FORMER T&J SALVAGE

2647 STILLWELL AVENUE

BROOKLYN, NEW YORK

INTERIM REMEDIAL MEASURE COMPLETION REPORT

NYSDEC BCP Site No.: C224362 AKRF Project Number: 220241

Prepared For:

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor Albany, New York 12233

Prepared On Behalf Of:

2647 Stillwell Avenue Property LLC % Turnbridge Equities 4 Bryant Park, Suite 200 New York, NY 10018

Prepared by:

AKRF, Inc. 440 Park Avenue South, 7th Floor New York, New York 10016 212-696-0670

JANUARY 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Site Location and Current Usage	1
1.2	Description of Surrounding Property	1
2.0	SITE BACKGROUND AND HISTORY	2
2.1	Past Uses	2
2.2	Catch Basin Network	2
3.0	PROJECT MANAGEMENT	3
3.1	Project Organization	3
3.2	Health and Safety	
3.	2.1 Air Monitoring	3
4.0	IRM FIELD ACTIVITIES	4
4.1	Waste Characterization	4
4.	1.1 Sediment Sample Analytical Results	4
4.2	Catch Basin Clean-Out	5
5.0	DEVIATIONS	6
5.1	Deviations from the Interim Remedial Measure Work Plan (IRMWP)	6

FIGURES

Figure 1	BCP Site Location
Figure 2	BCP Site Plan with Drainage Locations

TABLES

- Table 2Sediment Analytical Results for SVOCs
- Table 3Sediment Analytical Results for Metals

APPENDICES

- Appendix A Photographic Log
- Appendix B Air Monitoring Logs
- Appendix C Daily Reports
- Appendix D Waste Characterization Analytical Results
- Appendix E Disposal Facility Approval and Permits
- Appendix F Disposal Manifests

1.0 INTRODUCTION

This Interim Remedial Measure Completion Report (IRMCR) summarizes the activities performed on September 22, 2023, and on November 2 and 6, 2023, at the Former T&J Salvage site located at 2647 Stillwell Avenue in Brooklyn, New York (the "Site"). The IRM was conducted in conformance with AKRF's September 2023 New York State Department of Environmental Conservation (NYSDEC)-approved Interim Remedial Measure Work Plan (IRMWP), which included a Health and Safety Plan (HASP).

1.1 Site Location and Current Usage

The Site consists of an approximately 1.87-acre parcel located at 2647 Stillwell Avenue in the Gravesend section of Brooklyn, New York, and is identified by the City of New York as Tax Block 7247, Lots 200, 203, 205, 206, 211, and 213. On March 23, 2023, 2647 Stillwell Avenue Property LLC (the "Volunteer") entered into a Brownfield Cleanup Agreement (BCA) (Index No. C224362-02-23) for the Site with NYSDEC. The Site location is shown on Figure 1.

Currently, the Site consists of a concrete-paved yard utilized for bus parking. While there are no permanent structures on-site, empty metal storage racks and former office trailers are located near the Site's western boundary. The operations at the Site prior to acquisition by the Volunteer consisted of T&J Auto Salvage, an auto salvage yard, and Stillwell Ready-Mix and Building Materials, LLC, a concrete and building material supply company, up until April 2023. An off-site concrete-paved roadway runs along the majority of the southern boundary of the Site on Block 7247, Lot 1.

1.2 Description of Surrounding Property

The Site is bounded to the north by an easement area associated with the Belt Parkway, followed by the Belt Parkway (a.k.a. Shore Parkway), followed by parking lots; to the east by the Metropolitan Transit Authority (MTA) D, F, N, and Q train lines, followed by vacant land (Former Brooklyn Borough Gas Works – Site No. 224026) and MTA's Coney Island Yard; to the south by Coney Island Creek; and to the west by Stillwell Avenue, followed by Coney Island Creek.

There are no sensitive receptors (i.e., schools, daycares, or hospitals) within 600 feet of the Site. The nearest sensitive receptors include John Dewey High School (approximately 1,400 feet to the northwest) and Graffiti Ministries Learning Center (approximately 1,500 feet to the southwest).

2.0 SITE BACKGROUND AND HISTORY

2.1 Past Uses

Topographical maps indicate that the Site was comprised of marshland in 1891 and 1898 and was subsequently filled in and depicted as vacant land by 1947. Historical Sanborn maps indicate that the Site included a dwelling on the north-central portion of the Site and a small structure labeled "office" with a one-story structure labeled "junk" just north of the small office on the southern edge of the Site in 1930. Additionally, a portion of Canal Avenue bisected the Site through the center and occupied the southwestern portion of the Site in 1930. Sanborn maps also indicate that the Site operated as an auto salvage and wrecking yard around the 1950s, became vacant by 1966, and resumed auto salvage and wrecking operations starting in 1979 and continuing until April 2023. City directories reviewed as part of the Phase I Environmental Site Assessment (ESA) indicate that the Site operated as auto wrecking and salvage from 1940 to April 2023 under "Hub Auto Wrecking Co." (1940), "Johnson's Auto Glass Co." (1949), "City Wide Auto Salvage Ltd." (1976), and "T&J Salvage Corp." (1985 to 2023).

2.2 Catch Basin Network

During the 2023 Remedial Investigation (RI), a geophysical survey was conducted to identify and trace the approximate location of drainage lines associated with five on-site stormwater catch basins and one off-site catch basin. The survey identified a subgrade piping network leading towards Coney Island Creek. An inspection of the shoreline was conducted via kayak and a stormwater outfall was identified along the Site's southwestern boundary with Coney Island Creek. A Site plan showing the drainage system configuration is included on Figure 2. Photographs of the outfall are included in Appendix A.

As part of the RI, the five on-site catch basins were inspected and sediment samples were collected from the bottom of three catch basins identified as RI-CB-03, RI-CB-04, and RI-CB-05. The other two on-site catch basins (RI-CB-01 and RI-CB-02) contained very little sediment during the RI and the off-site drain was not inspected as part of the RI. The sediment sample results identified concentrations of petroleum-related volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and select metals above the NYSDEC Unrestricted Use Soil Cleanup Objectives (UUSCOs) and/or Commercial Use Soil Cleanup Objectives (CSCOs) in one or more of the structures. The results for the catch basin samples are summarized on Tables 1 through 3.

3.0 PROJECT MANAGEMENT

3.1 Project Organization

Contact information for the parties responsible for the work described in this IRMCR are included in Table T1:

Company	Individual Name	Title	Contact Number(s)
NYSDEC	Michael Sollecito, EIT	Project Manager	(518) 402-2198
NYSDOH	Johnathan Robinson	Project Manager	(518) 402-7881
	Stephen Malinowski, QEP	Project Director	(631) 574-3724
	Michelle Lapin, P.E.	Remedial Engineer	(646) 388-9520
AKRF, Inc.	Adrianna Bosco	Project Manager	(646) 388-9576
	Antonio Cardenas	Field Team Leader/Site Safety Officer	(646) 388-9744
2647 Stillwell Avenue Property LLC	Ryan Nelson	BCP Volunteer Representative	(917) 346-5942

Table T1 Project Organization

3.2 Health and Safety

All work described in this report was performed in full compliance with applicable laws and regulations, including Site and Occupational Safety and Health Administration (OSHA) worker safety requirements and Hazardous Waste Operations and Emergency Response (HAZWOPER) requirements. The IRM activities described in this IRMCR were also performed in accordance with the Site-specific HASP dated September 2023. Photographs of the completed IRM activities are provided in Appendix A.

3.2.1 Air Monitoring

In accordance with the IRMWP and HASP, real-time air monitoring for VOCs and particulates was conducted within the work area and at the perimeter of the exclusion zone during all catch basin cleaning activities. All recorded readings were below the applicable action response levels. A copy of the air monitoring logs are provided in Appendix B.

4.0 IRM FIELD ACTIVITIES

The IRM activities were conducted on September 22, 2023, and November 2 and 6, 2023, and included the following scope of work:

- 1. Collection and laboratory analysis of sediment samples for waste characterization purposes.
- 2. Removal of standing liquid (stormwater) and accumulated sediment from five on-site catch basins and one off-site catch basin.
- 3. High-pressure washing the interior of each catch basin.
- 4. Disposal of sediment, stormwater, and wash water at permitted facilities.

Copies of the daily reports issued to NYSDEC and NYSDOH during implementation of the IRMWP are provided in Appendix C.

4.1 Waste Characterization

Prior to conducing the catch basin cleaning activities, sediment samples were collected from the bottom of the six catch basins for waste characterization purposes and to obtain disposal facility approval. Based on the estimated quantity of accumulated sediment, one discrete grab sample and one composite sample were collected by AKRF for laboratory analysis. The grab sample was collected using Encore[®] sampling devices and analyzed for VOCs by Environmental Protection Agency (EPA) Method 8260D and Gasoline Range Organics (GRO) by EPA Method 8015D. The composite sample was analyzed for SVOCs by EPA Method 8270E, polychlorinated biphenyls (PCBs) by EPA Method 8082A, diesel range organics (DRO) by EPA Method 8015D, the Resource Conservation and Recovery Act (RCRA) list of total and leachable metals by EPA Methods 6020B, TCLP/1311, 7470A, 7471B, ignitability, reactivity and corrosivity by EPA Method 1030, 9014, 9034, and 9045D, and total cyanide by EPA Method 9012B.

Sediment samples designated for laboratory analysis were placed into laboratory-supplied containers in accordance with appropriate EPA protocols using dedicated sampling equipment. The waste characterization soil samples were submitted via courier to Eurofins Environment Testing Northeast, LLC of Edison, New Jersey (Eurofins Edison). Waste characterization analytical results are provided in Appendix D.

Based on the laboratory results and coordination with the remediation contractor, the sediment was approved for acceptance as contaminated soil at Posillico Materials, LLC Wash Plant Facility in Farmingdale, New York. Facility approval and permits are provided in Appendix E.

4.1.1 Sediment Sample Analytical Results

The sediment waste characterization analytical results were compared to the specific acceptance criteria of the intended disposal facilities. A summary of the analytical results is provided below.

VOCs and GRO

Low levels of petroleum-related compounds, including 2-butanone, benzene, ethylbenzene, m/p-xylene, o-xylene, styrene, and toluene, were detected in the grab sample at concentrations ranging from 0.00059 milligrams per kilogram (mg/kg) to 0.033 mg/kg.

GRO was detected at a concentration of 8.2 mg/kg.

<u>SVOCs</u>

Individual SVOCs, primarily polycyclic aromatic hydrocarbons (PAHs), were detected in the composite sample at concentrations ranging from 0.016 mg/kg to 2.3 mg/kg. The total SVOC concentration was 3.318 mg/kg.

<u>DRO</u>

DRO was detected at a concentration of 7,400 mg/kg in the composite sample.

<u>PCBs</u>

PCBs were not detected above laboratory reporting limits.

<u>Metals</u>

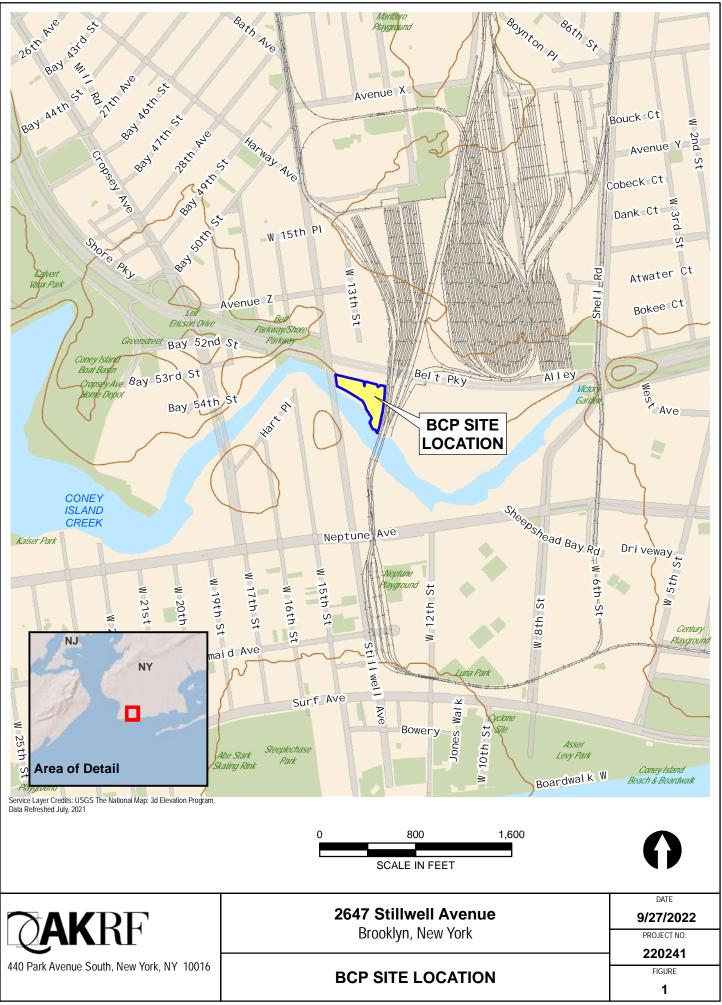
Seven of the eight RCRA metals were detected at concentrations ranging from 0.66 mg/kg to 123 mg/kg (barium). Selenium was not detected above laboratory reporting limits in the total metals analysis. None of the metals analyzed by the TCLP method exceeded the USEPA TCLP limit. Cyanide was detected at a concentration of 0.18 mg/kg in the composite sample.

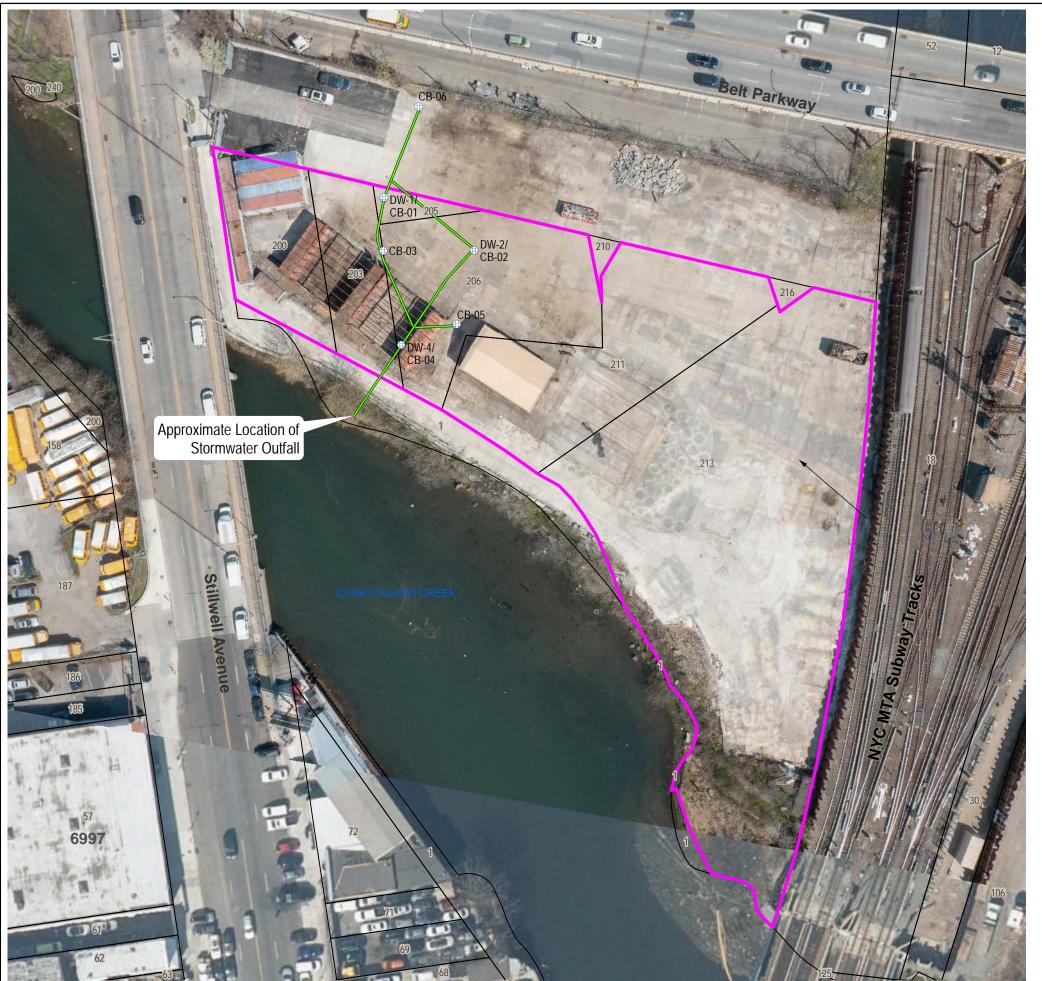
4.2 Catch Basin Clean-Out

On November 2 and 6, 2023, the six catch basins were cleaned out by Eastern Environmental Solutions, Inc. (Eastern) of Manorville, New York. A pump truck was utilized to remove any standing liquid from each catch basin prior to removing sediment with high-powered vacuum truck "guzzler." As groundwater was very shallow, the pump truck was also periodically utilized to remove any water accumulating during the sediment removal. The concrete walls and bottom of the catch basins were power washed to eliminate any residual contamination from the concrete structures. The wash water was collected in the pump truck for off-site disposal.

Following the pump and cleaning activities, AKRF inspected the bottom of each catch basin, and it was confirmed that all accumulated sediment was removed. The bottoms of the catch basins were determined to contain concrete, rock, asphalt, and/or rebar.

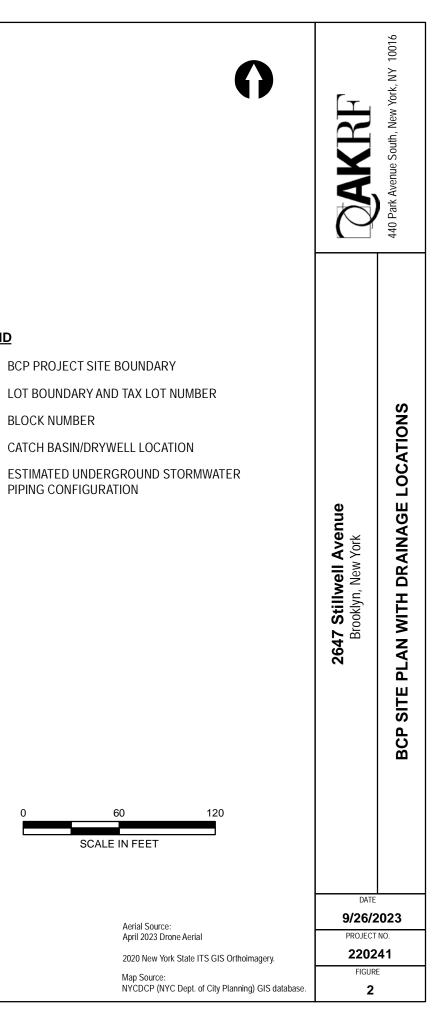
One full truckload of sediment containing approximately 10 cubic yards of material was transported to the Posillico Soil Wash Plant for recycling on November 3, 2023, and a second partial truckload containing approximately 5 cubic yards was transported on November 6, 2023. In addition, 411 gallons of stormwater was transported to Clear Flo Technologies, Inc. for recycling on November 3, 2023


Copies of the liquid and sediment disposal manifests are provided in Appendix F.


5.0 **DEVIATIONS**

5.1 Deviations from the Interim Remedial Measure Work Plan (IRMWP)

No IRMWP deviations occurred that would have resulted in compromises to the design intent of the IRM.


FIGURES

LEGEND

213 7247 BLOCK NUMBER ⊕

TABLES

Table 1Former T and J Salvage2647 Stillwell Avenue, Brooklyn, NYRemedial InvestigationSediment Analytical Results for Volatile Organic Compounds (VOCs)

	Lab	AKRF Sample ID poratory Sample ID	RI-CB-03_20230504 460-279573-9	RI-CB-04_20230504 460-279573-10 5/04/2023	RI-CB-05_20230504 460-279573-11
		Date Sampled Dilution Factor	5/04/2023 500	5/04/2023	5/04/2023 1
		Unit	mg/kg	mg/kg	mg/kg
Compound	NYSDEC CSCO	NYSDEC UUSCO	CONC Q	CONC Q	CONC Q
1,1,1-Trichloroethane	500	0.68	1.3 U	0.0021 U	0.0014 U
1,1,2,2-Tetrachloroethane	NS	NS	1.3 U	0.0021 U	0.0014 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon TF)	NS	NS	1.3 U	0.0021 U	0.0014 U
1,1,2-Trichloroethane	NS	NS	1.3 U	0.0021 U	0.0014 U
1,1-Dichloroethane	240	0.27	1.3 U	0.0021 U	0.0014 U
1,1-Dichloroethene	500	0.33	1.3 U	0.0021 U	0.0014 U
1,2,3-Trichlorobenzene	NS	NS	1.3 U	0.0021 U	0.0014 U
1,2,4-Trichlorobenzene	NS	NS	1.3 U	0.0021 U	0.0014 U
1,2,4-Trimethylbenzene	190	3.6	160	0.0021 U	0.0014 U
1,2-Dibromo-3-Chloropropane	NS	NS	1.3 U	0.0021 U	0.0014 U
1,2-Dibromoethane (Ethylene Dibromide)	NS	NS	1.3 U	0.0021 U	0.0014 U
1,2-Dichlorobenzene	500	1.1	1.3 U	0.0021 U	0.0014 U
1,2-Dichloroethane	30	0.02	1.3 U	0.0021 U	0.0014 U
1,2-Dichloropropane	NS	NS	1.3 U	0.0021 U	0.0014 U
1,3,5-Trimethylbenzene (Mesitylene)	190	8.4	72	0.0021 U	0.0014 U
1,3-Dichlorobenzene	280	2.4	1.3 U	0.0021 U	0.0014 U
1,4-Dichlorobenzene	130	1.8	1.3 U	0.0021 U	0.0014 U
2-Hexanone	NS	NS	6.7 U	0.011 U	0.0072 U
Acetone	500	0.05	6.7 UT	0.067	0.0087 U
Benzene	44	0.06	1.1 J	0.0021 U	0.0014 U
Bromochloromethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Bromodichloromethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Bromoform	NS	NS	1.3 U	0.0021 U	0.0014 U
Bromomethane	NS	NS	1.3 U	0.0043 U	0.0029 U
Carbon Disulfide	NS	NS	1.3 U	0.0021 U	0.0023 U 0.0014 U
Carbon Tetrachloride	22	0.76	1.3 U	0.0021 U	0.0014 U
Chlorobenzene	500	1.1	1.3 U	0.0021 U	0.0014 U
Chloroethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Chloroform	350	0.37	1.3 U	0.0021 U	0.0014 U
Chloromethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Cis-1,2-Dichloroethylene	500	0.25	1.3 U	0.0021 U	0.0014 U
Cis-1,3-Dichloropropene	NS	NS	1.3 U	0.0021 U	0.0014 U
Cyclohexane	NS	NS	24	0.0021 U	0.0014 U
Dibromochloromethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Dichlorodifluoromethane	NS	NS	1.3 U	0.0021 U	0.0014 U
Ethylbenzene	390	1	31	0.0021 U	0.0014 U
Isopropylbenzene (Cumene)	NS	NS	4.4	0.0021 U	0.0014 U
M,P-Xylenes	NS	NS	230	0.0021 U	0.0014 U
Methyl Acetate	NS	NS	6.7 U	0.011 U	0.0072 U
Methyl Ethyl Ketone (2-Butanone)	500	0.12	6.7 U	0.014	0.0072 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS	NS	6.7 U	0.011 U	0.0072 U
Methylcyclohexane	NS	NS	82	0.0021 U	0.0012 U
Methylene Chloride	500	0.05	1.3 U	0.0043 U	0.0029 U
N-Butylbenzene	500	12	1.3 U	0.0021 U	0.0023 U 0.0014 U
N-Propylbenzene	500	3.9	14	0.0021 U	0.0014 U
O-Xylene (1,2-Dimethylbenzene)	NS	NS	88	0.0021 U	0.0014 U
Sec-Butylbenzene	500	11	2	0.0021 U	0.0014 U
Styrene	NS	NS	1.3 U	0.0021 U	0.0014 U
T-Butylbenzene	500	5.9	1.3 U	0.0021 U	0.0014 U
Tert-Butyl Methyl Ether	500	0.93	1.3 U	0.0021 U	0.0014 U
Tetrachloroethylene (PCE)	150	1.3	1.3 U	0.0021 U	0.0014 U
Toluene	500	0.7	3.5	0.0021 U	0.0014 U
Trans-1,2-Dichloroethene	500	0.19	<u>3.5</u> 1.3 U	0.0021 U	0.0014 U
Trans-1,3-Dichloropropene	NS	NS	1.3 U	0.0021 U	0.0014 U
Trichloroethylene (TCE)	200	0.47	1.3 U	0.0021 U	0.0014 U
Trichlorofluoromethane	NS 200	0.47 NS	1.3 UT	0.0021 U	0.0014 U
Vinyl Chloride	13	0.02	1.3 U	0.0021 U	0.0014 U
Xylenes, Total	500	0.02	<u>320</u>	0.0021 0 0.0043 U	0.0014 U

Table 2 Former T and J Salvage 2647 Stillwell Avenue, Brooklyn, NY Remedial Investigation Sediment Analytical Results for Semi-Volatile Organic Compounds (SVOCs)

AKRF Sample ID Laboratory Sample ID Date Sampled			RI-CB-03_20230504 460-279573-9 5/04/2023	RI-CB-04_20230504 460-279573-10 5/04/2023	RI-CB-05_20230504 460-279573-11 5/04/2023
		Dilution Factor Unit	5 mg/kg	5 mg/kg	1 mg/kg
Compound	NYSDEC CSCO	NYSDEC UUSCO	CONC Q	CONC Q	CONC Q
1,2,4,5-Tetrachlorobenzene	NS	NS	2.1 U	2.9 U	0.46 U
1,4-Dioxane (P-Dioxane)	130	0.1	0.21 U	0.29 U	0.046 U
2,3,4,6-Tetrachlorophenol	NS	NS	2.1 U	2.9 U	0.46 U
2,4,5-Trichlorophenol	NS	NS	2.1 U	2.9 U	0.46 U
2,4,6-Trichlorophenol	NS	NS	0.87 U	1.2 U	0.19 U
2,4-Dichlorophenol	NS NS	NS NS	0.87 U 2.1 U	1.2 U 2.9 U	0.19 U 0.46 U
2,4-Dimethylphenol 2,4-Dinitrophenol	NS	NS	<u> </u>	2.3 U	0.46 U
2.4-Dinitrotoluene	NS	NS	0.44 U	0.59 U	0.094 U
2,6-Dinitrotoluene	NS	NS	0.44 U	0.59 U	0.094 U
2-Chloronaphthalene	NS	NS	2.1 U	2.9 U	0.46 U
2-Chlorophenol	NS	NS	2.1 U	2.9 U	0.46 U
2-Methylnaphthalene	NS	NS	8.1	2.2 J	0.46 U
2-Methylphenol (O-Cresol)	500	0.33 NS	2.1 U	2.9 U	0.46 U
2-Nitroaniline 2-Nitrophenol	NS NS	NS NS	2.1 UT 2.1 U	2.9 UT 2.9 U	0.46 UT 0.46 U
3- And 4- Methylphenol (Total)	500	NS	2.1 U	2.9 U	0.46 U
3.3'-Dichlorobenzidine	NS	NS	0.87 U	1.2 U	0.19 U
3-Nitroaniline	NS	NS	2.1 U	2.9 U	0.46 U
4,6-Dinitro-2-Methylphenol	NS	NS	1.7 U	2.3 U	0.37 U
4-Bromophenyl Phenyl Ether	NS	NS	2.1 U	2.9 U	0.46 U
4-Chloro-3-Methylphenol	NS	NS	2.1 U	2.9 U	0.46 U
4-Chloroaniline	NS	NS	2.1 U	2.9 U	0.46 U
4-Chlorophenyl Phenyl Ether 4-Methylphenol (P-Cresol)	NS 500	NS 0.33	2.1 U 2.1 U	2.9 U 2.9 U	0.46 U 0.46 U
4-Nitroaniline		0.33 NS	2.1 U	2.9 U	0.46 U
4-Nitrophenol	NS	NS	4.4 U	5.9 U	0.94 U
Acenaphthene	500	20	2.1 U	2.9 U	0.46 U
Acenaphthylene	500	100	2.1 U	2.9 U	0.46 U
Acetophenone	NS	NS	2.1 U	2.9 U	0.028 J
Anthracene	500	100	2.1 U	2.9 U	0.46 U
Atrazine	NS	NS	0.87 U	1.2 U	0.19 U
Benzaldehyde	NS	NS	2.1 U	2.9 U	0.46 U
Benzo(a)Anthracene Benzo(a)Pyrene	5.6	1	0.21 U 0.21 U	0.29 U 0.14 J	0.037 J 0.035 J
Benzo(b)Fluoranthene	5.6	1	0.14 J	0.14 J 0.21 J	0.055 5
Benzo(g,h,i)Perylene	500	100	0.086 J	0.12 J	0.032 J
Benzo(k)Fluoranthene	56	0.8	0.21 U	0.083 J	0.019 J
Benzyl Butyl Phthalate	NS	NS	2.1 U	2.9 U	0.083 J
Biphenyl (Diphenyl)	NS	NS	2.1 U	2.9 U	0.46 U
Bis(2-Chloroethoxy) Methane	NS	NS	2.1 U	2.9 U	0.46 U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	NS	NS	0.21 U	0.29 U	0.046 U
Bis(2-Chloroisopropyl) Ether	NS	NS NS	2.1 U	2.9 U	0.46 U
Bis(2-Ethylhexyl) Phthalate Caprolactam	NS NS	NS NS	<u>16</u> 2.1 U	18 2.9 U	0.39 J 0.46 U
Carbazole	NS	NS	2.1 U	2.9 U	0.46 U
Chrysene	56	1	2.1 U	0.18 J	0.036 J
Dibenz(a,h)Anthracene	0.56	0.33	0.21 U	0.29 U	0.046 U
Dibenzofuran	350	7	2.1 U	2.9 U	0.46 U
Diethyl Phthalate	NS	NS	2.1 U	2.9 U	0.46 U
Dimethyl Phthalate	NS	NS	2.1 U	2.9 U	0.46 U
Di-N-Butyl Phthalate	NS	NS NS	2.1 U	2.9 U	0.024 J
Di-N-Octylphthalate Fluoranthene	NS 500	100	2.1 U 0.15 J	2.9 U 0.14 J	0.46 U 0.057 J
Fluorene	500	30	0.15 J 0.08 J	2.9 U	0.46 U
Hexachlorobenzene	6	0.33	0.00 J	0.29 U	0.46 U
Hexachlorobutadiene	NS	NS	0.44 U	0.59 U	0.094 U
Hexachlorocyclopentadiene	NS	NS	2.1 U	2.9 U	0.46 U
Hexachloroethane	NS	NS	0.21 U	0.29 U	0.046 U
Indeno(1,2,3-c,d)Pyrene	5.6	0.5	0.21 U	0.29 U	0.04 J
Isophorone	NS	NS	0.87 U	1.2 U	0.19 U
Naphthalene Nitrobenzene	500 NS	12 NS	9.1 0.21 U	2.6 J 0.29 U	0.46 U 0.046 U
Nitrobenzene N-Nitrosodi-N-Propylamine	NS NS	NS NS	0.21 U 0.21 U	0.29 U	0.046 U
N-Nitrosodiphenylamine	NS	NS	2.1 U	2.9 U	0.46 U
Pentachlorophenol	6.7	0.8	1.7 U	2.3 U	0.37 U
Phenanthrene	500	100	0.12 J	2.9 U	0.041 J
Phenol	500	0.33	2.1 U	2.9 U	0.46 U
Pyrene	500	100	0.31 J	0.67 J	0.079 J

Table 3Former T and J Salvage2647 Stillwell Avenue, Brooklyn, NYRemedial InvestigationSediment Analytical Results for Metals

		AKRF Sample ID oratory Sample ID Date Sampled Dilution Factor Unit	460-279573-9 5/04/2023 1 mg/kg	RI-CB-04_20230504 460-279573-10 5/04/2023 1 mg/kg	RI-CB-04_20230504 460-279573-10 5/04/2023 5 mg/kg	RI-CB-05_20230504 460-279573-11 5/04/2023 1 mg/kg
Compound	NYSDEC CSCO	NYSDEC UUSCO	CONC Q	CONC Q	CONC Q	CONC Q
Aluminum	NS	NS	6,480	7,770	NR	6,830
Antimony	NS	NS	3.5	4.1	NR	1.4
Arsenic	16	13	6	24.8	NR	6.7
Barium	400	350	113	217	NR	154
Beryllium	590	7.2	0.46	0.65	NR	0.59
Cadmium	9.3	2.5	0.71 J	1.9	NR	2.7
Calcium	NS	NS	13,200	12,300	NR	18,700
Chromium, Total	NS	NS	121	131	NR	54.1
Cobalt	NS	NS	6.4	7.5	NR	5.6
Copper	270	50	172	249	NR	102
Iron	NS	NS	68.1 U	57,400	NR	34,800
Lead	1,000	63	90.7	NR	145	148
Magnesium	NS	NS	3,800	5,640	NR	4,710
Manganese	10,000	1,600	531	400	NR	319
Mercury	2.8	0.18	0.019 J	0.094	NR	0.055
Nickel	310	30	46.4	101	NR	34.9
Potassium	NS	NS	479	912	NR	708
Selenium	1,500	3.9	0.16 J	0.28 J	NR	0.22 J
Silver	1,500	2	2.2	3.5	NR	2.2
Sodium	NS	NS	167	241	NR	215
Thallium	NS	NS	0.051 J	NR	3.3 U	0.093 J
Vanadium	NS	NS	30.7	28.3	NR	19.5
Zinc	10,000	109	974	1,340	NR	1,060

Tables 1-3Former T and J Salvage2647 Stillwell Avenue, Brooklyn, NYRemedial InvestigationNotes

DEFINITIONS

- **J** : The concentration given is an estimated value.
- NR: Not reported.
- **NS**: No standard.
- T: Indicates that a quality control parameter has exceeded laboratory limits.
- U: The analyte was not detected at the indicated concentration.
- mg/kg : milligrams per kilogram

STANDARDS

 Part 375 Soil
 Soil Cleanup Objectives listed in New York State Department of Environmental Conservation

 Objectives
 Soil Cleanup Objectives listed in New York State Department of Environmental Conservation

 (NYSDEC) "Part 375" Regulations [6 New York Codes, Rules and Regulations (NYCRR) Part 375].

Exceedances of Part 375 Commercial Soil Cleanup Objectives (CSCOs) are highlighted in gray shading. Exceedances of Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) are highlighted in bold font.

APPENDIX A Photographic Log

Photograph 1: View of Site, facing east.

Photograph 3: Interior of catch basin prior to cleaning.

Photograph 2: Catch basin cover during collection of sediment samples.

Photograph 4: Interior of catch basin prior to cleaning.

Photograph 5: Removal of standing liquids from catch basin prior to sediment removal.

Photograph 7: Interior view of catch basin CB-02 after cleaning, with concrete and asphalt at the bottom.

Photograph 6: High-powered vacuum truck (guzzler) removing accumulated sediment from catch basin.

Photograph 8: Interior view of catch basin CB-05 after cleaning, with concrete and rebar at the bottom.

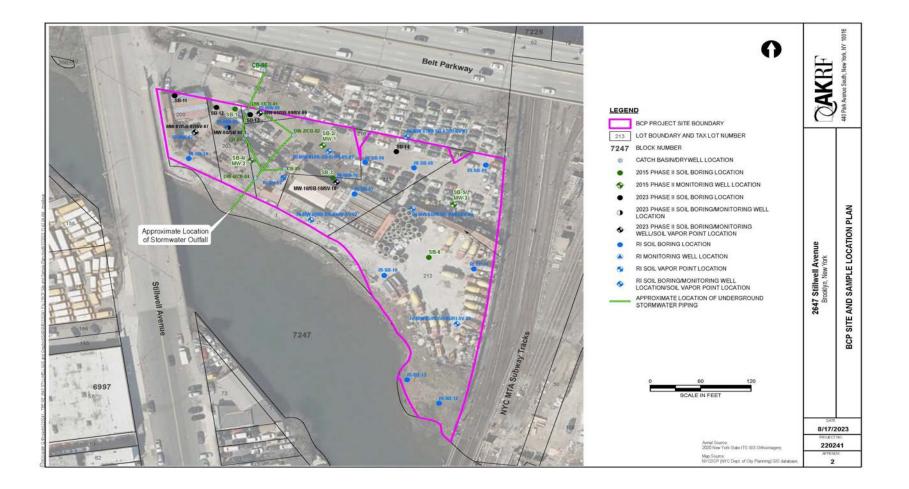
APPENDIX B Air Monitoring Logs

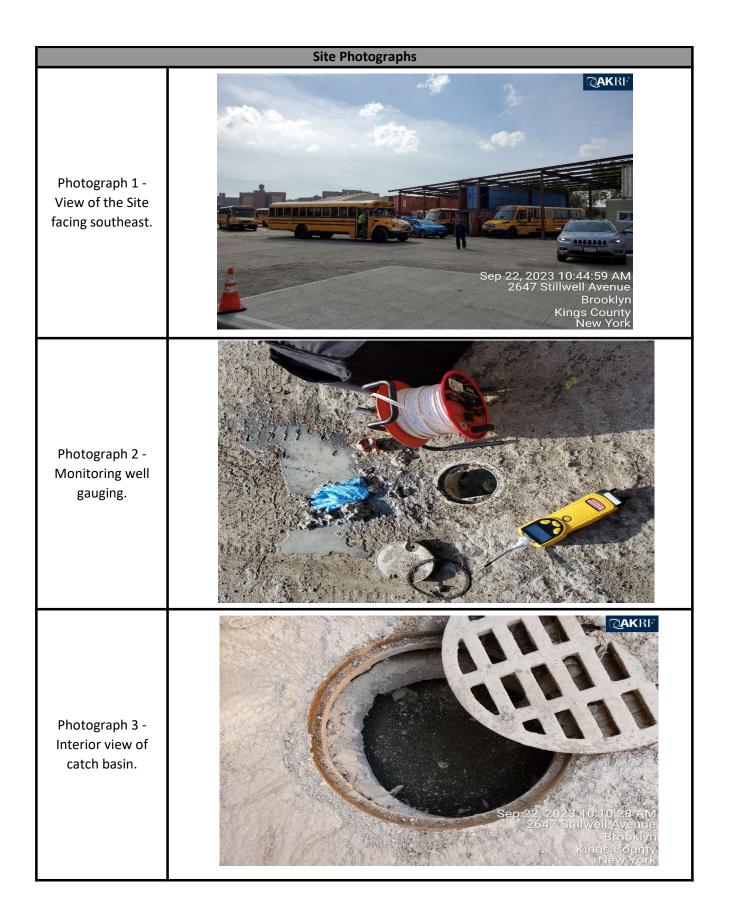
	647 Stillwall	Ave-		Client:	Date: 10/ 2/23
Work Activity: Catch busin pumping / climps out					Logged By: A. Condense Job No: 220 241
Weather: 40 -	Solt Sunny		Wind Direction:	NW	Wind Speed: Friph
TIME	LOCATION	PID (ppm)	DUST (mg/m ³)	ODORS	COMMENTS (activity; work zone, upwind downwind)
0930	CB-07	ND	0.014	Nove	BACKGROUND
1000	CB-026	1021	C.020	Non	Catch busin Vacing
1030	CB-cl	02	0.024	NUNC	11
1100	CB-07	C. Z	6.627	Nime	GUZZIT
1136	<u>CB-02</u>	6.2	6.031	Nort	11
1200	CB-02	0.2	COZY	Nord	1,
1300	<u>CB-01</u>	6.2	6027	Nur	2
1330	<u>CB-01</u>	0.2	6.071	Nove	4
IUU	<u>CB-03</u>	0.2	(024	Non	10
1430	CB-cz	0.2	6623	Non	4
1500	CB-03 CB-03	0.2	6.027	Non	1
570	CB-07	01	6.679	Non	6
600	cutside CB	01	0.017	NIM	19
630	esteide CB	C. 7	C.(23	Nou	1
700	cutate CD	0,1	(02.4	Nu	//
3	LB-05	e. 1	anzi	None	11
00	CB-05	0.1	0.015	None	• 2
			-		

4.7

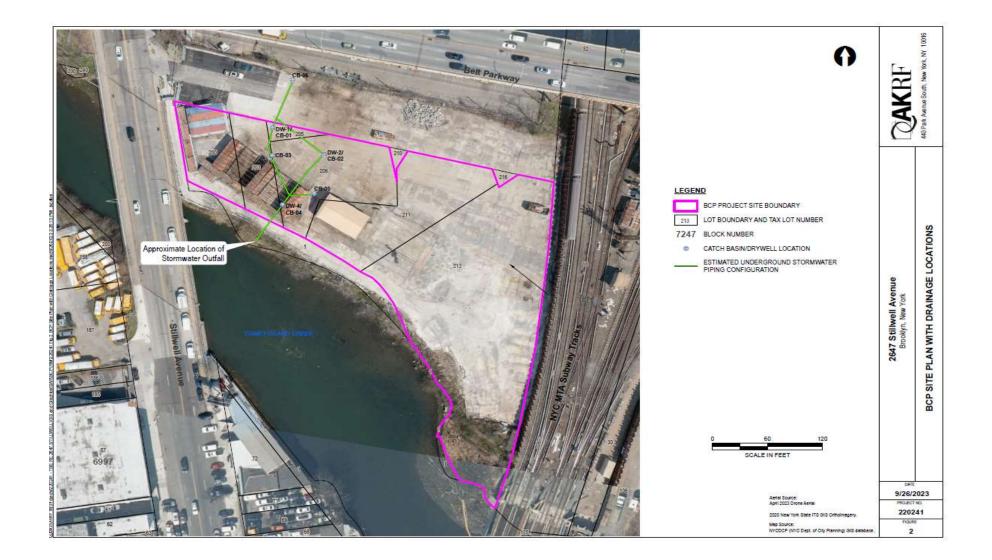
Work Zone Action Levels					
PID	DUST				
<5 ppm: Level D	<0.150 mg/m ³ above				
Between 5 ppm and 50 ppm; level C	background in breathing zone: level D				
>50 ppm: STOP	>0.150 mg/m ³ above hackground in breathing zone: Dust suppression				

Community (Perimeter) Action Levels					
PID	DUST				
>5 ppm above background: vapor suppression	>0.1 mg/m ³ above background: dust suppression				
>25 ppm above background: STOP	>0.15 mg/m ³ above background: STOP				

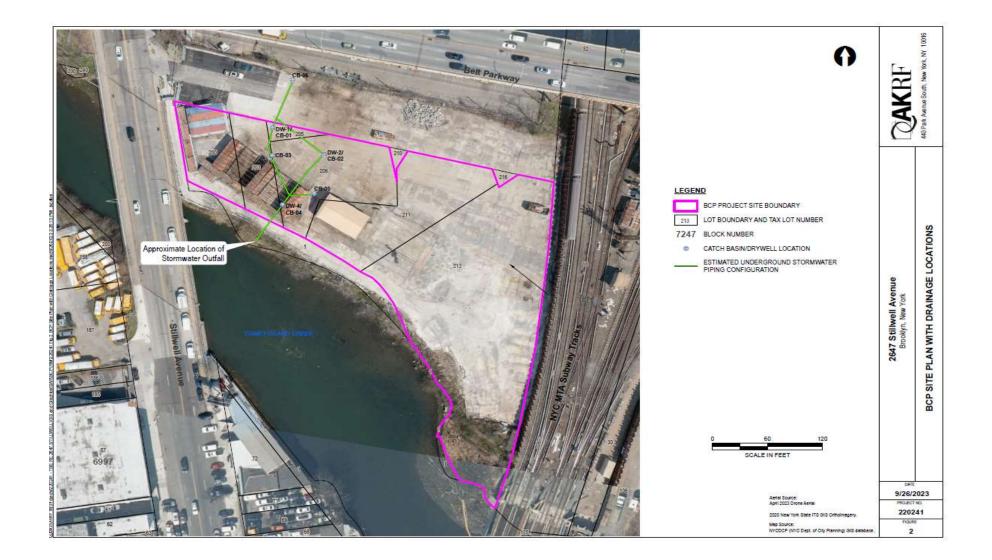

					Air Monitoring Log
AKRF, Inc.					
Project: 2647	CIU II A			Client:	Date: 11 16/23
Project: 2647 Still will Ave Work Activity: Cutch basin claumby					Logged By: A. Ludens
			-		Job No:
Weather: 55°	F Fur		Wind Direction:	NE	Wind Speed: <u><i>A mph</i></u> COMMENTS (activity; work zone, upwind or downwind)
TIME	LOCATION	PID (ppm)	DUST (mg/m ³)	ODORS	downwite
0700-	Uprod	ND	C.6 27	None	BACKGROUND
0830	CB-05	ND	0,034	None	Cartch baga charalper
0900	CB-05	ND	0.025	Mone	4
0930	CB-US	ND	0.037	Neve	")
1000	CB-04	NB	0.053	Non	A 4
1030	CB-CY	NO	0.050	Nove	4
			/		
	1.2.2.3.4.1			A	7
		/		11	
		/			
	1				
				X/	
			100	1	
	V				
			_		
and the second s					


Work Zone Action Levels				
PID	DUST			
<5 ppm: Level D	<0.150 mg/m ³ above			
Between 5 ppm and 50 ppm: level C	background in breathing zone: level D			
>50 ppm: STOP	>0.150 mg/m ³ above background in breathing zone: Dust suppression			

Community (Perimeter) Action Levels		
PID	DUST	
>5 ppm above background: vapor suppression	>0.1 mg/m3 above background: dust suppression	
>25 ppm above background: STOP	>0.15 mg/m ³ above background: STOP	


APPENDIX C DAILY REPORTS

Date: Weather: Wind Direction/Speed:	2647 Stillwell Av BCP Site General Site Information	T&J Salvage venue, Brooklyn, NY No. C224362	
Date: Weather:	BCP Site General Site Information		
Date: Weather:	General Site Information	No. C224362	
Weather:			
Weather:	Friday, Sept		
		ember 22, 2023	
Wind Direction/Speed:	Mostly clo	oudy 62-66° F	
	NE @ ((8-18) mph	
AKRF Personnel on Site:	Antonio Cardenas		
AKRF CAMP Equipment on Site:	N/A		
Visitors:	None		
	Contractor Information		
Subcontractor		Service	
N/A		N/A	
	Description and Location of Work Activities Per	formed	
AKRF collected sediment samples from each ofth to support disposal facility applications for the di		IR). aracterization purposes. The laboratory data will be used nat will be conducted under a NYSDEC-approved Interium	
	CAMP Air Monitoring Results		
CAMP Station	UPWIND	DOWNWIND	
Odors:	None	None	
VOC Action Level Exceedance(s):	N/A	N/A	
Particulate Action Level Exceedance(s):	N/A	N/A	
Falticulate Action Level Exceedance(s).			
Maximum VOC Level (ppm):	N/A	N/A	
Odors: VOC Action Level Exceedance(s):	None N/A N/A	None N/A N/A	
	N/A	N/A	



	D	aily Activity Report
MAK RF		Former T&J Salvage
	2	647 Stillwell Avenue, Brooklyn, NY
2		BCP Site No. C224362
	General Site Infor	
Date:		Thursday, November 2, 2023
Weather:		Sunny 40-50° F
Wind Direction/Speed:	NW @ (5-10) mph	
AKRF Personnel on Site:	Antonio Cardenas	
AKRF CAMP Equipment on Site:	N/A	
Visitors:		None
	Contractor Inform	nation
Subcont	ractor	Service
Eastern Environmental S Manorvi	. ,	Catch basin remediation
	Description and Location of Wor	< Activities Performed
basins CB-01, CB-02, CB-03, and CB-06. One rinse water was disposed of at Clear Flo Ter After the removal of all accumulated sedim inspection, it was confirmed that all accum asphalt, and/or rebar.	truckload of sediment was disposed of a chnologies, Inc. in North Lindernhurst, Ne ent, AKRF inspected the bottom of each ulated sediment was removed but the bo	catch basin to ensure all accumulated sediment was removed. Upon ttoms of the catch basins were determined to contain concrete, rock,
AKRF conducted work zone monitoring for		
	CAMP Air Monitorin	g Results
CAMP Station	UPWIND	DOWNWIND
Odors:	None	None
VOC Action Level Exceedance(s):	None	None
Particulate Action Level Exceedance(s):	N/A	N/A
Maximum VOC Level (ppm):	N/A	N/A
Maximum Particulate Level (mg/m ³):	N/A	N/A
CAMP Response Actions: As no ground intr	usive work was performed today on-site, Additional Inform	
Planned Work Activity for	is CB-04 and CB-05 is being arranged for r	
Following Day/ week:		NYSDEC in an IRM Report after the last two drains are cleaned.

	D	aily Activity Report
MAK RF		Former T&J Salvage
	2	647 Stillwell Avenue, Brooklyn, NY
		BCP Site No. C224362
	General Site Infor	nation
Date:		Monday, November 6, 2023
Weather:		Fair 55° F
Wind Direction/Speed:		NE @ (5-10) mph
AKRF Personnel on Site:		Antonio Cardenas
AKRF CAMP Equipment on Site:		N/A
Visitors:		None
	Contractor Inform	nation
Subconti	actor	Service
Eastern Environmental So Manorvil	(<i>i</i>	Catch basin remediation
	Description and Location of Worl	Activities Performed
	as removed but the bottoms of the catch	sure all accumulated sediment was removed. Upon inspection, it v n basins were determined to contain chunkcs of concrete, rock, asp
AKKF conducted work zone monitoring for		5
	CAMP Air Monitorin	-
CAMP Station	UPWIND	DOWNWIND
Odors: VOC Action Level Exceedance(s):	None	None
Particulate Action Level Exceedance(s):	None N/A	None N/A
Maximum VOC Level (ppm):	N/A N/A	N/A N/A
Maximum VOC Level (ppm): Maximum Particulate Level (mg/m ³):	N/A	N/A
CAMP Response Actions: As no ground intro Planned Work Activity for No further on-site fiel	usive work was performed today on-site, Additional Inform d activities are planned at this time.	
Following Day/ week:	he disposal activities will be provided to	

APPENDIX D

WASTE CHARACTERIZATION ANALYTICAL RESULTS

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Adrianna Bosco AKRF Inc 440 Park Avenue South 7th Floor New York, New York 10016 Generated 9/29/2023 7:35:11 AM

JOB DESCRIPTION

2647 Stillwell Ave, Brooklyn

JOB NUMBER

460-288831-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

Eurofins Edison

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Compliance Statement

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Authorization

Generated 9/29/2023 7:35:11 AM

Authorized for release by Melissa Haas, Senior Project Manager Melissa.Haas@et.eurofinsus.com (203)308-0880

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	10
Client Sample Results	11
Surrogate Summary	16
QC Sample Results	18
QC Association Summary	42
Lab Chronicle	47
Certification Summary	49
Method Summary	50
Sample Summary	51
Chain of Custody	52
Receipt Checklists	54

Definitions/Glossary

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Job ID: 460-288831-1

Qualifiers

Quaimers		3
GC/MS VOA		
Qualifier	Qualifier Description	4
J	Indicates an estimated value.	
U	Analyzed for but not detected.	5
GC/MS VOA	TICs	
Qualifier	Qualifier Description	6
J	Indicates an estimated value.	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	8
*	MS or MSD is outside acceptance limits.	
E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.	9
J	Indicates an estimated value.	
U	Analyzed for but not detected.	
GC/MS Semi	VOA TICs	
Qualifier	Qualifier Description	
A	The tentatively identified compound is a suspected aldol-condensation product.	
J	Indicates an estimated value.	12
Ν	This flag indicates the presumptive evidence of a compound.	
GC VOA		13
Qualifier	Qualifier Description	
U	Analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
*	MS or MSD is outside acceptance limits.	
*	Surrogate is outside acceptance limits.	

U Analyzed for but not detected.

Metals

Welais	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
J	Sample result is greater than the MDL but below the CRDL
U	Indicates analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
J	Sample result is greater than the MDL but below the CRDL
Ν	Spiked sample recovery is not within control limits.
U	Indicates analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Job ID: 460-288831-1

3 4

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Edison

9/29/2023

Job ID: 460-288831-1

Laboratory: Eurofins Edison

Narrative

CASE NARRATIVE

Client: AKRF Inc

Project: 2647 Stillwell Ave, Brooklyn

Report Number: 460-288831-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 09/22/2023; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.2 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample WC-CB-G_20230922 (460-288831-1) was analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were prepared on 09/23/2023 and analyzed on 09/26/2023.

The continuing calibration verification (CCV) associated with batch 460-934427 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Method 8270E. The samples were prepared on 09/24/2023 and analyzed on 09/25/2023.

The continuing calibration verification (CCV) analyzed in batch 460-934123 was outside the method criteria for the following analyte(s): Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Job ID: 460-288831-1 (Continued)

Laboratory: Eurofins Edison (Continued)

The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for preparation batch 460-934056 and analytical batch 460-934123 recovered outside control limits for the following analyte(s): 2,4-Dimethylphenol and Hexachlorocyclopentadiene. These analytes have been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

2,4-Dimethylphenol and Hexachlorocyclopentadiene failed the recovery criteria low for the MS of sample 460-288839-13 in batch 460-934123.

2,4-Dimethylphenol and Hexachlorocyclopentadiene failed the recovery criteria low for the MSD of sample 460-288839-13 in batch 460-934123.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

GASOLINE RANGE ORGANICS

Sample WC-CB-G_20230922 (460-288831-1) was analyzed for gasoline range organics in accordance with EPA SW-846 Method 8015D - GRO. The samples were prepared on 09/23/2023 and analyzed on 09/25/2023.

No difficulties were encountered during the GRO analysis.

All quality control parameters were within the acceptance limits.

DIESEL RANGE ORGANICS

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for diesel range organics in accordance with EPA SW-846 Method 8015D - DRO. The samples were prepared on 09/25/2023 and analyzed on 09/28/2023.

o-Terphenyl failed the surrogate recovery criteria low for WC-CB-C_20230922 (460-288831-2).

Sample WC-CB-C_20230922 (460-288831-2)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the DRO analysis.

All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082A. The samples were prepared on 09/23/2023 and analyzed on 09/25/2023.

Aroclor 1016 and Aroclor 1260 failed the recovery criteria high for the MSD of sample 460-288605-2 in batch 460-934213.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

METALS - TCLP

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for Metals - TCLP in accordance with EPA SW-846 Method 6020B - TCLP/1311. The samples were leached on 09/26/2023, and prepared and analyzed on 09/27/2023.

No difficulties were encountered during the TCLP Metals analysis.

All quality control parameters were within the acceptance limits.

METALS - TOTAL (ICP/MS)

Job ID: 460-288831-1 (Continued)

Laboratory: Eurofins Edison (Continued)

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for Metals - Total (ICP/MS) in accordance with EPA SW-846 Method 6020B - Total. The samples were prepared on 09/24/2023 and analyzed on 09/25/2023.

Chromium failed the recovery criteria high for the MS of sample 460-288711-4 in batch 460-934300.

The following sample was diluted due to the nature of the sample matrix: WC-CB-C_20230922 (460-288831-2). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

MERCURY - TCLP

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for Mercury - TCLP in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 09/26/2023, and prepared and analyzed on 09/27/2023.

Mercury was detected in method blank LB 460-934520/1-C at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No other difficulties were encountered during the TCLP Hg analysis.

All other quality control parameters were within the acceptance limits.

MERCURY - TOTAL

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for Mercury - Total in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 09/27/2023.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

IGNITABILITY

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for Ignitability in accordance with EPA SW-846 Method 1030. The samples were analyzed on 09/27/2023.

No difficulties were encountered during the Ignitability analysis.

All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 09/28/2023.

Cyanide, Total failed the recovery criteria high for the MSD of sample 460-288827-1 in batch 460-935027.

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

REACTIVE CYANIDE

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for reactive cyanide in accordance with EPA SW-846 Method 7.3.3/9014. The samples were prepared and analyzed on 09/28/2023.

No difficulties were encountered during the reactive cyanide analysis.

Job ID: 460-288831-1 (Continued)

Laboratory: Eurofins Edison (Continued)

All quality control parameters were within the acceptance limits.

REACTIVE SULFIDE

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for reactive sulfide in accordance with EPA SW-846 Method 7.3.4/9034. The samples were prepared and analyzed on 09/28/2023.

No difficulties were encountered during the reactive sulfide analysis.

All quality control parameters were within the acceptance limits.

CORROSIVITY (PH)

Sample WC-CB-C_20230922 (460-288831-2) was analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 09/28/2023.

This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: WC-CB-C_20230922 (460-288831-2) and (460-288831-C-2 DU).

No difficulties were encountered during the corrosivity (pH) analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples WC-CB-G_20230922 (460-288831-1) and WC-CB-C_20230922 (460-288831-2) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 09/25/2023.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

Client Sample ID: WC-CB-G_20230922

Lab Sample ID: 460-288831-1

Lab Sample ID: 460-288831-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	0.010		0.0097	0.00071	mg/Kg	1	₽	8260D	Total/NA
Acetone	0.033		0.012	0.011	mg/Kg	1	₽	8260D	Total/NA
Benzene	0.00094	J	0.0019	0.00050	mg/Kg	1	₽	8260D	Total/NA
Ethylbenzene	0.0015	J	0.0019	0.00039	mg/Kg	1	¢	8260D	Total/NA
m-Xylene & p-Xylene	0.0027		0.0019	0.00034	mg/Kg	1	₽	8260D	Total/NA
o-Xylene	0.0012	J	0.0019	0.00038	mg/Kg	1	₽	8260D	Total/NA
Styrene	0.00059	J	0.0019	0.00054	mg/Kg	1	¢	8260D	Total/NA
ТВА	0.015	J	0.019	0.015	mg/Kg	1	¢	8260D	Total/NA
Toluene	0.0016	J	0.0019	0.00045	mg/Kg	1	₽	8260D	Total/NA
GRO	8.2		4.6	4.6	mg/Kg	50	¢	8015D	Total/NA

Client Sample ID: WC-CB-C_20230922

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	0.025	J	0.46	0.013	mg/Kg	1	¢	8270E	Total/NA
Acetophenone	0.048	J	0.46	0.023	mg/Kg	1	₽	8270E	Total/NA
Benzo[a]anthracene	0.063		0.046	0.035	mg/Kg	1	₽	8270E	Total/NA
Benzo[a]pyrene	0.042	J	0.046	0.012	mg/Kg	1	₽	8270E	Total/NA
Benzo[b]fluoranthene	0.086		0.046	0.012	mg/Kg	1	₽	8270E	Total/NA
Benzo[g,h,i]perylene	0.051	J	0.46	0.014	mg/Kg	1	¢	8270E	Total/NA
Benzo[k]fluoranthene	0.022	J	0.046	0.0090	mg/Kg	1	₽	8270E	Total/NA
Bis(2-ethylhexyl) phthalate	2.3		0.46	0.024	mg/Kg	1	₽	8270E	Total/NA
Chrysene	0.13	J	0.46	0.019	mg/Kg	1	¢	8270E	Total/NA
Fluoranthene	0.068	J	0.46	0.016	mg/Kg	1	¢	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	0.046		0.046	0.018	mg/Kg	1	¢	8270E	Total/NA
Naphthalene	0.016	J	0.46	0.0080	mg/Kg	1	¢	8270E	Total/NA
Phenanthrene	0.061	J	0.46	0.019	mg/Kg	1	¢	8270E	Total/NA
Pyrene	0.36	J	0.46	0.011	mg/Kg	1	¢	8270E	Total/NA
C10-C44	7400		600	38	mg/Kg	50	¢	8015D	Total/NA
Arsenic	8.5		2.1	0.22	mg/Kg	2	¢	6020B	Total/NA
Barium	123		4.3	0.31	mg/Kg	2	¢	6020B	Total/NA
Cadmium	0.66	J	2.1	0.24	mg/Kg	2	¢	6020B	Total/NA
Chromium	116		4.3	1.9	mg/Kg	2	¢	6020B	Total/NA
Lead	83.0		1.3	0.43	mg/Kg	2	¢	6020B	Total/NA
Silver	1.3		0.86	0.19	mg/Kg	2	¢	6020B	Total/NA
Barium	592		40.0	9.1	ug/L	10		6020B	TCLP
Mercury	1.8		0.20	0.091	ug/L	1		7470A	TCLP
Mercury	0.15		0.022	0.010	mg/Kg	1	¢	7471B	Total/NA
Cyanide, Total	0.18	J	0.33	0.18	mg/Kg	1	₽	9012B	Total/NA
pH	7.5	HF			SU	1		9045D	Total/NA
Temperature	20.8	HF			Degrees C	1		9045D	Total/NA
Corrosivity	7.5	HF			SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: WC-CB-G_20230922 Date Collected: 09/22/23 10:30 Date Received: 09/22/23 19:00

Analyte	Result	Compound Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0019	U	0.0019	0.00045	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,1,2,2-Tetrachloroethane	0.0019	U	0.0019	0.00042	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0019	U	0.0019	0.00058	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,1,2-Trichloroethane	0.0019	U	0.0019	0.00035	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,1-Dichloroethane	0.0019	U	0.0019	0.00040	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,1-Dichloroethene	0.0019	U	0.0019	0.00044	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,2,3-Trichlorobenzene	0.0019	U	0.0019	0.00035	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,2,4-Trichlorobenzene	0.0019	U	0.0019	0.00069	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,2-Dibromo-3-Chloropropane	0.0019	U	0.0019	0.00089	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
1,2-Dichlorobenzene	0.0019	U	0.0019	0.00070	mg/Kg	¢.	09/23/23 13:09	09/26/23 10:58	1
1,2-Dichloroethane	0.0019	U	0.0019	0.00057	mg/Kg	☆	09/23/23 13:09	09/26/23 10:58	1
1,2-Dichloropropane	0.0019	U	0.0019	0.00082	mg/Kg	☆	09/23/23 13:09	09/26/23 10:58	1
1,3-Dichlorobenzene	0.0019	U	0.0019	0.00071	mg/Kg		09/23/23 13:09	09/26/23 10:58	1
1,4-Dichlorobenzene	0.0019	U	0.0019	0.00044	mg/Kg	⇔	09/23/23 13:09	09/26/23 10:58	1
2-Butanone (MEK)	0.010		0.0097	0.00071	mg/Kg	¢	09/23/23 13:09	09/26/23 10:58	1
2-Hexanone	0.0097	U	0.0097	0.0033			09/23/23 13:09	09/26/23 10:58	1
4-Methyl-2-pentanone (MIBK)	0.0097		0.0097	0.0030	• •	₽	09/23/23 13:09	09/26/23 10:58	1
Acetone	0.033		0.012	0.011	•••	¢	09/23/23 13:09	09/26/23 10:58	1
Acrolein	0.19	U	0.19	0.054	mg/Kg		09/23/23 13:09	09/26/23 10:58	
Acrylonitrile	0.019	U	0.019	0.0094		¢	09/23/23 13:09	09/26/23 10:58	1
Benzene	0.00094	J	0.0019	0.00050		¢	09/23/23 13:09	09/26/23 10:58	1
Bromoform	0.0019		0.0019	0.00082		¢	09/23/23 13:09	09/26/23 10:58	
Bromomethane	0.0039	U	0.0039	0.0019		¢	09/23/23 13:09	09/26/23 10:58	1
Carbon disulfide	0.0019		0.0019	0.00052	0 0	¢	09/23/23 13:09		1
Carbon tetrachloride	0.0019		0.0019	0.00075		¢	09/23/23 13:09		
Chlorobenzene	0.0019		0.0019	0.00034	0 0	¢	09/23/23 13:09	09/26/23 10:58	1
Chlorobromomethane	0.0019		0.0019	0.00055	0 0	¢	09/23/23 13:09	09/26/23 10:58	1
Chlorodibromomethane	0.0019		0.0019	0.00038	7 7	÷	09/23/23 13:09	09/26/23 10:58	1
Chloroethane	0.0019		0.0019	0.0010	0 0	¢	09/23/23 13:09	09/26/23 10:58	1
Chloroform	0.0019		0.0019	0.0019	•••	¢	09/23/23 13:09	09/26/23 10:58	1
Chloromethane	0.0019		0.0019	0.00084		÷	09/23/23 13:09	09/26/23 10:58	
cis-1,2-Dichloroethene	0.0019		0.0019	0.00069		¢	09/23/23 13:09	09/26/23 10:58	1
cis-1,3-Dichloropropene	0.0019		0.0019	0.00053		¢	09/23/23 13:09	09/26/23 10:58	1
Cyclohexane	0.0019		0.0019	0.00043			09/23/23 13:09	09/26/23 10:58	· · · · · · · · · 1
Dichlorobromomethane	0.0019		0.0019	0.00050	0 0	¢		09/26/23 10:58	1
Dichlorodifluoromethane	0.0019		0.0019	0.00066	0 0	÷		09/26/23 10:58	1
Ethylbenzene	0.0015		0.0019	0.00039			09/23/23 13:09		· · · · · · · · · 1
Ethylene Dibromide	0.0019		0.0019	0.00035	•••	¢		09/26/23 10:58	1
Isopropylbenzene	0.0019		0.0019	0.00055		¢		09/26/23 10:58	1
Methyl acetate	0.0097		0.0097	0.0083	7 7		09/23/23 13:09		
Methyl tert-butyl ether	0.0019		0.0019	0.00099	0 0	¢		09/26/23 10:58	1
Methylcyclohexane	0.0019		0.0019	0.00097		¢		09/26/23 10:58	1
Methylene Chloride	0.0039		0.0039		mg/Kg		09/23/23 13:09		
m-Xylene & p-Xylene	0.0033	0	0.0019	0.00022		¢		09/26/23 10:58	1
o-Xylene	0.0027		0.0019	0.00034		¢.		09/26/23 10:58	1
	0.00012		0.0019	0.00054			09/23/23 13:09		
Styrene TBA	0.00059		0.0019		mg/Kg		09/23/23 13:09		1
Tetrachloroethene									
Toluene	0.0019 0.0016		0.0019 0.0019	0.00059 0.00045			09/23/23 13:09 09/23/23 13:09		1

13

Eurofins Edison

Lab Sample ID: 460-288831-1 Matrix: Solid

Percent Solids: 68.5

Job ID: 460-288831-1

Client Sample ID: WC-CB-G_20230922 Date Collected: 09/22/23 10:30 Date Received: 09/22/23 19:00

Method: SW846 8260D - Volat Analyte	-	Compour Qualifier	nds by GC/I RL	VIS	•	i <mark>ued)</mark> Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.0019		0.0019		0.00048	ma/Ka	\	09/23/23 13:09	09/26/23 10:58	
trans-1,3-Dichloropropene	0.0019		0.0019		0.00052	0 0	÷	09/23/23 13:09	09/26/23 10:58	
Trichloroethene	0.0019		0.0019		0.00062			09/23/23 13:09	09/26/23 10:58	• • • • • •
Trichlorofluoromethane	0.0019		0.0019		0.00079		÷	09/23/23 13:09	09/26/23 10:58	
Vinyl chloride	0.0019		0.0019		0.0011		¢	09/23/23 13:09	09/26/23 10:58	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	0.038	J	mg/Kg	¢	10.	66	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.12	J	mg/Kg	₽	10.	86	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.11	J	mg/Kg	₽	11.	07	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.092	J	mg/Kg	¢	11	.11	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.059	J	mg/Kg	¢	11.	26	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.040	J	mg/Kg	¢	11.	65	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.042	J	mg/Kg	÷	11.	77	N/A	09/23/23 13:09	09/26/23 10:58	
Unknown	0.14		mg/Kg	¢		.02	N/A	09/23/23 13:09	09/26/23 10:58	-
Unknown	0.036		mg/Kg	₽		.78	N/A	09/23/23 13:09	09/26/23 10:58	-
Unknown	0.034		mg/Kg	₽	13.		N/A		09/26/23 10:58	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	113		72 - 138					09/23/23 13:09	09/26/23 10:58	
4-Bromofluorobenzene	94		63 - 139					09/23/23 13:09	09/26/23 10:58	
Dibromofluoromethane (Surr)	112		54 - 150					09/23/23 13:09	09/26/23 10:58	
Toluene-d8 (Surr)	110		71 - 126					09/23/23 13:09	09/26/23 10:58	
Method: SW846 8015D - Gasc	line Range	Organics	(GRO) (GC	•						
Analyte	-	Qualifier	RL	'	MDL	Unit	D	Prepared	Analyzed	Dil Fa
GRO	8.2		4.6			mg/Kg	\	09/23/23 13:15	09/25/23 14:00	50
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene	135		80 - 150					09/23/23 13:15		50
· · · · · · · · · · · · · · · · · · ·										
General Chemistry	Deset	0	-		MD	11	_	D	A	D '' F .
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture (EPA Moisture)	31.5		1.0		1.0				09/25/23 09:11	
Percent Solids (EPA Moisture)	68.5		1.0		1.0	%			09/25/23 09:11	
Client Sample ID: WC-CB	-C_202309	922					La	ab Sample	ID: 460-288	831-2
Date Collected: 09/22/23 10:35									Matrix	: Solic
ate Received: 09/22/23 19:00									Percent Solid	ls: 71.
Method: SW846 8270E - Semi			pounds (G	C/I	NS)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	0.46	U	0.46	_	0.016	mg/Kg	<u> </u>	09/24/23 07:14	09/25/23 01:13	
1,2,4,5-Tetrachlorobenzene	0.46	U	0.46		0.014	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	
1,2-Diphenylhydrazine	0.46	U	0.46		0.018	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	
1,4-Dioxane	0.046	U	0.046		0.040	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	
						-				

Eurofins Edison

9/29/2023

1

1

1

1

1

Lab Sample ID: 460-288831-1 Matrix: Solid Percent Solids: 68.5

5

6

13 14

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

Method: SW846 8270E	- Semivolatile Org	anic Com	pounds (GC/N	IS) (Cor	ntinued)				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4-Dimethylphenol	0.46	U *	0.46	0.055	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2,4-Dinitrophenol	0.37	U	0.37	0.23	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2,4-Dinitrotoluene	0.093	U	0.093	0.050	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2,6-Dinitrotoluene	0.093	U	0.093	0.033	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Chloronaphthalene	0.46	U	0.46	0.021	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Chlorophenol	0.46	U	0.46	0.016	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Methylnaphthalene	0.025	J	0.46	0.013	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Methylphenol	0.46	U	0.46	0.017	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Nitroaniline	0.46	U	0.46	0.035	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
2-Nitrophenol	0.46	U	0.46	0.046	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
3,3'-Dichlorobenzidine	0.19	U	0.19	0.070	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
3-Nitroaniline	0.46	U	0.46	0.11	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4,6-Dinitro-2-methylphenol	0.37	U	0.37	0.19	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Bromophenyl phenyl ether	0.46	U	0.46	0.018	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Chloro-3-methylphenol	0.46	U	0.46	0.026	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Chloroaniline	0.46	U	0.46	0.082	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Chlorophenyl phenyl ether	0.46	U	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Methylphenol	0.46	U	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
4-Nitroaniline	0.46	U	0.46	0.053	mg/Kg		09/24/23 07:14	09/25/23 01:13	1
4-Nitrophenol	0.93	U	0.93	0.075	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Acenaphthene	0.46	U	0.46	0.013	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Acenaphthylene	0.46	U	0.46	0.013	mg/Kg		09/24/23 07:14	09/25/23 01:13	1
Acetophenone	0.048	J	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Anthracene	0.46		0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Atrazine	0.19	U	0.19		mg/Kg		09/24/23 07:14	09/25/23 01:13	1
Benzaldehyde	0.46	U	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Benzidine	0.46	U	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Benzo[a]anthracene	0.063		0.046		mg/Kg	 Ф	09/24/23 07:14	09/25/23 01:13	1
Benzo[a]pyrene	0.042	J	0.046		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Benzo[b]fluoranthene	0.086		0.046		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Benzo[g,h,i]perylene	0.051	J	0.46		mg/Kg	Ф	09/24/23 07:14	09/25/23 01:13	1
Benzo[k]fluoranthene	0.022		0.046		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Bis(2-chloroethoxy)methane	0.46	U	0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Bis(2-chloroethyl)ether	0.046	U	0.046		mg/Kg	 Ф	09/24/23 07:14	09/25/23 01:13	1
Bis(2-ethylhexyl) phthalate	2.3		0.46		mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Butyl benzyl phthalate	0.46	U	0.46	0.022	mg/Kg	¢	09/24/23 07:14	09/25/23 01:13	1
Caprolactam	0.46	U	0.46		mg/Kg		09/24/23 07:14	09/25/23 01:13	1
Carbazole	0.46		0.46		mg/Kg	¢		09/25/23 01:13	1
Chrysene	0.13		0.46		mg/Kg	¢		09/25/23 01:13	1
Dibenz(a,h)anthracene	0.046		0.046		mg/Kg			09/25/23 01:13	
Dibenzofuran	0.46		0.46		mg/Kg	¢		09/25/23 01:13	1
Diethyl phthalate	0.46	U	0.46		mg/Kg	¢		09/25/23 01:13	1
Dimethyl phthalate	0.46		0.46		mg/Kg	¢		09/25/23 01:13	1
Di-n-butyl phthalate	0.46		0.46		mg/Kg	☆		09/25/23 01:13	1
Di-n-octyl phthalate	0.46		0.46		mg/Kg	☆		09/25/23 01:13	1
Fluoranthene	0.068		0.46		mg/Kg		09/24/23 07:14		1
Fluorene	0.46		0.46		mg/Kg	¢		09/25/23 01:13	1
Hexachlorobenzene	0.046		0.046		mg/Kg	¢		09/25/23 01:13	1
Hexachlorobutadiene	0.093		0.093	0.0098			09/24/23 07:14		
	2.000	-	5.000						•

Eurofins Edison

Matrix: Solid

Percent Solids: 71.7

Job ID: 460-288831-1 Lab Sample ID: 460-288831-2

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

Lab Sample ID: 460-288831-2 Matrix: Solid

Percent Solids: 71.7

5

6

13

Hexachloroethane 0.046 U 0.01 Indeno[1,2,3-cd]pyrene 0.046 0.016 0.016 Isophorone 0.19 U 0.00 Naphthalene 0.046 U 0.016 Nitrobenzene 0.046 U 0.016 N-Nitrosodin-propylamine 0.046 U 0.016 N-Nitrosodiphenylamine 0.46 U 0.00 Pentachlorophenol 0.37 U 0.00 Phenanthrene 0.061 J 0.00 Pyrene 0.36 J 0.00 Pyrene 0.36 J 0.00 Pyrene 0.36 J 0.00 Pyrene 0.36 J 0.00 Potenol 0.46 U 0.00 Tentatively Identified Compound Est. Result Qualifier Unit Aldol condensation product 0.50 A.J mg/Kg Ddecane, 2, 6, 0-trimethyl- 0.83 J.N mg/Kg 2,4, 6-Tribromophenol (s 37 20 20	0.018 0.13 0.0080 0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 0 2 2 2 3 4 6 5 8	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg RT 84 36	× × × × × × × × × × × × × ×	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	Dil Fa
Indeno[1,2,3-cd]pyrene 0.046 0.0 Isophorone 0.19 U 00 Naphthalene 0.016 J 00 Nitrobenzene 0.046 U 0.0 N-Nitrosodiphenylamine 0.046 U 0.0 N-Nitrosodiphenylamine 0.46 U 00 Phenanthrene 0.061 J 00 Phenanthrene 0.061 J 00 Phenanthrene 0.37 U 00 Pyrene 0.36 J 00 Dodecane, 2,6, 10-trimethyl- 0.83 J.N mg/Kg Dodecane, 2,6, 10-trimethyl- 0.83 J.N mg/Kg 2-Flourophenol (Surr) 68 24 - 13 24 - 13 2-Flourophenol (Surr) 81 48 - 12 25 - 12	046 0.19 0.46 046 046 0.46 0.46 0.46 0.46 0.46 0.46 0.46 s 37 20 20	0.018 0.13 0.0080 0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 0 2 2 2 3 4 6 5 8	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 22	* * * * * * * * * * * * * * * * * * *	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	<u>Dil Fa</u>
Sophorone 0.19 U 0 Naphthalene 0.016 J 0 Nitrobenzene 0.046 U 0.0 Nitrosodi-n-propylamine 0.046 U 0.0 Nitrosodi-n-propylamine 0.046 U 0.0 V-Nitrosodi-n-propylamine 0.046 U 0.0 Pentachlorophenol 0.37 U 0 Phenol 0.46 U 0 Operatively Identified Compound Est. Result Qualifier Unit Aldol condensation product 0.50 A J mg/Kg Pothalic anhydride 0.46 U 0 Odecane, 2.6, 10-trimethyl- 0.83 J N mg/Kg Odecane, 2.6, 10-trimethyl-, dodecyl 0.89 J N mg/Kg Surrogate %Recovery Qualifier Limits 2.4,6-Tribromophenol (Surr) 68 24 - 13 2.4,6-Tribromophenol (Surr) 83 39 - 12 Phenol-15 (Surr) 79 38 - 12 Phenol-15	0.19 0.46 046 046 0.46 0.46 0.46 0.46 0.46 0	0.13 0.0080 0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	_Dil Fa
sophorone 0.19 U 00 laphthalene 0.016 J 00 litrobenzene 0.046 U 0.0 litrobenzene 0.046 U 0.0 litrobenzene 0.046 U 0.0 litrobenzene 0.046 U 0.0 Pentachlorophenol 0.37 U 00 Pentachlorophenol 0.37 U 00 Phenanthrene 0.061 J 00 Prene 0.36 J 00 Pyrene 0.36 J 00 Pyrene 0.36 J 00 Pyrene 0.36 J 00 Odecane, 2,6,10-trimethyl- 0.83 J mg/Kg Ster Ster Ster Ster Ster Ster Surrogate XeRecovery Qualifier Limits 2.4,6-Tribromophenol (Surr) 68 24-17 14 Phenol-15 (Surr) 87 25-12).46 046 046 0.46 0.46 0.46 0.46 0.46 0.4	0.0080 0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2. 2. 2. 2. 2. 3. 6. 3. 3. 8.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	Dil Fa
Naphtalene 0.016 J 0 Nitrobenzene 0.046 U 0.0 Ivitrosodip-n-propylamine 0.046 U 0.0 Ivitrosodiphenylamine 0.46 U 0.0 Pentanthrene 0.061 J 0 Phenanthrene 0.061 J 0 Phenol 0.46 U 0 Pyrene 0.36 J 0 Pyrene 0.36 J 0 Pyrene 0.46 U 0 Pyrene 0.36 J 0 Pyrene 0.36 J 0 Pyrene 0.46 U 0 Pyrene 0.46 U 0 Pyrene 0.83 JN mg/Kg Dodecane, 2, 6, 10-trimethyl- 0.83 JN mg/Kg Dodecane, 2, 6, 10-trimethyl-, dodecyl 0.89 JN mg/Kg Surrogate %Recovery Qualifier Limits P-Fluorobip	046 046 0.46 0.37 0.46 0.46 0.46 0.46 0.46 0.46 0.46 3 3 3 37 20 20 20	0.0080 0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2. 2. 2. 2. 2. 3. 6. 3. 3. 8.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 22	¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	Dil Fa
Nitrobenzene 0.046 U 0.0 I-Nitrosodi-n-propylamine 0.046 U 0.0 I-Nitrosodiphenylamine 0.46 U 0.0 Pentachlorophenol 0.37 U 0 Phenanthrene 0.061 J 0 O'Prenanthrene 0.061 J 0 O'Prene 0.36 J 0 O'Prene 0.46 U 0 O'docarae, 2, 6, 10-trimethyl- 0.83 J N mg/Kg O'Prenoeic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg O'Prenolo (Surr) 81 48 - 12 48 - 12 O'Prenolo (Surr) 81 48 - 12 48 - 12 O'Prenolo (Surr) 83 39 - 12 16 <td>046 0.46 0.37 0.46 0.46 0.46 0.46 0.46 1 3 3 3 3 7 20 20</td> <td>0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2. 2. 2. 2. 2. 3. 6. 3. 8.</td> <td>mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg RT 36 22</td> <td>** ** ** ** ** ** ** ** ** ** ** ** **</td> <td>09/24/23 07:14 09/24/23 07:14</td> <td>09/25/23 01:13 09/25/23 01:13</td> <td>Dil Fa</td>	046 0.46 0.37 0.46 0.46 0.46 0.46 0.46 1 3 3 3 3 7 20 20	0.026 0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2. 2. 2. 2. 2. 3. 6. 3. 8.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg RT 36 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	Dil Fa
I-Nitrosodi-n-propylamine 0.046 U 0.0 I-Nitrosodiphenylamine 0.46 U 0 Pentachlorophenol 0.37 U 0 Pentachlorophenol 0.37 U 0 Phenol 0.46 U 0 Prenol 0.46 U 0 Pyrene 0.36 J 0 Pyridine 0.46 U 0 Verene 0.36 J 0 Pyridine 0.46 U 0 Verene 0.36 J 0 Verene 0.46 U 0 Verene 0.46 J mg/Kg Verene 0.46 J mg/Kg Dodecane, 2, 6, 10-trimethyl- 0.83 J mg/Kg Dodecane, 2, 6, 10-trimethyl-, dodecyl 0.89 J mg/Kg Ster Surrogate %Recovery Qualifier Limits Verophenol (Surr) 81 48-17 24-17	046 0.46 0.37 0.46 0.46 0.46 0.46 0.46 1 3 3 3 3 7 20 20	0.033 0.038 0.095 0.019 0.017 0.011 0.066 2 2. 2. 2. 2. 3. 6. 3. 8.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg RT 84 36 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13	Dil Fa
Nitrosodiphenylamine 0.46 U 0 Pentachlorophenol 0.37 U 0 Phenol 0.46 U 0 Phenol 0.46 U 0 Pyrene 0.36 J 0 Pyrene 0.36 J 0 Pyrene 0.46 U 0 Pyridine 0.46 J 0 Pyridine 0.46 J mg/Kg Dodecane, 2, 6, 10-trimethyl- 0.83 J 0 Pyriopencic acid, 2-methyl-, dodecyl 0.89 J N Pyrenophonol (Surr) 81 48-12).46).37).46).46).46).46).46).46 s 3 3 7 20 20	0.038 0.095 0.019 0.017 0.011 0.066 D x x x 6. x x 8.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 84 84 36 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	_Dil Fa
Pentachlorophenol 0.37 U 0 Phenanthrene 0.061 J 0 Phenol 0.46 U 0 Pyrene 0.36 J 0 Pyrene 0.36 J 0 Pyrene 0.36 J 0 Pyrene 0.46 U 0 Pyrene 0.46 U 0 Oddocane, 2, 6, 10-trimethyl- 0.83 J mg/Kg Dodecane, 2, 6, 10-trimethyl- 0.83 J mg/Kg Propenoic acid, 2-methyl-, dodecyl 0.89 J mg/Kg Ster Surrogate %Recovery Qualifier Limits 2.4,6-Tribromophenol (Surr) 68 24 - 13 14 2.Fluorobiphenyl 81 48 - 12 15 Phenol-d5 (Surr) 79 38 - 12 16 Phenol-d5 (Surr) 83 39 - 12 17 Phenol-d5 (Surr) 87 25 - 12 16 Method: SW846 8015D - Diesel Range Orga	0.37 0.46 0.46 0.46 0.46 1 3 3 3 3 7 20 20	0.095 0.019 0.017 0.011 0.066 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg RT 84 36 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	Dil Fa
Phenanthrene 0.061 J 0 Phenol 0.46 U 0 Pyrene 0.36 J 0 Pyridine 0.46 U 0 Pyridine 0.46 J mg/Kg Pyridine 0.83 J mg/Kg Pyridine 0.89 24-13 148-12 Pyridine 10.11 148-12 15).46).46).46).46).46]. , , , , , , , , , , , , , , , , , ,	0.019 0.017 0.011 0.066 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/Kg mg/Kg mg/Kg mg/Kg 84 36 22	** ** ** ** ** ** ** ** ** ** ** ** **	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	<u>Dil Fa</u>
Phenol 0.46 U 0 Pyrene 0.36 J 0 Pyridine 0.46 U 0 Vyridine 0.46 U 0 Prentatively Identified Compound Est. Result Qualifier Unit Ndol condensation product 0.50 A J mg/Kg Obdecane, 2, 6, 10-trimethyl- 0.83 J N mg/Kg Surrogate %Recovery Qualifier Limits 2.4,6-Tribromophenol (Surr) 68 24 - 13 2.4,6-Tribromophenol (Surr) 80 31 - 12 Phenol-d5 (Surr) 79 38 - 12 2.Fluorophenol (Surr) 83 39 - 12 Phenol-d5 (Surr) 79 38 - 12 Perhenol-d5 (Surr) 79 38 - 12 Perhenol-d5 (Surr) 87 25 - 12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC Maiyte Surrogate %Recovery Qualifier -Terphenyl 0 * 10 - 13 Method: SW846 8082A - Polychlorinat).46).46).46).46 <u>s</u> 37 20 20	0.017 0.011 0.066 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/Kg mg/Kg mg/Kg RT 84 36 22	* * * CAS No. N/A 85-44-9 3891-98-3	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 Analyzed 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	Dil Fa
Pyrene 0.36 J 0 Pyridine 0.46 U 0 Adol condensation product 0.50 A J mg/Kg Ndol condensation product 0.50 A J mg/Kg Pathalic anhydride 0.46 J N mg/Kg Dodecane, 2, 6, 10-trimethyl- 0.83 J N mg/Kg Parpopenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Parpopenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Surrogate %Recovery Qualifier Limits P-Fluorobiphenyl 81 48-12 48-12 P-Fluorophenol (Surr) 80 31-12 31 Vitrobenzene-d5 (Surr) 79 38-12 39-12 Pehenol-d5 (Surr) 83 39-12 39-12 Ferphenyl-d14 (Surr) 87 25-12 0 Method: SW846 8015D - Diesel Range Organics (DRO) (GC Malyte 10-18 Surrogate %Recovery Qualifier 10-18 Method: SW846 8082A - Polychlorinated Bi).46).46 s 37 20 20	$\begin{array}{c} 0.011\\ 0.066\end{array}$ $\begin{array}{c} 0\\ 2\\ 2\\ 3\\ 3\end{array}$	mg/Kg mg/Kg RT 84 36 22	¢ ¢ CAS No. N/A 85-44-9 3891-98-3	09/24/23 07:14 09/24/23 07:14 Prepared 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14	09/25/23 01:13 09/25/23 01:13 Analyzed 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	Dil Fa
Dyridine 0.46 U 0 Aldol condensation product 0.50 A J mg/Kg Aldol condensation product 0.50 A J mg/Kg Phthalic anhydride 0.46 J N mg/Kg Dodecane, 2,6,10-trimethyl- 0.83 J N mg/Kg Dodecane, 2,6,10-trimethyl-, dodecyl 0.89 J N mg/Kg Perpopenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol (Surr) 68 24-17 80 31-12 9 31-12 Vitrobenzene-d5 (Surr) 79 38-12 Phenol-d5 (Surr) 83 39-12 Phenol-d5 (Surr) 87 25-12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC Analyte Result Qualifier Limits 10-18 O-Terphenyl 0 * 10-18 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) Analyte Result Qualifier).46 s 37 20 20	0.066 2 2 2 2 6 3 8	mg/Kg RT 84 36 22	саз No. N/A 85-44-9 3891-98-3	09/24/23 07:14 Prepared 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 Analyzed 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	Dil Fa
Fentatively Identified Compound Est. Result Qualifier Unit Ndol condensation product 0.50 A J mg/Kg Phthalic anhydride 0.46 J N mg/Kg Dodecane, 2,6,10-trimethyl- 0.83 J N mg/Kg Perpopenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Perpopenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol (Surr) 68 24 - 13 Peluorobiphenyl 81 48 - 12 Peluorophenol (Surr) 80 31 - 12 Peluorophenol (Surr) 83 39 - 12 Perpopenyl-d14 (Surr) 87 25 - 12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC Nalyte Result Cuarogate %Recovery Qualifier Limits -Terphenyl 0 * 10 - 18 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) Nalyte Result Qualifier Vacolor 1016 0.093	s 37 20 20	D 2 2 3 6. 3 8.	RT 84 36 22	CAS No. N/A 85-44-9 3891-98-3	Prepared 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	Analyzed 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	Dil Fa
Aldol condensation product 0.50 A J mg/Kg Phthalic anhydride 0.46 J N mg/Kg Podecane, 2, 6, 10-trimethyl- 0.83 J N mg/Kg P-Propenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg Petropenoic acid, 2-methyl-, dodecyl 81 48 - 12 P-Filorophenol (Surr) 81 48 - 12 P-Fluorophenol (Surr) 83 39 - 12 Pethod: SW846 8015D - Diesel Range Organics (DRO) (GC Nalyte Result Qualifier 10 - 15 10 - 15	s 37 20 20	2. 2. 6. 2. 8.	84 36 22 3	N/A 85-44-9 3891-98-3	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	
Athhalic anhydride 0.46 J N mg/Kg Propenoic acid, 2-methyl-, dodecyl 0.83 J N mg/Kg Propenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg ster %Recovery Qualifier Limits 4,6-Tribromophenol (Surr) 68 24-13 48-12 -Fluorobiphenyl 81 48-12 48-12 -Fluorophenol (Surr) 80 31-12 38-12 -fluorophenol (Surr) 80 31-12 38-12 -fluorophenol (Surr) 83 39-12 38-12 -fluorophenol (Surr) 83 39-12 38-12 -ferphenyl-d14 (Surr) 87 25-12 38-12 -ferphenyl-d14 (Surr) 87 25-12 39-12 -fethod: SW846 8015D - Diesel Range Organics (DRO) (GC -fethod:	s 37 20 20	≄ 6. ≄ 8.	36 22	85-44-9 3891-98-3	09/24/23 07:14 09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 09/25/23 01:13 09/25/23 01:13	
odecane, 2, 6, 10-trimethyl- 0.83 J N mg/Kg -Propenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg ster 0.89 J N mg/Kg urrogate %Recovery Qualifier Limits 4,6-Tribromophenol (Surr) 68 24-13 -Fluorobiphenyl 81 48-12 -Fluorophenol (Surr) 80 31-12 itrobenzene-d5 (Surr) 79 38-12 henol-d5 (Surr) 83 39-12 terphenyl-d14 (Surr) 87 25-12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC Result Qualifier Limits 10-C44 7400 0 0 0 0 urrogate %Recovery Qualifier Limits 10-18 Terphenyl 0 * 10-18 0 0 terphenyl 0 * 10-18 0 0 0 terphenyl 0 * 0 0 0 0 0	s 37 20 20	¢ 8.	22	3891-98-3	09/24/23 07:14 09/24/23 07:14 Prepared	09/25/23 01:13 09/25/23 01:13	D″ 5
Propenoic acid, 2-methyl-, dodecyl 0.89 J N mg/Kg ster wirrogate %Recovery Qualifier Limits 4,6-Tribromophenol (Surr) 68 24-13 48-12 -Fluorobiphenyl 81 48-12 48-12 -Fluorophenol (Surr) 80 31-12 31-12 -fluorophenol (Surr) 83 39-12 32-12 -fluorobiphenyl-d14 (Surr) 87 25-12 Nethod: SW846 8015D - Diesel Range Organics (DRO) (GC nalyte -floorc44 7400 0 0 urrogate %Recovery Qualifier 10-12 -floor 1016 0.093 0 0.00 roclor 1016 0.093 0 0.00 roclor 1221 0.093 0 0.00 roclor 1242 0.093 0 0.00 <td>s 37 20 20</td> <td></td> <td></td> <td></td> <td>09/24/23 07:14 Prepared</td> <td>09/25/23 01:13</td> <td></td>	s 37 20 20				09/24/23 07:14 Prepared	09/25/23 01:13	
ster %Recovery Qualifier Limits 4,6-Tribromophenol (Surr) 68 24-13 -Fluorobiphenyl 81 48-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 83 39-12 -Fluorophenol-d5 (Surr) 83 39-12 -Phenol-d5 (Surr) 87 25-12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC malyte Result Qualifier -Terphenyl 0 * -Terphenyl 0 0 -Terphenyl 0.093 0 -Terphenyl 0.093 0 -Terphenyl 0.093 0 -Terphenyl <t< td=""><td>s 37 20 20</td><td>ž 8.</td><td>52</td><td>142-90-5</td><td>Prepared</td><td></td><td>075</td></t<>	s 37 20 20	ž 8 .	52	142-90-5	Prepared		075
4,6-Tribromophenol (Surr) 68 24-13 -Fluorobiphenyl 81 48-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 80 31-12 -Fluorophenol (Surr) 79 38-12 Phenol-d5 (Surr) 83 39-12 Prephenyl-d14 (Surr) 87 25-12 Aethod: SW846 8015D - Diesel Range Organics (DRO) (GC analyte Result Currogate %Recovery Qualifier -Terphenyl 0 * 10-18 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) analyte Currogate -Terphenyl 0.093 0.003 0.003 -Toclor 1016 0.093 0.003 0.003 -roclor 1221 0.093 0.003 0.003 -roclor 1232 0.093 0.003 0.003 -roclor 1242 0.093 0.003 0.003	37 20 20				<u> </u>	Analyzed	D'' 5
Fluorobiphenyl 81 48 - 12 -Fluorophenol (Surr) 80 31 - 12 itrobenzene-d5 (Surr) 79 38 - 12 henol-d5 (Surr) 83 39 - 12 erphenyl-d14 (Surr) 87 25 - 12 lethod: SW846 8015D - Diesel Range Organics (DRO) (GC nalyte Result qualifier 7400 0 urrogate %Recovery Qualifier -Terphenyl 0 * 10 - 15 lethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) nalyte Color 10 roclor 1016 0.093 0 0 roclor 1221 0.093 0 0 roclor 1232 0.093 0 0 roclor 1242 0.093 0 0 roclor 1248 0.093 0 0	20 20				00/24/23 07.14		Dil Fa
Fluorophenol (Surr) 80 31 - 12 Itrobenzene-d5 (Surr) 79 38 - 12 Itenol-d5 (Surr) 83 39 - 12 iterphenyl-d14 (Surr) 87 25 - 12 Itethod: SW846 8015D - Diesel Range Organics (DRO) (GC Result Qualifier Itethod: SW846 8015D - Diesel Range Organics (DRO) (GC Result Qualifier Itethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) * 10 - 12 Itethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) nalyte Result Qualifier Itethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) 0.003 0.003 0.003 Itethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) 0.003 0.003 0.003 Itethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) 0.003 0.003 0.003 Iterphenyl 0.093 0.003 0.003 0.003 <td>20</td> <td></td> <td></td> <td></td> <td>03/27/23 01.14</td> <td>09/25/23 01:13</td> <td></td>	20				03/27/23 01.14	09/25/23 01:13	
litrobenzene-d5 (Surr) 79 38 - 12 henol-d5 (Surr) 83 39 - 12 erphenyl-d14 (Surr) 87 25 - 12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC nalyte Result Qualifier 10-C44 7400 6 urrogate %Recovery Qualifier -Terphenyl 0 * Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) nalyte Result Qualifier -Terphenyl 0.093 0 0.00 roclor 1016 0.093 0 0.00 roclor 1221 0.093 0 0.00 roclor 1232 0.093 0 0.00 roclor 1242 0.093 0 0.00 roclor 1248 0.093 0 0.00					09/24/23 07:14	09/25/23 01:13	
litrobenzene-d5 (Surr) 79 38 - 12 thenol-d5 (Surr) 83 39 - 12 terphenyl-d14 (Surr) 87 25 - 12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC malyte Result Qualifier C10-C44 7400 6 surrogate %Recovery Qualifier -Terphenyl 0 * Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) malyte Result Qualifier roclor 1016 0.093 0 0.00 roclor 1221 0.093 0 0.00 roclor 1232 0.093 0 0.00 roclor 1242 0.093 0 0.00 roclor 1248 0.093 0 0.00					09/24/23 07:14	09/25/23 01:13	
thenol-d5 (Surr) 83 39 - 12 terphenyl-d14 (Surr) 87 25 - 12 Method: SW846 8015D - Diesel Range Organics (DRO) (GC malyte Result Qualifier inalyte Result Qualifier inalyte Result Qualifier inalyte Result Qualifier inalyte %Recovery Qualifier inalyte %Recovery Qualifier Terphenyl 0 * Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) malyte Result Qualifier roclor 1016 0.093 U 0.0 roclor 1221 0.093 U 0.0 roclor 1232 0.093 U 0.0 roclor 1242 0.093 U 0.0 roclor 1248 0.093 U 0.0	20				09/24/23 07:14	09/25/23 01:13	
Bit Bit <td>20</td> <td></td> <td></td> <td></td> <td>09/24/23 07:14</td> <td>09/25/23 01:13</td> <td></td>	20				09/24/23 07:14	09/25/23 01:13	
Result Qualifier C10-C44 7400 0 Surrogate %Recovery Qualifier Limits 0 * 10 - 15 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) Malyte Result Qualifier 0 voclor 1016 0.093 U 0.0 voclor 1221 0.093 U 0.0 voclor 1232 0.093 U 0.0 voclor 1242 0.093 U 0.0 voclor 1248 0.093 U 0.0	26				09/24/23 07:14	09/25/23 01:13	
Cho-C44 7400 Constraint Surrogate %Recovery Qualifier Limits -Terphenyl 0 * 10 - 15 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) Malyte Result Qualifier 0 <t< td=""><td>· · · ·</td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>	· · · ·			_			
Surrogate -Terphenyl %Recovery 0 Qualifier * Limits 10 - 15 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) valyte Result Qualifier Qualifier voclor 1016 0.093 U 0.0 voclor 1221 0.093 U 0.0 voclor 1232 0.093 U 0.0 voclor 1242 0.093 U 0.0 voclor 1248 0.093 U 0.0	RL	MDL		D	Prepared	Analyzed	Dil Fa
Terphenyl 0 * 10 - 18 Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) Qualifier Qualifier 0.003	600	38	mg/Kg	\$	09/25/23 21:12	09/28/23 12:42	5
Aethod: SW846 8082A - Polychlorinated Biphenyls (PCBs) vnalyte Result Qualifier vroclor 1016 0.093 U 0.0 vroclor 1221 0.093 U 0.0 vroclor 1232 0.093 U 0.0 vroclor 1242 0.093 U 0.0 vroclor 1248 0.093 U 0.0	s				Prepared	Analyzed	Dil Fa
Result Qualifier vroclor 1016 0.093 U 0.0 vroclor 1221 0.093 U 0.0 vroclor 1232 0.093 U 0.0 vroclor 1242 0.093 U 0.0 vroclor 1248 0.093 U 0.0	50				09/25/23 21:12	09/28/23 12:42	5
roclor 1016 0.093 U 0.0 roclor 1221 0.093 U 0.0 roclor 1232 0.093 U 0.0 roclor 1242 0.093 U 0.0 roclor 1248 0.093 U 0.0			_		_		
roclor 1221 0.093 U 0.0 roclor 1232 0.093 U 0.0 roclor 1242 0.093 U 0.0 roclor 1248 0.093 U 0.0		MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
roclor 1232 0.093 U 0.0 roclor 1242 0.093 U 0.0 roclor 1248 0.093 U 0.0			mg/Kg	¢	09/23/23 23:08	09/25/23 16:04	
roclor 1242 0.093 U 0.0 roclor 1248 0.093 U 0.0	093		mg/Kg	¢	09/23/23 23:08	09/25/23 16:04	
roclor 1248 0.093 U 0.0	093		mg/Kg	¢	09/23/23 23:08	09/25/23 16:04	
	093		mg/Kg	¢	09/23/23 23:08		
roclor 1254 0.093 U 0.0			mg/Kg	¢	09/23/23 23:08	09/25/23 16:04	
	093	0 0 2 5	mg/Kg	¢	09/23/23 23:08	09/25/23 16:04	
	093		ma/Ka	¢	09/23/23 23:08	09/25/23 16:04	
	093 093	0.025			09/23/23 23:08	09/25/23 16:04	
vroclor-1262 0.093 U 0.0	093	0.025 0.025	mg/Kg	¢		09/25/23 16:04	
Polychlorinated biphenyls, Total 0.093 U 0.0	093 093	0.025 0.025 0.025	mg/Kg mg/Kg	¢ ¢	09/23/23 23:08	00/05/02 12 5	
Surrogate %Recovery Qualifier Limits	093 093 093	0.025 0.025 0.025	mg/Kg			09/25/23 16:04	

9/29/2023

09/25/23 19:14

1.0

1.0 %

71.7

Method: SW846 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Job ID: 460-288831-1

Percent Solids: 71.7

Matrix: Solid

Lab Sample ID: 460-288831-2

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Percent Solids (EPA Moisture)

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		34 - 150				09/23/23 23:08	09/25/23 16:04	1
Tetrachloro-m-xylene	71		34 - 150				09/23/23 23:08	09/25/23 16:04	1
Tetrachloro-m-xylene	67		34 - 150				09/23/23 23:08	09/25/23 16:04	1
Method: SW846 6020B - Meta	Is (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.5		2.1	0.22	mg/Kg		09/24/23 19:30	09/25/23 16:07	2
Barium	123		4.3	0.31	mg/Kg	₽	09/24/23 19:30	09/25/23 16:07	2
Cadmium	0.66	J	2.1	0.24	mg/Kg	¢	09/24/23 19:30	09/25/23 16:07	2
Chromium	116		4.3	1.9	mg/Kg	₽	09/24/23 19:30	09/25/23 16:07	2
Lead	83.0		1.3	0.43	mg/Kg	¢	09/24/23 19:30	09/25/23 16:07	2
Selenium	2.7	U	2.7	0.27	mg/Kg	¢	09/24/23 19:30	09/25/23 16:07	2
Silver	1.3		0.86	0.19	mg/Kg	☆	09/24/23 19:30	09/25/23 16:07	2
Method: SW846 6020B - Meta	Is (ICP/MS)	- TCLP							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	20.0	U	20.0	8.9	ug/L		09/27/23 11:17	09/27/23 20:23	10
Barium	592		40.0	9.1	ug/L		09/27/23 11:17	09/27/23 20:23	10
Cadmium	20.0	U	20.0	3.9			09/27/23 11:17	09/27/23 20:23	10
Chromium	40.0	U	40.0	25.0	ug/L		09/27/23 11:17	09/27/23 20:23	10
Lead	12.0	U	12.0	8.4	-		09/27/23 11:17	09/27/23 20:23	10
Selenium	25.0	U	25.0	5.9	ug/L		09/27/23 11:17	09/27/23 20:23	10
Silver	20.0	U	20.0		ug/L		09/27/23 11:17	09/27/23 20:23	10
Method: SW846 7470A - Merc	urv (CVAA)	- TCLP							
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.8		0.20	0.091	ug/L			09/27/23 16:43	1
Method: SW846 7471B - Merc	urv (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.15		0.022	0.010	mg/Kg	¢	09/27/23 00:49	09/27/23 06:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Burn Rate (SW846 1030)	2.20	U	2.20	2.20	mm/sec			09/27/23 15:04	1
Cyanide, Total (SW846 9012B)	0.18	J	0.33	0.18	mg/Kg	¢	09/28/23 08:19	09/28/23 14:23	1
Cyanide, Reactive (SW846 9014)	25.0		25.0	25.0	0 0		09/28/23 15:37	09/28/23 17:47	1
Sulfide, Reactive (SW846 9034)	20.0	U	20.0		mg/Kg		09/28/23 15:34	09/28/23 17:45	
pH (SW846 9045D)	7.5	HF			SU			09/28/23 09:28	1
Temperature (SW846 9045D)	20.8				Degrees C			09/28/23 09:28	1
Corrosivity (SW846 9045D)		HF			SU			09/28/23 09:28	
Percent Moisture (EPA Moisture)	28.3		1.0	1.0				09/25/23 19:14	1
	_0.0								

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Solid

Job	ID:	460)-288	3831	-1

Prep Type: Total/NA

-			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(72-138)	(63-139)	(54-150)	(71-126)
460-288831-1	WC-CB-G_20230922	113	94	112	110
LB3 460-933977/6-A	Method Blank	107	98	110	101
LCS 460-934427/3	Lab Control Sample	108	98	106	105
LCSD 460-934427/4	Lab Control Sample Dup	106	101	102	105
MB 460-934427/8	Method Blank	116	98	109	103
Surrogate Legend					
DCA = 1,2-Dichloroeth	ane-d4 (Surr)				
BFB = 4-Bromofluorob	enzene				

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	PHL	TPHL				
Lab Sample ID	Client Sample ID	(24-137)	(48-120)	(31-120)	(38-120)	(39-120)	(25-126)				
460-288831-2	WC-CB-C_20230922	68	81	80	79	83	87				
460-288839-A-13-C MS	Matrix Spike	82	92	92	92	95	97				
460-288839-A-13-D MSD	Matrix Spike Duplicate	86	94	95	93	97	101				
LCS 460-934056/2-A	Lab Control Sample	86	96	98	97	101	104				
LCSD 460-934056/3-A	Lab Control Sample Dup	86	96	96	95	99	103				
MB 460-934056/1-A	Method Blank	83	93	97	96	99	108				

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8015D - Gasoline Range Organics (GRO) (GC) Matrix: Solid

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		TFT1	
Lab Sample ID	Client Sample ID	(80-150)	
460-288831-1	WC-CB-G_20230922	135	
LCS 460-934221/2	Lab Control Sample	98	
LCSD 460-934221/3	Lab Control Sample Dup	109	
MB 460-934221/5	Method Blank	106	
Surrogate Legend			

TFT = a,a,a-Trifluorotoluene

Surrogate Summary

Job ID: 460-288831-1

Prep Type: Total/NA

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Method: 8015D - Diesel Range Organics (DRO) (GC) Matrix: Solid

_			Percent Surrogate Recovery (Acceptance Limits)	Α
		ОТРН		
Lab Sample ID	Client Sample ID	(10-150)		5
460-288831-2	WC-CB-C_20230922	0 *		J
LCS 460-934371/2-A	Lab Control Sample	111		6
LCSD 460-934371/3-A	Lab Control Sample Dup	96		0
MB 460-934371/1-A	Method Blank	114		_
Surrogate Legend				1

OTPH = o-Terphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

Prep Type: Total/NA

					•	ery (Acceptance Limits)	
		DCBP1	DCBP2	TCX1	TCX2		
ab Sample ID	Client Sample ID	(34-150)	(34-150)	(34-150)	(34-150)		
60-288605-F-2-D MS	Matrix Spike	98	96	63	70		
60-288605-F-2-E MSD	Matrix Spike Duplicate	122	117	78	85		
0-288831-2	WC-CB-C_20230922	92	93	67	71		
CS 460-934020/2-A	Lab Control Sample	90	82	80	75		
SD 460-934020/3-A	Lab Control Sample Dup	91	93	77	84		
B 460-934020/1-A	Method Blank	89	87	73	78		
Surrogate Legend							
DCBP = DCB Decachlor	robinhonyl						

TCX = Tetrachloro-m-xylene

Prep Type: Total/NA

5

8

13

Client Sample ID: Method Blank

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: LB3 460-933977/6-A Matrix: Solid Analysis Batch: 934427

Matrix: Solid								Prep Type: 1	
Analysis Batch: 934427	I B3	LB3						Prep Batch:	933977
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0010	U	0.0010	0.00023	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,1,2,2-Tetrachloroethane	0.0010	U	0.0010	0.00021	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.0010	0.00030	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,1,2-Trichloroethane	0.0010	U	0.0010	0.00018	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,1-Dichloroethane	0.0010	U	0.0010	0.00021	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,1-Dichloroethene	0.0010	U	0.0010	0.00023	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2,3-Trichlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2,4-Trichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2-Dibromo-3-Chloropropane	0.0010	U	0.0010	0.00046	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2-Dichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2-Dichloroethane	0.0010	U	0.0010	0.00030	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,2-Dichloropropane	0.0010	U	0.0010	0.00042	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,3-Dichlorobenzene	0.0010	U	0.0010	0.00037	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
1,4-Dichlorobenzene	0.0010	U	0.0010	0.00023	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
2-Butanone (MEK)	0.0050	U	0.0050	0.00037	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
2-Hexanone	0.0050	U	0.0050	0.0017	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
4-Methyl-2-pentanone (MIBK)	0.0050	U	0.0050	0.0016	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Acetone	0.0060	U	0.0060	0.0057	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Acrolein	0.10	U	0.10	0.028	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Acrylonitrile	0.010	U	0.010	0.0049			09/23/23 13:10	09/26/23 10:35	1
Benzene	0.0010	U	0.0010	0.00026	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Bromoform	0.0010	U	0.0010	0.00043			09/23/23 13:10	09/26/23 10:35	1
Bromomethane	0.0020	U	0.0020	0.0010	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Carbon disulfide	0.0010	U	0.0010	0.00027			09/23/23 13:10	09/26/23 10:35	1
Carbon tetrachloride	0.0010	U	0.0010	0.00039			09/23/23 13:10	09/26/23 10:35	1
Chlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Chlorobromomethane	0.0010	U	0.0010	0.00028	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Chlorodibromomethane	0.0010	U	0.0010	0.00019	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Chloroethane	0.0010	U	0.0010	0.00052	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Chloroform	0.0010	U	0.0010	0.00097	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Chloromethane	0.0010	U	0.0010	0.00044	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
cis-1,2-Dichloroethene	0.0010	U	0.0010	0.00036	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
cis-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Cyclohexane	0.0010	U	0.0010	0.00022	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Dichlorobromomethane	0.0010	U	0.0010	0.00026	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Dichlorodifluoromethane	0.0010	U	0.0010	0.00034	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Ethylbenzene	0.0010	U	0.0010	0.00020	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Ethylene Dibromide	0.0010	U	0.0010	0.00018	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Isopropylbenzene	0.0010	U	0.0010	0.00029	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Methyl acetate	0.0050	U	0.0050	0.0043	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Methyl tert-butyl ether	0.0010	U	0.0010	0.00051	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Methylcyclohexane	0.0010	U	0.0010	0.00050	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Methylene Chloride	0.0020	U	0.0020	0.0011	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
m-Xylene & p-Xylene	0.0010	U	0.0010	0.00017			09/23/23 13:10	09/26/23 10:35	1
o-Xylene	0.0010	U	0.0010	0.00019			09/23/23 13:10	09/26/23 10:35	1
Styrene	0.0010	U	0.0010	0.00028			09/23/23 13:10	09/26/23 10:35	1
ТВА	0.010	U	0.010	0.0078			09/23/23 13:10	09/26/23 10:35	1
Tetrachloroethene	0.0010	U	0.0010	0.00031	mg/Kg		09/23/23 13:10	09/26/23 10:35	1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

LB3 LB3

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 460-288831-1

Prep Batch: 933977

Lab Sample ID: LB3 460-933977/6-A Matrix: Solid Analysis Batch: 934427

	LDJ	LDJ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.0010	U	0.0010	0.00023	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
trans-1,2-Dichloroethene	0.0010	U	0.0010	0.00025	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
trans-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Trichloroethene	0.0010	U	0.0010	0.00032	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Trichlorofluoromethane	0.0010	U	0.0010	0.00041	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
Vinyl chloride	0.0010	U	0.0010	0.00055	mg/Kg		09/23/23 13:10	09/26/23 10:35	1
	LB3	LB3							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		mg/Kg			N/A	09/23/23 13:10	09/26/23 10:35	1
	LB3	LB3							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		72 - 138				09/23/23 13:10	09/26/23 10:35	1
4-Bromofluorobenzene	98		63 - 139				09/23/23 13:10	09/26/23 10:35	1
Dibromofluoromethane (Surr)	110		54 - 150				09/23/23 13:10	09/26/23 10:35	1
Toluene-d8 (Surr)	101		71 - 126				09/23/23 13:10	09/26/23 10:35	1

Lab Sample ID: MB 460-934427/8 Matrix: Solid Analysis Batch: 934427

MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane 0.0010 U 0.0010 0.00023 mg/Kg 09/26/23 10:11 1 1,1,2,2-Tetrachloroethane 0.0010 U 0.0010 0.00021 mg/Kg 09/26/23 10:11 1 1,1,2-Trichloro-1,2,2-trifluoroethane 0.0010 U 0.0010 0.00030 mg/Kg 09/26/23 10:11 1 1,1,2-Trichloroethane 0.0010 U 0.0010 0.00018 mg/Kg 09/26/23 10:11 1,1-Dichloroethane 0.0010 U 0.0010 0.00021 mg/Kg 09/26/23 10:11 1 1,1-Dichloroethene 0.0010 U 0.0010 0.00023 mg/Kg 09/26/23 10:11 1 1.2.3-Trichlorobenzene 0.0010 0.00018 mg/Kg 0.0010 U 09/26/23 10:11 1 1,2,4-Trichlorobenzene 0.0010 U 0.0010 0.00036 mg/Kg 09/26/23 10:11 1 1,2-Dibromo-3-Chloropropane 0.0010 U 0.0010 0.00046 mg/Kg 09/26/23 10:11 1 0.00036 mg/Kg 1,2-Dichlorobenzene 0.0010 U 0.0010 09/26/23 10:11 1 1,2-Dichloroethane 0.0010 U 0.0010 0.00030 mg/Kg 09/26/23 10:11 1 1,2-Dichloropropane 0.0010 U 0.0010 0.00042 mg/Kg 09/26/23 10:11 1 1,3-Dichlorobenzene 0.0010 U 0.0010 0.00037 mg/Kg 09/26/23 10:11 1 1,4-Dichlorobenzene 0.0010 U 0.0010 0.00023 mg/Kg 09/26/23 10:11 1 2-Butanone (MEK) 0.0050 U 0.0050 0.00037 mg/Kg 09/26/23 10:11 1 2-Hexanone 0.0050 U 0.0050 0.0017 mg/Kg 09/26/23 10:11 1 4-Methyl-2-pentanone (MIBK) 0.0050 U 0.0050 0.0016 mg/Kg 09/26/23 10:11 1 0.0060 Acetone 0.0060 U 0.0057 mg/Kg 09/26/23 10:11 1 Acrolein 0.10 U 0.10 0.028 mg/Kg 09/26/23 10:11 1 Acrylonitrile 0.010 U 0.010 0.0049 mg/Kg 09/26/23 10.11 1 Benzene 0.0010 U 0.0010 0.00026 mg/Kg 09/26/23 10:11 1 Bromoform 0.0010 U 0.0010 0.00043 mg/Kg 09/26/23 10:11 1 0.0010 mg/Kg Bromomethane 0.0020 U 0.0020 09/26/23 10:11 1 Carbon disulfide 0.0010 U 0.0010 0.00027 mg/Kg 09/26/23 10:11 1 Carbon tetrachloride 0.0010 U 0.0010 0.00039 mg/Kg 09/26/23 10:11 Chlorobenzene 0.0010 U 0.0010 0.00018 mg/Kg 09/26/23 10:11 1 Chlorobromomethane 0.0010 U 0.0010 0.00028 mg/Kg 09/26/23 10:11 1

Eurofins Edison

Client Sample ID: Method Blank Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 460-934427/8 Matrix: Solid

Analysis Batch: 934427

	MB	мв								
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodibromomethane	0.0010	U	0.0010	0.	00019	mg/Kg			09/26/23 10:11	1
Chloroethane	0.0010	U	0.0010	0.	00052	mg/Kg			09/26/23 10:11	1
Chloroform	0.0010	U	0.0010	0.	00097	mg/Kg			09/26/23 10:11	1
Chloromethane	0.0010	U	0.0010	0.	00044	mg/Kg			09/26/23 10:11	1
cis-1,2-Dichloroethene	0.0010	U	0.0010	0.	00036	mg/Kg			09/26/23 10:11	1
cis-1,3-Dichloropropene	0.0010	U	0.0010	0.	00027	mg/Kg			09/26/23 10:11	1
Cyclohexane	0.0010	U	0.0010	0.	00022	mg/Kg			09/26/23 10:11	1
Dichlorobromomethane	0.0010	U	0.0010	0.	00026	mg/Kg			09/26/23 10:11	1
Dichlorodifluoromethane	0.0010	U	0.0010	0.	00034	mg/Kg			09/26/23 10:11	1
Ethylbenzene	0.0010	U	0.0010	0.	00020	mg/Kg			09/26/23 10:11	1
Ethylene Dibromide	0.0010	U	0.0010	0.	00018	mg/Kg			09/26/23 10:11	1
Isopropylbenzene	0.0010	U	0.0010	0.	00029	mg/Kg			09/26/23 10:11	1
Methyl acetate	0.0050	U	0.0050	C	0.0043	mg/Kg			09/26/23 10:11	1
Methyl tert-butyl ether	0.0010	U	0.0010	0.	00051	mg/Kg			09/26/23 10:11	1
Methylcyclohexane	0.0010	U	0.0010	0.	00050	mg/Kg			09/26/23 10:11	1
Methylene Chloride	0.0020	U	0.0020	(0.0011	mg/Kg			09/26/23 10:11	1
m-Xylene & p-Xylene	0.0010	U	0.0010	0.	00017	mg/Kg			09/26/23 10:11	1
o-Xylene	0.0010	U	0.0010	0.	00019	mg/Kg			09/26/23 10:11	1
Styrene	0.0010	U	0.0010	0.	00028	mg/Kg			09/26/23 10:11	1
ТВА	0.010	U	0.010	C	0.0078	mg/Kg			09/26/23 10:11	1
Tetrachloroethene	0.0010	U	0.0010	0.	00031	mg/Kg			09/26/23 10:11	1
Toluene	0.0010	U	0.0010	0.	00023	mg/Kg			09/26/23 10:11	1
trans-1,2-Dichloroethene	0.0010	U	0.0010	0.	00025	mg/Kg			09/26/23 10:11	1
trans-1,3-Dichloropropene	0.0010	U	0.0010	0.	00027	mg/Kg			09/26/23 10:11	1
Trichloroethene	0.0010	U	0.0010	0.	00032	mg/Kg			09/26/23 10:11	1
Trichlorofluoromethane	0.0010	U	0.0010	0.	00041	mg/Kg			09/26/23 10:11	1
Vinyl chloride	0.0010	U	0.0010	0.	00055	mg/Kg			09/26/23 10:11	1
	МВ	МВ								
Tentetively Identified Compound	MB		11=:4	D		RT	CAS No.	Droporod	Anolymod	Dil Fac
Tentatively Identified Compound	Est. Result	Quaimer	Unit	<u> </u>			N/A	Prepared	Analyzed	<u>DII Fac</u>
Tentatively Identified Compound	None		mg/Kg				N/A		09/20/23 10.11	1
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		72 - 138						09/26/23 10:11	1
4-Bromofluorobenzene	98		63 - 139						09/26/23 10:11	1
Dibromofluoromethane (Surr)	109		54 - 150						09/26/23 10:11	1
Toluene-d8 (Surr)	103		71 - 126						09/26/23 10:11	1

Lab Sample ID: LCS 460-934427/3 Matrix: Solid Analysis Batch: 934427

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	0.0200	0.0222		mg/Kg		111	72 - 140	
1,1,2,2-Tetrachloroethane	0.0200	0.0181		mg/Kg		91	66 - 133	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0239		mg/Kg		120	71 - 141	
ne								
1,1,2-Trichloroethane	0.0200	0.0180		mg/Kg		90	80 - 120	
1,1-Dichloroethane	0.0200	0.0213		mg/Kg		106	77 _ 129	

Job ID: 460-288831-1

09/26/23 10:11 1 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-934427/3 Matrix: Solid

Analysis Batch: 934427

Analysis Batch: 934427								_
	Spike	LCS		<u>-</u> -	_		%Rec	5
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	0.0200	0.0231		mg/Kg		115	70 - 132	6
1,2,3-Trichlorobenzene	0.0200	0.0216		mg/Kg		108	68 - 124	_
1,2,4-Trichlorobenzene	0.0200	0.0211		mg/Kg		106	68 - 124	
1,2-Dibromo-3-Chloropropane	0.0200	0.0181		mg/Kg		90	64 - 124	
1,2-Dichlorobenzene	0.0200	0.0209		mg/Kg		105	80 - 120	8
1,2-Dichloroethane	0.0200	0.0192		mg/Kg		96	70 - 123	
1,2-Dichloropropane	0.0200	0.0199		mg/Kg		99	73 - 124	Q
1,3-Dichlorobenzene	0.0200	0.0208		mg/Kg		104	80 - 120	
1,4-Dichlorobenzene	0.0200	0.0207		mg/Kg		103	80 - 120	
2-Butanone (MEK)	0.100	0.104		mg/Kg		104	64 - 128	
2-Hexanone	0.100	0.111		mg/Kg		111	61 - 128	
4-Methyl-2-pentanone (MIBK)	0.100	0.117		mg/Kg		117	72 - 122	
Acetone	0.100	0.102		mg/Kg		102	63 - 131	
Acrolein	0.300	0.270		mg/Kg		90	24 - 150	12
Acrylonitrile	0.200	0.178		mg/Kg		89	66 - 134	
Benzene	0.0200	0.0203		mg/Kg		102	75 - 130	13
Bromoform	0.0200	0.0179		mg/Kg		89	18 - 150	_
Bromomethane	0.0200	0.0200		mg/Kg		100	40 - 150	
Carbon disulfide	0.0200	0.0232		mg/Kg		116	69 - 141	
Carbon tetrachloride	0.0200	0.0233		mg/Kg		116	54 - 150	
Chlorobenzene	0.0200	0.0197		mg/Kg		99	80 - 120	
Chlorobromomethane	0.0200	0.0184		mg/Kg		92	76 - 127	
Chlorodibromomethane	0.0200	0.0195		mg/Kg		98	42 - 150	
Chloroethane	0.0200	0.0178		mg/Kg		89	60 - 141	
Chloroform	0.0200	0.0210		mg/Kg		105	79 - 126	
Chloromethane	0.0200	0.0200		mg/Kg		100	55 - 139	
cis-1,2-Dichloroethene	0.0200	0.0220		mg/Kg		110	80 - 123	
cis-1,3-Dichloropropene	0.0200	0.0189		mg/Kg		95	70 - 127	
Cyclohexane	0.0200	0.0236		mg/Kg		118	74 - 132	
Dichlorobromomethane	0.0200	0.0215		mg/Kg		108	67 - 124	
Dichlorodifluoromethane	0.0200	0.0171		mg/Kg		85	51 - 138	
Ethylbenzene	0.0200	0.0206		mg/Kg		103	80 - 120	
Ethylene Dibromide	0.0200	0.0182		mg/Kg		91	79 - 120	
Isopropylbenzene	0.0200	0.0227		mg/Kg		113	80 - 120	
Methyl acetate	0.0400	0.0386		mg/Kg		97	52 - 143	
Methyl tert-butyl ether	0.0200	0.0232		mg/Kg		116	74 - 125	
Methylcyclohexane	0.0200	0.0233		mg/Kg		117	70 - 133	
Methylene Chloride	0.0200	0.0206		mg/Kg		103	70 - 130	
m-Xylene & p-Xylene	0.0200	0.0203		mg/Kg		101	80 - 120	
o-Xylene	0.0200	0.0215		mg/Kg		107	80 - 120	
Styrene	0.0200	0.0210		mg/Kg		105	73 - 120	
ТВА	0.200	0.194		mg/Kg		97	67 - 120	
Tetrachloroethene	0.0200	0.0206		mg/Kg		103	66 - 133	
Toluene	0.0200	0.0205		mg/Kg		103	80 - 120	
trans-1,2-Dichloroethene	0.0200	0.0206		mg/Kg		103	78 - 128	
trans-1,3-Dichloropropene	0.0200	0.0185		mg/Kg		93	69 - 120	
Trichloroethene	0.0200	0.0205		mg/Kg		102	75 - 120	
Trichlorofluoromethane	0.0200	0.0166		mg/Kg		83	55 - 142	
Vinyl chloride	0.0200	0.0182		mg/Kg		91	58 - 147	
	0.0200	0.0102				01	50-111	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

	LCS	LCS						
Surrogate	%Recovery	Qualifier	Limits					
1,2-Dichloroethane-d4 (Surr)	108		72 - 138					
4-Bromofluorobenzene	98		63 - 139					
Dibromofluoromethane (Surr)	106		54 - 150					
Toluene-d8 (Surr)	105		71 - 126					

Lab Sample ID: LCSD 460-934427/4 Matrix: Solid Analysis Batch: 934427

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 934427	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0200	0.0233		mg/Kg		117	72 - 140	5	30
1,1,2,2-Tetrachloroethane	0.0200	0.0173		mg/Kg		86	66 - 133	5	30
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0238		mg/Kg		119	71_141	1	30
ne									
1,1,2-Trichloroethane	0.0200	0.0184		mg/Kg		92	80 - 120	2	30
1,1-Dichloroethane	0.0200	0.0213		mg/Kg		107	77 - 129	0	30
1,1-Dichloroethene	0.0200	0.0219		mg/Kg		110	70 - 132	5	30
1,2,3-Trichlorobenzene	0.0200	0.0218		mg/Kg		109	68 - 124	1	30
1,2,4-Trichlorobenzene	0.0200	0.0209		mg/Kg		105	68 - 124	1	30
1,2-Dibromo-3-Chloropropane	0.0200	0.0178		mg/Kg		89	64 - 124	1	30
1,2-Dichlorobenzene	0.0200	0.0198		mg/Kg		99	80 - 120	6	30
1,2-Dichloroethane	0.0200	0.0201		mg/Kg		100	70 - 123	5	30
1,2-Dichloropropane	0.0200	0.0208		mg/Kg		104	73 - 124	5	30
1,3-Dichlorobenzene	0.0200	0.0199		mg/Kg		100	80 - 120	4	30
1,4-Dichlorobenzene	0.0200	0.0196		mg/Kg		98	80 - 120	5	30
2-Butanone (MEK)	0.100	0.104		mg/Kg		104	64 - 128	0	30
2-Hexanone	0.100	0.107		mg/Kg		107	61 - 128	4	30
4-Methyl-2-pentanone (MIBK)	0.100	0.114		mg/Kg		114	72 - 122	3	30
Acetone	0.100	0.105		mg/Kg		105	63 - 131	2	30
Acrolein	0.300	0.272		mg/Kg		91	24 - 150	1	30
Acrylonitrile	0.200	0.187		mg/Kg		94	66 - 134	5	30
Benzene	0.0200	0.0206		mg/Kg		103	75 - 130	1	30
Bromoform	0.0200	0.0184		mg/Kg		92	18 - 150	3	30
Bromomethane	0.0200	0.0193		mg/Kg		97	40 - 150	3	30
Carbon disulfide	0.0200	0.0250		mg/Kg		125	69 - 141	7	30
Carbon tetrachloride	0.0200	0.0232		mg/Kg		116	54 - 150	0	30
Chlorobenzene	0.0200	0.0200		mg/Kg		100	80 - 120	1	30
Chlorobromomethane	0.0200	0.0192		mg/Kg		96	76 - 127	4	30
Chlorodibromomethane	0.0200	0.0194		mg/Kg		97	42 - 150	0	30
Chloroethane	0.0200	0.0192		mg/Kg		96	60 - 141	7	30
Chloroform	0.0200	0.0208		mg/Kg		104	79 - 126	1	30
Chloromethane	0.0200	0.0200		mg/Kg		100	55 - 139	0	30
cis-1,2-Dichloroethene	0.0200	0.0225		mg/Kg		113	80 - 123	3	30
cis-1,3-Dichloropropene	0.0200	0.0205		mg/Kg		103	70 - 127	8	30
Cyclohexane	0.0200	0.0251		mg/Kg		126	74 - 132	6	30
Dichlorobromomethane	0.0200	0.0204		mg/Kg		102	67 - 124	6	30
Dichlorodifluoromethane	0.0200	0.0176		mg/Kg		88	51 - 138	3	30
Ethylbenzene	0.0200	0.0212		mg/Kg		106	80 - 120	3	30
Ethylene Dibromide	0.0200	0.0184		mg/Kg		92	79 - 120	1	30
Isopropylbenzene	0.0200	0.0225		mg/Kg		113	80 - 120	1	30
Methyl acetate	0.0400	0.0396		mg/Kg		99	52 - 143	2	30
Methyl tert-butyl ether	0.0200	0.0241		mg/Kg		120	74 - 125	4	30

Eurofins Edison

Job ID: 460-288831-1

8

13

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 934056

2 nued) Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA %Rec RPD

8

Lab Sample ID: LCSD 460-934427/4 Matrix: Solid

Analysis Batch: 934427

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methylcyclohexane			0.0200	0.0237		mg/Kg		118	70 - 133	2	30
Methylene Chloride			0.0200	0.0199		mg/Kg		99	70 - 130	3	30
m-Xylene & p-Xylene			0.0200	0.0212		mg/Kg		106	80 - 120	4	30
o-Xylene			0.0200	0.0209		mg/Kg		104	80 - 120	3	30
Styrene			0.0200	0.0215		mg/Kg		107	73 - 120	2	30
ТВА			0.200	0.196		mg/Kg		98	67 - 120	1	30
Tetrachloroethene			0.0200	0.0199		mg/Kg		100	66 - 133	3	30
Toluene			0.0200	0.0211		mg/Kg		105	80 - 120	3	30
trans-1,2-Dichloroethene			0.0200	0.0205		mg/Kg		102	78 - 128	1	30
trans-1,3-Dichloropropene			0.0200	0.0190		mg/Kg		95	69 - 120	3	30
Trichloroethene			0.0200	0.0218		mg/Kg		109	75 - 120	6	30
Trichlorofluoromethane			0.0200	0.0176		mg/Kg		88	55 - 142	6	30
Vinyl chloride			0.0200	0.0184		mg/Kg		92	58 - 147	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	106		72 - 138								
4-Bromofluorobenzene	101		63 - 139								
Dibromofluoromethane (Surr)	102		54 - 150								
Toluene-d8 (Surr)	105		71 - 126								

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-934056/1-A Matrix: Solid Analysis Batch: 934123

MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 1,1'-Biphenyl 0.33 U 0.33 0.012 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 1,2,4,5-Tetrachlorobenzene 0.33 U 0.33 0.010 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 1,2-Diphenylhydrazine 0.33 U 0.33 0.013 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 1,4-Dioxane 0.033 U 0.033 0.029 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2,2'-oxybis[1-chloropropane] 0.33 U 0.33 0.020 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 09/24/23 07:14 09/24/23 17:04 2,3,4,6-Tetrachlorophenol 0.33 U 0.33 0.022 mg/Kg 1 2,4,5-Trichlorophenol 0.33 U 0.33 0.034 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2,4,6-Trichlorophenol 0.13 U 0.13 0.042 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 09/24/23 07:14 09/24/23 17:04 2,4-Dichlorophenol 0.13 U 0.13 0.021 mg/Kg 1 2,4-Dimethylphenol 0.33 U 0.33 0.039 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2,4-Dinitrophenol 0.27 U 0 27 0.16 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 0.067 09/24/23 07:14 09/24/23 17:04 2,4-Dinitrotoluene 0.067 U 0.036 mg/Kg 1 2,6-Dinitrotoluene 0.067 U 0.067 0.024 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2-Chloronaphthalene 0.015 mg/Kg 09/24/23 07:14 09/24/23 17:04 0.33 U 0.33 1 2-Chlorophenol 0.33 U 0.33 0.012 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2-Methylnaphthalene 0.33 U 0.33 0.0093 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 09/24/23 07:14 09/24/23 17:04 2-Methylphenol 0.33 U 0.33 0.012 mg/Kg 1 2-Nitroaniline 0.33 U 0.33 0.025 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 2-Nitrophenol 0.33 U 0.33 0.033 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 3,3'-Dichlorobenzidine 0.13 U 0.13 0.050 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 3-Nitroaniline 0.33 U 0.33 0.079 mg/Kg 09/24/23 07:14 09/24/23 17:04 1 4,6-Dinitro-2-methylphenol 0.27 U 0.27 0.14 mg/Kg 09/24/23 07:14 09/24/23 17:04 1

Eurofins Edison

Page 23 of 54

Lab Sample ID: MB 460-934056/1-A Matrix: Solid

Analysis	Batch:	934123
· · · · · · · · · · · · · · · · · · ·		

	MB	MB					
Analyte		Qualifier	RL		Unit	D Prepared Analyzed Di	il Fac
4-Bromophenyl phenyl ether	0.33	U	0.33	0.013	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Chloro-3-methylphenol	0.33	U	0.33	0.019	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Chloroaniline	0.33	U	0.33	0.059	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Chlorophenyl phenyl ether	0.33	U	0.33	0.012	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Methylphenol	0.33	U	0.33	0.021	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Nitroaniline	0.33	U	0.33	0.038	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
4-Nitrophenol	0.67	U	0.67	0.054	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Acenaphthene	0.33	U	0.33	0.0094	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Acenaphthylene	0.33	U	0.33	0.0095	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Acetophenone	0.33	U	0.33	0.016	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Anthracene	0.33	U	0.33	0.010	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Atrazine	0.13	U	0.13	0.019	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Benzaldehyde	0.33	U	0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Benzidine	0.33	U	0.33	0.069	mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Benzo[a]anthracene	0.033	U	0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Benzo[a]pyrene	0.033		0.033	0.0088		09/24/23 07:14 09/24/23 17:04	1
Benzo[b]fluoranthene	0.033	U	0.033	0.0086		09/24/23 07:14 09/24/23 17:04	1
Benzo[g,h,i]perylene	0.33	U	0.33	0.0098	7 7	09/24/23 07:14 09/24/23 17:04	1
Benzo[k]fluoranthene	0.033	U	0.033	0.0065		09/24/23 07:14 09/24/23 17:04	1
Bis(2-chloroethoxy)methane	0.33	U	0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Bis(2-chloroethyl)ether	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Bis(2-ethylhexyl) phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Butyl benzyl phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Caprolactam	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Carbazole	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Chrysene	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Dibenz(a,h)anthracene	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Dibenzofuran	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Diethyl phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Dimethyl phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	· · · · · 1
Di-n-butyl phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Di-n-octyl phthalate	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Fluoranthene	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	
Fluorene	0.33		0.33	0.0097		09/24/23 07:14 09/24/23 17:04	1
Hexachlorobenzene	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Hexachlorobutadiene	0.067		0.067	0.0070		09/24/23 07:14 09/24/23 17:04	1
Hexachlorocyclopentadiene	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Hexachloroethane	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Indeno[1,2,3-cd]pyrene	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
			0.033			09/24/23 07:14 09/24/23 17:04	
Isophorone Naphthalene	0.13 0.33		0.13		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
· · · · · · · · · · · · · · · · · · ·				0.0057	7 7		1
Nitrobenzene	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
N-Nitrosodi-n-propylamine	0.033		0.033		mg/Kg	09/24/23 07:14 09/24/23 17:04	T A
N-Nitrosodiphenylamine	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Pentachlorophenol	0.27		0.27		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Phenanthrene	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Phenol	0.33		0.33		mg/Kg	09/24/23 07:14 09/24/23 17:04	1
Pyrene	0.33		0.33	0.0082		09/24/23 07:14 09/24/23 17:04	1
Pyridine	0.33	U	0.33	0.047	mg/Kg	09/24/23 07:14 09/24/23 17:04	1

Job ID: 460-288831-1

Prep Type: Total/NA Prep Batch: 934056

Client Sample ID: Method Blank

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	0.373	A J	mg/Kg		2.85	N/A	09/24/23 07:14	09/24/23 17:04	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	83		24 - 137				09/24/23 07:14	09/24/23 17:04	1
2-Fluorobiphenyl	93		48 - 120				09/24/23 07:14	09/24/23 17:04	1
2-Fluorophenol (Surr)	97		31 - 120				09/24/23 07:14	09/24/23 17:04	1
Nitrobenzene-d5 (Surr)	96		38 - 120				09/24/23 07:14	09/24/23 17:04	1
Phenol-d5 (Surr)	99		39 - 120				09/24/23 07:14	09/24/23 17:04	1
Terphenyl-d14 (Surr)	108		25 - 126				09/24/23 07:14	09/24/23 17:04	1

Lab Sample ID: LCS 460-934056/2-A Matrix: Solid Analysis Batch: 934123

Prep Batch: 934056 LCS LCS Spike %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits 1,1'-Biphenyl 3.33 2.78 mg/Kg 83 68 - 120 1,2,4,5-Tetrachlorobenzene 3.33 2.73 mg/Kg 82 65 - 120 3.33 2.99 90 52 - 125 1,2-Diphenylhydrazine mg/Kg 1,4-Dioxane 3.33 2.21 mg/Kg 66 30 - 120 3.33 82 43 - 126 2,2'-oxybis[1-chloropropane] 2.72 mg/Kg 2,3,4,6-Tetrachlorophenol 3.33 2.66 mg/Kg 80 66 - 127 2,4,5-Trichlorophenol 3.33 2.76 mg/Kg 83 67 - 120 85 2,4,6-Trichlorophenol 3.33 2.83 mg/Kg 67 - 120 3.33 85 2,4-Dichlorophenol 2.85 mg/Kg 66 - 120 62 2,4-Dimethylphenol 3.33 2.07 62 - 120 mg/Kg 2,4-Dinitrophenol 6.67 82 27 - 150 5.49 mg/Kg 87 2,4-Dinitrotoluene 3.33 2.91 70 - 131 mg/Kg 2,6-Dinitrotoluene 3.33 2.89 mg/Kg 87 72 - 121 2-Chloronaphthalene 3.33 2.75 mg/Kg 83 68 - 120 2-Chlorophenol 3.33 2.72 82 63 - 120 mg/Kg 3.33 2.72 82 64 - 120 2-Methylnaphthalene mg/Kg 2-Methylphenol 3.33 2.61 mg/Kg 78 58 - 120 2-Nitroaniline 3.33 2.84 85 48 - 129 mg/Kg 3.33 83 2-Nitrophenol 2.76 mg/Kg 64 - 120 3.3'-Dichlorobenzidine 3.33 1.96 mg/Kg 59 10 - 136 3-Nitroaniline 3.33 2.17 mg/Kg 65 20 - 132 4,6-Dinitro-2-methylphenol 6.67 6.33 mg/Kg 95 47 - 150 3.33 2.86 mg/Kg 86 4-Bromophenyl phenyl ether 62 - 120 4-Chloro-3-methylphenol 3.33 2.76 83 66 - 120 mg/Kg 46 4-Chloroaniline 3.33 1.52 10 - 128 mg/Kg 4-Chlorophenyl phenyl ether 3.33 2.73 82 69 - 120 mg/Kg 80 4-Methylphenol 3.33 2.68 mg/Kg 55 - 120 4-Nitroaniline 3.33 2.55 mg/Kg 77 52 - 120 4-Nitrophenol 6.67 5.44 mg/Kg 82 43 - 135 Acenaphthene 3.33 2.81 mg/Kg 84 61 - 120 Acenaphthylene 3.33 2.67 80 64 - 120 mg/Kg 3.33 2.59 78 57 - 120 Acetophenone mg/Kg Anthracene 3.33 2.81 mg/Kg 84 67 - 120 Atrazine 1.33 1.57 mg/Kg 118 34 - 120 Benzaldehyde 1.33 1.50 mg/Kg 113 28 - 150 Benzidine 3.33 0.988 mg/Kg 30 10 - 120

Eurofins Edison

Job ID: 460-288831-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-934056/2-A Matrix: Solid Analysis Batch: 934123				Clier	nt Sai	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 934056
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[a]anthracene	3.33	2.92		mg/Kg		88	69 - 120
Benzo[a]pyrene	3.33	3.27		mg/Kg		98	66 - 123
Benzo[b]fluoranthene	3.33	3.12		mg/Kg		94	70 - 125
Benzo[g,h,i]perylene	3.33	2.78		mg/Kg		84	66 - 120
Benzo[k]fluoranthene	3.33	2.98		mg/Kg		90	71 - 122
Bis(2-chloroethoxy)methane	3.33	2.67		mg/Kg		80	62 - 120
Bis(2-chloroethyl)ether	3.33	2.70		mg/Kg		81	54 - 120
Bis(2-ethylhexyl) phthalate	3.33	3.03		mg/Kg		91	68 - 125
Butyl benzyl phthalate	3.33	3.02		mg/Kg		91	69 - 127
Caprolactam	1.33	1.67		mg/Kg		125	26 - 150
Carbazole	3.33	2.78		mg/Kg		83	64 - 120
Chrysene	3.33	2.88		mg/Kg		87	63 - 120
Dibenz(a,h)anthracene	3.33	2.87		mg/Kg		86	66 - 128
Dibenzofuran	3.33	2.72		mg/Kg		82	70 - 120
Diethyl phthalate	3.33	2.73		mg/Kg		82	69 - 120
Dimethyl phthalate	3.33	2.72		mg/Kg		82	70 - 120
Di-n-butyl phthalate	3.33	2.95		mg/Kg		88	66 - 120
Di-n-octyl phthalate	3.33	3.30		mg/Kg		99	65 - 143
Fluoranthene	3.33	2.71		mg/Kg		81	66 - 120
Fluorene	3.33	2.74		mg/Kg		82	70 - 120
Hexachlorobenzene	3.33	2.77		mg/Kg		83	56 - 120
Hexachlorobutadiene	3.33	2.71		mg/Kg		81	62 - 120
Hexachlorocyclopentadiene	3.33	0.516	*	mg/Kg		15	38 - 120
Hexachloroethane	3.33	2.62		mg/Kg		79	57 - 120
Indeno[1,2,3-cd]pyrene	3.33	3.19		mg/Kg		96	62 - 148
Isophorone	3.33	2.70		mg/Kg		81	60 - 120
Naphthalene	3.33	2.68		mg/Kg		81	63 - 120
Nitrobenzene	3.33	2.76		mg/Kg		83	63 - 120
N-Nitrosodi-n-propylamine	3.33	2.79		mg/Kg		84	55 - 120
N-Nitrosodiphenylamine	3.33	2.89		mg/Kg		87	63 - 120
Pentachlorophenol	6.67	5.94		mg/Kg		89	51 - 126
Phenanthrene	3.33	2.82		mg/Kg		85	66 - 120
Phenol	3.33	2.70		mg/Kg		81	57 - 120
Pyrene	3.33	3.00		mg/Kg		90	67 - 121
Pyridine	6.67	4.38		mg/Kg		66	37 - 120

LCS	LCS	
%Recovery	Qualifier	Limits
86		24 - 137
96		48 - 120
98		31 - 120
97		38 - 120
101		39 - 120
104		25 - 126
	%Recovery 86 96 98 97 101	86 96 98 97 101

Job ID: 460-288831-1

LCSD LCSD

Spike

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-934056/3-A

Matrix: Solid

Analysis Batch: 934123

Job ID: 460-288831-1

%Rec

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 934056 5 RPD

	_
	3

Analyte Added Result Quilier Diff. D RPC Linit 1.14:Biphenyl 33 2.7 mg/kg 82 61:20 2 30 1.2.4.5:Fatrachtoroberzene 3.33 2.06 mg/kg 88 52:125 2 30 1.4.4:Doxane 3.33 2.08 mg/kg 81 67:120 1 30 2.4.5:Trichtorophenol 3.33 2.69 mg/kg 84 67:120 1 30 2.4.5:Trichtorophenol 3.33 2.71 mg/kg 66 12 4 30 2.4-Dintorbyhenol 3.33 2.99 mg/kg 660 66.120 4 30 2.4-Dintorbyhenol 3.33 2.90 mg/kg 670 72.121 0 30 2.4-Dintorbulene 3.33 2.80 mg/kg 786 66.120 2 30 2.4-Dintorbulene 3.33 2.60 mg/kg 786 64.120 3 30		Spike	LCSD	LCSD				%Rec		RPD	
12.45 mg/kq 86 65.120 3 30 12.4Dipenylytazine 3.33 2.08 mg/kq 62 30.120 6 30 14.4Dioxane 3.33 2.08 mg/kq 61 61.27 1 30 2.4.5.Trichlorophenol 3.33 2.08 mg/kq 64 67.120 1 30 2.4.5.Trichlorophenol 3.33 2.91 mg/kq 64 67.120 1 30 2.4.Dichrichlorophenol 3.33 2.93 mg/kq 66 7.10 30 2.4.Dichrichlorophenol 3.33 2.91 mg/kq 67 7.011 0 30 2.4.Dinchrythenol 3.33 2.90 mg/kq 87 70.131 0 30 2.4.Dintrythenol 3.33 2.60 mg/kq 76 68.120 4 30 2.4.Dintrythinghthalene 3.33 2.60 mg/kq 76 68.120 4 30 2.4.Dintrythinghthalene 3.33 2.60 mg/kq 76 64.120 30 2.4.Dintrythi	Analyte	Added	Result	Qualifier	Unit	D %	6Rec	Limits	RPD	Limit	
1.2-Dipenylhydrazina 3.33 2.44 mg/kg 88 62.125 2 30 1.4-Dioxane 3.33 2.08 mg/kg 77 4.120 6 30 2.2-ox/bit1(-thioropropane) 3.33 2.08 mg/kg 81 66.127 1 30 2.4.5-Trichtorophenol 3.33 2.82 mg/kg 84 67.120 4 30 2.4.5-Trichtorophenol 3.33 2.82 mg/kg 86 66.120 4 30 2.4-Dinktorophenol 3.33 2.94 mg/kg 87 70.131 0 30 2.4-Dinktorophenol 3.33 2.91 mg/kg 87 70.131 0 30 2.4-Dinktorophenol 3.33 2.01 mg/kg 87 70.131 0 30 2.4-Dinktorophenol 3.33 2.00 mg/kg 87 70.131 0 30 2.4-Dinktorophenol 3.33 2.60 mg/kg 76 61.120 30 30 2.4-Dinktorophenol 3.33 2.60 mg/kg 76 61	1,1'-Biphenyl	3.33	2.72		mg/Kg		82		2	30	
1.4-Dixane 3.33 2.08 mg/Kg 62 3.0 2.2-xoxybig(1-chicorpopane) 3.33 2.69 mg/Kg 81 66-127 1 3.0 2.4.5-Trichicorphenol 3.33 2.69 mg/Kg 81 67-120 2 3.0 2.4.5-Trichicorphenol 3.33 2.71 mg/Kg 84 67-120 4 3.0 2.4-Dirictphonol 3.33 2.73 mg/Kg 82 66.120 4 3.0 2.4-Dirictphonol 6.67 5.49 mg/Kg 82 27-150 0 3.0 2.4-Dirictphonol 3.33 2.01 mg/Kg 87 70-131 0 3.0 2.4-Dirictphonol 3.33 2.60 mg/Kg 81 68.120 4 3.0 2Ohorophenol 3.33 2.60 mg/Kg 84 81.20 4 3.0 2Micophenol 3.33 2.60 mg/Kg 84 81.20 4 3.0 2Micophenol 3.33 2.63 mg/Kg 86 4.120 5 3.0	1,2,4,5-Tetrachlorobenzene	3.33	2.65		mg/Kg		79	65 - 120	3	30	2
22-Syspic)f-chloropropenol 3.33 2.58 mg/Kg 77 43.126 5 30 2.3.4.6-Trichlorophenol 3.33 2.69 mg/Kg 81 66-120 1 30 2.4.6-Trichlorophenol 3.33 2.82 mg/Kg 88 67-120 1 30 2.4-Dichlorophenol 3.33 2.82 mg/Kg 88 67-120 4 30 2.4-Dinktophenol 3.33 1.99 mg/Kg 86 62-120 4 30 2.4-Dinktophenol 3.33 2.91 mg/Kg 87 70-131 0 30 2.4-Dinktophenol 3.33 2.60 mg/Kg 87 70-131 0 30 2.Chlorophenol 3.33 2.60 mg/Kg 87 70-131 0 30 2.Chlorophenol 3.33 2.60 mg/Kg 87 64.120 30 30 2.Chlorophenol 3.33 2.65 mg/Kg 79 64.120 5 30 2.Methylphenol 3.33 2.63 mg/Kg 64 10.136	1,2-Diphenylhydrazine	3.33	2.94		mg/Kg		88	52 - 125	2	30	
2.3.3 2.69 mg/kg 81 66-127 1 30 2.4.5-Trichlorophenol 3.33 2.71 mg/kg 81 67-120 2 30 2.4.5-Trichlorophenol 3.33 2.82 mg/kg 82 66.120 4 30 2.4.5-Trichlorophenol 3.33 2.73 mg/kg 62 22.7 50 0 30 2.4.5-Trichlorophenol 6.67 5.49 mg/kg 87 70.131 0 30 2.4-Dinthylphenol 3.33 2.91 mg/kg 87 70.131 0 30 2.4-Dinthylphenol 3.33 2.60 mg/kg 87 70.131 0 30 2.Chlorophthalene 3.33 2.60 mg/kg 87 70.131 0 30 2.Mitonahine 3.33 2.60 mg/kg 87 65.120 4 30 2.Nitonahine 3.33 2.61 mg/kg 79 64.120 75 30 3.3'Dichorobezidine 3.33 2.03 mg/kg 64 10.136 9	1,4-Dioxane	3.33	2.08		mg/Kg		62	30 - 120	6	30	2
2.4.6-Trichlorophenol 3.33 2.71 mg/kg 81 67.420 2 30 2.4.6-Trichlorophenol 3.33 2.62 mg/kg 84 67.120 1 30 2.4-Dichlorophenol 3.33 2.73 mg/kg 60 62.120 4 30 2.4-Dintrophenol 3.33 1.99 mg/kg 67 70.131 0 30 2.4-Dintrophenol 3.33 2.69 mg/kg 67 70.131 0 30 2.4-Dintrophenol 3.33 2.69 mg/kg 67 70.131 0 30 2.6-Dintrophenol 3.33 2.60 mg/kg 76 68.120 2 30 2.Chtoronphthalene 3.33 2.65 mg/kg 76 68.120 4 30 2.Nitophenol 3.33 2.63 mg/kg 64 48.02 5 30 3.400 mg/kg 64 40.135 9 30 30 30 30 30 30 30 30 30 30 30 30 30	2,2'-oxybis[1-chloropropane]	3.33	2.58		mg/Kg		77	43 - 126	5	30	
2.4Dichicrophenol 3.33 2.2.2 mg/Kg 84 67.120 1 30 2.4Dinchylphenol 3.33 2.7.3 mg/Kg 60 62.100 4 300 2.4Dinchylphenol 6.67 5.49 mg/Kg 62 27.150 0 30 2.4-Dinchylphenol 3.33 2.91 mg/Kg 67 70.131 0 30 2.4-Dinchylphenol 3.33 2.91 mg/Kg 87 70.131 0 30 2.Chiorophthalene 3.33 2.60 mg/Kg 86 120 2 30 2.Chiorophthalene 3.33 2.65 mg/Kg 76 85.120 4 30 2.Mittophthalene 3.33 2.65 mg/Kg 76 85.120 4 30 2.Mittophthalene 3.33 2.65 mg/Kg 76 85.120 4 30 2.Mittophthalene 3.33 2.65 mg/Kg 76 86.120 2 30 2.Nittoraline 3.33 2.03 mg/Kg 86 4 30	2,3,4,6-Tetrachlorophenol	3.33	2.69		mg/Kg		81	66 - 127	1	30	
2.4-Dinchrophenol 3.33 2.73 mg/Kg 82 66-120 4 30 2.4-Dinterphytenol 3.33 1.99 mg/Kg 80 62.120 4 30 2.4-Dinterphytenol 3.33 2.91 mg/Kg 87 70.131 0 30 2.4-Dinterphenol 3.33 2.69 mg/Kg 87 72.121 0 30 2.6-Dinterotulene 3.33 2.60 mg/Kg 78 63.120 4 30 2.Chitorophenol 3.33 2.60 mg/Kg 78 63.120 4 30 2.Methythythenol 3.33 2.60 mg/Kg 78 64.120 30 2.Nitrophenol 3.33 2.63 mg/Kg 79 64.120 5 30 3.3'Dichtorobenzidine 3.33 2.63 mg/Kg 64 10.136 9 30 3.4'Disontine 3.33 2.63 mg/Kg 64 10.136 1 30 3.4'Diotobenzidine 3.33 2.63 mg/Kg 86 62.120 1 30 <td>2,4,5-Trichlorophenol</td> <td>3.33</td> <td>2.71</td> <td></td> <td>mg/Kg</td> <td></td> <td>81</td> <td>67 - 120</td> <td>2</td> <td>30</td> <td></td>	2,4,5-Trichlorophenol	3.33	2.71		mg/Kg		81	67 - 120	2	30	
2.4-Dimethylphenol 3.33 1.99 mg/Kg 60 62.120 4 30 2.4-Dimitroblenel 667 5.49 mg/Kg 82 27.150 0 30 2.4-Dimitrobluene 3.33 2.91 mg/Kg 87 70.131 0 30 2.4-Dimitrobluene 3.33 2.69 mg/Kg 87 72.121 0 30 2.4-Dimitrobluene 3.33 2.66 mg/Kg 78 63.120 4 30 2.Methylphenhalene 3.33 2.65 mg/Kg 76 68.120 4 30 2.Methylphenol 3.33 2.63 mg/Kg 76 68.120 4 30 3.3-Dichtorobenzidhe 3.33 2.63 mg/Kg 79 64.120 5 30 3.3-Dichtorobenzidhe 3.33 2.03 mg/Kg 61 20.132 7 30 4.Bronnphenyl phenyl ether 3.33 2.03 mg/Kg 86 62.10 1 30 3.4-Chitorobenzidhe 3.33 2.70 mg/Kg 81 66.120 <td>2,4,6-Trichlorophenol</td> <td>3.33</td> <td>2.82</td> <td></td> <td>mg/Kg</td> <td></td> <td>84</td> <td>67 - 120</td> <td>1</td> <td>30</td> <td></td>	2,4,6-Trichlorophenol	3.33	2.82		mg/Kg		84	67 - 120	1	30	
2.4-Dinitrophenol 6.67 5.49 mg/kg 82 27.150 0 30 2.4-Dinitrophenol 3.33 2.91 mg/kg 87 70.131 0 30 2.6-Dinitrophenol 3.33 2.90 mg/kg 87 72.121 0 30 2.6-Dinitrophenol 3.33 2.00 mg/kg 81 68.120 2 30 2.Chiorophenol 3.33 2.65 mg/kg 78 63.120 4 30 2.Methylphenol 3.33 2.68 mg/kg 76 58.120 4 30 2.Nitrophenol 3.33 2.63 mg/kg 76 48.129 1 30 3.3-Uhlorobenzidine 3.33 2.63 mg/kg 61 10.136 9 30 3.4-Dinto-Zmethylphenol 667 6.41 mg/kg 65 62.120 1 30 4-Chiorophenyl phenyl phenyl phenyl efter 3.33 2.72 mg/kg 85 62.120 1 30 4-Chiorophenyl phenyl phenyl efter 3.33 2.51 mg/kg 81<	2,4-Dichlorophenol	3.33	2.73		mg/Kg		82	66 - 120	4	30	
2.4-Dinitrotoluene 3.33 2.91 mg/kg 87 70.131 0 30 2.6-Dinitrotoluene 3.33 2.69 mg/kg 87 72.121 0 30 2.Chloronghenhlaine 3.33 2.60 mg/kg 86 86.120 4 30 2.Methylphaphthalene 3.33 2.65 mg/kg 79 64.120 3 30 2.Methylphenol 3.33 2.63 mg/kg 79 64.120 5 30 2.Nitrophenol 3.33 2.63 mg/kg 79 64.120 5 30 2.Nitrophenol 3.33 2.03 mg/kg 64 180 30 3.3Dichlorobenzidine 3.33 2.03 mg/kg 64 71.50 1 30 4.6Dinto-2-methylphenol 667 6.41 mg/kg 96 62.120 1 30 4.5Dinto-2-methylphenol 3.33 2.83 mg/kg 85 62.120 1 30 4.5Dinto-2-methylphenol 3.33 2.70 mg/kg 81 64.120 2	2,4-Dimethylphenol	3.33	1.99	*	mg/Kg		60	62 - 120	4	30	
2.6-Dinitrotoluene 3.33 2.89 mg/kg 87 72-121 0 30 2.Chioronaphthalene 3.33 2.70 mg/kg 81 68.120 2 30 2.Chiorophenol 3.33 2.65 mg/kg 78 63.120 4 30 2.Methylphenol 3.33 2.65 mg/kg 84 48.120 13 30 2.Nitroanline 3.33 2.63 mg/kg 84 48.120 15 30 2.Nitroanline 3.33 2.63 mg/kg 54 10.136 9 30 3.3'Dichlorobenzidine 3.33 2.63 mg/kg 61 2.0132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/kg 96 47.150 1 30 4.Chioro-3-methylphenol 3.33 2.83 mg/kg 81 66.120 1 30 4.Chioro-3-methylphenol 3.33 2.72 mg/kg 81 63.120 1 30 4.Chioronaline 3.33 2.75 mg/kg 81 63.125 <td>2,4-Dinitrophenol</td> <td>6.67</td> <td>5.49</td> <td></td> <td>mg/Kg</td> <td></td> <td>82</td> <td>27 - 150</td> <td>0</td> <td>30</td> <td></td>	2,4-Dinitrophenol	6.67	5.49		mg/Kg		82	27 - 150	0	30	
2-Chioronaphthalene 3.33 2.70 mg/kg 81 68.120 2 30 2-Chiorophenol 3.33 2.60 mg/kg 78 63.120 4 30 2-Methylaphthalene 3.33 2.65 mg/kg 79 64.120 4 30 2-Methylaphthalene 3.33 2.62 mg/kg 76 58.120 4 30 2-Nitrophenol 3.33 2.63 mg/kg 79 64.120 5 30 3.3-Dichlorobenzidine 3.33 1.79 mg/kg 61 20.132 77 30 4.6-Dintro-2-methylphenol 6.67 6.41 mg/kg 96 47.150 1 30 4-Chioro-3-methylphenol 3.33 2.70 mg/kg 81 66.120 2 30 4-Chioro-3-methylphenol 3.33 2.51 mg/kg 82 69.120 0 30 4-Chioro-3-methylphenol 3.33 2.56 mg/kg 81 43.135 1 30 4-Chiorophenyl phenyl ether 3.33 2.51 mg/kg 83<	2,4-Dinitrotoluene	3.33	2.91		mg/Kg		87	70_131	0	30	
2-Chlorophenol 3.33 2.60 mg/kg 78 63.120 4 30 2-Methylphaphthalene 3.33 2.65 mg/kg 79 64.120 30 2-Methylphenol 3.33 2.62 mg/kg 78 68.120 4 30 2-Nitroaniline 3.33 2.80 mg/kg 79 64.120 5 30 3.30-Dichlorobenzidine 3.33 2.63 mg/kg 64 10.136 9 30 3.30-Dichlorobenzidine 3.33 2.03 mg/kg 66 47.150 11 30 4.6Dinitro-2-methylphenol 6.67 6.41 mg/kg 85 62.120 13 30 4-Chloropaniline 3.33 2.70 mg/kg 81 66.120 2 30 4-Chlorophuphylphylenyl ether 3.33 2.51 mg/kg 81 63.120 2 30 4-Mitophenol 667 5.33 2.52 07 55.120 4 30 4-Nitoroaniline 3.33 2.56 mg/kg 81 43.135 13	2,6-Dinitrotoluene	3.33	2.89		mg/Kg		87	72 - 121	0	30	
2-Methylphenol 3.33 2.66 mg/Kg 79 64.120 3 30 2-Methylphenol 3.33 2.60 mg/Kg 76 58.120 4 30 2-Nitroanline 3.33 2.60 mg/Kg 79 64.120 5 30 3.3-Dichlorobenzidine 3.33 2.63 mg/Kg 64 10.136 9 30 3.4-Dichorobenzidine 3.33 2.03 mg/Kg 64 120.132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/Kg 68 62.120 1 30 4.Choro-3-methylphenol 3.33 2.70 mg/Kg 81 66.120 2 30 4-Chorophenyl phenyl ether 3.33 2.58 mg/Kg 75 52.120 2 30 4-Mitorphenol 3.33 2.51 mg/Kg 75 52.120 2 30 A.Mitorphenol 3.33 2.77 mg/Kg 81 43.135 1 30	2-Chloronaphthalene	3.33	2.70		mg/Kg		81	68 - 120	2	30	
2-Methylphenol 3.33 2.52 mg/Kg 76 58.120 4 30 2-Nitroaniline 3.33 2.60 mg/Kg 84 48.129 1 30 2-Nitroaniline 3.33 2.63 mg/Kg 79 64.120 5 30 3.3-Dichlorobenzidine 3.33 2.03 mg/Kg 61 20.132 7 30 3.Nitroaniline 3.33 2.03 mg/Kg 61 20.132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/Kg 96 47.150 1 30 4-Bromophenyl phenyl ether 3.33 2.70 mg/Kg 81 66.120 2 30 4-Chloro-3-methylphenol 3.33 2.72 mg/Kg 82 69.120 0 30 4-Methylphenol 3.33 2.51 mg/Kg 81 61.120 2 30 4-Methylphenol 3.33 2.62 mg/Kg 83 61.120 2 30 4-Nitrophenol 6.67 3.33 2.77 mg/Kg 83 <	2-Chlorophenol	3.33	2.60		mg/Kg		78	63 - 120	4	30	÷
2-Nitroaniline 3.33 2.80 mg/Kg 84 48.129 1 30 2-Nitrophenol 3.33 2.63 mg/Kg 79 64.120 5 30 3.3-Dichlorobenzidine 3.33 1.79 mg/Kg 64 10.136 9 30 3.Nitroaniline 3.33 2.03 mg/Kg 61 20.132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/Kg 96 47.150 1 30 4.Choro-anethylphenol 3.33 2.83 mg/Kg 85 62.120 1 30 4-Chloro-aniline 3.33 2.70 mg/Kg 81 66.120 2 30 4-Chlorophenyl phenyl ether 3.33 2.58 mg/Kg 81 43.135 1 30 4-Nethyphenol 3.33 2.61 mg/Kg 83 61.120 2 30 4-Nitrophenol 6.67 5.38 mg/Kg 81 43.135 1 30 Acenaphthene 3.33 2.62 mg/Kg 83 61.120 <t< td=""><td>2-Methylnaphthalene</td><td>3.33</td><td>2.65</td><td></td><td>mg/Kg</td><td></td><td>79</td><td>64 - 120</td><td>3</td><td>30</td><td>ľ</td></t<>	2-Methylnaphthalene	3.33	2.65		mg/Kg		79	64 - 120	3	30	ľ
2-Nitrophenol 3.33 2.63 mg/kg 79 64.120 5 30 3.3-Dichlorobenzidine 3.33 1.79 mg/kg 54 10.136 9 30 3-Nitroaniline 3.33 2.03 mg/kg 61 20.132 7 30 4-Bromophenyl phenyl ether 3.33 2.83 mg/kg 96 62.120 1 30 4-Chioro-a-methylphenol 3.33 2.70 mg/kg 81 66.120 2 30 4-Chioro-a-methylphenol 3.33 2.72 mg/kg 82 69.120 0 30 4-Chioro-henyl phenyl ether 3.33 2.58 mg/kg 77 55.120 4 30 4-Nitrophenol 3.33 2.57 mg/kg 83 61.120 2 30 4-Nitrophenol 3.33 2.61 mg/kg 75 52.120 2 30 Acenaphthylene 3.33 2.77 mg/kg 83 61.120 2 30 Acenaphthylene 3.33 2.77 mg/kg 83 61.120 <td>2-Methylphenol</td> <td>3.33</td> <td>2.52</td> <td></td> <td>mg/Kg</td> <td></td> <td>76</td> <td>58 - 120</td> <td>4</td> <td>30</td> <td>2</td>	2-Methylphenol	3.33	2.52		mg/Kg		76	58 - 120	4	30	2
3.3'-Dichlorobenzidine 3.33 1.79 mg/Kg 54 10.136 9 30 3-Nitroaniline 3.33 2.03 mg/Kg 61 20-132 7 30 4.6-Dintro-2-methylphenol 6.67 6.41 mg/Kg 96 47.150 1 30 4-Choro-3-methylphenol 3.33 2.03 mg/Kg 81 66.120 2 30 4-Chloro-3-methylphenol 3.33 2.70 mg/Kg 81 66.120 2 30 4-Chloro-aniline 3.33 2.72 mg/Kg 82 69.120 0 30 4-Nitroaniline 3.33 2.51 mg/Kg 75 52.120 4 30 4-Nitrophenol 6.67 5.38 mg/Kg 75 52.120 2 30 Acenaphthylene 3.33 2.62 mg/Kg 78 64.120 2 30 Acenaphthylene 3.33 2.77 mg/Kg 83 67.120 2 30 Acenaphthylene 3.33 2.43 mg/Kg 73 57.120 <	2-Nitroaniline	3.33	2.80		mg/Kg		84	48 - 129	1	30	
3-Nitroaniline 3.33 2.03 mg/Kg 61 20.132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/Kg 96 47.150 1 30 4-Bromophenyl phenyl ether 3.33 2.83 mg/Kg 85 62.120 1 30 4-Chloro-anethylphenol 3.33 2.70 mg/Kg 39 10.128 17 30 4-Chloro-anethylphenol 3.33 2.72 mg/Kg 82 69.120 0 30 4-Chloro-anethylphenol 3.33 2.51 mg/Kg 75 52.120 2 30 4-Nitroaniline 3.33 2.77 mg/Kg 83 61.120 2 30 4-Nitrophenol 6.67 5.38 mg/Kg 81 43.135 1 30 Acenaphthylene 3.33 2.77 mg/Kg 83 61.120 2 30 Acetophenone 3.33 2.77 mg/Kg 83 67.120 2 30 Antracene 3.33 2.43 mg/Kg 12 34.120	2-Nitrophenol	3.33	2.63		mg/Kg		79	64 - 120	5	30	
3-Nitroantline 3.33 2.03 mg/Kg 61 20.132 7 30 4.6-Dinitro-2-methylphenol 6.67 6.41 mg/Kg 96 47.150 1 30 4-Bromophenyl phenyl ether 3.33 2.83 mg/Kg 85 62.120 1 30 4-Chloro-anethylphenol 3.33 2.70 mg/Kg 39 10.128 17 30 4-Chloro-anethylphenol 3.33 2.72 mg/Kg 39 10.128 17 30 4-Chloro-anethylphenol 3.33 2.51 mg/Kg 75 52.120 2 30 4-Nitroantline 3.33 2.77 mg/Kg 81 43.135 1 30 Acenaphthylene 3.33 2.77 mg/Kg 83 61.120 2 30 Acenaphthylene 3.33 2.77 mg/Kg 83 61.120 2 30 Acenaphthylene 3.33 2.43 mg/Kg 78 57.120 6 30 Antracene 3.33 2.47 mg/Kg 83 67.120	3,3'-Dichlorobenzidine	3.33	1.79		mg/Kg		54	10 - 136	9	30	
4,6-Dinitro-2-methylphenol6.676.41mg/Kg9647.1501304-Bromophenyl phenyl ether3.332.83mg/Kg8562.1201304-Chloro-3-methylphenol3.332.70mg/Kg8166.1202304-Chloroanilline3.331.29mg/Kg3910.12817304-Chlorophenyl phenyl ether3.332.72mg/Kg8269.1200304-Methylphenol3.332.58mg/Kg7755.1204304-Nitrophenyl phenyl ether3.332.51mg/Kg8143.135130Acenaphthene3.332.62mg/Kg8361.120230Acenaphthene3.332.62mg/Kg7864.120230Acetophenone3.332.62mg/Kg7864.120230Acetophenone3.332.77mg/Kg8367.120630Antrazene3.332.77mg/Kg11234.120530Benzaldehyde1.331.49mg/Kg11234.120530Benzaldehyde3.332.88mg/Kg9766.123130Benzolgalprene3.332.74mg/Kg8669.120230Benzolgalprene3.332.74mg/Kg8266.120230Benzolgi,hluoranthene3.332.99mg/Kg90 <td< td=""><td>3-Nitroaniline</td><td>3.33</td><td>2.03</td><td></td><td></td><td></td><td>61</td><td>20 - 132</td><td>7</td><td>30</td><td></td></td<>	3-Nitroaniline	3.33	2.03				61	20 - 132	7	30	
4-Bromophenyl phenyl ether3.332.83mg/Kg8562.1201304-Chloro-3-methylphenol3.332.70mg/Kg8166.1202304-Chloroaniline3.331.29mg/Kg3910.12817304-Chlorophenyl phenyl ether3.332.72mg/Kg8269.1200304-Methylphenol3.332.58mg/Kg7755.1204304-Nitroaniline3.332.51mg/Kg8143.1351304-Nitroaniline3.332.61mg/Kg8143.135130Acenaphthene3.332.62mg/Kg8164.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.77mg/Kg8367.120230Acetophenone3.332.77mg/Kg8367.120230Actadehyde1.331.49mg/Kg11234.1205030Benzaldehyde1.331.36mg/Kg10228.1501030Benzaldehyde3.332.88mg/Kg9669.120230Benzalgaptrene3.332.74mg/Kg9766.120230Benzalgiptroanthene3.332.74mg/Kg9071.12230Benzalgiptroanthene3.332.74mg/Kg7661.23130	4,6-Dinitro-2-methylphenol	6.67	6.41				96	47 - 150	1	30	
4-Chloro-3-methylphenol3.332.70mg/Kg8166.1202304-Chloroaniline3.331.29mg/Kg3910.12817304-Chlorophenyl phenyl ether3.332.72mg/Kg8269.1200304-Methylphenol3.332.58mg/Kg7755.1204304-Nitroaniline3.332.51mg/Kg7552.1202304-Nitrophenol6.675.38mg/Kg8143.135130Acenaphthene3.332.77mg/Kg7864.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.77mg/Kg8367.120230Actaphenone3.332.77mg/Kg7864.120230Atrazine1.331.49mg/Kg7864.120230Attrazine1.331.49mg/Kg11234.120530Benzolajahrhacene3.332.94mg/Kg9766.120230Benzolajahrhacene3.333.04mg/Kg9766.120230Benzolajahrhacene3.333.04mg/Kg9766.120230Benzolajahrhacene3.332.60mg/Kg9766.120230Benzolgi,hjlperylene3.332.60mg/Kg9866.120230<	4-Bromophenyl phenyl ether	3.33	2.83				85	62 - 120	1	30	
4-Chloroaniline3.331.29mg/Kg3910.12817304-Chlorophenyl phenyl ether3.332.72mg/Kg8269-1200304-Methylphenol3.332.58mg/Kg7755.1204304-Nitroaniline3.332.51mg/Kg8143.135130A-Nitrophenol6.675.38mg/Kg8143.135130Acenaphthene3.332.62mg/Kg7864.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.43mg/Kg7357.120630Arthracene3.332.77mg/Kg8367.120230Atzaine1.331.49mg/Kg11234.120530Benzaldehyde1.331.36mg/Kg2710.120930Benzo[a]nthracene3.332.88mg/Kg9766.123130Benzo[a]nthracene3.333.04mg/Kg9170.125330Benzo[a]nthracene3.332.74mg/Kg8266.120230Benzo[a]nthracene3.332.99mg/Kg9170.125330Benzo[b]fluoranthene3.332.60mg/Kg7862.120230Benzo[c]hilperylene3.332.60mg/Kg7862.120230 <td>4-Chloro-3-methylphenol</td> <td>3.33</td> <td>2.70</td> <td></td> <td></td> <td></td> <td>81</td> <td>66 - 120</td> <td>2</td> <td>30</td> <td></td>	4-Chloro-3-methylphenol	3.33	2.70				81	66 - 120	2	30	
4-Chlorophenyl phenyl ether3.332.72mg/Kg8269 - 1200304-Methylphenol3.332.58mg/Kg7755 - 1204304-Nitroaniline3.332.51mg/Kg7552 - 1202304-Nitrophenol6.675.38mg/Kg8143 - 135130Acenaphthene3.332.62mg/Kg7864 - 120230Acenaphthylene3.332.62mg/Kg7357 - 120630Acetophenone3.332.43mg/Kg7357 - 120630Actazine1.331.49mg/Kg11234 - 120230Benzaldehyde1.331.36mg/Kg10228 - 1501030Benzalqlanthracene3.332.88mg/Kg8669 - 120230Benzolqlanthracene3.333.04mg/Kg9170 - 125330Benzolqlanthracene3.332.74mg/Kg8266 - 120230Benzolqlyrene3.332.60mg/Kg9170 - 125330Benzolqlynthene3.332.60mg/Kg7862 - 12030Benzolqlyrene3.332.60mg/Kg9170 - 125330Benzolqlynthene3.332.60mg/Kg9170 - 125330Benzolqlyrene3.332.60mg/Kg9170 - 125 <td< td=""><td>4-Chloroaniline</td><td>3.33</td><td>1.29</td><td></td><td></td><td></td><td>39</td><td>10 - 128</td><td>17</td><td>30</td><td></td></td<>	4-Chloroaniline	3.33	1.29				39	10 - 128	17	30	
4-Methylphenol3.332.58mg/Kg7755.1204304-Nitroaniline3.332.51mg/Kg7552.1202304-Nitrophenol6.675.38mg/Kg8143.135130Acenaphthene3.332.77mg/Kg8361.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.43mg/Kg7357.120630Anthracene3.332.43mg/Kg11234.120230Atrazine1.331.49mg/Kg11234.120530Benzaldehyde1.331.36mg/Kg10228.1501030Benzolajanthracene3.332.88mg/Kg8669.120230Benzolajanthracene3.333.24mg/Kg9766.123130Benzolajanthracene3.332.88mg/Kg9766.123130Benzolbiftuoranthene3.333.04mg/Kg9766.123130Benzolbiftuoranthene3.332.74mg/Kg9766.123130Benzolgi,hi,]perylene3.332.99mg/Kg9071.122030Bis(2-chloroethy))methane3.332.66mg/Kg7754.120530Bis(2-chloroethy)pether3.332.66mg/Kg9068.125 <td< td=""><td>4-Chlorophenyl phenyl ether</td><td>3.33</td><td>2.72</td><td></td><td></td><td></td><td>82</td><td>69 - 120</td><td>0</td><td>30</td><td></td></td<>	4-Chlorophenyl phenyl ether	3.33	2.72				82	69 - 120	0	30	
4-Nitroaniline3.332.51mg/Kg7552.1202304-Nitrophenol6.675.38mg/Kg8143.135130Acenaphthene3.332.77mg/Kg8361.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.43mg/Kg7357.120630Actophenone3.332.77mg/Kg8367.120230Anthracene3.332.77mg/Kg11234.120530Benzaldehyde1.331.49mg/Kg11234.120530Benzaldehyde3.330.904mg/Kg12228.1501030Benzolajanthracene3.330.904mg/Kg9766.123130Benzolajanthracene3.333.24mg/Kg9766.123130Benzolajpyrene3.332.74mg/Kg9170.125330Benzolg,hilperylene3.332.60mg/Kg7862.120230Benzolg,kilporanthene3.332.60mg/Kg7862.120230Bis(2-chloroethy/)methane3.332.60mg/Kg7754.120530Bis(2-chloroethy/)pether3.332.66mg/Kg7754.120530Bis(2-chloroethy/)pether3.332.66mg/Kg9068.125	4-Methylphenol	3.33	2.58		mg/Kg		77	55 - 120	4	30	
4-Nitrophenol6.675.38mg/Kg8143.135130Acenaphthene3.332.77mg/Kg8361.120230Acenaphthylene3.332.62mg/Kg7864.120230Acetophenone3.332.43mg/Kg7357.120630Anthracene3.332.77mg/Kg8367.120230Atrazine1.331.49mg/Kg11234.120530Benzaldehyde1.331.36mg/Kg10228.1501030Benzolalantracene3.330.904mg/Kg2710.120930Benzolalphtracene3.332.88mg/Kg9669.120230Benzolalphuracene3.333.04mg/Kg9766.123130Benzolalphuranthene3.332.74mg/Kg9766.123130Benzolg,h,i]perylene3.332.74mg/Kg9071.122030Benzolk/fluoranthene3.332.60mg/Kg9071.122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7754.120530Bis(2-chloroethyl)ether3.332.66mg/Kg9068.125130Bis(2-chloroethyl)phthalate3.333.00mg/Kg9068.125130Bis(2-chloroethyl)phthalate3.332.97mg/Kg89<	4-Nitroaniline	3.33	2.51				75	52 - 120	2	30	
Acenaphthylene3.332.62mg/Kg7864 - 120230Acetophenone3.332.43mg/Kg7357 - 120630Anthracene3.332.77mg/Kg8367 - 120230Atrazine1.331.49mg/Kg11234 - 120530Benzaldehyde1.331.36mg/Kg10228 - 1501030Benzo[a]anthracene3.330.904mg/Kg2710 - 120930Benzo[a]anthracene3.332.88mg/Kg8669 - 120230Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[k]fluoranthene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	4-Nitrophenol	6.67	5.38				81	43 - 135	1	30	
Acenaphthylene3.332.62mg/Kg7864 - 120230Acetophenone3.332.43mg/Kg7357 - 120630Anthracene3.332.77mg/Kg8367 - 120230Atrazine1.331.49mg/Kg11234 - 120530Benzaldehyde1.331.36mg/Kg10228 - 1501030Benzaldehyde3.330.904mg/Kg2710 - 120930Benzo[a]anthracene3.332.88mg/Kg8669 - 120230Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[k,h,i]perylene3.332.74mg/Kg8266 - 120230Benzo[k,fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Acenaphthene	3.33	2.77		mg/Kg		83	61 - 120	2	30	
Acetophenone3.332.43mg/Kg7357.120630Anthracene3.332.77mg/Kg8367.120230Atrazine1.331.49mg/Kg11234.120530Benzaldehyde1.331.36mg/Kg10228.1501030Benzaldenyde3.330.904mg/Kg2710.120930Benzo[ajanthracene3.332.88mg/Kg8669.120230Benzo[ajpyrene3.333.24mg/Kg9766.123130Benzo[bjfluoranthene3.333.04mg/Kg9170.125330Benzo[kjfluoranthene3.332.99mg/Kg9071.122030Benzo[kjfluoranthene3.332.60mg/Kg7862.120330Bis(2-chloroethoxy)methane3.332.56mg/Kg9068.125130Bis(2-chloroethoxy) phthalate3.333.00mg/Kg9068.125130Bis(2-ethylhexyl) phthalate3.332.97mg/Kg8969.127230	Acenaphthylene	3.33	2.62				78	64 - 120	2	30	
Anthracene3.332.77mg/Kg8367 - 120230Atrazine1.331.49mg/Kg11234 - 120530Benzaldehyde1.331.36mg/Kg10228 - 1501030Benzidine3.330.904mg/Kg2710 - 120930Benzo[a]anthracene3.332.88mg/Kg8669 - 120230Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[k]fluoranthene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg9068 - 125130Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Acetophenone	3.33	2.43				73	57 - 120	6	30	
Atrazine1.331.49mg/Kg11234.120530Benzaldehyde1.331.36mg/Kg10228.1501030Benzolalenyde3.330.904mg/Kg2710.120930Benzolalanthracene3.332.88mg/Kg8669.120230Benzolalpyrene3.333.24mg/Kg9766.123130Benzolalpyrene3.333.04mg/Kg9170.125330Benzolg,h,i]perylene3.332.74mg/Kg8266.120230BenzolkJfluoranthene3.332.99mg/Kg9071.122030BenzolkJfluoranthene3.332.60mg/Kg7862.120330Bis(2-chloroethoxy)methane3.332.56mg/Kg9068.125130Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068.125130Butyl benzyl phthalate3.332.97mg/Kg8969.127230	Anthracene	3.33	2.77				83	67 - 120	2	30	
Benzaldehyde1.331.36mg/Kg10228.1501030Benzola3.330.904mg/Kg2710.120930Benzola3.332.88mg/Kg8669.120230Benzola3.333.24mg/Kg9766.123130Benzola3.333.04mg/Kg9170.125330Benzola, iperola3.332.74mg/Kg8266.120230Benzolg, h, iperola3.332.74mg/Kg9071.122030Benzolk, if lavanthene3.332.60mg/Kg7862.120330Bis (2-chloroethoxy)methane3.332.60mg/Kg7754.120530Bis (2-chloroethyl)ether3.333.00mg/Kg9068.125130Bis (2-chloroethyl) phthalate3.332.97mg/Kg8969.127230Butyl benzyl phthalate3.332.97mg/Kg8969.127230	Atrazine	1.33	1.49		mg/Kg		112	34 - 120	5	30	
Benzo[a]anthracene3.332.88mg/Kg8669 - 120230Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[g,h,i]perylene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Benzo[k]fluoranthene3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Benzaldehyde	1.33	1.36		mg/Kg		102	28 - 150	10	30	
Benzo[a]anthracene3.332.88mg/Kg8669 - 120230Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[g,h,i]perylene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Benzo[k]fluoranthene3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Benzidine	3.33	0.904		mg/Kg		27	10 - 120	9	30	
Benzo[a]pyrene3.333.24mg/Kg9766 - 123130Benzo[b]fluoranthene3.333.04mg/Kg9170 - 125330Benzo[g,h,i]perylene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Benzo[a]anthracene	3.33	2.88				86	69 - 120	2	30	
Benzo[b]fluoranthene3.333.04mg/Kg9170.125330Benzo[g,h,i]perylene3.332.74mg/Kg8266.120230Benzo[k]fluoranthene3.332.99mg/Kg9071.122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862.120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754.120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068.125130Butyl benzyl phthalate3.332.97mg/Kg8969.127230		3.33	3.24				97	66 - 123	1	30	
Benzo[g,h,i]perylene3.332.74mg/Kg8266 - 120230Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230	Benzo[b]fluoranthene		3.04				91		3	30	
Benzo[k]fluoranthene3.332.99mg/Kg9071 - 122030Bis(2-chloroethoxy)methane3.332.60mg/Kg7862 - 120330Bis(2-chloroethyl)ether3.332.56mg/Kg7754 - 120530Bis(2-ethylhexyl) phthalate3.333.00mg/Kg9068 - 125130Butyl benzyl phthalate3.332.97mg/Kg8969 - 127230		3.33	2.74				82	66 - 120	2	30	
Bis(2-chloroethoxy)methane 3.33 2.60 mg/Kg 78 62 - 120 3 30 Bis(2-chloroethyl)ether 3.33 2.56 mg/Kg 77 54 - 120 5 30 Bis(2-chloroethyl)ether 3.33 3.00 mg/Kg 90 68 - 125 1 30 Bis(2-chlylbexyl) phthalate 3.33 2.97 mg/Kg 89 69 - 127 2 30	Benzo[k]fluoranthene	3.33	2.99				90	71 - 122	0	30	
Bis(2-chloroethyl)ether 3.33 2.56 mg/Kg 77 54 - 120 5 30 Bis(2-ethylhexyl) phthalate 3.33 3.00 mg/Kg 90 68 - 125 1 30 Butyl benzyl phthalate 3.33 2.97 mg/Kg 89 69 - 127 2 30		3.33	2.60				78		3	30	
Bis(2-ethylhexyl) phthalate 3.33 3.00 mg/Kg 90 68 - 125 1 30 Butyl benzyl phthalate 3.33 2.97 mg/Kg 89 69 - 127 2 30		3.33	2.56				77	54 - 120	5	30	
Butyl benzyl phthalate 3.33 2.97 mg/Kg 89 69 - 127 2 30											
· · · · · · · · · · · · · · · · · · ·											
	Caprolactam	1.33	1.53		mg/Kg		115	26 - 150	8		
Carbazole 3.33 2.74 mg/Kg 82 64 - 120 1 30											
Chrysene 3.33 2.84 mg/Kg 85 63 - 120 2 30											
	-				00		-	-			

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-934056/3-A

Matrix: Solid

Analysis Batch: 934123

Job ID: 460-288831-1

Prep Type: Total/NA

Prep Batch: 934056

Client Sample ID: Lab Control Sample Dup

8 9 10 11 12 13

14

Analysis Baton. 004120							т тер Бе		7000	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Dibenz(a,h)anthracene	3.33	2.86		mg/Kg		86	66 - 128	0	30	
Dibenzofuran	3.33	2.69		mg/Kg		81	70 - 120	1	30	
Diethyl phthalate	3.33	2.70		mg/Kg		81	69 - 120	1	30	
Dimethyl phthalate	3.33	2.70		mg/Kg		81	70 - 120	1	30	
Di-n-butyl phthalate	3.33	2.92		mg/Kg		88	66 - 120	1	30	
Di-n-octyl phthalate	3.33	3.26		mg/Kg		98	65 - 143	1	30	
Fluoranthene	3.33	2.68		mg/Kg		80	66 - 120	1	30	
Fluorene	3.33	2.70		mg/Kg		81	70 - 120	1	30	
Hexachlorobenzene	3.33	2.71		mg/Kg		81	56 - 120	2	30	
Hexachlorobutadiene	3.33	2.58		mg/Kg		77	62 - 120	5	30	
Hexachlorocyclopentadiene	3.33	0.507	*	mg/Kg		15	38 - 120	2	30	
Hexachloroethane	3.33	2.52		mg/Kg		76	57 - 120	4	30	
Indeno[1,2,3-cd]pyrene	3.33	3.15		mg/Kg		95	62 - 148	1	30	
Isophorone	3.33	2.60		mg/Kg		78	60 - 120	4	30	
Naphthalene	3.33	2.57		mg/Kg		77	63 - 120	4	30	2
Nitrobenzene	3.33	2.67		mg/Kg		80	63 - 120	3	30	ľ
N-Nitrosodi-n-propylamine	3.33	2.69		mg/Kg		81	55 - 120	4	30	2
N-Nitrosodiphenylamine	3.33	2.84		mg/Kg		85	63 - 120	2	30	
Pentachlorophenol	6.67	5.88		mg/Kg		88	51 - 126	1	30	
Phenanthrene	3.33	2.78		mg/Kg		83	66 - 120	1	30	
Phenol	3.33	2.61		mg/Kg		78	57 - 120	3	30	
Pyrene	3.33	2.94		mg/Kg		88	67 - 121	2	30	
Pyridine	6.67	4.19		mg/Kg		63	37 - 120	4	30	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	86		24 - 137
2-Fluorobiphenyl	96		48 - 120
2-Fluorophenol (Surr)	96		31 - 120
Nitrobenzene-d5 (Surr)	95		38 - 120
Phenol-d5 (Surr)	99		39 - 120
Terphenyl-d14 (Surr)	103		25 - 126

Lab Sample ID: 460-288839-A-13-C MS Matrix: Solid

Analysis Batch: 934123	Sample	Sample	Spike	MS	MS				Prep Batch: 934056 %Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1'-Biphenyl	0.35	U	3.58	2.87		mg/Kg	☆	80	68 - 120
1,2,4,5-Tetrachlorobenzene	0.35	U	3.58	2.82		mg/Kg	☆	79	65 - 120
1,2-Diphenylhydrazine	0.35	U	3.58	2.96		mg/Kg	☆	83	52 - 125
1,4-Dioxane	0.035	U	3.58	2.23		mg/Kg	₽	62	30 - 120
2,2'-oxybis[1-chloropropane]	0.35	U	3.58	2.70		mg/Kg	☆	75	43 - 126
2,3,4,6-Tetrachlorophenol	0.35	U	3.58	2.77		mg/Kg	¢	77	66 - 127
2,4,5-Trichlorophenol	0.35	U	3.58	2.81		mg/Kg	₽	78	67 - 120
2,4,6-Trichlorophenol	0.14	U	3.58	2.95		mg/Kg	¢	82	67 - 120
2,4-Dichlorophenol	0.14	U	3.58	2.91		mg/Kg	☆	81	66 - 120
2,4-Dimethylphenol	0.35	U *	3.58	2.11	*	mg/Kg	₽	59	62 - 120
2,4-Dinitrophenol	0.29	U	7.16	5.52		mg/Kg	₽	77	27 - 150

Eurofins Edison

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Lab Sample ID: 460-288839-A-13-C MS Matrix: Solid

Analysis Batch: 934123									Prep Batch: 934056
-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	0.072	U	3.58	3.01		mg/Kg	 ₽	84	70 - 131
2,6-Dinitrotoluene	0.072	U	3.58	2.96		mg/Kg	₿	83	72 - 121
2-Chloronaphthalene	0.35	U	3.58	2.82		mg/Kg	₽	79	68 - 120
2-Chlorophenol	0.35	U	3.58	2.79		mg/Kg	¢	78	63 - 120
2-Methylnaphthalene	0.35	U	3.58	2.81		mg/Kg	₽	78	64 - 120
2-Methylphenol	0.35	U	3.58	2.69		mg/Kg	¢	75	58 - 120
2-Nitroaniline	0.35	U	3.58	2.91		mg/Kg	¢	81	48 - 129
2-Nitrophenol	0.35	U	3.58	2.79		mg/Kg	☆	78	64 - 120
3,3'-Dichlorobenzidine	0.14	U	3.58	1.98		mg/Kg	☆	55	10 - 136
3-Nitroaniline	0.35	U	3.58	2.16		mg/Kg	¢	60	20 - 132
4,6-Dinitro-2-methylphenol	0.29	U	7.16	6.45		mg/Kg	☆	90	47 - 150
4-Bromophenyl phenyl ether	0.35	U	3.58	2.90		mg/Kg	₽	81	62 - 120
4-Chloro-3-methylphenol	0.35	U	3.58	2.78		mg/Kg	₽	78	66 - 120
4-Chloroaniline	0.35	U	3.58	1.37		mg/Kg	☆	38	10 - 128
4-Chlorophenyl phenyl ether	0.35	U	3.58	2.80		mg/Kg	¢	78	69 - 120
4-Methylphenol	0.35	U	3.58	2.75		mg/Kg	¢	77	55 - 120
4-Nitroaniline	0.35	U	3.58	2.63		mg/Kg	☆	73	52 - 120
4-Nitrophenol	0.72	U	7.16	5.56		mg/Kg	₽	78	43 - 135
Acenaphthene	0.35	U	3.58	2.90		mg/Kg	₽	81	61 - 120
Acenaphthylene	0.35	U	3.58	2.75		mg/Kg	¢	77	64 - 120
Acetophenone	0.35	U	3.58	2.55		mg/Kg	☆	71	57 - 120
Anthracene	0.35		3.58	2.86		mg/Kg	₽	80	67 - 120
Atrazine	0.14		1.43	1.49		mg/Kg		104	34 - 120
Benzaldehyde	0.35		1.43	1.40		mg/Kg	¢	98	28 - 150
Benzidine	0.35		3.58	0.892		mg/Kg	¢	25	10 - 120
Benzo[a]anthracene	0.035		3.58	2.93		mg/Kg		82	69 - 120
Benzo[a]pyrene	0.011	J	3.58	3.31		mg/Kg	₽	92	66 - 123
Benzo[b]fluoranthene	0.014		3.58	3.11		mg/Kg	¢	86	70 - 125
Benzo[g,h,i]perylene	0.35	U	3.58	2.88		mg/Kg	₽	80	66 - 120
Benzo[k]fluoranthene	0.035		3.58	2.98		mg/Kg	₽	83	71 - 122
Bis(2-chloroethoxy)methane	0.35		3.58	2.71		mg/Kg	₽	76	62 - 120
Bis(2-chloroethyl)ether	0.035	U	3.58	2.72		mg/Kg		76	54 - 120
Bis(2-ethylhexyl) phthalate	0.35		3.58	3.02		mg/Kg	₽	84	68 - 125
Butyl benzyl phthalate	0.35		3.58	3.01		mg/Kg	₽	84	69 - 127
Caprolactam	0.35		1.43	1.53		mg/Kg	∴	107	26 - 150
Carbazole	0.35		3.58	2.82		mg/Kg	₽	79	64 - 120
Chrysene	0.35		3.58	2.93		mg/Kg	¢	82	63 - 120
Dibenz(a,h)anthracene	0.035		3.58	2.97		mg/Kg	ф.	83	66 - 128
Dibenzofuran	0.35		3.58	2.82		mg/Kg	☆	79	70 - 120
Diethyl phthalate	0.35		3.58	2.77		mg/Kg	¢	77	69 - 120
Dimethyl phthalate	0.35		3.58	2.78		mg/Kg	ф.	78	70 - 120
Di-n-butyl phthalate	0.35		3.58	2.97		mg/Kg	\$	83	66 - 120
Di-n-octyl phthalate	0.35		3.58	3.27		mg/Kg	¢	91	65 - 143
Fluoranthene	0.017		3.58	2.78		mg/Kg		77	66 - 120
Fluorene	0.35		3.58	2.81		mg/Kg	¢	78	70 - 120
Hexachlorobenzene	0.035		3.58	2.76		mg/Kg	÷.	77	56 - 120
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	0.072 0.35 0.035	U *	3.58 3.58 3.58	2.74 0.522 2.65	*	mg/Kg mg/Kg mg/Kg	¢ ¢ ¢	77 15 74	62 - 120 38 - 120 57 - 120

Eurofins Edison

Job ID: 460-288831-1

Prep Type: Total/NA

Lab Sample ID: 460-288839-A-13-C MS Matrix: Solid Analysis Ratch: 024122

Matrix: Solid Analysis Batch: 934123		-							Prep Type: Total/NA Prep Batch: 934056
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Indeno[1,2,3-cd]pyrene	0.035	U	3.58	3.27		mg/Kg	☆	91	62 - 148
Isophorone	0.14	U	3.58	2.71		mg/Kg	₽	76	60 - 120
Naphthalene	0.35	U	3.58	2.77		mg/Kg	₽	77	63 - 120
Nitrobenzene	0.035	U	3.58	2.82		mg/Kg	¢	79	63 - 120
N-Nitrosodi-n-propylamine	0.035	U	3.58	2.83		mg/Kg	¢	79	55 - 120
N-Nitrosodiphenylamine	0.35	U	3.58	2.87		mg/Kg	₽	80	63 - 120
Pentachlorophenol	0.29	U	7.16	6.06		mg/Kg	¢	85	51 - 126
Phenanthrene	0.35	U	3.58	2.87		mg/Kg	¢	80	66 - 120
Phenol	0.35	U	3.58	2.75		mg/Kg	₽	77	57 - 120
Pyrene	0.017	J	3.58	3.04		mg/Kg	¢	84	67 - 121
Pyridine	0.35	U	7.16	4.44		mg/Kg	¢	62	37 - 120

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	82		24 - 137
2-Fluorobiphenyl	92		48 - 120
2-Fluorophenol (Surr)	92		31 - 120
Nitrobenzene-d5 (Surr)	92		38 - 120
Phenol-d5 (Surr)	95		39 - 120
Terphenyl-d14 (Surr)	97		25 - 126

Lab Sample ID: 460-288839-A-13-D MSD Matrix: Solid Analysis Batch: 934123

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limits 1,1'-Biphenyl 0.35 U 3.58 2.93 mg/Kg % 82 68 - 120 2 30 1,2,4,5-Tetrachlorobenzene 0.35 U 3.58 2.87 mg/Kg % 80 65 - 120 2 30 1,2-Diphenylhydrazine 0.35 U 3.58 2.99 mg/Kg % 84 52 - 125 1 30 1,4-Dioxane 0.035 U 3.58 2.30 mg/Kg % 64 30 - 120 3 30	Analysis Batch: 934123									Prep Batch: 934		
1,1'-Biphenyl 0.35 U 3.58 2.93 mg/Kg 82 68 - 120 2 30 1,2,4,5-Tetrachlorobenzene 0.35 U 3.58 2.87 mg/Kg 80 65 - 120 2 30 1,2-Diphenylhydrazine 0.35 U 3.58 2.99 mg/Kg 84 52 - 125 1 30 1,4-Dioxane 0.035 U 3.58 2.30 mg/Kg 64 30 - 120 3 30		•	•	Spike	MSD	MSD				%Rec		RPD
1,2,4,5-Tetrachlorobenzene 0.35 U 3.58 2.87 mg/Kg 80 65 - 120 2 30 1,2-Diphenylhydrazine 0.35 U 3.58 2.99 mg/Kg 84 52 - 125 1 30 1,4-Dioxane 0.035 U 3.58 2.30 mg/Kg 64 30 - 120 3 30	Analyte						Unit	D	%Rec	Limits	RPD	Limit
1,2-Diphenylhydrazine 0.35 U 3.58 2.99 mg/Kg \$\$ 84 52 - 125 1 30 1,4-Dioxane 0.035 U 3.58 2.30 mg/Kg \$\$ 64 30 - 120 3 30	1,1'-Biphenyl	0.35	U	3.58	2.93		mg/Kg	¢	82	68 - 120	2	30
1,4-Dioxane 0.035 U 3.58 2.30 mg/Kg ☆ 64 30 - 120 3 30	1,2,4,5-Tetrachlorobenzene	0.35	U	3.58	2.87		mg/Kg	☆	80	65 - 120	2	30
	1,2-Diphenylhydrazine	0.35	U	3.58	2.99		mg/Kg	☆	84	52 - 125	1	30
2,2'-oxybis[1-chloropropane] 0.35 U 3.58 2.78 mg/Kg 🔅 77 43-126 3 30	1,4-Dioxane	0.035	U	3.58	2.30		mg/Kg	¢	64	30 - 120	3	30
	2,2'-oxybis[1-chloropropane]	0.35	U	3.58	2.78		mg/Kg	¢	77	43 - 126	3	30
2,3,4,6-Tetrachlorophenol 0.35 U 3.58 2.81 mg/Kg 🌣 78 66 - 127 1 30	2,3,4,6-Tetrachlorophenol	0.35	U	3.58	2.81		mg/Kg	☆	78	66 - 127	1	30
2,4,5-Trichlorophenol 0.35 U 3.58 2.92 mg/Kg 🌣 82 67 - 120 4 30	2,4,5-Trichlorophenol	0.35	U	3.58	2.92		mg/Kg	₽	82	67 - 120	4	30
2,4,6-Trichlorophenol 0.14 U 3.58 3.03 mg/Kg 🌣 85 67 - 120 3 30	2,4,6-Trichlorophenol	0.14	U	3.58	3.03		mg/Kg	¢	85	67 - 120	3	30
2,4-Dichlorophenol 0.14 U 3.58 2.98 mg/Kg 🌣 83 66 - 120 2 30	2,4-Dichlorophenol	0.14	U	3.58	2.98		mg/Kg	☆	83	66 - 120	2	30
2,4-Dimethylphenol 0.35 U * 3.58 2.15 * mg/Kg 🜣 60 62 - 120 2 30	2,4-Dimethylphenol	0.35	U *	3.58	2.15	*	mg/Kg	¢	60	62 - 120	2	30
2,4-Dinitrophenol 0.29 U 7.17 5.79 mg/Kg 🔅 81 27 - 150 5 30	2,4-Dinitrophenol	0.29	U	7.17	5.79		mg/Kg	☆	81	27 - 150	5	30
2,4-Dinitrotoluene 0.072 U 3.58 3.10 mg/Kg 🌣 86 70 - 131 3 30	2,4-Dinitrotoluene	0.072	U	3.58	3.10		mg/Kg	¢	86	70 - 131	3	30
2,6-Dinitrotoluene 0.072 U 3.58 3.04 mg/Kg 🌣 85 72 - 121 3 30	2,6-Dinitrotoluene	0.072	U	3.58	3.04		mg/Kg	¢	85	72 - 121	3	30
2-Chloronaphthalene 0.35 U 3.58 2.89 mg/Kg 🌣 81 68 - 120 2 30	2-Chloronaphthalene	0.35	U	3.58	2.89		mg/Kg	☆	81	68 - 120	2	30
2-Chlorophenol 0.35 U 3.58 2.83 mg/Kg 🌣 79 63 - 120 1 30	2-Chlorophenol	0.35	U	3.58	2.83		mg/Kg	☆	79	63 - 120	1	30
2-Methylnaphthalene 0.35 U 3.58 2.86 mg/Kg 🌣 80 64 - 120 2 30	2-Methylnaphthalene	0.35	U	3.58	2.86		mg/Kg	₽	80	64 - 120	2	30
2-Methylphenol 0.35 U 3.58 2.75 mg/Kg 🌣 77 58 - 120 2 30	2-Methylphenol	0.35	U	3.58	2.75		mg/Kg	☆	77	58 - 120	2	30
2-Nitroaniline 0.35 U 3.58 2.97 mg/Kg 🌣 83 48 - 129 2 30	2-Nitroaniline	0.35	U	3.58	2.97		mg/Kg	☆	83	48 - 129	2	30
2-Nitrophenol 0.35 U 3.58 2.89 mg/Kg 🌣 81 64 - 120 4 30	2-Nitrophenol	0.35	U	3.58	2.89		mg/Kg	₽	81	64 - 120	4	30
3,3'-Dichlorobenzidine 0.14 U 3.58 2.06 mg/Kg 🌣 57 10 - 136 4 30	3,3'-Dichlorobenzidine	0.14	U	3.58	2.06		mg/Kg	☆	57	10 - 136	4	30
3-Nitroaniline 0.35 U 3.58 2.26 mg/Kg 🌣 63 20 - 132 5 30	3-Nitroaniline	0.35	U	3.58	2.26		mg/Kg	☆	63	20 - 132	5	30
4,6-Dinitro-2-methylphenol 0.29 U 7.17 6.61 mg/Kg 🌣 92 47 - 150 2 30	4,6-Dinitro-2-methylphenol	0.29	U	7.17	6.61		mg/Kg	₽	92	47 - 150	2	30
4-Bromophenyl phenyl ether 0.35 U 3.58 2.96 mg/Kg 🌣 82 62 - 120 2 30	4-Bromophenyl phenyl ether	0.35	U	3.58	2.96		mg/Kg	¢	82	62 - 120	2	30

Client Sample ID: Matrix Spike

Job ID: 460-288831-1

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Prep Batch: 934056

Lab Sample ID: 460-288839-A-13-D MSD Matrix: Solid

Lab Sample ID: 460-28883	5-A-13-D IVI	30				Chefit	samp		Bron Tu		
Matrix: Solid									Prep Ty		
Analysis Batch: 934123	Sampla	Sample	Spike	MSD	MSD				Prep Ba %Rec	atch: 93	RPD
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloro-3-methylphenol	0.35		3.58	2.86	Quaimer	mg/Kg	— <u>–</u>	80	66 - 120	3	30
4-Chloroaniline	0.35		3.58	1.42		mg/Kg		40	10 - 128	3	30
4-Chlorophenyl phenyl ether	0.35		3.58	2.87		mg/Kg	¢	40 80	69 - 120	3	30
4-Methylphenol	0.35		3.58	2.81		mg/Kg	÷	78	55 - 120	2	30
4-Nitroaniline	0.35		3.58	2.01		mg/Kg	¥	76	52 - 120	3	30
4-Nitrophenol	0.33		5.58 7.17	5.73		mg/Kg	÷	80	43 - 135	3	30
Acenaphthene	0.72		3.58	2.97		mg/Kg	¢	83	43 - 133 61 - 120	2	30
Acenaphthylene	0.35		3.58	2.81		mg/Kg		78	64 - 120	2	30
Acetophenone	0.35		3.58	2.63		mg/Kg	¢	73	57 <u>-</u> 120	3	30
Anthracene	0.35		3.58	2.03		mg/Kg	¢	81	67 - 120	1	30
Atrazine	0.33		1.43	2.09 1.57		mg/Kg	¥	109	34 - 120	5	30
Benzaldehyde	0.14		1.43	1.48	E	mg/Kg		109	28 - 120	5	30
Benzidine	0.35		3.58	0.926	E	0 0	¢	26	20 - 150 10 - 120	5 4	30 30
	0.35		3.58	3.01		mg/Kg	÷		69 - 120		30
Benzo[a]anthracene						mg/Kg	¢	84		2	
Benzo[a]pyrene	0.011		3.58	3.38		mg/Kg	¢	94	66 - 123	2	30
Benzo[b]fluoranthene	0.014		3.58	3.18		mg/Kg	¢	88	70 - 125	2	30
Benzo[g,h,i]perylene	0.35		3.58	2.91		mg/Kg	¢	81	66 - 120	1	30
Benzo[k]fluoranthene	0.035		3.58	3.08		mg/Kg	¢	86	71 - 122	3	30
Bis(2-chloroethoxy)methane	0.35		3.58	2.78		mg/Kg	¢	78	62 - 120	2	30
Bis(2-chloroethyl)ether	0.035		3.58	2.78		mg/Kg	.☆	77	54 - 120	2	30
Bis(2-ethylhexyl) phthalate	0.35		3.58	3.15		mg/Kg	¢	88	68 - 125	4	30
Butyl benzyl phthalate	0.35		3.58	3.17		mg/Kg		88	69 - 127	5	30
Caprolactam	0.35		1.43	1.65		mg/Kg	¢	115	26 - 150	7	30
Carbazole	0.35		3.58	2.87		mg/Kg	¢	80	64 - 120	2	30
Chrysene	0.35		3.58	3.01		mg/Kg	¢	84	63 - 120	3	30
Dibenz(a,h)anthracene	0.035		3.58	2.97		mg/Kg	¢	83	66 - 128	0	30
Dibenzofuran	0.35		3.58	2.86		mg/Kg	☆	80	70 - 120	2	30
Diethyl phthalate	0.35		3.58	2.86		mg/Kg	¢	80	69 - 120	3	30
Dimethyl phthalate	0.35		3.58	2.88		mg/Kg	¢	80	70 - 120	4	30
Di-n-butyl phthalate	0.35		3.58	3.07		mg/Kg	¢	86	66 - 120	3	30
Di-n-octyl phthalate	0.35		3.58	3.41		mg/Kg	¢	95	65 - 143	4	30
Fluoranthene	0.017		3.58	2.83		mg/Kg	¢	79	66 - 120	2	30
Fluorene	0.35		3.58	2.89		mg/Kg	¢	81	70 - 120	3	30
Hexachlorobenzene	0.035		3.58	2.87		mg/Kg	☆	80	56 - 120	4	30
Hexachlorobutadiene	0.072		3.58	2.85		mg/Kg	¢	80	62 - 120	4	30
Hexachlorocyclopentadiene	0.35	U *	3.58	0.536	*	mg/Kg	☆	15	38 - 120	3	30
Hexachloroethane	0.035	U	3.58	2.74		mg/Kg	¢	76	57 - 120	3	30
Indeno[1,2,3-cd]pyrene	0.035	U	3.58	3.34		mg/Kg	¢	93	62 - 148	2	30
Isophorone	0.14		3.58	2.78		mg/Kg	¢	78	60 - 120	2	30
Naphthalene	0.35	U	3.58	2.81		mg/Kg	¢	78	63 - 120	1	30
Nitrobenzene	0.035	U	3.58	2.90		mg/Kg	₽	81	63 - 120	3	30
N-Nitrosodi-n-propylamine	0.035	U	3.58	2.88		mg/Kg	☆	80	55 - 120	2	30
N-Nitrosodiphenylamine	0.35	U	3.58	2.96		mg/Kg	☆	83	63 - 120	3	30
Pentachlorophenol	0.29	U	7.17	6.18		mg/Kg	₽	86	51 - 126	2	30
Phenanthrene	0.35	U	3.58	2.93		mg/Kg	¢	82	66 - 120	2	30
Phenol	0.35	U	3.58	2.83		mg/Kg	¢	79	57 - 120	3	30
Pyrene	0.017	J	3.58	3.11		mg/Kg	₽	86	67 - 121	3	30
Pyridine	0.35	U	7.17	4.56		mg/Kg	¢	64	37 - 120	3	30

Eurofins Edison

Client Sample ID: Matrix Spike Duplicate

5

8

13

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

ab Sample ID: 460-2888	39-A-13-D M	SD						Client	Samp	le ID: N	latrix Spik		
Matrix: Solid											Prep Typ		
Analysis Batch: 934123											Prep Bat	ich: 9:	34056
	MSD	MSI	D										
Surrogate	%Recovery	Qua	lifier	Limits									
2,4,6-Tribromophenol (Surr)	86			24 - 137									
2-Fluorobiphenyl	94			48 - 120									
2-Fluorophenol (Surr)	95			31 - 120									
Nitrobenzene-d5 (Surr)	93			38 - 120									
Phenol-d5 (Surr)	97			39 - 120									
Terphenyl-d14 (Surr)	101			25 - 126									
lethod: 8015D - Gaso	line Range	e O	rganics	; (GRO) (G	C)							
Lab Sample ID: MB 460-9	34221/5								Clic	ent Sam	ple ID: Me	thod	Blank
Matrix: Solid											Prep Typ		
Analysis Batch: 934221													
-		MB	MB										
Analyte	Re		Qualifier		RL	,	MDL Unit		D Pi	Prepared	Analyze	əd	Dil Fac
GRO		2.5	U		2.5		2.5 mg/K	ģ			09/25/23 1	2:08	50
		MB	MB										
Surrogate	%Reco		Qualifier	Limi	lits				P	Prepared	Analyze	ed	Dil Fac
a,a,a-Trifluorotoluene		106			150						09/25/23 1		50
Lab Sample ID: LCS 460- Matrix: Solid Analysis Batch: 934221	934221/2							Clie	nt Sar	nple ID:	: Lab Cont Prep Typ		
				Spike		_	LCS		_		%Rec		
Analyte				Added			Qualifier		<u>D</u>	%Rec	Limits		
GRO				20.0		19.8		mg/Kg		99	77 - 120		
	LCS	LCS	3										
Surrogate	%Recovery	Qua	lifier	Limits									
a,a,a-Trifluorotoluene	98			80 - 150									
Lab Sample ID: LCSD 460	0-934221/3						(Client S	ample	ID: Lat	o Control S	ampl [,]	e Dup
Matrix: Solid											Prep Typ	e: To	tal/NA
Analysis Batch: 934221				Spike			LCSD				%Rec		RPD
Analyte				Added			Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO				20.0		20.2		mg/Kg		101	77 - 120	2	
	(000												
	LCSD												
Surrogate	%Recovery	Qua	lifier	Limits	-								
a,a,a-Trifluorotoluene	109			80 - 150									

Lab Sample ID: MB 460-934371/1-A Matrix: Solid Analysis Batch: 934918								le ID: Method Prep Type: To Prep Batch: 9	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C44	8.7	U	8.7	0.55	mg/Kg		09/25/23 21:12	09/28/23 08:55	1

Job ID: 460-288831-1

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

QC Sample Results

Job ID: 460-288831-1

5

8

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 460-934371/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934918 Prep Batch: 934371 MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed o-Terphenyl 114 10 - 150 09/25/23 21:12 09/28/23 08:55 Lab Sample ID: LCS 460-934371/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934918 **Prep Batch: 934371** LCS LCS Surrogate %Recovery Qualifier Limits 10 - 150 o-Terphenyl 111 Lab Sample ID: LCSD 460-934371/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934918 **Prep Batch: 934371** LCSD LCSD %Recovery Qualifier Surrogate Limits 10 - 150 o-Terphenyl 96 Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Lab Sample ID: MB 460-934020/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Prep Batch: 934020 Analysis Batch: 934213 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Aroclor 1016 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1016 0.067 U 09/23/23 16:03 09/25/23 08:41 0.067 0.018 mg/Kg 1 Aroclor 1221 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1221 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1232 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1232 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1242 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 0.067 U 1 Aroclor 1242 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1248 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1248 09/23/23 16:03 09/25/23 08:41 0.067 U 0.067 0.018 mg/Kg 1 Aroclor 1254 0.067 U 0.067 0.018 ma/Ka 09/23/23 16:03 09/25/23 08:41 1 09/23/23 16:03 09/25/23 08:41 Aroclor 1254 0.018 mg/Kg 0.067 U 0.067 1 Aroclor 1260 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1260 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1268 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor 1268 09/23/23 16:03 09/25/23 08:41 0.067 U 0.067 0.018 mg/Kg Aroclor-1262 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Aroclor-1262 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Polychlorinated biphenyls, Total 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 Polychlorinated biphenyls, Total 0.067 U 0.067 0.018 mg/Kg 09/23/23 16:03 09/25/23 08:41 1 MB MB Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed DCB Decachlorobiphenyl 87 34 - 150 09/23/23 16:03 09/25/23 08:41 1 DCB Decachlorobiphenyl 89 34 - 150 09/23/23 16:03 09/25/23 08:41 1 Tetrachloro-m-xylene 78 34 - 150 09/23/23 16:03 09/25/23 08:41 1

Lab Sample ID: MB 460-93 Matrix: Solid Analysis Batch: 934213	34020/1-A						Clie	ent Samp	ole ID: Me Prep Typ Prep Ba	pe: To	tal/N/
·····, ·····		MB MB									
Surrogate	%Reco	very Qualifier	Limits				Р	repared	Analyz	red	Dil Fa
Tetrachloro-m-xylene		73						•	09/25/23		Dirra
Lab Sample ID: LCS 460-9	934020/2-A					Clier	nt Sar	nple ID:	Lab Con		
Matrix: Solid									Prep Typ		
Analysis Batch: 934213			.						Prep Ba	tch: 9	3402
A			Spike	LCS		11	_	0/ D	%Rec		
Analyte Aroclor 1016			Added		Qualifier	Unit	D	%Rec	Limits		
			0.333	0.378		mg/Kg		113	61 - 133		
Aroclor 1016			0.333	0.412		mg/Kg		124	61 - 133		
Aroclor 1260			0.333	0.400		mg/Kg		120	59 - 150		
Aroclor 1260			0.333	0.411		mg/Kg		123	59 - 150		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl	82		34 - 150								
DCB Decachlorobiphenyl	90		34 - 150								
Tetrachloro-m-xylene	75		34 - 150								
Tetrachloro-m-xylene	80		34 - 150								
Lab Sample ID: LCSD 460 Matrix: Solid	-934020/3-A				C	lient Sa	mple	ID: Lab	Control S Prep Typ		
Analysis Batch: 934213									Prep Ba	tch: 9	3402
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Aroclor 1016			0.333	0.419		mg/Kg		126	61 - 133	10	3
Aroclor 1016			0.333	0.409		mg/Kg		123	61 - 133	1	3
Aroclor 1260			0.333	0.454		mg/Kg		136	59 - 150	13	3
Aroclor 1260			0.333	0.419		mg/Kg		126	59 - 150	2	3
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
DCB Decachlorobiphenyl	93		34 - 150								
DCB Decachlorobiphenyl	91		34 - 150								
Tetrachloro-m-xylene	84		34 - 150								
Tetrachloro-m-xylene	77		34 - 150								
Lab Sample ID: 460-28860	5-F-2-D MS						CI	ient San	ple ID: N		
Matrix: Solid									Prep Typ		
Analysis Batch: 934213	Comple	Sample	Spike	ме	MS				Prep Ba %Rec	iiii: 9	3402
Analyta	Sample	Sample Qualifier	Spike Added			Unit	_	% Pcc	%Rec Limits		
Analyte					Qualifier	Unit	D	%Rec			
Araclar 1016	0 000	11	0/12	0 474		malka	×	115	61 122		
Aroclor 1016 Aroclor 1016	0.083		0.413 0.413	0.474 0.492		mg/Kg mg/Kg	¢ ¢	115 119	61 - 133 61 - 133		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	96		34 - 150
DCB Decachlorobiphenyl	98		34 - 150

0.083 U

0.083 U

Aroclor 1260

Aroclor 1260

Eurofins Edison

0.413

0.413

0.526

0.518

mg/Kg

mg/Kg

128

125

59 - 150

59 - 150

₽

₽

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Lab Sample ID: 460-288605-F-2-D MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934213 Prep Batch: 934020 MS MS %Recovery Qualifier Limits Surrogate 34 - 150 Tetrachloro-m-xylene 70 Tetrachloro-m-xylene 63 34 - 150 Lab Sample ID: 460-288605-F-2-E MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA Matrix: Solid Analysis Batch: 934213 Prep Batch: 934020 MSD MSD %Rec RPD Sample Sample Spike Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits RPD Limit Aroclor 1016 0.083 U 0.413 0.535 mg/Kg ☆ 130 61 - 133 12 30 Aroclor 1016 0.083 U 0.413 0.626 * mg/Kg ₽ 152 61 - 133 24 30 mg/Kg Aroclor 1260 0.083 U 0.413 7 30 0.565 ¢ 137 59 - 150 0.650 * Aroclor 1260 0.083 U 0.413 mg/Kg ÷Ċ 157 59 - 150 23 30 MSD MSD Limits Surrogate %Recovery Qualifier 117 34 - 150 DCB Decachlorobiphenyl DCB Decachlorobiphenyl 122 34 - 150

Method: 6020B - Metals (ICP/MS)

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Lab Sample ID: MB 460-934149/1-A Matrix: Solid Analysis Batch: 934300

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.0	U	1.0	0.10	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Barium	2.0	U	2.0	0.15	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Cadmium	1.0	U	1.0	0.11	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Chromium	2.0	U	2.0	0.91	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Lead	0.60	U	0.60	0.20	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Selenium	1.3	U	1.3	0.13	mg/Kg		09/24/23 19:30	09/25/23 19:01	1
Silver	0.40	U	0.40	0.089	mg/Kg		09/24/23 19:30	09/25/23 19:01	1

34 - 150

34 - 150

85 78

Lab Sample ID: LCSSRM 460-934149/2-A ^5 Matrix: Solid Analysis Batch: 934300

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 934149**

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 934149

Analysis Batch. 304000	Spike	LCSSRM	LCSSRM				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	180	182.8		mg/Kg		101.5	81.1 - 119.	
							4	
Barium	354	359.5		mg/Kg		101.5	81.6 - 118.	
							1	
Cadmium	105	106.7		mg/Kg		101.7	82.8 - 118.	
							1	
Chromium	232	235.6		mg/Kg		101.5	81.5 - 118.	
							5	
Lead	145	144.7		mg/Kg		99.8	82.1 - 117.	
							q	

Eurofins Edison

8

Spike

Added

96.3

47.3

Spike

Added

8.63

8.63

4.32

8.63

4.32

8.63

4.32

LCSSRM LCSSRM

MS MS

19.08

26.95

4.11

12.79

7.68

4.19

62.99 4

Result Qualifier

95.79

47.84

Result Qualifier

Lab Sample ID: 460-288711-F-4-C MS

Lab Sample ID: 460-288711-F-4-B DU

Matrix: Solid

Matrix: Solid

Analyte

Silver

Analyte

Arsenic

Barium

Lead

Silver

Cadmium

Chromium

Selenium

Matrix: Solid

Selenium

Analysis Batch: 934300

Analysis Batch: 934300

Lab Sample ID: LCSSRM 460-934149/2-A ^5

Method: 6020B - Metals (ICP/MS) (Continued)

Sample Sample

10.5

17.3

49.6

8.1

0.49 J

0.35 U

... ...

0.87 U

Result Qualifier

Unit

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D %Rec

D

☆

Æ

₽

₽

₽

₽

÷Ċ

99.5

101.1

%Rec

100

112

95

155

110

83

97

Prep Type: Total/NA

Prep Batch: 934149

Prep Type: Total/NA Prep Batch: 934149

Client Sample ID: Lab Control Sample

%Rec

Limits 78.8 - 121.

79.5 - 120.

%Rec Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

5

5

Client Sample ID: Matrix Spike

8

Client Sample ID: Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 934725

Analysis Batch: 934300							Prep Batch: 93	34149
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	10.5		10.36		mg/Kg	\$	0.9	20
Barium	17.3		16.79		mg/Kg	☆	3	20
Cadmium	0.87	U	0.86	U	mg/Kg	☆	NC	20
Chromium	49.6		49.88		mg/Kg	₽	0.5	20
Lead	8.1		8.06		mg/Kg	☆	0	20
Selenium	0.49	J	0.498	J	mg/Kg	¢	2	20
Silver	0.35	U	0.35	U	mg/Kg	₽	NC	20

Lab Sample ID: MB 460-934725/1-A Matrix: Solid Analysis Batch: 934777

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	U	2.0	0.89	ug/L		09/27/23 11:17	09/27/23 19:18	1
Barium	4.0	U	4.0	0.91	ug/L		09/27/23 11:17	09/27/23 19:18	1
Cadmium	2.0	U	2.0	0.39	ug/L		09/27/23 11:17	09/27/23 19:18	1
Chromium	4.0	U	4.0	2.5	ug/L		09/27/23 11:17	09/27/23 19:18	1
Lead	1.2	U	1.2	0.84	ug/L		09/27/23 11:17	09/27/23 19:18	1
Selenium	2.5	U	2.5	0.59	ug/L		09/27/23 11:17	09/27/23 19:18	1
Silver	2.0	U	2.0	0.29	ug/L		09/27/23 11:17	09/27/23 19:18	1

Lab Samp	ole ID: LCS 460-93	4725/2-A ^10				Cli	ent Sar	nple ID	: Lab Con	trol Sample
Matrix: So	olid								Prep Ty	pe: Total/NA
Analysis	Batch: 934777								Prep Ba	atch: 934725
_			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic			5000	4845		ug/L		97	80 - 120	

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 460-934725/2-A ^10 Matrix: Solid Analysis Batch: 934777				Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 934725
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	10000	9443		ug/L		94	80 - 120
Cadmium	1000	985.8		ug/L		99	80 - 120
Chromium	5000	4970		ug/L		99	80 - 120
Lead	5000	4844		ug/L		97	80 - 120
Selenium	1000	960.7		ug/L		96	80 - 120
Silver	500	507.1		ug/L		101	80 - 120

Lab Sample ID: LB 460-934517/1-B ^10 Matrix: Solid Analysis Batch: 934777

-	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	20.0	U	20.0	8.9	ug/L		09/27/23 11:17	09/27/23 20:25	10
Barium	40.0	U	40.0	9.1	ug/L		09/27/23 11:17	09/27/23 20:25	10
Cadmium	20.0	U	20.0	3.9	ug/L		09/27/23 11:17	09/27/23 20:25	10
Chromium	40.0	U	40.0	25.0	ug/L		09/27/23 11:17	09/27/23 20:25	10
Lead	12.0	U	12.0	8.4	ug/L		09/27/23 11:17	09/27/23 20:25	10
Selenium	25.0	U	25.0	5.9	ug/L		09/27/23 11:17	09/27/23 20:25	10
Silver	20.0	U	20.0	2.9	ug/L		09/27/23 11:17	09/27/23 20:25	10

Lab Sample ID: 460-288839-A-1-G MS ^10 Matrix: Solid Analysis Batch: 934777

									The Button Contract
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	20.0	U	5000	4956		ug/L		99	75 - 125
Barium	133		10000	9858		ug/L		97	75 - 125
Cadmium	20.0	U	1000	1032		ug/L		103	75 - 125
Chromium	40.0	U	5000	5042		ug/L		101	75 - 125
Lead	56.9		5000	5113		ug/L		101	75 - 125
Selenium	25.0	U	1000	1032		ug/L		103	75 - 125
Silver	20.0	U	500	517.2		ug/L		103	75 - 125

Lab Sample ID: 460-288839-A-1-F DU ^10 Matrix: Solid Analysis Batch: 934777

Analysis Daton. South							i iep Daten. st	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	20.0	U	20.0	U	ug/L		NC	20
Barium	133		132.8		ug/L		0.2	20
Cadmium	20.0	U	20.0	U	ug/L		NC	20
Chromium	40.0	U	40.0	U	ug/L		NC	20
Lead	56.9		62.59		ug/L		10	20
Selenium	25.0	U	25.0	U	ug/L		NC	20
Silver	20.0	U	20.0	U	ug/L		NC	20

Eurofins Edison

11 12 13

ient Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Prep Type: TCLP

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 934725

Prep Batch: 934725

Client Sample ID: Duplicate Prep Type: TCLP

Prep Batch: 934725

Analysis Batch: 934669

Job ID: 460-288831-1

Lab Sample ID: MB 460-934749/	1-A										Client Sam	ole ID: Metho		
Matrix: Solid												Prep Type: T		
Analysis Batch: 934805		мр	мв									Prep Batch:	934	+/49
Analyte	Re		Qualifier		RL	Ν	/IDL	Unit		D	Prepared	Analyzed	Di	il Fac
Mercury		0.20	U		0.20	0.	091	ug/L		_	09/27/23 12:45	09/27/23 16:10		1
Lab Sample ID: LCS 460-934749	9/2-A								Cli	ent	Sample ID:	Lab Control	San	aple
Matrix: Solid												Prep Type: T		
Analysis Batch: 934805												Prep Batch:		
				Spike		LCS	LCS	5				%Rec		
Analyte				Added		Result	Qua	lifier	Unit		D %Rec	Limits		
Mercury				5.00		5.26			ug/L		105	80 - 120		
Lab Sample ID: LB 460-934517/	1-C										Client Sam	ole ID: Metho	d Bl	lank
Matrix: Solid												Prep Type	e: T	CLF
Analysis Batch: 934805												Prep Batch:	934	1749
		LB	LB											
Analyte			Qualifier		RL			Unit		D	Prepared	Analyzed	Di	il Fac
Mercury		0.20	U		0.20	0.	091	ug/L			09/27/23 12:45	09/27/23 17:07		1
Lab Sample ID: LB 460-934520/	1-C										Client Sam	ole ID: Metho	d Bl	lank
Matrix: Solid												Prep Type		
Analysis Batch: 934805												Prep Batch:		
		LB	LB											
Analyte	Re	sult	Qualifier		RL	Ν	/IDL	Unit		D	Prepared	Analyzed	Di	il Fac
Mercury	0.0	0942	J		0.20	0.	091	ug/L		_	09/27/23 12:45	09/27/23 17:09		1
Lab Sample ID: 460-288839-D-3	1-H M	s ^2									Client Sar	nple ID: Matri	x Si	oike
Matrix: Solid												Prep Type		
Analysis Batch: 934805												Prep Batch:		
-	Sample	Sam	nple	Spike		MS	MS					%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D %Rec	Limits		
Mercury	7.8	В		5.00		12.82			ug/L		100	75 - 125		-
Lab Sample ID: 460-288839-D-3	1-G D	U									Client	Sample ID: Du	ipli	cate
Matrix: Solid												Prep Type	: T	CLF
Analysis Batch: 934805												Prep Batch:		
s	Sample	Sam	nple			DU	DU							RPD
Analyte	Result	Qua	lifier			Result	Qua	lifier	Unit		D	RPI	<u> </u>	Limi
Mercury	7.8	В				7.26			ug/L				7	20
Nethod: 7471B - Mercury (C	VAA)												
Lab Sample ID: MR 460 934647	1_A										Client Same			lant
Lab Sample ID: MB 460-934617/ Matrix: Solid	1-A										Chefit Sam	ole ID: Metho Prep Type: T		
Analysia Patabi 024660												Deep Type. 1		1/ 1 1 / -

Prep Type: Total/NA Prep Batch: 934617

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.017	U	0.017	0.0080	mg/Kg		09/27/23 00:49	09/27/23 05:34	1

5

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCSSRM 46	0-934617/	2-A ^40				Clie	ent Sai	mple IC	: Lab Control	
Matrix: Solid									Prep Type: T	
Analysis Batch: 934669									Prep Batch:	934617
			Spike	LCSSRM	LCSSRM				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury			10.3	10.67		mg/Kg		103.6	55.0 - 143. 7	
Lab Sample ID: 460-288827-	.F.1.G MS						CI	lient Sa	mple ID: Matri	x Snike
Matrix: Solid		, ,					0.		Prep Type: T	
Analysis Batch: 934669									Prep Batch:	
Analysis Datch. 304005	Sampla	Sample	Spike	MS	MS				%Rec	334017
Analyte	•	Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.043		0.0837	0.127	Quaimer	mg/Kg	— <u>–</u>	100	80 - 120	
Ner cur y	0.045		0.0007	0.127		iiig/itg	ж	100	00 - 120	
Lab Sample ID: 460-288827-	E-1-F DU							Client	Sample ID: Du	plicate
Matrix: Solid									Prep Type: T	
Analysis Batch: 934669									Prep Batch:	
	Sample	Sample		DU	DU					RPD
Analyte	-	Qualifier		Result	Qualifier	Unit	D		RPI	D Limit
Mercury	0.043			0.0450	·	mg/Kg				4 20
Method: 1030 - Ignitabili	ty Solid	le								
	ty , b ond	13								
Lab Sample ID: 460-288749-	-B-1 DU							Client	Sample ID: Du	
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 934766										
	Sample	Sample		DU	DU					RPD
Amelute		• ····								
Analyte	Result	Qualifier			Qualifier	Unit	D		RPI	D Limit
Analyte Burn Rate	2.20					Unit mm/sec	<u> </u>		RPI	
	2.20	U	enable	2.20			D			
Burn Rate Method: 9012B - Cyanid	2.20 e, Total a	U	enable	2.20				ent San	N(C 10
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934	2.20 e, Total a	U	enable	2.20				ent San	nple ID: Method	c 10
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid	2.20 e, Total a	U	enable	2.20				ent San	nple ID: Methoo Prep Type: T	d Blank
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934	2.20 e, Total a	U	enable	2.20				ent San	nple ID: Method	d Blank
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027	2.20 e, Total a 919/2-A	andor Am		2.20	U		Clie		nple ID: Method Prep Type: T Prep Batch:	d Blank otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte	2.20 e, Total a 919/2-A Re	MB MB esult Qualifier		2.20 RL	U MDL Unit	mm/sec	Clie	repared	nple ID: Methoo Prep Type: T	d Blank
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL	U	mm/sec	Clie <u>D</u> <u>P</u> <u>09/2</u>	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: Analyzed 19 09/28/23 14:16	c 10 d Blank otal/NA 934919 <u>Dil Fac</u> 1
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL	U MDL Unit	mm/sec	Clie <u>D</u> <u>P</u> <u>09/2</u>	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: <u>Analyzed</u> 19 09/28/23 14:16 0: Lab Control S	d Blank otal/NA 934919 Dil Fac 1 Sample
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL	U MDL Unit	mm/sec	Clie <u>D</u> <u>P</u> <u>09/2</u>	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: 09/28/23 14:16 0: Lab Control S Prep Type: T	d Blank fotal/NA 934919 <u>Dil Fac</u> 1 Sample fotal/NA
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL	U MDL Unit	mm/sec	Clie <u>D</u> <u>P</u> <u>09/2</u>	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: <u>Analyzed</u> 19 09/28/23 14:16 0: Lab Control S	d Blank fotal/NA 934919 <u>Dil Fac</u> 1 Sample fotal/NA
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL 0.24	U MDL Unit	mm/sec	Clie <u>D</u> <u>P</u> <u>09/2</u>	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: 09/28/23 14:16 0: Lab Control S Prep Type: T	d Blank fotal/NA 934919 <u>Dil Fac</u> 1 Sample fotal/NA
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U		2.20 RL 0.24	MDL Unit	mm/sec	Clie	repared 28/23 08:1	nple ID: Method Prep Type: T Prep Batch: 09/28/23 14:16 0: Lab Control S Prep Type: T Prep Batch:	d Blank fotal/NA 934919 <u>Dil Fac</u> 1 Sample fotal/NA
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike	2.20 RL 0.24	MDL Unit 0.13 mg/K	g Clie	Clie	repared 28/23 08:1 mple ID	nple ID: Method Prep Type: T Prep Batch: <u>Analyzed</u> 19 09/28/23 14:16 0: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125.	d Blank fotal/NA 934919 <u>Dil Fac</u> 1 Sample fotal/NA
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added	2.20 RL 0.24 LCSSRM Result	MDL Unit 0.13 mg/K	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 28/23 08:1 mple ID <u>%Rec</u> 50.1	nple ID: Method Prep Type: T Prep Batch: 09/28/23 14:16 0: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: MRL 460-93	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added	2.20 RL 0.24 LCSSRM Result	MDL Unit 0.13 mg/K	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 28/23 08:1 mple ID <u>%Rec</u> 50.1	nple ID: Method Prep Type: T Prep Batch: <u>Analyzed</u> 19 09/28/23 14:16 0: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2 0: Lab Control S	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analyte Cyanide, Total Lab Sample ID: MRL 460-93 Matrix: Solid	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added	2.20 RL 0.24 LCSSRM Result	MDL Unit 0.13 mg/K	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 28/23 08:1 mple ID <u>%Rec</u> 50.1	nple ID: Method Prep Type: T Prep Batch: <u>Analyzed</u> 19 09/28/23 14:16 0: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2 0: Lab Control S Prep Type: T	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: MRL 460-93	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added 115	2.20 RL 0.24 LCSSRM <u>Result</u> 57.60	U MDL Unit 0.13 mg/K LCSSRM Qualifier	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 28/23 08:1 mple ID <u>%Rec</u> 50.1	nple ID: Method Prep Type: T Prep Batch: Analyzed 19 09/28/23 14:16 D: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2 D: Lab Control S Prep Type: T Prep Batch:	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: MRL 460-93 Matrix: Solid Analysis Batch: 935027	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added 115 Spike	2.20 RL 0.24 LCSSRM Result 57.60 MRL	MDL Unit 0.13 mg/K LCSSRM Qualifier	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 18/23 08:1 mple ID <u>%Rec</u> 50.1 mple ID	nple ID: Method Prep Type: T Prep Batch: Analyzed 19 09/28/23 14:16 D: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2 D: Lab Control S Prep Type: T Prep Batch: %Rec	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919
Burn Rate Method: 9012B - Cyanid Lab Sample ID: MB 460-934 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analysis Batch: 935027 Analyte Cyanide, Total Lab Sample ID: LCSSRM 46 Matrix: Solid Analyte Cyanide, Total Lab Sample ID: MRL 460-93 Matrix: Solid	2.20 e, Total a 919/2-A 	MB MB esult Qualifier 0.24 U	Spike Added 115	2.20 RL 0.24 LCSSRM Result 57.60 MRL	U MDL Unit 0.13 mg/K LCSSRM Qualifier	g Clic Unit mg/Kg	Clie <u>D</u> <u>P</u> 09/2 ent Sar <u>D</u>	repared 28/23 08:1 mple ID <u>%Rec</u> 50.1	nple ID: Method Prep Type: T Prep Batch: Analyzed 19 09/28/23 14:16 D: Lab Control S Prep Type: T Prep Batch: %Rec Limits 25.6 - 125. 2 D: Lab Control S Prep Type: T Prep Batch:	d Blank otal/NA 934919 Dil Fac 1 Sample otal/NA 934919

QC Sample Results

Job ID: 460-288831-1

Method: 9012B - Cyanide, Total andor Amenable (Continued)

				-							
Lab Sample ID: 460-288827	-F-1-B MS						CI	ient San	nple ID: Mati	ix Sp	oiko
Matrix: Solid									Prep Type:	Total/	/N/
Analysis Batch: 935027									Prep Batch	: 9349	91
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total	0.26	U	5.23	5.25		mg/Kg	☆	100	23 - 100		
Lab Sample ID: 460-288827	-F-1-C MS	D				Client S	Samp	le ID: Ma	atrix Spike D	uplica	ate
Matrix: Solid									Prep Type:	Total/	/N/
Analysis Batch: 935027									Prep Batch	: 9349	91
	Sample	Sample	Spike	MSD	MSD				%Rec	F	RP
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits RI		.im
Cyanide, Total	0.26	U	5.23	5.51	Ν	mg/Kg	¢	105	23 - 100	5	4
Method: 9014 - Cyanide,	Reactiv	e									
Lab Sample ID: MB 460-935	024/1-A						Clie	nt Sam	ple ID: Metho	od Bla	an
Matrix: Solid									Prep Type:		
Analysis Batch: 935065									Prep Batch	: 9350	02
		MB MB									
Analyte	Re	sult Qualifier		RL	MDL Unit	D	Pr	repared	Analyzed	Dil	Fa
Cyanide, Reactive	:	25.0 U		25.0	25.0 mg/k	(g	09/2	8/23 15:37	09/28/23 17:4	7	
Lab Sample ID: LCS 460-93	5024/2-A					Clier	it Sar	nple ID:	Lab Control	Sam	pl
Matrix: Solid									Prep Type:	Total/	/N
Analysis Batch: 935065									Prep Batch		
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Reactive			40.0	25.0	U	mg/Kg		12	10 - 100		
Lab Sample ID: 460-288808	-B-1-M DU							Client S	Sample ID: D	uplica	at
Matrix: Solid									Prep Type:		
Analysis Batch: 935065									Prep Batch		
····· , ··· ······	Sample	Sample		DU	DU						RP
Analyte		Qualifier		Result	Qualifier	Unit	D		RI	D Li	.im
Cyanide, Reactive	25.0	U		25.0	U	mg/Kg					1
/lethod: 9034 - Sulfide, l	Reactive	!									
Lab Sample ID: MB 460-935	023/1-A						Clie	nt Sam	ple ID: Metho	od Bla	an
Matrix: Solid							_		Prep Type:		
Analysis Batch: 935063									Prep Batch		
		MB MB									_
Analyte	Re	sult Qualifier		RL	MDL Unit	D	Pi	epared	Analyzed	Dil	Fa
Sulfide, Reactive		20.0 U		20.0	20.0 mg/k	(g	09/2	8/23 15:34	09/28/23 17:4	5	
Lab Sample ID: LCSSRM 46	0-935023/	3-A				Clier	it Sar	nple ID:	Lab Control	Sam	pl
Matrix: Solid								-	Prep Type:		
Analysis Batch: 935063									Prep Batch		
• • • • • • • • • • • • • • • • • • • •			Spike	LCSSRM	LCSSRM				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Sulfide, Reactive			50.7	52.90		mg/Kg		104.3 4	11.2 - 146.		

Job ID: 460-288831-1

Method: 9034 - Sulfide, Reactive (Continued) Lab Sample ID: 460-288808-B-1-J MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA Prep Batch: 935023 Analysis Batch: 935063 Sample Sample Spike MS MS %Rec **Result Qualifier** Added Result Qualifier Limits Analyte Unit D %Rec 450 Sulfide, Reactive 20.0 U 365.5 mg/Kg 81 64 - 136 Lab Sample ID: 460-288808-B-1-K MSD **Client Sample ID: Matrix Spike Duplicate** Matrix: Solid Prep Type: Total/NA Prep Batch: 935023 Analysis Batch: 935063 8 Sample Sample Spike MSD MSD %Rec RPD **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits RPD Limit Analyte Sulfide, Reactive 20.0 U 450 365.5 mg/Kg 81 64 - 136 0 10 Method: 9045D - pH Lab Sample ID: LCSSRM 460-934958/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Matrix: Solid Analysis Batch: 934958 Spike LCSSRM LCSSRM %Rec Analyte Added **Result Qualifier** Limits Unit п %Rec pН 6.27 6.3 SU 100.3 96.8 - 103. 2 Corrosivity 6.27 6.3 SU 100.0 96.8 - 103. 2 Lab Sample ID: 460-288831-2 DU Client Sample ID: WC-CB-C_20230922 Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 934958 DU DU RPD Sample Sample Analyte **Result Qualifier Result Qualifier** Unit D RPD Limit bН 7.5 HF 7.5 SU 0.5 10 Temperature 20.8 HF 20.9 Degrees C 0.5 10 Corrosivity 7.5 HF 7.5 SU 0.5 10 Method: Moisture - Percent Moisture Lab Sample ID: 460-288815-D-1 DU **Client Sample ID: Duplicate** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934236 RPD Sample Sample DU DU Analyte **Result Qualifier Result Qualifier** Unit D RPD Limit Percent Moisture 8.3 9.4 % 13 20 Percent Solids 91.7 90.6 % 20 1 Lab Sample ID: 460-288821-D-7 DU **Client Sample ID: Duplicate** Matrix: Solid Prep Type: Total/NA Analysis Batch: 934353 Sample Sample DU DU RPD Analyte **Result Qualifier Result Qualifier** Unit D RPD Limit Percent Moisture % 17.1 14.4 18 20 Percent Solids 82.9 85.6 % 3 20

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Client Sample ID

Client Sample ID

Method Blank

Method Blank

WC-CB-G_20230922

Lab Control Sample

Lab Control Sample Dup

Method Blank

WC-CB-G_20230922

GC/MS VOA

Lab Sample ID

Lab Sample ID

460-288831-1

460-288831-1

Prep Batch: 933977

LB3 460-933977/6-A

LB3 460-933977/6-A

MB 460-934427/8

LCS 460-934427/3

LCSD 460-934427/4

GC/MS Semi VOA

Analysis Batch: 934427

Prep Batch

Prep Batch

933977

933977

Method

Method

8260D

8260D

8260D

8260D

8260D

5035

5035

15

Prep Batch: 934056					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	3546	
MB 460-934056/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-934056/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-934056/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
460-288839-A-13-C MS	Matrix Spike	Total/NA	Solid	3546	
460-288839-A-13-D MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
Analysis Batch: 93412	23				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	8270E	934056
MB 460-934056/1-A	Method Blank	Total/NA	Solid	8270E	934056
LCS 460-934056/2-A	Lab Control Sample	Total/NA	Solid	8270E	934056
LCSD 460-934056/3-A	Lab Control Sample Dup	Total/NA	Solid	8270E	934056
460-288839-A-13-C MS	Matrix Spike	Total/NA	Solid	8270E	934056
460-288839-A-13-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8270E	934056
GC VOA					
Prep Batch: 933978					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-1	WC-CB-G_20230922	Total/NA	Solid	5035	
Analysis Batch: 93422	21				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-1	WC-CB-G_20230922	Total/NA	Solid	8015D	933978
MB 460-934221/5	Method Blank	Total/NA	Solid	8015D	
LCS 460-934221/2	Lab Control Sample	Total/NA	Solid	8015D	
LCSD 460-934221/3	Lab Control Sample Dup	Total/NA	Solid	8015D	

GC Semi VOA

Prep Batch: 934020

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	3546
MB 460-934020/1-A	Method Blank	Total/NA	Solid	3546
LCS 460-934020/2-A	Lab Control Sample	Total/NA	Solid	3546
LCSD 460-934020/3-A	Lab Control Sample Dup	Total/NA	Solid	3546

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

GC Semi VOA (Continued)

Job ID: 460-288831-1

9

Spike Spike Spike Spike Duplicate Sample ID S-C_20230922 d Blank ontrol Sample Dup Spike Spike Duplicate Sample ID S-C_20230922 d Blank ontrol Sample Dup Sample ID S-C_20230922 d Blank ontrol Sample Dup Sample ID S-C_20230922 d Blank ontrol Sample Dup	Prep Type Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	3546 3546 3546 3546 8082A 8052A 3546 3546 3546 8015D 8015D	Prep Batcl 934020 934020 934020 934020 934020 934020 934020 Prep Batcl 93437 93437
Sample ID 3-C_20230922 d Blank pontrol Sample pontrol Sample Dup Spike Spike Duplicate Sample ID 3-C_20230922 d Blank pontrol Sample Dup Sample ID 3-C_20230922 d Blank pontrol Sample Dup	Prep TypeTotal/NA	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 8082A 8082A 8082A 8082A 8082A 8082A 8082A 8082A 3082A 3082A 3546 3546 3546 3546 3546 3546 3546 3546	934020 934020 934020 934020 934020 934020 Prep Batcl 93437
B-C_20230922 d Blank ontrol Sample Dup Spike Spike Duplicate Sample ID B-C_20230922 d Blank ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample Dup	Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 3546 3546 3546 3546 8015D	93402 93402 93402 93402 93402 93402 93402 Prep Batcl 93437
B-C_20230922 d Blank ontrol Sample Dup Spike Spike Duplicate Sample ID B-C_20230922 d Blank ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample Dup	Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 3546 3546 3546 3546 8015D	93402 93402 93402 93402 93402 93402 93402 Prep Batcl 93437
d Blank ontrol Sample pontrol Sample Dup Spike Spike Duplicate Sample ID 3-C_20230922 d Blank ontrol Sample Dup Sample ID 3-C_20230922 d Blank ontrol Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 8082A 8082A 8082A 8082A 8082A 3546 3546 3546 3546 3546 3546 3546 3546	93402 93402 93402 93402 93402 Prep Batc Prep Batc 93437
ontrol Sample pontrol Sample Dup Spike Spike Duplicate Sample ID B-C_20230922 d Blank ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 8082A 8082A 8082A 3546 3546 3546 3546 3546 3546 3546 3546	93402 93402 93402 93402 Prep Batc Prep Batc 93437
Spike Duplicate Spike Duplicate Sample ID 3-C_20230922 d Blank ontrol Sample Dup Sample ID 3-C_20230922 d Blank ontrol Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 8082A 8082A 3546 3546 3546 3546 3546 3546 3546 3546	93402 93402 93402 Prep Batc Prep Batc 93437
Spike Spike Duplicate Sample ID 3-C_20230922 d Blank ontrol Sample Dup Sample ID 3-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	8082A 8082A Method 3546 3546 3546 3546 3546 3546 3546 3546 3546	93402 93402 Prep Batc Prep Batc 93437
Spike Duplicate Sample ID G-C_20230922 d Blank ontrol Sample Dup Sample ID G-C_20230922 d Blank ontrol Sample	Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Matrix Solid	8082A Method 3546 3546 3546 3546 3546 3546 3546 3546	93402 Prep Batc Prep Batc 93437
Sample ID 3-C_20230922 d Blank pontrol Sample pontrol Sample Dup Sample ID 3-C_20230922 d Blank pontrol Sample	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Drotal/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Matrix Solid Solid	Method 3546 3546 3546 3546 3546 3546 3545	Prep Batc
B-C_20230922 d Blank ontrol Sample ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Solid Solid Matrix Solid Solid	3546 3546 3546 3546 Method 8015D	Prep Batc 93437
B-C_20230922 d Blank ontrol Sample ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Solid Solid Matrix Solid Solid	3546 3546 3546 3546 Method 8015D	Prep Batc 93437
d Blank ontrol Sample Dup Sample ID B-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Solid Matrix Solid Solid	3546 3546 3546 <u>Method</u> 8015D	93437
ontrol Sample Dontrol Sample Dup Sample ID 3-C_20230922 d Blank Dontrol Sample	Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Solid Matrix Solid Solid	3546 3546 <u>Method</u> 8015D	93437
ontrol Sample Dup Sample ID 3-C_20230922 d Blank ontrol Sample	Total/NA Prep Type Total/NA Total/NA Total/NA	Solid <u>Matrix</u> Solid Solid	3546 <u>Method</u> 8015D	93437
Sample ID B-C_20230922 d Blank ontrol Sample	Prep Type Total/NA Total/NA Total/NA	Matrix Solid Solid	Method 8015D	93437
3-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA	Solid Solid	8015D	93437
3-C_20230922 d Blank ontrol Sample	Total/NA Total/NA Total/NA	Solid Solid	8015D	93437
d Blank ontrol Sample	Total/NA Total/NA	Solid		
ontrol Sample	Total/NA		8015D	9343
		Colid		
ontrol Sample Dup			8015D	9343
	Total/NA	Solid	8015D	93437
Sample ID	Ргер Туре	Matrix	Method	Prep Bato
B-C_20230922	Total/NA	Solid	3050B	
d Blank	Total/NA	Solid	3050B	
ontrol Sample	Total/NA	Solid	3050B	
Spike	Total/NA	Solid	3050B	
ate	Total/NA	Solid	3050B	
	Prep Type	Matrix	Method	Prep Bate
3-C_20230922	Total/NA	Solid	6020B	93414
	Total/NA	Solid	6020B	93414
			6020B	93414
Spike	Total/NA	Solid	6020B	93414
ate	Total/NA	Solid	6020B	93414
•	Prep Type	Matrix	Method	Prep Bate
	TCLP	Solid	1311	
	TCLP	Solid	1311	
Spike	TCLP	Solid	1311	
	Sample ID B-C_20230922 d Blank ontrol Sample Spike ate Sample ID B-C_20230922 d Blank d Blank Spike	B-C_20230922 Total/NA d Blank Total/NA ontrol Sample Total/NA Spike Total/NA ate Total/NA Sample ID Prep Type B-C_20230922 TCLP d Blank TCLP d Blank TCLP	B-C_20230922 Total/NA Solid d Blank Total/NA Solid ontrol Sample Total/NA Solid Spike Total/NA Solid ate Total/NA Solid Sample ID Prep Type Matrix B-C_20230922 TCLP Solid d Blank TCLP Solid g Blank TCLP Solid G Blank TCLP Solid Spike TCLP Solid	B-C_20230922 Total/NA Solid 6020B d Blank Total/NA Solid 6020B ontrol Sample Total/NA Solid 6020B Spike Total/NA Solid 6020B ate Total/NA Solid 6020B Sample ID Prep Type Matrix Method B-C_20230922 TCLP Solid 1311 d Blank TCLP Solid 1311 d Blank TCLP Solid 1311 g Blank TCLP Solid 1311 g Blank TCLP Solid 1311 g Blank TCLP Solid 1311

Prep Type

TCLP

TCLP

TCLP

Matrix

Solid

Solid

Solid

Matrix

Solid Solid

Solid

Solid

Solid

Matrix Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid Solid

Metals

Leach Batch: 934520

460-288839-D-31-H MS ^2

460-288839-D-31-G DU

Lab Sample ID

LB 460-934520/1-C

Job ID: 460-288831-1

Prep Batch

Prep Batch

Method

1311

1311

1311

Method

7471B

7471B

7471B

7471B

7471B

Method

7471B

7471B

7471B

7471B

7471B

Method

3010A

3010A

3010A

3010A 3010A

3010A

934517

934517

	9
Prep Batch 934617	
934617 934617	12
934617 934617	13
Prep Batch 934517 934517	

Lab Sample ID	Client Sample ID	Prep Type
460-288831-2	WC-CB-C_20230922	Total/NA
MB 460-934617/1-A	Method Blank	Total/NA
LCSSRM 460-934617/2-A ^4	Lab Control Sample	Total/NA
460-288827-E-1-G MS	Matrix Spike	Total/NA
460-288827-E-1-F DU	Duplicate	Total/NA
nalysis Batch: 934669)	
Lab Sample ID	Client Sample ID	Ргер Туре
460-288831-2	WC-CB-C_20230922	Total/NA
MB 460-934617/1-A	Method Blank	Total/NA
LCSSRM 460-934617/2-A ^4	Lab Control Sample	Total/NA
460-288827-E-1-G MS	Matrix Spike	Total/NA
460-288827-E-1-F DU	Duplicate	Total/NA
rep Batch: 934725		
Lab Sample ID	Client Sample ID	Ргер Туре
460-288831-2	WC-CB-C_20230922	TCLP
LB 460-934517/1-B ^10	Method Blank	TCLP
MB 460-934725/1-A	Method Blank	Total/NA
LCS 460-934725/2-A ^10	Lab Control Sample	Total/NA
460-288839-A-1-G MS ^10	Matrix Spike	TCLP
	Duplicate	TCLP

Client Sample ID

Method Blank

Matrix Spike

Duplicate

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	TCLP	Solid	7470A	934517
LB 460-934517/1-C	Method Blank	TCLP	Solid	7470A	934517
LB 460-934520/1-C	Method Blank	TCLP	Solid	7470A	934520
MB 460-934749/1-A	Method Blank	Total/NA	Solid	7470A	
LCS 460-934749/2-A	Lab Control Sample	Total/NA	Solid	7470A	
460-288839-D-31-H MS ^2	Matrix Spike	TCLP	Solid	7470A	934520
460-288839-D-31-G DU	Duplicate	TCLP	Solid	7470A	934520

Analysis Batch: 934777

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	TCLP	Solid	6020B	934725
LB 460-934517/1-B ^10	Method Blank	TCLP	Solid	6020B	934725
MB 460-934725/1-A	Method Blank	Total/NA	Solid	6020B	934725
LCS 460-934725/2-A ^10	Lab Control Sample	Total/NA	Solid	6020B	934725
460-288839-A-1-G MS ^10	Matrix Spike	TCLP	Solid	6020B	934725
460-288839-A-1-F DU ^10	Duplicate	TCLP	Solid	6020B	934725
Analysis Batch: 93480	E				
Analysis Balch. 55400	5				

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	TCLP	Solid	7470A	934749

Metals (Continued) Analysis Batch: 934805 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 460-934517/1-C	Method Blank	TCLP	Solid	7470A	934749
LB 460-934520/1-C	Method Blank	TCLP	Solid	7470A	934749
MB 460-934749/1-A	Method Blank	Total/NA	Solid	7470A	934749
LCS 460-934749/2-A	Lab Control Sample	Total/NA	Solid	7470A	934749
460-288839-D-31-H MS ^2	Matrix Spike	TCLP	Solid	7470A	934749
460-288839-D-31-G DU	Duplicate	TCLP	Solid	7470A	934749

General Chemistry

Analysis Batch: 934236

Lab Sample ID 460-288831-1	Client Sample ID WC-CB-G_20230922	Prep Type Total/NA	Matrix Solid	Method Moisture	Prep Batch
460-288759-A-3 MS	Matrix Spike	Total/NA	Solid	Moisture	
460-288759-A-3 MSD	Matrix Spike Duplicate	Total/NA	Solid	Moisture	
460-288815-D-1 DU	Duplicate	Total/NA	Solid	Moisture	

Analysis Batch: 934353

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	Moisture	(
460-288821-D-7 DU	J Duplicate	Total/NA	Solid	Moisture	

Analysis Batch: 934766

Lab Sample ID 460-288831-2	Client Sample ID WC-CB-C_20230922	Prep Type Total/NA	Matrix Solid	Method 1030	Prep Batch
460-288749-B-1 DU	Duplicate	Total/NA	Solid	1030	

Prep Batch: 934919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	9012B	
MB 460-934919/2-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 460-934919/3-A ^2	Lab Control Sample	Total/NA	Solid	9012B	
MRL 460-934919/1-A	Lab Control Sample	Total/NA	Solid	9012B	
460-288827-F-1-B MS	Matrix Spike	Total/NA	Solid	9012B	
460-288827-F-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	9012B	

Analysis Batch: 934958

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	9045D	
LCSSRM 460-934958/2	Lab Control Sample	Total/NA	Solid	9045D	
460-288831-2 DU	WC-CB-C_20230922	Total/NA	Solid	9045D	

Prep Batch: 935023

Lab Sample ID 460-288831-2	Client Sample ID WC-CB-C_20230922	Prep Type Total/NA	Matrix Solid	Method 7.3.4	Prep Batch
MB 460-935023/1-A	Method Blank	Total/NA	Solid	7.3.4	
LCSSRM 460-935023/3-A	Lab Control Sample	Total/NA	Solid	7.3.4	
460-288808-B-1-J MS	Matrix Spike	Total/NA	Solid	7.3.4	
460-288808-B-1-K MSD	Matrix Spike Duplicate	Total/NA	Solid	7.3.4	

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

LCSSRM 460-934919/3-A ^2 Lab Control Sample

Client Sample ID

Method Blank

Duplicate

WC-CB-C_20230922

Lab Control Sample

Client Sample ID

Method Blank

Matrix Spike

WC-CB-C_20230922

Lab Control Sample

Matrix Spike Duplicate

Lab Control Sample

Duplicate

Prep Batch

Prep Batch

934919

934919

934919

934919

934919

934919

935024

935024

Method

7.3.3

7.3.3

7.3.3

7.3.3

Method

9012B

9012B

9012B

9012B

9012B

9012B

9014

9014

9

13

Analysis Batch: 93506	3				
Lab Sample ID 460-288831-2	Client Sample ID WC-CB-C_20230922	Prep Type Total/NA	Matrix Solid	Method 9034	Prep Batch 935023
MB 460-935023/1-A	Method Blank	Total/NA	Solid	9034	935023
LCSSRM 460-935023/3-A	Lab Control Sample	Total/NA	Solid	9034	935023
460-288808-B-1-J MS	Matrix Spike	Total/NA	Solid	9034	935023
460-288808-B-1-K MSD	Matrix Spike Duplicate	Total/NA	Solid	9034	935023
Analysis Batch: 93506	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-288831-2	WC-CB-C_20230922	Total/NA	Solid	9014	935024
MB 460-935024/1-A	Method Blank	Total/NA	Solid	9014	935024

Total/NA

Total/NA

General Chemistry

Prep Batch: 935024

Lab Sample ID

Lab Sample ID

MB 460-934919/2-A

MRL 460-934919/1-A

460-288827-F-1-B MS

460-288827-F-1-C MSD

460-288831-2

LCS 460-935024/2-A

460-288808-B-1-M DU

MB 460-935024/1-A

LCS 460-935024/2-A

460-288808-B-1-M DU

Analysis Batch: 935027

460-288831-2

Job ID: 460-288831-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 68.5

Lab Sample ID: 460-288831-1

Lab Sample ID: 460-288831-1

Lab Sample ID: 460-288831-2

Client Sample ID: WC-CB-G_20230922 Date Collected: 09/22/23 10:30 Date Received: 09/22/23 19:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor			Lab	or Analyzed
Total/NA	Analysis	Moisture		1	934236	MVA	EET EDI	09/25/23 09:11

Client Sample ID: WC-CB-G_20230922 Date Collected: 09/22/23 10:30 Date Received: 09/22/23 19:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			933977	MXW	EET EDI	09/23/23 13:09
Total/NA	Analysis	8260D		1	934427	EMM	EET EDI	09/26/23 10:58
Total/NA	Prep	5035			933978	MXW	EET EDI	09/23/23 13:15
Total/NA	Analysis	8015D		50	934221	EMM	EET EDI	09/25/23 14:00

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
TCLP	Leach	1311			934517	DAN	EET EDI	09/26/23 13:20 - 09/27/23 13:36 ¹
TCLP	Prep	3010A			934725	JKF	EET EDI	09/27/23 11:17
TCLP	Analysis	6020B		10	934777	LBD	EET EDI	09/27/23 20:23
TCLP	Leach	1311			934517	DAN	EET EDI	09/26/23 13:20 - 09/27/23 13:36 ¹
TCLP	Prep	7470A			934749	RBS	EET EDI	09/27/23 12:45
TCLP	Analysis	7470A		1	934805	RBS	EET EDI	09/27/23 16:43
Total/NA	Analysis	1030		1	934766	YAH	EET EDI	09/27/23 15:04
Total/NA	Prep	7.3.3			935024	YAH	EET EDI	09/28/23 15:37
Total/NA	Analysis	9014		1	935065	YAH	EET EDI	09/28/23 17:47
Total/NA	Prep	7.3.4			935023	YAH	EET EDI	09/28/23 15:34
Total/NA	Analysis	9034		1	935063	YAH	EET EDI	09/28/23 17:45
Total/NA	Analysis	9045D		1	934958	GSM	EET EDI	09/28/23 09:28
Total/NA	Analysis	Moisture		1	934353	CJC	EET EDI	09/25/23 19:14

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

Lab Sample ID: 460-288831-2 Matrix: Solid Percent Solids: 71.7

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3546			934056	AXB	EET EDI	09/24/23 07:14
Total/NA	Analysis	8270E		1	934123	YAH	EET EDI	09/25/23 01:13
Total/NA	Prep	3546			934371	GXY	EET EDI	09/25/23 21:12
Total/NA	Analysis	8015D		50	934918	AAA	EET EDI	09/28/23 12:42
Total/NA	Prep	3546			934020	ZXB	EET EDI	09/23/23 23:08
Total/NA	Analysis	8082A		1	934213	JHP	EET EDI	09/25/23 16:04
Total/NA	Prep	3050B			934149	GAE	EET EDI	09/24/23 19:30
Total/NA	Analysis	6020B		2	934300	YZH	EET EDI	09/25/23 16:07

Prep

Client Sample ID: WC-CB-C_20230922 Date Collected: 09/22/23 10:35 Date Received: 09/22/23 19:00

9:00						Perce	ent
Batch		Dilution	Batch			Prepared	
Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
7471B			934617	TJS	EET EDI	09/27/23 00:49	
7471B		1	934669	TJS	EET EDI	09/27/23 06:06	
	Batch Method 7471B	Batch Method Run 7471B	BatchDilutionMethodRunFactor7471B-	BatchDilutionBatchMethodRunFactorNumber7471B934617	BatchDilutionBatchMethodRunFactorNumberAnalyst7471B934617TJS	BatchDilutionBatchMethodRunFactorNumberAnalystLab7471B934617TJSEET EDI	BatchDilutionBatchPreparedMethodRunFactorNumberAnalystLabor Analyzed7471B934617TJSEET EDI09/27/23 00:49

934919 IAA

EET EDI

Total/NA 935027 AXP EET EDI Analysis 1 This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

Prep Type

Total/NA

Total/NA

Total/NA

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

9012B

9012B

Lab Sample ID: 460-288831-2 Matrix: Solid nt Solids: 71.7

09/28/23 08:19

09/28/23 14:23

Accreditation/Certification Summary

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Laboratory: Eurofins Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New York		NELAP	11452	04-01-24
The following analytes the agency does not o		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7470A	7470A	Solid	Mercury	
9014	7.3.3	Solid	Cyanide, Reactive	
9034	7.3.4	Solid	Sulfide, Reactive	
9045D		Solid	Temperature	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Method	Method Description	Protocol	Laboratory
3260D	Volatile Organic Compounds by GC/MS	SW846	EET EDI
3270E	Semivolatile Organic Compounds (GC/MS)	SW846	EET EDI
3015D	Gasoline Range Organics (GRO) (GC)	SW846	EET EDI
3015D	Diesel Range Organics (DRO) (GC)	SW846	EET EDI
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET EDI
6020B	Metals (ICP/MS)	SW846	EET EDI
7470A	Mercury (CVAA)	SW846	EET EDI
7471B	Mercury (CVAA)	SW846	EET EDI
1030	Ignitability, Solids	SW846	EET EDI
9012B	Cyanide, Total andor Amenable	SW846	EET EDI
9014	Cyanide, Reactive	SW846	EET EDI
9034	Sulfide, Reactive	SW846	EET EDI
9045D	рН	SW846	EET EDI
Moisture	Percent Moisture	EPA	EET EDI
1311	TCLP Extraction	SW846	EET EDI
3010A	Preparation, Total Metals	SW846	EET EDI
3050B	Preparation, Metals	SW846	EET EDI
3546	Microwave Extraction	SW846	EET EDI
5035	Closed System Purge and Trap	SW846	EET EDI
7.3.3	Cyanide, Reactive	SW846	EET EDI
7.3.4	Sulfide, Reactive	SW846	EET EDI
7470A	Preparation, Mercury	SW846	EET EDI
7471B	Preparation, Mercury	SW846	EET EDI
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	EET EDI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary

Client: AKRF Inc Project/Site: 2647 Stillwell Ave, Brooklyn

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-288831-1	WC-CB-G_20230922	Solid	09/22/23 10:30	09/22/23 19:00
460-288831-2	WC-CB-C_20230922	Solid	09/22/23 10:35	09/22/23 19:00

<u>ه</u>	0	1	<u> </u>	T	T				1	1	p	r	1	1	1	I				 1		and the second			7	1		J]	1	
S Environment Testing America	TAL-8210		of 1 COCs	lee Outre	lient:	ling	10001	280631	Sample Specific Notes:												e de la compansión de la compa	an 1 month)	Months		.07	12/23 13 44	5 1700	r 1900	2345	
🍰 eurofíns		COC No.		Sampler Earl ab floo Outs	Walk-in Client:	Lab Sampling			, ²		2	11181				1110111				 		ained longer th			Therm ID No	C Date/Time	Date/Time:	DataTime	- 6 - 7	
609496 \$		62/22									60-2	888 ³	1 Ch	ain 0	f Cus	tody						Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Archive for		Corr'd.	any: で、てく	No.	A D	8	
603		215 .	er.								<u> </u>			ļ	 							ssed if s	oy Lab			Company	Company	Compan	10	
		Date [.]	Carrier				71	1200 6		 	イ						•	ORT	Ľ	 		be asse	Disposal by Lab		obs'd.			$\left \right\rangle$	1	
Recor		Enter 4			, 77 , ₩17	ন্ত	517 17	かな よ <u>)</u> *	1.194051 104051 104051		ע ג <i>א</i>						, (SHORT	HOLD	······		A fee may			Temp. ([°] C);	K			70	
ody F	□ other	, V	M Ta a	5		hh ph	<u>/</u>		5978		× v x											sposal (/	to Client		Gooler Te	. S	L' C	Caboratory	1: 14	8 1
Chain of Custody Record	Crea	Site Contact:	Lab Contact:		571	çi, (71 +	520 A	(280) TCL/5RS	X X X												ample Di	Cient Client			Received	Received b	Received in	1	5
o		Site							Filtered Sal Perform MS				-							 					ĺ	<u>`∛</u>	5 12 12			
Chai		Besch	5	6	CATS	6	2ª	2	rix Cont	. .	د الع					<u> </u>				 	and the second secon	ample in				Date/Time d(たれりう	a/Time:	Date/Time:		
-			CAL CON		elow		JJ JJ		ple be mp, Matrix		2									 	Announce and an and a second s	tor the s	🗌 Unknown			Dati 0//	Date/	PLD :		
QN	rogram	Adria	Alm Sco Ott R		t from B	Z weeks	1 week	2 days 1 day	Sample Type (C=Comp, G=Grab)						 					 	Anna ann ann ann an Anna Anna Anna Anna	ste Codes		Ł						
>0	Regulatory Program	1 🚟 (41-1	Analysis	TAT if different from Below				Sample Time	1030	2601				 					 	6= Othei	EPA Was	n B	Nu / v. ab 13	Seal No	4	ر ح چ	-		
	Regu	Project A	Tel/Email						Sample Date	<i>ci112/b</i>	012212										Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Please List any EPA Waste Codes for the sample in the	Deison B		ð	Company.	Company	Company		
ŧ I	I			41																	t=HNO3;	e? Pleas ple.	🗌 Skin Irritant	nts. 4					i	
			717		10010		1	NH IN		.)	دہ										H2SO4; 4	ious Wast of the sam	Skin	r Comme	2				Les 1	
		ontact		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			54 11 mil	ショック	Sample Identification	5-7030402	75 PO ENO 5										HCI; 3≓	A Hazard dispose (hmable	ements {	□ Yes		1/1	12	P	
		Client Contact	1	¥				1h2022	nple Iden	2006-	-2013										= Ice, 2=	ification a listed EF e lab is to	🔲 Flammable	tC Requir			. Und		111	
			Ч.	07	2 2 4			21	Sar	B-G.	ゆくし、										Used: 1	Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Comments Section if the lab is to dispose of the sample.	-	Special Instructions/QC Requirements & Comments \mathcal{L}_{A} +	Custody Seals Intact:	ed by	PA.	er L	1	
Address	1		۲Į	Address. C	Phone:		Project Name:	#		WC-CE	5										ervation	sible Haz any samp ments Se	Non-Hazard	cial Instr	ustody Se	Reinquished by	nquished	Relinquished by.		
урү			5 O		Phone:	Fax	Proj	РО# РО#		Š	ž		Р	ge	52 ()f 54	ļ			 	Pres	Are Com		Spe	ľ	Rei	æ9/2	2 02	3	

1			ſ	-			-			[
		Other																
		Other																
		Total Phos	(pH<2)														aajusteu. sis.	
		Total Cyanide	(pH>12)														r to analy:	
		100	(pH<2)														hours prio.	
	Cooler #1: Cooler #6: Cooler #8:	TKN	(pH<2)														t the samp t least 24 I	202
Ð		Sulfide	(pH>9)			:									sed (ml)	Expiration Date.	mea apou acidified al	9 La
Receipt Temperature and pH Log		Phenols	(pH<2)												Volume of Preservative used (ml)	Expirat	propriate Project Manager and Department Manager should be nomied about the samples which were pri adjusted. Samples for Metaj analysis which are out of compliance must be acidified at least 24 hours prior to analysis.	Date ⁻
ature al	Cooler Temperatures	8	(pH<2)		 								-Mo		ne of Pres		inager sın. ompliance	
Temper		Pest	(pH 5-9)										nation be		Volun		rtment ivia re out of c	
Receipt Tem	Cooler #1	Hardness	(pH<2)		 								the infor				and vepa is which a	e a
1 1	* 088		(pH<2)										required record the information below				Manager taj analysi	ler.
k		trate itrite	(pH<2)	_	 												ite <i>F</i> rojeci les for Me	X
R		COD	(pH<2)										stments a				i ne approprate Samples	Initials:
Leves		Ammonia	(pH<2)										If pH adjustments are	Sample No(s). adjusted	Preservative Name/Conc.	Lot # of Preservative(s) [.]	921	
	ficoolers: Cooler#1:	SS			 	[L		I]=]	lo(s). ac	e Name	reserva		
umber	Coolers- Coolers- Cooler#1.		le Numi											mple N	ervativ	t#ofF		÷.
Job Number	2		TALS Sample Number											Sal	Pres	Ľ		8, Rev 4.
Job N	North		TAL		<u> </u>]					EDS-WI-038, Rev 4.1

9/29/2023

Page____of___

1

Eurofins TestAmerica Edison

Login Sample Receipt Checklist

Client: AKRF Inc

Login Number: 288831 List Number: 1 Creator: Rivera, Kenneth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-288831-1

List Source: Eurofins Edison

APPENDIX E DISPOSAL FACILITY APPROVAL AND PERMITS

Application Item 1 - Generator/Project Information

2647 Stillwell Avenue Property, LLC – 2647 Stillwell 2647 Stillwell Avenue, Brooklyn, New York, 11223 NYSDEC Brownfield Cleanup Program Site No. C224362

Application Item 3 - Client Information/Import Volume Approval for:

Eastern Environmental 258 Line Road, Manorville, New York, 11949

Application Item 5 - Material Information

- Estimated Quantity: 10 cubic yards
- Material Composition: Water Systems Catch Basin Materials
- Laboratory Results: York Analytical Laboratories Inc, Technical Reports 23G0850

Import Decision:

Posillico Materials has reviewed the submitted data and information listed above and has approved the **10 cubic yards or 15 tons** of water system catch basin materials as contaminated soils for the Contaminated Soil Bin via the Hydro-Tip at the Wash Plant Facility in Farmingdale. The Site is currently registered with the New York State Department of Environmental Conservation Brownfield Cleanup Program under Site No. C224362.

The analytical results indicated the proposed water system catch basin materials from the Site to be contaminated and non-hazardous. Waste characterization samples did not meet Part 360.13(f) General Fill Requirements for exceedances in Metals and Diesel Range Organics (DRO). Additionally, the generator has certified that the materials are not connected to sanitary systems.

The applicant warrants that the material proposed for shipment is in fact, the same material which was tested and is represented by the sample results provided with this application. All deliveries **must** be scheduled in advance all material will be weighed on scales.

Additional Requirements:

- Posillico Materials reserves the right to perform QA/QC sampling during the import of this material.
- All Contaminated Soil must use the NYSDEC Part 360 tracking form and must also be shipped in a truck with a valid Part 364 Permit registered with the NYSDEC.
- If any deleterious material (asbestos, wood, plastic, organics and general garbage) is encountered or identified, the load will be rejected at the gate or a surcharge will be applied.
- If the material is from a USEPA and/or NYSDEC Regulated Program Site, as per Part 361-5.4 (d), an approval letter must be included with the application indicating the material is acceptable for the facility.
- All material associated with sanitary systems is prohibited for processing at the facility.

Please contact me if you have any questions.

ustin Livore

Justin Livore Environmental Engineer

Date: 10/11/2023

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Permits, Region 1 SUNY @ Stony Brook, 50 Circle Road, Stony Brook, NY 11790 P: (631) 444-0365 I F: (631) 444-0360 www.dec.ny.gov

May 4, 2023

Posillico Materials, LLC 1750 New Highway Farmingdale, NY 11735

Re: Application #1-4720-00695/00009 Posillico Soil Wash Facility Permit Renewal

Dear Permittee:

In conformance with the requirements of the State Uniform Procedures Act (Article 70, ECL) and its implementing regulations (6NYCRR, Part 621) we are enclosing your renewed permit identified above. Please carefully read all permit conditions and the schedule contained in the permit carefully to ensure compliance during the term of the permit. If you are unable to comply with any conditions, please contact us at the above address.

This permit must always be kept available on the premises of the facility.

Sincerely,

Élyssa Scott Environmental Analyst

cc: R. Keane DEC Division of Materials Management File

Department of Environmental Conservation NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-00695

PERMIT Under the Environmental Conservation Law (ECL)

Permittee and Facility Information

Permit Issued To: POSILLICO MATERIALS, LLC 1750 NEW HWY FARMINGDALE, NY 11735-1510 (631) 249-1872 **Facility:** POSILLICO MATERIALS LLC 1610 NEW HWY FARMINGDALE, NY 11735

Facility Application Contact:

THOMAS J POSILLICO Posillico Materials East LLC 1750 New Hwy Farmingdale, NY 11735-1562 (631) 390-5762

Facility Location: in BABYLON in SUFFOLK COUNTYFacility Principal Reference Point: NYTM-E: 633.8NYTM-N: 4511.5Latitude: 40°44'36.9"Longitude: 73°24'54.8"

Authorized Activity: The permittee is authorized to operate a solid waste management facility receiving and processing the following:

- a. 500 cubic yards per day based on a two week average, with a maximum of 850 cubic yards in any day, of recognizable uncontaminated concrete, asphalt, rock, brick, and soil (RUCARBS). An additional 2,000 cubic yards per day based on a two week average, with a maximum of 4,000 cubic yards in any day, of asphalt or recycled asphalt pavement (RAP) may also be received.
- b. 2,000 cubic yards per day based on a two week average, with a maximum of 3,000 cubic yards on any day, of fill material destined to the soil wash plant. The fill material includes petroleum contaminated soil (PCS), contaminated fill material or soil, navigational dredged material, vacuum truck slurry material, general fill, and uncontaminated fill material or soil.

Solid Waste Management Activity No(s).:

Construction and Demolition Debris Handling and Recovery - 52CP0259

Facility Owner/Operator: Posillico Materials LLC is the facility owner and operator for the contaminated soil area, soil wash plant, RUCARBS Areas #1 and #2, and asphalt plant areas. Con-Strux, LLC is limited to being the operator of RUCARBS Area #3. These areas are described in the approved Engineering Report, Site Plans, and related documents.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-00695

Permit Authorizations

Solid Waste Management - Under Article 27, Title 7 Permit ID 1-4720-00695/00009 Renewal

Effective Date: 5/4/2023

Expiration Date: 5/3/2028

NYSDEC Approval

By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, and all conditions included as part of this permit.

Permit Administrator: KEVIN A KISPERT, Deputy Regional Permit Administrator NYSDEC Region 1 Headquarters Address: SUNY @ Stony Brook 50 Circle Rd Stony Brook, NY 11790 -3409

Authorized Signature:

Date 51412023

Distribution List

THOMAS J POSILLICO Materials Management Elyssa E Scott

Permit Components

SOLID WASTE MANAGEMENT PERMIT CONDITIONS

GENERAL CONDITIONS, APPLY TO ALL AUTHORIZED PERMITS

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

SOLID WASTE MANAGEMENT PERMIT CONDITIONS

1. Conformance With Plans All activities authorized by this permit must be in strict conformance with the permit application, plans and materials prepared by permittee or permittee's consultant on the date(s) specified in Permit Condition No. 2.

2. Terms of Operation, Approval for Changes The facility shall be operated in conformance with:

- a. Terms and conditions of this permit;
- b. 6NYCRR Part 360 Solid Waste Management Facilities regulations;
- c. The approved Engineering Report, revised October 2022, prepared by Robert S. Keane, P.E.

Any revision to the above approved documents identified in item (c) of this condition or to the operations at this site requires prior written approval from the Department. If these documents conflict with any condition of this permit, the permit condition shall prevail. Furthermore, the permittee must comply with a permit condition that is more stringent than a regulatory requirement.

The permittee shall not add a facility component that would otherwise qualify as an exempt or registered facility, unless the permittee first receives a modified permit to incorporate the additional component of the operation.

3. Authorized Activity The permittee is authorized to operate a solid waste management facility receiving and processing the following:

- a. 500 cubic yards per day based on a two week average, with a maximum of 850 cubic yards in any day, of recognizable uncontaminated concrete, asphalt, rock, brick, and soil (RUCARBS). An additional 2,000 cubic yards per day based on a two week average, with a maximum of 4,000 cubic yards in any day, of asphalt or recycled asphalt pavement (RAP) may also be received.
- b. 2,000 cubic yards per day based on a two week average, with a maximum of 3,000 cubic yards on any day, of fill material destined to the soil wash plant. The fill material includes petroleum contaminated soil (PCS), contaminated fill material or soil, navigational dredged material, vacuum truck slurry material, general fill, and uncontaminated fill material or soil.

4. Other Activities The permittee also conducts non-solid waste management facility operations at the site. These activities include receiving and processing of natural stone and sand from mining activities, and operation of an asphalt plant.

5. Unacceptable Wastes The permittee is prohibited from accepting friable asbestos-containing waste, ash residue, radioactive waste, hazardous waste, industrial waste, regulated medical waste, liquid waste, septage, sewage sludge, yard trimmings, tree debris, municipal solid waste (MSW), construction and demolition debris other than RUCARBS and fill material, and any other waste not specifically authorized for receipt.

6. Soil Wash Plant Operations All activities related to the soil wash plant must comply with the following requirements:

- a. Waste Handling Requirements
 - i. All contaminated fill material and filter cake must be stored inside the contaminated soil storage building. Uncontaminated fill material may be stored outside of the building in RUCARBS Area #2.
 - All activities with respect to contaminated fill material must take place on an concrete pad. All containment pads, liners, and enclosures must be constructed and maintained in accordance with the most current Suffolk County Department of Health Article 12 Permit.
 - iii. Vacuum truck slurry may only be tipped at the HydroTip pad area used for dewatering prior to storage inside the contaminated storage building.
 - iv. At the end of each day, and as needed throughout the workday, the site shall be swept clean.
 - v. The permittee shall ensure that the all storage areas which contain contaminated material is labeled on all sides with "Contaminated Soil Storage" and must be easily readable from a distance of 25 feet.

b. Analytical Sampling Requirements

- i. Prior to receiving contaminated fill material, it must be sampled and analyzed at the generating site and shown to be non-hazardous. All sampling procedures, methods, and analysis must be acceptable to the Department, and must demonstrate the material qualifies for acceptance by the permittee under this permit.
- ii. Fill material or soil contaminated with No. 2 fuel oil from residential properties, and fill material or soil generated from roadside spills contaminated with diesel fuel may be received without chemical analysis, provided a Department Spill Number is generated from the spill location. This provision does not apply to spills generated on industrial properties.
- iii. Vacuum truck slurry waste generated from locations with minimal potential for contamination, and which does not exhibit visual or other indication of contamination, does not require chemical sampling prior to receiving.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-00695

- iv. Navigational dredged material requires sampling prior to receipt. If the material meets the requirement of containing greater than 90% sand and gravel, as determined by grain size analysis, and contains less than 0.5% total organic carbon, it may be received without further sampling. Material exceeding these parameters must be sampled consistent with paragraph (b)(i) of this condition.
- v. Inbound General Fill to RUCARBS Area #2 is subject to the RUCARBS Waste Handling and Quality Assurance Requirements for RUCARBS as outlined in this permit.

7. Operations Related to Recongizable Uncontaminatd Concrete, Asphalt Pavement, Rock, Brick, and Soil (RUCARBS) Operations related to RUCARBS, which includes asphalt or RAP, and general fill, must comply with the following:

a. Waste Handling Requirements

i. All activities related to RUCARBS may be conducted outdoors.

ii. At the end of each workday the facility and tipping areas shall be cleaned of any solid waste. All overnight storage of solid waste shall be in its respective storage area.

b. Quality Assurance of Incoming RUCARBS

The permittee shall ensure that waste control procedures acceptable to the Department are implemented to ensure that all incoming RUCARBS is acceptable pursuant to this permit. The Department may require the permittee to comply with paragraphs (i) and (ii) below for the receipt of solid waste from any source of solid waste to ensure conformance with this permit, and disapprove the permittee's acceptance of the solid waste or require removal of non- conforming solid waste, if already accepted at the facility.

i. Analytical sampling may be required for solid waste received from certain sources to ensure it is suitable for the facility to accept. All sampling must be done in accordance with Department approved methods. Unless otherwise approved by the Department on a case specific basis, such sampling shall be done at a minimum rate of one sample per 1,000 cubic yards. The Department reserves the right to reject any sampling results, when the sampling is not coordinated with the Department.

ii. Documentation regarding the generators of incoming solid waste, which may include, but not be limited to:

- Name of the generator of the material and contact information.
- The exact location of the generating site. Type of generating site such as excavation, building demolition/deconstruction site, solid waste management facility, road work, etc. If the site is a solid waste management facility, provide the facility's permit number or registration number.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-00695

- Description of the site history such as industrial, commercial, residential, road construction, solid waste management facility, etc.
- Any analytical results performed at the generating site accompanied by any other reports prepared by the generating site engineer or qualified environmental professional, if done at the generating site.
- Amount and type of the material that the site will generate.
- 8. Requirements for All Facility Operations The permittee shall comply with the following:
 - a. Contaminated soil and contaminated fill material must be kept separate from RUCARBS and other uncontaminated material at all times. In the event contaminated soil or contaminated fill material becomes commingled with uncontaminated material, the whole pile must be considered contaminated, and managed as such.
 - b. The permittee must ensure that trucks entering the facility do not queue on offsite roadways.
 - c. The permittee must ensure that trucks do not track dirt and mud out of the facility onto offsite roadways.
 - d. Unprocessed RUCARBS materials must be processed within 365 days of receipt. Processed materials shall not remain onsite for more than 365 days, unless otherwise approved by the Department.

9. Use of Tracking Documents The Department reserves the right to require the permittee to have incoming or outgoing loads accompanied with complete tracking documents. However, contaminated soil or contaminated fill material must have complete tracking documents for both incoming and outgoing loads, and all non-contaminated loads coming from or going to other solid waste management facilities must also be accompanied with a complete tracking document. All tracking documents must be acceptable to the Department. The names of all individuals required to sign the tracking document (generator, hauler, and receiving facility representatives) must be neatly printed, in addition to their signatures.

10. Outgoing Fill Material Analysis Requirements The permittee must analyze all outbound fill material, soil and/or wash plant sand in accordance with the following:

- a. Material destined for use as fill material, including wash plant sand destined for use in or as fill material, or soil to be amended with yard waste or compost, must be sampled at a rate of no less than one analysis per 1,000 cubic yards.
- b. Material including wash plant sand destined for use as commercial aggregate in concrete or asphalt manufacturing must be sampled at a rate of no less than one analysis per 5,000 cubic yards.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-00695

c. All sampling must be done in accordance with provisions of applicable regulations and procedures acceptable to the Department. The permittee must ensure unanalyzed fill material is stored separately and distinctly from other waste onsite. After receipt of results demonstrating qualification for the intended use, the permittee may consolidate the fill material, or amend with yard waste or compost, accordingly. If unanalyzed fill material is commingled with material already analyzed, then the entire pile must be reanalyzed.

11. Maximum Quantity Onsite The permittee shall not exceed the following quantities onsite:

a. Soil Wash Plant; Contaminated Storage Building:

i. 3,940 cubic yards of PCS.
ii. 4,640 cubic yards of contaminated soil or fill material.
iii. 2,520 cubic yards of soil wash filter cake.
iv. 6,340 cubic yards of stone and 5,730 cubic yards of sand in the Wash Plant outbound areas.

b. RUCARBS Area #1: 8,400 cubic yards of RUCARBS, no more than 4,950 unprocessed.

c. RUCARBS Area #2: 19,150 cubic yards of uncontaminated soil or general fill

d. RUCARBS Area #3: 12,670 cubic yards of RUCARBS with no more than 10,100 unprocessed.

e. 42,420 cubic yards of RAP, asphalt, and millings that is separate from other RUCARBS, with no more than 34,000 cubic yards unprocessed.

12. Hours of Operation Hours of operation shall not conflict with any local laws or ordinances. The permittee's hours and days of operation are as follows:

- a. The receipt of fill material at the soil wash plant may be received from 6:00 AM to 4:00 PM, Monday through Friday, and 6:00 AM to 3:00 PM on Saturday. If fill material is received outside of these hours of operation, other than New York State Department of Transportation or Metropolitan Transportation Authority projects, a minimum of 48 hours notice shall be provided to the Department, and such notice shall include the anticipated date(s) and time(s) of receipt.
- b. RUCARBS may be received and processed 24 hours per day, 7 days per week.

13. Signs The permittee must post clearly legible signs indicating hours of operation, the types of waste accepted, and the types of waste not accepted. The signs shall be located so that they are visible to any vehicles and/or persons approaching the facility.

14. Waste Control An attendant shall be on duty during all hours of operation. The attendant shall inspect all vehicles entering the facility, rejecting any loads containing unauthorized material.

15. Control of Nuisance Conditions Odors, dust, insects, vectors, noise, blowing litter and other potential nuisances shall be adequately controlled at all times. The permittee shall immediately implement any controls required by the Department including cessation of facility operations.

16. Fire Protection and Detection The permittee shall maintain fire protection and detection equipment in accordance with local laws and ordinances.

17. Cessation of Operations The permittee must notify the Department immediately of any event which causes an unscheduled facility shutdown that exceeds 24 hours, as well as indicate the proposed waste management activities. A written report must be submitted to the Department within 7 days of the event.

18. Ultimate Disposal of Waste All solid waste passing through the facility that does not qualify for a beneficial use must be ultimately disposed of at a facility authorized by the Department if located in New York State, or by the appropriate governmental agency or agencies if in other states, territories, or nations. All waste destined for beneficial use must meet the requirements of a predetermined or case-specific beneficial use determination.

19. Unauthorized Waste In the event that any hazardous waste, medical waste, or other regulated waste not allowed under this permit is accepted at the facility, the unauthorized waste shall be contained and properly secured immediately. The permittee shall notify the Department and the Suffolk County Department of Health Services within 24 hours of the event. The waste material shall be removed by a waste transporter authorized under 6 NYCRR Part 364 to transport such waste. A written report shall be submitted to the Department within 7 days of the event.

20. Small Spill Containment The facility shall keep available at the site equipment and materials necessary to contain small quantities of chemicals or spills. These materials shall be stored in well identified accessible storage areas. As a minimum, the following must be available at all times:

4 - 55 gallon drums with covers and securing rings400 lbs. absorbent material (e.g. Speedi-Dri)

50 lbs. Boric Acid

50 lbs. Sodium Bicarbonate

Assorted brooms, shovels, gloves, masks, and other protective gear

21. Maintenance and Repair of Facility The permittee shall adequately maintain and make repairs to the facility as necessary. This includes any part of the facility, such as doors to buildings; odor and dust controls and equipment; punctures, holes, or other damage to buildings; minimizing the ponding of stormwater; and concrete and/ or asphalt pavement that becomes damaged or worn.

The permittee shall undertake all repairs immediately and have all work completed within one week. Repairs related to dust or odor controls must be completed within 24 hours. If the permittee is unable to complete repairs within the specified time outlined by this condition, the permittee shall provide an acceptable schedule to the Department which shall include a description of the work to be completed and any controls that will be implemented to ensure the facility remains in compliance with this permit, including the cessation of all or part of the facility operations.

22. Recordkeeping Requirements The permittee shall maintain the following records at the facility for a minimum of 7 years from the date of creation and be available immediately to the Department upon request:

- a. Daily log of solid waste received and transported from the facility which includes:
 - i. Type, quantity, planning unit, and origin of the solid waste received.
 - ii. Destination of all solid waste and recovered materials transported from the facility.
 - iii. The following additional information for incoming PCS: NYSDEC Spill Number, type of fuel contamination (ie: gasoline, #2 oil), source of contamination (ie: UST, surface spill)
- b. All weight tickets, hauling receipts, disposal receipts, invoices, tracking documents, etc. to support entries made into the daily log.
- c. All analytical sampling results for incoming fill material, if required, and outgoing fill material, and Spill Response Engineer certification letters.

23. Notification and Reporting Requirements These requirements include the following:

- a. The permittee must maintain the required Suffolk County Department of Health Article 12 permit. The most recent Article 12 permit must be maintained on file with the Region 1 Office.
- b. The permittee shall notify the Department 5 days in advance of any sampling required by this permit to offer the Department the opportunity to witness sampling and, if desired, collect split samples.

- c. Upon receiving any sample results, the permittee must provide the results to the Department in a format prescribed by or acceptable to the Department.
- d. The permittee must submit the original copy of the annual report to the Region 1 Office, and a copy to the Central Office. The report must be submitted no later than March 1 following each year of operation on forms prescribed by or acceptable to the Department.
- e. All notifications and submittals to the Department shall be to the Region 1 Office located at the New York State Department of Environmental Conservation, Division of Materials Management, 50 Circle Road, SUNY @ Stony Brook, NY 11790, or electronically as directed by Department staff. The annual report may be submitted via email to SWMFAnnualReportR1@dec.ny.gov.
- f. A copy of the annual report shall be sent to SWMFannualreport@dec.ny.gov.

24. Financial Assurance The permittee shall maintain the financial assurance in the amount of at least \$2,687,440. Each year thereafter, the permittee must submit for review and approval adjusted closure costs estimates, including supporting justification to account for inflation and changes in facility conditions, and increase the amount once approved by the Department. The Department reserves the right to adjust the amount of the financial assurance in the future to account for increases in closure costs, and for non-compliance with any conditions of this permit and any requirement of 6 NYCRR Part 360.

In the event that the permittee fails to maintain financial assurance as required by this permit, the permittee must immediately cease accepting solid waste until financial assurance acceptable to the Department is in place. Within 10 days from the cessation of the required financial assurance, the permittee shall have all solid waste, including recovered recyclables, removed from the facility and the facility shall be in "broom clean" condition.

25. Environmental Monitor The environmental monitor shall be funded in accordance with the following for operations directly related to the permittee:

a. The permittee shall fund environmental monitoring services to be performed by or on behalf of the Department. These monitoring services will include, but not be limited to, the scope of work in an annual environmental monitoring work plan which is incorporated by reference and enforceable under this permit.

b. The permittee shall provide to the Department on an annual basis the funds necessary to support the activities set forth in the annual environmental monitoring work plan. The sum to be provided will be based on the annual budgeted amount and is subject to annual revision. Subsequent annual payments shall be made for the duration of this permit or until the environmental monitoring services are no longer necessary, whichever comes first.

c. The permittee shall be billed annually, prior to the start of each State Fiscal Year (SFY) (April 1). If this permit is to first become effective subsequent to April 1, the initial bill will be for an amount sufficient to meet the anticipated cost of the environmental monitoring services through the end of the current SFY.

d. The Department may revise the required annual bill on an annual basis to include all of the Department's estimated costs associated with the environmental monitoring services. The annual revision may take into account such factors as inflation, salary increases, changes in the fringe benefits rate, changes in operating hours and procedures, changes in non-personal service costs (including travel, training, sampling and analytical, and equipment costs, etc.), an increase or decrease in the level of environmental monitoring services necessary, and an increase or decrease in the number of environmental monitors. Upon written request by the permittee, the Department shall provide the permittee with a written explanation of the basis for any revisions.

e. Prior to making its annual payment, the permittee will receive, and have an opportunity to review and request adjustment to, an annual environmental monitoring work plan that the Department will undertake during the year. The Department will provide a final annual work plan that the Department will undertake during the year.

f. Payments are to be made in advance of the period in which they will be expended and shall be made in full within 30 days of receiving a bill from the Department. The bill from the Department to the permittee will provide information regarding to whom payments should be made payable and the address to which payments should be sent.

g. Failure to make the required payments shall be a violation of this permit. The Department reserves all rights to take appropriate action to enforce the above payment provisions.

h. The environmental monitor shall, when present at any of the permittee's facilities, abide by all of the permittee's health and safety and operational requirements and policies, if such requirements and policies exist and provided they are not inconsistent with Department policies and labor management contracts, and further provided, however, that this shall not be construed as limiting the environmental monitor's powers as otherwise provided for by law and shall not result in the environmental monitor being afforded less protection than otherwise provided to the environmental monitor by State and Federal health and safety requirements.

i. The environmental monitor shall receive from the permittee all general and site-specific safety training which is normally given to new facility/site employees for all areas of the facility or site. This training will be a supplement to the health and safety training that the environmental monitor routinely receives from the Department.

j. The permittee shall immediately furnish to the environmental monitor any facility/site health and safety and operational requirements and policies. Within five (5) days of any revision to the facility/site health and safety and operational requirements and policies, the permittee shall furnish to the environmental monitor the health and safety and operational requirements and policies.

k. The environmental monitor shall be permitted to use environmental monitoring and data collection devices (e.g., photo ionization detectors, cameras, video recording devices, computers, cell phones, etc.) deemed necessary by the Department to evaluate and document observed conditions. The permittee may request the data and images collected from areas where confidentiality is a concern be considered confidential information if appropriate. Copies of the data or images collected from areas where confidentiality has been determined to be a concern shall be provided to the permittee.

1. It will remain the responsibility of the permittee to contact the Spill Hotline or any Division within the Department regarding any required notification of any spill, release, exceedances etc. Notification to the environmental monitor will not be considered sufficient to replace any required notifications.

GENERAL CONDITIONS - Apply to ALL Authorized Permits:

1. Facility Inspection by The Department The permitted site or facility, including relevant records, is subject to inspection at reasonable hours and intervals by an authorized representative of the Department of Environmental Conservation (the Department) to determine whether the permittee is complying with this permit and the ECL. Such representative may order the work suspended pursuant to ECL 71-0301 and SAPA 401(3).

The permittee shall provide a person to accompany the Department's representative during an inspection to the permit area when requested by the Department.

A copy of this permit, including all referenced maps, drawings and special conditions, must be available for inspection by the Department at all times at the project site or facility. Failure to produce a copy of the permit upon request by a Department representative is a violation of this permit.

2. Relationship of this Permit to Other Department Orders and Determinations Unless expressly provided for by the Department, issuance of this permit does not modify, supersede or rescind any order or determination previously issued by the Department or any of the terms, conditions or requirements contained in such order or determination.

3. Applications For Permit Renewals, Modifications or Transfers The permittee must submit a separate written application to the Department for permit renewal, modification or transfer of this permit. Such application must include any forms or supplemental information the Department requires. Any renewal, modification or transfer granted by the Department must be in writing. Submission of applications for permit renewal, modification or transfer are to be submitted to:

Regional Permit Administrator NYSDEC Region 1 Headquarters SUNY @ Stony Brook|50 Circle Rd Stony Brook, NY11790 -3409

4. Submission of Renewal Application The permittee must submit a renewal application at least 180 days before permit expiration for the following permit authorizations: Solid Waste Management.

5. Permit Modifications, Suspensions and Revocations by the Department The Department — reserves the right to exercise all available authority to modify, suspend or revoke this permit. The ______ grounds for modification, suspension or revocation include:

- a. materially false or inaccurate statements in the permit application or supporting papers;
- b. failure by the permittee to comply with any terms or conditions of the permit;
- c. exceeding the scope of the project as described in the permit application;
- d. newly discovered material information or a material change in environmental conditions, relevant technology or applicable law or regulations since the issuance of the existing permit;
- e. noncompliance with previously issued permit conditions, orders of the commissioner, any provisions of the Environmental Conservation Law or regulations of the Department related to the permitted activity.

6. **Permit Transfer** Permits are transferrable unless specifically prohibited by statute, regulation or another permit condition. Applications for permit transfer should be submitted prior to actual transfer of ownership.

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

Item A: Permittee Accepts Legal Responsibility and Agrees to Indemnification

The permittee, excepting state or federal agencies, expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees, and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in compliance with the terms and conditions of the permit. This indemnification does not extend to any claims, suits, actions, or damages to the extent attributable to DEC's own negligent or intentional acts or omissions, or to any claims, suits, or actions naming the DEC and arising under Article 78 of the New York Civil Practice Laws and Rules or any citizen suit or civil rights provision under federal or state laws.

Item B: Permittee's Contractors to Comply with Permit

The permittee is responsible for informing its independent contractors, employees, agents and assigns of their responsibility to comply with this permit, including all special conditions while acting as the permittee's agent with respect to the permitted activities, and such persons shall be subject to the same sanctions for violations of the Environmental Conservation Law as those prescribed for the permittee.

Item C: Permittee Responsible for Obtaining Other Required Permits

The permittee is responsible for obtaining any other permits, approvals, lands, easements and rights-ofway that may be required to carry out the activities that are authorized by this permit.

Item D: No Right to Trespass or Interfere with Riparian Rights

This permit does not convey to the permittee any right to trespass upon the lands or interfere with the riparian rights of others in order to perform the permitted work nor does it authorize the impairment of any rights, title, or interest in real or personal property held or vested in a person not a party to the permit.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Facility DEC ID 1-4720-02934

PERMIT Under the Environmental Conservation Law (ECL)

Permittee and Facility Information

Permit Issued To: CLEAR FLO TECHNOLOGIES INC

1110 RTE 109 LINDENHURST, NY 11757 (631) 956-7600 Facility: CLEAR FLO TECHNOLOGIES/CLEAN & GREEN RECYCLING INC 1110 A ST RTE 109 NORTH LINDENHURST, NY 11757

CLEAN & GREEN RECYCLING CORP 1110 A RTE 109 LINDENHURST, NY 11757 (631) 956-7600

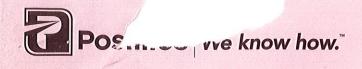
Facility Application Contact: CAMERON ENGINEERING & ASSOCIATES LLP 177 Crossways Park Dr Woodbury, NY 11797 (516) 224-5250

Facility Location: in BABYLON in SUFFOLK COUNTYVillage: LINDENHURSTFacility Principal Reference Point:NYTM-E: 635.274NYTM-N: 4508.457Latitude:40°42'57.4"Longitude:73°23'54.3"Authorized Activity:Permit authorizes operation of a transfer facility and biosolids dryer facilityreceiving the following wastes: up to 400,000 gallons per day of non-hazardous industrial wastes; 70tons per day of source separated used cooking oil and grease trap waste; and 450 tons per day of biosolids for the purpose of producing Class A biosolids material.

Solid Waste Management Facility No .: 52TP0273

Permit Authorizations

Solid Waste Management - Under Article 27, Title 7 Permit ID 1-4720-02934/00001


Ren	ewal	Effective Date: 3/16/2022	Expiration Date: 3/15/2027
· · · · · · · · · · · · · · · · · · ·			·
· - , · -		· · · · · · · · · ·	
			-
. •			
• •			

APPENDIX F DISPOSAL MANIFESTS

Posillico We know		DRE BACKING I	Farming	lico Materials, LLC 1750 New Highway dale, NY 11735-1534 P. 631-249-1872 F. 631-777-5640
Customer: 5025 Eastern environmental	Job: 23377D Phase Code#		Truck # EASTERN44	Ticket # 483693
P.O. #:		Deli	very Out	
Product - Name 0010- DRYWELL PER LOAD		Mix Code	Ambun 1.000	
Plant Name: POSILLICO MAT	Dri	iver Name:	Billy	
DOTH Lucation: 2647 STILLWELL AVE DROP # SCALE	BROOKLYN SILO	Gross: Tare: Net:	TONS 1.000 0.000 1.000	MM 01907 0.000 0.907
	383	92 ^{totals:}	1.000	0.907

0

B

Posillico Materials, LLC

1750 New Highway Farmingdale, NY 11735-1534 P. 631-249-1872 F. 631-777-5640

1240:40 PM NYSDOT REQUIRES SPOTTER BEFORE BACKING INTO PAVER.

Customer: 50.25 Eastern environmental

Job: 23377D Phase Code# Truck # EASTERN44 Ticket # 484215

P.O. #:	Deliver	v Out	
Product - Name 8010 - DRYWELL PER LOAD	Mix Code.	Amaun 1.00	
Plant Name: POSILLICO MAT	0		
Received By: A	river Name:	Silly	
DOT# Location: 2647 STILLWELL AVE, BROOKLYN	Gross:	ONS 1.000	MM 0.907
DROP # SCALE SILO	Ne t.:	0.000	0.000
383	$P_{2}^{\text{Totals:}}$	1.000	0.907

"The following PPE is <u>REQUIRED</u> at all times when working outside your truck, Hard hat, reflective vest, eye protection, gloves, work boots and appropriate work attire. No shorts, sleeveless shirts or sneakers. Failure to comply can result in you being removed and banned from site."

	et i	MANIFEST NUMB	ER						
and a star	Part 1	Part 2	Part 3						
CLEAR FLO TECHNOLOGIES, INC. 1110 Rte. 109 N. Lindenhurst, N.Y. 11757			\$314422						
Tel: (631) 956-7600 Fax: (631) 956-7020	Date of Pick-Up	Time of Pick-Up	Chronological Number /Also Used as Sample #						
LIQUID WASTE DISCHARGE MANIFEST	(Use 2 Digit Numbers) Example 040103	(Military Time)	(Assigned at Clear Flo- Receiving Station)						
EIQUID WASTE DISCHARGE MANIFEST									
1. WASTEWATER STREAM IDENTIFICATION (Sections 1A, 1B, & 1C must be completed by generator or hauler)									

A. Volume:	Gallons: 4	Wt. In:		Wt. Out:	
B. Type:	Condensate Water	Decant Grease	Grease	Industrial Rinse	Leachate
	Leachate Pool	Pharmaceutical	Septic/Septage	🗌 Sludge	Storm Water
	STP Effluent	Transfer Leachate	Other:		
C. Source	Home/Apt.	Office/Commercial	🗌 Municipal	🗌 Industrial	Other

Description of Other and Special Handling Instructions, if Any:______

2. GENERATOR OF WASTESWATER (Sections 2A, 2B, & 2C must be completed by generator or hauler)

A. Complete Name (print or type): Stillwein Av Propertille B. Tel. No.:

C. Complete Pick-Up Address: 2647 STilwen AK BrootHN

ALL WASTEWATERS ARE SUBJECT TO THE TERMS AND CONDITIONS CONTAINED IN THE DISCHARGE PERMIT

The undersigned, being duly authorized, does hereby certify to the best of their knowledge to the accuracy of the source and type of wastewater identified and subject to this manifest. **SECTION D GENERATOR SIGNATURE REQUIRED.**

D. Signature of Generator or Agent: ______ Date: _____ Date: _____ Date: ______ Date: ______

3. HAULER OF LIQUID WASTE (Sections 3A, 3B, 3C, 3D, and 3E must be completed by hauler)

A. Company Name (print or type): [00101 ENVIONENTON SOLUTIONS

B. SCDPW Permit No.: 3258 C. Vehicle License No. 23780 D. Pump Out Date: 11-2-23

E. NYS DEC Permit No.

The above described liquid waste was picked up and hauled by me to the disposal facility named below and was discharged. I certify under penalty of perjury that the foregoing is true and correct.

F. Signature of Authorized Agent and Title:

4. ACCEPTANCE BY CLEAR FLO TECHNOLOGIES, INC. (must be completed by disposer)

The above hauler delivered the described wastewater to the disposal facility and it was accepted.

Disposal Date:	11	12	2022	_ Sample ID No.:_

Signature of Authorized Agent and Title:

WHITE - DISPOSAL FACILITY YELLOW - TRANSPORTER PINK - GENERATOR GOLD - FILE