380 4th Avenue kings county brooklyn, new york SITE MANAGEMENT PLAN

NYSDEC BCP Number: C224358 AKRF Project Number: 210226

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor Albany, New York 12233

Prepared on behalf of:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

AKRF, Inc. 440 Park Avenue South, 7th Floor New York, New York 10016 212-696-0670

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

DECEMBER 2024

CERTIFICATION STATEMENT

I, **Michelle Lapin**, certify that I am currently a New York State registered professional engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10).

Michelle Lapin, NYS Professional Engineer #073934 P.E.

DATE

12/20/2024

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
1.0 INTRODUCTION	2
1.1 General	
1.2 Revisions	
1.3 Notifications	-
2.0 SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND REMEDIAL ACTIONS	35
2.1 Site Location and Description	5
2.2 Physical Setting	5
2.2.1 Land Use	5
2.2.2 Geology	
2.2.3 Hydrogeology	
2.3 Investigation and Remedial History	
2.4 Remedial Action Objectives	
2.4.1 Soil	
2.4.2 Groundwater	
2.4.3 Soil Vapor	13
2.5 Remaining Contamination	
2.5.1 Soil	13
2.5.2 Groundwater	24
2.5.3 Soil Vapor	
3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN	26
3.1 General	
3.2 Institutional Controls	26
3.3 Engineering Controls	27
3.3.1 Monitoring Wells Associated with Monitored Natural Attenuation	27
3.4 Site-Wide Inspection	
4.0 MONITORING AND SAMPLING PLAN	29
4.1 General	29
4.2 Post-Remediation Media Monitoring and Sampling	29
4.2.1 Monitoring Well Installation and Survey	29
4.2.2 Groundwater Sampling	30
4.2.3 Monitoring and Sampling Protocol	31
4.2.4 Monitoring Well Repairs and Decommissioning	32
5.0 PERIODIC ASSESSMENTS/EVALUATIONS	33
5.1 Climate Change Vulnerability Assessment	33
5.2 Soil Vapor Intrusion Evaluation	33
6.0 REPORTING REQUIREMENTS	
6.1 Site Management Reports	34
6.2 Periodic Review Report	35
6.2.1 Certification of Institutional Controls	
6.3 Corrective Measures Work Plan	37
7.0 REFERENCES	38

LIST OF IN-TEXT TABLES

- In-Text Table 1 Site Management Plan Summary
- In-Text Table 2 Key Regulatory Contacts
- In-Text Table 3 Remaining Soil Exceeding UUSCOs, PGWSCOs, and/or RRSCOs
- In-Text Table 4 Remaining Soil Exceeding UUSCOs and/or RRSCOs
- In-Text Table 5 Monitoring Well Construction Details
- In-Text Table 6 Groundwater Sampling Requirements and Schedule
- In-Text Table 7 Monitoring/Inspection Report Deliverables

LIST OF ATTACHED TABLES

- Table 1 Post-Remedial Soil Endpoint Analytical Results Volatile Organic Compounds
- Table 2 Post-Remedial Soil Endpoint Analytical Results Semivolatile Organic Compounds
- Table 3 Post-Remedial Soil Endpoint Analytical Results Metals
- Table 4 Post-Remedial Soil Endpoint Analytical Results Toxicity Characteristic Leaching Procedure Lead
- Table 5 Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls
- Table 6 Post-Remedial Soil Endpoint Analytical Results Pesticides
- Table 7 Post-Remedial Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances

LIST OF FIGURES

Figure 1 – Brownfield Cleanup Program Site Location

Figure 2 – Site Plan

Figure 3A - Extent of Remediation and Remaining Soil Sample Exceedances - North

Figure 3B – Extent of Remediation and Remaining Soil Sample Exceedances – South

Figure 4 – Proposed Groundwater Monitoring Well Locations

LIST OF APPENDICES

- Appendix A Environmental Easement, Site Survey, and Metes & Bounds Description
- Appendix B List of Site Contacts
- Appendix C Remedial Party/Owner Responsibilities
- Appendix D Excavation Work Plan
- Appendix E Site Management Forms
- Appendix F Quality Assurance Project Plan
- Appendix G Health and Safety Plan
- Appendix H Community Air Monitoring Plan

LIST OF ACRONYMS

Acronym	Definition
AKRF	AKRF, Inc.
AST	Aboveground Storage Tank
AWQSGVs	Ambient Water Quality Standards and Guidance Values
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
bgs	Below Ground Surface
BTEX	A group of VOCs comprising benzene, toluene, ethylbenzene, and xylenes
CAMP	Community Air Monitoring Plan
CFR	Code of Federal Regulations
COC	Certificate of Completion
CoC	Contaminants of Concern
СР	Commissioner's Policy
DD	Decision Document
DER	Division of Environmental Remediation
DOT	Department of Transportation
DPP	Direct-Push Probe
DUSR	Data Usability Summary Reports
EC	Engineering Control
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
EPA	Environmental Protection Agency
ESA	Environmental Site Assessment
EWP	Excavation Work Plan
FER	Final Engineering Report
HASP	Health and Safety Plan
HREC	Historic Recognized Environmental Conditions
IC	Institutional Control
MEK	Methyl Ethyl Keytone
mg/kg	Milligrams per Kilogram
MS/MSD	Matric Spike/Matrix Spike Duplicate
NAVD88	National American Vertical Datum of 1988
NTU	Nephelometric Turbidity Unit
NY	New York
NYC	New York City
NYCDEP	New York City Department of Environmental Protection
NYCDOHMH	New York City Department of Health and Mental Hygiene
NYCRR	New York Codes, Rules and Regulations
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OER	Office of Environmental Remediation
PAH	Polycyclic Aromatic Hydrocarbon
PBS	Petroleum Bulk Storage
PCB	Polychlorinated Biphenyl
PCE	Tetrachloroethylene
PDI	Pre-Design Investigation

Acronym	Definition
AKRF	AKRF, Inc.
P.E.	Professional Engineer
PFAS	Per- and Polyfluoroalkyl Substances
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PGWSCO	Protection of Groundwater Soil Cleanup Objective
PID	Photoionization Detector
ppm	Parts per million
ppb	Parts per billion
ppt	Parts per trillion
PRR	Periodic Review Report
PVC	Polyvinyl Chloride
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
QEP	Qualified Environmental Professional
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
REC	Recognized Environmental Condition
RI	Remedial Investigation
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
RRGV	Restricted Residential Guidance Value
RRSCO	Restricted Residential Soil Cleanup Objective
SCG	Standards, Criteria, Guidances
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SVIE	Soil Vapor Intrusion Evaluation
SVIEWP	Soil Vapor Intrusion Evaluation Work Plan
SVOC	Semivolatile Organic Compound
TCE	Trichloroethylene
TCL	Target Compound List
UST	Underground Storage Tank
UUGV	Unrestricted Use Guidance Value
UUSCO	Unrestricted Use Soil Cleanup Objective
VEC	Vapor Encroachment Condition
VOC	Volatile Organic Compound
µg/L	Micrograms per Liter
$\mu g/m^3$	Micrograms per Cubic Meter

EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, and reporting activities required by this Site Management Plan (SMP):

Г	
	Site No. C224358
Site Identification:	380 4 th Avenue
	Brooklyn, New York
	1. The property may be used for restricted residential, commercial, and
	industrial uses only, as set forth in the Environmental Easement.
	2. The use of groundwater underlying the property is prohibited without
	necessary water quality treatment as determined by the New York State
	Department of Health or the New York City Department of Health and
	Mental Hygiene to render it safe for use as drinking water or for industrial
	purposes, and the user must first notify and obtain written approval to do
	so from the New York State Department of Environmental Conservation (NYSDEC).
	3. Groundwater and other environmental or public health monitoring
	must be performed as defined in the SMP.
	4. Data and information pertinent to site management of the property
Institutional Controls	must be reported at the frequency and in a manner defined in the SMP.
(ICs):	5. All future activities on the property that will disturb remaining
	contaminated material must be conducted in accordance with the SMP.
	6. Access to the site must be provided to agents, employees, or other
	representatives of the State of New York with reasonable prior notice to
	the property owner to assure compliance with the restrictions identified
	by the Environmental Easement.
	7. The potential for vapor intrusion must be evaluated for any buildings
	developed within the Site boundaries noted on Figure 2, and appropriate
	actions to address exposures must be implemented.
	8. In-ground vegetable gardens and farming on the Site are prohibited.
	9. All ECs must be inspected at a frequency and in a manner defined in
	the SMP.
Engineering Controls:	Groundwater Monitoring Wells: MW-01 through MW-03
Inspections:	Frequency:
Site-Wide Inspection	Annually or in the event of an emergency
Monitoring:	Frequency:
Groundwater	Quarterly for two consecutive quarters, continuation and frequency
Monitoring	thereafter to be determined based on consultation with NYSDEC
Evaluations:	Frequency:
Soil Vapor Intrusion	After building envelope is completed and operation of the heating,
Evaluation	ventilation, and air conditioning system is started.
Reporting:	Frequency:
Quarterly Reports	Quarterly for two consecutive quarters, continuation and frequency
	thereafter to be determined based on consultation with NYSDEC.
Periodic Review Report	16 months after receipt of Certificate of Completion; Annually
	thereafter

In-Text Table 1 Site Management Plan Summary

Further descriptions of the above requirements are provided in detail in the subsequent sections of this SMP.

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the 380 4th Avenue site located in the Gowanus neighborhood of Brooklyn, New York (hereinafter referred to as the "Site"). The Site is currently enrolled in the New York State (NYS) Brownfield Cleanup Program (BCP), Site No. C224358, which is administered by the New York State Department of Environmental Conservation (NYSDEC).

380 4th Avenue Owner, LLC entered into a Brownfield Cleanup Agreement (BCA) with NYSDEC on October 19, 2022 as a Volunteer to remediate the Site. The BCA was amended on November 21, 2022 to reflect a transfer of title in the Site from 374 Fourth Avenue Realty, LLC to 380 4th Avenue Owner, LLC (hereinafter referred to as the "Volunteer"). A Site location map is provided as Figure 1. A Site Plan showing the boundaries of the Site is provided as Figure 2. The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement provided in Appendix A.

After completion of the remedial work, some contamination remains at this Site, which is hereafter referred to as "remaining contamination." Institutional Controls (ICs) and an Engineering Control (EC) have been incorporated into the Site remedy to control exposure to remaining contamination and ensure protection of public health and the environment. An Environmental Easement granted to NYSDEC, and recorded with the Office of the City Register of the City of New York, requires compliance with this SMP and all ICs and the EC placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with Environmental Conservation Law (ECL) Article 71, Title 36. This plan has been approved by NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of NYSDEC.

It is important to note that:

- This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC).
- Failure to comply with this SMP is also a violation of ECL, 6 New York Codes, Rules, and Regulations (NYCRR) Part 375, and the BCA (Index # C224358-10-22; Site #C224358) for the Site, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting NYSDEC or its successor agency managing environmental issues in NYS. A list of contacts for persons involved with the Site is provided in Appendix B of this SMP.

This SMP was prepared by AKRF Inc. (AKRF) on behalf of the Volunteer, in accordance with the requirements of NYSDEC's Division of Environmental Remediation "Technical Guidance for Site Investigation and Remediation" (DER-10), dated May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the ICs and the EC that are required by the Environmental Easement for the Site. The responsibilities of the Site Owner and Remedial Party are provided as Appendix C.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC project manager will provide a notice of any approved changes to the SMP and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to NYSDEC, as needed, in accordance with NYSDEC's DER-10 for the following reasons:

- Written 60-day advance notice of any proposed changes in Site use that are required under the terms of BCA Index No. C224358-10-22, 6NYCRR Part 375, and/or ECL.
- 7-day advance notice of any field activity associated with the remedial program.
- Written 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan (EWP), provided as Appendix D. If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- Notice within 48 hours of any damage or defect to the EC that reduces or has the potential to reduce the effectiveness of the EC, and likewise, any action to be taken to mitigate the damage or defect.
- Notice within 48 hours of any non-routine maintenance activities.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of the EC in place at the Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the EC.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to NYSDEC.

In-Text Table 2 below includes contact information for the above notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in Appendix B.

In-Text Table 2 Key Regulatory Contacts*

Agency	Name, Role	Contact Information*
NYSDEC	Michael Sollecito,	phone: (518) 402-2198 (office)
N I SDEC	Project Manager	email: michael.sollecito@dec.ny.gov
NYSDEC	David Gardner,	phone: (518) 402- 9818 (office)
N I SDEC	Section Chief	email: <u>david.gardner@dec.ny.gov</u>
NYSDEC	Kelly Lewandowski,	phone: (518) 402-9569
N I SDEC	NYSDEC Site Control	email: kelly.lewandowski@dec.ny.gov
NVCDOU	Michele Dolan,	phone: 518-402-7860
NYSDOH	Project Manager	email: <u>beei@health.ny.gov</u>

Notes:

NYSDOH – New York State Department of Health *Contacts are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located on a 0.46-acre parcel in the Gowanus neighborhood of Brooklyn, New York, and is identified as Block 980, Lot 77 on the NYC Tax Map. The Site is currently zoned C4-4D commercial with a residential district equivalent of R8A, which is designated for commercial areas that are substantially residential in character. The Site previously consisted of a slab-on-grade, one-story structure that most recently operated as a taxi business prior to its demolition in March 2022.

The Site is bounded to the north by commercial buildings and a hotel with associated parking lots, followed by 3rd Street; to the south by a U-Haul facility parking lot, followed by 6th Street; to the east by 4th Avenue, followed by commercial and residential buildings; and to the west by a U-Haul facility and associated parking lots, followed by 3rd Avenue. The larger surrounding area is occupied by predominantly commercial and auto-related uses, with some residential uses to the east. A map showing the location of the Site is provided as Figure 1, with a more detailed view of the Site provided as Figure 2. The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement included in Appendix A.

The owner of the Site at the time of issuance of this SMP is:

Company	Individual Name	Title	Contact Number*
380 4 th Avenue	Site Owner Entity Contact –	Volunteer's	212-712-6197
Owner, LLC	Kyle Cohen	Representative	(office)

2.2 Physical Setting

2.2.1 Land Use

The Site is currently being developed with a new 17-story, mixed residential and commercial building, with one sub-grade level that will function as amenity space, utility rooms, and storage space. The footprint of the foundation encompasses the entire Site. The proposed structure includes 50 affordable units (25%) pursuant to Option 1 of the Mandatory Inclusionary Housing Program and Option A of the 421-a (16) Affordable Housing New York Program.

2.2.2 Geology

The Site elevation is approximately 22 feet above the North American Vertical Datum of 1988 (NAVD88) and is generally level. The stratigraphy of the Site consists of an uppermost layer of uncontrolled fill material (including sand, silt, wood, brick, metal fragments, cinders, and/or glass) extending to approximately 26 to 33 feet below ground surface (bgs) along the central and western portions of the Site, and to shallower depths between 10 and 20 feet bgs in the eastern portion of the Site along 4th Avenue. The fill layer is underlain by presumed clay, silt, sand, and organic matter (peat), to at least 35 feet bgs (terminal boring depth). Bedrock was not encountered during previous investigations at the Site.

2.2.3 Hydrogeology

Based on Site-specific groundwater measurements, the depth to groundwater beneath the Site is approximately 15 feet bgs; however, the Site may be susceptible to tidal influence from the Gowanus Canal. Based on the groundwater elevation data, the inferred direction of shallow groundwater flow at the Site is in a north-northwest direction towards the

Gowanus Canal. The groundwater flow direction can be affected by many factors including tidal influence, pumping at nearby construction sites, subsurface openings, or obstructions such as subway train tunnels, basements, the bedrock surface, underground utilities, and other factors.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 7.0 - References.

<u>Phase I Environmental Site Assessment – 374 4th Avenue, Brooklyn, New York, Nelson Pope</u> <u>Voorhis, December 28, 2020</u>

Nelson Pope Voorhis conducted a Phase I Environmental Site Assessment (ESA) for the Site in December 2020. The Phase I ESA included a Site inspection, historical research, and a regulatory database review, and identified the following Recognized Environmental Condition (REC), Vapor Encroachment Condition (VEC), and Historic Recognized Environmental Conditions (HRECs):

REC

• The Site building utilized a network of trench drains for the collection of wash water and other fluids that discharged to an oil/water separator prior to ultimate discharge to the municipal sewer system.

VEC

• The proximity of spill incidents in the vicinity of the Site and the use of the Site building for the maintenance of taxi cabs were identified as potential VECs.

HRECs

• The Site was listed in the NYSDEC Petroleum Bulk Storage (PBS) database (ID No. 2-611328) with four 275-gallon aboveground storage tanks (ASTs) and one 2,500-gallon UST. The 275-gallon ASTs were utilized for the storage of motor oil, waste oil, and transmission fluid, and the 2,500-gallon underground storage tank (UST) was used to store heating oil. The 2,500-gallon UST was encased in concrete but was physically installed aboveground.

<u>Remedial Investigation Report – 374 4th Avenue, Brooklyn, NY, AKRF, October 2021</u>

AKRF conducted a Remedial Investigation (RI) at the Site in August 2021, which was conducted in accordance with a July 2021 Remedial Investigation Work Plan (RIWP) prepared by AKRF and approved by the New York City (NYC) Mayor's Office of Environmental Remediation (OER). On August 19, 2021, AKRF conducted a Site visit prior to performing the RI and observed a fill port in the sidewalk adjacent to the northeastern side of the building, which may have indicated the potential presence of a UST. The report noted that the suspected UST may have adversely affected the subsurface.

The RI included a geophysical survey; a visual inspection of the on-site trench drain and associated piping, using a pipe camera, to inspect the integrity of the drain/piping and confirm discharge to the on-site oil/water separator; the advancement of 10 soil borings across the Site and collection of 23 soil samples for chemical analysis to evaluate soil quality; the installation of three permanent groundwater monitoring wells with collection of three groundwater samples for chemical analysis to evaluate groundwater samples for chemical analysis to evaluate groundwater samples for chemical analysis to evaluate groundwater analysis to evaluate groundwater quality; and the installation of seven temporary soil vapor points with collection of seven soil vapor samples and one outdoor/ambient air sample for chemical analysis.

Soil borings were advanced across the Site using a direct-push probe (DPP). Soil cores were field screened using a photoionization detector (PID). At each boring location, one soil sample was collected from the upper 2 feet below existing pavement and a second deeper sample was collected

from 10 to 12 or 15 feet bgs. At three borings (SB-03, SB-04, and SB-08) a third sample was collected due to field evidence of suspected contamination (i.e., elevated PID readings and odors). Soil boring SB-08 had the highest PID reading of 112 parts per million (ppm). Groundwater was encountered between approximately 13 and 15 feet bgs. One groundwater sample was collected from each monitoring well for chemical analysis.

Soil beneath the Site consisted of fill material (comprising sand, silt, clay, gravel, brick, concrete, wood, and ash) to the terminus of each boring, between 15 and 25 feet bgs. Bedrock was not encountered during this RI.

Seven soil vapor points were installed across the Site. Five points (SV-01, SV-02, SV-05, SV-06, and SV-07) were installed to approximately 10 feet bgs beneath the existing building. Two points (SV-03 and SV-04) were installed at approximately 2 feet bgs beneath an exterior parking area along 4th Avenue.

Soil, groundwater, and soil vapor laboratory analytical results are summarized as follows:

Soil

- Five volatile organic compounds (VOCs) were detected at concentrations above NYSDEC Unrestricted Use Soil Cleanup Objectives (UUSCOs) in up to six samples: acetone [maximum 0.24 milligrams per kilogram (mg/kg)], benzene (maximum 0.27 mg/kg), methylene chloride (estimated 0.08 mg/kg), n-propylbenzene (maximum 5.0 mg/kg), and total xylenes (maximum 0.93 mg/kg); benzene, n-proplbenzene, and total xylenes were also detected above the Protection of Groundwater Soil Cleanup Objectives (PGWSCOs). No VOCs were detected above their respective Restricted Residential Soil Cleanup Objectives (RRSCOs).
- Eleven semivolatile organic compounds (SVOCs) were detected at concentrations exceeding their UUSCOs and/or RRSCOs in up to 11 samples: 4-methylphenol (maximum 2.2 mg/kg), benzo(a)anthracene (maximum 45 mg/kg), benzo(a)pyrene (maximum 42 mg/kg), benzo(b)fluoranthene (maximum 46 mg/kg), benzo(k)fluoranthene (maximum 15 mg/kg), chrysene (maximum 42 mg/kg), dibenzo(a,h)anthracene (maximum 5.0 mg/kg), dibenzofuran (maximum 8.2 mg/kg), indeno(1,2,3-c,d)pyrene (maximum 19 mg/kg), phenanthrene (maximum 130 mg/kg), and pyrene (maximum 110 mg/kg).
- Seven metals were detected at concentrations exceeding their UUSCOs and/or RRSCOs in up to 17 samples: arsenic (maximum 16.4 mg/kg), chromium (maximum 43.9 mg/kg), copper (maximum 102 mg/kg), lead (maximum 717 mg/kg), mercury (maximum 4.5 mg/kg), nickel (maximum 53.4 mg/kg), and zinc (maximum 881 mg/kg).
- Polychlorinated biphenyls (PCBs) and pesticides were not detected above laboratory detection limits in any of the samples analyzed.

Groundwater

- Three VOCs [benzene, methyl ethyl ketone (MEK), and toluene], were detected above their NYSDEC Class GA Ambient Water Quality Standards and Guidance Values (AWQSGVs). Benzene was detected in one sample (MW-03_20210819) at a concentration of 3.0 micrograms per liter (µg/L), above its AWQSGV of 1.0 µg/L. MEK was detected in one sample (MW-03_20210819) at a concentration of 200 µg/L, above its AWQSGV of 50 µg/L. Toluene was detected in two samples (MW-02_20210819 and MW-03_20210819) at concentrations of 310 and 670 µg/L, respectively, above its AWQSGV of 5.0 µg/L.
- Several SVOCs, including benzo(a)anthracene (2.6 μg/L), benzo(a)pyrene (3 μg/L), benzo(b)fluoranthene (3.6 μg/L), benzo(k)fluoranthene (1.3 μg/L), chrysene (2.5 μg/L), and indeno(1,2,3-c,d)pyrene (1.6 μg/L) were detected above their AWQSGVs in one sample (MW-01 20210820).

- Up to three metals (iron, magnesium, and sodium) were detected in both the unfiltered and filtered samples collected from the three monitoring wells. In the filtered (dissolved) samples, iron was detected at a concentration of 4,020 µg/L, above its AWQSGV of 300 µg/L; manganese was detected at concentrations of 308 and 1,090 µg/L, above its AWQSGV of 300 µg/L; and sodium ranged from 110,000 to 316,000 µg/L, above its AWQSGV of 20,000 µg/L.
- No PCBs or pesticides were detected above their respective AWQSGVs.
- Nine of the 21 per- and polyfluoroalkyl substances (PFAS) compounds were detected in the collected samples at concentrations ranging from 2.77 to 52.1 parts per trillion (ppt). Perfluorooctanesulfonic acid (PFOS) was detected below its NYSDEC PFAS Screening Level of 10 ppt in the samples analyzed; however, perfluorooctanoic acid (PFOA) was detected above its NYSDEC PFAS Screening Level of 10 ppt in each sample at concentrations ranging from 15.1 to 52.1 ppt. 1,4-Dioxane was detected in each sample at estimated concentrations ranging between 0.053 to 0.42 μg/L.

Soil Vapor

- The soil vapor sampling results identified up to 40 VOCs detected in one or more of the 7 soil vapor samples and one ambient air sample at concentrations ranging from 0.52 to 44,000 micrograms per cubic meter (μg/m³) from a diluted analysis.
- Petroleum-related compounds, including benzene, toluene, ethylbenzene and xylenes (collectively referred to as BTEX), 1,2,4-trimethylbenzene, 2,2,4-trimethylpentane, n-hexane, n-heptane, n-butane, and cyclohexane, were detected at elevated concentrations in all seven soil vapor samples. Of these detections, cyclohexane and butane were detected at 40,000 and 44,000 µg/m³, respectively in soil vapor sample SV-06_20210820 collected in the general proximity of the former 2,500-gallon UST encased in concrete in the southwestern corner of the Site. Chlorinated-related compounds, including carbon tetrachloride, methylene chloride, trichloroethylene (TCE), and tetrachloroethylene (PCE), were detected at concentrations up to 540 µg/m³ (PCE in sample SV-07_20210820).

The contaminants of concern (CoCs) were determined to be VOCs, SVOCs, and metals in soil and groundwater, and VOCs in soil vapor.

Remedial Investigation Report (RIR) – 380 4th Avenue, Brooklyn, NY, AKRF, April 2023

After being accepted into the NYSDEC BCP, AKRF returned to the Site in January and February 2022 to conduct an RI, and in July 2022 to conduct a Pre-Design Investigation (PDI) to determine the horizontal and vertical extent of contamination at the Site. The scope of the investigation was conducted in in general accordance with the NYSDEC DER-10 document.

Field activities included the advancement of 25 soil borings with collection and analysis of 47 soil samples; the installation of four permanent groundwater monitoring wells (RI-MW-03 through RI-MW-06 and PDI-MW-07) with the collection and analysis of eight groundwater samples (which included the existing monitoring wells MW-01 through MW-03 and a second field-filter supplemental sample from MW-01); and the installation of four temporary soil vapor points with the collection and analysis of four soil vapor samples.

During the RI, PID readings were noted in soil borings RI-SB-18 and RI-SB-19 at depths up to approximately 10 feet bgs with a maximum PID reading of 192 ppm from RI-SB-19. Soil boring RI-SB-11 had elevated PID readings at depths up to approximately 5 feet bgs with a maximum PID reading of 33 ppm; however, no odors were observed. During the PDI, slight petroleum-like odors were noted in soil boring PDI-SB-20 at depths from approximately 5 to 15 feet and 20 to 25 bgs with PID readings up to 492 ppm at approximately 5 to 10 feet bgs. Soil borings PDI-SB-23 through PDI-SB-26 had petroleum-like odors at depths up to approximately 20 feet bgs with PID readings

up to 2,850 ppm. A slight petroleum-like sheen was observed from soil boring PDI-SB-24 at approximately 17 to 20 feet bgs. No evidence of free phase product was identified during the RI and PDI.

Based on the elevated PID readings, which were corroborated with the analytical data, NYSDEC Spill No. 2109963 was reported at the Site on February 24, 2022.

Soil results were compared to UUSCOs, RRSCOs, and PGWSCOs. PFOA and PFOS were compared to their Restricted Residential (RR) and Unrestricted Use (UU) Guidance Values.

- Six VOCs [acetone, benzene, ethylbenzene, MEK, n-propylbenzene, and total xylenes] were detected at concentrations ranging from 0.054 to 6.3 mg/kg, above their respective UUSCOs in 13 samples and 3 blind duplicate samples. No VOCs were detected above their respective RRSCOs. In addition, acetone, benzene, ethylbenzene, MEK, n-propylbenzene, and total xylenes were detected above their respective PGWSCOs. According to the associated Data Usability Summary Reports (DUSRs), acetone and MEK are common laboratory but were not detected in the corresponding laboratory blanks except for acetone in PDI samples.
- SVOCs consisting of polycyclic aromatic hydrocarbons (PAHs) [including 4-methylphenol (P-Cresol), benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene dibenzo(a,h)anthracene, dibenzofuran, indeno(1,2,3-cd)pyrene, and phenol] were detected at concentrations ranging up to 36 mg/kg, above their respective, UUSCOs, RRSCOs and/or PGWSCOs in up to 20 soil samples and 2 blind duplicate samples.
- Pesticides P,'-DDD and P,'-DDT were detected at concentrations of 0.0056 and 0.057 mg/kg, respectively, above their respective UUSCOs in one sample.
- No PCB were detected above laboratory detection limits.
- Eight metals (arsenic, cadmium, copper, lead, mercury, nickel, silver, and zinc) were detected at concentrations ranging up to 12,600 mg/kg, above their respective UUSCOs, RRSCOs and/or PGWSCOs in 31 samples and 3 blind duplicate samples.
- One PFAS compound (PFOA) was detected at concentrations of 0.75 parts per billion (ppb) in two samples above its UU Guidance Value of 0.66 ppb, but below its RR Guidance Value of 33 ppb. The compound 1,4-dioxane was not detected in any of the collected samples.

Groundwater results were compared to AWQSGVs for all compounds, except PFOS and PFOA, which were compared to their NYSDEC PFAS Screening Levels.

- Six VOCs [benzene, chloroform, isopropylbenzene (cumene) m,p-xylenes, n-propylbenzene and sec-butylbenzene] were detected at concentrations ranging from 2.8 to 54 µg/L, above their respective AWQSGVs in two samples. All other detections were below the AWQSGVs.
- SVOCs consisting of PAHs [including benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene] were detected at concentrations ranging from 0.8 to 0.98 μg/L, above their respective AWQSGVs in one sample. However, no dissolved PAHs were detected in groundwater in subsequent groundwater sampling during the PDI; therefore, the previous results were attributed to entrained sediment.
- PCBs and pesticides were not detected in any of the groundwater samples above laboratory detection limits.
- Seven metals (arsenic, iron, lead, magnesium, manganese, mercury, and sodium) were detected at concentrations ranging from 2.2 to 331,000 µg/L, above their respective AWQSGVs in all six total (unfiltered) samples and the one blind duplicate sample.

- Four metals (iron, magnesium, manganese, and sodium) were detected at concentrations ranging from 344 to 375,000 µg/L, above their respective AWQSGVs in all six dissolved (filtered) samples and the one blind duplicate sample.
- One PFAS compound, PFOA, was detected at concentrations ranging from 12.2 to 68.2 ppt in all six samples and the one blind duplicate sample above its respective PFAS Screening Levels of 10 ppt.

Soil vapor sample analytical results were:

- Petroleum-related and other VOCs, including BTEX, butane, cyclohexane, n-heptane, n-hexane, n-propylbenzene, tert butyl alcohol, 2,2,4-trimethylpentane, 2-hexanone, 4-ethyltoluene, 1,2,4-trimethylbenzene, 1,3-butadiene, 1,3,5-trimethylbenzene, and cymene were detected in the soil vapor samples at concentrations up to 44,000 µg/m³ (butane in SV-06_2021082).
- TCE was detected in samples SV-01_2021082, SV-02_2021082, SV-05_2021082, RI-SV-10-20220126, RI-SV-11-20220126, and PDI-SV-13_20220719 at concentrations of 0.63 μ g/m³, 24 μ g/m³, 1.2 μ g/m³, 0.42 μ g/m³, 13 μ g/m³, and 4 μ g/m³ respectively, which has a New York State Department of Health (NYSDOH) Air Guidance Value (AGV) of 2 μ g/m³. PCE was detected in SV-01_2021082, SV-02_2021082, SV-03_2021082, SV-04_2021082, SV-05_2021082, SV-07_2021082, RI-SV-10-20220126, RI-SV-11-20220126, RI-SV-12-2022012, and PDI-SV-13_20220719 at concentrations of 1.1 μ g/m³, 350 μ g/m³, 8.3 μ g/m³, 0.88 μ g/m³, 540 μ g/m³, 3.8 μ g/m³, 340 μ g/m³, and 27 μ g/m³ respectively, which has a NYSDOH AGV of 30 μ g/m³.
- Several chlorofluorocarbon compounds (often used as refrigerants), such as chlorodifluoromethane, chloroform, chloromethane, dichlorodifluoromethane, and trichlorofluoromethane, were detected in the soil vapor samples at concentrations up to 99 μg/m³ (chloroform in RI-SV-12-20220126).

Interim Remedial Measures Workplan, 380 4th Avenue, Brooklyn, NY, AKRF, December 2022

AKRF prepared an Interim Remedial Measures (IRM) Work Plan (IRMWP) in December 2022, which proposed the installation of soldier piles along the Site perimeter. This IRM was proposed to facilitate installation of lagging for the support of excavation (SOE) to enable remedial excavation of the contaminated soil/fill identified across the Site during previous investigations as part of the subsequent Remedial Action. The IRMWP stated that no off-site disposal of excavated materials or collection of soil, groundwater, and or soil vapor samples would occur during implementation of the IRMWP. IRMWP approval was issued by NYSDEC in January 2023.

Remedial Action Work Plan, 380 4th Avenue, Brooklyn, NY, AKRF, April 2023

AKRF prepared a Remedial Action Work Plan (RAWP) in April 2023, which outlined the remedial activities and cleanup objectives for the Site. The RAWP proposed the following:

- 1. Excavation of soil/fill exceeding RRSCOs to a minimum depth of 15 feet bgs across the Site, and hotspot areas to depths up to 20 feet bgs in the eastern portion of the Site and 25 feet bgs in the center of the Site due to petroleum contamination observed (odors, PID reading, and/or sheen) from borings advanced during previous investigations in accordance with NYSDEC Commissioner's Policy 51 (CP-51). Excavation of two additional deeper hotspots to 20 feet bgs to remove hazardous levels of lead, removing all soil that represents a source of contamination associated with the Site to achieve a Track 2 cleanup with a contingent Track 4 cleanup.
- 2. Removal and off-site disposal of any petroleum storage tanks, fill ports, and vents and any associated grossly contaminated soil, if encountered, in accordance with applicable regulations.

- 3. Implementation of a Community Air Monitoring Program (CAMP) during all intrusive Site activities with the potential of disturbing contaminated soil.
- 4. Installation of support of excavation necessary to enable excavation of contaminated soil/fill to achieve a Track 2 cleanup. These activities were to comply with applicable vibration monitoring, and associated studies and plans and any local and state-controlled inspections.
- 5. Screening for indications of contamination (by visual means, odors, and monitoring with a photoionization detector) during any intrusive Site work.
- 6. Appropriate off-site disposal of all materials removed from the Site in accordance with all federal, state, and local rules and regulations for handling, transport, and disposal. Waste disposal facilities were to be selected based on data collected to date and forthcoming waste classification sampling. Based on the requirements of the selected facilities, additional soil waste classification samples may be collected and analyzed as needed to obtain approval for soil disposal.
- 7. Installation and operation of a dewatering system, including treatment (as required), in accordance with a New York City Department of Environmental Protection (NYCDEP) discharge permit to the combined sewer system to enable the remedial excavation activities.
- 8. Collection and analysis of 49 soil endpoint samples (including base and sidewall samples) Sitewide to evaluate the performance of the remedy with respect to attainment of Track 2 RRSCOs. However, since petroleum-related VOCs exceeding PGWSCOs were detected in soil boring PDI-SB-25 at the 8 to 10 ft bgs interval and no deeper samples were collected at this interval, confirmation endpoint samples would be collected in this area, additionally compared against PGWSCOs for petroleum-related VOCs, and the material at the base of the remedial excavation would be evaluated for any other signs of contamination (i.e., odor, staining, PID reading) to ensure that no source material exists below the remedial excavation depth.
- 9. Implementing a contingency plan for discovery of an unknown source of contamination or areas of concern that may require remediation.
- 10. Importation of clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) to replace excavated soil and establish the designed grades. On-site soil that did not exceed RRSCOs for any constituent may be used anywhere on-site to backfill the excavation areas or re-grade the Site.
- 11. Installation of a minimum 20-mil thick vapor barrier membrane beneath the new building slab and behind the subgrade foundation walls.
- 12. For any areas that did not achieve a Track 2 cleanup, a composite cover system would be constructed to achieve a Track 4 cleanup. The cover system would consist of a 14-inch-thick concrete building slab and associated sub-base to prevent human exposure to residual contaminated soil/fill remaining under the Site. Landscaped areas were not included in the proposed Site development; however, if the design was modified, any landscaped/non-impermeable covered areas would include a minimum two feet clean fill buffer with a demarcation barrier, with the upper 6 inches of any bare soil of sufficient quality to maintain a vegetative layer. Soil cover material, including any fill material brought to the Site, would meet the lower of the RRSCOs and PGWSCOs set forth in 6 NYCRR Part 375-6.7(d).
- 13. A soil vapor intrusion evaluation including confirmatory indoor air sampling will be conducted in the future on-site buildings, and if required, actions will be implemented prior to occupancy to address exposures related soil vapor intrusion. The soil vapor intrusion evaluation will include indoor air samples collected after the building envelope is completed and the heating, ventilation, and air conditioning system is started. A workplan will be provided for

review/comment to NYSDEC and NYSDOH and will include a written evaluation of the soil vapor intrusion exposure pathway, proposed indoor air sampling locations, and a schedule for conducting the sampling prior to occupancy.

- 14. Performance of remedial activities at the Site in accordance with this RAWP and the NYSDECissued Decision Document (DD). All deviations from this RAWP and/or the DD will be promptly reported to NYSDEC for approval and will be fully explained in the Final Engineering Report (FER).
- 15. Imposition of ICs in the form of an Environmental Easement and a Site-specific NYSDECapproved SMP. The Environmental Easement will: (1) require the remedial parties/Site owners to complete and submit a periodic certification of ICs and the EC to NYSDEC in accordance with Part 375-1.8 (h)(3); (2) allow the use and development of the controlled property for restricted residential use as defined by Part 375-1.8(g), although land use is subject to local zoning laws; (3) restrict the use of groundwater as a source of potable or process water without necessary water quality treatment, as determined by NYSDOH; and (4) require compliance with a Site-specific, NYSDEC-approved SMP.
- 16. Publication of an SMP for long-term management of residual contamination as required by the Environmental Easement, including plans for: (1) ICs and ECs, (2) monitoring, (3) operation and maintenance, and (4) reporting.

RAWP approval and the NYSDEC DD were both issued in April 2023.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site, as listed in the DD dated April 6, 2023, are as follows.

2.4.1 Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants on air-borne soil particles or volatilizing from contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.4.2 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

• Remove the source of groundwater contamination.

2.4.3 Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.5 Remaining Contamination

2.5.1 Soil

Following completion of soil excavation and removal activities, endpoint soil sampling was conducted (a total of 64 samples were collected: EP-01 through EP-44; A4HAZ_N, A4HAZ_S, A4HAZ_E, A4HAZ_W, and A4HAZ_B; B1HAZ_N, B1HAZ_S, B1HAZ_E, B1HAZ_W, and B1HAZ_B; EP-10-N5, EP-10-S5, EP-10-E5, EP-10-W5, and EP-10_B; and EP-12-N10, EP-12-S15, EP-12-E5, EP-12-W10, and EP-12_B). Results of the soil endpoint samples indicate that soil remaining at the Site meets the RRSCOs and additionally PGWSCOs (for VOCs only), with the exception of the compounds listed in In-Text Tables 3 and 4 below:

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	PGWSCO (mg/kg	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-01_15_20231103	15				<u>0.073 JK</u>
	EP-X1_15_20231103	15				<u>0.076 JK</u>
	EP-02_15_20231103	15				<u>0.07</u>
	EP-03_15_20231103	15				<u>0.084</u>
	EP-04_15_20231103	15				<u>0.093</u>
	EP-05_15_20231103	15				<u>0.15</u>
	EP-06_15_20231103	15				<u>0.18</u>
	EP-07_15_20231103	15				0.065
	EP-08_15_20231110	15		0.03	100	0.092
	EP-09_15_20231110	15				<u>0.11</u>
	EP-10_15_20231110	15				<u>0.059</u>
	EP-12_15_20231110	15				<u>0.077</u>
	EP-13_15_20231110	15	0.02			<u>0.068</u>
Acetone*	EP-14_15_20231110	15	0.03			<u>0.06</u>
	EP-16_20_20231127	20				<u>0.21 J</u>
	EP-X2_20_20231127	20				<u>0.037 JL</u>
	EP-18_17.5_20231127	17.5				<u>0.065</u>
	EP-19_17.5_20231127	17.5				<u>0.078</u>
	EP-20_17.5_20231127	17.5				<u>0.049</u>
	EP-27_22.5_20231207	22.5				<u>0.05</u>
	EP-28_22.5_20231207	22.5				<u>0.036</u>
	EP-29_22.5_20231207	22.5				<u>0.079</u>
	EP-30_22.5_20231207	22.5				<u>0.077</u>
	EP-31_22.5_20231207	22.5				0.044
	EP-32_22.5_20231207	22.5				<u>0.094</u>
	EP-33_22.5_20231207	22.5				<u>0.031</u>

In-Text Table 3 Remaining Soil Exceeding UUSCOs, PGWSCOs, and/or RRSCOs

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	PGWSCO (mg/kg	RRSCO (mg/kg)	Concentration (mg/kg)	
Acetone*	EP-34_22.5_20231207	22.5	0.03			<u>0.078</u>	
	EP-X3_20231215	17.5		0.03	100	<u>0.034</u>	
	EP-39_20_20231215	20				<u>0.076</u>	
	EP-42_17.5_20231215	17.5				<u>0.031</u>	
	EP-44_20_20231215	20				<u>0.032</u>	
	B1HAZ_B_20_20230601	20				<u>0.051 JL</u>	
Notes: J = The concentration given is an estimated value.							

= The concentration given is an estimated value.

L = Sample result is estimated and biased low.

K = Reported concentration value is proportional to dilution factor and may be exaggerated

EP-X1 15 20231103 is a blind duplicate of sample EP-01 15 20231103

EP-X2 20 20231127 is a blind duplicate of sample EP-16_20_20231127

EP-X3 20231215 is a blind duplicate of sample EP-37 17.5 20231215

Exceedances of UUSCOs are highlighted in bold font.

Exceedances of PGWSCOs are highlighted and underlined.

*Since acetone is a common laboratory contaminant and was detected in both soil samples and field blank samples, these concentrations can be attributed to laboratory cross-contamination, and are not representative of Site subsurface conditions.

In-Text Table 4 **Remaining Soil Exceeding UUSCOs and/or RRSCOs**

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-01_15_20231103	15			0.77 J
	EP-X1_15_20231103	15			2.5 J
	EP-02_15_20231103	15			1.7
	EP-03_15_20231103	15			4.7
	EP-04_15_20231103	15			1.5
	EP-05_15_20231103	15			1.3
	EP-06_15_20231103	15			2.9
	EP-07_15_20231103	15	7.5 100	3.6	
	EP-08_15_20231110	15		3.5	
	EP-09_15_20231110	15		0.77	
4 Matheuluh anal	EP-12_15_20231110	15		2.1	
4-Methylphenol	EP-13_15_20231110	15		2.5	
	EP-14_15_20231110	15		1.4	
	EP-17_15_20231127	15		1.1	
	EP-18_17.5_20231127	17.5		0.48	
	EP-19_17.5_20231127	17.5 20231127 17.5		2.0	
	EP-29_22.5_20231207	22.5			1.1
	EP-30_22.5_20231207	22.5			3.1
	EP-31_22.5_20231207	22.5		3.4	
	EP-32_22.5_20231207	22.5			1.8
	EP-33_22.5_20231207	22.5	1		2.5
	EP-34_22.5_20231207	22.5			1.1

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-35 25 20231207	25			1.0
	EP-36 25 20231207	25			3.0
	EP-37 17.5 20231215	17.5			1.0 J
	EP-X3 20231215	17.5			1.0 JL
	EP-38 17.5 20231215	17.5			1.5
4-Methylphenol	EP-39 20 20231215	20	7.5	100	0.47
	EP-42 17.5 20231215	17.5			0.34 J
	EP-44 20 20231215	20			1.1
	A4HAZ X1 20230928	20			0.34 J
	B1HAZ B 20 20230601	20			0.96
	B1HAZ X1 20230601	20			1.8
	EP-01 15 20231103	15			1.8
	EP-X1 15 20231103	15			1.3
	EP-04 15 20231103	15			1.6
	EP-06 15 20231103	15			1.1
	EP-12 15 20231110	15			1.1
	EP-17 15 20231127	15			7.8
	EP-18 17.5 20231127	17.5			13 D
	EP-19_17.5_20231127	17.5			2.4
	EP-19_17.5_20231127 EP-23 17.5 20231129	17.5			2.4
	EP-28_22.5_20231207	22.5			1.6
	EP-29_22.5_20231207	22.5			4.2
	EP-30_22.5_20231207	22.5		1 4	1.2
Benzo(a)anthracene	EP-31_22.5_20231207	22.5	1	1.4	1.9
	EP-32_22.5_20231207	22.5			2.0
	EP-33_22.5_20231207	22.5			5.3
	EP-34_22.5_20231207	22.5			5.4
	EP-35_25_20231207	25			2.9
	EP-36_25_20231207	25			1.4
	EP-37_17.5_20231215	17.5			1.4 JL
	EP-X3_20231215	17.5			4.6 JL
	EP-38_17.5_20231215	17.5			2.4
	EP-39_20_20231215	20			2.0
	EP-42_17.5_20231215	17.5			1.4
	EP-43_17.5_20231215	17.5			2.3
	EP-44_20_20231215	20			1.2
	EP-01_15_20231103	15			1.9
	EP-X1_15_20231103	15			1.3
	EP-04_15_20231103	15			1.4
Banzo (a) numero	EP-06_15_20231103	15	1	1	1.1
Benzo(a)pyrene	EP-12_15_20231110	15	1	1	2.0
	EP-17_15_20231127	15			8.5
	EP-18_17.5_20231127	17.5			13 D
	EP-19 17.5 20231127	17.5			2.8

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-23 17.5 20231129	17.5			2.6
	EP-28 22.5 20231207	22.5		1.6	
	EP-29 22.5 20231207	22.5			6.0
	EP-30 22.5 20231207	22.5			1.1
	EP-31 22.5 20231207	22.5			2.1
	EP-32 22.5 20231207	22.5			2.2
	EP-33 22.5 20231207	22.5			5.7
	EP-34 22.5 20231207	22.5			6.8
Benzo(a)pyrene	EP-35 25 20231207	25	1	1	3.6
	EP-36 25 20231207	25			1.4
	EP-37 17.5 20231215	17.5			1.6 J
	EP-X3 20231215	17.5			5 J
	EP-38 17.5 20231215	17.5			2.8
	EP-39 20 20231215	20			2.0
	EP-42 17.5 20231215	17.5			1.5
	EP-43 17.5 20231215	17.5		2.6	
	EP-44 20 20231215	20			1.5
	EP-01_15_20231103	15	-		2.1
	EP-X1 15 20231103	15			1.4
	EP-04 15 20231103	15			1.6
	EP-06 15 20231103	15			1.3
	EP-07 15 20231103	15			1.1
	EP-12 15 20231110	15			2.3
	EP-13_15_20231110	15			1.1
	EP-17 15 20231127	15			8.4
	EP-18 17.5 20231127	17.5			13 D
	EP-19 17.5 20231127	17.5			2.9
	EP-23 17.5 20231129	17.5			2.8
	EP-28 22.5 20231207	22.5			1.7
	EP-29 22.5 20231207	22.5			6.3
Benzo(b)fluoranthene	EP-30 22.5 20231207	22.5	1	1.4	1.3
	EP-31 22.5 20231207	22.5			2.3
	EP-32 22.5 20231207	22.5			2.1
	EP-33 22.5 20231207	22.5			5.3
	EP-34 22.5 20231207	22.5			5.2
	EP-35 25 20231207	25			3.2
	EP-36 25 20231207	25			1.6
	EP-37 17.5 20231215	17.5			1.9 JL
	EP-X3 20231215	17.5			5.5 JL
	EP-38 17.5 20231215	17.5			3.1
	EP-39 20 20231215	20			2.1
	EP-42 17.5 20231215	17.5			1.6
	EP-43 17.5 20231215	17.5			2.6
	EP-44 20 20231215	20			1.6

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-01 15 20231103	15			1.0
	EP-X1 15 20231103	15			0.66
	EP-04_15_20231103	15			0.69
	EP-12_15_20231110	15			1.2
	EP-17_15_20231127	15			4.6
	EP-18_17.5_20231127	17.5			7.9
	EP-19_17.5_20231127	17.5			1.5
	EP-23_17.5_20231129	17.5			1.1
	EP-28_22.5_20231207	22.5			0.99
	EP-29_22.5_20231207	22.5			3.0
	EP-30_22.5_20231207	22.5			0.65
Benzo(g,h,i)perylene	EP-31_22.5_20231207	22.5	0.64		0.99
Belizo(g,ii,i)peryielle	EP-32_22.5_20231207	22.5	0.04		1.2
	EP-33_22.5_20231207	22.5			2.5
	EP-34_22.5_20231207	22.5			3.9
	EP-35_25_20231207	25			2.0
	EP-36_25_20231207	25			0.73
	EP-37_17.5_20231215	17.5			1.2 JL
	EP-X3_20231215	17.5			3.0 JL
	EP-38_17.5_20231215	17.5			1.6
	EP-39_20_20231215	20			1.1
	EP-42_17.5_20231215	17.5			0.89
	EP-43_17.5_20231215	17.5			1.4
	EP-44_20_20231215	20			0.97
	EP-01_15_20231103	15			0.85
	EP-12_15_20231110	15			0.81
	EP-17_15_20231127	15			3.1
	EP-18_17.5_20231127	17.5			6.2
	EP-19_17.5_20231127	17.5			1.2
	EP-23_17.5_20231129	17.5			1.0
	EP-29_22.5_20231207	22.5			2.3
Danga (It) Elyanonthana	EP-31_22.5_20231207	22.5	0.8	4.0	0.91
Benzo(k)Fluoranthene	EP-32_22.5_20231207	22.5	0.8	4.9	0.85
	EP-33_22.5_20231207	22.5			2.2
Ţ	EP-34_22.5_20231207	22.5			2.0
Γ	EP-35_25_20231207	25			1.0
T T	EP-X3_20231215	17.5			1.5 JL
Γ	EP-38_17.5_20231215	17.5			1.2
Γ	EP-39_20_20231215	20			0.91
	EP-43_17.5_20231215	17.5			1.0
	EP-01_15_20231103	15			2.1
Chrussen	EP-X1_15_20231103	15	1	4.0	1.3
Chrysene	EP-04_15_20231103	15	1	4.7	1.5
	EP-06 15 20231103	15			1.2

		Sample			
Analyte	Sample Identification	Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
-	EP-12_15_20231110	15			2.0
	EP-13_15_20231110	15	-		1.1
	EP-17_15_20231127	15			7.1
	EP-18_17.5_20231127	17.5			12 D
	EP-19_17.5_20231127	17.5			2.4
	EP-23_17.5_20231129	17.5			2.5
	EP-28_22.5_20231207	22.5			1.5
Γ	EP-29_22.5_20231207	22.5			4.3
	EP-30_22.5_20231207	22.5			1.1
	EP-31_22.5_20231207	22.5			2.1
CI	EP-32_22.5_20231207	22.5	1		1.9
Chrysene	EP-33_22.5_20231207	22.5	1		4.8
	EP-34_22.5_20231207	22.5			5.3
	EP-35_25_20231207	25			2.9
F	EP-36_25_20231207	25			1.5
	EP-37_17.5_20231215	17.5			1.5 JL
Γ	EP-X3_20231215	17.5			4.1 JL
	EP-38_17.5_20231215	17.5		2.5	
F	EP-39 20 20231215	20			1.9
	EP-42 17.5 20231215	17.5			1.4
	EP-43_17.5_20231215	17.5			2.3
F	EP-44_20_20231215	20			1.3
	EP-17_15_20231127	15			0.9
F	EP-18_17.5_20231127	17.5			2.2
F	EP-19 17.5 20231127	17.5		0.33	0.41
Dibenz(a,h)anthracene	EP-29 22.5 20231207	22.5	0.33		0.76
	EP-33_22.5_20231207	22.5	0.33 0.33	0.49	
	EP-34 22.5 20231207	22.5			0.56
F	EP-X3_20231215	17.5			0.62 JL
Dibenzofuran	EP-18 17.5 20231127	17.5	2.1	18	6.7
	EP-01_15_20231103	15			1.2
F	EP-X1_15_20231103	15			0.79
	EP-02_15_20231103	15			0.59
F	EP-04_15_20231103	15			0.84
F	EP-05_15_20231103	15			0.51
F	EP-06_15_20231103	15			0.67
Indeno(1,2,3-	EP-07_15_20231103	15	0.7		0.57
c,d)pyrene	EP-12_15_20231110	15	0.5	1.4	1.4
F	EP-13_15_20231110	15			0.7
F	EP-17 15 20231127	15			5.2
F	EP-18 17.5 20231127	17.5			9.4
F	EP-19 17.5 20231127	17.5			1.8
F	EP-23 17.5 20231129	17.5			1.3
F	EP-28 22.5 20231207	22.5			1.2

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-29 22.5 20231207	22.5			3.6
	EP-30 22.5 20231207	22.5			0.79
	EP-31 22.5 20231207	22.5			1.4
	EP-32 22.5 20231207	22.5			1.4
	EP-33 22.5 20231207	22.5			2.6
	EP-34 22.5 20231207	22.5			3.5
	EP-35 25 20231207	25		1.4	1.9
Indeno(1,2,3-	EP-36 25 20231207	25	0.5	1.4	0.88
c,d)pyrene	EP-37_17.5_20231215	17.5			1.2
	EP-X3_20231215	17.5			3.1
	EP-38 17.5 20231215	17.5			1.9
	EP-39 20 20231215	20			1.9
	EP-42 17.5 20231215	17.5			1.1
	EP-43_17.5_20231215	17.5			1.7
	EP-44 20 20231215	20			1.2
	EP-27_22.5_20231207	22.5			25 D
NT 1.41 1	EP-33_22.5_20231207	22.5	10	100	45 D
Naphthalene	EP-34_22.5_20231207	22.5	12 100	100	27
	EP-35_25_20231207	25			150 D
	EP-X1_15_20231103	15			2.6 J
	EP-02 15 20231103	15			1.3
	EP-03 15 20231103				1.7
	EP-04 15 20231103	15			3.2
	EP-05 15 20231103	15			1.7
	EP-06 15 20231103	15			3.1
	EP-07 15 20231103	15			1.8
	EP-12 15 20231110	15	12 100	5.1	
	EP-13 15 20231110	15			3.0
	EP-14 15 20231110	15			1.2
	EP-17 15 20231127	15			20 D
	EP-18 17.5 20231127	17.5			48 D
Phenanthrene	EP-19 17.5 20231127	17.5	1.1	4.9	2.4
	EP-23 17.5 20231129	17.5			6.8
	EP-27 22.5 20231207	22.5			1.4
	EP-28 22.5 20231207	22.5			3.8
	EP-29_22.5_20231207	22.5			4.6
	EP-30_22.5_20231207	22.5			3.7
	EP-31_22.5_20231207	22.5			4.2
	EP-32_22.5_20231207	22.5			3.9
	EP-33_22.5_20231207	22.5			14 D
	EP-34 22.5 20231207	22.5			18
	EP-35_25_20231207	25			12 D
	EP-36_25_20231207	25			3.3
	EP-37_17.5_20231215	17.5			3.7 JL

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)				
	EP-X3_20231215	17.5			9.8 JL				
	EP-38 17.5 20231215	17.5			4.8				
	EP-39 20 20231215	20			4.3				
	EP-41_15_20231215	15			2.1				
Phenanthrene	EP-42_17.5_20231215	17.5	1.1		2.5				
	EP-43_17.5_20231215	17.5			4.7				
	EP-44_20_20231215	20			2.3				
	A4HAZ_X1_20230928	20			1.3 J				
	B1HAZ_X1_20230601	20			1.3				
	EP-03_15_20231103	15		(mg/kg) 4.9 100	0.37 J				
	EP-05_15_20231103	15			0.54				
D1 1	EP-12_15_20231110	15	0.22	100	0.36 J				
Phenol	EP-13_15_20231110	15	0.33	100	0.44 J				
	EP-X3_20231215	17.5			1.2 JL				
	EP-44_20_20231215	20			0.37 J				
	EP-08_15_20231110	15		16					18.3
A	EP-10_15_20231110	15	13 16		14				
Arsenic	EP-19_17.5_20231127	17.5		16.4					
	EP-32_22.5_20231207	22.5			37				
	EP-01_15_20231103	15			82				
	EP-X1_15_20231103	15			80				
	EP-02_15_20231103	15			110				
	EP-03_15_20231103				78.7				
	EP-04_15_20231103	15			102				
	EP-05_15_20231103	15			109				
	EP-06_15_20231103	15			437				
	EP-07_15_20231103	15			68.3				
	EP-08_15_20231110	15			63.4				
	EP-09_15_20231110	15			67.8				
	EP-10_15_20231110	15			99.2				
	EP-12_15_20231110	15			353				
Copper	EP-13_15_20231110	15	50	280	89.7				
	EP-14_15_20231110	15			56.4				
	EP-17_15_20231127	15			96				
	EP-18_17.5_20231127	17.5			56.9				
	EP-19_17.5_20231127	17.5			73.4				
	EP-29_22.5_20231207	22.5			56.8				
	EP-31_22.5_20231207	22.5			73.8				
	EP-32_22.5_20231207	22.5			56.9				
	EP-33_22.5_20231207	22.5			69.1				
	EP-34 22.5 20231207	22.5			65.7				
	EP-35_25_20231207	25			55.4				
	EP-36_25_20231207	25			63.7				
	EP-37 17.5 20231215	17.5			168 J				

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-X3_20231215	17.5			64.6 J
	EP-38_17.5_20231215	17.5			57.3
	EP-41_15_20231215	15			50.7
Copper	EP-43_17.5_20231215	17.5	50	280	80.5
	EP-44_20_20231215	20			195
	B1HAZ_B_20_20230601	20			109
	B1HAZ_X1_20230601	20			97.7
Cyanide	EP-08_15_20231110	15	2.3	13	5.4
Cyanide	EP-37_17.5_20231215	17.5	2.3	15	5.2 JL
	EP-01_15_20231103	15			4,100 J
	EP-X1_15_20231103	15			893 J
	EP-02_15_20231103	15			2,740
	EP-03_15_20231103	15			431
	EP-04_15_20231103	15			383
	EP-05_15_20231103	15			360
	EP-06_15_20231103	15			293
	EP-07_15_20231103	15			491
	EP-08_15_20231110	15			374
	EP-09_15_20231110	15			197
	EP-10_B_16_20231127	16			769
	EP-10-E5_15_20231127	15			373
	EP-10HAZ_X1_20231127	15			650
	EP-10-N5_15_20231127	15			751
	EP-10-S5_15_20231127	15			579
	EP-10-W5_15_20231127	15			676
	EP-11_15_20231110	15			83.4
Lead	EP-12_B_16_20231127	16	63	400	1,510
	EP-12-E5_15_20231127	15			3,850
	EP-12-N10_15_20231127	15			3,290
	EP-12-S15_15_20231206	15			2,560
	EP-12-W10_15_20231127	15			963
	EP-13_15_20231110	15			526
	EP-14_15_20231110	15			445
	EP-17_15_20231127	15			768
	EP-18_17.5_20231127	17.5			975
	EP-19_17.5_20231127	17.5			954
	EP-25_19.5_20231207	19.5			155
	EP-26_17.5_20231207	17.5			72.4
	EP-27_22.5_20231207	22.5			63.5
	EP-28_22.5_20231207	22.5			69.4
	EP-29_22.5_20231207	22.5			317
	EP-30_22.5_20231207	22.5			90.7
	EP-31_22.5_20231207	22.5			356
	EP-32_22.5_20231207	22.5			453

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-33 22.5 20231207	22.5			524
	EP-34 22.5 20231207	22.5	-		375
	EP-35 25 20231207	25			364
	EP-36 25 20231207	25			430
	EP-37 17.5 20231215	17.5			1,310
	EP-X3 20231215	17.5			521 J
	EP-38 17.5 20231215	17.5			463
	EP-39 20 20231215	20			264
	EP-41 15 20231215	15			196
	EP-43 17.5 20231215	17.5			508
	EP-44 20 20231215	20			397
Lead	A4HAZ B 20 20230928	20	63	400	216 J
	A4HAZ X1 20230928	20			183 J
	A4HAZ E 15 20230928	15			336
	A4HAZ N 15 20230928	15			531
	A4HAZ S 15 20230928	15			376
	A4HAZ W 15 20230928	15			438
	B1HAZ B 20 20230601	20			415
	B1HAZ X1 20230601		-		381
	B1HAZ E 15 20230601				476
	B1HAZ N 15 20230601				485
	B1HAZ S 15 20230601	15		378	
	B1HAZ W 15 20230601				319
	EP-01_15_20231103				1.1 J
	EP-X1 15 20231103	-			3.0 J
	EP-02 15 20231103				3.4
	EP-03 15 20231103	20 15 15	0.73		
	EP-04 15 20231103				2.0
	EP-05_15_20231103	-			2.1
	EP-06 15 20231103	15			1.5
	EP-07 15 20231103	15			1.7
	EP-08 15 20231110	15			4.6
	EP-09 15 20231110	15			0.89
Mercury	EP-10 15 20231110	15	0.18	0.26	0.89
5	EP-12 15 20231110	15			2.5
	EP-13 15 20231110	15			3.4
	EP-14 15 20231110	15			1.5
	EP-16 20 20231127	20			0.36 JK
	EP-17 15 20231127	15			1.4
	EP-18 17.5 20231127	17.5			6.0
	EP-19 17.5 20231127	17.5			6.1
	EP-23 17.5 20231129	17.5	-		0.47
	EP-25 19.5 20231207	19.5			0.36
	EP-26 17.5 20231207	17.2			0.26

Analyte	yte Sample Identification Sample Identification		UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-27 22.5 20231207	22.5			0.38
	EP-28 22.5 20231207	22.5			4.0
	EP-29 22.5 20231207	22.5			2.1
	EP-30 22.5 20231207	22.5			0.54
	EP-31_22.5_20231207	22.5			1.2
	EP-32_22.5_20231207	22.5			8.4
	EP-33_22.5_20231207	22.5			5.6
	EP-34_22.5_20231207	22.5			63.3
	EP-35_25_20231207	25			2.0
	EP-36_25_20231207	25			3.2
	EP-37_17.5_20231215	17.5			3.9
Mercury	EP-X3_20231215	17.5	0.18		5.1
	EP-38_17.5_20231215	17.5			3.2
	EP-39_20_20231215	20			2.9
	EP-40_17.5_20231215	17.5			0.43
	EP-41_15_20231215	15	15 17.5 17.5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20		1.2
	EP-42_17.5_20231215	17.5			0.39
	EP-43_17.5_20231215	17.5			1.4
	EP-44_20_20231215	20			2.4
	A4HAZ B 20 20230928	20			0.21 JL
	A4HAZ_X1_20230928	20			0.47 JL
	B1HAZ_B_20_20230601	20			3.3
	B1HAZ_X1_20230601	20			2.5
Nickel	EP-20_17.5_20231127	17.5	30	210	30.6
Selenium	EP-08_15_20231110	15	4	110	19.4
Silver	EP-12_15_20231110	15	2	110	4.9
	EP-01_15_20231103	15		210 110 110	332
	EP-X1_15_20231103	15			241
	EP-02_15_20231103	15			167
	EP-03_15_20231103	15			115
	EP-04_15_20231103	15			139
	EP-05_15_20231103	15			195
	EP-06_15_20231103	15			116
	EP-07_15_20231103	15			138
7.	EP-08_15_20231110	15	100	((00	164
Zinc	EP-10_15_20231110	15	109	6,600	264
	EP-12_15_20231110	15	1		288
	EP-13_15_20231110	15]		138
	EP-17_15_20231127	15	1		152 J
	EP-18_17.5_20231127	17.5	1		231 J
	EP-19_17.5_20231127	17.5	1		391 J
	EP-31_22.5_20231207	22.5	1		174
	EP-32_22.5_20231207	22.5	1		153
	EP-33 22.5 20231207	22.5	1		154

Analyte	Sample Identification	Sample Depth (feet bgs)	UUSCO (mg/kg)	RRSCO (mg/kg)	Concentration (mg/kg)
	EP-34_22.5_20231207	22.5			149
	EP-35_25_20231207	25			121
	EP-36_25_20231207	25	1		212
	EP-37_17.5_20231215	20231215 17.5			241 JK
Zinc	EP-X3_20231215	17.5	100	6,600	129
Zinc	EP-38_17.5_20231215	17.5	109	6,600	179
	EP-43_17.5_20231215	17.5			129
	EP-44_20_20231215	20			169
	B1HAZ_B_20_20230601	20			177 JL
	B1HAZ_X1_20230601	20			150 JL

Notes:

J = The concentration given is an estimated value.

L = Sample result is estimated and biased low.

D = Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the two analyses.

K = Reported concentration value is proportional to dilution factor and may be exaggerated

EP-X1 15 20231103 is a blind duplicate of sample EP-01 15 20231103

EP-X2 20 20231127 is a blind duplicate of sample EP-16 20 20231127

EP-X3 20231215 is a blind duplicate of sample EP-37 17.5 20231215

EP-10HAZ X1 20231127 is a blind duplicate of sample EP-10-E5 15 20231127

A4HAZ X1 20230928 is a blind duplicate of sample B1HAZ B 20 20230601

B1HAZ X1 20230601 is a blind duplicate of sample B1HAZ B 20 20230601

Exceedances of UUSCOs are highlighted in bold font.

Exceedances of RRSCOs are highlighted in gray shading.

The compounds listed above were detected in soil below 15 feet below grade and, therefore, meet the Track 2 cleanup. No soil contamination remains in place above 15 feet below grade. It should be noted that select endpoint samples were additionally analyzed for Toxicity Characteristic Leaching Procedure (TCLP) lead for any samples where total lead concentrations exceeded 1,000 mg/kg, as directed by NYSDEC in email correspondence dated November 20, 2023.

The endpoint sample analytical results are included in Attached Tables 1 through 7. The endpoint sample locations and exceedances compared against the UUSCOs, RRSCOS, and/or PGWSCOs are shown on Figures 3A and 3B.

2.5.2 Groundwater

Groundwater quality was characterized during previous investigations described in Section 2.3 prior to entering the BCP and during the RI conducted as part of the BCP. The groundwater beneath the Site was found to have concentrations above the AWQSGVs; however, source material at the Site has been removed as part of the remedial excavation. Any remaining VOCs in groundwater will be monitored as detailed in Section 4.0. Groundwater use at the Site is subject to the ICs documented within the Environmental Easement.

2.5.3 Soil Vapor

Soil vapor quality was characterized during previous investigations prior to entering the BCP and during the RI conducted as part of the BCP. As required by NYSDOH in the approved RAWP, a Soil Vapor Intrusion Evaluation (SVIE) including confirmatory indoor air sampling will be conducted in the future on-site building, and if required, to address exposures related soil vapor intrusion, mitigation measures will be implemented prior to occupancy. The SVIE will include indoor air samples collected after the building envelope is completed and the heating, ventilation, and air conditioning system is started. An SVIE will be conducted as detailed in Section 5.2.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the Site, ICs and an EC are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all ICs and the EC at the Site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all ICs and the EC on the Site;
- The basic implementation and intended role of each IC and EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of ICs and the EC, such as the implementation of the EWP (as provided in Appendix D) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the ICs and the EC required by the Site remedy, as determined by NYSDEC.

3.2 Institutional Controls

A series of ICs is required by NYSDEC's April 2022 DD to: (1) implement, maintain, and monitor the EC; (2) prevent future exposure to remaining contamination; and (3) limit the use and development of the Site to restricted residential, commercial, or industrial uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on Figure 2. These ICs are:

- The property may be used for restricted residential, commercial, and industrial uses only, as set forth in the Environmental Easement;
- The EC must be operated and maintained as specified in the SMP;
- The EC must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene (NYCDOHMH) to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site Management of the property must be reported at the frequency and in a manner defined in the SMP;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 2, and appropriate actions to address exposures must be implemented; and
- In-ground vegetable gardens and farming on the Site are prohibited.

3.3 Engineering Controls

3.3.1 Monitoring Wells Associated with Monitored Natural Attenuation

Groundwater monitoring activities to confirm if contamination is not emanating from the Site will continue until residual groundwater concentrations are found to be consistently below ambient water quality standards for Site source compounds only (i.e., petroleum-related VOCs), the Site SCGs, or have become asymptotic at an acceptable level over an extended period. In the event that monitoring data indicates that monitoring may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional measures will be evaluated in consultation with NYSDEC.

Groundwater monitoring well installation and groundwater monitoring and sampling activities are described further in Section 4.2 - Post-Remediation Media Monitoring and Sampling.

3.4 Site-Wide Inspection

Site-wide inspections will be performed at a minimum of once per year. These periodic inspections must be conducted when the ground surface is visible (i.e., no snow cover). Site-wide inspections will be performed by a qualified environmental professional (QEP) as defined in 6 NYCRR Part 375, a professional engineer (P.E.) who is licensed and registered in NYS, or a qualified person who directly reports to a P.E. who is licensed and registered in NYS. Modification to the frequency or duration of the inspections will require approval from NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect the remaining contamination at the Site. A comprehensive Site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report (PRR).

During an inspection, an inspection form will be completed as provided in Appendix E – Site Management Forms. The inspection will determine and document the following:

- Compliance with all ICs and the EC, including Site usage;
- General Site conditions at the time of the inspection;
- The Site management activities being conducted, including, where appropriate, confirmation sampling and a health and safety inspection;
- If these controls continue to be protective of human health and the environment;

- Compliance with requirements of this SMP and the Environmental Easement; and
- Confirmation that Site records are complete and up to date.

Reporting requirements are outlined in Section 6.0 of this SMP.

Inspections will also be performed in the event of an emergency. An inspection of the Site will be conducted by a QEP within 5 days of the event to verify the effectiveness of the ICs and the EC implemented at the Site, as determined by the NYSDEC project manager. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC project manager. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the Site are included in the Quality Assurance Project Plan (QAPP), provided in Appendix F.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media [e.g., groundwater and indoor air (to evaluate vapor intrusion)];
- Assessing compliance with applicable NYSDEC standards, criteria, and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 6.0 of this SMP.

4.2 Post-Remediation Media Monitoring and Sampling

Post-remediation groundwater samples will be collected from the monitoring wells on a routine basis. Sampling locations required analytical parameters, a schedule, and additional details are provided in the sections below. Modification to the frequency or sampling requirements will require NYSDEC approval.

All work will be completed in accordance with the QAPP (Appendix F), the Health and Safety Plan (HASP) provided as Appendix G, and the Community Air Monitoring Plan (CAMP) provided as Appendix H.

4.2.1 Monitoring Well Installation and Survey

A network of monitoring wells, as shown on Figure 4, will be installed to evaluate the performance of the remedy. In-Text Table 5 summarizes each well's purpose, and proposed location, depth, diameter, and screened interval.

Monitoring Well ID	Well Location	Well Diameter (inches)	Depth to Top of Screen (ft bgs)	Depth to Bottom of Screen (ft bgs)
MW-01	Upgradient	2	10	20
MW-02	Sidegradient	2	10	20
MW-03	Downgradient	2	10	20

In-Text Table 5 Monitoring Well Construction Details

The monitoring wells will be installed using a Geoprobe[®] direct-push drill rig (fitted with Hollow Stem Augers) at the proposed locations. The wells will be constructed with 10 feet of 2-inch diameter 0.002-inch slotted polyvinyl chloride (PVC) well screen straddling the groundwater interface, with approximately 5 feet of screen above groundwater and 5 feet above groundwater, which is expected to be encountered at approximately 15 feet bgs, and a 2-inch diameter solid PVC riser installed to grade. A No. 2 Morie sand pack will be installed from the base of the well to approximately 2 feet above the well screen. The annular space around the solid well riser, above the sand pack, will be sealed with approximately 2 feet of bentonite, followed by a non-shrinking grout/cement mixture to approximately one foot below grade. Each of the wells will be finished with a locking j-plug and flush-mounted well cover with a concrete pad. Well construction logs will be prepared and included as an appendix to the first applicable quarterly report, required under this SMP.

Following installation, each groundwater monitoring well will be developed via pumping and surging to remove any accumulated fines and establish a hydraulic connection with the surrounding aquifer. Development will continue until the water quality parameters stabilize (within 10%) for three successive readings, and the water has a turbidity of less than 50 nephelometric turbidity units (NTUs) for three successive readings. Development water will require containerization in properly labeled, Department of Transportation (DOT)approved 55-gallon drums for future off-site disposal at a permitted facility. Well development details will be noted on groundwater development logs, included as an appendix to the first applicable quarterly report. Development water will be containerized in 55-gallon drums for future off-site disposal at a permitted facility. The wells will be sampled at least two weeks following their development, as required by NYSDEC.

Once installed, the monitoring wells will be surveyed by a NYS-licensed surveyor to determine their accurate location and elevation. Two elevation measurements will be taken at each well location: the at-grade elevation, and the elevation of the top of PVC riser (north side at marking). The elevation datum will be based on NAVD88, while the horizontal datum on the New York State Plane Coordinates Long Island Zone.

4.2.2 Groundwater Sampling

The Remedial Party will measure depth to the water table for each monitoring well in the network before sampling. Groundwater monitoring will be performed on a quarterly basis for two consecutive quarters (minimum two sampling rounds), with one sample collected from each of the three groundwater monitoring wells (MW-01, MW-02, and MW-03). Continuation and frequency of sampling following two consecutive quarters will be determined based on the laboratory analytical results and in consultation with NYSDEC. Modification to the frequency or sampling requirements will require approval from NYSDEC. Deliverables for the groundwater monitoring program are specified below and in Section 6.0.

The samples will be collected using United States Environmental Protection Agency (EPA) low flow techniques and then submitted to a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory for analysis of Target Compound List (TCL) VOCs using Category B deliverables, as summarized in In-Text Table 6 below. One blind duplicate, one field blank, one trip blank, and one matrix spike/matrix spike duplicate (MS/MSD) sample will be collected for quality assurance/quality control (QA/QC) purposes for each round of sampling. The groundwater data will be reviewed by a third-party validator and a DUSR will be prepared to document the usability and validity of the

data. All purged groundwater will be containerized in 55-gallon drums for future off-site disposal at a permitted facility.

Sampling Location	Analytical Parameters	Reporting Limit (µg/L)	Schedule
MW-01	TCL VOCs (EPA Method 624)	AWQSGVs	Quarterly
MW-02	TCL VOCs (EPA Method 624)	AWQSGVs	Quarterly
MW-03	TCL VOCs (EPA Method 624)	AWQSGVs	Quarterly

In-Text Table 6 Groundwater Sampling Requirements and Schedule

Notes:

 $\mu g/L = micrograms per Liter$

AWQSGVs = Ambient Water Quality Standards and Guidance Values

The groundwater analytical results will be reported to NYSDEC in quarterly reports, which will include a summary of the ongoing laboratory analytical results, a comparison to the baseline groundwater analytical results, and recommendations for additional groundwater treatment, if necessary.

Additional quarterly groundwater sampling events may be required beyond the initial two events. If required, the frequency thereafter will be determined based on consultation with NYSDEC.

4.2.3 Monitoring and Sampling Protocol

All sampling activities will be recorded in a field book and the associated sampling logs provided in Appendix E. Other observations (e.g., groundwater monitoring well integrity, etc.) will also be noted on the sampling log.

Prior to collecting the samples, but after removing the well cap, each well will be screened for the presence of VOCs using a PID. The depth to groundwater will then be measured in the wells using an electronic oil/water interface probe attached to a measuring tape accurate to 0.01 foot; this will also be used to gauge potential measurable product on the surface of the water table. The water level data, well diameter, and depth to bottom will be used to calculate the volume of water in each well, and any separate-phase product will be documented, if present. The wells that do not contain separate-phase product will then be purged using low-flow purging techniques.

Groundwater samples will be collected using dedicated polyethylene tubing and placed directly into laboratory-supplied sample bottles. The samples will be analyzed by a NYSDOH ELAP-certified laboratory with NYSDEC Category B deliverables. For wells that contain separate-phase product (not anticipated), a sample of the product will be collected and analyzed for flashpoint. All non-dedicated sampling equipment (e.g., submersible pumps and oil/water interface probes) will be decontaminated between sampling locations using the following procedure:

- 1. Scrub equipment with a bristle brush using a tap water/Simple Green[®] or Alconox[®] solution.
- 2. Rinse with tap water.
- 3. Scrub again with a bristle brush using a tap water/Simple Green[®] or Alconox[®] solution.
- 4. Rinse with tap water.

- 5. Rinse with distilled water.
- 6. Air-dry the equipment.

4.2.4 Monitoring Well Repairs and Decommissioning

If biofouling or silt accumulation occurs in the on-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, if an event renders the wells unusable, the monitoring wells will be properly decommissioned and replaced. Repair and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

NYSDEC will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent PRR. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's guidance entitled CP-43: Groundwater Monitoring Well Decommissioning Procedures. Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by NYSDEC.

The sampling frequency may only be modified with the approval of NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Deliverables for the groundwater monitoring program are specified in Section 6.0.

5.0 PERIODIC ASSESSMENTS/EVALUATIONS

5.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns, and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the protectiveness of a given site. Vulnerability assessments provide information so that the site is prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a summary of vulnerability assessments that will be conducted for the Site during periodic assessments, and briefly summarizes the vulnerability of the Site to severe storms/weather events and associated flooding.

- Flood Plain: The Site is not located within a flood plain.
- Site Drainage and Storm Water Management: Stormwater at the Site and the surrounding area flows to the NYC combined sewer system.
- Erosion: As the Site is covered with a building, erosion is not anticipated to be an issue of concern.
- High Wind: All permanent building components are secured against high winds. In the event that high winds are forecast for the Site, proper precautions will be taken to secure or shelter any Site components that are not protected against high winds.
- Electricity: Electricity to the buildings is supplied via newly installed underground vaults and conduits and is not expected to be affected by severe weather events.
- Spill/Contaminant Release: Storage of large amounts of fuel oil or other chemicals at the Site is not expected. Nominal amounts of cleaning chemicals are likely to be stored throughout the Site but are not expected to be affected by severe weather conditions.

5.2 Soil Vapor Intrusion Evaluation

As required by the RAWP, an SVIE consisting of confirmatory indoor air sampling will be conducted in the future on-site building. The SVIE will include indoor air samples collected after the building envelope is completed and the heating, ventilation, and air conditioning (HVAC) system is operating. The indoor air sampling will be conducted in accordance with the October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York (with updates), and the data will be evaluated to determine if actions are necessary to address potential exposure to soil vapor intrusion. Upon completion of the evaluation, if an action is required, any actions taken or to be taken must be reflected in an updated SMP.

A workplan for the proposed SVIE (SVIEWP), which includes a written evaluation of the soil vapor intrusion exposure pathway, proposed indoor air sampling locations, and a schedule for conducting the sampling prior to occupancy, will be submitted under separate cover for NYSDEC review and approval after the building envelope is completed and the HVAC system is operating.

All work will be completed in accordance with the QAPP (Appendix F) and the Health and Safety Plan (HASP) provided as Appendix G.

6.0 **REPORTING REQUIREMENTS**

6.1 Site Management Reports

All Site management inspection events and monitoring events will be recorded on the appropriate site management forms included in Appendix E. These forms are subject to NYSDEC project manager revision. All site management inspection, maintenance, and monitoring events will be conducted by a QEP as defined in 6 NYCRR Part 375, a P.E. who is licensed and registered in NYS, or a qualified person who directly reports to a P.E. who is licensed and registered in NYS.

All applicable inspection forms and other records, including media sampling data generated for the Site during the reporting period, will be provided in electronic format to the NYSDEC project manager in accordance with the requirements of In-Text Table 7 and summarized in the PRR.

Task/Report	Reporting Frequency*
Groundwater Monitoring Report with Figures and Attachments (Inspections and Associated Sampling Events)	Quarterly for two consecutive quarters, continuation and frequency thereafter to be determined based on consultation with NYSDEC.
PRR (Inclusive of all monitoring and	16 months after receipt of COC; Annually
sampling events)	thereafter.

In-Text Table 7 Monitoring/Inspection Report Deliverables

* The frequency of events will be conducted as specified until otherwise modified by NYSDEC.

All interim monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., groundwater, sub-slab vapor, indoor air, outdoor air);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.

6.2 Periodic Review Report

Following issuance of the COC, the first PRR will be submitted to NYSDEC in May 2026 for the first 16-month reporting period (December 2024 through April 2025). Subsequent PRRs shall be submitted annually to NYSDEC and will consist only of the certification, as specified in Section 6.2.1, except in the event where there have been changes to the Site or data gathered during the certifying period. Given such an event, the submittal of a comprehensive PRR will be necessary, as specified below.

In the event that the Site is subdivided into separate parcels with different ownership, a single PRR will be prepared that addresses the Site described in Appendix A – Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results (if any) will also be incorporated into the PRR. The report will include:

- Identification, assessment and certification of all ICs and the EC required by the remedy for the Site.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- Description of any change of use, import of materials, or excavation that occurred during the certifying period, if applicable.
- All applicable site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- Identification of any wastes generated during the reporting period, along with waste characterization data, manifests, and disposal documentation, if applicable.
- A summary of any monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These tables and figures will include a presentation of past data as part of an evaluation of contaminant concentration trends, including but not limited to:
 - Trend monitoring graphs that present groundwater contaminant levels from before the start of the remedy implementation to the most current sampling data;
 - Trend monitoring graphs depicting system influent analytical data on a per event and cumulative basis;
 - A current plume map with remaining groundwater contamination; and
 - A groundwater elevation contour map for each gauging event.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQUISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A Site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Site-specific RAWP and DD;

- Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan;
- An update to the climate change vulnerability assessment if Site or external conditions have changed since the previous assessment, and recommendations to address vulnerabilities;
- An evaluation of trends in contaminant levels in the affected media to determine whether the remedy continues to be effective in achieving remedial goals as specified by the RAWP and DD; and
- The overall performance and effectiveness of the remedy.

6.2.1 Certification of Institutional Controls

Within 30 days after the end of each certifying period, as determined by NYSDEC, the following certification will be provided to NYSDEC:

"For each institutional control identified for the Site, I certify that all of the following statements are true:

- The institutional control employed at this Site is unchanged from the date the control was put in place, or last approved by NYSDEC;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the Site is compliant with the Environmental Easement; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] (and if the Site consists of multiple properties): [and I have been authorized and designated by all Site owners to sign this certification] for the Site.

I certify that the New York State Education Department has granted a Certificate of Authorization to provide Professional Engineering services to the firm that prepared this Periodic Review Report.

The PRR will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager. The PRR may need to be submitted in hard-copy format, as requested by the NYSDEC project manager.

6.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC or EC, a Corrective Measures Work Plan will be submitted to NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by NYSDEC. Upon completion of the Corrective Measure, a signed certification form must be submitted to NYSDEC.

7.0 **REFERENCES**

- 1. 6 NYCRR Part 375, Environmental Remediation Programs, December 14, 2006.
- 2. NYSDEC, DER-10 "Technical Guidance for Site Investigation and Remediation".
- 3. NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series 1.1.1. June 1998 (April 2000 addendum).
- 4. NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 ("NYSDOH Vapor Intrusion Guidance Document"), updated May 2017 and February 2024.
- 5. Nelson Pope Voorhis, Phase I Environmental Site Assessment, 374 4th Avenue, Brooklyn, NY, December 28, 2020.
- 6. AKRF, Inc., Remedial Investigation Report, 374 4th Avenue, Brooklyn, NY, October 2021.
- AKRF, Inc., Brownfield Cleanup Program Application 380 4th Avenue, Brooklyn, New York, May 2, 2022.
- 8. AKRF, Inc., Brownfield Cleanup Agreement BCP Site No. C224358, 380 4th Avenue, Brooklyn, New York, October 22, 2022.
- 9. AKRF, Inc., Waste Characterization Report, 380 4th Avenue, Brooklyn, NY, August 10, 2022.
- 10. AKRF, Inc., Remedial Investigation Report, 380 4th Avenue, Brooklyn, NY, March 2023.
- 11. AKRF, Inc., Remedial Action Work Plan, 380 4th Avenue, Brooklyn, NY, April 2023.
- 12. NYSDEC, Decision Document BCP Site No. C2243582, 380 4th Avenue, Brooklyn, NY, April 2023.

ATTACHED TABLES

			Volatile	Organic Compounds			
			AKRF Sample ID	EP-01_15_20231103	EP-X1_15_20231103	EP-02_15_20231103	EP-03_15_20231103
		L	aboratory Sample ID	460-291818-1	460-291818-8	460-291818-2	460-291818-3
			Date Sampled	11/03/2023	11/03/2023	11/03/2023	11/03/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0016 U	0.0013 U	0.0016 U	0.0016 U
1,1,2-Trichloroethane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 UJ	0.0016 UJ
1,1-Dichloroethane	0.27	47	0.27	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0016 U	0.0013 U	0.0016 U	0.0016 U
1,2,3-Trichlorobenzene	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,2-Dichloropropane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,3-Dichlorobenzene	2.4	38	2.6	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
1,4-Dichlorobenzene	1.8	24	1.8	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
2-Hexanone	NS	NS	NS	0.008 U	0.0067 U	0.0081 U	0.0081 U
Acetone	0.03	100	<u>0.03</u>	<u>0.073</u> JK	<u>0.076 JK</u>	0.07	0.084
Benzene	0.06	3.7	0.06	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Bromochloromethane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Bromodichloromethane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Bromoform	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Bromomethane	NS	NS	NS	0.0032 U	0.0027 U	0.0032 U	0.0032 U
Carbon Disulfide	NS	NS	NS	0.00099 JL	0.00062 JL	0.0011 J	0.0016 U
Carbon Tetrachloride	0.76	7.1	0.76	0.0016 U	0.0013 U	0.0016 U	0.0016 U
Chlorobenzene	1.1	100	1.1	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Chloroethane	NS	NS	NS	0.0016 U	0.0013 U	0.0016 U	0.0016 U
Chloroform	0.37	24	0.37	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Chloromethane	NS	NS	NS	0.0016 U	0.0013 U	0.0016 U	0.0016 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
	NS	NS	NS NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Dibromochloromethane Dichlorodifluoromethane	NS NS	NS NS	NS	0.0016 U 0.0016 U	0.0013 U 0.0013 U	0.0016 U 0.0016 U	0.0016 U 0.0016 U
Ethylbenzene	1	76	1	0.0016 UJ	0.0013 U 0.0009 JL	0.0018 U	0.0016 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.0016 UJ	0.0009 JL 0.0013 UJ	0.0009 J	0.0016 U
M,P-Xylenes	NS	NS	NS	0.00058 JL	0.0013 03 0.0041 JL	0.0026	0.0010 U
Methyl Acetate	NS	NS	NS	0.00058 JL 0.008 U	0.0041 JL 0.0067 U	0.0020 0.0081 U	0.001 J 0.0081 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.008 UJ	0.007 U	0.001	0.0081 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.008 U	0.0067 U	0.0081 U	0.0081 U
Methylcyclohexane	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Methylene Chloride	0.05	81	0.05	0.0032 U	0.0027 U	0.0032 U	0.0032 U
N-Butylbenzene	18	100	18	0.0016 UJ	0.0013 U	0.0016 U	0.0016 U
N-Propylbenzene	5	100	5	0.0016 UJ	0.0013 U	0.0016 U	0.0016 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0016 UJ	0.0029 JL	0.0014 J	0.00051 J
Sec-Butylbenzene	25	100	25	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Styrene	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
T-Butylbenzene	11	100	11	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0016 U	0.0013 U	0.0016 U	0.0016 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Toluene	0.7	100	0.7	0.0016 UJ	0.0013 UJ	0.00039 J	0.0016 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.0016 UJ	0.0013 UJ	0.0016 U	0.0016 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0016 UJ	0.0013 UJ	0.0016 UJ	0.0016 UJ
Trichlorofluoromethane	NS	NS	NS	0.0016 U	0.0013 U	0.0016 U	0.0016 U
Vinyl Chloride	0.02	0.48	0.03	0.0016 U	0.0013 U	0.0016 U	0.0016 U
	0.26	100	1.2	0.00058 JL	0.007 JL	0.004	0.0015 J

			Volatile	Organic Compounds			
			AKRF Sample ID	EP-04_15_20231103	EP-05_15_20231103	EP-06_15_20231103	EP-07_15_20231103
		L	aboratory Sample ID	460-291818-4	460-291818-5	460-291818-6	460-291818-7
			Date Sampled	11/03/2023	11/03/2023	11/03/2023	11/03/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.002 U	0.0015 U	0.002 U	0.0015 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,1,2-Trichloroethane	NS	NS	NS	0.002 UJ	0.0015 UJ	0.002 UJ	0.0015 UJ
1,1-Dichloroethane	0.27	47	0.27	0.002 U	0.0015 U	0.002 U	0.0015 U
1,1-Dichloroethene	0.24	0.98	0.33	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2,3-Trichlorobenzene	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.002 U	0.00046 J	0.002 U	0.0015 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2-Dichlorobenzene	1.1	100	1.1	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2-Dichloroethane	0.02	5.8	0.02	0.002 U	0.0015 U	0.002 U	0.0015 U
1,2-Dichloropropane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.002 U	0.0015 U	0.002 U	0.0015 U
1,3-Dichlorobenzene	2.4	38	2.6	0.002 U	0.0015 U	0.002 U	0.0015 U
1,4-Dichlorobenzene	1.8	24	1.8	0.002 U	0.0015 U	0.002 U	0.0015 U
2-Hexanone	NS	NS	NS	0.0099 U	0.0075 U	0.01 U	0.0074 U
Acetone	0.03	100	<u>0.03</u>	0.093	<u>0.15</u>	<u>0.18</u>	0.065
Benzene	0.06	3.7	0.06	0.002 U	0.0015 U	0.002 U	0.0015 U
Bromochloromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Bromodichloromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Bromoform	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Bromomethane	NS	NS	NS	0.004 U	0.003 U	0.0041 U	0.0029 U
Carbon Disulfide	NS	NS	NS	0.00083 J	0.00095 J	0.0013 J	0.0015 U
Carbon Tetrachloride	0.76	7.1	0.76	0.002 U	0.0015 U	0.002 U	0.0015 U
Chlorobenzene	1.1	100	1.1	0.002 U	0.0015 U	0.002 U	0.0015 U
Chloroethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Chloroform	0.37	24	0.37	0.002 U	0.0015 U	0.002 U	0.0015 U
Chloromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.002 U	0.0015 U	0.002 U	0.0015 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Cyclohexane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Dibromochloromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Dichlorodifluoromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Ethylbenzene	1	76	1	0.0004 J	0.0015 U	0.0015 J	0.0015 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
M,P-Xylenes	NS	NS	NS	0.0033	0.00066 J	0.013	0.0015 U
Methyl Acetate	NS 0.1	NS 100	NS 0.1	0.0099 U	0.0075 U	0.01 U	0.0074 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.021	0.039	0.017	0.019
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS NS	NS NS	NS NS	0.0099 U 0.002 U	0.0075 U 0.0015 U	0.01 U 0.002 U	0.0074 U 0.0015 U
Methylcyclohexane Methylene Chloride	0.05	81	0.05	0.002 U 0.004 U	0.0015 U 0.003 U	0.002 U 0.0041 U	0.0015 U 0.0029 U
N-Butylbenzene	18	100	18	0.004 U 0.002 U	0.003 U 0.0015 U	0.0041 U 0.002 U	0.0029 U 0.0015 U
N-Butylbenzene N-Propylbenzene	5	100	5	0.002 U	0.0015 U	0.002 U	0.0015 U
O-Xylene (1,2-Dimethylbenzene)	NS S	NS	5 NS	0.002 0 0.0016 J	0.0013 U 0.00043 J	0.002 0	0.0015 U
Sec-Butylbenzene	25	100	25	0.0016 J 0.002 U	0.00043 J 0.0015 U	0.0079 0.002 U	0.0015 U
Stvrene	NS 25	NS	25 NS	0.002 U	0.0015 U	0.002 U	0.0015 U
T-Butylbenzene	11	100	11	0.002 U	0.0015 U	0.002 U	0.0015 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.002 U	0.0015 U	0.002 U	0.0015 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.002 U	0.00085 J	0.002 U	0.0015 U
Toluene	0.7	100	0.7	0.002 U	0.00044 J	0.002 U	0.0015 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.002 U	0.00044 J	0.002 U	0.0015 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.002 UJ	0.0015 UJ	0.002 UJ	0.0015 UJ
Trichlorofluoromethane	NS	NS	NS	0.002 U	0.0015 U	0.002 U	0.0015 U
				0.002 0	0.0010 0	0.002 0	0.0010 0
Vinvl Chloride	0.02	0.48	0.03	0.002 U	0.0015 U	0.002 U	0.0015 U

			volatile	Organic Compounds			
		L	AKRF Sample ID aboratory Sample ID.	EP-08_15_20231110 460-292402-1	EP-09_15_20231110 460-292402-2	EP-10_15_20231110 460-292402-3	EP-11_15_20231110 460-292402-4
			Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound			NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0017 UJ	0.0014 UJ	0.0012 UJ	0.00094 UJ
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,1,2-Trichloroethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,1-Dichloroethane	0.27	47	0.27	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0017 U	0.0014 U	0.0012 U	0.00035 J
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	NS NS	0.0017 U 0.0017 U	0.0014 U 0.0014 U	0.0012 U 0.0012 U	0.00094 U 0.00094 U
	0.51	0.52	5.9	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,2,4-Trimethylbenzene	0.51 NS	0.52 NS	5.9 NS	0.0017 U	0.0014 U	0.0012 U 0.0012 U	0.00094 U 0.00094 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	1.1	100	1.1	0.0017 U	0.0014 U 0.0014 U	0.0012 U 0.0012 U	0.00094 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,2-Dichloropropane	0.02 NS	5.8 NS	0.02 NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0017 U	0.0014 U 0.0014 U	0.0012 U 0.0012 U	0.00094 U
1,3,5-1 rimetryibenzene (Mesityiene) 1,3-Dichlorobenzene	2.4	38	2.6	0.0017 U	0.0014 U	0.0012 U 0.0012 U	0.00094 U
1,3-Dichlorobenzene	1.8	24	1.8	0.0017 U	0.0014 U 0.0014 U	0.0012 U 0.0012 U	0.00094 U 0.00094 U
2-Hexanone	NS	NS	NS	0.0017 0 0.0085 U	0.0014 0 0.0071 U	0.0012 U	0.00094 U 0.0047 U
Acetone	0.03	100	0.03	0.092	0.0071 0	0.059	0.02
Benzene	0.06	3.7	0.06	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Bromochloromethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Bromodichloromethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Bromoform	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Bromomethane	NS	NS	NS	0.0034 U	0.0014 0 0.0028 U	0.0012 U	0.00094 U 0.0019 U
Carbon Disulfide	NS	NS	NS	0.0017 U	0.0027 J	0.0012 U	0.00094 U
Carbon Tetrachloride	0.76	7.1	0.76	0.0017 UJ	0.0014 UJ	0.0012 UJ	0.00094 UJ
Chlorobenzene	1.1	100	1.1	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Chloroethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Chloroform	0.37	24	0.37	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Chloromethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Cyclohexane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Dibromochloromethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Dichlorodifluoromethane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Ethylbenzene	1	76	1	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
M,P-Xylenes	NS	NS	NS	0.0017 U	0.0011 J	0.0012 U	0.00094 U
Methyl Acetate	NS	NS	NS	0.0085 U	0.0071 U	0.0062 U	0.0047 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.031	0.027	0.015	0.0047 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0085 U	0.0071 U	0.0062 U	0.0047 U
Methylcyclohexane	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Methylene Chloride	0.05	81	0.05	0.0034 U	0.0028 U	0.0025 U	0.0019 U
N-Butylbenzene	18	100	18	0.0017 UJ	0.0014 UJ	0.0012 UJ	0.00094 UJ
N-Propylbenzene	5	100	5	0.0017 U	0.0014 U	0.0012 U	0.00094 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Sec-Butylbenzene	25	100	25	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Styrene	NS	NS	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
T-Butylbenzene	11	100	11	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Toluene	0.7	100	0.7	0.00052 J	0.0014 U	0.0012 U	0.00094 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Trans-1,3-Dichloropropene	NS 0.47	NS	NS 0.47	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Trichlorofluoromethane	NS	NS 0.49	NS	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Vinyl Chloride	0.02	0.48	0.03	0.0017 U	0.0014 U	0.0012 U	0.00094 U
Xylenes, Total	0.26	100	1.2	0.0034 U	0.0011 J	0.0025 U	0.0019 U

Table 1 380 4th Avenue Brooklyn, NY

Brooklyn, NY Post-Remedial Soll Endpoint Analytical Results Volatile Organic Compounds

			volatile	Organic Compounds			
			AKRF Sample ID	EP-12_15_20231110	EP-13_15_20231110	EP-14_15_20231110	EP-15_15_20231110
		L	aboratory Sample ID	460-292402-5	460-292402-6	460-292402-7	460-292402-8
			Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0014 UJ	0.0019 UJ	0.0012 UJ	
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,1,2-Trichloroethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,1-Dichloroethane	0.27	47	0.27	0.0014 U	0.0019 U	0.0012 U	
1,1-Dichloroethene	0.24	0.98	0.33	0.0014 U	0.00071 J	0.0012 U	
1,2,3-Trichlorobenzene	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,2,4-Trichlorobenzene	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0014 U	0.0019 U	0.0012 U	
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
1,2-Dichlorobenzene	1.1	100	1.1	0.0014 U	0.0019 U	0.0012 U	
1,2-Dichloroethane	0.02	5.8	0.02	0.0014 U	0.0019 U	0.0012 U	J I
1,2-Dichloropropane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U]
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0014 U	0.0019 U	0.0012 U	1 1
1,3-Dichlorobenzene	2.4	38	2.6	0.0014 U	0.0019 U	0.0012 U	
1,4-Dichlorobenzene	1.8	24	1.8	0.0014 U	0.0019 U	0.0012 U	1 1
2-Hexanone	NS	NS	NS	0.0072 U	0.0096 U	0.0062 U	
Acetone	0.03	100	<u>0.03</u>	<u>0.077</u>	0.068	<u>0.06</u>	
Benzene	0.06	3.7	0.06	0.0014 U	0.0019 U	0.0012 U	
Bromochloromethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
Bromodichloromethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
Bromoform	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	
Bromomethane	NS	NS	NS	0.0029 U	0.0039 U	0.0025 U	
Carbon Disulfide	NS	NS	NS	0.0014 U	0.0025	0.0012 U	over-excavated
Carbon Tetrachloride	0.76	7.1	0.76	0.0014 UJ	0.0019 UJ	0.0012 UJ	(sample was over-excavated
Chlorobenzene	1.1	100	1.1	0.0014 U	0.0019 U	0.0012 U	when petroleum hotspot was
Chloroethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	expanded, beyond its
Chloroform	0.37	24	0.37	0.0014 U	0.0019 U	0.0012 U	proposed extents in the
Chloromethane	NS	NS 41	NS	0.0014 U	0.0019 U	0.0012 U	RAWP, based on olfacotry observations and elevated PID
Cis-1,2-Dichloroethylene	0.19 NS	41 NS	0.19 NS	0.0014 U 0.0014 U	0.0019 U	0.0012 U	
Cis-1,3-Dichloropropene	NS	NS		0.0014 0	0.0019 U 0.0019 U	0.0012 U 0.00076 J	readings; and not due to exceedances of applicable
Cyclohexane Dibromochloromethane	NS	NS	NS NS	0.0071 0.0014 U	0.0019 U	0.00076 J 0.0012 U	
Dichlorodifluoromethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	SCOs)
Ethylbenzene	1	76	1	0.0014 U	0.0019 U	0.00012 0 0.00037 J	-
Isopropylbenzene (Cumene)	NS	NS	NS	0.0014 U	0.0019 U	0.00083 J	-
M,P-Xylenes	NS	NS	NS	0.0014 U	0.0019 U	0.0024	-
Methyl Acetate	NS	NS	NS	0.0072 U	0.0096 U	0.0024 0.0062 U	-
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.026	0.033	0.013	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0072 U	0.0096 U	0.0062 U	
Methylcvclohexane	NS	NS	NS	0.0097	0.0019 U	0.0012 U	
Methylene Chloride	0.05	81	0.05	0.0029 U	0.0039 U	0.0015 J	
N-Butylbenzene	18	100	18	0.0014 UJ	0.0019 UJ	0.0012 UJ	1 1
N-Propylbenzene	5	100	5	0.0014 U	0.0019 U	0.0012 U	
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0014 U	0.0019 U	0.0012	
Sec-Butylbenzene	25	100	25	0.0014 U	0.0019 U	0.00084 J	
Styrene	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	1
T-Butylbenzene	11	100	11	0.0014 U	0.0019 U	0.0012 U	1
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0014 U	0.0019 U	0.0012 U	1
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0014 U	0.0019 U	0.0012 U	1
Toluene	0.7	100	0.7	0.0014 U	0.0019 U	0.0012 U	1
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0014 U	0.0019 U	0.0012 U	1
Trans-1,3-Dichloropropene	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U	1
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0014 U	0.0019 U	0.0012 U]
Trichlorofluoromethane	NS	NS	NS	0.0014 U	0.0019 U	0.0012 U]
Vinyl Chloride	0.02	0.48	0.03	0.0014 U	0.0019 U	0.0012 U] [
Xylenes, Total	0.26	100	1.2	0.0029 U	0.0039 U	0.0036	

			Volatile	Organic Compounds			
		L	AKRF Sample ID aboratory Sample ID	EP-16_20_20231127 460-293316-1	EP-X2_20_20231127 460-293316-8	EP-17_15_20231127 460-293316-2	EP-18_17.5_20231127 460-293316-3
			Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,1,2-Trichloroethane	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,1-Dichloroethane	0.27	47	0.27	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0015 U	0.0012 U	0.0015 U	0.0019 U
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	NS NS	0.0015 UJ 0.0015 UJ	0.0012 UJ 0.0012 UJ	0.0015 U 0.0015 U	0.0019 U 0.0019 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0015 UJ	0.00053 JL	0.0015 U	0.0063
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,2-Dichloropropane	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0015 UJ	0.00054 JL	0.0015 U	0.0042
1,3-Dichlorobenzene	2.4	38	2.6	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
1,4-Dichlorobenzene	1.8	24	1.8	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
2-Hexanone	NS	NS	NS	0.0073 UJ	0.006 UJ	0.0076 U	0.0097 U
Acetone	0.03	100	<u>0.03</u>	<u>0.21 J</u>	0.037 JL	0.011 U	0.065
Benzene	0.06	3.7	0.06	0.00073 JL	0.00091 JL	0.0015 U	0.0022
Bromochloromethane	NS	NS	NS	0.0015 UJ 0.0015 U	0.0012 UJ 0.0012 U	0.0015 U 0.0015 U	0.0019 U 0.0019 U
Bromodichloromethane Bromoform	NS NS	NS NS	NS NS	0.0015 U 0.0015 UJ	0.0012 U 0.0012 UJ	0.0015 U	0.0019 U
Bromomethane	NS	NS	NS	0.0015 UJ 0.0029 U	0.0012 UJ 0.0024 U	0.0015 U	0.0019 U
Carbon Disulfide	NS	NS	NS	0.0029 0 0.0012 J	0.0024 0 0.00068 J	0.0024	0.0051
Carbon Tetrachloride	0.76	7.1	0.76	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Chlorobenzene	1.1	100	1.1	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Chloroethane	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Chloroform	0.37	24	0.37	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Chloromethane	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Cyclohexane	NS	NS	NS	0.0081 JL	0.0049 JL	0.00069 J	0.0086
Dibromochloromethane	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Dichlorodifluoromethane Ethylbenzene	NS 1	NS 76	NS 1	0.0015 U 0.0014 JL	0.0012 U 0.0012 UJ	0.0015 U 0.0015 U	0.0019 U 0.0023
Isopropylbenzene (Cumene)	NS	NS	NS	0.00014 JL	0.0012 0J 0.00051 JL	0.0015 U	0.0023 0.0019 U
M,P-Xylenes	NS	NS	NS	0.0063 JL	0.00095 JL	0.0015 U	0.0087
Methyl Acetate	NS	NS	NS	0.0073 U	0.006 U	0.0076 U	0.0097 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.016	0.011	0.0076 U	0.0057 J
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0073 UJ	0.006 UJ	0.0076 U	0.0097 U
Methylcyclohexane	NS	NS	NS	0.016 JL	0.019 JL	0.0027	0.032
Methylene Chloride	0.05	81	0.05	0.0029 U	0.0024 U	0.0031 U	0.0039 U
N-Butylbenzene	18	100	18	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
N-Propylbenzene	5	100	5	0.00027 JL	0.0012 UJ	0.0015 U	0.0019 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0025 JL	0.00046 JL	0.0004 J	0.0063
Sec-Butylbenzene	25	100 NS	25 NS	0.0015 UJ	0.0012 UJ 0.0012 UJ	0.0015 U	0.0019 U
Styrene T-Butylbenzene	NS 11	100	11 NS	0.0015 UJ 0.0015 UJ	0.0012 UJ 0.0012 UJ	0.0015 U 0.0015 U	0.0019 U 0.0019 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0015 U	0.0012 UJ 0.00078 J	0.0015 U	0.0019 U
Toluene	0.7	100	0.7	0.00085 JL	0.00029 JL	0.0015 U	0.0017 J
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0015 UJ	0.0012 UJ	0.0015 U	0.0019 U
Trichlorofluoromethane	NS	NS	NS	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Vinyl Chloride	0.02	0.48	0.03	0.0015 U	0.0012 U	0.0015 U	0.0019 U
Xylenes, Total	0.26	100	1.2	0.0088 JL	0.0014 JL	0.00078 J	0.015

			volatile	Organic Compounds			
			AKRF Sample ID	EP-19_17.5_20231127	EP-20_17.5_20231127	EP-21_20_20231129	EP-21_20_20231129
		L	aboratory Sample ID	460-293316-4	460-293316-5	460-293467-1	460-293467-1
			Date Sampled	11/27/2023	11/27/2023	11/29/2023	11/29/2023
			Dilution Factor	1	1	1	50
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound			NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0017 U	0.00095 U	0.0014 U	NR
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF) 1,1,2-Trichloroethane	NS NS	NS NS	NS NS	0.0017 U 0.0017 U	0.00095 U 0.00095 U	0.0014 U 0.0014 U	NR NR
1,1-Dichloroethane	0.27	47	0.27	0.0017 U	0.00095 U	0.0014 U	NR
1,1-Dichloroethene	0.24	0.98	0.33	0.0017 U	0.00095 U	0.0014 U	NR
1,2,3-Trichlorobenzene	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1,2,4-Trichlorobenzene	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0017 U	0.00095 U	0.002	NR
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1.2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1,2-Dichlorobenzene	1.1	100	1.1	0.0017 U	0.00095 U	0.0014 U	NR
1,2-Dichloroethane	0.02	5.8	0.02	0.0017 U	0.00095 U	0.0014 U	NR
1,2-Dichloropropane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0017 U	0.00095 U	0.0014 U	NR
1,3-Dichlorobenzene	2.4	38	2.6	0.0017 U	0.00095 U	0.0014 U	NR
1,4-Dichlorobenzene	1.8	24	1.8	0.0017 U	0.00095 U	0.0014 U	NR
2-Hexanone	NS	NS	NS	0.0087 U	0.0047 U	0.0071 U	NR
Acetone	0.03	100	<u>0.03</u>	0.078	0.049	0.0085 U	NR
Benzene	0.06	3.7	0.06	0.0017 U	0.00095 U	0.0014 U	NR
Bromochloromethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Bromodichloromethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Bromoform	NS	NS	NS	0.0017 U	0.00095 U	0.0014 UJ	NR
Bromomethane	NS	NS	NS	0.0035 U	0.0019 U	0.0028 U	NR
Carbon Disulfide	NS	NS	NS	0.001 J	0.0018	0.0014 U	NR
Carbon Tetrachloride	0.76	7.1	0.76	0.0017 U	0.00095 U	0.0014 U	NR
Chlorobenzene	1.1	100	1.1	0.0017 U	0.00095 U	0.0014 U	NR
Chloroethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Chloroform	0.37	24	0.37	0.0017 U	0.00095 U	0.0014 U	NR
Chloromethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0017 U	0.00095 U	0.0014 U	NR
Cis-1,3-Dichloropropene	NS NS	NS NS	NS NS	0.0017 U 0.0011 J	0.00095 U	0.0014 U	NR NR
Cyclohexane Dibromochloromethane	NS	NS	NS	0.0011 J 0.0017 U	0.00042 J 0.00095 U	0.32 0.0014 U	NR
Dichlorodifluoromethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Ethylbenzene	1	76	1	0.0017 U	0.00095 U	0.0014 U	NR
Isopropylbenzene (Cumene)	NS	NS	NS	0.0017 U	0.00095 U	0.095 JK	NR
M,P-Xylenes	NS	NS	NS	0.0017 U	0.00095 U	0.0022 JK	NR
Methyl Acetate	NS	NS	NS	0.0087 U	0.0047 U	0.0071 U	NR
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.017	0.0073	0.0071 U	NR
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0087 U	0.0047 U	0.0071 U	NR
Methylcyclohexane	NS	NS	NS	0.0037	0.00085 J	NR	6.3 D
Methylene Chloride	0.05	81	0.05	0.0035 U	0.0019 U	0.0028 U	NR
N-Butylbenzene	18	100	18	0.0017 U	0.00095 U	0.14	NR
N-Propylbenzene	5	100	5	0.0017 U	0.00095 U	0.094	NR
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0017 U	0.00095 U	0.0011 JK	NR
Sec-Butylbenzene	25	100	25	0.0017 U	0.00095 U	0.13	NR
Styrene	NS	NS	NS	0.0017 U	0.00095 U	0.0014 UJ	NR
T-Butylbenzene	11	100	11	0.0017 U	0.00095 U	0.018	NR
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0017 U	0.00095 U	0.0014 U	NR
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0017 U	0.00095 U	0.0014 U	NR
Toluene	0.7	100	0.7	0.0017 U	0.00095 U	0.00077 JK	NR
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0017 U	0.00095 U	0.0014 U	NR
Trans-1,3-Dichloropropene	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0017 U	0.00095 U	0.0014 U	NR
Trichlorofluoromethane	NS	NS	NS	0.0017 U	0.00095 U	0.0014 U	NR
Vinyl Chloride	0.02	0.48	0.03	0.0017 U	0.00095 U	0.0014 U	NR
Xylenes, Total	0.26	100	1.2	0.00073 J	0.0019 U	0.0034 JK	NR

				Organic Compounds			
			AKRF Sample ID	EP-22_17.5_20231129	EP-23_17.5_20231129	EP-24_20_20231129	EP-25_19.5_20231207
		L	aboratory Sample ID	460-293467-2	460-293467-3	460-293467-4	460-294189-1
			Date Sampled	11/29/2023	11/29/2023	11/29/2023	12/07/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound			NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,1,2-Trichloroethane 1,1-Dichloroethane	NS 0.27	NS 47	NS 0.27	0.0011 U 0.0011 U	0.00099 U 0.00099 U	0.00092 U 0.00092 U	0.0019 U 0.0019 U
1,1-Dichloroethane	0.27	0.98	0.33	0.0011 U	0.00099 U 0.00099 U	0.00092 U 0.00092 U	0.0019 U
1,1-Dichlorobenzene	0.24 NS	0.98 NS	0.33 NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,2,3-Trichlorobenzene	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1.2.4-Trimethylbenzene	0.51	0.52	5.9	0.0011 U	0.0019	0.00092 U	0.0019 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1.2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,2-Dichloropropane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0011 U	0.00083 J	0.00092 U	0.0019 U
1,3-Dichlorobenzene	2.4	38	2.6	0.0011 U	0.00099 U	0.00092 U	0.0019 U
1,4-Dichlorobenzene	1.8	24	1.8	0.0011 U	0.00099 U	0.00092 U	0.0019 U
2-Hexanone	NS	NS	NS	0.0056 U	0.0049 U	0.0046 U	0.0094 U
Acetone	0.03	100	<u>0.03</u>	0.026	0.029	0.013	0.011 U
Benzene	0.06	3.7	0.06	0.0011 U	0.00099 U	0.0049	0.0019 U
Bromochloromethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 UJ
Bromodichloromethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Bromoform	NS	NS	NS	0.0011 UJ	0.00099 UJ	0.00092 UJ	0.0019 U
Bromomethane	NS	NS	NS	0.0023 U	0.002 U	0.0018 U	0.0037 U
Carbon Disulfide	NS	NS	NS	0.0011 U	0.00036 J	0.00092 U	0.0012 J
Carbon Tetrachloride	0.76	7.1	0.76	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Chlorobenzene	1.1	100	1.1	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Chloroethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Chloroform	0.37	24	0.37	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Chloromethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0011 U	0.00099 U	0.00092 U	0.00083 J
Cis-1,3-Dichloropropene	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Cyclohexane	NS	NS	NS	0.0019	0.0015	0.012	0.0019 U
Dibromochloromethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Dichlorodifluoromethane	NS	NS 76	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Ethylbenzene	1 NS	NS NS	1 NS	0.0011 U	0.00099 U 0.0047	0.00092 U	0.0019 U
Isopropylbenzene (Cumene) M.P-Xylenes	NS	NS	NS	0.0011 U 0.0002 J	0.00074 J	0.005 0.00041 J	0.0019 U 0.0019 U
Methyl Acetate	NS	NS	NS	0.0056 U	0.00074 J 0.0049 U	0.0041 J 0.0046 U	0.0019 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.0056 U	0.0059	0.0048 0 0.0027 J	0.0094 U
Methyl Isobutyl Ketone (2-Butanone)	NS	NS	NS	0.0056 U	0.0039 0.0049 U	0.0027 J 0.0046 U	0.0094 U
Methylcyclohexane	NS	NS	NS	0.011	0.0049 0	0.027	0.0094 0 0.0011 J
Methylene Chloride	0.05	81	0.05	0.0023 U	0.021 0.002 U	0.027 0.0018 U	0.0037 U
N-Butylbenzene	18	100	18	0.0011 U	0.024	0.0015	0.0019 U
N-Propylbenzene	5	100	5	0.0011 U	0.0027	0.0054	0.0019 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0009 J	0.001	0.00036 J	0.0019 U
Sec-Butylbenzene	25	100	25	0.0011 U	0.023	0.0016	0.0019 U
Styrene	NS	NS	NS	0.0011 UJ	0.00099 UJ	0.00092 UJ	0.0019 U
T-Butylbenzene	11	100	11	0.00047 J	0.0071	0.00092 U	0.0019 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0011 U	0.00037 J	0.00092 U	0.0009 J
Toluene	0.7	100	0.7	0.0011 U	0.00099 U	0.00053 J	0.00047 J
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Trichlorofluoromethane	NS	NS	NS	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Vinyl Chloride	0.02	0.48	0.03	0.0011 U	0.00099 U	0.00092 U	0.0019 U
Xylenes, Total	0.26	100	1.2	0.0011 J	0.0018 J	0.00076 J	0.0037 U

Luboratory Sample Dublic Dub				Volatile	Organic Compounds			
Distribute Instrumentary of the problem based of the					460-294189-2	460-294189-3		
Jongsent							12/07/2023	
Campound HYBEC UUS0 HYBEC RENCO HYBEC RENCO CONC CONC <thconc< th=""> CONC CONC <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th></th<></thconc<>							1	
11,15 11,15 0.00 0.64 0.0015 0.0015 0.0012	Commonweak						° °	
11.22-1000005000000 NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 11.22-1000002500000 NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 0.0021 U 0.0012 U 0.0021 U 0.0012 U 0.0021 U 0.0012 U								
11.3.Teh/shore/12.5.Teh/shore/mem NB NB 0.0015 U 0.0015 U 0.0012 U 0.0021 U 11.2.Teh/shore/mem 0.27 4.0 0.27 0.0015 U 0.0015 U 0.0012 U 0.0021 U 0.0021 U 11.2.Teh/shore/mem 0.8 NB 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
11.3-Printshownham NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 11.3-Printshownham 0.27 47 0.27 0.0015 U 0.0015 U 0.0012 U								
11-Decisemente 0.27 47 0.27 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.3 Indevelopmente N8 N8 N8 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.3 Indevelopmente N8 N8 N8 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.4 Transthybersone N8 N8 N8 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.2 Decromofing (Regiven Decromation) N8 N8 N8 0.015 U 0.0015 U 0.0012 U 0.0021 U 13.2 Decromofing (Regiven Decromation) N8 N8 N8 0.0015 U 0.0015 U 0.0012 U 0.0021 U 13.5 Transtyberozene (Regiven Decromation) N5 N8 0.0015 U 0.0015 U 0.0011 U 0.0021 U								
1.2-Derivationselemen 0.24 0.98 0.33 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.2.3 Interferoment NS NS NS 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.2.3 Interferoment NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.2.3 Interferoment NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.2.Detrons-0.forument 1.1 100 1.1 0.0015 U 0.0012 U 0.0021 U 1.2.Detrons-0.forument 0.02 1.0 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.2.Detrons-0.forument 0.02 1.0 0.0015 U 0.0015 U 0.0011 U								
12.3-Trinkfordenzene NS NS NS NS Out15 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.4-Trinkfordenzene NS NS NS NS 0.0015 U 0.0015 U 0.0012 U 0	-							
13.4 Trianstryburgene NS NS NS NS OD075 U OD075 U OD070 U OD071 U OD07								
12.4-Transfer 0.51 0.52 5.9 0.0015 U 0.0072 0.0034 0.0021 U 12.5brons-5.choropagne NS NS NS 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12.5brons-5.choropagne NS NS 0.0015 U 0.0015 U 0.0015 U 0.0015 U 0.0021 U <	1.1-							
12-Disconscience NS NS NS 0.0011 U 0.0012 U 0.0021 U 12-Disconscience 1.1 000 1.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12-Disconscience 0.00 6.0 1.1 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0011 U 12-Disconscience 0.00 0.00 0.0015 U 0.0015 U 0.0011 U 0.0021 U 13-Simatrybecane (Mesigner) 0.51 0.52 3.1 0.0015 U 0.0015 U 0.0021 U 0.0021 U 13-Disconscience 4.8 2.4 3.8 0.0015 U 0.0015 U 0.0015 U 0.0021 U 13-Disconscience 4.8 2.4 1.8 0.0015 U 0.0015 U 0.0012 U 0.0021 U 14-Disconscience 4.8 NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Conscience 4.8 NS NS 0.0015 U 0.0015 U 0.0012 U 0.0011 U Consciscinscience NS NS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12-Disconscription NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12-Decinopherene 1.1 0.02 6.8 0.02 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12-Decinopherene 0.02 6.8 0.02 0.0015 U 0.0015 U 0.0012 U 0.0021 U 12-Decinopherene 0.24 6.8 0.02 0.0015 U 0.0015 U 0.0012 U 0.0021 U 13-Decinopherene 1.4 2.4 1.4 0.0015 U 0.0015 U 0.0012 U 0.0021 U 13-Decinopherene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U 24-exanone NS NS NS 0.005 U 0.0015 U 0.0012 U 0.0021 U Benzene 0.05 3.7 0.05 0.0015 U 0.0014 U 0.0021 U 0.0021 U Benzene NS NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Benzene NS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12-Deltonogram 0.02 5.8 0.02 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0012 U 13.5-Introportant (Mathylen) 0.51 0.52 3.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U 13.5-Introportante 2.4 3.8 2.6 0.0015 U 0.0015 U 0.0012 U 0.0021 U 14-Deltonoberrene 1.8 2.4 1.8 0.0015 U 0.0012 U 0.0021 U 0.0021 U 2-Assance 0.8 NS NS 0.0076 U 0.0012 U 0.0012 U 0.0012 U Senzene 0.96 0.9 0.06 0.0015 U 0.0014 U 0.0012 U 0.0021 U Bromochoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Bromochoromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Bromochoromethane NS NS NS 0.0004 J 0.0015 U 0.0012 U 0.0021 U 0.0021 U 0.0021 U							0.0012 U	
12-Decknopropage NS NS 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 3.3-Directifywares (Metalyone 2.4 38 2.6 0.0015 U 0.0015 U 0.0012 U 0.0021 U 1.3-Directifywares 1.4 2.4 1.8 0.0015 U 0.0012 U	1,2-Dichlorobenzene	1.1	100	1.1	0.0015 U	0.0015 U	0.0012 U	0.0021 U
13.5-Timeshybenzene (Meshybene) 0.51 0.52 3.1 0.0015 U 0.0015 U 0.0012 U 0.0022 U 14Dichoroberzene 1.8 2.4 3.8 2.6 0.0015 U 0.0015 U 0.0012 U 0.0022 U 14Dichoroberzene 1.8 2.4 1.8 0.0017 U 0.0058 U 0.0012 U 0.0021 U Adotne 0.03 1.0 0.022 U 0.0072 U 0.0058 U 0.001 U Adotne 0.03 1.0 0.022 U 0.0072 U 0.0012 U 0.001 U Branzene 0.03 1.0 0.021 U 0.0011 U 0.0012 U 0.0021 U 0.0021 U Branzene 1.8 NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Branzene NS NS NS 0.0015 U 0.0012 U 0.0021 U	1,2-Dichloroethane	0.02	5.8	0.02	0.0015 U	0.0015 U	0.0012 U	0.0021 U
13-Decknopensene 2.4 38 2.6 0.011 U 0.011 U 0.0012 U 0.0021 U 2-Hexanone NS NS NS 0.031 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U 2-Hexanone NS NS NS 0.032 U 0.012 U 0.005 U 0.011 U 0.0021 U 2-dectore 0.05 3.7 0.06 0.012 U 0.0014 U 0.0017 U 0.0017 U 0.0012 U <t< td=""><td>1,2-Dichloropropane</td><td></td><td></td><td></td><td></td><td>0.0015 U</td><td></td><td>0.0021 U</td></t<>	1,2-Dichloropropane					0.0015 U		0.0021 U
1.4-DetArodenzeme 1.8 24 1.8 0.001 U 0.001 U 0.0021 U Acetanane 0.03 100 0.03 0.072 U 0.005 U 0.01 U Acetanae 0.06 3.7 0.06 0.015 U 0.005 U 0.001 U 0.0021 U Bromochicomenhane NS NS NS 0.001 U 0.0012 U 0.0021 U								
2+Hearanne NS NS 0.077 U 0.0058 U 0.011 U Sectore 0.03 100 0.12 0.045 0.058 0.072 U Benzehe 0.08 3.7 0.06 0.015 U 0.00047 J 0.0014 U 0.0021 U Benzeheromethane NS NS NS 0.015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U Benzeheromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Benzeherberomethane NS NS NS NS 0.0015 U 0.0014 U 0.00072 U 0.0027 U Cohorebrane 0.76 7.1 0.76 0.0015 U 0.0015 U 0.0012 U 0.0027 U 0.0027 U Chorebrane NS NS NS 0.015 U 0.0015 U 0.0012 U 0.0021 U	1-							
Acetone 0.03 100 0.03 0.012 0.05 0.035 0.025 Bornzano 0.06 3.7 0.06 0.015 U 0.0014 U 0.0021 U 0.0021 U Bromochicoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Bromochicoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Bromochicoromethane NS NS NS 0.005 U 0.0012 U 0.0021 U Garbon Telanchorde 0.76 7.0 0.76 0.015 U 0.0012 U 0.0021 U Choromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Choromethane 0.57 2.4 0.57 0.0015 U 0.0015 U 0.0012 U 0.0021 U Choromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Choromethane NS NS NS 0.0015 U 0.0015 U								
Benzene 0.06 3.7 0.06 0.0015 UJ 0.0007 JJ 0.0012 UJ 0.0022 UJ Bromodhlonomethane NS NS NS 0.0015 UJ 0.0015 UJ 0.0012 UJ 0.0022 UJ Bromodhlonomethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0022 U Bromodhlonomethane NS NS NS 0.003 U 0.0031 U 0.0022 U 0.0023 U Bromodhlonomethane NS NS NS 0.0032 U 0.0027 U 0.0027 U 0.0021 U </td <td>2-Hexanone</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Hexanone							
Bromodelhoromethane NS NS NS NS 0.0015 U 0.0012 UJ 0.0021 UJ Bromodelhoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Bromodelhoromethane NS NS NS 0.0031 U 0.0023 U 0.0042 U Bromodelhoromethane NS NS NS 0.0031 U 0.0012 U 0.0021 U Carbon Estanbliche 0.76 7.1 0.76 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chioroberane 1.1 100 1.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chioroberane NS NS NS 0.0015 U 0.0012 U 0.0021 U Chioroberane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Chioroberane NS NS NS 0.0015 U 0.0012 U 0.0021 U<								
Bromodenhane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Bromodern NS NS NS 0.003 U 0.0031 U 0.0022 U 0.0042 U Granco Disulfide NS NS NS 0.003 U 0.0031 U 0.00072 J 0.0042 U Carbon Disulfide NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane 1.1 100 1.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorobenzane NS NS NS 0.0015 U <								
Bromotem NS NS NS NS 0.0015 U 0.0015 U 0.0021 U 0.0021 U Carbon Disulfide NS NS NS 0.0034 U 0.0031 U 0.0023 U 0.0023 U 0.0021 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Bromomethane NS NS NS 0.003 U 0.0001 U 0.0023 U 0.0042 U Carbon Distrided NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Carbon Distrided 0.76 7.1 0.076 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chiorobenzene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chiorobenzene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Carbon Disulfide NS NS NS NS 0.00042 J 0.0044 J 0.00072 J 0.0037 J Carbon Tetrachoride 0.76 7.1 0.76 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chiorobharene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chiorobharene NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chiorobharene NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cist-32-Dichoroscharene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Optomochoroscharene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichoroschoroscharene NS NS NS NS 0.0015 U 0.0012 U 0.0021 U Dichoroschoroscharene NS NS NS NS 0.0015 U 0.0012 U 0.0021 U Dichoroschoroscharene NS NS NS								
Carbon Tetracholoide 0.76 7.1 0.76 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chioroberane 1.1 100 1.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chioroberane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chioroberane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chi-12.Dichtoropropene NS NS NS 0.0015 U 0.0012 U 0.0021 U Cie-1.3.Dichtoropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichorodifuoromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Dichorodifuoromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Dichorodifuoromethane NS NS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Chieroberzene 1.1 100 1.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chierobern 0.37 24 0.37 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chieroberthane NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chieroberthane NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cal-1.3:Dichtorophynene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclobravene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichtorophicromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U Dichtorophicromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Dichtorophicromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.0021 U Dichtorophicromethane NS NS NS 0.0015 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Chicorebrane NS NS NS O.037 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chicorom 0.37 0.40 0.37 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chicorom NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cis-1.3-Dichloroptopene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichloromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichloromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichloromethane NS NS NS 0.0015 U 0.0013 J 0.0012 U 0.0021 U Dichloromethane NS NS NS 0.0015 U 0.0013 J 0.0012 U 0.0021 U Dichloromethane NS NS								
Chlorodrm 0.37 24 0.37 0.0015 U 0.0015 U 0.0015 U 0.0012 U 0.0021 U Chlorodrhane NS NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cis-1,2-Dichlorogropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibrorodifucormethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibrorodifucormethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibrorodifucormethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibrorodifucormethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibrorodifucormethane NS NS NS 0.0015 U 0.0071 U 0.0022 U 0.0021 U Dibr								
Chicomethane NS NS NS 0.015 U 0.0015 U 0.0012 U 0.0021 U Cis-1,2-Dichlorogropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cis-1,3-Dichlorogropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichlorodifluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Ibromochloromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Isopropythenzene (Cumene) NS NS NS 0.0015 U 0.0015 U 0.0015 U 0.0021 U 0.0021 U Methyl Acetale NS NS NS 0.0015 U 0.00072 M 0.00201 U 0.001 U Methyl Acetale NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.011 U Methyl Acetale								
Cis-12-Dichloroethylene 0.19 41 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cis-13-Dichloropopene NS NS NS 0.0015 U 0.0015 U 0.0015 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibromochiromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Ehylenzene NS NS NS 0.0015 U 0.0012 U 0.0021 U Ehylenzene 1 76 1 0.0015 U 0.0013 J 0.0012 U 0.0021 U Biogropylbenzene (Curnene) NS NS NS 0.0015 U 0.0013 J 0.0012 U 0.0021 U Methyl Acetate NS NS NS 0.0015 U 0.0017 U 0.0058 U 0.011 U Methyl Acetate NS NS 0.0077 U 0.0058 U 0.01 U Methyl Acetate NS NS 0.0027 0.024 U 0.044								
Cis-1.3-Dichloropropene NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Cyclohexane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichorochloromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dichorodifluoromethane NS NS NS 0.0015 U 0.0013 J 0.0012 U 0.0021 U Isopropyblenzene (Curene) NS NS NS 0.0015 U 0.0076 0.0072 JK 0.00072 J MP-Xydenes NS NS NS 0.0015 U 0.0075 0.0039 JK 0.00072 J Methyl Extense NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyl Extense NS NS NS 0.0077 U 0.0058 U 0.01 U Methylecolexane NS NS 0.0077 U 0.0058 U 0.01 U Methylecolexane NS NS NS 0.0077 U 0.0058 U 0.01 U								
Cyclohexane NS NS 0.0015 U 0.0015 U 0.005 U 0.005 U 0.0021 U Dibronchloromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Dibroncfiluromethane NS NS NS 0.0015 U 0.0012 U 0.0021 U Ethylbenzene 1 76 1 0.0015 U 0.0013 J 0.0012 U 0.0021 U Biopropylbenzene (Curnene) NS NS NS 0.0015 U 0.0016 U 0.0072 JK 0.0021 U MP-Xylenes NS NS NS 0.0015 U 0.0016 U 0.0072 JK 0.0021 U Methyl Acetate NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.011 U Methylexolhexane NS NS NS 0.0077 U 0.0058 U 0.011 U Methylexolhexane NS NS NS 0.0027 0.024 0.44 0.0073 J N=butylbenzene 0.05 81 0.005 0.0015 U 0.017<								
Dispreschloromethane NS NS NS OD15 U 0.0015 U 0.0012 U 0.0021 U Dichlorodifluoromethane NS NS NS NS 0.0015 U 0.0012 U 0.0021 U 0.001 U 0.0021 U 0.001 U 0.0021 U 0.011 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Dichorodifluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Ethylbenzene 1 76 1 0.0015 U 0.0013 J 0.0012 U 0.0021 U Ethylbenzene (Currene) NS NS NS 0.0015 U 0.0076 0.0072 JK 0.00072 J M.P.Xylenes NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.011 U Methyl Acetate NS NS NS 0.0076 U 0.0097 U 0.0058 U 0.011 U Methyl Acetate NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.011 U Methylecohora(4-Methyl-2-Pentanone) NS NS NS 0.0027 0.024 0.44 0.0078 Methylecohora(4 0.055 81 0.05 0.0031 U 0.0012 U 0.0021 U N-Propylbenzene 18 100 18 0.0015 U 0.017 0.0045 U 0.0021 U Sec-Butylbenzene 25 100 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Ethylbenzene 1 76 1 0.0016 U 0.0013 J 0.0012 U 0.0021 U Isopropylenzene (Currene) NS NS NS NS 0.0015 U 0.0076 0.0072 JK 0.00072 J MP-Xylenes NS NS NS 0.0015 U 0.0015 U 0.0039 JK 0.0021 U Methyl Acetate NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyl Echyl Ketone (2-Butanone) NS NS NS 0.0076 U 0.00077 U 0.0058 U 0.01 U Methyl Echyl Ketone (4-Methyl-2-Pentanone) NS NS NS 0.0077 U 0.0058 U 0.01 U Methyles Choide 0.05 81 0.05 0.003 U 0.0031 U 0.0021 U 0.0078 N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0045 U 0.0021 U N-Sroptylbenzene 25 100 25 0.0015 U 0.0017 0.0045 U 0.0012 U N-Sroptylbenzene 25								
M.P-Xylenes NS NS NS NS 0.0015 U 0.0015 U 0.0039 JK 0.0021 U Methyl Leyl Acetale NS NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyl Expl Ketone (2-Butanone) 0.1 100 0.1 0.0076 U 0.0097 0.0058 U 0.01 U Methyl Expl Ketone (4-Methyl-2-Pentanone) NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyl Expl Ketone (4-Methyl-2-Pentanone) NS NS NS 0.0077 0.0024 0.44 0.0078 Methylence/ene NS NS NS 0.0027 0.024 0.44 0.0078 N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0012 U 0.0021 U N-Propylbenzene 25 100 5 0.0015 U 0.017 0.0045 0.0021 U Syrene 25 100 25 0.0015 U 0.0017 0.0042 0.0012 J Tetachylbenzene </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
M.P-Xylenes NS NS NS NS 0.0015 U 0.0015 U 0.0039 JK 0.0021 U Methyl Acetate NS NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyl Ethyl Ketone (2-Butanone) NS NS NS 0.0076 U 0.0097 0.0058 U 0.01 U Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methylecolexane NS NS NS 0.0027 0.024 0.44 0.0078 Methylecolencane 18 100 18 0.0015 U 0.017 0.0012 U 0.0021 U N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0045 U 0.0021 U Styrene 25 100 25 0.0015 U 0.0013 0.0022 U 0.0021 U Styrene 25 100 25 0.0015 U 0.0017 0.0042 U 0.0021 U Tetadvlorochylene (PCE)	Isopropylbenzene (Cumene)	NS	NS	NS	0.0015 U	0.0076	0.0072 JK	0.00072 J
Methyl Ethyl Ketone (2-Butanone) 0.1 100 0.1 0.0076 U 0.0097 0.0058 U 0.01 U Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methylenc Chloride NS NS NS 0.0027 0.024 0.44 0.0078 N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0012 U 0.0021 U N-Propylbenzene 5 100 5 0.0015 U 0.017 0.0022 K 0.0021 U O-Xylene (1.2-Dimethylbenzene) NS NS NS 0.0015 U 0.013 0.008 0.0012 U 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 U 0.0021 U Strene NS NS NS 0.0015 U 0.0017 0.0042 0.0012 U 0.0021 U Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U		NS	NS	NS	0.0015 U	0.0015	0.0039 JK	0.0021 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS NS 0.0076 U 0.0077 U 0.0058 U 0.01 U Methyloyclohexane NS NS NS NS 0.0027 0.024 0.44 0.0078 Methylene Chloride 0.05 81 0.05 0.003 U 0.0031 U 0.0023 U 0.003 J N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0045 0.0021 U N-Propylbenzene 5 100 5 0.0015 U 0.017 0.0045 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 J Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 J Sec-Butylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0017 0.0012 U 0.0021 U Tarans-1,2-Dichlorethylene	Methyl Acetate	NS	NS	NS	0.0076 U	0.0077 U	0.0058 U	0.01 U
Methylcyclohexane NS NS NS 0.0027 0.024 0.44 0.0078 Methylene Chloride 0.05 81 0.05 0.003 U 0.0031 U 0.0023 U 0.003 J N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0045 0.0021 U N-Propylbenzene 5 100 5 0.0015 U 0.017 0.0045 0.0021 U Q-Xylene (1,2-Dimethylbenzene) NS NS NS 0.0015 U 0.002 0.0022 JK 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.0074 0.0012 U 0.0021 U Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U Test-Butyl Methyl Ether 0.1 100 11 0.0015 U 0.0017 0.0042 0.0012 U Test-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.00044 JK 0.0021 U Test-Butyl Methyl Ether 0.7 100	Methyl Ethyl Ketone (2-Butanone)				0.0076 U	0.0097	0.0058 U	0.01 U
Methylene Chloride 0.05 81 0.05 0.003 U 0.0031 U 0.0023 U 0.003 J N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0012 U 0.0021 U N-Proylbenzene 5 100 5 0.0015 U 0.017 0.0045 0.0021 U O-Xylene (1,2-Dimethylbenzene) NS NS NS 0.0015 U 0.002 0.0022 JK 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0021 U Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U Testhylbenzene 11 100 11 0.0056 J 0.0017 0.0042 0.0012 J Testhylbenzene 0.1 100 0.1 0.0015 U 0.0017 0.0042 0.0012 J Testhylbenzene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.0012 U 0.0021 U Toluene 0.7 100 0.7							0.0058 U	
N-Butylbenzene 18 100 18 0.0015 U 0.017 0.0012 U 0.0021 U N-Propylbenzene 5 100 5 0.0015 U 0.017 0.0045 0.0021 U O-Xylene (1,2-Dimethylbenzene) NS NS NS 0.0015 U 0.002 0.0022 JK 0.0021 U O-Xylene (1,2-Dimethylbenzene) 25 100 25 0.0015 U 0.013 0.008 0.0021 U Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U Testylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene <	, ,							
N-Propylbenzene 5 100 5 0.0015 U 0.017 0.0045 0.0021 U O-Xylene (1,2-Dimethylbenzene) NS NS NS 0.0015 U 0.002 0.0022 JK 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 J Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U T-Butylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0021 U Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tert-Butyl Methylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00053 JK 0.0021 U Trans-1,2-Dichlorothene 0.19 0.015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene NS NS			-					
O-Xylene (1,2-Dimethylbenzene) NS NS NS 0.0015 U 0.002 0.0022 JK 0.0021 U Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 J Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U T-Butylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0012 U Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00044 JK 0.0021 U Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroptenen 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloroptopene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroftuoromethane								
Sec-Butylbenzene 25 100 25 0.0015 U 0.013 0.008 0.0012 J Styrene NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U T-Butylbenzene 11 100 11 0.00056 J 0.0017 U 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00044 JK 0.0021 U Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloroptopene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofthylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofthylene <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Styrene NS NS NS NS 0.0015 U 0.0074 0.0012 U 0.0021 U T-Butylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0012 U Tertachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00053 JK 0.0021 U Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropopene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofthylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofthylene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chlor								
T-Butylbenzene 11 100 11 0.00056 J 0.0017 0.0042 0.0012 J Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00053 JK 0.0021 U Tolene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorothylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Tert-Butyl Methyl Ether 0.1 100 0.1 0.0015 U 0.0015 U 0.0012 U 0.0021 U Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00044 JK 0.0021 U Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorothylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorothylene (TCE) NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Tetrachloroethylene (PCE) 1.3 18 1.3 0.0015 U 0.0015 U 0.00044 JK 0.0021 U Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroethylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Toluene 0.7 100 0.7 0.0015 U 0.00059 J 0.00053 JK 0.0021 U Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropopene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Trans-1,2-Dichloroethene 0.19 100 0.19 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trans-1,3-Dichloropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroethylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Trans-1,3-Dichloropropene NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroethylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichlorofluoromethane NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Trichloroethylene (TCE) 0.47 6.4 0.47 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroethylene (TCE) NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Trichloroethylene (TCE) 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
NS NS NS 0.0015 U 0.0015 U 0.0012 U 0.0021 U Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
Vinyl Chloride 0.02 0.48 0.03 0.0015 U 0.0015 U 0.0012 U 0.0021 U								
avienes total 1 0.26 1 100 1 1.2 0.003 U 0.0035 0.0061.1K 0.0022 U	Xylenes, Total	0.26	100	1.2	0.003 U	0.0035	0.0061 JK	0.0042 U

			Volatile	Organic Compounds			
			AKRF Sample ID	EP-30_22.5_20231207	EP-31_22.5_20231207	EP-32_22.5_20231207	EP-33_22.5_20231207
		L	aboratory Sample ID	460-294189-6	460-294189-7	460-294189-8	460-294189-9
			Date Sampled	12/07/2023	12/07/2023	12/07/2023	12/07/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,1,2-Trichloroethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,1-Dichloroethane	0.27	47	0.27	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2,3-Trichlorobenzene	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0016 U	0.0017 J	0.0008 J	0.0016 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,2-Dichloropropane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0016 U	0.0014 J	0.00088 J	0.00058 J
1,3-Dichlorobenzene	2.4	38	2.6	0.0016 U	0.0019 U	0.0019 U	0.0016 U
1,4-Dichlorobenzene 2-Hexanone	1.8 NS	24 NS	1.8 NS	0.0016 U 0.0078 U	0.0019 U 0.0094 U	0.0019 U 0.0095 U	0.0016 U 0.0081 U
Acetone	0.03	100	0.03	0.0078 0	0.0094 0	0.0095 0	0.0081 0
Benzene	0.06	3.7	0.06	0.0016 U	0.0044 0.0019 U	0.091 0.0019 U	0.0016 U
Bromochloromethane	0.06 NS	NS	0.06 NS	0.0016 UJ	0.0019 UJ	0.0019 UJ	0.0016 UJ
Bromodichloromethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Bromoform	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Bromomethane	NS	NS	NS	0.0031 U	0.0019 U	0.0038 U	0.0032 U
Carbon Disulfide	NS	NS	NS	0.001 J	0.0017 J	0.0017 J	0.00082 J
Carbon Tetrachloride	0.76	7.1	0.76	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Chlorobenzene	1.1	100	1.1	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Chloroethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Chloroform	0.37	24	0.37	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Chloromethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Cyclohexane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Dibromochloromethane	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Dichlorodifluoromethane	NS	NS	NS	0.0016 U	0.00063 J	0.0019 U	0.0016 U
Ethylbenzene	1	76	1	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
M,P-Xylenes	NS	NS	NS	0.0016 U	0.00036 J	0.0019 U	0.0016 U
Methyl Acetate	NS	NS	NS	0.0078 U	0.0094 U	0.0095 U	0.0081 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.01	0.0094 U	0.0095 U	0.0081 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0078 U	0.0094 U	0.0095 U	0.0081 U
Methylcyclohexane	NS	NS	NS	0.0016 U	0.002	0.0019 U	0.0073
Methylene Chloride	0.05	81	0.05	0.0031 U	0.0037 U	0.0028 J	0.0023 J
N-Butylbenzene	18	100	18	0.0016 U	0.0019 U	0.0019 U	0.0016 U
N-Propylbenzene	5	100	5	0.0016 U	0.0019 U	0.0019 U	0.0016 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Sec-Butylbenzene	25	100	25	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Styrene	NS	NS 100	NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
T-Butylbenzene	11	100	11	0.0016 U	0.0019 U	0.0019 U	0.00095 J
Tert-Butyl Methyl Ether	0.1	100 18	0.1 1.3	0.0016 U	0.0019 U 0.0019 U	0.0019 U 0.0019 U	0.0016 U 0.0016 U
Tetrachloroethylene (PCE)	1.3 0.7	18	0.7	0.0016 U	0.0019 U 0.00068 J	0.0019 U 0.0019 U	0.0016 U 0.0016 U
Toluene	0.7	100	0.7	0.00045 J 0.0016 U	0.00068 J 0.0019 U	0.0019 U 0.0019 U	0.0016 U 0.0016 U
Trans-1,2-Dichloroethene	0.19 NS	NS	0.19 NS	0.0016 U 0.0016 U	0.0019 U 0.0019 U	0.0019 U 0.0019 U	0.0016 U 0.0016 U
Trans-1,3-Dichloropropene Trichloroethylene (TCE)	0.47	6.4	0.47	0.0016 U 0.0016 U	0.0019 U 0.0019 U	0.0019 U 0.0019 U	0.0016 U 0.0016 U
	0.47 NS	NS	0.47 NS	0.0016 U	0.0019 U	0.0019 U	0.0016 U
Trichlorofluoromethane							
Trichlorofluoromethane Vinyl Chloride	0.02	0.48	0.03	0.0016 U	0.0019 U	0.0019 U	0.0016 U

Volatile Organic Compounds											
		L	AKRF Sample ID aboratory Sample ID. Date Sampled	EP-34_22.5_20231207 460-294189-10 12/07/2023	EP-35_25_20231207 460-294189-11 12/07/2023	EP-35_27_20231214 460-294648-1 12/14/2023	EP-36_25_20231207 460-294189-12 12/07/2023				
			Dilution Factor	12/07/2023	50	1	1				
			Unit	mg/kg	mg/kg	mg/kg	mg/kg				
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q				
1,1,1-Trichloroethane	0.68	100	0.68	0.0017 U	0.15 U	NR	0.0013 U				
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 UJ				
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,1,2-Trichloroethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,1-Dichloroethane	0.27	47	0.27	0.0017 U	0.15 U	NR	0.0013 U				
1,1-Dichloroethene	0.24	0.98	0.33	0.0017 U	0.15 U	NR	0.0013 U				
1,2,3-Trichlorobenzene	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,2,4-Trichlorobenzene	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.00089 J	0.22	NR	0.0013 U				
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
1,2-Dichlorobenzene	1.1	100	1.1	0.0017 U	0.15 U	NR	0.0013 U				
1,2-Dichloroethane	0.02	5.8 NS	0.02	0.0017 U	0.15 U	NR	0.0013 U				
1,2-Dichloropropane 1,3.5-Trimethylbenzene (Mesitylene)	NS 0.51	0.52	NS 3.1	0.0017 U	0.15 U 0.053 J	NR NR	0.0013 U				
1,3,5-1 rimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	0.51	0.52	3.1 2.6	0.0017 U 0.0017 U	0.053 J 0.15 U	NR NR	0.0013 U 0.0013 U				
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.4	24	2.6	0.0017 U 0.0017 U	0.15 U 0.15 U	NR	0.0013 U 0.0013 U				
2-Hexanone	NS	NS 24	NS	0.0083 U	0.15 U 0.74 U	NR	0.0063 U				
Acetone	0.03	100	0.03	0.078	0.74 U	NR	0.015				
Benzene	0.06	3.7	0.06	0.0046	over-excavated	0.0017 U	0.0013 U				
Bromochloromethane	NS	NS	NS	0.0017 UJ	0.15 U	NR	0.0013 UJ				
Bromodichloromethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Bromoform	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Bromomethane	NS	NS	NS	0.0033 U	0.15 UJ	NR	0.0025 U				
Carbon Disulfide	NS	NS	NS	0.0035	0.15 U	NR	0.0013 U				
Carbon Tetrachloride	0.76	7.1	0.76	0.0017 U	0.15 U	NR	0.0013 U				
Chlorobenzene	1.1	100	1.1	0.0017 U	0.15 U	NR	0.0013 U				
Chloroethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Chloroform	0.37	24	0.37	0.0017 U	0.15 U	NR	0.0013 U				
Chloromethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0017 U	0.15 U	NR	0.0013 U				
Cis-1,3-Dichloropropene	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Cyclohexane Dibromochloromethane	NS NS	NS NS	NS NS	0.0017 U 0.0017 U	0.089 J 0.15 U	NR NR	0.0012 J 0.0013 U				
Dichlorodifluoromethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Ethylbenzene	1	76	1	0.0017 0	0.15 U	NR	0.0013 U				
Isopropylbenzene (Cumene)	NS	NS	NS	0.00079 J	0.14 J	NR	0.0013 U				
M,P-Xylenes	NS	NS	NS	0.0017 U	0.14 J	NR	0.0013 U				
Methyl Acetate	NS	NS	NS	0.0083 U	0.74 U	NR	0.0063 U				
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.0083 U	0.74 U	NR	0.0063 U				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0083 U	0.74 U	NR	0.0063 U				
Methylcyclohexane	NS	NS	NS	0.0024	0.79	NR	0.0032				
Methylene Chloride	0.05	81	0.05	0.002 J	0.15 U	NR	0.0025 U				
N-Butylbenzene	18	100	18	0.0017 U	0.21	NR	0.0013 UJ				
N-Propylbenzene	5	100	5	0.00072 J	0.18	NR	0.0013 UJ				
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0017 U	0.052 J	NR	0.0013 U				
Sec-Butylbenzene	25	100	25	0.0017 U	0.15	NR	0.0013 U				
Styrene	NS 11	NS 100	NS 11	0.0017 U	0.15 U	NR	0.0013 U				
T-Butylbenzene	11	100 100	11	0.0017 U	0.15 U	NR	0.0013 U				
Tert-Butyl Methyl Ether Tetrachloroethylene (PCE)	0.1	100	0.1	0.0017 U 0.0017 U	0.15 U 0.074 J	NR NR	0.0013 U 0.0013 U				
Tetrachioroethylene (PCE)	0.7	100	0.7	0.0017 U	0.16	NR	0.0013 U				
Trans-1,2-Dichloroethene	0.19	100	0.7	0.0017 U 0.0017 U	0.16 0.15 U	NR	0.0013 U				
Trans-1,2-Dichloropropene	NS	NS	0.19 NS	0.0017 U	0.15 U	NR	0.0013 U				
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0017 U	0.15 U	NR	0.0013 U				
Trichlorofluoromethane	NS	NS	NS	0.0017 U	0.15 U	NR	0.0013 U				
Vinyl Chloride	0.02	0.48	0.03	0.0017 U	0.15 U	NR	0.0013 U				
Xylenes, Total	0.26	100	1.2	0.0033 U	0.19 J	NR	0.0025 U				
· · · · · · · · · · · · · · · · · · ·	0.20			0.0000 0	0.10 0		0.0020 0				

			Volatile	Organic Compounds			
			AKRF Sample ID	EP-37_17.5_20231215	EP-X3_20231215	EP-38_17.5_20231215	EP-39_20_20231215
		L	aboratory Sample ID	460-294775-1	460-294775-9	460-294775-2	460-294775-3
			Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,1,2-Trichloroethane	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,1-Dichloroethane	0.27	47	0.27	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1.2.3-Trichlorobenzene	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1.2.4-Trichlorobenzene	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0017 UJ	0.001 JL	0.0011 U	0.0029
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1,2-Dichloropropane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0017 UJ	0.0019 0	0.0011 U	0.0013 U
1,3-Dichlorobenzene	2.4	38	2.6	0.0017 UJ	0.002 JL 0.0019 UJ	0.0011 U	0.00043 J 0.0013 U
1,3-Dichlorobenzene	1.8	24	2.0	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
2-Hexanone	NS	NS 24	NS	0.0017 UJ 0.0087 U	0.0019 UJ 0.0095 U	0.0011 0 0.0056 U	0.0013 U 0.0067 U
	0.03	100	0.03	0.0087 0	0.0095 0	0.0056 0	0.0087 0
Acetone		3.7					
Benzene	0.06		0.06	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Bromochloromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Bromodichloromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Bromoform	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Bromomethane	NS	NS	NS	0.0035 U	0.0038 U	0.0022 U	0.0027 U
Carbon Disulfide	NS	NS	NS	0.0017 UJ	0.00088 JL	0.0011 U	0.0016
Carbon Tetrachloride	0.76	7.1	0.76	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Chlorobenzene	1.1	100	1.1	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Chloroethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Chloroform	0.37	24	0.37	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Chloromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Cyclohexane	NS	NS	NS	0.0017 UJ	0.0014 JL	0.0011 U	0.00033 J
Dibromochloromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Dichlorodifluoromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Ethylbenzene	1	76	1	0.0017 UJ	0.0019 UJ	0.0011 U	0.00033 J
Isopropylbenzene (Cumene)	NS	NS	NS	0.0017 UJ	0.00056 JL	0.0011 U	0.0016
M,P-Xylenes	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.00059 J
Methyl Acetate	NS	NS	NS	0.0087 UJ	0.0095 UJ	0.0056 U	0.0067 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.0087 U	0.0095 U	0.0056 U	0.015
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0087 U	0.0095 U	0.0056 U	0.0067 U
Methylcyclohexane	NS	NS	NS	0.001 JL	0.017 JL	0.00066 J	0.0042
Methylene Chloride	0.05	81	0.05	0.0035 U	0.0038 U	0.0022 U	0.0027 U
N-Butylbenzene	18	100	18	0.0017 UJ	0.0019 UJ	0.0011 U	0.001 J
N-Propylbenzene	5	100	5	0.0017 UJ	0.00066 JL	0.0011 U	0.0017
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.00035 J
Sec-Butylbenzene	25	100	25	0.0017 UJ	0.00075 JL	0.0011 U	0.0014
Styrene	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
T-Butylbenzene	11	100	11	0.0017 UJ	0.00078 JL	0.0011 U	0.0013 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0017 UJ	0.0028 JL	0.0011 U	0.002
Toluene	0.7	100	0.7	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.0017 UJ	0.0019 UJ	0.0011 U	0.0013 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Trichlorofluoromethane	NS	NS	NS	0.0017 U	0.0019 U	0.0011 U	0.0013 U
Vinyl Chloride	0.02	0.48	0.03	0.0017 U	0.0019 U	0.0011 U	0.0013 U

			volatile	Organic Compounds			
			AKRF Sample ID	EP-40_17.5_20231215	EP-41_15_20231215	EP-42_17.5_20231215	EP-43_17.5_20231215
		L	aboratory Sample ID	460-294775-4	460-294775-5	460-294775-6	460-294775-7
			Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023
			Dilution Factor	1	1	1	1
			Unit	mg/kg	mg/kg	mg/kg	mg/kg
Compound		NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,1,2-Trichloroethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,1-Dichloroethane	0.27	47	0.27	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,2,3-Trichlorobenzene	NS NS	NS NS	NS NS	0.0011 U 0.0011 U	0.0013 U	0.0013 U 0.0013 U	0.0012 U 0.0012 U
1,2,4-Trichlorobenzene	0.51	0.52	5.9	0.0011 U	0.0013 U 0.0029	0.0013 U	0.0012 0
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	NS	0.52 NS	5.9 NS	0.0011 U	0.0029 0.0013 U	0.0013 U	0.0018 0.0012 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,2-Dichlorobenzene	1.1	100	1.1	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,2-Dichloroethane	0.02	5.8	0.02	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,2-Dichloropropane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0011 U	0.00089 J	0.0013 U	0.00086 J
1,3-Dichlorobenzene	2.4	38	2.6	0.0011 U	0.0013 U	0.0013 U	0.0012 U
1,4-Dichlorobenzene	1.8	24	1.8	0.0011 U	0.0013 U	0.0013 U	0.0012 U
2-Hexanone	NS	NS	NS	0.0054 U	0.0063 U	0.0063 U	0.0058 U
Acetone	0.03	100	0.03	0.0093	0.026	0.031	0.021
Benzene	0.06	3.7	0.06	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Bromochloromethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Bromodichloromethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Bromoform	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Bromomethane	NS	NS	NS	0.0022 U	0.0025 U	0.0025 U	0.0023 U
Carbon Disulfide	NS	NS	NS	0.00034 J	0.0016	0.00039 J	0.00043 J
Carbon Tetrachloride	0.76	7.1	0.76	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Chlorobenzene	1.1	100	1.1	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Chloroethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Chloroform	0.37	24	0.37	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Chloromethane	NS 0.19	NS 41	NS 0.19	0.0011 U 0.0011 U	0.0013 U 0.0026	0.0013 U 0.0013 U	0.0012 U 0.00042 J
Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene	NS	41 NS	0.19 NS	0.0011 U	0.0026 0.0013 U	0.0013 U 0.0013 U	0.00042 J 0.0012 U
Cyclohexane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 0
Dibromochloromethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0013 0.0012 U
Dichlorodifluoromethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Ethylbenzene	1	76	1	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.0011 U	0.00045 J	0.00076 J	0.0034
M,P-Xylenes	NS	NS	NS	0.0011 U	0.00051 J	0.0013 U	0.00045 J
Methyl Acetate	NS	NS	NS	0.0054 U	0.0063 U	0.0063 U	0.0058 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.0054 U	0.0063 U	0.0063 U	0.0058 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.0054 U	0.0063 U	0.0063 U	0.0058 U
Methylcyclohexane	NS	NS	NS	0.0011 U	0.00079 J	0.007	0.02
Methylene Chloride	0.05	81	0.05	0.0022 U	0.0025 U	0.0025 U	0.0023 U
N-Butylbenzene	18	100	18	0.0011 U	0.0013 U	0.0032	0.0053
N-Propylbenzene	5	100	5	0.0011 U	0.00055 J	0.0012 J	0.0046
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0011 U	0.00044 J	0.0013 U	0.00045 J
Sec-Butylbenzene	25	100	25	0.0011 U	0.00092 J	0.0026	0.0049
Styrene	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
T-Butylbenzene	11	100	11	0.0011 U	0.0013 U	0.00091 J	0.0011 J
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Tetrachloroethylene (PCE)	1.3 0.7	18 100	1.3	0.0011 U	0.018 0.0013 U	0.00079 J 0.0013 U	0.0062 0.0012 U
Toluene Trans-1,2-Dichloroethene	0.7	100	0.7 0.19	0.0011 U 0.0011 U	0.0013 U 0.0013 U	0.0013 U 0.0013 U	0.0012 U 0.0012 U
Trans-1,2-Dichloropropene	0.19 NS	NS	0.19 NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0011 U	0.0013 0	0.0013 U	0.00041 J
Trichlorofluoromethane	NS	NS	NS	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Vinyl Chloride	0.02	0.48	0.03	0.0011 U	0.0013 U	0.0013 U	0.0012 U
Xylenes, Total	0.26	100	1.2	0.0022 U	0.00095 J	0.0025 U	0.0009 J
	0.20	100	1.4	0.0022 0	0.00000 0	0.0020 0	0.0000 0

Table 1 380 4th Avenue

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results

			Volatile	Organic Compounds			
			AKRF Sample ID	EP-44 20 20231215	A4HAZ B 20 20230928	A4HAZ X1 20230928	B1HAZ B 20 20230601
		L	aboratory Sample ID	460-294775-8	460-289204-1	460-289204-2	460-281384-5
			Date Sampled	12/15/2023	9/28/2023	9/28/2023	6/01/2023
			Dilution Factor	1	mg/kg	mg/kg	mg/kg
			Unit	mg/kg	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
1,1,2-Trichloroethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,1-Dichloroethane	0.27	47	0.27	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
1,1-Dichloroethene	0.24	0.98	0.33	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
1,2,3-Trichlorobenzene	NS	NS	NS	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 UJ
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.00057 J	0.0012 U	0.0012 U	0.0019 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,2-Dichlorobenzene	1.1	100	1.1	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 U
1,2-Dichloroethane	0.02	5.8	0.02	0.002 U	0.0012 U	0.0012 U	0.0019 U
1,2-Dichloropropane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 UJ
1,3-Dichlorobenzene	2.4	38	2.6	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 U
1,4-Dichlorobenzene	1.8	24	1.8	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 U
2-Hexanone	NS	NS	NS	0.01 U	0.0059 U	0.006 U	0.0093 U
Acetone	0.03	100	0.03	0.032	0.0091	0.0098	0.051 JL
Benzene	0.06	3.7	0.06	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
Bromochloromethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Bromodichloromethane	NS NS	NS NS	NS NS	0.002 U 0.002 U	0.0012 U 0.0012 U	0.0012 U 0.0012 U	0.0019 U 0.0019 U
Bromoform Bromomethane	NS	NS	NS	0.002 U 0.004 U	0.0012 U 0.0024 U	0.0012 U 0.0024 U	0.0019 U
Carbon Disulfide	NS	NS	NS	0.00073 J	0.0024 0 0.0012 U	0.0024 0 0.0012 U	0.0037 U 0.0019 UJ
Carbon Disulide Carbon Tetrachloride	0.76	7.1	0.76	0.002 U	0.0012 U	0.0012 U	0.0019 UJ 0.0019 U
Chlorobenzene	1.1	100	1.1	0.002 U	0.0012 U	0.0012 U	0.0019 U
Chloroethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Chloroform	0.37	24	0.37	0.002 U	0.0012 U	0.0012 U	0.0019 U
Chloromethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.002 U	0.0012 U	0.0012 U	0.0019 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 UJ
Cyclohexane	NS	NS	NS	0.0084	0.0012 U	0.0012 U	0.0019 U
Dibromochloromethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Dichlorodifluoromethane	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Ethylbenzene	1	76	1	0.002 U	0.0012 U	0.0012 U	0.0019 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.00098 J	0.0012 UJ	0.0012 UJ	0.0019 U
M,P-Xylenes	NS	NS	NS	0.00035 J	0.0012 U	0.0012 U	0.0019 U
Methyl Acetate	NS	NS	NS	0.01 U	0.0059 U	0.006 U	0.0093 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.01 U	0.0059 U	0.006 U	0.037 JK
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	0.01 U	0.0059 U	0.006 U	0.0093 U
Methylcyclohexane	NS	NS	NS	0.068	0.0012 UJ	0.0012 UJ	0.0019 U
Methylene Chloride	0.05	81	0.05	0.004 U	0.0024 U	0.0024 U	0.0037 U
N-Butylbenzene	18	100	18	0.002 U	0.0012 UJ	0.0012 UJ	0.0019 U
N-Propylbenzene	5	100	5	0.00095 J	0.0012 UJ	0.0012 UJ	0.0019 UJ
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
Sec-Butylbenzene	25	100	25	0.0017 J	0.0012 UJ	0.0012 UJ	0.0019 U
Styrene	NS	NS 100	NS	0.002 U	0.0012 U	0.0012 U	0.0019 U
T-Butylbenzene	11	100	11	0.00091 J	0.0012 UJ	0.0012 UJ	0.0019 U
Tert-Butyl Methyl Ether Tetrachloroethylene (PCE)	0.1	100	0.1	0.002 U	0.00062 J	0.00089 J	0.0019 UJ
	1.3	18	1.3	0.0034 0.002 U	0.0012 U	0.0012 U	0.0019 U 0.0019 UJ
Toluene	0.7	100	0.7 0.19	0.002 U 0.002 U	0.0012 U 0.0012 U	0.0012 U 0.0012 U	0.0019 UJ 0.0019 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	0.19 NS	100 NS	0.19 NS	0.002 U 0.002 U	0.0012 U 0.0012 U	0.0012 U 0.0012 U	0.0019 U 0.0019 UJ
Trans-1,3-Dicnioropropene Trichloroethylene (TCE)	0.47	6.4	0.47	0.002 U 0.002 U	0.0012 U 0.0012 U	0.0012 U 0.0012 U	0.0019 UJ 0.0019 U
	0.47						
	NC	NC	NC	0 002 11	0.0012 11		
Trichlorofluoromethane	NS 0.02	NS 0.48	NS 0.03	0.002 U 0.002 U	0.0012 U 0.0012 U	0.0012 U 0.0012 U	0.0019 U 0.0019 UJ

			Volatile	Organic Compounds			
			AKRF Sample ID	B1HAZ_X1_20230601	FB_20230928	FB_20231103	FB_20231127
		L	aboratory Sample ID	460-281384-8	460-289204-3	460-291818-9	460-293316-6
			Date Sampled	6/01/2023	9/28/2023	11/03/2023	11/27/2023
			Dilution Factor	mg/kg	1	1	1
			Unit	1	μg/L	μg/L	µg/L
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	0.0015 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	0.0015 UJ	1 U	1 U	1 U
1,1,2-Trichloroethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
1,1-Dichloroethane	0.27	47	0.27	0.0015 UJ	1 U	1 U	1 U
1,1-Dichloroethene	0.24	0.98	0.33	0.0015 UJ	1 U	1 UJ	1 U
1,2,3-Trichlorobenzene	NS	NS	NS	0.0015 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.0015 UJ	1 U	1 U	1 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	0.0015 U	1 U	1 U	1 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	0.0015 U	1 U	10	1 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS 100	NS 1.1	0.0015 U 0.0015 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2-Dichlorobenzene	1.1 0.02		0.02	0.0015 U 0.0015 U			1 U
1,2-Dichloroethane 1,2-Dichloropropane	0.02 NS	5.8 NS	0.02 NS	0.0015 U 0.0015 UJ	1 U 1 U	1 U 1 U	10
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	0.0015 UJ	1 U	10	1 U
1.3-Dichlorobenzene	2.4	38	2.6	0.0015 U	1 U	10	10
1,4-Dichlorobenzene	1.8	24	1.8	0.0015 U	1 U	10	1 U
2-Hexanone	NS	NS	NS	0.0074 U	5 U	5 U	5 U
Acetone	0.03	100	0.03	0.019 JL	5 U	6.6	5 U
Benzene	0.06	3.7	0.06	0.0015 UJ	1 U	1 U	1 U
Bromochloromethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Bromodichloromethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Bromoform	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Bromomethane	NS	NS	NS	0.003 U	1 U	1 U	1 U
Carbon Disulfide	NS	NS	NS	0.0015 UJ	1 UJ	1 UJ	1 U
Carbon Tetrachloride	0.76	7.1	0.76	0.0015 U	1 U	1 U	1 U
Chlorobenzene	1.1	100	1.1	0.0015 U	1 U	1 U	1 U
Chloroethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Chloroform	0.37	24	0.37	0.0015 U	1 U	1 U	1 U
Chloromethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	0.0015 U	1 U	1 U	1 U
Cis-1,3-Dichloropropene	NS	NS	NS	0.0015 UJ	1 U	1 U	1 U
Cyclohexane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Dibromochloromethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Dichlorodifluoromethane	NS	NS	NS	0.0015 U	1 U	10	1 U
Ethylbenzene	1	76	1	0.0015 U	1 U	10	1 U
Isopropylbenzene (Cumene)	NS	NS	NS	0.0015 U	1 U	1 U 1 U	1 U
M,P-Xylenes Methyl Acetate	NS NS	NS NS	NS NS	0.0015 U 0.0074 UJ	1 U 5 U	5 U	0.3 J 5 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	0.0074 UJ	5 U	5 U	5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	0.1 NS	0.0074 U	5 U	5 U	5 U
Methylcyclohexane	NS	NS	NS	0.0014 U	1 U	1 U	1 U
Methylene Chloride	0.05	81	0.05	0.003 U	1 U	10	0.37 J
N-Butylbenzene	18	100	18	0.0015 U	1 U	1 U	1 U
N-Propylbenzene	5	100	5	0.0015 UJ	1 U	1 U	1 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Sec-Butylbenzene	25	100	25	0.0015 U	1 U	1 U	1 U
Styrene	NS	NS	NS	0.0015 U	1 U	1 U	1 U
T-Butylbenzene	11	100	11	0.0015 U	1 U	1 U	1 U
Tert-Butyl Methyl Ether	0.1	100	0.1	0.0015 U	1 U	1 U	1 U
Tetrachloroethylene (PCE)	1.3	18	1.3	0.0015 U	1 U	1 U	1 U
Toluene	0.7	100	0.7	0.0015 UJ	1 U	1 U	1 U
Trans-1,2-Dichloroethene	0.19	100	0.19	0.0015 U	1 U	1 UJ	1 U
Trans-1,3-Dichloropropene	NS	NS	NS	0.0015 UJ	1 U	1 U	1 U
Trichloroethylene (TCE)	0.47	6.4	0.47	0.0015 U	1 U	1 U	1 U
Trichlorofluoromethane	NS	NS	NS	0.0015 U	1 U	1 U	1 U
Vinyl Chloride	0.02	0.48	0.03	0.0015 UJ	1 U	1 U	1 U
Xylenes, Total	0.26	100	1.2	0.003 U	2 U	2 U	2 U

Laboratory Sample D Pois-Sample D Po				Volatile	Organic Compounds			
Disks simpled Disks Parked 21752023 (a) 001/02 (b) 001/02 (b)								FB-S_20230601
Description Under Face 1 1 pp. 1 pp. 1 pp. 1 </td <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>460-281384-6</td>			L					460-281384-6
Unit ppL ppL ppL 1 1 Compound WYSDE C UUSCO VYSDE C POWEGO CONC Q								
Compand INVECE USEO INSPEC FeWEOD CONC 0 CONC 0 CONC 0 CONC 0 CONC 0 1.1.5.1700000000000000000000000000000000					•			
1,1-Transversame 0.68 100 0.69 1 U 1 U 1 U 1 U 1 U 1,2-Transversame NS NS NS NS 1 U <th></th> <th></th> <th></th> <th></th> <th>1 8</th> <th></th> <th></th> <th></th>					1 8			
11.22-Transcriber NS NS IU								
1.2.2.Tridicoscharae (resort F) NS NS 1.0 1.0 1.0 1.0 1.0 1.2.2.Tridicoscharae NS NS NS 1.0					_		_	-
N.S. N.S. N.S. N.S. 1.U 1.U 1.U 1.U 1.U 1.1.2.Drickoenham 0.24 0.98 0.33 1.U						_	_	-
1:Delthoosthane 0.27 47 6.27 1								
1Deckhooschene 0.24 0.98 0.33 1 U 1 U 1 U 1 U 1 U 1.2-Trichologonane NS NS NS NS 1 U					_	_	_	-
12.3-Trichticobargene NS NS NS 1U 1U 1U 1U 1U 1.2.4-Trichticobargene 0.51 0.52 5.9 1U 1U 1U 1U 1U 1U 1.2.4-Trichticobargene NS NS NS 1U 1	,							
12-4-Trintelyburgame NS NS NS 1 I	,					_		
12.4-Timeshybenzene 0.51 0.52 5.9 1.0 1.0 1.0 1.0 1.0 12.Ditrono-5.Chicogrogne NS NS NS 1.0								
12-Discons-Schlarophysic NS NS NS NS NS NS NU 1U 1U 1U 1U U 1U 12-Disconservation (Ethware Disconse) 1.1 100 1.1 1U 1U <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>-</td>					_		_	-
12-Dbromsethane (Etherne Dibornide) NS NS NS 11 100 1.1 100 1.1 100 1.1 100 1.1 100 1.0 100 100 12-Dichtoropenane NS NS NS NS 100 100 100 100 12-Dichtoropenane NS NS NS 100 100 100 100 1.3.5 IntraftyGenzene (Matylane) 0.61 0.52 3.1 100								-
1.2-Dehlarochanzene 1.1 1.0								
12-DEckhorophane 0.02 5.8 0.02 1.0						. 🖕	: •	: •
12-Dishborgongane NS NS NS IU								
13.5-Trientryberzene (Mestylane) 0.51 0.52 3.1 1	,				_		_	-
13-Definitorobenzene 2.4 38 2.6 1 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>-</td>					_	_		-
14-Dicklobenzane 1.8 24 1.8 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U				-				-
2+Hexanore NS NS SU								
Acetone 0.03 100 0.03 5 U 1 U 1	,							
Benzene 0.06 3.7 0.06 1 U 1								
Bromochloromethane NS NS NS 1U								
Bromodinitionmethane NS NS NS 1 U								
Bromordm NS NS NS 1U 1U 1U 1U 1U Carbon Testaficle NS NS NS NS 1U 1U<								
Bromombane NS NS NS NS 1U 1U 1U 1U 1U 1U Carbon Disulfide 0.76 7.1 0.76 1U <						_	_	-
Carbon Disulfide NS NS NS 1U					_	_	_	
Carbon Tetrachioride 0.76 7.1 0.76 1 U 1 U 1 U 1 U 1 U 1 U Chlorobenzene 1.1 100 1.1 1 U 1								-
Chlorobenzene 1.1 100 1.1 1								
Chloroefhane NS NS 1 U 1 U 1 U 1 U 1 U Chloroefhane 0.37 24 0.37 1 U					_		_	
Chlorodram 0.37 24 0.37 1 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
Chloromethane NS NS 1 U 1 U 1 U 1 U 1 U Cis-1,2-Dichloropropene 0.19 41 0.19 1 U 1	-					_		-
Cis-1,2-Dichloroethylene 0.19 41 0.19 1 U 1 U 1 U 1 U 1 U 1 U Cis-1,2-Dichloropropene NS NS NS NS 1 U								
Cis-1.3-Dichloropropene NS NS NS 1U 1U 1U 1U 1U Gyclohexane NS NS NS NS 1U					_	_	_	
Cyclohexane NS NS NS NS 1 U 1 U 1 U 1 U 1 U Dibronchloromethane NS NS NS NS 1 U						_	_	-
Dibromochloromethane NS NS NS NS 1 U 1 U 1 U 1 U 1 U 1 U Dichlorodifluoromethane NS NS NS NS 1 U 1								
Dichlorodifluoromethane NS NS NS 1 U								· •
Ethylbenzene 1 76 1 1 U								
Isopropylbenzene (Cumene) NS NS NS NS NS 1 U 1 U 1 U 1 U 1 U M,P-Xylenes NS NS NS NS NS 1 U								
M.P. Xylenes NS NS NS NS 1 U 1 U 1 U 1 U 1 U Methyl Acetate NS NS NS NS S U 5 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U <	· ·							
Methyl Acetate NS NS NS 5 U 5 U 5 U 5 U 5 U 5 U 5 U Methyl Ethyl Ethone (2-Butanone) 0.1 100 0.1 5 U								-
Methyl Ethyl Ketone (2-Butanone) 0.1 100 0.1 5 U 5 U 5 U 5 U Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS S U 5 U<								
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS U 1 U 1	· · ·							
Methylcyclohexane NS NS NS NS 1U 1U 1U 1U 1U 1U Methylene Chloride 0.05 81 0.05 0.46 J 1U 1U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Methylene Chloride 0.05 81 0.05 0.46 J 1 U 1 U 1 U 1 U N-Butylbenzene 18 100 18 1 U 1								
N-Butylbenzene 18 100 18 1 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								-
N-Propylbenzene 5 100 5 1 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
O-Xylene (1,2-Dimethylbenzene) NS NS NS 1 U<						_		-
Sec-Butylbenzene 25 100 25 1 U 1 U 1 U 1 U 1 U Styrene NS NS NS NS 1 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Styrene NS NS NS 1U 1U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
T-Butylbenzene 11 100 11 1 U <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td>· •</td><td>· •</td><td></td></t<>					_	· •	· •	
Tert-Butyl Methyl Ether 0.1 100 0.1 1 U								
Tetrachloroethylene (PCE) 1.3 18 1.3 1 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Toluene 0.7 100 0.7 1 U 1 U 1 U 1 U 1 U Trans-1,2-Dichloroethene 0.19 100 0.19 1 U 1 U 1 U 1 U 1 U 1 U Trans-1,3-Dichloropropene NS NS NS 1 U 1 U 1 U 1 U								1 U
Trans-1,2-Dichloroethene 0.19 100 0.19 1 U 1 U 1 U 1 U 1 U Trans-1,3-Dichloropropene NS NS NS 1 U 1 U 1 U 1 U 1 U								1 U
Trans-1,3-Dichloropropene NS NS 1 U 1 U 1 U 1 U								1 U
								1 U
	Trichloroethylene (TCE)	0.47	6.4	0.47	1 U	1 U	1 U	1 U
								1 U
								1 U
								2 U

			Volatile	Organic Compounds			
			AKRF Sample ID	TB_20230928	TB_20231103	TB_20231127	TB_20231215
		L	aboratory Sample ID	460-289204-4	460-291818-10	460-293316-7	460-294775-11
			Date Sampled	9/28/2023	11/03/2023	11/27/2023	12/15/2023
			Dilution Factor	1	1	1	1
			Unit	µg/L	µg/L	µg/L	µg/L
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	NS	NS	NS	10	1 U	1 U	1 U
1,1-Dichloroethane	0.27	47	0.27	1 U	1 U	1 U	1 U
1,1-Dichloroethene	0.24	0.98	0.33	<u>1 U</u>	1 UJ	1 U	1 U
1,2,3-Trichlorobenzene	NS NS	NS NS	NS NS	<u>1 U</u> 1 U	1 U 1 U	1 U	1 U 1 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	0.51	0.52	5.9	1 U	1 U	1 U 1 U	10
1,2,4-Timetrybenzene 1,2-Dibromo-3-Chloropropane	NS	0.52 NS	5.9 NS	10	10	10	10
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	1 U	10	10	10
1,2-Dichlorobenzene	1.1	100	1.1	10	1 U	1 U	1 U
1,2-Dichloroethane	0.02	5.8	0.02	1 U	1 U	1 U	1 U
1,2-Dichloropropane	NS	NS	NS	10	1 U	1 U	1 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	2.4	38	2.6	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1.8	24	1.8	10	1 U	1 U	1 U
2-Hexanone	NS	NS	NS	5 U	5 U	5 U	5 U
Acetone	0.03	100	0.03	5 U	5 U	5 U	5 U
Benzene	0.06	3.7	0.06	1 U	1 U	1 U	1 U
Bromochloromethane	NS	NS	NS	1 U	1 U	1 U	1 U
Bromodichloromethane	NS	NS	NS	1 U	1 U	1 U	1 U
Bromoform	NS	NS	NS	1 U	1 U	1 U	1 U
Bromomethane	NS	NS	NS	1 U	1 U	1 U	1 UJ
Carbon Disulfide	NS	NS	NS	1 UJ	1 UJ	1 U	1 U
Carbon Tetrachloride	0.76	7.1	0.76	1 U	1 U	1 U	1 U
Chlorobenzene	1.1	100	1.1	1 U	1 U	1 U	1 U
Chloroethane	NS	NS	NS	10	1 U	1 U	1 U
Chloroform	0.37	24	0.37	10	1 U	1 U	1 U
Chloromethane	NS	NS	NS	1 U	1 U	0.53 J	1 U
Cis-1,2-Dichloroethylene	0.19 NS	41 NS	0.19 NS	<u>1 U</u> 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Cis-1,3-Dichloropropene Cyclohexane	NS	NS	NS	10	1 U	10	10
Dibromochloromethane	NS	NS	NS	10	1 U	10	10
Dichlorodifluoromethane	NS	NS	NS	1 U	1 U	1 U	1 UJ
Ethylbenzene	1	76	1	10	1 U	1 U	1 U
Isopropylbenzene (Cumene)	NS	NS	NS	1 U	1 U	1 U	1 U
M,P-Xylenes	NS	NS	NS	1 U	1 U	0.33 J	1 U
Methyl Acetate	NS	NS	NS	5 U	5 U	5 U	5 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	5 U	5 U	5 U	5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	5 U	5 U	5 U	5 U
Methylcyclohexane	NS	NS	NS	1 U	1 U	1 U	1 U
Methylene Chloride	0.05	81	0.05	1 U	1 U	1 U	1 U
N-Butylbenzene	18	100	18	1 U	1 U	1 U	1 U
N-Propylbenzene	5	100	5	1 U	1 U	1 U	1 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	1 U	1 U	1 U	1 U
Sec-Butylbenzene	25	100	25	10	1 U	1 U	1 U
Styrene	NS	NS	NS	1 U	1 U	1 U	1 U
T-Butylbenzene	11	100	11	10	1 U	1 U	1 U
Tert-Butyl Methyl Ether	0.1	100	0.1	<u>1 U</u>	1 U	1 U	1 U
Tetrachloroethylene (PCE)	1.3	18	1.3	<u>1 U</u>	1 U	1 U	1 U
Toluene	0.7	100	0.7	<u>1 U</u>	1 U	1 U	1 U
Trans-1,2-Dichloroethene	0.19	100	0.19	<u>1 U</u>	1 UJ	1 U	1 U
Trans-1,3-Dichloropropene	NS 0.47	NS 6.4	NS 0.47	<u>1 U</u> 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Trichloroethylene (TCE) Trichlorofluoromethane	0.47 NS	6.4 NS	0.47 NS	1 U 1 U	10	1 U 1 U	10
Vinyl Chloride	0.02	0.48	0.03	1 U	1 U	1 U	10
Xylenes, Total	0.02	100	1.2	2 U	2 U	2 U	2 U
איזיטא, דטנמו	0.20	100	1.2	2 U	20	20	20

Table 1 380 4th Avenue

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Volatile Organic Compounds

			Volatile Organic Compo	ounds		
		I	AKRF Sample ID aboratory Sample ID. Date Sampled	TB-S_20230601 460-281384-7 6/01/2023	TB_20230928 460-289204-4 9/28/2023	TB-S_20230601 460-281384-7 6/01/2023
			Dilution Factor	1	μg/L	μg/L
			Unit	µg/L	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	NYSDEC PGWSCO	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	0.68	100	0.68	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	NS	NS	NS	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	NS	1 U	1 U	1 U
1,1,2-Trichloroethane	NS	NS	NS	1 U	1 U	1 U
1,1-Dichloroethane	0.27	47	0.27	1 U	1 U	1 U
1,1-Dichloroethene	0.24	0.98	0.33	1 U	1 U	1 U
1,2,3-Trichlorobenzene	NS	NS	NS	1 U	1 U	1 U
1,2,4-Trichlorobenzene	NS	NS	NS	1 U	1 U	1 U
1,2,4-Trimethylbenzene	0.51	0.52	5.9	1 U	1 U	1 U
1,2-Dibromo-3-Chloropropane	NS	NS	NS	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	NS	1 U	1 U	1 U
1,2-Dichlorobenzene	1.1	100	1.1	1 U	1 U	1 U
1,2-Dichloroethane	0.02	5.8	0.02	1 U	1 U	1 U
1,2-Dichloropropane	NS	NS	NS	1 U	1 U	1 U
1,3,5-Trimethylbenzene (Mesitylene)	0.51	0.52	3.1	1 U	1 U	1 U
1,3-Dichlorobenzene	2.4	38	2.6	1 U	1 U	1 U
1,4-Dichlorobenzene	1.8	24	1.8	1 U	1 U	1 U
2-Hexanone	NS	NS	NS	5 U	5 U	5 U
Acetone	0.03	100	0.03	5 U	5 U	5 U
Benzene	0.06	3.7	0.06	1 U	1 U	1 U
Bromochloromethane	NS	NS	NS	1 U	1 U	1 U
Bromodichloromethane	NS	NS	NS	1 U	1 U	1 U
Bromoform	NS	NS	NS	1 U	1 U	1 U
Bromomethane	NS	NS	NS	1 U	1 U	1 U
Carbon Disulfide	NS	NS	NS	1 U	1 UJ	1 U
Carbon Tetrachloride	0.76	7.1	0.76	1 U	1 U	1 U
Chlorobenzene	1.1	100	1.1	1 U	1 U	1 U
Chloroethane	NS	NS	NS	1 U	1 U	1 U
Chloroform	0.37	24	0.37	1 U	1 U	1 U
Chloromethane	NS	NS	NS	1 U	1 U	1 U
Cis-1,2-Dichloroethylene	0.19	41	0.19	1 U	1 U	1 U
Cis-1,3-Dichloropropene	NS	NS	NS	1 U	1 U	1 U
Cyclohexane	NS	NS	NS	1 U	1 U	1 U
Dibromochloromethane	NS	NS	NS	1 U	1 U	1 U
Dichlorodifluoromethane	NS	NS	NS	1 U	1 U	1 U
Ethylbenzene	1	76	1	1 U	1 U	1 U
Isopropylbenzene (Cumene)	NS	NS	NS	1 U	1 U	1 U
M,P-Xylenes	NS	NS	NS	1 U	1 U	1 U
Methyl Acetate	NS	NS	NS	5 U	5 U	5 U
Methyl Ethyl Ketone (2-Butanone)	0.1	100	0.1	5 U	5 U	5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	NS	5 U	5 U	5 U
Methylcyclohexane	NS	NS	NS	1 U	1 U	1 U
Methylene Chloride	0.05	81	0.05	1 U	1 U	1 U
N-Butylbenzene	18	100	18	1 U	1 U	1 U
N-Propylbenzene	5	100	5	1 U	1 U	1 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	NS	1 U	1 U	1 U
Sec-Butylbenzene	25	100	25	1 U	1 U	1 U
Styrene	NS	NS	NS	1 U	1 U	1 U
T-Butylbenzene	11	100	11	1 U	1 U	1 U
Tert-Butyl Methyl Ether	0.1	100	0.1	1 U	1 U	1 U
Tetrachloroethylene (PCE)	1.3	18	1.3	1 U	1 U	1 U
Toluene	0.7	100	0.7	1 U	1 U	1 U
Trans-1,2-Dichloroethene	0.19	100	0.19	1 U	1 U	1 U
Trans-1,3-Dichloropropene	NS	NS	NS	1 U	1 U	1 U
Trichloroethylene (TCE)	0.47	6.4	0.47	1 U	1 U	1 U
Trichlorofluoromethane	NS	NS	NS	1 U	1 U	1 U
Vinyl Chloride	0.02	0.48	0.03	1 U	1 U	1 U
		100	1.2	2 U	2 U	2 U

				Semivolatile Organic Compou	nds			
	La	AKRF Sample ID boratory Sample ID Date Sampled	EP-01_15_20231103 460-291818-1 11/03/2023	EP-X1_15_20231103 460-291818-8 11/03/2023	EP-02_15_20231103 460-291818-2 11/03/2023	EP-03_15_20231103 460-291818-3 11/03/2023	EP-04_15_20231103 460-291818-4 11/03/2023	EP-05_15_20231103 460-291818-5 11/03/2023
		Unit Dilution Factor	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q					
1,2,4,5-Tetrachlorobenzene	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.043 U	0.042 U	0.045 U	0.042 U	0.044 U	0.04 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
2,4,5-Trichlorophenol	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
2,4,6-Trichlorophenol	NS	NS	0.17 U	0.17 U	0.18 U	0.17 U	0.18 U	0.16 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS NS	0.17 U 0.43 U	0.17 U 0.42 U	0.18 U 0.45 U	0.17 U 0.42 U	0.18 U 0.44 U	0.16 U 0.4 U
2,4-Dinitrophenol	NS	NS	0.35 U	0.42 U	0.36 U	0.42 U	0.35 U	0.32 U
2,4-Dinitrotoluene	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U	0.082 U
2,6-Dinitrotoluene	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U	0.082 U
2-Chloronaphthalene	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
2-Chlorophenol	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
2-Methylnaphthalene	NS	NS	0.071 J	0.21 J	0.1 J	0.12 J	0.17 J	0.14 J
2-Methylphenol (O-Cresol) 2-Nitroaniline	0.33 NS	100 NS	0.43 U 0.43 U	0.42 U 0.42 U	0.45 U 0.45 U	0.42 U 0.42 U	0.44 U 0.44 U	0.4 U 0.4 U
2-Nitrophenol	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
3- And 4- Methylphenol (Total)	NS	NS	0.43 0	2.5 J	1.7	4.7	1.5	1.3
3,3'-Dichlorobenzidine	NS	NS	0.17 U	0.17 U	0.18 U	0.17 U	0.18 U	0.16 U
3-Nitroaniline	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.35 U	0.34 U	0.36 U	0.34 U	0.35 U	0.32 U
4-Bromophenyl Phenyl Ether	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
4-Chloro-3-Methylphenol	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
4-Chloroaniline 4-Chlorophenyl Phenyl Ether	NS NS	NS NS	0.43 U 0.43 U	0.42 U 0.42 U	0.45 U 0.45 U	0.42 U 0.42 U	0.44 U 0.44 U	0.4 U 0.4 U
4-Methylphenol (P-Cresol)	0.33	100	0.43 0	0.42 0 2.5 J	1.7	4.7	1.5	1.3
4-Nitroaniline	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
4-Nitrophenol	NS	NS	0.88 U	0.86 U	0.91 U	0.85 U	0.89 U	0.82 U
Acenaphthene	20	100	0.14 J	0.3 J	0.2 J	0.22 J	0.47	0.22 J
Acenaphthylene	100	100	0.026 J	0.13 J	0.034 J	0.061 J	0.11 J	0.1 J
Acetophenone	NS	NS	0.43 U	0.078 J	0.064 J	0.42 U	0.039 J	0.4 U
Anthracene	100	100	0.33 J	0.68	0.29 J	0.35 J	0.7	0.39 J
Atrazine Benzaldehyde	NS NS	NS NS	0.17 U 0.43 UJ	0.17 U 0.42 UJ	0.18 U 0.45 UJ	0.17 U 0.42 UJ	0.18 U 0.44 UJ	0.16 U 0.4 UJ
Benzo(a)Anthracene	1	1.4	1.8	1.3	0.45 05	0.42 03	1.6	0.4 03
Benzo(a)Pyrene	1	1	1.9	1.3	0.88	0.59	1.4	0.81
Benzo(b)Fluoranthene	1	1.4	2.1	1.4	0.95	0.7	1.6	0.9
Benzo(g,h,i)Perylene	0.64	4.9	1	0.66	0.52	0.34 J	0.69	0.45
Benzo(k)Fluoranthene	0.8	4.9	0.85	0.52	0.36	0.26	0.59	0.31
Benzyl Butyl Phthalate	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
Biphenyl (Diphenyl)	NS	NS	0.023 J	0.063 J	0.029 J	0.039 J	0.051 J	0.042 J
Bis(2-Chloroethoxy) Methane	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether) Bis(2-Chloroisopropyl) Ether	NS NS	NS NS	0.043 U 0.43 U	0.042 U 0.42 U	0.045 U 0.45 U	0.042 U 0.42 U	0.044 U 0.44 U	0.04 U 0.4 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.098 J	0.04 J
Caprolactam	NS	NS	0.43 UJ	0.42 UJ	0.45 UJ	0.42 UJ	0.44 UJ	0.4 UJ
Carbazole	NS	NS	0.12 J	0.19 J	0.15 J	0.14 J	0.3 J	0.13 J
Chrysene	1	4.9	2.1	1.3	0.82	0.69	1.5	0.81
Dibenz(a,h)Anthracene	0.33	0.33	0.26	0.18	0.11	0.094	0.21	0.12
Dibenzofuran	2.1	18	0.087 J	0.26 J	0.12 J	0.13 J	0.26 J	0.16 J
Diethyl Phthalate	NS	NS	0.43 U	0.42 U	0.45 U	0.42 U	0.44 U	0.4 U
Dimethyl Phthalate Di-N-Butyl Phthalate	NS NS	NS NS	0.43 U 0.43 U	0.42 U 0.42 U	0.45 U 0.45 U	0.42 U 0.42 U	0.44 U 0.44 U	0.4 U 0.4 U
Di-N-Butyl Phthalate Di-N-Octylphthalate	NS	NS NS	0.43 U 0.43 U	0.42 U 0.42 U	0.45 U 0.45 U	0.42 U 0.42 U	0.44 U 0.44 U	0.4 U 0.4 U
Fluoranthene	85	100	3.5	3.1	1.9	1.8	3.6	1.9
Fluorene	30	100	0.17 J	0.4 J	0.2 J	0.23 J	0.47	0.23 J
Hexachlorobenzene	0.33	0.33	0.043 U	0.042 U	0.045 U	0.042 U	0.044 U	0.04 U
Hexachlorobutadiene	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U	0.082 U
Hexachlorocyclopentadiene	NS	NS	0.43 R	0.42 R	0.45 R	0.42 R	0.44 R	0.4 R
Hexachloroethane	NS	NS	0.043 U	0.042 U	0.045 U	0.042 U	0.044 U	0.04 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	1.2	0.79	0.59	0.39	0.84	0.51
Isophorone Naphthalene	NS 12	NS 100	0.17 U 0.28 J	0.17 U	0.18 U	0.17 U 0.41 J	0.18 U	0.16 U 0.76
Naphthalene Nitrobenzene	12 0.08	100	0.28 J 0.043 U	0.68 J 0.042 U	0.57 0.045 U	0.41 J 0.042 U	0.51 0.044 U	0.76 0.04 U
N-Nitrosodi-N-Propylamine	0.08 NS	NS	0.043 U	0.042 U	0.045 U	0.042 U	0.044 U	0.04 U
N-Nitrosodiphenylamine	NS	NS	0.43 U	0.042 U	0.45 U	0.42 U	0.44 U	0.4 U
Pentachlorophenol	0.8	1.3	0.35 U	0.34 U	0.36 U	0.34 U	0.35 U	0.32 U
Phenanthrene	1.1	4.9	1.1 J	2.6 J	1.3	1.7	3.2	1.7
Phenol	0.33	100	0.43 U	0.42 U 2.6	0.23 J	0.37 J	0.44 U	0.54

				Semivolatile Organic Compou	nas			
	Lal	AKRF Sample ID boratory Sample ID Date Sampled	EP-06_15_20231103 460-291818-6 11/03/2023	EP-07_15_20231103 460-291818-7 11/03/2023	EP-08_15_20231110 460-292402-1 11/10/2023	EP-09_15_20231110 460-292402-2 11/10/2023	EP-10_15_20231110 460-292402-3 11/10/2023	EP-11_15_20231110 460-292402-4 11/10/2023
		Unit Dilution Factor	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q					
1,2,4,5-Tetrachlorobenzene	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.046 U	0.043 U	0.05 U	0.046 U	0.04 U	0.038 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
2,4,5-Trichlorophenol	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
2,4,6-Trichlorophenol	NS	NS	0.19 U	0.17 U	0.2 U	0.19 U	0.16 U	0.15 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS NS	0.19 U 0.46 U	0.17 U 0.43 U	0.2 U 0.5 U	0.19 U 0.46 U	0.16 U 0.4 U	0.15 U 0.38 U
2,4-Dinitrophenol	NS	NS	0.46 U	0.34 U	0.5 U 0.41 U	0.46 U	0.4 U 0.32 U	0.30 U
2,4-Dinitrotoluene	NS	NS	0.094 U	0.087 U	0.1 U	0.094 U	0.081 U	0.076 U
2,6-Dinitrotoluene	NS	NS	0.094 U	0.087 U	0.1 U	0.094 U	0.081 U	0.076 U
2-Chloronaphthalene	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
2-Chlorophenol	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
2-Methylnaphthalene	NS	NS 100	0.28 J	0.13 J	0.15 J	0.057 J	0.031 J	0.38 U
2-Methylphenol (O-Cresol) 2-Nitroaniline	0.33 NS	NS	0.46 U 0.46 U	0.43 U 0.43 U	0.023 J 0.5 U	0.46 U 0.46 U	0.4 U 0.4 U	0.38 U 0.38 U
2-Nitrophenol	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
3- And 4- Methylphenol (Total)	NS	NS	2.9	3.6	3.5	0.77	0.066 J	0.38 U
3,3'-Dichlorobenzidine	NS	NS	0.19 U	0.17 U	0.2 U	0.19 U	0.16 U	0.15 U
3-Nitroaniline	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.37 U	0.34 U	0.41 U	0.37 U	0.32 U	0.3 U
4-Bromophenyl Phenyl Ether 4-Chloro-3-Methylphenol	NS NS	NS NS	0.46 U 0.46 U	0.43 U 0.43 U	0.5 U 0.5 U	0.46 U 0.46 U	0.4 U 0.4 U	0.38 U 0.38 U
4-Chloroaniline	NS	NS NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U 0.4 U	0.38 U
4-Chlorophenyl Phenyl Ether	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
4-Methylphenol (P-Cresol)	0.33	100	2.9	3.6	3.5	0.77	0.066 J	0.38 U
4-Nitroaniline	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
4-Nitrophenol	NS	NS	0.94 U	0.87 U	1 U	0.94 U	0.81 U	0.76 U
Acenaphthene	20	100	0.48	0.27 J	0.15 J	0.13 J	0.066 J	0.38 U
Acenaphthylene	100	100	0.069 J	0.057 J	0.062 J	0.013 J	0.017 J	0.38 U
Acetophenone Anthracene	NS 100	NS 100	0.46 U 0.57	0.43 U 0.41 J	0.5 U 0.19 J	0.46 U 0.11 J	0.4 U 0.12 J	0.38 U 0.021 J
Atrazine	NS	NS	0.19 U	0.41 J	0.19 J 0.2 U	0.19 U	0.12 J	0.15 U
Benzaldehyde	NS	NS	0.08 J	0.43 UJ	0.5 UJ	0.46 UJ	0.4 UJ	0.38 UJ
Benzo(a)Anthracene	1	1.4	1.1	0.97	0.52	0.21	0.32	0.14
Benzo(a)Pyrene	1	1	1.1	0.94	0.51	0.23	0.34	0.13
Benzo(b)Fluoranthene	1	1.4	1.3	1.1	0.53	0.27	0.36	0.11
Benzo(g,h,i)Perylene	0.64	4.9	0.57	0.49	0.29 J	0.15 J	0.2 J	0.076 J
Benzo(k)Fluoranthene	0.8	4.9 NS	0.45	0.42 0.43 U	0.25 0.5 U	0.086	0.16	0.037 J
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	NS NS	NS	0.46 U 0.073 J	0.43 U 0.042 J	0.5 U 0.042 J	0.46 U 0.019 J	0.4 U 0.4 U	0.38 U 0.38 U
Bis(2-Chloroethoxy) Methane	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.046 U	0.043 U	0.05 U	0.046 U	0.04 U	0.038 U
Bis(2-Chloroisopropyl) Ether	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Caprolactam	NS	NS	0.46 UJ	0.43 UJ	0.5 U	0.46 U	0.4 U	0.38 U
Carbazole	NS	NS 4.9	0.32 J 1.2	0.15 J 0.98	0.055 J 0.56	0.042 J 0.25 J	0.03 J 0.34 J	0.38 U 0.17 J
Chrysene Dibenz(a,h)Anthracene	1 0.33	4.9 0.33	0.16	0.98	0.097	0.25 J 0.053	0.34 J 0.068	0.035 J
Dibenzofuran	2.1	18	0.18 0.28 J	0.14 0.16 J	0.097 0.067 J	0.053 0.062 J	0.088 0.036 J	0.38 U
Diethyl Phthalate	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Dimethyl Phthalate	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Di-N-Butyl Phthalate	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Di-N-Octylphthalate	NS	NS	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.38 U
Fluoranthene	85	100	3	2.3	0.97	0.6	0.66	0.14 J
Fluorene Hexachlorobenzene	30 0.33	100 0.33	0.5 0.046 U	0.26 J 0.043 U	0.13 J 0.05 U	0.095 J 0.046 U	0.054 J 0.04 U	0.38 U 0.038 U
Hexachlorobenzene Hexachlorobutadiene	0.33 NS	0.33 NS	0.046 U	0.043 U	0.05 U 0.1 U	0.046 U	0.04 U 0.081 U	0.038 U 0.076 U
Hexachlorocyclopentadiene	NS	NS	0.46 R	0.43 R	0.5 U	0.46 U	0.4 U	0.38 U
Hexachloroethane	NS	NS	0.046 U	0.043 U	0.05 U	0.046 U	0.04 U	0.038 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	0.67	0.57	0.38	0.19	0.28	0.095
Isophorone	NS	NS	0.19 U	0.17 U	0.2 U	0.19 U	0.16 U	0.15 U
Naphthalene	12	100	2.9	0.51	0.46 J	0.23 J	0.087 J	0.0065 J
Nitrobenzene N-Nitrosodi-N-Propylamine	0.08	1.8	0.046 U	0.043 U	0.05 U	0.046 U	0.04 U	0.038 U
N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine	NS NS	NS NS	0.046 U 0.46 U	0.043 U 0.43 U	0.05 U 0.5 U	0.046 U 0.46 U	0.04 U 0.4 U	0.038 U 0.38 U
Pentachlorophenol	0.8	1.3	0.46 U	0.43 U	0.5 U	0.46 U	0.4 U	0.3 U
Phenanthrene	1.1	4.9	3.1	1.8	0.67	0.6	0.32 0	0.069 J
Phenol	0.33	100	0.46 U	0.43 U	0.26 J	0.093 J	0.4 U	0.38 U
		100	2.4	1.9	0.89	0.52	0.61	0.24 J

				Semivolatile Organic Compou	nus			
		AKRF Sample ID	EP-12_15_20231110	EP-13_15_20231110	EP-14_15_20231110	EP-15_15_20231110	EP-16_20_20231127	EP-X2_20_20231127
	Lal	boratory Sample ID	460-292402-5	460-292402-6	460-292402-7	460-292402-8	460-293316-1	460-293316-8
		Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1	1
Compound		NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	0.46 U	0.51 U	0.41 U	4	0.4 UJ	0.39 UJ
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.046 U	0.051 U	0.041 U	4	0.04 U	0.039 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.46 U	0.51 U	0.41 U	4	0.4 UJ	0.39 UJ
2,4,5-Trichlorophenol	NS	NS	0.46 U	0.51 U	0.41 U		0.4 UJ	0.39 UJ
2,4,6-Trichlorophenol	NS	NS	0.19 U 0.19 U	0.21 U	0.16 U	-	0.16 UJ	0.16 UJ
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS NS	0.069 J	0.21 U 0.51 U	0.16 U 0.41 U	-	0.16 UJ 0.4 UJ	0.16 UJ 0.39 UJ
2,4-Dinitrophenol	NS	NS	0.069 J 0.37 U	0.31 U	0.33 U	-1 -	0.4 UJ 0.32 U	0.39 UJ
2.4-Dinitrotoluene	NS	NS	0.094 U	0.1 U	0.082 U	-1	0.082 UJ	0.08 UJ
2.6-Dinitrotoluene	NS	NS	0.094 U	0.1 U	0.082 U	-1 1	0.082 UJ	0.08 UJ
2-Chloronaphthalene	NS	NS	0.46 U	0.51 U	0.41 U		0.4 UJ	0.39 UJ
2-Chlorophenol	NS	NS	0.46 U	0.51 U	0.41 U	-	0.4 UJ	0.39 UJ
2-Methylnaphthalene	NS	NS	0.32 J	0.24 J	0.086 J		0.012 JL	0.39 UJ
2-Methylphenol (O-Cresol)	0.33	100	0.086 J	0.032 J	0.41 U		0.4 U	0.39 U
2-Nitroaniline	NS	NS	0.46 U	0.51 U	0.41 U		0.4 U	0.39 U
2-Nitrophenol	NS	NS	0.46 U	0.51 U	0.41 U	4	0.4 UJ	0.39 UJ
3- And 4- Methylphenol (Total)	NS	NS	2.1	2.5	1.4	4	0.4 U	0.39 U
3,3'-Dichlorobenzidine	NS	NS	0.19 U	0.21 U	0.16 U	4	0.16 U	0.16 U
3-Nitroaniline	NS	NS	0.46 U	0.51 U	0.41 U	-4	0.4 U	0.39 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.37 U	0.41 U	0.33 U	-4	0.32 U	0.32 U
4-Bromophenyl Phenyl Ether	NS NS	NS NS	0.46 U 0.46 U	0.51 U 0.51 U	0.41 U 0.41 U	-1 1	0.4 UJ 0.4 UJ	0.39 UJ 0.39 UJ
4-Chloro-3-Methylphenol 4-Chloroaniline	NS	NS	0.46 U 0.46 U	0.51 U 0.51 U	0.41 U 0.41 U	-1 1	0.4 UJ 0.4 R	0.39 UJ 0.39 R
4-Chlorophenyl Phenyl Ether	NS	NS	0.46 U	0.51 U	0.41 U	-1	0.4 UJ	0.39 UJ
4-Methylphenol (P-Cresol)	0.33	100	2.1	2.5	1.4	-1 1	0.4 U	0.39 U
4-Nitroaniline	NS	NS	0.46 U	0.51 U	0.41 U		0.4 U	0.39 U
4-Nitrophenol	NS	NS	0.94 U	1 U	0.82 U		0.82 U	0.8 U
Acenaphthene	20	100	0.63	0.45 J	0.32 J		0.03 J	0.045 J
Acenaphthylene	100	100	0.078 J	0.042 J	0.045 J		0.4 UJ	0.39 UJ
Acetophenone	NS	NS	0.46 U	0.51 U	0.41 U		0.4 U	0.39 U
Anthracene	100	100	0.84	0.6	0.32 J	over-excavated	0.039 JL	0.054 JL
Atrazine	NS	NS	0.19 U	0.21 U	0.16 U	(sample was over-excavated when petroleum hotspot was	0.16 U	0.16 U
Benzaldehyde	NS	NS	0.12 J	0.51 UJ	0.41 UJ	expanded, beyond its	0.4 UJ	0.39 UJ
Benzo(a)Anthracene	1	1.4	1.8	0.87	0.63	proposed extents in the	0.082 JL	0.11 JL
Benzo(a)Pyrene	1	1	2	0.89	0.69	RAWP, based on olfacotry	0.072 JL	0.12 JL
Benzo(b)Fluoranthene	1	1.4	2.3	1.1	0.67	observations and elevated PID	0.085 JL	0.12 JL
Benzo(g,h,i)Perylene	0.64	4.9	1.2	0.56	0.33 J	readings; and not due to	0.034 JL	0.064 JL
Benzo(k)Fluoranthene	0.8	4.9	0.81	0.33	0.3	exceedances of applicable	0.036 JL	0.06 JL
Benzyl Butyl Phthalate	NS NS	NS NS	0.46 U 0.11 J	0.51 U 0.066 J	0.41 U 0.023 J	SCOs)	0.4 UJ 0.4 UJ	0.39 UJ 0.39 UJ
Biphenyl (Diphenyl) Bis(2-Chloroethoxy) Methane	NS	NS	0.11 J	0.000 J 0.51 U	0.023 J 0.41 U	-1 '	0.4 UJ	0.39 UJ
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.046 U	0.051 U	0.041 U	-1 -	0.4 UJ	0.39 UJ 0.039 U
Bis(2-Chloroisopropyl) Ether	NS	NS	0.46 U	0.51 U	0.41 U	-1	0.4 UJ	0.39 UJ
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.46 U	0.51 U	0.41 U	-1 1	0.4 UJ	0.39 UJ
Caprolactam	NS	NS	0.46 U	0.51 U	0.41 U		0.4 U	0.39 U
Carbazole	NS	NS	0.45 J	0.32 J	0.062 J		0.4 U	0.018 J
Chrysene	1	4.9	2	1.1	0.64	J	0.083 JL	0.11 JL
Dibenz(a,h)Anthracene	0.33	0.33	0.26	0.15	0.074	[0.04 UJ	0.039 UJ
Dibenzofuran	2.1	18	0.46	0.28 J	0.084 J]	0.4 UJ	0.02 JL
Diethyl Phthalate	NS	NS	0.46 U	0.51 U	0.41 U	4	0.4 UJ	0.39 U
Dimethyl Phthalate	NS	NS	0.46 U	0.51 U	0.41 U	4	0.4 UJ	0.39 UJ
Di-N-Butyl Phthalate	NS	NS	0.46 U	0.51 U	0.41 U	4	0.024 JL	0.059 JL
Di-N-Octylphthalate	NS	NS	0.46 U	0.51 U	0.41 U		0.4 U	0.39 U
Fluoranthene	85	100	5.2	2.5	1.4		0.22 JL	0.27 JL
Fluorene	30 0.33	100 0.33	0.62	0.47 J 0.051 U	0.22 J	-1 1	0.024 J	0.034 JL
Hexachlorobenzene Hexachlorobutadiene	0.33 NS	0.33 NS	0.046 U 0.094 U	0.051 U 0.1 U	0.041 U 0.082 U	-1 1	0.04 UJ 0.082 UJ	0.039 UJ 0.08 UJ
Hexachlorocyclopentadiene	NS	NS	0.094 U 0.46 U	0.1 U 0.51 U	0.082 0 0.41 U	-1 1	0.082 UJ 0.4 U	0.08 UJ 0.39 U
Hexachloroethane	NS	NS	0.046 U	0.051 U	0.041 U	-1	0.04 U	0.039 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	1.4	0.031 0	0.44	-1 I	0.035 J	0.039 0
Isophorone	NS	NS	0.19 U	0.21 U	0.16 U	1 1	0.16 U	0.16 U
Naphthalene	12	100	3.2	0.75	0.29 J	1 1	0.035 J	0.04 J
Nitrobenzene	0.08	1.8	0.046 U	0.051 U	0.041 U	1 1	0.04 UJ	0.039 UJ
N-Nitrosodi-N-Propylamine	NS	NS	0.046 U	0.051 U	0.041 U		0.04 U	0.039 U
N-Nitrosodiphenylamine	NS	NS	0.46 U	0.51 U	0.41 U		0.4 UJ	0.39 UJ
Pentachlorophenol	0.8	1.3	0.37 U	0.41 U	0.33 U	[0.32 U	0.32 U
Phenanthrene	1.1	4.9	5.1	3	1.2	[0.19 JL	0.25 JL
Phenol	0.33	100	0.36 J	0.44 J	0.047 J	4	0.4 U	0.39 U
Pyrene	64	100	4.3	2.2	1.4		0.2 JL	0.26 JL

				Semivolatile Organic Compo	1103			
		AKRF Sample ID	EP-17_15_20231127	EP-17_15_20231127	EP-18_17.5_20231127	EP-18_17.5_20231127	EP-19_17.5_20231127	EP-20_17.5_20231127
	Lal	boratory Sample ID	460-293316-2	460-293316-2	460-293316-3	460-293316-3	460-293316-4	460-293316-5
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	2	1	5	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.046 U	NR	0.046 U	NR	0.048 U	0.038 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
2,4,5-Trichlorophenol	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
2,4,6-Trichlorophenol	NS	NS	0.18 U	NR	0.40 U	NR	0.40 U	0.30 U
2,4-Dichlorophenol	NS	NS	0.18 U	NR	0.18 U	NR	0.19 U	0.15 U
2,4-Dimethylphenol	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.13 U
2,4-Dinitrophenol	NS	NS	0.40 0	NR	0.40 U	NR	0.48 U	0.3 U
2,4-Dinitrotoluene	NS	NS	0.093 U	NR	0.093 U	NR	0.098 U	0.076 U
2,6-Dinitrotoluene	NS	NS	0.093 U	NR	0.093 U	NR	0.098 U	0.076 U
2-Chloronaphthalene	NS	NS	0.46 U	NR	0.46 U	NR	0.098 U 0.48 U	0.38 U
	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
2-Chlorophenol		NS	0.46 0	NR	2.1	NR	0.48 U 0.13 J	0.38 U
2-Methylnaphthalene	NS 0.33			NR	0.46 U	NR		
2-Methylphenol (O-Cresol)		100	0.46 U				0.48 U	0.38 U
2-Nitroaniline	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
2-Nitrophenol	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
3- And 4- Methylphenol (Total)	NS	NS	1.1	NR	0.48	NR	2	0.38 U
3,3'-Dichlorobenzidine	NS	NS	0.18 U	NR	0.18 U	NR	0.19 U	0.15 U
3-Nitroaniline	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.37 U	NR	0.37 U	NR	0.39 U	0.3 U
4-Bromophenyl Phenyl Ether	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
4-Chloro-3-Methylphenol	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
4-Chloroaniline	NS	NS	0.46 R	NR	0.46 R	NR	0.48 R	0.38 R
4-Chlorophenyl Phenyl Ether	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
4-Methylphenol (P-Cresol)	0.33	100	1.1	NR	0.48	NR	2	0.38 U
4-Nitroaniline	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
4-Nitrophenol	NS	NS	0.93 U	NR	0.93 U	NR	0.98 U	0.76 U
Acenaphthene	20	100	6.2	NR	9	NR	0.51	0.38 U
Acenaphthylene	100	100	0.29 J	NR	0.34 J	NR	0.019 J	0.38 U
Acetophenone	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Anthracene	100	100	6.1	NR	NR	12 D	0.63	0.38 U
Atrazine	NS	NS	0.18 U	NR	0.18 U	NR	0.19 U	0.15 U
Benzaldehyde	NS	NS	0.46 UJ	NR	0.46 UJ	NR	0.48 UJ	0.38 UJ
Benzo(a)Anthracene	1	1.4	7.8	NR	NR	13 D	2.4	0.038 U
Benzo(a)Pyrene	1	1	8.5	NR	NR	13 D	2.8	0.038 U
Benzo(b)Fluoranthene	1	1.4	8.4	NR	NR	13 D	2.9	0.013 J
Benzo(g,h,i)Perylene	0.64	4.9	4.6	NR	7.9	NR	1.5	0.38 U
Benzo(k)Fluoranthene	0.8	4.9	3.1	NR	6.2	NR	1.2	0.038 U
Benzyl Butyl Phthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Biphenyl (Diphenyl)	NS	NS	0.18 J	NR	1	NR	0.038 J	0.38 U
Bis(2-Chloroethoxy) Methane	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.046 U	NR	0.046 U	NR	0.048 U	0.038 U
Bis(2-Chloroisopropyl) Ether	NS	NS	0.46 UJ	NR	0.46 UJ	NR	0.48 UJ	0.38 UJ
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Caprolactam	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Carbazole	NS	NS	0.98	NR	4.6	NR	0.19 J	0.38 U
Chrysene	1	4.9	7.1	NR	NR	12 D	2.4	0.38 U
Dibenz(a,h)Anthracene	0.33	0.33	0.9	NR	2.2	NR	0.41	0.038 U
Dibenzofuran	2.1	18	0.89	NR	6.7	NR	0.17 J	0.38 U
Diethyl Phthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Dimethyl Phthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Di-N-Butyl Phthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.057 J	0.38 U
Di-N-Octylphthalate	NS	NS	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Fluoranthene	85	100	NR	19 D	0.40 0 NR	35 D	4.7	0.017 J
Fluorene	30	100	3.8	NR	9.2	NR	4.7 0.29 J	0.38 U
Hexachlorobenzene	0.33	0.33	0.046 U	NR	9.2 0.046 U	NR	0.29 J 0.048 U	0.038 U
Hexachlorobutadiene	NS	0.33 NS	0.093 U	NR	0.093 U	NR	0.098 U	0.038 U
Hexachlorocyclopentadiene	NS	NS	0.46 U	NR	0.093 U 0.46 U	NR	0.098 U	0.38 U
Hexachloroethane	NS	NS	0.046 U	NR	0.46 U	NR	0.48 U	0.038 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	5.2	NR	9.4	NR	1.8	0.038 U
	NS	NS	0.18 U	NR	0.18 U	NR	0.19 U	0.038 U
Isophorone	NS 12	100	2.2	NR		NR		0.15 U 0.38 U
Naphthalene Nitrobenzene	0.08	100	2.2 0.046 U	NR	4.2 0.046 U	NR	0.75 0.048 U	0.38 U 0.038 U
		1.8 NS	0.046 U	NR	0.046 U		0.048 U	
N-Nitrosodi-N-Propylamine	NS					NR		0.038 U
N-Nitrosodiphenylamine	NS	NS 1.2	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Pentachlorophenol	0.8	1.3	0.37 U	NR	0.37 U	NR	0.39 U	0.3 U
Phenanthrene	1.1	4.9	NR	20 D	NR	48 D	2.4	0.38 U
Phenol	0.33	100	0.46 U	NR	0.46 U	NR	0.48 U	0.38 U
Pyrene	64	100	NR	19 D	NR	30 D	5.2	0.017 J

				Semivolatile Organic Compou	103			
		AKRF Sample ID	EP-21_20_20231129	EP-22_17.5_20231129	EP-23_17.5_20231129	EP-24_20_20231129	EP-25_19.5_20231207	EP-26_17.5_20231207
	Lat	boratory Sample ID	460-293467-1	460-293467-2	460-293467-3	460-293467-4	460-294189-1	460-294189-2
		Date Sampled	11/29/2023	11/29/2023	11/29/2023	11/29/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.041 U	0.038 U	0.034 U	0.036 U	0.035 U	0.037 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
2,4,5-Trichlorophenol	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 U	0.37 U
2,4,6-Trichlorophenol	NS	NS	0.16 U	0.15 U	0.14 U	0.15 U	0.14 U	0.15 U
2,4-Dichlorophenol	NS	NS	0.16 U	0.15 U	0.14 U	0.15 U	0.14 U	0.15 U
2,4-Dimethylphenol	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 U	0.37 U
2,4-Dinitrophenol	NS	NS	0.33 U	0.3 U	0.28 U	0.29 U	0.28 U	0.3 U
2,4-Dinitrotoluene	NS	NS	0.082 U	0.077 U	0.07 U	0.074 U	0.072 U	0.075 U
2,6-Dinitrotoluene	NS	NS	0.082 U	0.077 U	0.07 U	0.074 U	0.072 U	0.075 U
2-Chloronaphthalene	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
2-Chlorophenol	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
2-Methylnaphthalene	NS	NS	0.13 J	0.38 U	0.63	0.36 U	0.08 J	0.076 J
2-Methylphenol (O-Cresol)	0.33	100	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
2-Nitroaniline	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
2-Nitrophenol	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
3- And 4- Methylphenol (Total)	NS	NS	0.41 U	0.38 U	0.15 J	0.36 U	0.042 J	0.37 U
3,3'-Dichlorobenzidine	NS	NS	0.16 U	0.15 U	0.14 U	0.15 U	0.14 U	0.15 U
3-Nitroaniline	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 U	0.37 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.33 U	0.3 U	0.28 U	0.29 U	0.28 U	0.3 U
4-Bromophenyl Phenyl Ether	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
4-Chloro-3-Methylphenol	NS NS	NS NS	0.41 U 0.41 U	0.38 U 0.38 U	0.34 U 0.34 U	0.36 U 0.36 U	0.35 U 0.35 U	0.37 U 0.37 U
4-Chloroaniline	NS	NS NS	0.41 U 0.41 U					0.37 U 0.37 U
4-Chlorophenyl Phenyl Ether 4-Methylphenol (P-Cresol)	0.33	100	0.41 U	0.38 U 0.38 U	0.34 U 0.15 J	0.36 U 0.36 U	0.35 U 0.042 J	0.37 U
			0.41 U					
4-Nitroaniline	NS NS	NS NS		0.38 U 0.77 U	0.34 U 0.7 U	0.36 U	0.35 U	0.37 U
4-Nitrophenol	20	100	0.82 U 0.013 J	0.77 U 0.38 U	0.7 0	0.74 U 0.36 U	0.72 U 0.088 J	0.75 U 0.02 J
Acenaphthene	100	100	0.013 J 0.41 U	0.38 U	0.02 J	0.36 U	0.088 J 0.019 J	0.37 U
Acenaphthylene Acetophenone	NS	NS	0.41 U	0.38 U	0.02 J 0.34 U	0.36 U	0.35 U	0.37 U
Anthracene	100	100	0.02 J	0.38 U	2.2	0.36 U	0.33 0 0.17 J	0.048 J
Atrazine	NS	NS	0.16 U	0.15 U	0.14 U	0.15 U	0.14 U	0.15 U
Benzaldehyde	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 UJ	0.37 UJ
Benzo(a)Anthracene	1	1.4	0.035 J	0.038 U	2.7	0.036 U	0.23	0.092
Benzo(a)Pyrene	1	1	0.019 J	0.038 U	2.6	0.036 U	0.25	0.058
Benzo(b)Fluoranthene	1	1.4	0.027 J	0.038 U	2.8	0.036 U	0.26	0.065
Benzo(g,h,i)Perylene	0.64	4.9	0.013 J	0.38 U	1.1	0.36 U	0.16 J	0.024 J
Benzo(k)Fluoranthene	0.8	4.9	0.012 J	0.038 U	1	0.036 U	0.12	0.023 J
Benzyl Butyl Phthalate	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Biphenyl (Diphenyl)	NS	NS	0.41 U	0.38 U	0.046 J	0.36 U	0.35 U	0.37 U
Bis(2-Chloroethoxy) Methane	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.041 U	0.038 U	0.034 U	0.036 U	0.035 U	0.037 U
Bis(2-Chloroisopropyl) Ether	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 U	0.37 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.066 J	0.37 U
Caprolactam	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Carbazole	NS	NS	0.41 U	0.38 U	0.42	0.36 U	0.022 J	0.37 U
Chrysene	1	4.9	0.024 J	0.38 U	2.5	0.36 U	0.26 J	0.1 J
Dibenz(a,h)Anthracene	0.33	0.33	0.041 U	0.038 U	0.33	0.036 U	0.057	0.037 U
Dibenzofuran	2.1	18	0.41 U	0.38 U	0.38	0.36 U	0.062 J	0.019 J
Diethyl Phthalate	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Dimethyl Phthalate	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Di-N-Butyl Phthalate	NS	NS	0.069 J	0.38 U	0.099 J	0.36 U	0.35 U	0.37 U
Di-N-Octylphthalate	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Fluoranthene	85	100	0.067 J	0.38 U	6.4	0.36 U	0.7	0.23 J
Fluorene	30	100	0.41 U	0.38 U	0.72	0.36 U	0.1 J	0.029 J
Hexachlorobenzene	0.33	0.33	0.041 U	0.038 U	0.034 U	0.036 U	0.035 U	0.037 U
Hexachlorobutadiene	NS	NS	0.082 UJ	0.077 UJ	0.07 UJ	0.074 UJ	0.072 U	0.075 U
Hexachlorocyclopentadiene	NS	NS	0.41 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.35 UJ	0.37 U
Hexachloroethane	NS	NS	0.041 U	0.038 U	0.034 U	0.036 U	0.035 U	0.037 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	0.041 U	0.038 U	1.3	0.036 U	0.21	0.063
Isophorone	NS	NS	0.16 U	0.15 U	0.14 U	0.15 U	0.14 U	0.15 UJ
Naphthalene	12	100	0.41 U	0.38 U	0.23 J	0.36 U	0.16 J	0.37 U
Nitrobenzene	0.08	1.8	0.041 U	0.038 U	0.034 U	0.036 U	0.035 U	0.037 U
N-Nitrosodi-N-Propylamine	NS	NS	0.041 UJ	0.038 UJ	0.034 UJ	0.036 UJ	0.035 U	0.037 U
N-Nitrosodiphenylamine	NS	NS	0.41 U	0.38 U	0.34 U	0.36 U	0.35 U	0.37 U
Pentachlorophenol	0.8	1.3	0.33 U	0.3 U	0.28 U	0.29 U	0.28 U	0.3 U
Phenanthrene	1.1	4.9	0.055 J	0.38 U	6.8	0.36 U	0.73	0.11 J
Phenol	0.33	100	0.41 U	0.38 U	0.34 U	0.36 U	0.016 J	0.37 U
Pyrene	64	100	0.073 J	0.38 U	5.5	0.36 U	0.6	0.21 J

	Semivolatile Organic Compounds								
	Lat	AKRF Sample ID poratory Sample ID	EP-27_22.5_20231207 460-294189-3	EP-27_22.5_20231207 460-294189-3	EP-28_22.5_20231207 460-294189-4	EP-29_22.5_20231207 460-294189-5	EP-30_22.5_20231207 460-294189-6	EP-31_22.5_20231207 460-294189-7	
		Date Sampled	12/07/2023	12/07/2023	12/07/2023	12/07/2023	12/07/2023	12/07/2023	
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
		Dilution Factor	1	5	1	1	1	1	
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q						
1,2,4,5-Tetrachlorobenzene	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.037 U	NR	0.037 U	0.042 U	0.041 U	0.04 U	
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	NS NS	NS NS	0.37 U 0.37 U	NR NR	0.37 U 0.37 U	0.42 U 0.42 U	0.41 U 0.41 U	0.4 U 0.4 U	
2,4,6-Trichlorophenol	NS	NS	0.15 U	NR	0.15 U	0.42 0 0.17 U	0.41 U	0.4 U	
2,4-Dichlorophenol	NS	NS	0.15 U	NR	0.15 U	0.17 U	0.17 U	0.16 U	
2,4-Dimethylphenol	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.057 J	
2,4-Dinitrophenol	NS	NS	0.29 U	NR	0.3 U	0.34 U	0.33 U	0.33 U	
2,4-Dinitrotoluene	NS	NS	0.074 U	NR	0.075 U	0.085 U	0.084 U	0.082 U	
2,6-Dinitrotoluene	NS	NS	0.074 U	NR	0.075 U	0.085 U	0.084 U	0.082 U	
2-Chloronaphthalene	NS NS	NS NS	0.37 U 0.37 U	NR NR	0.37 U 0.37 U	0.03 J 0.42 U	0.41 U 0.41 U	0.4 U	
2-Chlorophenol 2-Methylnaphthalene	NS	NS	3.8	NR	0.37 U 0.16 J	0.42 0	0.41 0	0.4 U 0.38 J	
2-Methylphenol (O-Cresol)	0.33	100	0.37 U	NR	0.10 J 0.37 U	0.42 U	0.058 J	0.38 J	
2-Nitroaniline	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
2-Nitrophenol	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
3- And 4- Methylphenol (Total)	NS	NS	0.37 U	NR	0.2 J	1.1	3.1	3.4	
3,3'-Dichlorobenzidine	NS	NS	0.15 U	NR	0.15 U	0.17 U	0.17 U	0.16 U	
3-Nitroaniline	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
4,6-Dinitro-2-Methylphenol	NS	NS	0.29 U	NR	0.3 U	0.34 U	0.33 U	0.33 U	
4-Bromophenyl Phenyl Ether	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
4-Chloro-3-Methylphenol 4-Chloroaniline	NS NS	NS NS	0.37 U 0.37 U	NR NR	0.37 U 0.37 U	0.42 U 0.42 U	0.41 U 0.41 U	0.4 U 0.4 U	
4-Chlorophenyl Phenyl Ether	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
4-Methylphenol (P-Cresol)	0.33	100	0.37 U	NR	0.2 J	1.1	3.1	3.4	
4-Nitroaniline	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
4-Nitrophenol	NS	NS	0.74 U	NR	0.75 U	0.85 U	0.84 U	0.82 U	
Acenaphthene	20	100	1.2	NR	0.45	0.58	1.1	0.75	
Acenaphthylene	100	100	0.21 J	NR	0.041 J	0.21 J	0.074 J	0.1 J	
Acetophenone	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Anthracene	100	100	0.46	NR	1	1.5	0.85	1.1	
Atrazine	NS	NS	0.15 U	NR NR	0.15 U 0.37 UJ	0.17 U	0.17 U	0.16 U	
Benzaldehyde Benzo(a)Anthracene	NS 1	NS 1.4	0.37 UJ 0.32	NR	0.37 0J 1.6	0.42 UJ 4.2	0.41 UJ 1.2	0.4 UJ 1.9	
Benzo(a)Pyrene	1	1.4	0.36	NR	1.6	4.2	1.1	2.1	
Benzo(b)Fluoranthene	1	1.4	0.29	NR	1.7	6.3	1.3	2.3	
Benzo(g,h,i)Perylene	0.64	4.9	0.23 J	NR	0.99	3	0.65	0.99	
Benzo(k)Fluoranthene	0.8	4.9	0.14	NR	0.69	2.3	0.46	0.91	
Benzyl Butyl Phthalate	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Biphenyl (Diphenyl)	NS	NS	0.068 J	NR	0.046 J	0.14 J	0.14 J	0.13 J	
Bis(2-Chloroethoxy) Methane	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.037 U	NR	0.037 U	0.042 U	0.041 U	0.04 U	
Bis(2-Chloroisopropyl) Ether	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Bis(2-Ethylhexyl) Phthalate Caprolactam	NS NS	NS NS	0.24 J 0.37 U	NR NR	0.37 U 0.37 U	0.069 J 0.42 U	0.41 U 0.41 U	0.4 U 0.4 U	
Carbazole	NS	NS	0.092 J	NR	0.37 U	0.42 0 0.31 J	0.51	0.34 J	
Chrysene	1	4.9	0.29 J	NR	1.5	4.3	1.1	2.1	
Dibenz(a,h)Anthracene	0.33	0.33	0.052	NR	0.2	0.76	0.16	0.26	
Dibenzofuran	2.1	18	0.15 J	NR	0.26 J	0.48	0.58	0.43	
Diethyl Phthalate	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Dimethyl Phthalate	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Di-N-Butyl Phthalate	NS	NS	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Di-N-Octylphthalate	NS	NS 100	0.37 U	NR	0.37 U	0.42 U	0.41 U	0.4 U	
Fluoranthene	85 30	100 100	0.9	NR NR	4.1 0.42	8.1 0.61	2.9 0.97	4.9 0.64	
Fluorene Hexachlorobenzene	0.33	0.33	0.52 0.037 U	NR	0.42 0.037 U	0.61 0.042 U	0.97 0.041 U	0.64 0.04 U	
Hexachlorobutadiene	0.33 NS	0.33 NS	0.074 U	NR	0.037 U	0.042 U 0.085 U	0.041 0	0.04 U	
Hexachlorocyclopentadiene	NS	NS	0.37 UJ	NR	0.37 UJ	0.42 UJ	0.004 0 0.41 UJ	0.4 UJ	
Hexachloroethane	NS	NS	0.037 U	NR	0.037 U	0.042 U	0.041 U	0.04 U	
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	0.26	NR	1.2	3.6	0.79	1.4	
Isophorone	NS	NS	0.15 U	NR	0.15 U	0.17 U	0.17 U	0.16 U	
Naphthalene	12	100	NR	25 D	0.36 J	1.7	2	1.6	
Nitrobenzene	0.08	1.8	0.037 U	NR	0.037 U	0.042 U	0.041 U	0.04 U	
N-Nitrosodi-N-Propylamine	NS	NS	0.037 U	NR	0.037 U	0.042 U	0.041 U	0.04 U	
N-Nitrosodiphenylamine	NS 0.8	NS 1.2	0.37 U	NR NR	0.37 U	0.42 U	0.41 U	0.4 U 0.33 U	
	U.Ö	1.3	0.29 U	INTS.	0.3 U	0.34 U	0.33 U		
Pentachlorophenol Phenanthrepe			1.4	NR	3.8	4.6	37	12	
Pentachlorophenol Phenanthrene Phenol	1.1 0.33	4.9 100	1.4 0.37 U	NR NR	3.8 0.018 J	4.6 0.087 J	3.7 0.27 J	4.2 0.33 J	

				Semivolatile Organic Compou	inds			
	Lat	AKRF Sample ID boratory Sample ID Date Sampled	EP-32_22.5_20231207 460-294189-8 12/07/2023	EP-33_22.5_20231207 460-294189-9 12/07/2023	EP-33_22.5_20231207 460-294189-9 12/07/2023	EP-34_22.5_20231207 460-294189-10 12/07/2023	EP-34_22.5_20231207 460-294189-10 12/07/2023	EP-35_25_20231207 460-294189-11 12/07/2023
		Unit	mg/kg 1	mg/kg	mg/kg 10	mg/kg 1	mg/kg 5	mg/kg
Compound		Dilution Factor NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	5 CONC Q	CONC Q
Compound 1.2.4.5-Tetrachlorobenzene	NS	NS NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
1.4-Dioxane (P-Dioxane)	0.1	5.7	0.46 U	0.042 U	NR	0.042 U	NR	0.043 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2,4,5-Trichlorophenol	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2,4,6-Trichlorophenol	NS	NS	0.19 U	0.17 U	NR	0.17 U	NR	0.17 U
2,4-Dichlorophenol	NS	NS	0.19 U	0.17 U	NR	0.17 U	NR	0.17 U
2,4-Dimethylphenol	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2,4-Dinitrophenol	NS	NS	0.37 U	0.34 U	NR	0.34 U	NR	0.35 U
2,4-Dinitrotoluene	NS	NS	0.094 U	0.086 U	NR	0.086 U	NR	0.088 U
2,6-Dinitrotoluene 2-Chloronaphthalene	NS NS	NS NS	0.094 U 0.46 U	0.086 U 0.42 U	NR NR	0.086 U 0.42 U	NR NR	0.088 U 0.43 U
2-Chlorophenol	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2-Methylnaphthalene	NS	NS	0.11 J	3.9	NR	3.6	NR	5.5
2-Methylphenol (O-Cresol)	0.33	100	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2-Nitroaniline	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
2-Nitrophenol	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
3- And 4- Methylphenol (Total)	NS	NS	1.8	2.5	NR	1.1	NR	1
3,3'-Dichlorobenzidine	NS	NS	0.19 U	0.17 U	NR	0.17 U	NR	0.17 U
3-Nitroaniline	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
4,6-Dinitro-2-Methylphenol 4-Bromophenyl Phenyl Ether	NS NS	NS NS	0.37 U 0.46 U	0.34 U 0.42 U	NR NR	0.34 U 0.42 U	NR NR	0.35 U 0.43 U
4-Bromophenyl Phenyl Ether 4-Chloro-3-Methylphenol	NS	NS NS	0.46 U 0.46 U	0.42 U 0.42 U	NR NR	0.42 U 0.42 U	NR	0.43 U 0.43 U
4-Chloroaniline	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
4-Chlorophenyl Phenyl Ether	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
4-Methylphenol (P-Cresol)	0.33	100	1.8	2.5	NR	1.1	NR	1
4-Nitroaniline	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
4-Nitrophenol	NS	NS	0.94 U	0.86 U	NR	0.86 U	NR	0.88 U
Acenaphthene	20	100	0.45 J	4.8	NR	5	NR	3.4
Acenaphthylene	100	100	0.039 J	2.8	NR	3.3	NR	1.4
Acetophenone	NS	NS	0.46 U	0.42 U	NR	0.087 J	NR	0.43 U
Anthracene Atrazine	100 NS	100 NS	1.1 0.19 U	5.9 0.17 U	NR NR	9.3 0.17 U	NR NR	4.2 0.17 UJ
Benzaldehyde	NS	NS	0.46 UJ	0.17 U 0.42 UJ	NR	0.17 U 0.42 UJ	NR	0.17 UJ 0.43 UJ
Benzo(a)Anthracene	1	1.4	2	5.3	NR	5.4	NR	2.9
Benzo(a)Pyrene	1	1	2.2	5.7	NR	6.8	NR	3.6
Benzo(b)Fluoranthene	1	1.4	2.1	5.3	NR	5.2	NR	3.2
Benzo(g,h,i)Perylene	0.64	4.9	1.2	2.5	NR	3.9	NR	2
Benzo(k)Fluoranthene	0.8	4.9	0.85	2.2	NR	2	NR	1
Benzyl Butyl Phthalate	NS	NS	0.46 U	0.42 U	NR	0.26 J	NR	0.49
Biphenyl (Diphenyl)	NS	NS	0.045 J	0.44	NR	0.87	NR	0.56
Bis(2-Chloroethoxy) Methane	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.046 U	0.042 U 0.42 U	NR NR	0.042 U 0.42 U	NR NR	0.043 U 0.43 U
Bis(2-Chloroisopropyl) Ether Bis(2-Ethylhexyl) Phthalate	NS NS	NS NS	0.46 U 0.46 U	0.42 U 0.065 J	NR	0.42 U 0.42 U	NR	0.43 U
Caprolactam	NS	NS	0.46 U	0.065 J 0.42 U	NR	0.42 U	NR	0.43 U
Carbazole	NS	NS	0.26 J	0.6	NR	0.29 J	NR	0.31 J
Chrysene	1	4.9	1.9	4.8	NR	5.3	NR	2.9
Dibenz(a,h)Anthracene	0.33	0.33	0.23	0.49	NR	0.56	NR	0.33
Dibenzofuran	2.1	18	0.2 J	0.94	NR	0.46	NR	0.46
Diethyl Phthalate	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
Dimethyl Phthalate	NS	NS	0.46 U	0.42 U	NR	0.42 U	NR	0.43 U
Di-N-Butyl Phthalate	NS	NS	0.46 U	0.42 U 0.42 U	NR NR	0.42 U	NR NR	0.43 U
Di-N-Octylphthalate Fluoranthene	NS 85	NS 100	0.46 U 5	0.42 U NR	11 D	0.42 U NR	NR 14	0.43 U 8.1
Fluorene	30	100	0.45 J	4.6	NR	5.4	NR	4.1
Hexachlorobenzene	0.33	0.33	0.046 U	0.042 U	NR	0.042 U	NR	0.043 U
Hexachlorobutadiene	NS	NS	0.094 U	0.086 U	NR	0.086 U	NR	0.088 U
Hexachlorocyclopentadiene	NS	NS	0.46 U	0.42 UJ	NR	0.42 U	NR	0.43 U
Hexachloroethane	NS	NS	0.046 U	0.042 U	NR	0.042 U	NR	0.043 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	1.4	2.6	NR	3.5	NR	1.9
Isophorone	NS	NS	0.19 U	0.17 U	NR	0.17 U	NR	0.17 U
Naphthalene	12	100	0.55	NR	45 D	NR	27	NR
Nitrobenzene	0.08	1.8	0.046 U	0.042 U	NR	0.042 U	NR	0.043 U
N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine	NS NS	NS NS	0.046 U 0.46 U	0.042 U 0.42 U	NR NR	0.042 U 0.42 U	NR NR	0.043 U 0.43 U
Pentachlorophenol	0.8	1.3	0.46 U	0.34 U	NR	0.42 0 0.34 U	NR	0.35 U
	1.1	4.9	3.9	0.54 0 NR	14 D	NR	18	NR
Phenanthrene								
Phenanthrene Phenol	0.33	100	0.46 U	0.27 J	NR	0.42 U	NR	0.12 J

				Semivolatile Organic Compou	inds			
		AKRF Sample ID	EP-35_25_20231207	EP-35_25_20231207	EP-36_25_20231207	EP-37_17.5_20231215	EP-X3_20231215	EP-38_17.5_20231215
	Lal	boratory Sample ID	460-294189-11	460-294189-11	460-294189-12	460-294775-1	460-294775-9	460-294775-2
		Date Sampled	12/07/2023	12/07/2023	12/07/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	10	50	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	NR	NR	0.042 U	0.041 UJ	0.042 UJ	0.035 U
2,3,4,6-Tetrachlorophenol	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
2,4,5-Trichlorophenol	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
2,4,6-Trichlorophenol	NS	NS	NR	NR	0.17 U	0.17 UJ	0.17 UJ	0.14 U
2,4-Dichlorophenol	NS	NS	NR	NR	0.17 U	0.17 UJ	0.17 UJ	0.14 U
2,4-Dimethylphenol	NS	NS	NR	NR	0.42 U	0.094 JL	0.42 UJ	0.35 U
2,4-Dinitrophenol	NS	NS	NR	NR	0.34 U	0.33 UJ	0.34 UJ	0.28 U
2,4-Dinitrotoluene	NS	NS	NR	NR	0.085 U	0.084 UJ	0.085 UJ	0.071 U
2,6-Dinitrotoluene	NS	NS	NR	NR	0.085 U	0.084 UJ	0.085 UJ	0.071 U
2-Chloronaphthalene	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
2-Chlorophenol	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
2-Methylnaphthalene	NS	NS	NR	NR	0.32 J	0.98 JL	0.64 JL	0.38
2-Methylphenol (O-Cresol)	0.33	100	NR	NR	0.04 J	0.41 UJ	0.42 UJ	0.35 U
2-Nitroaniline	NS	NS	NR	NR	0.42 U	0.41 U	0.42 U	0.35 U
2-Nitrophenol	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
3- And 4- Methylphenol (Total)	NS	NS	NR	NR	3	1 J	1 JL	1.5
3,3'-Dichlorobenzidine	NS	NS	NR	NR	0.17 U	0.17 U	0.17 U	0.14 U
3-Nitroaniline	NS	NS	NR	NR	0.42 U	0.41 U	0.42 U	0.35 U
4,6-Dinitro-2-Methylphenol	NS	NS	NR	NR	0.34 U	0.33 UJ	0.34 UJ	0.28 U
4-Bromophenyl Phenyl Ether	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
4-Chloro-3-Methylphenol	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
4-Chloroaniline	NS	NS	NR	NR	0.42 U	0.41 U	0.42 U	0.35 U
4-Chlorophenyl Phenyl Ether	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
4-Methylphenol (P-Cresol)	0.33	100	NR	NR	3	1 J	1 JL	1.5
4-Nitroaniline	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 U	0.35 U
4-Nitrophenol	NS	NS	NR	NR	0.85 U	0.84 U	0.85 U	0.71 U
Acenaphthene	20	100	NR	NR	0.5	0.61 JL	1.7 JL	0.72
Acenaphthylene	100	100	NR	NR	0.07 J	0.22 JL	0.47 JL	0.16 J
Acetophenone	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Anthracene	100	100	NR	NR	0.9	0.86 JL	2.8 JL	1.4
Atrazine	NS	NS	NR	NR	0.041 JK	0.17 U	0.17 U	0.14 U
Benzaldehyde	NS	NS	NR	NR	0.42 UJ	0.41 UJ	0.17 J	0.08 J
Benzo(a)Anthracene	1	1.4	NR	NR	1.4	1.4 JL	4.6 JL	2.4
Benzo(a)Pyrene	1	1	NR	NR	1.4	1.6 J	5 J	2.8
Benzo(b)Fluoranthene	1	1.4	NR	NR	1.6	1.9 JL	5.5 JL	3.1
Benzo(g,h,i)Perylene	0.64	4.9	NR	NR	0.73	1.2 JL	3 JL	1.6
Benzo(k)Fluoranthene	0.8	4.9	NR	NR	0.57	0.59 JL	1.5 JL	1.2
Benzyl Butyl Phthalate	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Biphenyl (Diphenyl)	NS	NS	NR	NR	0.14 J	0.16 JL	0.096 JL	0.13 J
Bis(2-Chloroethoxy) Methane	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	NR	NR	0.042 U	0.041 UJ	0.042 UJ	0.035 U
Bis(2-Chloroisopropyl) Ether	NS	NS	NR	NR	0.42 U	0.41 U	0.42 U	0.35 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	NR	NR	0.42 U	0.05 JL	0.084 JL	0.35 U
Caprolactam	NS	NS	NR	NR	0.42 U	0.41 U	0.42 U	0.35 U
Carbazole	NS	NS	NR	NR	0.32 J	0.38 JL	0.6 JL	0.39
Chrysene	1	4.9	NR	NR	1.5	1.5 JL	4.1 JL	2.5
Dibenz(a,h)Anthracene	0.33	0.33	NR	NR	0.22	0.22 JL	0.62 JL	0.32
Dibenzofuran	2.1	18	NR	NR	0.41 J	0.65 JL	0.99 JL	0.56
Diethyl Phthalate	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Dimethyl Phthalate	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Di-N-Butyl Phthalate	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Di-N-Octylphthalate	NS	NS	NR	NR	0.42 U	0.41 UJ	0.42 UJ	0.35 U
Fluoranthene	85	100	NR	NR	3.4	3.4 JL	9.7 JL	5.9
Fluorene	30	100	NR	NR	0.54	0.79 JL	1.7 JL	0.8
Hexachlorobenzene	0.33	0.33	NR	NR	0.042 U	0.041 U	0.042 U	0.035 U
Hexachlorobutadiene	NS	NS	NR	NR	0.085 U	0.084 UJ	0.085 UJ	0.071 U
Hexachlorocyclopentadiene	NS	NS	NR	NR	0.42 U	0.41 R	0.42 R	0.35 UJ
Hexachloroethane	NS	NS	NR	NR	0.042 U	0.041 UJ	0.042 UJ	0.035 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	NR	NR	0.88	1.2	3.1	1.9
Isophorone	NS	NS	NR	NR	0.17 U	0.17 UJ	0.17 UJ	0.14 U
Naphthalene	12	100	NR	150 D	1.2	3.5 JL	1.3 JL	1.9
Nitrobenzene	0.08	1.8	NR	NR	0.042 U	0.041 UJ	0.042 UJ	0.035 U
N-Nitrosodi-N-Propylamine	NS	NS	NR	NR	0.042 U	0.041 UJ	0.042 UJ	0.035 U
N-Nitrosodiphenylamine	NS	NS	NR	NR	0.042 U	0.41 UJ	0.42 UJ	0.35 U
	0.8	1.3	NR	NR	0.34 U	0.33 UJ	0.34 UJ	0.28 U
Pentachlorophenol	0.0							
Pentachlorophenol Phenanthrene	1.1	4.9	12 D	NR	3.3	3.7 .11	9.8.11	4.8
Pentachlorophenol Phenanthrene Phenol	1.1 0.33	4.9 100	12 D NR	NR NR	3.3 0.29 J	3.7 JL 0.29 JL	9.8 JL 1.2 JL	4.8 0.28 J

				Semivolatile Organic Compou	nds			
		AKRF Sample ID	EP-39_20_20231215	EP-40 17.5 20231215	EP-41 15 20231215	EP-42_17.5_20231215	EP-43_17.5_20231215	EP-44_20_20231215
	Lal	ooratory Sample ID	460-294775-3	460-294775-4	460-294775-5	460-294775-6	460-294775-7	460-294775-8
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1	1
Compound		NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1.2.4.5-Tetrachlorobenzene	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	0.04 U	0.036 U	0.037 U	0.037 U	0.38 U	0.043 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
2,4,5-Trichlorophenol	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
2,4,6-Trichlorophenol	NS	NS	0.16 U	0.30 U	0.15 U	0.15 U	0.15 U	0.43 0 0.17 U
2,4-Dichlorophenol	NS	NS	0.16 U	0.14 U	0.15 U	0.15 U	0.15 U	0.17 U
2,4-Dimethylphenol	NS	NS	0.4 U	0.36 U	0.37 U	0.13 U	0.38 U	0.43 U
2.4-Dinitrophenol	NS	NS	0.32 U	0.30 U	0.3 U	0.3 U	0.3 U	0.45 U
2,4-Dinitrotoluene	NS	NS	0.081 U	0.23 U	0.075 U	0.076 U	0.077 U	0.088 U
2,6-Dinitrotoluene	NS	NS	0.081 U	0.073 U	0.075 U	0.076 U	0.077 U	0.088 U
2-Chloronaphthalene	NS	NS	0.001 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
2-Chlorophenol	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
2-Methylnaphthalene	NS	NS	0.33 J	0.36 U	6.3	0.37 U 0.24 J	0.38 0	0.43 0
2-Methylphenol (O-Cresol)	0.33	100	0.33 J 0.4 U	0.36 U	0.37 U	0.24 J 0.37 U	0.38 U	0.43 U
2-Nitroaniline	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
2-Nitrophenol	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
	NS	NS NS	0.4 0	0.36 U	0.37 U 0.085 J	0.37 U 0.34 J	0.38 U 0.32 J	1.1
3- And 4- Methylphenol (Total) 3,3'-Dichlorobenzidine	NS	NS	0.47 0.16 U	0.36 U 0.14 U	0.085 J 0.15 U	0.34 J 0.15 U	0.32 J 0.15 U	0.17 U
			0.16 U 0.4 U		0.15 U 0.37 U	0.15 U 0.37 U	0.15 U 0.38 U	0.17 U 0.43 U
3-Nitroaniline 4,6-Dinitro-2-Methylphenol	NS NS	NS NS	0.4 U 0.32 U	0.36 U 0.29 U	0.37 U 0.3 U	0.37 U 0.3 U	0.38 U 0.3 U	0.43 U 0.35 U
		NS	0.32 U 0.4 U	0.29 U 0.36 U	0.3 U 0.37 U	0.3 U 0.37 U	0.3 U 0.38 U	0.35 U 0.43 U
4-Bromophenyl Phenyl Ether 4-Chloro-3-Methylphenol	NS NS	NS	0.4 U 0.4 U	0.36 U	0.37 U 0.37 U	0.37 U 0.37 U	0.38 U 0.38 U	0.43 U 0.43 U
	NS	NS	0.4 U 0.4 U	0.36 U	0.37 U 0.37 U	0.37 U 0.37 U	0.38 U	0.43 U 0.43 U
4-Chloroaniline 4-Chlorophenyl Phenyl Ether	NS	NS	0.4 U 0.4 U	0.36 U	0.37 U 0.37 U	0.37 U 0.37 U	0.38 U 0.38 U	0.43 U 0.43 U
	0.33	100	0.4 0		0.085 J		0.30 U	
4-Methylphenol (P-Cresol)		NS		0.36 U		0.34 J		1.1
4-Nitroaniline	NS		0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
4-Nitrophenol	NS	NS	0.81 U	0.73 U	0.75 U	0.76 U	0.77 U	0.88 U
Acenaphthene	20	100	0.52	0.36 U	0.49	0.31 J	0.78	0.31 J
Acenaphthylene	100	100	0.17 J	0.36 U	0.37 U	0.11 J	0.18 J	0.12 J
Acetophenone	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Anthracene	100	100	1.1	0.019 J	0.31 J	0.65	1.1	0.56
Atrazine	NS	NS	0.16 U	0.14 U	0.15 U	0.15 U	0.15 U	0.17 U
Benzaldehyde Benzo(a)Anthracene	NS	NS	0.4 U	0.36 UJ	0.37 UJ	0.37 UJ	0.38 UJ	0.43 UJ
	1	1.4	2	0.036 U	0.35	1.4	2.3	1.2
Benzo(a)Pyrene	1	1	2	0.036 U	0.44	1.5	2.6	1.5
Benzo(b)Fluoranthene	1	1.4	2.1	0.036 U	0.44	1.6	2.6	1.6
Benzo(g,h,i)Perylene	0.64	4.9	1.1	0.36 U	0.28 J	0.89	1.4	0.97
Benzo(k)Fluoranthene	0.8	4.9	0.91	0.036 U	0.15	0.5	1	0.51
Benzyl Butyl Phthalate	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Biphenyl (Diphenyl)	NS	NS	0.073 J	0.36 U	0.37 U	0.04 J	0.1 J	0.057 J
Bis(2-Chloroethoxy) Methane	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.04 U	0.036 U	0.037 U	0.037 U	0.038 U	0.043 U
Bis(2-Chloroisopropyl) Ether	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.028 J	0.43 U
Caprolactam	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Carbazole	NS	NS	0.35 J	0.36 U	0.37 U	0.18 J	0.3 J	0.15 J
Chrysene	1	4.9	1.9	0.36 U	0.36 J	1.4	2.3	1.3
Dibenz(a,h)Anthracene	0.33	0.33	0.3	0.036 U	0.083	0.23	0.28	0.18
Dibenzofuran	2.1	18	0.36 J	0.36 U	0.33 J	0.22 J	0.51	0.25 J
Diethyl Phthalate	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Dimethyl Phthalate	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Di-N-Butyl Phthalate	NS	NS	0.1 J	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Di-N-Octylphthalate	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
Fluoranthene	85	100	4.4	0.02 J	0.76	2.7	4.9	2.9
Fluorene	30	100	0.57	0.36 U	0.61	0.34 J	0.88	0.36 J
Hexachlorobenzene	0.33	0.33	0.04 U	0.036 U	0.037 U	0.037 U	0.038 U	0.043 U
Hexachlorobutadiene	NS	NS	0.081 U	0.073 U	0.075 U	0.076 U	0.077 U	0.088 U
Hexachlorocyclopentadiene	NS	NS	0.4 UJ	0.36 U	0.37 UJ	0.37 UJ	0.38 UJ	0.43 UJ
Hexachloroethane	NS	NS	0.04 U	0.036 U	0.037 U	0.037 U	0.038 U	0.043 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	1.4	0.036 U	0.35	1.1	1.7	1.2
Isophorone	NS	NS	0.16 U	0.14 U	0.15 U	0.15 U	0.15 U	0.17 U
Naphthalene	12	100	2.1	0.041 J	0.31 J	0.33 J	2.7	1
Nitrobenzene	0.08	1.8	0.04 U	0.036 U	0.037 U	0.037 U	0.038 U	0.043 U
N-Nitrosodi-N-Propylamine	NS	NS	0.04 U	0.036 U	0.037 U	0.037 U	0.038 U	0.043 U
	NS	NS	0.4 U	0.36 U	0.37 U	0.37 U	0.38 U	0.43 U
N-Nitrosodiphenylamine		1.3	0.32 U	0.29 U	0.3 U	0.3 U	0.3 U	0.35 U
Pentachlorophenol	0.8	1.0						
Pentachlorophenol							4.7	2.3
	0.8 1.1 0.33	4.9	4.3 0.21 J	0.037 J 0.36 U	2.1 0.082 J	2.5 0.15 J	4.7 0.059 J	2.3 0.37 J

				Semivolatile Organic Compou	inas			
	Lat	AKRF Sample ID boratory Sample ID Date Sampled	A4HAZ_B_20_20230928 460-289204-1 9/28/2023	A4HAZ_X1_20230928 460-289204-2 9/28/2023	B1HAZ_B_20_20230601 460-281384-5 6/01/2023	B1HAZ_X1_20230601 460-281384-8 6/01/2023	FB_20230928 460-289204-3 9/28/2023	FB_20231103 460-291818-9 11/03/2023
		Unit Dilution Factor	mg/kg 1	mg/kg	mg/kg	mg/kg 1	μg/L 1	μg/L
Compound		NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
1.4-Dioxane (P-Dioxane)	0.1	5.7	0.042 U	0.042 U	0.05 U	0.042 U	10 U	10 U
2,3,4,6-Tetrachlorophenol	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
2,4,5-Trichlorophenol	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
2,4,6-Trichlorophenol	NS	NS	0.17 U	0.17 U	0.2 U	0.17 U	10 U	10 U
2,4-Dichlorophenol	NS	NS	0.17 U	0.17 U	0.2 U	0.17 U	10 U	10 U
2,4-Dimethylphenol 2.4-Dinitrophenol	NS NS	NS NS	0.42 UJ 0.34 U	0.42 UJ 0.34 U	0.5 U 0.41 U	0.42 U 0.34 U	10 U 40 U	10 UJ 40 U
2,4-Dinitrophenoi	NS	NS	0.085 U	0.34 U	0.41 U	0.34 U 0.085 U	10 U	10 U
2,6-Dinitrotoluene	NS	NS	0.085 U	0.084 U	0.1 U	0.085 U	2 U	2 U
2-Chloronaphthalene	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
2-Chlorophenol	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
2-Methylnaphthalene	NS	NS	0.42 U	0.25 J	0.041 J	0.091 J	10 U	10 U
2-Methylphenol (O-Cresol)	0.33	100	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
2-Nitroaniline	NS	NS	0.42 U	0.42 U 0.42 U	0.5 U	0.42 U	10 U	10 U
2-Nitrophenol 3- And 4- Methylphenol (Total)	NS NS	NS NS	0.42 U 0.42 U	0.42 U 0.34 J	0.5 U 0.96	0.42 U 1.8	10 U 10 U	10 U 10 U
3- And 4- Methylphenol (10tal) 3,3'-Dichlorobenzidine	NS	NS	0.42 U 0.17 U	0.34 J 0.17 U	0.96 0.2 U	0.17 U	10 U	10 U
3-Nitroaniline	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
4,6-Dinitro-2-Methylphenol	NS	NS	0.34 U	0.34 U	0.41 U	0.34 U	20 U	20 U
4-Bromophenyl Phenyl Ether	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
4-Chloro-3-Methylphenol	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
4-Chloroaniline	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
4-Chlorophenyl Phenyl Ether	NS 0.33	NS 100	0.42 U	0.42 U 0.34 J	0.5 U 0.96	0.42 U	10 U 10 U	10 U
4-Methylphenol (P-Cresol) 4-Nitroaniline	0.33 NS	NS	0.42 U 0.42 U	0.34 J 0.42 U	0.5 UJ	1.8 0.42 UJ	10 U	10 U 10 U
4-Nitrophenol	NS	NS	0.42 0 0.85 U	0.42 U	1 U	0.42 03 0.85 U	20 U	20 U
Acenaphthene	20	100	0.42 UJ	0.58 J	0.058 J	0.13 J	10 U	10 U
Acenaphthylene	100	100	0.42 U	0.15 J	0.026 J	0.019 J	10 U	10 U
Acetophenone	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Anthracene	100	100	0.42 U	0.41 J	0.14 J	0.31 J	10 U	10 U
Atrazine	NS	NS	0.17 U	0.17 U	0.2 U	0.17 U	2 U	2 U
Benzaldehyde Benzo(a)Anthracene	NS 1	NS 1.4	0.42 UJ 0.042 UJ	0.42 UJ 0.54 J	0.5 UJ 0.39	0.42 UJ 0.54	10 UJ 1 U	10 UJ 1 U
Benzo(a)Pyrene	1	1.4	0.042 UJ	0.7 J	0.36	0.53	10	1 U
Benzo(b)Fluoranthene	1	1.4	0.042 UJ	0.65 J	0.39	0.72	2 U	2 U
Benzo(g,h,i)Perylene	0.64	4.9	0.42 U	0.37 J	0.21 J	0.26 J	10 U	10 U
Benzo(k)Fluoranthene	0.8	4.9	0.042 UJ	0.25 J	0.15	0.23	1 U	1 U
Benzyl Butyl Phthalate	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Biphenyl (Diphenyl)	NS	NS	0.42 U	0.11 J	0.5 U	0.027 J	10 U	10 U
Bis(2-Chloroethoxy) Methane	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether) Bis(2-Chloroisopropyl) Ether	NS NS	NS NS	0.042 U 0.42 U	0.042 U 0.42 U	0.05 U 0.5 U	0.042 U 0.42 U	1 U 10 U	1 U 10 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	2 U	2 U
Caprolactam	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Carbazole	NS	NS	0.42 U	0.06 J	0.05 J	0.14 J	10 U	10 U
Chrysene	1	4.9	0.42 UJ	0.6 J	0.38 J	0.55	2 U	2 U
Dibenz(a,h)Anthracene	0.33	0.33	0.042 UJ	0.091 J	0.059	0.068	1 U	1 U
Dibenzofuran	2.1	18	0.42 U	0.07 J	0.045 J	0.12 J	10 U	10 U
Diethyl Phthalate	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Dimethyl Phthalate Di-N-Butyl Phthalate	NS NS	NS NS	0.42 U 0.42 U	0.42 U 0.42 U	0.5 U 0.021 J	0.42 U 0.024 J	10 U 10 U	10 U 10 U
Di-N-Octylphthalate	NS	NS	0.42 U	0.42 U 0.42 U	0.021 J 0.5 U	0.024 J 0.42 U	10 U	10 U
Fluoranthene	85	100	0.42 U	1.2 J	0.87	1.5	10 U	10 U
Fluorene	30	100	0.42 UJ	0.35 J	0.068 J	0.17 J	10 U	10 U
Hexachlorobenzene	0.33	0.33	0.042 U	0.042 U	0.05 U	0.042 U	1 U	1 U
Hexachlorobutadiene	NS	NS	0.085 U	0.084 U	0.1 U	0.085 U	1 U	1 U
Hexachlorocyclopentadiene	NS	NS	0.42 R	0.42 R	0.5 UJ	0.42 UJ	10 U	10 U
Hexachloroethane	NS	NS 1.4	0.042 U 0.042 UJ	0.042 U 0.38 J	0.05 U	0.042 U	2 U 2 U	2 U 2 U
Indeno(1,2,3-c,d)Pyrene Isophorone	0.5 NS	1.4 NS	0.042 UJ 0.17 U	0.38 J 0.17 U	0.24 0.2 U	0.31 0.17 U	2 U 10 U	2 U 10 U
Isophorone Naphthalene	NS 12	100	0.17 U 0.42 UJ	0.17 U 1 J	0.2 U 0.2 J	0.17 U 0.39 J	10 U 2 U	10 U 2 U
Nitrobenzene	0.08	1.8	0.042 U	0.042 U	0.2 J 0.05 U	0.39 J 0.042 U	1 U	1 U
N-Nitrosodi-N-Propylamine	NS	NS	0.042 U	0.042 U	0.05 U	0.042 U	10	1 U
N-Nitrosodiphenylamine	NS	NS	0.42 U	0.42 U	0.5 U	0.42 U	10 U	10 U
Pentachlorophenol	0.8	1.3	0.34 U	0.34 U	0.41 U	0.34 U	20 U	20 U
Phenanthrene	1.1	4.9	0.42 UJ	1.3 J	0.62	1.3	10 U	10 U
Phenol	0.33	100	0.42 U	0.035 J	0.5 U	0.17 J	10 U	10 U
Pyrene	64	100	0.016 J	1.7 J	0.65	1.1	10 U	10 U

Table 2 380 4th Avenue Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Semivolatile Organic Compounds

			Semivolatile	Organic Compounds			
		AKRF Sample ID	FB 20231127	FB 20231215	FB-S 20230601	FB 20230928	FB-S 20230601
	Lat	oratory Sample ID	460-293316-6	460-294775-10	460-281384-6	460-289204-3	460-281384-6
		Date Sampled	11/27/2023	12/15/2023	6/01/2023	9/28/2023	6/01/2023
		Unit	µg/L	µg/L	µg/L	µg/L	µg/L
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
1.2.4.5-Tetrachlorobenzene	NS	NS	10 U	10 U	10 U	10 U	10 U
1,4-Dioxane (P-Dioxane)	0.1	5.7	10 U	10 U	10 U	10 U	10 U
2,3,4,6-Tetrachlorophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	NS	NS	40 U	40 U	40 U	40 U	40 U
2,4-Dinitrotoluene	NS	NS	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	NS	NS	2 U	2 U	2 U	2 U	2 U
2-Chloronaphthalene	NS	NS	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene	NS	NS	10 U	10 U	10 U	10 U	10 U
2-Methylphenol (O-Cresol)	0.33	100	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	NS	NS	10 U	10 U	10 U	10 U	10 U
2-Nitrophenol	NS	NS	10 U	10 U	10 U	10 U	10 U
3- And 4- Methylphenol (Total)	NS	NS	10 U	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine	NS	NS	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline	NS	NS	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-Methylphenol	NS	NS	20 U	20 U	20 U	20 U	20 U
4-Bromophenyl Phenyl Ether	NS	NS	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-Methylphenol	NS	NS	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline	NS	NS	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl Phenyl Ether	NS	NS	10 U	10 U	10 U	10 U	10 U
4-Methylphenol (P-Cresol)	0.33	100	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline	NS	NS	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol Acenaphthene	NS 20	NS 100	20 U 10 U	20 U 10 U	20 U 10 U	20 U 10 U	20 U 10 U
Acenaphthylene	100	100	10 U	10 U	10 U	10 U	10 U
Acetophenone	NS	NS	10 U	10 U	10 U	10 U	10 U
Anthracene	100	100	10 U	10 U	10 U	10 U	10 U
Atrazine	NS	NS	2 U	2 U	2 U	2 U	2 U
Benzaldehyde	NS	NS	10 UJ	10 UJ	10 U	10 UJ	10 U
Benzo(a)Anthracene	1	1.4	1 U	1 U	1 U	1 U	1 U
Benzo(a)Pyrene	1	1	1 U	1 U	1 U	1 U	1 U
Benzo(b)Fluoranthene	1	1.4	2 U	2 U	2 U	2 U	2 U
Benzo(g,h,i)Perylene	0.64	4.9	10 U	10 U	10 U	10 U	10 U
Benzo(k)Fluoranthene	0.8	4.9	1 U	1 U	1 U	100	100
Benzyl Butyl Phthalate	NS	NS	10 U	10 U	10 U	10 U	10 U
Biphenyl (Diphenyl)	NS	NS	10 U	10 U	10 U	10 U	10 U
Bis(2-Chloroethoxy) Methane	NS	NS	10 U	10 U	10 U	10 U	10 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	1 U	1 U	1 U	1 U	1 U
Bis(2-Chloroisopropyl) Ether	NS	NS	10 U	10 UJ	10 U	10 U	10 U
Bis(2-Ethylhexyl) Phthalate	NS	NS	2 U	2 U	2 U	2 U	2 U
Caprolactam	NS	NS	10 U	10 U	10 U	10 U	10 U
Carbazole	NS	NS	10 U	10 U	10 U	10 U	10 U
Chrysene	1	4.9	2 U	2 U	2 U	2 U	2 U
Dibenz(a,h)Anthracene	0.33	0.33	1 U	1 U	1 U	1 U	1 U
Dibenzofuran	2.1	18	10 U	10 U	10 U	10 U	10 U
Diethyl Phthalate	NS	NS	10 U	10 U	10 U	10 U	10 U
Dimethyl Phthalate	NS	NS	10 U	10 U	10 U	10 U	10 U
Di-N-Butyl Phthalate	NS	NS	10 U	10 U	10 U	10 U	10 U
Di-N-Octylphthalate	NS	NS	10 U	10 U	10 U	10 U	10 U
Fluoranthene	85	100	10 U	10 U	10 U	10 U	10 U
Fluorene	30	100	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.33	0.33	1 U	1 U	1 U	1 U	1 U
Hexachlorobutadiene	NS	NS	1 U	1 U	10	10	1 U
Hexachlorocyclopentadiene	NS	NS	10 R	10 U	10 U	10 U	10 U
Hexachloroethane	NS	NS	2 U	2 U	2 U	2 U	2 U
Indeno(1,2,3-c,d)Pyrene	0.5	1.4	2 U	2 U	2 U	2 U	2 U
Isophorone	NS	NS	10 U	10 U	10 U	10 U	10 U
Naphthalene	12	100	2 U	2 U	2 U	2 U	2 U
Nitrobenzene	0.08	1.8	10	10	10	10	1 U
N-Nitrosodi-N-Propylamine	NS	NS	1 U	1 U	1 U	1 U	1 U
N-Nitrosodiphenylamine	NS	NS	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	0.8	1.3	20 U	20 U	20 U	20 U	20 U
Phenanthrene Phonol	1.1	4.9	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
Phenol Puropo	0.33 64	100					
Pyrene	04	100	10 U	10 U	10 U	10 U	10 U

				Metals			
		AKRF Sample ID	EP-01_15_20231103	EP-01_15_20231103	EP-01_15_20231103	EP-X1_15_20231103	EP-X1_15_20231103
	Lab	oratory Sample ID	460-291818-1	460-291818-1	460-291818-1	460-291818-8	460-291818-8
		Date Sampled	11/03/2023	11/03/2023	11/03/2023	11/03/2023	11/03/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	5	10	1	5
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	5,380	NR	NR	4,240	NR
Antimony	NS	NS	0.71 JL	NR	NR	0.51 JL	NR
Arsenic	13	16	7.4	NR	NR	6.9	NR
Barium	410	410	298 J	NR	NR	106 J	NR
Beryllium	4.4	43	0.38 J	NR	NR	0.29 J	NR
Cadmium	2.5	2.5	0.39 J	NR	NR	0.39 J	NR
Calcium	NS	NS	17,000	NR	NR	14,100	NR
Chromium, Hexavalent	1	1	2.6 UJ	NR	NR	2.5 UJ	NR
Chromium, Total	NS	NS	22.1 JL	NR	NR	12.3 JL	NR
Cobalt	NS	NS	5.4	NR	NR	4.1	NR
Copper	50	280	82	NR	NR	80	NR
Cyanide	2.3	13	0.68	NR	NR	0.43	NR
Iron	NS	NS	15,200	NR	NR	16,300	NR
Lead	63	400	NR	4,100 J	569	893 J	NR
Magnesium	NS	NS	2,850	NR	NR	3,020	NR
Manganese	1,600	2,000	215 JL	NR	NR	226 JL	NR
Mercury	0.18	0.26	1.1 J	NR	NR	NR	3 J
Nickel	30	210	18.4	NR	NR	15.2	NR
Potassium	NS	NS	1,110 JL	NR	NR	878 JL	NR
Selenium	4	110	0.75 J	NR	NR	0.62 J	NR
Silver	2	110	0.2 J	NR	NR	0.2 J	NR
Sodium	NS	NS	409	NR	NR	379	NR
Thallium	NS	NS	0.097 J	NR	NR	0.1 J	NR
Vanadium	NS	NS	17.7 JL	NR	NR	15.3 JL	NR
Zinc	109	6,600	332	NR	NR	241	NR

				Metals			
		AKRF Sample ID	EP-02_15_20231103	EP-02_15_20231103	EP-02_15_20231103	EP-03_15_20231103	EP-04_15_20231103
	Lab	oratory Sample ID	460-291818-2	460-291818-2	460-291818-2	460-291818-3	460-291818-4
		Date Sampled	11/03/2023	11/03/2023	11/03/2023	11/03/2023	11/03/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	5	10	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	4,990	NR	NR	2,990	3,860
Antimony	NS	NS	0.87 J	NR	NR	0.5 J	0.85 J
Arsenic	13	16	8.5	NR	NR	4.7	6.1
Barium	410	410	101	NR	NR	75.1	101
Beryllium	4.4	43	0.31 J	NR	NR	0.2 J	0.24 J
Cadmium	2.5	2.5	0.36 J	NR	NR	0.19 J	0.27 J
Calcium	NS	NS	10,400	NR	NR	4,680	7,950
Chromium, Hexavalent	1	1	2.7 U	NR	NR	2.5 U	2.8 U
Chromium, Total	NS	NS	14.2	NR	NR	9.5	12.4
Cobalt	NS	NS	5.1	NR	NR	4.2	4.3
Copper	50	280	110	NR	NR	78.7	102
Cyanide	2.3	13	0.28	NR	NR	0.17 J	0.22 J
Iron	NS	NS	17,900	NR	NR	13,900	14,400
Lead	63	400	NR	2,740	343	431	383
Magnesium	NS	NS	2,380	NR	NR	2,120	2,220
Manganese	1,600	2,000	326	NR	NR	164	192
Mercury	0.18	0.26	NR	3.4	NR	0.73	NR
Nickel	30	210	16.8	NR	NR	12.3	14.4
Potassium	NS	NS	1,020	NR	NR	907	880
Selenium	4	110	0.7 J	NR	NR	0.88 J	0.91 J
Silver	2	110	0.32 J	NR	NR	0.17 J	0.22 J
Sodium	NS	NS	238	NR	NR	247	245
Thallium	NS	NS	NR	2.6 U	NR	0.086 J	0.084 J
Vanadium	NS	NS	16.6	NR	NR	9.9	15.5
Zinc	109	6,600	167	NR	NR	115	139

				Metals			
		AKRF Sample ID	EP-04_15_20231103	EP-05_15_20231103	EP-05_15_20231103	EP-06_15_20231103	EP-06_15_20231103
	Lab	oratory Sample ID	460-291818-4	460-291818-5	460-291818-5	460-291818-6	460-291818-6
		Date Sampled	11/03/2023	11/03/2023	11/03/2023	11/03/2023	11/03/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	1	5	1	5
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	NR	3,990	NR	3,100	NR
Antimony	NS	NS	NR	0.93 J	NR	1.2 J	NR
Arsenic	13	16	NR	6.6	NR	6.2	NR
Barium	410	410	NR	76.3	NR	67	NR
Beryllium	4.4	43	NR	0.27 J	NR	0.22 J	NR
Cadmium	2.5	2.5	NR	0.29 J	NR	0.34 J	NR
Calcium	NS	NS	NR	12,700	NR	5,270	NR
Chromium, Hexavalent	1	1	NR	2.5 U	NR	2.9 U	NR
Chromium, Total	NS	NS	NR	12.2	NR	10.6	NR
Cobalt	NS	NS	NR	4	NR	4.7	NR
Copper	50	280	NR	109	NR	437	NR
Cyanide	2.3	13	NR	0.41	NR	0.31	NR
Iron	NS	NS	NR	12,900	NR	16,000	NR
Lead	63	400	NR	360	NR	293	NR
Magnesium	NS	NS	NR	2,220	NR	2,300	NR
Manganese	1,600	2,000	NR	163	NR	212	NR
Mercury	0.18	0.26	2	NR	2.1	NR	1.5
Nickel	30	210	NR	13.1	NR	13.6	NR
Potassium	NS	NS	NR	896	NR	964	NR
Selenium	4	110	NR	0.51 J	NR	0.46 J	NR
Silver	2	110	NR	0.25 J	NR	0.2 J	NR
Sodium	NS	NS	NR	298	NR	393	NR
Thallium	NS	NS	NR	0.095 J	NR	0.059 J	NR
Vanadium	NS	NS	NR	14.6	NR	14	NR
Zinc	109	6,600	NR	195	NR	116	NR

				Metals			
		AKRF Sample ID	EP-07_15_20231103	EP-07_15_20231103	EP-08_15_20231110	EP-08_15_20231110	EP-09_15_20231110
	Laboratory Sample ID 460-291818-7			460-291818-7	460-292402-1	460-292402-1	460-292402-2
		Date Sampled	11/03/2023	11/03/2023	11/10/2023	11/10/2023	11/10/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	5	1	10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	4,530	NR	4,010	NR	5,030
Antimony	NS	NS	0.69 J	NR	1 J	NR	0.41 J
Arsenic	13	16	7.4	NR	18.3	NR	4.4
Barium	410	410	110	NR	103	NR	111
Beryllium	4.4	43	0.32 J	NR	0.27 J	NR	0.3 J
Cadmium	2.5	2.5	0.31 J	NR	0.89 J	NR	0.16 J
Calcium	NS	NS	17,100	NR	13,200	NR	3,960
Chromium, Hexavalent	1	1	2.5 U	NR	3 U	NR	2.8 U
Chromium, Total	NS	NS	13	NR	10.5	NR	13.2
Cobalt	NS	NS	4.8	NR	5.9	NR	5.8
Copper	50	280	68.3	NR	63.4	NR	67.8
Cyanide	2.3	13	0.16 J	NR	5.4	NR	0.29 U
Iron	NS	NS	16,000	NR	18,600	NR	13,300
Lead	63	400	491	NR	374	NR	197
Magnesium	NS	NS	2,510	NR	2,350	NR	2,560
Manganese	1,600	2,000	203	NR	284	NR	230
Mercury	0.18	0.26	NR	1.7	NR	4.6	0.89
Nickel	30	210	14	NR	17.8	NR	24
Potassium	NS	NS	820	NR	997	NR	1,250
Selenium	4	110	0.59 J	NR	19.4	NR	0.47 J
Silver	2	110	0.25 J	NR	0.26 J	NR	0.11 J
Sodium	NS	NS	295	NR	317	NR	206
Thallium	NS	NS	0.13 J	NR	0.35 J	NR	0.077 J
Vanadium	NS	NS	16.7	NR	13.3	NR	15.9
Zinc	109	6,600	138	NR	164	NR	86.8

				Metals			
		AKRF Sample ID	EP-10_15_20231110	EP-10_B_16_20231127	EP-10_B_16_20231127	EP-10-N5_15_20231127	EP-10-N5_15_20231127
	Lab	oratory Sample ID	460-292402-3	460-293317-19	460-293317-19	460-293317-1	460-293317-1
		Date Sampled	11/10/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1, 4, 10	1	10	1	10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	3,550	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	14	NR	NR	NR	NR
Barium	410	410	97.7	NR	NR	NR	NR
Beryllium	4.4	43	0.27 J	NR	NR	NR	NR
Cadmium	2.5	2.5	0.99 J	NR	NR	NR	NR
Calcium	NS	NS	6,090	NR	NR	NR	NR
Chromium, Hexavalent	1	1	2.4 U	NR	NR	NR	NR
Chromium, Total	NS	NS	12.7	NR	NR	NR	NR
Cobalt	NS	NS	4.8	NR	NR	NR	NR
Copper	50	280	99.2	NR	NR	NR	NR
Cyanide	2.3	13	0.28 U	NR	NR	NR	NR
Iron	NS	NS	23,500	NR	NR	NR	NR
Lead	63	400	over-excavated	259	769	401	751
Magnesium	NS	NS	1,770	NR	NR	NR	NR
Manganese	1,600	2,000	376	NR	NR	NR	NR
Mercury	0.18	0.26	0.89	NR	NR	NR	NR
Nickel	30	210	14.8	NR	NR	NR	NR
Potassium	NS	NS	653	NR	NR	NR	NR
Selenium	4	110	0.85 J	NR	NR	NR	NR
Silver	2	110	0.98	NR	NR	NR	NR
Sodium	NS	NS	154	NR	NR	NR	NR
Thallium	NS	NS	0.067 J	NR	NR	NR	NR
Vanadium	NS	NS	15.3	NR	NR	NR	NR
Zinc	109	6,600	264	NR	NR	NR	NR

				Metals			
		AKRF Sample ID	EP-10-E5_15_20231127	EP-10-E5_15_20231127	EP-10-S5_15_20231127	EP-10-S5_15_20231127	EP-10-W5_15_20231127
	Lab	oratory Sample ID	460-293317-3	460-293317-3	460-293317-5	460-293317-5	460-293317-7
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	10	1	10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	NR	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	NR	NR	NR	NR	NR
Barium	410	410	NR	NR	NR	NR	NR
Beryllium	4.4	43	NR	NR	NR	NR	NR
Cadmium	2.5	2.5	NR	NR	NR	NR	NR
Calcium	NS	NS	NR	NR	NR	NR	NR
Chromium, Hexavalent	1	1	NR	NR	NR	NR	NR
Chromium, Total	NS	NS	NR	NR	NR	NR	NR
Cobalt	NS	NS	NR	NR	NR	NR	NR
Copper	50	280	NR	NR	NR	NR	NR
Cyanide	2.3	13	NR	NR	NR	NR	NR
Iron	NS	NS	NR	NR	NR	NR	NR
Lead	63	400	310	373	524	579	350
Magnesium	NS	NS	NR	NR	NR	NR	NR
Manganese	1,600	2,000	NR	NR	NR	NR	NR
Mercury	0.18	0.26	NR	NR	NR	NR	NR
Nickel	30	210	NR	NR	NR	NR	NR
Potassium	NS	NS	NR	NR	NR	NR	NR
Selenium	4	110	NR	NR	NR	NR	NR
Silver	2	110	NR	NR	NR	NR	NR
Sodium	NS	NS	NR	NR	NR	NR	NR
Thallium	NS	NS	NR	NR	NR	NR	NR
Vanadium	NS	NS	NR	NR	NR	NR	NR
Zinc	109	6,600	NR	NR	NR	NR	NR

				Metals			
		AKRF Sample ID	EP-10-W5_15_20231127	EP-10HAZ_X1_20231127	EP-10HAZ_X1_20231127	EP-11_15_20231110	EP-12_15_20231110
	Lab	oratory Sample ID	460-293317-7	460-293317-17	460-293317-17	460-292402-4	460-292402-5
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/10/2023	11/10/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	10	1	10	1	1, 10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	NR	6,600	2,960
Antimony	NS	NS	NR	NR	NR	1.1 U	1.7
Arsenic	13	16	NR	NR	NR	3.5	8.3
Barium	410	410	NR	NR	NR	40.2	136
Beryllium	4.4	43	NR	NR	NR	0.37 J	0.21 J
Cadmium	2.5	2.5	NR	NR	NR	1.1 U	0.46 J
Calcium	NS	NS	NR	NR	NR	1,610	5,890
Chromium, Hexavalent	1	1	NR	NR	NR	2.2 U	2.8 U
Chromium, Total	NS	NS	NR	NR	NR	13.3	34
Cobalt	NS	NS	NR	NR	NR	5.4	3.8
Copper	50	280	NR	NR	NR	24	353
Cyanide	2.3	13	NR	NR	NR	0.27 U	0.42
Iron	NS	NS	NR	NR	NR	13,500	15,300
Lead	63	400	676	235	650	83.4	over-excavated
Magnesium	NS	NS	NR	NR	NR	2,140	1,670
Manganese	1,600	2,000	NR	NR	NR	272	176
Mercury	0.18	0.26	NR	NR	NR	0.083	NR
Nickel	30	210	NR	NR	NR	24.1	14.6
Potassium	NS	NS	NR	NR	NR	872	757
Selenium	4	110	NR	NR	NR	0.29 J	1.4
Silver	2	110	NR	NR	NR	0.43 U	4.9
Sodium	NS	NS	NR	NR	NR	80.8 J	172
Thallium	NS	NS	NR	NR	NR	0.087 J	0.1 J
Vanadium	NS	NS	NR	NR	NR	17.4	12.3
Zinc	109	6,600	NR	NR	NR	41.3	288

				Metals			
		AKRF Sample ID	EP-12_15_20231110	EP-12_B_16_20231127	EP-12_B_16_20231127	EP-12-N5_15_20231127	EP-12-N10_15_20231127
	Lab	oratory Sample ID	460-292402-5	460-293317-23	460-293317-23	460-293317-9	460-293317-10
		Date Sampled	11/10/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	1	10	1, 10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	NR	NR	NR	NR	NR
Barium	410	410	NR	NR	NR	NR	NR
Beryllium	4.4	43	NR	NR	NR	NR	NR
Cadmium	2.5	2.5	NR	NR	NR	NR	NR
Calcium	NS	NS	NR	NR	NR	NR	NR
Chromium, Hexavalent	1	1	NR	NR	NR	NR	NR
Chromium, Total	NS	NS	NR	NR	NR	NR	NR
Cobalt	NS	NS	NR	NR	NR	NR	NR
Copper	50	280	NR	NR	NR	NR	NR
Cyanide	2.3	13	NR	NR	NR	NR	NR
Iron	NS	NS	NR	NR	NR	NR	NR
Lead	63	400	NR	613	1,510	over-excavated	982
Magnesium	NS	NS	NR	NR	NR	NR	NR
Manganese	1,600	2,000	NR	NR	NR	NR	NR
Mercury	0.18	0.26	2.5	NR	NR	NR	NR
Nickel	30	210	NR	NR	NR	NR	NR
Potassium	NS	NS	NR	NR	NR	NR	NR
Selenium	4	110	NR	NR	NR	NR	NR
Silver	2	110	NR	NR	NR	NR	NR
Sodium	NS	NS	NR	NR	NR	NR	NR
Thallium	NS	NS	NR	NR	NR	NR	NR
Vanadium	NS	NS	NR	NR	NR	NR	NR
Zinc	109	6,600	NR	NR	NR	NR	NR

				Metals			
		AKRF Sample ID	EP-12-N10_15_20231127	EP-12-E5_15_20231127	EP-12-E5_15_20231127	EP-12-S5_15_20231127	EP-12-S10_15_20231127
	Laboratory Sample ID 460-293317-1			460-293317-11	460-293317-11	460-293317-13	460-293317-14
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	10	1	10	1, 10	1, 10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	NR	NR	NR	NR	NR
Barium	410	410	NR	NR	NR	NR	NR
Beryllium	4.4	43	NR	NR	NR	NR	NR
Cadmium	2.5	2.5	NR	NR	NR	NR	NR
Calcium	NS	NS	NR	NR	NR	NR	NR
Chromium, Hexavalent	1	1	NR	NR	NR	NR	NR
Chromium, Total	NS	NS	NR	NR	NR	NR	NR
Cobalt	NS	NS	NR	NR	NR	NR	NR
Copper	50	280	NR	NR	NR	NR	NR
Cyanide	2.3	13	NR	NR	NR	NR	NR
Iron	NS	NS	NR	NR	NR	NR	NR
Lead	63	400	3,290	1,020	3,850	over-excavated	over-excavated
Magnesium	NS	NS	NR	NR	NR	NR	NR
Manganese	1,600	2,000	NR	NR	NR	NR	NR
Mercury	0.18	0.26	NR	NR	NR	NR	NR
Nickel	30	210	NR	NR	NR	NR	NR
Potassium	NS	NS	NR	NR	NR	NR	NR
Selenium	4	110	NR	NR	NR	NR	NR
Silver	2	110	NR	NR	NR	NR	NR
Sodium	NS	NS	NR	NR	NR	NR	NR
Thallium	NS	NS	NR	NR	NR	NR	NR
Vanadium	NS	NS	NR	NR	NR	NR	NR
Zinc	109	6,600	NR	NR	NR	NR	NR

				Metals			
		AKRF Sample ID	EP-12-S15_15_20231206	EP-12-S15_15_20231206	EP-12-W5_15_20231127	EP-12-W10_15_20231127	EP-12-W10_15_20231127
	Laboratory Sample ID 460-293992-1			460-293992-1	460-293317-15	460-293317-16	460-293317-16
		Date Sampled	12/06/2023	12/06/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	10	1, 10	1	10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	NR	NR	NR	NR	NR
Barium	410	410	NR	NR	NR	NR	NR
Beryllium	4.4	43	NR	NR	NR	NR	NR
Cadmium	2.5	2.5	NR	NR	NR	NR	NR
Calcium	NS	NS	NR	NR	NR	NR	NR
Chromium, Hexavalent	1	1	NR	NR	NR	NR	NR
Chromium, Total	NS	NS	NR	NR	NR	NR	NR
Cobalt	NS	NS	NR	NR	NR	NR	NR
Copper	50	280	NR	NR	NR	NR	NR
Cyanide	2.3	13	NR	NR	NR	NR	NR
Iron	NS	NS	NR	NR	NR	NR	NR
Lead	63	400	449	2,560	over-excavated	411	963
Magnesium	NS	NS	NR	NR	NR	NR	NR
Manganese	1,600	2,000	NR	NR	NR	NR	NR
Mercury	0.18	0.26	NR	NR	NR	NR	NR
Nickel	30	210	NR	NR	NR	NR	NR
Potassium	NS	NS	NR	NR	NR	NR	NR
Selenium	4	110	NR	NR	NR	NR	NR
Silver	2	110	NR	NR	NR	NR	NR
Sodium	NS	NS	NR	NR	NR	NR	NR
Thallium	NS	NS	NR	NR	NR	NR	NR
Vanadium	NS	NS	NR	NR	NR	NR	NR
Zinc	109	6,600	NR	NR	NR	NR	NR

Table 3
380 4th Avenue
Brooklyn, NY
A REAL OF THE A REAL AND A REAL AND A

Brooklyn, Nr	
Post-Remedial Soil Endpoint Analytical Results	
Metals	

				Metals			
		AKRF Sample ID	EP-13_15_20231110	EP-13_15_20231110	EP-14_15_20231110	EP-14_15_20231110	EP-15_15_20231110
	Lab	oratory Sample ID	460-292402-6	460-292402-6	460-292402-7	460-292402-7	460-292402-8
	Date Sampled		11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
	Uni		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	5	1	5	1, 5, 10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	2,920	NR	4,160	NR	
Antimony	NS	NS	1.3	NR	0.33 J	NR	
Arsenic	13	16	4.9	NR	3.8	NR	
Barium	410	410	80.7	NR	81.4	NR	
Beryllium	4.4	43	0.19 J	NR	0.22 J	NR	
Cadmium	2.5	2.5	0.25 J	NR	0.14 J	NR	
Calcium	NS	NS	6,220	NR	6,910	NR	
Chromium, Hexavalent	1	1	3.1 U	NR	2.4 U	NR	over-excavated
Chromium, Total	NS	NS	10.1	NR	10.1	NR	
Cobalt	NS	NS	4.3	NR	3.6	NR	(sample was over-excavated when petroleum hotspot was
Copper	50	280	89.7	NR	56.4	NR	expanded, beyond its
Cyanide	2.3	13	0.25 J	NR	0.2 J	NR	proposed extents in the
Iron	NS	NS	12,300	NR	11,300	NR	
Lead	63	400	526	NR	445	NR	 RAWP, based on olfacotry observations and elevated
Magnesium	NS	NS	3,410	NR	2,890	NR	
Manganese	1,600	2,000	192	NR	181	NR	 PID readings; and not due to exceedances of applicable
Mercury	0.18	0.26	NR	3.4	NR	1.5	SCOs)
Nickel	30	210	28	NR	13.1	NR	3008)
Potassium	NS	NS	1,130	NR	793	NR	
Selenium	4	110	0.48 J	NR	0.41 J	NR	
Silver	2	110	0.28 J	NR	0.14 J	NR	
Sodium	NS	NS	299	NR	153	NR]
Thallium	NS	NS	0.057 J	NR	0.06 J	NR	
Vanadium	NS	NS	13.3	NR	14.7	NR	
Zinc	109	6,600	138	NR	90.6	NR	

				Metals			
		AKRF Sample ID	EP-16_20_20231127	EP-16_20_20231127	EP-X2_20_20231127	EP-17_15_20231127	EP-17_15_20231127
	Lab	oratory Sample ID	460-293316-1	460-293316-1	460-293316-8	460-293316-2	460-293316-2
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	3	1	1	3
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	6,710	NR	5,810	5,530	NR
Antimony	NS	NS	1.2 UJ	NR	1.1 UJ	1.8	NR
Arsenic	13	16	5.3	NR	4.1	10.3	NR
Barium	410	410	39.7 JL	NR	34.7 JL	162	NR
Beryllium	4.4	43	0.39 J	NR	0.38 J	0.35 J	NR
Cadmium	2.5	2.5	1.2 U	NR	1.1 U	0.29 J	NR
Calcium	NS	NS	1,190 JK	NR	1,430 JK	7,810	NR
Chromium, Hexavalent	1	1	2.4 UJ	NR	2.3 UJ	2.8 U	NR
Chromium, Total	NS	NS	10.8 JK	NR	12.1 JK	21.7	NR
Cobalt	NS	NS	6.9 JL	NR	5.2 JL	6	NR
Copper	50	280	30.9 JL	NR	14.9 JL	96	NR
Cyanide	2.3	13	0.28 UJ	NR	0.92 J	0.34	NR
Iron	NS	NS	14,600	NR	11,500	17,600	NR
Lead	63	400	22.5 JK	NR	45.4 JK	768	NR
Magnesium	NS	NS	2,760	NR	2,310	2,420	NR
Manganese	1,600	2,000	216 JK	NR	218 JK	229	NR
Mercury	0.18	0.26	NR	0.36 JK	0.15 JK	NR	1.4
Nickel	30	210	14.1 JK	NR	15.8 JK	19.7	NR
Potassium	NS	NS	1,290 JL	NR	1,030 JL	1,160	NR
Selenium	4	110	0.16 J	NR	0.22 J	1.3 J	NR
Silver	2	110	0.49 U	NR	0.43 U	0.26 J	NR
Sodium	NS	NS	125 U	NR	113 U	192 U	NR
Thallium	NS	NS	0.082 J	NR	0.07 J	0.17 J	NR
Vanadium	NS	NS	23.1 JL	NR	18.6 JL	19.6	NR
Zinc	109	6,600	9.8 U	NR	37.6 U	152 J	NR

				Metals			
		AKRF Sample ID	EP-18_17.5_20231127	EP-18_17.5_20231127	EP-19_17.5_20231127	EP-19_17.5_20231127	EP-20_17.5_20231127
	Lab	oratory Sample ID	460-293316-3	460-293316-3	460-293316-4	460-293316-4	460-293316-5
		Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	20	1	10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	3,760	NR	4,740	NR	7,550
Antimony	NS	NS	0.73 J	NR	1.3	NR	1.1 U
Arsenic	13	16	9.5	NR	16.4	NR	3.2
Barium	410	410	127	NR	177	NR	40.2
Beryllium	4.4	43	0.26 J	NR	0.29 J	NR	0.45
Cadmium	2.5	2.5	0.26 J	NR	0.42 J	NR	1.1 U
Calcium	NS	NS	19,700	NR	7,950	NR	1,370
Chromium, Hexavalent	1	1	2.7 U	NR	2.9 U	NR	2.3 U
Chromium, Total	NS	NS	14.8	NR	16.1	NR	15.6
Cobalt	NS	NS	4.7	NR	9.5	NR	7.1
Copper	50	280	56.9	NR	73.4	NR	15.2
Cyanide	2.3	13	0.19 J	NR	0.19 J	NR	0.23 U
Iron	NS	NS	12,000	NR	22,600	NR	11,000
Lead	63	400	975	NR	954	NR	31.1
Magnesium	NS	NS	4,420	NR	3,060	NR	2,580
Manganese	1,600	2,000	195	NR	238	NR	108
Mercury	0.18	0.26	NR	6	NR	6.1	0.13
Nickel	30	210	14	NR	21.9	NR	30.6
Potassium	NS	NS	863	NR	1,110	NR	934
Selenium	4	110	1.1 J	NR	2.2	NR	0.2 J
Silver	2	110	0.44 J	NR	0.8	NR	0.43 U
Sodium	NS	NS	224 U	NR	275 U	NR	154 U
Thallium	NS	NS	0.093 J	NR	0.14 J	NR	0.077 J
Vanadium	NS	NS	13.3	NR	25.3	NR	20.4
Zinc	109	6,600	231 J	NR	391 J	NR	87 U

				Metals			
		AKRF Sample ID	EP-21_20_20231129	EP-22_17.5_20231129	EP-23_17.5_20231129	EP-24_20_20231129	EP-25_19.5_20231207
	Lab	oratory Sample ID	460-293467-1	460-293467-2	460-293467-3	460-293467-4	460-294189-1
		Date Sampled	11/29/2023	11/29/2023	11/29/2023	11/29/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	7,250	5,000	5,230	5,540	5,750
Antimony	NS	NS	1.1 U	1 U	1 UJ	1 U	0.33 J
Arsenic	13	16	4	3.2	3.1	2.4	3.7
Barium	410	410	33.2	13.7	27 JK	32.8	36.5
Beryllium	4.4	43	0.41 J	0.26 J	0.33 J	0.47	0.38
Cadmium	2.5	2.5	1.1 U	1 U	1 U	1 U	0.82 U
Calcium	NS	NS	932	350	2,270	2,180	2,230
Chromium, Hexavalent	1	1	2.4 U	2.2 U	2.1 U	2.2 U	2.1 U
Chromium, Total	NS	NS	13.2	7.6	8.7	11.8	13.3
Cobalt	NS	NS	6	4.9	4.1	5.8	5.7
Copper	50	280	14.5	7	14.6 JK	14.8	17
Cyanide	2.3	13	0.3 U	0.27 U	0.23 U	0.22 U	0.24 U
Iron	NS	NS	13,200	11,200	12,400	10,400	14,500
Lead	63	400	16.9	7.2	41.8	11.1	155
Magnesium	NS	NS	2,830	1,640	1,840	2,610	2,230
Manganese	1,600	2,000	221	170	173 JL	440	181
Mercury	0.18	0.26	0.0087 J	0.13	0.47	0.019 U	0.36
Nickel	30	210	13.6	9.5	10.9	22.8	15.5
Potassium	NS	NS	1,180	648	700	1,200	1,030
Selenium	4	110	1.4 U	1.3 U	0.13 J	1.3 U	0.17 J
Silver	2	110	0.44 U	0.4 U	0.42 U	0.41 U	0.33 U
Sodium	NS	NS	146	78.2 J	110	120	122
Thallium	NS	NS	0.081 J	0.4 U	0.062 J	0.088 J	0.069 J
Vanadium	NS	NS	18.3	11.4	13.9	19.1	22.1
Zinc	109	6,600	38	25.1	38.7 JK	33.8	41.6

				Metals			
		AKRF Sample ID	EP-26_17.5_20231207	EP-27_22.5_20231207	EP-28_22.5_20231207	EP-28_22.5_20231207	EP-29_22.5_20231207
	Lab	oratory Sample ID	460-294189-2	460-294189-3	460-294189-4	460-294189-4	460-294189-5
	Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	7,460	7,320	6,220	NR	4,870
Antimony	NS	NS	0.3 J	0.66 J	0.51 J	NR	2.1
Arsenic	13	16	3.7	8.8	3.8	NR	5.2
Barium	410	410	42	74.5	40.1	NR	58.8
Beryllium	4.4	43	0.42	0.54	0.4	NR	0.3 J
Cadmium	2.5	2.5	0.86 U	0.12 J	0.11 J	NR	0.17 J
Calcium	NS	NS	2,990 J	18,600	4,020	NR	9,150
Chromium, Hexavalent	1	1	2.2 U	2.2 U	2.2 U	NR	2.5 U
Chromium, Total	NS	NS	25.1 JL	25	14.5	NR	12.8
Cobalt	NS	NS	5.8	5.9	5.9	NR	4.4
Copper	50	280	18.8	31.4	19.4	NR	56.8
Cyanide	2.3	13	0.23 U	0.26	0.27 U	NR	0.27 U
Iron	NS	NS	14,500	26,900	14,200	NR	13,000
Lead	63	400	72.4	63.5	69.4	NR	317
Magnesium	NS	NS	3,160	2,890	2,590	NR	5,490
Manganese	1,600	2,000	226	285	270	NR	183
Mercury	0.18	0.26	0.26	0.38	NR	4	NR
Nickel	30	210	26.5 JL	21	16.2	NR	14.8
Potassium	NS	NS	1,160	1,320	1,200	NR	1,040
Selenium	4	110	0.26 J	0.38 J	0.33 J	NR	0.57 J
Silver	2	110	0.34 U	0.34 U	0.35 U	NR	0.19 J
Sodium	NS	NS	203	273	120	NR	206
Thallium	NS	NS	0.082 J	0.18 J	0.083 J	NR	0.086 J
Vanadium	NS	NS	22.6	24.8	19.8	NR	17.1
Zinc	109	6,600	44.4	47.9	55.4	NR	93.7

				Metals			
		AKRF Sample ID	EP-29_22.5_20231207	EP-30_22.5_20231207	EP-31_22.5_20231207	EP-31_22.5_20231207	EP-32_22.5_20231207
	Lab	oratory Sample ID	460-294189-5	460-294189-6	460-294189-7	460-294189-7	460-294189-8
	Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	3	1	1	3	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	NR	2,140	3,710	NR	3,380
Antimony	NS	NS	NR	0.3 J	3.5	NR	4.9
Arsenic	13	16	NR	1.9	5.8	NR	37
Barium	410	410	NR	27.9	175	NR	84.6
Beryllium	4.4	43	NR	0.12 J	0.24 J	NR	0.2 J
Cadmium	2.5	2.5	NR	0.95 U	0.34 J	NR	0.51 J
Calcium	NS	NS	NR	1,860	4,680	NR	5,420
Chromium, Hexavalent	1	1	NR	2.4 U	2.4 U	NR	2.8 U
Chromium, Total	NS	NS	NR	7.1	13	NR	12.8
Cobalt	NS	NS	NR	2.2	4.9	NR	3.7
Copper	50	280	NR	19.9	73.8	NR	56.9
Cyanide	2.3	13	NR	0.24 U	0.31	NR	0.34 U
Iron	NS	NS	NR	7,580	14,400	NR	14,500
Lead	63	400	NR	90.7	356	NR	453
Magnesium	NS	NS	NR	1,160	1,740	NR	2,080
Manganese	1,600	2,000	NR	115	174	NR	170
Mercury	0.18	0.26	2.1	0.54	NR	1.2	NR
Nickel	30	210	NR	7.5	14.7	NR	11.7
Potassium	NS	NS	NR	856	1,010	NR	957
Selenium	4	110	NR	0.21 J	0.55 J	NR	0.64 J
Silver	2	110	NR	0.38 U	0.14 J	NR	0.29 J
Sodium	NS	NS	NR	163	253	NR	286
Thallium	NS	NS	NR	0.042 J	0.073 J	NR	0.053 J
Vanadium	NS	NS	NR	7.2	15.9	NR	12.9
Zinc	109	6,600	NR	35.8	174	NR	153

				Metals			
		AKRF Sample ID	EP-32_22.5_20231207	EP-33_22.5_20231207	EP-33_22.5_20231207	EP-34_22.5_20231207	EP-34_22.5_20231207
	Lab	oratory Sample ID	460-294189-8	460-294189-9	460-294189-9	460-294189-10	460-294189-10
	Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	20	1	20	1	60
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	NR	5,130	NR	5,860	NR
Antimony	NS	NS	NR	1.4	NR	1.2	NR
Arsenic	13	16	NR	7.5	NR	7.3	NR
Barium	410	410	NR	145	NR	130	NR
Beryllium	4.4	43	NR	0.34 J	NR	0.4	NR
Cadmium	2.5	2.5	NR	0.26 J	NR	0.23 J	NR
Calcium	NS	NS	NR	6,270	NR	28,600	NR
Chromium, Hexavalent	1	1	NR	2.5 U	NR	2.5 U	NR
Chromium, Total	NS	NS	NR	14.8	NR	16.3	NR
Cobalt	NS	NS	NR	5.2	NR	5.5	NR
Copper	50	280	NR	69.1	NR	65.7	NR
Cyanide	2.3	13	NR	0.29 J	NR	0.9	NR
Iron	NS	NS	NR	14,000	NR	14,900	NR
Lead	63	400	NR	524	NR	375	NR
Magnesium	NS	NS	NR	2,130	NR	2,740	NR
Manganese	1,600	2,000	NR	183	NR	212	NR
Mercury	0.18	0.26	8.4	NR	5.6	NR	63.3
Nickel	30	210	NR	16	NR	16.5	NR
Potassium	NS	NS	NR	1,110	NR	1,310	NR
Selenium	4	110	NR	0.71 J	NR	0.7 J	NR
Silver	2	110	NR	0.21 J	NR	0.18 J	NR
Sodium	NS	NS	NR	273	NR	351	NR
Thallium	NS	NS	NR	0.092 J	NR	0.1 J	NR
Vanadium	NS	NS	NR	19.1	NR	20.3	NR
Zinc	109	6,600	NR	154	NR	149	NR

				Metals			
		AKRF Sample ID	EP-35_25_20231207	EP-35_25_20231207	EP-36_25_20231207	EP-36_25_20231207	EP-37_17.5_20231215
	Lab	oratory Sample ID	460-294189-11	460-294189-11	460-294189-12	460-294189-12	460-294775-1
	Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	5	1	5	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q				
Aluminum	NS	NS	5,840	NR	6,510	NR	6,560
Antimony	NS	NS	2.1	NR	2	NR	2.6 J
Arsenic	13	16	8	NR	9.3	NR	11
Barium	410	410	194	NR	104	NR	140
Beryllium	4.4	43	0.4 J	NR	0.47	NR	0.41
Cadmium	2.5	2.5	0.23 J	NR	0.43 J	NR	0.34 J
Calcium	NS	NS	8,260	NR	4,900	NR	13,800
Chromium, Hexavalent	1	1	2.6 U	NR	2.5 U	NR	2.5 UJ
Chromium, Total	NS	NS	16.4	NR	36.1	NR	20.5 JK
Cobalt	NS	NS	6.6	NR	4.6	NR	6.6
Copper	50	280	55.4	NR	63.7	NR	168 J
Cyanide	2.3	13	0.27 J	NR	0.28 U	NR	5.2 JL
Iron	NS	NS	16,300	NR	17,600	NR	16,900
Lead	63	400	364	NR	430	NR	1,020 J
Magnesium	NS	NS	2,180	NR	4,070	NR	2,440
Manganese	1,600	2,000	219	NR	334	NR	212
Mercury	0.18	0.26	NR	2	NR	3.2	NR
Nickel	30	210	19.5	NR	17.2	NR	19.9
Potassium	NS	NS	1,170	NR	2,420	NR	1,070 JK
Selenium	4	110	0.95 J	NR	0.43 J	NR	1.8
Silver	2	110	0.21 J	NR	0.72	NR	0.33 J
Sodium	NS	NS	355	NR	288	NR	359 J
Thallium	NS	NS	0.11 J	NR	0.14 J	NR	0.17 J
Vanadium	NS	NS	21.9	NR	49.2	NR	23.8
Zinc	109	6,600	121	NR	212	NR	241 JK

				Metals			
		AKRF Sample ID	EP-37_17.5_20231215	EP-37_17.5_20231215	EP-X3_20231215	EP-X3_20231215	EP-38_17.5_20231215
	Lab	oratory Sample ID	460-294775-1	460-294775-1	460-294775-9	460-294775-9	460-294775-2
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	10	1	5	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	6,270	NR	3,980
Antimony	NS	NS	NR	NR	1.2 J	NR	1.5
Arsenic	13	16	NR	NR	8.2	NR	7.4
Barium	410	410	NR	NR	94.7	NR	113
Beryllium	4.4	43	NR	NR	0.36 J	NR	0.26 J
Cadmium	2.5	2.5	NR	NR	0.26 J	NR	0.21 J
Calcium	NS	NS	NR	NR	8,380	NR	5,380
Chromium, Hexavalent	1	1	NR	NR	2.5 UJ	NR	2.1 U
Chromium, Total	NS	NS	NR	NR	18 JK	NR	13.1
Cobalt	NS	NS	NR	NR	6	NR	4.4
Copper	50	280	NR	NR	64.6 J	NR	57.3
Cyanide	2.3	13	NR	NR	0.18 JL	NR	0.17 J
Iron	NS	NS	NR	NR	14,800	NR	11,700
Lead	63	400	NR	1,310	521 J	NR	463
Magnesium	NS	NS	NR	NR	2,500	NR	1,590
Manganese	1,600	2,000	NR	NR	214	NR	173
Mercury	0.18	0.26	3.9	NR	NR	5.1	NR
Nickel	30	210	NR	NR	20	NR	13.6
Potassium	NS	NS	NR	NR	1,010 JK	NR	757
Selenium	4	110	NR	NR	1.1 J	NR	1.2
Silver	2	110	NR	NR	0.17 J	NR	0.31 J
Sodium	NS	NS	NR	NR	267 J	NR	285
Thallium	NS	NS	NR	NR	0.11 J	NR	0.092 J
Vanadium	NS	NS	NR	NR	23.3 JK	NR	15.4
Zinc	109	6,600	NR	NR	129	NR	179

				Metals			
		AKRF Sample ID	EP-38_17.5_20231215	EP-39_20_20231215	EP-39_20_20231215	EP-40_17.5_20231215	EP-41_15_20231215
	Lab	oratory Sample ID	460-294775-2	460-294775-3	460-294775-3	460-294775-4	460-294775-5
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	1	5	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	6,510	NR	5,510	8,850
Antimony	NS	NS	NR	2.1	NR	0.13 J	0.87 J
Arsenic	13	16	NR	7.1	NR	3.1	6.2
Barium	410	410	NR	91.8	NR	29.8	80.5
Beryllium	4.4	43	NR	0.43	NR	0.36	0.45
Cadmium	2.5	2.5	NR	0.19 J	NR	0.83 U	0.24 J
Calcium	NS	NS	NR	14,400	NR	1,490	14,100
Chromium, Hexavalent	1	1	NR	2.4 U	NR	2.1 U	2.2 U
Chromium, Total	NS	NS	NR	24.5	NR	13.4	22.4
Cobalt	NS	NS	NR	5.5	NR	4.7	6.7
Copper	50	280	NR	42.5	NR	13.3	50.7
Cyanide	2.3	13	NR	0.37	NR	0.23 U	0.36
Iron	NS	NS	NR	15,800	NR	12,300	15,800
Lead	63	400	NR	264	NR	14	196
Magnesium	NS	NS	NR	3,050	NR	2,030	4,110
Manganese	1,600	2,000	NR	206	NR	278	272
Mercury	0.18	0.26	3.2	NR	2.9	0.43	NR
Nickel	30	210	NR	19.4	NR	12.5	24.4
Potassium	NS	NS	NR	1,270	NR	1,110	1,480
Selenium	4	110	NR	0.42 J	NR	1 U	0.41 J
Silver	2	110	NR	0.12 J	NR	0.33 U	0.1 J
Sodium	NS	NS	NR	298	NR	141	260
Thallium	NS	NS	NR	0.14 J	NR	0.083 J	0.13 J
Vanadium	NS	NS	NR	24.2	NR	22.5	28.1
Zinc	109	6,600	NR	103	NR	25.2	104

				Metals			
		AKRF Sample ID	EP-41_15_20231215	EP-42_17.5_20231215	EP-43_17.5_20231215	EP-43_17.5_20231215	EP-44_20_20231215
	Lab	oratory Sample ID	460-294775-5	460-294775-6	460-294775-7	460-294775-7	460-294775-8
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	1	1	5	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	6,920	6,540	NR	3,980
Antimony	NS	NS	NR	0.32 J	1.1	NR	1.3
Arsenic	13	16	NR	3.9	6.6	NR	7.1
Barium	410	410	NR	43.4	72.2	NR	96.6
Beryllium	4.4	43	NR	0.38	0.46	NR	0.3 J
Cadmium	2.5	2.5	NR	0.12 J	0.23 J	NR	0.35 J
Calcium	NS	NS	NR	3,500	6,680	NR	22,900
Chromium, Hexavalent	1	1	NR	2.2 U	2.3 U	NR	2.5 U
Chromium, Total	NS	NS	NR	14.7	15.6	NR	11.5
Cobalt	NS	NS	NR	6	6	NR	6.8
Copper	50	280	NR	19.4	80.5	NR	195
Cyanide	2.3	13	NR	0.13 J	0.27	NR	0.23 J
Iron	NS	NS	NR	14,400	15,200	NR	10,600
Lead	63	400	NR	52.3	508	NR	397
Magnesium	NS	NS	NR	2,770	2,350	NR	2,310
Manganese	1,600	2,000	NR	275	264	NR	240
Mercury	0.18	0.26	1.2	0.39	NR	1.4	NR
Nickel	30	210	NR	20.2	17.2	NR	17.6
Potassium	NS	NS	NR	1,230	994	NR	673
Selenium	4	110	NR	0.24 J	0.65 J	NR	1.4
Silver	2	110	NR	0.35 U	0.15 J	NR	0.19 J
Sodium	NS	NS	NR	147	197	NR	482
Thallium	NS	NS	NR	0.092 J	0.098 J	NR	0.11 J
Vanadium	NS	NS	NR	21.3	20.9	NR	17.5
Zinc	109	6,600	NR	51.6	129	NR	169

				Metals			
		AKRF Sample ID	EP-44_20_20231215	A4HAZ_B_20_20230928	A4HAZ_X1_20230928	A4HAZ_N_15_20230928	A4HAZ_E_15_20230928
	Lab	oratory Sample ID	460-294775-8	460-289204-1	460-289204-2	460-289204-5	460-289204-6
		Date Sampled	12/15/2023	9/28/2023	9/28/2023	9/28/2023	9/28/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	6,350	4,720	NR	NR
Antimony	NS	NS	NR	0.33 JL	0.24 JL	NR	NR
Arsenic	13	16	NR	3.8	4.4	NR	NR
Barium	410	410	NR	53	46.2	NR	NR
Beryllium	4.4	43	NR	0.37 J	0.31 J	NR	NR
Cadmium	2.5	2.5	NR	1.3 U	0.12 J	NR	NR
Calcium	NS	NS	NR	3,040	2,800	NR	NR
Chromium, Hexavalent	1	1	NR	2.6 U	2.5 U	NR	NR
Chromium, Total	NS	NS	NR	13.4 JK	12.3 JK	NR	NR
Cobalt	NS	NS	NR	5.6	5.4	NR	NR
Copper	50	280	NR	28.8 JL	32.3 JL	NR	NR
Cyanide	2.3	13	NR	0.31 U	0.29 U	NR	NR
Iron	NS	NS	NR	13,000	12,000	NR	NR
Lead	63	400	NR	216 J	183 J	531	336
Magnesium	NS	NS	NR	2,230 JK	2,250 JK	NR	NR
Manganese	1,600	2,000	NR	239 JK	164 JK	NR	NR
Mercury	0.18	0.26	2.4	0.21 JL	0.47 JL	NR	NR
Nickel	30	210	NR	19.7	17.4	NR	NR
Potassium	NS	NS	NR	915 JK	715 JK	NR	NR
Selenium	4	110	NR	0.41 J	0.46 J	NR	NR
Silver	2	110	NR	0.51 U	0.094 J	NR	NR
Sodium	NS	NS	NR	220	157	NR	NR
Thallium	NS	NS	NR	0.085 J	0.076 J	NR	NR
Vanadium	NS	NS	NR	19.4 JK	16.1 JK	NR	NR
Zinc	109	6,600	NR	66.6 JL	62.2 JL	NR	NR

				Metals			
		AKRF Sample ID	A4HAZ_S_15_20230928	A4HAZ_W_15_20230928	B1HAZ_B_20_20230601	B1HAZ_B_20_20230601	B1HAZ_X1_20230601
	Lab	oratory Sample ID	460-289204-7	460-289204-8	460-281384-5	460-281384-5	460-281384-8
		Date Sampled	9/28/2023	9/28/2023	6/01/2023	6/01/2023	6/01/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	10	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	5,570	NR	4,750
Antimony	NS	NS	NR	NR	1 J	NR	0.75 J
Arsenic	13	16	NR	NR	8.4	NR	9.1
Barium	410	410	NR	NR	130	NR	107
Beryllium	4.4	43	NR	NR	0.34 J	NR	0.3 J
Cadmium	2.5	2.5	NR	NR	0.22 J	NR	0.29 J
Calcium	NS	NS	NR	NR	8,470	NR	8,370
Chromium, Hexavalent	1	1	NR	NR	3.1 UJ	NR	2.5 UJ
Chromium, Total	NS	NS	NR	NR	16.4 JL	NR	13.6 JL
Cobalt	NS	NS	NR	NR	5.5 JL	NR	5.3 JL
Copper	50	280	NR	NR	109	NR	97.7
Cyanide	2.3	13	NR	NR	1	NR	1
Iron	NS	NS	NR	NR	18,000	NR	15,300
Lead	63	400	376	438	415	NR	381
Magnesium	NS	NS	NR	NR	3,240 J	NR	3,020 J
Manganese	1,600	2,000	NR	NR	262	NR	236
Mercury	0.18	0.26	NR	NR	NR	3.3	NR
Nickel	30	210	NR	NR	20.9 JL	NR	21.1 JL
Potassium	NS	NS	NR	NR	1,260 JL	NR	1,030 JL
Selenium	4	110	NR	NR	0.62 J	NR	0.72 J
Silver	2	110	NR	NR	0.3 J	NR	0.21 J
Sodium	NS	NS	NR	NR	414 JL	NR	259 JL
Thallium	NS	NS	NR	NR	0.1 J	NR	0.12 J
Vanadium	NS	NS	NR	NR	18.1 JL	NR	16.4 JL
Zinc	109	6,600	NR	NR	177 JL	NR	150 JL

				Metals			
		AKRF Sample ID	B1HAZ_X1_20230601	B1HAZ_N_15_20230601	B1HAZ_E_15_20230601	B1HAZ_S_15_20230601	B1HAZ_W_15_20230601
	Lab	oratory Sample ID	460-281384-8	460-281384-1	460-281384-2	460-281384-3	460-281384-4
		Date Sampled	6/01/2023	6/01/2023	6/01/2023	6/01/2023	6/01/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	5	10	10	10	10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	NR	NR	NR	NR	NR
Antimony	NS	NS	NR	NR	NR	NR	NR
Arsenic	13	16	NR	NR	NR	NR	NR
Barium	410	410	NR	NR	NR	NR	NR
Beryllium	4.4	43	NR	NR	NR	NR	NR
Cadmium	2.5	2.5	NR	NR	NR	NR	NR
Calcium	NS	NS	NR	NR	NR	NR	NR
Chromium, Hexavalent	1	1	NR	NR	NR	NR	NR
Chromium, Total	NS	NS	NR	NR	NR	NR	NR
Cobalt	NS	NS	NR	NR	NR	NR	NR
Copper	50	280	NR	NR	NR	NR	NR
Cyanide	2.3	13	NR	NR	NR	NR	NR
Iron	NS	NS	NR	NR	NR	NR	NR
Lead	63	400	NR	485	467	378	319
Magnesium	NS	NS	NR	NR	NR	NR	NR
Manganese	1,600	2,000	NR	NR	NR	NR	NR
Mercury	0.18	0.26	2.5	NR	NR	NR	NR
Nickel	30	210	NR	NR	NR	NR	NR
Potassium	NS	NS	NR	NR	NR	NR	NR
Selenium	4	110	NR	NR	NR	NR	NR
Silver	2	110	NR	NR	NR	NR	NR
Sodium	NS	NS	NR	NR	NR	NR	NR
Thallium	NS	NS	NR	NR	NR	NR	NR
Vanadium	NS	NS	NR	NR	NR	NR	NR
Zinc	109	6,600	NR	NR	NR	NR	NR

				Metals			
		AKRF Sample ID	FB_20230928	FB_20231103	FB_20231127	FB_20231127	FB_20231127
	Labo	oratory Sample ID	460-289204-3	460-291818-9	460-293316-6	460-293317-18	460-293317-18
		Date Sampled	9/28/2023	11/03/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	μg/L	µg/L	µg/L	µg/L	µg/L
		Dilution Factor	1	1	1	1	10
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	40 U	40 U	40 U	NR	NR
Antimony	NS	NS	2 U	2 U	2 U	NR	NR
Arsenic	13	16	2 U	2 U	2 U	NR	NR
Barium	410	410	4 U	4 U	4 U	NR	NR
Beryllium	4.4	43	0.8 U	0.8 U	0.8 U	NR	NR
Cadmium	2.5	2.5	2 U	2 U	2 U	NR	NR
Calcium	NS	NS	500 U	500 U	500 U	NR	NR
Chromium, Hexavalent	1	1	10 U	10 U	10 U	NR	NR
Chromium, Total	NS	NS	4 U	4 U	4 U	NR	NR
Cobalt	NS	NS	4 U	4 U	4 U	NR	NR
Copper	50	280	4 U	4 U	4 U	NR	NR
Cyanide	2.3	13	10 U	10 U	10 U	NR	NR
Iron	NS	NS	23.4 J	120 U	120 U	NR	NR
Lead	63	400	1.2 U	1.2 U	NR	1.2 U	12 U
Magnesium	NS	NS	200 U	200 U	200 U	NR	NR
Manganese	1,600	2,000	8 U	8 U	8 U	NR	NR
Mercury	0.18	0.26	0.2 U	0.2 U	0.2 U	NR	NR
Nickel	30	210	4 U	4 U	4 U	NR	NR
Potassium	NS	NS	200 U	200 U	200 U	NR	NR
Selenium	4	110	2.5 U	2.5 U	2.5 U	NR	NR
Silver	2	110	2 U	2 U	2 U	NR	NR
Sodium	NS	NS	500 U	500 U	26,800	NR	NR
Thallium	NS	NS	0.8 U	0.8 U	0.8 U	NR	NR
Vanadium	NS	NS	4 U	4 U	4 U	NR	NR
Zinc	109	6,600	16 U	16 U	189	NR	NR

				Metals			
		AKRF Sample ID	FB_20231215	FB-S_20230601	FB-S_20230601	FB_20230928	FB-S_20230601
	Lab	oratory Sample ID	460-294775-10	460-281384-6	460-281384-6	460-289204-3	460-281384-6
		Date Sampled	12/15/2023	6/01/2023	6/01/2023	9/28/2023	6/01/2023
		Unit	µg/L	μg/L	µg/L	μg/L	μg/L
		Dilution Factor	1	1	10	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	40 U	40 U	NR	40 U	40 U
Antimony	NS	NS	2 U	2 U	NR	2 U	2 U
Arsenic	13	16	2 U	2 U	NR	2 U	2 U
Barium	410	410	4 U	4 U	NR	4 U	4 U
Beryllium	4.4	43	0.8 U	0.8 U	NR	0.8 U	0.8 U
Cadmium	2.5	2.5	2 U	2 U	NR	2 U	2 U
Calcium	NS	NS	500 U	49.7 J	NR	500 U	49.7 J
Chromium, Hexavalent	1	1	10 U	10 U	NR	10 U	10 U
Chromium, Total	NS	NS	4 U	4 U	NR	4 U	4 U
Cobalt	NS	NS	4 U	4 U	NR	4 U	4 U
Copper	50	280	4 U	4 U	NR	4 U	4 U
Cyanide	2.3	13	10 U	8.2 J	NR	10 U	8.2 J
Iron	NS	NS	120 U	120 U	NR	23.4 J	120 U
Lead	63	400	1.2 U	1.2 U	12 U	1.2 U	1.2 U
Magnesium	NS	NS	200 U	200 U	NR	200 U	200 U
Manganese	1,600	2,000	8 U	8 U	NR	8 U	8 U
Mercury	0.18	0.26	0.2 U	0.2 U	NR	0.2 U	0.2 U
Nickel	30	210	4 U	4 U	NR	4 U	4 U
Potassium	NS	NS	200 U	200 U	NR	200 U	200 U
Selenium	4	110	2.5 U	2.5 U	NR	2.5 U	2.5 U
Silver	2	110	2 U	2 U	NR	2 U	2 U
Sodium	NS	NS	500 U	62 J	NR	500 U	62 J
Thallium	NS	NS	0.8 U	0.8 U	NR	0.8 U	0.8 U
Vanadium	NS	NS	4 U	4 U	NR	4 U	4 U
Zinc	109	6,600	16 U	16 U	NR	16 U	16 U

	AKRF Sample ID	A4HAZ_B_20_20230928	A4HAZ_X1_20230928	A4HAZ_N_15_20230928	A4HAZ_E_15_20230928	A4HAZ_S_15_20230928
Laboratory Sample ID		460-289204-1	460-289204-2	460-289204-5	460-289204-6	460-289204-7
Date Sampled		9/28/2023	9/28/2023	9/28/2023	9/28/2023	9/28/2023
Unit		mg/l	mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10	10
	EPA Hazardous					
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	0.552	0.662	0.578	0.292	0.0168

	AKRF Sample ID	A4HAZ_W_15_20230928	B1HAZ_B_20_20230601	B1HAZ_X1_20230601	B1HAZ_N_15_20230601	B1HAZ_E_15_20230601
Laboratory Sample ID		460-289204-8	460-281384-5	460-281384-8	460-281384-1	460-281384-2
Date Sampled		9/28/2023	6/01/2023	6/01/2023	6/01/2023	6/01/2023
Unit		mg/l	mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10	10
	EPA Hazardous					
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	0.277	0.578 J	0.272 J	0.245	0.275

	AKRF Sample ID	B1HAZ_S_15_20230601	B1HAZ_W_15_20230601	EP-10_B_16_20231127	EP-10HAZ_X1_20231127	EP-10-N5_15_20231127
Laboratory Sample ID		460-281384-3	460-281384-4	460-293317-19	460-293317-17	460-293317-1
	Date Sampled		6/01/2023	11/27/2023	11/27/2023	11/27/2023
Unit		mg/l	mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10	10
	EPA Hazardous					
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	0.89	0.255	0.769	0.65	0.751

L	AKRF Sample ID aboratory Sample ID		EP-10-S5_15_20231127 460-293317-5	EP-10-W5_15_20231127 460-293317-7	EP-12_B_16_20231127 460-293317-23	EP-12-N5_15_20231127 460-293317-9
Date Sampled			11/27/2023	11/27/2023	11/27/2023	11/27/2023
Unit		mg/l	mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10	10
	EPA Hazardous					
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	0.373	0.579	0.676	1.51	over-excavated

	AKRF Sample ID	EP-12-N10_15_20231127	EP-12-E5_15_20231127	EP-12-S5_15_20231127	EP-12-S10_15_20231127	EP-12-S15_15_20231206
Laboratory Sample ID		460-293317-10	460-293317-11	460-293317-13	460-293317-14	460-293992-1
	Date Sampled	11/27/2023	11/27/2023	11/27/2023	11/27/2023	12/6/2023
Unit		mg/l	mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10	10
	EPA Hazardous					
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	3.29	3.85	over-excavated	over-excavated	2.56

		•	-		
	AKRF Sample ID	EP-12-W5_15_20231127	EP-12-W10_15_20231127	FB-S_20230601	FB_20231127
Laboratory Sample ID		460-293317-15	460-293317-16	460-281384-6	460-293317-18
Date Sampled		11/27/2023	11/27/2023 06/01/2023		11/27/2023
Unit		mg/l	mg/l	mg/l	mg/l
	Dilution Factor	10	10	10	10
	EPA Hazardous				
Compound	Waste	CONC Q	CONC Q	CONC Q	CONC Q
Lead	5	over-excavated	0.963	12.0 U	12.0 U

Table 5 380 4th Avenue Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls

				, , ,			
AKRF Sample ID Laboratory Sample ID Date Sampled Unit Dilution Factor			460-291818-1 11/03/2023	EP-X1_15_20231103 460-291818-8 11/03/2023 mg/kg 1	EP-02_15_20231103 460-291818-2 11/03/2023 mg/kg 1	EP-03_15_20231103 460-291818-3 11/03/2023 mg/kg 1	EP-04_15_20231103 460-291818-4 11/03/2023 mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1221 (Aroclor 1221)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1232 (Aroclor 1232)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1242 (Aroclor 1242)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1248 (Aroclor 1248)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1254 (Aroclor 1254)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1260 (Aroclor 1260)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1262 (Aroclor 1262)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
PCB-1268 (Aroclor 1268)	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U
Total PCBs	0.1	1	0.088 U	0.086 U	0.091 U	0.085 U	0.089 U

Table 5 380 4th Avenue Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls

	Lab	AKRF Sample ID oratory Sample ID Date Sampled Unit Dilution Factor	460-291818-5 11/03/2023	EP-06_15_20231103 460-291818-6 11/03/2023 mg/kg 1	EP-07_15_20231103 460-291818-7 11/03/2023 mg/kg 1	EP-08_15_20231110 460-292402-1 11/10/2023 mg/kg 1	EP-09_15_20231110 460-292402-2 11/10/2023 mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1221 (Aroclor 1221)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1232 (Aroclor 1232)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1242 (Aroclor 1242)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1248 (Aroclor 1248)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1254 (Aroclor 1254)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1260 (Aroclor 1260)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1262 (Aroclor 1262)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
PCB-1268 (Aroclor 1268)	NS	NS	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U
Total PCBs	0.1	1	0.082 U	0.094 U	0.087 U	0.1 U	0.095 U

Table 5 380 4th Avenue Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls

	Lab	AKRF Sample ID oratory Sample ID Date Sampled Unit Dilution Factor		EP-11_15_20231110 460-292402-4 11/10/2023 mg/kg 1	EP-12_15_20231110 460-292402-5 11/10/2023 mg/kg 1	EP-13_15_20231110 460-292402-6 11/10/2023 mg/kg 1	EP-14_15_20231110 460-292402-7 11/10/2023 mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1221 (Aroclor 1221)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1232 (Aroclor 1232)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1242 (Aroclor 1242)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1248 (Aroclor 1248)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1254 (Aroclor 1254)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1260 (Aroclor 1260)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1262 (Aroclor 1262)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
PCB-1268 (Aroclor 1268)	NS	NS	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U
Total PCBs	0.1	1	0.081 U	0.077 U	0.094 U	0.1 U	0.083 U

				r orychionnated Diphenyis			
	AKRF Sample ID Laboratory Sample ID Date Sampled			EP-16_20_20231127 460-293316-1	EP-X2_20_20231127 460-293316-8	EP-17_15_20231127 460-293316-2	EP-18_17.5_20231127 460-293316-3
				11/27/2023	11/27/2023	11/27/2023	11/27/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	over-excavated	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1221 (Aroclor 1221)	NS	NS	(sample was over-excavated	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1232 (Aroclor 1232)	NS	NS	when petroleum hotspot was	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1242 (Aroclor 1242)	NS	NS	expanded, beyond its	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1248 (Aroclor 1248)	NS	NS	proposed extents in the	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1254 (Aroclor 1254)	NS	NS	RAWP, based on olfacotry	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1260 (Aroclor 1260)	NS	NS	observations and elevated	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1262 (Aroclor 1262)	NS	NS	PID readings; and not due to	0.082 U	0.08 U	0.093 U	0.093 U
PCB-1268 (Aroclor 1268)	NS	NS	exceedances of applicable	0.082 U	0.08 U	0.093 U	0.093 U
Total PCBs	0.1	1	SCOs)	0.082 U	0.08 U	0.093 U	0.093 U

				r oryennonmated Dipricityis			
	AKRF Sample ID Laboratory Sample ID Date Sampled			EP-20_17.5_20231127 460-293316-5	EP-21_20_20231129 460-293467-1	EP-22_17.5_20231129 460-293467-2	EP-23_17.5_20231129 460-293467-3
				11/27/2023	11/29/2023	11/29/2023	11/29/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1221 (Aroclor 1221)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1232 (Aroclor 1232)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1242 (Aroclor 1242)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1248 (Aroclor 1248)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1254 (Aroclor 1254)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1260 (Aroclor 1260)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1262 (Aroclor 1262)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
PCB-1268 (Aroclor 1268)	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U
Total PCBs	0.1	1	0.098 U	0.076 U	0.083 U	0.077 U	0.07 U

	Lab	AKRF Sample ID oratory Sample ID Date Sampled	460-293467-4 11/29/2023	EP-25_19.5_20231207 460-294189-1 12/07/2023	EP-26_17.5_20231207 460-294189-2 12/07/2023	EP-27_22.5_20231207 460-294189-3 12/07/2023	EP-28_22.5_20231207 460-294189-4 12/07/2023
		Unit Dilution Factor	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor					I
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1221 (Aroclor 1221)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1232 (Aroclor 1232)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1242 (Aroclor 1242)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1248 (Aroclor 1248)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1254 (Aroclor 1254)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1260 (Aroclor 1260)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1262 (Aroclor 1262)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
PCB-1268 (Aroclor 1268)	NS	NS	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U
Total PCBs	0.1	1	0.074 U	0.072 U	0.075 U	0.074 U	0.075 U

				, ,			
	Lab	AKRF Sample ID oratory Sample ID Date Sampled Unit	460-294189-5 12/07/2023	EP-30_22.5_20231207 460-294189-6 12/07/2023 mg/kg	EP-31_22.5_20231207 460-294189-7 12/07/2023 mg/kg	EP-32_22.5_20231207 460-294189-8 12/07/2023 mg/kg	EP-33_22.5_20231207 460-294189-9 12/07/2023 mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1221 (Aroclor 1221)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1232 (Aroclor 1232)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1242 (Aroclor 1242)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1248 (Aroclor 1248)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1254 (Aroclor 1254)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1260 (Aroclor 1260)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1262 (Aroclor 1262)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
PCB-1268 (Aroclor 1268)	NS	NS	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U
Total PCBs	0.1	1	0.085 U	0.084 U	0.082 U	0.094 U	0.086 U

				Polychlorinated Biphenyls			
	AKRF Sample ID Laboratory Sample ID			EP-35_25_20231207 460-294189-11	EP-36_25_20231207 460-294189-12	EP-37_17.5_20231215 460-294775-1	EP-X3_20231215 460-294775-9
		Date Sampled Unit Dilution Factor	12/07/2023 mg/kg 1	12/07/2023 mg/kg 1	12/07/2023 mg/kg 1	12/15/2023 mg/kg 1	12/15/2023 mg/kg 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1221 (Aroclor 1221)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1232 (Aroclor 1232)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1242 (Aroclor 1242)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1248 (Aroclor 1248)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1254 (Aroclor 1254)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1260 (Aroclor 1260)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1262 (Aroclor 1262)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
PCB-1268 (Aroclor 1268)	NS	NS	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U
Total PCBs	0.1	1	0.086 U	0.088 U	0.085 U	0.084 U	0.085 U

		AKRF Sample ID	EP-38_17.5_20231215	EP-39_20_20231215	EP-40_17.5_20231215	EP-41_15_20231215	EP-42_17.5_20231215
	Lab	oratory Sample ID	460-294775-2	460-294775-3	460-294775-4	460-294775-5	460-294775-6 12/15/2023
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023	
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1221 (Aroclor 1221)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1232 (Aroclor 1232)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1242 (Aroclor 1242)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1248 (Aroclor 1248)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1254 (Aroclor 1254)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1260 (Aroclor 1260)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1262 (Aroclor 1262)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
PCB-1268 (Aroclor 1268)	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U
Total PCBs	0.1	1	0.071 U	0.081 U	0.073 U	0.075 U	0.076 U

		AKRF Sample ID	EP-43_17.5_20231215	EP-44_20_20231215	A4HAZ_B_20_20230928	A4HAZ_X1_20230928	B1HAZ_B_20_20230601
	Lab	oratory Sample ID	460-294775-7	460-294775-8	460-289204-1	460-289204-2	460-281384-5 6/01/2023
		Date Sampled	12/15/2023	12/15/2023	9/28/2023	9/28/2023	
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1221 (Aroclor 1221)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1232 (Aroclor 1232)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1242 (Aroclor 1242)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1248 (Aroclor 1248)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1254 (Aroclor 1254)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1260 (Aroclor 1260)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1262 (Aroclor 1262)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
PCB-1268 (Aroclor 1268)	NS	NS	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U
Total PCBs	0.1	1	0.077 U	0.088 U	0.085 U	0.084 U	0.1 U

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls

	Lab	AKRF Sample ID oratory Sample ID Date Sampled Unit Dilution Factor	B1HAZ_X1_20230601 460-281384-8 6/01/2023 mg/kg 1	FB_20230928 460-289204-3 9/28/2023 μg/L 1	FB_20231103 460-291818-9 11/03/2023 μg/L 1	FB_20231127 460-293316-6 11/27/2023 μg/L 1	FB_20231215 460-294775-10 12/15/2023 μg/L 1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1221 (Aroclor 1221)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1232 (Aroclor 1232)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1242 (Aroclor 1242)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1248 (Aroclor 1248)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1254 (Aroclor 1254)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1260 (Aroclor 1260)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1262 (Aroclor 1262)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
PCB-1268 (Aroclor 1268)	NS	NS	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U
Total PCBs	0.1	1	0.085 U	0.4 U	0.4 U	0.4 U	0.4 U

380 4th Avenue

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Polychlorinated Biphenyls

		AKRF Sample ID	FB-S_20230601	FB_20230928	FB-S_20230601
	Lab	oratory Sample ID	460-281384-6	460-289204-3	460-281384-6
		Date Sampled	6/01/2023	9/28/2023	6/01/2023
		Unit	μg/L	μg/L	μg/L
		Dilution Factor	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q
PCB-1016 (Aroclor 1016)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1221 (Aroclor 1221)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1232 (Aroclor 1232)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1242 (Aroclor 1242)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1248 (Aroclor 1248)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1254 (Aroclor 1254)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1260 (Aroclor 1260)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1262 (Aroclor 1262)	NS	NS	0.4 U	0.4 U	0.4 U
PCB-1268 (Aroclor 1268)	NS	NS	0.4 U	0.4 U	0.4 U
Total PCBs	0.1	1	0.4 U	0.4 U	0.4 U

Post-Remedial Soil Endpoint Analytical Results

Pesticides	

		AKRF Sample ID	EP-01_15_20231103	EP-X1_15_20231103	EP-02_15_20231103	EP-03_15_20231103
	Lab	oratory Sample ID		460-291818-8	460-291818-2	460-291818-3
	Lau	Date Sampled		11/03/2023	11/03/2023	11/03/2023
		Unit				
			mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	·	1	1	1
Compound		NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0026 U	0.0026 U	0.0027 U	0.0025 U
Alpha Endosulfan	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0026 U	0.0026 U	0.0027 U	0.0025 U
Beta Endosulfan	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
cis-Chlordane	0.014	0.65	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0026 U	0.0026 U	0.0027 U	0.0025 U
Dieldrin	0.005	0.075	0.0026 U	0.0026 U	0.0027 U	0.0025 U
Endosulfan Sulfate	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Endrin Aldehyde	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Endrin Ketone	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Gamma Bhc (Lindane)	0.026	0.24	0.0026 U	0.0026 U	0.0027 U	0.0025 U
Heptachlor	0.013	0.53	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Heptachlor Epoxide	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Methoxychlor	NS	NS	0.0088 U	0.0086 U	0.0091 U	0.0085 U
P,P'-DDD	0.0033	5	0.0088 U	0.0086 U	0.0091 U	0.0085 U
P,P'-DDE	0.0033	3.4	0.0088 U	0.0086 U	0.0091 U	0.0085 U
P,P'-DDT	0.0033	3.8	0.0088 U	0.0086 U	0.0091 U	0.0085 U
Toxaphene	NS	NS	0.088 U	0.086 U	0.091 U	0.085 U

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results

Pesticides	

		AKRF Sample ID	EP-04_15_20231103	EP-05_15_20231103	EP-06_15_20231103	EP-07_15_20231103
	Lab	oratory Sample ID		460-291818-5	460-291818-6	460-291818-7
	Lau			11/03/2023	11/03/2023	11/03/2023
		Date Sampled				
Unit			mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0027 U	0.0024 U	0.0028 U	0.0026 U
Alpha Endosulfan	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0027 U	0.0024 U	0.0028 U	0.0026 U
Beta Endosulfan	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
cis-Chlordane	0.014	0.65	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0027 U	0.0024 U	0.0028 U	0.0026 U
Dieldrin	0.005	0.075	0.0027 U	0.0024 U	0.0028 U	0.0026 U
Endosulfan Sulfate	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Endrin Aldehyde	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Endrin Ketone	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Gamma Bhc (Lindane)	0.026	0.24	0.0027 U	0.0024 U	0.0028 U	0.0026 U
Heptachlor	0.013	0.53	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Heptachlor Epoxide	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Methoxychlor	NS	NS	0.0089 U	0.0082 U	0.0094 U	0.0087 U
P,P'-DDD	0.0033	5	0.0089 U	0.0082 U	0.0094 U	0.0087 U
P,P'-DDE	0.0033	3.4	0.0089 U	0.0082 U	0.0094 U	0.0087 U
P,P'-DDT	0.0033	3.8	0.0089 U	0.0082 U	0.0094 U	0.0087 U
Toxaphene	NS	NS	0.089 U	0.082 U	0.094 U	0.087 U

Post-Remedial Soil Endpoint Analytical Results

Pesticides	

		AKRF Sample ID		EP-09_15_20231110	EP-10_15_20231110	EP-11_15_20231110
	Lab	oratory Sample ID		460-292402-2	460-292402-3	460-292402-4
		Date Sampled		11/10/2023	11/10/2023	11/10/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.01 U	0.0095 U	0.0081 U	0.0077 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0031 U	0.0028 U	0.0024 U	0.0023 U
Alpha Endosulfan	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0031 U	0.0028 U	0.0024 U	0.0023 U
Beta Endosulfan	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
cis-Chlordane	0.014	0.65	0.01 U	0.0095 U	0.0081 U	0.0077 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0031 U	0.0028 U	0.0024 U	0.0023 U
Dieldrin	0.005	0.075	0.0031 U	0.0028 U	0.0024 U	0.0023 U
Endosulfan Sulfate	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.01 U	0.0095 U	0.0081 U	0.0077 U
Endrin Aldehyde	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
Endrin Ketone	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
Gamma Bhc (Lindane)	0.026	0.24	0.0031 U	0.0028 U	0.0024 U	0.0023 U
Heptachlor	0.013	0.53	0.01 U	0.0095 U	0.0081 U	0.0077 U
Heptachlor Epoxide	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
Methoxychlor	NS	NS	0.01 U	0.0095 U	0.0081 U	0.0077 U
P,P'-DDD	0.0033	5	0.01 U	0.0095 U	0.0081 U	0.0077 U
P,P'-DDE	0.0033	3.4	0.01 U	0.0095 U	0.0081 U	0.0077 U
P,P'-DDT	0.0033	3.8	0.01 U	0.0095 U	0.0081 U	0.0077 U
Toxaphene	NS	NS	0.1 U	0.095 U	0.081 U	0.077 U

Post-Remedial Soil Endpoint Analytical Results Pesticides

			ED 10 15 00001110	ED 12 15 20221110	ED 14 15 20221110	ED 15 15 20221110
	1 - 6	AKRF Sample ID		EP-13_15_20231110	EP-14_15_20231110	EP-15_15_20231110
	Lab	oratory Sample ID		460-292402-6	460-292402-7	460-292402-8
		Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0094 U	0.01 U	0.0083 U	
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0028 U	0.0031 U	0.0025 U	
Alpha Endosulfan	NS	NS	0.0094 U	0.01 U	0.0083 U	
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0028 U	0.0031 U	0.0025 U	
Beta Endosulfan	NS	NS	0.0094 U	0.01 U	0.0083 U	
cis-Chlordane	0.014	0.65	0.0094 U	0.01 U	0.0083 U	aver avery to d
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0028 U	0.0031 U	0.0025 U	over-excavated
Dieldrin	0.005	0.075	0.0028 U	0.0031 U	0.0025 U	 (sample was over-excavated when petroleum hotspot was
Endosulfan Sulfate	NS	NS	0.0094 U	0.01 U	0.0083 U	expanded, beyond its
Endosulfans ABS	4.3	35	0 U	0 U	0 U	proposed extents in the
Endrin	0.014	5.3	0.0094 U	0.01 U	0.0083 U	RAWP, based on olfacotry
Endrin Aldehyde	NS	NS	0.0094 U	0.01 U	0.0083 U	observations and elevated
Endrin Ketone	NS	NS	0.0094 U	0.01 U	0.0083 U	PID readings; and not due to
Gamma Bhc (Lindane)	0.026	0.24	0.0028 U	0.0031 U	0.0025 U	exceedances of applicable
Heptachlor	0.013	0.53	0.0094 U	0.01 U	0.0083 U	SCOs)
Heptachlor Epoxide	NS	NS	0.0094 U	0.01 U	0.0083 U	3003)
Methoxychlor	NS	NS	0.0094 U	0.01 U	0.0083 U	
P,P'-DDD	0.0033	5	0.0094 U	0.01 U	0.0083 U	
P,P'-DDE	0.0033	3.4	0.0094 U	0.01 U	0.0083 U	
P,P'-DDT	0.0033	3.8	0.0094 U	0.01 U	0.0083 U	
Toxaphene	NS	NS	0.094 U	0.1 U	0.083 U	

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results

Pesticides	

i		AKRF Sample ID	EP-16_20_20231127	EP-X2 20 20231127	EP-17_15_20231127	EP-18_17.5_20231127
	Lah	oratory Sample ID		460-293316-8	460-293316-2	460-293316-3
	Lab	Date Sampled		11/27/2023	11/27/2023	11/27/2023
Unit			mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO		CONC Q	CONC Q	CONC Q	CONC Q
Compound Aldrin		0.044	0.0082 U			
	0.0048			0.008 U	0.0093 U	0.0093 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0024 U	0.0024 U	0.0028 U	0.0028 U
Alpha Endosulfan	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0024 U	0.0024 U	0.0028 U	0.0028 U
Beta Endosulfan	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
cis-Chlordane	0.014	0.65	0.0082 U	0.008 U	0.0093 U	0.0093 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0024 U	0.0024 U	0.0028 U	0.0028 U
Dieldrin	0.005	0.075	0.0024 U	0.0024 U	0.0028 U	0.0028 U
Endosulfan Sulfate	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0082 U	0.008 U	0.0093 U	0.0093 U
Endrin Aldehyde	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
Endrin Ketone	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
Gamma Bhc (Lindane)	0.026	0.24	0.0024 U	0.0024 U	0.0028 U	0.0028 U
Heptachlor	0.013	0.53	0.0082 U	0.008 U	0.0093 U	0.0093 U
Heptachlor Epoxide	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
Methoxychlor	NS	NS	0.0082 U	0.008 U	0.0093 U	0.0093 U
P,P'-DDD	0.0033	5	0.0082 U	0.008 U	0.0093 U	0.0093 U
P,P'-DDE	0.0033	3.4	0.0082 U	0.008 U	0.0093 U	0.0093 U
P,P'-DDT	0.0033	3.8	0.0082 U	0.008 U	0.0093 U	0.0093 U
Toxaphene	NS	NS	0.082 U	0.08 U	0.093 U	0.093 U

Post-Remedial Soil Endpoint Analytical Results Pesticides

		AKRF Sample ID	EP-19_17.5_20231127	EP-20_17.5_20231127	EP-21_20_20231129	EP-22_17.5_20231129
	Lab	oratory Sample ID		460-293316-5	460-293467-1	460-293467-2
		Date Sampled	11/27/2023	11/27/2023	11/29/2023	11/29/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0029 U	0.0023 U	0.0025 U	0.0023 U
Alpha Endosulfan	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0029 U	0.0023 U	0.0025 U	0.0023 U
Beta Endosulfan	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
cis-Chlordane	0.014	0.65	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0029 U	0.0023 U	0.0025 U	0.0023 U
Dieldrin	0.005	0.075	0.0029 U	0.0023 U	0.0025 U	0.0023 U
Endosulfan Sulfate	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Endrin Aldehyde	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Endrin Ketone	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Gamma Bhc (Lindane)	0.026	0.24	0.0029 U	0.0023 U	0.0025 U	0.0023 U
Heptachlor	0.013	0.53	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Heptachlor Epoxide	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Methoxychlor	NS	NS	0.0098 U	0.0076 U	0.0083 U	0.0077 U
P,P'-DDD	0.0033	5	0.0098 U	0.0076 U	0.0083 U	0.0077 U
P,P'-DDE	0.0033	3.4	0.0098 U	0.0076 U	0.0083 U	0.0077 U
P,P'-DDT	0.0033	3.8	0.0098 U	0.0076 U	0.0083 U	0.0077 U
Toxaphene	NS	NS	0.098 U	0.076 U	0.083 U	0.077 U

Pesticides	

		AKRF Sample ID	EP-23_17.5_20231129	EP-24_20_20231129	EP-25_19.5_20231207	EP-26_17.5_20231207
	Lab	oratory Sample ID		460-293467-4	460-294189-1	460-294189-2
		Date Sampled	11/29/2023	11/29/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.007 U	0.0074 U	0.0072 U	0.0075 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0021 U	0.0022 U	0.0021 U	0.0022 U
Alpha Endosulfan	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0021 U	0.0022 U	0.0021 U	0.0022 U
Beta Endosulfan	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
cis-Chlordane	0.014	0.65	0.007 U	0.0074 U	0.0072 U	0.0075 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0021 U	0.0022 U	0.0021 U	0.0022 U
Dieldrin	0.005	0.075	0.0021 U	0.0022 U	0.0021 U	0.0022 U
Endosulfan Sulfate	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.007 U	0.0074 U	0.0072 U	0.0075 U
Endrin Aldehyde	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
Endrin Ketone	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
Gamma Bhc (Lindane)	0.026	0.24	0.0021 U	0.0022 U	0.0021 U	0.0022 U
Heptachlor	0.013	0.53	0.007 U	0.0074 U	0.0072 U	0.0075 U
Heptachlor Epoxide	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
Methoxychlor	NS	NS	0.007 U	0.0074 U	0.0072 U	0.0075 U
P,P'-DDD	0.0033	5	0.007 U	0.0074 U	0.0072 U	0.0075 U
P,P'-DDE	0.0033	3.4	0.007 U	0.0074 U	0.0072 U	0.0075 U
P,P'-DDT	0.0033	3.8	0.007 U	0.0074 U	0.0072 U	0.0075 U
Toxaphene	NS	NS	0.07 U	0.074 U	0.072 U	0.075 U

Pes	ticid	les

	Lab	AKRF Sample ID oratory Sample ID	460-294189-3	EP-28_22.5_20231207 460-294189-4	EP-29_22.5_20231207 460-294189-5	EP-30_22.5_20231207 460-294189-6
Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023
Unit			mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0022 U	0.0022 U	0.0025 U	0.0025 U
Alpha Endosulfan	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0022 U	0.0022 U	0.0025 U	0.0025 U
Beta Endosulfan	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
cis-Chlordane	0.014	0.65	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0022 U	0.0022 U	0.0025 U	0.0025 U
Dieldrin	0.005	0.075	0.0022 U	0.0022 U	0.0025 U	0.0025 U
Endosulfan Sulfate	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Endrin Aldehyde	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Endrin Ketone	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Gamma Bhc (Lindane)	0.026	0.24	0.0022 U	0.0022 U	0.0025 U	0.0025 U
Heptachlor	0.013	0.53	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Heptachlor Epoxide	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Methoxychlor	NS	NS	0.0074 U	0.0075 U	0.0085 U	0.0084 U
P,P'-DDD	0.0033	5	0.0074 U	0.0075 U	0.0085 U	0.0084 U
P,P'-DDE	0.0033	3.4	0.0074 U	0.0075 U	0.0085 U	0.0084 U
P,P'-DDT	0.0033	3.8	0.0074 U	0.0075 U	0.0085 U	0.0084 U
Toxaphene	NS	NS	0.074 U	0.075 U	0.085 U	0.084 U

Pesticide	s

		AKRF Sample ID	EP-31_22.5_20231207	EP-32_22.5_20231207	EP-33_22.5_20231207	EP-34_22.5_20231207
	Lab	oratory Sample ID		460-294189-8	460-294189-9	460-294189-10
		Date Sampled		12/07/2023	12/07/2023	12/07/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0025 U	0.0028 U	0.0026 U	0.0026 U
Alpha Endosulfan	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0025 U	0.0028 U	0.0026 U	0.0026 U
Beta Endosulfan	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
cis-Chlordane	0.014	0.65	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0025 U	0.0028 U	0.0026 U	0.0026 U
Dieldrin	0.005	0.075	0.0025 U	0.0028 U	0.0026 U	0.0026 U
Endosulfan Sulfate	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Endrin Aldehyde	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Endrin Ketone	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Gamma Bhc (Lindane)	0.026	0.24	0.0025 U	0.0028 U	0.0026 U	0.0026 U
Heptachlor	0.013	0.53	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Heptachlor Epoxide	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Methoxychlor	NS	NS	0.0082 U	0.0094 U	0.0086 U	0.0086 U
P,P'-DDD	0.0033	5	0.0082 U	0.0094 U	0.0086 U	0.0086 U
P,P'-DDE	0.0033	3.4	0.0082 U	0.0094 U	0.0086 U	0.0086 U
P,P'-DDT	0.0033	3.8	0.0082 U	0.0094 U	0.0086 U	0.0086 U
Toxaphene	NS	NS	0.082 U	0.094 U	0.086 U	0.086 U

Pesticides	

		AKRF Sample ID	EP-35_25_20231207	EP-36 25 20231207	EP-37_17.5_20231215	EP-X3_20231215
	l ah	oratory Sample ID		460-294189-12	460-294775-1	460-294775-9
	Lab	Date Sampled		12/07/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
			1			
Compound		NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0026 U	0.0025 U	0.0025 U	0.0025 U
Alpha Endosulfan	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0026 U	0.0025 U	0.0025 U	0.0025 U
Beta Endosulfan	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
cis-Chlordane	0.014	0.65	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0026 U	0.0025 U	0.0025 U	0.0025 U
Dieldrin	0.005	0.075	0.0026 U	0.0025 U	0.0025 U	0.0025 U
Endosulfan Sulfate	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Endrin Aldehyde	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Endrin Ketone	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Gamma Bhc (Lindane)	0.026	0.24	0.0026 U	0.0025 U	0.0025 U	0.0025 U
Heptachlor	0.013	0.53	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Heptachlor Epoxide	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Methoxychlor	NS	NS	0.0088 U	0.0085 U	0.0084 U	0.0085 U
P,P'-DDD	0.0033	5	0.0088 U	0.0085 U	0.0084 U	0.0085 U
P,P'-DDE	0.0033	3.4	0.0088 U	0.0085 U	0.0084 U	0.0085 U
P,P'-DDT	0.0033	3.8	0.0088 U	0.0085 U	0.0084 U	0.0085 U
Toxaphene	NS	NS	0.088 U	0.085 U	0.084 U	0.085 U

Pesticides	

		AKRF Sample ID	EP-38_17.5_20231215	EP-39 20 20231215	EP-40_17.5_20231215	EP-41_15_20231215
	Lab	oratory Sample ID		460-294775-3	460-294775-4	460-294775-5
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0021 U	0.0024 U	0.0022 U	0.0022 U
Alpha Endosulfan	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0021 U	0.0024 U	0.0022 U	0.0022 U
Beta Endosulfan	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
cis-Chlordane	0.014	0.65	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0021 U	0.0024 U	0.0022 U	0.0022 U
Dieldrin	0.005	0.075	0.0021 U	0.0024 U	0.0022 U	0.0022 U
Endosulfan Sulfate	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Endrin Aldehyde	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Endrin Ketone	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Gamma Bhc (Lindane)	0.026	0.24	0.0021 U	0.0024 U	0.0022 U	0.0022 U
Heptachlor	0.013	0.53	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Heptachlor Epoxide	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Methoxychlor	NS	NS	0.0071 U	0.0081 U	0.0073 U	0.0075 U
P,P'-DDD	0.0033	5	0.0071 U	0.0081 U	0.0073 U	0.0075 U
P,P'-DDE	0.0033	3.4	0.0071 U	0.0081 U	0.0073 U	0.0075 U
P,P'-DDT	0.0033	3.8	0.0071 U	0.0081 U	0.0073 U	0.0075 U
Toxaphene	NS	NS	0.071 U	0.081 U	0.073 U	0.075 U

Pesticid	es

		AKRF Sample ID	EP-42_17.5_20231215	EP-43_17.5_20231215	EP-44_20_20231215	A4HAZ B 20 20230928
	Lah	oratory Sample ID		460-294775-7	460-294775-8	460-289204-1
	Lub	Date Sampled		12/15/2023	12/15/2023	9/28/2023
		Unit	mg/kg	mg/kg	mg/kg	mg/kg
		Dilution Factor	1	1	1	1
Compound		NYSDEC RRSCO		CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0023 U	0.0023 U	0.0026 U	0.0025 U
Alpha Endosulfan	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0023 U	0.0023 U	0.0026 U	0.0025 U
Beta Endosulfan	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
cis-Chlordane	0.014	0.65	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0023 U	0.0023 U	0.0026 U	0.0025 U
Dieldrin	0.005	0.075	0.0023 U	0.0023 U	0.0026 U	0.0025 U
Endosulfan Sulfate	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Endrin Aldehyde	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Endrin Ketone	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Gamma Bhc (Lindane)	0.026	0.24	0.0023 U	0.0023 U	0.0026 U	0.0025 U
Heptachlor	0.013	0.53	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Heptachlor Epoxide	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Methoxychlor	NS	NS	0.0076 U	0.0077 U	0.0087 U	0.0085 U
P,P'-DDD	0.0033	5	0.0076 U	0.0077 U	0.0087 U	0.0085 U
P,P'-DDE	0.0033	3.4	0.0076 U	0.0077 U	0.0087 U	0.0085 U
P,P'-DDT	0.0033	3.8	0.0076 U	0.0077 U	0.0087 U	0.0085 U
Toxaphene	NS	NS	0.076 U	0.077 U	0.087 U	0.085 U

Pesticides	

		AKRF Sample ID	A4HAZ_X1_20230928	B1HAZ_B_20_20230601	B1HAZ_X1_20230601	FB 20230928
	Lab	oratory Sample ID	460-289204-2	460-281384-5	460-281384-8	460-289204-3
		Date Sampled	9/28/2023	6/01/2023	6/01/2023	9/28/2023
		Unit	mg/kg	mg/kg	mg/kg	μg/L
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.0084 U	0.01 U	0.0085 U	0.02 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.0025 U	0.003 U	0.0025 U	0.02 U
Alpha Endosulfan	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.0025 U	0.003 U	0.0025 U	0.02 U
Beta Endosulfan	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
cis-Chlordane	0.014	0.65	0.0084 U	0.01 U	0.0085 U	0.02 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.0025 U	0.003 U	0.0025 U	0.02 U
Dieldrin	0.005	0.075	0.0025 U	0.003 U	0.0025 U	0.02 U
Endosulfan Sulfate	NS	NS	0.0084 U	0.01 UJ	0.0085 UJ	0.02 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.0084 U	0.01 U	0.0085 U	0.02 U
Endrin Aldehyde	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
Endrin Ketone	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
Gamma Bhc (Lindane)	0.026	0.24	0.0025 U	0.003 U	0.0025 U	0.02 U
Heptachlor	0.013	0.53	0.0084 U	0.01 U	0.0085 U	0.02 U
Heptachlor Epoxide	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
Methoxychlor	NS	NS	0.0084 U	0.01 U	0.0085 U	0.02 U
P,P'-DDD	0.0033	5	0.0084 U	0.01 U	0.0085 U	0.02 U
P,P'-DDE	0.0033	3.4	0.0084 U	0.01 U	0.0085 U	0.02 U
P,P'-DDT	0.0033	3.8	0.0084 U	0.01 U	0.0085 U	0.02 U
Toxaphene	NS	NS	0.084 U	0.1 U	0.085 U	0.5 U

Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results

Pesticides	

		AKRF Sample ID	FB_20231103	FB_20231127	FB_20231215	FB-S_20230601
	Lab	oratory Sample ID		460-293316-6	460-294775-10	460-281384-6
	Lau					
		Date Sampled		11/27/2023	12/15/2023	6/01/2023
		Unit	µg/L	µg/L	μg/L	μg/L
		Dilution Factor	1	1	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.02 U	0.02 U	0.02 U	0.02 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.02 U	0.02 U	0.02 U	0.02 U
Alpha Endosulfan	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.02 U	0.02 U	0.02 U	0.02 U
Beta Endosulfan	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
cis-Chlordane	0.014	0.65	0.02 U	0.02 U	0.02 U	0.02 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.005	0.075	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfans ABS	4.3	35	0 U	0 U	0 U	0 U
Endrin	0.014	5.3	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Ketone	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
Gamma Bhc (Lindane)	0.026	0.24	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.013	0.53	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor Epoxide	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
Methoxychlor	NS	NS	0.02 U	0.02 U	0.02 U	0.02 U
P,P'-DDD	0.0033	5	0.02 U	0.02 U	0.02 U	0.02 U
P,P'-DDE	0.0033	3.4	0.02 U	0.02 U	0.02 U	0.02 U
P,P'-DDT	0.0033	3.8	0.02 U	0.02 U	0.02 U	0.02 U
Toxaphene	NS	NS	0.5 U	0.5 U	0.5 U	0.5 U

-				
		AKRF Sample ID	FB_20230928	FB-S_20230601
	Lab	460-289204-3	460-281384-6	
		9/28/2023	6/01/2023	
		Unit	µg/L	µg/L
		Dilution Factor	1	1
Compound	NYSDEC UUSCO	NYSDEC RRSCO	CONC Q	CONC Q
Aldrin	0.0048	0.044	0.02 U	0.02 U
Alpha Bhc (Alpha Hexachlorocyclohexane)	0.02	0.22	0.02 U	0.02 U
Alpha Endosulfan	NS	NS	0.02 U	0.02 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.021	0.18	0.02 U	0.02 U
Beta Endosulfan	NS	NS	0.02 U	0.02 U
cis-Chlordane	0.014	0.65	0.02 U	0.02 U
Delta BHC (Delta Hexachlorocyclohexane)	0.024	100	0.02 U	0.02 U
Dieldrin	0.005	0.075	0.02 U	0.02 U
Endosulfan Sulfate	NS	NS	0.02 U	0.02 U
Endosulfans ABS	4.3	35	0 U	0 U
Endrin	0.014	5.3	0.02 U	0.02 U
Endrin Aldehyde	NS	NS	0.02 U	0.02 U
Endrin Ketone	NS	NS	0.02 U	0.02 U
Gamma Bhc (Lindane)	0.026	0.24	0.02 U	0.02 U
Heptachlor	0.013	0.53	0.02 U	0.02 U
Heptachlor Epoxide	NS	NS	0.02 U	0.02 U
Methoxychlor	NS	NS	0.02 U	0.02 U
P,P'-DDD	0.0033	5	0.02 U	0.02 U
P,P'-DDE	0.0033	3.4	0.02 U	0.02 U
P,P'-DDT	0.0033	3.8	0.02 U	0.02 U
Toxaphene	NS	NS	0.5 U	0.5 U

380 4th Avenue

Brooklyn, NY

er-	anu	Polyllu	oroaikyi	Substances	

AKRF Sample ID			EP-01 15 20231103	EP-X1_15_20231103	EP-02 15 20231103	EP-03_15_20231103
Laboratory Sample ID			460-291879-1	460-291879-8	460-291879-2	460-291879-3
Date Sampled			11/03/2023	11/03/2023	11/03/2023	11/03/2023
Dilution Factor			1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.32 U	6.1 U	6.91 U	6.34 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.32 U	6.1 U	6.91 U	6.34 U
3-Perfluoropropyl propanoic acid	NS	NS	1.26 U	1.22 U	1.38 U	1.27 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
6:2 Fluorotelomer sulfonate	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
8:2 Fluorotelomer sulfonate	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.01 U	0.98 U	1.11 U	1.01 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.53 U	2.44 U	2.76 U	2.54 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.53 U	2.44 U	2.76 U	2.54 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.51 U	0.49 U	0.55 U	0.51 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.51 U	0.49 U	0.55 U	0.51 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.51 U	0.49 U	0.55 U	0.51 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.51 U	0.49 U	0.55 U	0.51 U
Perfluorobutanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorobutanoic acid	NS	NS	1.01 U	0.98 U	1.11 U	0.062 J
Perfluorodecanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorodecanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorododecanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorododecanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluoroheptanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluoroheptanoic acid	NS	NS	0.25 U	0.24 U	0.034 J	0.041 J
Perfluorohexanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorohexanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorononanesulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorononanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorooctanesulfonamide	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.18 U	0.14 J	0.1 J	0.25 U
Perfluoropentanoic acid	NS	NS	0.51 U	0.029 J	0.061 J	0.11 J
Perfluoropentansulfonic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorotetradecanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluorotridecanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U
Perfluoroundecanoic acid	NS	NS	0.25 U	0.24 U	0.28 U	0.25 U

380 4th Avenue

Brooklyn, NY

-15	anu	FOIyilu	loroaikyi	Substant	,62

AKRF Sample ID			EP-04_15_20231103	EP-05_15_20231103	EP-06_15_20231103	EP-07_15_20231103
Laboratory Sample ID			460-291879-4	460-291879-5	460-291879-6	460-291879-7
Date Sampled			11/03/2023	11/03/2023	11/03/2023	11/03/2023
Dilution Factor			1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.07 U	7.17 U	7.94 U	6.96 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.07 U	7.17 U	7.94 U	6.96 U
3-Perfluoropropyl propanoic acid	NS	NS	1.21 U	1.43 U	1.59 U	1.39 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
6:2 Fluorotelomer sulfonate	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
8:2 Fluorotelomer sulfonate	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.97 U	1.15 U	1.27 U	1.11 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.43 U	2.87 U	3.18 U	2.78 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.43 U	2.87 U	3.18 U	2.78 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.49 U	0.57 U	0.64 U	0.56 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.49 U	0.57 U	0.64 U	0.56 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.49 U	0.57 U	0.64 U	0.56 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.49 U	0.57 U	0.64 U	0.56 U
Perfluorobutanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorobutanoic acid	NS	NS	0.97 U	1.15 U	0.097 J	1.11 U
Perfluorodecanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorodecanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorododecanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorododecanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluoroheptanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluoroheptanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorohexanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorohexanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorononanesulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorononanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorooctanesulfonamide	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.24 U	0.2 J	0.32 U	0.081 J
Perfluoropentanoic acid	NS	NS	0.061 J	0.57 U	0.64 U	0.041 J
Perfluoropentansulfonic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorotetradecanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluorotridecanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U
Perfluoroundecanoic acid	NS	NS	0.24 U	0.29 U	0.32 U	0.28 U

380 4th Avenue

AKRF Sample ID			EP-08_15_20231110	EP-09_15_20231110	EP-10_15_20231110	EP-11_15_20231110
	Laboratory Sample ID			460-292456-2	460-292456-3	460-292456-4
		Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.23 UJ	1.07 UJ	1.01 UJ	0.93 UJ
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	7.68 U	6.67 U	6.3 U	5.79 U
3-Perfluoroheptyl propanoic acid	NS	NS	7.68 U	6.67 U	6.3 U	5.79 U
3-Perfluoropropyl propanoic acid	NS	NS	1.54 U	1.33 U	1.26 U	1.16 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
6:2 Fluorotelomer sulfonate	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
8:2 Fluorotelomer sulfonate	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.23 U	1.07 U	1.01 U	0.93 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	3.07 U	2.67 U	2.52 U	2.32 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	3.07 U	2.67 U	2.52 U	2.32 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.61 U	0.53 U	0.5 U	0.46 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.61 U	0.53 U	0.5 U	0.46 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.61 U	0.53 U	0.5 U	0.46 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.61 U	0.53 U	0.5 U	0.46 U
Perfluorobutanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorobutanoic acid	NS	NS	0.32 J	1.07 U	1.01 U	0.93 U
Perfluorodecanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorodecanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorododecanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorododecanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluoroheptanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluoroheptanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorohexanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorohexanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorononanesulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorononanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorooctanesulfonamide	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.09 J	0.072 J	0.13 J	0.23 U
Perfluoropentanoic acid	NS	NS	0.038 J	0.53 U	0.5 U	0.46 U
Perfluoropentansulfonic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorotetradecanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluorotridecanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U
Perfluoroundecanoic acid	NS	NS	0.31 U	0.27 U	0.25 U	0.23 U

380 4th Avenue

Brooklyn, NY

er-	anu	Polyllu	югоакуг	Substances	,

AKRF Sample ID			EP-12 15 20231110	EP-13 15 20231110	EP-14 15 20231110	EP-15 15 20231110
		ratory Sample ID	460-292456-5	460-292456-6	460-292456-7	460-292456-8
		Date Sampled	11/10/2023	11/10/2023	11/10/2023	11/10/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.11 UJ	1.31 UJ	1.05 UJ	
1H.1H. 2H. 2H-Perfluorohexane sulfonic acid	NS	NS	1.11 U	1.31 U	1.05 U	
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.91 U	8.19 U	6.58 U	-
3-Perfluoroheptyl propanoic acid	NS	NS	6.91 U	8.19 U	6.58 U	
3-Perfluoropropyl propanoic acid	NS	NS	1.38 U	1.64 U	1.32 U	
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.11 U	1.31 U	1.05 U	
6:2 Fluorotelomer sulfonate	NS	NS	1.11 U	1.31 U	1.05 U	
8:2 Fluorotelomer sulfonate	NS	NS	1.11 U	1.31 U	1.05 U	
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.11 U	1.31 U	1.05 U	
Hexafluoropropylene oxide dimer acid	NS	NS	1.11 U	1.31 U	1.05 U]
N-ethyl perfluorooctanesulfonamide	NS	NS	0.28 U	0.33 U	0.26 U	
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.28 U	0.33 U	0.26 U	
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.76 U	1.04 J	2.63 U	
N-methyl perfluorooctanesulfonamide	NS	NS	0.28 U	0.33 U	0.26 U	
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.28 U	0.33 U	0.26 U	
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.76 U	3.39	0.15 J	over-excavated
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.55 U	0.66 U	0.53 U	(sample was over-excavated
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.55 U	0.66 U	0.53 U	when petroleum hotspot was
Perfluoro-3-methoxypropanoic acid	NS	NS	0.55 U	0.66 U	0.53 U	expanded, beyond its
Perfluoro-4-methoxybutanoic acid	NS	NS	0.55 U	0.66 U	0.53 U	proposed extents in the
Perfluorobutanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	RAWP, based on olfacotry
Perfluorobutanoic acid	NS	NS	1.11 U	0.28 J	1.05 U	observations and elevated
Perfluorodecanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	PID readings; and not due to
Perfluorodecanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	exceedances of applicable
Perfluorododecanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	SCOs)
Perfluorododecanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluoroheptanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluoroheptanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorohexanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorohexanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorononanesulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorononanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorooctanesulfonamide	NS	NS	0.28 U	0.33 U	0.26 U	
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.28 U	0.33 U	0.26 U	4
Perfluorooctanoic acid (PFOA)	0.66	33	0.27 J	0.33 U	0.061 J	4
Perfluoropentanoic acid	NS	NS	0.048 J	0.054 J	0.53 U	4
Perfluoropentansulfonic acid	NS	NS	0.28 U	0.33 U	0.26 U	4
Perfluorotetradecanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	4
Perfluorotridecanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	4
Perfluoroundecanoic acid	NS	NS	0.28 U	0.33 U	0.26 U	

380 4th Avenue

Brooklyn, NY

er- and Polynuoroaikyr Substances	er-	anu	Polyllu	югоаку	Substances	
-----------------------------------	-----	-----	---------	--------	------------	--

AKRF Sample ID			EP-16_20_20231127	EP-X2_20_20231127	EP-17_15_20231127	EP-18_17.5_20231127
Laboratory Sample ID			460-293318-1	460-293318-7	460-293318-2	460-293318-4
Date Sampled			11/27/2023	11/27/2023	11/27/2023	11/27/2023
Dilution Factor			1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.16 U	6.18 U	6.52 U	6.96 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.16 U	6.18 U	6.52 U	6.96 U
3-Perfluoropropyl propanoic acid	NS	NS	1.23 U	1.24 U	1.3 U	1.39 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
6:2 Fluorotelomer sulfonate	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
8:2 Fluorotelomer sulfonate	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.98 U	0.99 U	1.04 U	1.11 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.46 U	2.47 U	2.61 U	2.78 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.46 U	2.47 U	2.61 U	2.78 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.49 U	0.49 U	0.52 U	0.56 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.49 U	0.49 U	0.52 U	0.56 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.49 U	0.49 U	0.52 U	0.56 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.49 U	0.49 U	0.52 U	0.56 U
Perfluorobutanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorobutanoic acid	NS	NS	0.98 U	0.99 U	1.04 U	0.065 J
Perfluorodecanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorodecanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorododecanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorododecanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluoroheptanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluoroheptanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorohexanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorohexanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorononanesulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorononanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorooctanesulfonamide	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.25 U	0.25 U	0.071 J	0.13 J
Perfluoropentanoic acid	NS	NS	0.49 U	0.49 U	0.52 U	0.56 U
Perfluoropentansulfonic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorotetradecanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluorotridecanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U
Perfluoroundecanoic acid	NS	NS	0.25 U	0.25 U	0.26 U	0.28 U

380 4th Avenue

Brooklyn, NY

er- and Polyfluoroalkyl Substances

AKRF Sample ID			EP-19 17.5 20231127	EP-20_17.5_20231127	EP-21 20 20231205	EP-22_17.5_20231205
Laboratory Sample ID Date Sampled Dilution Factor			460-293318-5	460-293318-6	460-293896-1	460-293896-2
			11/27/2023	11/27/2023	12/05/2023	12/05/2023
			1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.08 U	0.93 U	0.93 UJ	0.85 UJ
1H.1H. 2H. 2H-Perfluorohexane sulfonic acid	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.75 U	5.81 U	5.81 U	5.33 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.75 U	5.81 U	5.81 U	5.33 U
3-Perfluoropropyl propanoic acid	NS	NS	1.35 U	1.16 U	1.16 U	1.07 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.08 U	0.93 U	0.93 UJ	0.85 UJ
6:2 Fluorotelomer sulfonate	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
8:2 Fluorotelomer sulfonate	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.7 U	2.32 U	2.33 U	2.13 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.7 U	2.32 U	2.33 U	2.13 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.54 U	0.46 U	0.47 U	0.43 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.54 U	0.46 U	0.47 U	0.43 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.54 U	0.46 U	0.47 U	0.43 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.54 U	0.46 U	0.47 U	0.43 U
Perfluorobutanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorobutanoic acid	NS	NS	1.08 U	0.93 U	0.93 U	0.85 U
Perfluorodecanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorodecanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorododecanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorododecanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluoroheptanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluoroheptanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorohexanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 UJ	0.21 UJ
Perfluorohexanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorononanesulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorononanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.27 U	0.23 U	0.088 J	0.12 J
Perfluorooctanoic acid (PFOA)	0.66	33	0.27 U	0.23 U	0.23 U	0.21 U
Perfluoropentanoic acid	NS	NS	0.043 J	0.46 U	0.47 U	0.43 U
Perfluoropentansulfonic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorotetradecanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluorotridecanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U
Perfluoroundecanoic acid	NS	NS	0.27 U	0.23 U	0.23 U	0.21 U

380 4th Avenue

			EP-23_17.5_20231205	EP-24_20_20231205	EP-25_22.5_20231207	EP-26_22.5_20231207
Laboratory Sample ID			460-293896-3	460-293896-4	460-294195-1	460-294195-2
		Date Sampled	12/05/2023	12/05/2023	12/07/2023	12/07/2023
	1	1	1	1		
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	0.98 UJ	1.09 UJ	0.91 U	0.91 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.09 U	6.79 U	5.67 U	5.71 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.09 U	6.79 U	5.67 UJ	5.71 UJ
3-Perfluoropropyl propanoic acid	NS	NS	1.22 U	1.36 U	1.13 U	1.14 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.98 UJ	1.09 UJ	0.91 U	0.91 U
6:2 Fluorotelomer sulfonate	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
8:2 Fluorotelomer sulfonate	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.44 U	2.72 U	2.27 U	2.28 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.44 U	0.13 J	2.27 U	2.28 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.49 U	0.54 U	0.45 U	0.46 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.49 U	0.54 U	0.45 U	0.46 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.49 U	0.54 U	0.45 U	0.46 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.49 U	0.54 U	0.45 U	0.46 U
Perfluorobutanesulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorobutanoic acid	NS	NS	0.98 U	1.09 U	0.91 U	0.91 U
Perfluorodecanesulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorodecanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorododecanesulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorododecanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluoroheptanesulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluoroheptanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorohexanesulfonic acid	NS	NS	0.24 UJ	0.27 UJ	0.23 U	0.23 U
Perfluorohexanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorononanesulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorononanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorooctanesulfonamide	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.24 U	0.27 U	0.23 U	0.23 U
Perfluoropentanoic acid	NS	NS	0.49 U	0.13 J	0.45 U	0.46 U
Perfluoropentansulfonic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorotetradecanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluorotridecanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U
Perfluoroundecanoic acid	NS	NS	0.24 U	0.27 U	0.23 U	0.23 U

380 4th Avenue

Brooklyn, NY

er-	ana	Polytiu	oroaikyi	Substances	
-----	-----	---------	----------	------------	--

		AKRF Sample ID	EP-27 20 20231207	EP-28 20 20231207	EP-29 20 20231207	EP-30 20 20231207
		ratory Sample ID	460-294195-3	460-294195-4	460-294195-5	460-294195-6
	12/07/2023	12/07/2023	12/07/2023	12/07/2023		
	1	1	1	1		
Dilution Factor Unit			ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	5.7 U	5.69 U	6.29 U	6.32 U
3-Perfluoroheptyl propanoic acid	NS	NS	5.7 UJ	5.69 UJ	6.29 UJ	6.32 UJ
3-Perfluoropropyl propanoic acid	NS	NS	1.14 U	1.14 U	1.26 U	1.26 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
6:2 Fluorotelomer sulfonate	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
8:2 Fluorotelomer sulfonate	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.28 U	2.27 U	2.52 U	2.53 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.28 U	2.27 U	2.52 U	2.53 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.46 U	0.45 U	0.5 U	0.51 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.46 U	0.45 U	0.5 U	0.51 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.46 U	0.45 U	0.5 U	0.51 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.46 U	0.45 U	0.5 U	0.51 U
Perfluorobutanesulfonic acid	NS	NS	0.23 U	0.23 U	0.05 J	0.25 U
Perfluorobutanoic acid	NS	NS	0.91 U	0.91 U	1.01 U	1.01 U
Perfluorodecanesulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorodecanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorododecanesulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorododecanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluoroheptanesulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluoroheptanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorohexanesulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorohexanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorononanesulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorononanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorooctanesulfonamide	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.23 U	0.23 U	0.25 U	0.25 U
Perfluoropentanoic acid	NS	NS	0.46 U	0.45 U	0.042 J	0.054 J
Perfluoropentansulfonic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorotetradecanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluorotridecanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U
Perfluoroundecanoic acid	NS	NS	0.23 U	0.23 U	0.25 U	0.25 U

380 4th Avenue

Brooklyn, NY

e/-	anu	FUI	ynuoi	Uaikyi	Subsi	ances	

AKRF Sample ID			EP-31_20_20231207	EP-32_20_20231207	EP-33_20_20231207	EP-34_20_20231207
Laboratory Sample ID			460-294195-7	460-294195-8	460-294195-9	460-294195-10
Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.3 U	6.77 U	6.08 U	6.42 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.3 UJ	6.77 UJ	6.08 UJ	6.42 UJ
3-Perfluoropropyl propanoic acid	NS	NS	1.26 U	1.35 U	1.22 U	1.28 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
6:2 Fluorotelomer sulfonate	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
8:2 Fluorotelomer sulfonate	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.52 U	2.71 U	2.43 U	2.57 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.52 U	0.14 J	2.43 U	2.57 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.5 U	0.54 U	0.49 U	0.51 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.5 U	0.54 U	0.49 U	0.51 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.5 U	0.54 U	0.49 U	0.51 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.5 U	0.54 U	0.49 U	0.51 U
Perfluorobutanesulfonic acid	NS	NS	0.04 J	0.038 J	0.24 U	0.033 J
Perfluorobutanoic acid	NS	NS	1.01 U	1.08 U	0.97 U	1.03 U
Perfluorodecanesulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorodecanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorododecanesulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorododecanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluoroheptanesulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluoroheptanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorohexanesulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorohexanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorononanesulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorononanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorooctanesulfonamide	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.25 U	0.27 U	0.24 U	0.26 U
Perfluoropentanoic acid	NS	NS	0.028 J	0.54 U	0.072 J	0.044 J
Perfluoropentansulfonic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorotetradecanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluorotridecanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U
Perfluoroundecanoic acid	NS	NS	0.25 U	0.27 U	0.24 U	0.26 U

380 4th Avenue

Brooklyn, NY

|--|

Laboratory Sample ID Date Sampled			EP-35_25_20231207	EP-36_25_20231207	EP-37_17.5_20231215	EP-X3_20231215
			460-294195-11	460-294195-12	460-294809-1	460-294809-9
			12/07/2023	12/07/2023	12/15/2023	12/15/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.62 U	6.97 U	6.18 U	5.93 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.62 UJ	6.97 UJ	6.18 U	5.93 U
3-Perfluoropropyl propanoic acid	NS	NS	1.32 U	1.39 U	1.24 U	1.19 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
6:2 Fluorotelomer sulfonate	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
8:2 Fluorotelomer sulfonate	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.65 U	2.79 U	2.47 U	2.37 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.65 U	2.79 U	2.47 U	2.37 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.53 U	0.56 U	0.49 U	0.47 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.53 U	0.56 U	0.49 U	0.47 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.53 U	0.56 U	0.49 U	0.47 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.53 U	0.56 U	0.49 U	0.47 U
Perfluorobutanesulfonic acid	NS	NS	0.26 U	0.084 J	0.14 J	0.24 U
Perfluorobutanoic acid	NS	NS	1.06 U	1.11 U	0.99 U	0.95 U
Perfluorodecanesulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorodecanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorododecanesulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorododecanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluoroheptanesulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluoroheptanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorohexanesulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorohexanoic acid	NS	NS	0.26 U	0.28 U	0.036 J	0.025 J
Perfluorononanesulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorononanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorooctanesulfonamide	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorooctanoic acid (PFOÀ)	0.66	33	0.12 J	0.28 U	0.11 J	0.13 J
Perfluoropentanoic acid	NS	NS	0.53 U	0.56 U	0.49 U	0.47 U
Perfluoropentansulfonic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorotetradecanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluorotridecanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U
Perfluoroundecanoic acid	NS	NS	0.26 U	0.28 U	0.25 U	0.24 U

380 4th Avenue

		AKRF Sample ID	EP-38_17.5_20231215	EP-39_20_20231215	EP-40_17.5_20231215	EP-41_15_20231215
	Labo	ratory Sample ID	460-294809-2	460-294809-3	460-294809-4	460-294809-5
		Date Sampled	12/15/2023	12/15/2023	12/15/2023	12/15/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	6.64 U	5.77 U	5.28 U	5.41 U
3-Perfluoroheptyl propanoic acid	NS	NS	6.64 U	5.77 U	5.28 U	5.41 U
3-Perfluoropropyl propanoic acid	NS	NS	1.33 U	1.15 U	1.06 U	1.08 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
6:2 Fluorotelomer sulfonate	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
8:2 Fluorotelomer sulfonate	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
Hexafluoropropylene oxide dimer acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.66 U	2.31 U	2.11 U	2.16 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.66 U	2.31 U	2.11 U	2.16 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.53 U	0.46 U	0.42 U	0.43 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.53 U	0.46 U	0.42 U	0.43 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.53 U	0.46 U	0.42 U	0.43 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.53 U	0.46 U	0.42 U	0.43 U
Perfluorobutanesulfonic acid	NS	NS	0.051 J	0.23 U	0.21 U	0.22 U
Perfluorobutanoic acid	NS	NS	1.06 U	0.92 U	0.84 U	0.87 U
Perfluorodecanesulfonic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorodecanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorododecanesulfonic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorododecanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluoroheptanesulfonic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluoroheptanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorohexanesulfonic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorohexanoic acid	NS	NS	0.05 J	0.044 J	0.21 U	0.22 U
Perfluorononanesulfonic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorononanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorooctanesulfonamide	NS	NS	0.27 U	0.23 U	0.22 U	0.22 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.27 U	0.23 U	0.21 U	0.089 J
Perfluorooctanoic acid (PFOA)	0.66	33	0.17 J	0.087 J	0.21 U	0.066 J
Perfluoropentanoic acid	NS	NS	0.53 U	0.46 U	0.42 U	0.43 U
Perfluoropentansulfonic acid	NS	NS	0.092 J	0.23 U	0.21 U	0.22 U
Perfluorotetradecanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluorotridecanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U
Perfluoroundecanoic acid	NS	NS	0.27 U	0.23 U	0.21 U	0.22 U

380 4th Avenue

Brooklyn, NY

	er- an	ia Poly	muoroaikyi	Substances	
--	--------	---------	------------	------------	--

		AKRF Sample ID	EP-42_17.5_20231215	EP-43_17.5_20231215	EP-44 20 20231215	A4HAZ_B_20_20230928
Laboratory Sample ID			460-294809-6	460-294809-7	460-294809-8	460-289205-1
Date Sampled			12/15/2023	12/15/2023	12/15/2023	9/28/2023
		Dilution Factor	1	1	1	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	0.93 U	0.89 U	1.05 U	1.01 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	5.83 U	5.58 U	6.54 U	6.55 U
3-Perfluoroheptyl propanoic acid	NS	NS	5.83 U	5.58 U	6.54 U	6.55 U
3-Perfluoropropyl propanoic acid	NS	NS	1.17 U	1.12 U	1.31 U	1.31 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
6:2 Fluorotelomer sulfonate	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
8:2 Fluorotelomer sulfonate	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	2.33 U	2.23 U	2.62 U	2.62 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	2.33 U	2.23 U	2.62 U	2.62 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.47 U	0.45 U	0.52 U	0.52 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.47 U	0.45 U	0.52 U	0.52 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.47 U	0.45 U	0.52 U	0.52 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.47 U	0.45 U	0.52 U	0.52 U
Perfluorobutanesulfonic acid	NS	NS	0.024 J	0.22 U	0.26 U	0.26 U
Perfluorobutanoic acid	NS	NS	0.93 U	0.89 U	1.05 U	1.05 U
Perfluorodecanesulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 UJ
Perfluorodecanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorododecanesulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 UJ
Perfluorododecanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluoroheptanesulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluoroheptanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorohexanesulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorohexanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorononanesulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorononanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorooctanesulfonamide	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.072 J	0.22 U	0.26 U	0.26 U
Perfluorooctanoic acid (PFOA)	0.66	33	0.23 U	0.06 J	0.16 J	0.26 U
Perfluoropentanoic acid	NS	NS	0.47 U	0.45 U	0.52 U	0.52 U
Perfluoropentansulfonic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorotetradecanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluorotridecanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U
Perfluoroundecanoic acid	NS	NS	0.23 U	0.22 U	0.26 U	0.26 U

380 4th Avenue

Brooklyn, NY Post_Remedial Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances

AKRF Sample ID		A4HAZ_X1_20230928	B1HAZ_B_20_20230601	B1HAZ_B_20_20230601	B1HAZ_X1_20230601	
Laboratory Sample ID		460-289205-2	460-281406-1	460-281406-1	460-281406-2	
		Date Sampled	9/28/2023	6/01/2023	6/01/2023	6/01/2023
		Dilution Factor	1	1	10	1
		Unit	ppb	ppb	ppb	ppb
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	1.85 U	0.8 U	NR	0.79 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	0.93 U	NR	7.97 U	NR
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	5.79 U	4.98 U	NR	4.96 U
3-Perfluoroheptyl propanoic acid	NS	NS	5.79 U	4.98 UJ	NR	4.96 U
3-Perfluoropropyl propanoic acid	NS	NS	1.16 U	1 U	NR	0.99 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	0.93 U	0.8 UJ	NR	0.79 UJ
6:2 Fluorotelomer sulfonate	NS	NS	0.93 U	NR	9.96 U	NR
8:2 Fluorotelomer sulfonate	NS	NS	0.93 U	NR	9.96 U	NR
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	0.93 U	0.8 U	NR	0.79 U
Hexafluoropropylene oxide dimer acid	NS	NS	0.93 U	0.8 U	NR	0.79 U
N-ethyl perfluorooctanesulfonamide	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	4.63 U	1.99 U	NR	1.98 U
N-methyl perfluorooctanesulfonamide	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	4.63 U	1.99 U	NR	1.98 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	0.46 U	0.4 U	NR	0.4 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	0.46 U	0.4 U	NR	0.4 U
Perfluoro-3-methoxypropanoic acid	NS	NS	0.46 U	0.4 U	NR	0.4 U
Perfluoro-4-methoxybutanoic acid	NS	NS	0.46 U	0.4 U	NR	0.4 U
Perfluorobutanesulfonic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorobutanoic acid	NS	NS	0.93 U	0.8 U	NR	0.79 U
Perfluorodecanesulfonic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
Perfluorodecanoic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorododecanesulfonic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
Perfluorododecanoic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
Perfluoroheptanesulfonic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluoroheptanoic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorohexanesulfonic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
Perfluorohexanoic acid	NS	NS	0.05 J	0.2 U	NR	0.2 U
Perfluorononanesulfonic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorononanoic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorooctanesulfonamide	NS	NS	0.23 UJ	0.2 U	NR	0.2 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	0.23 UJ	0.07 J	NR	0.089 J
Perfluorooctanoic acid (PFOA)	0.66	33	0.12 J	0.22 JK	NR	0.2 U
Perfluoropentanoic acid	NS	NS	0.46 U	0.4 U	NR	0.4 U
Perfluoropentansulfonic acid	NS	NS	0.23 U	0.2 U	NR	0.2 U
Perfluorotetradecanoic acid	NS	NS	0.46 U	0.2 U	NR	0.2 U
Perfluorotridecanoic acid	NS	NS	0.46 U	0.2 U	NR	0.2 U
Perfluoroundecanoic acid	NS	NS	0.23 UJ	0.2 U	NR	0.2 U

380 4th Avenue

Brooklyn, NY Post_Remedial Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances

AKRF Sample ID		B1HAZ_X1_20230601	FB_PFAS_20230809	FB_20230928	FB_20231103	
Laboratory Sample ID			460-281406-2	23H0724-07	460-289205-3	460-291879-9
		Date Sampled	6/01/2023	8/09/2023	9/28/2023	11/03/2023
		Dilution Factor	10	1	1	1
		Unit	ppb	ppt	ppt	ppt
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	NR	7.22 U	6.81 U	7.49 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	7.93 U	7.16 U	6.81 U	7.49 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	NR	23.9 U	42.6 U	46.8 U
3-Perfluoroheptyl propanoic acid	NS	NS	NR	23.9 U	42.6 U	46.8 U
3-Perfluoropropyl propanoic acid	NS	NS	NR	4.78 U	8.51 U	9.37 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	NR	7.22 U	6.81 U	7.49 U
6:2 Fluorotelomer sulfonate	NS	NS	9.92 U	7.26 U	6.81 U	7.49 U
8:2 Fluorotelomer sulfonate	NS	NS	9.92 U	7.34 U	6.81 U	7.49 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	NR	7.15 U	6.81 UJ	7.49 U
Hexafluoropropylene oxide dimer acid	NS	NS	NR	7.64 U	6.81 U	7.49 U
N-ethyl perfluorooctanesulfonamide	NS	NS	NR	1.91 U	1.7 U	1.87 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	NR	19.1 U	17 U	18.7 U
N-methyl perfluorooctanesulfonamide	NS	NS	NR	1.91 U	1.7 U	1.87 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	NR	1.91 U	3.41 U	3.75 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	NR	19.1 U	17 U	18.7 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	NR	3.82 U	3.41 U	3.75 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	NR	3.4 U	3.41 U	3.75 U
Perfluoro-3-methoxypropanoic acid	NS	NS	NR	3.82 U	3.41 U	3.75 U
Perfluoro-4-methoxybutanoic acid	NS	NS	NR	3.82 U	3.41 U	3.75 U
Perfluorobutanesulfonic acid	NS	NS	NR	1.69 U	1.7 U	1.87 U
Perfluorobutanoic acid	NS	NS	NR	0.749 J	6.81 U	7.49 U
Perfluorodecanesulfonic acid	NS	NS	NR	1.84 U	1.7 U	1.87 U
Perfluorodecanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorododecanesulfonic acid	NS	NS	NR	1.85 U	1.7 U	1.87 U
Perfluorododecanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluoroheptanesulfonic acid	NS	NS	NR	1.82 U	1.7 U	1.87 U
Perfluoroheptanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorohexanesulfonic acid	NS	NS	NR	1.75 U	1.7 U	1.87 U
Perfluorohexanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorononanesulfonic acid	NS	NS	NR	NR	1.7 U	1.87 U
Perfluorononanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorooctanesulfonamide	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	NR	1.78 U	1.7 U	1.87 U
Perfluorooctanoic acid (PFOA)	0.66	33	NR	1.91 U	1.7 U	1.87 U
Perfluoropentanoic acid	NS	NS	NR	3.82 U	3.41 U	3.75 U
Perfluoropentansulfonic acid	NS	NS	NR	1.8 U	1.7 U	1.87 U
Perfluorotetradecanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluorotridecanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U
Perfluoroundecanoic acid	NS	NS	NR	1.91 U	1.7 U	1.87 U

380 4th Avenue

Brooklyn, NY Post_Remedial Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances

er-	ana	Polyi	luoroal	KYI SL	ibstances	

AKRF Sample ID		FB_20231127	FB_20231215	FB-S_20230601	FB_20230928	
Laboratory Sample ID			460-293318-3	460-294809-10	460-281406-3	460-289205-3
		Date Sampled	11/27/2023	12/15/2023	6/01/2023	9/28/2023
		Dilution Factor	1	1	1	1
		Unit	ppt	ppt	ppt	ppt
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q	CONC Q	CONC Q	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	47.8 U	45.9 U	44.2 U	42.6 U
3-Perfluoroheptyl propanoic acid	NS	NS	47.8 U	45.9 U	44.2 U	42.6 U
3-Perfluoropropyl propanoic acid	NS	NS	9.57 U	9.18 U	8.84 U	8.51 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	7.65 U	7.35 U	7.07 UJ	6.81 U
6:2 Fluorotelomer sulfonate	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
8:2 Fluorotelomer sulfonate	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	7.65 UJ	7.35 U	7.07 U	6.81 UJ
Hexafluoropropylene oxide dimer acid	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
N-ethyl perfluorooctanesulfonamide	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	19.1 U	18.4 U	17.7 U	17 U
N-methyl perfluorooctanesulfonamide	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	19.1 U	18.4 U	17.7 U	17 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
Perfluoro-3-methoxypropanoic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
Perfluoro-4-methoxybutanoic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
Perfluorobutanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorobutanoic acid	NS	NS	7.65 U	7.35 U	7.07 U	6.81 U
Perfluorodecanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorodecanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorododecanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorododecanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluoroheptanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluoroheptanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorohexanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorohexanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorononanesulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorononanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorooctanesulfonamide	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorooctanoic acid (PFOA)	0.66	33	1.91 U	1.84 U	1.77 U	1.7 U
Perfluoropentanoic acid	NS	NS	3.83 U	3.67 U	3.53 U	3.41 U
Perfluoropentansulfonic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorotetradecanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluorotridecanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U
Perfluoroundecanoic acid	NS	NS	1.91 U	1.84 U	1.77 U	1.7 U

380 4th Avenue

Brooklyn, NY Post_Remedial Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances

.

	AKRF Sample ID	FB-S_20230601	
	460-281406-3		
	Date Sampled	6/01/2023	
		Dilution Factor	1
		Unit	ppt
Compound	NYSDEC UUGV	NYSDEC RRGV	CONC Q
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	NS	NS	7.07 U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	NS	NS	7.07 U
2H,2H,3H,3H-Perfluorooctanoic acid	NS	NS	44.2 U
3-Perfluoroheptyl propanoic acid	NS	NS	44.2 U
3-Perfluoropropyl propanoic acid	NS	NS	8.84 U
4,8-Dioxa-3H-perfluorononanoic acid	NS	NS	7.07 UJ
6:2 Fluorotelomer sulfonate	NS	NS	7.07 U
8:2 Fluorotelomer sulfonate	NS	NS	7.07 U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	NS	NS	7.07 U
Hexafluoropropylene oxide dimer acid	NS	NS	7.07 U
N-ethyl perfluorooctanesulfonamide	NS	NS	1.77 U
N-ethyl perfluorooctanesulfonamidoacetic acid	NS	NS	1.77 U
N-ethyl perfluorooctanesulfonamidoethanol	NS	NS	17.7 U
N-methyl perfluorooctanesulfonamide	NS	NS	1.77 U
N-methyl perfluorooctanesulfonamidoacetic acid	NS	NS	3.53 U
N-methyl perfluorooctanesulfonamidoethanol	NS	NS	17.7 U
Nonafluoro-3,6-dioxaheptanoic acid	NS	NS	3.53 U
Perfluoro(2-ethoxyethane)sulfonic acid	NS	NS	3.53 U
Perfluoro-3-methoxypropanoic acid	NS	NS	3.53 U
Perfluoro-4-methoxybutanoic acid	NS	NS	3.53 U
Perfluorobutanesulfonic acid	NS	NS	1.77 U
Perfluorobutanoic acid	NS	NS	7.07 U
Perfluorodecanesulfonic acid	NS	NS	1.77 U
Perfluorodecanoic acid	NS	NS	1.77 U
Perfluorododecanesulfonic acid	NS	NS	1.77 U
Perfluorododecanoic acid	NS	NS	1.77 U
Perfluoroheptanesulfonic acid	NS	NS	1.77 U
Perfluoroheptanoic acid	NS	NS	1.77 U
Perfluorohexanesulfonic acid	NS	NS	1.77 U
Perfluorohexanoic acid	NS	NS	1.77 U
Perfluorononanesulfonic acid	NS	NS	1.77 U
Perfluorononanoic acid	NS	NS	1.77 U
Perfluorooctanesulfonamide	NS	NS	1.77 U
Perfluorooctanesulfonic acid (PFOS)	0.88	44	1.77 U
Perfluorooctanoic acid (PFOA)	0.66	33	1.77 U
Perfluoropentanoic acid	NS	NS	3.53 U
Perfluoropentansulfonic acid	NS	NS	1.77 U
Perfluorotetradecanoic acid	NS	NS	1.77 U
Perfluorotridecanoic acid	NS	NS	1.77 U
Perfluoroundecanoic acid	NS	NS	1.77 U

Tables 1-7 380 4th Avenue Brooklyn, NY Post-Remedial Soil Endpoint Analytical Results Notes

DEFINITIONS

- D: Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the two analyses.
- J: The concentration given is an estimated value.
- K: Reported concentration value is proportional to dilution factor and may be exaggerated
- L: Sample result is estimated and biased low.
- NR: Not reported.
- NS: No standard.
- R: Indicates the reported result is unusable. (note: the analyte may or may not be present.)
- U: The analyte was not detected at the indicated concentration.
- **UJ**: The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be innaccurate or imprecise.
- mg/kg : milligrams per kilogram
- mg/L : milligrams per liter
- ppb: parts per billion
- **ppt** : parts per trillion
- µg/L : micrograms per liter

STANDARDS

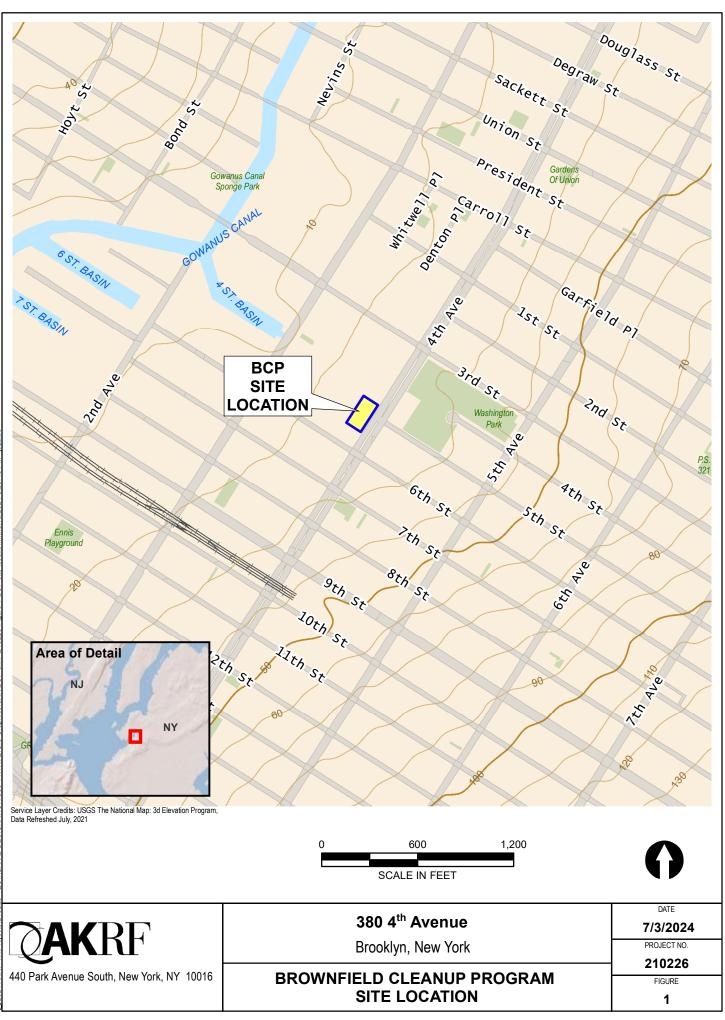
Part 375 Soil Cleanup Cleanup Soil Cleanup Objectives listed in New York State Department of Environmental Conservation (NYSDEC) ' "Part 375" Regulations [6 New York Codes, Rules and Regulations (NYCRR) Part 375].

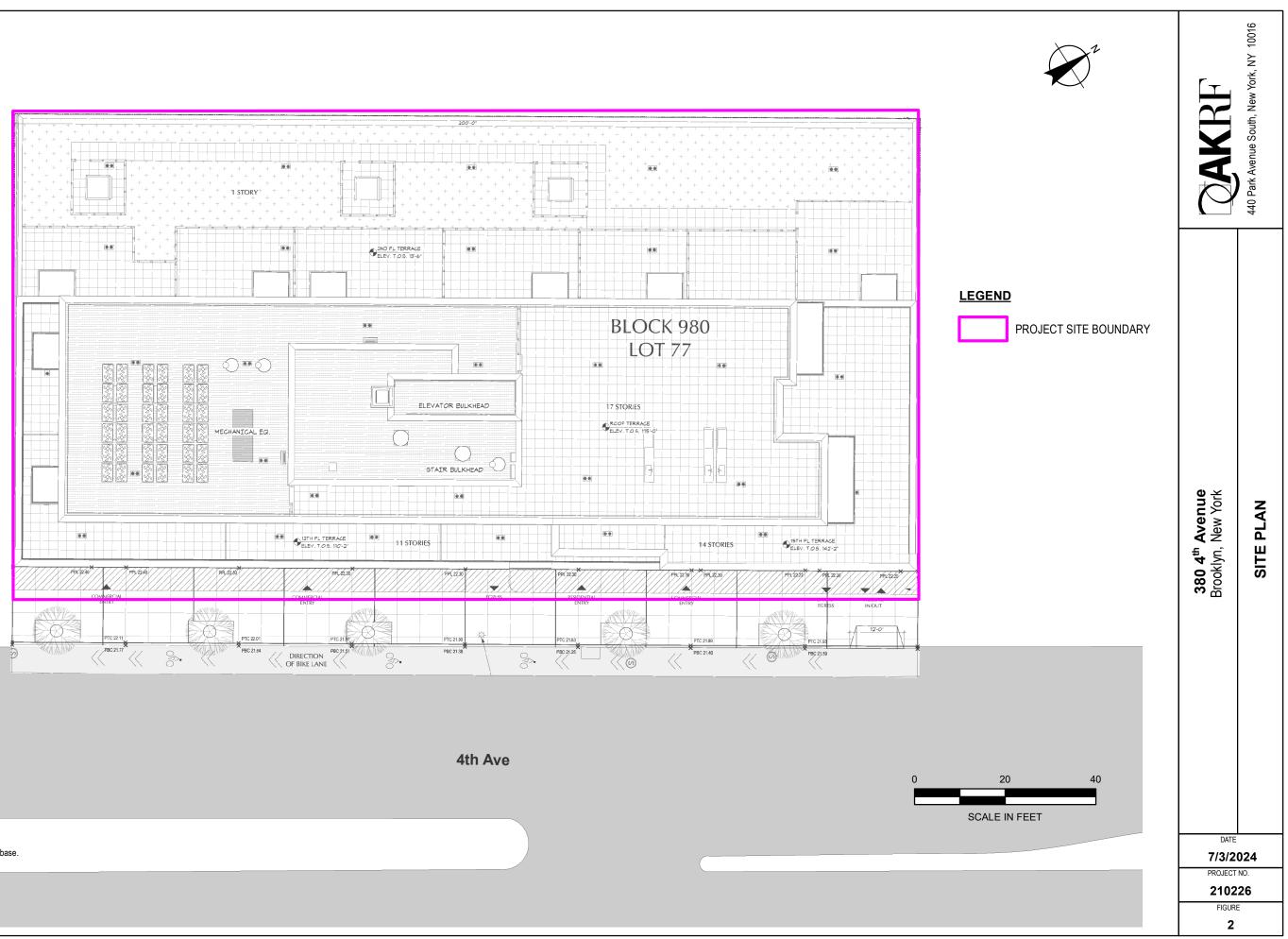
Note: Endosulfans ABS represents the detected sum of Endosulfan I, Endosulfan II, and Endosulfan Sulfate.

Exceedances of Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) are highlighted in bold font. Exceedances of Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) are highlighted in gray shading.

EPA Hazardous	Protection of Environment. Chapter I - United States Environmental Protection Agency. Subchapter I - Solid
Waste Criteria :	Wastes. Part 261 - Identification And Listing Of Hazardous Waste.
	Subpart C - Characteristics Of Hazardous Waste. § 261.24 (b)
by TCLP	Table 1—Maximum Concentration of Contaminants for the Toxicity Characteristic.

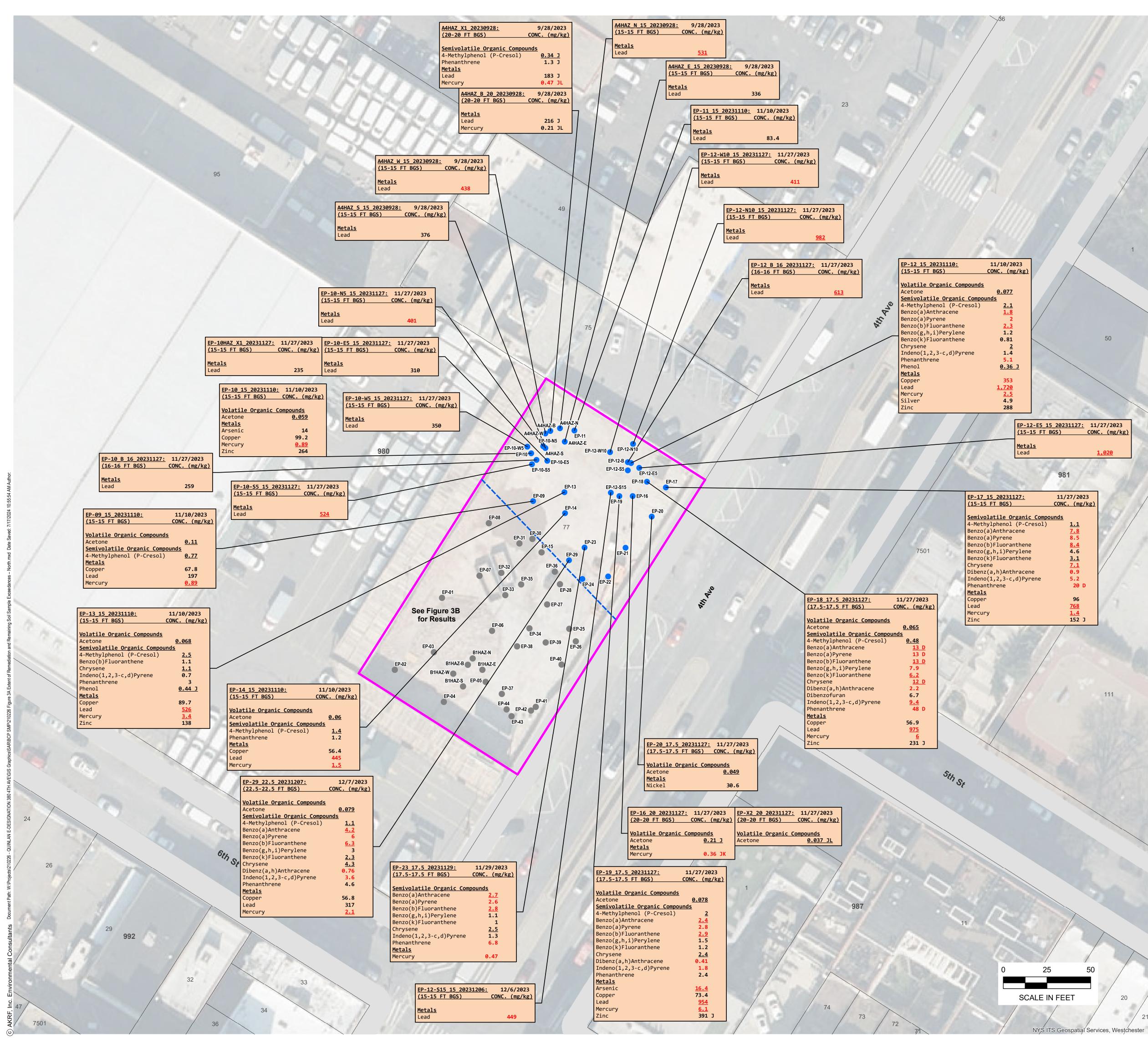
Exceedances of the EPA Hazardous Waste Criteria are highlighted in bold font.


NYSDEC	
Part 375 PFAS	New York State Department of Environmental Conservation (NYSDEC) Sampling, Analysis and : Assessment Of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial
Guidance Values	Programs Issued April 2023.


Exceedances of NYSDEC PFAS Unrestricted Use Guidance Values (UUGVs) are highlighted in bold font. Exceedances of NYSDEC PFAS Restricted Residential Guidance Values (RRGVs) are highlighted in gray shading.

Endpoint samples with "Over-Excavated" indicated in the analyte result cell previously had an exceedance of their applicable RRSCO or PGWSCO, which were over-excavated and subsequent sampling was performed until the analyte met the applicable criteria documenting the extent of the remedial excavation.

DUPLICATES


EP-10HAZ_X1_20231127 is a blind duplicate of sample EP-10-E5_15_20231127 EP-X1_15_20231103 is a blind duplicate of sample EP-01_15_20231103 EP-X2_20_20231127 is a blind duplicate of sample EP-16_20_20231127 EP-X3_20231215 is a blind duplicate of sample EP-37_17.5_20231215 A4HAZ_X1_20230928 is a blind duplicate of sample A4HAZ_B_20_20230928 B1HAZ_X1_20230601 is a blind duplicate of sample B1HAZ_B_20_20230601 FIGURES

Map Source: NYCDCP (NYC Dept. of City Planning) GIS database.

Map Source: Based on Figure A-100.00 Cellar Plan, Prepared by GF55 Architects, LLP 2023 225 West 39th Streett New York, New York May 2023

LEGEND

PROJECT SITE BOUNDARY

LOT BOUNDARY AND TAX LOT NUMBER

----- MATCHLINE SEPARATING CHEMBOX EXCEEDANCE NORTH OR SOUTH PART OF SITE

ENDPOINT SAMPLE LOCATION

EP-26

ENDPOINT SAMPLE LOCATION (SEE FIGURE 3B FOR CONTAMINATION REMAINING AT THE EXCAVATION EXTENT FOR THIS PORTION OF THE SITE)

	PART 375 PGWSCOs	PART 375 RRSCOs	PART 375 UUSCOs
	mg/kg	mg/kg	mg/kg
Volatile Organic Compounds			
Acetone	0.03	100	0.03
Semivolatile Organic Compounds			
4-Methylphenol (P-Cresol)	0.33	100	0.33
Benzo(a)Anthracene	1	1.4	1
Benzo(a)Pyrene	22	1	1
Benzo(b)Fluoranthene	2.1	1.4	1
Benzo(g,h,i)Perylene	1,000	4.9	0.64
Benzo(k)Fluoranthene	2	4.9	0.8
Chrysene	1	4.9	1
Dibenz(a,h)Anthracene	1,000	0.33	0.33
Dibenzofuran	110	18	2.1
Indeno(1,2,3-c,d)Pyrene	6.6	1.4	0.5
Phenanthrene	1,000	4.9	1.1
Phenol	0.33	100	0.33
Metals			
Arsenic	16	16	13
Copper	1,720	280	50
Lead	450	400	63
Mercury	0.73	0.26	0.18
Nickel	130	210	30
Silver	8.3	110	2
Zinc	2,480	6,600	109

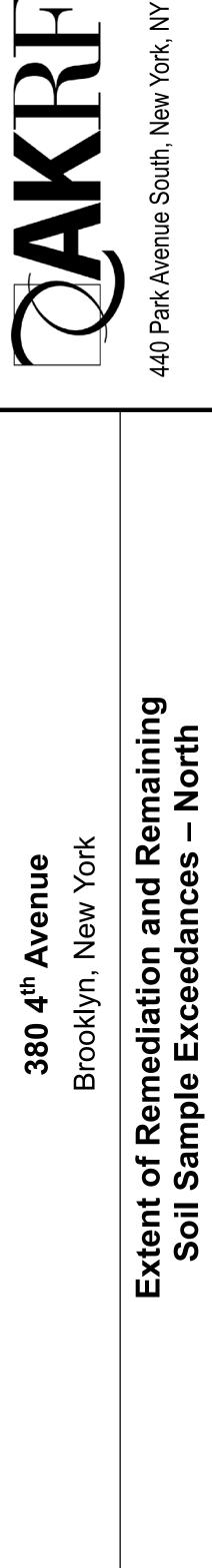
EP-10HAZ_X1_20231127 is a blind duplicate of sample EP-10-E5_15_20231127 EP-X2_20_20231127 is a blind duplicate of sample EP-16_20_20231127

Part 375 Soil Cleanup Objectives (SCOs): SCOs listed in the New York State Department of Environmental Conservation (NYSDEC) "Part 375" Regulations (6 NYCRR Part 375).

Exceedances of NYSDEC Unrestricted Use Soil Cleanup Objectives (UUSCOs) are presented in bold font.

Exceedances of NYSDEC Restricted Residential Soil Cleanup Objectives (RRSCOs) are presented in red.

Exceedances of NYSDEC Protected Groundwater Soil Cleanup Objectives (PGWSCOs) for VOCs that were above GW Standards are presented in underlined font.


mg/kg:milligrams per kilogram = parts per million (ppm)

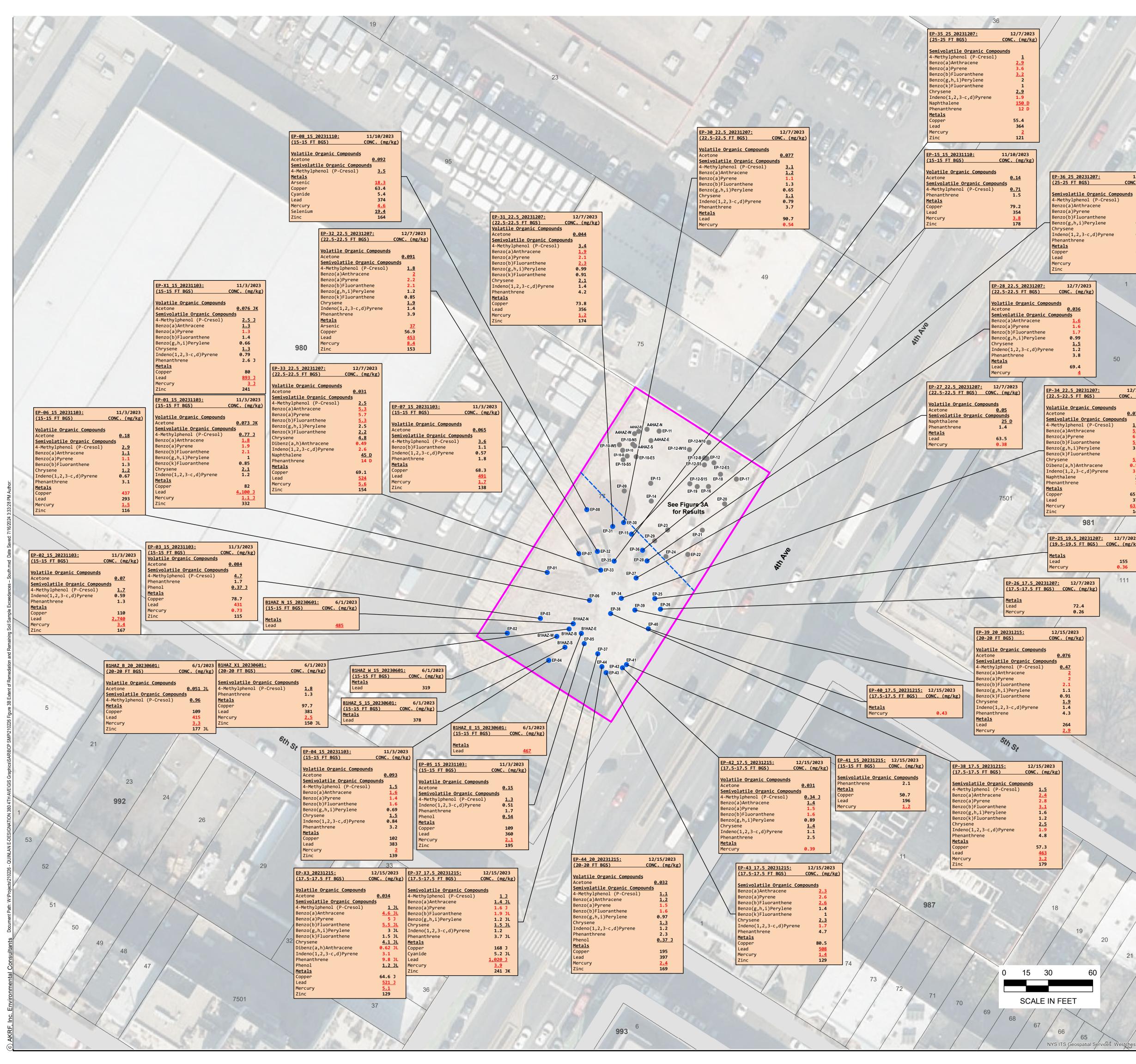
D: Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the two analyses.
J: The concentration given is an estimated value.
K: Reported concentration value is proportional to dilution factor and may be exaggerated.
L: Sample result is estimated and biased low NA: Not Applicable

Sample IE)	_−Sa	mple Date
	EP-40 17.5 20231215: (17.5-17.5 FT BGS)	12/15/2023 CONC. (mg/kg)	
	<u>Metals</u> Mercury	0.43	
		N	
	Analyte/Comp	ound	-Concentration

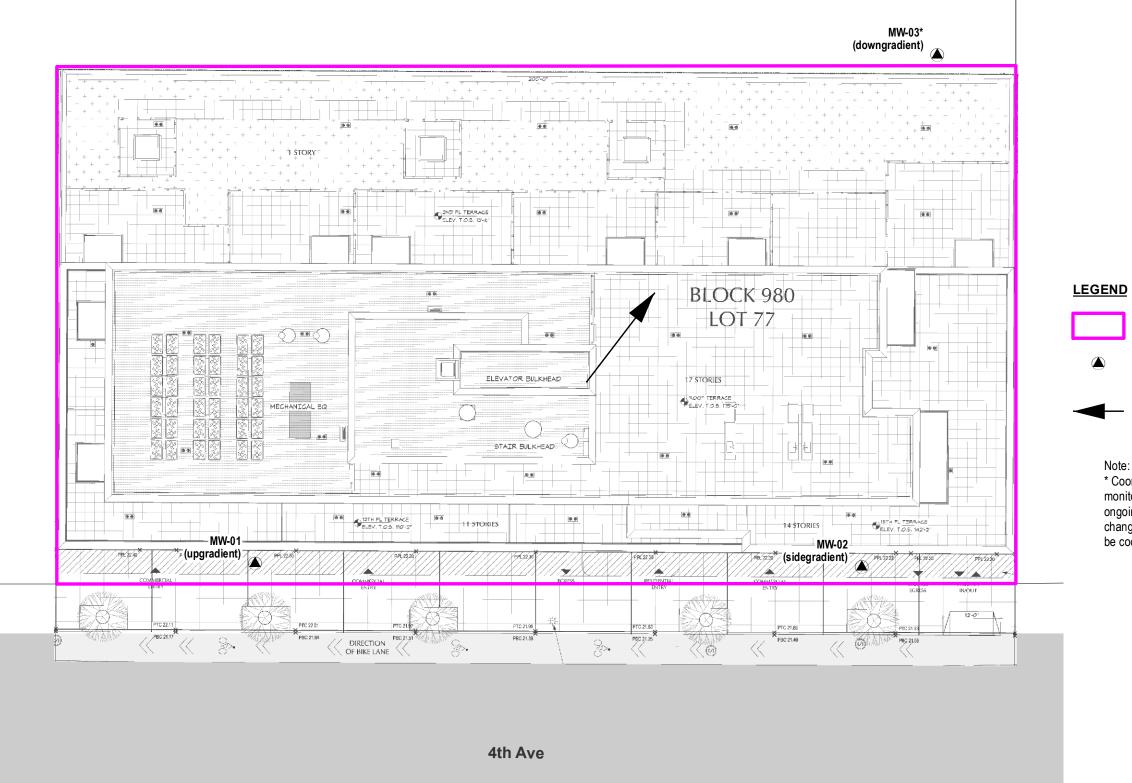
Map Source:

NYCDCP (NYC Dept. of City Planning) GIS database

10016

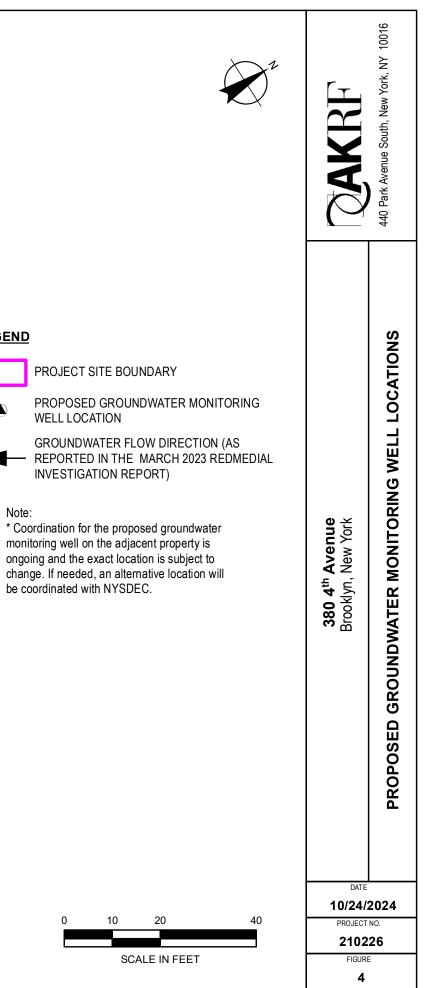

7/17/2024

PROJECT NO.


210226

FIGURE

3**A**



/7/2023 (mg/kg) 3 1.4 1.4 1.6 .73 1.5 .88 3.3 3.7 430 3.2 212	20 LOT BOU 980 BLOCK N MATCHLI EP-26 BLOCK N MATCHLI EXCEEDA SITE ENDPOIN 3A FOR C EXCAVAT THE SITE	NE SEPARAT ANCE NORTH IT SAMPLE LO ONTAMINATI ION EXTENT I)	Tax lot nui Ing chembo I or south Ocation (se On remaini For this po Ocation	DX PART OF EE FIGURE ING AT THE ORTION OF		440 Park Avenue South, New York, NY 10016
		PART 375 PGSCOs	PART 375 RRSCOs	PART 375 UUSCOs		440
	Volatile Organic Compounds	mg/kg	mg/kg	mg/kg		
/2023 mg/kg) 8 1 4 8 2 9 2 3 6 5 7 3 9 9	Acetone Naphthalene Semivolatile Organic Compounds 4-Methylphenol (P-Cresol) Benzo(a)Anthracene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(c),h,i)Perylene Benzo(d)Pyrene Benzo(d)Fluoranthene Benzo(d,h)Anthracene Indeno(1,2,3-c,d)Pyrene Phenanthrene Phenol Metals Arsenic Copper Cyanide Lead Mercury Silver Zinc Part 375 Soil Cleanup Ob York State Department of E "Part 375" Regulations (6 N Exceedances of NYSDEC Objectives (UUSCOs) are Exceedances of NYSDEC Objectives (PGWSCOs) for Standards are presented mg/kg:milligrams per kilogr D: Indicates an identified co concentrations reported in J: The concentration given K: Reported concentration May be exaggerated. L: Sample result is estimat NA: Not Applicable	jectives (SCO Invironmental (NYCRR Part 37 Unrestricted presented in Restricted Re presented in Protected Gr or VOCs that v in underlined ram = parts per ompound in an data user to ar the two analys is an estimated value is propo	EP-37_17.5_202 s): SCOs liste Conservation (75). Use Soil Clea bold font. esidential Soi red. coundwater So were above G font. million (ppm) analysis that I by differences I es. d value. ortional to diluti	31215 d in the New NYSDEC) anup I Cleanup Dil Cleanup W	380 4th Avenue Brooklyn, New York	Extent of Remediation and Remaining Soil Sample Exceedances- South
					DATE 7/16/2	
22	Sample ID <u>EP-40 17.5 20231215:</u> (17.5-17.5 FT BGS)	Sample I	Date		PROJEC 2102	
23 er County GIS4	(17.5-17.5 FT BGS) (Metals Mercury Analyte/Compound	0.43	n Map Source: NYCDCP (NYC Dept.	. of City Planning) GIS database	FIGUF 3B	

Map Source: NYCDCP (NYC Dept. of City Planning) GIS database.

Map Source: Based on Figure A-010.00-101, Architectrual Site Plan, Prepared by GF55 Architects, LLP 2023 225 West 39th Streett New York, New York May 2023

APPENDIX A ENVIRONMENTAL EASEMENT, SITE SURVEY, AND METES & BOUNDS DESCRIPTION

NYC DEPARTMENT OF OFFICE OF THE CITY R This page is part of the instrumer Register will rely on the informat by you on this page for purposes this instrument. The information will control for indexing purpose of any conflict with the rest of the	REGISTER nt. The City tion provided of indexing on this page es in the event ne document.		2024053100222001001EA858						
Dooumont ID: 20240524000	RECORDING AND ENDORSEMENT COVER PAGE PAGE 1 OF 10								
Document ID: 2024053100222001Document Date: 05-29-2024Preparation Date: 05-31-2024Document Type: EASEMENTDocument Page Count: 9Preparation Date: 05-31-2024									
PRESENTER: SIVE PAGET & RIESEL, P.C 560 LEXINGTON AVENUE, NEW YORK, NY 10022 212-421-2150 NDUNCAN@SPRLAW.CON	15TH FLOO	R	RETURN TO: SIVE PAGET & RIESEL, P.C. 560 LEXINGTON AVENUE, 15TH FLOOR NEW YORK, NY 10022 212-421-2150 NDUNCAN@SPRLAW.COM						
PROPERTY DATA Unit AddressBoroughBlockLotUnitAddressBROOKLYN98077Entire Lot380 4 AVENUEProperty Type:NON-RESIDENTIAL VACANT LANDEasement									
CROSS REFERENCE DATA CRFNor DocumentIDor Year Reel Page or File Number									
GRANTOR/SELLER: 380 4TH AVENUE OWNER, C/O: QUINLAN DEVELOPM COLUMBUS AVENUE, SUI' NEW YORK, NY 10023	MENT GROU		FIES GRANTEE/BUYER: PEOPLE OF NEW YORK BY DEPT. ENVIRONMENTAL CONSERVA 625 BROADWAY ALBANY, NY 12233						
		FEES A	ND TAXES						
Mortgage :			Filing Fee:						
Mortgage Amount:	\$	0.00	\$ 100.00						
Taxable Mortgage Amount:	\$	0.00	NYC Real Property Transfer Tax:						
Exemption:			\$ 0.00						
TAXES: County (Basic):	\$	0.00	NYS Real Estate Transfer Tax:						
City (Additional):	\$	0.00	\$ 0.00						
Spec (Additional):	\$	0.00	RECORDED OR FILED IN THE OFFICE						
TASF:	\$	0.00	OF THE CITY REGISTER OF THE						
MTA:	\$	0.00	- CITY OF NEW YORK						
NYCTA:	\$	0.00	- Recorded/Filed 06-04-2024 09:29						
Additional MRT:	\$	0.00	City Register File No.(CRFN):						
TOTAL:	\$	0.00							
Recording Fee:	\$	82.00	- White NChing Channes						
Affidavit Fee:	\$	0.00	alette N Chin Jacques						
			City Register Official Signature						

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this <u>29th</u> day of <u>Mary</u>, 2029 between Owner, 380 4th Avenue Owner, LLC, having an office at c/o Quinlan Development Group, LLC, 157 Columbus Avenue, Suite 2E, County of New York, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 374 to 390 4th Avenue in the City of New York, County of New York and State of New York, known and designated on the tax map of the New York City Department of Finance as tax map parcel number: Block 980, Lot 77, being the same as that property conveyed to Grantor by deed dated as of October 6, 2022 and recorded in the City Register of the City of New York as CRFN No. 2022000395586. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.46 +/- acres, and is hereinafter more fully described in the Land Title Survey dated May 19, 2023 prepared by Vincent J. Dicce, L.S. (License No. 049333), which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

Environmental Easement Page 1

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C224358-10-22, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining

Environmental Easement Page 2

contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: C224358 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500
With a copy to:	Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

Environmental Easement Page 5

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

380 4th Avenue Owner, LLC:

Bv: Print Name: Title:

Grantor's Acknowledgment

STATE OF NEW YORK) COUNTY OF NEW YO($(L_{)}^{\circ}$) ss:

On the 215^{+} day of 302^{-} , in the year 202^{-} , before me, the undersigned, personally appeared 302^{-} , personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by h/s/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

ROBERT S. COHEN NOTARY PUBLIC, STATE OF NEW YORK Registration No. 01CO4853984 Qualified in Westchester County My Commission Expires 3 3 2026 THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By: ander Hugfich.

Andrew O. Gugliehni, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the 24 day of 4 day, in the year 2024 before me, the undersigned, personally appeared Andrew O. Guglielmi, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

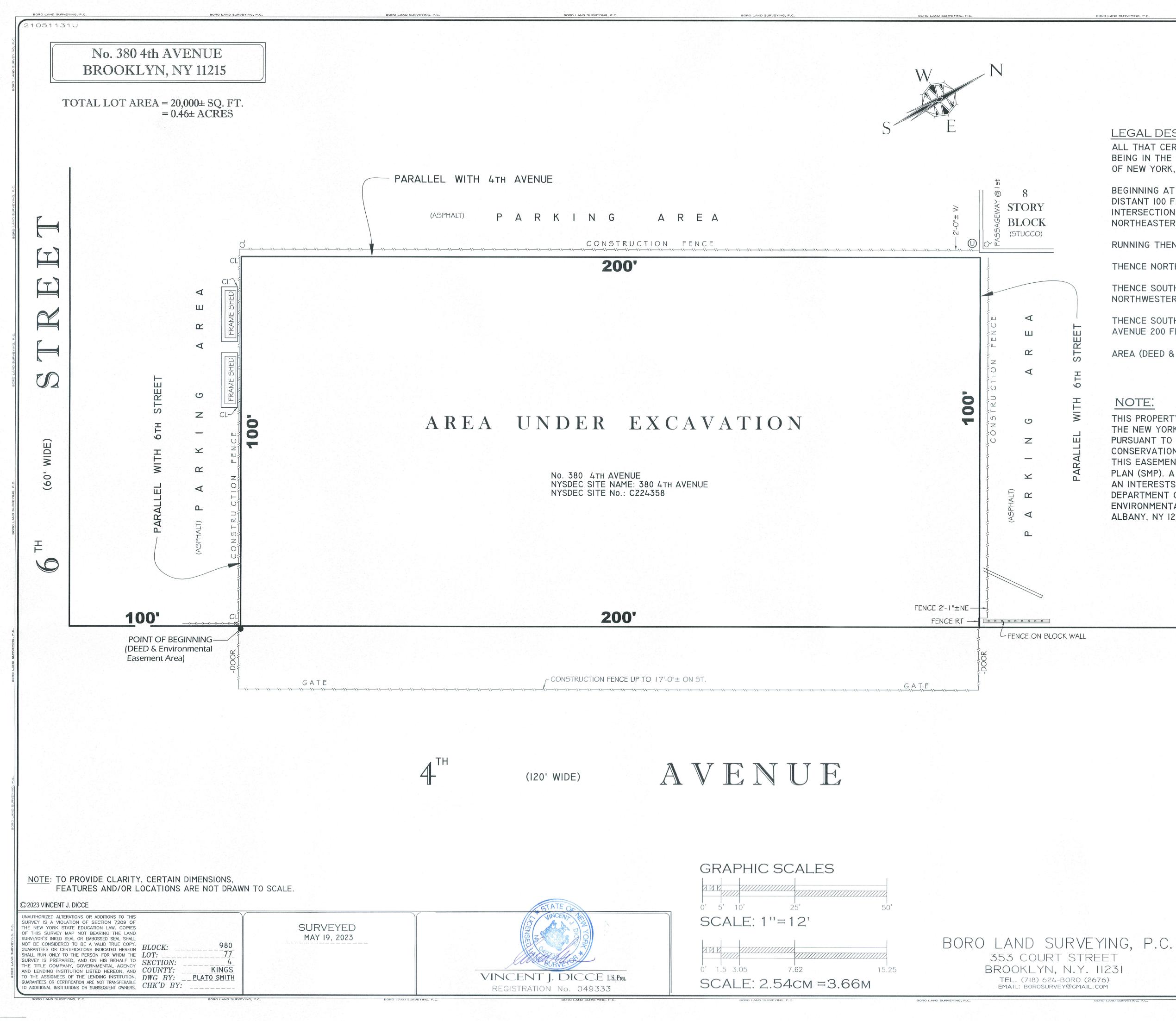
Cheryl A. Salem Notary Public State of New York Registration No. 01SA0002177 Qualified in Albany County My Commission Expires March 3,2027

SCHEDULE "A" PROPERTY DESCRIPTION

EASEMENT DESCRIPTION – Block 980, Lot 77

ALL that certain plot, piece or parcel of land, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the northwesterly side of 4th Avenue, distant 100 feet northeasterly from the corner formed by the intersection of the northwesterly side of 4th Avenue with the northeasterly side of 6th Street;


RUNNING THENCE northwesterly parallel with 6th Street, 100 feet;

THENCE northeasterly parallel with 4th Avenue, 200 feet;

THENCE southeasterly parallel with 6th Street, 100 feet to the northwesterly side of 4th Avenue;

THENCE southwesterly along the northwesterly side of 4th Avenue 200 feet to the point or place of BEGINNING.

Area : $0.46 \pm \text{Acres or } 20,000 \text{ Sq. Ft.}$

BORO LAND SURVEYING, I

LEGAL DESCRIPTION (DEED & ENVIRONMENTAL EASEMENT AREA) ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND, SITUATE, LYING AND BEING IN THE BOROUGH OF BROOKLYN, COUNTY OF KINGS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A PONT ON THE NORTHWESTERLY SIDE OF 4TH AVENUE, DISTANT 100 FEET NORTHEASTERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE NORTHWESTERLY SIDE OF 4TH AVENUE WITH THE NORTHEASTERLY SIDE OF 6TH STREET:

RUNNING THENCE NORTHWESTERLY PARALLEL WITH 6TH STREET, 100 FEET;

THENCE NORTHEASTERLY PARALLEL WITH 4TH AVENUE, 200 FEET;

THENCE SOUTHEASTERLY PARALLEL WITH 6TH STREET, 100 FEET TO THE NORTHWESTERLY SIDE OF 4TH AVENUE;

THENCE SOUTHWESTERLY ALONG THE NORTHWESTERLY SIDE OF 4TH AVENUE 200 FEET TO THE POINT OR PLACE OF BEGINNING.

AREA (DEED & ENVIRONMENTAL EASEMENT)= 0.46±ACRES OR 20,000 SQ FT.

NOTE:

THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 ARTICLE 71 OF THE NEW YORK ENVIRONMENTAL CONSERVATION LAW. THE ENGINEERING AND INSTITUTION CONTROLS FOR THIS EASEMENT ARE SET FORTH IN MORE DETAIL IN THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY PARTY WITH AN INTERESTS IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, NY 12233 OR AT DERWEB@DEC.NY.GOV.

-xxx	CHAIN LINK FENCE	CALC.	CALCULATED	ST.	STREET
0-0-0-0-	IRON/OR METAL FENCE	C.D.	CELLAR DOOR	STY.	STORY
	WOOD FENCE	CL	CLEAR	N./No.	NORTH
	OTHER TYPE OF FENCE	CONC.	CONCRETE	S./So.	SOUTH
	WIRE FENCE	ENT. UND.	ENTRANCE UNDER	E.	EAST
	CHIMNEY	(Contraction)	HEDGE	W.	WEST
	DRAIN	IND'T	INDEPENDENT	NE.	NORTHEAST
	OVERHEAD WIRE	L.A.	LOW AREA	SE.	SOUTHEAST
\bigcirc	UTILITY POLE	N.T.S.	NOT TO SCALE	NW.	NORTHWEST
А.	AREAWAY	ORN.	ORNAMENTAL	SW.	SOUTHWEST
ALUM.	ALUMINUM	PROJ.	PROJECTS	www./w.	WINDOW WELL
AWN.	AWNING	RET.	RETAINING		
BSM'T	BASEMENT	RT	RIGHT		

BORO LAND SURVEYING

LEGEND

APPENDIX B LIST OF SITE CONTACTS

Company	Individual Name	Title	Contact Number*
AVDE	Michelle Lapin	Remedial Engineer	646-388-9520 (office)
AKRF	Stephen Malinowski	QA/QC Officer	631-574-3724 (office)
	Tim Larigan	Project Manager	646-388-9508 (office)
	Kelly Lewandowski	Site Control	(518) 402-9569 (office)
NYSDEC	Michael Sollecito	Project Manager	(518-402-2198 (office)
	David Gardener	Regional Chief	(518) 402-9818 (office)
NYSDOH	Michele Dolan	Project Manager	(518) 402-7860 (office)
380 4 th Avenue Owner, LLC	Kyle Cohen	Volunteer's Representative	914-886-3056 (office)
Medical, Fire, Police	N/A	N/A	911
One Call Center	N/A	N/A	(800) 272-4480 (3-day notice required for utility mark out)
Poison Control Center	N/A	N/A	(800) 222-1222
Pollution Toxic Chemical Oil Spills	N/A	N/A	(800) 424-8802
NYSDEC Spills Hotline	N/A	N/A	(800) 457-7362

APPENDIX B – LIST OF SITE CONTACTS

*Note: Contact numbers subject to change and will be updated as necessary.

APPENDIX C REMEDIAL PARTY/OWNER RESPONSIBILITIES

RESPONSIBILITIES OF OWNER AND REMEDIAL PARTIES

Responsibilities

The responsibilities for implementing the Site Management Plan (SMP) for the 380 4th Avenue site (the "Site"), number C224358, are divided between the site owner(s) and a Remedial Party, as defined below. The owner(s) is/are currently listed as:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out, the term Remedial Party ("RP") refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation ("NYSDEC") is carrying out remediation or site management, the NYSDEC and/or an agent acting on its behalf. The RP is:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the site.

Site Owner's Responsibilities:

- 1) The owner shall follow the provisions of the SMP as they relate to future construction and excavation at the site.
- 2) In accordance with a periodic time frame determined by the NYSDEC, the owner shall periodically certify, in writing, that all Institutional Controls set forth in an Environmental Easement, remain in place, and continue to be complied with. The owner shall provide a written certification to the RP, upon the RP's request, to allow the RP to include the certification in the site's Periodic Review Report (PRR) certification to the NYSDEC.
- 3) In the event the site is delisted, the owner remains bound by the Environmental Easement and shall submit, upon request by the NYSDEC, a written certification that the Environmental Easement is still in place and has been complied with.
- 4) The owner shall grant access to the site to the RP and the NYSDEC and its agents for the purposes of performing activities required under the SMP and assuring compliance with the SMP.
- 5) The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. If damage to the remedial components or vandalism is evident, the owner shall notify the site's RP and the NYSDEC in accordance with the timeframes indicated in Section 1.3 Notifications.
- 6) If some action or inaction by the owner adversely impacts the site, the owner must notify the site's RP and the NYSDEC in accordance with the time frame indicated in Section 1.3 Notifications and (ii) coordinate the performance of necessary corrective actions with the RP.
- 7) The owner must notify the RP and the NYSDEC of any change in ownership of the site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the Site property. 6 NYCRR Part 375-1.11(d) contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the notification requirements is the following: Sixty days prior written notification must be made to the NYSDEC. Notification is to

be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 2.4 of the SMP. A change of use includes, but is not limited to, any activity that may increase direct human or environmental exposure (e.g., day care, school or park). A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.

8) In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data, that is produced with respect to structures and that exceeds NYSDOH or OSHA guidelines on the Site, whether produced by the NYSDEC, RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

Remedial Party Responsibilities

- 1) The RP must follow the SMP provisions regarding any construction and/or excavation it undertakes at the Site.
- 2) The RP shall report to the NYSDEC project manager all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated SMPs.
- 3) Before accessing the Site property to undertake a specific activity, the RP shall provide the owner advance notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) the NYSDEC project manager, and (iii) other entities, if required by the SMP, a copy of any data generated during the site visit and/or any final report produced.
- 4) If the NYSDEC project manager determines that an update of the SMP is necessary, the RP shall update the SMP and obtain final approval from the NYSDEC project manager. Within 5 business days after NYSDEC project manager approval, the RP shall submit a copy of the approved SMP to the owner(s).
- 5) The RP shall notify the NYSDEC project manager and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-days prior notice to the NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html
- 6) The RP shall notify the NYSDEC project manager of any damage to or modification of the systems as required under Section 1.3 Notifications of the SMP.
- Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the SMP, the RP shall submit to the NYSDEC project manager for approval an amended SMP.
- 8) Any change in use, change in ownership, change in site classification (*e.g.*, delisting), reduction or expansion of remediation, and other significant changes related to the site may result in a change in responsibilities and, therefore, necessitate an update to the SMP and/or updated legal documents. The RP shall contact the NYSDEC project manager to discuss the need to update such documents.

Change in RP ownership and/or control and/or site ownership does not affect the RP's obligations with respect to the site unless a legally binding document executed by the NYSDEC releases the RP of its obligations.

Future site owners and RPs and their successors and assigns are required to carry out the activities set forth above.

APPENDIX D EXCAVATION WORK PLAN

APPENDIX D – EXCAVATION WORK PLAN (EWP)

1.1 Notification

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the Site owner or their representative will notify the New York State Department of Environmental Conservation (NYSDEC). Currently, this notification will be made to:

David Gardener (david.gardender@dec.ny.gov) Regional Remediation Engineer New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7016

Michael Sollecito (michael.sollecito@dec.ny.gov) NYSDEC Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7016

> Michele Dolan (<u>beei@health.ny.gov</u>) NYSDOH Project Manager Empire State Plaza Corning Tower Room 1787 Albany, New York 12237

This information will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in Appendix B.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for Site re-grading, estimated volumes of contaminated soil to be excavated, and any modification of truck routes;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 Code of Federal Regulations (CFR) 1910.120 and 29 CFR 1926 Subpart P;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix G of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required request to import forms and all supporting documentation including, but not limited to, chemical testing results.

The NYSDEC project manager will review the notification and may impose additional requirements for the excavation that are not listed in this EWP.

1.2 Soil Screening Methods

Visual, olfactory, and instrument-based [(e.g. photoionization detector (PID)] soil screening will be performed by a qualified environmental professional (QEP), as defined in 6 New York Codes, Rules, and Regulations (NYCRR) Part 375, during all excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the Certificate of Completion (COC). All potentially contaminated soil/fill material will be field screened using a PID or similar equipment.

Soils will be segregated based on previous environmental data and field screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site. Further discussion of off-site disposal of materials and on-site reuse is provided in Section 1.6 and 1.7 of this Appendix.

1.3 Stockpile Methods

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by NYSDEC.

1.4 Materials Excavation and Load Out

A QEP, as defined in 6 NYCRR Part 375, or a person under their supervision, will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site will be investigated by the QEP. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the Site. A site utility stakeout will be completed for all utilities prior to any ground intrusive activities at the Site.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate federal, state, local, and New York State Department of Transportation requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site, as appropriate. The QEP will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the Site until the activities performed under this section are complete. Truck wash waters will be collected and disposed of off-site at a permitted facility in an appropriate manner. See Section 1.8 – Fluids Management for additional details.

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-site soil tracking.

The QEP will be responsible for ensuring that all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials. Material accumulated from the street cleaning and egress cleaning activities will be disposed off-site at a permitted landfill facility in accordance with all applicable local, state, and federal regulations. See Section 1.6 – Materials Disposal Off-site for additional details.

1.5 Materials Transport Off-Site

All transport of materials will be performed by licensed haulers in accordance with appropriate local, state, and federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loosefitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Truck transport routes are as follows:

- For Trucks Heading North: Head southwest on 4th Avenue and turn right onto 9th Street, then turn left onto 3rd Avenue to merge onto Interstate 278 North.
- For Trucks Heading South: Head southwest on 4th Avenue and turn right onto 9th Street, then turn left onto 3rd Avenue to merge onto Interstate 278 South.

A truck Route Map is provided as Figure 1. All trucks loaded with Site materials will exit the vicinity of the Site using only these approved truck routes. These are the most appropriate routes and take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; (f) overall safety in transport; and (g) community input.

Trucks will be prohibited from stopping and idling in the neighborhood outside the Site.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during site remediation and development. See Section 1.4 – Material Excavation and Load-out for additional details.

Queuing of trucks will be performed on-site to minimize off-site disturbance. Off-site queuing will be prohibited.

1.6 Materials Disposal Off-Site

All material excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed at a permitted facility in accordance with all local, state (including 6 NYCRR Part 360), and federal regulations. If disposal of material from the Site is proposed for unregulated off-site disposal (i.e., clean soil removed for development purposes), a formal request with an associated plan will be made to NYSDEC. Unregulated off-site management of materials from the Site will not occur without prior formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, [e.g., hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, construction and demolition (C&D) recycling facility, etc.] Actual disposal quantities and associated documentation will be reported to the NYSDEC project manager in the subsequent Periodic Review Report. This documentation will include but will not be limited to: waste profiles, test results, facility acceptance letters, manifests, bills of lading, and facility receipts.

Non-hazardous fill and contaminated soils taken off-site will be handled consistent with 6 NYCRR Parts 360, 361, 362, 363, 364 and 365. Material that does not meet Unrestricted Use Soil Cleanup

Objectives (UUSCOs) is prohibited from being taken to a New York State C&D debris recovery facility (6 NYCRR Subpart 360-15 registered or permitted facility).

1.7 Materials Reuse On-Site

The QEP as defined in 6 NYCRR part 375 will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material (i.e., contaminated) does not remain onsite.

Proposed materials for reuse on-site must be sampled for full suite analytical parameters including per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The sampling frequency will be in accordance with DER-10 Table 5.4(e)10, unless prior approval is obtained from the NYSDEC project manager for modification of the sampling frequency. The analytical results of soil/fill material testing must meet the site use criteria presented in NYSDEC DER-10 Appendix 5 – Allowable Constituent Levels for Imported Fill or Soil for all constituents listed, and the NYSDEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances October 2020 guidance values. Approvals for modifications to the analytical parameters must be obtained from the NYSDEC project manager prior to the sampling event.

Soil/fill material for reuse on-site will be segregated and staged as described in Sections 1.2 and 1.3 of this EWP. The anticipated size and location of stockpiles will be provided in the 15-day notification to the NYSDEC project manager. Stockpile locations will be based on the location of Site excavation activities and proximity to nearby Site features. Material reuse on-site will comply with requirements of NYSDEC DER-10 Section 5.4(e)4. Any modifications to the requirements of DER-10 Section 5.4(e)4 must be approved by the NYSDEC project manager prior to reuse on-site.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC project manager for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC project manager approval. Organic matter (e.g., wood, roots, stumps) or other solid waste derived from clearing and grubbing of the Site will not be reused on-site.

1.8 Fluids Management

All liquids to be removed from the Site, including but not limited to excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported, and disposed off-site at a permitted facility in accordance with applicable local, state, and federal regulations. Dewatering, purge, and development fluids will not be recharged back to the land surface or subsurface of the Site, and will be managed off-site, unless prior approval is obtained from NYSDEC project manager.

Discharge of water generated during large-scale construction activities to surface waters (i.e., a local pond, stream or river) will be performed under a State Pollutant Discharge Elimination System (SPDES) permit.

1.9 Backfill from Off-Site Sources

All materials proposed for import onto the Site will be approved by the QEP, as defined in 6 NYCRR Part 375, and will be in compliance with provisions in this SMP prior to receipt at the Site. A Request to Import/Reuse Fill or Soil form, which can be found at <u>http://www.dec.ny.gov/regulations/67386.html</u>, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site.

All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d) and DER-10 Appendix 5 for restricted residential, commercial, or industrial use. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Soil material will be sampled for the full suite of analytical parameters, including PFAS and 1, 4-dioxane. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

1.10 Stormwater Pollution Prevention

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

1.11 Contingency Plan

If underground tanks or other previously unidentified contaminant sources are found during postremedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition. The NYSDEC project manager will be notified within two hours of the discovery.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes [total analyte list (TAL) metals, total compound list (TCL) volatiles and semi-volatiles (including 1,4-dioxane), TCL pesticides and polychlorinated biphenyls (PCBs), and PFAS], unless the Site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC project manager for approval prior to sampling. Any tanks will be closed as per NYSDEC regulations and guidance.

Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone within two hours to NYSDEC's project manager. Reportable quantities of petroleum product will also be reported to the NYSDEC Spills hotline. These findings will be also included in the subsequent Periodic Review Report.

1.12 Community Air Monitoring Plan

During any excavation activity initiated under the SMP, air monitoring will be conducted in accordance with the Community Air Monitoring Plan (CAMP) included as Appendix H of this

SMP. Work zone monitoring will be performed for the health and safety of workers during interior intrusive work activities in accordance with action levels and guidance outlined in the site-specific HASP. In summary, the CAMP calls for real-time monitoring for VOCs and particulates (i.e., dust) at the downwind perimeter of each designated work area when intrusive activities are in progress at the Site. Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas. Continuous monitoring is required for all ground intrusive activities to the extent practicable (e.g., air monitoring may not be conducted during precipitation events).

VOC and particulate monitoring equipment will consist of a PID capable of detecting the VOCs found in the excavated soil and real-time aerosol or particulate monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM_{10}). VOC monitoring equipment will be calibrated, and the particulate monitoring equipment zeroed, and documented in a dedicated field logbook on a daily basis. Both VOC and particulate monitoring equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the prescribed action levels.

If VOC monitoring results in the ambient air concentration of total organic vapors in excess of 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases below 5 ppm over background, work activities can resume with measures taken to reduce vapors and continue monitoring. If total organic vapor levels persist at levels in excess of 5 ppm over background, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. If the organic vapor level is repeatedly over 25 ppm above background, activities will be shut down and the Site work plan re-evaluated.

If particulate monitoring results in a 15-minute average concentration measurement that is between 100 micrograms per cubic meter (μ g/m³) and 150 μ g/m³ above the background level, additional dust suppression techniques will be implemented to reduce the generation of fugitive dust and corrective action taken to protect Site personnel and reduce the potential for contaminant migration. Should dust suppression measures being utilized not lower particulates to an acceptable level (e.g., below 150 μ g/m³ above the background level, and no visible dust from the work area), work will be suspended until appropriate corrective measures are implemented to remedy the situation.

Details regarding work zone and community air monitoring are outlined in the HASP attached as Appendix G. Exceedances of action levels listed in the CAMP will be reported to the NYSDEC and New York State Department of Health (NYSDOH) project managers.

1.13 Odor Control Plan

This odor control plan is capable of controlling emissions of nuisance odors off-site. Specific odor control methods to be used on a routine basis will include (a) through (f), as outlined in the following paragraph. If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH project managers will be notified of all odor events within one day of the odor event and notified of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the Excavation Activities Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate

odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

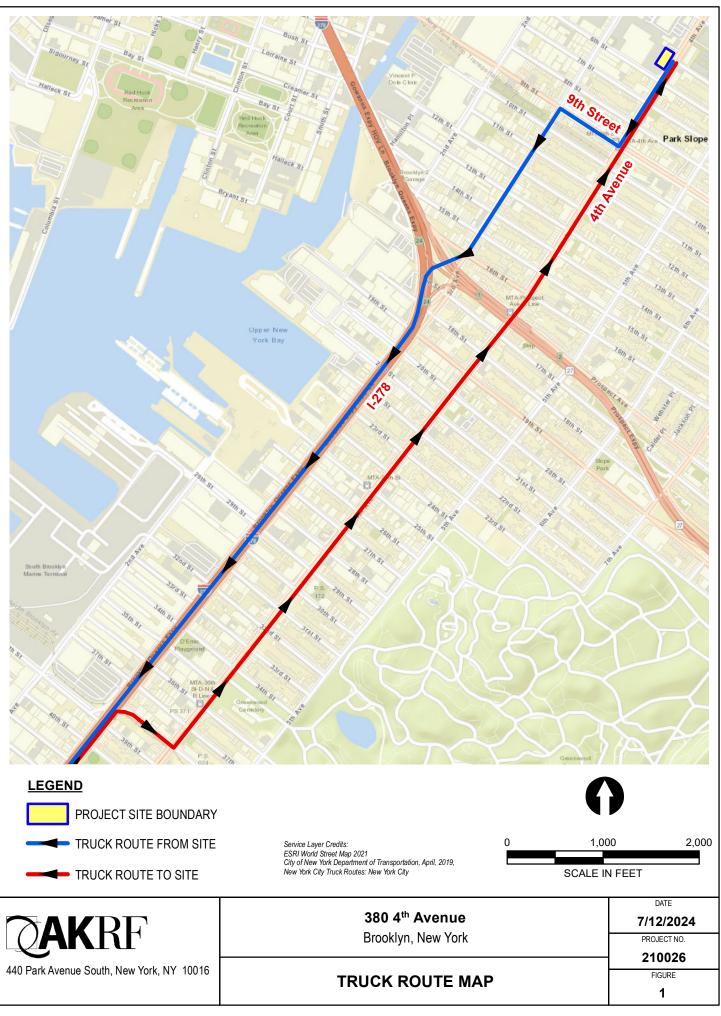
If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

1.14 Dust Control Plan

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

1.15 Other Nuisances


A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

1.16 Reporting

A report is to be submitted to the NYSDEC within 90 days of completion of the activities performed under this EWP. This report shall contain a summary of the activities performed; a summary of all data gathered and results; information about any media that was removed from the site: volume, contamination levels, area from which removed; and any other information that may be indicate a change to the "remaining contamination" that is at the Site. Such changes may require revision of the SMP.

FIGURE 1 - TRUCK ROUTE MAP

APPENDIX E SITE MANAGEMENT FORMS

AKRF, Inc.

Annual Site-Wide Inspection

Overview of Annual Site-Wide Inspection requirements:

1) General Site conditions at time of inspection;

2) SMP-related Site Activities being conducted, upcoming SMP-related tasks;

3) Institutional Control (IC) Checklist (SMP maintained on-Site, routine SMP tasks being conducted); and

4) Site Documentation.

1) General Site conditions at time of inspection:

NAME:	DATE:
TIME:	WEATHER:
Annual Inspection or Emergency Inspection (if emer	gency, specify nature)?
Notes:	
2) Are any SMP-related site activities currently be	eing conducted (Groundwater Monitoring)?
YES NO	
Notes/Details:	

3) IC Checklist (SMP maintained on-Site, routine SMP tasks being conducted)

Copy of SMP on-Site?	T YES	Пио
Building Use Still Consistent with SMP (Restricted Residential)?	YES	Шио

Have the required SMP tasks been conducted during the reporting period?

Quarterly groundwater monitoring/sampling	YES	NO
Notes:		

5) Site documentation

Including updates regarding notification to NYSDEC regarding any changes to Site conditions/operations, routine reporting to NYSDEC, etc.).

Notes:

440 Park Avenue South, 7th F						Davis of	Groun		Monitoring Well ling Log	
New York, NY 10016 Project Name:					Client:	Page of			Well ID:	
Project Location:					Sampled By:					
					Sampling Date:					
Project Number: Headspace PID:					Sampling Time:					
-			ft below top of	opping	Water Column:		feet		*= 0.041 * WC for 1" wells	
Total Well Depth: Depth to Water:			ft. below top of ft. below top of	•	Water Column. Well Volume*:				*= 0.163 * WC for 2" wells	
•			•	•			gallons			
Product Thickness:			ft. below top of	•	Volume Purged:		gallons		*= 0.653 * WC for 4" wells	
Depth to Top of Scre			ft. below top of	•	Well Diameter:	2	inches		The target maximum flow rate is 100 ml/min. If water quality parameters do not stabilize and/or	
Depth to Bottom of S			ft. below top of	ę	Purging Device:				turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.	
Approximate Pump	ntake: Depth to Water	Purge Rate	ft. below top of Temperature	casing Conductivity	Dissolved Oxygen		ORP	Turbidity		
Time	(ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	рН	(mV)	(NTU)	Comments (problems, odor, sheen)	
		,	(-)	, ,					, ,	
									-	
									-	
									-	
									-	
									_	
									-	
									4	
									4	
									4	
									4	
									4	
									4	
	Stabilization C			+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU		
Notes:		n reduction potential	mV - millivolt	NTU - nephelon	netric turbidity units ml	l/min - mililiter per minu	te mS/cm - Mill	iSiemens per centi	meter mg/L - miligrams per liter	
	Groundwater samp	ies analyzed for								

APPENDIX F QUALITY ASSURANCE PROJECT PLAN

380 4TH AVENUE BROOKLYN, NEW YORK

Quality Assurance Project Plan

For

Site Management Plan

NYSDEC BCP Site Number: C224358 AKRF Project Number: 210226

Prepared For:

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor Albany, New York 12233

Prepared On Behalf Of:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

AKRF, Inc. 440 Park Avenue South, 7th Floor New York, New York 10016 212-696-0670

DECEMBER 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	PROJECT TEAM	.2
2.1	Remedial Engineer	.2
2.2	Quality Assurance/Quality Control Officer	.2
2.3	Project Manager	.2
2.4	Field Team Leader, Field Technician, and Site Safety Officer	.2
2.5	Laboratory Quality Assurance/Quality Control Officer	.2
2.6	Thirty-Party Data Validator	
3.0	STANDARD OPERATING PROCEDURES	.4
3.1	Groundwater Monitoring Well Installation and Development	.4
3.2	Decontamination of Sampling Equipment	.4
3.3	Heavy Equipment Decontamination	
3.4	Management of Investigation-Derived Waste	.5
4.0	SAMPLING AND LABORATORY PROCEDURES	
4.1	Soil Sampling (if necessary)	.6
4.2	Groundwater Sampling	.6
4.3	Indoor Air Sampling	
4.4	Laboratory Methods	.8
4.5	Quality Control Sampling	.9
4.6	Sample Handling	10
4	A.6.1 Sample Identification	10
4	A.6.2 Sample Labeling and Shipping	11
4	A.6.3 Sample Custody	11
4.7	Field Instrumentation	12
4.8	Quality Assurance	12
4.9	Reporting of Data	12

IN-TEXT TABLES

Table 1 – Laboratory Analytical Methods for Analysis Groups Table 2 – Endpoint Sample Nomenclature

FIGURES

Figure 1 – BCP Site Location

ATTACHMENTS

Attachment A – Resumes for Remedial Engineer, Project Director, Project Manager, and Field Team Leader(s)

Attachment B - Sample Chain of Custody

1.0 INTRODUCTION

This Quality Assurance Project Plan (QAPP) describes the protocols and procedures that will be followed during implementation of the Site Management Plan (SMP) and associated appendices at the 380 4th Avenue Brownfield Cleanup Program (BCP) site located in the Gowanus neighborhood of Brooklyn, New York (hereinafter referred to as the "Site"). The Site is an approximately 0.46-acre parcel identified on the New York City Tax Map as Block 980, Lot 77. Figure 1 shows the Site location.

The objective of this QAPP is to provide for Quality Assurance (QA) and maintain Quality Control (QC) during sampling performed to evaluate the performance and effectiveness of the remedy. Adherence to the QAPP will ensure that defensible data will be obtained during all environmental work at the Site.

2.0 **PROJECT TEAM**

The project team will be drawn from AKRF professional and technical personnel, and AKRF's subcontractors. All field personnel and subcontractors will have completed a 40-hour training course and updated 8-hour refresher course that meet the Occupational Safety and Health Administration (OSHA) requirements of 29 CFR Part 1910. The following sections describe the key project personnel and their responsibilities.

2.1 Remedial Engineer

The Remedial Engineer (RE) for this project will be Michelle Lapin, P.E. The RE will have primary direct responsibility for implementation of the remedial program for the Site. The RE will coordinate the work of other contractors and subcontractors involved in all aspects of remedial construction, including soil excavation, stockpiling, characterization, removal and disposal, air monitoring, emergency spill response services, import of backfill material, and management of waste transport and disposal. The RE will be responsible for all appropriate communication with New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH). Ms. Lapin's resume is included in Attachment A.

2.2 Quality Assurance/Quality Control Officer

Stephen Malinowski, Qualified Environmental Professional (QEP) will serve as the QA/QC Officer and will be responsible for adherence to the QAPP. The QA/QC Officer will review the procedures with all personnel prior to commencing any fieldwork and will conduct periodic Site visits to assess implementation of the procedures. The QA/QC Officer will also be responsible for reviewing the Data Usability Summary Reports (DUSRs) prepared by a third-party data validator for analytical results. Mr. Malinowski's resume is included in Attachment A.

2.3 Project Manager

The Project Manager will be responsible for directing and coordinating all elements of the RAWP. The Project Manager will prepare reports and participate in meetings with the Site Owner, Volunteer, and/or the NYSDEC. Tim Larigan will serve as the project manager for the SMP. Mr. Larigan's resume is included in Attachment A.

2.4 Field Team Leader, Field Technician, and Site Safety Officer

The Field Team Leader will be responsible for supervising the daily sampling and health and safety activities in the field and will ensure adherence to the work plan and Health and Safety Plan (HASP) and Community Air Monitoring Program (CAMP), included in Appendices H and I of the SMP, respectively. The Field Team Leader will also act as the field technician and Site Safety Officer (SSO) and will report to the project manager or project manager alternate on a regular basis regarding daily progress and any deviations from the work plan. The Field Team Leader will be a qualified and responsible person able to act professionally and promptly during environmental work at the Site. Madelyn Fleming will be the Field Team Leader. Ms. Fleming resume is included in Attachment A.

2.5 Laboratory Quality Assurance/Quality Control Officer

The laboratory QA/QC Officer will be Carl Armbruster of Eurofins-TestAmerica Laboratories (Eurofins-TestAmerica), the NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory being employed for all environmental sampling at the Site. The laboratory QA/QC Officer will be responsible for quality control procedures and checks in the laboratory and

ensuring adherence to laboratory protocols. He will track the movement of samples from the time they are checked in at the laboratory to the time that analytical results are issued. He will also conduct a final check on the analytical calculations and sign off on the laboratory reports.

2.6 Thirty-Party Data Validator

The third-party data validator will be responsible for reviewing the final data packages for analyzed samples and preparing a DUSR that will provide performance information with regard to accuracy, precision, sensitivity, representation, completeness, and comparability associated with the laboratory analyses for the investigation. The third-party data validator will be Lori Beyer of L.A.B. Validation Corporation of East Northrop, New York.

3.0 STANDARD OPERATING PROCEDURES

The following sections describe the Standard Operating Procedures (SOPs) for the monitoring activities included in the SMP. During these operations, safety monitoring will be performed as described in the HASP and CAMP, included as Appendices H and I of the SMP, respectively. SMP implementation will include quarterly groundwater monitoring and sampling (for the six months, then as needed) and soil vapor intrusion evaluation (SVIE) for the building (after completion of the building envelope and operation of the heating, ventilation, and air conditioning system).

3.1 Groundwater Monitoring Well Installation and Development

Groundwater monitoring wells will be installed to evaluate the groundwater quality beneath the Site. The following procedure should be followed for installation. The well locations and/or screen depths may be adjusted based on observations and data compiled during the necessary field activities. Details outlined below may be altered based on the preparation and submittal of a work plan submitted to NYSDEC and NYSDOH. This QAPP will be updated accordingly and included in the SMP.

All monitoring wells will be advanced using direct push probe, roto-sonic, or hollow stem auger technology. A target depth of approximately 10 feet below the water table will be used for monitoring wells. Groundwater beneath the Site is approximately 15 feet below ground surface (bgs); however, this may be susceptible to tidal influence from the nearby Gowanus Canal. Monitoring wells are anticipated be constructed with 15 feet of polyvinyl chloride (PVC) screen.

Morie sand will be backfilled around the screen zone of each new well to a depth of two feet above the screen. The annular space around the well riser will be sealed with bentonite extending one to two feet above the sand filter pack and completed with a non-shrinking cement mixture to approximately one foot below grade. The monitoring wells will be finished with a flush-mount access cover. The monitoring wells will be developed by agitating the well screen with a surge block and pumping out the sediment until below 50 nephelometric turbidity units, if practicable. The location/elevation of each new PVC well will be surveyed by a licensed surveyor and incorporated into the existing Site map.

3.2 Decontamination of Sampling Equipment

All sampling equipment (augers, drilling rods, split spoon samplers, probe rods, pumps, etc.) will be either dedicated or decontaminated between sampling locations. Decontamination will be conducted on plastic sheeting (or equivalent) that is bermed to prevent discharge to the ground. The decontamination procedure will be as follows:

- 1. Scrub using tap water/Simple Green[®] or Alconox mixture and bristle brush.
- 2. Rinse with tap water.
- 3. Scrub again with tap water/Simple Green[®] or Alconox mixture and bristle brush.
- 4. Rinse with tap water.
- 5. Rinse with distilled water.
- 6. Air-dry the equipment, if possible.

3.3 Heavy Equipment Decontamination

Decontamination of chemically contaminated heavy equipment (e.g., augers, rods, etc.) will be accomplished using high-pressure steam or dry decontamination with brushes and shovels.

Decontamination will take place on a decontamination pad and all liquids used in the decontamination procedure will be collected, stored, and disposed of in accordance with federal, state, and local regulations. Vehicles or equipment brought into an exclusion zone will be treated as contaminated and will be decontaminated prior to removal. Personnel performing this task will wear the proper personal protective equipment, as prescribed in the Site-specific HASP (see Appendix G of the SMP).

A decontamination area will be established around the planned work area, adjacent to the environmental enclosure. The floor of the decontamination area will be covered with 6-mil plastic sheeting, as necessary, and bermed to prevent spreading of decontamination fluids or potential discharge to the ground surface.

All equipment in direct contact with known or potentially contaminated material will be either dedicated or decontaminated prior to handling less contaminated material or removal from the Site.

3.4 Management of Investigation-Derived Waste

Investigation-Derived Waste (IDW) included will be containerized in New York State Department of Transportation-approved 55-gallon drums during the site management activities. The drums will be sealed at the end of each workday and labeled with the date, the boring location(s), the type of waste e.g., drill cuttings, excavated trenching material), and the name and phone number of an AKRF point-of-contact. All IDW collected into drums will be sampled and disposed of or treated according to applicable local, state, and federal regulations.

4.0 SAMPLING AND LABORATORY PROCEDURES

4.1 Soil Sampling (if necessary)

If required, soil sampling will be conducted using the following procedures:

- Characterize the sample according to the modified Burmister soil classification system.
- Field screen the sample for evidence of contamination (e.g., odors, staining,) using visual and olfactory methods and screen for volatile organic compounds (VOCs) using a photoionization detector (PID) equipped with a 10.6 electron volt (eV) lamp.
- Collect an aliquot of soil from each proposed sample location, place in laboratory-supplied glassware, label the sample in accordance with Section 4.7.2 of this QAPP, and place in an ice-filled cooler for shipment to the laboratory.
- Complete the proper chain of custody (COC) paperwork and seal the cooler.
- Record sample location, sample depth, and sample observations (evidence of contamination, PID readings, soil classification, etc.) in field logbook and boring log data sheet, if applicable.
- Decontaminate any soil sampling equipment between sample locations, as described in Section 3.2 of this QAPP.

4.2 Groundwater Sampling

Post-remedial groundwater sampling will be conducted at the frequency specified in the SMP in accordance with United States Environmental Protection Agency (EPA) low-flow methodology. Groundwater sampling will be generally conducted as follows:

- Remove the well plug and immediately measure the vapor concentrations in the well headspace with a PID calibrated to the manufacturer's specifications.
- Measure the depth to water and total well depth, and check for the presence of non-aqueous phase liquid (NAPL) using an oil-water interface probe. Measure the thickness of NAPL, if any, and record the result in the field book and well log. If present, collect a sample of NAPL using a disposable plastic weighted bailer or similar collection device. Groundwater samples will not be collected from wells containing measurable NAPL.
- Connect dedicated tubing to either a submersible or bladder pump and lower the pump such that the intake of the pump is set at the midpoint of the water column within the screened interval of the well. In accordance with the NYSDEC-issued April 2023 Sampling, Analysis, and Assessment of per- and polyfluoroalkyl substances (PFAS), low-density polyethylene (LDPE) sampling bladders will be used when sampling for PFAS. Connect the discharge end of the tubing to the flow-through cell of a Horiba Quanta multi-parameter (or equivalent) meter. Connect tubing to the output of the cell and place the discharge end of the tubing in a five-gallon bucket.
- Activate the pump at the lowest flow rate setting of the pump.
- Measure the depth to water within the well. The pump flow rate may be increased such that the water level measurements do not change by more than 0.3 foot as compared to the initial static reading. The well-purging rate should be adjusted so as to produce a smooth, constant (laminar) flow rate and so as not to produce excessive turbulence in the well. The expected targeted purge rate will be approximately 0.5 liter and will be no greater than 3.8 liters per minute.

- Transfer discharged water from the 5-gallon buckets to 55-gallon drums designated for wellpurge water.
- During purging, collect periodic samples and analyze for water quality indicators (e.g., turbidity, pH, temperature, dissolved oxygen, reduction-oxidation potential, and specific conductivity) with measurements collected approximately every five minutes.
- Continue purging the well until turbidity is less than 50 nephelometric turbidity units (NTUs) and water quality indicators have stabilized to the extent practicable. The criteria for stabilization will be three successive readings for the following parameters and criteria:
 - Dissolved Oxygen +/- 0.3 milligram per Liter (mg/L)
 - Turbidity <50 NTUs
 - Oxidation/Reduction Potential (ORP)/Eh +/- 10 millivolts (mV)
 - Specific Conductance +/- 3% millisievert per centimeter (mS/cm)
 - \circ pH +/- 0.1 pH units

If the water quality parameters do not stabilize and/or turbidity is greater than 50 NTUs within two hours, purging may be discontinued. Efforts to stabilize the water quality for the well must be recorded in the field book, and samples may then be collected as described herein.

After purging, disconnect the tubing to the inlet of the flow-through cell. Collect groundwater samples directly from the discharge end of the tubing and place them into the required sample containers. Label the containers as described in Section 4.7.2 of this QAPP and place them in an ice-filled cooler for shipment to the laboratory. Groundwater samples will be analyzed for VOCs by EPA Method 624.

Collect one final field sample and analyze for turbidity and water quality parameters (pH, temperature, dissolved oxygen, reduction-oxidation potential, and specific conductivity).

Record all measurements (depth to water, depth to NAPL, water quality parameters, turbidity), calculations (well volume), and observations in the project logbook and field data sheet, if applicable.

Once sampling is complete, remove the pump and tubing from the well. Dispose of the dedicated equipment and decontaminate reusable equipment, as described in Section 3.2. The purge water will be managed as described in Section 3.4 of this QAPP.

Sample collection for the emerging contaminants 1,4-dioxane and/or PFAS is not anticipated. If required, samples will be collected and handled in accordance with the NYSDEC-issued Sampling, Analysis, and Assessment of PFAS, dated April 2023.

A figure illustrating the SMP groundwater sampling locations is provided on Figure 4 of the SMP.

4.3 Indoor Air Sampling

Indoor air sampling, required as part of the SVIE, will be conducted using Summa canisters with 24-hour flow regulators. Samples will be collected using the following procedures:

Sample Set-up

- 1. Conduct a pre-sampling inspection and record chemical inventory of the Site building.
- 2. Install flexible hose to a Gilian GilAir plus (or equivalent) sampling pump and connect the Teflon sample tubing to the hose. Connect the other end (discharge end) of the flexible tubing

to a 1-liter Tedlar bag. Purge the soil gas sampler of approximately three sampler volumes by activating the pump to fill the Tedlar bag to near capacity. The air withdrawal flow rate shall be 0.2 liter/minute or less.

- 3. The Tedlar bag will be analyzed in the field using a PID calibrated to the manufacturer's specifications to check for levels of VOC) in the sub-slab soil vapor.
- 4. Disconnect the sample tubing from the Gilian GilAir plus (or equivalent) pump and connect it to the inlet of a labeled 6-liter Summa canister.
- 5. Repeat procedure for all sampling locations.

Sample Collection

- 1. After Summa canisters are set up at all of the sampling locations, record the vacuum reading from the vacuum gauge on the canister at the beginning of the 24-hour sampling period. Open the valve of the canister and record the time in the field book. In addition, place labeled Summa canisters at the breathing zone level (minimum of 3- to 5-feet above the ground floor) for collection of samples over a 24-hour period.
- 2. At the end of the 24-hour sampling period, close the valve, remove the flow-rate controllers and vacuum gauges, install caps on canisters, and record the time at the end of the sampling period.
- 3. Place the sample canisters in shipping containers for transportation to laboratory.
- 4. Repeat procedure for all sampling locations.

4.4 Laboratory Methods

Table 1 summarizes the laboratory methods that will be used to analyze field samples and the sample container type, preservation, and applicable holding times. Other analytes may be added if required by the disposal facility. An NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory will be used for all chemical analyses in accordance with DER-10 2.1(b) and 2.1(f), including the NYSDEC July 2005 Analytical Services Protocol (ASP) Category B Deliverables.

Matrix	Analysis	EPA Method	Bottle Type	Preservative	Hold Time	
	VOCs	8260C	EnCore [®] samplers (3) and 2 oz. plastic jar	≤6 °C	48 hours to extract; 14 days to analyze	
	Semivolatile Organic Compounds (SVOCs)	8270D	8 oz. Glass Jar	≤ 6 °C	14 days to extract; 40 days to analyze	
Soil and Soil QA/QC (if necessary)	Total Analyte List (TAL) Metals, and Hexavalent Chromium6000/7000 Series, 6010C, and 7196A		8 oz. Glass Jar	≤ 6 °C	6 months holding time; Mercury 28 days holding time; Hexavalent chromium 30 days to extract, 7 days to analyze	
	Pesticides	8081B	8 oz. Glass Jar	≤ 6 °C	14 days to extract; 40 days to analyze	
	Polychlorinated Biphenyls (PCBs)	8082A	8 oz. Glass Jar	≤6 °C	14 days to extract; 40 days to analyze	
	PFAS	1633	4 oz. HDPE Plastic Container	4 °C (+/- 2 °C)	14 days to extract; 40 days to analyze	
	VOCs	8260C	5 40 mL Glass Vials	HCl to pH < 2 and $\leq 6 ^{\circ}\text{C}$	48 hours to extract; 14 days to analyze	
	SVOCs 8270D 2,000 mL Amber Jar		$\leq 6 \ ^{\circ}C$	7 days to extract; 40 days to analyze		
Groundwater and Groundwater QA/QC (if maccompt)	TAL Metals	6000/7000 Series	2,000 mL Amber Jar	HNO ₃ to pH < 2	6 months for metals; 28 days for mercury; 24 hours for hexavalent chromium	
(if necessary)	Pesticides	8081B	2,000 mL Amber Jar	≤ 6 °C	7 days to extract; 40 days to analyze	
	PCBs 8082A 2,000 mL Amber Jar		≤ 6 °C	7 days to extract; 40 days to analyze		
Soil Vapor, Indoor Air, and Ambient Air (if necessary)	VOCs	TO-15	6 L SUMMA® Canister, Tedlar Bags	None	14 days	

 Table 1

 Laboratory Analytical Methods for Analysis Groups

Notes:

oz. – ounce

mL-milliliter

°C – degrees Celsius

HCL - hydrochloric acid

HNO₃-nitric acid

ng/L - parts per trillion

4.5 Quality Control Sampling

In addition to the laboratory analysis of the groundwater samples, additional analysis will be included for QC measures, as required by the Category B sampling techniques. These samples will include field blank, trip blank, matrix spike/matrix spike duplicate (MS/MSD), and blind duplicate

samples at a frequency of one sample per 20 field samples collected. QC samples will be analyzed for the same parameters as the accompanying samples, with the exception of any trip blanks, which will be analyzed for the VOC list only. Table 2 provides a summary of the field samples and QA/QC samples to be analyzed by the laboratory.

			Field	QC Samples			
Sample Type	Parameters	EPA Method ¹	Samples	Duplicate ²	MS/MSD ²	Field Blank ²	Trip Blank ³
	VOCs	8260C	TBD	1/20 (TBD)	1/20 (TBD)	1/20 (TBD)	1 (Laboratory- Supplied)
Soil (if necessary)	SVOCs, TAL Metals, Mercury, PCBs, Pesticides, and PFAS	8270D, 6010C/7471B, 8082A, 8081B, and 1633	TBD	1/20 (TBD)	1/20 (TBD)	1/20 (TBD)	NA
Groundwater	VOCs	8260C	TBD	1/20 (TBD)	1/20 (TBD)	1/20 (TBD)	1/20 (TBD)
Sub-Slab Soil Vapor (if necessary)	VOCs	TO-15	TBD	NA	NA	NA	NA
Indoor/ Ambient Air	VOCs	TO-15	TBD	NA	NA	NA	NA

Table 2Field Sample and QC Sample Quantities

Notes:

TBD – To be determined (based on planned work activities)

NA – Not Applicable

¹– NYSDEC July 2005 ASP Category B deliverables

² – One duplicate, MS/MSD, and field blank per 20 field samples or shipment

³ – One trip blank per 20 field samples or shipment with VOC analyses

4.6 Sample Handling

4.6.1 Sample Identification

All samples will be consistently identified in all field documentation, COC documents, and laboratory reports. All samples will be amended with the collection date at the end of the sample name in a year, month, day (YYYYMMDD) format. Blind duplicate sample nomenclature will consist of the sample type, followed by an "X"; MS/MSD sample nomenclature will consist of the parent sample name only but triplicate sample volume will be collected and the COC comment section will explain that the additional volume is for running the MS/MSD; and trip and field blanks will consist of "TB-" and "FB-", respectively, followed by a sequential number of the trip/field blanks collected within the SDG and the matrix (soil or groundwater). In accordance with NYSDEC Environmental Quality Information System (EQuISTM) protocol, special characters will not be used for sample nomenclature and sample IDs below 10 will be amended with a "0". Sample nomenclature examples are provided in Table 3.

Sample Description	Sample Designation
Groundwater sample collected from a monitoring well on June 1, 2025	MW-01_20250601
Indoor air sample collected from the cellar of the building on June 1, 2025	IA-01_20250601
Ambient air sample collected from the exterior of the building on June 1, 2025	AA-01_20250601

Table 3Examples of Sample Nomenclature

4.6.2 Sample Labeling and Shipping

All sample containers will be provided with labels containing the following information:

- Project identification, including Site name, BCP Site number, Site address
- Sample identification;
- Date and time of collection;
- Analysis(es) to be performed;
- Sample preservative, if any; and
- Sampler's initials.

Once the samples are collected and labeled, they will be placed in chilled coolers (except for sub-slab soil vapor or indoor air samples) and stored in a cool area away from direct sunlight to await shipment to the laboratory. All samples will be shipped to the laboratory at least twice per week. At the start and end of each workday, field personnel will add ice to the cooler(s) as needed.

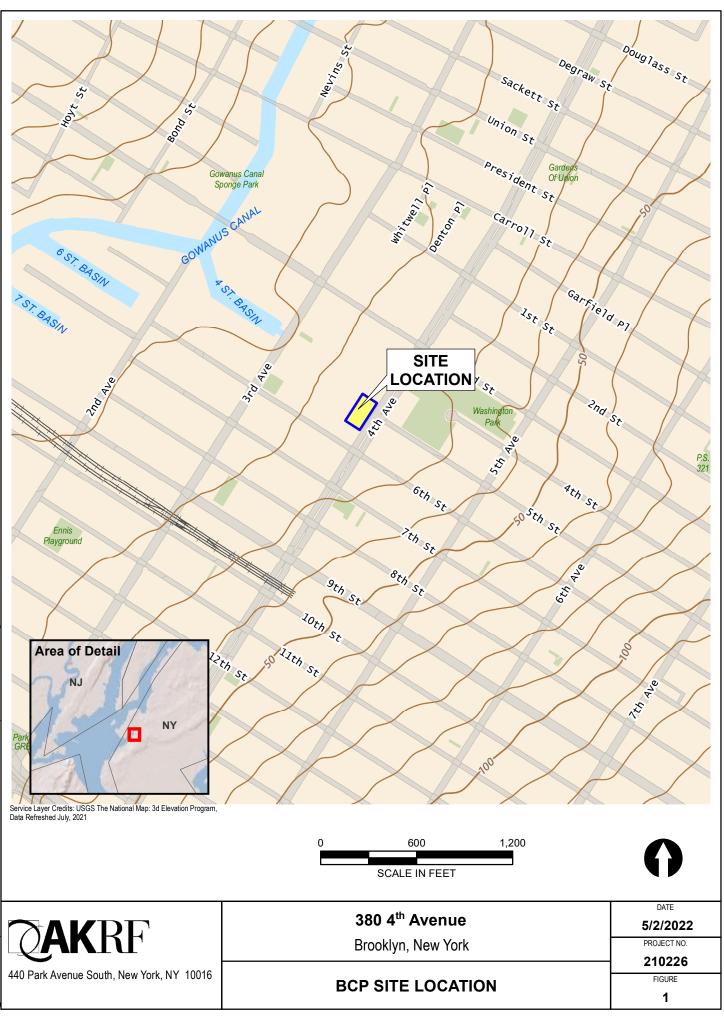
The samples will be prepared for shipment by placing each sample in laboratory-supplied glassware, then wrapping each container in bubble wrap to prevent breakage, and adding freezer packs and/or fresh ice in sealable plastic bags. The COC form will be properly completed by the sampler in ink, and all sample shipment transactions will be documented with signatures, and the date and time of custody transfer. Samples will be shipped overnight (e.g., Federal Express) or transported by a laboratory courier. All coolers shipped to the laboratory will be sealed with mailing tape and a COC seal to ensure that the samples remain under strict COC protocol.

4.6.3 Sample Custody

Field personnel will be responsible for maintaining the sample coolers in a secured location until they are picked up and/or sent to the laboratory. The record of possession of samples from the time they are obtained in the field to the time they are delivered to the laboratory or shipped off-site will be documented on COC forms. The COC forms will contain the following information: project name; names of sampling personnel; sample number; date and time of collection and matrix; and signatures of individuals involved in sample transfer, and the dates and times of transfers. Laboratory personnel will note the condition of the custody seal and sample containers at sample check-in.

4.7 Field Instrumentation

Field personnel will be trained in the proper operation of all field instruments at the start of the field program. Instruction manuals for the equipment will be on file at the Site for referencing proper operation, maintenance, and calibration procedures. The equipment will be calibrated according to manufacturer specifications at the start of each day of fieldwork. If an instrument fails calibration, the project manager or QA/QC Officer will be contacted immediately to obtain a replacement instrument. A calibration log will be maintained to record the date of each calibration, any failure to calibrate and corrective actions taken. The PID will be equipped with a 10.6 eV lamp and will be calibrated each day using 100 parts per million (ppm) isobutylene standard gas in accordance with the manufacturer's standards.


4.8 Quality Assurance

All soil and groundwater laboratory analytical data will be reviewed by a third-party validator and a Data Usability Summary Report (DUSR) will be prepared to document the usability and validity of the data. The objective of the third-party validator is to provide an unbiased review to confirm that the laboratory followed all method and reporting requirements, and to provide a basis for making decisions about the minimum quality of environmental data that is sufficient to support risk assessment remedial performance decisions. The quarterly reports will include a detailed description of sampling activities, data summary tables, concentration map showing sample locations and concentrations, DUSR, and laboratory reports.

4.9 **Reporting of Data**

All data generated during the monitoring activities will be submitted in the appropriate EQuISTM EDD format.

FIGURES

ATTACHMENT A

RESUMES OF REMEDIAL ENGINEER, QA/QC OFFICER, PROJECT MANAGER, AND FIELD TEAM LEADERS

SENIOR VICE PRESIDENT

Michelle Lapin, PE is a Senior Vice President with experience in the assessment and remediation of hazardous waste issues. She leads the firm's Hazardous Materials group and offers extensive experience providing strategic planning and management for clients. Michelle has been responsible for the administration of technical solutions to contaminated soil, groundwater, air and geotechnical problems. Her other duties have included technical and report review, proposal writing, scheduling, budgeting, and acting as liaison between clients and regulatory agencies, and project coordination with federal, state, and local authorities.

Michelle's hydrogeologic experience includes groundwater investigations, formulation and administration of groundwater monitoring programs and remediation throughout the Northeast. Her experience with groundwater contamination includes Level B hazardous waste site investigations; leaking underground storage tank studies, including hazardous soil removal and disposal and associated soil and water issues; soil gas/vapor intrusion surveys; and wetlands issues. Michelle is experienced in coordinating and monitoring field programs concerning hazardous waste cell closures. She has directed hundreds of Phase I, Phase II, and Phase III investigations and remediations, many of them in conjunction with developers, law firms, lending institutions, and national retail chains. Michelle is also experienced in the cleanup of contaminated properties under Brownfield Cleanup Program (BCP) and Voluntary Cleanup Program (VCP) regulations.

BACKGROUND

Education

MS, Syracuse University, Civil Engineering, 1985 BS, Clarkson University, Civil Engineering, 1983

Licenses/Certifications

Professional Engineer, CT - PEN.0018603 Professional Engineer, NY - 16 073934 OSHA 40 Hour HAZWOPER OSHA 8 Hour Refresher,

Professional Memberships

Member, National Society of Professional Engineers Member, American Society of Civil Engineers Member; Council Member, Connecticut Business & Industry Association, Environmental Policies Council Board Member, New York City Brownfield Partnership,

Years of Experience

36 years in the industry 28 years with AKRF

RELEVANT EXPERIENCE

YMCA of Greater New York, Northeast Bronx YMCA, Bronx, NY

AKRF was retained by YMCA of Greater New York to assist the YMCA of Greater New York in its response to a request for proposals by the Economic Development Corporation for the development of a site in the Edenwald section of the Bronx into a community center. AKRF provided site assessment and remediation services and site-civil engineering due diligence services on the site. The YMCA was successful in winning the development rights, and AKRF prepared an Environmental Assessment for the site. AKRF continued assisting the YMCA in their development with site assessment and remediation services and geotechnical services for the new development at 1250 East 229th Street in

SENIOR VICE PRESIDENT

the Bronx for the construction of the two-story, 30,000-square foot building. Michelle Lapin is leading the efforts for the Site Assessment and Remediation services, which includes a Remedial Action Plan and Construction Health and Safety Plan, field monitoring and subsequent Closure Report submitted to the New York City Department of Environmental Protection.

Atlantic Chestnut, Brooklyn, NY

AKRF was retained by Phipps Houses to provide environmental consulting services in connection with the purchase and development of former burned manufacturing buildings encompassing an entire city block in Brooklyn, New York. As part of due diligence, AKRF prepared a Phase I Environmental Site Assessment (ESA) Report for the property. After acquisition, the property was divided into three separate sites (3264 Fulton Street, 235 Chestnut Street, and 3301 Atlantic Avenue). AKRF prepared a Subsurface (Phase II) Investigation Work Plans and conducted Phase IIs at each of the sites, which included the collection and analysis of soil, soil vapor, and groundwater samples. Based on the results of the Phase IIs, documented in Subsurface (Phase II) Reports, New York State Brownfield Cleanup Program (NYSBCP) applications were prepared for each of the sites. After acceptance into the NYSBCP, AKRF prepared Citizen Participation Plans (CPPs) and distributed public notices. AKRF prepared Remedial Investigation (RI) Work Plans (RIWPs) for each of the sites to further investigate contaminated media prior to redevelopment, conducted the RIs, and is in the process of preparing the RI Reports (RIRs). Michelle Lapin is the Remedial Engineer for the project and oversees all remedial activities.

West 61st Street Rezoning/Residential Development, New York, NY

Michelle Lapin directed the firm's hazardous materials work for this mixed-use development in Manhattan. The Algin Management Company hired AKRF to prepare an environmental impact statement (EIS) for the proposed rezoning of the western portion of the block between West 60th and 61st Streets, between Amsterdam and West End Avenues. The purpose of the proposed action was to facilitate the development of two 30-story residential towers with accessory parking spaces, and landscaped open space. The EIS examined a "worst case" condition for rezoning the block, which allowed Algin to build a residential building of approximately 375,000 square feet at their site. The building now contains 475 apartments, 200 accessory parking spaces, a health club, and community facility space. This site, with the services of AKRF, entered into New York State's Brownfield Cleanup Program (BCP). On-site issues included underground storage tanks remaining from previous on-site buildings, petroleum contamination from these tanks and possibly from off-site sources, and other soil contaminants (metals, semi-volatile organic compounds, etc.) from fill materials and previous onsite buildings. AKRF oversaw the adherence to the Construction Health and Safety Plan (HASP), which was submitted to and approved by the New York State Department of Environmental Conservation (NYSDEC), and monitored the waste streams, to ensure that the different types of waste were disposed of at the correct receiving facilities. This oversight also included confirmation and characteristic soil sampling for the receiving facilities and NYSDEC. A "Track 1" Clean up of the majority of the property (the portion including the buildings) was completed and the final Engineering Report was approved by the NYSDEC. AKRF has also completed a smaller portion of the property as a "Track 4" cleanup, which includes a tennis court and landscaped areas. Ms. Lapin continues to manage the annual inspections for the property owner in accordance with the Brownfield Cleanup Agreement.

2477 Third Avenue, Bronx, NY

AKRF conducted the investigation and remediation of the former 2477 Third Avenue gasoline station property under the New York State Department of Environmental Conservation's (NYSDEC's) Brownfield Cleanup Program (BCP). The work included shallow and deep aquifer groundwater testing, delineation of known areas of soil contamination, soil vapor analyses, and investigation and delineation of non-aqueous phase liquid (DNAPL) from past industrial activities. Upon NYSDEC approval of the Remedial Action Work Plan (RAWP), AKRF conducted the removal of the nine on-

SENIOR VICE PRESIDENT

site underground storage tanks (USTs) and 1,100 tons of petroleum-contaminated soil, the application of six in-situ chemical oxidation (ISCO) groundwater treatments, and the implementation of four Enhanced Fluid Recovery (EFR) events to remove desorbed gasoline-related hydrocarbons in the groundwater. The site received a Certificate of Completion (COC) from the BCP and a Notice of Satisfaction (NOS) from the Mayor's Office of Environmental Remediation (OER) in connection with the hazardous materials E-Designation assigned to the property. Michelle Lapin was the professional engineer of record, responsible for the remediation design elements and overall adherence to the NYSDEC and New York City Office of Environmental Remediation (OER) regulations and continues to manage the required inspections and reporting for the property owner in accordance with the Brownfield Cleanup Agreement.

443 Greenwich Street, Manhattan, NY

This Site was assigned an E-Designation for hazardous materials (and air quality and noise) during the North Tribeca Rezoning in 2010, which requires environmental testing and, if necessary, remediation to the satisfaction of the New York City Mayor's Office of Environmental Remediation (OER). After years of public opposition to the original redevelopment scheme calling for a boutique hotel, this former manufacturing building and its current developer gained acceptance through the Department of City Planning and the Landmarks Preservation Commission to move forward with redevelopment as residential lofts. The redevelopment process began in 2012 and led to initial re-occupancy in 2016 after overcoming several regulatory challenges while seeking LEED[®] certification.

Once trichloroethene (TCE) was identified on-site, the typically straight forward assignment of delineating contaminant sources for AKRF became much more complex following the identification of an off-site TCE groundwater plume. Based on the completion of several rounds of additional sampling and investigation activities including a compound specific isotopic analysis (CSIA) of the chlorinated volatile organic compounds (VOCs) detected in the central portion of the Site and the off-site monitor wells south of the Site, the presence of two separate releases (one originating on-site and one originating off-site) of TCE was confirmed. Based on the confirmation that the Site was not the contamination source associated with the off-site plume, the redevelopment of the Site proceeded under the review of the OER, and did not require direct or continued oversight from the New York State Department of Environmental Conservation (NYSDEC). Furthermore, the developer of the Site, who had become the owner, was not deemed responsible to complete additional off-site investigation or remediation associated with the separate, off-site TCE groundwater plume. For this project, AKRF utilized forensic-based analysis of chlorinated VOC plumes and was one of the first projects that included a groundwater treatment technology managed by the OER in its E-Designation program. The Site also includes an engineered cap to prevent exposure to underlying soil/fill, a vapor barrier/waterproofing system beneath the building slab and along foundation sidewalls, and the operation of an active sub-slab depressurization (SSD) system. The project was awarded the 2017 Environmental Protection award by the New York City Brownfield Partnership. Michelle Lapin was the professional engineer of record, responsible for the remediation design and adherence of the remediation and remediation systems installation and ongoing operation.

Larkin Plaza, Yonkers, NY - Remedial Investigation, Construction Oversight

AKRF assisted RXR Realty with enrolling the 1.1-acre Larkin Plaza site in the New York State Department of Environmental Conservation's (NYSDEC's) Brownfield Cleanup Program (BCP). Since being accepted into the program, AKRF conducted an extensive remedial investigation, prepared the necessary remedial action plans, managed the citizen participation tasks, and is in the process of conducting the remediation in conjunction with NYSDEC oversight. To date, the remedial work has included in-situ chemical oxidation (ISCO) treatments, contaminated soil removal, and petroleum product recovery. AKRF also assisted RXR with various construction-related services, including dewatering discharge permitting, soil disposal characterization testing, and stormwater pollution prevention plan (SWPPP) preparation. AKRF's Cultural Resources department is in the process of preparing a submission to the State Historic Preservation Office (SHPO) on behalf of RXR related to the acquisition of additional public funding sources.

SENIOR VICE PRESIDENT

Michelle Lapin is the professional engineer of record, responsible for the remediation design elements and adherence to the NYSDEC-approved work plans and remediation design.

Memorial Sloan Kettering Cancer Center-CUNY 74th Street EIS, New York, NY

AKRF was engaged by Memorial Sloan-Kettering Cancer Center (MSK) to prepare an EIS for a proposed joint facility located on a New York City-owned parcel located between East 73rd Street and East 74th Street adjacent to the FDR Drive in Manhattan. The property, formerly occupied by the Department of Sanitation with over 41 underground storage tanks, now includes an ambulatory medical care center for MSK.

Michelle Lapin led the site assessment and remediation work, which included the preparation of the Phase I and II environmental site assessments, remedial action work plans (RAWPs), and construction health and safety plans (CHASPs) for submission to the New York City Office of Environmental Remediation (OER) for the Voluntary Cleanup Program (VCP) and to the New York State Department of Environmental Conservation (NYSDEC) for remediation of a petroleum spill. The RAWPs and CHASPs included provisions for excavation of contaminated soil and rock, removal of tanks and environmental monitoring during the construction activities. AKRF also performed a predemolition asbestos survey of the Department of Sanitation's remaining concrete foundation structures and prepared specifications for asbestos abatement, soil management and underground storage tank removal and disposal.

The remediation was completed in compliance with the OER-approved RAWP and the spill was closed by the NYSDEC. The project received a Notice of Satisfaction from the OER.

SENIOR VICE PRESIDENT- SITE ASSESSMENT AND REMEDIATION

Stephen Malinowski is a Senior Vice President with more than 25 years of professional experience in assessment, investigation, and remediation of environmental contamination-related issues. Steve has managed all aspects of environmental projects with multi-disciplinary teams, including public agencies, developers, property owners, architects, and construction managers to navigate regulatory programs efficiently and achieve project objectives. His projects fall under the regulatory oversight of the USEPA, NYSDEC, NYCDEP and NYCOER including the Federal and New York State Superfund, New York State Brownfield Cleanup Program (BCP) and petroleum spills, RCRA/IUC closures, New York City Voluntary Cleanup Program (VCP) and E-Designation program, and Nassau and Suffolk County regulatory programs. His proficiency in the development of custom scopes of work and accurate cost estimates coupled with his field-experience, knowledge of regulations, and excellent rapport with regulatory personnel allow him to provide turnkey environmental consulting for remediation, development, infrastructure improvement, and coastal resiliency projects.

Mr. Malinowski's experience includes the design, implementation, and management of environmental assessment, investigation and remediation projects in the New York Metropolitan Area and across Long Island. These projects have involved soil, soil vapor and groundwater investigation, monitoring, and sampling programs, Brownfield and hazardous waste site investigations, and underground storage tank studies, including soil contamination delineation, classification, waste removal and disposal. He has overseen and conducted hundreds of Phase I Environmental Site Assessments (ESAs) and Phase II investigations in a variety of environmental settings, ranging from industrial sites to sites in challenging urban areas, many of them in conjunction with site redevelopment and property transaction-related activities. In addition, he has designed and implemented indoor air and soil vapor intrusion surveys at industrial, commercial and residential properties in accordance with NYSDOH protocols, some requiring sub-slab depressurization systems.

BACKGROUND

Education

B.A., Environmental Science, State University of New York at Plattsburgh

Licenses/Certifications

Qualified Environmental Professional from the Institute of Professional Environmental Practice (IPEP) New York State Professional Geologist #000422 Certified Brownfield Professional by New York City Office of Environmental Remediation Health and Safety Operations at Hazardous Materials Sites 29 CFR 1910.120 OSHA 10 Hour Occupational Construction Safety and Health

Professional Memberships

Member, Long Island Association of Professional Geologists (LIAPG) Member, Institute of Professional Environmental Practice (IPEP)

Awards

Big Apple Brownfield Award recipient as part of the 4697 Third Avenue redevelopment team 2021 Big Apple Brownfield Award recipient as part of the Front and York redevelopment team 2020 Big Apple Brownfield Award recipient as part of the Third Avenue redevelopment team 2018 Big Apple Brownfield Award recipient as part of the Flushing Commons redevelopment team 2017 Big Apple Brownfield Award recipient as part of the Jamaica 94th Avenue redevelopment team 2017

SENIOR VICE PRESIDENT p. 2

Big Apple Brownfield Award recipient as part of the Cornerstone B1 (LaTerraza) redevelopment team 2011

Years of Experience

28 years in the industry 8 years with AKRF

RELEVANT EXPERIENCE

J2 147-07 94th Avenue LLC, Queens, NY

This historical meat refrigeration facility is enrolled in the Brownfield Cleanup Program to remediate the property and construct a 23-story affordable residential building. Although the site has an E-Designation for hazardous materials, noise, and air quality, AKRF assisted with applying for entry into the NYSDEC Brownfield Cleanup Program, due to the presence of contaminated soil and soil vapor beneath the site.

Mr. Malinowski directed all Phases of this NYS Brownfield Cleanup Program (BCP) project located within the Jamaica Brownfield Opportunity Area. Mr. Malinowski has been responsible for overseeing the implementation of a Phase I Environmental Site Assessment and asbestos survey of this former industrial property adjacent to the Long Island Rail Road tracks. Since the site had an E-Designation for hazardous materials, noise and air quality, Mr. Malinowski coordinated with the New York City Office of Environmental Remediation (NYCOER) to ensure that all technical deliverables would also satisfy NYCOER's predevelopment requirements in order to obtain a Notice to Proceed from the NYC Department of Buildings. In doing so, he designed a scope of work for the Remedial Investigation that would satisfy both OER and the NYSDEC BCP.

Upon the receipt of results indicating the presence of contaminated soil and soil vapor beneath the site, the client decided to apply for the NYS BCP. Mr. Malinowski was responsible for preparation and submission of a BCP Application simultaneously with the Remedial Investigation Report and a Remedial Action Work Plan (RAWP) to expedite the approval process and enable implementation of the remediation concurrently with construction. Mr. Malinowski prepared a remedial estimate for the activities required by the RAWP, allowing the client to obtain financing for construction. Mr. Malinowski designed a testing program to pre-characterize approximately 15,000 cubic yards of soil underlying the existing building for disposal during the remedial excavation. The disposal testing identified a hotspot containing hazardous levels of lead, which Mr. Malinowski coordinated with the EPA to remediate at the onset of construction. The remedial excavation was completed during the height of the COVID outbreak with Mr. Malinowski's team providing environmental oversight, community air monitoring with NYSDEC. Upon completion of the work, Mr. Malinowski prepared a Final Engineering report and the Client received a Certificate of Completion from NYSDEC in 2020. A Notice of Satisfaction is anticipated from NYCOER after installation of the windows and façade are complete.

Front and York at 85 Jay Street, Brooklyn, NY

AKRF provided environmental consulting services for Front and York at 85 Jay Street in Brooklyn, a Brownfield redevelopment project bringing 728 apartments and 150,000 square feet of amenities to the neighborhood. Mr. Malinowski was responsible for preparation and implementation of a NYSDEC-approved Remedial Action Work Plan for this approximately three-acre former industrial site that encompasses an entire city-block. The remediation was conducted under the NYSDEC Brownfield Cleanup Program, primarily due to high levels of lead associated with former smelting operations. His responsibilities included overseeing an in-situ soil pre-characterization testing program to obtain pre-approval from the disposal of approximately 170,000 cubic yards of soil during the foundation excavation. Stephen assisted with the review and procurement of bids for the off-site transport and disposal of multiple soil waste streams. As part of the approval process, he oversaw extensive testing to delineate the extent of lead and other hot spot areas of contamination.

SENIOR VICE PRESIDENT p. 3

Mr. Malinowski was responsible for preparation and implementation of a NYSDEC-approved Remedial Action Work Plan for this approximately three-acre former industrial site that encompasses an entire city-block. The remediation is being conducted under the NYSDEC Brownfield Cleanup Program, primarily due to high levels of lead associated with former smelting operations. His responsibilities included overseeing an in-situ soil pre-characterization testing program to obtain pre-approval from the disposal of approximately 170,000 cubic yards of soil during the foundation excavation. As part of the approval process, Mr. Malinowski oversaw extensive testing to delineate the extent of lead and other hot spot areas of contamination.

The testing program included the development of a bench-scale study to condition the lead in-situ with a patented product to reduce its leachability from the soil and lower disposal costs. Based on the results of the bench tests, a Soil Stabilization Plan detailing an in-situ pilot study followed by wide-scale implementation was prepared and approved by NYSDEC. Upon receipt of the pilot test results, the soil conditioning program was approved for implementation for 40,000 tons of lead contaminated material. Mr. Malinowski assisted with the review and procurement of bids for the off-site transport and disposal of multiple soil waste streams and oversaw a soil conditioning program, the excavation monitoring with community and work-zone air monitoring, and the daily and monthly reporting obligation to NYSDEC. Mr. Malinowski was responsible for preparation of the Final Engineering Report (FER). The FER was approved by NYSDEC and the project received a certificate of completion in December 2019 for a Track I cleanup.

Alvista Towers (94-02 148th Street), Jamaica, NY

Mr. Malinowski was responsible for directing the assessment and preconstruction investigation activities for a former industrial property with an E-Designation for Hazardous Materials and Noise located within the Jamaica Brownfield Opportunity Area (BOA). Mr. Malinowski was responsible for designing the scope of the Remedial Investigation to satisfy the hazardous materials E-Designation, as well as for coordinating the pre-demolition asbestos survey and the noise survey to obtain the Notice to Proceed from the New York City Mayor's Office of Environmental Remediation's (NYCOER).

The Remedial Investigation revealed the presence of contaminated soil and soil vapor beneath the site, and the developer entered the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) through NYCOER's JumpStart program. The remediation consisted of soil excavation and the removal of seven underground storage tanks. The site achieved an unrestricted use Track 2 cleanup and was the first project to receive a Certificate of Completion under the post-2015 amendment BCP.

Elton Crossing - Melrose Commons North Site C, Bronx, NY

AKRF provided environmental consulting services in connection with the purchase and redevelopment of the Elton Crossing site at 899 Elton Avenue in the Bronx, NY. The work initially involved the preparation of a Phase II subsurface investigation including soil and soil vapor testing to determine if the site would be eligible for the New York State Brownfield Cleanup Program (NYSBCP). Upon completion of the investigation, AKRF prepared a NYCBCP Application and the site was accepted into the NYSBCP. AKRF managed all aspects of the brownfield cleanup including; development of Investigation Work Plans, performing Remedial Investigations and Reports, preparation of Phase I ESAs, preparation of a Citizen Participation Plan, distribution of public notices, preparation and implementation of a Remedial Action Work Plan (RAWP), design of a sub-slab depressurization system, preparation of the Final Engineering Report and Site Management Plan, and sampling and management of soil disposal. AKRF is in the midst of implementing the Site Management Plan.

Mr. Malinowski was responsible for overseeing the implementation of the NYSDEC-approved Remedial Action Work Plan for this former industrial property. His responsibilities included the in-situ testing of all site soil to obtain pre-approval from facilities for 15,000 tons of soil disposal during the foundation excavation. Mr. Malinowski secured approval and procured bids for the off-site transport and disposal for six different

SENIOR VICE PRESIDENT p. 4

classifications of soil. During excavation, Mr. Malinowski coordinated the transport and disposal of excavated material with the foundation contractor, while on-site personnel working under his direction managed the excavation and manifests for each truckload leaving the site. Mr. Malinowski was the regulatory and technical lead for the remediation, which involved providing guidance for the closure of two petroleum spills; the registration, removal, and closure of five petroleum storage tanks encountered during excavation; and the delineation of soil contaminants, including hazardous lead, petroleum, and pesticides. His efforts prior to construction and his strong communication skills allowed the foundation excavation to advance with minimal delays from environmental matters.

Additionally, Mr. Malinowski oversaw the implementation of the Community Air Monitoring Program (CAMP) during soil excavation activities and developed a soil-testing program that allowed the client to reuse certain material on-site, avoiding delays and soil import fees. The site was remediated to achieve Track 4 site-specific cleanup criteria and received a Certificate of Completion in 2016.

5 Manhattan West (450 West 33rd Street), New York, NY

AKRF is providing environmental consulting services to Brookfield Office Properties in connection with the Manhattan West development site, which encompasses an entire city-block above the Amtrak approach to Penn Station. The four towers that comprise the Manhattan west development site are being remediated as four different sites under the New York City Mayor's Office of Environmental Remediation (OER), due to an E-Designation for hazardous materials, air quality, and noise attenuation. 5 Manhattan West is a 15-story, 1.7-million-square-foot office tower.

Mr. Malinowski oversaw the preparation of Remedial Investigation work plans and the initiation and reporting of the Remedial Investigations (RIs). Each RI included soil, groundwater, and soil vapor sampling to identify potential contamination. Based on the results of each RI, Mr. Malinowski oversaw the preparation of a site-specific Remedial Action Work Plan (RAWP) for building foundation elements located within a subterranean railroad and active Amtrak rail lines. The RAWP included site-wide soil excavation, the removal of underground oil tanks, and the installation of a vapor barrier beneath the entire building. Due to the presence of PCBs, the subterranean work was conducted under a Self-Implementing Cleanup Plan prepared by AKRF and approved by the USEPA. Upon approval of the remedial plans, Mr. Malinowski oversaw the remediation activities to ensure compliance with the OER RAPs. Mr. Malinowski also designed and conducted an extensive in-situ testing of soil to pre-classify the material for disposal. He continues to work with the USEPA as the foundation for the Southeast Tower is completed. Mr. Malinowski managed all aspects of the work required for the OER E-Designation at the Southwest Tower site to achieve a Notice of Satisfaction (NOS), and is currently managing the OER-related work for the Northwest and Southeast Towers.

13th and 14th Street Realty, NYS Brownfield Redevelopment, New York, NY

Mr. Malinowski directed all phases of this NYS Brownfield project, including the initial investigation as well as the submittal of a BCP Application simultaneously with a Remedial Investigation Work Plan and an Interim Remedial Measures Work Plan, which enabled the investigation and remediation to be implemented concurrently with planned site redevelopment activities. The site consisted of an approximately 20,000 square foot property in Manhattan comprised of 100 year old dilapidated buildings. The presence of perchloroethene (PCE) contamination associated with a former dry cleaner prevented the property owner from selling. The developer applied to the New York State Brownfield Cleanup Program (BCP) as a "Volunteer" to eliminate off-site liability. Prior to the client securing its construction loan, all plans were approved by NYSDEC and a detailed remedial estimate was approved for financing by the client's lending institutions.

The investigation included soil and soil vapor testing as well as the installation and sampling of groundwater monitoring wells. The remediation activities included the removal of underground oil tanks, soil waste classification testing, and removal of approximately 15,000 tons of non-hazardous petroleum and lead

SENIOR VICE PRESIDENT p. 5

contaminated soil as well as 200 tons of hazardous soil containing PCE. A water-proofing membrane was installed beneath the entire building to eliminate the exposure pathway for PCE into the new eight-story residential building. The investigation and remedial work was performed under a construction health and safety plan that included a community air monitoring program. The client received approximately \$6,000,000 in tax credits from NYS for the Track 2 cleanup of this underutilized contaminated property.

New York City Department of Design and Construction, East Side Coastal Resiliency, Manhattan, NY

Mr. Malinowski leads the environmental investigation and related support for a multidisciplinary design team selected by the New York City agency partnership of DDC, DPR, and ORR for the Feasibility Study and Pre-Scoping Services for the East Side Coastal Resiliency (ESCR) project. The AKRF Team is providing design services for 100+ year storm protection and for the anticipated sea level rise along the east side of Lower Manhattan. The ESCR subsurface exploration programs involved a review of available utility plans and environmental reports concerning manufactured gas plant (MGP) and potential petroleum-related contamination along a 2.5 mile study area from Montgomery Street to East 25th Street in order to develop a Subsurface Investigation Work Plan to investigate soil and groundwater quality in areas of disturbance.

The testing program were conducted under the regulatory oversight of the NYCDEP and included both public and private utility mark-out services across vast areas of the project site containing critical infrastructure in order to enable the installation of numerous soil borings and groundwater wells. Mr. Malinowski was in charge of all aspects of management and implementation of the investigation program. As the design of the flood protection project was advanced, Mr. Malinowski designed a supplemental subsurface testing program to evaluate subsurface conditions for infrastructure improvements and to further define areas impacted with MPG-related wastes. He was also responsible for interpreting the wide-range of chemical parameters to evaluate critical cost and environmental impacts for the City and design team, and to prepare technical reports for submission and approval by the NYCDEP to satisfy City Environmental Quality Review (CEQR) requirements.

In addition, he continues to support the design and environmental review team by preparing the Hazmat Chapter for the Environmental Impact Statement, overseeing a hydrogeological study, developing interim remedial measures for MGP-contamination, developing estimating cost impacts to the project for design and cost recovery purposes, developing a Soil Management Plan and preparing presentations to the NYC team as well as OER, NYSDEC, and Con Edison.

TIMOTHY G. LARIGAN

PROFESSIONAL II

Timothy G. Larigan is an environmental scientist with 5 years of experience in environmental remediation/compliance, Phase I/Phase II Environmental Assessments; project management; technical reporting; data analysis; field sampling; contractor oversight; wetlands delineation and permitting. He has directed environmental remediation, due diligence, asbestos, and wetlands projects and completed them within the proposed timeframe and budget. Mr. Larigan has also managed client and regulatory agency interactions. He has performed various field activities such as soil, groundwater, and vapor sampling and wetlands delineation. He has a working knowledge of GIS software and SAS statistical software.

BACKGROUND

Education BS, Stockton University, Environmental Science, 2015

Licenses/Certifications

Regulatory Training in Underground Storage Tanks Certificate Wetlands Delineation Certificate OSHA 40 Hour HAZWOPER OSHA 30 Hour Construction

Years of Experience

5 years in the industry <1 year with AKRF

RELEVANT EXPERIENCE

J2 147-07 94th Avenue LLC, Alvista Towers, Queens, NY

Environmental Scientist. This historical meat refrigeration facility is enrolled in the Brownfield Cleanup Program to remediate the property and construct a 23-story affordable residential building. Although the site has an E-Designation for hazardous materials, noise, and air quality, AKRF assisted with applying for entry into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program, due to the presence of contaminated soil and soil vapor beneath the site. AKRF is providing environmental consulting services throughout the project. Mr. Larigan is responsible for performing a Phase I Environmental Site Assessment (ESA) and preparing a Phase I ESA Report.

Site 9 DSA Owner LLC, Essex Crossing Site 9, New York, NY

Environmental Scientist. This approximately 20,300 square foot property has been developed with mixed-use residential and commercial/industrial buildings (e.g. printer shop, machine shop, photo shop) since the late-1800s. The site was later redeveloped as the Essex Street Market, which operated until 2019. Mr. Larigan is responsible for performing a Phase I Environmental Site Assessment (ESA) and preparing a Phase I ESA Report, along with preparing a Phase II Work Plan and Health and Safety Plan (HASP) for a proposed Phase II subsurface investigation. Mr. Larigan is also responsible for performing a limited subsurface investigation, consisting of soil sample collection, for due diligence purposes.

TIMOTHY G. LARIGAN

PROFESSIONAL II

4NYCHousing Inc., 201-207 Seventh Avenue, New York, NY

Environmental Scientist. This historical mixed-use residential and commercial/industrial property was developed in the late-1800s, and has been vacant since 2018. Mr. Larigan is responsible for conducting soil, groundwater, and vapor sample collection as part of a Phase II investigation, along with preparing a subsurface investigation report, documenting the findings of the Phase II investigation.

DLANDstudio Architecture + Landscape Architecture pllc, Stapleton Playground, Staten Island, NY

Environmental Scientist. This public park and historical gasoline filling station has been closed to the public and undergoing renovations since 2019. During excavation for park improvements, petroleum-contaminated soil was discovered and spill was reported to the New York State Department of Environmental Conservation (NYSDEC). Mr. Larigan is responsible for overseeing the installation of groundwater monitoring wells, performing quarterly groundwater monitoring/sampling events, and preparing quarterly groundwater evaluation reports as part of an environmental investigation at the site related to the spill.

PREVIOUS EXPERIENCE

Atlantic Environmental Solutions, Inc., Hoboken, NJ

Project Manager/Senior Environmental Scientist While at another firm, Mr. Larigan was responsible for the following:

- Managed site remediation projects, underground storage tank removal projects, and Phase I/Phase II environment assessments
- Directed asbestos surveys, mold assessments, and wetlands delineation/permitting projects
- Prepared proposals, bids, and work authorizations for environmental services with detailed scopes of work, schedules, and cost estimates
- Performed technical review, data analysis, and problem solving for site remediation projects and managed client and regulatory agency interactions

Brinkerhoff Environmental Services, Inc., Manasquan, NJ

Environmental Scientist While at another firm, Mr. Larigan was responsible for the following:

- Performed soil, groundwater, and vapor sampling in accordance with State technical requirements;
- Prepared environmental reports, including Phase I/Phase II ESAs, Remedial Investigation and Remedial Action reports, and environmental permit applications in accordance with State requirements;
- Directed and oversaw in-situ chemical oxidation (ISCO) treatments, and installation of sub-slab vapor mitigation systems and other presumptive remedies/engineering controls in accordance with State technical requirements
- Performed geophysical surveys utilizing Ground Penetrating Radar (GPR) and Electromagnetic technology.

MADELYN FLEMING

GEOLOGIST/PROFESSIONAL II

Madelyn Fleming is a Geologist/Professional II in the AKRF, Inc. Site Assessment and Remediation department with experience in remedial oversight, community air monitoring (CAMP), soil sampling, groundwater sampling, and technical reporting.

BACKGROUND

Role in Project

Field Technician

Education

B.S., Geology, Clemson University, May 2020

<u>Certifications</u> OSHA 40-hour HAZWOPER Certified OSHA 30-hour Construction Safety Training

<u>Years of experience</u> AKRF: November 2022 - present (1 year and 7 months) Prior industry experiences: Intern at Vineyard Engineering and Environmental Services (Summer 2019)

RELEVANT EXPERIENCE

Phase I Environmental Site Assessment - Various Projects

Ms. Fleming has drafted Phase I reports for various projects and completed the site research and reconnaissance as part of the assessments.

Phase II Subsurface Investigation and Remedial Investigation - Various Projects

Ms. Fleming conducted subsurface and remedial investigations on various project sites in the Bronx, Manhattan, Brooklyn, and Queens, including the oversight of drilling activities, as well as low-flow groundwater sampling, soil sampling, and soil vapor sampling.

Remediation Oversight and Community Air Monitoring - 380 4th Avenue, Brooklyn, NY

Ms. Fleming performed oversight and conducted community air monitoring during removal of contaminated soil/municipal waste and import of fill materials, to ensure adherence to project specifications for construction projects at 380 4th Avenue in the Gowanus neighborhood of Brooklyn. As part of her duties, Ms. Fleming also prepared daily reports for client and agency review and participated in the NYSDEC-approved endpoint sampling program.

Remediation Oversight and Community Air Monitoring - 57 Alexander Street, Yonkers, NY

AKRF is providing ongoing remedial oversight of this NYSDEC Brownfield Cleanup Site on the Yonkers, New York waterfront. The Site, which was contaminated with PCBs, is being remediated under an NYSDEC-approved Remedial Action Work Plan (RAWP) and a USEPA-approved Self Implementation Plan (SIP). Ms. Fleming performed environmental oversight during site remediation and redevelopment activities, including community air

MADELYN FLEMING

GEOLOGIST/PROFESSIONAL I p. 2

monitoring, and documentation of off-site disposal of excavated soil, import of environmentally clean fill material, and collection of endpoint samples. Ms. Fleming also prepared daily reports for submission to the NYSDEC.

Remediation Oversight and Community Air Monitoring – Fresh Kills Landfill, Staten Island, NY

Ms. Fleming performed oversight and conducted community air monitoring during removal of contaminated soil/municipal waste and import of fill materials, to ensure adherence to project specifications for construction projects at several NYC Department of Sanitation (DSNY) facilities located on/near the Fresh Kills Landfill. As part of her duties, Ms. Fleming also prepared daily reports for client and agency review.

Remediation Oversight and Community Air Monitoring – Harlem Hospital, Manhattan, NY

Through an on-call contract with the New York City Economic Development Corporation, AKRF is providing construction support and environmental monitoring services during construction of a new public health laboratory on the Harlem Hospital campus to ensure compliance with the NYCDEP-approved Remediation Action Work Plan (RAWP). Ms. Fleming served as an on-site environmental monitor during earthwork for the building construction. Her duties included community and work zone air monitoring, overseeing excavation and export of urban fill and petroleum-contaminated soil, documenting the import/placement of environmentally clean backfill, and preparation of daily reports for submission to the client.

PREVIOUS EXPERIENCE

Vineyard Engineering and Environmental Services - Stoneham, MA

As an environmental technician intern, Ms. Fleming conducted monitoring well sampling, soil gas sampling, and oversight of remediation projects. She also helped to review data and prepare environmental reports.

Personnel Resume

Carl Armbruster QA Manager

Qualifications Summary

Mr. Armbruster has over 30 years of experience in the environmental laboratory and engineering industry that includes extensive technical, management/leadership experience in all aspects of the laboratory business. He is an action-oriented manager dedicated to ensuring the laboratory maintains a quality program that holds the highest credentials in PT scores, accreditations and customer satisfaction. His unique experience lends itself to working successfully with employees, managers and clients at all levels.

Professional Experience

Quality Assurance Manager – TestAmerica Edison - 2005 to Present

Mr. Armbruster is responsible for establishing and implementing the quality assurance program at the Edison facility; and for interfacing with the corporate Quality Assurance Director to ensure adherence with the overall Quality Management Plan. He is also responsible for monitoring implementation and compliance with NELAC and TestAmerica's QMP, conducting annual management system audits and data audits, as well as providing regulatory updates and technical support to the Laboratory Director, Operations Manager, Client Services and Sales department.

Project Manager/Assistant Technical Director – STL Edison -- 2000 to 2005

Laboratory Director – STL Whippany – 1998 to 2000

Account Manager – Clean Harbors Environmental Services – 1997 to 1998

Laboratory Manager – Waste Management Inc., and Chemical Waste Management Inc – 1988 to 1997

Environmental Scientist – ICF Technology – 1987 to 1988

Analytical Chemist – IT Corporation – 1985 to 1987

Analytical Chemist – Hess Environmental Laboratories – 1983 to 1985

Education

- MS in Biology East Stroudsburg University, 1984
- BS in Environmental Studies East Stroudsburg University, 1980

L.A.B. Validation Corp., 14 West Point Drive, East Northport, New York 11731

Lori A. Beyer

EXPERIENCE:

1998-Present L.A.B. Validation Corporation, 14 West Point Drive, East Northport, NY President

• Perform Data Validation activities relating to laboratory generated Organic and Inorganic Environmental Data.

1998-Present American Analytical Laboratories, LLC. 56 Toledo Street, Farmingdale, NY

Laboratory Director/Technical Director

- Plan, direct and control the operation, development and implementation of programs for the entire laboratory in order to meet AAL's financial and operational performance standards.
- Ensures that all operations are in compliance with AAL's QA manual and other appropriate regulatory requirements.
- Actively maintains a safe and healthy working environmental that is demanded by local laws/regulations.
- Monitors and manages group's performance with respect to data quality, on time delivery, safety, analyst development/goal achievement and any other key performance indices.
- Reviews work for accuracy and completeness prior to release of results to customers.

1996-1998 Nytest Environmental, Inc. (NEI) Port Washington, New York

General Manager

- Responsible for controlling the operation of an 18,000 square foot facility to meet NEI's financial and operational performance standards.
- Management of 65 FTEs including Sales and Operations
- Ensure that all operations are in compliance with NEI's QA procedures
- Ensures that productivity indicators, staffing levels and other cost factors are held within established guidelines
- Maintains a quantified model of laboratory's capacity and uses this model as the basis for controlling the flow of work into and through the lab so as to ensure that customer requirements and lab's revenue and contribution targets are achieved.

1994-1996 Nytest Environmental, Inc. (NEI) Port Washington, New York

Technical Project Manager

- Responsible for the coordination and implementation of environmental testing programs requirements between NEI and their customers
- Supervise Customer Service Department
- Assist in the development of major proposals
- · Complete management of all Federal and State Contracts and assigned commercial contracts
- Provide technical assistance to the customer, including data validation and interpretation
- Review and implement Project specific QAPP's.

1995-1996 Nytest Environmental, Inc. (NEI) Port Washington, New York

Corporate QA/QC Officer

- Responsible for the implementation of QA practices as required in the NJDEP and EPA Contracts
- Primary contact for NJDEP QA/QC issues including SOP preparation, review and approval
- Responsible for review, verification and adherence to the Contract requirements and NEI QA Plan

1992-1994 Nytest Environmental, Inc. (NEI) Port Washington, New York

Data Review Manager

- Responsible for the accurate compilation, review and delivery of analytical data to the company's customers. Directly and
 effectively supervised a department of 22 personnel.
- Managed activities of the data processing software including method development, form creation, and production
- Implement new protocol requirements for report and data management formats
- Maintained control of data storage/archival areas as EPA/CLP document control officer

1987-1991 Nytest Environmental, Inc. (NEI) Port Washington, New York

Data Review Specialist

- Responsible for the review of GC, GC/MS, Metals and Wet Chemistry data in accordance with regulatory requirements
- Proficient with USEPA, NYSDEC, NJDEP and NEESA requirements
- Review data generated in accordance with SW846, NYSDEC ASP, EPA/CLP and 40 CFR Methodologies

1986-1987 Nytest Environmental, Inc (NEI) Port Washington, New York GC/MS VOA Analyst

EDUCATION:

1982-1985 State University of New York at Stony Brook, New York; BS Biology/Biochemistry 1981-1982 University of Delaware; Biology/Chemistry

- 5/91 Rutgers University; Mass Spectral Data Interpretation Course, GC/MS Training
- 8/92 Westchester Community College; Organic Data Validation Course
- 9/93 Westchester Community College; Inorganic Data Validation Course

Form W-9
(Rev. December 2011)
Department of the Treasury
Internal Revenue Service

memai		
	ame (as shown on your income tax return) L.A.B VALIDATION CORP	
5	usiness name/disregarded entity name, if different from above	
page 2		
5	heck appropriate box for federal tax classification: Individual/sole proprietor IC Corporation X S Corporation IP artnership ITrust/estate	
Print or type Instructions	Limited liability company. Enter the tax classification (C=C corporation, S=S corporation, P=partnership)	Exempt paye
n n	Other (see instructions) >	
ΞË	ddress (number, street, and apt. or suite no.) Requester's name and address (option	nal)
F Specific	14 WEST POINT DRIVE	
See S	IY WEST POINT DRIVE ity, state, and ZIP code EAST NORTHPORT, NEW YORK (1731	
0		
	st account number(s) here (optional)	
Dav	The second	
Par	Taxpayer Identification Number (TIN)	

Enter your TIN in the appropriate box. The TIN provided must match the name given on the "Name" line to avoid backup withholding. For individuals, this is your social security number (SSN). However, for a resident alien, sole proprietor, or disregarded entity, see the Part I instructions on page 3. For other entities, it is your employer identification number (EIN). If you do not have a number, see *How to get a TIN* on page 3.

Note. If the account is in more than one name, see the chart on page 4 for guidelines on whose

				\square				
and succession	nlove	er ider	ntificat	ion nu	umb	er		
Em	pioje					7.00	-	-

number to enter.

Part II Certification

Under penalties of perjury, I certify that:

- 1. The number shown on this form is my correct taxpayer identification number (or I am waiting for a number to be issued to me), and
- I am not subject to backup withholding because: (a) I am exempt from backup withholding, or (b) I have not been notified by the Internal Revenue Service (IRS) that I am subject to backup withholding as a result of a failure to report all interest or dividends, or (c) the IRS has notified me that I am no longer subject to backup withholding, and
- 3. I am a U.S. citizen or other U.S. person (defined below).

Certification instructions. You must cross out item 2 above if you have been notified by the IRS that you are currently subject to backup withholding because you have failed to report all interest and dividends on your tax return. For real estate transactions, item 2 does not apply. For mortgage interest paid, acquisition or abandonment of secured property, cancellation of debt, contributions to an individual retirement arrangement (IRA), and generally, payments other than interest and dividends, you are not required to sign the certification, but you must provide your correct TIN. See the instructions on page 4.

	and the second sec					
Sign Here	Signature of U.S. person ►	foi	a.	BUM	Date ►	01/18/13
				A		

General Instructions

Section references are to the Internal Revenue Code unless otherwise noted.

Purpose of Form

A person who is required to file an information return with the IRS must obtain your correct taxpayer identification number (TIN) to report, for example, income paid to you, real estate transactions, mortgage interest you paid, acquisition or abandonment of secured property, cancellation of debt, or contributions you made to an IRA.

Use Form W-9 only if you are a U.S. person (including a resident alien), to provide your correct TIN to the person requesting it (the requester) and, when applicable, to:

1. Certify that the TIN you are giving is correct (or you are waiting for a number to be issued),

2. Certify that you are not subject to backup withholding, or

3. Claim exemption from backup withholding if you are a U.S. exempt payee. If applicable, you are also certifying that as a U.S. person, your allocable share of any partnership income from a U.S. trade or business is not subject to the withholding tax on foreign partners' share of effectively connected income. **Note.** If a requester gives you a form other than Form W-9 to request your TIN, you must use the requester's form if it is substantially similar to this Form W-9.

Definition of a U.S. person. For federal tax purposes, you are considered a U.S. person if you are:

- An individual who is a U.S. citizen or U.S. resident alien,
- A partnership, corporation, company, or association created or organized in the United States or under the laws of the United States,
- An estate (other than a foreign estate), or
- A domestic trust (as defined in Regulations section 301.7701-7).

Special rules for partnerships. Partnerships that conduct a trade or business in the United States are generally required to pay a withholding tax on any foreign partners' share of income from such business. Further, in certain cases where a Form W-9 has not been received, a partnership is required to presume that a partner is a foreign person, and pay the withholding tax. Therefore, if you are a U.S. person that is a partner in a partnership conducting a trade or business in the United States, provide Form W-9 to the partnership to establish your U.S. status and avoid withholding on your share of partnership income.

College	, O					3	UL SUNY WESTCHESTER COMMUNITY COLLEGE Valhalla, New York 10595
Center Center	Awards this Certificate of Achievement To	BEYER	for Successfully Completing	VALIDATION COURSE (35 HOURS) Dr. John Samuelian	JST 1992	President	
Westchester Co Professiona	Awards this Certifi	LORI	for Success	ORGANIC DATA VALID	Date AUGUST	Professional Development Center	
Mes							The Professional Development Center

Westchester Community College Dale Boshart Awards this Certificate of Achievement To Professional Development Instructor: for Successfully Completing President INORGANIC DATA VALIDATION Center **MARCH 1993** LORI BEYER Professional Development Center Date _ Parts VIIIV Assistant Dean

The Professional Development Center

WESTCHESTER COMMUNITY COLLEGE Valhalla, New York 10595

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Thomas C. Jorling Commissioner

July 8, 1992

Ms. Elaine Sall Program Coordinator Westchester Community College Valhalla, NY 10595-1698

Dear Elaine,

Thank you for your letter of June 29, 1992. I have reviewed the course outline for organic data validation, qualifications for teachers and qualifications for students. The course that you propose to offer would be deemed equivalent to that which is offered by EPA. The individuals who successfully complete the course and pass the final written exam would be acceptable to perform the task of organic data validation for the Department of Environmental Conservation, Division of Hazardous Waste Remediation.

As we have discussed in our conversation of July 7, 1992, you will forward to me prior to the August course deadline, the differences between the EPA SOW/90 and the NYSDEC ASP 12/91. You stated these differences will be compiled by Mr. John Samulian.

I strongly encourage you to offer an inorganic data validation course. I anticipate the same list of candidates would be interested in an inorganic validation course as well, since most of the data to be validated consists of both organic and inorganic data.

Thank you for you efforts and please contact me if I can be of any further assistance.

Sincerely, mauren P.C

Maureen P. Serafini Environmental Chemist II Division of Hazardous Waste Remediation

914 285-6619

The Professional Development Center

October 2, 1992

Ms. Lori Beyer 3 sparkill Drive East Northport, NY 11731

Dear Ms. Beyer:

Congratulations upon successful completion of the Organic Data Validation course held August 17 - 21, 1992, through Westchester Community College, Professional Development Center. This course has been deemed by New York State Department of Environmental Conservation as equivalent to EPA's Organic Data Validation Course.

Enclosed is your Certificate. Holders of this Certificate are deemed competent to perform organic data validation for the New York State DEC Division of Hazardous Waste Remediation.

The Professional Development Center at Westchester Community College plans to continue to offer courses and seminars which will be valuable to environmental engineers, chemists and related personnel. Current plans include a TCLP seminar on November 17th and a conference on Environmental Monitoring Regulations on November 18th.

We look forward to seeing you again soon at another environmental program or event. Again, congratulations.

Very truly yours,

Passing Grade is 70% Your Grade is 99%

Elaine Sall Program Coordinator

ES/bf

٦.

The Professional Development Center AT Westchester COMMUNITY COLLEGE 914 285-6619

June 21, 1993

Dear Ms. Beyer:

Enclosed is your graded final examination in the Inorganic Data Validation course you completed this past March. A score of 70% was required in order to receive a certificate of satisfactory completion. Persons holding this certificate are deemed acceptable to perform Inorganic Data Validation for the New York State Department of Environmental Conservation, Division of Hazardous Waste Remediation.

I am also enclosing a course evaluation for you to complete if you have not already done so. The information you provide will greatly aid us in structuring further courses. We wish to make these course offerings as relevant, targeted and comprehensive as possible. Your evaluation is vital to that end.

Congratulations on your achievement. I look forward to seeing you again at another professional conference or course. We will be co-sponsoring an environmental monitoring conference on October 21, 1993 with the New York Water Pollution Control Association, Lower Hudson Chapter, at IBM's Yorktown Heights, NY site. Information regarding this event will be going out in August.

Very truly yours,

Elaine Sall Program Coordinator

ES/bf

Enclosures

ATTACHMENT B SAMPLE CHAIN OF CUSTODY

>> \$	Select a	Laboratory	or	Service	Center <<
-------	----------	------------	----	---------	-----------

Chain of Custody Record

🔅 eurofins	
••	Environment Testing TestAmerica

#N/A

#N/A

#N/A #N/A	Regu	latory Pro	ogram:]ow [S		₹CRA		Other:							Test	Ameri	ca La	abora	atories, Inc. d/b/a Eurofins TestAmerica
	Project M	lanager:				1														I	COC No:
Client Contact	Email:					Sit	e Cr	ontac	:t:					Date):						of COCs
Your Company Name here	Tel/Fax:							ontact					;		Carrier:						TALS Project #:
Address	1	Analysis T	Turnaround	l Time		ŤΤ	T		Τ	\square			\square	hΤ	Τ			Т		\square	Sampler:
City/State/Zip		DAR DAYS		rking days	s	11															For Lab Use Only:
(xxx) xxx-xxxx Phone	TA	T if different fr	from Below				î														Walk-in Client:
(xxx) xxx-xxxx FAX		2	2 weeks																ļ		Lab Sampling:
Project Name:		1	1 week			Ì, {	Ň														
Site:		2	2 days) el	MSI														Job / SDG No.:
P O #		1	1 day			d L	s/														
Sample Identification	Sample Date	Sample Time	(0=001110,	Matrix	# of Cont.	Filtered Sample (Y/N)	Perform M		+		_										Sample Specific Notes:
	<u> </u>	_	_	\square	 	$\downarrow \downarrow$	4	\perp	+	\square	_	\perp	<u> </u>	\square	+	\downarrow	\square	+	<u> </u>	\square	
	ļ				 	\square	4		\perp	\square			<u> </u>	Щ	\perp	\perp		\perp			
					<u> </u>	Ш															
				Ţ	1		Ţ										\square				
					1				T		+		+					1		\square	
																		1		\square	
			1		í								+		\top			1	+ 1		
			1	+ +				+	+				+		+			+	+-+	[]	
				++	[$\uparrow \uparrow$	1	+	+	++	+	+	+'		-			+	+-+	$\left \right $	
				++	[$\uparrow \uparrow$		+	+	++	+	+	+-'		-	-		+	+-+	$\left \right $	
			+	++	[++	_	+	+	++	+	-	+-'		+	-		+	+-+		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	; 5=NaOH	; 6= Other	/			H	╉	+	七	H	\pm	\pm	t								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea the Comments Section if the lab is to dispose of the sample.	ise List any	/ EPA Was	ste Codes fo	or the sa	mple ir		Sam	nple [Disp	osal ((Af	ee m	ay be	e ass	esse	ed if s	ampl	es are	e reta	aine	d longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison	В	Unkno	Jwn				Retur	rn to (Client			Di	sposal	by Lal	DD		Arch	nive for)r	Months
Special Instructions/QC Requirements & Comments:							_														
Custody Seals Intact: Yes No	Custody S	Seal No.:							Cc	oler T	Гетŗ	р. (°С): Ot	s'd:_			Corr'o	d::			Therm ID No.:
Relinquished by:	Company:			Date/Tir	me:	/	Rec	ceived					-		С	Compa	iny:			П	Date/Time:
Relinquished by:	Company:	:		Date/Tir	me:	-	Rec	ceived	l by:						С	Compa	pany: Date/Time:			Date/Time:	
Relinquished by:	Company:	:		Date/Tir	me:	!	Rec	ceived	l in L	.abora	atory	/ by:			С	Compa	iny:				Date/Time:

APPENDIX G HEALTH AND SAFETY PLAN

380 4TH AVENUE BROOKLYN, NEW YORK

Health and Safety Plan

For

Site Management Plan

BCP Site No.: C224358 AKRF Project Number: 210226

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor Albany, New York 12233

Prepared On Behalf Of:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

Prepared by:

AKRF, Inc. 440 Park Avenue South New York, New York 10016 (212) 696-0670

DECEMBER 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	HEALTH AND SAFETY GUIDELINES AND PROCEDURES	2
2.1	Hazard Evaluation	2
-	2.1.1 Hazards of Concern	2
	2.1.2 Physical Characteristics	2
4	2.1.3 Hazardous Materials	2
-	2.1.4 Chemicals of Concern	3
2.2	Designated Personnel	4
2.3		4
2.4		
2.5		
2.6	Personal Protection Equipment	5
2.7		
3.0	EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN	7
3.1		7
3.2	*	7
4.0	APPROVAL & ACKNOWLEDGMENTS OF HASP	8

FIGURES

Figure 1 – BCP Site Location Figure 2 – Hospital Route Map

TABLES

- Table 1 Hazards of Concern
- Table 2 Physical Characteristics
- Table 3 Hazardous Materials
- Table 4 Chemicals of Concern
- Table 5 Site Work Zones
- Table 6 Personal Protection Equipment Requirements
- Table 7 Hospital Directions
- Table 8 Emergency Contacts

ATTACHMENTS

Attachment A – Potential Health Effects from On-site Contaminants Attachment B – Report Forms Attachment C – Emergency Hand Signals

1.0 INTRODUCTION

This environmental Health and Safety Plan (HASP) was prepared by AKRF, Inc. (AKRF) on behalf of 380 4th Avenue Owner, LLC for the 380 4th Avenue Brownfield Cleanup Program (BCP) site located in the Gowanus neighborhood of Brooklyn, New York (hereinafter referred to as the "Site"). The Site is an approximately 0.46-acre parcel identified on the New York City (NYC) Tax Map as Block 980, Lot 77. Figure 1 shows the Site location.

The Site was remediated to Track 2 New York State Department of Environmental Conservation (NYSDEC) Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) and additionally for Protection of Groundwater Soil Cleanup Objectives (PGWSCOs) for petroleum-related volatile organic compounds (VOCs) in accordance with the April 2023 NYSDEC-approved Remedial Action Work Plan (RAWP) and Decision Document.

After completion of the remedial work in accordance with the RAWP, some contamination was left at the Site. Institutional Controls (ICs), which place restrictions on Site uses, and Engineering Controls (ECs) were incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement, granted to the NYSDEC, and recorded with the NYC Office of the City Register, requires compliance with a Site Management Plan (SMP) and all ICs/ECs placed on the Site. The SMP specifies the methods necessary to ensure compliance with all ICs/ECs required by the Environmental Easement for remaining contamination. Upon approval of the SMP by NYSDEC, compliance with the plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. The SMP may be revised only with the approval of NYSDEC.

This HASP, which is an appendix to the SMP, details the procedures required to manage known or potential residual contamination following completion of the Remedial Action at the Site. The purpose of this HASP is to assign responsibilities, establish personnel protection standards and mandatory safety practices and procedures, and provide contingency plans for situations that may arise during site management inspections, periodic sampling activities, and any soil/fill disturbance activities conducted at the Site. This HASP takes into account the specific hazards inherent to the Site, and presents procedures to be followed by AKRF and contractors to avoid, and if necessary, protect against, health and/or safety hazards. Application of this HASP should be considered on a task-by-task basis, as not all measures are applicable or necessary for all activities on-site. On-site work activities should comply with applicable parts of the United States Occupational Safety and Health Administration (OSHA) regulations, primarily 29 Code of Federal Regulations (CFR) Parts 1910 and 1926. A copy of this HASP will be maintained on-site during all work performed under the SMP.

All workers who participate in remediation-related activities at the Site that are under the direction of AKRF and/or the Site owner are required to comply with the provisions specified in this HASP. All Site visitors who enter designated work zones must also comply with this HASP. Refusal or failure to comply with this HASP or violation of any safety procedures by field personnel and/or subcontractors performing work covered by this HASP may result in immediate removal from the Site following consultation with the Site owner's representative. No personnel are permitted to enter permit confined spaces under this HASP.

2.0 HEALTH AND SAFETY GUIDELINES AND PROCEDURES

2.1 Hazard Evaluation

2.1.1 Hazards of Concern

Table 1	
Hazards of Concern	

Check all that apply								
(X) Organic Chemicals	(X) Inorganic Chemicals	() Radiological						
() Biological	() Explosive/Flammable	() Oxygen Deficient Atm						
(X) Heat Stress	(X) Cold Stress	() Carbon Monoxide						
Comments: No personnel are permitted to enter permit confined spaces.								

2.1.2 Physical Characteristics

Table 2Physical Characteristics

Check all that apply			
(X) Liquid	(X) Solid	(X) Sludge	
(X) Vapors	() Unknown	() Other	
Comments:			

2.1.3 Hazardous Materials

Table 3Hazardous Materials

Check all that apply				
Chemicals	Solids	Solvents	Oils	Other
() Acids	(X) Ash	() Halogens	() Transformer	() Lab
() Caustics	() Asbestos	(X) Petroleum	() Other DF	() Pharm
() Pesticides	() Tailings	(X) Chlorinated Solvents	(X) Motor or Hydraulic Oil	() Hospital
(X) Petroleum	(X) Other	(X) Other	(X) Gasoline	() Rad
() Inks	(X) Fill Material		() Fuel Oil	() MGP
() PCBs				() Mold
(X) Metals				() Cyanide
(X) Other: VOCs, SVOCs, an	nd Metals			

2.1.4 Chemicals of Concern

Table 4Chemicals of Concern

Chemical	REL/PEL/STEL	Health Hazards
Arsenic	REL C: 0.002 mg/m ³ PEL: 0.010 mg/m ³	Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, resp irritation, hyperpigmentation of skin, [potential occupational carcinogen].
Copper	REL: 1 mg/m ³ PEL: 1 mg/m ³	Irritation eyes, nose, pharynx; nasal septum perforation; metallic taste; dermatitis; In Animals: lung, liver, kidney damage; anemia.
Cyanide	PEL: 5 mg/m ³	Asphyxia and death can occur, preceded by seizures, coma with abolished deep reflexes and dilated pupils, weakness; paralysis; dizziness; numbness; anxiety; chest tightness; irregular heartbeat; shortness of breath; confusion; headache; sore throat; nausea, vomiting; eye irritation; rash, chemical burns on skin; enlargement of thyroid gland.
Fuel Oils	REL: 100 mg/m ³	Irritation eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid).
Lead	REL: 0.050 mg/m ³ PEL:0.050 mg/m ³	Lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis wrist, ankles; encephalopathy; kidney disease; irritation eyes; hypertension.
Mercury	REL: 0.05 mg/m ³ REL C: 0.1 mg/m ³ PEL: 0.1 mg/m ³	Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria.
Naphthalene	REL: 10 ppm N STEL: 15 ppm PEL: 10 ppm	Irritation eyes; headache, confusion, excitement, malaise (vague feeling of discomfort); nausea, vomiting, abdominal pain; irritation bladder; profuse sweating; jaundice; hematuria (blood in the urine), renal shutdown; dermatitis, optical neuritis, corneal damage.
PAHs	REL: 0.1 mg/m ³ PEL: 0.2 mg/m ³	Effects reported from occupational exposure to PAHs include chronic bronchitis, chronic cough irritation, bronchogenic cancer, dermatitis, cutaneous photosensitization, and pilosebaceous reactions. Reported health effects associated with chronic exposure to coal tar and its by-products (e.g., PAHs): Skin: erythema, burns, and warts on sun-exposed areas with progression to cancer. The toxic effects of coal tar are enhanced by exposure to ultraviolet light. Eyes: irritation and photosensitivity. Respiratory system: cough, bronchitis, and bronchogenic cancer. Gastrointestinal system: leukoplakia, buccal- pharyngeal cancer, and cancer of the lip. Hematopoietic system: leukemia (inconclusive) and lymphoma. Genitourinary system: hematuria and kidney and bladder cancers.

Chemical	REL/PEL/STEL	Health Hazards
Chemicai	REL/FEL/SIEL	
Selenium	REL: 0.2 mg/m ³ PEL: 0.2 mg/m ³	Irritation eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breath, gastrointestinal disturbance; dermatitis; eye, skin burns; In Animals: anemia; liver necrosis, cirrhosis; kidney, spleen damage.
Silver	REL: 0.01 mg/m ³ PEL: 0.01 mg/m ³	Blue-gray eyes, nasal septum, throat, skin; irritation, ulceration skin; gastrointestinal disturbance.
Tetrachloroethylene	PEL: 100 ppm PEL C: 200 ppm; max peak: 300 ppm	Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen].
Trichloroethylene	PEL: 100 ppm PEL C: 200 ppm; 5- min max peak: 300 ppm	Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen].
Notes: REL: Recommended of PEL: Permissible expo STEL: Short-term exp N: NIOSH O: OSHA C: Ceiling		

The potential health effects from the on-site contaminants listed above are further described in Attachment A.

2.2 Designated Personnel

AKRF will appoint one of its on-site personnel as the Site Safety Officer (SSO). This individual will be responsible for the implementation of this HASP. The SSO will work under the direction of a Qualified Environmental Professional (QEP) and will be experienced in the implementation of air monitoring and hazardous materials sampling programs. Health and safety training required for the SSO and all field personnel is outlined in Section 2.3 of this HASP.

2.3 Training

All personnel who enter the "work zone" (defined as the area on-site where remedial construction activities are occurring) while intrusive activities are being performed will have completed a 40-hour training course that meets OSHA requirements of 29 CFR Part 1910, Occupational Safety and Health Standards. In addition, all personnel will have up-to-date 8-hour refresher training. The training will allow personnel to recognize and understand the potential hazards to health and safety. All field personnel must attend a training program, whose purpose is to:

- Make them aware of the potential hazards they may encounter;
- Provide the knowledge and skills necessary for them to perform the work with minimal risk to health and safety;
- Make them aware of the purpose and limitations of safety equipment; and
- Ensure that they can safely avoid or escape from emergencies.

Each member of the field crew will be instructed in these objectives before he/she goes onto the Site. A Site safety meeting will be conducted at the start of the project. Additional meetings shall be conducted, as necessary, for new personnel working at the Site.

2.4 Medical Surveillance Program

All AKRF and subcontractor personnel performing field work involving subsurface disturbance at the Site are required to have passed a complete medical surveillance examination in accordance with 29 CFR 1910.120 (f). A physician's medical release for work will be confirmed by the SSO before an employee can begin Site activities. The medical release shall consider the type of work to be performed and the required personal protective equipment (PPE). The medical examination will, at a minimum, be provided annually and upon termination of hazardous waste Site work.

2.5 Site Work Zones

During any activities involving subsurface disturbance, the work area must be divided into various zones to prevent the spread of contamination, ensure that proper protective equipment is donned, and provide an area for decontamination.

The Exclusion Zone is defined as the area where exposure to impacted media could be encountered. The Contamination Reduction Zone (CRZ) is the area where decontamination procedures take place and is located next to the Exclusion Zone. The Support Zone is the area where support facilities such as vehicles, fire extinguisher, and first aid supplies are located. The emergency staging area (part of the Support Zone) is the area where all workers on-site would assemble in the event of an emergency. A summary of these areas is provided below. These zones may be changed by the SSO, depending on that day's activities. All field personnel will be informed of the location of these zones before work begins.

Appropriate barriers will be set up to secure the area and prevent any unauthorized personnel from approaching within 15 feet of the work area.

Task	Exclusion Zone	CRZ	Support Zone
Soil Excavation (as needed)	15 feet from excavation border and excavation equipment or vehicles	15 feet from excavation border and excavation equipment or vehicles	As Needed
Groundwater Well Installation	15 feet from drilling equipment or vehicles	15 feet from drilling equipment or vehicles	As Needed
Groundwater Sampling	15 feet from active sampling location	15 feet from active sampling location	As Needed
Soil Vapor Intrusion Evaluation	15 feet from active sampling location	15 feet from active sampling location	As Needed

Table 5 Site Work Zones

2.6 **Personal Protection Equipment**

The PPE required for various kinds of Site investigation tasks is based on 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, Appendix B, "General Description and Discussion of the Levels of Protection and Protective Gear."

AKRF field personnel and other Site personnel shall wear, at a minimum, Level D PPE. The protection will be based on the air monitoring described in this section.

Table 6Personal Protection Equipment Requirements

	LEVEL OF PROTECTION & PPE	All Tasks
Level D	(X) Safety Glasses	V
(X) Steel Toe Shoes	() Face Shield	Yes

LEVEL OI	All Tasks	
(X) Hard Hat(within 25 ft. of excavator)(X) Work Gloves	 (X) Ear Plugs (within 25 ft. of excavator) (X) Nitrile Gloves (X) Tyvek for tank contractor if NAPL present 	
Level C (in addition to Level D) (X) Half-Face Respirator (X) Full Face Respirator () Full-Face PAPR() Particulate Cartridge () Organic Cartridge (X) Dual Organic/Particulate Cartridge		If PID > 10 ppm or particulate > $150 \mu g/m^3$ in breathing zone
Comments: Cartridges to be changed out at leas breath or any odors detected). PAPR = powered air purifying resp.	t once per shift unless warranted beforehand (e.g., r	more difficult to

Table 6Personal Protection Equipment Requirements

2.7 General Work Practices

To protect their health and safety, all field personnel will adhere to the guidelines listed below during activities involving subsurface disturbance:

- Eating, drinking, chewing gum or tobacco, and smoking are prohibited except in designated areas on the Site. These areas will be designated by the SSO.
- Workers must wash their hands thoroughly on leaving the work area and before eating, drinking, or any other such activity.
- The workers should shower as soon as possible after leaving the Site. Contact with contaminated or suspected surfaces should be avoided.
- The buddy system should always be used; each buddy should watch for signs of fatigue, exposure, and heat/cold stress.

3.0 EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN

The field crew will be equipped with emergency equipment, such as a first aid kit and disposable eye washes. In the case of a medical emergency, the SSO will determine the nature of the emergency and he/she will have someone call for an ambulance, if needed. If the nature of the injury is not serious, i.e., the person can be moved without expert emergency medical personnel, he/she should be driven to the New York – Presbyterian Brooklyn Methodist Hospital by on-site personnel. Directions to the hospital are provided below, and a hospital route map is provided as Figure 2. Report forms are provided in Attachment B. Emergency hand signals are provided in Attachment C.

3.1 Hospital Information

Hospital Name:	New York – Presbyterian Brooklyn Methodist Hospital
Phone Number:	(718) 780-3000
Address/Location:	506 6 th Street, Brooklyn, NY 11215
Directions:	 Head RIGHT (southwest) on 4th Avenue. Turn LEFT onto 7th Street. Turn LEFT onto 8th Avenue. Turn LEFT onto 6th Street. The entrance to the Emergency Room will be on the LEFT.

Table 7Hospital Directions

3.2 Emergency Contacts

Table 8Emergency Contacts

Company	Individual Name	Title	Contact Number
	Stephen Malinowski	Quality Assurance/Quality Control Officer	(631) 574-3724 (Office)
AKRF	Tim Larigan	Project Manager	(646) 388-9508 (Office)
	Madelyn Fleming	Field Team Leader, Field Technician, and Site Safety Officer	(781) 258-7107 (Cell)
380 4 th Avenue Owner, LLC	Kyle Cohen	Volunteer's Representative	(914) 886-3056 (Office)
NYSDEC	Michael Sollecito	BCP Project Manager	(518) 402-2198 (Office)
Ambulance, Fire Department & Police Department	-	-	911
NYSDEC Spill Hotline	-	-	800-457-7362

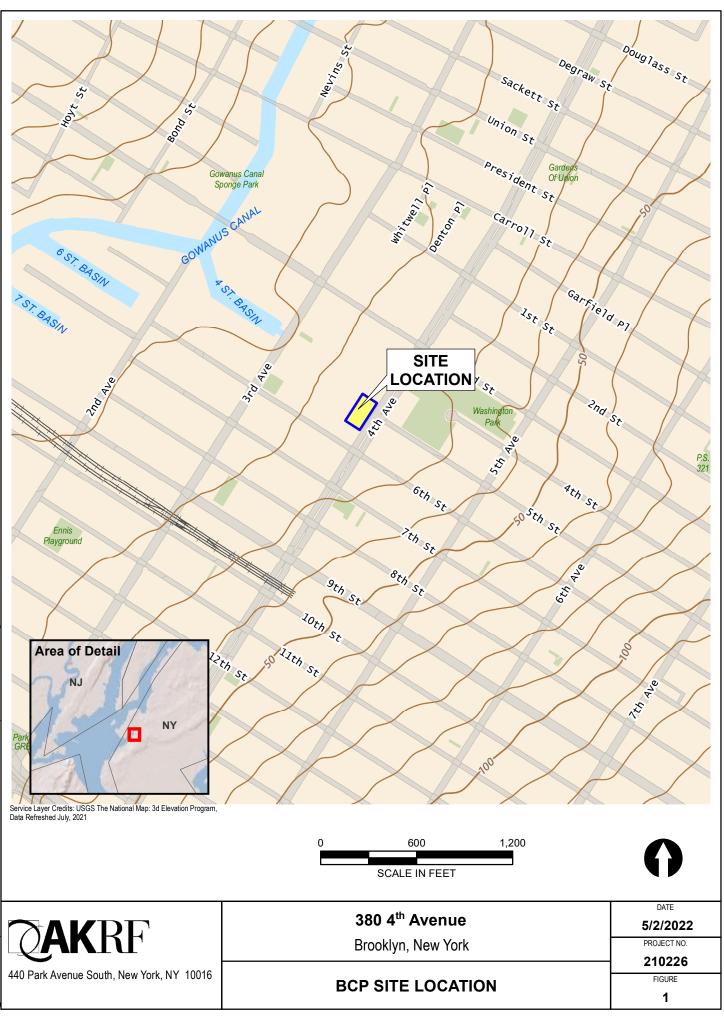
4.0 APPROVAL & ACKNOWLEDGMENTS OF HASP

Signed: _____ Date: _____

AKRF Project Manager

Signed: _____ Date: _____

AKRF Health and Safety Officer


Below is an affidavit that must be signed by all workers who enter the Site. A copy of the HASP must be on-site at all times and will be kept by the SSO.

AFFIDAVIT

I, _____(name), of _____(company name), have read the Health and Safety Plan (HASP) for 380 4th Avenue located in Brooklyn, New York. I agree to conduct all on-site work in accordance with the requirements set forth in this HASP and understand that failure to comply with this HASP could lead to my removal from the Site.

Signed:	Company:	Date:
Signed:	Company:	Date:

FIGURES

ATTACHMENT A

POTENTIAL HEALTH EFFECTS FROM ON-SITE CONTAMINANTS

ARSENIC CAS # 7440-38-2

Division of Toxicology ToxFAQsTM

This fact sheet answers the most frequently asked health questions (FAQs) about arsenic. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to higher than average levels of arsenic occurs mostly in the workplace, near hazardous waste sites, or in areas with high natural levels. At high levels, inorganic arsenic can cause death. Exposure to lower levels for a long time can cause a discoloration of the skin and the appearance of small corns or warts. Arsenic has been found at 1,014 of the 1,598 National Priority List sites identified by the Environmental Protection Agency (EPA).

What is arsenic?

Arsenic is a naturally occurring element widely distributed in the earth's crust. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds.

Inorganic arsenic compounds are mainly used to preserve wood. Organic arsenic compounds are used as pesticides, primarily on cotton plants.

What happens to arsenic when it enters the environment?

 \Box Arsenic cannot be destroyed in the environment. It can only change its form.

 \Box Arsenic in air will settle to the ground or is washed out of the air by rain.

□ Many arsenic compounds can dissolve in water.

 \Box Fish and shellfish can accumulate arsenic, but the arsenic in fish is mostly in a form that is not harmful.

How might I be exposed to arsenic?

□ Eating food, drinking water, or breathing air containing arsenic.

Breathing contaminated workplace air.

□ Breathing sawdust or burning smoke from wood treated with arsenic.

Living near uncontrolled hazardous waste sites containing arsenic.

Living in areas with unusually high natural levels of arsenic in rock.

How can arsenic affect my health?

Breathing high levels of inorganic arsenic can give you a sore throat or irritated lungs. Ingesting high levels of inorganic arsenic can result in death. Lower levels of arsenic can cause nausea and vomiting, decreased production of red and white blood cells, abnormal heart rhythm, damage to blood vessels, and a sensation of "pins and needles" in hands and feet.

Ingesting or breathing low levels of inorganic arsenic for a long time can cause a darkening of the skin and the

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

December 2003

ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html

appearance of small "corns" or "warts" on the palms, soles, and torso.

Skin contact with inorganic arsenic may cause redness and swelling.

Organic arsenic compounds are less toxic than inorganic arsenic compounds. Exposure to high levels of some organic arsenic compounds may cause similar effects as inorganic arsenic.

How likely is arsenic to cause cancer?

Several studies have shown that inorganic arsenic can increase the risk of lung cancer, skin cancer, bladder cancer, liver cancer, kidney cancer, and prostate cancer. The World Health Organization (WHO), the Department of Health and Human Services (DHHS), and the EPA have determined that inorganic arsenic is a human carcinogen.

How can arsenic affect children?

We do not know if exposure to arsenic will result in birth defects or other developmental effects in people. Birth defects have been observed in animals exposed to inorganic arsenic.

It is likely that health effects seen in children exposed to high amounts of arsenic will be similar to the effects seen in adults.

How can families reduce the risk of exposure to arsenic?

□ If you use arsenic-treated wood in home projects, you should wear dust masks, gloves, and protective clothing to decrease exposure to sawdust.

□ If you live in an area with high levels of arsenic in water or soil, you should use cleaner sources of water and limit contact with soil.

Is there a medical test to show whether I've been exposed to arsenic?

There are tests to measure the level of arsenic in blood, urine, hair, or fingernails. The urine test is the most reliable test for arsenic exposure within the last few days. Tests on hair and fingernails can measure exposure to high levels or arsenic over the past 6-12 months. These tests can determine if you have been exposed to above-average levels of arsenic. They cannot predict how the arsenic levels in your body will affect your health.

Has the federal government made recommendations to protect human health?

EPA has set limits on the amount of arsenic that industrial sources can release to the environment and has restricted or canceled many uses of arsenic in pesticides. EPA has set a limit of 0.01 parts per million (ppm) for arsenic in drinking water.

The Occupational Safety and Health Administration has set limits of 10 μ g arsenic per cubic meter of workplace air (10 μ g/m³) for 8 hour shifts and 40 hour work weeks.

Source of Information

Agency for Toxic Substances and Disease Registry (ATSDR). 2000. Toxicological Profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html . ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Federal Recycling Program

COPPER CAS # 7440-50-8

September 2002

AGENCY FOR TOXIC SUBSTANCES AND DISEASE BEGISTRY

Division of Toxicology ToxFAQsTM

This fact sheet answers the most frequently asked health questions (FAQs) about copper. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Copper is a reddish metal that occurs naturally in the environment. It also occurs naturally in plants and animals. Low levels of copper are essential for maintaining good health. High levels can cause harmful effects such as irritation of the nose, mouth and eyes, vomiting, diarrhea, stomach crumps, and nausea. Copper has been found in at least 884 of the 1,613 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is copper?

Copper is a reddish metal that occurs naturally in rocks, soil, water, and air. Copper also occurs naturally in plants and animals.

Metallic copper can be easily molded or shaped. Metallic copper can be found in the U.S. penny, electrical wiring, and some water pipes. Metallic copper is also found in mixtures (called alloys) with other metals such as brass and bronze. Copper is also found as part of other compounds forming salts. Copper salts occur naturally, but are also manufactured. The most common copper salt is copper sulfate. Most copper compounds are blue-green in color. Copper compounds are commonly used in agriculture to treat plant diseases like mildew, for water treatment and, as preservatives for wood, leather, and fabrics.

What happens to copper when it enters the environment?

□ Copper can enter the environment from the mining of copper and other metals and from factories that make or use metallic copper or copper compounds.

□ It can also enter the environment through domestic waste water, combustion of fossil fuels and wastes, wood production, phosphate fertilizer production, and natural sources (e.g., windblown dust from soils, volcanoes, decaying vegetation, forest fires, and sea spray). □ Copper in soil strongly attaches to organic material and minerals.

□ Copper that dissolves in water becomes rapidly bound to particles suspended in the water.

□ Copper does not typically enter groundwater.

□ Copper carried by particles emitted from smelters and ore processing plants is carried back to the ground by gravity or in rain or snow.

□ Copper does not break down in the environment.

How might I be exposed to copper?

□ Breathing air, drinking water, eating food, and by skin contact with soil, water, or other copper-containing substances.

 \Box Some copper in the environment can be taken up by plants and animals.

□ Higher exposure may occur if your water is corrosive and you have copper plumbing and brass water fixtures. □ You may be exposed to higher amounts of copper if you drink water or swim in lakes or reservoirs recently treated with copper to control algae or receive cooling water from a power plant that may have high amounts of dissolved copper.

Using some garden products (e.g., fungicides) to control plant diseases.

Living near bronze and brass production facilities may expose you to higher copper levels in soil.

□ You may breathe copper-containing dust or have skin contact if you work in the industry of mining copper or

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

COPPER CAS # 7440-50-8

ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html

processing the ore. You may breathe high levels if you grind or weld copper metal.

How can copper affect my health?

Copper is essential for good health, but high amounts can be harmful. Long-term exposure to copper dust can irritate your nose, mouth, and eyes, and cause headaches, dizziness, nausea, and diarrhea.

Drinking water with higher than normal levels of copper may cause vomiting, diarrhea, stomach cramps, and nausea. Intentionally high intakes of copper can cause liver and kidney damage and even death.

How likely is copper to cause cancer?

We do not know whether copper can cause cancer in humans. The EPA has determined that copper is not classifiable as to carcinogenicity.

How can copper affect children?

Exposure to high levels of copper will result in the same type of effects in children and adults. Studies in animals suggest that the young children may have more severe effects than adults; we do not know if this would also be true in humans. There is a very small percentage of infants and children who are unusually sensitive to copper.

We do not know if copper can cause birth defects or other developmental effects in humans. Studies in animals suggest that ingestion of high levels of copper may cause a decrease in fetal growth.

How can families reduce the risk of exposure to copper?

□ The greatest potential source of copper exposure is through drinking water, especially in water that is first drawn in the morning after sitting in copper pipes and brass faucets overnight.

 \Box To reduce exposure, run the water for at least 15-30 seconds before using it.

□ If you are exposed to copper at work, you may carry

copper home on your skin, clothes, or tools. You can avoid this by showering, and changing clothing before leaving work, and your work clothes should be kept separate from other clothes and laundered separately.

Is there a medical test to show whether I've been exposed to copper?

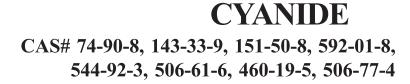
Copper is normally found in all tissues of the body, blood, urine, feces, hair, and nails. High levels of copper in these samples can show that you have been exposed to higher than normal levels of copper. Tests to measure copper levels in the body are not routinely available at the doctor's office because they require special equipment. These tests cannot tell the extent of exposure or whether you will experience harmful effects.

Has the federal government made recommendations to protect human health?

The EPA has determined that drinking water should not contain more than 1.3 milligrams of copper per liter of water (1.3 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 0.1 mg per cubic meter (0.1 mg/m³) of copper fumes (vapor generated from heating copper) and 1 mg/m³ of copper dusts (fine metallic copper particles) and mists (aerosol of soluble copper) in workroom air during an 8-hour work shift, 40-hour workweek.

The Food and Nutrition Board of the Institute of Medicine recommends dietary allowances (RDAs) of 340 micrograms (340 μ g) of copper per day for children aged 1-3 years, 440 μ g/day for children aged 4-8 years, 700 μ g/day for children aged 9-13 years, 890 μ g/day for children aged 14-18 years, and 900 μ g/day for adults.


References

Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological Profile for Copper (Draft for Public Comment). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Federal Recycling Program

Division of Toxicology and Environmental Medicine ToxFAQsTM

July 2006

This fact sheet answers the most frequently asked health questions (FAQs) about cyanide. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to high levels of cyanide harms the brain and heart, and may cause coma and death. Exposure to lower levels may result in breathing difficulties, heart pains, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Cyanide has been found in at least 471 of the 1,662 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is cyanide?

Cyanide is usually found joined with other chemicals to form compounds. Examples of simple cyanide compounds are hydrogen cyanide, sodium cyanide and potassium cyanide. Certain bacteria, fungi, and algae can produce cyanide, and cyanide is found in a number of foods and plants. In certain plant foods, including almonds, millet sprouts, lima beans, soy, spinach, bamboo shoots, and cassava roots (which are a major source of food in tropical countries), cyanides occur naturally as part of sugars or other naturally-occurring compounds. However, the edible parts of plants that are eaten in the United States, including tapioca which is made from cassava roots, contain relatively low amounts of cyanide.

Hydrogen cyanide is a colorless gas with a faint, bitter, almondlike odor. Sodium cyanide and potassium cyanide are both white solids with a bitter, almond-like odor in damp air. Cyanide and hydrogen cyanide are used in electroplating, metallurgy, organic chemicals production, photographic developing, manufacture

of plastics, fumigation of ships, and some mining processes.

What happens to cyanide when it enters the environment?

□ Cyanide enters air, water, and soil from both natural processes and industrial activities.

□ In air, cyanide is mainly found as gaseous hydrogen cyanide; a small amount is present as fine dust particles.

□ The half-life (the time needed for half of the material to be removed) of hydrogen cyanide in the atmosphere is about 1-3 years.

□ Most cyanide in surface water will form hydrogen cyanide and evaporate.

□ Cyanide in water does not build up in the bodies of fish. □ Cyanides are fairly mobile in soil. Once in soil, cyanide can be removed through several processes. Some cyanide compounds in soil can form hydrogen cyanide and evaporate, whereas some cyanide compounds will be transformed into other chemical forms by microorganisms in soil. At the high concentrations, cyanide becomes toxic to soil microorganisms. Because these microorganisms can no longer change cyanide to other chemical forms, cyanide is able to passes through soil into underground water.

How might I be exposed to cyanide?

□ Breathing air, drinking water, touching soil, or eating foods that contain cyanide.

□ Smoking cigarettes and breathing smoke-filled air during fires are major sources of cyanide exposure.

Breathing air near a hazardous waste site containing cyanide.
 Eating foods naturally containing cyanide compounds, such as tapioca (made from cassava roots), lima beans, and almonds. However, the portions of these plants that are eaten in the United States contain relatively low amounts of cyanide.

How can cyanide affect my health?

You are not likely to be exposed to large enough amounts of cyanide in the environment to cause adverse health effects. The severity of the harmful effects following cyanide exposure

CYANIDE CAS# 74-90-8, 143-33-9, 151-50-8, 592-01-8, 544-92-3, 506-61-6, 460-19-5, 506-77-4

ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html

depends in part on the form of cyanide, such as hydrogen cyanide gas or cyanide salts. Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma and death. Workers who inhaled low levels of hydrogen cyanide over a period of years had breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland.

Some of the first indications of cyanide poisoning are rapid, deep breathing and shortness of breath, followed by convulsions (seizures) and loss of consciousness. These symptoms can occur rapidly, depending on the amount eaten. The health effects of large amounts of cyanide are similar, whether you eat, drink, or breathe it; cyanide uptake into the body through the skin is slower than these other means of exposure. Skin contact with hydrogen cyanide or cyanide salts can irritate and produce sores.

How likely is cyanide to cause cancer?

There are no reports that cyanide can cause cancer in people or animals. EPA has determined that cyanide is not classifiable as to its human carcinogenicity.

How can cyanide affect children?

Effects reported in exposed children are like those seen in exposed adults. Children who ate large quantities of apricot pits, which naturally contain cyanide as part of complex sugars, had rapid breathing, low blood pressure, headaches, and coma, and some died. Cyanide has not been reported to directly cause birth defects in people. However, among people in the tropics who eat cassava root, children have been born with thyroid disease because of the mothers' exposure to cyanide and thiocyanate during pregnancy. Birth defects occurred in rats that ate cassava root diets, and harmful effects on the reproductive system occurred in rats and mice that drank water containing sodium cyanide.

How can families reduce the risk of exposure to cvanide?

Families can reduce their exposure to cyanide by not breathing in tobacco smoke, which is the most common source of cyanide exposure for the general population. In the event of a building fire, families should evacuate the building immediately, because smoke from burning plastics contains cyanide (and carbon monoxide). Breathing this smoke can lead to unconsciousness or death. Cyanide in smoke can arise from the combustion of certain plastics (e.g., polyacrylamines, polyacrylics, polyurethane, etc.).

Compounds that release cyanide are naturally present in plants. The amounts are usually low in the edible portion but are higher in cassava. Pits and seeds of common fruits, such as apricots, apples, and peaches, may have substantial amounts of cyanidereleasing chemicals, so people should avoid eating these pits and seeds to prevent accidental cyanide poisoning.

Is there a medical test to show whether I've been exposed to cyanide?

There are medical tests to measure blood and urine levels of cyanide; however, small amounts of cyanide are always detectable in blood and urine. Tissue levels of cyanide can be measured if cyanide poisoning is suspected, but cyanide is rapidly cleared from the body, so the tests must be done soon after the exposure. An almond-like odor in the breath may alert a physician that a person was exposed to cyanide.

Has the federal government made recommendations to protect human health?

EPA regulates the levels of cyanide that are allowable in drinking water. The highest level of cyanide allowed in drinking water is 0.2 parts cyanide per 1 million parts of water (0.2 ppm).

The Occupational Safety and Health Administration (OSHA) has set a limit for hydrogen cyanide and most cyanide salts of 10 parts cyanide per 1 million parts of air (10 ppm) in the workplace.

Reference

Agency for Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological Profile for Cyanide (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Federal Recycling Program

FUEL OILS CAS # 8008-20-6, 70892-10-3, 68476-30-2, 68476-34-6, 68476-31-3

Agency for Toxic Substances and Disease Registry ToxFAQs

September 1996

This fact sheet answers the most frequently asked health questions (FAQs) about fuel oils. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Fuel oils are liquid mixtures produced from petroleum, and their use mostly involves burning them as fuels. Drinking or breathing fuel oils may cause nausea or nervous system effects. However, exposure under normal use conditions is not likely to be harmful. Fuel oils have been found in at least 26 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What are fuel oils?

(Pronounced fyoo/əl oilz)

Fuel oils are a variety of yellowish to light brown liquid mixtures that come from crude petroleum. Some chemicals found in fuel oils may evaporate easily, while others may more easily dissolve in water.

Fuel oils are produced by different petroleum refining processes, depending on their intended uses. Fuel oils may be used as fuel for engines, lamps, heaters, furnaces, and stoves, or as solvents.

Some commonly found fuel oils include kerosene, diesel fuel, jet fuel, range oil, and home heating oil. These fuel oils differ from one another by their hydrocarbon compositions, boiling point ranges, chemical additives, and uses.

What happens to fuel oils when they enter the environment?

- □ Some chemicals found in fuel oils may evaporate into the air from open containers or contaminated soil or water.
- □ Some chemicals found in fuel oils may dissolve in water after spills to surface waters or leaks from underground storage tanks.

- □ Some chemicals found in fuel oils may stick to particles in water, which will eventually cause them to settle to the bottom sediment.
- □ Some of the chemicals found in fuel oils may be broken down slowly in air, water, and soil by sunlight or small organisms.
- □ Some of the chemicals found in fuel oils may build up significantly in plants and animals.

How might I be exposed to fuel oils?

- □ Using a home kerosene heater or stove, or using fuel oils at work.
- □ Breathing air in home or building basements that has been contaminated with fuel oil vapors entering from the soil.
- □ Drinking or swimming in water that has been contaminated with fuel oils from a spill or a leaking underground storage tank.
- □ Touching soil contaminated with fuel oils.
- □ Using fuel oils to wash paint or grease from skin or equipment.

How can fuel oils affect my health?

Little information is available about the health effects that may be caused by fuel oils. People who use kerosene

ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

stoves for cooking do not seem to have any health problems related to their exposure.

Breathing some fuel oils for short periods may cause nausea, eye irritation, increased blood pressure, headache, lightheadedness, loss of appetite, poor coordination, and difficulty concentrating. Breathing diesel fuel vapors for long periods may cause kidney damage and lower your blood's ability to clot.

Drinking small amounts of kerosene may cause vomiting, diarrhea, coughing, stomach swelling and cramps, drowsiness, restlessness, painful breathing, irritability, and unconsciousness. Drinking large amounts of kerosene may cause convulsions, coma, or death. Skin contact with kerosene for short periods may cause itchy, red, sore, or peeling skin.

How likely are fuel oils to cause cancer?

The International Agency for Research on Cancer (IARC) has determined that some fuel oils (heavy) may possibly cause cancer in humans, but for other fuel oils (light) there is not enough information to make a determination. IARC has also determined that occupational exposures to fuel oils during petroleum refining are probably carcinogenic in humans.

Some studies with mice have suggested that repeated contact with fuel oils may cause liver or skin cancer. However, other mouse studies have found this not to be the case. No studies are available in other animals or in people on the carcinogenic effects of fuel oils.

Is there a medical test to show whether I've been exposed to fuel oils?

There is no medical test that shows if you have been exposed to fuel oils. Tests are available to determine if some of

the chemicals commonly found in fuel oils are in your blood. However, the presence of these chemicals in blood may not necessarily mean that you have been exposed to fuel oils.

Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) and the Air Force Office of Safety and Health (AFOSH) have set a permissible exposure level (PEL) of 400 parts of petroleum distillates per million parts of air (400 ppm) for an 8-hour workday, 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that average workplace air levels not exceed 350 milligrams of petroleum distillates per cubic meter of air (350 mg/m³) for a 40-hour workweek.

The Department of Transportation (DOT) lists fuel oils as hazardous materials and, therefore, regulates their transportation.

Glossary

Carcinogenic: Able to cause cancer.

CAS: Chemical Abstracts Service.

Evaporate: To change into a vapor or a gas.

Hydrocarbon: Any compound made up of hydrogen and carbon.

Milligram (mg): One thousandth of a gram.

ppm: Parts per million.

Sediment: Mud and debris that have settled to the bottom of a body of water.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for fuel oils. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop E-29, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 404-498-0093. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Federal Recycling Program

Division of Toxicology and Environmental Medicine ToxFAQsTM

This fact sheet answers the most frequently asked health questions (FAQs) about lead. For more information, call the ATSDR Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to lead can happen from breathing workplace air or dust, eating contaminated foods, or drinking contaminated water. Children can be exposed from eating lead-based paint chips or playing in contaminated soil. Lead can damage the nervous system, kidneys, and reproductive system. Lead has been found in at least 1,272 of the 1,684 National Priority List sites identified by the Environmental Protection Agency (EPA).

What is lead?

Lead is a naturally occurring bluish-gray metal found in small amounts in the earth's crust. Lead can be found in all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing.

Lead has many different uses. It is used in the production of batteries, ammunition, metal products (solder and pipes), and devices to shield X-rays. Because of health concerns, lead from paints and ceramic products, caulking, and pipe solder has been dramatically reduced in recent years. The use of lead as an additive to gasoline was banned in 1996 in the United States.

What happens to lead when it enters the environment?

□ Lead itself does not break down, but lead compounds are changed by sunlight, air, and water.

□ When lead is released to the air, it may travel long distances before settling to the ground.

□ Once lead falls onto soil, it usually sticks to soil particles.

□ Movement of lead from soil into groundwater will depend on the type of lead compound and the characteristics of the soil.

How might I be exposed to lead?

□ Eating food or drinking water that contains lead. Water pipes in some older homes may contain lead solder. Lead can leach out into the water.

□ Spending time in areas where lead-based paints have been used and are deteriorating. Deteriorating lead paint can contribute to lead dust.

❑ Working in a job where lead is used or engaging in certain hobbies in which lead is used, such as making stained glass.

□ Using health-care products or folk remedies that contain lead.

How can lead affect my health?

The effects of lead are the same whether it enters the body through breathing or swallowing. Lead can affect almost every organ and system in your body. The main target for lead toxicity is the nervous system, both in adults and children. Long-term exposure of adults can result in decreased performance in some tests that measure functions of the nervous system. It may also cause weakness in fingers, wrists, or ankles. Lead exposure also causes small increases in blood pressure, particularly in middle-aged and older people and can cause anemia. Exposure to high lead levels can severely damage the brain and kidneys in adults or children and ultimately cause death. In pregnant women, high levels of exposure to lead may cause miscarriage. Highlevel exposure in men can damage the organs responsible for sperm production.

How likely is lead to cause cancer?

We have no conclusive proof that lead causes cancer in humans. Kidney tumors have developed in rats and mice that had been given large doses of some kind of lead compounds. The Department of Health and Human Services

August 2007

LEAD CAS # 7439-92-1

ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html

(DHHS) has determined that lead and lead compounds are reasonably anticipated to be human carcinogens and the EPA has determined that lead is a probable human carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic lead is probably carcinogenic to humans and that there is insufficient information to determine whether organic lead compounds will cause cancer in humans.

How can lead affect children?

Small children can be exposed by eating lead-based paint chips, chewing on objects painted with lead-based paint, or swallowing house dust or soil that contains lead. Children are more vulnerable to lead poisoning than adults. A child who swallows large amounts of lead may develop blood anemia, severe stomachache, muscle weakness, and brain damage. If a child swallows smaller amounts of lead, much less severe effects on blood and brain function may occur. Even at much lower levels of exposure, lead can affect a child's mental and physical growth.

Exposure to lead is more dangerous for young and unborn children. Unborn children can be exposed to lead through their mothers. Harmful effects include premature births, smaller babies, decreased mental ability in the infant, learning difficulties, and reduced growth in young children. These effects are more common if the mother or baby was exposed to high levels of lead. Some of these effects may persist beyond childhood.

How can families reduce the risks of exposure to lead?

Avoid exposure to sources of lead.

□ Do not allow children to chew or mouth surfaces that may have been painted with lead-based paint.

□ If you have a water lead problem, run or flush water that has been standing overnight before drinking or cooking with it.

□ Some types of paints and pigments that are used as make-up or hair coloring contain lead. Keep these kinds of products away from children

□ If your home contains lead-based paint or you live in an area contaminated with lead, wash children's hands and faces

often to remove lead dusts and soil, and regularly clean the house of dust and tracked in soil.

Is there a medical test to determine whether I've been exposed to lead?

A blood test is available to measure the amount of lead in your blood and to estimate the amount of your recent exposure to lead. Blood tests are commonly used to screen children for lead poisoning. Lead in teeth or bones can be measured by X-ray techniques, but these methods are not widely available. Exposure to lead also can be evaluated by measuring erythrocyte protoporphyrin (EP) in blood samples. EP is a part of red blood cells known to increase when the amount of lead in the blood is high. However, the EP level is not sensitive enough to identify children with elevated blood lead levels below about 25 micrograms per deciliter (μ g/dL). These tests usually require special analytical equipment that is not available in a doctor's office. However, your doctor can draw blood samples and send them to appropriate laboratories for analysis.

Has the federal government made recommendations to protect human health?

The Centers for Disease Control and Prevention (CDC) recommends that states test children at ages 1 and 2 years. Children should be tested at ages 3–6 years if they have never been tested for lead, if they receive services from public assistance programs for the poor such as Medicaid or the Supplemental Food Program for Women, Infants, and Children, if they live in a building or frequently visit a house built before 1950; if they visit a home (house or apartment) built before 1978 that has been recently remodeled; and/or if they have a brother, sister, or playmate who has had lead poisoning. CDC considers a blood lead level of 10 μ g/dL to be a level of concern for children.

EPA limits lead in drinking water to 15 µg per liter.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for lead (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-800-232-4636, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Federal Recycling Program

Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about mercury. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to mercury occurs from breathing contaminated air, ingesting contaminated water and food, and having dental and medical treatments. Mercury, at high levels, may damage the brain, kidneys, and developing fetus. This chemical has been found in at least 714 of 1,467 National Priorities List sites identified by the Environmental Protection Agency.

What is mercury?

(Pronounced mūr/kyə-rē)

Mercury is a naturally occurring metal which has several forms. The metallic mercury is a shiny, silver-white, odorless liquid. If heated, it is a colorless, odorless gas.

Mercury combines with other elements, such as chlorine, sulfur, or oxygen, to form inorganic mercury compounds or "salts," which are usually white powders or crystals. Mercury also combines with carbon to make organic mercury compounds. The most common one, methylmercury, is produced mainly by microscopic organisms in the water and soil. More mercury in the environment can increase the amounts of methylmercury that these small organisms make.

Metallic mercury is used to produce chlorine gas and caustic soda, and is also used in thermometers, dental fillings, and batteries. Mercury salts are sometimes used in skin lightening creams and as antiseptic creams and ointments.

What happens to mercury when it enters the environment?

- □ Inorganic mercury (metallic mercury and inorganic mercury compounds) enters the air from mining ore deposits, burning coal and waste, and from manufacturing plants.
- □ It enters the water or soil from natural deposits, disposal of wastes, and volcanic activity.

- □ Methylmercury may be formed in water and soil by small organisms called bacteria.
- □ Methylmercury builds up in the tissues of fish. Larger and older fish tend to have the highest levels of mercury.

How might I be exposed to mercury?

- **□** Eating fish or shellfish contaminated with methylmercury.
- □ Breathing vapors in air from spills, incinerators, and industries that burn mercury-containing fuels.
- □ Release of mercury from dental work and medical treatments.
- Breathing contaminated workplace air or skin contact during use in the workplace (dental, health services, chemical, and other industries that use mercury).
- □ Practicing rituals that include mercury.

How can mercury affect my health?

The nervous system is very sensitive to all forms of mercury. Methylmercury and metallic mercury vapors are more harmful than other forms, because more mercury in these forms reaches the brain. Exposure to high levels of metallic, inorganic, or organic mercury can permanently damage the brain, kidneys, and developing fetus. Effects on brain functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory problems.

Short-term exposure to high levels of metallic mercury vapors may cause effects including lung damage, nausea,

April 1999

MERCURY CAS # 7439-97-6

ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation.

How likely is mercury to cause cancer?

There are inadequate human cancer data available for all forms of mercury. Mercuric chloride has caused increases in several types of tumors in rats and mice, and methylmercury has caused kidney tumors in male mice. The EPA has determined that mercuric chloride and methylmercury are possible human carcinogens.

How can mercury affect children?

Very young children are more sensitive to mercury than adults. Mercury in the mother's body passes to the fetus and may accumulate there. It can also can pass to a nursing infant through breast milk. However, the benefits of breast feeding may be greater than the possible adverse effects of mercury in breast milk.

Mercury's harmful effects that may be passed from the mother to the fetus include brain damage, mental retardation, incoordination, blindness, seizures, and inability to speak. Children poisoned by mercury may develop problems of their nervous and digestive systems, and kidney damage.

How can families reduce the risk of exposure to mercury?

Carefully handle and dispose of products that contain mercury, such as thermometers or fluorescent light bulbs. Do not vacuum up spilled mercury, because it will vaporize and increase exposure. If a large amount of mercury has been spilled, contact your health department. Teach children not to play with shiny, silver liquids.

Properly dispose of older medicines that contain mercury. Keep all mercury-containing medicines away from children. rooms where liquid mercury has been used.

Learn about wildlife and fish advisories in your area from your public health or natural resources department.

Is there a medical test to show whether I've been exposed to mercury?

Tests are available to measure mercury levels in the body. Blood or urine samples are used to test for exposure to metallic mercury and to inorganic forms of mercury. Mercury in whole blood or in scalp hair is measured to determine exposure to methylmercury. Your doctor can take samples and send them to a testing laboratory.

Has the federal government made recommendations to protect human health?

The EPA has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb).

The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million parts of seafood (1 ppm).

The Occupational Safety and Health Administration (OSHA) has set limits of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 mg/m³) and 0.05 mg/m³ of metallic mercury vapor for 8-hour shifts and 40-hour work weeks.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Pregnant women and children should keep away from

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

NAPHTHALENE 1-METHYLNAPHTHALENE CAS # 91-20-3 CAS # 90-12-0

2-METHYLNAPHTHALENE CAS # 91-57-6

Division of Toxicology ToxFAQsTM

August 2005

This fact sheet answers the most frequently asked health questions (FAQs) about naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to naphthalene, 1-methylnaphthalene, or 2methylnaphthalene happens mostly from breathing air contaminated from the burning of wood, tobacco, or fossil fuels, industrial discharges, or moth repellents. Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. Naphthalene has caused cancer in animals. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene have been found in at least 687, 36, and 412, respectively, of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA).

What are naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

Naphthalene is a white solid that evaporates easily. Fuels such as petroleum and coal contain naphthalene. It is also called white tar, and tar camphor, and has been used in mothballs and moth flakes. Burning tobacco or wood produces naphthalene. It has a strong, but not unpleasant smell. The major commercial use of naphthalene is in the manufacture of polyvinyl chloride (PVC) plastics. Its major consumer use is in moth repellents and toilet deodorant blocks.

1-Methylnaphthalene and 2-methylnaphthalene are naphthalenerelated compounds. 1-Methylnaphthalene is a clear liquid and 2methylnaphthalene is a solid; both can be smelled in air and in water at very low concentrations.

1-Methylnaphthalene and 2-methylnaphthalene are used to make other chemicals such as dyes and resins. 2-Methylnaphthalene is also used to make vitamin K.

What happens to naphthalene,

1-methylnaphthalene, and 2-methylnaphthalene when they enter the environment?

□ Naphthalene enters the environment from industrial and domestic sources, and from accidental spills.

□ Naphthalene can dissolve in water to a limited degree and may be present in drinking water from wells close to hazardous waste sites and landfills.

□ Naphthalene can become weakly attached to soil or pass through soil into underground water.

 \Box In air, moisture and sunlight break it down within 1 day. In water, bacteria break it down or it evaporates into the air.

□ Naphthalene does not accumulate in the flesh of animals or fish that you might eat.

□ 1-Methylnaphthalene and 2-methylnaphthalene are expected to act like naphthalene in air, water, or soil because they have similar chemical and physical properties.

How might I be exposed to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

□ Breathing low levels in outdoor air.

□ Breathing air contaminated from industrial discharges or smoke from burning wood, tobacco, or fossil fuels.

Using or making moth repellents, coal tar products, dyes or inks could expose you to these chemicals in the air.

Drinking water from contaminated wells.

D Touching fabrics that are treated with moth repellents containing naphthalene.

Exposure to naphthalene, 1-methylnaphthalene and

2-methylnaphthalene from eating foods or drinking beverages is unlikely.

How can naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene affect my health?

Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. This could cause you to have too few red blood cells until your body replaces the destroyed cells. This condition is called hemolytic anemia. Some symptoms of hemolytic anemia are fatigue, lack of appetite, restlessness, and pale skin. Exposure to large amounts of naphthalene may also cause nausea, vomiting, diarrhea, blood in the urine, and a yellow color to the skin. Animals sometimes develop cloudiness in their eyes after swallowing high amounts of naphthalene. It is not clear whether this also develops in people. Rats and mice that breathed naphthalene vapors daily for a lifetime developed irritation and inflammation of their nose and lungs. It is unclear if naphthalene

Page 2

NAPHTHALENE CAS # 91-20-3

1-METHYLNAPHTHALENE CAS # 90-12-0 2-METHYLNAPHTHALENE CAS # 91-57-6

ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html

causes reproductive effects in animals; most evidence says it does not.

There are no studies of humans exposed to 1-methylnaphthalene or 2-methylnaphthalene.

Mice fed food containing 1-methylnaphthalene and 2-

methylnaphthalene for most of their lives had part of their lungs filled with an abnormal material.

How likely are naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene to cause cancer?

There is no direct evidence in humans that naphthalene, 1methylnaphthalene, or 2-methylnaphthalene cause cancer. However, cancer from naphthalene exposure has been seen in animal studies. Some female mice that breathed naphthalene vapors daily for a lifetime developed lung tumors. Some male and female rats exposed to naphthalene in a similar manner also developed nose tumors.

Based on the results from animal studies, the Department of Health and Humans Services (DHHS) concluded that naphthalene is reasonably anticipated to be a human carcinogen. The International Agency for Research on Cancer (IARC) concluded that naphthalene is possibly carcinogenic to humans. The EPA determined that naphthalene is a possible human carcinogen (Group C) and that the data are inadequate to assess the human carcinogenic potential of 2-methylnaphthalene.

How can naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene affect children?

Hospitals have reported many cases of hemolytic anemia in children, including newborns and infants, who either ate naphthalene mothballs or deodorants cakes or who were in close contact with clothing or blankets stored in naphthalene mothballs. Naphthalene can move from a pregnant woman's blood to the unborn baby's blood. Naphthalene has been detected in some samples of breast milk from the general U.S. population, but not at levels that are expected to be of concern.

There is no information on whether naphthalene has affected development in humans. No developmental abnormalities were observed in the offspring from rats, mice, and rabbits fed naphthalene during pregnancy.

We do not have any information on possible health effects of 1methylnaphthalene or 2-methylnaphthalene on children.

How can families reduce the risks of exposure to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

□ Families can reduce the risks of exposure to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene by avoiding smoking tobacco, generating smoke during cooking, or using fireplaces or heating appliances in the their homes.

□ If families use naphthalene-containing moth repellents, the material should be enclosed in containers that prevent vapors from escaping, and kept out of the reach from children.

□ Blankets and clothing stored with naphthalene moth repellents should be aired outdoors to remove naphthalene odors and washed before they are used.

□ Families should inform themselves of the contents of air deodorizers that are used in their homes and refrain from using deodorizers with naphthalene.

Is there a medical test to determine whether I've been exposed to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

Tests are available that measure levels of these chemicals and their breakdown products in samples of urine, feces, blood, maternal milk, or body fat. These tests are not routinely available in a doctor's office because they require special equipment, but samples can be sent to special testing laboratories. These tests cannot determine exactly how much naphthalene, 1-methylnaphthalene, or 2methylnaphthalene you were exposed to or predict whether harmful effects will occur. If the samples are collected within a day or two of exposure, then the tests can show if you were exposed to a large or small amount of naphthalene, 1-methylnaphthalene, or 2methylnaphthalene.

Has the federal government made recommendations to protect human health?

The EPA recommends that children not drink water with over 0.5 parts per million (0.5 ppm) naphthalene for more than 10 days or over 0.4 ppm for any longer than 7 years. Adults should not drink water with more than 1 ppm for more than 7 years. For water consumed over a lifetime (70 years), the EPA suggests that it contain no more than 0.1 ppm naphthalene.

The Occupational Safety and Health Administration (OSHA) set a limit of 10 ppm for the level of naphthalene in workplace air during an 8-hour workday, 40-hour workweek. The National Institute for Occupational Safety and Health (NIOSH) considers more than 500 ppm of naphthalene in air to be immediately dangerous to life or health. This is the exposure level of a chemical that is likely to impair a worker's ability to leave a contaminate area and therefore, results in permanent health problems or death.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

Agency for Toxic Substances and Disease Registry ToxFAQs

September 1996

This fact sheet answers the most frequently asked health questions (FAQs) about polycyclic aromatic hydrocarbons (PAHs). For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Exposure to polycyclic aromatic hydrocarbons usually occurs by breathing air contaminated by wild fires or coal tar, or by eating foods that have been grilled. PAHs have been found in at least 600 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What are polycyclic aromatic hydrocarbons?

(Pronounced pŏl'ĭ-sī'klĭk ăr'ə-măt'ĭk hī'drəkar'bənz)

Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs are usually found as a mixture containing two or more of these compounds, such as soot.

Some PAHs are manufactured. These pure PAHs usually exist as colorless, white, or pale yellow-green solids. PAHs are found in coal tar, crude oil, creosote, and roofing tar, but a few are used in medicines or to make dyes, plastics, and pesticides.

What happens to PAHs when they enter the environment?

- □ PAHs enter the air mostly as releases from volcanoes, forest fires, burning coal, and automobile exhaust.
- □ PAHs can occur in air attached to dust particles.
- □ Some PAH particles can readily evaporate into the air from soil or surface waters.
- □ PAHs can break down by reacting with sunlight and other chemicals in the air, over a period of days to weeks.

- □ PAHs enter water through discharges from industrial and wastewater treatment plants.
- □ Most PAHs do not dissolve easily in water. They stick to solid particles and settle to the bottoms of lakes or rivers.
- □ Microorganisms can break down PAHs in soil or water after a period of weeks to months.
- □ In soils, PAHs are most likely to stick tightly to particles; certain PAHs move through soil to contaminate underground water.
- □ PAH contents of plants and animals may be much higher than PAH contents of soil or water in which they live.

How might I be exposed to PAHs?

- Breathing air containing PAHs in the workplace of coking, coal-tar, and asphalt production plants; smokehouses; and municipal trash incineration facilities.
- Breathing air containing PAHs from cigarette smoke, wood smoke, vehicle exhausts, asphalt roads, or agricultural burn smoke.
- Coming in contact with air, water, or soil near hazardous waste sites.
- □ Eating grilled or charred meats; contaminated cereals, flour, bread, vegetables, fruits, meats; and processed or pickled foods.
- Drinking contaminated water or cow's milk.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Nursing infants of mothers living near hazardous waste sites may be exposed to PAHs through their mother's milk.

How can PAHs affect my health?

Mice that were fed high levels of one PAH during pregnancy had difficulty reproducing and so did their offspring. These offspring also had higher rates of birth defects and lower body weights. It is not known whether these effects occur in people.

Animal studies have also shown that PAHs can cause harmful effects on the skin, body fluids, and ability to fight disease after both short- and long-term exposure. But these effects have not been seen in people.

How likely are PAHs to cause cancer?

The Department of Health and Human Services (DHHS) has determined that some PAHs may reasonably be expected to be carcinogens.

Some people who have breathed or touched mixtures of PAHs and other chemicals for long periods of time have developed cancer. Some PAHs have caused cancer in laboratory animals when they breathed air containing them (lung cancer), ingested them in food (stomach cancer), or had them applied to their skin (skin cancer).

Is there a medical test to show whether I've been exposed to PAHs?

In the body, PAHs are changed into chemicals that can attach to substances within the body. There are special tests that can detect PAHs attached to these substances in body tissues or blood. However, these tests cannot tell whether any health effects will occur or find out the extent or source of your exposure to the PAHs. The tests aren't usually available in your doctor's office because special equipment is needed to conduct them.

Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) has set a limit of 0.2 milligrams of PAHs per cubic meter of air (0.2 mg/m³). The OSHA Permissible Exposure Limit (PEL) for mineral oil mist that contains PAHs is 5 mg/m³ averaged over an 8-hour exposure period.

The National Institute for Occupational Safety and Health (NIOSH) recommends that the average workplace air levels for coal tar products not exceed 0.1 mg/m^3 for a 10-hour workday, within a 40-hour workweek. There are other limits for workplace exposure for things that contain PAHs, such as coal, coal tar, and mineral oil.

Glossary

Carcinogen: A substance that can cause cancer.

Ingest: Take food or drink into your body.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

Division of Toxicology ToxFAQsTM

This fact sheet answers the most frequently asked health questions (FAQs) about selenium. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other <u>chemicals are present</u>.

HIGHLIGHTS: People may be exposed to low levels of selenium daily through food and water. Selenium is a trace mineral needed in small amounts for good health, but exposure to much higher levels can result in neurological effects and brittle hair and deformed nails. Occupational inhalation exposure to selenium vapors may cause dizziness, fatigue, irritation of mucous membranes, and respiratory effects. This substance has been found in at least 508 of the 1,636 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is selenium?

Selenium is a naturally occurring mineral element that is distributed widely in nature in most rocks and soils. In its pure form, it exists as metallic gray to black hexagonal crystals, but in nature it is usually combined with sulfide or with silver, copper, lead, and nickel minerals. Most processed selenium is used in the electronics industry, but it is also used: as a nutritional supplement; in the glass industry; as a component of pigments in plastics, paints, enamels, inks, and rubber; in the preparation of pharmaceuticals; as a nutritional feed additive for poultry and livestock; in pesticide formulations; in rubber production; as an ingredient in antidandruff shampoos; and as a constituent of fungicides. Radioactive selenium is used in diagnostic medicine.

What happens to selenium when it enters the environment?

Selenium occurs naturally in the environment and can be released by both natural and manufacturing processes.
Selenium dust can enter the air from burning coal and oil. This selenium dust will eventually settle over the land and water.

□ It also enters water from rocks and soil, and from agricultural and industrial waste. Some selenium compounds will dissolve in water, and some will settle to the bottom as particles.

□ Insoluble forms of selenium will remain in soil, but soluble forms are very mobile and may enter surface water from soils.

 $\hfill\square$ Selenium may accumulate up the food chain.

How might I be exposed to selenium?

 \Box The general population is exposed to very low levels of selenium in air, food, and water. The majority of the daily intake comes from food.

□ People working in or living near industries where selenium is produced, processed, or converted into commercial products may be exposed to higher levels of selenium in the air.

□ People living in the vicinity of hazardous waste sites or coal burning plants may also be exposed to higher levels of selenium.

How can selenium affect my health?

Selenium has both beneficial and harmful effects. Low doses of selenium are needed to maintain good health. However, exposure to high levels can cause adverse health effects. Short-term oral exposure to high concentrations of selenium may cause nausea, vomiting, and diarrhea. Chronic oral exposure to high concentrations of selenium compounds can produce a disease called selenosis. The major signs of selenosis are hair loss, nail brittleness, and neurological abnormalities (such as numbness and other odd sensations

September 2003

SELENIUM

CAS # 7782-49-2

AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY

SELENIUM CAS # 7782-49-2

ToxFAQs[™] Internet address is http://www.atsdr.cdc.gov/toxfaq.html

in the extremities).

Brief exposures to high levels of elemental selenium or selenium dioxide in air can result in respiratory tract irritation, bronchitis, difficulty breathing, and stomach pains. Longerterm exposure to either of these air-borne forms can cause respiratory irritation, bronchial spasms, and coughing. Levels of these forms of selenium that would be necessary to produce such effects are normally not seen outside of the workplace.

Animal studies have shown that very high amounts of selenium can affect sperm production and the female reproductive cycle. We do not know if similar effects would occur in humans.

How likely is selenium to cause cancer?

Studies of laboratory animals and people show that most selenium compounds probably do not cause cancer. In fact, studies in humans suggest that lower-than-normal selenium levels in the diet might increase the risk of cancer. The International Agency for Research on Cancer (IARC) has determined that selenium and selenium compounds are not classifiable as to their carcinogenicity to humans. The EPA has determined that one specific form of selenium, selenium sulfide, is a probable human carcinogen. Selenium sulfide is not present in foods and is a very different chemical from the organic and inorganic selenium compounds found in foods and in the environment.

How can selenium affect children?

It is likely that the health effects seen in children exposed to selenium will be similar to the effects seen in adults. However, one study found that children may be less susceptible to the health effects of selenium than adults. Selenium compounds have not been shown to cause birth defects in humans or in other mammals.

How can families reduce the risk of exposure to selenium?

□ Certain dietary supplements and shampoos contain selenium; these should be used according to the

manufacturer's directions.

□ Children living near waste sites that contain selenium or coal burning plants should be encouraged to wash their hands before eating and to avoid putting their unwashed hands in their mouths.

Is there a medical test to show whether I've been exposed to selenium?

Low levels of selenium are normally found in body tissues and urine. Blood and urine tests for selenium are most useful for people who have recently been exposed to high levels. Toenail clippings can be used to determine longerterm exposure. These tests are not usually available at your doctor's office, but your doctor can send the samples to a laboratory that can perform the tests. None of these tests, however, can predict whether you will experience any health effects.

Has the federal government made recommendations to protect human health?

The EPA restricts the amount of selenium allowed in public water supplies to 50 parts total selenium per billion parts of water (50 ppb).

The Occupational Safety and Health Administration (OSHA) sets a limit of 0.2 mg selenium/m³ of workroom air for an 8-hour work shift.

ATSDR and the EPA have determined that 5 micrograms of selenium per kilogram of body weight taken daily would not be expected to cause any adverse health effects over a lifetime of such intake.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 2003. Toxicological Profile for Selenium (Update) Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about silver. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Silver is an element found naturally in the environment. At very high levels, it may cause argyria, a blue-gray discoloration of the skin and other organs. This chemical has been found in at least 27 of the 1,177 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is silver?

(Pronounced sĭl/vər)

Silver is a naturally occurring element. It is found in the environment combined with other elements such as sulfide, chloride, and nitrate. Pure silver is "silver" colored, but silver nitrate and silver chloride are powdery white and silver sulfide and silver oxide are dark-gray to black. Silver is often found as a by-product during the retrieval of copper, lead, zinc, and gold ores.

Silver is used to make jewelry, silverware, electronic equipment, and dental fillings. It is also used to make photographs, in brazing alloys and solders, to disinfect drinking water and water in swimming pools, and as an antibacterial agent. Silver has also been used in lozenges and chewing gum to help people stop smoking.

What happens to silver when is enters the environment?

- □ Silver may be released into the air and water through natural processes such as the weathering of rocks.
- Human activities such as the processing of ores, cement manufacture, and the burning of fossil fuel may release silver into the air.

- □ It may be released into water from photographic processing.
- **Rain** may wash silver out of soil into the groundwater.
- Silver does not appear to concentrate to a significant extent in aquatic animals.

How might I be exposed to silver?

- Breathing low levels in air.
- Swallowing it in food or drinking water.
- Carrying out activities such as jewelry-making, soldering, and photography.
- Using anti-smoking lozenges or other medicines containing it.

How can silver affect my health?

Exposure to high levels of silver for a long period of time may result in a condition called arygria, a blue-gray discoloration of the skin and other body tissues. Lower-level exposures to silver may also cause silver to be deposited in the skin and other parts of the body; however, this is not known to be harmful. Argyria is a permanent effect, but it appears to be a cosmetic problem that may not be otherwise harmful to health.

July 1999

SILVER

CAS # 7440-22-4

ToxFAQs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Exposure to high levels of silver in the air has resulted in breathing problems, lung and throat irritation, and stomach pains. Skin contact with silver can cause mild allergic reactions such as rash, swelling, and inflammation in some people.

Animal studies have shown that swallowing silver results in the deposit of silver in the skin. One study in mice found that the animals exposed to silver in drinking water were less active than unexposed animals.

No studies are available on whether silver affects reproduction or causes developmental problems in people.

How likely is silver to cause cancer?

No studies are available on whether silver may cause cancer in people. The only available animal studies showed both positive and negative results when silver was implanted under the skin.

The EPA has determined that silver is not classifiable as to human carcinogenicity.

Is there a medical test to show whether I've been exposed to silver?

Silver can be measured in the blood, urine, feces, and body tissues of exposed people. Silver builds up in the body, and the best way to learn if past exposure has occurred is to look for silver in samples of skin. Tests for silver are not commonly done at a doctor's office because they require special equipment. Although doctors can find out if a person has been exposed to silver by doing these tests, they cannot tell whether any health effects will occur.

Has the federal government made recommendations to protect human health?

drinking water not exceed 0.10 milligrams per liter of water (0.10 mg/L) because of the skin discoloration that may occur.

The EPA requires that spills or accidental releases of 1,000 pounds or more of silver be reported to the EPA.

The Occupational Safety and Health Administration (OSHA) limits silver in workplace air to 0.01 milligrams per cubic meter (0.01 mg/m³) for an 8-hour workday, 40-hour workweek. The National Institute of Occupational Safety and Health (NIOSH) also recommends that workplace air contain no more that 0.01 mg/m³ silver.

The American Conference of Governmental Industrial Hygienists (ACGIH) recommends that workplace air contain no more than 0.1 mg/m³ silver metal and 0.01 mg/m³ soluble silver compounds.

The federal recommendations have been updated as of July 1999.

Glossary

Carcinogenicity: Ability to cause cancer.

CAS: Chemcial Abstracts Service.

Milligram (mg): One thousandth of a gram.

National Priorities List: A list of the nation's worst hazardous waste sites.

Soluble: Capable of being dissolved in water.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicological profile for silver. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

The EPA recommends that the concentration of silver in

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

TETRACHLOROETHYLENE CAS # 127-18-4

Agency for Toxic Substances and Disease Registry ToxFAQs

September 1997

This fact sheet answers the most frequently asked health questions (FAQs) about tetrachloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Tetrachloroethylene is a manufactured chemical used for dry cleaning and metal degreasing. Exposure to very high concentrations of tetrachloroethylene can cause dizziness, headaches, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Tetrachloroethylene has been found in at least 771 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is tetrachloroethylene?

(Pronounced tĕt'rə-klôr' ō-ĕth'ə-lēn')

Tetrachloroethylene is a manufactured chemical that is widely used for dry cleaning of fabrics and for metal-degreasing. It is also used to make other chemicals and is used in some consumer products.

Other names for tetrachloroethylene include perchloroethylene, PCE, and tetrachloroethene. It is a nonflammable liquid at room temperature. It evaporates easily into the air and has a sharp, sweet odor. Most people can smell tetrachloroethylene when it is present in the air at a level of 1 part tetrachloroethylene per million parts of air (1 ppm) or more, although some can smell it at even lower levels.

What happens to tetrachloroethylene when it enters the environment?

- □ Much of the tetrachloroethylene that gets into water or soil evaporates into the air.
- □ Microorganisms can break down some of the tetrachloroethylene in soil or underground water.
- □ In the air, it is broken down by sunlight into other chemicals or brought back to the soil and water by rain.
- □ It does not appear to collect in fish or other animals that live in water.

How might I be exposed to tetrachloroethylene?

- □ When you bring clothes from the dry cleaners, they will release small amounts of tetrachloroethylene into the air.
- □ When you drink water containing tetrachloroethylene, you are exposed to it.

How can tetrachloroethylene affect my health?

High concentrations of tetrachloroethylene (particularly in closed, poorly ventilated areas) can cause dizziness, headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death.

Irritation may result from repeated or extended skin contact with it. These symptoms occur almost entirely in work (or hobby) environments when people have been accidentally exposed to high concentrations or have intentionally used tetrachloroethylene to get a "high."

In industry, most workers are exposed to levels lower than those causing obvious nervous system effects. The health effects of breathing in air or drinking water with low levels of tetrachloroethylene are not known.

Results from some studies suggest that women who work in dry cleaning industries where exposures to tetrachloroethyl-

TETRACHLOROETHYLENE CAS # 127-18-4

ToxFAQs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

ene can be quite high may have more menstrual problems and spontaneous abortions than women who are not exposed. However, it is not known if tetrachloroethylene was responsible for these problems because other possible causes were not considered.

Results of animal studies, conducted with amounts much higher than those that most people are exposed to, show that tetrachloroethylene can cause liver and kidney damage. Exposure to very high levels of tetrachloroethylene can be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were observed in the offspring of rats that breathed high levels of the chemical while they were pregnant.

How likely is tetrachloroethylene to cause cancer?

The Department of Health and Human Services (DHHS) has determined that tetrachloroethylene may reasonably be anticipated to be a carcinogen. Tetrachloroethylene has been shown to cause liver tumors in mice and kidney tumors in male rats.

Is there a medical test to show whether I've been exposed to tetrachloroethylene?

One way of testing for tetrachloroethylene exposure is to measure the amount of the chemical in the breath, much the same way breath-alcohol measurements are used to determine the amount of alcohol in the blood.

Because it is stored in the body's fat and slowly released into the bloodstream, tetrachloroethylene can be detected in the breath for weeks following a heavy exposure.

Tetrachloroethylene and trichloroacetic acid (TCA), a breakdown product of tetrachloroethylene, can be detected in the blood. These tests are relatively simple to perform. These tests aren't available at most doctors' offices, but can be performed at special laboratories that have the right equipment.

Because exposure to other chemicals can produce the same breakdown products in the urine and blood, the tests for breakdown products cannot determine if you have been exposed to tetrachloroethylene or the other chemicals.

Has the federal government made recommendations to protect human health?

The EPA maximum contaminant level for the amount of tetrachloroethylene that can be in drinking water is 0.005 milligrams tetrachloroethylene per liter of water (0.005 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 100 ppm for an 8-hour workday over a 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that tetrachloroethylene be handled as a potential carcinogen and recommends that levels in workplace air should be as low as possible.

Glossary

Carcinogen: A substance with the ability to cause cancer.

CAS: Chemical Abstracts Service.

Milligram (mg): One thousandth of a gram.

Nonflammable: Will not burn.

References

This ToxFAQs information is taken from the 1997 Toxicological Profile for Tetrachloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

TRICHLOROETHYLENE CAS # 79-01-6

Division of Toxicology ToxFAQsTM

July 2003

This fact sheet answers the most frequently asked health questions (FAQs) about trichloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is trichloroethylene?

Trichloroethylene (TCE) is a nonflammable, colorless liquid with a somewhat sweet odor and a sweet, burning taste. It is used mainly as a solvent to remove grease from metal parts, but it is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers.

Trichloroethylene is not thought to occur naturally in the environment. However, it has been found in underground water sources and many surface waters as a result of the manufacture, use, and disposal of the chemical.

What happens to trichloroethylene when it enters the environment?

Trichloroethylene dissolves a little in water, but it can remain in ground water for a long time.

□ Trichloroethylene quickly evaporates from surface water, so it is commonly found as a vapor in the air.

□ Trichloroethylene evaporates less easily from the soil than from surface water. It may stick to particles and remain for a long time.

□ Trichloroethylene may stick to particles in water, which will cause it to eventually settle to the bottom sediment.

Trichloroethylene does not build up significantly in

plants and animals.

How might I be exposed to trichloroethylene?

□ Breathing air in and around the home which has been contaminated with trichloroethylene vapors from shower water or household products such as spot removers and typewriter correction fluid.

□ Drinking, swimming, or showering in water that has been contaminated with trichloroethylene.

□ Contact with soil contaminated with trichloroethylene, such as near a hazardous waste site.

such as hear a hazardous waste site.

• Contact with the skin or breathing contaminated air while manufacturing trichloroethylene or using it at work to wash paint or grease from skin or equipment.

How can trichloroethylene affect my health?

Breathing small amounts may cause headaches, lung irritation, dizziness, poor coordination, and difficulty concentrating.

Breathing large amounts of trichloroethylene may cause impaired heart function, unconsciousness, and death. Breathing it for long periods may cause nerve, kidney, and liver damage.

TRICHLOROETHYLENE CAS # 79-01-6

ToxFAQs[™] Internet address is http://www.atsdr.cdc.gov/toxfaq.html

Drinking large amounts of trichloroethylene may cause nausea, liver damage, unconsciousness, impaired heart function, or death.

Drinking small amounts of trichloroethylene for long periods may cause liver and kidney damage, impaired immune system function, and impaired fetal development in pregnant women, although the extent of some of these effects is not yet clear.

Skin contact with trichloroethylene for short periods may cause skin rashes.

How likely is trichloroethylene to cause cancer?

Some studies with mice and rats have suggested that high levels of trichloroethylene may cause liver, kidney, or lung cancer. Some studies of people exposed over long periods to high levels of trichloroethylene in drinking water or in workplace air have found evidence of increased cancer. Although, there are some concerns about the studies of people who were exposed to trichloroethylene, some of the effects found in people were similar to effects in animals.

In its 9th Report on Carcinogens, the National Toxicology Program (NTP) determined that trichloroethylene is "reasonably anticipated to be a human carcinogen." The International Agency for Research on Cancer (IARC) has determined that trichloroethylene is "probably carcinogenic to humans."

Is there a medical test to show whether I've been exposed to trichloroethylene?

If you have recently been exposed to

trichloroethylene, it can be detected in your breath, blood, or urine. The breath test, if it is performed soon after exposure, can tell if you have been exposed to even a small amount of trichloroethylene.

Exposure to larger amounts is assessed by blood

and urine tests, which can detect trichloroethylene and many of its breakdown products for up to a week after exposure. However, exposure to other similar chemicals can produce the same breakdown products, so their detection is not absolute proof of exposure to trichloroethylene. This test isn't available at most doctors' offices, but can be done at special laboratories that have the right equipment.

Has the federal government made recommendations to protect human health?

The EPA has set a maximum contaminant level for trichloroethylene in drinking water at 0.005 milligrams per liter (0.005 mg/L) or 5 parts of TCE per billion parts water.

The EPA has also developed regulations for the handling and disposal of trichloroethylene.

The Occupational Safety and Health Administration (OSHA) has set an exposure limit of 100 parts of trichloroethylene per million parts of air (100 ppm) for an 8-hour workday, 40-hour workweek.

Glossary

Carcinogenicity: The ability of a substance to cause cancer. CAS: Chemical Abstracts Service. Evaporate: To change into a vapor or gas. Milligram (mg): One thousandth of a gram. Nonflammable: Will not burn. ppm: Parts per million. Sediment: Mud and debris that have settled to the bottom of a body of water. Solvent: A chemical that dissolves other substances. **References**

This ToxFAQs information is taken from the 1997 Toxicological Profile for Trichloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQsTM Internet address is http://www.atsdr.cdc.gov/toxfaq.html . ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

ATTACHMENT B REPORT FORMS

WEEKLY SAFETY REPORT FORM

Week Ending:	Project Name/Number:
Report Date:	Project Manager Name:
	of procedures occurring that week:
	l injuries, illnesses, or near misses that week:
Summary of air monitoring taken):	data that week (include and sample analyses, action levels exceeded, and action
Comments:	
Name:	Company:
Signature:	Title:

INCIDENT REPORT FORM

Date of Report:		
Injured:		
Employer:		
Site:	Si	te Location:
Report Prepared By: Sig	gnature	Title
ACCIDENT/INCIDENT	-	
Injury	Illness	Near Miss
Property Damage	Fire	Chemical Exposure
On-site Equipment	Motor Vehicle	Electrical
Mechanical	Spill	Other
WITNESS TO ACCIDE	NT/INCIDENT:	
Name:		Company:
A durant		Address:
Phone No.:		Phone No.:
Name:		Company:
Address:		Address:
Phone No.:		Phone No.:

INJURED - ILL:		
Name:	SSN:	
Address:	Age:	
Length of Service:	Time on Pre	esent Job:
Time/Classification:		
SEVERITY OF INJURY OR	ILLNESS:	
Disabling	Non-disabling	Fatality
Medical Treatment	First Aid Only	
ESTIMATED NUMBER OF	DAYS AWAY FROM JOB:	:
NATURE OF INJURY OR I	LLNESS:	
CLASSIFICATION OF INJU	JRY:	
Abrasions	Dislocations	Punctures
Bites	Faint/Dizziness	Radiation Burns
Blisters	Fractures	Respiratory Allergy
Bruises	Frostbite	Sprains
Chemical Burns	Heat Burns	Toxic Resp. Exposure
Cold Exposure	Heat Exhaustion	Toxic Ingestion
Concussion	Heat Stroke	Dermal Allergy
Lacerations		
Part of Body Affected:		
(If two or more injuries, record	on separate sheets)	

PROPERTY DAMAGE:

Description of Damage:	
Cost of Damage:	\$
ACCIDENT/INCIDENT LO	CATION:
ACCIDENT/INCIDENT AN (Object, substance, material, m	NALYSIS: Causative agent most directly related to accident/incident nachinery, equipment, conditions)
Was weather a factor?:	
Unsafe mechanical/physical/er	nvironmental condition at time of accident/incident (Be specific):
Personal factors (Attitude, kno	owledge or skill, reaction time, fatigue):
ON-SITE ACCIDENTS/INC	IDENTS:
Level of personal protection eq	uipment required in Site Safety Plan:
Modifications:	
Was injured using required equ	aipment?:

If not, how did actual equipment use differ from plan?:

ACTION TAKEN TO PREVENT RECURRENCE: (Be specific. What has or will be done? When will it be done? Who is the responsible party to insure that the correction is made?

REVIEWED BY:	
SSO Signature	
'ESTIGATION:	
Title	
Title	
Title	
UP: Date:	
Title	
	ESTIGATION: Title Title UP: Date: UP: Date: Title

ATTACH ANY ADDITIONAL INFORMATION TO THIS FORM

ATTACHMENT C Emergency Hand Signals

EMERGENCY SIGNALS

In most cases, field personnel will carry cell phones for communication. If this is the case, cell phones will be used to communicate an emergency, which will take priority over all other transmissions.

Where cell phone communication is not available, the following air-horn and/or hand signals will be used:

EMERGENCY HAND SIGNALS

OUT OF AIR, CAN'T BREATH!

LEAVE AREA IMMEDIATELY, NO DEBATE!

(No Picture) Grip partner's wrist or place both hands around waist

NEED ASSISTANCE!

Hands on top of head

OKAY! – I'M ALL RIGHT! - I UNDERSTAND!

Thumbs up

NO! - NEGATIVE!

APPENDIX H COMMUNITY AIR MONITORING PLAN

380 4TH AVENUE BROOKLYN, NEW YORK

Community Air Monitoring Plan

For

Site Management Plan

NYSDEC BCP Site Number: C224358 AKRF Project Number: 210226

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor Albany, New York 12233

On Behalf Of:

380 4th Avenue Owner, LLC 157 Columbus Avenue, Suite 2E New York, NY 10023

AKRF, Inc. 440 Park Avenue South New York, New York 10016 (212) 696-0670

DECEMBER 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	AIR MONITORING PROGRAM	2
2.1	Community Air Monitoring Plan	2
2.2	Fixed Air Monitoring Stations	
2.3	Community Air Monitoring Action Levels	

FIGURE

Figure 1 – BCP Site Location

ATTACHMENT

Attachment A - NYSDOH Generic CAMP

1.0 INTRODUCTION

This Community Air Monitoring Plan (CAMP) was prepared by AKRF, Inc. (AKRF) on behalf of 380 4th Avenue Owner, LLC for the 380 4th Avenue Brownfield Cleanup Program (BCP) site located in the Gowanus neighborhood of Brooklyn, New York (hereinafter referred to as the "Site"). The Site is an approximately 0.46-acre parcel identified on the New York City Tax Map as Block 980, Lot 77. Figure 1 shows the Site location.

The Site was remediated to Track 2 New York State Department of Environmental Conservation (NYSDEC) Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) and additionally for Protection of Groundwater Soil Cleanup Objectives (PGWSCOs) for petroleum-related volatile organic compounds (VOCs) in accordance with the April 2023 NYSDEC-approved Remedial Action Work Plan (RAWP) and Decision Document.

After completion of the remedial work in accordance with the RAWP, some contamination was left at the Site. Institutional Controls (ICs), which place restrictions on Site uses, and Engineering Controls (ECs) were incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement, granted to the NYSDEC, and recorded with the NYC Office of the City Register, requires compliance with a Site Management Plan (SMP) and all ICs/ECs placed on the Site. The SMP specifies the methods necessary to ensure compliance with all ICs/ECs required by the Environmental Easement for remaining contamination. Upon approval of the SMP by NYSDEC, compliance with the plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. The SMP may be revised only with the approval of NYSDEC.

This CAMP, which is an attachment to the SMP, details the procedures required for monitoring workspace air quality during any activities performed at the Site under the SMP that require management of residual contamination. All workers who participate in remediation-related activities at the Site that are under the direction of AKRF and/or the Site owner are required to comply with the provisions specified in this CAMP.

2.0 AIR MONITORING PROGRAM

Community air monitoring will be conducted during all intrusive Site activities in compliance with the New York State Department of Health (NYSDOH) Generic CAMP and this Site-specific CAMP. The NYSDOH Generic CAMP is included as Attachment A. Real-time air monitoring for VOCs and dust at the perimeter of the exclusion zone will be performed as described below. Exceedances of CAMP action levels will be immediately reported to the NYSDEC and NYSDOH project managers, and CAMP reports will be included in the daily reports submitted to NYSDEC and NYSDOH.

2.1 Community Air Monitoring Plan

VOC Monitoring

Continuous monitoring for VOCs will be conducted during all ground intrusive activities, including excavation activities. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background concentrations. VOCs will be monitored continuously at the downwind perimeter of the exclusion zone. Monitoring will be conducted with a PID equipped with a 10.6 electron Volt (eV) lamp capable of calculating 15-minute running average concentrations.

Periodic monitoring for VOCs will be conducted during any non-intrusive activities. Periodic monitoring may include obtaining measurements upon arrival at a location and upon leaving the location.

More frequent intervals of monitoring will be conducted if required, as determined by the Site Manager (SM), Project Environmental and Safety Manager (PESM), Project Director (PD), and/or Remedial Engineer (RE). All PID readings will be recorded and available for NYSDEC and NYSDOH personnel to review. Instantaneous readings, if any, will be recorded.

Particulate Monitoring

Continuous monitoring for particulates will be conducted during all ground intrusive activities and will involve the measurement of respirable dust. Community air monitoring for dust particulates will be conducted using an TSI 8530 DustTrakTM II Aerosol Monitor or equivalent to measure the concentration of airborne respirable particulates less than 10 micrometers in size (PM_{10}). The dust monitor will be capable of calculating 15-minute running average concentrations and equipped with an audible alarm to indicate an exceedance of action levels. Background readings and any readings that trigger response actions will be recorded in the project logbook, which will be available onsite for NYSDOH and/or NYSDEC review.

2.2 Fixed Air Monitoring Stations

Two fixed air monitoring stations will be utilized at the Site during soil disturbing activities. The fixed monitoring stations will be set up at the upwind and downwind perimeters of the exclusion zone during all ground intrusive activities and will continuously log VOC and particulate levels. Each fixed monitoring station will be fully enclosed and equipped with the following:

- A PID equipped with a 10.6 eV lamp capable of calculating 15-minute running average VOC concentrations;
- A TSI 8530 DustTrak[™] I or equivalent dust monitor capable of measuring the concentration of airborne respirable particulates less than 10 micrometers in size (PM₁₀) and calculating 15-minute running average particulate concentrations; and

• A Netronix[™] Thiamus[™] ICU-820 or equivalent Global System for Mobile Communication (GSM)/Global Positioning System (GPS) device capable of recording air monitoring and location data.

Each monitoring station will be capable of sending e-mail alerts to the SSO to indicate an exceedance of action levels. Additionally, the SSO will conduct an inspection of the monitoring stations on at least an hourly basis. Upon completion of Site activities, all air monitoring data will be available to download via the Environet[®] website.

2.3 Community Air Monitoring Action Levels

VOC Action Levels

The following actions will be taken based on organic vapor levels measured:

- If total organic vapor levels exceed 5 parts per million (ppm) above background for the 15minute average at the exclusion zone perimeter, work activities will be temporarily halted and monitoring continued. If levels readily decrease (per instantaneous readings) below 5 ppm above background, work activities will resume with continued monitoring.
- If total organic vapor levels at the exclusion zone perimeter persist at levels above 5 ppm above background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the hot zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet is below 5 ppm above background for the 15-minute average.
- If the total organic vapor level is above 25 ppm at the perimeter of the exclusion zone, activities will be shutdown.

Particulate Action Levels

The following actions will be taken based on particulate levels measured:

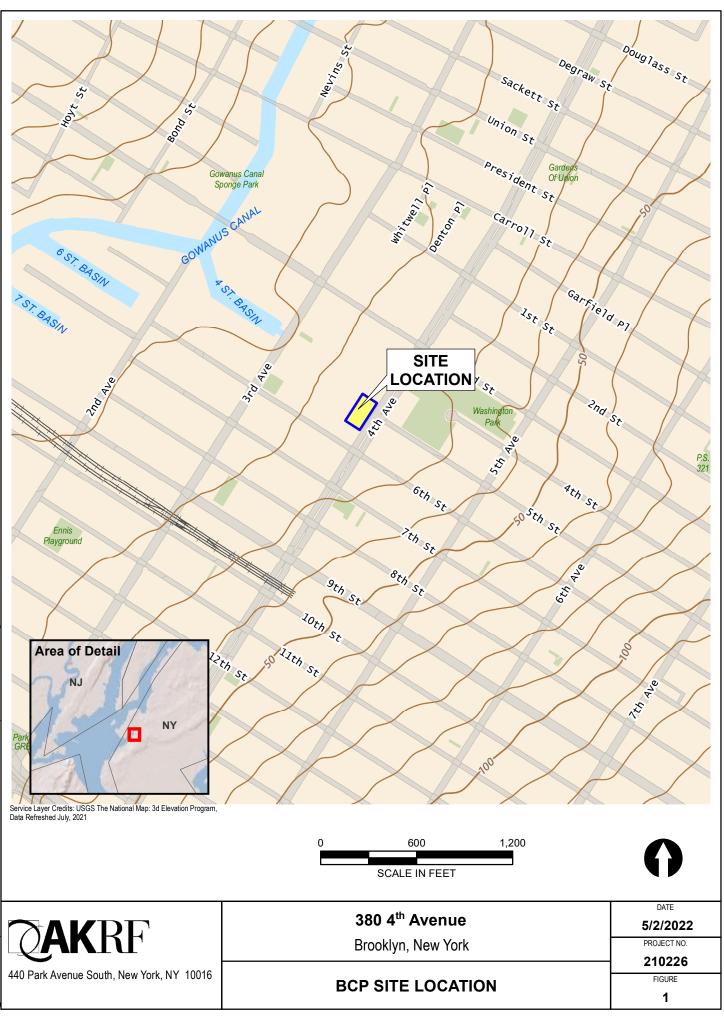
- If the particulate concentrations are greater than 100 micrograms per cubic meter ($\mu g/m^3$) above background, and no other obvious source is apparent, then it will be assumed that the elevated particulate concentrations are a result of site activities. In such instances, dust suppression measures will be implemented, and monitoring will be continued. Work will be allowed to continue with dust suppression if particulate levels do not exceed 150 $\mu g/m^3$ above the background and provided that no visible dust is migrating from the work area.
- If particulate levels persist at 150 μ g/m³ above the background, work must be stopped until dust suppression measures bring particulate levels to below 150 μ g/m³ above background.

Major Vapor Emission Response Plan

If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work Site, or half the distance to the nearest residential or commercial property, whichever is less, all work activities must be halted or vapor controls must be implemented.

If, following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the exclusion zone, then the air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If either of the following criteria is exceeded in the 20 Foot Zone, then the Major Vapor Emission Response Plan shall automatically be implemented:


- Sustained organic vapor levels approaching 1 ppm above background for a period of more than 30 minutes; or
- Organic vapor levels greater than 5 ppm above background for any time period.

Upon activation, the following activities shall be undertaken as part of the Major Vapor Emission Response Plan:

- The NYSDEC, NYSDOH, and local police authorities will be immediately contacted by the SSO and advised of the situation;
- Frequent air monitoring will be conducted at 30-minute intervals within the 20 Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the Site Health and Safety Officer; and
- All Emergency contacts will go into effect as appropriate.

All readings will be recorded and be available for NYSDEC and NYSDOH personnel to review.

FIGURE

ATTACHMENT A

NEW YORK STATE DEPARTMENT OF HEALTH GENERIC CAMP

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m^3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Appendix 1B Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.

2. Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.

3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:

- (a) Objects to be measured: Dust, mists or aerosols;
- (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);

(c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;

(d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);

- (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
- (f) Particle Size Range of Maximum Response: 0.1-10;
- (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number

(i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;

(j) Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;

(k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;

(1) Operating Temperature: -10 to 50° C (14 to 122° F);

(m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.

4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.

5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative,

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential-such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.

7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and
- (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.