

Department of Environmental Conservation

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

Is this an application to amend an e application instructions for further guid. If yes, provide existing site number:	ance related to B	-		on? Please	refer to t) Yes	No No	
Is this a revised submission of an in If yes, provide existing site number: <u>C22</u>		cation?		\bullet) Yes	O No	
BCP App Rev 13							
SECTION I: Property Information	Included in Att	achment A					
PROPOSED SITE NAME 224 3rd Ave	enue						
ADDRESS/LOCATION 224 3rd Aven	ue						
CITY/TOWN Brooklyn			ZII	^{P CODE} 11	217		
MUNICIPALITY (LIST ALL IF MORE T	HAN ONE) N/A						
COUNTY			SI	ΓΕ SIZE (A	CRES)0	.194	
LATITUDE		LONGITUD	E I				
	45.33519967"	-73		9		33997676	
Provide tax map information for all tax of any lot is to be included, please indi appropriate box below, and only includ acreage column.	cate as such by i e the acreage fo	nserting "p/o' r that portion	" in front of the ta	of the lot nu x parcel in f	umber in t	the	ארו
ATTACH REQUIRED TAX MAPS PEI Parcel Addre		TION INSTR	Section	S. Block	Lot	Acros	<u>ao</u>
						Acrea	
224 3rd Ave	enue		3	426	36	0.19	/4
 Do the proposed site boundarie If no, please attach an accurate description. 					bounds	Y	N
 Is the required property map pr (Application will not be process) 			th the ap	plication?		$oldsymbol{igo}$	Ο
 Is the property within a designal 21(b)(6)? (See <u>DEC's website</u> 1 If yes, identify census tract: 	for more informat	tion)	, -			0	$oldsymbol{O}$
Percentage of property in En-ze	one (check one):	0% ① 1-4	19% 🔿	50-99%) 100% (0	
4. Is the project located within a d See application instructions for		•				0	$oldsymbol{igo}$
 Is the project located within a N Area (BOA)? See application ir 	IYS Department	of State (NYS		Brownfield C	Opportuni	ty O	\bigcirc

P		
6. Is this application one of multiple applications for a large development project, where the	Υ	N
development spans more than 25 acres (see additional criteria in application instructions)?	\cap	0
If yes, identify names of properties and site numbers, if available, in related BCP	\bigcirc	$\mathbf{\Theta}$
 applications:		0
than the site subject to the present application?	\bigcirc	(\bullet)
8. Has the property previously been remediated pursuant to Titles 9, 13 or 14 of ECL Article 27,		
Title 5 of ECL Article 56, or Article 12 of Navigation Law?	\cap	
If yes, attach relevant supporting documentation.	\bigcirc	0
9. Are there any lands under water?	\cap	0
If yes, these lands should be clearly delineated on the site map.	\bigcirc	\mathbf{U}
10. Has the property been the subject of or included in a previous BCP application?	\cap	0
If yes, please provide the DEC site number:	\bigcirc	U
11. Is the site currently listed on the Registry of Inactive Hazardous Waste Disposal Sites (Class		0
2, 3, or 4) or identified as a Potential Site (Class P)?	\bigcirc	\odot
If yes, please provide the DEC site number: Class:		-
12. Are there any easements or existing rights-of-way that would preclude remediation in these areas? If yes, identify each here and attach appropriate information.	\cap	\bigcirc
areas? If yes, identify each nere and attach appropriate mornation.		\cup
Easement/Right-of-Way Holder Description		
13. List of permits issued by the DEC or USEPA relating to the proposed site (describe below or	\cap	\bigcirc
attach appropriate information):		0
Type Issuing Agency Description		
14. Property Description and Environmental Assessment – please refer to the application		\cap
instructions for the proper format of each narrative requested. Are the Property Description	C	\cup
and Environmental Assessment narratives included in the prescribed format?		
Note: Questions 15 through 17 below pertain ONLY to proposed sites located within the five co	unti	es
comprising New York City. 15. Is the Requestor seeking a determination that the site is eligible for tangible property tax	V	N
credits?	-	IN
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible	\bigcirc	\bigcirc
Property Credits Located in New York City ONLY on pages 11-13 of this form.	\sim	
16. Is the Requestor now, or will the Requestor in the future, seek a determination that the		0
property is Upside Down?	\cup	C
17. If you have answered YES to Question 16 above, is an independent appraisal of the value of		
the property, as of the date of application, prepared under the hypothetical condition that the	\bigcirc	\bigcirc
property is not contaminated, included with the application?		
NOTE: If a tangible property tax credit determination is not being requested at the time of application, the second sec		
applicant may seek this determination at any time before issuance of a Certificate of Completion by us	ing ti	ne
BCP Amendment Application, except for sites seeking eligibility under the underutilized category.		
If any changes to Section I are required prior to application approval, a new page, initialed by ea Requestor, must be submitted with the application revisions.	acn	
Initials of each Requestor:		

SECTION II: Project Description	Included in Attachment B	3		
1. The project will be starting at:	Investigation	Remediation		
NOTE: If the project is proposed to sta Report (RIR) must be included, resulti Remedial Action Work Plan (RAWP) a <u>Investigation and Remediation</u> for furth	ng in a 30-day public comme are also included (see <u>DER-1</u> ner guidance), then a 45-day	ent period. If an Alternatives Ana <u>0, Technical Guidance for Site</u> public comment period is requir	lysis a	
2. If a final RIR is included, does	it meet the requirements in E	ECL Article 27-1415(2)?		
O Yes	O No	• N/A		
3. Have any draft work plans bee	n submitted with the applicat	ion (select all that apply)?		
RIWP	RAWP	IRM No		
 Please provide a short descrip remedial program is to begin, a issued. 		relopment, including the date that ficate of Completion is expected		;
Is this information attached?	Yes	O No		
SECTION III: Land Use Factors	ncluded in Attachment C			
1. What is the property's current i	nunicipal zoning designation	? M1-4/R7X/G and M1-4/R6	K/G	
2. What uses are allowed by the				
Residential 🖌 Commercia	al 🖌 Industrial 🖌			
3. Current use (select all that app	ly):			
Residential Commercia	al 🗌 Industrial 🗌 Re	ecreational 🗌 Vacant 🖌		
 Please provide a summary of or identifying possible contaminate the date by which the site becars Is this summary included with the 	nt source areas. If operations ame vacant.	or uses, with an emphasis on s or uses have ceased, provide	Y ①	N
5. Reasonably anticipated post-re	emediation use (check all tha	t apply):		
Residential 🖌 Commercia	al 🖌 Industrial 🗌			
If residential, does it qualify as		O N/A	\bigcirc	\bigcirc
 Please provide a statement de Is this summary attached? 	tailing the specific proposed	post-remediation use.	\odot	\bigcirc
7. Is the proposed post-remediati See application instructions for		acility?	\odot	Ο
8. Do current and/or recent devel		proposed use?		\bigcirc
9. Is the proposed use consistent	••••••	•	\bigcirc	$\overline{\bigcirc}$
Please provide a brief explanation 10. Is the proposed use consistent				\cup
local waterfront revitalization p Please provide a brief explana	lans, or other adopted land u	se plans?	ullet	Ο

SECTION IV: Property's Environmental History	Include	ed in .	Attachment D				
 All applications must include an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish that contamination of environmental media exists on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the site property and that the site requires remediation. To the extent that existing information/studies/reports are available to the requestor, please attach the following (<i>please submit information requested in this section in electronic format ONLY</i>): 1. Reports: an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (<u>ASTM E1903</u>). Please submit a separate electronic copy of each report in Portable Document Format (PDF). Please do NOT submit paper copies of ANY supporting documents. 2. SAMPLING DATA: INDICATE (BY SELECTING THE OPTIONS BELOW) KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. DATA SUMMARY TABLES SHOULD BE INCLUDED AS AN ATTACHMENT, WITH 							
LABORATORY REPORTS REFERENCED A	ND INC				1		
CONTAMINANT CATEGORY		ട്ടവ		DWATER	SOIL	GAS	
Petroleum				_	✓		
Chlorinated Solvents				_			
Other VOCs SVOCs		~		_			
Metals		-			┼──╊╼╉		
Pesticides		-			┼╴┝┥		
PCBs		-H	F				
PFAS		-		-			
1,4-dioxane		- -		=			
Other – indicated below							
*Please describe other known contaminants and the	media at	ffecte	d.				
 3. For each impacted medium above, include a site drawing indicating: Sample location Date of sampling event Key contaminants and concentration detected For soil, highlight exceedances of reasonably anticipated use For groundwater, highlight exceedances of 6 NYCRR part 703.5 For soil gas/soil vapor/indoor air, refer to the NYS Department of Health matrix and highlight exceedances that require mitigation These drawings are to be representative of all data being relied upon to determine if the site requires remediation under the BCP. Drawings should be no larger than 11"x17" and should only be provided electronically. These drawings should be prepared in accordance with any guidance provided. 							
Are the required drawings included with this applicati	nn?		ΟYE	is (
4. Indicate Past Land Uses (check all that application				.0 (
Coal Gas Manufacturing Manufacturing		Ac	gricultural Co-Op		Dry Cle	aner	
Salvage Yard Bulk Plar			Pipeline		Service St		
Other:			¥				

SECTION V: Requestor Information	Included in Attachment	E			
NAME					
224 Third Ave Owner LLC					
ADDRESS 38 East 29th Street, 9th Floor					
CITY/TOWN		ZIP CODE			
New York		10016			
PHONE	EMAIL				
646-439-4000 d	lavid@slatepg.com				
			Y	Ν	
1. Is the requestor authorized to o	1. Is the requestor authorized to conduct business in New York State (NYS)?			Ο	
NYS DOS to conduct business given above, in the <u>NYS Depa</u> A print-out of entity information	 If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS DOS to conduct business in NYS, the requestor's name must appear, exactly as given above, in the <u>NYS Department of State's Corporation & Business Entity Database</u>. A print-out of entity information from the database must be submitted with this application to document that that requestor is authorized to conduct business in NYS. Is this attached? 			0	
3. If the requestor is an LLC, the names of the members/owners need to be provided on a separate attachment. Is this attached?			\odot	Ο	
 Individuals that will be certifyin the requirements of Section 1.5 	g BCP documents, as well a 5 of <u>DER-10: Technical Guid</u> f New York State Education these requirements?	<u>dance for Site Investigation and</u> Law. Do all individuals that will	۲	0	

SECT	ION VI: Requestor Eligibility Included in Attachment F		
	vering "yes" to any of the following questions, please provide appropriate explanation and/or nentation as an attachment.		
		Υ	Ν
1.	Are any enforcement actions pending against the requestor regarding this site?	\bigcirc	\bigcirc
2.	Is the requestor subject to an existing order for the investigation, removal or remediation of contamination at the site?	\bigcirc	$\textcircled{\bullet}$
3.	Is the requestor subject to an outstanding claim by the Spill Fund for this site? Any questions regarding whether a party is subject to a spill claim should be discussed with the Spill Fund Administrator.	0	$oldsymbol{igo}$
4.	Has the requestor been determined in an administrative, civil or criminal proceeding to be in violation of (i) any provision of the ECL Article 27; (ii) any order or determination; (iii) any regulation implementing Title 14; or (iv) any similar statute or regulation of the State or Federal government?	0	$oldsymbol{O}$
5.	Has the requestor previously been denied entry to the BCP? If so, please provide the site name, address, assigned DEC site number, the reason for denial, and any other relevant information regarding the denied application.	0	ullet
6.	Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving the handling, storing, treating, disposing or transporting of contaminants?	0	$oldsymbol{igo}$

SECTION VI: Requestor Eligibility (CONTINUTED)				
7. Has the requestor been convicted of a criminal offence (i) involving the handling, storing, treating, disposing or transporting or contaminants; or (ii) that involved a violent felony,				
fraud, bribery, perjury, theft or offense against public administration (as that term is used in Article 195 of the Penal Law) under Federal law or the laws of any state?				
 Has the requestor knowingly falsified statement within the jurisdiction of DEC, or submitted a f statement in connection with any document or 	alse statement or made use of a false application submitted to DEC?	0	$oldsymbol{igo}$	
 Is the requestor an individual or entity of the ty committed an act or failed to act, and such act denial of a BCP application? 		0	$oldsymbol{O}$	
10. Was the requestor's participation in any remea terminated by DEC or by a court for failure to order?		0	$oldsymbol{igo}$	
11. Are there any unregistered bulk storage tanks	on-site which require registration?	\bigcirc	\bigcirc	
12. THE REQUESTOR MUST CERTIFY THAT H IN ACCORDANCE WITH ECL 27-1405(1) BY		UNTE	ER	
PARTICIPANT A requestor who either (1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum, or (2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.	 VOLUNTEER A requestor other than a participant, includi requestor whose liability arises solely as a rownership, operation of or involvement with subsequent to the disposal of hazardous ward discharge of petroleum. NOTE: By selecting this option, a requestor liability arises solely as a result of ownership operation of or involvement with the site cert he/she has exercised appropriate care with to the hazardous waste found at the facility reasonable steps to: (i) stop any continuing discharge; (ii) prevent any threatened future and, (iii) prevent or limit human, environment natural resource exposure to any previously hazardous waste. If a requestor whose liability arises solel result of ownership, operation of, or involvement describy you should be considered a volunteer – specific as to the appropriate care taken 	result the s aste o whose p, rtifies respe- by tal- e relea ntal or y relea ly as a olvem be be	ite r se that ect king ase; ased ased a ent /hy	
13. If the requestor is a volunteer, is a statement describing why the requestor should be considered a volunteer attached?				
Yes 💽 No N/A 🔿				

SECTION VI: Requestor Eligibility (CC	ONTINUTED)			
14. Requestor relationship to the pro	perty (check on	e; if multiple applicants, o	check all that apply):	
Previous Owner 🖌 Current O	wner Pote	ntial/Future Purchaser	Other:	
If the requestor is not the current owner, proof of site access sufficient to complete remediation must be provided. Proof must show that the requestor will have access to the property before signing the BCA and throughout the BCP project, including the ability to place an environmental easement on the site.				
Is this proof attached?	◯ Yes	No N/A		
Note: A purchase contract or lease agree	ement does not	suffice as proof of site a	ccess.	

SECTION VII: Requestor Contact	Information	
REQUESTOR'S REPRESENTATIV David Schwartz	E	
ADDRESS 38 East 29th Street, 9th Floor		
CITY New York		ZIP CODE 10016
PHONE 646-439-4000	EMAIL david@slatepg.com	
REQUESTOR'S CONSULTANT (CO Brian Gochenaur	ONTACT NAME)	
COMPANY Langan Engineering, Environmental, Surveying, L	andscape Architecture and Geology, D.P.C.	
ADDRESS 21 Penn Plaza, 360 West 31st Street, 8th Floor		
CITY New York		ZIP CODE 10001
PHONE 212-479-5479	EMAIL bgochenaur@Langan.com	
REQUESTOR'S ATTORNEY (CON Michael Bogin	TACT NAME)	
COMPANY Sive, Paget, & Riesel, P.C.		
ADDRESS 560 Lexington Avenue, 15th Floor		
CITY New York		ZIP CODE 10022
PHONE (646) 378-7210	EMAIL mbogin@sprlaw.com	

SECTION VIII: Program Fee

Upon submission of an executed Brownfield Cleanup Agreement to the Department, the requestor is required to pay a non-refundable program fee of \$50,000. Requestors may apply for a fee waiver based on demonstration of financial hardship.

	I	IN
1. Is the requestor applying for a fee waiver based on demonstration of financial hardship?	O	$\textcircled{\bullet}$
 If yes, appropriate documentation to demonstrate financial hardship must be provided with the application. See application instructions for additional information. 	_	$oldsymbol{O}$

Is the appropriate documentation included with this application?

SECTION IX: Current Property Ov	vner and Operator Information	Included in Attachment G
CURRENT OWNER 224 Third Ave Owner LLC		
CONTACT NAME David Schwartz		
ADDRESS 38 East 29th Street, 9th Floor		
CITY New York		ZIP CODE 10016
PHONE 646-439-4000	EMAIL david@slatepg.com	
OWNERSHIP START DATE November 8, 2022		
CURRENT OPERATOR Vacant		
CONTACT NAME		
ADDRESS N/A		
CITY N/A		ZIP CODE _{N/A}
PHONE N/A	EMAIL N/A	
OPERATION START DATE		

SECT	ION X: Property Eligibility Information		
		Y	Ν
1.	Is/was the property, or any portion of the property, listed on the National Priorities List? If yes, please provide additional information.	0	$oldsymbol{igo}$
2.	Is/was the property, or any portion of the property, listed on the NYS Registry of Inactive Hazardous Waste Disposal Site pursuant to ECL 27-1305? If yes, please provide the DEC site number: Class:	0	ullet

SECTION X: Property Eligibility Information (continued)							
3.	Is/was the property subject to a permit under ECL Article 27, Title 9, other than an	Y	Ν				
	Interim Status facility? If yes, please provide: Permit Type: EPA ID Number: Date Permit Issued: Permit Expiration Date:	0	$oldsymbol{igo}$				
4.	If the answer to question 2 or 3 above is <i>YES</i> , is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer? If yes, attach any available information related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filings and corporate dissolution documents.	0	0				
5.	Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 17 Title 10? If yes, please provide the order number:	0	$oldsymbol{eta}$				
6.	Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum? If yes, please provide additional information.	0	ullet				

SECTION XI: Site Contact List

Included in Attachment H

To be considered complete, the application must include the Brownfield Site Contact List in accordance with *DER-23: Citizen Participation Handbook for Remedial Programs*. Please attach, at a minimum, the names and mailing addresses of the following:

- The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.
- Residents, owners, and occupants of the property and adjacent properties.
- Local news media from which the community typically obtains information.
- The public water supplier which services the area in which the property is located.
- Any person who has requested to be placed on the contact list.
- The administrator of any school or day care facility located on or near the property.
- The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.

(By requestor who is an individual)

If this application is approved, I hereby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the *DER-32, Brownfield Cleanup Program Applications and Agreements*; and (3) that in the event of a conflict between the general terms and conditions of participation and terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Date:	Signature:
Print Name:	
(By a requestor other than an individ	lual)
and all subsequent documents; that direction. If this application is approv Cleanup Agreement (BCA) within 60 conditions set forth in the <u>DER-32</u> , <u>B</u> in the event of a conflict between the site-specific BCA, the terms in the si provided on this form and its attachn aware that any false statement made	Ad Signatory (title) of 224 Third Ave Owner LLC (entity); that I this application and execute a Brownfield Cleanup Agreement (BCA) this application was prepared by me or under my supervision and ed, I hereby acknowledge and agree: (1) to execute a Brownfield days of the date of DEC's approval letter; (2) to the general terms and <i>Brownfield Cleanup Program Applications and Agreements</i> ; and (3) that a general terms and conditions of participation and terms contained in a te-specific BCA shall control. Further, I hereby affirm that information nents is true and complete to the best of my knowledge and belief. I am a herein is punishable as a Class A misdemeanor pursuant to section
Print Name: David Schwartz	

SUBMITTAL INFORMATION

 Two (2) copies, one unbound paper copy of the application form with original signatures and table of contents, and one complete electronic copy in final, non-fillable Portable Document Format (PDF), must be sent to:

> Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7020

PLEASE DO NOT SUBMIT PAPER COPIES OF SUPPORTING DOCUMENTS. Please provide a hard copy of ONLY the application form and a table of contents.

FOR	DEC	USE	ONLY
BCP	SITE	T&A	CODE:

LEAD OFFICE: _____

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY

Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27-1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 13

Please respond to the questions below and provide additional information and/or documentation as required.	Y	N
1. Is the property located in Bronx, Kings, New York, Queens or Richmond County?	\bullet	\bigcirc
Is the requestor seeking a determination that the site is eligible for the tangible prop credit component of the brownfield redevelopment tax credit?	berty	Ο
 Is at least 50% of the site area located within an environmental zone pursuant to N Tax Law 21(b)(6)? 	YS O	\odot
4. Is the property upside down or underutilized as defined below?		
Upside	down 🔘	\bigcirc
Underu	tilized	\bigcirc

From ECL 27-1405(31):

"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.

From 6 NYCRR 375-3.2(I) as of August 12, 2016 (Please note: Eligibility determination for the underutilized category can only be made at the time of application):

375-3.2:

- (I) "Underutilized" means, as of the date of application, real property on which no more than fifty percent of the permissible floor area of the building or buildings is certified by the applicant to have been used under the applicable base zoning for at least three years prior to the application, which zoning has been in effect for at least three years; and
 - (1) the proposed use is at least 75 percent for industrial uses; or
 - (2) at which:
 - (i) the proposed use is at least 75 percent for commercial or commercial and industrial uses;
 - (ii) the proposed development could not take place without substantial government assistance, as certified by the municipality in which the site is located; and
 - (iii) one or more of the following conditions exists, as certified by the applicant:
 - (a) property tax payments have been in arrears for at least five years immediately prior to the application;
 - (b) a building is presently condemned, or presently exhibits documented structural deficiencies, as certified by a professional engineer, which present a public health or safety hazard; or
 - (c) there are no structures.

"Substantial government assistance" shall mean a substantial loan, grant, land purchase subsidy, land purchase cost exemption or waiver, or tax credit, or some combination thereof, from a governmental entity.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)

5. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the *New York City Department of Housing, Preservation and Development*; the *New York State Housing Trust Fund Corporation*; the *New York State Department of Housing and Community Renewal*; or the *New York State Housing Finance Agency*, though other entities may be acceptable pending Department review).

Check appropriate box below:

Project is an Affordable Housing Project – regulatory agreement attached

Project is planned as Affordable Housing, but agreement is not yet available* *Selecting this option will result in a "pending" status. The regulatory agreement will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.

This is not an Affordable Housing Project

From 6 NYCRR 375-3.2(a) as of August 12, 2016:

- (a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty-seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
 - (1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' household's annual gross income.
 - (2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for homeowners at a defined maximum percentage of the area median income.
 - (3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)

6. Is the site a planned renewable energy facility site as defined below?

Yes – planned renewable energy facility site

No – not a planned renewable energy facility site

If yes, please provide any documentation available to demonstrate that the property is planned to be developed as a renewable energy facility site. Included in Attachment C

From ECL 27-1405(33) as of April 9, 2022:

"Renewable energy facility site" shall mean real property (a) this is used for a renewable energy system, as defined in section sixty-six-p of the public service law; or (b) any co-located system storing energy generated from such a renewable energy system prior to delivering it to the bulk transmission, sub-transmission, or distribution system.

From Public Service Law Article 4 Section 66-p as of April 23, 2021:

- (b) "renewable energy systems" means systems that generate electricity or thermal energy through use of the following technologies: solar thermal, photovoltaics, on land and offshore wind, hydroelectric, geothermal electric, geothermal ground source heat, tidal energy, wave energy, ocean thermal, and fuel cells which do not utilize a fossil fuel resource in the process of generating electricity.
 - 7. Is the site located within a disadvantaged community, within a designated Brownfield Opportunity Area, and meets the conformance determinations pursuant to subdivision ten of section nine-hundred-seventy-r of the general municipal law?

🔵 Yes

🗩 No

From ECL 75-0111 as of April 9, 2022:

(5) "Disadvantaged communities" means communities that bear the burdens of negative public health effects, environmental pollution, impacts of climate change, and possess certain socioeconomic criteria, or comprise high-concentrations of low- and moderate-income households, as identified pursuant to section 75-0111 of this article.

THIS PAGE INTENTIONALLY LEFT BLANK

BCP APPLICATION SUMMARY (FOR DEC USE ONLY)						
SITE NAME 224 3rd Avenue	SITE ADDRESS 224 3rd Avenue					
CITY Brooklyn	COUNTY Kings		^{ZIP} 11217			
REQUESTOR NAME 224 Third Ave Owner LLC	REQUESTOR ADDRESS 38 East 29th Street, 9th Floor					
CITY New York	^{ZIP} 10016	EMAIL david@slatepg.com				

PROPERTY ADDRESS	SECTION	BLOCK	LOT
224 3rd Avenue	3	426	36

REQUESTOR'S REPRESENTATIVE		
NAME David Schwartz	ADDRESS	38 East 29th Street, 9th Floor
CITY New York	ZIP 10016	EMAIL david@slatepg.com
REQUESTOR'S ATTORNEY	•	
NAME Michael Bogin	ADDRESS	560 Lexington Avenue, 15th Floor
CITY New York	ZIP 10022	EMAIL mbogin@sprlaw.com
REQUESTOR'S CONSULTANT		
NAME Brian Gochenaur	ADDRESS	21 Penn Plaza, 360 West 31st Street, 8th Floor
CITY New York	ZIP 10001	EMAIL bgochenaur@Langan.com

REQUESTOR'S REQUESTED STATUS	PARTICIPANT	VOLUNTEER	
DEC DETERMINATION	AGREE	DISAGREE	

APPLIED FOR FEE WAIVER	YES	NO
ELIGIBLE FOR FEE WAIVER	YES	NO

		\sim		\sim		\frown		\frown
PERCENTAGE WITHIN AN EN-ZONE	0%	igodot	<50%	\cup	50-99%	\cup	100%	\bigcirc
DEC DETERMINATION AGREE					DISAGR	ΞE		

BCP APPLICATION SUMMARY (FOR DEC USE ONLY) (CONTINUED)					
FOR SITES IN NEW YORK CITY ONLY					
IS THE REQUESTOR SEEKING TANGIBLE PROPERTY CREDITS?	YES	NO NO	0		

UPSIDE DOWN	YES O	NO O
DEC DETERMINATION	AGREE	DISAGREE

UNDERUTILIZED	YES O	NO O
DEC DETERMINATION	AGREE	DISAGREE

AFFORDABLE HOUSING STATUS	PLANNED	Ο	YES	0	NO	Ο
DEC DETERMINATION			AGREE		DISAGREE	

DISADVANTAGED COMMUNITY AND CONFORMING BOA	YES (NO O
DEC DETERMINATION	AGREE	DISAGREE

RENEWABLE ENERGY FACILITY SITE	YES C) NO ()
DEC DETERMINATION	AGREE	DISAGREE

NOTES:

TABLE OF CONTENTS

Brownfield Cleanup Program Application 224 3rd Avenue Brooklyn, New York

Brownfield Cleanup Program Application

- Attachment A Property Information
- Attachment B Project Description
- Attachment C Land Use Factors
- Attachment D Property's Environmental History
- Attachment E Requestor Information
- Attachment F Requestor Eligibility
- Attachment G Current Property Owner-Operator Information
- Attachment H Contact List Information

ATTACHMENT A SECTION I: PROPERTY INFORMATION

Property and Tax Maps

The following maps are included with this attachment:

Figure A-1: Site Location Map is the required United States Geological Survey (USGS) 7.5-minute quadrangle map showing the proposed brownfield site.

Figure A-2: Site Plan provides a property base map that shows map scale, north arrow orientation, and proposed extent of the property with respect to adjacent streets and roadways.

Figure A-3: Surrounding Land Use Map provides the proposed brownfield site extent with adjacent property owners clearly identified, and surrounding land uses.

Figure A-4: Tax Lot Location Map provides a property base map that shows tax lot boundaries, the proposed brownfield site and surrounding area.

Item 1 – Tax Map Description

The proposed BCP site has a footprint of 8,740-square feet (0.19 acres) and is located at 224 3rd Avenue in Brooklyn, New York, which corresponds to Brooklyn Tax Block 426, Lot 36.

The Reference Point for the given latitude (40° 40' 45.335") and longitude (-73° 59' 6.339") is the approximate center of the site.

Item 14 - Property Description Narrative

<u>Location</u>

The site is located at 224 3rd Avenue (Tax Block 426, Lot 36) in the Gowanus neighborhood of Brooklyn, New York. Block 426 is bordered by Degraw Street to the north, 3rd Avenue to the east, Sackett Street to the south, and Nevins Street to the west. According to the USGS 7.5-Minute Quadrangle Map, the proposed brownfield site is at an elevation of about 17 feet above mean sea level (msl).

<u>Site Features</u>

The site occupies an area of 8,470 square feet ($0.19\pm$ acres) and is improved with a one-story building with a partial cellar. The site is vacant, but was most recently occupied by A & A Brake

Services Company Inc. (an automobile repair shop) and Mack Truck Parts (an automobile parts retailer).

Current Zoning and Land Use

According to the New York City Planning Commission (NYCPC) Zoning Map 16c, dated November 23, 2021, the site is located partially in an M1-4/R7X/G district and partially in an M1-4/R6X/G district. M1 districts typically include light industrial uses, such as woodworking shops, repair shops, and wholesale service and storage facilities. Offices, hotels and most retail uses are also permitted. R7 districts are medium-density apartment house districts; and R6 districts are typically seen in built-up, medium density areas. The Special Gowanus Mixed Use District (G) surrounds the Gowanus Canal and promotes affordable housing growth and reinvestment in the neighborhood consistent with the existing mix of commercial, manufacturing, and cultural uses.

The Final Environmental Impact Statement (FEIS) for the Gowanus Neighborhood Plan was released on September 10, 2021, and the proposed BCP site received an E-Designation (E-601) for hazardous materials, air quality, and noise. Any future development will require coordination with the New York City Office of Environmental Remediation (NYCOER) to satisfy requirements associated with the E-Designation program.

The proposed use is consistent with applicable zoning laws and maps.

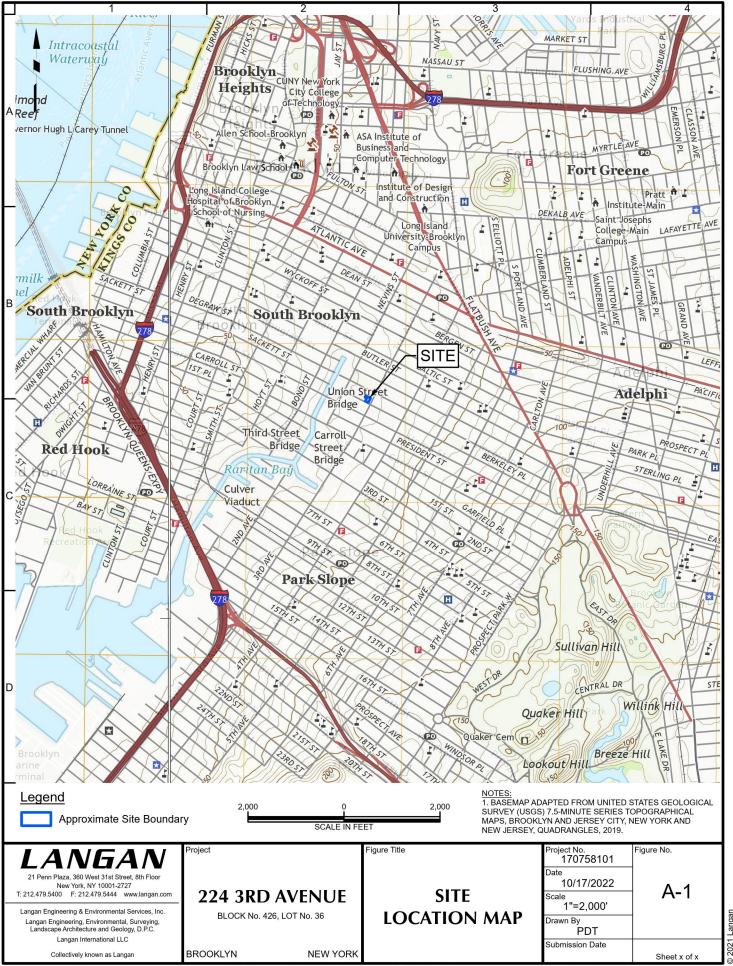
Past Use of the Site

The site includes one tax parcel, Block 426, Lot 36. A review of historical data revealed that the site was located in a densely developed urban area, characterized by commercial and industrial uses, as early as 1886. Historical records indicate the site was improved with multiple dwellings by 1886. Around 1915, the dwellings appear to have been replaced by two buildings used for "laundry" and a Bottle Cleaning & Storage facility, and a portion of a third building is indicated as bottle storage. By 1938, the new buildings appear to have been removed and a new single structure (built circa 1930) is constructed for use as a garage with a 550-gallon underground storage tank (UST). The site use as a garage/auto repair facility appears unchanged between 1938 and present day.

Site Geology and Hydrogeology

The site is located in a developed area of Brooklyn, New York that is generally covered with paved roads, public walkways and buildings. The built environment is generally underlain by uncontrolled fill used for construction and development since the 1800's. The area surrounding the Gowanus Canal, including the proposed brownfield site, was originally part of the former Gowanus Creek and associated wetlands. In 1848, the State of New York authorized construction of the Gowanus Canal as well as the draining and filling of the wetlands of South

Brooklyn (New York City Department of City Planning, 1985). By 1869, the Gowanus Canal was completed with the current street configuration surrounding the Canal.

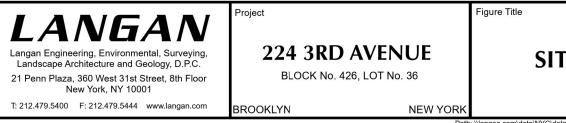

According to soil descriptions provided in Langan's August 2021 Limited Subsurface Investigation (LSI) package, the proposed brownfield site cover (i.e., concrete slabs, asphalt pavement) is underlain by fill characterized by gray to brown sand with varying amounts of brick fragments, coal fragments, and coal ash extending to depths from about 16 to 18 feet below grade surface (bgs). The fill was underlain by alluvial deposits consisting of fine sand and silt. Bedrock was not encountered during the LSI, however, depth to bedrock is estimated to be greater than 100 feet bgs.

Groundwater was observed between 13 and 15 feet bgs during the 2021 LSI. Based on the general topography of the surrounding area, inferred groundwater flow is generally to the west, towards the Gowanus Canal, located about 720 feet west of the site.

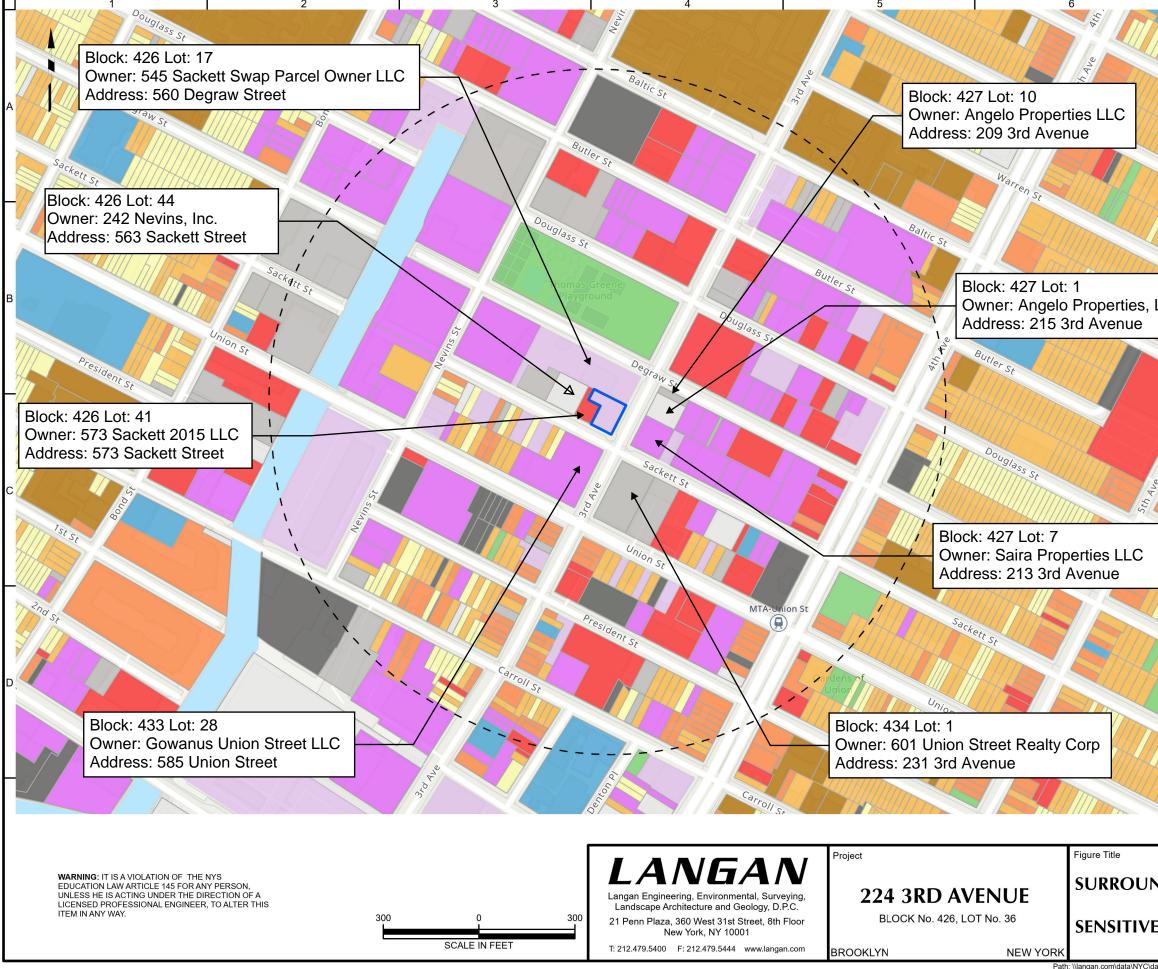
Environmental Assessment

The results of the 2021 LSI identified petroleum-related and chlorinated VOCs in soil vapor and polycyclic aromatic hydrocarbons (PAHs) and metals in soil. However, additional impacts are suspected in soil and groundwater because of restricted access during the LSI to characterize the site. A summary of impacted media identified during the LSI is provided below.

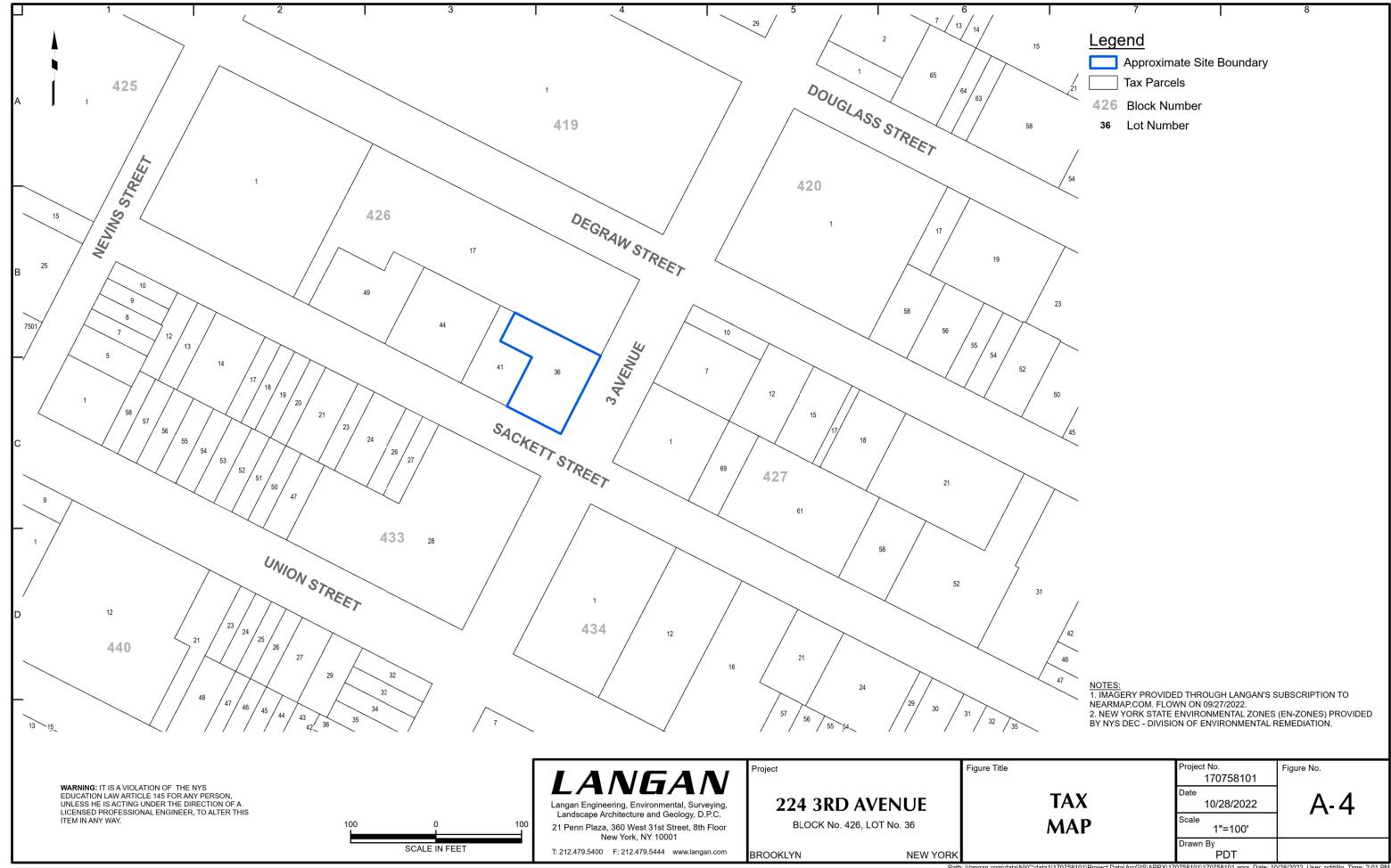
- Soil: One VOC, Tetrachloroethene (PCE), was detected in soil above the Title 6 of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use Soil Cleanup Objective (SCO) but below the NYCRR Part 375 Restricted Use Restricted-Residential (RR) SCO. SVOCs and metals were detected in soil at concentrations exceeding the NYCRR Part 375 RR SCO.
- **Groundwater:** Metals were detected above the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standard (AWQS) and Guidance Values for Class GA (drinking water).
- Soil Vapor: Petroleum-related and chlorinated VOCs were detected in soil vapor at the site at concentrations which are likely related to an on-site release. PCE and trichloroethene (TCE) were detected in soil vapor at maximum concentrations of 150,000 micrograms per cubic meter (µg/m³), and 477 µg/m³, respectively, which according to the NYSDOH Decision Matrix, warrants mitigation in future development.


Path: \\langan.com\data\NYC\data1\170758101\Project Data\ArcGIS\APRX\170758101\170758101.aprx Date: 10/17/2022 User: pditillio Time: 5:48 PM

50


ITEM IN ANY WAY.

Path: \\langan.com\data\NYC\data1\170758101\Project Data\ArcGIS\APRX\170758101\170758101.aprx Date: 10/20/2022 User: pditillio Time: 1:55 PM


NOTES: 1. IMAGERY PROVIDED THROUGH LANGAN'S SUBSCRIPTION TO NEARMAP.COM. FLOWN ON 09/27/2022. 2. TAX PARCEL DATA PROVIDED BY THE NEW YORK CITY DEPARTMENT OF CITY PLANNING, MAPPLUTO 22V1.

roject No. Figure No. 170758101 Date A-2 10/20/2022 **SITE PLAN** Scale 1"=50' Drawn By PDT

	7 8
ITTH	Legend
	Approximate Site Boundary
	[_] 1,000-Foot Radius
HHA	Land Use
HATH	One & Two Family Buildings
	Multi-Family Walk-Up Buildings
111	Multi-Family Elevator Buildings
HHH	Mixed Residential & Commercial Buildings
	Commercial & Office Buildings
	Industrial & Manufacturing
Wrr	Transportation & Utility
, LLC	Public Facilities & Institutions
, -	Open Space & Outdoor Recreation
	Parking Facilities
	Vacant Land
Ave	
Park Si	
Playgro	
	NOTES:
THH	1. WORLD TOPOGRAPHIC BASEMAP IS PROVIDED THROUGH LANGAN'S ESRI ARCGIS SOFTWARE LICENSING AND ARCGIS ONLINE
	2. LAND USE DATA PROVIDED BY THE NEW YORK CITY DEPARTMENT OF CITY PLANNING, MAPPLUTO 22V1.

Figure Title
SURROUNDING LAND-USE
AND
SENSITIVE RECEPTORS MAP
Figure No.
170758101
Date
10/20/2022
Scale
1"=300'
Drawn By
PDT
Figure No.
170758101
Date
10/20/2022
Comparison
Figure No.
170758101
Comparison
Figure No.
170758101
Date
10/20/2022
Comparison
Figure No.
170758101
Date
10/20/2022
Comparison
Figure No.
170758101
Date
10/20/2022
Comparison
Figure No.
170758101
Comparison
Figure No.
17075810
Comparison
Figure No.
17075810
Figure No.
17

	Project No. 170758101	Figure No.	
TAX	Date 10/28/2022	A-4	
MAP	Scale 1"=100'		andan
	Drawn By		2021

Path: \\langan.com\data\NYC\data1\170758101\Project Data\ArcGIS\APRX\170758101\170758101.aprx Date: 10/28/2022 User: pditillio Time: 2:01 PM

ATTACHMENT B SECTION II: PROJECT DESCRIPTION

<u> Item 1 – Project Stage</u>

The remedial investigation scope of work will be detailed in a Remedial Investigation Work Plan (RIWP), which will be implemented to determine the nature and extent of soil, groundwater and soil vapor impacts from historical site use. The investigation findings will be documented in a Remedial Investigation Report (RIR). Future remediation to address impacts identified in the RIR will be described in a Remedial Action Work Plan (RAWP), which will be implemented concurrently with the contemplated development. The RIWP, RIR, and RAWP will be prepared and submitted in accordance with New York State Department of Environmental Conservation (NYSDEC) guidelines. The RIWP is being submitted with this application.

Item 4 - Redevelopment Project Description

The purpose of the project is to develop an underutilized, contaminated parcel of land into a viable residential space with commercial features, while implementing remedial measures that are protective of human health and the environment. The proposed re-development project is still in early planning stages and is subject to change, but is expected to include a mixed residential and commercial development with affordable housing on a site that will generate electricity through photovoltaic arrays. The development will be connected to the Con Edison distribution system.

Estimated Project Schedule

The site will be investigated in accordance with the RIWP included with this application. The findings of the investigation will be documented in a RIR and future remediation plans to address the identified impacts will be described in a RAWP. The certificate of completion is expected in June 2024. A timeline of anticipated BCP milestones is provided in the following schedule:

	Estimated Project Schedule	2022 2023 2024																						
ltem	Action	NOV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP	OCT	JAN	FEB	MAR	APR	МАҮ	NUL	JUL	SEP	ост	NOV	DEC
1	Preparation and Submission of BCP Application and Remedial Investigation Work Plan																							
2	NYSDEC Review of the BCP Application																							
3	Address NYSDEC comments to BCP Application																							
4	NYSDEC Secondary Review of BCP Application																							
5	30-day public comment period for the BCP Application and RIWP ends																							
6	NYSDEC issues Brownfield Cleanup Agreement (BCA)																							
7	30-day NYSDOH Review of RIWP																							
8	Field Implementation of the RIWP																							
9	Prepare and submit a Remedial Investigation Report (RIR) to NYSDEC																							
10	Prepare and submit a Remedial Action Work Plan (RAWP) with Alternatives Analysis (AA)																							
11	60-day NYSDEC & NYSDOH Review of RIR and RAWP concludes																							
12	45-day public comment period for the RAWP concludes																							
13	RAWP approval and issuance Decision Document																							
14	RAWP Implementation/Foundation Construction																							
15	FER and SMP (if needed)																							
16	BCP Certificate of Completion																							

Notes:

- a) This is an estimated schedule; all items are subject to change.
- b) BCP = Brownfield Cleanup Program
- c) BCA = Brownfield Cleanup Agreement
- d) COC = Certificate of Completion
- e) NYSDEC = New York State Department of Environmental Conservation
- f) NYSDOH = New York State Department of Health
- g) RIWP = Remedial Investigation Work Plan
- h) RIR = Remedial Investigation Report
- i) RAWP = Remedial Action Work Plan
- j) FER = Final Engineering Report
- k) SMP = Site Management Plan

ATTACHMENT C SECTION III: LAND USE FACTORS

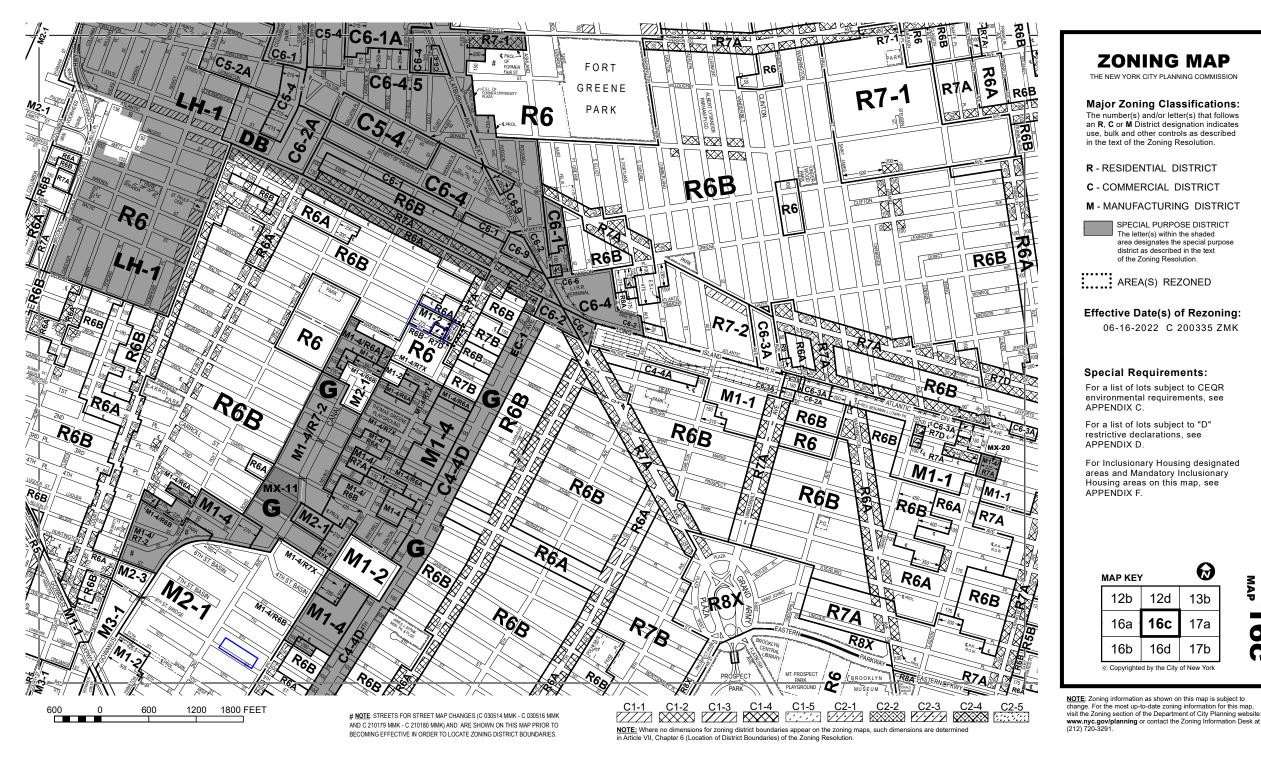
Item 1 - Current Zoning

The site is included in the Gowanus Neighborhood Plan rezoning, which was approved and went into effect in November 2021. According to the New York City Planning Commission (NYCPC) Zoning Map 16c, dated November 23, 2021, the site is partially in a M1-4/R7X/G district and partially in a M1-4/R6X/G district. M1 districts typically include light industrial uses, such as woodworking shops, repair shops, and wholesale service and storage facilities. Offices, hotels and most retail uses are also permitted. R7 districts are medium-density apartment house districts; and R6 districts are typically seen in built-up, medium density areas. The Special Gowanus Mixed Use District (G) surrounds the Gowanus Canal and promotes affordable housing growth and reinvestment in the neighborhood consistent with the existing mix of commercial, manufacturing, and cultural uses.

Item 4 - Current Use

The proposed BCP site (Brooklyn Block 426, Lot 36) is 8,470 square feet and improved with a one-story building that was most recently occupied by an automobile repair shop and automobile parts store. The repair shop is currently vacant.

Items 6 & 7 - Intended Use Post Remediation


The proposed re-development project is still in early planning stages and is subject to change. The contemplated project includes a mixed residential and commercial development with affordable housing on a site that will generate electricity through photovoltaic arrays. The development will be connected to the Con Edison distribution system. The Requestor intents to engage in an interconnection agreement with Con Edison and obtain an acceptance letter for this site, similar to what the Requestor completed for another project in the Bronx. An example interconnection agreement that would be coordinated with Con Edison is included with this attachment.

Item 8 – Historic/Current Development

Current development patterns support the proposed use. The proposed zoning for the site is for medium-density residential development and light manufacturing, which includes commercial uses such as retail, offices and hotel.

Item 10 - Comprehensive Plans

The proposed development and future use is consistent with Gowanus Neighborhood Plan, which was adopted by the City Council on November 23, 2021, to comply with the growing economic and residential community needs. The Gowanus Neighborhood Plan is included in this attachment.

ONING

MAP

6

n

Theo Schaefer <tschaefer@brightpower.com>

Final Acceptance Letter 1973 Daly Ave, Bronx, NY 10460 [MC-512145]

1 message

dI-ESWEBPSNX@coned.com <dI-ESWEBPSNX@coned.com> To: jkandel@camberpg.com Cc: osg-coned@brightpower.com, jhannah@brightpower.com Wed, Apr 13, 2022 at 10:10 AM

Consolidated Edison Company Of New York, Inc Bronx Energy Services 511 Theodore Fremd Avenue, 2nd Floor Rye, NY 10580-1432

Date:	April 13, 2022
Service At:	1973 Daly Ave
	Bronx, NY 10460
Case Number:	MC-512145

Dear Evan Kaplan on behalf of Richard Gropper,

Your interconnection application for the above location has been <u>approved</u> to operate in conjunction with Con Edison's system. Please review this email and contact your CPM immediately if there are errors or concerns.

This authorization is limited to a determination that the installation described below has been accepted by Con Edison. It is your responsibility to ensure that your DG equipment is in compliance with any other jurisdictional codes and ordinances, and as per your contract you are required to obtain all environmental and other permits necessitated by governmental authorities for the construction and operation of the unit.

- Final As-Built kW Solar : 43.2 kW
- Con Edison Account Number: 32669341860000

All system modifications, annual and periodic verification tests of the facility shall be conducted per New York's Standardized Interconnection Requirements. The generator-owner shall maintain verification test reports for inspection by the utility.

Please contact us at NetMetering@conEd.com or at 212-780-6600 with any billing inquiries^{*,} or you can visit our website for answers to frequently asked questions.

*If you are currently enrolled in Con Edison's Level Payment Plan, Please call 1-800-75-CONED to be removed. This plan is not beneficial for solar customers

Sincerely, Suzanne Koch Sr Specialist Con Edison Company of NY Bronx Energy Services 511 Theodore Fremd Avenue, 2nd Floor Rye, NY 10580-1432

dl-ESWEBPSNX@coned.com (W)914-925-6034

--

You received this message because you are subscribed to the Google Groups "Con Edison applications" group. To unsubscribe from this group and stop receiving emails from it, send an email to osg-coned+unsubscribe@ brightpower.com.

To view this discussion on the web visit https://groups.google.com/a/brightpower.com/d/msgid/osg-coned/1348573229.8103.1649859028397%40CPMSPROD1APP.

The zoning proposal could facilitate:

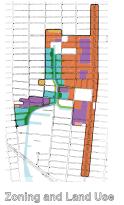
New homes, including thousands for lowerincome New Yorkers

New jobs across a variety of sectors

Community resources like new open space, parks and schools

A resilient shoreline & cleaned-up brownfields

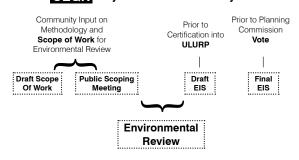
New street trees

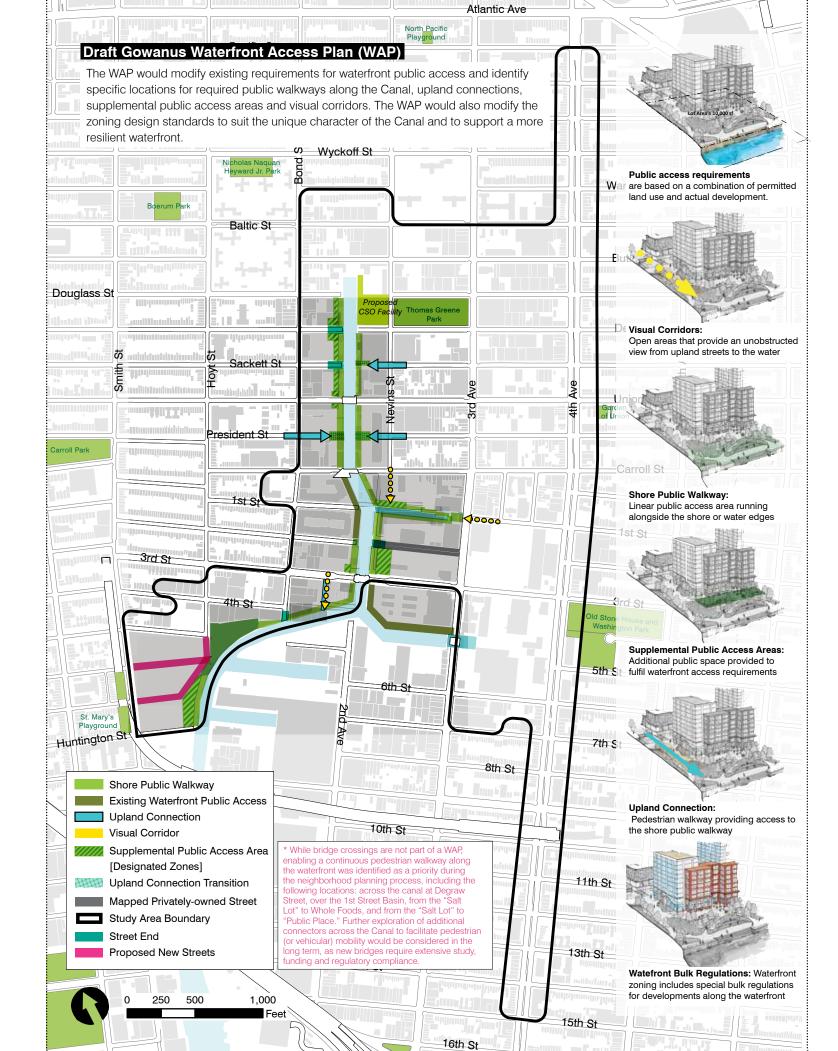

Next Steps

Share zoning proposal with community

- February 6, 2019 @ PS 32 | 6:00PM
- Present to Community Board 6
- **Begin environmental review process**
- ٠ Issue Draft Scope of Work
- Hold Public Scoping Meeting
- Receive Community Input on Methodology and Scope of Work for Environmental Review

Continue to work with community partners and stakeholders to advance non-zoning neighborhood priorities




Urban Form

Analysis of affects on the environment

+

CECR City Environmental Quality Review

This handout summarizes key elements of the Gowanus zoning proposal that has been crafted to support the broader neighborhood plan. More details can be found at nyc.gov/gowanus

The zoning proposal reflects and responds to comments and feedback received through the community planning process, initiated in 2016. The proposal lays the foundation for how the neighborhood can grow and change.

To help support the vision of Gowanus as a sustainable and resilient neighborhood, the zoning proposal includes measures for remediation of brownfield sites to safely accommodate new uses, elevation of the shoreline to protect from future sea-level-rise and more stringent standards for climate resilient development.

The proposal would create capacity to accommodate new neighbors, provide new homes - both market rate and a substantial number for lowerincome New Yorkers - for existing and future residents to move to and allow more people to share in the prosperity and thriving neighborhoods nearby. It would do this by mapping zoning districts to allow a broader range of uses at moderate and higher densities in areas where industry and commercial businesses are less prevalant and the need for brownfield remediation is high and through applying Mandatory Inclusionary Housing.

The proposal would also harness a strong and diversifying economy to reinforce the local economy and support job growth. Areas will be maintained for non-residential only activity and where new residential is allowed, the proposal will promote integratation and a mixing of uses in new buildings through carefully crafted zoning incentives and requirements. The proposal will also increase density for job-generating uses and eliminate onerous parking requirements to help bring people to jobs and jobs to people.

The proposal would capitalize on opportunities through development to create new community reosurces like new neighborhood parks, waterfront open space and schools.

The proposal would create special use, floor area, bulk and parking regulations on both waterfront and non-waterfront blocks and establish special height and setback regulations for buildings along the waterfront and on key corridors to make ensure development responds to adjacent contexts.

Office of the Deputy Mayor for Housing & Economic Development Mayor's Office of Recovery & Resiliency Mavor's Office of Sustainability NYC Department of Cultural Affairs NYC Department of Education NYC Department of Environmental Protection NYC Department of Housing Preservation & NYC Department of Parks & Recreation

New York City Housing Authority NYC Human Resources Administrati

NYC Department of Small Business Service: C Department of Transportation NYC Economic Development Corporation

NYC Emergency Management

NYC Landmarks Preservation Commiss

NYC Office of Environmental Remediation NYC School Construction Authority

Key aspects of the draft zoning proposal:

Canal Corridor

- Create a Waterfront Access Plan to shape a unique esplanade knitting together waterfront parks, bridges and new development
- FAR incentive to encourage a mixing of uses and activate the waterfront and bridge crossings
- Require non-residential ground floors on bridge crossings
- New neighborhood, resilient park on City-owned land
- Elevate shoreline as resilient neighborhood adaptation strategy

Industrial and Commercial

- Increase density for industrial, commercial & arts-related spaces
- Eliminate parking & loading requirements for small businesses
- Facilitate modern-day loft buildings that meet & activate street
- Continue to prohibit new residential

Enhanced Mixed Use

- Allow for medium to high density housing along major corridors, neighborhood connections and resources
- Require non-residential ground floors on key connectors and around Thomas Greene Park
- FAR incentives to promote the mixing of uses
- Require permanently affordable housing in all new developments – including on previously rezoned portions of 4th Avenue

Residential Areas

- Bring cluster of legal non-conforming homes in the flood plain into conformance with zoning
- Facilitate Catholic Charities low-income senior housing proposal
- Contextualize an existing R6 district

Key Technical Regulations:

Canal Corridor

District	M1(3) / R7-2								
Use	S								
Use Groups	2-14, 16, 17, 18								
Max FAR by Use									
Retail/Entertainment	2								
Other Commercial									
Community Facility	3								
Industrial									
Residential	4.4								
Total MAX FAR	5*								
Heights (in stories) by Location									
Bond Street	5-6								
Nevins Street	6-8								
Canal Frontage	0-0								
Max. Heights [Midblocks (after base	6-8; 17-22;								
heights and setbacks)]	25-30 [Block 471]								
Special Use / FA	R Regulations								
Req. Non-Residential	Yes								
Ground Floor Use	(Canal Crossings)								
Parking Req	uirement								
Market Rate Units	20%								
Affordable Units	0%								
Non-Residential	0%								
Loading Requirement									
None for smaller businesses; reduced for									

larger businesses

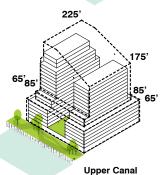
Industrial and Commercial

Districts*	M1 (3)	M1 (4)							
Uses									
Use Groups	3-14, 16, 17, 18	3-14, 16, 17, 18							
Residential	Not permitted	Not permitted							
Max FAR by Use									
Retail/Entertainment	2 (No-Change)	2 (No-Change)							
Other Commercial									
Community Facility	3	4							
Industrial									
Total Max FAR	3	4							
He	ights (in stories)								
Base	6	9							
Max	8	12							
	Addl. 30 feet	for larger sites							
Other	(>200	000 SF)							
Par	king Requirement								
	None								
Loa	ding Requirement	t							

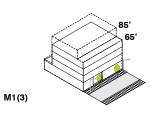
None for smaller businesses; reduced for larger

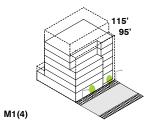
*Exact District Names To Be Determined

Enhanced Mixed Use


Districts	M1(2)/R6B	M1(3)/R6A	M1(3)/R7A	M1(4)/R7X	C4-4D (R9A eqv)**						
Uses											
Use Groups		2-14, 1	6, 17, 18		1-6, 8-10, 12						
		Max FA	R by Use								
Retail/Entertainment	2	2	2	2	3.4						
Other Commercial											
Community Facility	2	3	3	4	6.5						
Industrial											
Residential	2.2	3.6	4.6	5.6	8.5						
Total MAX FAR	2.2	3.6	4.6	6*	8.5						
		Heights ((in stories)								
Base	4	6	7	10	12						
Max	5	8	9	14	17						
	S	Special Use / F	AR Regulation	ıs							
Req. Non-Residential Ground Floor Use	-	-	Yes (Union Street)	Yes (Thomas Green Playground & 3rd Avenue)	Yes						
Non-Residential Incentives	Yes*		Yes*	-							
		Parking R	equirement								
Market Rate Units			20%								
Affordable Units											
Non-Residential	- 0%										
		Loading R	equirement								

None for smaller businesses; reduced for larger


*Achieved only through utilizing incentive FAR ** Modified C4-4D District



Bond St. Frontage

Nevins St. Frontage

4th Ave

ATTACHMENT D SECTION IV: PROPERTY'S ENVIRONMENTAL HISTORY

The site is located in the Gowanus neighborhood of Brooklyn and in an area of historical industrial operations that have resulted in environmental impacts to the subsurface. According to Sanborn maps, a part of the site was labeled as "laundry" and another part of the site was labeled as "bottle cleaning & storage facility". Auto-repair facilities have operated at the site since at least 1938, which have resulted in releases of volatile organic compound (VOCs) –including chlorinated solvents– to the subsurface. The proposed site is eligible for the Brownfield Cleanup Program (BCP) based on concentrations of contaminants that exceed the criteria for the reasonably anticipated use of the site (restricted-residential). Chlorinated VOCs are also present in soil vapor at concentrations that warrant mitigation according to the New York State Department of Health (NYSDOH) soil vapor intrusion guidance.

Item 1 - Environmental Reports

Environmental-related documents prepared for the proposed brownfield site include the following (copies are provided with this attachment):

- Historical Maps and Database Listings, provided by Environmental Data Resources, Inc. (EDR), dated August 26, 2021.
- 2. Limited Subsurface Investigation Letter Report, prepared by Langan, dated January 2023.
- 3. Phase I Environmental Site Assessment Report, prepared by Brussee Environmental Corp. (BEC), dated May 2022.
- 4. Limited Phase II Investigation, prepared by BEC, dated May 6, 2022.

The following is a summary of relevant findings for each environmental data package:

Historical Maps and Database Listings, provided by Environmental Data Resources, Inc. (EDR), dated August 26, 2021

Langan reviewed historical documents including topographic maps, Sanborn fire insurance maps and aerial photographs of the proposed brownfield site for the years spanning 1886 to 2007. City directory listings and environmental regulatory database listings were also reviewed.

Langan's review revealed that the proposed BCP site and surrounding area have been developed for residential, commercial and industrial uses since at least 1886. Historical records indicate the site was improved with multiple dwellings by 1886. Around 1915, the dwellings appear to have been replaced by two new buildings used for "laundry" and a Bottle Cleaning & Storage facility, and a portion of a third building is indicated as bottle storage. By 1938, the new buildings appear

to have been removed and a new single structure (built circa 1930) is present and labeled as a garage with a 550-gallon underground storage tank (UST). The site use as a garage and auto repair facility appears unchanged between 1938 and present day. The historical use of the site as an auto repair facility accounts for the presence of VOCs (including chlorinated solvents) in the subsurface.

August 2021 Limited Subsurface Investigation Package, prepared by Langan, dated October 2021

In August 2021, a Limited Subsurface Investigation (LSI) was completed at the proposed BCP site and adjacent properties to evaluate subsurface soil, groundwater, and soil vapor conditions. The findings presented here focus on soil, groundwater, and soil vapor samples collected within the proposed BCP site only. Four soil borings, one temporary groundwater well, and one soil vapor point were installed on the site. Sample locations are shown on the attached Figures D-1, D-2, and D-3. Soil sample analytical results identified several metals at concentrations above their respective restricted use restricted-residential (RURR) soil cleanup objectives (SCO). Groundwater analytical results identified metals at concentrations above NYSDEC ambient water quality standards (AWQS) and guidance values for Class GA (drinking water). The VOC tetrachloroethene (PCE) was detected in soil vapor at a concentration of PCE identified in soil vapor, it is likely that PCE is present in soil and/or groundwater, but was not detected during the LSI.

Phase I Environmental Site Assessment Report, prepared by BEC, dated May 2022

BEC reviewed historical documents and conducted a site visit as part of a May 2022 Phase I Environmental Site Assessment (ESA). The following Recognized Environmental Conditions (REC) were identified:

- <u>Underground Storage Tank:</u> A 550-gallon UST was identified on Sanborn historical maps and possible tank piping (a fill port and vent pipe) was observed during the site reconnaissance. The potential for spills and releases from this tank was considered a REC.
- <u>Historical Use of the Subject Property and Surrounding Properties</u>: The site was used as an auto garage from the 1930's to 2022. Surrounding properties included various commercial and industrial uses, including the former Fulton Works Manufactured Gas Plant (MGP) that may have contributed to contamination of the subsurface at the subject property.

Limited Phase II Investigation, prepared by BEC, dated May 6, 2022

Based on the May 2022 Phase I ESA findings, BEC conducted a Phase II subsurface investigation consisting of a geophysical survey, drilling six soil borings to 15 feet bgs, installing three groundwater monitoring wells, and installing three soil vapor points. Seven soil samples, three groundwater samples, and three soil vapor samples were collected. SVOCs and metals were detected in soil above RR SCOs. PCE was detected in shallow soil above the residential SCO, and was also detected in groundwater. PCE was detected in soil vapor at a concentration of 150,000 micrograms per cubic meter (μ g/m³), which the NYSDOH decision matrices recommends mitigation.

<u>Item 2 - Sampling Data</u>

A summary of available laboratory analytical results exceeding applicable regulatory criteria for soil and groundwater samples collected during the 2021 LSI is provided as Tables 1 and 2. Soil vapor sample results from the 2021 LSI are summarized in Table 3. Extracted tables from the May 2022 Phase II Limited Investigation are included in this attachment. Sample location and analytical results maps are provided with as Figures D-1 through D-3. The following sections summarize maximum concentrations of contaminants for each media.

<u>Soil</u>

Soil samples contained concentrations of one SVOC and metals exceeding UU and RR SCOs. The following table summarizes maximum concentrations of target compounds detected above regulatory comparison criteria:

Compounds	Maximum Soil Concentration (mg/kg)	Sample ID	Depth interval (feet bgs)	Part 375 UU SCO	Part 375 RR SCO				
VOCs									
Tetrachloroethene (PCE)	18	SB6 (0-2)	0-2	1.3	19				
SVOCs									
2-Methylphenol	1.1	SB1 (0-2)	0-2	0.33	100				
Acenaphthene	41	SB1 (0-2)	0-2	20	100				
Benz(a)anthracene	100	SB1 (0-2)	0-2	1	1				
Benzo(a)pyrene	88	SB1 (0-2)	0-2	1	1				
Benzo(b)fluoranthene	79	SB1 (0-2)	0-2	1	1				
Benzo(k)fluoranthene	53	SB1 (0-2)	0-2	0.8	3.9				
Chrysene	110	SB1 (0-2)	0-2	1	3.9				
Dibenz(a,h)anthracene	11	SB1 (0-2)	0-2	0.33	0.33				

Table 1: Maximum Concentrations of Target Compounds Detected in Soil

Compounds	Maximum Soil Concentration (mg/kg)	Sample ID Depth (feet bgs)		Part 375 UU SCO	Part 375 RR SCO
Dibenzofuran	36	SB1 (0-2)	0-2	7	59
Fluoranthene	310	SB1 (0-2)	0-2	100	100
Indeno(1,2,3-cd)pyrene	60	SB1 (0-2)	0-2	0.5	0.5
Naphthalene	65	SB1 (0-2)	0-2	12	100
Phenanthrene	410	SB1 (0-2)	0-2	100	100
Phenol	1.5	SB1 (0-2)	0-2	0.33	100
Pyrene	260	SB1 (0-2)	0-2	100	100
		Metals			
Arsenic	25.8	SB1 (0-2)	0-2	13	16
Barium	1,380	SB5 (1-3)	1-3	350	400
Cadmium	19	SB5 (1-3)	1-3	2.5	4.3
Copper	514	SB20_1-2	1-2	50	270
Lead	4,440	SB5 (1-3)	1-3	63	400
Mercury	7.12	SB5 (1-3)	1-3	0.18	0.81
Selenium	7.1	SB4 (1-3)	1-3	3.9	180
Zinc	771	SB23_9-10	9-10	109	10,000

1. Results compared to NYSDEC 6 NYCRR Part 375 Unrestricted Use (UU) and Restricted Use Restricted-Residential (RR) Soil Cleanup Objectives (SCOs).

2. mg/kg – milligram per kilogram

<u>Groundwater</u>

Groundwater samples contained concentrations of total and dissolved metals exceeding the Class GA AWQS. PCE and naphthalene were detected in groundwater below the Class GA AWQS. The following table summarizes maximum concentrations for target compounds detected above their regulatory comparison criteria:

Compounds	Maximum Groundwater Concentration (µg/L)	Sample ID	Class GA AWQS		
	Metals				
Iron	56,500	MW04_081821	300		
Magnesium	65,100	MW04_081821	35,000		
Manganese	1,540	MW04_081821	300		
Sodium	1,290,000	MW04_081821	20,000		
	Dissolved Metals				
Iron (Dissolved)	56,900	MW04_081821	300		
Magnesium (Dissolved)	66,200	MW04_081821	35,000		
Manganese (Dissolved)	1,570	MW04_081821	300		
Selenium (Dissolved)	22.6B	MW04_081821	10		
Sodium (Dissolved)	1,300,000	MW04_081821	20,000		

Table 2: Maximum Concentrations of Target Compounds Detected in Groundwater

Notes:

1. Results compared to NYSDEC TOGS 1.1.1. AWQS and guidance values for Class GA (drinking water).

2. µg/L - micrograms per liter

<u>Soil Vapor</u>

Petroleum-related compounds, including benzene, toluene, ethyl benzene, and xylenes (BTEX) were detected up to 403 μ g/m³. However, no standard currently exists for soil vapor in New York State. For reference, soil vapor sample results were screened against background concentrations detected in the ambient air sample and evaluated using the NYSDOH Decision Matrices. Based on the maximum concentration of PCE (150,000 μ g/m³) and TCE (477 μ g/m³), the NYSDOH Decision Matrices recommends mitigation. The following table summarizes maximum concentration detected in soil vapor above the NYSDOH Decision Matrices minimum sub-slab vapor concentration for recommended action:

Constituent	Maximum Soil Vapor Concentration (µg/m³)	Sample Location	
Cis-1,2-Dichloroethene	503	SV3	
Tetrachloroethene (PCE)	150,000	SV3	
Trichloroethene (TCE)	477	SV3	

Table 3: Maximum Concentrations of Target Compounds Detected in Soil Vapor

Notes:

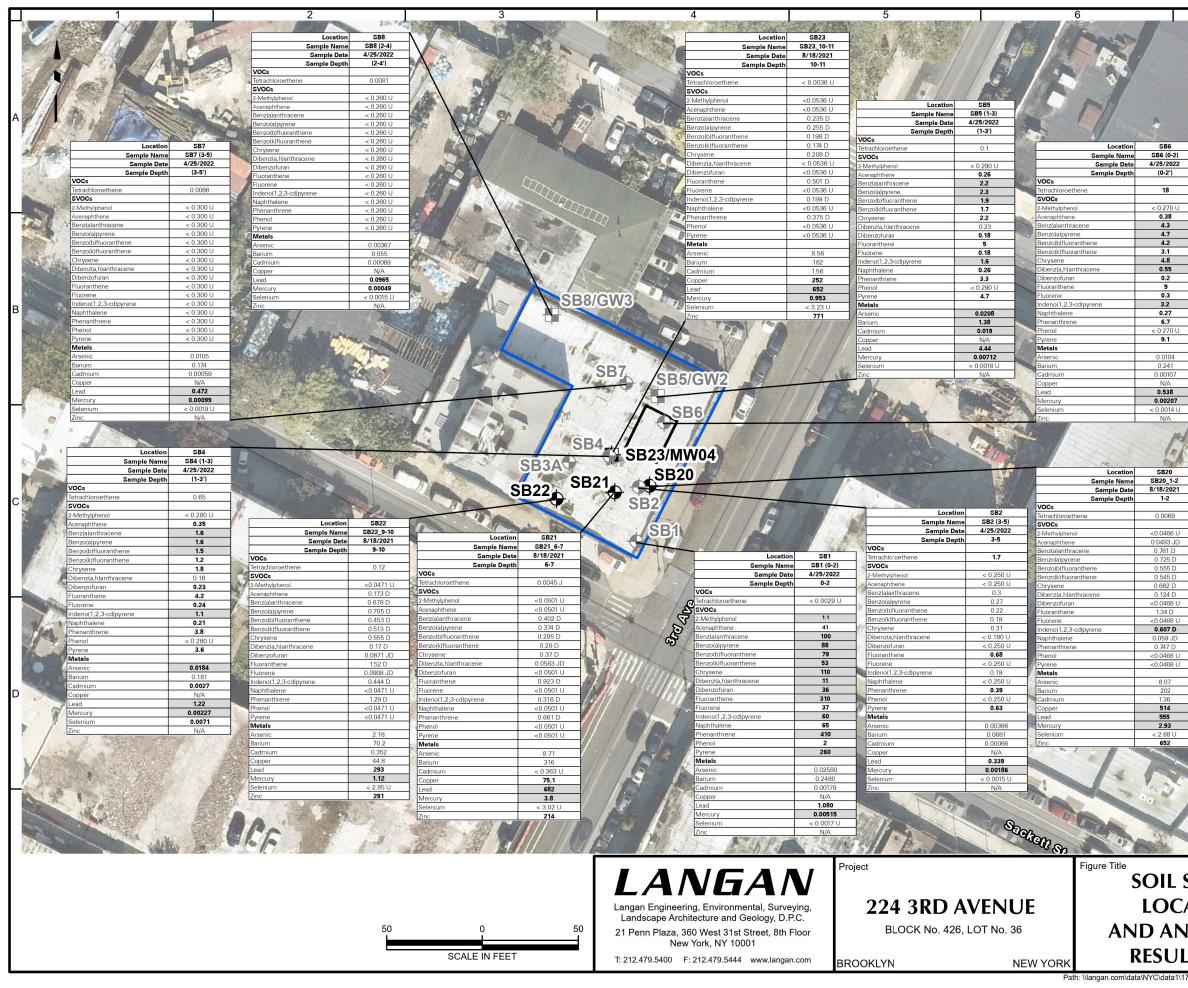
1. Results compared to the minimum soil vapor concentrations at which mitigation is recommended as set forth in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

2. $\mu g/m^3$ - micrograms per cubic meter

Item 2 - Known or Suspected Sources of Contaminants

Impacts identified at the proposed brownfield site during the LSI and Phase II Limited Investigation have not been fully investigated and delineated. A UST is a suspected source of petroleum compounds detected in soil vapor and use of solvents for auto parts cleaning is a suspected source of PCE. Further investigation and delineation of areas of concern and associated contamination will be completed as part of a remedial investigation.

<u> Item 3 – Site Figures</u>


Figures:

- Figure D-1: Soil Sample Location and Analytical Results Map
- Figure D-2: Groundwater Sample Location and Analytical Results Map
- Figure D-3: Soil Vapor Sample Location and Analytical Results Map

Item 4 – Past Uses of the Site

A review of historical data revealed that the proposed BCP site was located in a densely developed urban area, characterized by commercial and industrial uses, as early as 1886. Historical records indicate that Lot 36 was improved with multiple dwellings as early as 1886. Around 1915, the dwellings appear to have been replaced by two new buildings used for

"laundry" and a Bottle Cleaning & Storage facility, and portion of a third building indicated as bottle storage. By 1938, the new buildings appear to have been removed and a new single structure (built circa 1930) was constructed for use as a garage with a 550-gallon UST. The site use as a garage and auto repair facility appears unchanged between 1938 and present day.

Legend

- 12022 Phase II Soil Boring Location
- 2022 Phase II Soil Boring/Monitoring Well Location
- 2019 LSI Soil Boring Location
- 2019 LSI Soil Boring/Monitoring Well Location

Approximate Site Boundary

Approximate Tank Location

Analyte	NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375 Restricted Use Residential Soil Cleanup Objectives		
VOCs				
Tetrachloroethene	1.3	19		
SVOCs				
2-Methylphenol	0.33	100		
Acenaphthene	20	100		
Benz(a)anthracene	1	1		
Benzo(a)pyrene	1	1		
Benzo(b)fluoranthene	1	1		
Benzo(k)fluoranthene	0.8	3.9		
Chrysene	1	3.9		
Dibenz(a,h)anthracene	0.33	0.33		
Dibenzofuran	7	59		
Fluoranthene	100	100		
Fluorene	30	100		
Indeno(1,2,3-cd)pyrene	0.5	0.5		
Naphthalene	12	100		
Phenanthrene	100	100		
Phenol	0.33	100		
Pyrene	100	100		
Metals				
Arsenic	13	16		
Barium	350	400		
Cadmium	2.5	4.3		
Copper	50	270		
Lead	63	400		
Mercury	0.18	0.81		
Selenium	3.9	180		
Zinc	109	10000		

Exceedance Summary:

- 10 Result exceeds Unrestricted Use SCOs 10 Result exceeds Restricted Use Residential SCOs

Notes:

1. Imagery provided through Langan's subscription to Nearmap.com. Flown on 09/27/2022.

2. BCP - Brownfield Cleanup Program

3. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Restricted Use Restricted-Residential and NYSDEC Part 375 Restricted Use Commercial Soil Cleanup Objectives (SCO).

- 4. Results are shown in milligram per kilogram (mg/kg)
- 5. No samples were analyzed from soil boring SB3A.
- 6. N/A Not analyzed.

Qualifiers:

 \overline{D} = The concentration reported is a result of a diluted sample.


E = The result is estimated and cannot be accurately reported due to levels encountered or interferences.

J = The analyte was detected above the Method Detection Limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration.

U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

L SAMPLE	Project No. 170758101	Figure No.	
CATION	Date 1/30/2023	D-1	
NALYTICAL	Scale 1"=50'		Landan
JLTS MAP	Drawn By PDT		2023

Path: \\langan.com\data\NYC\data1\170758101\Project Data\ArcGIS\APRX\170758101\170758101\aprx Date: 1/30/2023 User: pditillio Time: 3:23 PM

1	
1	
1-	
and the second s	
Statement of the local division of the local	
State of Lot of	
A CONTRACTOR	
1.000	
1.5	
Section State	
the Barry T	
Real Property lies	
Station .	
and the second	
and the second	
1	
1000	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-	
and the second s	
Sec. 1	
1000	
Carl II	
1 March	
T. CONTRAL	
1	
$\sim n$	
ALC: NOT	
7	
STATISTICS.	
100	
1	
115	
in.	
5/19	
-	

Legend ÷.

- 2022 Phase II Soil boring/Monitoring Well Location
- 2019 LSI Soil Boring/Monitoring Well Location

8

- Approximate Site Boundary
- Approximate Tank Location

Analyte	NYSDEC SGVs	
SVOCs		
Benzo(a)pyrene	0	
Benzo(b)fluoranthene	0.002	
Benzo(k)fluoranthene	0.002	
Metals		
Iron	300	
Magnesium	35000	
Manganese	300	
Selenium	10	
Sodium	20000	

Exceedance Summary

10 - Result exceeds NYSDEC SGVs

Notes:

1. Imagery provided through Langan's subscription to Nearmap.com. Flown on 09/27/2022.

2. BCP - Brownfield Cleanup Program

3. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

- 4. Results are shown in micrograms per liter (ug/l)
- 5. VOCs and SVOCs were not detected in any sample

Qualifiers: B = The analyte was found in the associated analysis batch blank. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL

	Project No. 170758101	Figure No.	
WATER SAMPLE	Date		
	1/30/2023 Scale	D-2	andan
ANALYTICAL ULTS MAP	1"=30' Drawn By		2023 Lan
	PDT		20

Legend

2022 Phase II Soil Vapor

← 2019 LSI Soil Vapor Sample Location

Approximate Site Boundary

Approximate Tank Location

Analyte	NYSDOH Decision Matrices Minimum Concentrations
VOCs	
1,1,1-Trichloroethane	100
1,2,4-Trimethylbenzene	NS
1,3-Butadiene	NS
2-Hexanone (MBK)	NS
4-Ethyltoluene	NS
4-Methyl-2-pentanone(MIBK)	NS
Acetone	NS
Benzene	NS
Carbon Disulfide	NS
Chloroform	NS
Chloromethane	NS
Cis-1,2-Dichloroethene	6
Dichlorodifluoromethane	NS
Ethanol	NS
Ethyl acetate	NS
Ethylbenzene	NS
Isopropanol	NS
M,P-Xylene	NS
Methyl Ethyl Ketone (2-Butanone)	NS
Methylene Chloride	100
n-Heptane	NS
n-Hexane	NS
o-Xylene (1,2-Dimethylbenzene)	NS
Propylene	NS
Tetrachloroethene (PCE)	100
Tetrahydrofuran	NS
Toluene	NS
Trichloroethene (TCE)	6
Trichlorofluoromethane	NS
Vinyl Chloride	NS

Exceedance Summary

10 Result exceeds NYSDOH Decision Matrices Minimum Concentrations

Notes:

1. Imagery provided through Langan's subscription to Nearmap.com. Flown on 09/27/2022.

2. BCP - Brownfield Cleanup Program

3. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations at which mitigation is recommended as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

4. Results are shown in micrograms per cubic meter (ug/m3)

5. N/A - Not analyzed.

6. NS - No Standard.

Qualifiers:

 \overline{D} = The concentration reported is a result of a diluted sample. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

	Project No. 170758101	Figure No.	
APOR SAMPLE	Date		
CATION	1/30/2023	D-3	
ANALYTICAL	Scale 1"=30'		uepue
ULTS MAP	Drawn By		2023

Soil Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Location SB20 SB21 SB22 SB23 Sample Nam NYSDEC Part 375 SB20_1-2 SB21_6-7 B22_9-10 323_10-11 NYSDEC Part 375 NYSDEC Part 375 CAS **Restricted Use** 08/18/2021 08/18/2021 Sample Date 08/18/2021 08/18/2021 Analyte Unrestricted Use Restricted Use Number Restricted-Sample Depth 6-7 9-10 SCOs Commercial SCO Residential SCOs Block/Lot Lot 36 Lot 36 Lot 36 Lot 36 Result Volatile Organic Compounds 630-20-6 NS 0.68 NS 100 NS 500 1,2-Tetrachloroet mg/kg ,1,1-Trichloroethane 71-55-6 mg/kg ,1,2,2-Tetrachloroethane ,1,2-Trichloro-1,2,2-Trifluoroethane 79-34-5 76-13-1 NS NS NS NS NS mg/kg NS mg/kg 1,2-Trichloroethane 79-00-5 NS NS NS mg/kg 75-34-3 0.27 26 240 .1-Dichloroethane ma/ka ,1-Dichloroethene 75-35-4 0.33 100 500 mg/kg 1,2,3-Trichlorobenzene 87-61-6 NS NS NS mg/kg ,2,3-Trichloropropane 96-18-4 NS NS NS mg/kg 120-82-1 1,2,4-Trichlorobenzene NS NS NS mg/kg ,2,4-Trimethylbenzene 95-63-6 3.6 NS 52 190 NS mg/kg I,2-Dibromo-3-Chloropropane 96-12-8 NS mg/kg NS 100 NS 500 ,2-Dibromoethane (Ethylene Dibromide) 106-93-4 NS mg/kg 95-50-1 1,2-Dichlorobenzene mg/kg .2-Dichloroethane 107-06-2 0.02 3.1 30 NS mg/kg 1.2-Dichloropropane 78-87-5 NS NS ma/ka 1,3,5-Trimethylbenzene (Mesitylene) 108-67-8 8.4 52 190 mg/kg 541-73-1 49 1,3-Dichlorobenzene 2.4 280 mg/kg . .4-Dichlorobenzene 106-46-7 1.8 13 13 130 mg/kg 1,4-Dioxane (P-Dioxane) 123-91-1 0.1 130 mg/kg 2-Hexanone (MBK) 591-78-6 NS NS 100 NS mg/kg 67-64-1 0.05 500 Acetone mg/kg Acrolein 107-02-8 107-13-1 NS NS NS NS NS mg/kg Acrylonitrile NS mg/kg Benzene 71-43-2 0.06 4.8 44 mg/kg NS Bromochloromethane 74-97-5 NS NS ma/ka Bromodichloromethane 75-27-4 NS NS NS mg/kg 75-25-2 NS NS Bromoform NS mg/kg Bromomethane 74-83-9 NS NS NS mg/kg NS Carbon Disulfide 75-15-0 NS NS mg/kg Carbon Tetrachloride 56-23-5 0.76 2.4 100 22 500 mg/kg 108-90-7 Chlorobenzene 1.1 mg/kg 75-00-3 67-66-3 NS 49 NS 350 Chloroethane NS mg/kg 0.37 Chloroform mg/kg Chloromethane 74-87-3 NS NS NS mg/kg Cis-1.2-Dichloroethene 156-59-2 0.25 100 500 ma/ka Cis-1,3-Dichloropropene 10061-01-5 NS NS NS mg/kg 110-82-7 NS NS Cyclohexane NS mg/kg , Dibromochloromethane 124-48-1 NS NS NS mg/kg 74-95-3 NS Dibromomethane NS NS mg/kg Dichlorodifluoromethane 75-71-8 100-41-4 NS NS 41 NS mg/kg 390 Ethylbenzene mg/kg NS NS NS NS , lexachlorobutadiene 87-68-3 NS mg/kg sopropylbenzene (Cumene) 98-82-8 NS mg/kg M,P-Xylene 179601-23-1 NS NS NS mg/kg 79-20-9 NS NS Methyl Acetate NS ma/ka Methyl Ethyl Ketone (2-Butanone) 78-93-3 0.12 100 500 mg/kg Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) NS NS NS 108-10-1 mg/kg Methylcyclohexane 108-87-2 NS NS NS mg/kg 100 500 0.0065 J 0.014 J Methylene Chloride 75-09-2 0.05 mg/kg Naphthalene 91-20-3 104-51-8 12 12 100 100 500 mg/kg n-Butylbenzene 500 mg/kg -Propylbenzene 103-65-1 3.9 100 500 mg/kg 95-47-6 NS o-Xylene (1,2-Dimethylbenzene) NS NS mg/kg p-Cymene (p-Isopropyltoluene) CYMP NS NS NS mg/kg 135-98-8 100 Sec-Butvlbenzene 11 500 ma/ka Styrene 100-42-5 NS NS NS mg/kg F-Butylbenzene 98-06-6 5.9 100 500 mg/kg Fert-Butyl Alcohol 75-65-0 NS NS NS mg/kg 1634-04-4 100 Fert-Butyl Methyl Ether 0.93 500 mg/kg Fetrachloroethene (PCE) 127-18-4 1.3 19 150 mg/kg 0.0069 0.0045 J 0.12 Foluene 108-88-3 0.7 100 500 mg/kg otal Xylene 1330-20-7 156-60-5 0.26 0.19 100 100 500 500 mg/kg rans-1,2-Dichloroethene mg/kg Frans-1,3-Dichloropropene 10061-02-6 NS NS NS mg/kg Frans-1,4-Dichloro-2-Butene 110-57-6 NS NS NS ma/ka richloroethene (TCE) 79-01-6 0.47 21 200 mg/kg NS NS Frichlorofluoromethane 75-69-4 NS mg/kg /inyl Chloride 75-01-4 0.9 0.02 13 mg/kg

Soil Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Location SB20 SB21 SB22 SB23 Sample Nam NYSDEC Part 375 SB20_1-2 SB21_6-3 B22_9-10 323_10-11 NYSDEC Part 375 NYSDEC Part 375 CAS **Restricted Use** 08/18/2021 Sample Date 08/18/2021 08/18/2021 08/18/2021 Analyte Unrestricted Use Restricted Use Number Restricted-Sample Depth 6-7 9-10 SCOs Commercial SCO Residential SCOs Block/Lot Lot 36 Lot 36 Lot 36 Lot 36 Result Semi-Volatile Organic Compounds 95-94-3 120-82-1 NS NS NS NS 1,2,4,5-Tetrachlorobenze NS NS mg/kg ,2,4-Trichlorobenzene mg/kg 95-50-1 122-66-7 100 NS 500 NS ,2-Dichlorobenzene mg/kg NS I,2-Diphenylhydrazine mg/kg .3-Dichlorobenzene 541-73-1 2.4 49 280 mg/kg 106-46-7 130 1.4-Dichlorobenzene 1.8 13 ma/ka 2,3,4,6-Tetrachlorophenol 58-90-2 NS NS NS mg/kg 2,4,5-Trichlorophenol 95-95-4 NS NS NS mg/kg 2.4.6-Trichlorophenol 88-06-2 NS NS NS mg/kg NS 2,4-Dichlorophenol 120-83-2 NS NS mg/kg 2,4-Dimethylphenol 105-67-9 NS NS NS NS mg/kg 2,4-Dinitrophenol 51-28-5 NS NS mg/kg 2,4-Dinitrotoluene 121-14-2 NS NS NS mg/kg 606-20-2 2,6-Dinitrotoluene NS NS NS mg/kg 2-Chloronaphthalene 91-58-7 NS NS NS mg/kg 95-57-8 2-Chlorophenol NS NS NS ma/ka 2-Methylnaphthalene 91-57-6 NS NS NS mg/kg 0.33 100 2-Methylphenol (o-Cresol) 95-48-7 500 mg/kg 2-Nitroaniline 88-74-4 NS NS NS NS mg/kg 2-Nitrophenol 88-75-5 NS NS mg/kg 3 & 4 Methylphenol (m&p Cresol) 65794-96-9 0.33 100 500 mg/kg 91-94-1 NS NS 3,3'-Dichlorobenzidine NS mg/kg 3-Nitroaniline 4,6-Dinitro-2-Methylphenol 99-09-2 NS NS NS NS NS mg/kg 534-52-1 NS mg/kg 4-Bromophenyl Phenyl Ether 101-55-3 NS NS NS mg/kg 4-Chloro-3-Methylphenol 59-50-7 NS NS NS ma/ka 4-Chloroaniline 106-47-8 NS NS NS mg/kg 4-Chlorophenyl Phenyl Ether 7005-72-3 NS NS NS mg/kg . 4-Nitroaniline 100-01-6 NS NS NS mg/kg NS 4-Nitrophenol 100-02-7 NS NS mg/kg Acenaphthene 83-32-9 20 100 100 500 mg/kg 0.0552 JD Acenaphthylene 208-96-8 100 500 0.0493 JD 0.173 D mg/kg NS NS 98-86-2 NS NS Acetophenone mg/kg Aniline (Phenylamine, Aminobenzene) 62-53-3 NS NS mg/kg Anthracene 120-12-7 100 100 500 mg/kg 0.169 D 0.137 D 0.344 D 0.0855 JD 1912-24-9 NS Atrazine NS NS ma/ka Benzaldehyde 100-52-7 NS NS NS mg/kg 92-87-5 NS Benzidine NS NS mg/kg Benzo(a)anthracene 56-55-3 5.6 mg/kg 0 761 D 0 402 D 0.678 D 0 235 D 50-32-8 0.725 D 0.374 D 0.705 D 0.255 D Benzo(a)pyrene mg/kg 1 Benzo(b)fluoranthene 205-99-2 5.6 0 555 D 0.295 D 0.453 D 0 198 D mg/kg 0.368 D 191-24-2 100 100 500 0.464 D 0.25 D Benzo(q,h,i)Perylene mg/kg 0.15 D 3.9 NS 56 NS 0.513 D 0.123 D Benzo(k)fluoranthene 207-08-9 0.8 0.545 D 0.28 D 0.174 D mg/kg 65-85-0 Benzoic Acid NS mg/kg Benzyl Alcohol 100-51-6 NS NS NS mg/kg 85-68-7 NS Benzyl Butyl Phthalate NS NS ma/ka Biphenyl (Diphenyl) 92-52-4 NS NS NS mg/kg 111-91-1 NS NS NS Bis(2-chloroethoxy) methane mg/kg Bis(2-chloroethyl) ether (2-chloroethyl ether) 111-44-4 NS NS NS mg/kg 108-60-1 NS Bis(2-chloroisopropyl) ether NS NS mg/kg Bis(2-ethylhexyl) phthalate 117-81-7 NS NS NS NS mg/kg 105-60-2 NS NS Caprolactam mg/kg NS 3.9 0.0597 JD 0.682 D Carbazole 86-74-8 NS NS mg/kg 0.0583 JD 0.101 D 218-01-9 0.555 D 0.208 D Chrysene 56 mg/kg 0.37 D Dibenz(a,h)anthracene 53-70-3 0.33 0.33 0.56 mg/kg 0.124 D 0.0583 JD 0 17 D 132-64-9 350 0.0871 JD Dibenzofuran 7 59 ma/ka Dibutyl phthalate 84-74-2 NS NS NS mg/kg 84-66-2 Diethyl phthalate NS NS NS mg/kg Dimethyl phthalate 131-11-3 NS NS NS mg/kg 117-84-0 NS Dioctyl phthalate NS NS mg/kg Diphenylamine 122-39-4 NS NS 100 NS mg/kg 1.34 D 0.923 D 1.52 D 0.501 D luoranthene 206-44-0 100 500 mg/kg 86-73-7 118-74-1 30 0.33 100 1.2 500 0.0908 JD luorene mg/kg lexachlorobenzene 6 mg/kg Hexachlorobutadiene 87-68-3 NS NS NS mg/kg -lexachlorocyclopentadiene 77-47-4 NS NS NS ma/ka lexachloroethane 67-72-1 NS NS NS mg/kg 0.5 0.607 D Indeno(1,2,3-cd)pyrene 193-39-5 0.316 D 0.444 D 0.199 D 0.5 5.6 mg/kg sophorone 78-59-1 NS NS NS mg/kg Naphthalene 91-20-3 12 100 500 mg/kg 0.059 JD Nitrobenzene 98-95-3 62-75-9 NS NS NS NS mg/kg n-Nitrosodimethylamine NS NS mg/kg -Nitrosodi-N-Propylamine 621-64-7 NS NS NS mg/kg 86-30-6 NS NS NS n-Nitrosodiphenylamine mg/kg Pentachlorophenol 87-86-5 0.8 6.7 6.7 mg/kg 0.747 D 0.661 D 1.29 D 0.375 D 85-01-8 100 100 500 henanthrene ma/ka 108-95-2 0.33 100 500 henol mg/kg 1.28 D 0.786 D 0.985 D 0.412 D Pyrene 129-00-0 100 100 500 mg/kg . Pyridin 110-86-NS NS mg/kg

Soil Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Location SB20 SB21 SB22 SB23 NYSDEC Part 375 Sample Name SB20_1-2 SB21_6-7 SB22_9-10 B23_10-11 NYSDEC Part 375 NYSDEC Part 375 CAS **Restricted Use** 08/18/2021 08/18/2021 08/18/2021 08/18/2021 Sample Date Analyte Unrestricted Use Restricted Use Number Restricted-Sample Depth 6-7 9-10 SCOs Commercial SCOs Residential SCOs Block/Lot Lot 36 Lot 36 Lot 36 Lot 36 Resul Result Pesticides 4,4'-DDD 4,4'-DDE 72-54-8 72-55-9 0.0033 0.0033 13 8.9 92 62 mg/kg mg/kg 50-29-3 309-00-2 0.0033 0.005 7.9 0.097 4,4'-DDT 47 mg/kg 0.68 Aldrin mg/kg 3.4 24 Alpha BHC (Alpha Hexachlorocyclohexane) 319-84-6 0.02 0.48 mg/kg 5103-71-9 Alpha Chlordane 0.094 4.2 ma/ka Alpha Endosulfan 959-98-8 2.4 24 200 mg/kg 319-85-7 Beta Bhc (Beta Hexachlorocyclohexane) 0.036 0.36 3 mg/kg Beta Endosulfan 33213-65-9 2.4 24 200 mg/kg NS NS NS Chlordane (alpha and gamma) 57-74-9 mg/kg Delta Bhc (Delta Hexachlorocyclohexane) 319-86-8 0.04 100 500 mg/kg 60-57-1 Dieldrin 0.005 0.2 1.4 mg/kg 200 89 Endosulfan Sulfate 1031-07-8 2.4 24 11 mg/kg 0.014 72-20-8 Endrin mg/kg Endrin Aldehyde 7421-93-4 NS NS NS mg/kg 53494-70-5 Endrin Ketone NS NS NS ma/ka 0.1 NS 1.3 NS Gamma Bhc (Lindane) 58-89-9 9.2 mg/kg Gamma-Chlordane 5566-34-7 NS mg/kg Heptachlor 76-44-8 0.042 2.1 15 mg/kg NS 1024-57-3 Heptachlor Epoxide NS NS mg/kg Methoxychlor 72-43-5 NS NS NS mg/kg 8001-35-3 NS oxaphene NS NS mg/kg Herbicides 93-76-5 2,4,5-T (Trichlorophenoxyacetic Acid) NS NS NS mg/kg 2,4-D (Dichlorophenoxyacetic Acid) 94-75-7 NS NS NS mg/kg Silvex (2.4.5-Tp 93-72-1 38 100 500 ma/ka Polychlorinated Biphenyl PCB-1016 (Aroclor 1016) 12674-11-2 NS NS NS mg/kg PCB-1221 (Aroclor 1221) 11104-28-2 NS NS NS mg/kg PCB-1232 (Aroclor 1232) 11141-16-5 NS NS NS mg/kg PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248) 53469-21-9 12672-29-6 NS NS NS NS NS NS mg/kg <0.0188 L mg/kg PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260) NS NS NS NS 11097-69-1 NS mg/kg 11096-82-5 NS mg/kg Fotal PCBs 1336-36-3 0.1 1 mg/kg Metals 7429-90-5 7440-36-0 NS NS NS NS NS NS Aluminum mg/kg 8,470 11,700 7,530 9,100 Antimony mg/kg Arsenic 7440-38-2 13 16 16 mg/kg 8 07 8 71 2 18 8 56 7440-39-3 400 400 70.2 Barium 350 mg/kg 202 316 182 Beryllium 7440-41-7 7.2 72 4.3 590 mg/kg 0.151 1 45 7440-43-9 2.5 0.352 Cadmium 9.3 mg/kg 1.36 1.56 7440-70-2 18540-29-9 NS 110 NS 400 Calcium NS mg/kg 8,630 B 30,000 B 9,140 B 9,370 B Chromium, Hexavalent mg/kg Chromium, Total 7440-47-3 NS NS NS mg/kg 18.3 21.1 14.2 14.2 16065-83-1 1500 Chromium. Trivalent 30 180 ma/ka 7440-48-4 7440-50-8 Cobalt NS 50 NS NS mg/kg 8 82 11.7 8.09 13 252 514 75.1 270 Copper 270 27 mg/kg 44.8 57-12-5 7439-89-6 27 NS Cyanide 27 mg/kg NS NS 14,900 12,600 16,100 19,800 ron mg/kg ead 7439-92-1 63 NS 400 1000 mg/kg 555 682 293 **652** 1,010 Magnesium 7439-95-4 2,580 NS 1,720 2,890 NS mg/kg Manganese Mercury 7439-96-5 7439-97-6 1600 2000 10000 mg/kg 213 252 226 301 0.18 0.953 0.81 2.8 mg/kg 2.93 3.8 1.12 30 NS Nickel 7440-02-0 310 310 mg/kg 24.5 24.6 23.7 23.4 7440-09-7 NS 1.400 2.390 1.350 1.390 Potassium NS ma/ka Selenium 7782-49-2 3.9 180 1500 mg/kg Silver 7440-22-4 2 180 1500 mg/kg Sodium 7440-23-5 NS NS NS mg/kg 857 1.590 215 960 7440-28-0 Thallium NS NS NS mg/kg /anadium 7440-62-2 NS NS NS mg/kg 25.1 37.2 19.2 33.5 7440-66-6 109 10000 10000 mg/kg 652 214 291 771 nc General Chemistry olids. Percent SOLID NS NS NS Percent 86. 82.6 87.7 77.4

Soil Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Notes: CAS - Chemical Abstract Service NS - No standard mg/kg = milligram per kilogram NA - Not Analyzed RL - Reporting Limit <RL - Not detected

Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use, Restricted Use Restricted-Residential and NYSDEC Part 375 Restricted Use Commercial Soil Cleanup Objectives (SCO).

Criterion comparisons for 3- & 4-methylphenol (m&p cresol) are provided for reference. Promulgated SCOs are for 3-methylphenol (m-cresol) and 4-methylphenol (p-cresol).

Qualifiers:

- D = The concentration reported is a result of a diluted sample. E = The result is estimated and cannot be accurately reported due to levels encountered or interferences.
- L = The result is estimated and cannot be accurately reported use for levels incontreted on theme represent.
 J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
 U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
 B = The analyte was found in the associated analysis batch blank.

- IO
 - Result exceeds NYSDEC Part 375 Unrestricted Use SCOs.

 10
 - Result exceeds NYSDEC Part 375 Restricted Use Restricted-Residential SCOs.

 10
 - Result exceeds NYSDEC Part 375 Restricted Use Commercial SCOs.

 10
 - Result exceeds NYSDEC Part 375 Restricted Use Commercial SCOs.

Groundwater Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Analyte CAS Number NYSDEC SGVs Location Sample Name 1,1,2-Tetrachloroethane 630-20-6 5 ug/l 1,1,1-2-Tetrachloroethane 71-55-6 5 ug/l 1,1,2-Tetrachloroethane 78-34-5 5 ug/l 1,1,2-Tritzchloroethane 76-13-1 5 ug/l 1,1,2-Tritchloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 76-34-3 5 ug/l 1,1-Dichloroethane 76-35-4 5 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,2-Zritchloroethane 76-35-4 5 ug/l 1,2-Zritchloroethane 75-36-6 5 ug/l 1,2-Dichloroethane 75-36-7 5 ug/l 1,2-Dichloroethane 76-35-4 5 ug/l 1,2-Dichloroethane 76	MW04 MW04_081821 8/18/2021 Lot 36 Result <0.2 U <0.2 U
Analyte CAS Number INTSDEC SGVs Sample Date Block/Lot Volatile Organic Compounds 30-20-6 5 ug/l 1,1,1,2-Tetrachloroethane 71-55-6 5 ug/l 1,1,2-Trichloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1,2-Trichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 87-61-6 5 ug/l	8/18/2021 Lot 36 Result <0.2 U <0.2 U
Number SGVs Block/Lot Unit Unit Unit 1,1,2-Tetrachloroethane 630-20-6 5 ug/l 1,1,1-Trichloroethane 71-55-6 5 ug/l 1,1,2-Tetrachloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-2-Trichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 75-35-4 5 ug/l 1,2-Strichloroethane 75-35-4 5 ug/l	Lot 36 Result <0.2 U <0.2 U
Volatile Organic Compounds Unit 1,1,1,2-Tetrachloroethane 630-20-6 5 ug/l 1,1,1,2-Trichloroethane 71-55-6 5 ug/l 1,1,2-Trichloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1,2-Trichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2,3-Trichloroethane 87-61-6 5 ug/l	Result <0.2 U
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane 630-20-6 5 ug/l 1,1,1-Trichloroethane 71-55-6 5 ug/l 1,1,2-Tetrachloroethane 71-55-6 5 ug/l 1,1,2-Tetrachloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Dichloroethane 87-61-6 5 ug/l	<0.2 U <0.2 U
1,1,2-Tetrachloroethane 630-20-6 5 ug/l 1,1,1-Trichloroethane 71-55-6 5 ug/l 1,1,2-Trichloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-2-Trichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 87-61-6 5 ug/l	<0.2 U <0.2 U
1,1,1-Trichloroethane 71-55-6 5 ug/l 1,1,2,2-Tetrachloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-2-Trichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2,3-Trichloroethane 87-61-6 5 ug/l	<0.2 U <0.2 U
1,1,2,2-Tetrachloroethane 79-34-5 5 ug/l 1,1,2-Trichloroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 75-36-5 ug/l	<0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 5 ug/l 1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 75-35-4 5 ug/l 1,2-Trichloroethane 87-61-6 5 ug/l	<0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U
1,1,2-Trichloroethane 79-00-5 1 ug/l 1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethane 76-35-4 5 ug/l 1,2,3-Trichlorobenzene 87-61-6 5 ug/l	<0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U
1,1-Dichloroethane 75-34-3 5 ug/l 1,1-Dichloroethene 75-35-4 5 ug/l 1,2,3-Trichlorobenzene 87-61-6 5 ug/l	<0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U <0.2 U
1,1-Dichloroethene 75-35-4 5 ug/l 1,2,3-Trichlorobenzene 87-61-6 5 ug/l	<0.2 U <0.2 U <0.2 U <0.2 U
1,2,3-Trichlorobenzene 87-61-6 5 ug/l	<0.2 U <0.2 U <0.2 U
	<0.2 U <0.2 U
	<0.2 U
1,2,3-Trichloropropane 96-18-4 0.04 ug/l	
1,2,4-Trichlorobenzene 120-82-1 5 ug/l	
1,2,4-Trimethylbenzene 95-63-6 5 ug/l	<0.2 U
1,2-Dibromo-3-Chloropropane 96-12-8 0.04 ug/	<0.2 U
1,2-Dibromoethane (Ethylene Dibromide) 106-93-4 0.0006 ug/l	<0.2 U
1,2-Dichlorobenzene 95-50-1 3 ug/l	<0.2 U
1,2-Dichloroethane 107-06-2 0.6 ug/l	<0.2 U
1,2-Dichloropropane 78-87-5 1 ug/l	<0.2 U
1,3,5-Trimethylbenzene (Mesitylene) 108-67-8 5 ug/l	<0.2 U
1,3-Dichlorobenzene 541-73-1 3 ug/l	<0.2 U
1,4-Dichlorobenzene 106-46-7 3 ug/l	<0.2 U
1,4-Dioxane (P-Dioxane) 123-91-1 NS ug/l	<40 U
2-Hexanone (MBK) 591-78-6 50 ug/l	<0.2 U
Acetone 67-64-1 50 ug/l	2.7
Acrolein 107-02-8 5 ug/l	<0.2 U
Acrylonitrile 107-13-1 5 ug/l	<0.2 U
Benzene 71-43-2 1 ug/l	<0.2 U
Bromochloromethane 74-97-5 5 ug/l	<0.2 U
	<0.2 U
	<0.2 U
Bromomethane 74-83-9 5 ug/l	<0.2 U
Carbon Disulfide 75-15-0 60 ug/l	<0.2 U
Carbon Tetrachloride 56-23-5 5 ug/l	<0.2 U
Chlorobenzene 108-90-7 5 ug/l	<0.2 U
Chloroethane 75-00-3 5 ug/l	1.7
Chloroform 67-66-3 7 ug/l	<0.2 U
Chloromethane 74-87-3 5 ug/l	<0.2 U
Cis-1,2-Dichloroethene 156-59-2 5 ug/l	<0.2 U
Cis-1,3-Dichloropropene 10061-01-5 0.4 ug/l	<0.2 U
Cyclohexane 110-82-7 NS ug/l	0.25 J
Dibromochloromethane 124-48-1 50 ug/l	<0.2 U
Dibromomethane 74-95-3 5 ug/l	<0.2 U
Dichlorodifluoromethane 75-71-8 5 ug/l	<0.2 U
Ethylbenzene 100-41-4 5 ug/l	<0.2 U
Hexachlorobutadiene 87-68-3 0.5 ug/l	<0.2 U
Isopropylbenzene (Cumene) 98-82-8 5 ug/l	<0.2 U
M,P-Xylene 179601-23-1 5 ug/l	
Methyl Acetate 79-20-9 NS ug/l	<0.2 U
Methyl Ethyl Ketone (2-Butanone) 78-93-3 50 ug/l	<0.2 U
Methyl Isobutyl Ketone (2-bitalione) 108-10-1 NS ug/l	<0.2 U
Methylcyclohexane 108-87-2 NS ug/l	<0.2 U
Methylene Chloride 75-09-2 5 ug/l	<0.2 0 <1 U
n-Butylenzene 104-51-8 5 ug/l	<0.2 U
	<0.2 U
	<0.2 U
o-Xylene (1,2-Dimethylbenzene) 95-47-6 5 ug/l	<0.2 U <0.2 U
p-Cymene (p-Isopropyltoluene) CYMP NS ug/l	
Sec-Butylbenzene 135-98-8 5 ug/l	<0.2 U
Styrene 100-42-5 5 ug/l	<0.2 U
T-Butylbenzene 98-06-6 5 ug/l	<0.2 U
Tert-Butyl Alcohol 75-65-0 NS ug/l	17
Tert-Butyl Methyl Ether 1634-04-4 10 ug/l	0.45 J
Tetrachloroethene (PCE) 127-18-4 5 ug/l	0.44 J
Toluene 108-88-3 5 ug/l	<0.2 U
Total Xylenes 1330-20-7 5 ug/l	<0.6 U
Trans-1,2-Dichloroethene 156-60-5 5 ug/l	<0.2 U
Trans-1,3-Dichloropropene 10061-02-6 0.4 ug/l	<0.2 U
Trans-1,4-Dichloro-2-Butene 110-57-6 5 ug/l	<0.2 U
Trichloroethene (TCE) 79-01-6 5 ug/l	<0.2 U
Trichlorofluoromethane 75-69-4 5 ug/l	<0.2 U
Vinyl Chloride 75-01-4 2 ug/l	<0.2 U

Groundwater Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

		Location Sample Name	MW04 MW04_081821	
Analyte	CAS	NYSDEC	Sample Date	8/18/2021
Analyte	Number	SGVs	Block/Lot	Lot 36
			Unit	Result
Semivolatile Organic Compounds				
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ug/l	<2.56 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.56 U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	95-50-1 122-66-7	3 0	ug/l ug/l	<2.56 U <2.56 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<2.56 U
1,4-Dichlorobenzene	106-46-7	3	ug/l	<2.56 U
2,3,4,6-Tetrachlorophenol	58-90-2	NS	ug/l	<1.28 U
2,4,5-Trichlorophenol	95-95-4	NS	ug/l	<1.28 U
2,4,6-Trichlorophenol	88-06-2	NS	ug/l	<1.28 U
2,4-Dichlorophenol	120-83-2	1	ug/l	<1.28 U
2,4-Dimethylphenol	105-67-9	1	ug/l	<1.28 U
2,4-Dinitrophenol	51-28-5	1	ug/l	<1.28 U
2,4-Dinitrotoluene	121-14-2	5	ug/l	<2.56 U
2,6-Dinitrotoluene	606-20-2 91-58-7	5 10	ug/l	<2.56 U <2.56 U
2-Chloronaphthalene 2-Chlorophenol	95-57-8	NS	ug/l ug/l	<2.56 U <1.28 U
2-Methylnaphthalene	91-57-6	NS	ug/l	<2.56 U
2-Methylphenol (o-Cresol)	95-48-7	NS	ug/l	<1.28 U
2-Nitroaniline	88-74-4	5	ug/l	<2.56 U
2-Nitrophenol	88-75-5	NS	ug/l	<1.28 U
3 & 4 Methylphenol (m&p Cresol)	65794-96-9	NS	ug/l	<1.28 U
3,3'-Dichlorobenzidine	91-94-1	5	ug/l	<2.56 U
3-Nitroaniline	99-09-2	5	ug/l	<2.56 U
4,6-Dinitro-2-Methylphenol	534-52-1	NS	ug/l	<1.28 U
4-Bromophenyl Phenyl Ether	101-55-3 59-50-7	NS NS	ug/l	<2.56 U <1.28 U
4-Chloro-3-Methylphenol 4-Chloroaniline	106-47-8	5	ug/l ug/l	<2.56 U
4-Chlorophenyl Phenyl Ether	7005-72-3	NS	ug/l	<2.56 U
4-Nitroaniline	100-01-6	5	ug/l	<2.56 U
4-Nitrophenol	100-02-7	NS	ug/l	<1.28 U
Acenaphthene	83-32-9	20	ug/l	<0.0513 U
Acenaphthylene	208-96-8	NS	ug/l	<0.0513 U
Acetophenone	98-86-2	NS	ug/l	<2.56 U
Aniline (Phenylamine, Aminobenzene)	62-53-3	5	ug/l	<2.56 U
Anthracene	120-12-7	50	ug/l	<0.0513 U
Atrazine	1912-24-9	7.5 NS	ug/l	<0.513 U
Benzaldehyde Benzidine	100-52-7 92-87-5	5	ug/l ug/l	<2.56 U <10.3 U
Benzo(a)anthracene	56-55-3	0.002	ug/l	<0.0513 U
Benzo(a)pyrene	50-32-8	0.002	ug/l	<0.0513 U
Benzo(b)fluoranthene	205-99-2	0.002	ug/l	<0.0513 U
Benzo(g,h,i)Perylene	191-24-2	NS	ug/l	<0.0513 U
Benzo(k)fluoranthene	207-08-9	0.002	ug/l	<0.0513 U
Benzoic Acid	65-85-0	NS	ug/l	<25.6 U
Benzyl Alcohol	100-51-6	NS	ug/l	<2.56 U
Benzyl Butyl Phthalate	85-68-7	50	ug/l	<2.56 U
Biphenyl (Diphenyl)	92-52-4	5 5	ug/l	<2.56 U
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether (2-chloroethyl ether)	111-91-1 111-44-4	5	ug/l ug/l	<2.56 U <1.28 U
Bis(2-chloroisopropyl) ether	108-60-1	5	ug/l	<2.56 U
Bis(2-ethylhexyl) phthalate	117-81-7	5	ug/l	0.728 B
Caprolactam	105-60-2	NS	ug/l	<2.56 U
Carbazole	86-74-8	NS	ug/l	<2.56 U
Chrysene	218-01-9	0.002	ug/l	<0.0513 U
Dibenz(a,h)anthracene	53-70-3	NS	ug/l	<0.0513 U
Dibenzofuran	132-64-9	NS	ug/l	<2.56 U
Dibutyl phthalate	84-74-2	50	ug/l	<2.56 U
Diethyl phthalate	84-66-2 131-11-3	50	ug/l	<2.56 U
Dimethyl phthalate Dioctyl phthalate	131-11-3 117-84-0	50 50	ug/l ug/l	<2.56 U <2.56 U
Fluoranthene	206-44-0	50	ug/l	<0.0513 U
Fluorene	86-73-7	50	ug/l	0.421
Hexachlorobenzene	118-74-1	0.04	ug/l	<0.0205 U
Hexachlorobutadiene	87-68-3	0.5	ug/l	<0.513 U
Hexachlorocyclopentadiene	77-47-4	5	ug/l	<2.56 U
Hexachloroethane	67-72-1	5	ug/l	<0.513 U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ug/l	<0.0513 U
Isophorone	78-59-1	50	ug/l	<2.56 U
Naphthalene	91-20-3 98-95-3	10	ug/l	<0.0513 U
Nitrobenzene n-Nitrosodimethylamine		0.4 NS	ug/l	<0.256 U
n-Nitrosodimethylamine n-Nitrosodi-N-Propylamine	62-75-9 621-64-7	NS	ug/l ug/l	<0.513 U <2.56 U
n-Nitrosodiphenylamine	86-30-6	50	ug/l	<2.56 U
Pentachlorophenol	87-86-5	1	ug/l	<0.256 U
Phenanthrene	85-01-8	50	ug/l	<0.0513 U
Phenol	108-95-2	1	ug/l	<1.28 U
Pyrene	129-00-0	50	ug/l	<0.0513 U
Pyridine	110-86-1	50	ug/l	<2.56 U

Groundwater Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

			Location	MW04
			Sample Name	MW04_081821
Analyte	CAS	NYSDEC	Sample Date	8/18/2021
	Number	SGVs	Block/Lot	Lot 36
			Unit	Result
Metals - Dissolved				
Aluminum	7429-90-5	NS	ug/l	<55.6 U
Antimony	7440-36-0	3	ug/l	<1.11 U
Arsenic	7440-38-2	25	ug/l	20.1
Barium	7440-39-3	1000	ug/l	759
Bervllium	7440-41-7	3	ug/l	<0.333 U
Cadmium	7440-43-9	5	ug/l	<0.556 U
Calcium	7440-70-2	NS	ug/l	315,000 B
Chromium, Total	7440-47-3	50	ug/l	<5.56 U
Cobalt	7440-48-4	NS	ug/l	<4.44 U
Copper	7440-50-8	200	ug/l	<22.2 U
Iron	7439-89-6	300	ug/l	56,900
Lead	7439-92-1	25	ug/l	<5.56 U
Magnesium	7439-95-4	35000	ug/l	66.200
Manganese	7439-96-5	300	ug/l	1,570
Mercury	7439-97-6	0.7	ug/l	<0.2 U
Nickel	7440-02-0	100	ug/l	<11.1 U
Potassium	7440-02-0	NS	ug/l	62,100
Selenium	7782-49-2	10	ug/l	22.6 B
Silver	7440-22-4	50	ug/l	<5.56 U
Sodium	7440-22-4	20000	ug/l	1.300.000
Thallium	7440-23-5	0.5	ug/l	<1.11 U
Vanadium	7440-28-0	NS	ug/l	<11.1 U
Zinc	7440-66-6	2000	ug/l	119
Metals - Total	7440-00-0	2000	ug/i	119
Aluminum	7429-90-5	NS	ua/l	<100 U
Antimony	7440-36-0	3	ug/l	<1.11 U
Arsenic	7440-38-2	25	ug/l	11
Barium	7440-39-3	1000	ug/l	731
Bervllium	7440-41-7	3	ug/l	<0.333 U
Cadmium	7440-43-9	5	ug/l	<0.556 U
Calcium	7440-70-2	NS	ug/l	302,000 B
Chromium, Total	7440-47-3	50	ug/l	<10 U
Cobalt	7440-48-4	NS	ug/l	
Copper	7440-50-8	200	ug/l	
Iron	7439-89-6	300	ug/l	56,500
Lead	7439-92-1	25	ug/l	<10 U
Magnesium	7439-95-4	35000	ug/l	65,100
Manganese	7439-96-5	300		1.540
Mercury	7439-96-5	0.7	ug/l ug/l	<0.2 U
Nickel	7439-97-6	100	ug/l	<0.2 U <20 U
Potassium	7440-02-0	NS	ug/l	62.700
Selenium	7782-49-2	10		
Silver	7782-49-2 7440-22-4	10	ug/l	<1.11 U <10 U
Silver Sodium		20000	ug/l	
	7440-23-5		ug/l	1,290,000
Thallium	7440-28-0	0.5	ug/l	<1.11 U
Vanadium	7440-62-2	NS	ug/l	<20 U
Zinc	7440-66-6	2000	ug/l	137

Groundwater Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Notes:

CAS - Chemical Abstract Service NS - No standard ug/I = micrograms per liter NA - Not Analyzed RL - Reporting Limit <RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

J = The analyte was detected above the Method Detection Limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration.

U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

 $\mathsf{B}=\mathsf{The}$ analyte was found in the associated analysis batch blank.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

Soil Vapor Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

			Location	SV04
		NYSDOH Decision	Sample Name	SV04_081821
Analyte	CAS	Matrices Minimum	Sample Date	8/18/2021
Analyte	Number		Sample Type	SV
		Concentrations	Block/Lot	Lot 36
			Unit	Result
Volatile Organic Compounds				
1,1,1,2-Tetrachloroethane	630-20-6	NS	ug/m3	<5.9 U
1,1,1-Trichloroethane	71-55-6	100	ug/m3	43 D
1,1,2,2-Tetrachloroethane	79-34-5	NS	ug/m3	<5.9 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	NS	ug/m3	<6.6 U
1,1,2-Trichloroethane	79-00-5	NS	ug/m3	<4.7 U
1,1-Dichloroethane	75-34-3	NS	ug/m3	<3.5 U
1,1-Dichloroethene	75-35-4	6	ug/m3	<0.85 U
1,2,4-Trichlorobenzene	120-82-1	NS	ug/m3	<6.4 U
1,2,4-Trimethylbenzene	95-63-6	NS	ug/m3	9.3 D
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	NS	ug/m3	<6.6 U
1,2-Dichlorobenzene	95-50-1	NS	ug/m3	<5.2 U
1,2-Dichloroethane	107-06-2	NS	ug/m3	<3.5 U
1,2-Dichloropropane	78-87-5	NS	ug/m3	<4 U
1,2-Dichlorotetrafluoroethane	76-14-2	NS	ug/m3	<6 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	NS	ug/m3	<4.2 U
1,3-Butadiene	106-99-0	NS	ug/m3	<5.7 U
1,3-Dichlorobenzene	541-73-1	NS	ug/m3	<5.2 U
1,3-Dichloropropane	142-28-9	NS	ug/m3	<4 U
1,4-Dichlorobenzene	106-46-7	NS	ug/m3	<5.2 U
1,4-Dioxane (P-Dioxane)	123-91-1	NS	ug/m3	<6.2 U
2-Hexanone (MBK)	591-78-6	NS	ug/m3	12 D
4-Ethyltoluene	622-96-8	NS	ug/m3	6.8 D
Acetone	67-64-1	NS	ug/m3	480 D
Acrylonitrile	107-13-1	NS	ug/m3	<1.9 U
Allyl Chloride (3-Chloropropene)	107-05-1	NS	ug/m3	<13 U
Benzene	71-43-2	NS	ug/m3	2.8 D
Benzyl Chloride	100-44-7	NS	ug/m3	<4.5 U
Bromodichloromethane	75-27-4	NS	ug/m3	<5.8 U
Bromoethene	593-60-2	NS	ug/m3	<3.8 U
Bromoform	75-25-2	NS	ug/m3	<8.9 U
Bromomethane	75-25-2 74-83-9	NS	-	<8.9 U <3.3 U
Carbon Disulfide	74-63-9 75-15-0	NS	ug/m3	<3.3 U <2.7 U
			ug/m3	
Carbon Tetrachloride Chlorobenzene	56-23-5	6	ug/m3	<1.4 U
	108-90-7	NS	ug/m3	<4 U
Chloroethane	75-00-3	NS	ug/m3	<2.3 U
Chloroform	67-66-3	NS	ug/m3	7.1 D
	74-87-3	NS	ug/m3	<1.8 U
Cis-1,2-Dichloroethene	156-59-2	6	ug/m3	<0.85 U
Cis-1,3-Dichloropropene	10061-01-5	NS	ug/m3	<3.9 U
Cyclohexane	110-82-7	NS	ug/m3	<3 U
Dibromochloromethane	124-48-1	NS	ug/m3	<7.3 U
Dichlorodifluoromethane	75-71-8	NS	ug/m3	<4.3 U
Ethyl Acetate	141-78-6	NS	ug/m3	<6.2 U
Ethylbenzene	100-41-4	NS	ug/m3	<3.7 U
Hexachlorobutadiene	87-68-3	NS	ug/m3	<9.2 U
Isopropanol	67-63-0	NS	ug/m3	5.3 D
M,P-Xylene	179601-23-1	NS	ug/m3	16 D
Methyl Ethyl Ketone (2-Butanone)	78-93-3	NS	ug/m3	31 D
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/m3	<3.5 U
Methyl Methacrylate	80-62-6	NS	ug/m3	<3.5 U
Methylene Chloride	75-09-2	100	ug/m3	13 D
n-Heptane	142-82-5	NS	ug/m3	4.6 D
n-Hexane	110-54-3	NS	ug/m3	6.7 D
o-Xylene (1,2-Dimethylbenzene)	95-47-6	NS	ug/m3	6 D
Propylene	115-07-1	NS	ug/m3	22 D
Styrene	100-42-5	NS	ug/m3	<3.7 U
Tert-Butyl Methyl Ether	1634-04-4	NS	ug/m3	<3.1 U
Tetrachloroethene (PCE)	127-18-4	100	ug/m3	1,800 D
Tetrahydrofuran	109-99-9	NS	ug/m3	<5.1 U
Toluene	108-88-3	NS	ug/m3	14 D
Trans-1,2-Dichloroethene	156-60-5	NS	ug/m3	<3.4 U
Trans-1,3-Dichloropropene	10061-02-6	NS	ug/m3	<3.9 U
Trichloroethene (TCE)	79-01-6	6	ug/m3	3.7 D
Trichlorofluoromethane	75-69-4	NS	ug/m3	<4.8 U
Vinyl Acetate	108-05-4	NS	ug/m3	<3 U
Vinyl Chloride	75-01-4	6	ug/m3	<3 U <1.1 U

\\angan.com\data\\YYC\data1\170758101\Project Data_Discipline\Environmental\Reports\BCP Application\Attachment D - Property's Environmental History\Tables\Table 3 - SV.xlsx

Soil Vapor Sample Analytical Results

224 3rd Avenue Brooklyn, New York Langan Project No.: 170758101

Notes: AA = Ambient Air SV = Soil Vapor CAS - Chemical Abstract Service NS - No standard ug/m3 = micrograms per cubic meter NA - Not Analyzed RL - Reporting Limit <RL - Not detected Soil vapor sample analtical results are

Soil vapor sample analtical results are compared to the minimum soil vapor concentrations at which mitigation is recommended as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

Ambient air sample analytical results are shown for reference only.

Qualifiers:

D = The concentration reported is a result of a diluted sample.

U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Exceedance Summary:

10 - Result exceeds NYSDOH Decision Matrices Minimum Concentrations

	NYSDEC Part 375.6	NYDEC Part 375.6	NYDEC Part 375.6 Restricted	SB1		SB	2	SB4		SB5	5	SB	6	SB	7	SB	3
COMPOUND	Unrestricted Use Soil Cleanup	Residential Soil Cleanup	Residential Soil Cleanup	(0-2)	')	(3-5	,	(1-3')		(1-3'	,	(0-2	·	(3-5		(2-4	,
	Objectives	Objectives*	Objectives*	4/25/20		4/25/2		4/25/2022	2	4/25/20		4/25/2		4/25/2		4/25/2	
	µg/Kg	µg/Kg	µg/Kg	μg/Kg Result	g RL	μg/K Result	g RL	μg/Kg Result I	RL	μg/Kថ Result	g RL	μg/K Result	g RL	µg/K Result	.g RL	μg/K Result	.g RL
1,1,1,2-Tetrachloroethane				< 15	15	< 57	57	< 8.1 8	8.1	< 9.4	9.4	< 37	37	< 8.6	8.6	< 37	37
1,1,1-Trichloroethane	680	100,000	100,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane				< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
1,1-Dichloroethane	270	19,000	26,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,1-Dichloroethene	330	100,000	100,000	< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,1-Dichloropropene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
1,2,4-Trichlorobenzene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,2,4-Trimethylbenzene	3,600	47,000	52,000	< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,2-Dibromo-3-chloropropane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,2-Dibromoethane 1,2-Dichlorobenzene	1,100	100,000	100,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
1,2-Dichloroethane	20	2,300	3,100	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,2-Dichloropropane				< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,3,5-Trimethylbenzene	8,400	47,000	52,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
1,3-Dichlorobenzene 1,3-Dichloropropane	2,400	17,000	49,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
1,4-Dichlorobenzene	1,800	9,800	13,000	< 15	15	< 14	14		8.1 8.1	< 9.4	9.4 9.4	< 9.3	9.3	< 8.6 < 8.6	8.6	< 9.3	9.3
2,2-Dichloropropane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
2-Chlorotoluene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
2-Hexanone				< 73	73	< 72	72		40 9 1	< 47	47	< 47	47	< 43	43	< 46	46
2-Isopropyltoluene 4-Chlorotoluene				< 15 < 15	15 15	< 14	14 14		8.1 8.1	< 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
4-Methyl-2-pentanone				< 73	73	< 72	72		40	< 47	47	< 47	47	< 43	43	< 46	46
Acetone	50	100,000	100,000	< 50	50	21	50	10	40	< 47	47	11	47	< 43	43	< 46	46
Acrylonitrile				< 58	58	< 29	29	< 16	16	< 19	19	< 37	37	< 35	35	< 37	37
Benzene	60	2,900	4,800	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Bromobenzene Bromochloromethane				< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
Bromodichloromethane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Bromoform				< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Bromomethane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Carbon Disulfide Carbon Tetrachloride	760	1,400	2,400	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
Chlorobenzene	1,100	100,000	100,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Chloroethane				< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Chloroform	370	10,000	49,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Chloromethane cis-1,2-Dichloroethene	250	59,000	100,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
cis-1,3-Dichloropropene	230	59,000	100,000	< 15	15	< 14	14		8.1 8.1	< 9.4	9.4 9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Dibromochloromethane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Dibromomethane				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Dichlorodifluoromethane	1.000	20.000	41.000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Ethylbenzene Hexachlorobutadiene	1,000	30,000	41,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
Isopropylbenzene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
m&p-Xylene				< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Methyl Ethyl Ketone	120	100,000	100,000	< 87	87	< 86	86		49	< 57	57	< 56	56	< 52	52	< 56	56
Methyl t-butyl ether (MTBE) Methylene chloride	930 50	62,000 51,000	100,000 100,000	< 29 < 15	29 15	< 29 < 14	29 14		16 8.1	< 19 < 9.4	19 9.4	< 19 < 9.3	19 9.3	< 17 < 8.6	17 8.6	< 19 < 9.3	19 9.3
Naphthalene	12,000	100,000	100,000	< 15	15	670	660		8.1 8.1	< 9.4	9.4 9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
n-Butylbenzene	12,000		100,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
n-Propylbenzene	3,900	100,000	100,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
o-Xylene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
p-Isopropyltoluene sec-Butylbenzene	11,000	100,000	100,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
Styrene	11,000	100,000	100,000	< 15	15	< 14	14		8.1	< 9.4	9.4 9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
tert-Butylbenzene	5,900	100,000	100,000	< 15	15	< 14	14	< 8.1 8	8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Tetrachloroethene	1,300	5,500	19,000	< 15	15	1,700	840		610	1,000	940	18,000	1,400	6.6	8.6	8.1	9.3
Tetrahydrofuran (THF)	700	100.000	100,000	< 29	29	< 29	29		16	< 19	19	< 19	19	< 17	17	< 19	19
Toluene trans-1,2-Dichloroethene	190	100,000 100,000	100,000	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
trans-1,3-Dichloropropene				< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
trans-1,4-dichloro-2-butene				< 29	29	< 29	29		16	< 19	19	< 19	19	< 17	17	< 19	19
Trichloroethene	470	10,000	21,000	< 15	15	< 14	14		8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Trichlorofluoromethane Trichlorotrifluoroethane				< 15	15	< 14	14		8.1 8.1	< 9.4	9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Vinyl chloride	20	210	900	< 15 < 15	15 15	< 14 < 14	14 14		8.1 8.1	< 9.4 < 9.4	9.4 9.4	< 9.3 < 9.3	9.3 9.3	< 8.6 < 8.6	8.6 8.6	< 9.3 < 9.3	9.3 9.3
Acrolein	20	210		< 15	15	< 14	14	11	o. 1 8.1	< 9.4	9.4 9.4	< 9.3	9.3	< 8.6	8.6	< 9.3	9.3
Tert-butyl alcohol				< 290	290	< 290	290		160	< 190	190	< 190	190	< 170	170	< 190	190
1,4-Dioxane				< 120	120	< 110	110		100	< 100	100	< 100	100	< 100	100	< 100	100
Total CVOC Concentration				0.0		1700 0.0		650.0 0.0		1000		18000 0.0		6.6 0.0		8.1 0.0	
Total BTEX Concentration Total VOCs Concentration				0.0		2,391		660.0		1,000		0.0 18,01		6.6		0.0 8.1	

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Reporting Limit Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value bsg = below surface grade. bcg = below cellar grade

Table 1 224 3rd Avenue, Brooklyn, NY Soil Analytical Results Volatile Organic Compounds

COMPOUND1,2,4,5-Tetrachlorobenzene1,2,4-Trichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrotoluene	Unrestricted Use Soil Cleanup Objectives µg/Kg 1,100 2,400 1,800 1,800	Residential Soil Cleanup Objectives* µg/Kg 100,000 17,000 9,800	Restricted Residential Soil Cleanup Objectives* <u>µg/Kg</u> 100,000 49,000 13,000	(0-2 4/25/20 µg/K Result < 270 < 270 < 270 < 270 < 270 < 270 < 270	022 RL 270 270 270 270 270	(3-5 4/25/20 µg/Kq Result < 250 < 250	022	(1-3 4/25/2 µg/К Result	022	(1-3' 4/25/20 μg/Κο) 22	(0-2 4/25/2 µg/К	022	(3-5 4/25/2 µg/К	022	(2-4 4/25/2 µg/К	-
1,2,4-Trichlorobenzene1,2-Dichlorobenzene1,2-Diphenylhydrazine1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrotoluene	µg/Kg 1,100 2,400	μg/Kg 100,000 17,000	Objectives* μg/Kg 100,000 49,000	μg/Kg Result < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270	RL 270 270 270 270 270	μg/K Result < 250 < 250	g RL	μg/K	g								022
1,2,4-Trichlorobenzene1,2-Dichlorobenzene1,2-Diphenylhydrazine1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol	1,100 2,400	100,000 17,000	100,000 49,000	Result < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270 < 270	RL 270 270 270 270 270	Result < 250 < 250	RL		-	P-9/1-3	2						a
1,2,4-Trichlorobenzene1,2-Dichlorobenzene1,2-Diphenylhydrazine1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrotoluene	2,400	17,000	49,000	< 270 < 270 < 270 < 270 < 270 < 270	270 270 270	< 250	250		1.6	Result	RL	Result	RL	Result	RL	Result	RL
1,2-Dichlorobenzene1,2-Diphenylhydrazine1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol	2,400	17,000	49,000	< 270 < 270 < 270 < 270 < 270	270 270			< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
1,2-Diphenylhydrazine1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol	2,400	17,000	49,000	< 270 < 270 < 270	270		250	< 280	280	< 290	290	< 270	270 270	< 300	300 300	< 260	260
1,3-Dichlorobenzene1,4-Dichlorobenzene2,2'-Oxybis(1-Chloropropane)2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol	,	,	,	< 270 < 270		< 250 < 250	250 250	< 280 < 280	280 280	< 290 < 290	290 290	< 270 < 270	270	< 300 < 300	300	< 260 < 260	260 260
2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol	1,800	9,800	13,000		270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene				070	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene				< 270 < 190	270 190	< 250 < 180	250 180	< 280 < 200	280 200	< 290 < 210	290 210	< 270 < 190	270 190	< 300 < 210	300 210	< 260 < 190	260 190
2,4-Dinitrophenol 2,4-Dinitrotoluene				< 190	190	< 180	180	< 200	200	< 210	210	< 190	190	< 210	210	< 190	190
2,4-Dinitrotoluene				1,400	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
· · ·				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2,6-Dinitrotoluene				< 190 < 190	190 190	< 180 < 180	180 180	< 200 < 200	200 200	< 210 < 210	210 210	< 190 < 190	190 190	< 210 < 210	210 210	< 190 < 190	190 190
2-Chloronaphthalene				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2-Chlorophenol				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
2-Methylnaphthalene		400.000	400.000	20,000	2,700	< 250	250	< 280	280	< 290	290	140	270	< 300	300	< 260	260
2-Methylphenol (o-cresol) 2-Nitroaniline	330	100,000	100,000	1,100 < 270	270 270	< 250 < 250	250 250	< 280 < 280	280 280	< 290 < 290	290 290	< 270 < 270	270 270	< 300 < 300	300 300	< 260 < 260	260 260
2-Nitroaniline 2-Nitrophenol				< 270 < 270	270 270	< 250 < 250	250 250	< 280 < 280	280 280	< 290 < 290	290 290	< 270	270 270	< 300 < 300	300 300	< 260 < 260	260 260
3&4-Methylphenol (m&p-cresol)				2,900	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
3,3'-Dichlorobenzidine				< 190	190	< 180	180	< 200	200	< 210	210	< 190	190	< 210	210	< 190	190
3-Nitroaniline				< 390	390	< 360	360	< 400	400	< 420	420	< 390	390	< 420	420	< 370	370
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether				< 230 < 270	230 270	< 220 < 250	220 250	< 240 < 280	240 280	< 250 < 290	250 290	< 230 < 270	230 270	< 250 < 300	250 300	< 220 < 260	220 260
4-Chloro-3-methylphenol				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
4-Chloroaniline				< 310	310	< 290	290	< 320	320	< 340	340	< 310	310	< 340	340	< 300	300
4-Chlorophenyl phenyl ether				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
4-Nitroaniline 4-Nitrophenol				< 390 < 390	390 390	< 360 < 360	360 360	< 400 < 400	400 400	< 420 < 420	420 420	< 390 < 390	390 390	< 420 < 420	420 420	< 370 < 370	370 370
Acenaphthene	20,000	100,000	100,000	< 390 41,000	2,700	< 250	250	350	280	< 420 260	290	380	270	< 300	300	< 260	260
Acenaphthylene	100,000	100,000	100,000	4,700	270	< 250	250	< 280	280	< 290	290	200	270	< 300	300	< 260	260
Acetophenone				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Aniline Anthracene	100,000	100,000	100,000	< 310 76,000	310	< 290 < 250	290	< 320 620	320	< 340 640	340	< 310 1,200	310	< 340	340	< 300	300
Benz(a)anthracene	1,000	1,000	1,000	100,000	27,000 27,000	300	250 250	1,600	280 280	2,200	290 290	4,300	270 270	< 300 < 300	300 300	< 260 < 260	260 260
Benzidine				< 390	390	< 360	360	< 400	400	< 420	420	< 390	390	< 420	420	< 370	370
Benzo(a)pyrene	1,000	1,000	1,000	88,000	19,000	270	180	1,600	200	2,300	210	4,700	190	< 210	210	< 190	190
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000 100,000	1,000 100,000	1,000 100,000	79,000 51,000	27,000 2,700	220 150	250 250	1,500 980	280 280	1,900 1,500	290 290	4,200 3,400	270 270	< 300 < 300	300 300	< 260 < 260	260 260
Benzo(k)fluoranthene	800	100,000	3,900	53,000	2,700	190	250	1,200	280	1,300	290	3,400 3,100	270	< 300	300	< 260	260
Benzoic acid				< 1900	1,900	< 1800	1,800	< 2000	2,000	< 2100	2,100	< 1900	1,900	< 2100	2,100	< 1900	1,900
Benzyl butyl phthalate				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Bis(2-chloroethoxy)methane				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate				< 190 < 270	190 270	< 180 < 250	180 250	< 200 < 280	200 280	< 210 < 290	210 290	< 190 < 270	190 270	< 210 < 300	210 300	< 190 < 260	190 260
Carbazole				32,000	1,900	< 180	180	290	200	260	210	380	190	< 210	210	< 190	190
Chrysene	1,000	1,000	3,900	110,000	27,000	310	250	1,800	280	2,200	290	4,800	270	< 300	300	< 260	260
Dibenz(a,h)anthracene	330	330	330	11,000	1,900	< 180	180	160	200	230	210	550	190	< 210	210	< 190	190
Dibenzofuran Diethyl phthalate	7,000		59,000	36,000 < 270	2,700 270	< 250 < 250	250 250	230 < 280	280 280	180 < 290	290 290	200 < 270	270 270	< 300 < 300	300 300	< 260 < 260	260 260
Dimethylphthalate				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Di-n-butylphthalate				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Di-n-octylphthalate	100.005		100.000	< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Fluoranthene	100,000 30,000	100,000 100,000	100,000 100,000	<u>310,000</u> 37,000	27,000	680	250	4,200 240	280	5,000 180	290	9,000 300	2,700	< 300	300	< 260	260
Fluorene Hexachlorobenzene	30,000	100,000 330	100,000	37,000 < 190	2,700 190	< 250 < 180	250 180	240 < 200	280 200	180 < 210	290 210	300 < 190	270 190	< 300 < 210	300 210	< 260 < 190	260 190
Hexachlorobutadiene				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Hexachlorocyclopentadiene				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Hexachloroethane	E00	E00	500	< 190	190	< 180	180	< 200	200	< 210	210	< 190	190	< 210	210	< 190	190
Indeno(1,2,3-cd)pyrene	500	500	500	60,000 < 190	2,700 190	190 < 180	250 180	1,100	280 200	1,600	290 210	3,200 < 190	270 190	< 300 < 210	300 210	< 260 < 190	260 190
Naphthalene	12,000	100,000	100,000	65,000	2,700	< 250	250	210	280	260	290	270	270	< 300	300	< 260	260
Nitrobenzene				< 190	190	< 180	180	< 200	200	< 210	210	< 190	190	< 210	210	< 190	190
N-Nitrosodimethylamine				< 270	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine				< 190 < 270	190 270	< 180 < 250	180 250	< 200 < 280	200 280	< 210 < 290	210 290	< 190 < 270	190 270	< 210 < 300	210 300	< 190 < 260	190 260
Pentachloronitrobenzene				< 270 < 270	270	< 250	250 250	< 280	280	< 290 < 290	290	< 270	270	< 300	300	< 260	260
Pentachlorophenol	800	2,400	6,700	< 230	230	< 220	220	< 240	240	< 250	250	< 230	230	< 250	250	< 220	220
Phenanthrene	100,000	100,000	100,000	410,000	27,000	390	250	3,800	280	3,300	290	6,700	270	< 300	300	< 260	260
Phenol	330	100,000	100,000	1,500	270	< 250	250	< 280	280	< 290	290	< 270	270	< 300	300	< 260	260
Pyrene Pyridine	100,000	100,000	100,000	260,000 < 270	27,000 270	630 < 250	250 250	3,600 < 280	280 280	4,700 < 290	290 290	9,100 < 270	2,700 270	< 300 < 300	300 300	< 260 < 260	260 260
Total SVOCs				1,850,6		3,330		23,48		28,410		56,12		0.0		0.0	

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Reporting Limit Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value bsg = below surface grade.

bcg = below cellar grade

	NYSDEC Part 375.6	NYDEC Part 375.6	NYDEC Part 375.6 Restricted	SB	1	SB	2	SB4	4	SB	5	SB	6	SB	7	SB8	3
COMPOUND	Unrestricted Use Soil Cleanup	Residential Soil Cleanup	Residential Soil Cleanup	(0-2	')	(3-5)	(1-3	')	(1-3')	(0-2	')	(3-5	')	(2-4')
	Objectives	Objectives*	Objectives*	4/25/2	022	4/25/2	022	4/25/2	022	4/25/20	022	4/25/2	022	4/25/2	022	4/25/20	022
				mg/K	g	mg/K	g	mg/K	(g	mg/K	g	mg/K	(g	mg/K	ίg	mg/K	g
	mg/Kg	mg/Kg	mg/Kg	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Arsenic	13	16	16	25.8	0.83	3.66	0.75	18.4	0.74	20.8	0.80	10.4	0.69	10.5	0.93	3.67	0.73
Barium	350	350	400	248	0.8	68.1	0.8	181	0.7	1,380	0.8	241	0.7	174	0.9	55.4	0.7
Cadmium	2.5	2.5	4.3	1.79	0.41	0.66	0.38	2.7	0.37	19	0.40	1.07	0.35	0.59	0.46	0.69	0.36
Chromium	30	36	180	27.5	0.41	13.2	0.38	19.5	0.37	28.9	0.40	18.4	0.35	13	0.46	18.1	0.36
Lead	63	400	400	1,080	83	339	0.8	1,220	74	4,440	80	538	0.7	472	0.9	96.5	0.7
Mercury	0.18	0.81	0.81	5.15	0.29	1.86	0.13	2.27	0.15	7.12	0.30	2.07	0.15	0.99	0.03	0.49	0.03
Selenium	3.9	36	180	< 1.7	1.7	< 1.5	1.5	7.1	1.5	< 1.6	1.6	< 1.4	1.4	< 1.9	1.9	< 1.5	1.5
Silver	2	36	180	< 0.41	0.41	< 0.38	0.38	< 0.37	0.37	0.78	0.40	< 0.35	0.35	< 0.46	0.46	< 0.36	0.36

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives RL - Reporting Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value bsg = below surface grade.

bcg = below cellar grade

Table 3 224 3rd Avenue, Brooklyn, NY Soil Analytical Results Metals

Table 4 224 3rd Avenue, Brooklyn, NY Groundwater Analytical Results VOCs

	VOCs						
	NYSDEC	GW	1	GW	2	GW	3
Compound	Groundwater Quality Standards	4/25/20	022	4/25/2	022	4/25/2	022
	-	µg/L	-	µg/l		µg/L	1
1,1,1-Trichloroethane	μg/L 5	Result < 5.0	RL 5.0	Result < 5.0	RL 5.0	Result < 5.0	RL 5.0
1,1,2,2-Tetrachloroethane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,1,2-Trichloroethane	1	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0
1,1-Dichloroethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
1,1-Dichloroethene 1,1-Dichloropropene	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
1,2,3-Trichlorobenzene		< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2,3-Trichloropropane	0.04	< 0.25	0.25	< 0.25	0.25	< 0.50	0.50
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	< 1.0 0.3	1.0 1.0	< 1.0 0.45	1.0 1.0	< 2.0 0.6	2.0
1,2-Dibromo-3-chloropropane	0.04	< 0.50	0.50	< 0.50	0.50	< 1.0	1.0
1,2-Dibromoethane	0.0006	< 0.25	0.25	< 0.25	0.25	< 0.50	0.50
1,2-Dichlorobenzene	0.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2-Dichloroethane 1,2-Dichloropropane	0.6	< 0.60 < 1.0	0.60	< 0.60 < 1.0	0.60	< 1.0 < 1.0	1.0 1.0
1,3,5-Trimethylbenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,3-Dichlorobenzene	3	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,3-Dichloropropane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,4-Dichlorobenzene 2,2-Dichloropropane	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
2-Chlorotoluene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
2-Hexanone	50	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
2-Isopropyltoluene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
4-Chlorotoluene 4-Methyl-2-pentanone	5	< 1.0 < 2.5	1.0 2.5	< 1.0 < 2.5	1.0 2.5	< 2.0 < 5.0	2.0 5.0
Acetone	50	3.6	5.0	5.1	5.0	7.5	10
Benzene	1	< 0.70	0.70	< 0.70	0.70	< 0.70	0.70
Bromobenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Bromochloromethane Bromodichloromethane	5	< 1.0	1.0 1.0	< 1.0	1.0	< 2.0	2.0 2.0
Bromodichloromethane Bromoform	50 50	< 1.0 < 5.0	5.0	< 1.0 < 5.0	1.0 5.0	< 2.0 < 10	2.0
Bromomethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Carbon Disulfide		< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Carbon tetrachloride	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Chlorobenzene Chloroethane	5	< 5.0 < 5.0	5.0 5.0	< 5.0 < 5.0	5.0 5.0	< 5.0 < 5.0	5.0 5.0
Chloroform	7	2.2	5.0	1.3	5.0	< 7.0	7.0
Chloromethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
cis-1,2-Dichloroethene	5 0.4	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
cis-1,3-Dichloropropene Dibromochloromethane	50	< 0.40 < 1.0	0.40	< 0.40	0.40	< 0.50 < 2.0	0.50 2.0
Dibromomethane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Dichlorodifluoromethane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Ethylbenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Hexachlorobutadiene Isopropylbenzene	0.5	< 0.50 < 1.0	0.50	< 0.50 < 1.0	0.50 1.0	< 0.50 < 2.0	0.50 2.0
m&p-Xylene	0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Methyl ethyl ketone	50	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
Methyl t-butyl ether (MTBE)		< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Methylene chloride Naphthalene	5 10	< 3.0 1.1	3.0 1.0	< 3.0 2	3.0 1.0	< 5.0 2.2	5.0 2.0
n-Butylbenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
n-Propylbenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
p-Isopropyltoluene sec-Butylbenzene	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
Styrene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
tert-Butylbenzene	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Tetrachloroethene	5	1.8	1.0	2.7	1.0	2.8	2.0
Tetrahydrofuran (THF) Toluene	50 5	< 5.0 0.41	5.0 1.0	< 5.0 0.6	5.0 1.0	< 10 0.88	10 2.0
trans-1,2-Dichloroethene	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
trans-1,3-Dichloropropene	0.4	< 0.40	0.40	< 0.40	0.40	< 0.50	0.50
trans-1,4-dichloro-2-butene	5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
Trichloroethene Trichlorofluoromethane	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
Trichlorotrifluoroethane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Vinyl chloride	2	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,1,1,2-Tetrachloroethane	5	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Acrolein	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Acrylonitrile	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0

Notes:

RL - Reporting Limit

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Bold Only - Indicates concentration above reporting limit but below the NYSDEC Groundwater Standard

Table 5 224 3rd Avenue, Brooklyn, NY Soil Vapor Analytical Results Volatile Organic Compounds - VOCs

	NYSDOH	NYSDOH Soil Outdoor	SV	1	sv	2	sva	3
COMPOUNDS	Maximum Sub- Slab Value	Background Levels	4/25/2 µg/m		4/25/2 μg/m		4/25/20 μg/m	
	(µg/m ³) ^(a)	(µg/m ³) ^(b)	Result	RL	Result	RL	Result	RL
1,1,1,2-Tetrachloroethane			< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,1,1-Trichloroethane	100	<2.0 - 2.8	< 1.00	1.00	22.1	1.00	< 5.00	5.00
1,1,2,2-Tetrachloroethane		<1.5	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,1,2-Trichloroethane 1,1-Dichloroethane		<1.0	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,1-Dichloroethene		<1.0 <1.0	< 1.00 < 0.20	1.00 0.20	< 1.00 < 0.20	1.00 0.20	< 5.02 < 1.00	5.02 1.00
1,2,4-Trichlorobenzene		NA	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,2,4-Trimethylbenzene		<1.0	2.14	1.00	1.84	1.00	< 5.01	5.01
1,2-Dibromoethane(EDB)		<1.5	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,2-Dichlorobenzene		<2.0	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,2-Dichloroethane		<1.0	< 1.00	1.00	< 1.00	1.00	< 5.02	5.02
1,2-dichloropropane 1,2-Dichlorotetrafluoroethane			< 1.00	1.00	< 1.00	1.00	< 4.99	4.99
1,3,5-Trimethylbenzene		<1.0	< 1.00 < 1.00	1.00	< 1.00 < 1.00	1.00	< 5.00 < 5.01	5.00 5.01
1,3-Butadiene		NA	5	1.00	2.3	1.00	< 5.00	5.00
1,3-Dichlorobenzene		<2.0	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,4-Dichlorobenzene		NA	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
1,4-Dioxane			< 1.00	1.00	< 1.00	1.00	< 5.01	5.01
2-Hexanone(MBK)			< 1.00	1.00	< 1.00	1.00	< 4.99	4.99
4-Ethyltoluene		NA	3.4	1.00	2.91	1.00	< 5.01	5.01
4-Isopropyltoluene			< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
4-Methyl-2-pentanone(MIBK) Acetone		NA	3.25 101	1.00 5.01	6.96 80.7	1.00	< 4.99 368	4.99 5.01
Acrylonitrile		NA NA	< 1.00	1.00	< 1.00	1.00	< 5.01	5.01
Benzene		<1.6 - 4.7	12.1	1.00	18.9	1.00	< 5.01	5.01
Benzyl chloride		NA	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
Bromodichloromethane		<5.0	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
Bromoform		<1.0	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
Bromomethane		<1.0	< 1.00	1.00	< 1.00	1.00	< 5.01	5.01
Carbon Disulfide		NA	5.41	1.00	1.98	1.00	20.7	5.01
Carbon Tetrachloride Chlorobenzene	5	<3.1 <2.0	< 0.20 < 1.00	0.20	< 0.20 < 1.00	0.20	< 1.00 < 5.01	1.00 5.01
Chloroethane		NA	< 1.00	1.00	< 1.00	1.00	< 5.01	5.01
Chloroform		<2.4	3.64	1.00	1.07	1.00	13.2	4.98
Chloromethane		<1.0 - 1.4	1.73	1.00	< 1.00	1.00	< 4.99	4.99
Cis-1,2-Dichloroethene		<1.0	< 0.20	0.20	< 0.20	0.20	503	1.00
cis-1,3-Dichloropropene		NA	< 1.00	1.00	< 1.00	1.00	< 4.99	4.99
Cyclohexane		NA	< 1.00	1.00	< 1.00	1.00	< 4.99	4.99
Dibromochloromethane Dichlorodifluoromethane		<5.0	< 1.00 2.27	1.00	< 1.00 2.16	1.00	< 5.00 < 4.99	5.00 4.99
Ethanol		<5.0	12.8	1.00	38	1.00	< 4.99 17.5	4.99 5.01
Ethyl acetate		NA	< 1.00	1.00	1.25	1.00	< 5.01	5.01
Ethylbenzene		<4.3	4.34	1.00	4.13	1.00	10.8	4.99
Heptane		NA	4.96	1.00	3.92	1.00	16.5	5.00
Hexachlorobutadiene		NA	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
Hexane		<1.5	8.28	1.00	5.07	1.00	21.1	5.00
Isopropylalcohol Isopropylbenzene		NA	22.6	1.00	38.8	1.00	15	5.01
m,p-Xylene		<4.3	< 1.00 14.6	1.00	< 1.00 15	1.00	< 5.01 29.2	5.01 4.99
Methyl Ethyl Ketone		0.77	14.0	1.00	12.9	1.00	17.1	4.99 5.01
Methyl tert-butyl ether(MTBE)		NA	< 1.00	1.00	< 1.00	1.00	< 5.01	5.01
Methylene Chloride		<3.4	< 3.00	3.00	< 3.00	3.00	< 15.0	15.0
n-Butylbenzene			< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
o-Xylene		<4.3	3.27	1.00	3.88	1.00	11.9	4.99
Propylene		NA	13.1	1.00	13.8	1.00	67.8	5.01
sec-Butylbenzene Styrene		-10	< 1.00	1.00	< 1.00	1.00	< 5.00	5.00
Tetrachloroethene	30	<1.0	< 1.00 220	1.00 0.25	< 1.00 406	1.00 1.25	< 4.98 150,000	4.98 420
Tetrahydrofuran		NA	1.49	1.00	2.75	1.00	< 5.01	5.01
Toluene		1.0 - 6.1	354	5.01	361	5.01	90	5.01
Trans-1,2-Dichloroethene		NA	< 1.00	1.00	< 1.00	1.00	5.19	4.99
trans-1,3-Dichloropropene		NA	< 1.00	1.00	< 1.00	1.00	< 4.99	4.99
Trichloroethene	5	<1.7	0.26	0.20	0.56	0.20	477	0.99
Trichlorofluoromethane		NA	1.63	1.00	1.73	1.00	< 5.00	5.00
Trichlorotrifluoroethane Vinyl Chloride		<1.0	< 1.00 0.92	1.00 0.20	< 1.00 < 0.20	1.00 0.20	< 5.00 < 1.00	5.00 1.00
BTEX		1 1.0	388.3		< 0.20 402.9		141.9	
Total VOCs					1049			
lotal vous			813.	39 1	1045	./1	151683	

Notes:

NA No guidance value or standard available (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health.

(b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)
 All soil vapor point implants installed to 7 feet below surface grade.

Previous Environmental Reports

(Separate Attachment)

ATTACHMENT E SECTION V: REQUESTOR INFORMATION

The Requestor, 224 Third Ave Owner LLC, a Limited Liability Corporation, is the owner and developer of the proposed Brownfield Cleanup Program (BCP) site, identified as Block 426, Lot 36. A copy of the NYS Department of State Division of Corporations entity information for 224 Third Ave Owner LLC and a Manager Consent and Certificate (designating the authorized signatory) are included with this attachment.

224 Third Ave Owner LLC is organized with three members: 224 Third QOF LLC, Third Ave QOF LLC, and 224 Third Partner LLC. The Requester recently purchased the property and is not affiliated with past owners or operators of the property; therefore the Requestor qualifies as a Volunteer. As the owner of the proposed BCP site, the Requestor has complete access to complete investigation and remediation as needed and to place an easement on the site if necessary.

Department of State Division of Corporations

Entity Information

Return to Results	Return to Search
Entity Details	~
ENTITY NAME: 224 THIRD AVE OWNER LLC	DOS ID: 6615469
FOREIGN LEGAL NAME: 224 THIRD AVE OWNER LLC	FICTITIOUS NAME:
ENTITY TYPE: FOREIGN LIMITED LIABILITY COMPANY	DURATION DATE/LATEST DATE OF DISSOLUTION:
SECTIONOF LAW: LIMITED LIABILITY COMPANY - 802 LIMITED LIABILITY COMPANY LAW - LIMITED LIABILITY COMPANY LAW	ENTITY STATUS: ACTIVE
DATE OF INITIAL DOS FILING: 10/13/2022	REASON FOR STATUS:
EFFECTIVE DATE INITIAL FILING: 10/13/2022	INACTIVE DATE:
FOREIGN FORMATION DATE: 08/31/2022	STATEMENT STATUS: CURRENT
COUNTY: NEW YORK	NEXT STATEMENT DUE DATE: 10/31/2024
JURISDICTION: DELAWARE, UNITED STATES	NFP CATEGORY:
ENTITY DISPLAY NAME HISTORY FILING HISTO	DRY MERGER HISTORY ASSUMED NAME HISTORY
Name: C/O SLATE PROPERTY GROUP LLC	
Address: 38 E. 29TH ST., 9TH FLOOR, NEW YORK, NY, UNITE	D STATES, 10016
Chief Executive Officer's Name and Address	
Name:	
Address:	

Principal Executive Office Address

Address:

Registered Agent Name and Address

Name:				
Address:				
Entity Primary Location	Name and Address			
Name:				
Address:				
Farmcorpflag				

)/2	2, 3:43 PM		Public Inquiry	; Inquiry					
	Is The Entity A Farm Corporation: N	IO							
	Stock Information								
	Share Value	Number Of Shares		Value Per Share					

224 THIRD AVE OWNER LLC

MANAGER CONSENT AND CERTIFICATE

November <u>14</u>, 2022

The undersigned, being the Manager (the "Manager") of 224 THIRD AVE OWNER LLC, a Delaware limited liability company (the "Company"), hereby certifies as follows and adopts the following resolutions and authorizes each of the Authorized Signatories (as defined below) to take the following actions on behalf of the Company:

WHEREAS, the Company is the fee owner of certain real property together with certain improvements thereon, located at Brooklyn Tax Block 426, Lot 36, more commonly known by the street address at 224 3rd Avenue, Brooklyn, New York (the "Property");

WHEREAS, the Company desires to include the Property in the New York State Department of Environmental Conservation Brownfield Cleanup Program (the "BCP");

WHEREAS, the Company desires to enter into a Brownfield Site Agreement with the New York State Department of Environmental Conservation (the "Agreement") to evidence the inclusion of the Property in the BCP.

NOW, THEREFORE, BE IT RESOLVED, that the Company is hereby authorized and directed to execute and deliver any and all documents in connection with the Agreement, including without limitation any applications, agreements, amendments, environmental easements, and any other documents deemed necessary in substantial accordance with this Consent and Certificate.

AND BE IT FURTHER RESOLVED, that the Manager hereby authorizes and directs Martin Nussbaum and David Schwartz to acknowledge, execute and deliver for and on behalf of the Company, each as an "Authorized Signatory" of the Company, any and all agreements, amendments, resolutions, documents, applications, certificates, easements, and authorizations which may be necessary, convenient or advisable to effect the inclusion of the Property in the BCP, and to take such additional actions as deemed desirable and appropriate to carry out the intent and to accomplish the purposes of these resolutions;

AND BE IT FURTHER RESOLVED, that any and all lawful action taken in good faith by the Managers prior to the date hereof on behalf of the Company and in furtherance of the transactions contemplated by the foregoing consent are in all respects ratified, confirmed and approved by the Company as its own acts and deeds, and shall conclusively be deemed to be the acts and deeds of the Company for all purposes.

[signature on following page]

IN WITNESS WHEREOF, the undersigned have executed this Consent in the capacity noted below as of date first written above.

7

MANAGER:

224 THIRD QOF LLC

By: THIRD AVENUE MM LLC, a Delaware limited liability company, as Manager

David Schwartz

Authorized Signatory

ATTACHMENT F SECTION VI: REQUESTOR ELIGIBILITY

Volunteer Status

Pursuant to ECL § 27-1405(1), 224 Third Ave Owner LLC is properly designated as a Volunteer. There is no indication of any contribution to or exacerbation of site conditions during the time of Requestors ownership or involvement with the site, nor is the Requestor affiliated with past owners/operators of the site.

The Requestor, 224 Third Ave Owner LLC, is a Limited Liability Corporation organized with three members: 224 Third QOF LLC, Third Ave QOF LLC, and 224 Third Partner LLC. After recently acquiring the property, the Requestor recognized the need to address current conditions to prevent future releases, and to prevent or limit human, environmental or natural resource exposures to any previously released contamination. As such, the Requestor qualifies as a Volunteer in the Brownfield Cleanup Program.

ATTACHMENT G SECTION IX: CURRENT PROPERTY OWNER/OPERATOR INFORMATION

The Requestor, 224 Third Ave Owner LLC, is not affiliated with past property owners, operators, or the release of contaminants associated with prior uses. The current owner of the proposed BCP site is described below – a copy of the deed is included with this attachment.

Property Owner Contact Information

224 Third Ave Owner LLC 38 East 29th Street, 9th Floor New York, NY, 10016

Previous Site Owners

Deeds prior to 1974 were not available on the New York City Automated City Register Information System (ACRIS) website. Property transactions after 1974 are summarized in the following table.

Date	B Document First Par Type		Second Party	Relationship of First Party to Applicant
06/03/1976	Deed	Frances B RIty Corp.	Avel Rity Corp. Inc.	None
04/01/1993	Deed	F B J Realty Co.	Abatemarco Realty Corp.	None
11/08/2022	Deed	Abatemarco Realty Corporation	224 Third Ave Owner LLC	None

Reference: New York City Department of Finance ACRIS website: <u>https://a836-acris.nyc.gov/DS/DocumentSearch/Index</u>.

Previous Site Operators

Operator Name	Relationship to Property	Address and Phone Number	Relationship to Applicant
A&A Brake Service Company Inc.	Occupant (1973-2022)	224 3 rd Ave, Brooklyn, NY 11217 718.624.4488	None
Able Truck Repairing	Occupant (1965-1973)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None
Unknown Piano moving company	Occupant (1965 – 1973)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None
Third Av Truck Maintenance	Occupant (1960-1976)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None
Sackett St Garage Inc.	Occupant (1940-1949)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None
Wagenseil Chas Jr Trucking	Occupant (1928 – 1945)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None
Unknown Laundromat and Bottle Recycling Facility	Occupant (1915 -1938)	224 3 rd Ave, Brooklyn, NY 11217 (Phone Number Unknown)	None

References:

1. Historical Maps and Database Listings, provided by Environmental Data Resources, Inc. (EDR), dated August 26, 2021.

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.				66001002E125			
RECORDING AND ENDORSEMENT COVER PAGE PAGE 1 OF 4							
Document ID:2022110900266001Document Date:11-08-2022Preparation Date:11-09-2022Document Type:DEEDDocument Page Count:3							
PRESENTER:			RETURN TO:				
BETTER RECORDINGS, LI 1 PARAGON DRIVE - RAN SUITE 150B MONTVALE, NJ 07645 REC@BETTERTITLERESE	Y-48102		BETTER RECORDIN 1 PARAGON DRIVE SUITE 150B MONTVALE, NJ 076 REC@BETTERTITL	- RANY-48102 45			
	T /	PROPER	TY DATA				
BoroughBlockBROOKLYN426	Lot 36 Entire		.ddress 24 3 AVENUE				
Property Type: COMMERCIAL REAL ESTATE CROSS REFERENCE DATA CRFNOr DocumentIDOr Year ReelPageOr File Number ORTIES GRANTOR/SELLER: ABATEMARCO REALTY CORPORATION 38 VALLEYVIEW DRIVE GRANTOR, NY 11768							
FEES AND TAXES							
		FLES A	1				
Mortgage :	1.		Filing Fee:				
Mortgage Amount:	\$	0.00		\$	250.00		
Taxable Mortgage Amount:	\$	0.00	NYC Real Property T		015 000 00		
Exemption:				\$	315,000.00		
TAXES: County (Basic):	\$	0.00	NYS Real Estate Tran		T O 000 00		
City (Additional):	\$	0.00		\$	78,000.00		
Spec (Additional): TASF:	\$ ©	0.00		RDED OR FILED IN			
MTA:	\$ \$	0.00	- OF]	THE CITY REGISTI	ER OF THE		
NYCTA:	\$ \$	0.00		CITY OF NEW Y	ORK		
Additional MRT:	\$ \$	0.00	- Marine Va		11-10-2022 15:29		
TOTAL:	<u> </u>	0.00		City Register File No.	(CRFN):		
Recording Fee:	\$	52.00		\sim	2022000420172		
Affidavit Fee:	\$	0.00	-1623	Ganette Mf	ill -		
	L Ý	0.00		4	and the second sec		
				City Register Offic	cial Signature		

BARGAIN AND SALE DEED WITHOUT COVENANTS AGAINST GRANTOR'S ACTS

THIS INDENTURE, made as of the 8th day of November, 2022,

BETWEEN

ABATEMARCO REALTY CORPORATION, a New York corporation, having an address at c/o Anthony J. Dimaso, 38 Valleyview Drive, Northport, New York 11768, party of the <u>first</u> part,

and

224 THIRD AVE OWNER LLC, a Delaware limited liability company, having an address at 38 East 29th Street, 9th Floor, New York, New York 10016, party of the <u>second part</u>;

WITNESSETH, that the party of the first part in consideration for Ten (\$10.00) Dollars and other good and valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever;

ALL those certain plots, pieces or parcels of land, with the buildings and improvements thereon erected, situate, lying and being in the County of Kings, Borough of Brooklyn, and State of New York, known as 224 Third Avenue, Brooklyn, New York, and as Block: 426, Lot: 36 in Kings County, New York, and as more particularly described in <u>Schedule A</u> attached hereto;

Being and hereby intending to convey the premises conveyed to the party of the first part by Deed from F.B.J. Realty Co., dated April 1, 1993, and recorded on April 14, 1993 in the Office of the City Register of the City of New York, Kings County, at Reel 3029, Page 2289:

TOGETHER with all right, title and interest, if any, of the party of the first part in and to any streets and roads abutting the above described premises to the center lines thereof; **TOGETHER** with the appurtenances and all the estate and rights of the party of the first part in and to said premise; **TO HAVE AND TO HOLD** the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of any improvement and will apply the same first to the payment of the cost of any improvement before using any part of the total of the same for any other purpose.

The word "party" shall be construed as if it read "parties" whenever the sense of this indenture so requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed the day and year first above written.

ABATEMARCO REALTY CORPORATION, a New York corporation

Name: Anthony J. Dimaso Title: President

STATE OF NEW YORK) COUNTY OF $N \leq 55$)

On the ______ day of November, in the year 2022, before me, the undersigned, personally appeared ANTHONY J. DIMASO, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity, and that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

RECORD AND RETURN:

Riverside Abstract, LLC 3839 Flatlands Avenue, Suite 208 Brooklyn, New York 11234

Notary Shera Holcdorf

Notary Public, State of New York No. 01HO6078465 Qualified in Richmond County Commission Expires October 5, 2028

RIVERSIDE ABSTRACT, LLC As Agent for FIDELITY NATIONAL TITLE INSURANCE COMPANY LEGAL DESCRIPTION

Title No.: RANY-48102

All that certain plot, piece or parcel of land, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at the corner formed by the intersection of the westerly side of 3rd Avenue and northerly side of Sackett Street;

RUNNING THENCE northerly along the westerly side of 3rd Avenue, 100 feet;

THENCE westerly parallel with the northerly side of Sackett Street, 110 feet 9 inches;

THENCE southerly parallel with the westerly side of 3rd Avenue through a party wall, 36 feet 10 inches;

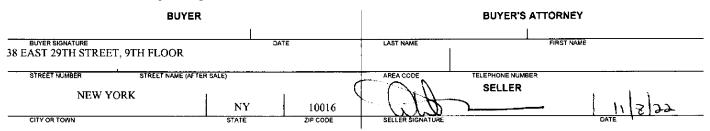
THENCE easterly parallel with the northerly side of Sackett Street through a party wall, 41 feet 3 inches;

THENCE southerly parallel with the westerly side of 3rd Avenue through a party wall, 63 feet 2 inches to the northerly side of Sackett Street;

THENCE easterly along the northerly side of Sackett Street, 69 feet 6 inches to the point or place of BEGINNING.

Note: Address, Block & Lot shown for informational purposes only

Designated as Block 426, Lot 36, Kings County and also known as 224 3rd Avenue, Brooklyn, NY 11217.


RANY-48102

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER		66001002SDCD0			
SUPI Document ID: 2022110900266001	PORTING DOCUMENT COVER PAC Document Date: 11-08-2022	GEPAGE 1 OF 1Preparation Date: 11-09-2022			
Document Type: DEED	Document Date. 11-06-2022	Treparation Date. 11-07-2022			
ASSOCIATED TAX FORM ID: 2022	110400223				
SUPPORTING DOCUMENTS SUBMITTED:					
RP - 5217 REAL PROPERTY TRANSF	Page Count 4				

FOR CITY USE ONLY C1. County Code C2. Date Deed /_/ Recorded Month Day Year C3. Book C4. Page OR C5. CRFN C4. Page	REAL PROPERTY TRANSFER REPORT STATE OF NEW YORK STATE BOARD OF REAL PROPERTY SERVICES RP - 5217NYC
PROPERTYINFORMATION	
1. Property 224 3 AVENUE Location STREET NUMBER STREET NAME	BROOKLYN 11217 BDROUGH ZIP CODE
2. Buyer 224 THIRD AVE OWNER LLC	FIRST NAME
LAST NAME / COMPANY	FIRST NAME
Tax Indicate where future Tax Bills are to be sent Billing if other than buyer address (at bottom of form) LAST NAME / COMPANY Address	FIRST NAME
STREET NUMBER AND STREET NAME CITY OR TOWN	STATE ZIP CODE
4. Indicate the number of Assessment 1 # of Parcels OR Part of a	4B, Agricultural District Notice - N/A for NTC
5. Deed Property FRONT FEET X OR ACRES ACRES	Check the boxes below as they apply: 6. Ownership Type is Condominium 7. New Construction on Vacant Land
8. Seller ABATEMARCO REALTY CORPORATION	FIRST NAME
B 2 or 3 Family Residential D Non-Residential Vacant Land F Apart	nercial G Entertainment / Amusement I I Industrial ment H Community Service J Public Service
	Check one or more of these conditions as applicable to transfer:
10. Sale Contract Date 4 / 15 / 2022 A Month Day Year B 11. Date of Sale / Transfer 11 / 8 / 2022 D Month Day Year F	Sale Between Related Companies or Partners in Business One of the Buyers is also a Seller Buyer or Seller is Government Agency or Lending Institution Deed Type not Warranty or Bargain and Sale (Specify Below) Sale of Fractional or Less than Fee Interest (Specify Below)
12. Full Sale Price \$1_2_0_0_0_0_0_0_G	Significant Change in Property Between Taxable Status and Sale Dates
(Full Sale Price is the total amount paid for the property including personal property. H This payment may be in the form of cash, other property or goods, or the assumption of mortgages or other obligations.) Please round to the nearest whole dollar amount. J	Sale of Business is Included in Sale Price Other Unusual Factors Affecting Sale Price (Specify Below)
13. Indicate the value of personal property included in the sale	
ASSESSMENT INFORMATION - Data should reflect the latest Final Assessment Roll a	and Tax Bill
15. Building Class $[G, 2]$ 16. Total Assessed Value (of all parcels in tra	
17. Borough, Block and Lot / Roll Identifier(s) (If more than three, attach sheet with ad	ditional identifier(\$))
BROOKLYN 426 36	

CERTIFICATION

I certify that all of the items of information entered on this form are true and correct (to the best of my knowledge and belief) and understand that the making of any willful false statement of material fact herein will subject me to the provisions of the penal law relative to the making and filing of false instruments.

Anthony J. Dimaso, president

2022110400223201

SIGNATURE RIDER TO RP-5217NYC FORM

PURCHASER:

224 Third Ave Owner LLC, a Delaware limited liability company

By: _____

Name: Martin Nussbaum Title: Authorized Signatory

The City of New York Department of Environmental Protection Bureau of Customer Services 59-17 Junction Boulevard Flushing, NY 11373-5108

Customer Registration Form for Water and Sewer Billing

Property and Owner Information:

(1) Property receiving service: BOROUGH: BROOKLYN BLOCK: 426

BLUCK. 420

LOT: 36

- (2) Property Address: 224 3 AVENUE, BROOKLYN, NY 11217
- (3) Owner's Name: 224 THIRD AVE OWNER LLC

Additional Name:

Affirmation:

Your water & sewer bills will be sent to the property address shown above.

Customer Billing Information:

Please Note:

- A. Water and sewer charges are the legal responsibility of the owner of a property receiving water and/or sewer service. The owner's responsibility to pay such charges is not affected by any lease, license or other arrangement, or any assignment of responsibility for payment of such charges. Water and sewer charges constitute a lien on the property until paid. In addition to legal action against the owner, a failure to pay such charges when due may result in foreclosure of the lien by the City of New York, the property being placed in a lien sale by the City or Service Termination.
- B. Original bills for water and/or sewer service will be mailed to the owner, at the property address or to an alternate mailing address. DEP will provide a duplicate copy of bills to one other party (such as a managing agent), however, any failure or delay by DEP in providing duplicate copies of bills shall in no way relieve the owner from his/her liability to pay all outstanding water and sewer charges. Contact DEP at (718) 595-7000 during business hours or visit www.nyc.gov/dep to provide us with the other party's information.

Owner's Approval:

The undersigned certifies that he/she/it is the owner of the property receiving service referenced above; that he/she/it has read and understands Paragraphs A & B under the section captioned "Customer Billing Information"; and that the information supplied by the undersigned on this form is true and complete to the best of his/her/its knowledge.

Print Name of Owner:

er Arth

(URbate (mm/dd/yyyy)

Name and Title of Person Signing for Owner, if applicable:

BCS-7CRF-ACRIS REV. 8/08

Signature:

SIGNATURE RIDER TO DEPARTMENT OF ENVIRONMENTAL PROTECTION CUSTOMER REGISTRATION FORM FOR WATER AND SEWER BILLING

<u>GRANTEE</u>:

224 Third Ave Owner LLC, a Delaware limited liability company

By: ٢ Name: Martin Nussbaum

Title: Authorized Signatory

ATTACHMENT H SECTION VII: CONTACT LIST INFORMATION

Item 1 – Chief Executive Officer and Planning Board

Chief Executive Officer

Mayor Eric Adams City Hall 260 Broadway Avenue New York, New York 10007

New York City Planning Commission

Joseph Douek, Chair Department of City Planning 22 Reade Street New York, NY 10007-1216

Borough of Brooklyn, Borough President

Antonio Reynoso 209 Joralemon Street Brooklyn, NY 11201

Borough of Brooklyn, Department of City Planning

Edith Hsu-Chen 16 Court Street, 7th Floor Brooklyn, NY 11241

Item 2 - Residents, Owners, and Occupants, of the Property and Adjacent Properties

Address/ Block and Lot	Owner/Mailing Address	Occupant/Mailing Address
224 3rd Avenue Block 426, Lot 36	224 Third Ave Owner LLC 38 East 29 th St., 9th Floor New York, NY, 10016	Vacant 224 3 rd Avenue Brooklyn, NY 11217

Adjacent properties include:

Gowanus Union Street LLC

Block 433, Lot 28 585 Union Street Brooklyn, NY 11217

573 Sackett 2015 LLC

Block 426, Lot 41 573 Sackett Street Brooklyn, New York, 11217

242 Nevins, Inc.

Block 426, Lot 44 563 Sackett Street Brooklyn, New York, 11217

601 Union Street Realty Corp

Block 434, Lot 1 231 3rd Avenue Brooklyn, NY 11217

Item 3 - Local News Media

The Brooklyn Paper One Metrotech Center, Third Floor Brooklyn, NY 11201 718-260-2500

Angelo Properties LLC

Block 427, Lot 10 209 3rd Avenue Brooklyn, NY 11217

Saira Properties LLC

Block 427, Lot 7 213 3rd Avenue Brooklyn, NY 11217

Angelo Properties LLC

Block 427, Lot 1 215 3rd Avenue Brooklyn, NY 11217

545 Sackett Swap Parcel Owner LLC

Block 427, Lot 17 560 Degraw Street Brooklyn, NY 11217

Brooklyn Daily Eagle 16 Court Street, Suite 2901 Brooklyn, NY, 11241 718-422-7410

Item 4 - Public Water Supply

The responsibility for supplying water in New York City is shared between the NYC Department of Environmental Protection (NYCDEP), the Municipal Water Finance Authority, and the New York City Water Board:

New York City Department of Environmental Protection

Rohit T. Aggarwala, Commissioner 59-17 Junction Boulevard Flushing, NY 11373

New York City Municipal Water Finance Authority

255 Greenwich Street, 6th Floor New York, NY 10007

New York City Water Board

Department of Environmental Protection 59-17 Junction Boulevard, 8th Floor Flushing, NY 11373

Item 5 - Request for Contact

We are unaware of any requests for inclusion on the contact list.

Item 6 - Schools and Day Care Facilities

There are no schools or day care facilities located on the site. The following are schools or day care facilities located within ½ mile of the site:

The Rivendell School (about 0.13 miles south of the site) Katy Hill, Executive Director 277 3rd Avenue Brooklyn, NY 11215 718-499-5667

PS 133 – William A Butler (about 0.19 miles northeast of the site) Heather Foster Mann, Principal 610 Baltic St Brooklyn, NY 11217 718-398-5320 Park Slope Preschool (about 0.15 miles east of the site) 150 4th Ave. Brooklyn, NY 11217 718-260-8100

Tiny Steps Daycare Center (about 0.19 miles east of the site) 256 4th Ave Brooklyn, NY 11215 917-324-1536 Daddy's Daycare 6 (about 0.21 miles east of the site) 357 Douglass St Brooklyn, NY 11217 917-647-4448

P.S. 372 The Children's School (about 0.25 miles south of the site) Rosa Amato, Principal 215 1st Street Brooklyn, NY 11215 718-624-5271

Alonzo A. Daughtry Memorial Day Care Center, Inc. – KCHM (about 0.28 miles east of the site) 565 Baltic Street Brooklyn, 11217 718-596-1993

Mildred's Family Daycare (about 0.31 miles northwest of the site) 426 Baltic Street, Brooklyn, NY 11217 347-599-0339

Kid's Care Daycare (about 0.33 miles south of the site) 281 1st Street Brooklyn, NY 11215 <u>pskidcaretwo@gmail.com</u>

Sunflower Child Care (about 0.34 miles southeast of the site) 238 5th Avenue Brooklyn, NY, 11215 718-783-0738

Brooklyn High School of the Arts (about 0.37 miles north of the site) Daniel Vecchiano, Principal 345 Dean St Brooklyn, NY 11217 718-855-2412 Bumble Bee Daycare (about 0.22 miles southeast of the site) 258 4th Avenue Brooklyn, NY 11215 347-422-0998

St John's Kidz (about 0.28 miles east of the site) 390 Butler St. Brooklyn, NY 11217 718-789-0008

PS 32 – The Samuel Mills Sprole School (about 0.30 miles west of the site) Denise Watson-Adin, Principal 317 Hoyt Street Brooklyn, NY 11231 718-222-6400

Eladia's Kids (about 0.31 miles east of the site) Eladia Causil-Rodriguez 147 5th Ave Brooklyn, NY 11217 718-622-3316 Park Slope Christian Academy (about 0.33 miles northeast of the site) 98 5th Ave Brooklyn, NY 11217 718-636-9363

New Dawn Charter High School (about 0.34 miles northwest of the site) Sara M. Asmussen, Ph.D., Exec. Director 242 Hoyt St Brooklyn, NY 11231 347-505-9101 The Math and Science Exploratory School (about 0.37 miles north of the site) Arin M. Rusch, Principal 345 Dean St Brooklyn, NY 11217 718-330-9328 Tiny Steps Daycare Center (about 0.37 miles east of the site) 33 St Johns Pl Brooklyn, NY 11217 347-323-0882

Al-Madinah School (about 0.38 miles south of the site) Ahmed Jammoudy 383 3rd Ave Brooklyn, NY 11215 718-222-4986

Zusin Family Daycare (about 0.40 miles southeast of the site) 323 3rd Street Brooklyn, NY, 11215 347-599-1740

Park Slope North Early Childhood Center (about 0.40 miles east of the site) Melissa Aase, Chief Executive Director 71 Lincoln Pl Brooklyn, NY 11217 718-638-4100

Daddy's Daycare 4 (about 0.44 miles northwest of the site) 87 Douglass St Brooklyn, NY, 11231 917-647-4448

Special Education School 77 (about 0.45 miles northeast of site) Ebony Russell, Principal 62 Park Pl Brooklyn, NY 11217 718-789-1191 PS 38 – The Pacific School (about 0.37 miles north of the site) Ms. Pascale, Principal 450 Pacific St Brooklyn, NY 11217 718-330-9305

Strong Place for Hope Daycare (about 0.39 miles southeast of the site) 333 2nd Street Brooklyn, NY 11215 718-499-0747

Acorn High School for Social Justice (about 0.40 miles north of the site) 500 Pacific St Brooklyn, NY 11217 718-694-0027

PS/MS 282 – Park Slope Elementary & Middle School (about 0.41 miles east of the site) Amy Rodriguez, Principal 180 6th Ave Brooklyn, NY 11217 718-622-1626

Cobble Hill School for American Studies (about 0.45 miles northwest of the site) Annamaria Mule 347 Baltic St Brooklyn, NY 11201 718-403-9544; 718-330-9275

Strong Place for Hope Daycare (about 0.46 miles north of the site) 460 Atlantic Avenue Brooklyn, NY 11217 718-522-1351 William Alexander Middle School 51 (about 0.47 miles southeast of the site) Neal Singh, Principal 350 5th Ave Brooklyn, NY 11215 718-369-7603

Hannah Senesh Community Day School (about 0.49 miles west of the site) Nicole Nash, Principal 342 Smith St Brooklyn, NY 11231 718-858-8663

PS 261 (about 0.50 miles northwest of the site) Erica Davis, Principal 314 Pacific St Brooklyn, NY 11201 718-330-9275

Mini Minders Daycare (about 0.50 miles southeast of the site) 249 6th Avenue Brooklyn, NY 11215 718-768-6240 P.S. 58 The Carroll School (about 0.48 miles west of the site) Katie Dello Stritto, Principal 330 Smith St Brooklyn, NY 11231 718-330-9322

Open House Nursery School (about 0.49 miles northwest of the site) 318 Warren St # A Brooklyn, NY 11201 718-625-5252

PS 369 Coy L Cox School (about 0.50 miles north of the site) Majorie Dalrymple, Principal 383 State St Brooklyn, NY 11217 718-852-1701

Daddy's Daycare 1 (about 0.50 miles southeast of the site) 315 7th St., 1st Floor Brooklyn, NY 11215 917-647-4448

Item 7 - Document Repository

A letter was sent to and received from the following sources, acknowledging that they agree to act as a document repository for documents generated under the BCP Program:

Brooklyn Community Board 6

Michael Racioppo, District Manager 250 Baltic Street Brooklyn, NY 11201 718-643-3027

Brooklyn Public Library – Pacific Branch

Candace Vasquez, Managing Librarian 25 4th Avenue Brooklyn, NY 11217 718- 638-1531

Technical Excellence Practical Experience Client Responsiveness

October 20, 2022

Michael Racioppo Brooklyn Community Board 6 250 Baltic Street Brooklyn, NY 11201 (718) 643-3027

RE: Brownfield Cleanup Program Application 244 3rd Avenue 244 3rd Avenue (Block 426, Lot 36) Brooklyn, New York 11201

To Mr. Racioppo:

We represent 224 Third Ave Owner LLC for their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the abovereferenced development project in Brooklyn, New York. It is a NYSDEC requirement that we supply them a letter certifying that the local community board is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below and return if you are able to certify that your community board will be willing and able to act as the temporary public repository for this BCP project.

Sincerely,

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Albert Tashji, P.E. Project Manager

Yes, the Brooklyn Community Board 6 is willing and able to act as a public repository on behalf of 224 Third Ave Owner LLC in the cleanup of the 244 3rd Avenue project under the NYSDEC BCP.

Michael Racioppo October 20,2022 District Manager - Brooklyn Community Board 6 (Name) (Date)

October 20, 2022

Candace Vasquez Brooklyn Public Library – Pacific Branch 25 4th Avenue Brooklyn, NY 11217 (718) 638-1531

Re: Brownfield Cleanup Program Application 244 3rd Avenue 244 3rd Avenue (Block 426, Lot 36) Brooklyn, NY 11201

Ms. Vasquez:

We represent 224 Third Ave Owner LLC in their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the above-referenced development in Brooklyn, New York. It is a NYSDEC requirement that we supply them a letter certifying that the local library is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below if you are able to certify that your library would be willing and able to act as the public repository for this BCP project.

Sincerely, Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Albert Tashji, P.E. Project Manager

Yes, the Brooklyn Public Library – Pacific Branch is willing and able to act as a public repository on behalf of 224 Third Ave Owner LLC in their cleanup of the 244 3rd Avenue project under the NYSDEC BCP.

_Candace	G
(Name)	

10/26/2023

(Date)

_____Branch Manager_____ (Title)