tainer Type	E	A	A	A	A	P	A _	Please print clearly, legibly and completely. Samples can
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				P	reservative	A	A	A	A	A	A	A	not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished B	y:	Date/	Time	/	Receiv	ed By			- 8	Date/	Time	resolved. BY EXECUTING
$H = Na_2S_2O_3$	E = Encore	A. Platt / Ten	en	7/27/21	10:50	M	1/10	Dei	0		7/	271	21 (0)	THIS COC, THE CLIENT HAS BEAD AND AGREES
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Paul Mary	2 0	7/27/2	13:00		aul	m	289	ele	7/	27	Al	BB BOUND BY ALPHA'S CONDITIONS.
Form No: 01-25 HC (rev. 3	0-Sept-2013)	with 1 sales	exec /	10x 110x	101	15/M	in uso 76						(See reverse side.)	

NEW YORK CHAIN OF CUSTODY Westborough, MA 01581 Mansfield, MA 020	Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (er Way	15	Page 2 of			Date I		-	1/2-	1/21			ALPHA Job # L 2140168 Billing Information	
8 Walkup Dr. 320 Forbes Blvd TEL: 508-898-9220 TEL: 508-822-930 FAX: 508-898-9193 FAX: 508-822-328 Client Information	Project Name: 340 Project Location: Box	Myrtle poklyn, N	Avenue		20223		ASP-	A S (1 Fi	le)	6 3	ASP-I	B S (4 Fi	ile)	Same as Client Info	
Client: Tenen Environmental	Project # (Use Project name as	Project #)				-		Requi	remen	t	1713	1000	1000	Disposal Site Information	700
Address: 121 West 27th Street Suite 702, NY, NY 1000	Project Manager: A					1000	NY TO	No.		X	NY Pa			Please identify below location of applicable disposal facilities.	
Phone: 646-606-2332 Fax: Email: acarrell@tenen-cay.	Turn-Around Time Standa Rush (only if pre approve		Due Date: # of Days:		2108 1		NY Un	stricted restrict Sewer D	ed Use		Other			Disposal Facility: NJ NY Other:	
These samples have been previously and						ANA	LYSIS							Sample Filtration	T
Other project specific requirements/co Cot B deliverab Please specify Metals or TAL.		=9eld Bla	nk and	alysis		S	S	Metals	cstreades	2	15	Dioxane		□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	Voc	SVOC	TAL	Pest	PCBS	PFAS	14-		Sample Specific Comments	t e
	(0-2)	7/26/21	13:25	Soil	AP	X	X	X	X	X					6
	(2-4) 7 (0-2) 7 (2-4)		13:45			X	X	X	X	X					#
-15 5B-5	(0-2)		15:36 15:35			X	XX	XXX	X	X					#
-18 Reld	Blank	7/27/21	10:30	Water	V	X	0	-D	Â	NA	L)	′5.I	5		Ť
Preservative Code: Container Code A = None P = Plastic B = HCl A = Amber Glass	Westboro: Certification Mansfield: Certification			Cont	ainer Type	E	A	A	A	A	P	A		Please print clearly, legible and completely, Samples	
C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube					reservative	2.1	A	A	A	A	A	A	POSTO I	not be logged in and turnaround time clock will start until any ambiguities	s are
G = NaHSO ₄	A. Plat Te	into o	Date/ 7/27/21		Me	Received	ain	2	llá	76	_	Time		resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS. (See reverse side.)	S HA'S

August 04, 2021

Karyn Raymond Alpha Analytical Labs Eight Walkup Drive Westborough, MA 01581-1019 TEL: (603) 319-5010

FAX:

RE: L2140168 Order No.: 2107136

Dear Karyn Raymond:

American Analytical Laboratories, LLC. received 17 sample(s) on 7/29/2021 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report. The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified either on the sample results or in the QC section of the report. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Beyer

Lab Director

Sou Beyer

American Analytical Laboratories, LLC.

Workorder Sample Summary

WO#: **2107136 05-Aug-21**

CLIENT: Alpha Analytical Labs

Project: L2140168

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
2107136-001A	SB-1 (0-2)		7/26/2021 9:25:00 AM	7/29/2021 8:25:00 AM	Soil
2107136-002A	SB-1 (2-4)		7/26/2021 9:30:00 AM	7/29/2021 8:25:00 AM	Soil
2107136-003A	SB-2 (0-2)		7/26/2021 11:55:00 AM	7/29/2021 8:25:00 AM	Soil
2107136-004A	SB-2 (0-2) DUP		7/26/2021 12:00:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-005A	SB-2 (2-4)		7/26/2021 12:05:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-006A	SB-3 (0-2)		7/26/2021 12:25:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-007A	SB-3 (2-4)		7/26/2021 12:30:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-008A	SB-4 (0-2)		7/26/2021 12:50:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-009A	SB-4 (2-4)		7/26/2021 12:55:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-010A	SB-5 (0-2)		7/26/2021 1:20:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-011A	SB-5 (2-4)		7/26/2021 1:25:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-012A	SB-6 (0-2)		7/26/2021 1:40:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-013A	SB-6 (2-4)		7/26/2021 1:45:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-014A	SB-7 (0-2)		7/26/2021 2:10:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-015A	SB-7 (2-4)		7/26/2021 2:15:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-016A	SB-8 (0-2)		7/26/2021 3:30:00 PM	7/29/2021 8:25:00 AM	Soil
2107136-017A	SB-8 (2-4)		7/26/2021 3:35:00 PM	7/29/2021 8:25:00 AM	Soil

				And 1662	
ANALYTICAL World Glass Chammerry	Su Americ 56 Tol Farmin	Subcontract Chain of Custody American Analytical Laboratories 56 Toledo St. Farmingdale, NY 11735	Custody	1 2 2 1	lumber
Client Information		Project Information	R	Regulatory Requirements/Report Limits	its
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Project Location: NY Project Manager: Karyn Raymond Turnaround & Deliverab	t Location: NY t Manager: Karyn Raymond Turnaround & Deliverables Information	State/I Regula	State/Federal Program: Regulatory Criteria: NY-CP51;NY-UNRES	2
Phone: 508.439.5186 Email: kraymond@alphalab.com	Due Date: Deliverables:				
	Project Specific R	Project Specific Requirements and/or Report Requirements	eport Requirements		
Reference following Alpha Job Number on final re	Job Number on final report/de	port/deliverables: L2140168	Report to inclu	Report to include Method Blank, LCS/LCSD:	
Additional Comments: Send all results/reports to subreports@alp	orts to subreports@alphalab.c	halab.com NYSDEC EDD, NY CAT B report needed	AT B report needed		
1	Collection Date/Time	Sample Matrix	Analysis		Batch
200 28 - 100 28 - 100 20	07-26-21 09:25 07-26-21 09:30 07-26-21 11:55 07-26-21 12:00 07-26-21 12:05 07-26-21 12:50 07-26-21 12:50 07-26-21 12:50	SOIL TAL 6010 Metals			
Form No: AL_subcoc	in J. Bailes	7/28/3/ 7/29/2/	Received By	84: Date/Time:	50
f 29			>	A	

						10mg	1 10 1
		รั	ıbcontra	Subcontract Chain of Custody		7	
ANALYTICAL World Clean Company		Ame 56 T Farn	rican Analyti oledo St. iingdale, NY	American Analytical Laboratories 56 Toledo St. Farmingdale, NY 11735		Alpha L21-	Alpha Job Number L2140168
Client	Client Information		Project Information	ormation	Regulator	Regulatory Requirements/Report Limits	rt Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	tical Labs p Drive h, MA 01581-1019	Project Location: NY Project Manager: Karyn Raymond Turnaround & Deliverable	NY Karyn Rayn d & Delive	ct Location: NY ct Manager: Karyn Raymond Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria: NY	State/Federal Program: Regulatory Criteria: NY-CP51;NY-UNRES	
Phone: 508.439.5186 Email: kraymond@alphalab.com	86 alphalab.com	Due Date: Deliverables:					
		Project Specific	Requireme	Project Specific Requirements and/or Report Requirements	ments		
Refe Additional Comment	Reference following Alpha Job Number on final and Additional Comments: Send all results/reports to subreports@al		eport/deliverables: L2140168 phalab.com NYSDEC EDD, N	Y CAT B report	ort to include Meth	Report to include Method Blank, LCS/LCSD:	
			S107				2
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch
000-85100 1000 1	SB-5 (0-2) SB-6 (0-2) SB-6 (0-2) SB-7 (0-2) SB-7 (0-2) SB-8 (0-2) SB-8 (2-4)	07-26-21 13:25 07-26-21 13:25 07-26-21 13:45 07-26-21 14:16 07-26-21 14:15 07-26-21 15:35		TAL 6010 Metals			
	Relinquished B	By: (Date/Time:	Received By:	Date/Time:	me:
	Lin J	Baile	10	1286/1 22	Mad Terra	- 442 Joseph -	- V
Form No: AL_subcoc		We HAM		7	MANN	hall now	20 00 17
							- / -

Sample Log-In Check List

Client Name:	ALPHA ANALYTI	CAL LA	Work Order N	Number: 21	10713	86			RcptNo	o: 1
Logged by:	Lori Beyer	7	7/29/2021 8:25	5:00 AM			Sou Bu	jer		
Completed By	: Lori Beyer	7	7/29/2021 8:42	2:01 AM			You Bly You Bly Physica	jer		
Reviewed By:	Phyllis Masi	7	7/29/2021				Physic	ma	si.	
Chain of Cu	ustody									
1. Is Chain	of Custody complete?	•			Yes	✓	No 🗆] 1	Not Present	
2. How was	the sample delivered	?			Clien	<u>t</u>				
<u>Log In</u>										
3. Coolers a	are present?				Yes	✓	No 🗆]	NA 🗆	
0.	•									
4. Shipping	container/cooler in go	ood condition?			Yes	✓	No 🗆]		
Custody	seals intact on shippir	ng container/co	ooler?		Yes		No 🗆] [Not Present 🗹	•
No.	Se	eal Date:		S	Signe	ed By:		_		_
5. Was an a	attempt made to cool	the samples?			Yes	✓	No L		NA L	
6. Were all	samples received at a	a temperature	of >0° C to 6.0	D°C	Yes	✓	No 🗆]	na 🗆	
7. Sample(s	s) in proper container(s)?			Yes	✓	No []		
8. Sufficient	sample volume for ir	dicated test(s)?		Yes	✓	No 🗆]		
9. Are samp	oles (except VOA and	ONG) properl	y preserved?		Yes	✓	No 🗆			
10. Was pres	servative added to bot	tles?			Yes		No 🗹]	NA 🗆	
11. Is the hea	adspace in the VOA v	ials less than	1/4 inch or 6 m	ım?	Yes		No 🗆] No	o VOA Vials ⊻	
	, sample containers r				Yes		No 🗹	•]		
	erwork match bottle I				Yes	✓	No 🗆]		
(Note dis	crepancies on chain o	of custody)								
14. Are matri	ces correctly identifie	d on Chain of	Custody?			✓	No 🗆]		
15. Is it clear	what analyses were i	requested?				✓	No 🗆			
	holding times able to				Yes	✓	No 🗆			
•	tify customer for authon Indling (if applica	•								
-	nt notified of all discre		nie order?		Yes		No 🗆	1	NA 	•
		paricies with t	iis order:		163		110		IVA L	
Pers	son Notified:			Date:						
By \	Whom:			Via:	еМа	il 🗌 P	hone 🗌 Fa	ax 🔲 I	n Person	
	arding:									
Clie	nt Instructions:									
18. Additiona	l remarks:									
Cooler Informa	ation_									
Coole	r No Temp °C	Condition	Seal Intact	Seal N	0	Seal D	ate Sign	ed By		

Page 5 of 29

Case Narrative

WO#: 2107136 Date: 8/4/2021

CLIENT: Alpha Analytical Labs

Project: L2140168

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846 and additional methods as detailed throughout the text of the report. All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives with exceptions notated in this Narrative discussion and/or the QC summary section of the lab report.

Sample Receipt:

Samples were received 7/29/2021 @ 8:25 am via Alpha courier. Samples were properly preserved and received on ice at 2.4 degrees C.

Samples were analyzed at the dilutions notated on the reporting forms. MS/MSD analysis was performed on SB-1 (0-2). Aluminum, Calcium, Iron, Lead, Magnesium, Potassium and Sodium recovered outside limits due to high parent concentration relative to spike amount.

The following parameters (if included in this report) are not offered by NY ELAP: Percent Moisture.

The test results meet the requirements of the NYSDOH and NELAC standards, except where noted. The information contained in this analytical report is the sole property of American Analytical Laboratories, LLC. or the client for which this report was issued. The results contained in this report are only representative of the samples received. The sample receipt checklist is included as part of this lab report. Conditions can vary at different times and at different sampling conditions. American Analytical is not responsible for the use or interpretation of the data included herein.

Definition Only

WO#: 2107136 Date: 8/4/2021

Definitions:

Sample Result and QC Summary Qualifiers - Level I and Level II Reports ND - Not detected at the reporting limit/Limit of Quantitation

- B The analyte was detected in the associated method blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <5x the blank value as artifact.
- E The value is above the quantitation range
- D Analyte concentration was obtained from diluted analysis or from analysis using reduced sample volume.
- J The analyte was detected below the limit of quantitation but greater than the established Limit of Detection (LOD). There is greater uncertainty associated with these results and data should be considered as estimated.
- U The compound was analyzed for but not detected.
- H Holding time for preparation or analysis has been exceeded.
- S Spike recovery is outside accepted recovery limits.
- R RPD is outside accepted recovery range.
- P Secondary column exceeds 40% difference for GC test.
- * Calibration exceeds method requirement. Due to the large number of analytes for organic testing, the method allows 10% of analytes to have %RSD and/or %D to be >20%.
- LOD Limit of Detection; the lowest level the analyte can be determined to be statistically different from a blank.
- LOQ Limit of Quantitation; the lowest amount of analyte in a sample that can be quantitatively determined with suitable precision and accuracy.
- PQL Practical Quantitation Limit; the lowest level that can be reliably achieved within the specific limits of Precision and accuracy. Listed on the QC Summary Forms.
- m Analyte was manually integrated for GC/MS.
- + Concentration exceeds regulatory level for TCLP

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-1 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 9:25:00 AM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-001A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY			SW7	'471B	SW7471B		Analyst: JP
Mercury	0.606	0.0156	0.0293	D	mg/Kg-dry	2	8/3/2021 10:38:00 AM
PERCENT MOISTURE			D2	216			Analyst: LB
Percent Moisture	11.7	0	1.00		wt%	1	7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	7810	2.20	4.39	D	mg/Kg-dry	10	8/3/2021 12:41:00 PM
Antimony	ND	0.220	0.549	U	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Arsenic	4.24	0.220	0.549		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Barium	204	0.220	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Beryllium	ND	0.110	0.439	U	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Cadmium	0.380	0.0549	0.439	J	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Calcium	5460	2.20	5.49	D	mg/Kg-dry	10	8/3/2021 12:41:00 PM
Chromium	13.7	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Cobalt	0.988	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Copper	27.5	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Iron	10300	2.20	4.39	D	mg/Kg-dry	10	8/3/2021 12:41:00 PM
Lead	465	2.20	4.39	D	mg/Kg-dry	10	8/3/2021 12:41:00 PM
Magnesium	1520	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Manganese	206	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Nickel	13.3	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Potassium	967	0.549	0.549		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Selenium	ND	0.220	0.549	U	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Silver	ND	0.110	0.439	U	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Sodium	214	0.220	0.549		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Thallium	ND	0.329	0.549	U	mg/Kg-dry	1	8/3/2021 9:03:00 AM
Vanadium	16.9	0.110	0.439		mg/Kg-dry	1	8/3/2021 9:03:00 AM
Zinc	317	1.10	4.39	D	mg/Kg-dry	10	8/3/2021 12:41:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-1 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 9:30:00 AM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-002A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY			SW7	471B	SW7471B		Analyst: JP
Mercury	1.14	0.0338	0.0634	D	mg/Kg-dry	5	8/3/2021 10:45:00 AM
PERCENT MOISTURE			D2:	216			Analyst: LB
Percent Moisture	13.7	0	1.00		wt%	1	7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	12200	2.28	4.56	D	mg/Kg-dry	10	8/3/2021 12:46:00 PM
Antimony	ND	0.228	0.570	U	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Arsenic	6.88	0.228	0.570		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Barium	176	0.228	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Beryllium	ND	0.114	0.456	U	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Cadmium	0.185	0.0570	0.456	J	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Calcium	2410	0.228	0.570		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Chromium	17.1	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Cobalt	0.946	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Copper	154	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Iron	14500	2.28	4.56	D	mg/Kg-dry	10	8/3/2021 12:46:00 PM
Lead	638	2.28	4.56	D	mg/Kg-dry	10	8/3/2021 12:46:00 PM
Magnesium	1510	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Manganese	190	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Nickel	15.1	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Potassium	1110	0.570	0.570		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Selenium	ND	0.228	0.570	U	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Silver	0.194	0.114	0.456	J	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Sodium	154	0.228	0.570		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Thallium	ND	0.342	0.570	U	mg/Kg-dry	1	8/3/2021 9:39:00 AM
Vanadium	18.6	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM
Zinc	146	0.114	0.456		mg/Kg-dry	1	8/3/2021 9:39:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-2 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 11:55:00 AM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-003A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0262	0.00931	SW7 0.0175	′471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:27:00 AM
PERCENT MOISTURE Percent Moisture	17.4	0	D2	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
	17.4	U					
TOTAL METALS				6010D	SW3050B		Analyst: JP
Aluminum	21200	2.19	4.38	D	mg/Kg-dry	10	8/3/2021 12:48:00 PM
Antimony	ND	0.219	0.548	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Arsenic	1.96	0.219	0.548		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Barium	83.6	0.219	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Beryllium	ND	0.110	0.438	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Cadmium	ND	0.0548	0.438	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Calcium	684	0.219	0.548		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Chromium	20.9	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Cobalt	0.780	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Copper	12.6	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Iron	15800	2.19	4.38	D	mg/Kg-dry	10	8/3/2021 12:48:00 PM
Lead	10.5	0.219	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Magnesium	1690	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Manganese	426	1.10	4.38	D	mg/Kg-dry	10	8/3/2021 12:48:00 PM
Nickel	16.4	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Potassium	1020	0.548	0.548		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Selenium	ND	0.219	0.548	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Silver	ND	0.110	0.438	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Sodium	116	0.219	0.548		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Thallium	ND	0.329	0.548	U	mg/Kg-dry	1	8/3/2021 9:44:00 AM
Vanadium	22.5	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM
Zinc	49.8	0.110	0.438		mg/Kg-dry	1	8/3/2021 9:44:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-2 (0-2) DUP

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:00:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-004A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0280	0.00589	SW7 0.0110	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:29:00 AM
PERCENT MOISTURE Percent Moisture	19.2	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	22900	2.33	4.67	D	mg/Kg-dry	10	8/3/2021 12:51:00 PM
Antimony	ND	0.233	0.583	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Arsenic	2.14	0.233	0.583		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Barium	88.9	0.233	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Beryllium	ND	0.117	0.467	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Cadmium	ND	0.0583	0.467	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Calcium	715	0.233	0.583		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Chromium	21.1	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Cobalt	0.938	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Copper	14.1	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Iron	16900	2.33	4.67	D	mg/Kg-dry	10	8/3/2021 12:51:00 PM
Lead	11.4	0.233	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Magnesium	1760	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Manganese	465	1.17	4.67	D	mg/Kg-dry	10	8/3/2021 12:51:00 PM
Nickel	16.9	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Potassium	1110	0.583	0.583		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Selenium	ND	0.233	0.583	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Silver	ND	0.117	0.467	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Sodium	126	0.233	0.583		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Thallium	ND	0.350	0.583	U	mg/Kg-dry	1	8/3/2021 9:47:00 AM
Vanadium	23.1	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM
Zinc	51.6	0.117	0.467		mg/Kg-dry	1	8/3/2021 9:47:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-2 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:05:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-005A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.00675	0.00635	SW7 0.0119	471B J	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:32:00 AM
PERCENT MOISTURE Percent Moisture	15.5	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	16100	2.28	4.57	D	mg/Kg-dry	10	8/3/2021 12:54:00 PM
Antimony	ND	0.228	0.571	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Arsenic	1.39	0.228	0.571		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Barium	31.4	0.228	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Beryllium	ND	0.114	0.457	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Cadmium	ND	0.0571	0.457	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Calcium	559	0.228	0.571		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Chromium	21.7	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Cobalt	1.24	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Copper	13.7	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Iron	15600	2.28	4.57	D	mg/Kg-dry	10	8/3/2021 12:54:00 PM
Lead	4.33	0.228	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Magnesium	2000	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Manganese	319	1.14	4.57	D	mg/Kg-dry	10	8/3/2021 12:54:00 PM
Nickel	16.1	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Potassium	1460	0.571	0.571		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Selenium	ND	0.228	0.571	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Silver	ND	0.114	0.457	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Sodium	117	0.228	0.571		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Thallium	ND	0.343	0.571	U	mg/Kg-dry	1	8/3/2021 10:06:00 AM
Vanadium	25.1	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM
Zinc	46.4	0.114	0.457		mg/Kg-dry	1	8/3/2021 10:06:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-3 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:25:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-006A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.276	0.00790	SW7 0.0148	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:34:00 AM
PERCENT MOISTURE Percent Moisture	10.4	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	10600	2.21	4.43	D	mg/Kg-dry	10	8/3/2021 12:57:00 PM
Antimony	ND	0.221	0.553	U	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Arsenic	4.11	0.221	0.553		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Barium	109	0.221	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Beryllium	ND	0.111	0.443	U	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Cadmium	0.0974	0.0553	0.443	J	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Calcium	13300	2.21	5.53	D	mg/Kg-dry	10	8/3/2021 12:57:00 PM
Chromium	13.2	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Cobalt	0.969	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Copper	20.6	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Iron	13300	2.21	4.43	D	mg/Kg-dry	10	8/3/2021 12:57:00 PM
Lead	94.1	0.221	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Magnesium	1440	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Manganese	326	1.11	4.43	D	mg/Kg-dry	10	8/3/2021 12:57:00 PM
Nickel	12.9	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Potassium	1060	0.553	0.553		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Selenium	ND	0.221	0.553	U	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Silver	ND	0.111	0.443	U	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Sodium	239	2.21	5.53	D	mg/Kg-dry	10	8/3/2021 12:57:00 PM
Thallium	ND	0.332	0.553	U	mg/Kg-dry	1	8/3/2021 10:09:00 AM
Vanadium	17.6	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM
Zinc	80.0	0.111	0.443		mg/Kg-dry	1	8/3/2021 10:09:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-3 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:30:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-007A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0767	0.00864	SW7 0.0162	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:49:00 AM
PERCENT MOISTURE Percent Moisture	19.5	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	20500	2.23	4.45	D	mg/Kg-dry	10	8/3/2021 12:59:00 PM
Antimony	ND	0.223	0.556	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Arsenic	2.29	0.223	0.556		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Barium	90.6	0.223	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Beryllium	ND	0.111	0.445	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Cadmium	ND	0.0556	0.445	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Calcium	1070	0.223	0.556		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Chromium	19.8	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Cobalt	1.66	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Copper	14.6	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Iron	15100	2.23	4.45	D	mg/Kg-dry	10	8/3/2021 12:59:00 PM
Lead	31.4	0.223	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Magnesium	1670	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Manganese	1010	1.11	4.45	D	mg/Kg-dry	10	8/3/2021 12:59:00 PM
Nickel	19.2	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Potassium	1100	0.556	0.556		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Selenium	ND	0.223	0.556	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Silver	ND	0.111	0.445	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Sodium	145	0.223	0.556		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Thallium	ND	0.334	0.556	U	mg/Kg-dry	1	8/3/2021 10:12:00 AM
Vanadium	22.5	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM
Zinc	83.6	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:12:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-4 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:50:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-008A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0882	0.00675	SW7 0.0127	7471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:52:00 AM
PERCENT MOISTURE Percent Moisture	17.2	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	6010D	SW3050B		Analyst: JP
Aluminum	21700	2.11	4.22	D	mg/Kg-dry	10	8/3/2021 1:02:00 PM
Antimony	ND	0.211	0.528	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Arsenic	3.20	0.211	0.528		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Barium	87.6	0.211	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Beryllium	ND	0.106	0.422	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Cadmium	ND	0.0528	0.422	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Calcium	2430	0.211	0.528		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Chromium	20.4	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Cobalt	1.44	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Copper	15.3	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Iron	15500	2.11	4.22	D	mg/Kg-dry	10	8/3/2021 1:02:00 PM
Lead	19.8	0.211	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Magnesium	1750	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Manganese	767	1.06	4.22	D	mg/Kg-dry	10	8/3/2021 1:02:00 PM
Nickel	18.4	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Potassium	1300	0.528	0.528		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Selenium	ND	0.211	0.528	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Silver	ND	0.106	0.422	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Sodium	230	2.11	5.28	D	mg/Kg-dry	10	8/3/2021 1:02:00 PM
Thallium	ND	0.317	0.528	U	mg/Kg-dry	1	8/3/2021 10:16:00 AM
Vanadium	23.2	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM
Zinc	45.9	0.106	0.422		mg/Kg-dry	1	8/3/2021 10:16:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-4 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 12:55:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-009A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0264	0.00754	SW7 0.0141	′471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:54:00 AM
PERCENT MOISTURE Percent Moisture	17.2	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	13900	2.16	4.31	D	mg/Kg-dry	10	8/3/2021 1:05:00 PM
Antimony	ND	0.216	0.539	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Arsenic	1.55	0.216	0.539		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Barium	32.7	0.216	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Beryllium	ND	0.108	0.431	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Cadmium	ND	0.0539	0.431	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Calcium	877	0.216	0.539		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Chromium	20.1	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Cobalt	1.05	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Copper	10.4	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Iron	14300	2.16	4.31	D	mg/Kg-dry	10	8/3/2021 1:05:00 PM
Lead	5.44	0.216	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Magnesium	1520	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Manganese	335	1.08	4.31	D	mg/Kg-dry	10	8/3/2021 1:05:00 PM
Nickel	13.4	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Potassium	1100	0.539	0.539		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Selenium	ND	0.216	0.539	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Silver	ND	0.108	0.431	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Sodium	131	0.216	0.539		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Thallium	ND	0.323	0.539	U	mg/Kg-dry	1	8/3/2021 10:20:00 AM
Vanadium	23.2	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM
Zinc	31.7	0.108	0.431		mg/Kg-dry	1	8/3/2021 10:20:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-5 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 1:20:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-010A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0483	0.00930	SW7 0.0174	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:57:00 AM
PERCENT MOISTURE Percent Moisture	17.3	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	19600	2.22	4.45	D	mg/Kg-dry	10	8/3/2021 1:08:00 PM
Antimony	ND	0.222	0.556	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Arsenic	2.22	0.222	0.556		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Barium	83.4	0.222	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Beryllium	ND	0.111	0.445	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Cadmium	ND	0.0556	0.445	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Calcium	917	0.222	0.556		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Chromium	21.0	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Cobalt	1.75	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Copper	15.5	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Iron	13900	2.22	4.45	D	mg/Kg-dry	10	8/3/2021 1:08:00 PM
Lead	21.0	0.222	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Magnesium	1770	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Manganese	702	1.11	4.45	D	mg/Kg-dry	10	8/3/2021 1:08:00 PM
Nickel	19.5	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Potassium	1130	0.556	0.556		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Selenium	ND	0.222	0.556	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Silver	ND	0.111	0.445	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Sodium	159	0.222	0.556		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Thallium	ND	0.333	0.556	U	mg/Kg-dry	1	8/3/2021 10:26:00 AM
Vanadium	23.2	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM
Zinc	49.1	0.111	0.445		mg/Kg-dry	1	8/3/2021 10:26:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-5 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 1:25:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-011A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0221	0.00804	SW7 0.0151	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 9:59:00 AM
PERCENT MOISTURE Percent Moisture	17.0	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	18000	2.31	4.62	D	mg/Kg-dry	10	8/3/2021 1:42:00 PM
Antimony	ND	0.231	0.577	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Arsenic	1.82	0.231	0.577		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Barium	75.7	0.231	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Beryllium	ND	0.115	0.462	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Cadmium	ND	0.0577	0.462	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Calcium	732	0.231	0.577		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Chromium	22.0	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Cobalt	2.24	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Copper	11.5	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Iron	14600	2.31	4.62	D	mg/Kg-dry	10	8/3/2021 1:42:00 PM
Lead	12.7	0.231	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Magnesium	1750	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Manganese	595	1.15	4.62	D	mg/Kg-dry	10	8/3/2021 1:42:00 PM
Nickel	17.1	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Potassium	1170	0.577	0.577		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Selenium	ND	0.231	0.577	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Silver	ND	0.115	0.462	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Sodium	135	0.231	0.577		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Thallium	ND	0.346	0.577	U	mg/Kg-dry	1	8/3/2021 10:31:00 AM
Vanadium	23.5	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM
Zinc	45.0	0.115	0.462		mg/Kg-dry	1	8/3/2021 10:31:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-6 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 1:40:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-012A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.286	0.00855	SW7 0.0160	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 10:02:00 AM
PERCENT MOISTURE Percent Moisture	14.2	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	15800	2.13	4.25	D	mg/Kg-dry	10	8/3/2021 1:45:00 PM
Antimony	ND	0.213	0.532	U	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Arsenic	3.59	0.213	0.532		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Barium	109	0.213	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Beryllium	ND	0.106	0.425	U	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Cadmium	0.145	0.0532	0.425	J	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Calcium	4460	0.213	0.532		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Chromium	20.1	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Cobalt	1.59	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Copper	26.3	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Iron	15100	2.13	4.25	D	mg/Kg-dry	10	8/3/2021 1:45:00 PM
Lead	109	0.213	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Magnesium	1970	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Manganese	451	1.06	4.25	D	mg/Kg-dry	10	8/3/2021 1:45:00 PM
Nickel	18.7	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Potassium	1140	0.532	0.532		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Selenium	ND	0.213	0.532	U	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Silver	ND	0.106	0.425	U	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Sodium	204	0.213	0.532		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Thallium	ND	0.319	0.532	U	mg/Kg-dry	1	8/3/2021 10:35:00 AM
Vanadium	20.5	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM
Zinc	104	0.106	0.425		mg/Kg-dry	1	8/3/2021 10:35:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-6 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 1:45:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-013A

Certificate of Results

Analyses	Sample Resul	lt LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY				'471B	SW7471B		Analyst: JP
Mercury	0.0355	0.00901	0.0169		mg/Kg-dry	1	8/3/2021 10:05:00 AM
PERCENT MOISTURE			D2216				Analyst: LB
Percent Moisture	13.8	0	1.00		wt%	1	7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	18400	2.20	4.41	D	mg/Kg-dry	10	8/3/2021 1:48:00 PM
Antimony	ND	0.220	0.551	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Arsenic	1.78	0.220	0.551		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Barium	50.9	0.220	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Beryllium	ND	0.110	0.441	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Cadmium	ND	0.0551	0.441	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Calcium	852	0.220	0.551		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Chromium	28.3	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Cobalt	1.40	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Copper	14.6	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Iron	16800	2.20	4.41	D	mg/Kg-dry	10	8/3/2021 1:48:00 PM
Lead	18.5	0.220	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Magnesium	1980	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Manganese	351	1.10	4.41	D	mg/Kg-dry	10	8/3/2021 1:48:00 PM
Nickel	17.3	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Potassium	1410	0.551	0.551		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Selenium	ND	0.220	0.551	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Silver	ND	0.110	0.441	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Sodium	140	0.220	0.551		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Thallium	ND	0.331	0.551	U	mg/Kg-dry	1	8/3/2021 10:41:00 AM
Vanadium	28.2	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM
Zinc	46.1	0.110	0.441		mg/Kg-dry	1	8/3/2021 10:41:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-7 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 2:10:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-014A

Certificate of Results

Analyses	Sample Resul	lt LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY	0.0055	0.00054		'471B	SW7471B	4	Analyst: JP
Mercury	0.0255	0.00851	0.0160		mg/Kg-dry	1	8/3/2021 10:07:00 AM
PERCENT MOISTURE			D2	216			Analyst: LB
Percent Moisture	16.1	0	1.00		wt%	1	7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	19400	2.30	4.60	D	mg/Kg-dry	10	8/3/2021 1:51:00 PM
Antimony	ND	0.230	0.575	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Arsenic	2.32	0.230	0.575		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Barium	67.8	0.230	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Beryllium	ND	0.115	0.460	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Cadmium	ND	0.0575	0.460	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Calcium	954	0.230	0.575		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Chromium	23.0	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Cobalt	1.38	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Copper	12.7	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Iron	16000	2.30	4.60	D	mg/Kg-dry	10	8/3/2021 1:51:00 PM
Lead	8.50	0.230	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Magnesium	1880	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Manganese	447	1.15	4.60	D	mg/Kg-dry	10	8/3/2021 1:51:00 PM
Nickel	16.5	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Potassium	1260	0.575	0.575		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Selenium	ND	0.230	0.575	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Silver	ND	0.115	0.460	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Sodium	152	0.230	0.575		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Thallium	ND	0.345	0.575	U	mg/Kg-dry	1	8/3/2021 10:45:00 AM
Vanadium	25.4	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM
Zinc	36.4	0.115	0.460		mg/Kg-dry	1	8/3/2021 10:45:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-7 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 2:15:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-015A

Certificate of Results

Analyses	Sample Resul	t LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0293	0.00781	SW7 0.0146	'471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 10:10:00 AM
PERCENT MOISTURE Percent Moisture	30.3	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	22400	2.48	4.97	D	mg/Kg-dry	10	8/3/2021 1:53:00 PM
Antimony	ND	0.248	0.621	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Arsenic	1.76	0.248	0.621		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Barium	72.8	0.248	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Beryllium	ND	0.124	0.497	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Cadmium	ND	0.0621	0.497	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Calcium	940	0.248	0.621		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Chromium	27.4	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Cobalt	1.57	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Copper	16.3	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Iron	20000	2.48	4.97	D	mg/Kg-dry	10	8/3/2021 1:53:00 PM
Lead	7.88	0.248	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Magnesium	2310	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Manganese	555	1.24	4.97	D	mg/Kg-dry	10	8/3/2021 1:53:00 PM
Nickel	19.5	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Potassium	1670	0.621	0.621		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Selenium	ND	0.248	0.621	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Silver	ND	0.124	0.497	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Sodium	148	0.248	0.621		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Thallium	ND	0.372	0.621	U	mg/Kg-dry	1	8/3/2021 11:02:00 AM
Vanadium	30.7	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM
Zinc	41.9	0.124	0.497		mg/Kg-dry	1	8/3/2021 11:02:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-8 (0-2)

Lab Order: 2107136 **Collection Date:** 7/26/2021 3:30:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-016A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY Mercury	0.0668	0.00759	SW7 0.0142	471B	SW7471B mg/Kg-dry	1	Analyst: JP 8/3/2021 10:12:00 AM
PERCENT MOISTURE Percent Moisture	14.3	0	D2 1.00	216	wt%	1	Analyst: LB 7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	15300	2.04	4.08	D	mg/Kg-dry	10	8/3/2021 1:56:00 PM
Antimony	ND	0.204	0.510	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Arsenic	2.87	0.204	0.510		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Barium	74.7	0.204	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Beryllium	ND	0.102	0.408	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Cadmium	ND	0.0510	0.408	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Calcium	5430	2.04	5.10	D	mg/Kg-dry	10	8/3/2021 1:56:00 PM
Chromium	16.5	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Cobalt	1.25	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Copper	16.0	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Iron	14500	2.04	4.08	D	mg/Kg-dry	10	8/3/2021 1:56:00 PM
Lead	23.8	0.204	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Magnesium	1860	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Manganese	568	1.02	4.08	D	mg/Kg-dry	10	8/3/2021 1:56:00 PM
Nickel	15.2	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Potassium	1320	0.510	0.510		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Selenium	ND	0.204	0.510	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Silver	ND	0.102	0.408	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Sodium	281	2.04	5.10	D	mg/Kg-dry	10	8/3/2021 1:56:00 PM
Thallium	ND	0.306	0.510	U	mg/Kg-dry	1	8/3/2021 11:07:00 AM
Vanadium	20.4	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM
Zinc	54.8	0.102	0.408		mg/Kg-dry	1	8/3/2021 11:07:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

American Analytical Laboratories, LLC.

ELAP ID: 11418

CLIENT: Alpha Analytical Labs Client Sample ID: SB-8 (2-4)

Lab Order: 2107136 **Collection Date:** 7/26/2021 3:35:00 PM

Project: L2140168 Matrix: SOIL

Lab ID: 2107136-017A

Certificate of Results

Analyses	Sample Resu	lt LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
MERCURY				471B	SW7471B		Analyst: JP
Mercury	0.00957	0.00766	0.0144	J	mg/Kg-dry	1	8/3/2021 10:22:00 AM
PERCENT MOISTURE			D2216				Analyst: LB
Percent Moisture	11.5	0	1.00		wt%	1	7/29/2021 10:45:37 AM
TOTAL METALS			SW6	010D	SW3050B		Analyst: JP
Aluminum	13400	2.08	4.17	D	mg/Kg-dry	10	8/3/2021 1:58:00 PM
Antimony	ND	0.208	0.521	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Arsenic	1.09	0.208	0.521		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Barium	44.0	0.208	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Beryllium	ND	0.104	0.417	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Cadmium	ND	0.0521	0.417	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Calcium	700	0.208	0.521		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Chromium	15.0	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Cobalt	0.898	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Copper	7.70	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Iron	11600	2.08	4.17	D	mg/Kg-dry	10	8/3/2021 1:58:00 PM
Lead	3.76	0.208	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Magnesium	1300	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Manganese	490	1.04	4.17	D	mg/Kg-dry	10	8/3/2021 1:58:00 PM
Nickel	12.3	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Potassium	813	0.521	0.521		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Selenium	ND	0.208	0.521	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Silver	ND	0.104	0.417	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Sodium	180	0.208	0.521		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Thallium	ND	0.313	0.521	U	mg/Kg-dry	1	8/3/2021 11:12:00 AM
Vanadium	15.7	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM
Zinc	27.1	0.104	0.417		mg/Kg-dry	1	8/3/2021 11:12:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, New York, Zip - 11735 Tel - (631) 454-6100 Fax - (631) 454-8027 www.american-analytical.com

WO#:

05-Aug-21

2107136

56 Toledo Street Farmingdale, New York 11735 TEL: (631) 454-6100 FAX: (631) 454-8027 Website: www.American-Analytical.com

American Analytical Laboratories, LLC.

	29400	
	BatchID:	
Alpha Analytical Labs	L2140168	
Client:	Project:	

Sample ID: MBS080221A	SampType: MBLK	TestCo	TestCode: ICPSCAN_S	Units: mg/Kg		Prep Da	Prep Date: 8/2/2021	RunNo: 53548	
Client ID: PBS	Batch ID: 29400	Test	TestNo: SW6010D	SW3050B		Analysis Da	Analysis Date: 8/3/2021	SeqNo: 1081497	
Analyte	Result	PQL	SPK value SI	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	QN	0.400							n
Antimony	QN	0.500							⊃
Arsenic	QV	0.500							⊃
Barium	QN	0.400							⊃
Beryllium	QN	0.400							⊃
Cadmium	QN	0.400							⊃
Calcium	QN	0.500							⊃
Chromium	QV	0.400							⊃
Cobalt	QV	0.400							⊃
Copper	QV	0.400							⊃
Iron	QN	0.400							⊃
Lead	QV	0.400							⊃
Magnesium	QN	0.400							⊃
Manganese	QN	0.400							⊃
Nickel	QN	0.400							⊃
Potassium	QN	4.00							⊃
Selenium	QN	0.500							⊃
Silver	QN	0.400							⊃
Sodium	QN	0.500							⊃
Thallium	QN	0.500							D
Vanadium	QN	0.400							⊃
Zinc	QN	0.400							n

2107136 WO#:

05-Aug-21

56 Toledo Street Farmingdale, New York 11735 TEL: (631) 454-6100 FAX: (631) 454-8027 Website: www.American-Analytical.com

American Analytical Laboratories, LLC.

29400	
BatchID:	
L2140168	
Project:	

Alpha Analytical Labs

Client:

Sample ID: LCSS080221A	SampType: LCS	TestCod	TestCode: ICPSCAN_S	Units: mg/Kg		Prep Date:	8/2/2021	RunNo: 53548	.48	
Client ID: LCSS	Batch ID: 29400	Test	TestNo: SW6010D	SW3050B		Analysis Date: 8/3/202 1	8/3/2021	SeqNo: 1081498	11498	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	44.4	0.400	40.00	0	111	80	120			
Antimony	40.5	0.500	40.00	0	101	80	120			
Arsenic	40.3	0.500	40.00	0	101	80	120			
Barium	39.0	0.400	40.00	0	97.5	80	120			
Beryllium	40.2	0.400	40.00	0	101	80	120			
Cadmium	40.1	0.400	40.00	0	100	80	120			
Calcium	41.9	0.500	40.00	0	105	80	120			
Chromium	42.0	0.400	40.00	0	105	80	120			
Cobalt	40.8	0.400	40.00	0	102	80	120			
Copper	41.0	0.400	40.00	0	102	80	120			
Iron	41.4	0.400	40.00	0	104	80	120			
Lead	45.7	0.400	40.00	0	114	80	120			
Magnesium	39.1	0.400	40.00	0	7.76	80	120			
Manganese	40.3	0.400	40.00	0	101	80	120			
Nickel	40.7	0.400	40.00	0	102	80	120			
Potassium	386	4.00	400.0	0	9.96	80	120			
Selenium	46.0	0.500	40.00	0	115	80	120			
Silver	37.5	0.400	40.00	0	93.9	80	120			
Sodium	46.3	0.500	40.00	0	116	80	120			
Thallium	41.1	0.500	40.00	0	103	80	120			
Vanadium	41.9	0.400	40.00	0	105	80	120			
Zinc	40.3	0.400	40.00	0	101	80	120			

Qualifiers:

Spike Recovery outside accepted recovery limits

2107136 WO#:

05-Aug-21

Alpha Analytical Labs

Client:

56 Toledo Street Farmingdale, New York 11735 TEL: (631) 454-6100 FAX: (631) 454-8027 Website: www.American-Analytical.com

American Analytical Laboratories, LLC.

BatchID: 29400	RunNo: 53548	CoaNo: 4084503
BatchID:	Prep Date: 8/2/2021	A 201/2010 1040: 0/2/2014
	Units: mg/Kg-dry	610/20600
	TestCode: ICPSCAN_S Units: mg/Kg-dry	Toothle: Civicoana
	SampType: MS	00,000 ID: 00,000
t: L2140168	Sample ID: 2107136-001AMS	(C 0) 4 GO (C)
Project:	Sample	l tagi

Sample ID: 2107136-001AMS	SampType: MS	TestCoc	TestCode: ICPSCAN_S TestNo: SW6010D	Units: mg/Kg-dry	-dry	Prep Date: 8/2/2021	8/2/2021	RunNo: 53548	89	
Analyte	Result	Pol		SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	7150	0.451	22.57	7356	-911	75	125			S
Antimony	19.6	0.564	22.57	0	86.7	75	125			
Arsenic	24.4	0.564	22.57	4.242	89.3	75	125			
Barium	220	0.451	22.57	203.7	72.7	75	125			S
Beryllium	20.7	0.451	22.57	0	91.7	75	125			
Cadmium	21.4	0.451	22.57	0.3799	93.2	75	125			
Calcium	7320	0.564	22.57	4796	11200	75	125			S
Chromium	34.3	0.451	22.57	13.75	91.2	75	125			
Cobalt	18.3	0.451	22.57	0.9881	76.9	75	125			
Copper	54.0	0.451	22.57	27.51	117	75	125			
Iron	2600	0.451	22.57	5263	1510	75	125			S
Lead	588	0.451	22.57	333.1	-152	75	125			S
Magnesium	2670	0.451	22.57	1519	2080	75	125			S
Manganese	235	0.451	22.57	205.7	132	75	125			S
Nickel	32.1	0.451	22.57	13.29	83.4	75	125			
Potassium	1100	4.51	225.7	0.796	59.3	75	125			S
Selenium	18.1	0.564	22.57	0	80.4	22	125			
Silver	20.8	0.451	22.57	0	92.2	75	125			
Sodium	194	0.564	22.57	214.3	-91.5	75	125			S
Thallium	19.3	0.564	22.57	0	85.4	75	125			
Vanadium	44.9	0.451	22.57	16.94	124	75	125			
Zinc	284	0.451	22.57	253.0	136	75	125			တ

Qualifiers:

2107136 WO#:

05-Aug-21

Farmingdale, New York 11735 TEL: (631) 454-6100 FAX: (631) 454-8027 Website: www.American-Analytical.com

56 Toledo Street

American Analytical Laboratories, LLC.

	BatchID: 29400	
Alpha Analytical Labs	L2140168	
Client:	Project:	

Sample ID: 2107136-001AMSD Client ID: SB-1 (0-2)	SampType: MSD Batch ID: 29400	TestCoc	TestCode: ICPSCAN_S TestNo: SW6010D	Units: mg/Kg-dry		Prep Date: Analysis Date:	: 8/2/2021 : 8/3/2021		RunNo: 53548 SeqNo: 1081503	48	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	0229	0.408	20.38	7356	-3870	75	125	7150	8.49	20	S
Antimony	17.3	0.509	20.38	0	85.0	75	125	19.56	12.1	20	
Arsenic	22.2	0.509	20.38	4.242	88.3	75	125	24.40	9.29	20	
Barium	250	0.408	20.38	203.7	226	75	125	220.1	12.7	20	S
Beryllium	18.4	0.408	20.38	0	90.2	75	125	20.69	11.8	20	
Cadmium	19.1	0.408	20.38	0.3799	92.0	75	125	21.42	11.3	20	
Calcium	6240	0.509	20.38	4796	7080	75	125	7319	16.0	20	S
Chromium	31.0	0.408	20.38	13.75	84.8	75	125	34.33	10.1	20	
Cobalt	16.6	0.408	20.38	0.9881	76.4	75	125	18.34	10.3	20	
Copper	48.7	0.408	20.38	27.51	104	75	125	53.99	10.2	20	
Iron	2080	0.408	20.38	5263	-918	75	125	5604	68.6	20	S
Lead	350	0.408	20.38	333.1	81.4	75	125	298.8	15.7	20	
Magnesium	2210	0.408	20.38	1519	3390	75	125	2666	18.7	20	S
Manganese	214	0.408	20.38	205.7	40.5	75	125	235.4	9.54	20	S
Nickel	29.1	0.408	20.38	13.29	9.77	75	125	32.12	98.6	20	
Potassium	1010	4.08	203.8	0.796	20.6	75	125	1101	8.73	20	S
Selenium	15.6	0.509	20.38	0	76.8	75	125	18.14	14.8	20	
Silver	18.3	0.408	20.38	0	9.68	75	125	20.80	13.0	20	
Sodium	191	0.509	20.38	214.3	-115	75	125	193.7	1.43	20	S
Thallium	17.0	0.509	20.38	0	83.6	75	125	19.28	12.4	20	
Vanadium	39.4	0.408	20.38	16.94	110	75	125	44.91	13.2	20	
Zinc	262	0.408	20.38	253.0	44.7	75	125	283.7	7.93	20	တ

Qualifiers:

120

8

97.3

0

0.2000

0.0150

0.195

Mercury

QC SUMMARY REPORT

2107136

05-Aug-21

WO#:

56 Toledo Street Farmingdale, New York 11735 TEL: (631) 454-6100 FAX: (631) 454-8027 Website: www.American-Analytical.com

American Analytical Laboratories, LLC.

Client:	Alpha Analytical Labs	tical Labs					
Project:	L2140168					BatchID: 29401	29401
Sample ID: 2107 1	36-001AMS	Sample ID: 2107136-001AMS SampType: MS	TestCode: HG_S	Units: mg/Kg-dry	Prep Date: 8/2/2021	/2/2021	RunNo: 53552

Client ID:	Client ID: SB-1 (0-2)	Batch ID: 29401	TestN	o: SW7471B	TestNo: SW7471B SW7471B		Analysis Date: 8/3/2021	e: 8/3/202	_	SeqNo: 1081596	1596	
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Mercury		0.990	0.0327	0.4358	0.6056	88.3	75	125				٥
Sample ID	Sample ID: 2107136-001AMSD SampType: MSD	SampType: MSD	TestCod	TestCode: HG_S	Units: mg/Kg-dry	dry	Prep Date	Prep Date: 8/2/2021	_	RunNo: 53552	52	
Client ID:	Client ID: SB-1 (0-2)	Batch ID: 29401	TestN	TestNo: SW7471B	SW7471B		Analysis Date: 8/3/2021	e: 8/3/202	_	SeqNo: 1081597	1597	

Analyte	Result	PQL	SPK value	SPK value SPK Ref Val %	REC L	owLimit F	lighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Mercury	0.972	0.972 0.0340	0.4532	0.6056	80.9	75	125	0.9903	1.85	20 D	۵
Sample ID: MBS080221A Client ID: PBS	SampType: MBLK Batch ID: 29401	TestCoc TestN	TestCode: HG_S TestNo: SW7471B	stCode: HG_S Units: mg/Kg TestNo: SW7471B SW7471B	An	Prep Date: 8/2/2021 Analysis Date: 8/3/2021	8/2/202		RunNo: 53552 SeqNo: 1081609	.52 11609	

Mercury	ΩN	0.0150)
Sample ID: LCSS080221A	SampType: LCS	TestCode: HG_S	Units: mg/Kg	Prep Date: 8/2/2021	RunNo: 53552	3552	
Client ID: LCSS	Batch ID: 29401	TestNo: SW7471B SW7471B	SW7471B	Analysis Date: 8/3/2021	SeqNo: 1081610	081610	
Analyte	Result	POL SPK value SPK Ref Val		%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual

Qual

%RPD RPDLimit

%REC LowLimit HighLimit RPD Ref Val

SPK Ref Val

SPK value

PQL

Result

Analyte

covery outside accepted recovery
Spike Rec
S
RPD outside accepted recovery limits
R
Qualifiers:

ANALYTICAL REPORT

Lab Number: L2140476

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Alana Carroll Phone: (646) 606-2332

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Report Date: 08/04/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

 Lab Number:
 L2140476

 Report Date:
 08/04/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140476-01	SS-1	SOIL_VAPOR	BROOKLYN, NY	07/28/21 11:34	07/28/21
L2140476-02	SS-2	SOIL_VAPOR	BROOKLYN, NY	07/28/21 11:31	07/28/21
L2140476-03	SS-3	SOIL_VAPOR	BROOKLYN, NY	07/28/21 11:30	07/28/21
L2140476-04	SS-4	SOIL_VAPOR	BROOKLYN, NY	07/28/21 11:27	07/28/21
L2140476-05	SS-5	SOIL_VAPOR	BROOKLYN, NY	07/28/21 11:26	07/28/21

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on July 28, 2021. The canister certification results are provided as an addendum.

L2140476-01D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2140476-02D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2140476-02D2: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2140476-03D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2140476-04D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2140476-05D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG1530666-3 LCS recoveries for 3-chloropropene (136%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

Serial_No:08042116:42

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Case Narrative (continued)

The WG1531073-3 LCS recovery for bromoform (134%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/04/21

Christopher J. Anderson

AIR

07/28/21 11:34

Not Specified

07/28/21

Date Collected:

Date Received:

Field Prep:

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

SAMPLE RESULTS

Lab ID: L2140476-01 D

Client ID: SS-1

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil_Vapor
Anaytical Method: 48,TO-15
Analytical Date: 08/02/21 23:01

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	4.11		ND	20.3			20.54
Chloromethane	ND	4.11		ND	8.49			20.54
Freon-114	ND	4.11		ND	28.7			20.54
Vinyl chloride	ND	4.11		ND	10.5			20.54
1,3-Butadiene	ND	4.11		ND	9.09			20.54
Bromomethane	ND	4.11		ND	16.0			20.54
Chloroethane	ND	4.11		ND	10.8			20.54
Ethanol	ND	103		ND	194			20.54
Vinyl bromide	ND	4.11		ND	18.0			20.54
Acetone	ND	20.5		ND	48.7			20.54
Trichlorofluoromethane	ND	4.11		ND	23.1			20.54
Isopropanol	11.6	10.3		28.5	25.3			20.54
1,1-Dichloroethene	ND	4.11		ND	16.3			20.54
Tertiary butyl Alcohol	ND	10.3		ND	31.2			20.54
Methylene chloride	ND	10.3		ND	35.8			20.54
3-Chloropropene	ND	4.11		ND	12.9			20.54
Carbon disulfide	ND	4.11		ND	12.8			20.54
Freon-113	ND	4.11		ND	31.5			20.54
trans-1,2-Dichloroethene	ND	4.11		ND	16.3			20.54
1,1-Dichloroethane	ND	4.11		ND	16.6			20.54
Methyl tert butyl ether	ND	4.11		ND	14.8			20.54
2-Butanone	ND	10.3		ND	30.4			20.54
cis-1,2-Dichloroethene	ND	4.11		ND	16.3			20.54

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

SAMPLE RESULTS

Lab ID: L2140476-01 D

Client ID: SS-1

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:34

Date Received: 07/28/21
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	10.3		ND	37.1			20.54
Chloroform	33.0	4.11		161	20.1			20.54
Tetrahydrofuran	ND	10.3		ND	30.4			20.54
1,2-Dichloroethane	ND	4.11		ND	16.6			20.54
n-Hexane	ND	4.11		ND	14.5			20.54
1,1,1-Trichloroethane	ND	4.11		ND	22.4			20.54
Benzene	ND	4.11		ND	13.1			20.54
Carbon tetrachloride	ND	4.11		ND	25.9			20.54
Cyclohexane	ND	4.11		ND	14.1			20.54
1,2-Dichloropropane	ND	4.11		ND	19.0			20.54
Bromodichloromethane	ND	4.11		ND	27.5			20.54
1,4-Dioxane	ND	4.11		ND	14.8			20.54
Trichloroethene	16.1	4.11		86.5	22.1			20.54
2,2,4-Trimethylpentane	ND	4.11		ND	19.2			20.54
Heptane	ND	4.11		ND	16.8			20.54
cis-1,3-Dichloropropene	ND	4.11		ND	18.7			20.54
4-Methyl-2-pentanone	ND	10.3		ND	42.2			20.54
trans-1,3-Dichloropropene	ND	4.11		ND	18.7			20.54
1,1,2-Trichloroethane	ND	4.11		ND	22.4			20.54
Toluene	ND	4.11		ND	15.5			20.54
2-Hexanone	ND	4.11		ND	16.8			20.54
Dibromochloromethane	ND	4.11		ND	35.0			20.54
1,2-Dibromoethane	ND	4.11		ND	31.6			20.54
Tetrachloroethene	1200	4.11		8140	27.9			20.54
Chlorobenzene	ND	4.11		ND	18.9			20.54
Ethylbenzene	ND	4.11		ND	17.9			20.54

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

SAMPLE RESULTS

Lab ID: L2140476-01 D

Client ID: SS-1

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:34

Date Received: 07/28/21
Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
ND	8.22		ND	35.7			20.54
ND	4.11		ND	42.5			20.54
ND	4.11		ND	17.5			20.54
ND	4.11		ND	28.2			20.54
ND	4.11		ND	17.9			20.54
ND	4.11		ND	20.2			20.54
ND	4.11		ND	20.2			20.54
ND	4.11		ND	20.2			20.54
ND	4.11		ND	21.3			20.54
ND	4.11		ND	24.7			20.54
ND	4.11		ND	24.7			20.54
ND	4.11		ND	24.7			20.54
ND	4.11		ND	30.5			20.54
ND	4.11		ND	43.8			20.54
	Lab ND ND ND ND ND ND ND ND ND N	Results RL Lab ND 8.22 ND 4.11 ND 4.11	Results RL MDL Lab ND 8.22 ND 4.11 ND 4.11	Results RL MDL Results ND 8.22 ND ND 4.11 ND	Results RL MDL Results RL ND 8.22 ND 35.7 ND 4.11 ND 42.5 ND 4.11 ND 17.5 ND 4.11 ND 17.9 ND 4.11 ND 17.9 ND 4.11 ND 20.2 ND 4.11 ND 20.2 ND 4.11 ND 21.3 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 30.5	Results RL MDL Results RL MDL Lab ND 8.22 ND 35.7 ND 4.11 ND 42.5 ND 4.11 ND 17.5 ND 4.11 ND 28.2 ND 4.11 ND 17.9 ND 4.11 ND 20.2 ND 4.11 ND 20.2 ND 4.11 ND 21.3 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7	Results RL MDL Results RL MDL Qualifier Lab ND 8.22 ND 35.7 ND 4.11 ND 42.5 ND 4.11 ND 17.5 ND 4.11 ND 28.2 ND 4.11 ND 17.9 ND 4.11 ND 20.2 ND 4.11 ND 20.2 ND 4.11 ND 21.3 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7 ND 4.11 ND 24.7

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	66		60-140
Bromochloromethane	67		60-140
chlorobenzene-d5	76		60-140

Date Collected:

Date Received:

Field Prep:

L2140476

08/04/21

07/28/21 11:31

Not Specified

07/28/21

Project Name:340 MYRTLE AVENUELab Number:Project Number:340 MYRTLE AVENUEReport Date:

SAMPLE RESULTS

Lab ID: L2140476-02 D

Client ID: SS-2

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/02/21 23:38

Analyst: RY

		ppbV		ug/m3			_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Dichlorodifluoromethane	ND	64.9		ND	321			324.7
Chloromethane	ND	64.9		ND	134			324.7
Freon-114	ND	64.9		ND	454			324.7
Vinyl chloride	ND	64.9		ND	166			324.7
1,3-Butadiene	ND	64.9		ND	144			324.7
Bromomethane	ND	64.9		ND	252			324.7
Chloroethane	ND	64.9		ND	171			324.7
Ethanol	ND	1620		ND	3050			324.7
Vinyl bromide	ND	64.9		ND	284			324.7
Acetone	ND	325		ND	772			324.7
Trichlorofluoromethane	ND	64.9		ND	365			324.7
Isopropanol	ND	162		ND	398			324.7
1,1-Dichloroethene	ND	64.9		ND	257			324.7
Tertiary butyl Alcohol	ND	162.		ND	491			324.7
Methylene chloride	ND	162.		ND	563			324.7
3-Chloropropene	ND	64.9		ND	203			324.7
Carbon disulfide	ND	64.9		ND	202			324.7
Freon-113	ND	64.9		ND	497			324.7
trans-1,2-Dichloroethene	ND	64.9		ND	257			324.7
1,1-Dichloroethane	ND	64.9		ND	263			324.7
Methyl tert butyl ether	ND	64.9		ND	234			324.7
2-Butanone	ND	162.		ND	478			324.7
cis-1,2-Dichloroethene	ND	64.9		ND	257			324.7

Project Name: 340 MYRTLE AVENUE Project Number: 340 MYRTLE AVENUE Lab Number: L2140476

Report Date: 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-02 D

Client ID: SS-2

Sample Location: BROOKLYN, NY Date Collected: 07/28/21 11:31

Date Received: 07/28/21 Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	162.		ND	584			324.7
Chloroform	83.1	64.9		406	317			324.7
Tetrahydrofuran	ND	162.		ND	478			324.7
1,2-Dichloroethane	ND	64.9		ND	263			324.7
n-Hexane	ND	64.9		ND	229			324.7
1,1,1-Trichloroethane	ND	64.9		ND	354			324.7
Benzene	ND	64.9		ND	207			324.7
Carbon tetrachloride	ND	64.9		ND	408			324.7
Cyclohexane	ND	64.9		ND	223			324.7
1,2-Dichloropropane	ND	64.9		ND	300			324.7
Bromodichloromethane	ND	64.9		ND	435			324.7
1,4-Dioxane	ND	64.9		ND	234			324.7
Trichloroethene	121	64.9		650	349			324.7
2,2,4-Trimethylpentane	ND	64.9		ND	303			324.7
Heptane	ND	64.9		ND	266			324.7
cis-1,3-Dichloropropene	ND	64.9		ND	295			324.7
4-Methyl-2-pentanone	ND	162.		ND	664			324.7
trans-1,3-Dichloropropene	ND	64.9		ND	295			324.7
1,1,2-Trichloroethane	ND	64.9		ND	354			324.7
Toluene	ND	64.9		ND	245			324.7
2-Hexanone	ND	64.9		ND	266			324.7
Dibromochloromethane	ND	64.9		ND	553			324.7
1,2-Dibromoethane	ND	64.9		ND	499			324.7
Tetrachloroethene	41300	64.9		280000	440		E	324.7
Chlorobenzene	ND	64.9		ND	299			324.7
Ethylbenzene	ND	64.9		ND	282			324.7

Project Name: 340 MYRTLE AVENUE Project Number: 340 MYRTLE AVENUE Lab Number: L2140476 Report Date:

08/04/21

SAMPLE RESULTS

Lab ID: L2140476-02 D

Client ID: SS-2

Sample Location: BROOKLYN, NY Date Collected: 07/28/21 11:31

Date Received: 07/28/21 Field Prep: Not Specified

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
ND	130.		ND	565			324.7
ND	64.9		ND	671			324.7
ND	64.9		ND	276			324.7
ND	64.9		ND	446			324.7
ND	64.9		ND	282			324.7
ND	64.9		ND	319			324.7
ND	64.9		ND	319			324.7
ND	64.9		ND	319			324.7
ND	64.9		ND	336			324.7
ND	64.9		ND	390			324.7
ND	64.9		ND	390			324.7
ND	64.9		ND	390			324.7
ND	64.9		ND	482			324.7
ND	64.9		ND	692			324.7
	ND N	Results RL Lab 130. ND 64.9 ND 64.9	Results RL MDL Lab ND 130. ND 64.9 ND 64.9	Results RL MDL Results ND 130. ND ND 64.9 ND	Results RL MDL Results RL Lab ND 130. ND 565 ND 64.9 ND 671 ND 64.9 ND 276 ND 64.9 ND 446 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 336 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 482	Results RL MDL Results RL MDL Lab ND 130. ND 565 ND 64.9 ND 671 ND 64.9 ND 276 ND 64.9 ND 446 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 336 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 <tr< td=""><td>Results RL MDL Results RL MDL Qualifier Lab ND 130. ND 565 ND 64.9 ND 671 ND 64.9 ND 276 ND 64.9 ND 446 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 336 ND 64.9 ND 336 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 6</td></tr<>	Results RL MDL Results RL MDL Qualifier Lab ND 130. ND 565 ND 64.9 ND 671 ND 64.9 ND 276 ND 64.9 ND 446 ND 64.9 ND 319 ND 64.9 ND 319 ND 64.9 ND 336 ND 64.9 ND 336 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 64.9 ND 390 ND 6

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	66		60-140
Bromochloromethane	67		60-140
chlorobenzene-d5	75		60-140

L2140476

Project Name: 340 MYRTLE AVENUE Lab Number:

Project Number: 340 MYRTLE AVENUE Report Date: 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-02 D2 Date Collected: 07/28/21 11:31

Client ID: SS-2 Date Received: 07/28/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/03/21 07:49

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Tetrachloroethene	51700	161		351000	1090			806.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	66		60-140
Bromochloromethane	69		60-140
chlorobenzene-d5	77		60-140

L2140476

07/28/21 11:30

Not Specified

07/28/21

Project Name:340 MYRTLE AVENUELab Number:Project Number:340 MYRTLE AVENUEReport Date:

Report Date: 08/04/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2140476-03 D

Client ID: SS-3

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/03/21 00:14

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	ND	43.9		ND	217			219.3
Chloromethane	ND	43.9		ND	90.7			219.3
Freon-114	ND	43.9		ND	307			219.3
Vinyl chloride	ND	43.9		ND	112			219.3
1,3-Butadiene	ND	43.9		ND	97.1			219.3
Bromomethane	ND	43.9		ND	170			219.3
Chloroethane	ND	43.9		ND	116			219.3
Ethanol	ND	1100		ND	2070			219.3
Vinyl bromide	ND	43.9		ND	192			219.3
Acetone	ND	219		ND	520			219.3
Trichlorofluoromethane	ND	43.9		ND	247			219.3
Isopropanol	ND	110		ND	270			219.3
1,1-Dichloroethene	ND	43.9		ND	174			219.3
Tertiary butyl Alcohol	ND	110.		ND	333			219.3
Methylene chloride	ND	110.		ND	382			219.3
3-Chloropropene	ND	43.9		ND	137			219.3
Carbon disulfide	ND	43.9		ND	137			219.3
Freon-113	ND	43.9		ND	336			219.3
trans-1,2-Dichloroethene	51.8	43.9		205	174			219.3
1,1-Dichloroethane	ND	43.9		ND	178			219.3
Methyl tert butyl ether	ND	43.9		ND	158			219.3
2-Butanone	ND	110.		ND	324			219.3
cis-1,2-Dichloroethene	729	43.9		2890	174			219.3

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

 Lab Number:
 L2140476

 Report Date:
 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-03 D

Client ID: SS-3

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:30

Date Received: 07/28/21
Field Prep: Not Specified

Campio Dopuii		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Ethyl Acetate	ND	110.		ND	396			219.3
Chloroform	ND	43.9		ND	214			219.3
Tetrahydrofuran	ND	110.		ND	324			219.3
1,2-Dichloroethane	ND	43.9		ND	178			219.3
n-Hexane	ND	43.9		ND	155			219.3
1,1,1-Trichloroethane	ND	43.9		ND	240			219.3
Benzene	ND	43.9		ND	140			219.3
Carbon tetrachloride	ND	43.9		ND	276			219.3
Cyclohexane	ND	43.9		ND	151			219.3
1,2-Dichloropropane	ND	43.9		ND	203			219.3
Bromodichloromethane	ND	43.9		ND	294			219.3
1,4-Dioxane	ND	43.9		ND	158			219.3
Trichloroethene	262	43.9		1410	236			219.3
2,2,4-Trimethylpentane	ND	43.9		ND	205			219.3
Heptane	ND	43.9		ND	180			219.3
cis-1,3-Dichloropropene	ND	43.9		ND	199			219.3
4-Methyl-2-pentanone	ND	110.		ND	451			219.3
trans-1,3-Dichloropropene	ND	43.9		ND	199			219.3
1,1,2-Trichloroethane	ND	43.9		ND	240			219.3
Toluene	ND	43.9		ND	165			219.3
2-Hexanone	ND	43.9		ND	180			219.3
Dibromochloromethane	ND	43.9		ND	374			219.3
1,2-Dibromoethane	ND	43.9		ND	337			219.3
Tetrachloroethene	11400	43.9		77300	298			219.3
Chlorobenzene	ND	43.9		ND	202			219.3
Ethylbenzene	ND	43.9		ND	191			219.3

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Lab Number: L2140476

Report Date: 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-03 D

Client ID: SS-3

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:30

Date Received: 07/28/21
Field Prep: Not Specified

ppbV			ug/m3			Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
ND	87.7		ND	381			219.3
ND	43.9		ND	454			219.3
ND	43.9		ND	187			219.3
ND	43.9		ND	301			219.3
ND	43.9		ND	191			219.3
ND	43.9		ND	216			219.3
ND	43.9		ND	216			219.3
ND	43.9		ND	216			219.3
ND	43.9		ND	227			219.3
ND	43.9		ND	264			219.3
ND	43.9		ND	264			219.3
ND	43.9		ND	264			219.3
ND	43.9		ND	326			219.3
ND	43.9		ND	468			219.3
	ND N	Results RL Lab ND 87.7 ND 43.9 ND 43.9	Results RL MDL Lab ND 87.7 ND 43.9 ND 43.9	Results RL MDL Results ND 87.7 ND ND 43.9 ND	Results RL MDL Results RL Lab ND 87.7 ND 381 ND 43.9 ND 454 ND 43.9 ND 187 ND 43.9 ND 301 ND 43.9 ND 191 ND 43.9 ND 216 ND 43.9 ND 216 ND 43.9 ND 227 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 326	Results RL MDL Results RL MDL Lab ND 87.7 ND 381 ND 43.9 ND 454 ND 43.9 ND 187 ND 43.9 ND 301 ND 43.9 ND 191 ND 43.9 ND 216 ND 43.9 ND 216 ND 43.9 ND 227 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 <tr< td=""><td>Results RL MDL Results RL MDL Qualifier Lab ND 87.7 ND 381 ND 43.9 ND 454 ND 43.9 ND 187 ND 43.9 ND 301 ND 43.9 ND 191 ND 43.9 ND 216 ND 43.9 ND 216 ND 43.9 ND 227 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.</td></tr<>	Results RL MDL Results RL MDL Qualifier Lab ND 87.7 ND 381 ND 43.9 ND 454 ND 43.9 ND 187 ND 43.9 ND 301 ND 43.9 ND 191 ND 43.9 ND 216 ND 43.9 ND 216 ND 43.9 ND 227 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.9 ND 264 ND 43.

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	61		60-140
Bromochloromethane	63		60-140
chlorobenzene-d5	73		60-140

07/28/21 11:27

Not Specified

07/28/21

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

 Lab Number:
 L2140476

 Report Date:
 08/04/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2140476-04 D

Client ID: SS-4

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/03/21 08:26

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	6.49		ND	32.1			32.47
Chloromethane	ND	6.49		ND	13.4			32.47
Freon-114	ND	6.49		ND	45.4			32.47
Vinyl chloride	ND	6.49		ND	16.6			32.47
1,3-Butadiene	ND	6.49		ND	14.4			32.47
Bromomethane	ND	6.49		ND	25.2			32.47
Chloroethane	ND	6.49		ND	17.1			32.47
Ethanol	ND	162		ND	305			32.47
Vinyl bromide	ND	6.49		ND	28.4			32.47
Acetone	ND	32.5		ND	77.2			32.47
Trichlorofluoromethane	ND	6.49		ND	36.5			32.47
Isopropanol	ND	16.2		ND	39.8			32.47
1,1-Dichloroethene	ND	6.49		ND	25.7			32.47
Tertiary butyl Alcohol	ND	16.2		ND	49.1			32.47
Methylene chloride	ND	16.2		ND	56.3			32.47
3-Chloropropene	ND	6.49		ND	20.3			32.47
Carbon disulfide	ND	6.49		ND	20.2			32.47
Freon-113	ND	6.49		ND	49.7			32.47
trans-1,2-Dichloroethene	ND	6.49		ND	25.7			32.47
1,1-Dichloroethane	ND	6.49		ND	26.3			32.47
Methyl tert butyl ether	ND	6.49		ND	23.4			32.47
2-Butanone	ND	16.2		ND	47.8			32.47
cis-1,2-Dichloroethene	ND	6.49		ND	25.7			32.47

L2140476

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Report Date: 08/04/21

Lab Number:

SAMPLE RESULTS

Lab ID: L2140476-04 D

Client ID: SS-4

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:27

Date Received: 07/28/21
Field Prep: Not Specified

• •		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	16.2		ND	58.4			32.47
Chloroform	ND	6.49		ND	31.7			32.47
Tetrahydrofuran	ND	16.2		ND	47.8			32.47
1,2-Dichloroethane	ND	6.49		ND	26.3			32.47
n-Hexane	ND	6.49		ND	22.9			32.47
1,1,1-Trichloroethane	ND	6.49		ND	35.4			32.47
Benzene	ND	6.49		ND	20.7			32.47
Carbon tetrachloride	ND	6.49		ND	40.8			32.47
Cyclohexane	ND	6.49		ND	22.3			32.47
1,2-Dichloropropane	ND	6.49		ND	30.0			32.47
Bromodichloromethane	ND	6.49		ND	43.5			32.47
1,4-Dioxane	ND	6.49		ND	23.4			32.47
Trichloroethene	7.11	6.49		38.2	34.9			32.47
2,2,4-Trimethylpentane	ND	6.49		ND	30.3			32.47
Heptane	ND	6.49		ND	26.6			32.47
cis-1,3-Dichloropropene	ND	6.49		ND	29.5			32.47
4-Methyl-2-pentanone	ND	16.2		ND	66.4			32.47
trans-1,3-Dichloropropene	ND	6.49		ND	29.5			32.47
1,1,2-Trichloroethane	ND	6.49		ND	35.4			32.47
Toluene	ND	6.49		ND	24.5			32.47
2-Hexanone	ND	6.49		ND	26.6			32.47
Dibromochloromethane	ND	6.49		ND	55.3			32.47
1,2-Dibromoethane	ND	6.49		ND	49.9			32.47
Tetrachloroethene	1620	6.49		11000	44.0			32.47
Chlorobenzene	ND	6.49		ND	29.9			32.47
Ethylbenzene	ND	6.49		ND	28.2			32.47

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

Lab Number: L2140476

Report Date: 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-04 D

Client ID: SS-4

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:27

Date Received: 07/28/21
Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
p/m-Xylene	ND	13.0		ND	56.5			32.47
Bromoform	ND	6.49		ND	67.1			32.47
Styrene	ND	6.49		ND	27.6			32.47
1,1,2,2-Tetrachloroethane	ND	6.49		ND	44.6			32.47
o-Xylene	ND	6.49		ND	28.2			32.47
4-Ethyltoluene	ND	6.49		ND	31.9			32.47
1,3,5-Trimethylbenzene	ND	6.49		ND	31.9			32.47
1,2,4-Trimethylbenzene	ND	6.49		ND	31.9			32.47
Benzyl chloride	ND	6.49		ND	33.6			32.47
1,3-Dichlorobenzene	ND	6.49		ND	39.0			32.47
1,4-Dichlorobenzene	ND	6.49		ND	39.0			32.47
1,2-Dichlorobenzene	ND	6.49		ND	39.0			32.47
1,2,4-Trichlorobenzene	ND	6.49		ND	48.2			32.47
Hexachlorobutadiene	ND	6.49		ND	69.2			32.47

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	61		60-140
Bromochloromethane	63		60-140
chlorobenzene-d5	74		60-140

07/28/21 11:26

Not Specified

07/28/21

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

 Lab Number:
 L2140476

 Report Date:
 08/04/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2140476-05 D

Client ID: SS-5

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/03/21 19:36

Analyst: TS

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
eld Lab							
0.635	0.500		3.14	2.47			2.5
ND	0.500		ND	1.03			2.5
ND	0.500		ND	3.49			2.5
ND	0.500		ND	1.28			2.5
ND	0.500		ND	1.11			2.5
ND	0.500		ND	1.94			2.5
ND	0.500		ND	1.32			2.5
ND	12.5		ND	23.6			2.5
ND	0.500		ND	2.19			2.5
3.60	2.50		8.55	5.94			2.5
0.528	0.500		2.97	2.81			2.5
7.24	1.25		17.8	3.07			2.5
ND	0.500		ND	1.98			2.5
ND	1.25		ND	3.79			2.5
ND	1.25		ND	4.34			2.5
ND	0.500		ND	1.57			2.5
1.76	0.500		5.48	1.56			2.5
ND	0.500		ND	3.83			2.5
ND	0.500		ND	1.98			2.5
ND	0.500		ND	2.02			2.5
ND	0.500		ND	1.80			2.5
ND	1.25		ND	3.69			2.5
ND	0.500		ND	1.98			2.5
	0.635 ND ND ND ND ND ND ND ND ND N	Results RL eld Lab 0.635 0.500 ND 0.500 3.60 2.50 0.528 0.500 ND 0.500 ND 1.25 ND 1.25 ND 0.500 ND 0.500	Results RL MDL eld Lab 0.635 0.500 ND 0.500 3.60 2.50 0.528 0.500 ND 0.500 ND 1.25 ND 1.25 ND 0.500 ND 0.	Results RL MDL Results 8dd Lab 0.635 0.500 3.14 ND 0.500 ND 3.60 2.50 8.55 0.528 0.500 ND ND 0.500 ND ND 1.25 ND ND 1.25 ND ND 0.500 ND ND 0.500 ND ND 0.500 ND ND 0.500 ND ND 0.500	Results RL MDL Results RL eld Lab 0.635 0.500 3.14 2.47 ND 0.500 ND 1.03 ND 0.500 ND 3.49 ND 0.500 ND 1.28 ND 0.500 ND 1.94 ND 0.500 ND 1.94 ND 0.500 ND 1.32 ND 0.500 ND 1.32 ND 0.500 ND 2.36 ND 0.500 ND 2.19 3.60 2.50 8.55 5.94 0.528 0.500 8.55 5.94 0.528 0.500 ND 1.98 ND 1.25 ND 1.98 ND 1.25 ND 4.34	Results RL MDL Results RL MDL Ald Lab <	Results RL MDL Results RL MDL Qualifier Bid Lab 0.635 0.500 3.14 2.47 ND 0.500 ND 1.03 ND 0.500 ND 3.49 ND 0.500 ND 1.28 ND 0.500 ND 1.11 ND 0.500 ND 1.94 ND 0.500 ND 1.32 ND 0.500 ND 23.6 ND 0.500 ND 2.19 ND 0.500 8.55 5.94 ND 0.528 0.500 17.8 3.07 <

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

 Lab Number:
 L2140476

 Report Date:
 08/04/21

SAMPLE RESULTS

Lab ID: L2140476-05 D

Client ID: SS-5

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:26

Date Received: 07/28/21
Field Prep: Not Specified

оатріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.25		ND	4.50			2.5
Chloroform	1.07	0.500		5.23	2.44			2.5
Tetrahydrofuran	ND	1.25		ND	3.69			2.5
1,2-Dichloroethane	ND	0.500		ND	2.02			2.5
n-Hexane	ND	0.500		ND	1.76			2.5
1,1,1-Trichloroethane	ND	0.500		ND	2.73			2.5
Benzene	ND	0.500		ND	1.60			2.5
Carbon tetrachloride	ND	0.500		ND	3.15			2.5
Cyclohexane	ND	0.500		ND	1.72			2.5
1,2-Dichloropropane	ND	0.500		ND	2.31			2.5
Bromodichloromethane	ND	0.500		ND	3.35			2.5
1,4-Dioxane	ND	0.500		ND	1.80			2.5
Trichloroethene	ND	0.500		ND	2.69			2.5
2,2,4-Trimethylpentane	ND	0.500		ND	2.34			2.5
Heptane	ND	0.500		ND	2.05			2.5
cis-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
4-Methyl-2-pentanone	ND	1.25		ND	5.12			2.5
trans-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
1,1,2-Trichloroethane	ND	0.500		ND	2.73			2.5
Toluene	1.62	0.500		6.10	1.88			2.5
2-Hexanone	ND	0.500		ND	2.05			2.5
Dibromochloromethane	ND	0.500		ND	4.26			2.5
1,2-Dibromoethane	ND	0.500		ND	3.84			2.5
Tetrachloroethene	185	0.500		1250	3.39			2.5
Chlorobenzene	ND	0.500		ND	2.30			2.5
Ethylbenzene	ND	0.500		ND	2.17			2.5

L2140476

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

Report Date: 08/04/21

Lab Number:

SAMPLE RESULTS

Lab ID: L2140476-05 D

Client ID: SS-5

Sample Location: BROOKLYN, NY

Date Collected: 07/28/21 11:26

Date Received: 07/28/21
Field Prep: Not Specified

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
_ab							
ND	1.00		ND	4.34			2.5
ND	0.500		ND	5.17			2.5
ND	0.500		ND	2.13			2.5
ND	0.500		ND	3.43			2.5
ND	0.500		ND	2.17			2.5
ND	0.500		ND	2.46			2.5
ND	0.500		ND	2.46			2.5
ND	0.500		ND	2.46			2.5
ND	0.500		ND	2.59			2.5
ND	0.500		ND	3.01			2.5
0.712	0.500		4.28	3.01			2.5
ND	0.500		ND	3.01			2.5
ND	0.500		ND	3.71			2.5
ND	0.500		ND	5.33			2.5
	ND N	Results RL .ab ND 1.00 ND 0.500 ND 0.500	Results RL MDL Lab ND 1.00 ND 0.500 ND 0.500	Results RL MDL Results .ab	Results RL MDL Results RL AB ND ND 4.34 ND 0.500 ND 5.17 ND 0.500 ND 2.13 ND 0.500 ND 3.43 ND 0.500 ND 2.17 ND 0.500 ND 2.46 ND 0.500 ND 2.46 ND 0.500 ND 2.59 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.71	Results RL MDL Results RL MDL Lab ND 1.00 ND 4.34 ND 0.500 ND 5.17 ND 0.500 ND 2.13 ND 0.500 ND 3.43 ND 0.500 ND 2.17 ND 0.500 ND 2.46 ND 0.500 ND 2.46 ND 0.500 ND 2.59 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.71 <	Results RL MDL Results RL MDL Qualifier Lab ND 1.00 ND 4.34 ND 0.500 ND 5.17 ND 0.500 ND 2.13 ND 0.500 ND 3.43 ND 0.500 ND 2.17 ND 0.500 ND 2.46 ND 0.500 ND 2.46 ND 0.500 ND 2.59 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND 0.500 ND 3.01 ND

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	90		60-140

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/02/21 14:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01-	-04 Batch:	WG15306	666-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/02/21 14:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01-	·04 Batch	n: WG15306	666-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/02/21 14:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	·04 Batcl	n: WG15306	666-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/03/21 14:32

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 05	Batch:	WG1531073-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/03/21 14:32

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 05	Batch:	WG1531073-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/03/21 14:32

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	le(s): 05	Batch:	WG1531073-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	01-04	Batch: WG153066	66-3				
Dichlorodifluoromethane	78		-		70-130	-		
Chloromethane	90		-		70-130	-		
Freon-114	86		-		70-130	-		
Vinyl chloride	92		-		70-130	-		
1,3-Butadiene	94		-		70-130	-		
Bromomethane	91		-		70-130	-		
Chloroethane	89		-		70-130	-		
Ethanol	82		-		40-160	-		
Vinyl bromide	92		-		70-130	-		
Acetone	99		-		40-160	-		
Trichlorofluoromethane	117		-		70-130	-		
Isopropanol	92		-		40-160	-		
1,1-Dichloroethene	118		-		70-130	-		
Tertiary butyl Alcohol	105		-		70-130	-		
Methylene chloride	127		-		70-130	-		
3-Chloropropene	136	Q	-		70-130	-		
Carbon disulfide	104		-		70-130	-		
Freon-113	119		-		70-130	-		
trans-1,2-Dichloroethene	106		-		70-130	-		
1,1-Dichloroethane	108		-		70-130	-		
Methyl tert butyl ether	101		-		70-130	-		
2-Butanone	111		-		70-130	-		
cis-1,2-Dichloroethene	110		-		70-130	-		

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04	Batch: WG153066	66-3				
Ethyl Acetate	115		-		70-130	-		
Chloroform	101		-		70-130	-		
Tetrahydrofuran	111		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
n-Hexane	106		-		70-130	-		
1,1,1-Trichloroethane	105		-		70-130	-		
Benzene	100		-		70-130	-		
Carbon tetrachloride	113		-		70-130	-		
Cyclohexane	107		-		70-130	-		
1,2-Dichloropropane	114		-		70-130	-		
Bromodichloromethane	105		-		70-130	-		
1,4-Dioxane	89		-		70-130	-		
Trichloroethene	110		-		70-130	-		
2,2,4-Trimethylpentane	109		-		70-130	-		
Heptane	116		-		70-130	-		
cis-1,3-Dichloropropene	114		-		70-130	-		
4-Methyl-2-pentanone	119		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	113		-		70-130	-		
Toluene	105		-		70-130	-		
2-Hexanone	73		-		70-130	-		
Dibromochloromethane	122		-		70-130	-		
1,2-Dibromoethane	108		-		70-130	-		

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number:

L2140476

08/04/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04	Batch: WG15306	666-3				
Tetrachloroethene	106		-		70-130	-		
Chlorobenzene	105		-		70-130	-		
Ethylbenzene	108		-		70-130	-		
p/m-Xylene	107		-		70-130	-		
Bromoform	128		-		70-130	-		
Styrene	106		-		70-130	-		
1,1,2,2-Tetrachloroethane	114		-		70-130	-		
o-Xylene	107		-		70-130	-		
4-Ethyltoluene	103		-		70-130	-		
1,3,5-Trimethylbenzene	105		-		70-130	-		
1,2,4-Trimethylbenzene	108		-		70-130	-		
Benzyl chloride	138	Q	-		70-130	-		
1,3-Dichlorobenzene	109		-		70-130	-		
1,4-Dichlorobenzene	103		-		70-130	-		
1,2-Dichlorobenzene	107		-		70-130	-		
1,2,4-Trichlorobenzene	108		-		70-130	-		
Hexachlorobutadiene	104		-		70-130	-		

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	05 Batch	: WG1531073-3					
Dichlorodifluoromethane	87		-		70-130	-		
Chloromethane	90		-		70-130	-		
Freon-114	92		-		70-130	-		
Vinyl chloride	88		-		70-130	-		
1,3-Butadiene	91		-		70-130	-		
Bromomethane	96		-		70-130	-		
Chloroethane	92		-		70-130	-		
Ethanol	96		-		40-160	-		
Vinyl bromide	96		-		70-130	-		
Acetone	71		-		40-160	-		
Trichlorofluoromethane	96		-		70-130	-		
Isopropanol	67		-		40-160	-		
1,1-Dichloroethene	97		-		70-130	-		
Tertiary butyl Alcohol	81		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	95		-		70-130	-		
Carbon disulfide	92		-		70-130	-		
Freon-113	100		-		70-130	-		
trans-1,2-Dichloroethene	93		-		70-130	-		
1,1-Dichloroethane	94		-		70-130	-		
Methyl tert butyl ether	84		-		70-130	-		
2-Butanone	90		-		70-130	-		
cis-1,2-Dichloroethene	106		-		70-130	-		

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Ethyl Acetate 100 - 70-130 - 10-130	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Chloroform 112 - 70-130 - Tetrahydrofuran 91 - 70-130 - 1.2-Dichloroethane 104 - 70-130 - n-Hexane 106 - 70-130 - 1.1,1-Trichloroethane 112 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - 1.2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - 1,4-Dioxane 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - 4-Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - t	Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	: 05 Bato	ch: WG1531073-3					
Tetrahydrofuran 91 - 70-130 - 1,2-Dichloroethane 104 - 70-130 - n-Hexane 106 - 70-130 - 1,1,1-Trichloroethane 112 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - Cyclohoropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - 1,4-Dioxane 106 - 70-130 - 1,4-Dioxane 106 - 70-130 - Heptane 106 - 70-130 - 4-Hetane 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 4-Methyl-2-pentanone </td <td>Ethyl Acetate</td> <td>100</td> <td></td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td></td>	Ethyl Acetate	100		-		70-130	-		
1,2-Dichloroethane 104 - 70-130 - n-Hexane 106 - 70-130 - 1,1,1-Trichloroethane 112 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - 1,4-Dioxane 106 - 70-130 - 17richloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 1,1,2-Trichlo	Chloroform	112		-		70-130	-		
n-Hexane 106 - 70-130 - 1,1,1-Trichloroethane 112 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - 1,4-Dioxane 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - 4-Extrimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - <td< td=""><td>Tetrahydrofuran</td><td>91</td><td></td><td>-</td><td></td><td>70-130</td><td>-</td><td></td><td></td></td<>	Tetrahydrofuran	91		-		70-130	-		
1,1,1-Trichloroethane 112 - 70-130 - Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - 1,4-Dioxane 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - 4-Eptane 105 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - 4-Methyl-2-pentanone 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - 70-luene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochlo	1,2-Dichloroethane	104		-		70-130	-		
Benzene 98 - 70-130 - Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	n-Hexane	106		-		70-130	-		
Carbon tetrachloride 129 - 70-130 - Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	1,1,1-Trichloroethane	112		-		70-130	-		
Cyclohexane 98 - 70-130 - 1,2-Dichloropropane 102 - 70-130 - Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	Benzene	98		-		70-130	-		
1,2-Dichloropropane 102	Carbon tetrachloride	129		-		70-130	-		
Bromodichloromethane 118 - 70-130 - 1,4-Dioxane 104 - 70-130 - Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - 70-luene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	Cyclohexane	98		-		70-130	-		
1,4-Dioxane 104 - 70-130 - Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	1,2-Dichloropropane	102		-		70-130	-		
Trichloroethene 106 - 70-130 - 2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	Bromodichloromethane	118		-		70-130	-		
2,2,4-Trimethylpentane 106 - 70-130 - Heptane 105 - 70-130 - cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	1,4-Dioxane	104		-		70-130	-		
Heptane 105 - 70-130 -	Trichloroethene	106		-		70-130	-		
cis-1,3-Dichloropropene 106 - 70-130 - 4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	2,2,4-Trimethylpentane	106		-		70-130	-		
4-Methyl-2-pentanone 106 - 70-130 - trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	Heptane	105		-		70-130	-		
trans-1,3-Dichloropropene 94 - 70-130 - 1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	cis-1,3-Dichloropropene	106		-		70-130	-		
1,1,2-Trichloroethane 106 - 70-130 - Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	4-Methyl-2-pentanone	106		-		70-130	-		
Toluene 95 - 70-130 - 2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -		94		-		70-130	-		
2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	1,1,2-Trichloroethane	106		-		70-130	-		
2-Hexanone 97 - 70-130 - Dibromochloromethane 123 - 70-130 -	Toluene	95		-		70-130	-		
	2-Hexanone	97		-		70-130	-		
1,2-Dibromoethane 100 - 70-130 -	Dibromochloromethane	123		-		70-130	-		
	1,2-Dibromoethane	100		-		70-130	-		

Project Name: 340 MYRTLE AVENUE Lab Number: L2140476

Project Number: 340 MYRTLE AVENUE Report Date: 08/04/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	05 E	Batch: WG1531073-3					
Tetrachloroethene	96		-		70-130	-		
Chlorobenzene	98		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	102		-		70-130	-		
Bromoform	134	Q	-		70-130	-		
Styrene	101		-		70-130	-		
1,1,2,2-Tetrachloroethane	107		-		70-130	-		
o-Xylene	107		-		70-130	-		
4-Ethyltoluene	103		-		70-130	-		
1,3,5-Trimethylbenzene	100		-		70-130	-		
1,2,4-Trimethylbenzene	111		-		70-130	-		
Benzyl chloride	123		-		70-130	-		
1,3-Dichlorobenzene	114		-		70-130	-		
1,4-Dichlorobenzene	114		-		70-130	-		
1,2-Dichlorobenzene	118		-		70-130	-		
1,2,4-Trichlorobenzene	130		-		70-130	-		
Hexachlorobutadiene	123		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Parameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Qual Limits	i
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s): 05	QC Batch ID: WG1531073-5	QC Sample:	L2140476-05	Client ID: SS-5	
Dichlorodifluoromethane	0.635	0.608	ppbV	4	25	
Chloromethane	ND	ND	ppbV	NC	25	
Freon-114	ND	ND	ppbV	NC	25	
Vinyl chloride	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethanol	ND	ND	ppbV	NC	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	3.60	3.70	ppbV	3	25	
Trichlorofluoromethane	0.528	0.552	ppbV	4	25	
Isopropanol	7.24	7.40	ppbV	2	25	
1,1-Dichloroethene	ND	ND	ppbV	NC	25	
Tertiary butyl Alcohol	ND	ND	ppbV	NC	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	1.76	1.83	ppbV	4	25	
Freon-113	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s): 05 QC Ba	atch ID: WG1531073-5	QC Sample: L2	140476-05	Client ID: SS-5
2-Butanone	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	1.07	1.08	ppbV	1	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140476

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s): 05 QC E	Batch ID: WG1531073-5	QC Sample: L2	2140476-05	Client ID: SS-5
Toluene	1.62	1.68	ppbV	4	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	185	189	ppbV	2	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	0.712	0.745	ppbV	5	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Lab Number: L2140476

Project Number: 340 MYRTLE AVENUE Report Date: 08/04/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2140476-01	SS-1	01878	SV20	07/28/21	359428		-	-	-	Pass	16.7	15.4	8
L2140476-01	SS-1	2688	2.7L Can	07/28/21	359428	L2138920-02	Pass	-29.0	-9.1	-	-	-	-
L2140476-02	SS-2	0851	SV20	07/28/21	359428		-	-	-	Pass	19.2	17.4	10
L2140476-02	SS-2	2825	2.7L Can	07/28/21	359428	L2138920-02	Pass	-29.0	-7.2	-	-	-	-
L2140476-03	SS-3	01093	SV20	07/28/21	359428		-	-	-	Pass	19.2	18.2	5
L2140476-03	SS-3	3405	2.7L Can	07/28/21	359428	L2138920-02	Pass	-29.0	-6.8	-	-	-	-
L2140476-04	SS-4	01346	SV20	07/28/21	359428		-	-	-	Pass	18.0	17.3	4
L2140476-04	SS-4	2238	2.7L Can	07/28/21	359428	L2138920-02	Pass	-29.0	-7.4	-	-	-	-
L2140476-05	SS-5	01935	SV20	07/28/21	359428		-	-	-	Pass	18.2	17.3	5
L2140476-05	SS-5	3186	2.7L Can	07/28/21	359428	L2138920-02	Pass	-28.4	-7.1	-	-	-	-

Project Name:

340 MYRTLE AVENUE

Project Name: BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Lab Number: L2138920

Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02
Client ID: CAN 389 SHELF 2

Sample Location:

Project Number:

Date Collected: 07/20/21 16:00 Date Received: 07/21/21

Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/22/21 17:41

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02
Client ID: CAN 389 SHELF 2

Sample Location:

Date Collected:

07/20/21 16:00

Date Received: Field Prep:

Lab Number:

07/21/21 Not Specified

L2138920

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lat)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2138920

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02
Client ID: CAN 389 SHELF 2

Sample Location:

Date Collected: 07/20/21 16:00 Date Received: 07/21/21

Field Prep: Not Specified

Запіріе Беріп.		ppbV			ug/m3			Dilection
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02 Client ID: CAN 389 SHELF 2

Sample Location:

Date Collected: 07/20/

07/20/21 16:00

L2138920

Date Received: 07/21/21

Lab Number:

Field Prep: Not Specified

Sample Depth:		ppbV ug/m3				Dilutior		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2138920

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02

Client ID: CAN 389 SHELF 2

Sample Location:

Date Collected:

07/20/21 16:00

Date Received: 07/21/21

Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Results Qualifier Units RDL Dilution Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	91		60-140

L2138920

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02 Date Collected: 07/20/21 16:00

Client ID: CAN 389 SHELF 2 Date Received: 07/21/21
Sample Location: Date Received: 07/21/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/22/21 17:41

Analyst: RY

		ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor		
Volatile Organics in Air by SIM - Mansfield Lab										
Dichlorodifluoromethane	ND	0.200		ND	0.989			1		
Chloromethane	ND	0.200		ND	0.413			1		
Freon-114	ND	0.050		ND	0.349			1		
Vinyl chloride	ND	0.020		ND	0.051			1		
1,3-Butadiene	ND	0.020		ND	0.044			1		
Bromomethane	ND	0.020		ND	0.078			1		
Chloroethane	ND	0.100		ND	0.264			1		
Acrolein	ND	0.050		ND	0.115			1		
Acetone	ND	1.00		ND	2.38			1		
Trichlorofluoromethane	ND	0.050		ND	0.281			1		
Acrylonitrile	ND	0.500		ND	1.09			1		
1,1-Dichloroethene	ND	0.020		ND	0.079			1		
Methylene chloride	ND	0.500		ND	1.74			1		
Freon-113	ND	0.050		ND	0.383			1		
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1		
1,1-Dichloroethane	ND	0.020		ND	0.081			1		
Methyl tert butyl ether	ND	0.200		ND	0.721			1		
2-Butanone	ND	0.500		ND	1.47			1		
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1		
Chloroform	ND	0.020		ND	0.098			1		
1,2-Dichloroethane	ND	0.020		ND	0.081			1		
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1		
Benzene	ND	0.100		ND	0.319			1		
Carbon tetrachloride	ND	0.020		ND	0.126			1		

L2138920

07/20/21 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

Lab ID: L2138920-02 Date Collected:

Client ID: CAN 389 SHELF 2 Date Received: 07/21/21

Sample Location: Field Prep: Not Specified

Затріе Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2138920

Project Number: CANISTER QC BAT Report Date: 08/04/21

Air Canister Certification Results

 Lab ID:
 L2138920-02
 Date Collected:
 07/20/21 16:00

 Client ID:
 CAN 389 SHELF 2
 Date Received:
 07/21/21

Client ID: CAN 389 SHELF 2 Date Received: 07/21/21 Sample Location: Field Prep: Not Specified

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.200		ND	1.10			1
ND	0.200		ND	1.10			1
ND	0.020		ND	0.120			1
ND	0.200		ND	1.10			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.262			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.533			1
	ND N	Results RL sfield Lab ND 0.200 ND 0.200 ND 0.020 ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	Results RL MDL sfield Lab ND 0.200 ND 0.200 ND 0.200 ND 0.050 ND 0.050 ND 0.050 ND 0.050	Results RL MDL Results Sfield Lab ND 0.200 ND ND 0.200 ND ND 0.020 ND ND 0.200 ND ND 0.050 ND ND 0.050 ND ND 0.050 ND	Results RL MDL Results RL Sfield Lab ND 0.200 ND 1.10 ND 0.200 ND 1.10 ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371	Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 1.10 ND 0.200 ND 1.10 ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371	Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 1.10 ND 0.200 ND 1.10 ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	92		60-140

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140476 **Project Number:** 340 MYRTLE AVENUE

Report Date: 08/04/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler NA Present/Intact

Container Info	rmation		Initial	Final	Final Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2140476-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
L2140476-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
L2140476-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
L2140476-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
L2140476-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:340 MYRTLE AVENUELab Number:L2140476Project Number:340 MYRTLE AVENUEReport Date:08/04/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

WA						Serial_No	:08042116:42	•
ΔLPHA	A CHAIN OF CU		PAGEOF	Date Rec'd in Lab:	7129127	ALPHA Jo.	b#: L2140	2476
320 Forbes Blvd, Ma	ansfield, MA 02048	Project Information		Report Information	n - Data Deliverables	Billing Info	rmation	-
Control of the last of the las	FAX: 508-822-3288	Project Name: 340	Myrtle Avenue	Ŭ FAX ADEx		Same as Cl	ient info PO#:	
Client Informatio		Project Location: Broad	oklyn MV	ADEx Criteria Checke				
Glient: Tenen	Environment	at Froject#: 340 M	yrtle Avenue	(Defeut based on	Hagulatury Critaria Indicaled)			
Address: 121 W.	st 275 Str	SST- Liolect Managet: 4. C	acall	Other Formats: D EMAIL (slandard)	rdf report)	Regulatory	Requirements	Report Limit
Suite 702,1	NY, NY 100	O(ALPHA Quote #:		Additional Deliver:	ibles:	State/Fed	Program	Res / Comm
Phone: 646-66	06-2332	Turn-Around Time		Report to: (7 then then t	(VCEDICS			
Fax;		V.						
Email: acarro	11@ tenen-e	XStandard □ RUS	SH (only continued if pre-supercount)	-		ANAI	Vele	
 These samples have 	e boen previously analyza	d by Alpha Date Due:	Time:			ANAL	1515	
	pecific Requirement	L C. 14	deliverables			1/2/	70.15 \$1	
Project-Specific	Target Compound	List: a	CHIVERGIES				À	
	SHOW HATE	All Col				es "Spus		
ALPHA Lab ID	MAKE NAME	All Columns I		Be Filled (Dut	15 SIM H 350mm H G82g Na. 8 Mgs	//	
(Lab Use Only)	Sample ID	End Date Start Time End		Sample Sampler's Ca Matrix* Initials Siz	ID ID-Flow	APH SOME	Sample Com	ments (i.e. PID)
40476-01	55-1		34 -30.05-9.30	THE RESIDENCE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER,	7 2688 01878 X		Touring Control	mento (t.o. FID)
_01	55-2		31 -30.30 -7.47	1 1	28250851 X			
_03	55~3		30 - 29.89 - 7.06				-	
-01	55-4				340501093 X			
			27 +29.87-7.62		223801346 X			
-09	55-5	₩ 9,725 (I)	26-29.82-7.19	Ψ Ψ Ψ	3186 01935 X			
								//
							/	
*		AA = Ambient Air (Indoor Outd	por)					
"SAMPLE	MATRIX CODES	SV = Soil VeportLandfill Gas/SV Other = Please Specify		Contain	ner Type Sum n	200	Please print clea	
		Relinquished By:	Date/Time				logged in and tur	reround time
		A. Platt / Tenen	7/28/21 12:45	Received B	7 . 4 . 1	ate/Time:	clock will not star guiting are resolv	ed All samples
Page 59 of 52		the base	7/70/70 1900		4/68 836	2114.43	Submitted are sy Terms and Cond.	itions.
Page 53 of 153 (25-5e)	p-15j) f,	21 1500	MON	AAR 7/29/21	0300	See reverse side	

ANALYTICAL REPORT

Lab Number: L2140608

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Alana Carroll Phone: (646) 606-2332

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Report Date: 08/12/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 340 MYRTLE AVENUE Project Number: 340 MYRTLE AVENUE Lab Number: L2140608 08/12/21

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140608-01	MW-1	WATER	BROOKLYN, NY	07/28/21 12:20	07/28/21
L2140608-02	MW-2	WATER	BROOKLYN, NY	07/28/21 10:35	07/28/21
L2140608-03	MW-2_DUP	WATER	BROOKLYN, NY	07/28/21 10:40	07/28/21
L2140608-04	FIELD BLANK	WATER	BROOKLYN, NY	07/28/21 12:30	07/28/21
L2140608-05	TRIP BLANK	WATER	BROOKLYN, NY	07/28/21 00:00	07/28/21

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Case Narrative (continued)

Report Submission

August 12, 2021: This final report includes the results of all requested analyses.

August 06, 2021: This is a preliminary report.

The analysis of Metals was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L2140608-02 and -03: The sample was centrifuged and decanted prior to extraction due to sample matrix. L2140608-01 through -03: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

Date: 08/12/21

ORGANICS

VOLATILES

07/28/21 12:20

Not Specified

07/28/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

L2140608

Lab Number:

Date Received:

Field Prep:

Report Date: 08/12/21

Lab ID: L2140608-01 Date Collected:

Client ID: MW-1

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/30/21 17:21

Analyst: MKS

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform 0.77 J ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.16 1 1,2-Trichloroethane ND ug/l 0.50 0.16 1 Tetrachloroethane 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Tichlorofuluromethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.16 1 1,1-	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND Ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab					
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform 0.77 J ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Chlorobenzene 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methylene chloride	ND		ug/l	2.5	0.70	1
Chloroform 0.77 J ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 2.5 0.70 1 Chlorobargene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Bromodichloropropene ND ug/l 0.50 0.16 1 1,1-Dichloropropene, Total ND ug/l 2.	1,1-Dichloroethane	ND			2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorotluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-1,2-Tetrachloroethane ND ug/l	Chloroform	0.77	J	ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Itans-1,3-Dichloropropene ND ug/l 0.50 0.19 1 Itans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.14</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 16 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16<	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.17 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 <td>Tetrachloroethene</td> <td>16</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.18</td> <td>1</td>	Tetrachloroethene	16		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Sromomethane ND ug/l 2.5 0.70 1 </td <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 1.0 0.07 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
-	Chloroethane	ND		ug/l	2.5	0.70	1
	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 340 MYRTLE AVENUE L2140608

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	0.21	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name:340 MYRTLE AVENUELab Number:L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	111	70-130	

07/28/21 10:35

Not Specified

07/28/21

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

SAMPLE RESULTS

Lab Number: L2140608

Date Collected:

Date Received:

Field Prep:

Report Date: 08/12/21

Lab ID: L2140608-02

Client ID: MW-2

Sample Location: BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/30/21 17:47

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	2.0	J	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	0.22	J	ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	32		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

MDL Result Qualifier Units RL **Dilution Factor Parameter** Volatile Organics by GC/MS - Westborough Lab Trichloroethene 0.56 0.50 0.18 1 ug/l 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1.2-Dichloroethene. Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND 1 ug/l 2.5 0.70 Acrylonitrile ND 5.0 1.5 1 ug/l ND Styrene ug/l 2.5 0.70 1 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l ND 5.0 Acetone 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l Vinyl acetate ND 5.0 1.0 1 ug/l 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 ND 2-Hexanone 5.0 1.0 1 ug/l Bromochloromethane ND 2.5 0.70 1 ug/l ND 2.5 0.70 1 2,2-Dichloropropane ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 1,3-Dichloropropane ND 2.5 0.70 1 ug/l ND 2.5 1,1,1,2-Tetrachloroethane 0.70 1 ug/l Bromobenzene ND 2.5 0.70 1 ug/l n-Butylbenzene ND 2.5 0.70 1 ug/l ND 2.5 0.70 1 sec-Butylbenzene ug/l ND 2.5 0.70 tert-Butylbenzene 1 ug/l o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND 2.5 0.70 1 ug/l 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l ND 0.70 1 Hexachlorobutadiene ug/l 2.5

ND

ND

ND

1

1

1

0.70

0.70

0.70

2.5

2.5

2.5

ug/l

ug/l

ug/l

Isopropylbenzene

p-Isopropyltoluene

Naphthalene

Project Name:340 MYRTLE AVENUELab Number:L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/30/21 18:14

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.8	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	0.17	J	ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	32		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Trichloroethene	0.60		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND			2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l ug/l	2.5	0.70	1
Dibromomethane	ND			5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l			1
Carbon disulfide	ND		ug/l	5.0	1.5	
	ND ND		ug/l	5.0		1
2-Butanone	ND ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	
4-Methyl-2-pentanone 2-Hexanone			ug/l			1
Bromochloromethane	ND ND		ug/l	2.5	1.0 0.70	1
			ug/l			
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
						,
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

L2140608

Project Name: Lab Number: 340 MYRTLE AVENUE

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-05 Date Collected: 07/28/21 00:00

Client ID: Date Received: 07/28/21 TRIP BLANK Field Prep: Sample Location: Not Specified BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/30/21 18:41

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-05 Date Collected: 07/28/21 00:00

Client ID: TRIP BLANK Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-05 Date Collected: 07/28/21 00:00

Client ID: TRIP BLANK Date Received: 07/28/21
Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	110	70-130	

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 10:44

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03,05 B	Batch: WG1530559-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 10:44

Analyst: PD

Parameter	Result	Qualifier Units	RL		MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s):	01-03,05	Batch:	WG1530559-5
1,2-Dichlorobenzene	ND	ug/l	2.5		0.70
1,3-Dichlorobenzene	ND	ug/l	2.5		0.70
1,4-Dichlorobenzene	ND	ug/l	2.5		0.70
Methyl tert butyl ether	ND	ug/l	2.5		0.70
p/m-Xylene	ND	ug/l	2.5		0.70
o-Xylene	ND	ug/l	2.5		0.70
Xylenes, Total	ND	ug/l	2.5		0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5		0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5		0.70
Dibromomethane	ND	ug/l	5.0		1.0
1,2,3-Trichloropropane	ND	ug/l	2.5		0.70
Acrylonitrile	ND	ug/l	5.0		1.5
Styrene	ND	ug/l	2.5		0.70
Dichlorodifluoromethane	ND	ug/l	5.0		1.0
Acetone	ND	ug/l	5.0		1.5
Carbon disulfide	ND	ug/l	5.0		1.0
2-Butanone	ND	ug/l	5.0		1.9
Vinyl acetate	ND	ug/l	5.0		1.0
4-Methyl-2-pentanone	ND	ug/l	5.0		1.0
2-Hexanone	ND	ug/l	5.0		1.0
Bromochloromethane	ND	ug/l	2.5		0.70
2,2-Dichloropropane	ND	ug/l	2.5		0.70
1,2-Dibromoethane	ND	ug/l	2.0		0.65
1,3-Dichloropropane	ND	ug/l	2.5		0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5		0.70
Bromobenzene	ND	ug/l	2.5		0.70
n-Butylbenzene	ND	ug/l	2.5		0.70
sec-Butylbenzene	ND	ug/l	2.5		0.70
tert-Butylbenzene	ND	ug/l	2.5		0.70

Project Name: 340 MYRTLE AVENUE
Project Number: 340 MYRTLE AVENUE

Lab Number: L2140608 **Report Date:** 08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/30/21 10:44

Analyst: PD

Parameter	Result	Qualifier Uni	ts R	L	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	01-03,05	Batch:	WG1530559-5	
o-Chlorotoluene	ND	uç	ı/l 2.	5	0.70	
p-Chlorotoluene	ND	นดู	y/l 2.	5	0.70	
1,2-Dibromo-3-chloropropane	ND	นดู	ı/l 2.	5	0.70	
Hexachlorobutadiene	ND	นดู	ı/l 2.	5	0.70	
Isopropylbenzene	ND	นดู	y/l 2.	5	0.70	
p-Isopropyltoluene	ND	uç	y/l 2.	5	0.70	
Naphthalene	ND	uç	y/l 2.	5	0.70	
n-Propylbenzene	ND	uç	y/l 2.	5	0.70	
1,2,3-Trichlorobenzene	ND	uç	y/l 2.	5	0.70	
1,2,4-Trichlorobenzene	ND	uç	y/l 2.	5	0.70	
1,3,5-Trimethylbenzene	ND	uç	y/l 2.	5	0.70	
1,2,4-Trimethylbenzene	ND	uç	ı/l 2.	5	0.70	
1,4-Dioxane	ND	uç	ı/I 25	0	61.	
p-Diethylbenzene	ND	uç	ı/l 2.	0	0.70	
p-Ethyltoluene	ND	uç	ı/l 2.	0	0.70	
1,2,4,5-Tetramethylbenzene	ND	uç	ı/l 2.	0	0.54	
Ethyl ether	ND	uç	y/l 2.	5	0.70	
trans-1,4-Dichloro-2-butene	ND	uç	y/l 2.	5	0.70	

	·	A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	108		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE

Lab Number: L2140608

Report Date:

08/12/21

Project Number:	340 MYRTLE AVENUE
-	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,05 Batch	: WG1530559-3 WG153055	9-4	
Methylene chloride	110		110	70-130	0	20
1,1-Dichloroethane	110		100	70-130	10	20
Chloroform	110		100	70-130	10	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	100		97	70-130	3	20
Dibromochloromethane	92		89	63-130	3	20
1,1,2-Trichloroethane	88		84	70-130	5	20
Tetrachloroethene	110		100	70-130	10	20
Chlorobenzene	110		100	75-130	10	20
Trichlorofluoromethane	120		110	62-150	9	20
1,2-Dichloroethane	98		94	70-130	4	20
1,1,1-Trichloroethane	110		100	67-130	10	20
Bromodichloromethane	98		93	67-130	5	20
trans-1,3-Dichloropropene	87		83	70-130	5	20
cis-1,3-Dichloropropene	96		91	70-130	5	20
1,1-Dichloropropene	120		110	70-130	9	20
Bromoform	80		77	54-136	4	20
1,1,2,2-Tetrachloroethane	96		92	67-130	4	20
Benzene	110		100	70-130	10	20
Toluene	110		100	70-130	10	20
Ethylbenzene	110		100	70-130	10	20
Chloromethane	95		88	64-130	8	20
Bromomethane	130		120	39-139	8	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140608

Report Date: 08/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS -	Westborough Lab Associated	d sample(s):	01-03,05 Batch:	WG1530559-3 WG15305	59-4	
Vinyl chloride	120		110	55-140	9	20
Chloroethane	130		120	55-138	8	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	120		110	70-130	9	20
Trichloroethene	98		93	70-130	5	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	110		100	70-130	10	20
1,4-Dichlorobenzene	110		100	70-130	10	20
Methyl tert butyl ether	95		92	63-130	3	20
p/m-Xylene	105		100	70-130	5	20
o-Xylene	105		100	70-130	5	20
cis-1,2-Dichloroethene	110		110	70-130	0	20
Dibromomethane	100		98	70-130	2	20
1,2,3-Trichloropropane	86		84	64-130	2	20
Acrylonitrile	86		86	70-130	0	20
Styrene	100		95	70-130	5	20
Dichlorodifluoromethane	110		110	36-147	0	20
Acetone	73		75	58-148	3	20
Carbon disulfide	120		110	51-130	9	20
2-Butanone	58	Q	62	Q 63-138	7	20
Vinyl acetate	89		86	70-130	3	20
4-Methyl-2-pentanone	63		61	59-130	3	20
2-Hexanone	58		57	57-130	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608 08/12/21

Project Number: 340 MYRTLE AVENUE

Report Date:

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS	- Westborough Lab Associated s	ample(s): 01-03	05 Batch:	WG153055	59-3 WG1530559)-4		
Bromochloromethane	110		110		70-130	0		20
2,2-Dichloropropane	120		110		63-133	9		20
1,2-Dibromoethane	92		89		70-130	3		20
1,3-Dichloropropane	95		91		70-130	4		20
1,1,1,2-Tetrachloroethane	94		91		64-130	3		20
Bromobenzene	100		100		70-130	0		20
n-Butylbenzene	100		99		53-136	1		20
sec-Butylbenzene	120		120		70-130	0		20
tert-Butylbenzene	110		100		70-130	10		20
o-Chlorotoluene	100		100		70-130	0		20
p-Chlorotoluene	100		98		70-130	2		20
1,2-Dibromo-3-chloropropane	76		72		41-144	5		20
Hexachlorobutadiene	110		100		63-130	10		20
Isopropylbenzene	110		100		70-130	10		20
p-Isopropyltoluene	110		100		70-130	10		20
Naphthalene	94		92		70-130	2		20
n-Propylbenzene	110		100		69-130	10		20
1,2,3-Trichlorobenzene	96		94		70-130	2		20
1,2,4-Trichlorobenzene	100		98		70-130	2		20
1,3,5-Trimethylbenzene	100		94		64-130	6		20
1,2,4-Trimethylbenzene	100		96		70-130	4		20
1,4-Dioxane	90		88		56-162	2		20
p-Diethylbenzene	100		100		70-130	0		20

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

L2140608

Report Date:

08/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s): (01-03,05 Batch:	WG15305	59-3 WG1530559)-4			
p-Ethyltoluene	110		100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20	
Ethyl ether	100		100		59-134	0		20	
trans-1,4-Dichloro-2-butene	71		66	Q	70-130	7		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	91	92	70-130	
Toluene-d8	101	101	70-130	
4-Bromofluorobenzene	95	94	70-130	
Dibromofluoromethane	103	103	70-130	

SEMIVOLATILES

Project Name: Lab Number: 340 MYRTLE AVENUE L2140608

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: Date Received: 07/28/21 MW-1

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/01/21 08:55

Analytical Method: 1,8270D Analytical Date: 08/03/21 02:42

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	2.8	J	ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Dampio Essadoni Brosneri, in

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Benzoic Acid	7.4	J	ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.59	1
Carbazole	ND		ug/l	2.0	0.49	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	68	21-120	
Phenol-d6	61	10-120	
Nitrobenzene-d5	81	23-120	
2-Fluorobiphenyl	77	15-120	
2,4,6-Tribromophenol	96	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/01/21 08:35
Analytical Date: 08/03/21 18:38

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - W	estborough La	ab				
Acenaphthene	0.06	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.19		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.11			0.10	0.03	1
	0.11	J	ug/l	0.10	0.02	1
Benzo(a)pyrene			ug/l			
Benzo(b)fluoranthene	0.08	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Chrysene	0.09	J	ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.03	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.31		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.01	1
Pyrene	0.26		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	21-120
Phenol-d6	67	10-120
Nitrobenzene-d5	110	23-120
2-Fluorobiphenyl	86	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	98	41-149

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/04/21 22:30
Analytical Date: 08/05/21 23:18

Analyst: DB

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab				
1,4-Dioxane	ND	ng/l	144	32.6	1
Surrogate		% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8		31			15-110

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/31/21 10:17

Analyst: RS

08/02/21 17:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	13.4		ng/l	1.87	0.382	1
Perfluoropentanoic Acid (PFPeA)	31.2		ng/l	1.87	0.371	1
Perfluorobutanesulfonic Acid (PFBS)	5.73		ng/l	1.87	0.223	1
Perfluorohexanoic Acid (PFHxA)	21.0		ng/l	1.87	0.307	1
Perfluoroheptanoic Acid (PFHpA)	14.0		ng/l	1.87	0.211	1
Perfluorohexanesulfonic Acid (PFHxS)	7.71		ng/l	1.87	0.352	1
Perfluorooctanoic Acid (PFOA)	66.7		ng/l	1.87	0.221	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.87	1.25	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.87	0.644	1
Perfluorononanoic Acid (PFNA)	1.24	J	ng/l	1.87	0.292	1
Perfluorooctanesulfonic Acid (PFOS)	12.2		ng/l	1.87	0.472	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.87	0.284	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.87	1.13	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.87	0.607	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.87	0.243	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.87	0.917	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.87	0.543	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.87	0.753	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.87	0.348	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.87	0.306	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.87	0.232	1
PFOA/PFOS, Total	78.9		ng/l	1.87	0.221	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	80		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108		70-131	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	166	Q	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	127		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	78		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	16		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	78		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	117		22-136	

Project Name: Lab Number: 340 MYRTLE AVENUE L2140608

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/01/21 08:55 Analytical Method: 1,8270D

Analytical Date: 08/03/21 01:51

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	0.54	J	ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Benzoic Acid	ND		ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.59	1
Carbazole	ND		ug/l	2.0	0.49	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	86	41-149

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/01/21 08:35
Analytical Date: 08/03/21 18:57

Analyst: RP

Semivolatile Organics by GC/MS-SIM - Westborough Lab Acenaphthene ND ug/l 2-Chloronaphthalene ND ug/l	0.10		
2-Chloronaphthalene ND ug/l	0.10		
2-Chloronaphthalene ND ug/l	0.10	0.01	1
	0.20	0.02	1
Fluoranthene 0.02 J ug/l	0.10	0.02	1
Hexachlorobutadiene ND ug/l	0.50	0.05	1
Naphthalene ND ug/l	0.10	0.05	1
Benzo(a)anthracene 0.02 J ug/l	0.10	0.02	1
Benzo(a)pyrene ND ug/l	0.10	0.02	1
Benzo(b)fluoranthene 0.01 J ug/l	0.10	0.01	1
Benzo(k)fluoranthene 0.01 J ug/l	0.10	0.01	1
Chrysene ND ug/l	0.10	0.01	1
Acenaphthylene ND ug/l	0.10	0.01	1
Anthracene ND ug/l	0.10	0.01	1
Benzo(ghi)perylene ND ug/l	0.10	0.01	1
Fluorene 0.01 J ug/l	0.10	0.01	1
Phenanthrene 0.04 J ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene ND ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene ND ug/l	0.10	0.01	1
Pyrene 0.02 J ug/l	0.10	0.02	1
2-Methylnaphthalene ND ug/l	0.10	0.02	1
Pentachlorophenol ND ug/l	0.80	0.01	1
Hexachlorobenzene 0.01 J ug/l	0.80	0.01	1
Hexachloroethane ND ug/l	0.80	0.06	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	108	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	82	10-120
4-Terphenyl-d14	94	41-149

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/04/21 22:30
Analytical Date: 08/05/21 23:40

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfiel	d Lab					
1,4-Dioxane	65.5	J	ng/l	139	31.4	1
Surrogate			% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			35			15-110

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 07/31/21 10:17
Analytical Date: 08/02/21 18:13

Analyst: RS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	11.1		ng/l	1.85	0.377	1
Perfluoropentanoic Acid (PFPeA)	30.4		ng/l	1.85	0.366	1
Perfluorobutanesulfonic Acid (PFBS)	6.80		ng/l	1.85	0.220	1
Perfluorohexanoic Acid (PFHxA)	21.3		ng/l	1.85	0.303	1
Perfluoroheptanoic Acid (PFHpA)	15.3		ng/l	1.85	0.208	1
Perfluorohexanesulfonic Acid (PFHxS)	5.94		ng/l	1.85	0.348	1
Perfluorooctanoic Acid (PFOA)	89.3		ng/l	1.85	0.218	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85	1.23	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85	0.636	1
Perfluorononanoic Acid (PFNA)	1.78	J	ng/l	1.85	0.288	1
Perfluorooctanesulfonic Acid (PFOS)	10.8		ng/l	1.85	0.466	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.281	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	1.12	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.599	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.240	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.906	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.536	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.744	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.344	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.303	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.229	1
PFOA/PFOS, Total	100		ng/l	1.85	0.218	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

,

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	75		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	83		62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		70-131
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	68		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	74		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110		71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	82		62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	156	Q	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87		62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	124		10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68		24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	16		10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74		27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	102		48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	102		22-136

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 08/01/21 08:55

Analytical Method: 1,8270D Extraction Date: 08/01/21 08:55

Analytical Date: 08/03/21 02:17

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	0.49	J	ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Benzoic Acid	ND		ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.59	1
Carbazole	ND		ug/l	2.0	0.49	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	61	21-120	
Phenol-d6	54	10-120	
Nitrobenzene-d5	80	23-120	
2-Fluorobiphenyl	77	15-120	
2,4,6-Tribromophenol	71	10-120	
4-Terphenyl-d14	78	41-149	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/01/21 08:35
Analytical Date: 08/03/21 19:16

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM -	Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	0.01	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.02	J	ug/l	0.10	0.01	1			
Phenanthrene	0.04	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.01	J	ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	59	10-120
Nitrobenzene-d5	106	23-120
2-Fluorobiphenyl	82	15-120
2,4,6-Tribromophenol	56	10-120
4-Terphenyl-d14	86	41-149

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/04/21 22:30
Analytical Date: 08/06/21 00:02

Analyst: DB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	eld Lab					
1,4-Dioxane	74.7	J	ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			33			15-110

Project Name: Lab Number: 340 MYRTLE AVENUE L2140608

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Date Received: 07/28/21 Client ID: MW-2_DUP Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 07/31/21 10:17 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

08/02/21 18:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	11.1		ng/l	1.90	0.387	1
Perfluoropentanoic Acid (PFPeA)	30.3		ng/l	1.90	0.375	1
Perfluorobutanesulfonic Acid (PFBS)	6.95		ng/l	1.90	0.226	1
Perfluorohexanoic Acid (PFHxA)	21.4		ng/l	1.90	0.311	1
Perfluoroheptanoic Acid (PFHpA)	15.5		ng/l	1.90	0.213	1
Perfluorohexanesulfonic Acid (PFHxS)	6.07		ng/l	1.90	0.356	1
Perfluorooctanoic Acid (PFOA)	91.0		ng/l	1.90	0.224	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.90	1.26	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.90	0.652	1
Perfluorononanoic Acid (PFNA)	1.79	J	ng/l	1.90	0.296	1
Perfluorooctanesulfonic Acid (PFOS)	10.9		ng/l	1.90	0.478	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.288	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.90	1.15	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.614	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.246	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.90	0.929	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.90	0.550	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.762	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.352	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.310	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.235	1
PFOA/PFOS, Total	102		ng/l	1.90	0.224	1

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	75		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	82		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		70-131	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	66		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	73		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	80		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	153	Q	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	121		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	74		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	92		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	10		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	100		22-136	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: Report Date:

L2140608

08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 08/02/21 16:01

Analyst: RS Extraction Method: ALPHA 23528

07/31/21 10:17 **Extraction Date:**

Parameter	Result	Qualifier Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield Lab for	sample(s):	01-03 Batch:	WG1530118-1
Perfluorobutanoic Acid (PFBA)	ND	ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND	ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND	ng/l	2.00	0.238	
Perfluorohexanoic Acid (PFHxA)	ND	ng/l	2.00	0.328	
Perfluoroheptanoic Acid (PFHpA)	ND	ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND	ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND	ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	l ND	ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND	ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND	ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND	ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Aci (8:2FTS)	d ND	ng/l	2.00	1.21	
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND	ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND	ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND	ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND	ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND	ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND	ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND	ng/l	2.00	0.248	
PFOA/PFOS, Total	ND	ng/l	2.00	0.236	

L2140608

Lab Number:

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/02/21 16:01 Extraction Date: 07/31/21 10:17

Analyst: RS

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-03 Batch: WG1530118-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	106	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	122	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110	70-131
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	93	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	104	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	129	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	114	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	111	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	95	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	110	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	55	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	118	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	114	22-136

Project Name: 340 MYRTLE AVENUE **Project Number:**

340 MYRTLE AVENUE

Lab Number: L2140608

Report Date: 08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 08/02/21 18:05

Analyst: ALS

Extraction Method: EPA 3510C 08/01/21 08:35 **Extraction Date:**

Acenaphthene ND ug/l 0.10 0.01 2-Chloronaphthalene ND ug/l 0.20 0.02 Fluoranthene ND ug/l 0.10 0.02 Hexachlorobutadiene ND ug/l 0.10 0.05 Naphthalene ND ug/l 0.10 0.05 Naphthalene ND ug/l 0.10 0.02 Benzo(a)anthracene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghii)perylene ND ug/l 0.10 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th></th>	Parameter	Result	Qualifier	Units	RL	MDL	
2-Chloronaphthalene ND ug/l 0.20 0.02 Fluoranthene ND ug/l 0.10 0.02 Hexachlorobutadiene ND ug/l 0.50 0.05 Naphthalene ND ug/l 0.10 0.05 Benzo(a)anthracene ND ug/l 0.10 0.02 Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Plenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a, h)anthracene ND ug/l 0.10 0.01 Indeno(1, 2, 3-cd) pyrene ND <td< td=""><td>Semivolatile Organics by GC/MS-S</td><td>IM - Westbo</td><td>rough Lab</td><td>for sample</td><td>e(s): 01-03</td><td>Batch: WG15</td><td>530248-1</td></td<>	Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample	e(s): 01-03	Batch: WG15	530248-1
2-Chloronaphthalene ND ug/l 0.20 0.02 Fluoranthene ND ug/l 0.10 0.02 Hexachlorobutadiene ND ug/l 0.50 0.05 Naphthalene ND ug/l 0.10 0.05 Benzo(a)anthracene ND ug/l 0.10 0.02 Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a, h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug	Acenaphthene	ND		ug/l	0.10	0.01	
Hexachlorobutadiene ND	2-Chloronaphthalene	ND			0.20	0.02	
Naphthalene ND ug/l 0.10 0.05 Benzo(a)anthracene ND ug/l 0.10 0.02 Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l <t< td=""><td>Fluoranthene</td><td>ND</td><td></td><td>ug/l</td><td>0.10</td><td>0.02</td><td></td></t<>	Fluoranthene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene ND ug/l 0.10 0.02 Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.80 0.01 Hexachlorobenzene ND u	Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Benzo(a)pyrene ND ug/l 0.10 0.02 Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Naphthalene	ND		ug/l	0.10	0.05	
Benzo(b)fluoranthene ND ug/l 0.10 0.01 Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(k)fluoranthene ND ug/l 0.10 0.01 Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Chrysene ND ug/l 0.10 0.01 Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Acenaphthylene ND ug/l 0.10 0.01 Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Anthracene ND ug/l 0.10 0.01 Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Chrysene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene ND ug/l 0.10 0.01 Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Acenaphthylene	ND		ug/l	0.10	0.01	
Fluorene ND ug/l 0.10 0.01 Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Anthracene	ND		ug/l	0.10	0.01	
Phenanthrene 0.02 J ug/l 0.10 0.02 Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Dibenzo(a,h)anthracene ND ug/l 0.10 0.01 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Fluorene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.01 Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Phenanthrene	0.02	J	ug/l	0.10	0.02	
Pyrene ND ug/l 0.10 0.02 2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
2-Methylnaphthalene ND ug/l 0.10 0.02 Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pentachlorophenol ND ug/l 0.80 0.01 Hexachlorobenzene ND ug/l 0.80 0.01	Pyrene	ND		ug/l	0.10	0.02	
Hexachlorobenzene ND ug/l 0.80 0.01	2-Methylnaphthalene	ND		ug/l	0.10	0.02	
., ., ., ., ., ., ., ., ., ., ., ., ., .	Pentachlorophenol	ND		ug/l	0.80	0.01	
	Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane ND ug/l 0.80 0.06	Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 08/02/21 18:05 Extraction Date: 08/01/21 08:35

Analyst: ALS

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-03 Batch: WG1530248-1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	70	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	99	23-120
2-Fluorobiphenyl	91	15-120
2,4,6-Tribromophenol	74	10-120
4-Terphenyl-d14	97	41-149

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140608

Report Date: 08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/03/21 00:08

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 08/01/21 08:55

arameter	Result	Qualifier Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01-03	Batch:	WG1530250-1
Acenaphthene	ND	ug/l	2.0		0.44
1,2,4-Trichlorobenzene	ND	ug/l	5.0		0.50
Hexachlorobenzene	ND	ug/l	2.0		0.46
Bis(2-chloroethyl)ether	ND	ug/l	2.0		0.50
2-Chloronaphthalene	ND	ug/l	2.0		0.44
1,2-Dichlorobenzene	ND	ug/l	2.0		0.45
1,3-Dichlorobenzene	ND	ug/l	2.0		0.40
1,4-Dichlorobenzene	ND	ug/l	2.0		0.43
3,3'-Dichlorobenzidine	ND	ug/l	5.0		1.6
2,4-Dinitrotoluene	ND	ug/l	5.0		1.2
2,6-Dinitrotoluene	ND	ug/l	5.0		0.93
Fluoranthene	ND	ug/l	2.0		0.26
4-Chlorophenyl phenyl ether	ND	ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND	ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		0.50
Hexachlorobutadiene	ND	ug/l	2.0		0.66
Hexachlorocyclopentadiene	ND	ug/l	20		0.69
Hexachloroethane	ND	ug/l	2.0		0.58
Isophorone	ND	ug/l	5.0		1.2
Naphthalene	ND	ug/l	2.0		0.46
Nitrobenzene	ND	ug/l	2.0		0.77
NDPA/DPA	ND	ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0		1.5
Butyl benzyl phthalate	ND	ug/l	5.0		1.2
Di-n-butylphthalate	ND	ug/l	5.0		0.39
Di-n-octylphthalate	ND	ug/l	5.0		1.3
Diethyl phthalate	ND	ug/l	5.0		0.38

L2140608

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number:

Report Date: 08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/03/21 00:08

Analyst: SZ

Extraction Method: EPA 3510C 08/01/21 08:55 **Extraction Date:**

arameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG1530250-1
Dimethyl phthalate	ND		ug/l	5.0		1.8
Benzo(a)anthracene	ND		ug/l	2.0		0.32
Benzo(a)pyrene	ND		ug/l	2.0		0.41
Benzo(b)fluoranthene	ND		ug/l	2.0		0.35
Benzo(k)fluoranthene	ND		ug/l	2.0		0.37
Chrysene	ND		ug/l	2.0		0.34
Acenaphthylene	ND		ug/l	2.0		0.46
Anthracene	ND		ug/l	2.0		0.33
Benzo(ghi)perylene	ND		ug/l	2.0		0.30
Fluorene	ND		ug/l	2.0		0.41
Phenanthrene	ND		ug/l	2.0		0.33
Dibenzo(a,h)anthracene	ND		ug/l	2.0		0.32
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		0.40
Pyrene	ND		ug/l	2.0		0.28
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
2-Methylnaphthalene	ND		ug/l	2.0		0.45
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number:

L2140608

Report Date:

08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/03/21 00:08

Analyst:

SZ

Extraction Method: EPA 3510C

Extraction Date: 08/01/21 08:55

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01-03	Batch:	WG1530250-1	
4-Nitrophenol	ND		ug/l	10		0.67	
2,4-Dinitrophenol	ND		ug/l	20		6.6	
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8	
Pentachlorophenol	ND		ug/l	10		1.8	
Phenol	ND		ug/l	5.0		0.57	
2-Methylphenol	ND		ug/l	5.0		0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48	
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77	
Benzoic Acid	ND		ug/l	50		2.6	
Benzyl Alcohol	ND		ug/l	2.0		0.59	
Carbazole	ND		ug/l	2.0		0.49	

Surrogate	%Recovery	ceptance Criteria
2-Fluorophenol	66	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	66	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	77	41-149

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 08/05/21 20:23 Extraction Date: 08/04/21 22:30

Analyst: DB

Parameter	Result	Qualifier	Units	RL	. MDL	
1,4 Dioxane by 8270D-SIM -	Mansfield Lab for	sample(s):	01-03	Batch:	WG1531269-1	
1,4-Dioxane	ND		ng/l	150	33.9	

Surrogate %Recovery Qualifier Criteria

1,4-Dioxane-d8 43 15-110

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: 08/12/21

L2140608

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
erfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfield Lab	Associated	sample(s): 01-03	Batch:	WG1530118-2				
Perfluorobutanoic Acid (PFBA)	112		-		67-148	-		30	
Perfluoropentanoic Acid (PFPeA)	117		-		63-161	-		30	
Perfluorobutanesulfonic Acid (PFBS)	112		-		65-157	-		30	
Perfluorohexanoic Acid (PFHxA)	115		-		69-168	-		30	
Perfluoroheptanoic Acid (PFHpA)	111		-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	106		-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	114		-		63-159	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	124		-		49-187	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	121		-		61-179	-		30	
Perfluorononanoic Acid (PFNA)	106		-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	113		-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	114		-		63-171	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	127		-		56-173	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	116		-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	110		-		60-153	-		30	
Perfluorodecanesulfonic Acid (PFDS)	113		-		38-156	-		30	
Perfluorooctanesulfonamide (FOSA)	116		-		46-170	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	100		-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	119		-		67-153	-		30	
Perfluorotridecanoic Acid (PFTrDA)	125		-		48-158	-		30	
Perfluorotetradecanoic Acid (PFTA)	119		-		59-182	-		30	

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608

Project Number: 340 MYRTLE AVENUE

Report Date:

08/12/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-03 Batch: WG1530118-2

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	102				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	114				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107				70-131
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	129				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	113				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	104				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	110				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	98				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	110				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	55				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	119				22-136

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Lab Number: L2140608

Report Date: 08/12/21

rameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qua	%Recove Limits	ery RPD	Qual	RPD Limits
mivolatile Organics by GC/MS-SIM - West	tborough Lab A	ssociated sample	(s): 01-03	Batch:	WG1530248-2	WG1530248-3		
Acenaphthene	66		74		40-140	11		40
2-Chloronaphthalene	65		78		40-140	18		40
Fluoranthene	71		80		40-140	12		40
Hexachlorobutadiene	56		64		40-140	13		40
Naphthalene	63		71		40-140	12		40
Benzo(a)anthracene	72		79		40-140	9		40
Benzo(a)pyrene	77		86		40-140	11		40
Benzo(b)fluoranthene	77		86		40-140	11		40
Benzo(k)fluoranthene	75		84		40-140	11		40
Chrysene	71		81		40-140	13		40
Acenaphthylene	65		73		40-140	12		40
Anthracene	70		79		40-140	12		40
Benzo(ghi)perylene	70		78		40-140	11		40
Fluorene	61		70		40-140	14		40
Phenanthrene	66		74		40-140	11		40
Dibenzo(a,h)anthracene	74		82		40-140	10		40
Indeno(1,2,3-cd)pyrene	71		78		40-140	9		40
Pyrene	71		80		40-140	12		40
2-Methylnaphthalene	65		73		40-140	12		40
Pentachlorophenol	57		64		40-140	12		40
Hexachlorobenzene	54		61		40-140	12		40
Hexachloroethane	66		73		40-140	10		40

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608

Project Number: 340 MYRTLE AVENUE

Report Date:

08/12/21

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1530248-2 WG1530248-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria	
2-Fluorophenol	55	57	21-120	
Phenol-d6	49	54	10-120	
Nitrobenzene-d5	82	92	23-120	
2-Fluorobiphenyl	67	75	15-120	
2,4,6-Tribromophenol	59	63	10-120	
4-Terphenyl-d14	71	80	41-149	

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number: L2140608

Report Date: 08/12/21

Parameter	LCS %Recovery	LCSI Qual %Recov	,	overy nits RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - We	estborough Lab Associa	ated sample(s): 01-03	Batch: WG1530250-2	WG1530250-3	
Acenaphthene	58	63	37-1	111 8	30
1,2,4-Trichlorobenzene	55	61	39-	98 10	30
Hexachlorobenzene	61	70	40-1	140 14	30
Bis(2-chloroethyl)ether	53	58	40-1	140 9	30
2-Chloronaphthalene	55	61	40-1	140 10	30
1,2-Dichlorobenzene	54	58	40-1	140 7	30
1,3-Dichlorobenzene	52	60	40-1	140 14	30
1,4-Dichlorobenzene	54	59	36-	97 9	30
3,3'-Dichlorobenzidine	46	48	40-1	140 4	30
2,4-Dinitrotoluene	68	72	48-1	143 6	30
2,6-Dinitrotoluene	57	68	40-1	140 18	30
Fluoranthene	58	64	40-1	140 10	30
4-Chlorophenyl phenyl ether	58	64	40-1	140 10	30
4-Bromophenyl phenyl ether	62	68	40-1	140 9	30
Bis(2-chloroisopropyl)ether	50	55	40-1	140 10	30
Bis(2-chloroethoxy)methane	58	64	40-1	140 10	30
Hexachlorobutadiene	53	57	40-1	140 7	30
Hexachlorocyclopentadiene	56	58	40-1	140 4	30
Hexachloroethane	56	64	40-1	140 13	30
Isophorone	53	59	40-1	140 11	30
Naphthalene	55	59	40-1	140 7	30
Nitrobenzene	62	67	40-1	140 8	30
NDPA/DPA	56	62	40-1	140 10	30

Project Name: 340 MYRTLE AVENUE

Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE

Report Date: 08/12/21

arameter	LCS %Recovery Q	LCS Qual %Reco	,	-	RPD Qual Limits
emivolatile Organics by GC/MS - Westb	oorough Lab Associated	sample(s): 01-03	Batch: WG1530250-2 WG	G1530250-3	
n-Nitrosodi-n-propylamine	57	61	29-132	7	30
Bis(2-ethylhexyl)phthalate	63	77	40-140	20	30
Butyl benzyl phthalate	60	70	40-140	15	30
Di-n-butylphthalate	56	67	40-140	18	30
Di-n-octylphthalate	58	71	40-140	20	30
Diethyl phthalate	60	69	40-140	14	30
Dimethyl phthalate	56	62	40-140	10	30
Benzo(a)anthracene	59	66	40-140	11	30
Benzo(a)pyrene	61	66	40-140	8	30
Benzo(b)fluoranthene	60	66	40-140	10	30
Benzo(k)fluoranthene	62	69	40-140	11	30
Chrysene	60	67	40-140	11	30
Acenaphthylene	54	58	45-123	7	30
Anthracene	59	65	40-140	10	30
Benzo(ghi)perylene	64	70	40-140	9	30
Fluorene	58	64	40-140	10	30
Phenanthrene	58	64	40-140	10	30
Dibenzo(a,h)anthracene	62	68	40-140	9	30
Indeno(1,2,3-cd)pyrene	59	66	40-140	11	30
Pyrene	56	62	26-127	10	30
Biphenyl	54	59	40-140	9	30
4-Chloroaniline	44	47	40-140	7	30
2-Nitroaniline	61	68	52-143	11	30

Project Name: 340 MYRTLE AVENUE

Lab Number: L2140608

Project Number:	340 MYRTLE AVENUE				Report Date:	08/12/21
	/ C:	s	LCSD	%Recovery		RPD

arameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual	Limits
semivolatile Organics by GC/MS - Westb	oorough Lab Associat	ed sample(s):	01-03 Batc	h: WG1530250-2 WG15302	250-3		
3-Nitroaniline	58		62	25-145	7		30
4-Nitroaniline	60		63	51-143	5		30
Dibenzofuran	58		64	40-140	10		30
2-Methylnaphthalene	54		59	40-140	9		30
1,2,4,5-Tetrachlorobenzene	58		62	2-134	7		30
Acetophenone	53		59	39-129	11		30
2,4,6-Trichlorophenol	59		62	30-130	5		30
p-Chloro-m-cresol	58		64	23-97	10		30
2-Chlorophenol	58		64	27-123	10		30
2,4-Dichlorophenol	60		67	30-130	11		30
2,4-Dimethylphenol	43		39	30-130	10		30
2-Nitrophenol	71		78	30-130	9		30
4-Nitrophenol	63		69	10-80	9		30
2,4-Dinitrophenol	82		91	20-130	10		30
4,6-Dinitro-o-cresol	80		87	20-164	8		30
Pentachlorophenol	53		62	9-103	16		30
Phenol	43		47	12-110	9		30
2-Methylphenol	53		56	30-130	6		30
3-Methylphenol/4-Methylphenol	56		58	30-130	4		30
2,4,5-Trichlorophenol	59		65	30-130	10		30
Benzoic Acid	53		73	10-164	32	Q	30
Benzyl Alcohol	53		60	26-116	12		30
Carbazole	57		63	55-144	10		30

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608

Project Number: 340 MYRTLE AVENUE

Report Date:

08/12/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1530250-2 WG1530250-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	58	64	21-120
Phenol-d6	47	53	10-120
Nitrobenzene-d5	69	76	23-120
2-Fluorobiphenyl	58	64	15-120
2,4,6-Tribromophenol	78	85	10-120
4-Terphenyl-d14	64	71	41-149

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Lab Number:

L2140608

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated samp	ole(s): 01-03	Batch: WG1	531269-2	WG1531269-3				
1,4-Dioxane	89		101		40-140	13		30	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	Il %Recovery Qual	Criteria
1,4-Dioxane-d8	32	30	15-110

Matrix Spike Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Lab Number:

L2140608

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilution	- Mansfield	I Lab Associ	ated sample(s):	01-03	QC Batch	ID: WG153011	8-3 WG1530118-4	QC S	Sample: L2	2140888-01
Perfluorobutanoic Acid (PFBA)	ND	1000	1100	110		1090	109	67-148	1		30
Perfluoropentanoic Acid (PFPeA)	12.5J	1000	1150	114		1150	114	63-161	0		30
Perfluorobutanesulfonic Acid (PFBS)	ND	888	965	109		968	109	65-157	0		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	936	1220	130		1170	125	37-219	4		30
Perfluorohexanoic Acid (PFHxA)	ND	1000	1140	114		1150	115	69-168	1		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	940	946	101		899	96	52-156	5		30
Perfluoroheptanoic Acid (PFHpA)	ND	1000	1090	109		1100	110	58-159	1		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	914	1030	113		952	104	69-177	8		30
Perfluorooctanoic Acid (PFOA)	ND	1000	1110	111		1100	110	63-159	1		30
IH,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	952	1160	122		1140	120	49-187	2		30
Perfluoroheptanesulfonic Acid	ND	952	1110	117		1220	128	61-179	9		30
Perfluorononanoic Acid (PFNA)	ND	1000	1060	106		1060	106	68-171	0		30
Perfluorooctanesulfonic Acid (PFOS)	16.0J	928	1040	110		1040	110	52-151	0		30
Perfluorodecanoic Acid (PFDA)	ND	1000	1080	108		1040	104	63-171	4		30
IH,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	960	1380	144		1320	138	56-173	4		30
Perfluorononanesulfonic Acid (PFNS)	ND	962	935	97		948	98	48-150	1		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	1000	1110	111		1020	102	60-166	8		30
Perfluoroundecanoic Acid (PFUnA)	ND	1000	1070	107		1020	102	60-153	5		30
Perfluorodecanesulfonic Acid (PFDS)	ND	964	986	102		961	100	38-156	3		30
Perfluorooctanesulfonamide (FOSA)	ND	1000	1380F	138		1270F	127	46-170	8		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	1000	994	99		1080	108	45-170	8		30
Perfluorododecanoic Acid (PFDoA)	ND	1000	1160	116		1160	116	67-153	0		30

Matrix Spike Analysis Batch Quality Control

Project Name: 340 MYRTLE AVENUE*Project Number:* 340 MYRTLE AVENUE

Lab Number:

L2140608

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	sotope Dilutio	n - Mansfield	Lab Assoc	iated sample(s):	01-03	QC Batch	ID: WG153011	8-3 WG1530118-4	QC S	Sample: L2140888-01
Perfluorotridecanoic Acid (PFTrDA)	ND	1000	1280	128		1280	128	48-158	0	30
Perfluorotetradecanoic Acid (PFTA)	ND	1000	1110	111		1100	110	59-182	1	30

	MS	6	MS	D	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	113		103		10-162	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	87		88		12-142	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	131		126		14-147	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	68		63		27-126	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	69		72		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		94		55-137	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95		97		62-124	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	66		68		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	75		77		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109		111		71-134	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	98		94		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	96		94		22-136	
Perfluoro[13C4]Butanoic Acid (MPFBA)	78		81		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88		91		62-163	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	17		19		10-112	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107		104		69-131	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90		93		62-129	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	98		101		59-139	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112		108		70-131	

PCBS

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8082A Extraction Date: 08/02/21 00:27
Analytical Date: 08/03/21 09:35 Cleanup Method: EPA 3665A

Analyst: AD Cleanup Date: 08/03/21
Cleanup Method: EPA 3660B
Cleanup Date: 08/03/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1260	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α				
Aroclor 1268	ND		ug/l	0.071	0.061	1	Α				
PCBs, Total	ND		ug/l	0.071	0.061	1	Α				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		30-150	Α
Decachlorobiphenyl	76		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	90		30-150	В
Decachlorobiphenyl	79		30-150	В

Extraction Method: EPA 3510C

08/03/21

Cleanup Date:

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 1,8082A Extraction Date: 08/02/21 00:27
Analytical Date: 08/03/21 09:43 Cleanup Method: EPA 3665A

Analyst: AD Cleanup Date: 08/03/21 Cleanup Method: EPA 3660B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α
Aroclor 1260	ND		ug/l	0.071	0.061	1	Α
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α
Aroclor 1268	ND		ug/l	0.071	0.061	1	Α
PCBs, Total	ND		ug/l	0.071	0.061	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Caluman
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	90		30-150	Α
Decachlorobiphenyl	51		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	100		30-150	В
Decachlorobiphenyl	57		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 08/02/21 00:27

Analytical Date: 08/03/21 09:50 Cleanup Method: EPA 3665A Analyst: AD Cleanup Date: 08/03/21

Cleanup Method: EPA 3660B Cleanup Date: 08/03/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1242	ND		ug/l	0.071	0.061	1	А	
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1260	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α	
Aroclor 1268	ND		ug/l	0.071	0.061	1	А	
PCBs, Total	ND		ug/l	0.071	0.061	1	А	

O	a. =		Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	97		30-150	Α
Decachlorobiphenyl	57		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	105		30-150	В
Decachlorobiphenyl	58		30-150	В

L2140608

Project Name: 340 MYRTLE AVENUE

Report Date: Project Number: 340 MYRTLE AVENUE 08/12/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 08/03/21 09:12

Analyst: ΑD

Extraction Method: EPA 3510C 08/02/21 00:27 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 08/03/21 Cleanup Method: EPA 3660B Cleanup Date: 08/03/21

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG153	30368-1
Aroclor 1016	ND		ug/l	0.071		0.061	А
Aroclor 1221	ND		ug/l	0.071		0.061	Α
Aroclor 1232	ND		ug/l	0.071		0.061	Α
Aroclor 1242	ND		ug/l	0.071		0.061	Α
Aroclor 1248	ND		ug/l	0.071		0.061	Α
Aroclor 1254	ND		ug/l	0.071		0.061	А
Aroclor 1260	ND		ug/l	0.071		0.061	Α
Aroclor 1262	ND		ug/l	0.071		0.061	Α
Aroclor 1268	ND		ug/l	0.071		0.061	Α
PCBs, Total	ND		ug/l	0.071		0.061	Α

		Acceptano	e
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82	30-150	Α
Decachlorobiphenyl	86	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	94	30-150	В
Decachlorobiphenyl	93	30-150	В

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608

Project Number: 340 MYRTLE AVENUE

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westl	oorough Lab Associa	ted sample(s):	: 01-03 Batch	n: WG1530	368-2 WG153036	68-3			
Aroclor 1016	80		82		40-140	3		50	Α
Aroclor 1260	80		83		40-140	5		50	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Co	lumn
2,4,5,6-Tetrachloro-m-xylene	88	89	30-150	Α
Decachlorobiphenyl	85	88	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	97	98	30-150	В
Decachlorobiphenyl	94	93	30-150	В

PESTICIDES

Project Name: Lab Number: 340 MYRTLE AVENUE L2140608

Project Number: Report Date: 340 MYRTLE AVENUE 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Date Received: 07/28/21 Client ID: MW-1

Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/02/21 00:32 Analytical Method: 1,8081B

Analytical Date: 08/03/21 12:02

Analyst: SDC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - V	Vestborough Lab						
Delta-BHC	ND		ug/l	0.014	0.003	1	Α
Lindane	ND		ug/l	0.014	0.003	1	Α
Alpha-BHC	ND		ug/l	0.014	0.003	1	Α
Beta-BHC	ND		ug/l	0.014	0.004	1	Α
Heptachlor	ND		ug/l	0.014	0.002	1	Α
Aldrin	ND		ug/l	0.014	0.002	1	Α
Heptachlor epoxide	ND		ug/l	0.014	0.003	1	А
Endrin	ND		ug/l	0.029	0.003	1	Α
Endrin aldehyde	ND		ug/l	0.029	0.006	1	Α
Endrin ketone	ND		ug/l	0.029	0.003	1	Α
Dieldrin	ND		ug/l	0.029	0.003	1	Α
4,4'-DDE	ND		ug/l	0.029	0.003	1	Α
4,4'-DDD	ND		ug/l	0.029	0.003	1	Α
4,4'-DDT	ND		ug/l	0.029	0.003	1	Α
Endosulfan I	ND		ug/l	0.014	0.002	1	Α
Endosulfan II	ND		ug/l	0.029	0.004	1	Α
Endosulfan sulfate	ND		ug/l	0.029	0.003	1	Α
Methoxychlor	ND		ug/l	0.143	0.005	1	Α
Toxaphene	ND		ug/l	0.143	0.045	1	Α
cis-Chlordane	ND		ug/l	0.014	0.005	1	Α
trans-Chlordane	ND		ug/l	0.014	0.004	1	Α
Chlordane	ND		ug/l	0.143	0.033	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-01 Date Collected: 07/28/21 12:20

Client ID: MW-1 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91		30-150	Α
Decachlorobiphenyl	66		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В
Decachlorobiphenyl	57		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8081B Extraction Date: 08/02/21 00:32

Analytical Method: 1,8081B Extraction Date: 08/02/21 00:32
Analytical Date: 08/03/21 12:12

Analyst: SDC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	estborough Lab						
Delta-BHC	ND		ug/l	0.014	0.003	1	Α
Lindane	ND		ug/l	0.014	0.003	1	A
Alpha-BHC	ND		ug/l	0.014	0.003	1	Α
Beta-BHC	ND		ug/l	0.014	0.004	1	Α
Heptachlor	ND		ug/l	0.014	0.002	1	Α
Aldrin	ND		ug/l	0.014	0.002	1	Α
Heptachlor epoxide	ND		ug/l	0.014	0.003	1	Α
Endrin	ND		ug/l	0.029	0.003	1	Α
Endrin aldehyde	ND		ug/l	0.029	0.006	1	Α
Endrin ketone	ND		ug/l	0.029	0.003	1	Α
Dieldrin	ND		ug/l	0.029	0.003	1	Α
4,4'-DDE	ND		ug/l	0.029	0.003	1	А
4,4'-DDD	ND		ug/l	0.029	0.003	1	А
4,4'-DDT	ND		ug/l	0.029	0.003	1	Α
Endosulfan I	ND		ug/l	0.014	0.002	1	А
Endosulfan II	ND		ug/l	0.029	0.004	1	Α
Endosulfan sulfate	ND		ug/l	0.029	0.003	1	Α
Methoxychlor	ND		ug/l	0.143	0.005	1	Α
Toxaphene	ND		ug/l	0.143	0.045	1	Α
cis-Chlordane	ND		ug/l	0.014	0.005	1	Α
trans-Chlordane	ND		ug/l	0.014	0.004	1	Α
Chlordane	ND		ug/l	0.143	0.033	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-02 Date Collected: 07/28/21 10:35

Client ID: MW-2 Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	95		30-150	Α
Decachlorobiphenyl	59		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	89		30-150	В
Decachlorobiphenyl	50		30-150	В

Project Name: 340 MYRTLE AVENUE **Lab Number:** L2140608

Project Number: 340 MYRTLE AVENUE **Report Date:** 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8081B Extraction Date: 08/02/21 00:32

Analytical Method: 1,8081B Extraction Date: 08/02/21 00:32
Analytical Date: 08/03/21 12:23

Analyst: SDC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GO	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.014	0.003	1	Α
Lindane	ND		ug/l	0.014	0.003	1	Α
Alpha-BHC	ND		ug/l	0.014	0.003	1	Α
Beta-BHC	ND		ug/l	0.014	0.004	1	A
Heptachlor	ND		ug/l	0.014	0.002	1	A
Aldrin	ND		ug/l	0.014	0.002	1	Α
Heptachlor epoxide	ND		ug/l	0.014	0.003	1	Α
Endrin	ND		ug/l	0.029	0.003	1	Α
Endrin aldehyde	ND		ug/l	0.029	0.006	1	Α
Endrin ketone	ND		ug/l	0.029	0.003	1	Α
Dieldrin	ND		ug/l	0.029	0.003	1	Α
4,4'-DDE	ND		ug/l	0.029	0.003	1	Α
4,4'-DDD	ND		ug/l	0.029	0.003	1	Α
4,4'-DDT	ND		ug/l	0.029	0.003	1	Α
Endosulfan I	ND		ug/l	0.014	0.002	1	Α
Endosulfan II	ND		ug/l	0.029	0.004	1	Α
Endosulfan sulfate	ND		ug/l	0.029	0.003	1	Α
Methoxychlor	ND		ug/l	0.143	0.005	1	Α
Toxaphene	ND		ug/l	0.143	0.045	1	Α
cis-Chlordane	ND		ug/l	0.014	0.005	1	Α
trans-Chlordane	ND		ug/l	0.014	0.004	1	Α
Chlordane	ND		ug/l	0.143	0.033	1	Α

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

SAMPLE RESULTS

Lab ID: L2140608-03 Date Collected: 07/28/21 10:40

Client ID: MW-2_DUP Date Received: 07/28/21 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	127		30-150	Α
Decachlorobiphenyl	56		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	84		30-150	В
Decachlorobiphenyl	47		30-150	В

L2140608

Project Name: Lab Number: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

Report Date: 08/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date:

Analyst:

Extraction Method: EPA 3510C 08/03/21 11:31 08/02/21 00:32 **Extraction Date:** SDC

Parameter	Result	Qualifier	Units	RL		MDL	Column
Organochlorine Pesticides by GC -	Westboroug	h Lab for	sample(s):	01-03	Batch:	WG15	30369-1
Delta-BHC	ND		ug/l	0.014		0.003	А
Lindane	ND		ug/l	0.014		0.003	Α
Alpha-BHC	ND		ug/l	0.014		0.003	Α
Beta-BHC	ND		ug/l	0.014		0.004	Α
Heptachlor	ND		ug/l	0.014		0.002	Α
Aldrin	ND		ug/l	0.014		0.002	А
Heptachlor epoxide	ND		ug/l	0.014		0.003	Α
Endrin	ND		ug/l	0.029		0.003	Α
Endrin aldehyde	ND		ug/l	0.029		0.006	Α
Endrin ketone	ND		ug/l	0.029		0.003	Α
Dieldrin	ND		ug/l	0.029		0.003	Α
4,4'-DDE	ND		ug/l	0.029		0.003	Α
4,4'-DDD	ND		ug/l	0.029		0.003	Α
4,4'-DDT	ND		ug/l	0.029		0.003	Α
Endosulfan I	ND		ug/l	0.014		0.002	Α
Endosulfan II	ND		ug/l	0.029		0.004	Α
Endosulfan sulfate	ND		ug/l	0.029		0.003	Α
Methoxychlor	ND		ug/l	0.143		0.005	Α
Toxaphene	ND		ug/l	0.143		0.045	Α
cis-Chlordane	ND		ug/l	0.014		0.005	Α
trans-Chlordane	ND		ug/l	0.014		0.004	Α
Chlordane	ND		ug/l	0.143		0.033	А

Project Name: 340 MYRTLE AVENUE Lab Number: L2140608

Project Number: 340 MYRTLE AVENUE Report Date: 08/12/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3510C
Analytical Date: 08/03/21 11:31 Extraction Date: 08/02/21 00:32

Analyst: SDC

ParameterResultQualifierUnitsRLMDLColumnOrganochlorine Pesticides by GC - Westborough Lab for sample(s):01-03Batch:WG1530369-1

		Acceptance						
Surrogate	%Recovery Quali	fier Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	95	30-150	Α					
Decachlorobiphenyl	79	30-150	A					
2,4,5,6-Tetrachloro-m-xylene	98	30-150	В					
Decachlorobiphenyl	80	30-150	В					

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE Lab Number: L2140608

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	Column
Organochlorine Pesticides by GC - Westbo	orough Lab Assoc	iated sample(s)	: 01-03 Batch	n: WG1530369-2 WG1530	369-3		
Delta-BHC	92		97	30-150	6	20	А
Lindane	95		99	30-150	4	20	Α
Alpha-BHC	96		98	30-150	3	20	А
Beta-BHC	88		92	30-150	4	20	А
Heptachlor	88		95	30-150	8	20	Α
Aldrin	100		101	30-150	1	20	Α
Heptachlor epoxide	96		99	30-150	2	20	А
Endrin	99		107	30-150	8	20	А
Endrin aldehyde	87		100	30-150	13	20	Α
Endrin ketone	105		113	30-150	7	20	Α
Dieldrin	108		112	30-150	4	20	Α
4,4'-DDE	110		116	30-150	5	20	Α
4,4'-DDD	114		122	30-150	7	20	Α
4,4'-DDT	110		119	30-150	8	20	А
Endosulfan I	99		107	30-150	8	20	А
Endosulfan II	101		110	30-150	9	20	А
Endosulfan sulfate	102		114	30-150	11	20	А
Methoxychlor	109		116	30-150	6	20	Α
cis-Chlordane	97		102	30-150	5	20	Α
trans-Chlordane	92		95	30-150	4	20	Α

Project Name: 340 MYRTLE AVENUE

Lab Number:

L2140608

Project Number: 340 MYRTLE AVENUE

Report Date:

08/12/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-03 Batch: WG1530369-2 WG1530369-3

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	92	104	30-150 A
Decachlorobiphenyl	79	75	30-150 A
2,4,5,6-Tetrachloro-m-xylene	87	89	30-150 B
Decachlorobiphenyl	75	69	30-150 B

Project Name:340 MYRTLE AVENUEProject Number:340 MYRTLE AVENUEReport Date:08/12/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent
B Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140608-01A	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-01B	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-01C	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-01D	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-01E	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-01F	Plastic 250ml unpreserved	В	6	6	3.8	Υ	Absent		-
L2140608-01G	Plastic 250ml HNO3 preserved	В	<2	<2	3.8	Υ	Absent		SUB-TAL 6020(180)
L2140608-01H	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-01I	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-01J	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-01K	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-01L	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-01M	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-01N	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-01O	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-01X	Plastic 250ml HNO3 preserved Filtrates	NA	NA			Υ	Absent		SUB-TAL 6020 SOLUBLE(180)
L2140608-02A	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-02B	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-02C	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-02D	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-02E	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-02F	Plastic 250ml unpreserved	В	6	6	3.8	Υ	Absent		-

Lab Number: L2140608

Report Date: 08/12/21

Project Name: 340 MYRTLE AVENUEProject Number: 340 MYRTLE AVENUE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140608-02G	Plastic 250ml HNO3 preserved	В	<2	<2	3.8	Υ	Absent		SUB-TAL 6020(180)
L2140608-02H	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-02I	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-02J	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-02K	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-02L	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-02M	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-02N	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-02O	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-02X	Plastic 250ml HNO3 preserved Filtrates	NA	NA			Υ	Absent		SUB-TAL 6020 SOLUBLE(180)
L2140608-03A	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-03B	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-03C	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2140608-03D	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-03E	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2140608-03F	Plastic 250ml unpreserved	В	6	6	3.8	Υ	Absent		-
L2140608-03G	Plastic 250ml HNO3 preserved	В	<2	<2	3.8	Υ	Absent		SUB-TAL 6020(180)
L2140608-03H	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-03I	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8081(7)
L2140608-03J	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-03K	Amber 120ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8082-LVI(365)
L2140608-03L	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-03M	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2140608-03N	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-03O	Amber 250ml unpreserved	В	6	6	3.8	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2140608-03X	Plastic 250ml HNO3 preserved Filtrates	NA	NA			Υ	Absent		SUB-TAL 6020 SOLUBLE(180)
L2140608-04A	Plastic 250ml unpreserved	Α	NA		5.6	Υ	Absent		HOLD-537(14)
L2140608-05A	Vial HCl preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)

Lab Number: L2140608

Report Date: 08/12/21

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140608-05B	Vial HCI preserved	В	NA		3.8	Υ	Absent		NYTCL-8260(14)

Project Name: 340 MYRTLE AVENUE

Project Number: 340 MYRTLE AVENUE

Serial_No:08122114:26 **Lab Number:** L2140608

08/12/21

Report Date:

Project Name: 340 MYRTLE AVENUE **Project Number:** 340 MYRTLE AVENUE

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
	TT BA	37 3-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)	DED-00	70700 00 5
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)	-	
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)	DEMD 4	
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:340 MYRTLE AVENUELab Number:L2140608Project Number:340 MYRTLE AVENUEReport Date:08/12/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

<u> ALPHA</u>	NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker V	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Fonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information			r]	Date Rec'd 7/29/2/							ALPHA Job # L2140608			
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd						Delive	erable	S		and the same			-	Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 340	Myrtle	Avenue				ASP-	A		X	ASP-I	В		Same as Client Info		
PAX. 300-038-9193	PAA. 500-022-3200	Project Location: Bo	oklyn, n	VV				EQui:	S (1 Fi	le)		EQui:	S (4 Fi	le)	PO#		
Client Information		Project #	1				Other								00017		
Client: Tenen En	vironmental	(Use Project name as P	roject#) 🗶				Regul	atory	Requi	rement	į.				Disposal Site Information		
Address: 121 West	- 27th Street						X	NY TO	GS			NY Pa	rt 375		Please identify below location of	1	
		ALPHAQuote #:	000350-314A				X	AWQ :	Standar	ds		NY CF	-51	- 4	applicable disposal facilities.		
Phone: 646-606-		Turn-Around Time		STEEL STATE				NY Re	stricted	Use		Other			Disposal Facility:		
Fax:		Standar	d 🔀	Due Date				NY Un	restrict	ed Use					☐ NJ ☐ NY		
Email: acarroll (atenen-envio	Rush (only if pre approved	d) 🔲	# of Days				NYC S	Sewer D	ischarg	e				Other:		
allo-		AND CANONS IN THE CONTRACT OF			ANAL	YSIS							Sample Filtration	T			
	NY, NY 10 001 ALPHAQuote #: 06-2332 Turn-Around Time Standard X Due Date: Ave been previously analyzed by Alpha ecific requirements/comments: B deliverables, Hold Field Blank retals or TAL. Sample ID Collection Date Time Matrix MW-1 MW-2 MW-2 MW-2 MW-2 MOS ALPHAQuote #: Collection Sample S Matrix 7/28/21 12:720 Water MW-2								7	\neg					Done	- o	
Ca+ B		s, Hold Fi	eld Bla	nk			1	S	Dissolved	Postschool	la	S	Dioxane		Lab to do Preservation Lab to do	a B o	
			-				1 2	0	±1		Bs				(Please Specify below)	t	
ALPHA Lab ID	Sa	mple ID	Colle	ection		Sampler's	0	5	Total M	N.	PCE	PFA	工			- 10	
(Lab Use Only)	1000	202400000	Date	-	Matrix	Initials	2	S	12	5	0	12			Sample Specific Comments	е	
40108-01			7/28/21	12:20	Water	AP	X	X	X	X	X	X	X			15	
-02				10:35	i i		X	X	×	X	X	×	×	7		1	
-63				10:40			X	×	×	X	×	×	X			V	
-04	Field	Blank		12:30		V	+	10	LD	A	NA	14	15	25		1	
-0.5	TOO B	lank	V		V		X									2	
	//	/ /	/		1	/	/						/		/ /	1	
	///				/							/					
Design Control Date	//							/			/			/			
	/	/ /		/									/		//		
		/			/		1		3				/				
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification I Mansfield: Certification I			Cor	ntainer Type	٧	A	P	A	A	P	A		Please print clearly, legib and completely. Samples	The second	
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup					Preservative	BAACA		A	A	A	A		not be logged in and turnaround time clock will start until any ambiguities			
F = MeOH	C = Cube O = Other	Relinquished	Relinquished By: Date/Time					red By				Date	/Time		resolved. BY EXECUTING	IG	
$G = NaHSO_4$ $H = Na_2S_2O_3$	E = Encore	A. Platt / Te	nen.	7/28/21	12:45	the	II.	_(4	A()		7/2	8/2	1 12	:45	THIS COC, THE CLIENT HAS READ AND AGREE		
K/E = Zn Ac/NaOH	D = BOD Bottle	Contab	ARC)	7128121		12	\Rightarrow	N	d	7/8	8/0	7/2	000		TO BE BOUND BY ALPH		
O = Other		110	XXL7	The state of the s	000	M	Jaga 1 0013					TERMS & CONDITIONS	000				
Form No: 01-25 HC (rev. 30	0-Sept-2013)		, - ,	1		1111	111		4		1	white	10.0	-	(See reverse side.)		
age 93 of 110									1								

Subcontract Chain of Custody

Client Information Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Phone: 508.439.5186 Email: kraymond@alphalab.com		An 56 Fa	Project Location: NY Project Manager: Karyn Raymond State/Federal Pro			Alpha Job Numb	
		C. Marine				Regulatory Requirements/Report Limits State/Federal Program: Regulatory Criteria: NY-AWQS;NY-TOGS-GA	
		Turnaro Due Date					
		Deliverables					
表明計畫	85年首为第三个一个一个	Project Specif	ic Requirem	ents and/or Report F	Requirements	自由的 的一个大学	
	Reference following Alpha Job	Number on final repor	rt/deliverables	: L2140608	Report to include Method Bla	ink, LCS/LCSD:	
Lab ID	Client ID	Collection Date/Time	Sample Matrix		nalysis	Batc	
Labib	MW-1 MW-2 MW-2_DUP	07-28-21 12:20 07-28-21 10:35 07-28-21 10:40	WATER WATER WATER	TAL 6020 Metals; TAL 6020 TAL 6020 Metals; TAL 6020 TAL 6020 Metals; TAL 6020	0 Metals Soluble 0 Metals Soluble	QC	
	Relinquishe	ed By:		Date/Time	Received By:	Date/Time:	

Form No: AL_subcoc

Thursday, August 12, 2021

Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2140608 SDG ID: GCI87235

Sample ID#s: CI87235 - CI87237, CI87958

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530 RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

August 12, 2021

SDG I.D.: GCI87235

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Page 96 of 110 Page 2 of 16

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

August 12, 2021

SDG I.D.: GCI87235

L2140608 Project ID:

Client Id	Lab Id	Matrix
MW-1	CI87235	GROUND WATER
MW-2	CI87236	GROUND WATER
MW-2_DUP	CI87237	GROUND WATER
MW-2_DUP	CI87958	GROUND WATER

Page 97 of 110 Page 3 of 16

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Heather Hayden Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:07/28/2112:20Location Code:ALPHAReceived by:LB08/03/2111:22

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCI87235

Phoenix ID: Cl87235

Project ID: L2140608 Client ID: MW-1

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Aluminum	0.674	0.020	0.01	mg/L	1	08/09/21	EK	SW6010D
Arsenic - LDL	ND	0.004	0.004	mg/L	1	08/09/21	EK	SW6010D
Barium	0.209	0.010	0.001	mg/L	1	08/09/21	EK	SW6010D
Beryllium	ND	0.001	0.001	mg/L	1	08/09/21	EK	SW6010D
Calcium	93.1	0.010	0.01	mg/L	1	08/09/21	EK	SW6010D
Cadmium	ND	0.0010	0.0005	mg/L	1	08/09/21	EK	SW6010D
Cobalt	0.008	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Chromium	0.003	0.001	0.001	mg/L	1	08/09/21	TH	SW6010D
Copper	0.007	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Aluminum (Dissolved)	0.018	0.011	0.0026	mg/L	1	08/06/21	TH	SW6010D
Arsenic, (Dissolved)	ND	0.003	0.001	mg/L	1	08/06/21	TH	SW6010D
Barium (Dissolved)	0.154	0.011	0.001	mg/L	1	08/06/21	TH	SW6010D
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Calcium (Dissolved)	86.0	0.01	0.003	mg/L	1	08/06/21	TH	SW6010D
Cadmium (Dissolved)	ND	0.0010	0.0005	mg/L	1	08/06/21	TH	SW6010D
Cobalt, (Dissolved)	0.003	J 0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Iron, (Dissolved)	ND	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	08/10/21	ΑT	SW7470A
Potassium (Dissolved)	5.8	0.1	0.1	mg/L	1	08/06/21	TH	SW6010D
Magnesium (Dissolved)	36.4	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Manganese, (Dissolved)	0.494	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Sodium (Dissolved)	81.9	1.1	1.1	mg/L	10	08/09/21	EK	SW6010D
Nickel, (Dissolved)	0.010	0.004	0.001	mg/L	1	08/06/21	EK	SW6010D
Lead (Dissolved)	0.002	J 0.002	0.001	mg/L	1	08/06/21	TH	SW6010D

Ver 1

Page 98 of 110 Page 4 of 16

Client ID: MW-1

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony (Dissolved)	ND	0.003	0.001	mg/L	1	08/06/21	TH	SW6010D
Selenium (Dissolved)	ND	0.010	0.005	mg/L	1	08/06/21	TH	SW6010D
Thallium (Dissolved)	ND	0.0005	0.0005	mg/L	1	08/11/21	TH	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	08/06/21	TH	SW6010D
Zinc, (Dissolved)	ND	0.011	0.002	mg/L	1	08/06/21	TH	SW6010D
Iron	1.52	0.05	0.01	mg/L	1	08/09/21	TH	SW6010D
Mercury	ND	0.0002	0.00015	mg/L	1	08/05/21	AT	SW7470A
Potassium	6.9	0.1	0.01	mg/L	1	08/09/21	EK	SW6010D
Magnesium	39.2	0.010	0.01	mg/L	1	08/09/21	EK	SW6010D
Manganese	0.690	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Sodium	84.7	1.0	1.0	mg/L	10	08/10/21	TH	SW6010D
Nickel	0.018	0.004	0.001	mg/L	1	08/09/21	EK	SW6010D
Lead	0.012	0.002	0.001	mg/L	1	08/09/21	EK	SW6010D
Antimony	ND	0.003	0.001	mg/L	1	08/10/21	TH	SW6010D
Selenium	ND	0.010	0.005	mg/L	1	08/10/21	TH	SW6010D
Thallium	ND	0.0005	0.0005	mg/L	1	08/11/21	TH	SW7010
Vanadium	0.003	J 0.010	0.001	mg/L	1	08/09/21	EK	SW6010D
Zinc	0.011	0.010	0.0011	mg/L	1	08/09/21	EK	SW6010D
Sample Disposal	Completed					08/03/21		
Dissolved Mercury Digestion	Completed					08/06/21	AB/CG/C	cGSW7470A
Mercury Digestion	Completed					08/04/21	AB/AE	3 SW7470A
Dissolved Metals Preparation	Completed					08/03/21	AG	
Dissolved Metals Preparation	Completed					08/04/21	AG	
Total Metals Digestion	Completed					08/04/21	AG	
Total Metals Digestion MS	Completed					08/03/21	AG	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

August 12, 2021

FOR: Attn: Heather Hayden Alpha Analytical Lab

8 Walkup Drive

Westborough, MA 01581

Sample Information Custody Information <u>Date</u> <u>Time</u> **GROUND WATER** Collected by: 07/28/21 10:35 Matrix: Received by: Location Code: **ALPHA** LB 08/03/21 11:22

Analyzed by: Rush Request: Standard see "By" below

P.O.#:

<u>aboratory Data</u>

SDG ID: GCI87235

Phoenix ID: CI87236

L2140608 Project ID: Client ID: MW-2

		RL/	LOD/		5		_	-
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Aluminum	16.5	0.020	0.01	mg/L	1	08/09/21	EK	SW6010D
Arsenic - LDL	ND	0.004	0.004	mg/L	1	08/09/21	EK	SW6010D
Barium	0.317	0.010	0.001	mg/L	1	08/09/21	EK	SW6010D
Beryllium	ND	0.001	0.001	mg/L	1	08/09/21	EK	SW6010D
Calcium	80.2	0.010	0.01	mg/L	1	08/09/21	EK	SW6010D
Cadmium	0.0011	0.0010	0.0005	mg/L	1	08/09/21	EK	SW6010D
Cobalt	0.018	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Chromium	0.053	0.001	0.001	mg/L	1	08/09/21	TH	SW6010D
Copper	0.051	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Aluminum (Dissolved)	0.021	0.011	0.0026	mg/L	1	08/06/21	TH	SW6010D
Arsenic, (Dissolved)	ND	0.003	0.001	mg/L	1	08/06/21	TH	SW6010D
Barium (Dissolved)	0.109	0.011	0.001	mg/L	1	08/06/21	TH	SW6010D
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Calcium (Dissolved)	71.0	0.01	0.003	mg/L	1	08/06/21	TH	SW6010D
Cadmium (Dissolved)	ND	0.0010	0.0005	mg/L	1	08/06/21	TH	SW6010D
Cobalt, (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Iron, (Dissolved)	ND	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	08/10/21	ΑT	SW7470A
Potassium (Dissolved)	4.9	0.1	0.1	mg/L	1	08/06/21	TH	SW6010D
Magnesium (Dissolved)	30.5	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Manganese, (Dissolved)	0.345	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Sodium (Dissolved)	60.1	1.1	1.1	mg/L	10	08/09/21	EK	SW6010D
Nickel, (Dissolved)	0.004	0.004	0.001	mg/L	1	08/06/21	EK	SW6010D
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	08/06/21	TH	SW6010D

Ver 1

Page 100 of 110 Page 6 of 16

Client ID: MW-2

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony (Dissolved)	ND	0.003	0.001	mg/L	1	08/06/21	TH	SW6010D
Selenium (Dissolved)	ND	0.010	0.005	mg/L	1	08/06/21	TH	SW6010D
Thallium (Dissolved)	ND	0.0005	0.0005 0.0005		1	08/11/21	TH	SW7010
Vanadium, (Dissolved)	0.002	J 0.011	•		1	08/06/21	TH	SW6010D
Zinc, (Dissolved)	ND	0.011	0.002	mg/L	1	08/06/21	TH	SW6010D
Iron	26.9	0.05	0.01	mg/L	1	08/09/21	TH	SW6010D
Mercury	ND	0.0002	0.00015	mg/L	1	08/05/21	AT	SW7470A
Potassium	10.2	0.1	0.01	mg/L	1	08/09/21	EK	SW6010D
Magnesium	39.7	0.010	0.01	mg/L	1	08/09/21	EK	SW6010D
Manganese	1.28	0.005	0.001	mg/L	1	08/09/21	EK	SW6010D
Sodium	64.3	1.0	1.0	mg/L	10	08/10/21	TH	SW6010D
Nickel	0.056	0.004	0.001	mg/L	1	08/09/21	EK	SW6010D
Lead	0.019	0.002	0.001	mg/L	1	08/09/21	EK	SW6010D
Antimony	ND	0.003	0.001	mg/L	1	08/10/21	TH	SW6010D
Selenium	ND	0.010	0.005	mg/L	1	08/10/21	TH	SW6010D
Thallium	ND	0.0005	0.0005	mg/L	1	08/11/21	TH	SW7010
Vanadium	0.042	0.010	0.001	mg/L	1	08/09/21	EK	SW6010D
Zinc	0.088	0.010	0.0011	mg/L	1	08/09/21	EK	SW6010D
Sample Disposal	Completed					08/03/21		
Dissolved Mercury Digestion	Completed					08/06/21	AB/CG/0	ccSW7470A
Mercury Digestion	Completed					08/04/21	AB/AE	3 SW7470A
Dissolved Metals Preparation	Completed					08/03/21	AG	
Dissolved Metals Preparation	Completed					08/04/21	AG	
Total Metals Digestion	Completed					08/04/21	AG	
Total Metals Digestion MS	Completed					08/03/21	AG	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Heather Hayden Alpha Analytical Lab

8 Walkup Drive

Westborough, MA 01581

Sample Information Custody Information <u>Date</u> <u>Time</u> **GROUND WATER** Collected by: 07/28/21 10:40 Matrix: Received by: Location Code: **ALPHA** LB 08/03/21 11:22 Analyzed by: Rush Request: Standard see "By" below

Laboratory Data

SDG ID: GCI87235

Phoenix ID: CI87237

Project ID: L2140608 Client ID: MW-2_DUP

P.O.#:

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Aluminum (Dissolved)	0.024	0.011	0.0026	mg/L	1	08/06/21	TH	SW6010D
Arsenic, (Dissolved)	ND	0.003	0.001	mg/L	1	08/06/21	TH	SW6010D
Barium (Dissolved)	0.109	0.011	0.001	mg/L	1	08/06/21	TH	SW6010D
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Calcium (Dissolved)	71.2	0.01	0.003	mg/L	1	08/06/21	TH	SW6010D
Cadmium (Dissolved)	ND	0.0010	0.0005	mg/L	1	08/06/21	TH	SW6010D
Cobalt, (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	08/06/21	TH	SW6010D
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Iron, (Dissolved)	ND	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Mercury (Dissolved)	ND	0.0005	0.0004	mg/L	1	08/12/21	AT	SW7470A
Potassium (Dissolved)	4.8	0.1	0.1	mg/L	1	08/06/21	TH	SW6010D
Magnesium (Dissolved)	30.6	0.01	0.01	mg/L	1	08/06/21	TH	SW6010D
Manganese, (Dissolved)	0.346	0.005	0.001	mg/L	1	08/06/21	TH	SW6010D
Sodium (Dissolved)	59.6	1.1	1.1	mg/L	10	08/09/21	EK	SW6010D
Nickel, (Dissolved)	0.004	0.004	0.001	mg/L	1	08/06/21	EK	SW6010D
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	08/06/21	TH	SW6010D
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	08/06/21	TH	SW6010D
Zinc, (Dissolved)	ND	0.011	0.002	mg/L	1	08/06/21	TH	SW6010D
Sample Disposal	Completed					08/03/21		
Mercury Dissolved Digestion	Completed					08/11/21	AB/AB	SW7470A
Dissolved Metals Preparation	Completed					08/03/21	AG	
Dissolved Metals Preparation	Completed					08/04/21	AG	

Client ID: MW-2_DUP

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 12, 2021

FOR: Attn: Heather Hayden

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:07/28/2110:40Location Code:ALPHAReceived by:SW08/04/2111:22

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCI87235

Phoenix ID: CI87958

Project ID: L2140608 Client ID: MW-2_DUP

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.005	0.001	mg/L	1	08/09/21	TH	SW6010D
Aluminum	13.0	0.020	0.01	mg/L	1	08/09/21	TH	SW6010D
Arsenic - LDL	0.004	0.004	0.004	mg/L	1	08/09/21	TH	SW6010D
Barium	0.250	0.010	0.001	mg/L	1	08/09/21	TH	SW6010D
Beryllium	ND	0.001	0.001	mg/L	1	08/09/21	TH	SW6010D
Calcium	80.9	0.010	0.01	mg/L	1	08/09/21	TH	SW6010D
Cadmium	ND	0.0010	0.0005	mg/L	1	08/09/21	TH	SW6010D
Cobalt	0.014	0.005	0.001	mg/L	1	08/09/21	TH	SW6010D
Chromium	0.040	0.001	0.001	mg/L	1	08/09/21	TH	SW6010D
Copper	0.040	0.005	0.001	mg/L	1	08/09/21	TH	SW6010D
Iron	20.0	0.010	0.01	mg/L	1	08/09/21	EK	SW6010D
Mercury	ND	0.0002	0.00015	mg/L	1	08/06/21	ΑT	SW7470A
Potassium	9.1	0.1	0.01	mg/L	1	08/09/21	TH	SW6010D
Magnesium	38.2	0.010	0.01	mg/L	1	08/09/21	TH	SW6010D
Manganese	0.933	0.005	0.001	mg/L	1	08/09/21	TH	SW6010D
Sodium	62.5	1.0	1.0	mg/L	10	08/10/21	TH	SW6010D
Nickel	0.044	0.004	0.001	mg/L	1	08/09/21	TH	SW6010D
Lead	0.013	0.002	0.001	mg/L	1	08/09/21	TH	SW6010D
Antimony	ND	0.003	0.001	mg/L	1	08/09/21	TH	SW6010D
Selenium	ND	0.010	0.005	mg/L	1	08/09/21	TH	SW6010D
Thallium	ND	0.0005	0.0005	mg/L	1	08/11/21	TH	SW7010
Vanadium	0.032	0.010	0.001	mg/L	1	08/09/21	TH	SW6010D
Zinc	0.067	0.010	0.0011	mg/L	1	08/09/21	TH	SW6010D
Sample Disposal	Completed					08/04/21		
Mercury Digestion	Completed					08/05/21	AB/CG	SW7470A
Total Metals Digestion	Completed					08/04/21	AG	
Total Metals Digestion MS (Silver)	Completed					08/04/21	AG	

Ver 1

Page 104 of 110 Page 10 of 16

Client ID: MW-2_DUP

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

August 12, 2021

Sample Criteria Exceedances Report GCI87235 - ALPHA

Units mg/L 0.3 20 0.3 35 0.3 20 0.1 20 0.3 35 0.3 20 0.3 0.1 0.3 귒 Criteria 0.3 35 0.3 20 0.1 0.05 0.3 20 0.3 35 0.3 0.3 0.1 20 20 20 35 0.005 0.010 0.005 0.005 0.010 0.005 0.005 0.010 0.010 0.005 0.020 0.05 1.0 0.001 <u>_</u>: 0.05 0.020 [1.0 7: 0.345 0.494 39.2 0.690 16.5 0.053 26.9 0.346 59.6 20.0 0.933 1.52 84.7 60.1 39.7 1.28 13.0 38.2 NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria NY / TOGS - Water Quality / GA Criteria Criteria Manganese, (Dissolved) Manganese, (Dissolved) Manganese, (Dissolved) Magnesium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Phoenix Analyte Magnesium Manganese Magnesium Manganese Magnesium Manganese Aluminum Chromium Aluminum Aluminum Sodium Sodium Sodium lron lron DMN-WMDP DMN-WMDP DMN-WMDP **MN-WMDP MN-WMDP** MN-WMDP FE-WMDP FE-WMDP MG-WM MG-WM NA-WM NA-WM FE-WM MG-WM NA-WM AL-WM CR-WM AL-WM AL-WM D-NA D-NA Acode D-NA State: NY SampNo **CI87235 CI87235 CI87235 CI87235** CI87236 **C187236 CI87236 C187236** 3187235 **CI87236 CI87236** 3187236 CI87237 **CI87958 CI87235 CI87235 CI87235** 3187236 **CI87237** 2187958 2187958 **CI87958 CI87958**

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Criteria: NY: GW

Thursday, August 12, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

August 12, 2021

SDG I.D.: GCI87235

The samples in this delivery group were received at 3.1°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 107 of 110 Page 13 of 16

A PHA		Surven Surven Surven Manch	ix Environm ast Middle Ti ester, CT 06	Subcontract Chain of Custody Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040		Alpha Job Number L2140608	ber
Corrections Commercy Correction	rmation		Project Information	ormation	Regulatory Requirements/Report Limits	nts/Report Limits	
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	abs 01581-1019	Project Location: NY Project Manager: Heather Hayden Turnaround & Deliverab	IY Heather Hay d & Delive	t Location: NY t Manager: Heather Hayden Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria: NY-AWQS;NY-TOGS-GA	NY-TOGS-GA	
Phone: 201.299.4429 Email: hhayden@alphalab.com	b.com	Due Date: Deliverables:			Applications of the second sec		
		\circ	sequireme	or Report Req	ements		
Keterence ditional Comments: Ser	Reference following Alpha Job Number on linal ments: Send all results/reports to subreports@a	nber on tinal reportor ubreports@alphalab.c	report deliverables: LZ 140008 phalab.com NEed NY CAT B,	NYSDEC EDD	Report to include Metrod blank, LC2/LC30.	Cap:	
		(A. V.)					
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis		Batch QC	ل ى:
87235 87236 87236	MW-1 MW-2 MW-2_DUP	07-28-21 12:20 07-28-21 10:35 07-28-21 10:40		TAL 6020 Metals; TAL 6020 Metals Soluble TAL 6020 Metals; TAL 6020 Metals Soluble TAL 6020 Metals; TAL 6020 Metals Soluble	oluble Soluble		
			_				
		,					
				Date/Time:	Received B.	Date/Time:	
	JE 1	tolly Smite		0 <u>5</u> 10312,	Control Smile	8227 8	
		<u></u>				<u> </u>	

Tara Banning

From:

Tara Banning

Sent:

Tuesday, August 03, 2021 10:22 PM 'hhayden@alphalab.com'

To:

Subject:

L2140608

Importance:

High

Hello,

We received samples from the above mentioned project at the lab today. For MW-2 Dup we only received a field filtered HNO3 bottle and not an unfiltered HNO3 bottle. We can only run the dissolved TAL metals and not the total. Please let me know if you have any questions.

Thank you,

Tara Banning

Phoenix Environmental Labs

	nber						Batch QC	S & 1 3
8.1. mad	Alpha Job Number L2140608	Regulatory Requirements/Report Limits	State/Federal Program: Regulatory Criteria: NY-AWQS;NY-TOGS-GA			Report to include Method Blank, LCS/LCSD:	Ba	Analysis TAL 6020 Metals: TAL 6020 Metals Solubio TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Metals: TAL 6020 Metals TAL 6020 Metals: TAL 6020 Me
	·	Regu	State/Federal Program: Regulatory Criteria: NY		ements	port to include		South Exilor South
81235	Subcontract Chain of Custody Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040	Project Information	ation: NY nager: Heather Hayden naround & Deliverables Information		or Report Red		Analysis	Analysis TAL 6020 Metals; TAL 6020 Metals TAL 6020 Metals; TAL 6020 Metals TAL 6020 Metals; TAL 5020 Metals TAL 6020 Metals
SCI	Jbcontra nix Environr ast Middle hester, CT (Project Inf	NY Heather Ha nd & Delive		Requireme	com NEed I	Sample Matrix	WATER-
9	St Phoel 587 E Manc		Project Location: NY Project Manager: Heather Hayden Turnaround & Deliverab	Due Date: Deliverables:	Project Specific	ubreports@alphalab.	Collection Date/Time	
	·	Client Information	al Labs Drive MA 01581-1019	halab.com		Additional Comments: Send all results/reports to subreports@alphalab.com NEed NY CAT B, NYSDEC EDD	Client ID	1 1 5
	AHG D	Client Ir	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Phone: 201.299.4429 Email: hhayden@alphalab.com		Additional Comments: (Lab ID	& 1958 :AL_subcoc