

Thomas H. Bosshard, CPG Environmental Manager, Global EH&S Compliance 501 North Ocean Avenue, Patchogue, NY 11772

Phone (631) 654-7920, Fax (631) 475-2217 thomas.bosshard@verizon.com

April 11, 2013

Ms. Veronica Zhune NYSDEC – Region 2 One Hunters Point Plaza 47-40 21st Street Long Island City, NY 11101

Re: Verizon New York Inc. Facility, 318 Nevins Street, Brooklyn, NY, NYSDEC Spill # 12-15913

Ms. Zhune,

Enclosed please find the Request for Spill Closure report prepared by EnviroTrac for the referenced Verizon New York Inc. location. This report summarizes soil excavation activities in association with NYSDEC Spill Number 12-15913, in addition to providing background information on a Phase II Environmental Site Assessment (ESA) conducted by EnviroTrac in February 2013 as part of property divestment activities.

As part of the Phase II ESA, soil borings were installed at select locations on the property to investigate recognized environmental conditions identified in a Phase I ESA completed by Cardno ATC on behalf of Verizon New York Inc. in December 2012. Analytical results of soil samples collected during the Phase II assessment were compared to NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives, which revealed exceedances of select semi-volatile organic compounds (SVOCs) in all collected soil samples, consistent with urban fill material, which is commonly encountered throughout New York City. Soil excavation in an area of elevated SVOC concentrations inside the garage portion of the facility building confirmed the presence of urban fill, and a clean bottom soil horizon was encountered. Therefore, as the detected SVOCs are likely associated with urban fill and historical property usage, closure and inactivation of NYSDEC Spill Number 12-15913 is requested at this time.

We appreciate your time in reviewing the enclosed report and look forward to receiving your response. Please do not hesitate to contact me directly at 631-654-7920 if you have any questions or comments regarding the report.

Sincerely,

Thomas H. Bosshard, CPG Regional Environmental Specialist

Enclosure

April 11, 2013

Ms. Veronica Zhune NYSDEC – Region 2 1 Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101

Re: Request for Spill Closure

Verizon Facility 318 Nevins Street Brooklyn, New York

NYSDEC Spill Number 12-15913

Dear Ms. Zhune:

EnviroTrac Ltd. (EnviroTrac) was retained by Verizon New York, Inc. (Verizon) to prepare the following Request for Spill Closure letter in reference to New York State Department of Environmental Conservation (NYSDEC) Spill Number 12-15913 assigned to the subject property (**Figure 1**) on February 27, 2013:

Background

In February 2013, EnviroTrac performed a Phase II Environmental Site Assessment (ESA) at the subject property. The scope of work for the Phase II ESA was developed to investigate recognized environmental conditions (RECs) identified in the Phase I ESA completed by Cardno ATC (ATC) of New York, New York dated December 19, 2012. EnviroTrac directed a Geoprobe® direct-push technology mobile rig operated by AARCO Environmental Services Corp. (AARCO) of Lindenhurst, New York to install soil borings GP-1 through GP-7 at the locations depicted on **Figure 2**. Soil lithology, photo-ionization detector (PID) readings and other observations were logged by EnviroTrac. Soil borings logs are provided in **Attachment A**. A total of seven (7) soil samples were submitted to Phoenix Environmental Laboratories, Inc. (Phoenix Labs), a National Environmental Laboratory Accreditation Program (NELAP)-certified laboratory under proper chain-of-custody procedures for analysis of NYSDEC CP-51 List volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) using respective USEPA Methods 8260 and 8270.

Analytical results from the soil samples are summarized in **Table 1** and were compared to the NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs). Based on the analytical results, select SVOCs were detected at all seven (7) soil samples at concentrations exceeding UUSCOs, with the highest concentrations detected at GP-3. Based on the SVOC detections at GP-3, Verizon notified the NYSDEC Spills Hotline who then assigned Spill 12-15931 to the incident.

The suspected source of detected SVOCs at the boring locations is urban fill, which is prevalent throughout the New York City area, including downtown Brooklyn, the location

of the subject property. GP-3 was installed within a concrete patch, presumed to be the location of a former hydraulic lift in the garage portion of the building. However, upon excavation described below, the presence of a former hydraulic lift was not identified. Instead, urban fill evidenced by pieces of brick, glass, rope, ash and organics was discovered within the excavation.

According to Sanborn Maps, the subject property appears to have been developed as early as 1886 as a lumber yard and two dwellings. The property remained developed as a lumber yard from 1886 until 1922 when the property was developed as Koppers Seaboard Coke Co. and Brooklyn Nevins Coal Company. In 1938, the property was depicted with two garages along Nevins Street, a dwelling, additional buildings along Nevins Street, and a shed and conveyor system located on the central and northern portions of the property associated with Koppers Seaboard Coke Co. and several buildings including offices, scales, sheds, and four circular aboveground structures located on the southern portion of the property associated with Morton Coal Co. The current building on the property was constructed in 1958 as a motor freight station and was identified as NY Telephone Co. in 1979, Bell Atlantic in 2001 and Verizon on the 2002 map.

Excavation of Concrete Patch Area in Garage (GP-3)

On March 6, 2013, AARCO under the direction of EnviroTrac, mobilized to the site with a backhoe and excavated the area of the concrete patch where boring GP-3 had previously been installed. Photographic documentation of the field work is provided in **Attachment B**. Upon excavation, no hydraulic lift was identified. The excavation was extended deeper to investigate soils at the 5-10 foot below grade interval, where the GP-3 soil sample was previously collected. Soils in this interval consisted of urban fill as evidenced by pieces of brick, glass, ash and organics. Native-appearing soil was encountered at approximately 11 feet below grade and consisted of clay intermixed with fine sand and marsh organics. The excavation, which measured approximately 11-feet long by 5-feet wide and 11-feet deep (**Figure 2**), was halted as urban fill was encountered laterally in all directions and due to structural concerns within the garage. A total of 17.75 tons of soil was excavated from the concrete patch area of the garage. The soil was transported to Clean Earth of Cateret, New Jersey for proper disposal. Solid waste disposal manifests are enclosed in **Attachment C**.

Prior to backfilling, a total of five (5) endpoint soil samples were collected from each sidewall and bottom of the excavation The endpoint soil samples were submitted to Phoenix Labs under proper chain-of-custody procedures for analysis of NYSDEC CP-51 List VOCs and SVOCs using respective USEPA Methods 8260 and 8270.

Summary of Endpoint Soil Sampling Results

Analytical results from endpoint soil samples are summarized in **Table 2**. No VOCs were detected at concentrations exceeding UUSCOs in any of the endpoint samples collected. SVOCs were detected at concentrations exceeding UUSCOs at endpoint samples North Sidewall, East Sidewall, West Sidewall and South Sidewall. No SVOCs or VOCs were detected above the method detection limit of the laboratory from the Bottom endpoint sample. Note that the bottom endpoint sample was collected in native-appearing soil at 11 feet below grade, confirming the presence of urban fill identified throughout the property. A copy of the laboratory report is provided in **Attachment D**.

Conclusions and Professional Opinion

Based on the findings of previous borings and endpoint soil sampling results, SVOCs were detected in urban fill identified throughout the subject property. To explore elevated SVOCs detected at GP-3, the concrete patch and underlying soils within the garage were excavated and a total of 17.75 tons of soil were properly disposed off-site. Given the area-wide extent of urban fill and historical uses of the property as lumber and coal yards, additional excavation of urban fill is not feasible. As such, EnviroTrac, on behalf of Verizon, respectfully requests closure of NYSDEC Spill Number 12-15913

If you have any questions, please do not hesitate to contact me.

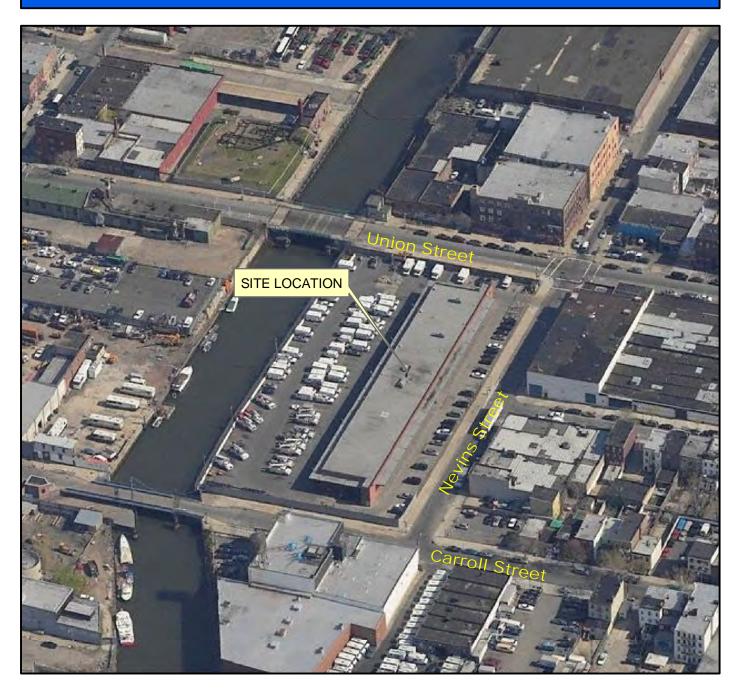
Sincerely,

EnviroTrac Ltd.

Jeffrey Bohlen, PG Principal Geologist

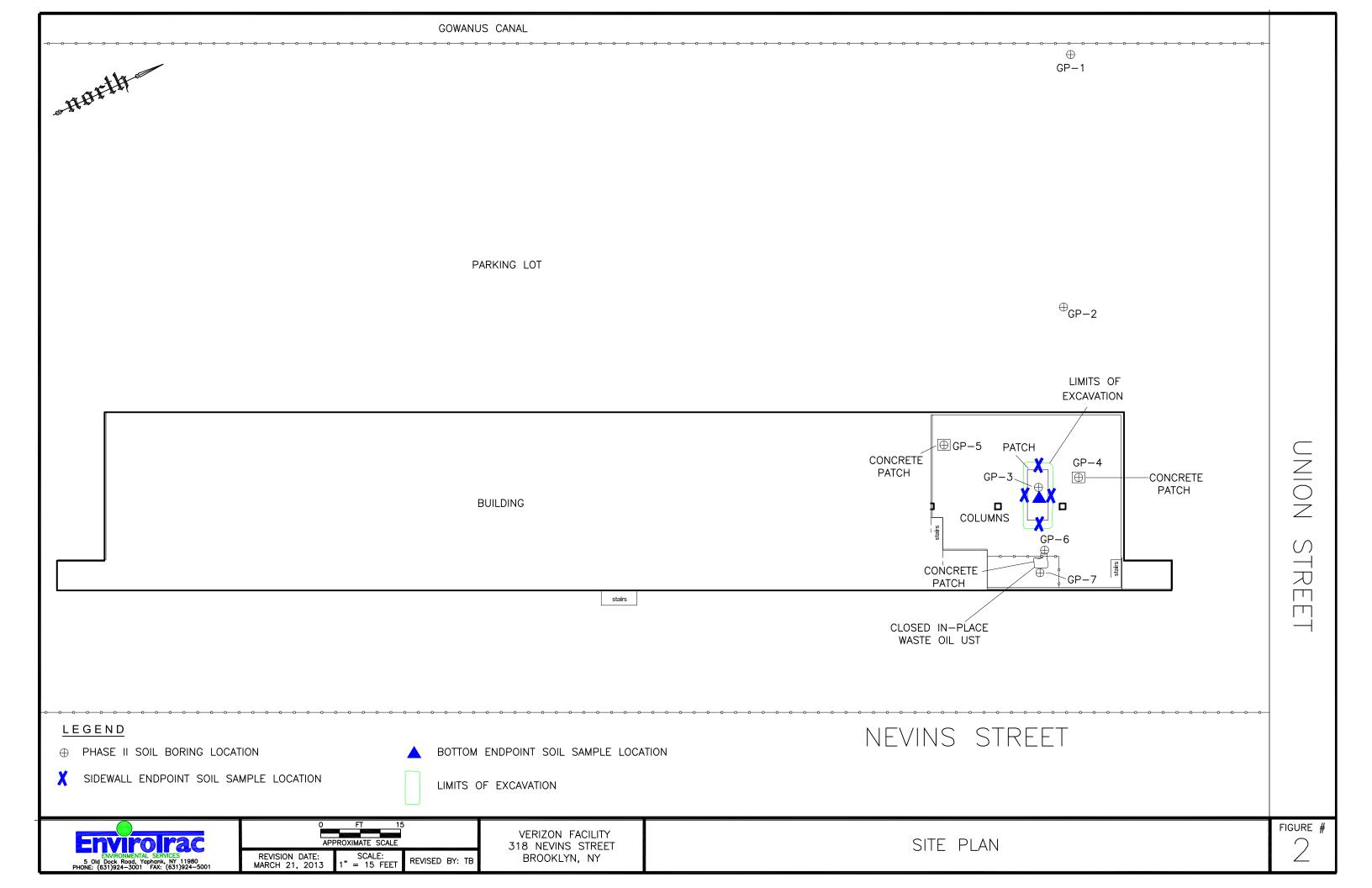
Attachments

cc: Mr. Thomas Bosshard, CPG – Verizon Global EH&S Compliance


Mr. Jeffrey Vought, NYSDEC Region 2

FIGURES

AERIAL PHOTOGRAPH


Figure 1 Aerial Photograph

Verizon New York Facility 318 Nevins Street Brooklyn, NY

TABLES

Table 1

Summary of Phase II ESA Soil Boring Samples for VOC and SVOC Analysis

Verizon New York, Inc. Facility 318 Nevins Street Brooklyn, New York

Analytical	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	NYSDEC
Parameter	5-10 FT	5-7 FT	5-10 FT	5-10 FT	5-10 FT	5-7 FT	5 FT	Part 375
	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	UUSCOs
CP-51 VOCs 8260 (ppb)								
1,2,4-Trimethylbenzene	2.6	ND	ND	1.7	ND	ND	1.9	3,600
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	8,400
Benzene	ND	ND	ND	ND	ND	ND	ND	60
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	1,000
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	2,300
m&p-Xylene	4.5	ND	ND	ND	ND	ND	2.5	260
Methyl tert-butyl ether (MTBE)	ND	2	ND	ND	ND	ND	ND	930
Naphthalene	1.9	ND	ND	ND	ND	1.3	4.4	12,000
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	12,000
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	3,900
o-Xylene	ND	ND	ND	ND	ND	ND	ND	260
p-Isopropyltoluene	ND	ND	ND	ND	47	ND	ND	10,000*
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	11,000
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	5,900
Toluene	ND	ND	ND	ND	ND	ND	ND	700
Total Xylenes	4.5	ND	ND	ND	ND	ND	2.5	260
Analytical	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	NYSDEC
Parameter	5-10 FT	5-7 FT	5-10 FT	5-10 FT	5-10 FT	5-7 FT	5 FT	Part 375
	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	2/7/13	UUSCOs
CP-51 SVOCs 8270 (ppb)	ı	1	1		1		1	
Acenaphthene	ND	ND	2,000	350	ND	ND	400	20,000
Acenaphthylene	ND	ND	1,900	ND	ND	ND	ND	100,000
Anthracene	600	560	3,800	750	440	630	970	100,000
Benzo(a)anthracene	1,400	1,300	16,000	2,900	2,400	2,300	2,900	1,000
Benzo(a)pyrene	1,400	1,300	30,000	3,000	4,100	2,100	2,800	1,000
Benzo(b)fluoranthene	1,800	1,700	31,000	3,600	3,600	2,700	3,800	1,000
Benzo(ghi)perylene	740	770	8,300	1,500	2,400	1,200	1,300	100,000
Benzo(k)fluoranthene	530	430	4,900	1,400	1,000	680	1,100	800
				0.000	2 200	2,300	2 200	1,000
Chrysene	1,500	1,400	17,000	2,900	2,200	2,300	2,900	1,000
Chrysene Dibenzo(a,h)anthracene	1,500 ND	1,400 ND	17,000 2,900	2,900 450	430	330	540	330
		•	,				,	
Dibenzo(a,h)anthracene	ND	ND	2,900	450	430	330	540	330
Dibenzo(a,h)anthracene Fluoranthene	ND 3,400	ND 3,000	2,900 22,000	450 6,300	430 4,000	330 5,000	540 6,400	330 100,000
Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND 3,400 ND	ND 3,000 ND	2,900 22,000 1,600	450 6,300 ND	430 4,000 ND	330 5,000 ND	540 6,400 390	330 100,000 30,000
Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND 3,400 ND 620	ND 3,000 ND 690	2,900 22,000 1,600 5,100	450 6,300 ND 1,400	430 4,000 ND 1,600	330 5,000 ND 1,000	540 6,400 390 1,300	330 100,000 30,000 500

Notes:

NYSDEC = New York State Department of Environmental Conservation Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs)

* = Per CP-51 Table 1 Supplemental Soil Cleanup Objectives

CP-51 = NYSDEC Final Commissioner Policy

ppb = parts per billion (ug/Kg)

VOCs = Volatile Organic Compounds

SVOCs = Semi Volatile Organic Compounds

ND = Not Detected above the method detection limit of the laboratory. Highlighted cells indicate detection at or exceeding NYSDEC UUSCOs.

Table 2

Summary of Garage Excavation Endpoint Samples for VOC and SVOC Analysis

Verizon New York, Inc. Facility 318 Nevins Street Brooklyn, New York

Analytical	North	East	West	South	D. #	NYSDEC
Parameter	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Part 375
	3/6/13	3/6/13	3/6/13	3/6/13	3/6/13	UUSCOs
CP-51 VOCs 8260 (ppb)						
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	3,600
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8,400
Benzene	ND	ND	ND	ND	ND	60
Ethylbenzene	ND	ND	ND	ND	ND	1,000
Isopropylbenzene	ND	ND	ND	ND	ND	2,300
m&p-Xylene	ND	ND	ND	ND	ND	260
Methyl tert-butyl ether (MTBE)	ND	ND	ND	ND	ND	930
Naphthalene	1.3	ND	ND	ND	ND	12,000
n-Butylbenzene	ND	ND	ND	ND	ND	12,000
n-Propylbenzene	ND	ND	ND	ND	ND	3,900
o-Xylene	ND	ND	ND	ND	ND	260
p-Isopropyltoluene	ND	ND	ND	ND	ND	10,000*
sec-Butylbenzene	ND	ND	ND	ND	ND	11,000
tert-Butylbenzene	ND	ND	ND	ND	ND	5,900
Toluene	ND	ND	ND	ND	ND	700
Total Xylenes	ND	ND	ND	ND	ND	260
Analytical	North	East	West	South	Bottom	NYSDEC
Parameter	Sidewall	Sidewall	Sidewall	Sidewall		Part 375
	3/6/13	3/6/13	3/6/13	3/6/13	3/6/13	UUSCOs
CP-51 SVOCs 8270 (ppb)						
Acenaphthene	ND	ND	510	ND	ND	20,000
Acenaphthylene	ND	3,200	430	ND	ND	100,000
Anthracene	460	ND	4 000			
Benzo(a)anthracene		IND	1,200	5,600	ND	100,000
	1,400	13,000	4,100	17,000	ND	1,000
Benzo(a)pyrene	1,300	13,000 28,000	4,100 4,100	17,000 15,000	ND ND	1,000 1,000
		13,000	4,100	17,000	ND	1,000
Benzo(a)pyrene	1,300	13,000 28,000	4,100 4,100	17,000 15,000	ND ND	1,000 1,000
Benzo(a)pyrene Benzo(b)fluoranthene	1,300 1,600	13,000 28,000 21,000	4,100 4,100 4,900	17,000 15,000 18,000	ND ND ND	1,000 1,000 1,000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	1,300 1,600 820	13,000 28,000 21,000 23,000	4,100 4,100 4,900 2,100	17,000 15,000 18,000 10,000	ND ND ND	1,000 1,000 1,000 100,000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	1,300 1,600 820 680	13,000 28,000 21,000 23,000 8,000	4,100 4,100 4,900 2,100 1,700	17,000 15,000 18,000 10,000 7,200	ND ND ND ND	1,000 1,000 1,000 1,000 100,000 800
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	1,300 1,600 820 680 1,400	13,000 28,000 21,000 23,000 8,000 11,000	4,100 4,100 4,900 2,100 1,700 4,600	17,000 15,000 18,000 10,000 7,200 15,000	ND ND ND ND ND	1,000 1,000 1,000 1,000 800 1,000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	1,300 1,600 820 680 1,400 ND	13,000 28,000 21,000 23,000 8,000 11,000 ND	4,100 4,100 4,900 2,100 1,700 4,600 780	17,000 15,000 18,000 10,000 7,200 15,000 ND	ND	1,000 1,000 1,000 100,000 800 1,000 330
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	1,300 1,600 820 680 1,400 ND 3,700	13,000 28,000 21,000 23,000 8,000 11,000 ND 19,000	4,100 4,100 4,900 2,100 1,700 4,600 780 12,000	17,000 15,000 18,000 10,000 7,200 15,000 ND 51,000	ND	1,000 1,000 1,000 100,000 800 1,000 330 100,000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	1,300 1,600 820 680 1,400 ND 3,700 ND	13,000 28,000 21,000 23,000 8,000 11,000 ND 19,000 ND	4,100 4,100 4,900 2,100 1,700 4,600 780 12,000 450	17,000 15,000 18,000 10,000 7,200 15,000 ND 51,000 ND	ND	1,000 1,000 1,000 100,000 800 1,000 330 100,000 30,000
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	1,300 1,600 820 680 1,400 ND 3,700 ND 740	13,000 28,000 21,000 23,000 8,000 11,000 ND 19,000 ND 11,000	4,100 4,100 4,900 2,100 1,700 4,600 780 12,000 450 2,000	17,000 15,000 18,000 10,000 7,200 15,000 ND 51,000 ND 8,000	ND N	1,000 1,000 1,000 100,000 800 1,000 330 100,000 30,000 500

Notes:

NYSDEC = New York State Department of Environmental Conservation Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs)

* = Per CP-51 Table 1 Supplemental Soil Cleanup Objectives

CP-51 = NYSDEC Final Commissioner Policy

ppb = parts per billion (ug/Kg)

VOCs = Volatile Organic Compounds

SVOCs = Semi Volatile Organic Compounds

ND = Not Detected above the method detection limit of the laboratory. Highlighted cells indicate detection at or exceeding NYSDEC Guidelines.

ATTACHMENT A

Boring Logs

ENVIROTRAC LTD. 5 Old Dock Road, Yaphank, New York 11980

			5 Old L	OCK RO	oad, Yaphank, Ne			
Client:						Dep	oth to Water	Page 1 of 1
/erizon			Address:				n measuring pt.)	Site Elevation Datum
Site Name: /erizon New York, Inc. F	acility		Address: 318 Nevins	Street Pr	ooklyn NV	Date NA	DTW NA	appr. 7 ft. (USGS)
Orilling Company:	acility		Method:	Street, Di	OOKIYII, IN I	· NA	INA	аррі. 7 ії. (0303)
ARCO			Geoprobe N	Aacro Cor	e Sampler			Measuring Point Elevation
Date Started:			Date Comp		c campici			NA
2/07/13			02/07/13	.o.ou.				
Completion Depth:			ENVIROTR	AC Geolo	naist:	1		
0 ft. bg.			Mike Alliegr		9			
	DEPTH		SAMPLES					<u> </u>
SOIL BORING	(ft below	Reco-					SOIL DESCRIPTION	N
(NTS)	grade)	very	ID.	PID				
(1110)	grado)	(in.)	15.	(ppm)				
End	- 0 - 1 - 2 - 3 4 5 6 7 8 10 - 10 1	24"	GP-1 (5'-10')	0	0-5': Brown to black Dry, no odor. 5'-10': Brown to black Dry to 9' 4" then we Sampled from 5'-10	ack medium S	AND intermixed wit lor.	urban fill material.

ENVIROTRAC LTD.

5 Old Dock Road, Yaphank, New York 11980

Client: Vertrom New Year Street: Size Name: Address: Addr					5 Old D	ock R	oad, Yaphank, Ne			
Verizon New York, Inc. Facility Address: Verizon New York, Inc. Facility 318 Nevins Street, Brooklyn, NY Method: AARCO Geoprobe Macro Core Sampler Date Started: Date Completed: D2/07/13 02/07/13 SOIL BORING (NTS) DEPTH (It below grade) Verizon New York, Inc. Facility SAMPLES SOIL BORING (NTS) DEPTH (It below grade) Verizon New York, Inc. Facility SAMPLES SOIL BORING (NTS) DEPTH (It below long) Inc. DEPTH Inc. DEP								De	pth to Water	Page 1 of 1
Verizon New York, Inc. Facility 318 Nevins Street, Brooklyn, NY NA NA Appr. 7 ft. (USG					۸ ططعه م - :					
Orilling Company: AARCO Geoprobe Macro Core Sampler Date Started: Date Completed: D2/07/13 Completion Depth: 7 ft. bg. DEPTH (ft below grade) (NTS) DEPTH (ft below (in.)) - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ık Ina ⊏-	oility			Street D	rookha NV			
ARCO Jate Started: Date Completed: Date Completed: Date Completed: D2/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 20/07/13 ENVIROTRAC Geologist: Mike Alliegro SOIL BORING (NTS) DEPTH (ft below grade) Very (in.) PID (ppm) O 0.5: Brown to black medium SAND intermixed with urban fill material. Dry, no odor. End GP-2 (5'-7') Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis			acilly			oneet, Bl	OUNIYII, IN I	INA	INA	аррг. / п. (0565)
Date Started: Date Completed: 02/07/13 Dempletion Depth: (ft. bg. DEPTH (ft below grade) PID (ppm) DEPTH (in.) PID (ppm) SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION DESCRIPTION SOIL DESCRIPTION DESCRIPTION	ARCO	/-				Agoro Cor	o Sampler			Measuring Point Florestian
2007/13 Completion Depth: /ft. bg. DEPTH SAMPLES SOIL BORING (NTS) grade) - 0 - 1 - 2 - 20" - 3 - - 5 - - - - - - - -							e Sampier	-		
Empletion Depth: Fit. bg.						ietea.				INA
SOIL BORING (NTS) DEPTH (ft below grade) Very ID. PID (ppm) O O-S: Brown to black medium SAND intermixed with urban fill material. DEPTH (ft below Reco- grade) Very ID. PID (ppm) O O-S: Brown to black medium SAND intermixed with urban fill material. Dry, no odor.						140.0				
SOIL BORING (NTS) DEPTH (ft below grade) Recovery (in.) PID (ppm) O OST: Brown to black medium SAND intermixed with urban fill material. DEPTH (ft below grade) PID (ppm) O OST: Brown to black medium SAND intermixed with urban fill material. Dry, no odor. SOIL DESCRIPTION O OST: Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis		th:					ogist:			
SOIL BORING (fft below grade) Recovery (in.) ID. (ppm) - 0 - 1 - 2 - 20" 0 0 0.5': Brown to black medium SAND intermixed with urban fill material. Dry, no odor. - 4 - 5 - 5 - 6 - 24" GP-2 0 5'-7': Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	ft. bg.			1						
(NTS) grade) very (in.) ID. PID (ppm) - 0					SAMPLES	ı				
(in.) (ppm) - 0	SOIL BOR	NG	(ft below	Reco-					SOIL DESCRIPTION	N
0 0-5': Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	(NTS)		grade)	very	ID.	PID				
0 Ost: Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') GP-2 (5'-7') Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis				(in.)		(ppm)				
0 Os: Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	30 d	***								
0 Ost: Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') GP-2 (5'-7') Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33 3	33 33	- 0 -							
2 20" 0 0.5': Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33.3	****								
0 0.5': Brown to black medium SAND intermixed with urban fill material. Dry, no odor. GP-2 (5'-7') GP-2 (5'-7') O 5'-7': Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	88.3	* *	L 1 -							
Dry, no odor. 3 - 4 - 5 - 6 - 24" GP-2 (5'-7') GP-2 Tefus at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33.3 I	* *	L							
Dry, no odor. 3 - 4 - 5 - 6 - 24" GP-2 (5'-7') GP-2 Tefus at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33.3	33.33	- 2 -							
GP-2 0 5'-7': Brown to black medium SAND intermixed with urban fill material. [5] Find [7] F	88 3	** *	L	20"		0		c medium SA l	ND intermixed with t	urban fill material.
GP-2 0 5'-7': Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	300 3	*****	_ 3 -]			Dry, no odor.			
GP-2 0 5'-7': Brown to black medium SAND intermixed with urban fill material. [5-7'] Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	88.13	***	ļ -	1						
GP-2 0 5'-7': Brown to black medium SAND intermixed with urban fill material. [5-7'] Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	\$ 3 l	38.88	4 -]						
GP-2 (5'-7') GP-2 (5'-7') Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	3000	30 3	L	1						
GP-2 (5'-7') GP-2 (5'-7') Brown to black medium SAND intermixed with urban fill material. Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33.3	33.33	- 5 -							
Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	88.4	SE S								
Refusal at 7'. Dry, no odor. Sampled from 5'-7' for laboratory analysis	33.13	33 - 33	- 6 -	24"		0				
End - 7 -	33.13	33 · 33	_		(5'-7')		Refusal at 7'. Dry, r	no odor. Samp	oled from 5'-7' for lat	poratory analysis
	End	::::::::::::::::::::::::::::::::::::::	- 7 -							
			,							
				1	1					
				1	1					
					1					
					1					
ND - Not Detected NM - Not Measured NA - Not Applicable DTW - Depth				ND - Not	Detected		NM - Not Measured	N.	A - Not Applicable	DTW - Depth to Wa

ENVIROTRAC LTD.

5 Old Dock Road, Yaphank, New York 11980

			5 Ola D	OCK RO	oad, Yaphank, Ne			_
Client:							oth to Water	Page 1 of 1
Verizon			Addross:				measuring pt.)	
Site Name: Verizon New York, Inc. Fa	acility		Address: 318 Nevins	Street Pr	rooklyn NV	Date NA	DTW NA	Site Elevation Datum appr. 7 ft. (USGS)
Drilling Company:	aomiy		Method:	oucet, bi	OURISH, IN I	INA	IVA	αρφι. τ π. (0303)
AARCO			Geoprobe M	lacro Cor	e Sampler			Measuring Point Elevation
Date Started:			Date Compl		c dampier			NA
02/07/13			02/07/13	otou.				101
Completion Depth:			ENVIROTR.	AC Geolo	ogiet.			
10 ft. bg.			Mike Alliegre		<i>y</i> giot.			
· · · · · · · · · · · · · · · · · · ·	DEPTH	1	SAMPLES					<u> </u>
SOIL BORING	(ft below	Reco-	O/ IIVII EEO				SOIL DESCRIPTION	I
			ID.	PID				
(NTS)	grade)	very (in.)	ID.	(ppm)				
End	- 0 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -	20"	GP-3 (5'-10')	0	Dry, no odor. 5'-10': Brown to bla	ack medium S	mixed with urban fill AND intermixed with om 5'-10' interval fo	
		ND - Not	Detected		NM - Not Measured	N/	A - Not Applicable	DTW - Depth to Wate

ENVIROTRAC LTD.

5 Old Dock Road, Yaphank, New York 11980

Client:			0 0.0 2	OOK IX	oad, Yapnank, Ne	De	pth to Water	Page 1 of 1
Verizon							n measuring pt.)	
Site Name:			Address:	O		Date	DTW	Site Elevation Datum
Verizon New York, Inc. Fa	acility		318 Nevins	Street, Br	ooklyn, NY	NA	NA	appr. 7 ft. (USGS)
Drilling Company: AARCO			Method: Geoprobe N	laara Car	o Complor			Measuring Point Elevation
Date Started:			Date Compl		e Samplei			NA
02/07/13			02/07/13	cica.				NA.
Completion Depth:			ENVIROTR	AC Geolo	paist:			
10 ft. bg.			Mike Alliegr		•			
	DEPTH		SAMPLES					•
SOIL BORING	(ft below	Reco-					SOIL DESCRIPTION	N
(NTS)	grade)	very	ID.	PID				
5500001 1500000	1	(in.)		(ppm)				
2000-00 								
ASSES 1888888	- 0 -	1						
<u> 1986)</u>	1 -	İ						
	[']							
	- 2 -							
188883 188883	<u> </u>	32"		0	0-5': Brown mediu	n SAND inter	mixed with urban fil	material.
1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993	- 3 -				Dry, no odor.			
	├ -							
18888) 188888	- 4 -							
3833 3833	- 5 -							
	6 -							
1888) 1888)	- 7 -			_	=1.40L B			
	├ -	60"	GP-4	0				h urban fill material.
	- 8 -		(5'-10')		Dry, no odor. Samp	lea from 5-10	Interval for laborat	ory analysis.
	- -							
ASSES 1888888	- 9 -							
End End		-						
	- 10 -	1						
	1							
	1							
	1							
İ								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
Ì								
	I	ND - Not	Detected	1	NM - Not Measured	N.	A - Not Applicable	DTW - Depth to Water

Envirolrac Environmental Services

ENVIROTRAC LTD.

5 Old Dock Road, Yaphank, New York 11980

0			5 Old D	OCK RO	oad, Yapnank, Ne			_
Client: Verizon							pth to Water n measuring pt.)	Page 1 of 1
Site Name:			Address:			Date	DTW	Site Elevation Datum
Verizon New York, Inc. Fa	acility		318 Nevins	Street, Br	ooklyn, NY	NA	NA NA	appr. 7 ft. (USGS)
Drilling Company:	•		Method:	, =				
AARCO			Geoprobe M		e Sampler			Measuring Point Elevation
Date Started:			Date Compl	eted:				NA
02/07/13			02/07/13					
Completion Depth:			ENVIROTR		ogist:			
10 ft. bg.			Mike Alliegro	0				
OOU DODINO	DEPTH	D	SAMPLES	ı			OOU DECODIDATION	
SOIL BORING	(ft below	Reco-					SOIL DESCRIPTION	· ·
(NTS)	grade)	very	ID.	PID				
1500000 15000000		(in.)		(ppm)				
End	- 0 1 2 3 5 6 7 8 10 10	36"	GP-5 (5'-10')	0	Dry, no odor. 5'-10': Brown to bla	ack medium S	ND intermixed with	n fill material. Dry,
		ND - Not	Detected		NM - Not Measured	N.	A - Not Applicable	DTW - Depth to Wate

Envirolrac Environmental Services

ENVIROTRAC LTD.

5 Old Dock Road, Yaphank, New York 11980

						oad, Yaphank, Ne			
Client:							De	pth to Water	Page 1 of 1
Verizon				A dalac :				n measuring pt.)	
Site Name:	vrk Inn F-	oility		Address:	Ctroct D	rookha NV	Date	DTW	Site Elevation Datum
/erizon New Yo		IGIILY		318 Nevins	oneet, Br	OURIYII, IN I	NA	NA	appr. 7 ft. (USGS)
Orilling Compar AARCO	ıy.			Method: Geoprobe N	Agere Co-	a Sampler			Measuring Point Elevation
Date Started:				Date Comp		e Samplei			NA NA
					ietea.				INA
2/07/13				02/07/13	40.0				
Completion Dep	oth:			ENVIROTR		ogist:			
ft. bg.			1	Mike Alliegr	0				
		DEPTH		SAMPLES					
SOIL BOF	RING	(ft below	Reco-					SOIL DESCRIPTION	N
(NTS)		grade)	very	ID.	PID				
			(in.)		(ppm)				
33-3	· 88 - 88								
33 - 3	88 8	- 0 -							
33 3	133 - 33								
33.3		- 1 -]						
33. 3									
88 - 8	33 3	- 2 -							
$30 \cdot 3$	33 × 33		24"		0	0-5': Brown mediu	m SAND inter	mixed with urban fil	I material.
33. 3		- 3 -				Dry, no odor.			
(S) (S)									
36.3		- 4 -							
30.3	. St. S								
88 - 3	33 - 33	- 5 -							
88 - 8	89 8								
3813	33 - 33	- 6 -	24"	GP-6	0	5'-7': Brown mediu			
33 3	33 33			(5'-7')		Dry, no odor. Samp	led from 5'-7'	interval for laborato	ry analysis.
End	1.88.1.89	- 7 -							
		•							
	\$35.55								

8:3:3:3:3:3:	*****								
				İ					

Geologic Log and Well Construction Details

Log of GP-7

ENVIROTRAC LTD.
5 Old Dock Road, Yaphank, New York 11980

SOIL BORING (ft	DEPTH Reco- grade) very (in.) 0 - 1 - 2 - 3 - NA 4 -	GP-7	inside ca ted: C Geolog	ged area)	(ft. from I	n to Water measuring pt.) DTW NA SOIL DESCRIPTION	Page 1 of 1 Site Elevation Datum appr. 7 ft. (USGS) Measuring Point Elevation NA
Site Name: Verizon New York, Inc. Facility Drilling Company: AARCO Date Started: 02/07/13 Completion Depth: 5 ft. bg. Discourage (NTS) Grant Completion	DEPTH Recograde) very (in.) 0 - 1 - 2	318 Nevins Si Method: Hand Auger (i Date Complet 02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	inside ca ted: C Geolog	ged area)	Date NA	DTW NA	appr. 7 ft. (USGS) Measuring Point Elevation NA
/erizon New York, Inc. Facility Orilling Company: AARCO Date Started: 02/07/13 Completion Depth: 5 ft. bg. Di SOIL BORING (ft (NTS) g	DEPTH Recograde) very (in.) 0 - 1 - 2	318 Nevins Si Method: Hand Auger (i Date Complet 02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	inside ca ted: C Geolog	ged area)	NA NA	NA	appr. 7 ft. (USGS) Measuring Point Elevation NA
Drilling Company: AARCO Date Started: 12/07/13 Completion Depth: 5 ft. bg. Di SOIL BORING (ft (NTS) g	DEPTH Recograde) very (in.) 0 - 1 - 2	Method: Hand Auger (i Date Complet 02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	inside ca ted: C Geolog	ged area)			Measuring Point Elevation NA
ARCO Date Started: 12/07/13 Completion Depth: 6 ft. bg. DI SOIL BORING (ft (NTS) g	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	Hand Auger (i Date Complet 02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	PID (ppm)			SOIL DESCRIPTION	NA
Date Started: 12/07/13 Completion Depth: 5 ft. bg. Di SOIL BORING (ft (NTS) g	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	Date Complete 02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	PID (ppm)		,	SOIL DESCRIPTION	NA
2/07/13 Completion Depth: If t. bg. SOIL BORING (ft g) (NTS)	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	02/07/13 ENVIROTRAM Mike Alliegro SAMPLES ID. GP-7	PID (ppm)	gist:		SOIL DESCRIPTION	
Completion Depth: ft. bg. SOIL BORING (ft (NTS) Graph	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	ENVIROTRAL Mike Alliegro SAMPLES ID. GP-7	PID (ppm)	gist:		SOIL DESCRIPTION	N
ft. bg. SOIL BORING (ft g) (NTS)	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	Mike Alliegro SAMPLES ID. GP-7	PID (ppm)	y	\$	SOIL DESCRIPTION	N
SOIL BORING (ft (NTS) g	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	ID.	(ppm)			SOIL DESCRIPTION	N
SOIL BORING (ft (NTS) g	t below Reco- grade) (in.) 0 - 1 - 2 - 3 - NA	ID.	(ppm)			SOIL DESCRIPTION	N
(NTS) g	9 very (in.) 0 - 1 - 2 - 3 - NA	GP-7	(ppm)			SOLE DECOMIT HOP	
	(in.) 0 - 1 - 2 - 3 - NA	GP-7	(ppm)				
	0 - 1 - 2 - 3 - NA	GP-7					
	5 -	(5')	0	0'-5': Brown medii Refusal at 5'. Dry,			I material.

ATTACHMENT B

Photographic Documentation

Photograph Documentation Verizon New York Inc. Facility 318 Nevins Street, Brooklyn, New York

Photograph 1: Concrete patch in garage. Note orange paint is location of GP-3.

Photograph 2: Start of excavation.

Photograph 3: Note urban fill consisting of bricks at start of excavation and that no hydraulic lift was observed.

Photograph 4: Urban fill consisting of glass, rope and apparent ash as excavation is extended in depth.

Photograph 5: Layers of urban fill observed.

Photograph 6: Excavation extended in size to 11-feet below grade.

Photograph 7: Native appearing soil consisting of clay intermixed with fine sand and marsh organics at 11-feet below grade.

Photograph 8: Restoration following excavation.

ATTACHMENT C

Waste Disposal Manifest

GLOBAL JOB NUMBER: FACILITY APPROVAL NUMBER: Please Check One: ☐ Other ☐ Clean Earth of New Castle Clean Earth of Carteret ☐ Clean Earth of Maryland 1469 Oak Ridge Place 94 Pyles Lane 24 Middlesex Avenue New Castle, DE 19720 Carteret, NJ 07008 Hagerstown, MD 21740 Ph: 301-791-6220 Ph: 302-427-6633 Ph: 732-541-8909 ☐ Clean Earth of Southeast Pennsylvania ☐ Clean Earth of North Jersey ☐ Clean Earth of Philadelphia 7 Steel Road East 115 Jacobus Avenue 3201 S. 61st Street Morrisville, PA 19067 Kearny, NJ 07032 Philadelphia, PA 19153 Ph: 215-428-1700 Ph: 973-344-4004 Ph: 215-724-5520 Non-Hazardous Material Manifest (Type or Print Clearly) GROSS WEIGHT: GENERATOR'S NAME & SITE ADDRESS: Tons Yards TARE WEIGHT: Tons Yards NET WEIGHT: GENERATOR'S PHONE: Tons Yards DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION GENERATOR'S CERTIFICATION - Incomplete and/or unsigned manifests will cause the load to be delayed and/or rejected. I hereby certify that the above named material does not contain free liquid as defined by 40 CFR Part 260.10 or any applicable state law, is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, is not a DOT hazardous substance as defined by 49 CFR Part 172 or any applicable state law, has been fully and accurately described above, classified, packaged and is in proper condition for transportation according to all applicable state and federal regulations. Name: Date and Time: Signature: TRANSPORTER Phone Number: Company: V-XX Truck # and License Plate: () Address: SW Haulers Permit #: 1.00 Driver: (applicable state permit #) (Type or Print Clearly) I hereby certify that the above named material was picked up at the site listed above. Date and Time: Driver Signature: DESTINATION I hereby certify that the above named material was delivered without incident to the facility noted above. Date and Time: Driver Signature: I hereby certify that the above named material has been accepted at the above referenced facility. Date and Time: Authorized Signature:

Clean Earth of Carteret Ticketi 307600067033 24 Middlesex Avenue Cartemat All 67668 Date Time Scale Carberet, AU 07009 Tru 3/19/2013 12:59:60 Phs (732) 541-8909 Fax: (732) 541-8105 Scale, 1 Octa 3/19/2013 13:11:09 Handfeebs 771396 Vehicle ID: AARCO472 Grossa 71220 35,61 Tayes 35720 17,86 Oustomers AARCO ENV. SERVICES CORP Neta Facility ApprovalW: 133070366 Generalens Verizon Denerations verizon Cen Addressa 318 Nevins Street Job Name: Verizon / Verizon-Brooklyn Job Address: 318 Nevins Street Brook1)m, NY 11217 Brooklyn, NY 11817 Orduda Platerials & Services Quantity Units Soil Treatment Type II Kinga Conteminate Types 2 011 Treatment Types 810 17.75 Tris Fac Wasts Codes Petroleum Contaminated Soil Commercia Drivers Facility: Ken Lubasz Ceglarek

ATTACHMENT D

Laboratory Report

Wednesday, March 20, 2013

Attn: Mr Jeff Bohlen EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Project ID: VERIZON 318 NEVINS ST BROOKLYN

Sample ID#s: BD44217 - BD44221

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

March 20, 2013

SDG I.D.: GBD44217

BD44217 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BD44218 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035

BD44219 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BD44220 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BD44221 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2013

FOR: Attn: Mr Jeff Bohlen

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:03/06/1314:32Location Code:ENVIROTRReceived by:SW03/07/1315:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBD44217 Phoenix ID: BD44217

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION NORTH SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	90		%	03/07/13	KDB	E160.3
Soil Extraction SVOA BN	Completed			03/07/13	BJ/V	SW3545
Volatiles- STARS/CP-51						
1,2,4-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
1,3,5-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
Benzene	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
Ethylbenzene	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
Isopropylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
m&p-Xylene	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
Methyl t-Butyl Ether (MTBE)	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
Naphthalene	1.3	1.1	ug/Kg	03/12/13	H/J	SW8260
n-Butylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
n-Propylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
o-Xylene	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
p-Isopropyltoluene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
sec-Butylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
tert-Butylbenzene	ND	1.1	ug/Kg	03/12/13	H/J	SW8260
Toluene	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
Total Xylenes	ND	2.2	ug/Kg	03/12/13	H/J	SW8260
QA/QC Surrogates						
% 1,2-Dichlorobenzene-d4	101		%	03/12/13	H/J	70 - 130 %
% Bromofluorobenzene	92		%	03/12/13	H/J	70 - 130 %
% Dibromofluoromethane	76		%	03/12/13	H/J	70 - 130 %
% Toluene-d8	98		%	03/12/13	H/J	70 - 130 %
Semivolatiles-STARS/CI	P- <u>51</u>					
Acenaphthene	MD	250	ug/Kg	03/08/13	DD	SW 8270
Acenaphthylene	ND	250	ug/Kg	03/08/13	DD	SW 8270

Page 1 of 10 Ver 1

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION NORTH SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Anthracene	460	250	ug/Kg	03/08/13	DD	SW 8270
Benz(a)anthracene	1400	250	ug/Kg	03/08/13	DD	SW 8270
Benzo(a)pyrene	1300	250	ug/Kg	03/08/13	DD	SW 8270
Benzo(b)fluoranthene	1600	250	ug/Kg	03/08/13	DD	SW 8270
Benzo(ghi)perylene	820	250	ug/Kg	03/08/13	DD	SW 8270
Benzo(k)fluoranthene	680	250	ug/Kg	03/08/13	DD	SW 8270
Chrysene	1400	250	ug/Kg	03/08/13	DD	SW 8270
Dibenz(a,h)anthracene	ND	250	ug/Kg	03/08/13	DD	SW 8270
Fluoranthene	3700	250	ug/Kg	03/08/13	DD	SW 8270
Fluorene	ND	250	ug/Kg	03/08/13	DD	SW 8270
Indeno(1,2,3-cd)pyrene	740	250	ug/Kg	03/08/13	DD	SW 8270
Naphthalene	ND	250	ug/Kg	03/08/13	DD	SW 8270
Phenanthrene	1900	250	ug/Kg	03/08/13	DD	SW 8270
Pyrene	3200	250	ug/Kg	03/08/13	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	90		%	03/08/13	DD	30 - 130 %
% Nitrobenzene-d5	85		%	03/08/13	DD	30 - 130 %
% Terphenyl-d14	110		%	03/08/13	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 20, 2013

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 10 Ver 1

Phoenix I.D.: BD44217

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2013

FOR: Attn: Mr Jeff Bohlen

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:03/06/1314:38Location Code:ENVIROTRReceived by:SW03/07/1315:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBD44217

Phoenix ID: BD44218

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION EAST SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	78		%	03/07/13	KDB	E160.3
Soil Extraction SVOA BN	Completed			03/07/13	BJ/V	SW3545
Volatiles- STARS/CP-51						
1,2,4-Trimethylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
1,3,5-Trimethylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
Benzene	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
Ethylbenzene	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
Isopropylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
m&p-Xylene	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
Naphthalene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
n-Butylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
n-Propylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
o-Xylene	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
p-Isopropyltoluene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
sec-Butylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
tert-Butylbenzene	ND	1.3	ug/Kg	03/12/13	K/J	SW8260
Toluene	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
Total Xylenes	ND	2.6	ug/Kg	03/12/13	K/J	SW8260
QA/QC Surrogates						
% 1,2-Dichlorobenzene-d4	101		%	03/12/13	K/J	70 - 130 %
% Bromofluorobenzene	89		%	03/12/13	K/J	70 - 130 %
% Dibromofluoromethane	101		%	03/12/13	K/J	70 - 130 %
% Toluene-d8	99		%	03/12/13	K/J	70 - 130 %
Semivolatiles-STARS/CF	P-51					
Acenaphthene	ND	3000	ug/Kg	03/09/13	DD	SW 8270
Acenaphthylene	3200	3000	ug/Kg	03/09/13	DD	SW 8270

Page 3 of 10 Ver 1

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION EAST SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Anthracene	ND	3000	ug/Kg	03/09/13	DD	SW 8270
Benz(a)anthracene	13000	3000	ug/Kg	03/09/13	DD	SW 8270
Benzo(a)pyrene	28000	3000	ug/Kg	03/09/13	DD	SW 8270
Benzo(b)fluoranthene	21000	3000	ug/Kg	03/09/13	DD	SW 8270
Benzo(ghi)perylene	23000	3000	ug/Kg	03/09/13	DD	SW 8270
Benzo(k)fluoranthene	8000	3000	ug/Kg	03/09/13	DD	SW 8270
Chrysene	11000	3000	ug/Kg	03/09/13	DD	SW 8270
Dibenz(a,h)anthracene	ND	3000	ug/Kg	03/09/13	DD	SW 8270
Fluoranthene	19000	3000	ug/Kg	03/09/13	DD	SW 8270
Fluorene	ND	3000	ug/Kg	03/09/13	DD	SW 8270
Indeno(1,2,3-cd)pyrene	11000	3000	ug/Kg	03/09/13	DD	SW 8270
Naphthalene	ND	3000	ug/Kg	03/09/13	DD	SW 8270
Phenanthrene	7900	3000	ug/Kg	03/09/13	DD	SW 8270
Pyrene	25000	3000	ug/Kg	03/09/13	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	*Diluted Out		%	03/09/13	DD	30 - 130 %
% Nitrobenzene-d5	*Diluted Out		%	03/09/13	DD	30 - 130 %
% Terphenyl-d14	*Diluted Out		%	03/09/13	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 20, 2013

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 10 Ver 1

Phoenix I.D.: BD44218

^{*} Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2013

FOR: Attn: Mr Jeff Bohlen

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:03/06/1314:41Location Code:ENVIROTRReceived by:SW03/07/1315:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBD44217

Phoenix ID: BD44219

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION WEST SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	90		%	03/07/13	KDB	E160.3
Soil Extraction SVOA BN	Completed			03/07/13	BJ/V	SW3545
Volatiles- STARS/CP-51						
1,2,4-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
Benzene	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
Ethylbenzene	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
Isopropylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
m&p-Xylene	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
Methyl t-Butyl Ether (MTBE)	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
Naphthalene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
n-Butylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
n-Propylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
o-Xylene	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
p-Isopropyltoluene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
sec-Butylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
tert-Butylbenzene	ND	1.1	ug/Kg	03/12/13	R/J	SW8260
Toluene	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
Total Xylenes	ND	2.2	ug/Kg	03/12/13	R/J	SW8260
QA/QC Surrogates						
% 1,2-Dichlorobenzene-d4	120		%	03/12/13	R/J	70 - 130 %
% Bromofluorobenzene	76		%	03/12/13	R/J	70 - 130 %
% Dibromofluoromethane	106		%	03/12/13	R/J	70 - 130 %
% Toluene-d8	96		%	03/12/13	R/J	70 - 130 %
Semivolatiles-STARS/CI	P-51					
Acenaphthene	510	260	ug/Kg	03/08/13	DD	SW 8270
Acenaphthylene	430	260	ug/Kg	03/08/13	DD	SW 8270

Page 5 of 10 Ver 1

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION WEST SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Anthracene	1200	260	ug/Kg	03/08/13	DD	SW 8270
Benz(a)anthracene	4100	260	ug/Kg	03/08/13	DD	SW 8270
Benzo(a)pyrene	4100	260	ug/Kg	03/08/13	DD	SW 8270
Benzo(b)fluoranthene	4900	260	ug/Kg	03/08/13	DD	SW 8270
Benzo(ghi)perylene	2100	260	ug/Kg	03/08/13	DD	SW 8270
Benzo(k)fluoranthene	1700	260	ug/Kg	03/08/13	DD	SW 8270
Chrysene	4600	260	ug/Kg	03/08/13	DD	SW 8270
Dibenz(a,h)anthracene	780	260	ug/Kg	03/08/13	DD	SW 8270
Fluoranthene	12000	260	ug/Kg	03/08/13	DD	SW 8270
Fluorene	450	260	ug/Kg	03/08/13	DD	SW 8270
Indeno(1,2,3-cd)pyrene	2000	260	ug/Kg	03/08/13	DD	SW 8270
Naphthalene	300	260	ug/Kg	03/08/13	DD	SW 8270
Phenanthrene	6500	260	ug/Kg	03/08/13	DD	SW 8270
Pyrene	12000	260	ug/Kg	03/08/13	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	97		%	03/08/13	DD	30 - 130 %
% Nitrobenzene-d5	90		%	03/08/13	DD	30 - 130 %
% Terphenyl-d14	108		%	03/08/13	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 20, 2013

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 10 Ver 1

Phoenix I.D.: BD44219

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2013

FOR: Attn: Mr Jeff Bohlen

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:03/06/1314:56Location Code:ENVIROTRReceived by:SW03/07/1315:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBD44217

Phoenix ID: BD44220

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION SOUTH SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	88		%	03/07/13	KDB	E160.3
Soil Extraction SVOA BN	Completed			03/07/13	BJ/V	SW3545
Volatiles- STARS/CP-51						
1,2,4-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
1,3,5-Trimethylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
Benzene	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
Ethylbenzene	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
Isopropylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
m&p-Xylene	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
Methyl t-Butyl Ether (MTBE)	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
Naphthalene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
n-Butylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
n-Propylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
o-Xylene	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
p-Isopropyltoluene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
sec-Butylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
tert-Butylbenzene	ND	1.1	ug/Kg	03/12/13	K/J	SW8260
Toluene	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
Total Xylenes	ND	2.3	ug/Kg	03/12/13	K/J	SW8260
QA/QC Surrogates						
% 1,2-Dichlorobenzene-d4	110		%	03/12/13	K/J	70 - 130 %
% Bromofluorobenzene	83		%	03/12/13	K/J	70 - 130 %
% Dibromofluoromethane	99		%	03/12/13	K/J	70 - 130 %
% Toluene-d8	97		%	03/12/13	K/J	70 - 130 %
Semivolatiles-STARS/CI	P- <u>51</u>					
Acenaphthene	ND	2600	ug/Kg	03/09/13	DD	SW 8270
Acenaphthylene	ND	2600	ug/Kg	03/09/13	DD	SW 8270

Page 7 of 10 Ver 1

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION SOUTH SIDEWALL

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Anthracene	5600	2600	ug/Kg	03/09/13	DD	SW 8270
Benz(a)anthracene	17000	2600	ug/Kg	03/09/13	DD	SW 8270
Benzo(a)pyrene	15000	2600	ug/Kg	03/09/13	DD	SW 8270
Benzo(b)fluoranthene	18000	2600	ug/Kg	03/09/13	DD	SW 8270
Benzo(ghi)perylene	10000	2600	ug/Kg	03/09/13	DD	SW 8270
Benzo(k)fluoranthene	7200	2600	ug/Kg	03/09/13	DD	SW 8270
Chrysene	15000	2600	ug/Kg	03/09/13	DD	SW 8270
Dibenz(a,h)anthracene	ND	2600	ug/Kg	03/09/13	DD	SW 8270
Fluoranthene	51000	2600	ug/Kg	03/09/13	DD	SW 8270
Fluorene	ND	2600	ug/Kg	03/09/13	DD	SW 8270
Indeno(1,2,3-cd)pyrene	8000	2600	ug/Kg	03/09/13	DD	SW 8270
Naphthalene	ND	2600	ug/Kg	03/09/13	DD	SW 8270
Phenanthrene	16000	2600	ug/Kg	03/09/13	DD	SW 8270
Pyrene	46000	2600	ug/Kg	03/09/13	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	*Diluted Out		%	03/09/13	DD	30 - 130 %
% Nitrobenzene-d5	*Diluted Out		%	03/09/13	DD	30 - 130 %
% Terphenyl-d14	*Diluted Out		%	03/09/13	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 20, 2013

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 10 Ver 1

Phoenix I.D.: BD44220

^{*} Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2013

FOR: Attn: Mr Jeff Bohlen

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:03/06/1314:06Location Code:ENVIROTRReceived by:SW03/07/1315:46

Rush Request: 72 Hour Analyzed by: see "By" below

ND

310

P.O.#:

Acenaphthylene

Laboratory Data

SDG ID: GBD44217 Phoenix ID: BD44221

Project ID: VERIZON 318 NEVINS ST BROOKLYN
Client ID: GARAGE EXCAVATION BOTTOM

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	73		%	03/07/13	KDB	E160.3
Soil Extraction SVOA BN	Completed			03/07/13	BJ/V	SW3545
Volatiles- STARS/CP-5	<u>1</u>					
1,2,4-Trimethylbenzene	_ ND	1.4	ug/Kg	03/13/13	R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
Benzene	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
Ethylbenzene	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
Isopropylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
m&p-Xylene	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
Methyl t-Butyl Ether (MTBE)	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
Naphthalene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
n-Butylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
n-Propylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
o-Xylene	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
p-Isopropyltoluene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
sec-Butylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
tert-Butylbenzene	ND	1.4	ug/Kg	03/13/13	R/J	SW8260
Toluene	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
Total Xylenes	ND	2.7	ug/Kg	03/13/13	R/J	SW8260
QA/QC Surrogates						
% 1,2-Dichlorobenzene-d4	101		%	03/13/13	R/J	70 - 130 %
% Bromofluorobenzene	96		%	03/13/13	R/J	70 - 130 %
% Dibromofluoromethane	101		%	03/13/13	R/J	70 - 130 %
% Toluene-d8	100		%	03/13/13	R/J	70 - 130 %
Semivolatiles-STARS/C	P-51					
Acenaphthene	ND	310	ug/Kg	03/08/13	DD	SW 8270

ug/Kg

Page 9 of 10 Ver 1

03/08/13

DD SW 8270

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Anthracene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Benz(a)anthracene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Benzo(a)pyrene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Benzo(b)fluoranthene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Benzo(ghi)perylene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Benzo(k)fluoranthene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Chrysene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Dibenz(a,h)anthracene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Fluoranthene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Fluorene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Indeno(1,2,3-cd)pyrene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Naphthalene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Phenanthrene	ND	310	ug/Kg	03/08/13	DD	SW 8270
Pyrene	ND	310	ug/Kg	03/08/13	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	71		%	03/08/13	DD	30 - 130 %
% Nitrobenzene-d5	76		%	03/08/13	DD	30 - 130 %
% Terphenyl-d14	97		%	03/08/13	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 20, 2013

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 10 Ver 1

Phoenix I.D.: BD44221

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBD44217

QA/QC Report

March 20, 2013

QA/QC Data

March 20, 2013						30	G 1.D	GBD42	+21/	
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 223333, QC Sa	ample No: BD43901 (E	3D44217. BD44219 (50	. 1X))							
Volatiles - Solid	,	(***	, ,,							
1,2,4-Trimethylbenzene	ND	107			107	124	14.7	70 - 130	30	
1,3,5-Trimethylbenzene	ND	106			108	126	15.4	70 - 130	30	
Benzene	ND	111			109	124	12.9	70 - 130	30	
Ethylbenzene	ND	109			110	130	16.7	70 - 130	30	
Isopropylbenzene	ND	110			108	127	16.2	70 - 130	30	
m&p-Xylene	ND	109			111	130	15.8	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	108			110	120	8.7	70 - 130	30	
Naphthalene	ND	130			113	114	0.9	70 - 130	30	
n-Butylbenzene	ND	104			116	131	12.1	70 - 130	30	m
n-Propylbenzene	ND	109			109	128	16.0	70 - 130	30	
o-Xylene	ND	115			111	129	15.0	70 - 130	30	
p-Isopropyltoluene	ND	108			113	131	14.8	70 - 130	30	m
sec-Butylbenzene	ND	108			111	131	16.5	70 - 130	30	m
tert-Butylbenzene	ND	110			109	130	17.6	70 - 130	30	
Toluene	ND	111			111	127	13.4	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	100			101	99	2.0	70 - 130	30	
% Bromofluorobenzene	94	101			102	102	0.0	70 - 130	30	
% Dibromofluoromethane	97	101			104	99	4.9	70 - 130	30	
% Toluene-d8	100	101			101	101	0.0	70 - 130	30	
Comment:										
Additional 8260 criteria: 10% of o	compounds can be outsid	de of acceptance criteria as	long as re	ecovery	is 40-16	0%.				
QA/QC Batch 222899, QC Sa	ample No: BD43901 (E	BD44217, BD44218, BD	44219, E	3D4422	0, BD4	4221)				
Polynuclear Aromatic F	HC - Solid									
Acenaphthene	ND	90	85	5.7	91	72	23.3	30 - 130	30	
Acenaphthylene	ND	86	83	3.6	93	77	18.8	30 - 130	30	
Anthracene	ND	88	91	3.4	104	90	14.4	30 - 130	30	
Benz(a)anthracene	ND	86	80	7.2	95	80	17.1	30 - 130	30	
Benzo(a)pyrene	ND	82	81	1.2	84	66	24.0	30 - 130	30	
Benzo(b)fluoranthene	ND	91	84	8.0	93	83	11.4	30 - 130	30	
Benzo(ghi)perylene	ND	85	84	1.2	94	87	7.7	30 - 130	30	
Benzo(k)fluoranthene	ND	95	86	9.9	99	83	17.6	30 - 130	30	
Chrysene	ND	90	85	5.7	98	83	16.6	30 - 130	30	
Dibenz(a,h)anthracene	ND	88	87	1.1	92	85	7.9	30 - 130	30	
Fluoranthene	ND	85	85	0.0	117	95	20.8	30 - 130	30	
Fluorene	ND	89	85	4.6	95	76	22.2	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	88	88	0.0	92	85	7.9	30 - 130	30	
Naphthalene	ND	86	79	8.5	108	94	13.9	30 - 130	30	

88

85

85

82

3.4

0.0

10.4

121

134

96

110

111

73

9.5

18.8

27.2

30 - 130

30 - 130

30 - 130

30

30

30

ND

ND

86

Phenanthrene

% 2-Fluorobiphenyl

Pyrene

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
% Nitrobenzene-d5	79	85	82	3.6	93	74	22.8	30 - 130	30	
% Terphenyl-d14	81	85	87	2.3	131	102	24.9	30 - 130	30	m
Comment:										
Additional 8270 criteria: 20% of acceptance range for aqueous	of compounds can be outside of ac s samples: 15-110%, for soils 30-1	ceptance criteria as I 30%)	ong as re	ecovery i	s at leas	st 10%. (A	Acid surr	ogates		
QA/QC Batch 223210, QC S	Sample No: BD44217 (BD442	18, BD44220)								
Volatiles - Solid	, , , , , , , , , , , , , , , , , , , ,	,								
1,2,4-Trimethylbenzene	ND	113	104	8.3	85	106	22.0	70 - 130	30	
1,3,5-Trimethylbenzene	ND	115	105	9.1	85	110	25.6	70 - 130	30	
Benzene	ND	119	113	5.2	96	109	12.7	70 - 130	30	
Ethylbenzene	ND	116	109	6.2	88	107	19.5	70 - 130	30	
Isopropylbenzene	ND	124	112	10.2	90	116	25.2	70 - 130	30	
m&p-Xylene	ND	115	108	6.3	88	105	17.6	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	108	110	1.8	102	108	5.7	70 - 130	30	
Naphthalene	ND	100	126	23.0	73	68	7.1	70 - 130	30	m
n-Butylbenzene	ND	104	94	10.1	75	92	20.4	70 - 130	30	
n-Propylbenzene	ND	118	108	8.8	84	109	25.9	70 - 130	30	
o-Xylene	ND	121	114	6.0	89	108	19.3	70 - 130	30	
p-Isopropyltoluene	ND	115	104	10.0	80	101	23.2	70 - 130	30	
sec-Butylbenzene	ND	119	109	8.8	81	104	24.9	70 - 130	30	
tert-Butylbenzene	ND	125	115	8.3	87	111	24.2	70 - 130	30	
Toluene	ND	118	112	5.2	91	106	15.2	70 - 130	30	
% 1,2-dichlorobenzene-d4	102	98	101	3.0	103	100	3.0	70 - 130	30	
% Bromofluorobenzene	95	99	100	1.0	99	95	4.1	70 - 130	30	
% Dibromofluoromethane	97	101	104	2.9	81	79	2.5	70 - 130	30	
% Toluene-d8	99	100	100	0.0	100	99	1.0	70 - 130	30	
Comment:										
Additional 8260 criteria: 10% o	of compounds can be outside of ac	ceptance criteria as I	ong as re	covery i	s 40-160	0%.				
	Sample No: BD44682 (BD442)	-	J							
Volatiles - Solid		•								
1,2,4-Trimethylbenzene	ND	122	113	7.7				70 - 130	30	
1,3,5-Trimethylbenzene	ND	121	113	6.8				70 - 130	30	
Benzene	ND	121	112	7.7				70 - 130	30	
Ethylbenzene	ND	121	113	6.8				70 - 130	30	
Isopropylbenzene	ND	123	116	5.9				70 - 130	30	
m&p-Xylene	ND	123	114	7.6				70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	111	102	8.5				70 - 130	30	
Naphthalene	ND	126	97	26.0				70 - 130	30	
n-Butylbenzene	ND	122	109	11.3				70 - 130	30	
n-Propylbenzene	ND	126	117	7.4				70 - 130	30	
o-Xylene	ND	125	117	6.6				70 - 130	30	
p-Isopropyltoluene	ND	126	115	9.1				70 - 130	30	
sec-Butylbenzene	ND	122	113	7.7				70 - 130	30	
tert-Butylbenzene	ND	125	117	6.6				70 - 130	30	
Toluene	ND	122	114	6.8				70 - 130	30	
% 1,2-dichlorobenzene-d4	102	100	99	1.0				70 - 130	30	
% Bromofluorobenzene	96	99	99	0.0				70 - 130	30	
% Dibromofluoromethane	100	104	99	4.9				70 - 130	30	
% Toluene-d8	100	100	100	0.0				70 - 130	30	
Comment:										

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Data

SDG I.D.: GBD44217

% RPD % LCS LCSD LCS MS MSD MS Rec Blank % RPD % RPD Limits Limits % Parameter

m = This parameter is outside laboratory ms/msd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

March 20, 2013

Wednesday, March 20, 2013 Requested Criteria: None Sample Criteria Exceedences Report
GBD44217 - ENVIROTR

RL Analysis

State: NY

SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

March 20, 2013

SDG I.D.: GBD44217

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

NY/N.I CHAIN OF CUSTODY RECORD

Environmenta Customer: Environmenta Customer: Environmenta Address: 5 C Public Collin Customer: St Sampler St Customer St Customeria Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments	Laboratories, La	Sample Sam	Siest Middle Tumpike, P.O. Box Email: info@phoenixlabs.com Client Services (86 Client Services (86 Project: Report to: Invoice to	Analysis Request Analysis Request Analysis	ddle Tumpike, P.O. Box 370, Mancheste info@phoenixlabs.com Fax (860) 645-8726 Client Services (860) 645-8726 Client Services (860) 645-8726 Report to: JEFF B. Imme Immeled Immeled (8.9) 94 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NY/NJ CHAIN OF CUSTODY RECORD NY/NJ CHAIN OF CUSTODY RECORD Email: into@phoenixlabs.com Fax (360) 645-0823	Data Deliv	Phone # Fax #: Fax #: Fax #: GS GA 40.46 So GM 40.46	Por Example From N. L. Hazs	## Format Po of ## C. COM ## Property State Property State Property State GRINGE STATE GRINGE
						APPLIES State Where	APPLIES State where samples were collected:	Non-Residential Soil		Other Data Package NJ Reduced Deliv.* NY Enhanced (ASP B) *