

GANNETT FLEMING ENGINEERS, P.C.

100 Crossways Park Drive West Suite 300 Woodbury, NY 11797

Office: (516) 671-4140 Fax: (516) 921-1565

Internet:www.gannettfleming.com

July 24, 2014 Project # 53319.008

Ainura Doronova, Environmental Engineer 1 New York State Department of Environmental Conservation Division of Environmental Remediation, Region 2 47-40 21st Street Long Island City, NY 11101-5407

Re: Fifth Post-Remediation Performance Monitoring Letter Report

NYSDEC Spill No. 1100020

Cooper Tank and Welding Corporation 225 Moore Street, Brooklyn, NY

Dear Ms. Doronova:

Gannett Fleming Engineers, P.C. (GF), on behalf of Cooper Tank and Welding Corporation (Cooper), has prepared this Fifth Post-Remediation Performance Monitoring Letter Report (Fifth Report) to document and summarize the groundwater analytical results from the post-remedial groundwater performance monitoring program which followed completion of the remedial injection program (remedy) implemented at Cooper, 225 Moore Street, Brooklyn, New York (the "Site") from September 17 through September 28, 2012. This report evaluates the concentration trends of Constituents of Concern (COC's) at Cooper through five groundwater sampling events following completion of the remedy. Performance monitoring was conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved Remedial Action Work Plan (RAWP) dated May, 2012, the 8/13/2013 letter from NYSDEC requesting two additional monitoring events, and the June 5, 2014 request from NYSDEC to sample monitoring well MW-SE-7 in the area of the site historically referred to as "AOC-1". This Fifth Report follows submittal of the 11/14/2012 Status Report, the 6/7/2013 Second Quarterly Post-Remediation Performance Monitoring Letter Report, the 10/22/2013 Third Quarterly Post-Remediation Performance Monitoring Letter Report, and the 1/29/2014 Fourth Quarterly Post-Remediation Performance Monitoring Letter Report prepared by GF.

Post-Remedial Data Evaluation

As per the June 5, 2014 request of NYSDEC, a fifth performance monitoring event was conducted on June 12, 2014, approximately 20 months after completion of the remedy. The June 12, 2014 performance monitoring event required sampling from only one monitoring well (MW-SE-7) in AOC-1.

Ainura Doronova, Environmental Engineer 1 New York State Department of Environmental Conservation July 24, 2014

-2-

Groundwater samples during all sampling events were consistently laboratory analyzed for the VOC's listed in Table 2 of CP-51 SCG, by USEPA Method 8260. Free product had not been detected on or off-site in any of the historical investigations conducted by GF, was not detected during baseline sampling, and was not detected during the fifth post-remedial groundwater monitoring event. As detailed in Table 1 and plotted on attached Figures 2 through 4, post-remedial groundwater data supports the following conclusions:

• Groundwater analytical results from MW-SE-7 within the primary Area Of Concern (AOC-1) demonstrate a 93% reduction in Benzene (3,300 μg/L in August 2012 to 240 μg/L in June 2014), 96% reduction in Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) compounds (11,290 μg/L in August 2012 to 432 μg/L in June 2014), and 96% reduction in total VOC's (14,746 μg/L in August 2012 to 650 μg/L in June 2014).

Concentrations of Total BTEX and Total VOCs in AOC-1 plotted from 8/7/2012 through 6/12/2014 demonstrating a sharp and steady decreasing trend of COCs in AOC-1 since completion of

the remedy.

Figure 2.

• As previously reported, groundwater analytical results from on-site monitoring wells required for sampling during the 9/25/2013 and 12/20/2013 monitoring events (MW-SE-7 and MW-SE-9) representing AOC-1 and AOC-2 demonstrated a 98% reduction in Benzene (3,440 μg/L in August 2012 to 75 μg/L in December 2013), 99% reduction in BTEX compounds (11,458 μg/L in August 2012 to 138.8 μg/L in December 2013), and 98% reduction in total measured VOC's (15,290 μg/L in August 2012 to 263.1 μg/L in December 2013).

-3-

Concentrations of Total BTEX and Total VOCs measured from all on-site monitoring wells in AOC-1 and AOC-2 plotted from

Figure 3.

8/7/2012 through 12/20/2013 demonstrated a sharp and steady decreasing trend of COCs on site since completion of the remedy.

- Also, groundwater analytical results from offsite monitoring well MW-SE-8 demonstrated a 71% reduction in Benzene (700 μ g/L in August 2012 to 200 μ g/L in December 2013), 77% reduction in BTEX compounds (1,041 μ g/L in August 2012 to 235 μ g/L in December 2013), and 86% reduction in total measured VOC's (1,972 μ g/L in August 2012 to 264 μ g/L in December 2013).
- Levels of Dissolved Oxygen (DO) and Oxidation-reduction potential (ORP) in AOC-1 sharply increased following completion of the remedy and remain elevated, indicating that conditions on site are favorable for continued aerobic biodegradation of COC's.

Pre and Post Remedial Dissolved Oxygen and ORP in AOC-1

Figure 4.

Levels of DO and **ORP in AOC-1** plotted from 8/7/2012 through 6/12/2014. DO and **ORP** are important site indicators for bioremediation. On-site concentrations of these two parameters demonstrate that conditions on site are favorable for continued aerobic biodegradation of target COC's since implementation of the remedy.

Ainura Doronova, Environmental Engineer 1 New York State Department of Environmental Conservation July 24, 2014

-4-

Conclusions and Recommendations

The groundwater data presented herein demonstrates that the injection strategy was successful in substantially reducing target COC's on and offsite, and creating groundwater conditions that are favorable for aerobic biodegradation of target COC's. Documentation presented from previous investigations conducted by GF on behalf of Cooper provided evidence of an offsite source of petroleum contamination that has impacted groundwater quality on White Street adjacent to Cooper. Cooper has demonstrated that other than the Sanborn map illustrating a pre-1981 historical presence of an UST, no such petroleum source exists on its property nor has Cooper ever stored/used gasoline since their property ownership.

Based on the best practical efforts completed by Cooper to remediate groundwater quality within Lot 47 of 225 Moore Street and the substantial improvement in groundwater quality on and offsite demonstrated in this report, GF concludes that no further investigation or remedial action for these soils or groundwater is warranted by Cooper. GF is requesting that no further action be required by Cooper for conditions associated with Spill # 1100020 and that this Spill case be closed as it relates to Cooper.

We are available at your convenience to further discuss these findings and conclusions. Please contact us if you have any questions or require further clarification.

Very truly yours,

GANNETT FLEMING ENGINEERS, P.C.

VINCENT FRISINA, P.E.

Vice President/Director of Environmental Services

cc: David Hillcoat – Cooper Tank and Welding Corp.

F. Inyard, P.E. (GF)

- SOIL BORING/GROUNDWATER MONITORING WELL LOCATIONS
- O1 ORC INJECTION POINTS
- REGENOX AND ORC INJECTION POINTS

— UE — UNDERGROUND ELECTRIC LINE

OVERHEAD ELECTRIC LINE

— s — SEWER LINE

---- w ----- WATER LINE

--- UNKNOWN UTILITY LINE

—— G —— GAS LINE

GPR ANOMALY

■ BUILDING COLUMN

CB CATCH BASIN

ELEC ELECTRIC PANEL

STREET LIGHT

AOC AREA OF CONCERN

TABLE 1 SUMMARY OF WATER SAMPLE RESULTS CP-51 LIST VOLATILE ORGANIC COMPOUNDS

COOPER TANK 225 MOORE STREET BROOKLYN, NEW YORK

SAMPLE ID:	MW SE-11	MW SE-11	MW SE-11	MW SE-6	MW SE-6	MW SE-9	MW SE-9	MW SE-9	MW SE-9	MW SE-9	MW SE-12	MW SE-12	MW SE-12	MW SE-7	MW SE-7	MW SE-7	MW SE-7	MW SE-7	MW SE-7	MW SE-8	MW SE-8	MW SE-8	MW SE-8	MW SE-8	SITE TOTAL	SITE TOTAL	SITE TOTAL	SITE TOTAL	SITE TOTAL
SAMPLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
SAMPLE DATE:	8/7/2012	1/8/2013	4/18/2013	9/25/2013	12/20/2013	8/7/2012	1/8/2013	4/18/2013	9/25/2013	12/20/2013	8/7/2012	1/8/2013	4/18/2013	8/7/2012	1/8/2013	4/18/2013	9/25/2013	12/20/2013	6/13/2014	8/7/2012	1/8/2013	4/18/2013	9/25/2013	12/20/2013	8/7/2012	1/8/2013	4/18/2013	9/25/2013	12/20/2013
GC/MS VOA (ppb) - 8260B																													
1,2,4-Trimethylbenzene	4.8	1.1	1.0 U	J 13	1.9	2.1	67	10 U	2.2	3.2	4.5	1.0 U	U 1.0 U	2000 Γ	480	1000	11.0	4.0 U	J 1.0 U	500 I	D 220	220	280.0	6.6					
1,3,5-Trimethylbenzene	1.6	1.0 U	1.0 U	J 3.2	1 1	U 1.3	27	11	2 U	1.1	1.5	1.0 U	U 1.0 U	540 E	110	370	2.8	57.0	210.0	71	49	52	68.0	5.0					
Benzene	80	17	22	17	2.6	140	160	10 U	26	75	77	1.0 U	U 1.0 U	3300 Г	1700	1700	330.0	4.0 U	J 240.0	700 I	D 450	570	3400.0	200.0	3597	1877	1722	356	75
Ethylbenzene	3.8	1.0 U	1.0 U	J 11	13	11	48	10 U	2 U	4.2	3.6	1.0 U	U 1.0 U	J 1900 E	580	830	14.0	19.0	1.0 U	190	110	120	330.0	9.7					
Isopropylbenzene	3.2	1.2	1.3	10	28	110	130	10 U	4.5	16	3.1	1.0 t	U 1.0 U	180	50	100	3.9	4.0 U	J 1.0 U	10.0	76	86	55.0	3.2					
m+p Xylene	13	3.2	3.4	24	6.2	7.6	66	20 U	4 U	4.4	13	2 t	U 2 U	5500 E	1300	2000	40	8 U	J 1.0 U	110	66	91	880	16					
Methyl tert-Butyl Ether	0.35 U	J 1.0 U	1.0 U	J 2	U 1 1	U 0.35 U	J 10 U	10 U	2 U	1 U	0.35 U	1.0 U	U 1.0 U	0.35 U	J 25 U	50	U 1.0 U	J 4.0 U	J 0.5 U	0.35 U	U 5 U	J 10 U	10.0 U	1.0 U					
Naphthalene	1.1	2 U	2.0 U	J 9.5	2.9	3.6	58	20 U	7.7	2.1	1.0	2 I	U 2 U	490 E	140	270	6.1	8 U	J NA U	59	44	62	67	3.6					
n-Butylbenzene	0.71	1.0 U	1.0 U	J 3.9	11	39	160	10 U	2.2	6	0.66 J	1.0 t	U 1.0 U	J 25	25 U	68	1.0 U	J 4.0 U	J 1.0 U	25	28	23	20.0	2.1					
n-Propylbenzene	4.1	1.2	1.2	19	62	190	360	10 U	5.5	35	3.8	1.0 U	U 1.0 U	190	78	210	5.4	4.0 U	J 1.0 U	150	130	140	82.0	4.4					
o-Xylene	2.4	1.0 U	1.0 U	J 6.3	1.3	2.7	13	10 U	2 U	2.4	2.3	1.0 t	U 1.0 U	J 380 E	290	400	13.0	30.0	160.0	10	8.8	16	300.0	3.7					
p-Isopropyltoluene	0.43 U	J 1.0 U	1.0 U	J 2	U 2.4	0.88 J	J 10 U	10 U	2 U	1 U	0.43 U	1.0 t	U 1.0 U	14	25 U	50 1	U 1.0 U	J 4.0 U	J 4.4	17	17	15	11.0	4.7					
sec-Butylbenzene	0.46 t	J 1.0 U	1.0 U	J 2.3	7.6	28	78	10 U	2 U	3.9	0.46 U	1.0 U	U 1.0 U	J 15	25 U	50 T	U 1.0 U	J 4.0 U	J 2.4	11	11	10 U	10.0 U	1.0 U					
tert-Butylbenzene	0.44 U	J 1.0 U	1.0 U	J 2	U 1 1	U 1.7	10 U	10 U	2 U	1 U	0.44 U	1.0 t	U 1.0 U	1.8	25 U	J 50 I	U 1.0 U	J 4.0 U	J 1.1	2.1	5 t	J 10 U	10.0 U	1.0 U					
Toluene	4.1	1.0 U	1.0 U	J 3.1	1 1	U 6.7	24	10 U	2 U	3.8	4	1.0 U	U 1.0 U	210 E	450	310	14.0	4.0 U	J 32.0	31	27	30	270.0	5.3					
				1	1			T					1			1		1										1	
Total BTEX	103.3	20.2	25.4	61.4	23.1	168	311	ND	26	89.8	99.9	ND	ND	11290	4320	5240	411	49.0	432.0	1041	662	827	5180	235	11661	4651	5265	437	139
TOTAL VOCs	118.1	23.7	27.9	122.3	138.9	543.7	1191	11	48.1	157.1	114.5	ND	ND	14746.15	5178	7258	440.2	106.0	649.9	1972	1237	1425	5763	264	15522	6393	7297	488	263.1
										138.8								263.1											
SAMPLE ID DATE		MW SE-11 1/8/2013	MW SE-11 4/18/2013				MW SE-9 1/8/2013	MW SE-9 4/18/2013	MW SE-9 9/25/2013	MW SE-9 12/20/2013		MW SE-12 1/8/2013	MW SE-12 4/18/2013		MW SE-7 1/8/2013	MW SE-7 4/18/2013		MW SE-7 12/20/2013	MW SE-7 6/13/2014		MW SE-8 1/8/2013	MW SE-8 4/18/2013	MW SE-8 9/25/2013	MW SE-8 12/20/2013	SITE	TOTAL (II	<i>IW-SE7 aı</i> 2/20/2013	nd MW-SE	9)
				1				+	1	1	1		-	1			+	+	1	1		+	 	 			-//		
Total BTEX CONCENTRATION CHANGE (+/-%)		-80.45	-75.41				85.12	-100.00	-84.52	-46.55		-100.00	-100.00		-61.74	-53.59	-96.36	-99.57	-96.17		-36.43	-20.58	397.60	-77.45			-98.79		
Total Benzene CONCENTRATION CHANGE (+/-%)		-78.75	-72.50				14.29	-100.00	-81.43	-46.43		-100.00	-100.00		-48.48	-48.48	-90.00	-100.00	-92.73		-35.71	-18.57	385.71	-71.43			-97.82		
TOTAL MEASURED VOCs CONCENTRATION CHANGE (+/-%)		-79.93	-76.38				119.05	-97.98	-91.15	-71.11		-100.00	-100.00		-64.89	-50.78	-97.01	-99.28	-95.59		-37.29	-27.74	192.23	-86.60			-98.28		

Notes:

Site total concentrations through 4/18/13 include measured analytical concentrations in all wells except offsite well MW-8

Site total concentrations for 9/25/13 and 12/20/13 include measured analytical concentrations in wells MW-SE7 and MW-SE9, as required by NYSDEC

Monitoring well MW-SE6 had not been required for baseline and post remedial sampling, therefore baseline sampling data does not exist for MW-SE6

Indicates a percent-reduction in concentration from the August 2012 baseline event

Tedicates an estimated value.

Analyzed for but not detected.

NA ND μg/L

Analyzed
Not Analyzed
Not Detected
Micrograms per liter
Shaded areas indicate August 2012 Baseline Sampling Event

ATTACHMENT 1 LABORATORY REPORT FOR 6/13/2014 SAMPLING EVENT

175 ROUTE 46 WEST, UNIT D FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: Cooper

Client PO: Not Available

Report To: Gannett Fleming

Suite 300

100 Crossways Park West Woodbury, NY 11757

Attn: Scott Narod

Received Date: 6/12/2014

Report Date: 7/3/2014

Deliverables: NYDOH-CatB

Lab ID: AC79170

Lab Project No: 4061226

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071)

PA (68-00463)

NY (ELAP11408)

KY (90124)

CT (PH-0671)

Table of Contents

SDG Narrative	1
Reporting Limit Definitions	3
Data Package Summary Forms	ŧ
Chain of Custody Forms	12
GC/MS Volatiles Data	17

SDG Narrative

HCV Case Narrative

Client: Project: **Gannett Fleming**

Cooper

HCV Project:

4061226

Hampton-Clarke/Veritech (HC·V) received the following samples on June 12, 2014:

Client ID	HCV Sample ID	<u>Matrix</u>	<u>Analysis</u>
MW-SE-7	AC79170-001	Aqueous	VO (8260C)
FB	AC79170-002	Aqueous	VO (8260C)
TB	AC79170-003	Aqueous	VO (8260C)

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

Volatile Organic Analysis:

The Matrix Spike and Matrix Spike Duplicate for batch 36480 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau

Quality Assurance Director

Or

Stanley Gilewicz **Laboratory Director**

4.	Λ	۵	1	22	4	Λ	0	Λ	
÷	v	О	ㅗ	44	0	v	v	v	~

Reporting Limit Definitions

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

Data Package Summary Forms

HCV Report Of Analysis

Client: Gannett Fleming

Project: Cooper

HCV Project #: 4061226

Sample ID: MW-SE-7

Lab#: AC79170-001 Matrix: Aqueous

Collection Date: 6/12/2014

Receipt Date: 6/12/2014

Volatile Organics (no search) 8260

Analyte	2	DF	Units	RL	Result
1,2,4-Trimethylbenzene		1	ug/l	1.0	ND
1,3,5-Trimethylbenzene		1	ug/l	1.0	210
4-Isopropyltoluene	•	1	ug/l	1.0	4.4
Benzene	•	1	ug/l	0.50	240
Ethylbenzene		1	ug/l	1.0	ND
Isopropylbenzene	:	1	ug/I	1.0	ND
m&p-Xylenes		1	ug/l	1.0	ND
Methyl-t-butyl ether		1	ug/l	0.50	ND
n-Butylbenzene		1	ug/l	1.0	ND
n-Propylbenzene		1	ug/l	1.0	ND
o-Xylene		1	ug/l	1.0	160
sec-Butylbenzene		1	ug/l	1.0	2.4
t-Butylbenzene		1	ug/l	1.0	1.1
Toluene		1	ug/l	1.0	32
Trichloroethene		1	ug/I	1.0	ND
Xylenes (Total)		1	ug/l	1.0	160

Sample ID: FB

Lab#: AC79170-002

Matrix: Aqueous

Collection Date: 6/12/2014

Receipt Date: 6/12/2014

Volatile Organics (no search) 8260

Analyte	DF	Units	RL	Result	
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND	
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND	
4-Isopropyltoluene	1	ug/l	1.0	ND	
Benzene	1	ug/l	0.50	ND	
Ethylbenzene	1	ug/l	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	ND	
n-Butylbenzene	. 1	ug/l	1.0	ND	
n-Propylbenzene	. 1	ug/l	1.0	ND	
o-Xylene	1	ug/l	1.0	ND	
sec-Butylbenzene	1	ug/l	1.0	ND	
t-Butylbenzene	1	ug/l	1.0	ND	
Toluene	1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	ND	
Xylenes (Total)	1	ug/l	1.0	ND	

Sample ID: TB

Lab#: AC79170-003 Matrix: Aqueous Collection Date: 6/12/2014 Receipt Date: 6/12/2014

Volatile Organics (no search) 8260

Analyte		DF	Units	RL	Result
1,2,4-Trimethylbenzene		1	ug/l	1.0	ND
1,3,5-Trimethylbenzene		1	ug/l	1.0	ND
4-isopropyltoluene		1	ug/l	1.0	ND
Benzene		1	ug/l	0.50	ND
Ethylbenzene		1	ug/l	1.0	ND
Isopropylbenzene		1	ug/l	1.0	ND
m&p-Xylenes		1	ug/l	1.0	ND
Methyl-t-butyl ether		1	ug/l	0.50	ND
n-Butylbenzene	<u> </u>	1	ug/l	1.0	ND
n-Propylbenzene	3	1	ug/i	1.0	ND
o-Xylene	· •	1	ug/l	1.0	ND
sec-Butylbenzene	•	1	ug/l	1.0	ND
t-Butylbenzene		1	ug/l	1.0	ND
Toluene	,	1	ug/l	1.0	ND
Trichloroethene		1	ug/I	1.0	ND
Xylenes (Total)		1	ug/l	1.0	ND

ORGANICS VOLATILE REPORT

Sample Number: AC79170-001

Client Id: MW-SE-7

Data File: 2M17670.D Analysis Date: 06/17/14 18:23

Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	210	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	4.4	95-47-6	o-Xylene	1.0	160
71-43-2	Benzene	0.50	240	135-98-8	sec-Butylbenzene	1.0	2.4
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	1.1
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	32
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	U	1330-20-7	Xylenes (Total)	1.0	160

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
 d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC79170-002

Client Id: FB

Data File: 2M17686.D

Analysis Date: 06/17/14 22:43

Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2	Benzene	0.50	U	135-98-8	sec-Butylbenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	U
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	U
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	U	1330-20-7	Xylenes (Total)	1.0	U

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

I - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC79170-003

Client Id: TB

Data File: 2M17687.D

Analysis Date: 06/17/14 22:59

Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2	Benzene	0.50	U	135-98-8	sec-Butylbenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	U
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	U
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	U	1330-20-7	Xylenes (Total)	1.0	U ,

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

O ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Chain of Custody Forms

	F 7.88	Additional Notes	\	18-		10) Relinquished by:					*	Š	1-002 FB	3	Lab Sample # 4)Customer Sample ID		Ratch # ww - Waste Water OT - Other (please sr	DW - Drinking Wate		FOR LAB			İ	SCA	ax/Ph:		100 Crass ways	Scott Nand	Customer Information		Service Center: 137-D Gainter Drive, mount Lauret, New Jersey 00034 Ph (Service Center): 856-780-6057 Fax: 856-780-6056		175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004
			-		1 AT	ccepted by:						07 6/12/14 2000		SW 6/12/14 1115	Matrix D	5) 6)Sample 8	m 9, Comments)	S - Soil A - Air SL - Siudge	Matrix Corbs	Check If Contingent ===				9434	646-961-8603 source(0) 20		Park or West, switz 300	et Derive	ornation	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124			ad, Fairfield, New Jersey 07004
			No	9241 Mal	1 6 12 14 / 2 25	Date Time						Δ X		© X	Grab	(G)	1. Tabli		-	<u>v, </u>	7)		2d) Quote/PO # (If Applicable):		tion (City/State):	2b) Project Mgr. Scott Neurod	ļ	2a) Project: Cocp V-	Project Information	CT #PH-0671 KY #90124	A Women-Owned, Disadvantaged, Small Business Enterprise	HAMPTONCLARKE VERTECH LABORATORIES	HC-V CHAIN OF CUSTODY
Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	No Long Figer	Project-Specific Reporting Limits High Contaminant Concentrations	Metals- Soi (ICP-MS 6020 for Be & Ag) Note: Check if applicable:	Metals (ICP-MS 200.8 or 6020)	BN or BNA (8270C SIM)	Comments, Notes, Special Requirements, HAZARDS Lete: Check if low-level groundwater methods required to meet current standards in NJ or PA:									None MeO En C	Н	**					Expedited TAT N	Other: STD	2 Weeks			4 Days (35%; TPH)	72 Hours (50%)	48 Hours (75%)	24 Ho	Turnarou		900
Uate: completed your analytical values should sample not be activate			g)			cial Requirements, HAZ equired to meet current star						w	w	3	HCI H2S0 HNO	04	8) # of Bottles			f Contingent		Expedited TAT Not Always Available. Please Check with Lab.		Other:	Category A	Full / Category B	CLP	Red - NJ / NY / PA	Waste	Data Summary	Report Type	3)Reporting Requirements (Please Circle)	1226 Page
il work may be delayed. ated for any analysis.		Cooler Temperature				<u>'ARDS</u> ndards in NJ or PA:		GN standards	with TOGS	3	-RLS should	FB+TB	present for	clean-non-GW	9)Comments							Check with Lab.	Other:	PDF	Excel - PA Regulatory	Excel - NY Regulatory	Excel - NJ Regulatory	EQuIS EPA Region 2 or 5	EQuIS 4-File / EZ / NYS	Hazsite/CSV	Electronic Deliv.	se Circle)	9

CONDITION UPON RECEIPT

Batch Number AC79170

Entered By: Frantz 🚭

Date Entered 6/12/2014 3:24:00 PM

		Date Entered 6/12/2014 3:24:00 PM
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.9
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes Apples	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	NO	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	YES	Other commentsSpecify No custody seals on Trip Blanks, Trip blank was not prepped at HCV.
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC79170

Entered By: Frantz

Date Entered 6/12/2014 3:25:00 PM

Lab#:	Container Siz	Container Typ	Paramete	Preservative	PH
AC79170-001	40ML	G	VO	HCL	7
AC79170-002	40ML	G	VO	HCL	1
AC79170-003	40ML	G	VO	HCL	1

Internal Chain of Custody

		Loc	Dat						Loc	Dat	Δ/	
		or	Bot	1					or	Bot	1 1	
Lab#:	DateTime:	User	Nu	M	Analysis		Lab#:	DateTime:	User	Nu	M	Analysis
AC79170-001	06/12/14 14:20	FRAN	0	М	Received							
AC79170-001	06/12/14 15:23	FRAN	0	М	Login							
AC79170-001	06/13/14 07:08	R31	4	Α	NONE							
AC79170-001	06/13/14 07:08	R31	5	Α	NONE							
AC79170-001	06/17/14 20:44	WP	5	Α	VOA							
AC79170-001	06/13/14 07:08	R31	6	Α	NONE							
AC79170-002	06/12/14 14:20	FRAN	0	M	Received							
AC79170-002	06/12/14 15:23	FRAN	0	M	Login							
AC79170-002	06/13/14 07:08	R31	4	Α	NONE							
AC79170-002	06/17/14 18:05	WP	4	Α	VOA	i						
AC79170-002	06/13/14 07:08	R31	5	Α	NONE							
AC79170-002	06/13/14 07:08	R31	6	Α	NONE	1						
AC79170-003	06/12/14 14:20	FRAN	0	М	Received	` . .						
AC79170-003	06/12/14 15:23	FRAN	0	М	Login							
AC79170-003	06/13/14 07:08	R31	4	Α	NONE							
AC79170-003	06/17/14 18:05	WP	4	Α	VOA							
AC79170-003	06/13/14 07:08	R31	5	Α	NONE							
AC79170-003	06/13/14 07:08	R31	6	Α	NONE							

GC/MS Volatile Data

GC/MS Volatile Data QC Summary

FORM2

Surrogate Recovery

Method: EPA 8260C

			Surr	Dilute Out	Column1 S1	Column1 S2	Column1 S3	Column1 S4	Column0 S5	Column0 S6
Dfile	Sample# Matri	c Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
2M17662.D	DAILY BLANK Aque	ous 06/17/14 16:15	1		123	121	92	90		
2M17670.D	AC79170-001 Aque	ous 06/17/14 18:23	1		113	121	90	101		
2M17686.D	AC79170-002 Aque	ous 06/17/14 22:43	1		115	117	92	96		
2M17687.D	AC79170-003 Aque	ous 06/17/14 22:59	1		120	110	89	94		
2M17663.D	MBS36472 Aque	ous 06/17/14 16:31	1		111	108	95	96		
2M17673.D	AC79132-002(Aque	ous 06/17/14 19:11	1		118	126	95	95		
2M17682.D	AC79132-002(Aque	ous 06/17/14 21:39	1		110	109	98	100		
2M17683.D	AC79132-002(Aque	ous 06/17/14 21:55	1		110	110	94	97		
2M17684.D	MBS36480 Aque	ous 06/17/14 22:11	1		110	110	96	95		

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: EPA 8260C

Aqueous Limits

	Spike	
Compound	Amt	Limits
S1=Dibromofluoromethane	30	73-131
S2=1,2-Dichloroethane-d4	30	78-128
S3=Toluene-d8	30	79-111
S4=Bromofluorobenzene	30	82-112

Form3 **Recovery Data**

QC Batch: MBS36472

Data File

Spike or Dup: 2M17663.D

Sample ID:

MBS36472

Analysis Date 6/17/2014 4:31:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MBS

Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
1	17.6257	0	20	88	20	130
1	22.354	0	20	112	50	130
1	20.468	0	20	102	50	130
1	19.9001	. 0	20	100	50	130
1	21.5724	0	20	108	50	130
1	18.3852	0	20	92	20	130
1	21.6327	0	20	108	50	130
1	19.5842	0	20	98	50	130
1	19.7241	0	20	99	50	130
1	17.6222	0	20	88	50	130
1	16.7672	0	20	84	50	130
1	16.8004	0	20	84	50	130
1	15.6837	0	20	78	50	130
. 1	14.9105	0	20	75	50	130
1	16.6432	0	20	83	50	130
. 1	16.1888	0	20	81	50	130
	Col 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Col Conc 1 17.6257 1 22.354 1 20.468 1 19.9001 1 21.5724 1 18.3852 1 21.6327 1 19.5842 1 19.7241 1 17.6222 1 16.7672 1 15.6837 1 14.9105 1 16.6432	Col Conc Conc 1 17.6257 0 1 22.354 0 1 20.468 0 1 19.9001 0 1 21.5724 0 1 18.3852 0 1 21.6327 0 1 19.5842 0 1 19.7241 0 1 17.6222 0 1 16.7672 0 1 16.8004 0 1 15.6837 0 1 14.9105 0 1 16.6432 0	Col Conc Conc Conc 1 17.6257 0 20 1 22.354 0 20 1 20.468 0 20 1 19.9001 0 20 1 21.5724 0 20 1 18.3852 0 20 1 21.6327 0 20 1 19.5842 0 20 1 19.7241 0 20 1 17.6222 0 20 1 16.8004 0 20 1 15.6837 0 20 1 14.9105 0 20 1 16.6432 0 20	Col Conc Conc Conc Recovery 1 17.6257 0 20 88 1 22.354 0 20 112 1 20.468 0 20 102 1 19.9001 0 20 100 1 21.5724 0 20 108 1 18.3852 0 20 92 1 21.6327 0 20 108 1 19.5842 0 20 98 1 19.7241 0 20 99 1 17.6222 0 20 88 1 16.7672 0 20 84 1 16.8004 0 20 84 1 15.6837 0 20 75 1 14.9105 0 20 75 1 16.6432 0 20 83	Col Conc Conc Conc Recovery Limit 1 17.6257 0 20 88 20 1 22.354 0 20 112 50 1 20.468 0 20 102 50 1 19.9001 0 20 100 50 1 21.5724 0 20 108 50 1 18.3852 0 20 92 20 1 21.6327 0 20 108 50 1 19.5842 0 20 98 50 1 19.7241 0 20 99 50 1 17.6222 0 20 88 50 1 16.7672 0 20 84 50 1 16.8004 0 20 78 50 1 14.9105 0 20 75 50 1

Form3 Recovery Data QC Batch: MBS36480

Data File

Spike or Dup: 2M17684.D

Sample ID:

MBS36480

Analysis Date 6/17/2014 10:11:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Vinyl Chloride	1	18.2895	0	20	91	20	130
1,1-Dichloroethene	1	22.091	0	20	110	50	130
1,1-Dichloroethane	1	18.8333	0	20	94	50	130
Chloroform	1	19.2803	0	20	96	50	130
1,2-Dichloroethane	1	19.5324	0	20	98	50	130
2-Butanone	1	17.7932	0	20	89	20	130
Carbon Tetrachloride	1	20.3548	0	20	102	50	130
Trichloroethene	1	18.7639	0	20	94	50	130
Benzene	1	18.3544	0	20	92	50	130
Tetrachloroethene	1	17.671	0	20	88	50	130
Toluene	1	16.5627	0	20	83	50	130
Chlorobenzene	1	16.2234	0	20	81	50	130
1,4-Dichlorobenzene	1	14.7716	0	20	74	50	130
1,2-Dichlorobenzene	1	14.8397	0	20	74	50	130
n-Propylbenzene	1	16.0392	0	20	80	50	130
sec-Butylbenzene	1	15.9953	0	20	80	50	130

Form3 Recovery Data QC Batch: MBS36480

Data File Spike or Dup: 2M17682.D Non Spike(If applicable): 2M17673.D Sample ID: AC79132-002(T:MS) AC79132-002(T) Analysis Date 6/17/2014 9:39:00 PM 6/17/2014 7:11:00 PM

Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit
Vinyl Chloride	1	13.0439	0	20	65	20	130
1,1-Dichloroethene	1	16.5829	0	20	83	50	130
1,1-Dichloroethane	1	17.2757	0	20	86	50	130
Chloroform	1	17.3927	0	20	87	50	130
1,2-Dichloroethane	1	16.6677	0	20	83	50	130
2-Butanone	1	17.7459	0	20	89	20	130
Carbon Tetrachloride	1	16.0786	0	20	80	50	130
Trichloroethene	1	12.9741	0	20	65	50	130
Benzene	1	15.8153	0	20	79	50	130
Tetrachloroethene	1	12.6612	0	20	63	50	130
Toluene	1	13.4206	0	20	67	50	130
Chlorobenzene	1	11.997	0	20	60	50	130
1,4-Dichlorobenzene	1	7.672	0	20	38*	50	130
1,2-Dichlorobenzene	1	9.5696	0	20	48*	50	130
n-Propylbenzene	1	10.2108	0	20	51	50	130
sec-Butylbenzene	1	10.308	0	20	52	50	130

Data File Spike or Dup: 2M17683.D Sample ID: AC79132-002(T:MSD)

AC79132-002(T)

Analysis Date 6/17/2014 9:55:00 PM 6/17/2014 7:11:00 PM

Non Spike(If applicable): 2M17673.D Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MSD

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Vinyl Chloride	1	12.8005	0	20	64	20	130
1,1-Dichloroethene	1	13.2851	0	20	66	50	130
1,1-Dichloroethane	1	15.5749	0	20	78	50	130
Chloroform	1	16.3455	0	20	82	50	130
1,2-Dichloroethane	1	15.7471	0	20	79	50	130
2-Butanone	1	15.2465	0	20	76	20	130
Carbon Tetrachloride	1	15.0733	0	20	75	50	130
Trichloroethene	1	13.0559	0	20	65	50	130
Benzene	1	14.9756	0	20	75	50	130
Tetrachloroethene	1	11.8592	0	20	59	50	130
Toluene	1	12.7344	0	20	64	50	130
Chlorobenzene	1	10.9038	0	20	55	50	130
1,4-Dichlorobenzene	1	7.6697	0	20	38*	50	130
1,2-Dichlorobenzene	1	9.9207	0	20	50	50	130
n-Propylbenzene	1	10.1796	0	20	51	50	130
sec-Butylbenzene	1	10.5532	0	20	53	50	130

Form3 RPD DATA

QC Batch: MBS36480

Data File

Spike or Dup: 2M17683.D

Sample ID:

AC79132-002(T:MSD) AC79132-002(T:MS) Analysis Date

6/17/2014 9:55:00 PM 6/17/2014 9:39:00 PM

Duplicate(If applicable): 2M17682.D Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MSD

	Dup/MSD/MBSD	Sample/MS/MBS		
Column	Conc	Conc	RPD	Limit
1	12.8005	13.0439	1.9	40
1	13.2851	16.5829	22	40
1	15.5749	17.2757	10	40
1	16.3455	17.3927	6.2	40
1	15.7471	16.6677	5.7	40
1	15.2465	17.7459	15	40
1	15.0733	16.0786	6.5	40
1	13.0559	12.9741	0.63	40
1	14.9756	15.8153	5.5	40
1	11.8592	12.6612	6.5	40
1	12.7344	13.4206	5.2	40
1	10.9038	11.997	9.5	40
1	7.6697	7.672	0.03	40
1	9.9207	9.5696	3.6	40
1	10.1796	10.2108	0.31	40
1	10.5532	10.308	2.4	40
	Column 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Column Conc 1 12.8005 1 13.2851 1 15.5749 1 16.3455 1 15.7471 1 15.2465 1 15.0733 1 13.0559 1 14.9756 1 11.8592 1 12.7344 1 10.9038 1 7.6697 1 9.9207 1 10.1796	Column Conc Conc 1 12.8005 13.0439 1 13.2851 16.5829 1 15.5749 17.2757 1 16.3455 17.3927 1 15.7471 16.6677 1 15.2465 17.7459 1 15.0733 16.0786 1 13.0559 12.9741 1 14.9756 15.8153 1 11.8592 12.6612 1 12.7344 13.4206 1 10.9038 11.997 1 7.6697 7.672 1 9.9207 9.5696 1 10.1796 10.2108	Column Conc Conc RPD 1 12.8005 13.0439 1.9 1 13.2851 16.5829 22 1 15.5749 17.2757 10 1 16.3455 17.3927 6.2 1 15.7471 16.6677 5.7 1 15.2465 17.7459 15 1 15.0733 16.0786 6.5 1 13.0559 12.9741 0.63 1 14.9756 15.8153 5.5 1 11.8592 12.6612 6.5 1 12.7344 13.4206 5.2 1 10.9038 11.997 9.5 1 7.6697 7.672 0.03 1 9.9207 9.5696 3.6 1 10.1796 10.2108 0.31

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 2M17662.D Matrix: Aqueous Blank Analysis Date: 06/17/14 16:15 Blank Extraction Date: NA

(If Applicable)

Method: EPA 8260C

Sample Number	Data File	Analysis Date	
AC79170-001	2M17670.D	06/17/14 18:23	
AC79170-002	2M17686.D	06/17/14 22:43	
AC79170-003	2M17687.D	06/17/14 22:59	
MBS36472	2M17663.D	06/17/14 16:31	
MBS36480	2M17684.D	06/17/14 22:11	
AC79132-002(T:M	2M17683.D	06/17/14 21:55	
AC79132-002(T:M	2M17682.D	06/17/14 21:39	
AC79132-002(T)	2M17673.D	06/17/14 19:11	

 Tune Name:
 BFB TUNE
 Data File:
 2M16102.D

 Instrument:
 GCMS 2
 Analysis Date:
 05/20/14 15:14

 Method:
 EPA 8260C

 Tune Scan/Time Range:
 Average of 4.547 to 4.606 min

	Rel	Lo	Hi	Rel	Raw	Pass/
Tgt Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	21.8	3644	PASS
75	95	30	60	50.0	8367	PASS
95	95	100	100	100.0	16746	PASS
96	95	5	9	6.0	1012	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	88.2	14772	PASS
175	174	5	9	8.8	1301	PASS
176	174	95	101	95.6	14121	PASS
177	176	5	9	7.3	1033	PASS

Data File	Sample Number	Analysis Date:
2M16103.D	20 PPB	05/20/14 15:30
2M16104.D	BLK	05/20/14 15:50
2M16105.D	CAL @ 20 PPB	05/20/14 16:06
2M16106.D	BLK	05/20/14 16:22
2M16111.D	CAL @ 0.5 PPB	05/20/14 17:45
2M16112.D	CAL @ 1 PPB	05/20/14 18:01
2M16113.D	CAL @ 5 PPB	05/20/14 18:17
2M16114.D	CAL @ 10 PPB	05/20/14 18:33
2M16115.D	CAL @ 20 PPB	05/20/14 18:49
2M16116.D	BLK	05/20/14 19:05
2M16117.D	CAL @ 50 PPB	05/20/14 19:21
2M16118.D	CAL @ 100 PPB	05/20/14 19:37
2M16119.D	BLK	05/20/14 19:53
2M16120.D	BLK	05/20/14 20:09
2M16121.D	CAL @250 PPB	05/20/14 20:25
2M16122.D	BLK	05/20/14 20:41
2M16123.D	BLK	05/20/14 20:56
2M16124.D	CAL @ 500 PPB	05/20/14 21:12
2M16125.D	BLK	05/20/14 21:28 05/20/14 21:44
2M16126.D	BLK BLK	05/20/14 21:44
2M16127.D	BLK BLK	05/20/14 22:16
2M16128.D	ICV	05/20/14 22:16
2M16129.D	ICV	05/20/14 22:48
2M16130.D	BLK	05/20/14 23:04
2M16131.D 2M16132.D	DAILY BLANK	05/20/14 23:20
2M16132.D 2M16133.D	DAILY BLANK	05/20/14 23:36
2M16133.D 2M16134.D	AC78679-001	05/20/14 23:52
2M16134.D 2M16135.D	AC78677-001	05/21/14 00:08
2M16135.D 2M16136.D	AC78740-004	05/21/14 00:24
2M16136.D 2M16137.D	AC78740-003	05/21/14 00:40
2M16137.D 2M16138.D	AC78629-005	05/21/14 00:56
2M16138.D 2M16139.D	AC78682-003	05/21/14 01:12
2M16139.D 2M16140.D	BLK	05/21/14 01:28
2M16140.D	AC78716-002(400u	05/21/14 01:43
2M16141.D	MBS35793	05/21/14 01:59
2M16142.D	MBS35794	05/21/14 02:15
2M16143.D 2M16144.D	MBS35795	05/21/14 02:31
2M16144.D	STD	05/21/14 09:19
2M16147.D	STD	05/21/14 09:35
2M16147.D	BLK	05/21/14 09:51
2M16149.D	AC78732-001	05/21/14 10:16
2M16149.D	AC78732-016	05/21/14 10:33
2M16150.D	AC78722-009	05/21/14 10:50
2M16151.D	AC78732-009	05/21/14 11:06
2M16152.D	AC78732-008	05/21/14 11:22
2M16154.D	AC78732-010	05/21/14 11:38
2M16155.D	AC78732-011	05/21/14 11:54

Tune Name: BFB TUNE

Data File: 2M17649.D Instrument: GCMS 2 Analysis Date: 06/17/14 12:49
Method: EPA 8260C
Tune Scan/Time Range: Average of 4.508 to 4.528 min

1 une S	can/ I line i	Kange: /	werage	<u>01 4.306 t</u>	3 4.320 Hilli	
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	19.3	2283	PASS
75	95	30	60	54.9	6477	PASS
95	95	100	100	100.0	11802	PASS
96	95	5	9	5.6	666	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	99.1	11698	PASS
175	174	5	9	8.1	944	PASS
176	174	95	101	96.6	11306	PASS
177	176	5	9	8.9	1002	PASS

Data File	Sample Number	Analysis Date:
2M17650.D	20 PPB	06/17/14 12:59
2M17651.D	BLK	06/17/14 13:15
2M17652.D	CAL @ 20 PPB	06/17/14 13:31
2M17653.D 2M17654.D	BLK	06/17/14 13:47 06/17/14 14:03
2M17654.D 2M17655.D	BLK BLK	06/17/14 14:03
2M17656.D	BLK	06/17/14 14:41
2M17657.D	BLK	06/17/14 14:57
2M17658.D	BLK	06/17/14 15:13
2M17659.D	BLK	06/17/14 15:29
2M17660.D	BLKBLK	06/17/14 15:45
2M17661.D 2M17662.D	BLKBLK DAILY BLANK	06/17/14 16:00 06/17/14 16:15
2M17662.D 2M17663.D	MBS36472	06/17/14 16:13
2M17664.D	AC79174-025(T)	06/17/14 16:47
2M17665.D	AC79174-026(T)	06/17/14 17:03
2M17666.D	BLK	06/17/14 17:19
2M17667.D	BLK	06/17/14 17:35
2M17668.D	79225-001	06/17/14 17:51
2M17669.D	AC79162-017	06/17/14 18:07
2M17670.D 2M17671.D	AC79170-001 AC79123-023(MS)	06/17/14 18:23 06/17/14 18:39
2M17671.D	AC79123-023(MSD	06/17/14 18:55
2M17673.D	AC79132-002(T)	06/17/14 19:11
2M17674.D	EF-1-V-188693(061	06/17/14 19:27
2M17675.D	AC79132-004(T)	06/17/14 19:43
2M17676.D	AC79132-006(T)	06/17/14 20:03
2M17677.D	AC79132-008(T)	06/17/14 20:19
2M17678.D 2M17679.D	AC79197-001(T) AC79197-002(T)	06/17/14 20:35 06/17/14 20:51
2M17679.D 2M17680.D	AC79197-002(T)	06/17/14 20:51
2M17681.D	AC79207-001(T)	06/17/14 21:23
2M17682.D	AC79132-002(T:M	06/17/14 21:39
2M17683.D	AC79132-002(T:M	06/17/14 21:55
2M17684.D	MBS36480	06/17/14 22:11
2M17685.D	BLK	06/17/14 22:27
2M17686.D 2M17687.D	AC79170-002 AC79170-003	06/17/14 22:43 06/17/14 22:59
2M17687.D 2M17688.D	AC79170-003 AC79188-006	06/17/14 22:55
2M17689.D	AC79188-007	06/17/14 23:13
2M17690.D	AC79188-008	06/17/14 23:47
2M17691.D	AC79188-009	06/18/14 00:03
2M17692.D	BLK	06/18/14 00:18
2M17693.D	BLK	06/18/14 00:34
2M17694.D 2M17695.D	BLK MBS36481	06/18/14 00:50 06/18/14 01:06
2M17695.D 2M17696.D	BLK	06/18/14 01:22
2M17697.D	AC79175-003	06/18/14 01:38
2M17698.D	AC79175-005	06/18/14 01:54
2M17699.D	AC79175-007	06/18/14 02:10
2M17700.D	BLK	06/18/14 02:25
2M17701.D	AC79175-001(200X	06/18/14 02:41
2M17702.D	AC79175-006(200X	06/18/14 02:57 06/18/14 03:13
2M17703.D 2M17704.D	79135-006(50X) 79135-007(50X)	06/18/14 03:13
2M17704.D 2M17705.D	79135-007(50X)	06/18/14 03:46
2M17706.D	79135-003(20X)	06/18/14 04:02
2M17707.D	AC79175-002(20X)	06/18/14 04:18
2M17708.D	AC79175-004(5X)	06/18/14 04:34
2M17709.D	MBS36482	06/18/14 04:49
2M17710.D	AC79195-002(MS)	06/18/14 05:05
2M17711.D	AC79195-002(MSD	06/18/14 05:22

FORM8

Internal Standard Areas

Evaluation Std Data File: 2M16115.D

Method: EPA 8260C

Analysis Date/Time: 05/20/14 18:49 Lab File ID: CAL @ 20 PPB

Eval File Area/RT:	
Eval File Area Limit:	
Eval File Rt Limit:	

l1	l1 l2			13		14		15		16	
Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
282519	4.65	229766	6.49	149903	7.92						
141260-565038 114883-459		459532	74952-299806								
4.15-	4.15-5.15 5.99-6.99 7.42-8.42										

2M16104.D BLK 19. 2M16106.D BLK 19. 2M16111.D CAL @ 0.5 PF 25. 2M16112.D CAL @ 1 PPB 25. 2M16113.D CAL @ 5 PPB 26. 2M16114.D CAL @ 10 PP 27. 2M16115.D CAL @ 20 PP 28. 2M16116.D BLK 26. 2M16117.D CAL @ 50 PP 28. 2M16118.D CAL @ 100 P 28. 2M16119.D BLK 27.	37233 4.63 94098 4.63 93879 4.64 51813 4.64 53422 4.63 69365 4.63 78569 4.63 82519 4.64 882519 4.64 88317 4.63 77666 4.63 77666 4.63 772441 4.63 94568 4.63 74732 4.63	180279 181481 1217414 220999 220640 233318 229766 3219193 4244421 3248682 238849 3230928	6.47 6.48 6.48 6.48 6.48 6.49 6.48 6.48 6.48	247053 104395 111346 129126 130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90		
2M16104.D BLK 19. 2M16106.D BLK 19. 2M16111.D CAL @ 0.5 PF 25. 2M16112.D CAL @ 1 PPB 25. 2M16113.D CAL @ 5 PPB 26. 2M16114.D CAL @ 10 PP 27. 2M16115.D CAL @ 20 PP 28. 2M16116.D BLK 26. 2M16117.D CAL @ 50 PP 28. 2M16118.D CAL @ 100 P 28. 2M16119.D BLK 27.	94098	180279 181481 1217414 220999 220640 233318 229766 3219193 4244421 3248682 238849 3230928	6.48 6.48 6.48 6.48 6.48 6.49 6.48 6.48	104395 111346 129126 130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90		
2M16104.D BLK 19. 2M16106.D BLK 19. 2M16111.D CAL @ 0.5 PF 25. 2M16112.D CAL @ 1 PPB 26. 2M16113.D CAL @ 5 PPB 26. 2M16114.D CAL @ 10 PP 27. 2M16115.D CAL @ 20 PP 28. 2M16116.D BLK 26. 2M16117.D CAL @ 50 PP 28. 2M16118.D CAL @ 100 P 28. 2M16119.D BLK 27.	93879 4.64 51813 4.64 53422 4.63 69365 4.63 78569 4.63 82519 4.63 65146 4.63 89274 4.64 88317 4.63 77666 4.63 72441 4.63 94568 4.63	181481 1217414 220999 220640 233318 229766 219193 244421 248682 238849 230928	6.48 6.48 6.48 6.48 6.49 6.48 6.48	111346 129126 130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.90 7.90 7.92 7.90 7.90	·	
2M16106.D BLK 19 2M16111.D CAL @ 0.5 PF 25 2M16112.D CAL @ 1 PPB 26 2M16113.D CAL @ 5 PPB 26 2M16114.D CAL @ 10 PP 27 2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	51813 4.64 53422 4.63 69365 4.63 78569 4.63 82519 4.63 89274 4.64 88317 4.63 77666 4.63 72441 4.63 94568 4.63	217414 220999 220640 233318 229766 219193 4 244421 248682 238849 230928	6.48 6.48 6.48 6.49 6.48 6.48	129126 130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.90 7.92 7.90 7.90		
2M16111.D CAL @ 0.5 PF 25 2M16112.D CAL @ 1 PPB 25 2M16113.D CAL @ 5 PPB 26 2M16114.D CAL @ 10 PP 27 2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	53422 4.65 69365 4.65 78569 4.65 82519 4.65 85146 4.65 89274 4.64 88317 4.65 77666 4.65 72441 4.65	220999 220640 233318 229766 219193 244421 248682 238849 230928	6.48 6.48 6.49 6.48 6.48	130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.92 7.90 7.90		
2M16112.D CAL @ 1 PPB 25 2M16113.D CAL @ 5 PPB 26 2M16114.D CAL @ 10 PP 27 2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	53422 4.65 69365 4.65 78569 4.65 82519 4.65 85146 4.65 89274 4.64 88317 4.65 77666 4.65 72441 4.65	220999 220640 233318 229766 219193 244421 248682 238849 230928	6.48 6.48 6.49 6.48 6.48	130481 138197 149692 149903 130890 156555 146176	7.90 7.90 7.90 7.92 7.90 7.90		
2M16113.D CAL @ 5 PPB 26 2M16114.D CAL @ 10 PP 27 2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	69365 4.65 78569 4.65 82519 4.65 65146 4.65 89274 4.64 88317 4.65 77666 4.65 72441 4.65 94568 4.65	220640 233318 229766 219193 4 244421 248682 238849 230928	6.48 6.49 6.48 6.48 6.48	138197 149692 149903 130890 156555 146176	7.90 7.90 7.92 7.90 7.90		
2M16114.D CAL @ 10 PP 27 2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	78569 4.65 82519 4.65 65146 4.65 89274 4.64 88317 4.65 77666 4.65 72441 4.65 94568 4.65	233318 229766 219193 4 244421 248682 3 238849 3 230928	6.48 6.49 6.48 6.48	149692 149903 130890 156555 146176	7.90 7.92 7.90 7.90		
2M16115.D CAL @ 20 PP 28 2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	82519 4.65 65146 4.65 89274 4.64 88317 4.65 77666 4.65 72441 4.65 94568 4.65	229766 3 219193 4 244421 3 248682 3 238849 3 230928	6.49 6.48 6.48	149903 130890 156555 146176	7.92 7.90 7.90		
2M16116.D BLK 26 2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	65146 4.63 89274 4.64 88317 4.63 77666 4.63 72441 4.63 94568 4.63	244421 248682 3 238849 3 230928	6.48 6.48	156555 146176	7.90		
2M16117.D CAL @ 50 PP 28 2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	88317 4.63 77666 4.63 72441 4.63 94568 4.63	248682 3 238849 3 230928	6.48	146176			
2M16118.D CAL @ 100 P 28 2M16119.D BLK 27	88317 4.63 77666 4.63 72441 4.63 94568 4.63	238849 230928			7.00		
2M16119.D BLK 27	77666 4.63 72441 4.63 94568 4.63	3 230928	6.48		7.90		
	72441 4.63 94568 4.63	3 230928		140902	7.90		
			6.48	137735	7.90		
		3 244247	6.48	144583	7.90		
	(→()∠ 4.0√		6.48	144429	7.90		
	72180 4.63	3 229047	6.48	140478	7.90		
	00096 4.63	3 244917	6.48	138400	7.90		
	74479 4.63		6.48	146681	7.90		
	71142 4.63	3 232057	6.48	140966	7.90		
	68647 4.63	3 233213	6.48	135381	7.90		
	64961 4.64	222871	6.48	131809	7.90	a Calabata yrgyr	
	80466 4.63	3 240672	6.48	150242	7.90		
2M16130.D ICV 27	74939 4.63	3 230816	6.48	144821	7.90		
	68693 4.63	3 236307	6.48	139317	7.90		
2M16132.D DAILY BLANK 24	49919 4.63	3 217131	6.47	127861	7.90		
	56333 4.64	212069	6.47	122063	7.90		
	53403 4.63	3 223924	6.47	130039	7.90		
2M16135.D AC78677-001 24	49620 4.63	3 209429	6.47	123717	7.90		
2M16136.D AC78740-004 25	54139 4.63	3 223776	6.48	125801	7.90		
2M16137.D AC78740-003 24	45999 4.63	3 211041	6.48	124356	7.90		
2M16138.D AC78629-005 26	61945 4.63	3 225221	6.47	141066	7.90		
2M16139.D AC78682-003 25	51190 4.63	3 218443	6.47	125769	7.90		
	79028 4.63	3 243523	6.48	145282	7.90		
	68155 4.63	3 244156	6.48	150900	7.90		
	83687 4.63	244666	6.48	142702	7.90		
	81666 4.63	247263	6.48	151220	7.90		
	66551 4.63	228624	6.48	141641	7.90		
	11194 4.63	3 255892	6.47	140296	7.90		
	59672 4.63	3 214964	6.47	125694	7.90		
	53490 4.63	221391	6.47	132948	7.90		

I1 =	Fluorobenzene	I4 =
I2 =	Chlorobenzene-d5	I5 =
13 =	1.4-Dichlorobenzene-d4	I6 =

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags

A - Indicates the compound failed the internal standard area criteria

 \boldsymbol{R} - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

FORM8

Internal Standard Areas

Evaluation Std Data File: 2M17652.D

Method: EPA 8260C

Analysis Date/Time: 06/17/14 13:31

Lab File ID: CAL @ 20 PPB

					Lab File	ID: CAL @	20 PPB					
	I1		12		13		14	1	15		16	ò
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
Eval File Area/RT:	198923	4.64	184635	6.49	119024	7.92						
Eval File Area Limit:	99462-39	7846	92318-3	69270	59512-23	38048						
Eval File Rt Limit:	4.14-5	.14	5.99-6	5.99	7.42-8	.42						
Data File Sample												
2M17650.D 20 PPB	186719											
2M17651.D BLK	175735											
2M17653.D BLK	179732											
2M17654.D BLK	176677 164623											
2M17655.D BLK 2M17656.D BLK	17610					-		**			_	
2M17657.D BLK	169862											
2M17658.D BLK	170815											
2M17659.D BLK	236280											
2M17660.D BLKBLK	169397				9647							
2M17661.D BLKBLK	167346						****					
2M17662.D DAILY BLA												
2M17663.D MBS36472	197181	4.65	18912	6.49	119297							
2M17664.D AC79174-0	25: 178986	4.65	170778	6.49	101850	7.92	!					
2M17665.D AC79174-0	26ı 180759	4.65	17340	1 6.49	102899	7.93	l					
2M17666.D BLK	174321	4.65	17154	6.49	99889	7.93	1					
2M17667.D BLK	180987	4.65	17807	7 6.50	104530	7.92	!					
2M17668.D 79225-001	170153	4.65	16948	3 6.49	97208	7.93	;					
2M17669.D AC79162-0	17 173511	4.65	17151	1 6.49	101209	7.93	;					
2M17670.D AC79170-0	<u>01</u> 202241	4.65	20064	6.49	117777	7.93	*****					
2M17671.D AC79123-0												
2M17672.D AC79123-0												
2M17673.D AC79132-0												
2M17674.D EF-1-V-188												
2M17675.D AC79132-0											_	
2M17676.D AC79132-0												
2M17677.D AC79132-0					100638							
2M17678.D AC79197-0					107553							
2M17679.D AC79197-0												
2M17680 D AC79197-0					106141 106924							
2M17681.D AC79207-00 2M17682.D AC79132-00					116359							
2M17683.D AC79132-00					116598							
2M17684.D MBS36480	206265				121271							
2M17685.D BLK	198260				105249							
2M17686.D AC79170-00					103590							-
2M17687.D AC79170-00					103700							
2M17688.D AC79188-00					107819							
2M17689.D AC79188-00					101604							
2M17690.D AC79188-00					108200							
2M17691.D AC79188-00		4.66			109663				_			
2M17692.D BLK	178903	4.65	177389	6.50	102747	7.93						
2M17693.D BLK	182877	4.65	178818	6.50	108970	7.93						
2M17694.D BLK	179523	4.65	173292	6.50	103983	7.93						
2M17695.D MBS36481	192894				119953							
2M17696.D BLK	175064				106104							
2M17700.D BLK	190248				106115	7.93						
2M17703.D 79135-006(112937							
2M17704.D 79135-007(5					104137							
2M17705.D 79135-004(5					102515					•		
2M17706.D 79135-003(2					103929							
2M17709.D MBS36482	195271				119527							
2M17710.D AC79195-00	199067	4.65	189197	6.50	120984	7.93						

QC Limits:

Internal Standard Areas

I1 =

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Fluorobenzene

Chlorobenzene-d5

1.4-Dichlorobenzene-d4

Flags:

A - Indicates the compound failed the internal standard area criteria

524 Internal Standard concentration =5ug/L

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 u g/L

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily call or mid pt.

I4 =

15 =

FORM8

Lab File ID: CAL @ 20 PPB

Internal Standard Areas

Evaluation Std Data File: 2M17652.D

Method: EPA 8260C

Analysis Date/Time: 06/17/14 13:31

Eval File Area/RT:
Eval File Area Limit:
Eval File Rt Limit:

I1		12		13		14	ĺ	15		16	
Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
198923	4.64	184635	6.49	119024	7.92						
99462-3	97846	92318-3	369270	59512-2	238048		-		-		
4.14-	5.14	5.99-	6.99	7.42-	8.42						

Data File Sample

2M17711.D AC79195-002

199039

4.65 197673

6.50

120473

7.93

I1 =	Fluorobenzene
I2 =	Chlorobenzene-d5
I3 =	1.4-Dichlorobenzene-d4

14 = 15 = 16 = 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

riags.

A - Indicates the compound failed the internal standard area criteria

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily call or mid pt.

GC/MS Volatile Data Sample Data

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC79170-001

Client Id: MW-SE-7 Data File: 2M17670.D

Analysis Date: 06/17/14 18:23 Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	210	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	4.4	95-47-6	o-Xylene	1.0	160
71-43-2	Benzene	0.50	240	135-98-8	sec-Butylbenzene	1.0	2.4
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	1.1
98-82-8	Isopropylbenzene	1.0	υ	108-88-3	Toluene	1.0	32
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	υ	1330-20-7	Xylenes (Total)	1.0	160

⁶⁵⁰ ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.

well as in the sample. J - Indicates an estimated value when a compound is detected at less than the calibration range of the specified detection limit.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC79170-001 Data File: 2M17670.D Acq On : 06/17/14 18:23

Operator : WP Sam Mult : 1 Vial# : 22 Misc : A,5ML!5

Qt Meth : 2M_A0520.M Qt On : 06/17/14 18:52 Qt Upd On: 05/21/14 10:07

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
4) Fluorobenzene	4.646	96	202241	30.00 ug/	1 0.00
			200640	•	
70) 1,4-Dichlorobenzene-d4				•	
System Monitoring Compounds					
37) Dibromofluoromethane	4.207	111	84098	33.83 ug/	1 0.00
Spiked Amount 30.000			Recove	ry = 112	.77%
39) 1,2-Dichloroethane-d4	4.436	67		36.39 ug/	
Spiked Amount 30.000				ry = 121	
66) Toluene-d8	5.615	98		27.09 ug/	
Spiked Amount 30.000				ry = 90	
76) Bromofluorobenzene	7.199	174		30.28 ug/	
Spiked Amount 30.000			Recove	ry = 100	.93%
Target Compounds					Qvalue
50) Benzene	4.478	78	1819687	235.9531	ug/l 100
67) Toluene	5.658	92	194424	31.6942	ug/l 92
79) o-Xylene	6.874	106	611920	163.6877	ug/l 85
93) 1,3,5-Trimethylbenzene	7.439	105	1499772	208.0782	ug/l 92
95) t-Butylbenzene	7.656	119	7784	1.1403	ug/l 84
	7.789	105	17889	2.4127	ug/l 85
98) 4-Isopropyltoluene	7.873	119	29081	4.3881	ug/l 93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

RPT1

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC79170-002

Client Id: FB

Data File: 2M17686.D

Analysis Date: 06/17/14 22:43

Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2	Benzene	0.50	U	135-98-8	sec-Butylbenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	U
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	U
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	U	1330-20-7	Xylenes (Total)	1.0	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $[\]emph{J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Operator : WP Sam Mult : 1 Vial# : 35 Misc : A,5ML!4 SampleID : AC79170-002 Data File: 2M17686.D Acq On : 06/17/14 22:43 Qt Upd On: 05/21/14 10:07

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.646	96	189550	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.494	117	180633	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.927	152	103590	30.00	ug/l	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.207	111	80394	34.50	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	115.00%	
39) 1,2-Dichloroethane-d4	4.436	67	45401	35.14	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	117.13%	
66) Toluene-d8	5.621	98	204907	27.54	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	91.80%	
76) Bromofluorobenzene	7.199	174	87077	28.95	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	96.50%	
Target Compounds						Qvalue

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC79170-003

Client Id: TB

Data File: 2M17687.D

Analysis Date: 06/17/14 22:59

Date Rec/Extracted: 06/12/14-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	υ	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2	Benzene	0.50	υ	135-98-8	sec-Butylbenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	U
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	U
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	υ	1330-20-7	Xylenes (Total)	1.0	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Quantitation Report (QT Reviewed)

4061226 0042

 SampleID:
 AC79170-003
 Operator:
 WP
 Qt Meth

 Data File:
 2M17687.D
 Sam Mult:
 1 Vial#:
 36
 Qt On

 Acq On:
 06/17/14 22:59
 Misc:
 A,5ML!4
 Qt Upd On

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
 Fluorobenzene 	4.647	96	187162	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.495	117	178700	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.927	152	103700	30.00	ug/l	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.213	111	82933	36.05	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	120.17%	
39) 1,2-Dichloroethane-d4	4.436	67	42111	33.01	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	110.03%	
66) Toluene-d8	5.622	98	197464	26.83	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	89.43%	
76) Bromofluorobenzene	7.205	174	84560	28.08	ug/l	0.01
Spiked Amount 30.000			Recove	ry =	93.60%	
Target Compounds						Ovalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

GC/MS Volatile Data Standards Data

Form 6
Initial Calibration

U Method: EPA 8260C 226 Level #: பு மு 🗅

Dogo 4 of 3]									
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	0.20	0.0	197	0.516 5.18 0.99	;	0.5180		0.5391 0.5540 0.51/1 0.52/8 0.4/45	0.51/1	91 0.55	519 0.53	0.5431 0.4519	Avg (ane 1 0	Bromodichloromethane	Bro
5.00 10.00 50.00 100.0 250.0		15	0.999 1.00	43		5183	0.7753 0	0.8294	0.8093	16 0.849	693 0.71	0.7870 0.6693 0.7116 0.8494 0.8093 0.8294 0.7753 0.5183	Avg (1 0	Vinvl Acetate	Vin:
5.00 10.00 50.00 100.0 250.0 500.0	0.10	12			; ;	55/9	0.3834 0	0.4431	1 0.4917	39 0.496	047 0.46	0.4870 0.4047 0.4639 0.4961 0.4917 0.4431 0.3834 0.5579	Avg (e 10	Carbon Tetrachloride	Car
5.00 10.00 50.00 100.0 250.0 500.0		5.0		4.23	; . c	5233	0.4655 0	0.4762 0.5116 0.5318 0.5301 0.5225 0.4655 0.5233	8 0.5301	16 0.53	762 0.51	0.5242 0.4	Avg (Te 10	1.1.1-Trichloroethane	1
5.00 10.00 50.00 100.0 250.0	Ø	19		1	0	0699	0.1148 0	0.0976 0.1266 0.1317 0.1234 0.1226 0.1148 0.0699	7 0.123	66 0.13	976 0.12	0.1326 0.0	Avq (10	2-Butanone	2-B
10.00 50.00 100.0 250.0 500.0		3			0.6821 0.		0.4335 0	0.5767 0.5738 0.5202 0.5006 0.4335 0.6200	8 0.5202	67 0.57	0.5375 0.57	0.5679 0.5	Avg (1 0	.2-Dichloroethane	1.2
30.00 30.00 30.00 30.00 30.00 30.00		8.3				2334 0.2	0.1780 0	0.2141 0.1975 0.1963 0.1880 0.1780 0.2334 0.2207	5 0.1963	41 0.197	092 0.21	0.2030 0.2092	Avq (d4 1 0	.2-Dichloroethane-d4	1.2
5.00 10.00 50.00 100.0 250.0 500.0 1.00	0.10	14	0.998 1.00			2980	0.3596 0	0.3572 0.3735 0.4218 0.3905 0.3596 0.2980	5 0.4218	72 0.373	0.2650 0.35	0.3626 0.2		1 0	Cvclohexane	ر کر
30.00 30.00 30.00 30.00 30.00		9.1	,		0.4125 0.		0.2961 0	0.3772 0.3676 0.3686 0.3452 0.2961 0.3982	6 0.3686	72 0.367	0.3845 0.37	0.3687 0.3		ane 1 0	Dibromofluoromethane	밁
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	0.20 2	4.5	0.998 1.00	0.560 4.09 0.9	0.	5904	0.5087 0	0.5508	3 0.5445	72 0.579	645 0.56	0.5704 0.5645 0.5672 0.5793 0.5445 0.5508 0.5087 0.5904		1 0	Chloroform	Ç <u>.</u>
10.00	N	=	4		.0	3747	0.3342 0	0.3054 0.3883 0.4213 0.4122 0.3877 0.3342 0.3747	3 0.4122	83 0.42	054 0.38	0.4159 0.3		1 0	1.1-Dichloropropene	<u>-</u>
250.0 500.0 2500. 5000. 1250 2500	_	12	മ	_	- 0.00	0020	0.0023 0	0.0025 0.0026 0.0029 0.0029 0.0026 0.0023 0.0020	9 0 0029	26 0.002	025 0.00	0.0029 0.0		1 0	1.4-Dioxane	1.4
5.00 10.00 50.00 100.0 250.0 500.0	N	9.8	8		; ;	2456	0.2821 0	0.2947 0.3000 0.2959 0.2821 0.2456	7 0.3000	06 0.294	0.2358 0.2406	0.2778 0.2		1 0	Ethyl acetate	Ę
5.00 10.00 50.00 100.0 250.0 500.0	N	00		-	.0	2967	0.2770	0.3233 0.3504 0.3498 0.3170 0.2770 0.2967	14 0.3498	33 0.350	0.3040 0.32	0.3460 0.3		10	2.2-Dichloropropane	2.2
5.00 10.00 50.00 100.0 250.0 500.0	N	1 8	١.	1	0	3687	0.2143 0	0.2311	4 0.2343	15 0.247	578 0.25	0.2499 0.2578 0.2515 0.2474 0.2343 0.2311 0.2143 0.3687		ie 10	Bromochloromethane	Bro
10.00 50.00 100.0 250.0 500.0	0.10 2	8.7	0.996 0.997	0.493 3.86 0.9	. 0	4679	0.4551 0.4679	0.5114 (0.5279 0.4127 0.5114	24 0.527	322 0.52	0.5158 0.5322 0.5224		ne 1 0	cis-1.2-Dichloroethene	Ci.
5.00 10.00 50.00 100.0 250.0 500.0		9.2			.0	1804	0.2146	0.2218	9 0.2077	38 0.219	758 0.18	0.2063 0.1758 0.1838 0.2199 0.2077 0.2218 0.2146 0.1804		1 0	Ethvl-t-butvl ether	Eth
10.00 50.00 100.0 250.0 500.0	0.10 2	5.5	96 1.00		· 0.	2723	0.2316 0	0.2615 0.2316 0.2723	2 0.2733	42 0.27	528 0.25	0.2671 0.2528 0.2542 0.2742 0.2733		her 1 0	trans-1.2-Dichloroether	tran
10.00 50.00 100.0 250.0 500.0	0.20 2	4.1	0.999 1.00	0.482 3.39 0.9	. 0.	4551 —	0.4627 0	0.4957 (0 0.4924	70 0.51	820 0.46	0.4898 0.4820 0.4670 0.5140 0.4924 0.4957 0.4627 0.4551		1 0	1.1-Dichloroethane	<u>-</u>
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 0.50	0.10 2	11	98 1.00	0.485 3.04 0.998	0.5785 0.		0.4590	0.5058 (3 0.5035	18 0.520	188 0.47	0.5024 0.4188 0.4718 0.5203 0.5035 0.5058 0.4590 0.4054		1 0	Methvl-t-butvl ether	Met
10.00 50.00 100.0 250.0 500.0 1.00	0.10 2	7.9	0.999 1.00	0.273 2.74 0.9	0.	3178 —	0.2609	0.2739 0.2609 0.3178	9 0.2618	92 0.279	440 0.26	0.2798 0.2440 0.2692 0.2799 0.2618		1 0	Methyl Acetate	Met
10.00 50.00 100.0 250.0 500.0	0.10 2	6.8	0.998 1.00	0.382 2.45 0.9	. 0.	0.3904	0.3610 0	0.3918 (0 0.4067	44 0.406	294 0.37	0.3946 0.3294 0.3744 0.4060 0.4067 0.3918		1 0	1.1-Dichloroethene	<u>-</u>
10.00 50.00 100.0 250.0 500.0	N	9.4	0.999 1.00		. 0.	7415	0.8775 0	0.9468 (0 0.8993	32 0.947	469 0.83	0.8953 0.7469 0.8332 0.9470 0.8993 0.9468 0.8775 0.7415		1 0	Di-isopropyl-ether	<u></u>
10.00 50.00 100.0 250.0 500.0	N	17			. 0	1936	0.1974 0.	0.2150 (3 0.2552	51 0.222	365 0.18	0.1989 0.1365 0.1851 0.2223 0.2552 0.2150 0.1974 0.1936		1 0	n-Hexane	구
0 50.00 250.0 500.0 1250. 2500.		13			- 0.0	0097	0.0128 0	0.0132 (5 0.0136	03 0.013	110 0.01	0.0132 0.0110 0.0103 0.0135 0.0136 0.0132 0.0128 0.0097	1	10	-Butvl Alcohol	т <u>-</u> В-
10.00 50.00 100.0 250.0 500.0	0.10 2	4.8		-	. 0.	7234	0.6830 0	0.7264 (9 0.7410	86 0.719	413 0.67	0.6809 0.6413 0.6786 0.7199 0.7410 0.7264 0.6830 0.7234		1 0	Carbon Disulfide	Car
1250. 2500.	Ø	7.1		_	- 0.0	0748	0.0706 0	0.0765 (1 0.0745	08 0.081	655 0.08	0.0791 0.0655 0.0808 0.0811 0.0745 0.0765 0.0706 0.0748		1 0	Acetone	Ace
10.00 50.00 100.0 250.0 500.0	N	4.2		0.448 2.58 0.998	. 0.	4378).4128 0.	0.4568 (0 0.4491	10 0.475	373 0.45	0.4607 0.4373 0.4510 0.4750 0.4491 0.4568 0.4128 0.4378		10	odomethane	lod
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	N	8.7	99 1.00		- 0.	1154	0.0932 0.	0.0968 (8 0.1043	67 0.100	874 0.09	0.1074 0.0874 0.0967 0.1008 0.1043 0.0968 0.0932 0.1154	-	1 0	Acrylonitrile	Acr
100.0 25.00 50.00 250.0 500.0 1250. 2500. 5.00		21	99 1.00	0.0369 2.38 0.999	- 0.0	0245	0.0398	0.0425 (1 0.0413	72 0.044	249 0.03	0.0403 0.0249 0.0372 0.0441 0.0413 0.0425 0.0398 0.0245	_	1 0	Acrolein	Acr
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	0.10 2	8.4	98 1.00	0.294 2.82 0.998	. 0.	3463).2621 0.	0.2876 (4 0.2772	75 0.299	008 0.29	0.2819 0.3008 0.2975 0.2994 0.2772 0.2876 0.2621 0.3463		10	Methylene Chloride	Met
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	0.10 2	1	97 0.999	0.214 2.44 0.997	- 0.	1754	0.1903 0.	0.2046 (2 0.2407	28 0.217	098 0.24	0.2312 0.2098 0.2428 0.2172 0.2407 0.2046 0.1903 0.1754			1.1.2-Trichloro-1.2.2-tri	<u>:</u>
	N	7.3	98 0.998	0.589 2.31 0.998	. 0.	5882).6325 0.	0.6701 (7 0.5505	82 0.591	539 0.57	0.5490 0.5539 0.5782 0.5917 0.5505 0.6701 0.6325 0.5882		_	ָ י	Furan
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	2	15		0.202 2.28 0.997	. 0.	2039 —).2082 0.	0.2294 (0 0.2226	13 0.239	506 0.19	0.1735 0.1506 0.1913 0.2390 0.2226 0.2294 0.2082 0.2039	l	-	Ethvi ether	E
5.00 10.00 50.00 100.0 250.0 500.0	0.10 2	5.6	1		0.	4151).3665 0	0.3826 (6 0.4299	65 0.403	746 0.41	0,4027 0,3746 0,4165 0,4036 0,4299 0,3826 0,3665 0,4151		ane 1 0	Trichlorofluoromethane	Tric
5.00 10.00 50.00 100.0 250.0 500.0		28		86	o	2850).1348 0.	0.1530	6 0.1496	87 0.157	555 O.15	0.1626 0.1655 0.1587 0.1576 0.1496 0.1530 0.1348 0.2850	Oua 0	<u> </u>	Chloroethane	<u></u>
5.00 10.00 50.00 100.0 250.0 500.0		5				2707	2501 0	0.2360 0.2634 0.2608 0.2520 0.2585 0.2501 0.2707	8 0 2520	34 0 260	360 0 26	0.1014 0.1		<u>.</u>	Vinyl Chlorida	< <u>-</u>
5.00 10.00 50.00 100.0 250.0		10	7		o :	0.1653	0		9 0.1789	78 0.190	915 0 21	0.2333 0.3838 0.3188 0.2388 0.2888 0.2882 0.1814 0.1915 0.2178 0.1909 0.1789 0.1602	A 2	<u>.</u> -	Bromomethane	D C
5.00 10.00 50.00 100.0 250.0 500.0	0.10 2	3.5	_	1.46	0	3132	0 2948 0 3132	7 6666 0	3 0 2838	33 0 290	736 0 31	0.333		1	Chlorographana	2 2
20.00 5.00	2	ω <u>«</u> 5 ~	97 0.998 98 1.00	0.375 1.33 0.99		3241 —).4808 0.).3489 0.	0.5907 0.6215 0.6249 0.6113 0.4994 0.4808 0.5810 0.3519 0.3949 0.3828 0.4224 0.3731 0.3489 0.3241	9 0.6113 8 0 4224	15 0.624 49 0.382	907 0.62 519 0.39	0.5469 0.5907 0.6215 0.6249 0.6113 0.4994 0.4808 0.5810 n 3991 n 3519 n 3949 n 3828 n 4224 n 3731 n 3489 n 3241		ne 1 10	Chlorodifluoromethane Dishlorodifluoromethan	를 달 달
E 00 10 00 E0 00 100 0 250 0 500 0		9		3											4	
Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9		%Rsd	r1 Corr2	₹ RT Corr1	9 AvgRf	-8 RF9	RF7 RF8	RF6 F	RF5	RF4	RF3	RF1 RF2	7	Col Mr	40	40
00/20/14 10:01	(E	5	!	7	c		17:45	05/20/14 17:45		@ 0.5 PPB	CAL @ @	11.	2M16124 2M16111		9 ~	61
05/20/14 18:01	0 1 DDB	2 5	6113	MC	ю C		3 - 0	05/20/14 19:3/		(Q) FOO PPO		2 2	2M16118		וט	. 2
05/20/14 19:21 05/20/14 20:25	CAL (2) 50 PPB	<u></u>	6131	2 K	4 0		18:33	05/20/14 18:33		(2) 10 PPB		4, 6	2M16114		ıω	2
05/20/14 18:17	@ 5 PPB	<u>ک</u>	2M16113.	2 M	۰ ہ		18:49	05/20/14 18:49		20 PPB	CAL @ 20 PPB	15.	2M16115		_	6
Analysis Date/Time	Cal Identifier:	Cal lo	a File:	Data	Level #:	1	ate/Time	Analysis Date/Time	P	tifier:	Cal Identifier:	ē	Data File		Level #:	(
) (

	lags
•	. 22
ε,	30
×.	•
failed	
~ ~	
~	
-	
the.	
6	
~	
=	
≂.	
min	
27	
•	
-	
C	
7	
≥.	
6	
~	
2.	
rf criteria	

a - failed the min rf criteria

| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 3 = Correlation Coefficient for linear Eq. |
| Corr 4 = Correlation Coefficient for linear Eq. |
| Corr 5 = Correlation Coefficient for linear Eq. |
| Corr 6 = Correlation Coefficient for linear Eq. |
| Corr 7 = Correlation Coefficient for linear Eq. |
| Corr 8 = Correlation Coefficient for linear Eq. |
| Corr 9 = Correlation Coefficient for linear Eq. |
| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Correlation Coefficient for li Note: Avg Rsd: 10.6

6 4 Method: EPA 8260C

Form 6
Initial Calibration

Instrument: GCMS_2

Page 2 of 3	0.6	Avg Rsd: 10.6		Note:		Flags
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	8.6	993 1.00	1.4/ /.41 0.9	1.6678 1.4640 1.5623 1.5165 1.4991 1.4549 1.2408 1.3735	1.6678 1.4640 1.5623 1.5165	1 0 Avg
10.00 50.00 100.0 250.0 500.0	10 0	9/ 1.00		0.8164 0.7217 0.7914 0.8101 0.8169 0.8305 0.7496 0.7626	0.8164 0.7217 0.7914 0.8101	1.2.3-Trichloropropane 1 0 Avg
10.00 50.00 100.0 250.0 500.0	4 c	1.00		0.5651 0.4477 0.5007 0.5540 0.6233 0.5861 0.5531 0.4074	0.5651 0.4477 0.5007 0.5540	Camohene 1 0 Avg
10.00 50.00 300.0 1250. 500.0	0.0	1.999	-	0.0143 0.0171 0.0174 0.0149 0.0183 0.0166 0.0168 0.0182	0.0143 0.0171 0.0174 0.0149	Cvclohexanone 1 0 Avq
EO DO 360 O 600 O 1360 3600	5.5	3 -		2.3610 1.9326 2.2600 2.4880 2.5269 2.4964 2.5406 1.6259	2.3610 1.9326 2.2600 2.4880	Isopropylbenzene 1 0 Avg
5 00 10 00 50 00 100 0 250 0 500 0		3 8	_	1.3221 1.2692 1.2470 1.3000 1.2611 1.2616 1.1629 1.4077	7.3221 1.2692 1.2470 1.3000	ne 1 0 Avg
5000	0.00	08 1 00	1 28 8 18 0 0	1.3/22 1.4085 1.3912 1.3509 1.3540 1.2177 1.5997	1.4319 1.3/22 1.4085 1.3912	1 0 Avg
10.00 50.00 100.0 250.0 500.0		3 5	-	1.38/9 1.3644 1.3206 1.3392 1.3037 1.3026 1.1006 1.3216	1.38/9 1.3644 1.3206 1.3392	1 0 Avg
5 00 10 00 50 00 100 0 250 0 500 0	7.5 0.60	2 .	-	0.3114	U.3114 U.3111 U.3599 U.3363 4 3870 4 3644 4 3306 4 3303	DU T O AVQ
10 00 50 00 100 0 250 0 500 0		200		0.3522 0.3700 0.3702 0.3706	0.3111 0.3111 0.3E00 0.3283	A A
10.00 50.00 100.0 250.0 500.0 1.00	7.8 0.30	1.00	-		1 0336 0 9048 0 9754 1 0387	elles 1 0 Avg
0 20.00 100.0 200.0 500.0 1000.		93 1.00		n 9295 n 9369 1 0219 n 9821 n 9433 n 8058 n 8454 n 8993	1 0112 0 9295 0 9369 1 0219	1 0 Ava
10.00	11 0.30	95 1.00	1		1 5827	1 0 Ava
0	3.2	<u>.</u>	_	0.8420 0.8351 0.8897 0.9127 0.8981 0.8839 0.8766	0.8438	1 0 Avg
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	3.4 0.10	1.00	0.620 7.26 0.9	0.6007 0.5931 0.6163 0.6329 0.6513 0.6000 0.6405	0.6276 0.6007 0.5931 0.6163	hloroeths 1 0 Ava
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	11 0.10	0.990 1.00	0.603 6.56 0.	0.6137 0.6816 0.6764 0.6229 0.5191 0.4968	0.6349 0.5755 0.6137 0.6816	ne 1 0 Avg
	6.7 0.10	0.998 1.00 6	0.647 7.01 0.	0.6504 0.6726 0.6209 0.7267	0.6471 0.5833 0.6115 0.6604 0.6504 0.6726 0.6209 0.7267	1 0 Avg
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	30	1.00	0.854 6.93 1.	1.0556 1.1232 1.1448 0.5559	0.8286 0.5138 0.6652 0.9406 1.0556 1.1232 1.1448 0.5559	1 0 Qua
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	25	1.00 1.00	1.04 6.80 1.	1.2389 1.3420 1.3580 0.7042	0.9881 0.7398 0.8462 1.1288 1.2389 1.3420 1.3580 0.7042	1 0 Qua
10.00 50.00 100.0 250.0 500.0	6.7 0.50	1.00	1.09 6.51 0.	1.0222 1.0716 0.9692 1.1700	1.1769 1.1109 1.0725 1.1448 1.0222 1.0716 0.9692 1.1700	1 0 Avg
10.00 50.00 100.0 250.0 500.0		1.00	٠.	0.3933 0.3848 0.3224 0.4474	0.4721 0.4234 0.4413 0.4370 0.3933 0.3848 0.3224 0.4474	Tetrachloroetha 1 0 Avg
10.00 50.00 100.0 250.0 500.0	4.5 0.40	1.00	-	0.8974 0.9249 0.8327 0.8982	0.9521 0.9372 0.9307 0.9643 0.8974 0.9249 0.8327 0.8982	1 0 Avg
0 30.00 30.00 30.00 30.00 30.00				1.2259 1.2810 1.2743 1.1830 1.2088	1 2796 1.2106 1.2393 1.2166 1.2259 1.2810 1.2743 1.1830	
10.00 50.00 100.0 250.0 500.0 1.00	12 0.20	91 1.00	_		0.4210 0.3837 0.3984 0.4051 0.3683 0.3444 0.2882 0.4293	
10.00 50.00 100.0 250.0 500.0		1.00		0.2410 0.2494 0.2426 0.1106	0.2030 0.1718 0.1920 0.2426 0.2410 0.2494 0.2426 0.1106	2-Hexanone 1 0 Qua (
10.00 50.00 100.0 250.0 500.0		1.00		0.3445 0.3656 0.3561 0.1886	0.3133 0.2138 0.2821 0.3386 0.3445 0.3656	ne 1 0 Qua
10.00 50.00 100.0 250.0 500.0		8 8	_	0.5710 0.5832 0.5170 0.6589	0.6475 0.5877 0.6092 0.6292 0.5710 0.5832 0.5170 0.6589	1.3-Dichloropropane 1 0 Avg (
10.00 50.00 100.0 250.0 500.0	0.10	3 8	1	0.3691 0.380/ 0.3509 0.3704	0.3990 0.3492 0.3670 0.3930 0.3691 0.3807 0.3509 0.3704	1.2-Dibromoethane 1 0 Avg (
10.00 50.00 100.0 250.0 500.0	0.10		•	0.3289 0.3455 0.3150 0.4843	0.3611 0.3318 0.3480 0.3532 0.3289 0.3455 0.3150 0.4843	1.1.2-Trichloroethane 1 0 Avg (
10.00 50.00 100.0 250.0 500.0		20.1		0.4008 0.4198 0.3999 0.3146	0.3849 0.2795 0.3159 0.3988 0.4008 0.4198 0.3999 0.3146	Ethvi methacrvlate 1 0 Avg (
5.00 10.00 50.00 100.0 250.0 500.0	9.10	3 5		0.5691 0.6024 0.5692 0.3367	0.5423 0.4098 0.5058 0.5941 0.5691 0.6024 0.5692 0.3367	trans-1.3-Dichloroprope 1 0 Avg (
5.00 10.00 50.00 100.0 250.0 500.0		3 5	_	0.5938 0.6402 0.5963 0.5299	0.6135 0.5056 0.5379 0.6240 0.5938 0.6402 0.5963 0.5299	
5 00 10 00 50 00 100 0 250 0 500 0		3 6		0.2152 0.2352 0.242 0.1079	0.1988 0.1543 0.1/41 0.2148 0.2152 0.2352 0.2242 0.1079	1 0 Qua
5.00 10.00 30.00 100.0 250.0 300.0		3 5		0.4953 0.4567 0.5358 0.4860 0.5101 0.4567 0.6000	0.5515 0.4953 0.4567 0.5358	1 0 Avq
5 00 10 00 50 00 100 0 250 0 500 0	010	3 5		0.3530 0.3669 0.3560 0.6011	0.3581 0.2899 0.3156 0.3591 0.3530 0.3669 0.3526 0.2011	
5.00 10.00 50.00 100.0 250.0 500.0	17 0	3 8		0.3630 0.3689 0.3638 0.3011	0.5602 0.4257 0.4772 0.6133 0.6037 0.6412 0.6208 0.3940	1 0 Avq
5 00 10 00 50 00 100 0 250 0 500 0	18	1 .00	•	0.4000 0.4332 0.4133 0.4332	0.4418	etner 1 0 Avg
5 00 10 00 50 00 100 0 250 0 500 0 1 00		3 8	0 442 4 53 0 0	0 4606 0 4553 0 4193 0 4352	1.1811 1.0/06 1.1636 1.2003 1.1363 1.1263 1.0043 0.3514	1 0 Avq
5 00 10 00 50 00 100 0 250 0 500 0	11 0.50	3 8	•		0.3598	ethene 1 0 Avg
500.0	5.8 0.10	0.996 1.00 4	0.314 3.01 0.3	0.3108 0.3142 0.2663 0.3391	0.3104	pane 1 0 Avg
5 00 10 00 50 00 100 0 250 0 500 0		3 5	_	0.2941 0.2619 0.2400 0.3673	0.319/ 0.3134 0.35/5 0.3289 0.2941 0.2619 0.2400 0.36/3	1 0 Avg
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	15 0.10	95 0.999	500	0.3662 0.3159 0.2864 0.2796	0.3071 0.2122 0.2761 0.3228 0.3662 0.3159 0.2864 0.2796	ne 10 Avg
			3		N N N N N N N N N N N N N N N N N N N	Compound Cor Will File.
Calibration Level Concentrations Lyl1 Lyl2 Lyl3 Lyl4 Lyl5 Lyl6 Lyl7 Lyl8 Lyl9	%Rsd	Corr1 Corr2 %	AvaRf RT Co	RES REG RE7 RE8 RE9 A	BE2 BE3 BE4	On Mr (1):
		•	-		111. CAL @ 0.5 PPB	61 / ZMI6124
	CAL @ 1 PPB	16112	2	05/20/14 (3:3)	25	1 0
05/20/14 19.21	CAL @ 30 PPB	16121	7M.	05/20/14 18:33 4 05/20/14 19:37 6	22	η ω
	CAL @ 5 PPB	16113.	2M	05/20/14 18:49 2	Ω _E	1
Analysis Date/Time	Cal Identifier:	a File:	#: Dat	Analysis Date/Time Level	File: Cal Identifier:	O Level #: Data File
						(

a - failed the min rf criteria

| Corr I = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 3 = Correlation Coefficient for linear Eq. |
| Corr 4 = Correlation Coefficient for linear Eq. |
| Corr 5 = Correlation Coefficient for linear Eq. |
| Corr 6 = Correlation Coefficient for linear Eq. |
| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 3 = Correlation Coefficient for linear Eq. |
| Corr 4 = Correlation Coefficient for linear Eq. |
| Corr 5 = Correlation Coefficient for linear Eq. |
| Corr 6 = Correlation Coefficient for linear Eq. |
| Corr 7 = Correlation Coefficient for linear Eq. |
| Corr 8 = Correlation Coefficient for linear Eq. |
|
Note:

Avg Rsd: 10.6

Flags

7 4 Method: EPA 8260C

Instrument: GCMS_2

Form 6
Initial Calibration

p-Ethvitol 4-Chlorote n-Propvib Bromobel 1.3.5-Trin Butvi met t-Butviber 1.2.4-Trin sec-Butvil 4-Isoprop n-Butvibe p-Diethvilt 1.2.4.5-Tri 1.2-Dibro Camphor Hexachio 1.2.4-Tric 1.2.3-Tric Naphthale	40 compound	61226 0
p-Ethvitoluene 4-Chlorotoluene n-Propvibenzene Bromobenzene 1.3.5-Trimethvibenzene t-Butvi methacrvlate t-Butvibenzene 1.2.4-Trimethvibenzene 4-Isopropvitoluene n-Butvibenzene p-Diethvibenzene 1.2.4.5-Tetramethviber 1.2.4.5-Tetramethviber 1.2.4.5-Trichlorobenzene 1.2.4-Trichlorobenzene 1.2.4-Trichlorobenzene 1.2.4-Trichlorobenzene 1.2.3-Trichlorobenzene 1.2.3-Trichlorobenzene	ound	Level #. 1 3 5 7 9
1 0 Avg	Col Mr Fit:	
2.3761 ; 1.5408 ; 2.7051 ; 1.6973 ; 2.0455 ; 0.8296 ; 1.8218 ; 2.1157 ; 1.9344 ; 1.7661 ; 1.835 ; 1.0145 ; 1.0145 ; 1.0145 ; 1.0145 ; 1.0145 ; 0.0343 ; 0.01441 ; 0.0343 ; 0.05710 ; 0.057	무1 -	Data File: 2M16115. 2M16114. 2M16118. 2M16124. 2M16111.
2.0686 2. 1.5414 1. 2.4150 2. 1.7070 1. 1.9169 1. 1.7188 0. 1.5775 1. 1.6136 1. 1.6136 1. 1.6136 1. 1.6134 1. 1.5406 1. 1.5134 1.	RF2 RI	CAL CAL CAL CAL CAL
4266 2.5 5271 1.6 6489 2.7 7027 1.7 8299 1.8 7272 0.9 9610 2.1 7752 2.0 6335 1.8 9498 1.0 2261 1.6 2261 1.6 5721 0.5 5721 0.5	RF3 RF4	Cal Identifier: CAL @ 20 PPB CAL @ 10 PPB CAL @ 100 PPB CAL @ 500 PPB CAL @ 500 PPB
2.3761 2.0686 2.4266 2.5084 2.4466 2.3354 1.9943 2.0140 1.5408 1.5414 1.5271 1.6046 1.5474 1.4788 1.4439 1.4404 2.7051 2.4150 2.6489 2.7847 2.7756 2.8576 2.6242 2.2909 1.6973 1.7070 1.7027 1.7586 1.7347 1.7145 1.5558 1.4956 2.0455 1.9169 1.8299 1.8720 1.8531 1.8762 1.6658 1.6278 0.8296 0.7188 0.7272 0.9459 0.9353 1.0100 0.9509 0.7851 2.1157 1.8168 1.9610 2.1315 2.0833 2.1187 1.9353 1.4526 2.1157 1.8168 1.9610 2.1315 2.0833 2.1187 1.9353 1.4526 1.9344 1.6136 1.7752 2.0376 2.0918 2.0650 1.9619 1.6292 1.7661 1.5406 1.6335 1.8746 1.8586 1.8185 1.6618 1.3505 1.0145 0.8843 0.9498 1.0964 1.1004 1.1087 1.0050 0.6778 1.4723 0.9576 1.2261 1.6395 1.7185 1.7700 1.6806 1.0461 0.0441 0.1241 0.1165 0.1400 0.1418 0.1440 0.1436 0.1163 0.0243 0.0199 0.0263 0.0393 0.0487 0.0480 0.0476 0.0206 0.0228 0.6288 0.5825 0.6372 0.6043 0.5973 0.5488 0.4803 0.7359 0.7450 0.6261 0.7019 0.7444 0.7517 0.7091 0.6519 0.7562 0.5710 0.5136 0.5721 0.5570 0.5992 0.5447 0.4940 0.5775 0.5710 0.5136 0.5721 0.5570 0.5992 0.5447 0.4940 0.5775 0.6580 0.6855 0.8972 1.0721 1.2804 1.1621 1.1262 0.6989	4 RF5	ш ш ш
56 2.335 74 1.4788 56 2.8576 17 1.7145 11 1.8762 53 1.0100 12 1.8911 13 2.1187 18 2.0650 18 1.9098 14 1.9098 14 1.1087 18 1.7087 18 1.7087 18 1.7087 19 1.7087 19 1.7087 19 1.7087 19 1.7087 19 1.7087 19 1.7087 19 1.7087 19 1.7087 10 1.7087 10 1.7087 10 1.7087 10 1.7087 10 1.7087 10 1.7087 10 1.7087 11 1.7087 12 1.7087 13 1.7087 14 1.7087 15 1.7087 16 1.7087 17 1.7087 18 1.7087 18 1.7087 18 1.7087 18 1.7087 19 1.7087 19 1.7087 10 1.7087 1	RF6	Analysis Date/Time 05/20/14 18:49 05/20/14 18:33 05/20/14 19:37 05/20/14 21:12 05/20/14 17:45
1.1262 1.1263 1.1439 1.2558 2.1658 2.16658 2.16658 2.16658 2.16618 1.17221 7.19353 3.17823 3.1	RF7	nalysis Date/Tim 05/20/14 18:49 05/20/14 18:33 05/20/14 19:37 05/20/14 21:12 05/20/14 17:45
2.0140 1.4404 1.4956 1.6278 0.7851 1.4526 1.4526 1.4526 1.3505 1.4551 1.0461 0.0206 0 0.7359 0.7755 0.5775 0.6989	RF8	O O
0	RF9 AvgRf	Level #: 2 4 6 8
2.27 7.40 1.52 7.48 2.64 7.34 1.67 7.30 1.84 7.43 0.863 7.45 1.74 7.65 1.95 7.78 1.95 7.78 1.97 7.81 0.78 8.61 1.74 8.61 0.0342 9.16 0.0342 9.16 0.0554 9.564 0.554 9.564 0.998 9.40	Z R R	
0.993 1.00	Corr1	Data F 2M161 2M161 2M161 2M161 2M161
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Corr2	a File: 16113. 16117. 16121. 16112.
9.3 3.7 7.4 7.3 13 9.5 10 11 11 11 11 11 12 13 13 13 13 13 13 13 13 13 13 13 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	%Rsd	Cal Identifier. CAL @ 5 PP CAL @ 50 PI CAL @ 250 PI CAL @ 250 P CAL @ 1 PP
0.05		2al Identifier: CAL @ 5 PPB CAL @ 50 PPB CAL @250 PPB CAL @ 1 PPB
20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00 20.00 5.00	LVI1 L	An
	Calibra Lvl2 Lvl3	Analysis Date/Time 05/20/14 18:17 05/20/14 19:21 05/20/14 20:25 05/20/14 18:01
50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	ation Lev	te/Time 18:17 19:21 20:25 18:01
10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00 100.0 50.00	Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7	
250.0 500.0 500.0 500.0	ntrations 16 Lv17	
0 1.00 0 1.00	Lvl8 L	
8	LvI9	

Flags a - failed the min rf criteria

Avg Rsd: 10.6

Note:

a - failed the min rf criteria

| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for Quadratic Curve was used for compound. |
| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for linear Eq. |
| Corr 3 = Correlation Coefficient for linear Eq. |
| Corr 4 = Correlation Coefficient for linear Eq. |
| Corr 5 = Correlation Coefficient for linear Eq. |
| Corr 6 = Correlation Coefficient for linear Eq. |
| Corr 7 = Correlation Coefficient for linear Eq. |
| Corr 8 = Correlation Coefficient for linear Eq. |
| Correlation Coefficient

SampleID : CAL @ 20 PPB Data File: 2M16115.D Acq On : 05/20/14 18:49 Operator : WP Sam Mult : 1 Vial# : 11 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:43 Qt Upd On: 05/21/14 09:30

. Resp via : initial calibration						
Compound	R.T.	QIon	Response	Conc Units	Dev(N	(in)
Internal Standards		0.6	000510	20 00	/	
,	4.647		282519 229766	30.00 ug/ 30.00 ug/).00).00
52) Chlorobenzene-d5 70) 1,4-Dichlorobenzene-d4	6.489 7.922		149903	30.00 ug/		0.00
70) 1,4-Dichiolobenzene-d4	1.322	152	149903	30.00 dg/	1	7.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.208	111	104185	34.11 ug/	1 (0.00
Spiked Amount 30.000			Recove			
39) 1,2-Dichloroethane-d4	4.436	67	57360	31.32 ug/		0.00
Spiked Amount 30.000			Recove	-		
66) Toluene-d8	5.616	98	294017	29.88 ug/		0.00
Spiked Amount 30.000	7 100	174	Recove		9.60%	
76) Bromofluorobenzene Spiked Amount 30.000	7.193	174	128649	31.03 ug/ ery = 103		0.00
bpixed Amount 30.000			Recove	- 10.	,,450	
Target Compounds					(value
5) Chlorodifluoromethane	1.326	51	103018	20.4827	ug/l	83
Dichlorodifluoromethane	1.326	85	75183	21.9789	ug/l	91
7) Chloromethane	1.459	50	55364	21.0408	ug/l	82
8) Bromomethane	1.792	94	34178	26.2968	ug/l	92
Vinyl Chloride	1.525	62	45571	23.1623	ug/l	99
10) Chloroethane	1.859		30626	24.0761	ug/l	98
11) Trichlorofluoromethane	2.042		75852	31.0820	ug/l	91
12) Ethyl ether	2.275	59	32687m		ug/l	
<pre>13) Furan 14) 1,1,2-Trichloro-1,2,2</pre>	2.305	39 101	103405m 43546m		ug/l ug/l	
15) Methylene Chloride	2.823	84	53109	22.2536	ug/1	97
16) Acrolein	2.378	56	38003m		ug/l	
17) Acrylonitrile	3.034	53	20241m		ug/l	
18) Iodomethane	2.576	142	86778		ug/l	98
19) Acetone	2.498	43	74502	105.5706	ug/l	98
20) Carbon Disulfide	2.630	76	128255	19.8678	ug/l	100
21) t-Butyl Alcohol	2.913	59		128.7865	ug/l	64
22) n-Hexane	3.262		37467		ug/l	84
23) Di-isopropyl-ether	3.431		168633	20.5998	ug/l	94
24) 1,1-Dichloroethene	2.450		74324	24.0339	ug/l	99
25) Methyl Acetate	2.745	43	52713m		ug/l	0.2
<pre>26) Methyl-t-butyl ether 27) 1,1-Dichloroethane</pre>	3.040	73 63	94641 92255m	21.9217 24.8780	ug/l ug/l	82
28) trans-1,2-Dichloroethene	3.040	96	50313	25.3198	ug/l	79
29) Ethyl-t-butyl ether	3.738	59	38855	8.2828	ug/l	95
30) cis-1,2-Dichloroethene	3.864	61	97155m		ug/l	-
31) Bromochloromethane	4.039	49	47078	22.6883	ug/l	79
32) 2,2-Dichloropropane	3.864	77	65171	24.3697	ug/l	91
33) Ethyl acetate	3.913	43	52334	19.1584	ug/l	99
34) 1,4-Dioxane	5.098	88	27363	1291.0085	ug/l	96
35) 1,1-Dichloropropene	4.334	75	78349	24.2121	ug/l	97
36) Chloroform	4.093	83	107445	24.2031	ug/l	80
38) Cyclohexane	4.268	56	68305	20.1827	ug/l	98
40) 1,2-Dichloroethane 41) 2-Butanone	4.484	62 43	106965 24978	23.5949 22.1863	ug/l	95 89
42) 1,1,1-Trichloroethane	4.226	97	98738	27.1407	ug/l	90
43) Carbon Tetrachloride	4.340	117	91731	29.9656	ug/l	99
44) Vinyl Acetate	3.425	43	148243	19.8876	ug/l	100
45) Bromodichloromethane	5.177	83	102299	24.5743	ug/l	87
46) Methylcyclohexane	4.996	83	57852	22.0751	ug/l	96
47) Dibromomethane	5.092	174	60219	27.7353	ug/l	97
48) 1,2-Dichloropropane	5.014	63	58476	21.7687	ug/l	99
49) Trichloroethene	4.870	130	67770	24.2234	ug/l	90
50) Benzene	4.472	78	222464	22.7884	ug/l	100
51) tert-Amyl methyl ether	4.533	73	83221	21.0466	ug/l	93
53) Iso-propylacetate 54) Methyl methacrylate	4.503 5.062	43 41	85818 54861	20.1369	ug/l	77
55) Dibromochloromethane	6.140	129	84477	21.6193 28.1514	ug/l ug/l	89 98
56) 2-Chloroethylvinylether	5.345	63	30459	19.3216	ug/l	84
57) cis-1,3-Dichloropropene	5.448	75	93984	22.9621	ug/l	87
58) trans-1,3-Dichloropropene	5.779	75	83078	22.7892	ug/l	93
59) Ethyl methacrylate	5.809	41	58968	19.9768	ug/l	82
60) 1,1,2-Trichloroethane	5.893	97	55326	23.1518	ug/l	90
61) 1,2-Dibromoethane	6.224	107	61119	23.9257	ug/l	99
62) 1,3-Dichloropropane	5.995	76	99185	23.0660	ug/l	99
63) 4-Methyl-2-Pentanone	5.532	43	47993	19.4101	ug/l	88
64) 2-Hexanone	6.025	43	31108	19.3547	ug/l	88
65) Tetrachloroethene	5.989 5.658	164 92	64494	29.5019	ug/l	93 96
67) Toluene	-6.50	92	145848	22.9785	ug/l	96

Operator : WP Sam Mult : 1 Vial# : 11 Misc : A,5ML Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:43 Qt Upd On: 05/21/14 09:30 SampleID : CAL @ 20 PPB Data File: 2M16115.D Acq On : 05/20/14 18:49

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
68)	1,1,1,2-Tetrachloroethane	6.549	133	72315	29.6744	ug/l	79
69)	Chlorobenzene	6.507	112	180280	25.0635	ug/l	99
71)	n-Butyl acrylate	6.796	55	98751	16.2955	ug/l	95
72)	n-Amyl acetate	6.928	43	82815	16.2177	ug/l	77
73)	Bromoform	7.013	173	64671	26.3902	ug/l	97
74)	Ethylbenzene	6.555	106	63456	21.9180	ug/l	91
75)	1,1,2,2-Tetrachloroethane	7.259	83	62724	22.1894	ug/l	94
77)	Styrene	6.874	104	177352	22.0672	ug/l	94
78)	m&p-Xylenes	6.621	106	202128	43.9041	ug/l	88
79)	o-Xylene	6.868	106	103293	22.9968	ug/l	94
80)	trans-1,4-Dichloro-2-b	7.290	53	31125	18.4745	ug/l	86
81)	1,3-Dichlorobenzene	7.880	146	138701	24.5727	ug/l	88
82)	1,4-Dichlorobenzene	7.934	146	143097	24.6298	ug/l	94
83)	1,2-Dichlorobenzene	8.180	146	132127	24.8691	ug/l	89
84)	Isopropylbenzene	7.085	105	235947	21.4870	ug/l	94
85)	Cyclohexanone	7.169	55	7152	68.0354	ug/l	82
86)	Camphene	7.266	93	56475	20.4839	ug/l	92
87)	1,2,3-Trichloropropane	7.302	75	81587	21.7700	ug/l	96
88)	2-Chlorotoluene	7.410	91	166681	24.3034	ug/l	96
89)	p-Ethyltoluene	7.404	105	237462	20.8182	ug/l	82
90)	4-Chlorotoluene	7.476	91	153984	21.7762	ug/l	90
91)	n-Propylbenzene	7.338	91	270344	21.2518	ug/l	94
92)	Bromobenzene	7.302	77	169620	21.6708	ug/l	91
93)	1,3,5-Trimethylbenzene	7.434	105	204427	24.4590	ug/l	89
94)	Butyl methacrylate	7.446	41	82914	17.2482	ug/l	88
95)	t-Butylbenzene	7.651	119	182067	23.7437	ug/l	85
96)	1,2,4-Trimethylbenzene	7.675	105	211433	22.4324	ug/l	91
97)	sec-Butylbenzene	7.783	105	193315	21.6864	ug/l	94
98)	4-Isopropyltoluene	7.861	119	176502	23.9030	ug/l	93
	n-Butylbenzene	8.126	91	188230	22.6057	ug/l	90
100)	p-Diethylbenzene	8.108	119	101390	20.8415	ug/l	88
101)	1,2,4,5-Tetramethylben	8.614	119	147136	20.4897	ug/l	93
102)	1,2-Dibromo-3-Chloropr	8.680	157	14406	29.0119	ug/l	61
103)	Camphor	9.162	95	34335	183.6611	ug/l	86
104)	Hexachlorobutadiene	9.312	225	62845	34.3949	ug/l	98
105)	1,2,4-Trichlorobenzene	9.222	180	74455	26.7029	ug/l	97
106)	1,2,3-Trichlorobenzene	9.559	180	57067m	26.0414	ug/l	
107)	Naphthalene	9.402	128	106391	22.6391	ug/l	100
							_

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:47 Qt Upd On: 05/21/14 09:30

Data Path : G:\GcMsData\2014\GCMS_2\Data\05-20-14\
Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\
Ot Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Ot	Pegn	Via	Tnitial	Calibration
QL	resp	v ra	IIIILLIAI	Calibracion

: Resp	Via : Initial Calibration						
	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	.n)
Inte	rnal Standards						
- •	Fluorobenzene	4.634	96	269365	30.00 ug/		
	Chlorobenzene-d5	6.476			30.00 ug/		
70)	1,4-Dichlorobenzene-d4	7.903	152	138197	30.00 ug/	1 -0.	. 02
	em Monitoring Compounds Dibromofluoromethane	4.195	111	103576	35.57 ug/	1 -0.	.01
	oiked Amount 30.000	4.193	111	Recove			
	1,2-Dichloroethane-d4	4.424	67	56367	32.28 ug/		.01
	oiked Amount 30.000			Recove	_ T'_		
	Toluene-d8	5.603	98	267126	28.27 ug/	1 -0.	.01
	oiked Amount 30.000			Recove	ry = 94	.23%	
76)	Bromofluorobenzene	7.181	174	116611	30.50 ug/		.01
Sı	oiked Amount 30.000			Recove	ry = 101	67%	
	_					0-	1
	get Compounds	1 205		26523	F F310	ug/l	value 99
5)	Chlorodifluoromethane	1.325	51	26523	5.5310 4.8442	ug/1	83
	Dichlorodifluoromethane	1.325	85 50	15799 13634	5.4346	ug/l	71
	Chloromethane	1.458 1.775	94	8600m	6.9400	ug/l	, _
	Bromomethane	1.541	62	10596	5.6486	ug/l	92
	Vinyl Chloride Chloroethane	1.858		7431	6.1270	ug/l	69
	Trichlorofluoromethane	2.041		16818	7.2281	ug/l	93
	Ethyl ether	2.275	59	6762m	3.2380	ug/l	
	Furan	2.299		24870m	4.5248	ug/l	
	1,1,2-Trichloro-1,2,2	2.443		9421	6.9574	ug/l	90
15	Methylene Chloride	2.822	84	13508	5.9365	ug/l	100
	Acrolein	2.377		5599	25.3981	ug/l	57
	Acrylonitrile	3.027	53	3926m	5.2052	ug/l	
	Iodomethane	2.570		19636	6.1671	ug/l	85
	Acetone	2.497	43	14722	21.8801	ug/l	93
	Carbon Disulfide	2.624	76	28793	4.6781	ug/1	100
	t-Butyl Alcohol	2.913	59	2483	26.8078	ug/l	1
	n-Hexane	3.256	57	6129	3.5150	ug/l	88
	Di-isopropyl-ether	3.424		33533	4.2963	ug/l	99
24	1,1-Dichloroethene	2.449		14791	5.0165	ug/l	89
25	Methyl Acetate	2.744		10958	5.3402	ug/l	100
	Methyl-t-butyl ether	3.039		18802	4.5678	ug/l	85
	1,1-Dichloroethane	3.382		21641m	6.1208	ug/l	
	trans-1,2-Dichloroethene	3.045		11353	5.9923	ug/l	76
	Ethyl-t-butyl ether	3.731			1.7652	ug/l	90
	cis-1,2-Dichloroethene	3.858		23895m		ug/l	84
	Bromochloromethane	4.038			5.8518 5.3543	ug/l ug/l	91
	2,2-Dichloropropane	3.864		13652 10589	4.0657	ug/1	99
	Ethyl acetate	3.906 5.080				ug/l	,,,
) 1,4-Dioxane) 1,1-Dichloropropene	4.327		13711	4.4440	ug/l	93
) Chloroform	4.086		25345	5.9880	ug/l	82
) Cyclohexane	4.255		11897	3.6870	ug/l	96
40	1,2-Dichloroethane	4.472		24133	5.5833		97
	2-Butanone	3.876	43	4384	4.0842	ug/l	85
) 1,1,1-Trichloroethane	4.213	97	21382	6.1644	ug/l	100
	Carbon Tetrachloride	4.327	117	18171	6.2258	ug/l	95
) Vinyl Acetate	3.424	43	30051	4.2284	ug/l	100
45) Bromodichloromethane	5.164	83	20288	5.1116	ug/l	86
46) Methylcyclohexane	4.983	83	9530	3.8140	ug/l	97
47) Dibromomethane	5.080		14072	6.7977	ug/l	92
) 1,2-Dichloropropane	5.001		13923	5.4362	ug/l	85
) Trichloroethene	4.863	130	16096	6.0342	ug/l	75
) Benzene	4.466		48067	5.1643	ug/l	100
) tert-Amyl methyl ether	4.526		18417	4.8851	ug/l	87
53		4.490		15657	3.8258	ug/l	65 83
) Methyl methacrylate	5.056		10664	4.3762	ug/l	83 99
) Dibromochloromethane	6.127		18216	6.3214 3.7488	ug/l ug/l	76
) 2-Chloroethylvinylether	5.333		5675 18596	4.7313	ug/l	100
) cis-1,3-Dichloropropene	5.435 5.766		15072	4.3054	ug/1	84
) trans-1,3-Dichloropropene) Ethyl methacrylate	5.766		10279	3.6263	ug/1	85
) 1,1,2-Trichloroethane	5.880		12204	5.3181	ug/l	86
) 1,2-Dibromoethane	6.205		12842	5.2351	ug/1	95
) 1,3-Dichloropropane	5.989		21615	5.2346	ug/l	89
) 4-Methyl-2-Pentanone	5.519		7863m	3.3116	ug/l	
) 2-Hexanone	6.013		6319	4.0942	ug/l	53
) Tetrachloroethene	5.977		14113	6.7228	ug/l	87
67		5.646		34466	5.6548	ug/l	94

SampleID : CAL @ 5 PPB Data File: 2M16113.D Acq On : 05/20/14 18:17 Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML Qt Meth : 2M A0520.M Qt On : 05/21/14 09:47 Qt Upd On: 05/21/14 09:30 Misc

68) 1,1,1,2-Tetrachloroethane 6.536 133 15570 6.6534 ug/l 91 69) Chlorobenzene 6.494 112 40854 5.9147 ug/l 96 71) n-Butyl acrylate 6.783 55 17041 3.0502 ug/l 94 72) n-Amyl acetate 6.916 43 11835m 2.5140 ug/l 73) Bromoform 7.000 173 13436 5.9472 ug/l 96 74) Ethylbenzene 6.542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 83 77) Styrene 6.861 104 36456 4.9203 ug/l 99 80) Ethylbense 6.609 106 42819 10.0885 ug/l 86 79) o-Xylene 6.855 106 20841 5.0330 ug/l 95 80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 88) 2-Chlorotoluene 7.283 75 16623 4.8112 ug/l 97 88) 2-Ethyltoluene 7.397 91 33720 5.3331 ug/l 98 89) 2-Ethyltoluene 7.397 91 33720 5.3331 ug/l 98 89) 2-Ethyltoluene 7.397 91 35504 5.4462 ug/l 99 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 99 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 99 93) 1,3,5-Trimethylbenzene 7.632 119 36336 5.1400 ug/l 86 95) L-Butylbenzene 7.632 119 36336 5.1400 ug/l 86 95) L-Butylbenzene 7.632 119 36336 5.1400 ug/l 86 95) L-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 93 99) n-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.632 119 36606 6.2476 ug/l 77 103) Camphor 9.149 95 4596 6.6669 ug/l 93 103) 1,3,5-Trichlorobenzene 8.061 119 22057 3.3318 ug/l 93 100) p-Diethylbenzene 8.061 119 22057 3.3318 ug/l 93 101) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 97 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l		Compound	R.T.	QIon	Response	Conc Units	Dev(Min)	
69) Chlorobenzene 6.494 112 40854 5.9147 ug/l 96 71) n-Butyl acrylate 6.783 55 17041 3.0502 ug/l 94 72) n-Amyl acetate 6.916 43 11835m 2.5140 ug/l 73) Bromoform 7.000 173 13436 5.9472 ug/l 96 74) Ethylbenzene 6.542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 83 77) Styrene 6.861 104 36456 4.9203 ug/l 99 78) m&p-Xylenes 6.609 106 42819 10.0885 ug/l 86 79) o-Xylene 6.855 106 20841 5.0330 ug/l 95 80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 35504 5.4462 ug/l 98 89) P-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.225 91 55625 4.7431 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.080 119 20369 4.5411 ug/l 97 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 94 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.209 180	68)	1.1.1.2-Tetrachloroethane	6.536	133	15570	6.6534	ug/l	91
71) n-Butyl acrylate 6.783 55 17041 3.0502 ug/l 94 72) n-Amyl acetate 6.916 43 11835m 2.5140 ug/l 96 73) Bromoform 7.000 173 13436 5.9472 ug/l 96 74) Ethylbenzene 6.542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 87 77) Styrene 6.861 104 36456 4.9203 ug/l 99 78) m&p-Xylenes 6.609 106 42819 10.0885 ug/l 86 79) o-Xylene 6.855 106 20841 5.0330 ug/l 95 80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 97 81) 1,3-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 33720 5.3331 ug/l 98 890 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 99) n-Butylbenzene 8.089 119 20369 4.5411 ug/l 92 900 p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 910 p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 910 p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 102 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 105 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94								
72) n-Amyl acetate 6.916 43 11835m 2.5140 ug/l 73) Bromoform 7.000 173 13436 5.9472 ug/l 96 74) Ethylbenzene 6.542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 83 77) Styrene 6.861 104 36456 4.9203 ug/l 97 88	71)	n-Butyl acrylate	6.783	55	17041			94
73) Bromoform 7.000 173 13436 5.9472 ug/l 96 74) Ethylbenzene 6.6542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 83 77) Styrene 6.861 104 36456 4.9203 ug/l 99 78) m&p-Xylenes 6.609 106 42819 10.0885 ug/l 86 79) o-Xylene 6.8655 106 20841 5.0330 ug/l 99 80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31626 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 35504 4.646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.283 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.425 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 99) n-Butylbenzene 8.089 119 20369 4.5417 ug/l 87 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.249 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94	-		6.916	43	11835m	2.5140		
74) Ethylbenzene 6.542 106 13256 4.9665 ug/l 87 75) 1,1,2,2-Tetrachloroethane 7.247 83 13838 5.3100 ug/l 83 77) Styrene 6.861 104 36456 4.9203 ug/l 99 78) m&p-Xylenes 6.609 106 42819 10.0885 ug/l 86 79) o-Xylene 6.855 106 20841 5.0330 ug/l 95 80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 4.5462 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4462 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4462 ug/l 95 93) 1,3,5-Trimethylbenzene 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.662 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.662 105 41847 4.8159 ug/l 94 98) 4-Isopropyltoluene 7.849 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 94 98) 4-Isopropyltoluene 7.849 119 36485 5.2126 ug/l 93 99) n-Butylbenzene 8.089 119 20369 4.5417 ug/l 93 99) n-Butylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 20257 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 97 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94			7.000	173				96
75	74)	Ethylbenzene	6.542	106	13256	4.9665		87
78) m&p-Xylenes			7.247	83	13838	5.3100		83
79) o-Xylene	77)	Styrene	6.861	104	36456	4.9203	ug/l	99
80) trans-1,4-Dichloro-2-b 7.271 53 7167m 4.6144 ug/l 81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 94 93) 1,3,5-Trimethylbenzene 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	78)	m&p-Xylenes	6.609	106	42819	10.0885	ug/l	86
81) 1,3-Dichlorobenzene 7.867 146 31426 6.0391 ug/l 86 82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.397 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	79)	o-Xylene	6.855	106	20841	5.0330		95
82) 1,4-Dichlorobenzene 7.921 146 31606 5.9008 ug/l 97 83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 87 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.5226 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,4-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	80)	trans-1,4-Dichloro-2-b	7.271	53	7167m	4.6144	ug/l	
83) 1,2-Dichlorobenzene 8.168 146 29235 5.9688 ug/l 92 84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 89 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.089 119 20369 4.5411 ug/l 93 99) n-Butylbenzene 8.089 119 20369 4.5411 ug/l 93 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	81)	1,3-Dichlorobenzene	7.867	146	31426	6.0391	ug/l	86
84) Isopropylbenzene 7.072 105 44515 4.3972 ug/l 89 85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 87 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 95 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.662 105 41847 4.8159 ug/l 91 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	82)	1,4-Dichlorobenzene	7.921	146	31606	5.9008	ug/l	97
85) Cyclohexanone 7.156 55 1975m 20.3792 ug/l 86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.397 91 35504 5.4462 ug/l 95 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 91) n-Propylbenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 94 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 96 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 91 <td>83)</td> <td>1,2-Dichlorobenzene</td> <td>8.168</td> <td>146</td> <td>29235</td> <td>5.9688</td> <td>ug/l</td> <td>92</td>	83)	1,2-Dichlorobenzene	8.168	146	29235	5.9688	ug/l	92
86) Camphene 7.253 93 10313 4.0575 ug/l 87 87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.457 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 98) 4-Isopropyltoluene 7.849 119 35485 </td <td>84)</td> <td>Isopropylbenzene</td> <td>7.072</td> <td>105</td> <td>44515</td> <td>4.3972</td> <td>ug/l</td> <td>89</td>	84)	Isopropylbenzene	7.072	105	44515	4.3972	ug/l	89
87) 1,2,3-Trichloropropane 7.283 75 16623 4.8112 ug/l 97 88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 95 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 97 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	85)	Cyclohexanone	7.156	55	1975m	20.3792	ug/l	
88) 2-Chlorotoluene 7.397 91 33720 5.3331 ug/l 98 89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 97 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	86)	Camphene	7.253	93	10313	4.0575	ug/l	87
89) p-Ethyltoluene 7.391 105 47646 4.5309 ug/l 88 90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94 94 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	87)	1,2,3-Trichloropropane	7.283	75	16623	4.8112	ug/l	97
90) 4-Chlorotoluene 7.457 91 35504 5.4462 ug/l 95 91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 96 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 93 99) n-Butylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	88)	2-Chlorotoluene	7.397	91	33720	5.3331	ug/l	98
91) n-Propylbenzene 7.325 91 55625 4.7431 ug/l 95 92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94 Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene	89)	p-Ethyltoluene	7.391	105	47646	4.5309	ug/l	88
92) Bromobenzene 7.289 77 39319 5.4489 ug/l 94 93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	90)	4-Chlorotoluene	7.457	91	35504	5.4462	ug/l	95
93) 1,3,5-Trimethylbenzene 7.415 105 44152 5.7301 ug/l 91 94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	91)	n-Propylbenzene	7.325	91	55625	4.7431	ug/l	95
94) Butyl methacrylate 7.433 41 16557 3.7360 ug/l 86 95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben. 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr. 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene	92)	Bromobenzene	7.289	77	39319	5.4489	ug/l	94
95) t-Butylbenzene 7.632 119 36336 5.1400 ug/l 81 96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 97 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	93)	1,3,5-Trimethylbenzene	7.415	105	44152	5.7301	ug/l	91
96) 1,2,4-Trimethylbenzene 7.662 105 41847 4.8159 ug/l 91 97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l	94)	Butyl methacrylate	7.433	41	16557	3.7360	ug/l	86
97) sec-Butylbenzene 7.770 105 37167 4.5226 ug/l 94 98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			7.632	119	36336	5.1400	ug/l	81
98) 4-Isopropyltoluene 7.849 119 35485 5.2126 ug/l 93 99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			7.662	105	41847	4.8159	ug/l	91
99) n-Butylbenzene 8.108 91 34859 4.5411 ug/l 92 100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l							ug/l	
100) p-Diethylbenzene 8.089 119 20369 4.5417 ug/l 87 101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			7.849	119	35485	5.2126	ug/l	93
101) 1,2,4,5-Tetramethylben 8.601 119 22057 3.3318 ug/l 82 102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			8.108	91	34859		ug/l	92
102) 1,2-Dibromo-3-Chloropr 8.661 157 2860 6.2476 ug/l 77 103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l								
103) Camphor 9.149 95 4596 26.6669 ug/l 85 104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			8.601		22057	3.3318	ug/l	82
104) Hexachlorobutadiene 9.299 225 13417 7.9651 ug/l 97 105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			8.661	157	2860	6.2476	ug/l	77
105) 1,2,4-Trichlorobenzene 9.209 180 14421 5.6101 ug/l 94 106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l							ug/1	
106) 1,2,3-Trichlorobenzene 9.540 180 11830m 5.8557 ug/l 107) Naphthalene 9.384 128 15791m 3.6448 ug/l			9.299	225	13417	7.9651	ug/1	97
107) Naphthalene 9.384 128 15791m 3.6448 ug/l			9.209	180	14421	5.6101	ug/l	94
	-						ug/l	
		-		128	15791m	3.6448	ug/l	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator : WP Sam Mult : 1 Vial# : 10 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:45 Qt Upd On: 05/21/14 09:30

	Gamanad	рπ	OTon	Pegnonse	Conc Units	Dev(Mi	n)
	Compound	R.T.					
Inter	rnal Standards					_	
4)	Fluorobenzene	4.635	96	278569	30.00 ug/		
,	Chlorobenzene-d5	6.477		233318	30.00 ug/		
70)	1,4-Dichlorobenzene-d4	7.903	152	149692	30.00 ug/	1 -0.	02
Syste	em Monitoring Compounds						
37)	Dibromofluoromethane	4.195	111	105094	34.90 ug/	1 -0.	01
	iked Amount 30.000			Recove	ry = 116	.33%	
39)	1,2-Dichloroethane-d4	4.424	67	59657	33.04 ug/		01
	iked Amount 30.000				4	.13%	
	Toluene-d8	5.604	98	289173	28.94 ug/		.01
	iked Amount 30.000	7 101	174	Recove	ry = 96 30.44 ug/	.47% 1 -0.	01
	Bromofluorobenzene iked Amount 30.000	7.181	174			.47%	. 01
Sp.	red Allouit 50.000				-1		
Targe	et Compounds						alue
	Chlorodifluoromethane	1.325		57714	11.6378	ug/l	95
	Dichlorodifluoromethane	1.325		36671	10.8724	ug/l	92 73
	Chloromethane	1.458		29092	11.2131 15.7874	ug/l ug/l	73 91
- ,	Bromomethane	1.791 1.525		20232 24459	12.6080	ug/l	89
	Vinyl Chloride Chloroethane	1.858		14739	11.7511	ug/l	83
	Trichlorofluoromethane	2.041		38677	16.0735	ug/l	93
	Ethyl ether	2.275		17764m	8.2252	ug/l	
	Furan	2.299		53694m	9.4462	ug/l	
	1,1,2-Trichloro-1,2,2			22553	16.1051	ug/l	98
15)	Methylene Chloride	2.823	84	27630	11.7416	ug/l	98
	Acrolein	2.377	56	17283m	75.8085	ug/l	
	Acrylonitrile	3.027		8986m	11.5204	ug/l	0.0
	Iodomethane	2.570		41881	12.7189	ug/l	98
,	Acetone	2.498		37535m	53.9419 9.8995	ug/l ug/l	100
	Carbon Disulfide	2.624		63012 4790	50.0067	ug/l	91
	t-Butyl Alcohol n-Hexane	3.256		17194	9.5349	ug/l	83
	Di-isopropyl-ether	3.425		77371	9.5855	ug/1	94
	1,1-Dichloroethene	2.450		34774	11.4042	ug/l	84
	Methyl Acetate	2.745		24999	11.7804	ug/l	100
	Methyl-t-butyl ether	3.040	73	43814	10.2926	ug/l	82
27)	1,1-Dichloroethane	3.383		43370	11.8612	ug/l	99
	trans-1,2-Dichloroethene	3.040		23611m		ug/1	
	Ethyl-t-butyl ether	3.726		17070m		ug/l	0.5
	cis-1,2-Dichloroethene	3.858		48513 23360	13.9315 11.4175	ug/l ug/l	95 92
	Bromochloromethane	4.033		30021	11.3851	ug/l	96
	2,2-Dichloropropane Ethyl acetate	3.906		22345	8.2961	ug/l	99
	1,4-Dioxane	5.080		12381		ug/l	87
	1,1-Dichloropropene	4.328		36056		ug/l	98
36)	Chloroform	4.081	. 83	52669	12.0325	ug/l	79
38)	Cyclohexane	4.255	56	33173	9.9409	ug/l	94
40)	1,2-Dichloroethane	4.472		53551	11.9800	ug/l	99
	2-Butanone	3.870		11763	10.5965	ug/l	99
42)		4.219		47508	13.2440	ug/l ug/l	99 97
	Carbon Tetrachloride	4.328		43076 66083	14.2711 8.9911	ug/1	100
	Vinyl Acetate Bromodichloromethane	5.164		50059	12.1957	ug/l	91
45) 46)		4.984		25642	9.9232	ug/l	94
	Dibromomethane	5.080		33196	15.5060	ug/l	83
	1,2-Dichloropropane	5.002		29918	11.2954	ug/l	94
	Trichloroethene	4.857	130	34267	12.4219	ug/1	92
50)	Benzene	4.466		109911	11.4186	ug/1	100
51)	tert-Amyl methyl ether	4.520		41289	10.5900	ug/l	93
53)		4.490		37114	8.5761	ug/l	66 77
	Methyl methacrylate	5.050		24545 35524	9.5253 11.6579	ug/l ug/l	77 79
	Dibromochloromethane	6.128 5.333		35524 13543	8.4602	ug/l ug/l	88
	2-Chloroethylvinylether cis-1,3-Dichloropropene	5.435		41838	10.0662	ug/l	99
	trans-1,3-Dichloropropene	5.760		39342	10.6277	ug/l	94
	Ethyl methacrylate	5.797		24570	8.1969	ug/l	87
60)		5.881		27070	11.1553	ug/l	81
	1,2-Dibromoethane	6.206		28545	11.0042	ug/l	87
62)	1,3-Dichloropropane	5.983		47385	10.8519	ug/l	93
63)	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.520		21944	8.7398	ug/1	98
64)		-6.013		14937	9.1520	ug/l	93 94
	Tetrachloroethene Toluone	5.646		30988 72384	13.9592 11.2306	ug/l ug/l	94
67)	Toluene	3.046	, ,2	72304	_1.2500	-9/-	

Quantitation Report (QT Reviewed)

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:45 Qt Upd On: 05/21/14 09:30 Operator : WP Sam Mult : 1 Vial# : 10 Misc : A,5ML SampleID : CAL @ 10 PPB Data File: 2M16114.D Acq On : 05/20/14 18:33

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
68)	1,1,1,2-Tetrachloroethane	6.531	133	34324	13.8704	ug/l	85
	Chlorobenzene	6.495	112	83411	11.4197	ug/l	91
	n-Butyl acrylate	6.784	55	42224	6.9774	ug/l	99
72)		6.916	43	33192	6.5092	ug/l	77
73)		6.994	173	30512	12.4685	ug/l	94
74)	Ethylbenzene	6.543	106	30624	10.5926	ug/l	92
75)	1,1,2,2-Tetrachloroethane	7.247	83	29594	10.4840	ug/l	94
77)	Styrene	6.862	104	85991	10.7146	ug/l	100
78)	m&p-Xylenes	6.609	106	93498	20.3373	ug/l	92
79)	o-Xylene	6.856	106	48672	10.8514	ug/l	83
80)	trans-1,4-Dichloro-2-b	7.277	53	17960m	10.6753	ug/l	
81)	1,3-Dichlorobenzene	7.867	146	65899	11.6913	ug/l	90
82)	1,4-Dichlorobenzene	7.921	146	70282	12.1140	ug/l	95
83)	1,2-Dichlorobenzene	8.168	146	62223	11.7282	ug/l	90
84)	Isopropylbenzene	7.073	105	112772	10.2843	ug/l	91
85)	Cyclohexanone	7.151	55	4358	41.5151	ug/l	81
86)	Camphene	7.253	93	24986	9.0754	ug/l	98
87)	1,2,3-Trichloropropane	7.283	75	39492	10.5526	ug/l	96
88)	2-Chlorotoluene	7.398	91	77958	11.3829	ug/l	96
89)	p-Ethyltoluene	7.386	105	121085	10.6304	ug/l	81
90)	4-Chlorotoluene	7.458	91	76200	10.7913	ug/l	91
91)	n-Propylbenzene	7.319	91	132173	10.4048	ug/l	96
92)	Bromobenzene	7.289	77	84961	10.8700	ug/l	89
93)	1,3,5-Trimethylbenzene	7.416	105	91308	10.9401	ug/l	88
94)	Butyl methacrylate	7.434	41	36289	7.5597	ug/l	88
95)	t-Butylbenzene	7.633	119	82599	10.7871	ug/l	87
96)	1,2,4-Trimethylbenzene	7.657	105	97851	10.3963	ug/l	89
97)	sec-Butylbenzene	7.771	105	88581	9.9512	ug/l	95
98)	4-Isopropyltoluene	7.849	119	81508	11.0539	ug/l	91
99)	n-Butylbenzene	8.108	91	86868	10.4472	ug/l	90
100)	p-Diethylbenzene	8.090	119	47393	9.7557	ug/l	85
101)	1,2,4,5-Tetramethylben	8.602	119	61183	8.5322	ug/l	87
102)	1,2-Dibromo-3-Chloropr	8.662	157	5815	11.7272	ug/l	79
103)	Camphor	9.149	95	13148	70.4290	ug/l	99
104)	Hexachlorobutadiene	9.300	225	31797	17.4270	ug/l	99
105)	1,2,4-Trichlorobenzene	9.204	180	35025	12.5792	ug/l	94
106)	1,2,3-Trichlorobenzene	9.541	180	28547m	13.0452	ug/l	
107)	Naphthalene	9.384	128	44771	9.5403	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator : WP Sam Mult : 1 Vial# : 13 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:40 Qt Upd On: 05/21/14 09:30

kesp via : iniciai calibracion						
Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Internal Standards						
•,	4.635	96	289274	30.00 ug/		
52) Chlorobenzene-d5	6.477		244421 156555	30.00 ug/ 30.00 ug/	1 -0.	
70) 1,4-Dichlorobenzene-d4	7.904	152	136333	30.00 ug/	1 -0.	02
Sustan Manitaring Compounds						
System Monitoring Compounds 37) Dibromofluoromethane	4.196	111	106356	34.01 ug/	1 -0.	01
Spiked Amount 30.000	1.130			ery = 113		
39) 1,2-Dichloroethane-d4	4.425	67		30.47 ug/		01
Spiked Amount 30.000			Recove	ery = 101	.57%	
66) Toluene-d8	5.598	98	297371	28.41 ug/	1 -0.	.02
Spiked Amount 30.000				ery = 94		
76) Bromofluorobenzene	7.181	174		30.19 ug/		01
Spiked Amount 30.000			Recove	ery = 100	.63%	
					^-	
Target Compounds	1 206	1	201201	E0 E0E7	ug/l	alue 98
5) Chlorodifluoromethane	1.326		301291	58.5057 52.7025	ug/l	91
6) Dichlorodifluoromethane	1.326 1.459	85 50	184589 139988	51.9595	ug/l	
7) Chloromethane8) Bromomethane	1.776		92083		ug/l	78
9) Vinyl Chloride	1.526		125776	62.4350	ug/l	97
10) Chloroethane	1.859		75992	58.3448	ug/l	89
11) Trichlorofluoromethane	2.042		194596		ug/l	89
12) Ethyl ether	2.269		115237	51.3830	ug/l	76
13) Furan	2.300		285272m	48.3299	ug/l	
14) 1,1,2-Trichloro-1,2,2	2.444	101	104757	72.0385	ug/l	89
15) Methylene Chloride	2.817	84	144393	59.0904	ug/l	93
16) Acrolein	2.378	56	106423		ug/l	96
17) Acrylonitrile	3.022		48608		ug/l	87
18) Iodomethane	2.570		229051		ug/l	96
19) Acetone	2.492		195626		ug/l	82
20) Carbon Disulfide	2.625				ug/l	100
21) t-Butyl Alcohol	2.908		32532		ug/l	84 85
22) n-Hexane	3.251				ug/l ug/l	98
23) Di-isopropyl-ether	3.425 2.444		456569		ug/l	97
24) 1,1-Dichloroethene	2.444		195780 134992	61.2586	ug/l	100
25) Methyl Acetate	3.034		250856		ug/l	82
<pre>26) Methyl-t-butyl ether 27) 1,1-Dichloroethane</pre>	3.383		247819	65.2677	ug/l	91
28) trans-1,2-Dichloroethene	3.040		132221	64.9857	ug/l	88
29) Ethyl-t-butyl ether	3.726			22.0812	ug/l	97
30) cis-1,2-Dichloroethene	3.859		254536m		ug/l	
31) Bromochloromethane	4.033		119289	56.1466	ug/l	91
32) 2,2-Dichloropropane	3.853	77	168963	61.7058	ug/l	99
33) Ethyl acetate	3.901	43	142082	50.7988	ug/l	98
34) 1,4-Dioxane	5.081	88	70841	3264.2869	ug/l	91
35) 1,1-Dichloropropene	4.322				ug/l	98
36) Chloroform	4.087		279329		ug/l	91
38) Cyclohexane	4.256		180114	51.9772	ug/l	97
40) 1,2-Dichloroethane	4.473		276651	59.6000	ug/l ug/l	100 91
41) 2-Butanone	3.865	43 97	63506 256396	55.0910 68.8314	ug/l	99
42) 1,1,1-Trichloroethane	4.220		239227	76.3230	ug/l	94
43) Carbon Tetrachloride 44) Vinyl Acetate	3.419		409547	53.6599	ug/l	100
45) Bromodichloromethane	5.165		267121	62.6694	ug/l	95
46) Methylcyclohexane	4.984		155658	58.0088	ug/l	95
47) Dibromomethane	5.081		158606	71.3439	ug/l	98
48) 1,2-Dichloropropane	5.002	63	154339	56.1136	ug/l	86
49) Trichloroethene	4.858	130	183776	64.1543	ug/l	88
50) Benzene	4.467	78	578821	57.9079	ug/l	100
51) tert-Amyl methyl ether	4.521		226503	55.9450	ug/l	91
53) Iso-propylacetate	4.485	43	249837	55.1085	ug/l	77
54) Methyl methacrylate	5.051		146295	54.1944	ug/l	83
55) Dibromochloromethane	6.128		218288	68.3816	ug/l	99
56) 2-Chloroethylvinylether	5.333		87531	52.1961	ug/l	89 96
57) cis-1,3-Dichloropropene	5.436		254202	58.3826 62.4104	ug/l ug/l	96
58) trans-1,3-Dichloropropene	5.761		242028 162482	51.7442	ug/l ug/l	89
59) Ethyl methacrylate	5.797 5.881		143895	56.6043	ug/l	89
60) 1,1,2-Trichloroethane 61) 1,2-Dibromoethane	6.206		160128	58.9256	ug/l	90
62) 1,3-Dichloropropane	5.984		256337	56.0382	ug/l	97
63) 4-Methyl-2-Pentanone	5.520		137957	52.4494	ug/l	80
64) 2-Hexanone	6_008		98864	57.8228	ug/l	91
65) Tetrachloroethene	5.972		165060	70.9773	ug/l	98
67) Toluene	5.640		392832	58.1803	ug/l	98

Quantitation Report (QT Reviewed)

Data Path : G:\GcMsData\2014\GCMS_2\Data\05-20-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
68)	1,1,1,2-Tetrachloroethane	6.531	133	178051	68.6823	ug/l	87
	Chlorobenzene	6.495	112	466375	60.9505	ug/l	97
71)	n-Butyl acrylate	6.784	55	294549	46.5400	ug/l	96
	n-Amyl acetate	6.911	43	245436	46.0217	ug/l	77
	Bromoform	6.995	173	172325	67.3324	ug/l	90
	Ethylbenzene	6.543	106	177856	58.8222	ug/l	87
	1,1,2,2-Tetrachloroethane	7.242	83	160830	54.4782	ug/l	96
	Styrene	6.856	104	469928	55.9869	ug/l	97
	m&p-Xylenes	6.610	106	533292	110.9142	ug/l	91
	o-Xylene	6.856	106	271022	57.7756	ug/l	91
	trans-1,4-Dichloro-2-b	7.272	53	88283	50.1746	ug/l	86
81)	1,3-Dichlorobenzene	7.868	146	349436	59.2768	ug/l	89
82)	1,4-Dichlorobenzene	7.916	146	363013	59.8269	ug/l	94
83)	1,2-Dichlorobenzene	8.163	146	339222	61.1359	ug/l	88
84)	Isopropylbenzene	7.067	105	649200	56.6086	ug/l	95
85)	Cyclohexanone	7.151	55	19456	177.2166	ug/l	99
86)	Camphene	7.254	93	144577	50.2110	ug/l	100
87)	1,2,3-Trichloropropane	7.284	75	211399	54.0111	ug/l	95
88)	2-Chlorotoluene	7.392	91	395697	55.2442	ug/l	97
89)	p-Ethyltoluene	7.386	105	654517	54.9431	ug/l	86
90)	4-Chlorotoluene	7.458	91	418699	56.6960	ug/l	94
91)	n-Propylbenzene	7.320	91	726614	54.6923	ug/l	94
92)	Bromobenzene	7.290	77	458865	56.1340	ug/l	92
93)	1,3,5-Trimethylbenzene	7.416	105	488468	55.9604	ug/l	86
94)	Butyl methacrylate	7.434	41	246815	49.1620	ug/l	89
95)	t-Butylbenzene	7.633	119	497413	62.1124	ug/l	83
96)	1,2,4-Trimethylbenzene	7.657	105	556170	56.5008	ug/l	88
97)	sec-Butylbenzene	7.765	105	531681	57.1106	ug/l	95
98)	4-Isopropyltoluene	7.850	119	489131	63.4265	ug/l	92
99)	n-Butylbenzene	8.108	91	510644	58.7207	ug/l	88
100)	p-Diethylbenzene	8.090	119	286096	56.3104	ug/l	90
101)	1,2,4,5-Tetramethylben	8.596	119	427797	57.0423	ug/l	90
102)	1,2-Dibromo-3-Chloropr	8.662	157	36548	70.4757	ug/l	63
103)	Camphor	9.144	95	102678	525.8973	ug/l	89
104)	Hexachlorobutadiene	9.294	225	157697	82.6401	ug/l	96
105)	1,2,4-Trichlorobenzene	9.204	180	194240	66.7032	ug/l	95
106)	1,2,3-Trichlorobenzene	9.541	180	145358m	63.5128	ug/l	
107)	Naphthalene	9.385		279754	56.9998	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

. Resp via . Initial calibration						
Compound				Conc Unit	s Dev(M	in)
Telegral Charles						
Internal Standards	4 625	0.0	200217	20 00	/1 ^	0.1
4) Fluorobenzene	4.635	96	288317	30.00 ug 30.00 ug		.01
52) Chlorobenzene-d5	6.477 7.904	117 152	248682 146176	30.00 ug		.01 .02
70) 1,4-Dichlorobenzene-d4	7.304	152	1461/6	30.00 ug	/1 -0	.02
System Monitoring Compounds						
37) Dibromofluoromethane	4.196	111	106278	34.10 ug	/1 -0	.01
Spiked Amount 30.000	4.170		Recove		3.67%	.01
39) 1,2-Dichloroethane-d4	4.424	67	56621	30.29 ug		01
Spiked Amount 30.000	1.121	0,	Recove		0.97%	. • -
66) Toluene-d8	5.604	98	304861	28.63 ug		.01
Spiked Amount 30.000	3.001	,,	Recove		5.43%	
76) Bromofluorobenzene	7.181	174	130058	32.16 ug		01
Spiked Amount 30.000	,	+/-	Recove	-		. • -
Spined Imount			1100071	- +0	, . 200	
Target Compounds					0-	value
5) Chlorodifluoromethane	1.326	51	587576	114.4761	ug/l	88
6) Dichlorodifluoromethane	1.326	85	406040	116.3144	ug/l	91
7) Chloromethane	1.459	50	272839	101.6061	ug/l	83
8) Bromomethane	1.775	94	171954	129.6419	ug/l	86
9) Vinyl Chloride	1.525	62	242221	120.6373	ug/l	99
10) Chloroethane	1.859	64	143786	110.7617	ug/l	95
11) Trichlorofluoromethane	2.042		413223		ug/l	88
12) Ethyl ether	2.269	59	213970		ug/l	83
					ug/l	03
13) Furan	2.299	39	529077m		•	0.0
14) 1,1,2-Trichloro-1,2,2	2.444		231331	159.6080	ug/l	98
15) Methylene Chloride	2.823	84	266469	109.4099	ug/l	91
16) Acrolein	2.378	56	198846	842.7104	ug/l	97
17) Acrylonitrile	3.022	53	100291	124.2293	ug/l	99
18) Iodomethane	2.570	142	431642	126.6543	ug/l	97
19) Acetone	2.492	43	358372	497.6071	ug/l	92
20) Carbon Disulfide	2.624	76	712209	108.1088	ug/l	100
21) t-Butyl Alcohol	2.907	59	65387	659.5489	ug/l	90
22) n-Hexane	3.250	57	245343	131.4547	ug/l	85
23) Di-isopropyl-ether	3.425	45	864333	103.4614	ug/l	98
24) 1,1-Dichloroethene	2.450	61	390941	123.8751	ug/l	97
25) Methyl Acetate	2.745	43	251622	114.5637	ug/l	100
<pre>26) Methyl-t-butyl ether</pre>	3.034	73	483971	109.8481	ug/l	80
27) 1,1-Dichloroethane	3.383	63	473233	125.0484	ug/l	97
28) trans-1,2-Dichloroethene	3.040	96	262661	129.5246	ug/l	85
29) Ethyl-t-butyl ether	3.726	59	199633	41.7006	ug/l	96
30) cis-1,2-Dichloroethene	3.858	61	396709	110.0713	ug/l	84
31) Bromochloromethane	4.033	49	225253	106.3733	ug/l	97
32) 2,2-Dichloropropane	3.858	77	336178	123.1808	ug/l	98
33) Ethyl acetate	3.901	43	288349	103.4361	ug/l	96
34) 1,4-Dioxane	5.080	88	142145		ug/l	93
35) 1,1-Dichloropropene	4.328	75	396215		ug/l	97
	4.087	83	523293	115.5069	ug/l	90
38) Cyclohexane	4.256	56	405454	117.3941	ug/l	98
40) 1,2-Dichloroethane	4.472	62	499961	108.0660		93
41) 2-Butanone	3.864	43	118611	103.2358	ug/l	100
42) 1,1,1-Trichloroethane	4.220	97	509529	137.2409	ug/l	100
43) Carbon Tetrachloride	4.328	117	472637	151.2906	ug/l	95
44) Vinyl Acetate	3.419	43	777787	102.2459	ug/l	100
45) Bromodichloromethane	5.165	83	497010	116.9909	ug/l	94
46) Methylcyclohexane	4.984	83	352017	131.6211	ug/l	92
47) Dibromomethane	5.080	174	282707	127.5890	ug/l	91
48) 1,2-Dichloropropane	5.002	63	298696	108.9585	ug/l	99
49) Trichloroethene	4.858	130	341606	119.6469	ug/l	95
50) Benzene	4.466	78	1094188	109.8308	ug/l	100
51) tert-Amyl methyl ether	4.521	73	442722	109.7128	ug/l	88
	4.491	43				79
			500451	108.4970	ug/l	
54) Methyl methacrylate	5.050	41	292685	106.5662	ug/l	86
55) Dibromochloromethane	6.128	129	402936	124.0622	ug/l	95
56) 2-Chloroethylvinylether	5.333	63	178391	104.5545	ug/l	85
57) cis-1,3-Dichloropropene	5.436	75	492254	111.1189	ug/l	92
58) trans-1,3-Dichloropropene	5.761	75	471762	119.5661	ug/l	96
59) Ethyl methacrylate	5.797	41	332244	103.9939	ug/l	87
60) 1,1,2-Trichloroethane	5.881	97	272667	105.4218	ug/l	90
61) 1,2-Dibromoethane	6.206	107	306019	110.6825	ug/l	91
62) 1,3-Dichloropropane	5.983	76	473391	101.7155	ug/l	99
63) 4-Methyl-2-Pentanone	5.520	43	285570	106.7096	ug/l	92
64) 2-Hexanone	6.013	43	199771	114.8386	ug/l	90
65) Tetrachloroethene	5.977	164	305312	129.0373	ug/l	99
67) Toluene	5.640	92	743910	108.2888	ug/l	96

(QT Reviewed) Quantitation Report

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:39 Qt Upd On: 05/21/14 09:30 Operator : WP Sam Mult : 1 Vial# : 14 Misc : A,5ML SampleID : CAL @ 100 PPB Data File: 2M16118.D Acq On : 05/20/14 19:37

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	n)
68)	1,1,1,2-Tetrachloroethane	6.531	133	326022	123.6065	ug/l	81
69)	Chlorobenzene	6.495	112	847405	108.8497	ug/l	95
71)	n-Butyl acrylate	6.784	55	603690	102.1582	ug/l	94
72)	n-Amyl acetate	6.910	43	514343	103.2924	ug/l	85
73)	Bromoform	6.995	173	316914	132.6198	ug/l	93
74)	Ethylbenzene	6.543	106	329600	116.7483	ug/l	85
75)	1,1,2,2-Tetrachloroethane	7.241	83	308420	111.8895	ug/l	91
77)	Styrene	6.862	104	857193	109.3766	ug/l	96
78)	m&p-Xylenes	6.609	106	957077	213.1865	ug/l	95
79)	o-Xylene	6.856	106	483462	110.3807	ug/l	95
80)	trans-1,4-Dichloro-2-b	7.278	53	172690	105.1150	ug/l	84
81)	1,3-Dichlorobenzene	7.867	146	635252	115.4128	ug/l	89
82)	1,4-Dichlorobenzene	7.922	146	658269	116.1900	ug/l	92
83)	1,2-Dichlorobenzene	8.168	146	614482	118.6075	ug/l	88
84)	Isopropylbenzene	7.073	105	1231267	114.9866	ug/l	94
85)	Cyclohexanone	7.157	55	44683	435.8973	ug/l	98
	Camphene	7.253	93	303708	112.9658	ug/l	99
87)	1,2,3-Trichloropropane	7.284	75	398074	108.9268	ug/l	96
88)	2-Chlorotoluene	7.392	91	730448	109.2204	ug/l	96
89)	p-Ethyltoluene	7.386	105	1192156	107.1805	ug/l	84
	4-Chlorotoluene	7.458	91	753981	109.3458	ug/l	92
91)	n-Propylbenzene	7.320	91	1352454	109.0274	ug/l	94
92)	Bromobenzene	7.290	77	845274	110.7463	ug/l	92
93)	1,3,5-Trimethylbenzene	7.422	105	902931	110.7873	ug/l	88
	Butyl methacrylate	7.434	41	455742	97.2228	ug/l	91
95)	t-Butylbenzene	7.633	119	916666	122.5923	ug/l	86
96)	1,2,4-Trimethylbenzene	7.663	105	1015119	110.4472	ug/l	88
97)	sec-Butylbenzene	7.771	105	1019266	117.2584	ug/l	97
98)	4-Isopropyltoluene	7.849	119	905643	125.7747	ug/l	93
99)	n-Butylbenzene	8.108	91	937799	115.4978	ug/l	89
100)	p-Diethylbenzene	8.090	119	536196	113.0294	ug/l	91
101)	1,2,4,5-Tetramethylben	8.596	119	837386	119.5848	ug/l	95
102)	1,2-Dibromo-3-Chloropr	8.662	157	69125	142.7584	ug/l	64
	Camphor	9.150	95	237602	1303.3603	ug/l	91
	Hexachlorobutadiene	9.294	225	291070	163.3637	ug/l	97
105)	1,2,4-Trichlorobenzene	9.204		366293	134.7186	ug/l	96
	1,2,3-Trichlorobenzene	9.541		291963m		ug/l	
-	Naphthalene	9.384	128	623896	136.1445	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0520.M Fri Jun 20 07:55:14 2014 SYSTEM1

Operator : WP Sam Mult : 1 Vial# : 17 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:36 Qt Upd On: 05/21/14 09:30

nebp .	.14 : 11110141 04104141						
					Conc Units	Dev(Mi	.n)
	nal Standards	4 634	96	294568	30.00 ug/	1 -0.	01
	Fluorobenzene Chlorobenzene-d5	4.634 6.476		244247			
	1,4-Dichlorobenzene-d4	7.903		144583	30.00 ug/		
70)	1,4 Dichiolopenzene di	7.505		111000	55.55	_	
System Monitoring Compounds							
	Dibromofluoromethane	4.201	111	101695	31.93 ug/	1 0.	00
	ked Amount 30.000			Recov	ery = 106	.43%	
39) 1,2-Dichloroethane-d4		4.430	67	55386	29.00 ug/	1 0.	00
Spi	ked Amount 30.000				•	.67%	
66) '	Toluene-d8	5.603	98	312896	29.92 ug/		01
Spiked Amount 30.000						.73%	
76)	Bromofluorobenzene	7.180	174		33.00 ug/		01
Spiked Amount 30.000 Recovery = 110.00%							
Target Compounds Qvalue							
	t Compounds	1 226	-1	1226107	222 0105		81
,	Chlorodifluoromethane	1.326		1226107		ug/l ug/l	88
	Dichlorodifluoromethane	1.326		916070		ug/l	80
	Chloromethane	1.459		734496 393375			83
	Bromomethane	1.526		634692			99
	Vinyl Chloride	1.842		375686			91
	Chloroethane Trichlorofluoromethane	2.042		939324			90
		2.042		563197		ug/l	81
	Ethyl ether Furan	2.275		1645134			86
-	1,1,2-Trichloro-1,2,2	2.437		502354			92
	Methylene Chloride	2.822		706202			93
	Acrolein	2.377		521891			97
	Acrylonitrile	3.021		237784			92
	Iodomethane	2.569			322.0904		99
-	Acetone	2.497			1276.5716		94
	Carbon Disulfide	2.624		1783183	264.9317		100
-	t-Butyl Alcohol	2.913			1600.7756		84
	n-Hexane	3.250		527962			86
	Di-isopropyl-ether	3.430		2324213			98
	1,1-Dichloroethene	2.443		961755		ug/l	95
	Methyl Acetate	2.738		672582		ug/l	100
	Methyl-t-butyl ether	3.039		1241799	275.8730		79
	1,1-Dichloroethane	3.382		1216866		ug/l	98
	trans-1,2-Dichloroethene	3.039	96	642122	309.9267	ug/l	91
	Ethyl-t-butyl ether	3.731	59	544639		ug/l	97
30)	cis-1,2-Dichloroethene	3.858	61	1255567		ug/l	83
31)	Bromochloromethane	4.032	49	567361			94
32)	2,2-Dichloropropane	3.858	77	778354			92
33)	Ethyl acetate	3.900	43		255.0588		97
34)	1,4-Dioxane	5.080	88	321979	14569.8482		
35)	1,1-Dichloropropene	4.327		951693	282.0702		95
36)	Chloroform	4.086		1352147	292.1268	ug/l	87
	Cyclohexane	4.255		958672	271.6811	ug/l	99
	1,2-Dichloroethane	4.472		1229024	260.0148	ug/l	97
	2-Butanone	3.864		301132	256.5351	ug/l	94
	1,1,1-Trichloroethane	4.219		1282617	338.1397	ug/l	96 94
	Carbon Tetrachloride	4.327		1087804	340.8157	ug/l	94
	Vinyl Acetate	3.418		2036058	261.9751	ug/l	100 93
	Bromodichloromethane	5.164		1295734	298.5296	ug/l	93 94
	Methylcyclohexane	4.983		775469	283.7991	ug/l ug/l	93
	Dibromomethane	5.080		692023	305.6904	ug/l ug/l	93
	1,2-Dichloropropane	5.001		771359	275.4057	ug/1 ug/1	93 92
	Trichloroethene	4.857		862583	295.7069	ug/l ug/l	100
	Benzene	4.466		2769684	272.1117	ug/1 ug/1	87
	tert-Amyl methyl ether	4.526		1117574	271.0735 288.0881	ug/l	80
	Iso-propylacetate	4.490		1305131	278.3631	ug/l	86
	Methyl methacrylate	5.050		750892	325.4799	ug/1 ug/1	96
	Dibromochloromethane	6.127 5.332		1038259 478740	285.6832	ug/l	84
	2-Chloroethylvinylether	5.435		1303088	299.4936	ug/l	91
	cis-1,3-Dichloropropene	5.760		1226313	316.4475	ug/l	95
	trans-1,3-Dichloropropene Ethyl methacrylate (5.796		854621	272.3576	ug/l	88
	1,1,2-Trichloroethane	5.880		703355	276.8773	ug/l	89
	1,2-Dibromoethane	6.205		774968	285.3839	ug/l	86
	1,3-Dichloropropane	5.983		1187175	259.7150	ug/l	97
	4-Methyl-2-Pentanone	5.519		744270	283.1630	ug/l	92
	2-Hexanone	6.013		507673	297.1355	ug/l	90
	Tetrachloroethene	5.977		701176	301.7267	ug/l	99
-	Toluene	5.645		1882529	279.0102	ug/1	94
3.7							

Quantitation Report (QT Reviewed)

Data Path : G:\GcMsData\2014\GCMS_2\Data\05-20-14\
Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
68)	1,1,1,2-Tetrachloroethane	6.530	133	783263	302.3549	ug/l	84
	Chlorobenzene	6.494	112	2181272	285.2733	ug/l	96
71)	n-Butyl acrylate	6.783	55	1617021	276.6520	ug/l	94
72)	n-Amyl acetate	6.916	43	1353387	274.7872	ug/l	84
73)	Bromoform	7.000	173	810422	342.8759	ug/l	95
	Ethylbenzene	6.542	106	750560	268.7866	ug/l	93
	1,1,2,2-Tetrachloroethane	7.247	83	784813	287.8537	ug/l	93
77)	Styrene	6.861	104	2052122	264.7329	ug/l	97
78)		6.609	106	2273210	511.9308	ug/l	96
79)	o-Xylene	6.855	106	1139891	263.1196	ug/l	89
80)	trans-1,4-Dichloro-2-b	7.277	53	400240	246.3070	ug/l	77
81)	1,3-Dichlorobenzene	7.867	146	1569739	288.3329	ug/l	88
82)	1,4-Dichlorobenzene	7.921	146	1631404	291.1292	ug/l	94
83)	1,2-Dichlorobenzene	8.168	146	1520289	296.6798	ug/l	90
84)	Isopropylbenzene	7.072	105	3007822	283.9919	ug/l	94
85)	Cyclohexanone	7.150	55	100373	989.9598	ug/l	94
86)	Camphene	7.253	93	706221	265.5769	ug/l	99
87)	1,2,3-Trichloropropane	7.283	75	1000663	276.8329	ug/l	91
88)	2-Chlorotoluene	7.397	91	1752968	265.0010	ug/l	98
89)	p-Ethyltoluene	7.385	105	2813891	255.7696	ug/l	83
90)	4-Chlorotoluene	7.457	91	1781809	261.2532	ug/l	91
91)	n-Propylbenzene	7.325	91	3443098	280.6217	ug/l	96
92)	Bromobenzene	7.289	77	2065811	273.6411	ug/l	93
93)	1,3,5-Trimethylbenzene	7.421	105	2260632	280.4297	ug/l	88
	Butyl methacrylate	7.433	41	1217013	262.4843	ug/1	90
	t-Butylbenzene	7.632	119	2278530	308.0816	ug/l	84
	1,2,4-Trimethylbenzene	7.662	105	2552741	280.8041	ug/l	88
	sec-Butylbenzene	7.770	105	2488118	289.3917	ug/1	95
	4-Isopropyltoluene	7.849	119	2191073	307.6465	ug/1	92
	n-Butylbenzene	8.107		2301101	286.5224	ug/l	89
	p-Diethylbenzene	8.089		1335826	284.6930	ug/l	91
101)	1,2,4,5-Tetramethylben	8.595		2132612	307.9080	ug/1	93
102)	1,2-Dibromo-3-Chloropr	8.661	157	173594	362.4600	ug/1	67
103)	Camphor	9.143	95	579195	3212.1664	ug/1	91
104)	Hexachlorobutadiene	9.299	225	661271	375.2291	ug/1	96
105)	1,2,4-Trichlorobenzene	9.203	180	854471	317.7276	ug/1	96
106)	1,2,3-Trichlorobenzene	9.540	180	656380m	310.5469	ug/l	
107)	Naphthalene	9.384	128	1400276	308.9303	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0520.M Fri Jun 20 07:55:18 2014 SYSTEM1

SampleID : CAL @ 500 PPB Data File: 2M16124.D Acq On : 05/20/14 21:12

Operator : WP Sam Mult : 1 Vial# : 20 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:30 Qt Upd On: 05/21/14 09:30

Resp via . initial calibration							
Compound			Response	Conc	Units	Dev(Mi	n)
Internal Standards	4.634	96	300096	30 0	0 ug/	1 -0.	01
 Fluorobenzene Chlorobenzene-d5 	6.476				0 ug/		
70) 1,4-Dichlorobenzene-d4	7.903		138400		0 ug/		
707 1,4-Dichiologenzene d4	7.505				5,		
System Monitoring Compounds							
37) Dibromofluoromethane	4.201	111	88880	27.3	9 ug/	1 0.	00
Spiked Amount 30.000			Recove	-		.30%	
39) 1,2-Dichloroethane-d4	4.430	67	53420		6 ug/		00
Spiked Amount 30.000			Recove			.53%	0.1
66) Toluene-d8	5.604	98	312112		6 ug/		01
Spiked Amount 30.000	7.181	174	Recove 124303			.20% l -0.	01
76) Bromofluorobenzene Spiked Amount 30.000	7.101	1/4		ery =		.23%	01
Spiked Amount 30.000			11000	1			
Target Compounds						Qv	alue
5) Chlorodifluoromethane	1.325	51	2404796	450.1	.313	ug/l	83
Dichlorodifluoromethane	1.325	85	1745504	480.3	916	ug/l	90
7) Chloromethane	1.458		1474860	527.6		ug/l	81
8) Bromomethane	1.758		445626		7852	ug/l	84
9) Vinyl Chloride	1.525		1251225	598.7		ug/l	97
10) Chloroethane	1.841		674580 1833222	499.2		ug/l ug/l	89 88
11) Trichlorofluoromethane	2.041		1041456	447.6	2039	ug/l	80
12) Ethyl ether 13) Furan	2.293		3163975	516.7		ug/l	84
14) 1,1,2-Trichloro-1,2,2	2.437		951800		9233	ug/l	93
15) Methylene Chloride	2.817		1311269	517.2		ug/l	94
16) Acrolein	2.377		997296	4060.6		ug/l	98
17) Acrylonitrile	3.021	53	466507	555.1	L757	ug/l	96
18) Iodomethane	2.570	142	2064846	582.0		ug/l	98
19) Acetone	2.497		1765764	2355.5		ug/l	92
20) Carbon Disulfide	2.618		3416392	498.2		ug/l	100
21) t-Butyl Alcohol	2.913		322282	3123.2		ug/l	81
22) n-Hexane	3.250		987755	508.4		ug/l	87
23) Di-isopropyl-ether	3.431		4388970	504.	7427 5789	ug/l ug/l	96 95
24) 1,1-Dichloroethene	2.443		1805619 1305048	570.8		ug/l	100
25) Methyl Acetate 26) Methyl-t-butyl ether	3.033		2296087	500.6		ug/l	80
27) 1,1-Dichloroethane	3.382		2314528	587.5		ug/l	99
28) trans-1,2-Dichloroethene	3.039		1158588	548.9		ug/l	92
29) Ethyl-t-butyl ether	3.732		1073603	215.4		ug/l	98
30) cis-1,2-Dichloroethene	3.858	61	2276571m	606.8	3666	ug/l	
31) Bromochloromethane	4.032	49	1071834	486.2	2946	ug/l	93
32) 2,2-Dichloropropane	3.858		1385477	487.		ug/l	93
33) Ethyl acetate	3.900		1411000		2847	ug/l	97
34) 1,4-Dioxane	5.086		593841	26376		ug/l	88
35) 1,1-Dichloropropene	4.327				3356	ug/l	97 89
36) Chloroform	4.087		2544635 1798800	539.6 500.3		ug/l ug/l	97
<pre>38) Cyclohexane 40) 1,2-Dichloroethane</pre>	4.478		2168578	450.3		ug/l	97
41) 2-Butanone	3.864		574353	480.2		ug/l	89
42) 1,1,1-Trichloroethane	4.219		2328581	602.5		ug/l	98
43) Carbon Tetrachloride	4.333		1917942	589.8	3340	ug/l	92
44) Vinyl Acetate	3.418	43	3877748	489.	7504	ug/l	100
45) Bromodichloromethane	5.164		2373732	536.8		ug/l	94
46) Methylcyclohexane	4.984		1432681	514.6		ug/l	96
47) Dibromomethane	5.080		1203818	521.9		ug/l	93
48) 1,2-Dichloropropane	5.002		1442113	505.4		ug/l	98
49) Trichloroethene	4.857		1551997	522.2		ug/l	92 100
50) Benzene	4.466		5023552 2097272	484.4 499.3		ug/l ug/l	87
51) tert-Amyl methyl ether 53) Iso-propylacetate	4.526		2534350	557.8		ug/l	82
53) Iso-propylacetate 54) Methyl methacrylate	5.050		1440395	532.5		ug/l	87
55) Dibromochloromethane	6.127		1864225	582.8		ug/l	97
56) 2-Chloroethylvinylether	5.333		915464	544.		ug/l	85
57) cis-1,3-Dichloropropene	5.435		2434380	557.9		ug/l	90
58) trans-1,3-Dichloropropene	5.760		2323719	597.9		ug/l	98
59) Ethyl methacrylate	5.796		1632398	518.8	3029	ug/l	87
60) 1,1,2-Trichloroethane	5.880		1285979	504.8		ug/l	90
61) 1,2-Dibromoethane	6.206		1432366	526.0		ug/l	91
62) 1,3-Dichloropropane	5 983		2110718	460.4		ug/l	98
63) 4-Methyl-2-Pentanone	5.519		1453955	551.6		ug/l	95 91
64) 2-Hexanone	6.013		990525	578.3		ug/l ug/l	91 98
65) Tetrachloroethene 67) Toluene	5.977 5.646		1176422 3399349	504.8 502.4		ug/l	93
67) Toluene	3.040	, ,2	5555545	302.		-5/ -	

Quantitation Report (QT Reviewed)

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:30 Qt Upd On: 05/21/14 09:30 Operator : WP Sam Mult : 1 Vial# : 20 Misc : A,5ML SampleID : CAL @ 500 PPB Data File: 2M16124.D Acq On : 05/20/14 21:12

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
68)	1,1,1,2-Tetrachloroethane	6.531	133	1316340	506.7431	ug/l	82
69)		6.495	112	3956429	516.0182	ug/l	99
71)	n-Butyl acrylate	6.783	55	3132634	559.8981	ug/l	94
72)	n-Amyl acetate	6.916	43	2640773	560.1273	ug/l	86
73)	Bromoform	7.000	173	1432372	633.0860	ug/l	97
74)	Ethylbenzene	6.549	106	1197568	448.0263	ug/l	95
75)	1,1,2,2-Tetrachloroethane	7.247	83	1384006	530.3038	ug/l	93
77)	Styrene	6.862	104	3408902	459.4099	ug/l	99
78)	m&p-Xylenes	6.615	106	3717772	874.6526	ug/l	99
79)	o-Xylene	6.856	106	1880613	453.4928	ug/l	84
80)	trans-1,4-Dichloro-2-b	7.277	53	702588	451.6876	ug/l	75
81)	1,3-Dichlorobenzene	7.867	146	2677329	513.7474	ug/l	88
82)	1,4-Dichlorobenzene	7.921	146	2808833	523.6381	ug/l	94
83)	1,2-Dichlorobenzene	8.168	146	2682463	546.8608	ug/l	90
84)	Isopropylbenzene	7.072	105	5399619	532.5963	ug/l	94
85)	Cyclohexanone	7.157	55	194422	2003.2134	ug/l	97
86)	Camphene	7.253	93	1275904	501.2435	ug/l	97
87)	1,2,3-Trichloropropane	7.283	75	1729710	499.9013	ug/l	89
88)	2-Chlorotoluene	7.397	91	2862289	452.0309	ug/l	97
89)	p-Ethyltoluene	7.385	105	4600204	436.8173	ug/l	83
90)	4-Chlorotoluene	7.464	91	3330615	510.1596	ug/l	93
91)	n-Propylbenzene	7.325	91	6053218	515.3940	ug/l	96
92)	Bromobenzene	7.289	77	3588767	496.6119	ug/l	91
93)	1,3,5-Trimethylbenzene	7.422	105	3842608	497.9679	ug/l	88
94)	Butyl methacrylate	7.434	41	2193401	494.2052	ug/l	91
95)	t-Butylbenzene	7.632	119	3972343	561.0982	ug/l	84
96)	1,2,4-Trimethylbenzene	7.662	105	4464092	512.9925	ug/l	89
97)	sec-Butylbenzene	7.771	105	4525479	549.8710	ug/l	97
98)	4-Isopropyltoluene	7.849	119	3833356	562.2835	ug/l	92
99)	n-Butylbenzene	8.114	91	4111365	534.7983	ug/l	90
	p-Diethylbenzene	8.090	119	2318394	516.1729	ug/l	91
101)	1,2,4,5-Tetramethylben	8.595	119	3876622	584.7143	ug/l	93
102)	1,2-Dibromo-3-Chloropr	8.662	157	331230	722.4972	ug/l	66
103)	Camphor	9.143	95	1099466	6369.9522	ug/l	92
104)	Hexachlorobutadiene	9.294	225	1107973	656.7912	ug/l	96
105)	1,2,4-Trichlorobenzene	9.203	180	1503752	584.1374	ug/l	96
106)	1,2,3-Trichlorobenzene	9.540	180	1139505m	563.2086	ug/l	
107)	Naphthalene	9.384	128	2597805	598.7348	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M_A0520.M Fri Jun 20 07:55:22 2014 SYSTEM1

Acq On : 05/20/14 18:01

Operator : WP Sam Mult : 1 Vial# : 8 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:50 Qt Upd On: 05/21/14 09:30

Data Path : G:\GcMsData\2014\GCMS_2\Data\05-20-14\
Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\
Ot Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Ot	Resp	Via	:	Initial	Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	ln)
Internal Standards						
4) Fluorobenzene	4.634	96	253422	30.00 ug/		.01
52) Chlorobenzene-d5	6.476		220999	30.00 ug/		
70) 1,4-Dichlorobenzene-d4	7.903	152	130481	30.00 ug/	'1 -0.	.02
System Monitoring Compounds						
37) Dibromofluoromethane	4.195	111	100931	36.84 ug/		.01
Spiked Amount 30.000			Recove	ry = 122	.80%	
39) 1,2-Dichloroethane-d4	4.424	67	59163	36.01 ug/	1 -0.	.01
Spiked Amount 30.000			Recove	ry = 120	0.03%	
66) Toluene-d8	5.603	98	261448	27.63 ug/	′1 -0.	.01
Spiked Amount 30.000			Recove	ry = 92	1.10%	
76) Bromofluorobenzene	7.181	174	115341	31.96 ug/	′1 -o.	.01
Spiked Amount 30.000			Recove	ry = 106	5.53%	
Spaniou Illinousis				•		
Target Compounds					Q ^r	value
5) Chlorodifluoromethane	1.326	51	4908	1.0879	ug/l	94
6) Dichlorodifluoromethane	1.326		2738	0.8923	ug/l	97
7) Chloromethane	1.459		2646	1.1211	ug/l	93
8) Bromomethane	1.776		1397	1.1983	ug/l	87
9) Vinyl Chloride	1.526		2287	1.2959	ug/l	70
	1.859		2408	2.1104	ug/l	90
10) Chloroethane			3507	1.6021	ug/l	80
11) Trichlorofluoromethane	2.042		1723	0.8770	ug/l	50
12) Ethyl ether	2.275			0.9609	-	50
13) Furan	2.305		4969m		ug/l	
14) 1,1,2-Trichloro-1,2,2			1482m	1.1633	ug/l	
15) Methylene Chloride	2.822		2926m	1.3668	ug/l	
16) Acrolein	2.389		1037m	5.0000	ug/l	
17) Acrylonitrile	3.045		975m		ug/l	
18) Iodomethane	2.576		3699	1.2348	ug/l	74
19) Acetone	2.503	43	3161m	4.9935	ug/l	
20) Carbon Disulfide	2.624	76	6111m	1.0553	ug/l	
21) t-Butyl Alcohol	2.907	59	413	4.7395	ug/l	50
22) n-Hexane	3.250	57	1636m	0.9973	ug/l	
23) Di-isopropyl-ether	3.424		6264	0.8531	ug/l	71
24) 1,1-Dichloroethene	2.443		3298m	1.1889	ug/l	
25) Methyl Acetate	2.744		2685	1.3908	ug/l	100
26) Methyl-t-butyl ether	3.033		3425m	0.8844	ug/l	
27) 1,1-Dichloroethane	3.376		3845m	1.1559	ug/l	
	3.033		2301m	1.2909	ug/l	
28) trans-1,2-Dichloroethene			1524	0.3622	ug/l	79
29) Ethyl-t-butyl ether	3.731				ug/1	81
30) cis-1,2-Dichloroethene	3.858		3953	1.2478		91
31) Bromochloromethane	4.044		3115m	1.6736	ug/l	91
32) 2,2-Dichloropropane	3.858		2507	1.0451	ug/l	91
33) Ethyl acetate	3.906		2075m	0.8468	ug/l	
34) 1,4-Dioxane	5.092		861m		ug/l	
35) 1,1-Dichloropropene	4.327		3166	1.0907	ug/l	68
36) Chloroform	4.081		4988	1.2526	ug/l	82
38) Cyclohexane	4.255		2518	0.8294	ug/l	85
40) 1,2-Dichloroethane	4.472	62	5238	1.2881	ug/l	88
41) 2-Butanone	3.876	43	591m	0.5852	ug/l	
42) 1,1,1-Trichloroethane	4.219	97	4421	1.3548	ug/l	80
43) Carbon Tetrachloride	4.321	. 117	4713m	1.7164	ug/l	
44) Vinyl Acetate	3.430	43	4379m	0.6549	ug/l	
45) Bromodichloromethane	5.164	83	4376	1.1719	ug/l	92
46) Methylcyclohexane	4.983		2362	1.0048	ug/l	94
47) Dibromomethane	5.080		3274	1.6811	ug/l	78
48) 1,2-Dichloropropane	5.002		2865	1.1890	ug/l	44
49) Trichloroethene	4.863		2974	1.1851	ug/l	68
50) Benzene	4.466		8375	0.9564	ug/l	100
	4.526		3677	1.0367	ug/l	75
51) tert-Amyl methyl ether	4.484		2907m	0.7092	ug/l	, 5
53) Iso-propylacetate					ug/l	86
54) Methyl methacrylate	5.050		1482	0.6072 1.5314	ug/l	70
55) Dibromochloromethane	6.121		4420			70 78
56) 2-Chloroethylvinylether	5.333		795	0.5243	ug/1	
57) cis-1,3-Dichloropropene	5.441		3904	0.9917	ug/l	72
58) trans-1,3-Dichloropropene	5.766		2481	0.7076	ug/l	87
59) Ethyl methacrylate	5.796		2318	0.8164	ug/l	60
60) 1,1,2-Trichloroethane	5.874		3568m	1.5523	ug/l	
61) 1,2-Dibromoethane	6.205		2729	1.1107	ug/l	99
62) 1,3-Dichloropropane	5.983		4854	1.1736	ug/l	82
63) 4-Methyl-2-Pentanone	5.519	43	1390m	0.5845	ug/1	
64) 2-Hexanone	6.007	43	815m	0.5272	ug/l	
65) Tetrachloroethene	5.971	164	3163	1.5043	ug/l	71
67) Toluene	5.640	92	6617	1.0839	ug/l	91

(QT Reviewed) Quantitation Report

Qt Meth : 2M_A0520.M SampleID : CAL @ 1 PPB Operator : WP Sam Mult : 1 Vial# : 8 Misc : A,5ML Qt On : 05/21/14 09:50 Qt Upd On: 05/21/14 09:30 Data File: 2M16112.D Acq On : 05/20/14 18:01 Misc

Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	.n)
68) 1,1,1,2-Tetrachloroethane	6.531	133	3296	1.4062	ug/l	59
69) Chlorobenzene	6.494	112	8619	1.2458	ug/l	90
71) n-Butyl acrylate	6.783	55	3063	0.5807	ug/l	92
72) n-Amyl acetate	6.910	43	2418	0.5440	ug/l	82
73) Bromoform	6.994	173	3161	1.4819	ug/l	66
74) Ethylbenzene	6.543	106	2161	0.8575	ug/l	37
75) 1,1,2,2-Tetrachloroethane	7.241	83	2786m	1.1323	ug/l	
77) Styrene	6.862	104	5660	0.8091	ug/l	66
78) m&p-Xylenes	6.609	106	7354	1.8351	ug/l	91
79) o-Xylene	6.856	106	3965	1.0142	ug/l	66
80) trans-1,4-Dichloro-2-b	7.271	53	1873	1.2772	ug/l	78
81) 1,3-Dichlorobenzene	7.867	146	6618	1.3470	ug/l	80
82) 1,4-Dichlorobenzene	7.915	146	7393	1.4619	ug/l	80
83) 1,2-Dichlorobenzene	8.168	146	6123	1.3240	ug/l	89
84) Isopropylbenzene	7.066	105	7933	0.8300	ug/l	84
85) Cyclohexanone	7.181	55	396m	4.3278	ug/l	
86) Camphene	7.253	93	1772	0.7384	ug/1	100
87) 1,2,3-Trichloropropane	7.283	75	3317	1.0168	ug/l	75
88) 2-Chlorotoluene	7.391	91	5974	1.0007	ug/l	85
89) p-Ethyltoluene	7.385	105	8760	0.8823	ug/l	85
90) 4-Chlorotoluene	7.458	91	6265	1.0179	ug/l	91
91) n-Propylbenzene	7.319	91	9964	0.8999	ug/l	98
92) Bromobenzene	7.289	77	6505	0.9548	ug/l	82
93) 1,3,5-Trimethylbenzene	7.421	105	7080	0.9732	ug/l	88
94) Butyl methacrylate	7.427	41	3415	0.8161	ug/l	75
95) t-Butylbenzene	7.632	119	6328	0.9481	ug/l	81
96) 1,2,4-Trimethylbenzene	7.650		6318	0.7701	ug/l	68
97) sec-Butylbenzene	7.771		7086	0.9132	ug/l	91
98) 4-Isopropyltoluene	7.849	119	5874	0.9139	ug/l	90
99) n-Butylbenzene	8.108	91	6329	0.8732	ug/l	95
100) p-Diethylbenzene	8.096		2948m	0.6962	ug/l	
101) 1,2,4,5-Tetramethylben	8.601	119	4550	0.7279	ug/l	88
102) 1,2-Dibromo-3-Chloropr	8.655		506m	1.1707	ug/l	
103) Camphor	9.143	95	897	5.5123	ug/l	84
104) Hexachlorobutadiene	9.300	225	3201	2.0127	ug/l	89
105) 1,2,4-Trichlorobenzene	9.209		3289	1.3552	ug/l	94
106) 1,2,3-Trichlorobenzene	9.540		2512m	1.3169	ug/l	
107) Naphthalene	9.390	128	3040	0.7432	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:55 Qt Upd On: 05/21/14 09:30 Operator : WP Sam Mult : 1 Vial# : 7 Misc : A,5ML SampleID : CAL @ 0.5 PPB Data File: 2M16111.D Acq On : 05/20/14 17:45

_	VIA : INICIAL CALIDIACION						
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
	rnal Standards	4 62 5	96	251012	30.00 ug/ 30.00 ug/ 30.00 ug/	1 -0	01
4) 53)	Fluorobenzene Chlorobenzene-d5	6 477	117	217414	30.00 ug/	1 -0	.01
	1,4-Dichlorobenzene-d4	7.904	152	129126	30.00 ug/	1 -0	.02
707	1,4-Bichiolobenzene ai	7.501	-5-	-270	-5,		
Syste	em Monitoring Compounds						
	Dibromofluoromethane	4.196	111		38.16 ug/		.01
Sp:	iked Amount 30.000				ery = 127		
	1,2-Dichloroethane-d4	4.425	67		34.06 ug/		.01
	iked Amount 30.000				ery = 113		0.0
	Toluene-d8	5.598	98		$ \begin{array}{rcl} 28.23 & \text{ug}/\\ \text{ery} & = & 94 \end{array} $.02
	iked Amount 30.000 Bromofluorobenzene	7 181	174		31.69 ug/		. 01
	iked Amount 30.000	7.101	1,1		ery = 105		
DP.	Inca Immodile 30.000				•		
Targe	et Compounds					Q	value
	Chlorodifluoromethane	0.000		0	N.D. d		
6)	Dichlorodifluoromethane	0.000		0	N.D. d		
	Chloromethane	0.000		0	N.D. d		
	Bromomethane	0.000		0			
		0.000		0 0	N.D. d N.D.		
		0.000		ő	N.D. d		
12)	Ethyl ether	0.000		Ö	N.D. d		
	Furan	0.000		0	N.D. d		
14)	1,1,2-Trichloro-1,2,2	0.000		0	N.D. d		
15)	Methylene Chloride	0.000		0	N.D. d		
16)	Acrolein	0.000		0	N.D. d		
	Acrylonitrile	0.000		0	N.D. d		
		0.000		0 0	N.D. d N.D. d		
	Acetone	0.000		0	N.D. d		
20)	Carbon Disulfide t-Butyl Alcohol	0.000		Ö	N.D. d		
22)	n-Hexane	0.000		Ō	N.D. d		
	Di-isopropyl-ether	0.000		0	N.D. d		
	1,1-Dichloroethene	0.000		0	N.D. d		
25)	Methyl Acetate	0.000		0	N.D. d		
	Methyl-t-butyl ether	3.028			0.6310	ug/l	73
	1,1-Dichloroethane	0.000		0	N.D. d		
	trans-1,2-Dichloroethene	0.000		0	N.D. d N.D. d		
	Ethyl-t-butyl ether cis-1,2-Dichloroethene	0.000		Ö	N.D. d		
	Bromochloromethane	0.000)	Ö	N.D. d		
	2,2-Dichloropropane	0.000	1	0	N.D. d		
	Ethyl acetate	0.000)	0	N.D. d		
34)	1,4-Dioxane	0.000	1	0	N.D. d		
	1,1-Dichloropropene			0	N.D. d		
36)	Chloroform	0.000		0	N.D. d N.D. d		
38)	Cyclohexane	0.000 4.473		0 2863	0.7085	ug/l	89
	1,2-Dichloroethane 2-Butanone	0.000		0	N.D. d	ug/ =	
	1,1,1-Trichloroethane	0.000		ō	N.D. d		
	Carbon Tetrachloride	0.000		0	N.D. d		
44)	Vinyl Acetate	0.000	1	0	N.D. d		
	Bromodichloromethane	0.000		0	N.D. d		
	Methylcyclohexane	0.000		0	N.D. d		
	Dibromomethane	0.000		0	N.D. d N.D. d		
	1,2-Dichloropropane	0.000		0	N.D. d		
	Trichloroethene Benzene	4.461		5864m	0.6739	ug/l	
	tert-Amyl methyl ether	0.000		0	N.D. d	-3, -	
	Iso-propylacetate	0.000		0	N.D. d		
	Methyl methacrylate	0.000)	0	N.D. d		
55)	Dibromochloromethane	0.000		0	N.D. d		
	2-Chloroethylvinylether	0.000		0	N.D. d		
	cis-1,3-Dichloropropene	0.000		0	N.D. d		
	trans-1,3-Dichloropropene	0.000		0	N.D. d N.D. d		
	Ethyl methacrylate 1,1,2-Trichloroethane /	0.000		0	N.D. d		
	1,2-Dibromoethane	0.000		0	N.D. d		
	1,3-Dichloropropane	0.000		ō	N.D. d		
	4-Methyl-2-Pentanone	0.000		0	N.D. d		
64)	2-Hexanone	0.000		0	N.D. d		
	Tetrachloroethene	0.000		0	N.D. d		
67)	Toluene	0.000)	0	N.D. d		

(QT Reviewed) Quantitation Report

SampleID : CAL @ 0.5 PPB Data File: 2M16111.D Acq On : 05/20/14 17:45 Qt Meth : 2M_A0520.M Qt On : 05/21/14 09:55 Qt Upd On: 05/21/14 09:30 Operator : WP Sam Mult : 1 Vial# : 7 Misc : A,5ML

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)	
68)	1,1,1,2-Tetrachloroethane Chlorobenzene				N.D. d		
69)	Chlorobenzene	0.000		0	N.D. d		
71)	n-Butvl acrvlate	0.000		0	N.D. d		
72)	n-Amyl acetate	0.000		0	N.D. d		
73)	n-Amyl acetate Bromoform Ethylbenzene	0.000		0	N.D. d		
74)	Ethylbenzene	0.000		0	N.D. d		
·	1 1 0 0 Metblancethams	0 000		^	M D 4		
77)	Styrene m&p-Xylenes o-Xylene trans-1,4-Dichloro-2-b	0.000		0	N.D. d		
78)	m&p-Xylenes	6.610	106	3871	0.9761	ug/l 79)
79)	o-Xylene	0.000		0	N.D. d	-	
80)	o-Xylene trans-1,4-Dichloro-2-b 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.000		0	N.D. d		
81)	1,3-Dichlorobenzene	0.000		0	N.D. d		
82)	1,4-Dichlorobenzene	0.000		0	N.D. d		
83)	1,2-Dichlorobenzene	0.000		0	N.D. d		
84)	Isopropylbenzene	0.000		0	N.D. d		
85)	1,2-Dichlorobenzene Isopropylbenzene Cyclohexanone Camphene	0.000		0	N.D. d		
86)	Camphene	0.000		0	N.D. d		
87)	1,2,3-Trichloropropane 2-Chlorotoluene p-Ethyltoluene 4-Chlorotoluene	0.000		0	N.D. d		
88)	2-Chlorotoluene	0.000		0	N.D. d		
89)	p-Ethyltoluene	0.000		0	N.D. d		
90)	4-Chlorotoluene	0.000		0	N.D. d		
91)	n-Propylbenzene	0.000		0	N.D. d		
92)	Bromobenzene	0.000		0	N.D. d		
93)	1,3,5-Trimethylbenzene	0.000		0	N.D. d		
94)	1,3,5-Trimethylbenzene Butyl methacrylate t-Butylbenzene	0.000		0	N.D. d		
95)	t-Butylbenzene	0.000		0	N.D. d		
96)	1,2,4-Trimethylbenzene	0.000		0			
97)	sec-Butylbenzene	0.000		0			
98)	4-Isopropyltoluene	0.000		0			
99)	1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene n-Butylbenzene p-Diethylbenzene	0.000		0			
100)	p-Diethylbenzene	0.000		0			
TOT)	1,2,4,5-Tetramethylben	0.000		U	N.D. d		
102)	1,2-Dibromo-3-Chloropr	0.000		0	N.D. d		
103)	Camphor	9.132	95	491m	3.0490	ug/l	
104)	Hexachlorobutadiene	0.000		0	N.D. d		
105)	1,2,4-Trichlorobenzene	0.000		0	N.D. d		
106)	1,2,3-Trichlorobenzene	0.000		0	N.D. d		
107)	Camphor Hexachlorobutadiene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Naphthalene	0.000		0	N.D. d		
- -							

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 6/17/2014 1:31:00 P Data File: 2M17652.D Method: EPA 8260C

Instrument: GCMS 2

TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp		IIN Initia RF R	F RF	%Diff	Flag
Fluorobenzene	1	0	ı	4.64	30.00	30	**		0.000	0.00	
Chlorodifluoromethane	1	0		1.32	9.64	20	20	0.1 0.57		51.82	
Dichlorodifluoromethane	1	0		1.32	15.24	20	20	0.37		23.82	C1
Chloromethane	1	0		1.46	19.22	20	20	0.1 0.29		3.92	
Bromomethane	1	0		1.79	23.07	20	20	0.1 0.18		15.34	
/inyl Chloride	1	0		1.54	19.40	20	20	0.1 0.25		3.02	
Chloroethane	1	0		1.86	23.00	20	20	0.1 0.17		15.00	
Trichlorofluoromethane	1	0		2.04	22.97	20	20	0.1 0.39		14.86	
Ethyl ether	1	0		2.27	18.91	20	20	0.20		5.47	
Furan	1	0		2.30	22.02	20	20	0.58		10.11	
1,1,2-Trichloro-1,2,2-trifluoroetha	1	0		2.44	25.23	20	20	0.1 0.21		26.15	C1
Methylene Chloride	1	0		2.82	23.87	20	20	0.1 0.29	4 0.351	19.33	
Acrolein	1	0		2.38	100.00	100	20	0.03	7 0.044	0.00	
Acrylonitrile	1	0		3.03	18.64	20	20	0.10	0.093	6.80	
odomethane	1	0		2.58	25.53	20	20	0.44	8 0.571	27.63	C1
Acetone	1	0		2.50	122.37	100	20	0.1 0.07	5 0.092	22.37	C1
Carbon Disulfide	1	0		2.63	25.21	20	20	0.1 0.69	9 0.881	26.04	C1
-Butyl Alcohol	1	0		2.91	112.03	100	20	0.01	2 0.014	12.03	
n-Hexane	1	0		3.26	21.86	20	20	0.20	1 0.219	9.31	
Di-isopropyl-ether	1	0		3.43	24.86	20	20	0.86	1 1.070	24.31	C1
1,1-Dichloroethene	1	0		2.45	21.92	20	20	0.1 0.38	2 0.419	9.62	
Methyl Acetate	1	0		2.74	22.29	20	20	0.1 0.27	3 0.305	11.45	
Methyl-t-butyl ether	1	0		3.04	22.84	20	20	0.1 0.48	5 0.554	14.19	
1,1-Dichloroethane	1	0		3.39	23.71	20	20	0.2 0.48	2 0.572	18.56	
rans-1,2-Dichloroethene	1	0		3.05	23.14	20	20	0.1 0.26	1 0.302	15.68	
Ethyl-t-butyl ether	1	0		3.73	59.47	20	20	0.20	1 0.599	197.37	C1
cis-1,2-Dichloroethene	1	0		3.86	23.07	20	20	0.1 0.49	3 0.569	15.36	
Bromochloromethane	1	0		4.04	22.91	20	20	0.25	7 0.294	14.53	
2,2-Dichloropropane	1	0		3.86	26.71	20	20	0.32	1 0.428	33.56	C1
Ethyl acetate	1	0		3.91	27.58	20	20	0.27	2 0.375	37.90	C1
1,4-Dioxane	1	0		5.09	1250.87	1000	20	0.00	3 0.003	25.09	C1
1,1-Dichloropropene	1	0		4.33	24.13	20	20	0.38	0 0.459	20.67	C1
Chloroform	1	Ó		4.09	26.07	20	20	0.2 0.56	0 0.729	30.37	C1
Dibromofluoromethane	1	0	s	4.20	32.05	30	**	0.36	9 0.394	6.82	
Cyclohexane	1	0		4.26	21.39	20	20	0.1 0.35		6.93	
1,2-Dichloroethane-d4	1	0	S	4.43	32.14	30	**	0.20		7.14	
1,2-Dichloroethane	1	0		4.48	25.69	20	20	0.1 0.55		28.47	
2-Butanone	1	0		3.88	23.68	20	20	0.1 0.11		18.39	
1,1,1-Trichloroethane	1	0		4.23	23.96	20	20	0.1 0.51		19.78	
Carbon Tetrachloride	1	0		4.34	22.33	20	20	0.1 0.46		11.64	
Vinyl Acetate	1	0		3.42	25.52	20	20	0.74		27.58	C1
Bromodichloromethane	1	0		5.18	25.09	20	20	0.2 0.51		25.46	
Methylcyclohexane	1	0		4.99	20.45	20	20	0.1 0.29		2.24	
Dibromomethane	1	0		5.09	22.81	20	20	0.31		14.05	
1,2-Dichloropropane	1	0		5.01	23.87	20	20	0.1 0.31		19.36	
Trichloroethene	1	0		4.87	22.93	20	20	0.2 0.35		14.64	
Benzene	1	0		4.47	23.28	20	20	0.5 1.14		16.42	
ert-Amyl methyl ether	1	0		4.53	22.56	20	20	0.44		12.81	
Chlorobenzene-d5	1	0	1	6.49	30.00	30	**	0.11	0.000	0.00	
so-propylacetate	1	0	•	4.50	20.82	20	20	0.54		4.11	
oo p. opjidootato											
Methyl methacrylate	1	0		5.06	23.11	20	20	0.32	5 0.375	15.57	

S -Surrogate Compound N/O or N/Q - Not applicable for this run

I -Internal Standard Compound

Page 1 of 2 ** - No limit specified in method

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 6/17/2014 1:31:00 P Data File: 2M17652.D Method: EPA 8260C Instrument: GCMS 2

TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lim	RF	Initial RF	RF	%Diff Flag
2-Chloroethylvinylether	1	0		5.34	16.40	20	20		0.191	0.191	18.02
cis-1,3-Dichloropropene	1	0		5.45	20.73	20	20		0.580	0.601	3.64
trans-1,3-Dichloropropene	1	0		5.78	21.38	20	20	0.1	0.516	0.552	6.92
Ethyl methacrylate	1	0		5.81	22.61	20	20		0.364	0.412	13.06
1,1,2-Trichloroethane	1	0		5.89	21.13	20	20		0.359	0.379	5.65
1,2-Dibromoethane	1	0		6.22	20.95	20	20	0.1	0.372	0.390	4.75
1,3-Dichloropropane	1	0		5.99	22.00	20	20		0.601	0.661	9.99
4-Methyl-2-Pentanone	1	0		5.53	16.68	20	20	0.1	0.300	0.301	16.60
2-Hexanone	1	0		6.03	17.99	20	20	0.1	0.207	0.224	10.07
Tetrachloroethene	1	0		5.99	20.44	20	20	0.2	0.380	0.388	2.19
Toluene-d8	1	0	S	5.62	28.46	30	**		1.236	1.172	5.14
Toluene	1	0		5.66	20.65	20	20	0.4	0.917	0.947	3.26
1,1,1,2-Tetrachloroethane	1	0		6.55	21.82	20	20		0.415	0.453	9.08
Chlorobenzene	1	0		6.51	20.14	20	20	0.5	1.092	1.100	0.68
1,4-Dichlorobenzene-d4	1	0		7.92	30.00	30	**			0.000	0.00
n-Butyl acrylate	1	0		6.80	16.71	20	20		1.043	1.061	16.47
n-Amyl acetate	1	0		6.93	17.32	20	20		0.854	0.921	13.42
Bromoform	1	0		7.01	18.12	20	20	0.1	0.647	0.586	9.40
Ethylbenzene	1	0		6.55	20.19	20	20	0.1	0.603	0.608	0.93
1,1,2,2-Tetrachloroethane	1	0		7.26	18.77	20	20	0.1	0.620	0.582	6.14
Bromofluorobenzene	1	0	S	7.20	29.31	30	**		0.871	0.851	2.31
Styrene	1	0		6.87	21.28	20	20	0.3	1.640	1.745	6.39
m&p-Xylenes	1	0		6.63	40.50	40	20	0.1	0.931	0.942	1.26
o-Xylene	1	0		6.87	20.53	20	20	0.3	0.952	0.977	2.64
trans-1,4-Dichloro-2-butene	1	0		7.29	21.75	20	20		0.343	0.373	8.74
1,3-Dichlorobenzene	1	0		7.89	19.74	20	20	0.6	1.338	1.320	1.31
1,4-Dichlorobenzene	1	0		7.94	19.25	20	20	0.5	1.403	1.351	3.76
1,2-Dichlorobenzene	1	0		8.19	19.10	20	20	0.4	1.279	1.221	4.50
Isopropylbenzene	1	0		7.08	20.45	20	20		2.279	2.330	2.26
Cyclohexanone	1	. 0		7.16	118.19	100	20		0.017	0.020	18.19
Camphene	1	0		7.27	18.19	20	20		0.530	0.482	9.07
1,2,3-Trichloropropane	1	0		7.30	20.54	20	20		0.787	0.809	2.69
2-Chlorotoluene	1	0		7.41	20.54	20	20		1.472	1.512	2.72
p-Ethyltoluene	1	0		7.40	20.88	20	20		2.271	2.371	4.38
4-Chlorotoluene	1	0		7.48	21.97	20	20		1.516	1.665	9.85
n-Propylbenzene	1	0		7.34	19.57	20	20		2.638	2.581	2.14
Bromobenzene	1	0		7.34	20.90	20	20		1.671	1.746	4.48
1,3,5-Trimethylbenzene	1	0		7.43	19.51	20	20		1.836	1.791	2.45
Butyl methacrylate	1	0		7.45 7.45	21.96	20	20		0.863	0.947	9.79
t-Butylbenzene	1	0		7.45 7.65	19.26	20	20		1.739	1.675	3.68
1,2,4-Trimethylbenzene	1	0		7.67	20.31	20	20				1.56
•		0		7.79	18.19	20	20		1.952 1.889	1.982 1.718	9.04
sec-Butylbenzene	1	0								1.718	
4-Isopropyltoluene	1			7.87	18.81	20	20		1.688		5.95
n-Butylbenzene	1	0		8.13	20.00	20	20		1.771	1.771	0.00
o-Diethylbenzene	1	0		8.11	19.29	20	20		0.980	0.945	3.53
1,2,4,5-Tetramethylbenzene	1	0		8.62	16.08	20	20		1.439	1.440	19.62
1,2-Dibromo-3-Chloropropane	1	0		8.69	16.97	20	20		0.134	0.114	15.15
Camphor	1	0		9.17	117.60	200	20		0.034	0.028	41.20 C1
Hexachlorobutadiene	1	0		9.32	16.07	20	20		0.602	0.484	19.63
1,2,4-Trichlorobenzene	1	0		9.23	18.03	20	20		0.711	0.641	9.84
1,2,3-Trichlorobenzene	1	0		9.56	17.97	20	20		0.554	0.497	10.15
Naphthalene	1	0		9.40	15.06	20	20		0.998	0.913	24.71 C1

S -Surrogate Compound N/O or N/Q - Not applicable for this run I -Internal Standard Compound

** - No limit specified in method

Page 2 of 2

SampleID : CAL @ 20 PPB Data File: 2M17652.D Acq On : 06/17/14 13:31 Operator : WP Sam Mult : 1 Vial# : 5 Misc : A,5ML

Qt Meth : 2M_A0520.M Qt On : 06/17/14 13:43 Qt Upd On: 05/21/14 10:07

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\
Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\
Ot Path : G:\GcMsData\2014\GCMS_2\MethodQt\

^ +	D	774 -		T-1-1-1	Calibration
OT.	Kesp	vıa	•	Initial	Calibration

Resp Via : Initial Calibration						
Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Internal Standards				,		
1, 1111111111	4.641	96	198923			.00
52) Chlorobenzene-d5	6.489					.00
70) 1,4-Dichlorobenzene-d4	7.921	152	119024	30.00 ug/	1 0	.00
Gustan Manitoring Compounds						
System Monitoring Compounds 37) Dibromofluoromethane	4.201	111	78361	32.05 ug/	1 0	.00
Spiked Amount 30.000	1.202			ry = 106		
39) 1,2-Dichloroethane-d4	4.430	67	43586	32.14 ug/	1 0	.00
Spiked Amount 30.000				ery = 107		
66) Toluene-d8	5.616	98		28.46 ug/		.00
Spiked Amount 30.000				ery = 94		00
76) Bromofluorobenzene	7.199	174		29.31 ug/	⊥ ∪ '.70%	.00
Spiked Amount 30.000			Recove	ery = 97	. 70%	
Target Compounds					0	value
5) Chlorodifluoromethane	1.325	51	36393	9.6355	ug/l	41
6) Dichlorodifluoromethane	1.325	85	37856m		ug/l	
7) Chloromethane	1.458	50	38105	19.2155	ug/1	87
Bromomethane	1.791	94	28110	23.0675	ug/l	87
Vinyl Chloride	1.541	62	32695		ug/l	98
10) Chloroethane	1.858	64	24995	23.0003	ug/l	99
11) Trichlorofluoromethane	2.041	101	60771	22.9714 18.9066	ug/l ug/l	87
12) Ethyl ether	2.275	59 39	25367m 86055	22.0227	ug/l	99
<pre>13) Furan 14) 1,1,2-Trichloro-1,2,2</pre>		101	35806m		ug/1	
15) Methylene Chloride	2.823	84	46553m		ug/l	
16) Acrolein	2.377	56	29112	100.0007	ug/l	94
17) Acrylonitrile	3.033	53	12397		ug/l	98
	2.576	142	75761m		ug/l	
19) Acetone	2.498	43	61186		ug/l	86
20) Carbon Disulfide	2.630	76	116891	25.2072	ug/l	100
21) t-Butyl Alcohol	2.913	59	9067	112.0348	ug/l	76 80
22) n-Hexane	3.256	57	29075	21.8629 24.8622	ug/l ug/l	98
<pre>23) Di-isopropyl-ether 24) 1,1-Dichloroethene</pre>	3.431 2.449	45 61	141935		ug/1	91
25) Methyl Acetate	2.744	43	55506 40419	22.2901	ug/l	100
26) Methyl-t-butyl ether	3.039	73	73462		ug/l	88
27) 1,1-Dichloroethane	3.388	63	75844m		ug/l	
28) trans-1,2-Dichloroethene	3.045	96	40030	23.1363	ug/l	87
29) Ethyl-t-butyl ether	3.732	59	79396 75459	59.4743	ug/l	96
30) cis-1,2-Dichloroethene	3.864	61			ug/l	88
31) Bromochloromethane	4.039	49	39021	22.9051	ug/l	89
32) 2,2-Dichloropropane	3.864	77 43	56781	26.7128 27.5795	ug/l ug/l	92 95
33) Ethyl acetate	3.912 5.092	88	49668 21775		ug/l	68
34) 1,4-Dioxane 35) 1,1-Dichloropropene	4.334		21775 60808	24.1331	ug/l	94
36) Chloroform	4.093		96738	26.0745	ug/l	81
38) Cyclohexane	4.261	56	50142	21.3870	ug/l	98
40) 1,2-Dichloroethane	4.478	62	94889	25.6934	ug/l	98
41) 2-Butanone	3.876	43	18047	23.6784	ug/l	92
42) 1,1,1-Trichloroethane	4.225	97	81120m	23.9554	ug/l	
43) Carbon Tetrachloride	4.340	117	68996	22.3280	ug/l	93 100
44) Vinyl Acetate	3.425 5.176	43 83	125833 85807	25.5154 25.0921	ug/l ug/l	93
45) Bromodichloromethane 46) Methylcyclohexane	4.990	83	40112	20.4484	ug/l	96
47) Dibromomethane	5.092	174	47719	22.8103	ug/1	91
48) 1,2-Dichloropropane	5.014	63	49769	23.8710	ug/l	94
49) Trichloroethene	4.869	130	53930	22.9287	ug/l	90
50) Benzene	4.472	78	176620	23.2838	ug/1	100
51) tert-Amyl methyl ether	4.532	73	66145	22.5621	ug/l	96
53) Iso-propylacetate	4.496	43	69472	20.8220	ug/l	75
54) Methyl methacrylate	5.062	41	46212	23.1132	ug/l	90
55) Dibromochloromethane	6.139	129	65866 23512	20.9211	ug/l ug/l	86 88
56) 2-Chloroethylvinylether 57) cis-1,3-Dichloropropene	5.345 5.447	63 75	23512 74016	16.3965 20.7279	ug/l	96
58) trans-1,3-Dichloropropene	5.778	75	67939	21.3835	ug/l	93
59) Ethyl methacrylate	5.808	41	50702	22.6128	ug/l	87
60) 1,1,2-Trichloroethane	5.893	97	46624	21.1296	ug/l	90
61) 1,2-Dibromoethane	6.224	107	48023	20.9501	ug/l	91
62) 1,3-Dichloropropane	5.995	76	81301	21.9975	ug/l	98
63) 4-Methyl-2-Pentanone	5.531	43	37069	16.6801	ug/l	78
64) 2-Hexanone	025	43	27605	17.9870	ug/l	96
65) Tetrachloroethene	5.989	164	47778 116584	20.4371 20.6525	ug/l ug/l	99 97
67) Toluene	5.658	92	116584	20.6323	ug/1	31

(QT Reviewed) Quantitation Report

Qt Meth : 2M_A0520.M Qt On : 06/17/14 13:43 Qt Upd On: 05/21/14 10:07 SampleID : CAL @ 20 PPB Operator : WP Sam Mult : 1 Vial# : 5 Misc : A,5ML Data File: 2M17652.D Acq On : 06/17/14 13:31

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
68)	1,1,1,2-Tetrachloroethane	6.549	133	55752	21.8155	uq/l	74
	Chlorobenzene	6.507	112	135371	20.1367	ug/l	95
71)		6.802	55	84203	16.7058	ug/l	94
72)	n-Amyl acetate	6.928	43	73066	17.3163	ug/l	84
73)	Bromoform	7.012	173	46490	18.1208	ug/l	91
74)	Ethylbenzene	6.555	106	48264	20.1854	ug/l	83
75)	1,1,2,2-Tetrachloroethane	7.259	83	46201	18.7715	ug/l	94
77)	Styrene	6.874	104	138480	21.2773	ug/l	95
78)	m&p-Xylenes	6.627	106	149545	40.5021	ug/l	98
79)	o-Xylene	6.868	106	77551	20.5274	ug/l	96
80)	trans-1,4-Dichloro-2-b	7.289	53	29583	21.7488	ug/l	99
81)	1,3-Dichlorobenzene	7.885	146	104748	19.7376	ug/l	89
82)	1,4-Dichlorobenzene	7.939	146	107163	19.2478	ug/l	95
83)	1,2-Dichlorobenzene	8.186	146	96920	19.0996	ug/l	90
84)	Isopropylbenzene	7.085	105	184902	20.4518	ug/l	96
85)	Cyclohexanone	7.163	55	7849	118.1868	ug/l	89
86)	Camphene	7.271	93	38219	18.1855	ug/l	98
87)	1,2,3-Trichloropropane	7.301	75	64165	20.5376	ug/l	97
88)	2-Chlorotoluene	7.410	91	120008	20.5433	ug/l	96
89)	p-Ethyltoluene	7.404	105	188122	20.8762	ug/l	78
90)	4-Chlorotoluene	7.476	91	132106	21.9699	ug/l	96
91)	n-Propylbenzene	7.337	91	204831	19.5723	ug/l	96
92)	Bromobenzene	7.307	77	138518	20.8961	ug/l	94
93)	1,3,5-Trimethylbenzene	7.434	105	142105	19.5091	ug/l	83
94)	Butyl methacrylate	7.452	41	75176	21.9586	ug/l	85
95)	t-Butylbenzene	7.650	119	132895	19.2637	ug/l	89
	1,2,4-Trimethylbenzene	7.674	105	157289	20.3110	ug/l	87
97)	sec-Butylbenzene	7.789	105	136312	18.1917	ug/l	95
	4-Isopropyltoluene	7.867	119	125976	18.8099	ug/l	93
99)	n-Butylbenzene	8.126	91	140517	19.9999	ug/l	91
100)		8.108	119	74992	19.2943	ug/l	92
101)		8.619	119	114256m	16.0761	ug/l	
102)		8.686	157	9012	16.9701	ug/l	83
	Camphor	9.167	95	22125	117.6047	ug/l	94
	Hexachlorobutadiene	9.318	225	38386m	16.0734	ug/l	
105)	• •	9.227	180	50852	18.0316	ug/l	97
106)	1,2,3-Trichlorobenzene	9.559	180	39474m	17.9698	ug/l	
107)	Naphthalene	9.402	128	72445	15.0574	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

GC/MS Volatile Data Raw QC Data

Form 5

Tune Name: BFB TUNE Data File: 2M16102.D Instrument: GCMS 2 Analysis Date: 05/20/14 15:14
Method: EPA 8260C
Tune Scan/Time Range: Average of 4.547 to 4.606 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	<u>Fail</u>
50	95	15	40	21.8	3644	PASS
75	95	30	60	50.0	8367	PASS
95	95	100	100	100.0	16746	PASS
96	95	5	9	6.0	1012	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	88.2	14772	PASS
175	174	5	9	8.8	1301	PASS
176	174	95	101	95.6	14121	PASS
177	176	5	9	7.3	1033	PASS

Data File	Sample Number	Analysis Date:
2M16103.D	20 PPB	05/20/14 15:30
2M16104.D	BLK	05/20/14 15:50
2M16105.D	CAL @ 20 PPB	05/20/14 16:06
2M16106.D	BLK	05/20/14 16:22
2M16111.D	CAL @ 0.5 PPB	05/20/14 17:45
2M16112.D	CAL @ 1 PPB	05/20/14 18:01
2M16113.D	CAL @ 5 PPB	05/20/14 18:17
2M16114.D	CAL @ 10 PPB	05/20/14 18:33
2M16115.D	CAL @ 20 PPB	05/20/14 18:49
2M16116.D	BLK	05/20/14 19:05
2M16117.D	CAL @ 50 PPB	05/20/14 19:21
2M16118.D	CAL @ 100 PPB	05/20/14 19:37
2M16119.D	BLK	05/20/14 19:53
2M16120.D	BLK	05/20/14 20:09
2M16121.D	CAL @250 PPB	05/20/14 20:25
2M16122.D	BLK	05/20/14 20:41
2M16123.D	BLK	05/20/14 20:56
2M16124.D	CAL @ 500 PPB	05/20/14 21:12
2M16125.D	BLK	05/20/14 21:28
2M16126.D	BLK	05/20/14 21:44
2M16127.D	BLK	05/20/14 22:00
2M16128.D	BLK	05/20/14 22:16
2M16129.D	ICV	05/20/14 22:32
2M16130.D	ICV	05/20/14 22:48
2M16131.D	BLK	05/20/14 23:04
2M16132.D	DAILY BLANK	05/20/14 23:20
2M16133.D	DAILY BLANK	05/20/14 23:36
2M16134.D	AC78679-001	05/20/14 23:52 05/21/14 00:08
2M16135.D	AC78677-001	05/21/14 00:08
2M16136.D	AC78740-004	
2M16137.D	AC78740-003 AC78629-005	05/21/14 00:40 05/21/14 00:56
2M16138.D	AC78682-003	05/21/14 00:56
2M16139.D	BLK	05/21/14 01:12
2M16140.D	AC78716-002(400u	05/21/14 01:28
2M16141.D	MBS35793	05/21/14 01:59
2M16142.D 2M16143.D	MBS35794	05/21/14 01:35
2M16143.D 2M16144.D	MBS35795	05/21/14 02:31
2M16144.D 2M16146.D	STD	05/21/14 02:31
2M16146.D 2M16147.D	STD	05/21/14 09:35
2M16147.D 2M16148.D	BLK	05/21/14 09:51
2M16146.D 2M16149.D	AC78732-001	05/21/14 10:16
2M16149.D 2M16150.D	AC78732-001 AC78732-016	05/21/14 10:10
2M16150.D 2M16151.D	AC78732-010 AC78722-009	05/21/14 10:50
2M16151.D 2M16152.D	AC78732-009	05/21/14 11:06
2M16152.D 2M16153.D	AC78732-009 AC78732-008	05/21/14 11:22
2M16153.D 2M16154.D	AC78732-000 AC78732-010	05/21/14 11:38
2M16155.D	AC78732-010	05/21/14 11:54
2.3710700.0	,	

Data Path : G:\GcMsData\2014\GCMS_2\Data\05-20-14\

Data File: 2M16102.D

Acq On : 20 May 2014 15:14

Operator : WP

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2014\GCMS_2\MethodQt\2M_A0520.M

Title : @GCMS 2,ug,624,8260

Last Update : Wed May 21 10:02:31 2014

Spectrum Information: Average of 4.547 to 4.606 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
	50 75 95 96 173 174 175	95 95 95 95 174 95 174	15 30 100 5 0.00 50 5	40 60 100 9 2 100 9	21.8 50.0 100.0 6.0 0.0 88.2 8.8 95.6	3644 8367 16746 1012 0 14772 1301 14121	PASS PASS PASS PASS PASS PASS PASS PASS
	177	176	5	9	7.3	1033	PASS

Form 5

Tune Name: BFB TUNE

Data File: 2M17649.D Instrument: GCMS 2 Analysis Date: 06/17/14 12:49
Method: EPA 8260C
Tune Scan/Time Range: Average of 4.508 to 4.528 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	<u> Mass</u>	Lim	Lim	Abund	Abund	<u>Fail</u>
50	95	15	40	19.3	2283	PASS
75	95	30	60	54.9	6477	PASS
95	95	100	100	100.0	11802	PASS
96	95	5	9	5.6	666	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	99.1	11698	PASS
175	174	5	9	8.1	944	PASS
176	174	95	101	96.6	11306	PASS
177	176	5	9	8.9	1002	PASS

Data File	Sample Number	Analysis Date:
2M17650.D	20 PPB	06/17/14 12:59
2M17651.D	BLK	06/17/14 13:15
2M17652.D	CAL @ 20 PPB	06/17/14 13:31
2M17653.D	BLK	06/17/14 13:47
2M17654.D	BLK	06/17/14 14:03
2M17655.D	BLK	06/17/14 14:19
2M17656.D	BLK	06/17/14 14:41
2M17657.D	BLK	06/17/14 14:57
2M17658.D	BLK BLK	06/17/14 15:13
2M17659.D		06/17/14 15:29 06/17/14 15:45
2M17660.D 2M17661.D	BLKBLK BLKBLK	06/17/14 15:45
2M17661.D 2M17662.D	DAILY BLANK	06/17/14 16:00
2M17662.D 2M17663.D	MBS36472	06/17/14 16:13
2M17663.D 2M17664.D	AC79174-025(T)	06/17/14 16:47
2M17665.D	AC79174-026(T)	06/17/14 17:03
2M17666.D	BLK	06/17/14 17:19
2M17667.D	BLK	06/17/14 17:35
2M17668.D	79225-001	06/17/14 17:51
2M17669.D	AC79162-017	06/17/14 18:07
2M17670.D	AC79170-001	06/17/14 18:23
2M17671.D	AC79123-023(MS)	06/17/14 18:39
2M17672.D	AC79123-023(MSD	06/17/14 18:55
2M17673.D	AC79132-002(T)	06/17/14 19:11
2M17674.D	EF-1-V-188693(061	06/17/14 19:27
2M17675.D	AC79132-004(T)	06/17/14 19:43
2M17676.D	AC79132-006(T)	06/17/14 20:03
2M17677.D	AC79132-008(T)	06/17/14 20:19
2M17678.D	AC79197-001(T)	06/17/14 20:35
2M17679.D	AC79197-002(T)	06/17/14 20:51
2M17680.D	AC79197-003(T)	06/17/14 21:07
2M17681.D	AC79207-001(T)	06/17/14 21:23
2M17682.D	AC79132-002(T:M	06/17/14 21:39
2M17683.D	AC79132-002(T:M	06/17/14 21:55
2M17684.D	MBS36480	06/17/14 22:11
2M17685.D	BLK	06/17/14 22:27
2M17686.D	AC79170-002	06/17/14 22:43
2M17687.D	AC79170-003	06/17/14 22:59
2M17688.D	AC79188-006	06/17/14 23:15
2M17689.D	AC79188-007 AC79188-008	06/17/14 23:31 06/17/14 23:47
2M17690.D 2M17691.D	AC79188-009	06/18/14 00:03
2M17691.D 2M17692.D	BLK	06/18/14 00:03
2M17693.D	BLK	06/18/14 00:34
2M17694.D	BLK	06/18/14 00:50
2M17695.D	MBS36481	06/18/14 01:06
2M17696.D	BLK	06/18/14 01:22
2M17697.D	AC79175-003	06/18/14 01:38
2M17698.D	AC79175-005	06/18/14 01:54
2M17699.D	AC79175-007	06/18/14 02:10
2M17700.D	BLK	06/18/14 02:25
2M17701.D	AC79175-001(200X	06/18/14 02:41
2M17702.D	AC79175-006(200X	06/18/14 02:57
2M17703.D	79135-006(50X)	06/18/14 03:13
2M17704.D	79135-007(50X)	06/18/14 03:29
2M17705.D	79135-004(50X)	06/18/14 03:46
2M17706.D	79135-003(20X)	06/18/14 04:02
2M17707.D	AC79175-002(20X)	06/18/14 04:18
2M17708.D	AC79175-004(5X)	06/18/14 04:34
2M17709.D	MBS36482	06/18/14 04:49
2M17710.D 2M17711.D	AC79195-002(MS)	06/18/14 05:05 06/18/14 05:22
ZIVI I / / I I .U	AC79195-002(MSD	00/10/14 05.22

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\

Data File: 2M17649.D

Acq On : 17 Jun 2014 12:49

Operator : WP

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2014\GCMS_2\MethodQt\2M_A0520.M

Title : @GCMS_2,ug,624,8260

Last Update : Wed May 21 10:02:31 2014

Spectrum Information: Average of 4.508 to 4.528 min.

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	19.3	2283	PASS
75	95	30	60	54.9	6477	PASS
95	95	100	100	100.0	11802	PASS
96	95	5	9	5.6	666	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	99.1	11698	PASS
175	174	5	9	8.1	944	PASS
176	174	95	101	96.6	11306	PASS
177	176	5	9	8.9	1002	PASS
·			. 	 .	. 	<u> </u>

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 2M17662.D

Analysis Date: 06/17/14 16:15

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
95-63-6	1,2,4-Trimethylbenzene	1.0	U	104-51-8	n-Butylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U	103-65-1	n-Propylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2	Benzene	0.50	U	135-98-8	sec-Butylbenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	U	98-06-6	t-Butylbenzene	1.0	U
98-82-8	Isopropylbenzene	1.0	U	108-88-3	Toluene	1.0	v v U
136777612	m&p-Xylenes	1.0	U	79-01-6	Trichloroethene	1.0	U
1634-04-4	Methyl-t-butyl ether	0.50	U				

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Quantitation Report (QT Reviewed)

4061226 0086

Qt Meth : 2M_A0520.M Qt On : 06/17/14 16:26 SampleID : DAILY BLANK Operator : WP Sam Mult : 1 Vial# : 15 Data File: 2M17662.D Acq On : 06/17/14 16:15 Misc : A,5ML Qt Upd On: 05/21/14 10:07

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
Fluorobenzene	4.648	96	166600	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.496	117	160727	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.928	152	98797	30.00	ug/l	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.208	111	75456	36.84	ug/l	0.00
Spiked Amount 30.000			Recovery = 122.80%			
39) 1,2-Dichloroethane-d4	4.437	67	41243	-		0.00
Spiked Amount 30.000			Recove	ry =	121.03%	
66) Toluene-d8	5.617	98	183310	27.69	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	92.30%	
76) Bromofluorobenzene	7.200	174	77825	27.13	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	90.43%	
Target Compounds						Qvalue

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

PAGE: 1

Form3 Recovery Data QC Batch: MBS36472

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M17663.D

MBS36472

6/17/2014 4:31:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe
Vinyl Chloride	1	17.6257	0	20	88	20	130
1,1-Dichloroethene	1	22.354	Ö	20	112	50	130
1,1-Dichloroethane	1	20.468	0	20	102	50	130
Chloroform	1	19.9001	0	20	100	50	130
1,2-Dichloroethane	1	21.5724	0	20	108	50	130
2-Butanone	1	18.3852	0	20	92	20	130
Carbon Tetrachloride	1	21.6327	0	20	108	50	130
Trichloroethene	1	19.5842	0	20	98	50	130
Benzene	1	19.7241	0	20	99	50	130
Tetrachloroethene	1	17.6222	0	20	88	50	130
Toluene	1	16.7672	0	20	84	50	130
Chlorobenzene	1	16.8004	0	20	84	50	130
1,4-Dichlorobenzene	1	15.6837	0	20	78	50	130
1,2-Dichlorobenzene	1	14.9105	0	20	75	50	130
n-Propylbenzene	1	16.6432	0	20	83	50	130
sec-Butylbenzene	1	16.1888	0	20	81	50	130

Qt Meth : 2M_A0520.M Qt On : 06/17/14 16:54 Qt Upd On: 05/21/14 10:07 Operator : WP Sam Mult : 1 Vial# : 16 Misc : A,5ML SampleID : MBS Data File: 2M17663.D Acq On : 06/17/14 16:31

c Resp via : initial Calibration						
Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards		0.0	107101	30 00 11-	' 1 '	0.00
4) Fluorobenzene 52) Chlorobenzene-d5	4.646	117	197181 189128	30.00 ug/ 30.00 ug/		0.00 0.00
70) 1,4-Dichlorobenzene-d4	7.927		119297	30.00 ug/		0.00
70) 1,4-Dichiolobenzene-d4	1.521	132	11727	30.00 dg/	- '	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.206	111	80868	33.36 ug/	1 (0.00
Spiked Amount 30.000			Recove	-		
39) 1,2-Dichloroethane-d4	4.435	67		32.37 ug/		0.00
Spiked Amount 30.000				ery = 107		
66) Toluene-d8	5.615	98	221163	28.39 ug/		0.00
Spiked Amount 30.000	7 100	174		-	1.63%	0 00
76) Bromofluorobenzene Spiked Amount 30.000	7.198	174	99528	28.73 ug/ ery = 95	5.77%	0.00
Spiked Amount 30.000			Recove	.Ly - 3.	,,,,,	
Target Compounds					(Qvalue
5) Chlorodifluoromethane	1.326	51	92478	24.7010	ug/l	
6) Dichlorodifluoromethane	1.326		39775	16.1500	ug/l	
7) Chloromethane	1.459	50	42453	21.5973	ug/l	77
8) Bromomethane	1.792	94	24093	19.9458	ug/l	72
Vinyl Chloride	1.542		29451	17.6257	ug/l	
10) Chloroethane	1.859		25215	23.4113	ug/l	
11) Trichlorofluoromethane	2.042		57810		ug/l	
12) Ethyl ether	2.280		31880		ug/l	
13) Furan	2.304		73428	18.9573	ug/l	
14) 1,1,2-Trichloro-1,2,2	2.443		33728	23.9748 18.9942	ug/l ug/l	
15) Methylene Chloride 16) Acrolein	2.382		36726 24636	85.3259	ug/l	
17) Acrylonitrile	3.033		11164		ug/l	
18) Iodomethane	2.581		56707	19.2745	ug/1	
19) Acetone	2.503		50390		ug/l	
20) Carbon Disulfide	2.635	76	97303	21.1684	ug/l	
21) t-Butyl Alcohol	2.918	59	6622	82.5465	ug/l	81
22) n-Hexane	3.255		26946		ug/l	
23) Di-isopropyl-ether	3.436		111435		ug/l	
<pre>24) 1,1-Dichloroethene</pre>	2.455		56101	22.3540	ug/l	
25) Methyl Acetate	2.750		29152		ug/l	
26) Methyl-t-butyl ether	3.045		54582		ug/l	
27) 1,1-Dichloroethane	3.394		64894	20.4680	ug/l ug/l	
28) trans-1,2-Dichloroethene 29) Ethyl-t-butyl ether	3.051 3.737		32081 60806	18.7058 45.9512	ug/l	
30) cis-1,2-Dichloroethene	3.869		73671m		ug/l	
31) Bromochloromethane	4.044		31726		ug/1	
32) 2,2-Dichloropropane	3.863		49817		ug/l	
33) Ethyl acetate	3.911	43	35416	19.8394	ug/l	94
34) 1,4-Dioxane	5.097	88	13643	790.6502	ug/l	
35) 1,1-Dichloropropene	4.339		52523	790.6502 21.0292	ug/l	
36) Chloroform	4.092		73184	19.9001	ug/1	
38) Cyclohexane	4.267	56	46451	19.9877	ug/l	97
40) 1,2-Dichloroethane	4.483		78972	21.5724		95 99
<pre>41) 2-Butanone 42) 1,1,1-Trichloroethane</pre>	3.875 4.231	43 97	13890 71341	18.3852 21.2537	ug/l ug/l	
43) Carbon Tetrachloride	4.339	117	66262	21.6327	ug/l	98
44) Vinyl Acetate	3.430	43	99271	20.3072	ug/l	100
45) Bromodichloromethane	5.182	83	69520	20.5090	ug/l	
46) Methylcyclohexane	4.995	83	39839	20.4887	ug/l	91
47) Dibromomethane	5.091	174	41999	20.2534	ug/l	91
48) 1,2-Dichloropropane	5.019	63	36824	17.8182	ug/l	99
49) Trichloroethene	4.875	130	45660	19.5842	ug/l	85
50) Benzene	4.477	78	148308	19.7241	ug/l	
51) tert-Amyl methyl ether	4.532	73	46650	16.0529	ug/l	93
53) Iso-propylacetate	4.501	43	49900	14.6006	ug/l	77
54) Methyl methacrylate	5.067	41	36022	17.5886	ug/l	95
55) Dibromochloromethane 56) 2-Chloroethylvinylether	6.145 5.350	129 63	56457 18266	17.5065 12.4320	ug/l ug/l	95 90
57) cis-1,3-Dichloropropene	5.452	75	59243	16.1966	ug/l	87
58) trans-1,3-Dichloropropene	5.778	75	57444	17.6507	ug/l	98
59) Ethyl methacrylate	5.814	41	38767	16.8791	ug/1	87
60) 1,1,2-Trichloroethane	5.898	97	35226	15.5849	ug/l	90
61) 1,2-Dibromoethane	6.223	107	40304	17.1650	ug/l	96
62) 1,3-Dichloropropane	6.000	76	65642	17.3387	ug/l	92
63) 4-Methyl-2-Pentanone	5.531	43	30435	13.3686	ug/l	98
64) 2-Hexanone	6.024	43	20421	12.9864	ug/l	88
65) Tetrachloroethene	5.988	164	42200	17.6222	ug/l	99
67) Toluene	5.657	92	96955	16.7672	ug/l	91

Quantitation Report (QT Reviewed)

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	1,1,1,2-Tetrachloroethane	6.548	133	46021	17.5800	ug/l	74
	Chlorobenzene	6.512	112	115691	16.8004	ug/l	96
71)	n-Butyl acrylate	6.801	55	61259	12.1341	ug/l	94
72)		6.933	43	50096	11.8559	ug/l	78
73)		7.018	173	37864	14.7248	ug/l	97
	Ethylbenzene	6.560	106	44968	18.7638	ug/l	83
75)	•	7.264	83	34882	14.1401	ug/l	87
77)		6.879	104	112099	17.1844	ug/l	88
78)		6.626	106	133472	36.0662	ug/l	99
79)	o-Xylene	6.873	106	65607	17.3262	ug/l	97
80)	trans-1,4-Dichloro-2-b	7.301	53	23934	17.5555	ug/l	95
	1,3-Dichlorobenzene	7.890	146	84822	15.9464	ug/l	90
82)	1,4-Dichlorobenzene	7.939	146	87520	15.6837	ug/l	94
83)	1,2-Dichlorobenzene	8.185	146	75836	14.9105	ug/l	94
84)	Isopropylbenzene	7.090	105	156712	17.2941	ug/l	96
85)	Cyclohexanone	7.174	55	6771	101.7215	ug/l	92
	Camphene	7.270	93	36124	17.1493	ug/l	98
87)	1,2,3-Trichloropropane	7.307	75	54005	17.2461	ug/l	94
88)	2-Chlorotoluene	7.415	91	107005	18.2755	ug/l	96
89)	p-Ethyltoluene	7.409	105	154623	17.1195	ug/l	86
90)	4-Chlorotoluene	7.481	91	107032	17.7592	ug/l	92
91)	n-Propylbenzene	7.343	91	174577	16.6432	ug/l	96
92)	Bromobenzene	7.307	77	115893	17.4430	ug/l	94
93)	1,3,5-Trimethylbenzene	7.439	105	135930	18.6186	ug/l	92
94)	Butyl methacrylate	7.451	41	56017	16.3249	ug/l	88
95)	t-Butylbenzene	7.656	119	114795	16.6019	ug/l	86
96)	1,2,4-Trimethylbenzene	7.680	105	136673	17.6084	ug/l	92
97)	sec-Butylbenzene	7.794	105	121582	16.1888	ug/l	96
98)	4-Isopropyltoluene	7.872	119	113109	16.8500	ug/l	95
99)	n-Butylbenzene	8.131	91	120613	17.1276	ug/1	90
100)	p-Diethylbenzene	8.113	119	63246	16.2350	ug/l	90
101)	1,2,4,5-Tetramethylben	8.625	119	88270	12.3857	ug/l	100
102)	1,2-Dibromo-3-Chloropr	8.691	157	6918	12.9971	ug/l	76
103)	Camphor	9.173	95	15103	80.0998	ug/1	97
104)	Hexachlorobutadiene	9.323	225	32313	13.4995	ug/1	91
105)	1,2,4-Trichlorobenzene	9.233	180	39167	13.8565	ug/l	95
	1,2,3-Trichlorobenzene	9.564		28571m	12.9767	ug/l	
107)	Naphthalene	9.407	128	47793	9.9033	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form3 Recovery Data QC Batch: MBS36480

Data File

Spike or Dup: 2M17684.D

Sample ID: MBS36480 Analysis Date 6/17/2014 10:11:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):
Method: 8260C

Matrix: Aqueous

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Vinyl Chloride	. 1	18.2895	0	20	91	20	130
1,1-Dichloroethene	1	22.091	0	20	110	50	130
1,1-Dichloroethane	1	18.8333	0	20	94	50	130
Chloroform	1	19.2803	0	20	96	50	130
1,2-Dichloroethane	1	19.5324	0	20	98	50	130
2-Butanone	1	17.7932	0	20	89	20	130
Carbon Tetrachloride	1	20.3548	0	20	102	50	130
Trichloroethene	1	18.7639	0	20	94	50	130
Benzene	1	18.3544	0	20	92	50	130
Tetrachloroethene	1	17.671	0	20	88	50	130
Toluene	1	16.5627	0	20	83	50	130
Chlorobenzene	1	16.2234	0	20	81	50	130
1,4-Dichlorobenzene	1	14.7716	0	20	74	50	130
1,2-Dichlorobenzene	1	14.8397	0	20	74	50	130
n-Propylbenzene	1	16.0392	0	20	80	50	130
sec-Butylbenzene	1	15.9953	0	20	80	50	130

SampleID : MBS

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07 Operator : WP Sam Mult : 1 Vial# : 29 Misc : A,5ML Data File: 2M17684.D Acq On : 06/17/14 22:11

Compound	R.T.	QIon	Response	Conc Units	Dev(M	lin)
Internal Standards						
4) Fluorobenzene	4.646	96	206265	30.00 ug/	1 0	0.00
52) Chlorobenzene-d5	6.494	117	186823	30.00 ug/		0.00
70) 1,4-Dichlorobenzene-d4	7.927	152	121271	30.00 ug/	1 0	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.207	111	83729	33.02 ug/	1 (0.00
Spiked Amount 30.000			Recove		0.07%	
39) 1,2-Dichloroethane-d4	4.435	67	46285	32.92 ug/		0.00
Spiked Amount 30.000				-	73%	
66) Toluene-d8	5.615	98		28.95 ug/		0.00
Spiked Amount 30.000 76) Bromofluorobenzene	7.198	174		ry = 96 28.57 ug/	5.50% /1 (0.00
Spiked Amount 30.000	7.190	1/4	Recove			7.00
- <u>F</u>				•		
Target Compounds)value
5) Chlorodifluoromethane	1.331	51	119493	30.5111	ug/l	59
6) Dichlorodifluoromethane	1.331 1.464	85 50	34918 28909	13.5535 14.0593	ug/l ug/l	88 85
7) Chloromethane 8) Bromomethane	1.780	94	23191	18.3535	ug/l	79
9) Vinyl Chloride	1.530	62	31968	18.2895	ug/l	98
10) Chloroethane	1.864	64	22259	19.7298	ug/l	96
11) Trichlorofluoromethane	2.047		60996	22.2357	ug/l	94
12) Ethyl ether	2.280	59	23412m	16.8284	ug/l	
13) Furan	2.304	39	70381m	17.3704	ug/l	
14) 1,1,2-Trichloro-1,2,2	2.449	101	34167	23.2173	ug/l	87
15) Methylene Chloride	2.834	84	36493	18.0425	ug/l	86
16) Acrolein	2.383	56	21013	69.5312	ug/l	91
17) Acrylonitrile	3.033	53	12039	17.4571	ug/l	85
18) Iodomethane	2.581	142 43	53107	17.2559	ug/l ug/l	94 82
19) Acetone 20) Carbon Disulfide	2.503 2.636	43 76	48791 91481	94.1082 19.0254	ug/1	100
21) t-Butyl Alcohol	2.918	59	9013	107.4035	ug/1	85
22) n-Hexane	3.262	57	29128	21.1232	ug/1	81
23) Di-isopropyl-ether	3.436	45	112290	18.9693	ug/l	97
24) 1,1-Dichloroethene	2.455	61	57995	22.0910	ug/l	96
25) Methyl Acetate	2.750	43	26729	14.2157	ug/l	100
26) Methyl-t-butyl ether	3.045	73	53357	15.9974	ug/l	85
27) 1,1-Dichloroethane	3.394	63	62462	18.8333	ug/l	98
28) trans-1,2-Dichloroethene	3.051	96	33845m		ug/l	
29) Ethyl-t-butyl ether	3.743	59	59052	42.6604	ug/l	96
30) cis-1,2-Dichloroethene	3.870	61	64799m	19.1078	ug/l	91
31) Bromochloromethane32) 2,2-Dichloropropane	4.044 3.870	49 77	29621 48876	16.7684 22.1754	ug/l ug/l	93
33) Ethyl acetate	3.918	43	32542m		ug/l	,,,
34) 1,4-Dioxane	5.098	88	16781		ug/l	91
35) 1,1-Dichloropropene	4.339	75	54829		ug/l	92
36) Chloroform	4.098	83	74171	19.2803	ug/l	91
38) Cyclohexane	4.267	56	50245	20.6681	ug/l	98
40) 1,2-Dichloroethane	4.490	62	74798	19.5324	ug/l	100
41) 2-Butanone	3.876	43	14062	17.7932	ug/l	77
42) 1,1,1-Trichloroethane	4.231	97	67970	19.3576	ug/l	96
43) Carbon Tetrachloride	4.339	117	65220	20.3548	ug/l	96
44) Vinyl Acetate	3.430	43	99133	19.3859	ug/l	100 82
45) Bromodichloromethane 46) Methylcyclohexane	5.182 4.995	83 83	67058 45314	18.9115 22.2781	ug/l ug/l	94
47) Dibromomethane	5.091	174	38531	17.7627	ug/l	92
48) 1,2-Dichloropropane	5.013	63	36487	16.8776	ug/l	99
49) Trichloroethene	4.875	130	45763	18.7639	ug/l	91
50) Benzene	4.478	78	144367	18.3544	ug/l	100
51) tert-Amyl methyl ether	4.532	73	48956	16.1045	ug/l	97
53) Iso-propylacetate	4.502	43	50495	14.9570	ug/1	76
54) Methyl methacrylate	5.067	41	36140	17.8639	ug/1	92
55) Dibromochloromethane	6.145	129	51367	16.1247	ug/l	100
56) 2-Chloroethylvinylether	5.350	63	17279	11.9049	ug/l	93
57) cis-1,3-Dichloropropene	5.453	75 75	59067	16.3477	ug/l	81
58) trans-1,3-Dichloropropene	5.778	75 41	56155	17.4676	ug/l	98 83
59) Ethyl methacrylate 60) 1,1,2-Trichloroethane	5.814 5.898	41 97	38582 34179	17.0058 15.3082	ug/l ug/l	90
60) 1,1,2-Trichloroethane61) 1,2-Dibromoethane	6.223	107	36180	15.5988	ug/l	93
62) 1,3-Dichloropropane	6.000	76	59252	15.8440	ug/l	98
63) 4-Methyl-2-Pentanone	5.537	43	28219	12.5479	ug/l	98
64) 2-Hexanone	6.031	43	19006	12.2352	ug/l	95
65) Tetrachloroethene	5.994	164	41801	17.6710	ug/l	94
67) Toluene	5.657	92	94605	16.5627	ug/l	92

Quantitation Report (QT Reviewed)

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07 Operator : WP Sam Mult : 1 Vial# : 29 Misc : A,5ML SampleID : MBS Data File: 2M17684.D Acq On : 06/17/14 22:11

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	1,1,1,2-Tetrachloroethane	6.554	133	45367	17.5440	ug/l	76
69)	Chlorobenzene	6.512	112	110356	16.2234	ug/l	96
71)	n-Butyl acrylate	6.801	55	62059	12.0926	ug/l	95
72)	n-Amyl acetate	6.934	43	55182	12.8449	ug/l	81
73)	Bromoform	7.018	173	34424	13.1691	ug/l	83
74)	Ethylbenzene	6.566	106	40096	16.4586	ug/l	76
75)	1,1,2,2-Tetrachloroethane	7.271	83	37373	14.9033	ug/l	78
77)	Styrene	6.879	104	108669	16.3875	ug/l	96
78)	m&p-Xylenes	6.627	106	127557	33.9068	ug/l	99
79)	o-Xylene	6.873	106	62628	16.2702	ug/l	97
80)	trans-1,4-Dichloro-2-b	7.295	53	25097	18.1089	ug/l	96
81)	1,3-Dichlorobenzene	7.891	146	80820	14.9467	ug/l	89
82)	1,4-Dichlorobenzene	7.945	146	83794	14.7716	ug/l	91
83)	1,2-Dichlorobenzene	8.192	146	76725	14.8397	ug/l	89
84)	Isopropylbenzene	7.090	105	149247	16.2022	ug/l	94
85)	Cyclohexanone	7.174	55	7397	109.3171	ug/l	81
86)	Camphene	7.277	93	38992	18.2095	ug/l	97
87)	1,2,3-Trichloropropane	7.307	75	49161	15.4436	ug/l	97
88)	2-Chlorotoluene	7.415	91	101112	16.9879	ug/l	95
89)	p-Ethyltoluene	7.409	105	159033	17.3211	ug/l	80
90)	4-Chlorotoluene	7.481	91	106416	17.3696	ug/l	94
91)	n-Propylbenzene	7.343	91	171025	16.0392	ug/l	93
92)	Bromobenzene	7.307	77	111105	16.4502	ug/l	96
93)	1,3,5-Trimethylbenzene	7.439	105	119957	16.1633	ug/1	83
94)	Butyl methacrylate	7.457	41	59360	17.0176	ug/l	79
95)	t-Butylbenzene	7.656	119	112109	15.9496	ug/l	87
96)	1,2,4-Trimethylbenzene	7.680	105	128742	16.3166	ug/1	89
97)	sec-Butylbenzene	7.794	105	122117	15.9953	ug/l	97
98)	4-Isopropyltoluene	7.873	119	108912	15.9607	ug/l	95
99)	n-Butylbenzene	8.131	91	113896	15.9105	ug/l	90
100)	p-Diethylbenzene	8.113	119	60356	15.2410	ug/l	92
101)	1,2,4,5-Tetramethylben	8.625	119	83233	11.4876	ug/l	92
102)	1,2-Dibromo-3-Chloropr	8.685	157	6233	11.5196	ug/l	92
103)	Camphor	9.179	95	20673m	107.8520	ug/l	
104)	Hexachlorobutadiene	9.323	225	32805	13.4819	ug/l	100
105)	1,2,4-Trichlorobenzene	9.233	180	37275	12.9724	ug/l	94
106)	1,2,3-Trichlorobenzene	9.570	180	27649m	12.3535	ug/l	
107)	Naphthalene	9.414	128	55014	11.2162	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Form3 Recovery Data QC Batch: MBS36480

Data File Spike or Dup: 2M17682.D Non Spike(If applicable): 2M17673.D Sample ID: AC79132-002(T:MS) AC79132-002(T) Analysis Date 6/17/2014 9:39:00 PM 6/17/2014 7:11:00 PM

Inst Blank(If applicable):

Method: 8260C Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit
Vinyl Chloride	1	13.0439	0	20	65	20	130
1,1-Dichloroethene	1	16.5829	0	20	83	50	130
1,1-Dichloroethane	1	17.2757	0	20	86	50	130
Chloroform	1	17.3927	0	20	87	50	130
1,2-Dichloroethane	1	16.6677	0	20	83	50	130
2-Butanone	1	17.7459	0	20	89	20	130
Carbon Tetrachloride	1	16.0786	0	20	80	50	130
Trichloroethene	1	12.9741	0	20	65	50	130
Benzene	1	15.8153	0	20	79	50	130
Tetrachloroethene	1	12.6612	0	20	63	50	130
Toluene	1	13.4206	0	20	67	50	130
Chlorobenzene	1	11.997	0	20	60	50	130
1,4-Dichlorobenzene	1	7.672	0	20	38*	50	130
1,2-Dichlorobenzene	1	9.5696	0	20	48*	50	130
n-Propylbenzene	1	10.2108	0	20	51	50	130
sec-Butylbenzene	1	10.308	0	20	52	50	130

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M17683.D Non Spike(If applicable): 2M17673.D

AC79132-002(T:MSD) AC79132-002(T) 6/17/2014 9:55:00 PM 6/17/2014 7:11:00 PM

Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MSD

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Vinyl Chloride	1	12.8005	0	20	64	20	130
1,1-Dichloroethene	1	13.2851	0	20	66	50	130
1,1-Dichloroethane	1	15.5749	0	20	78	50	130
Chloroform	1	16.3455	0	20	82	50	130
1,2-Dichloroethane	1	15.7471	0	20	79	50	130
2-Butanone	1	15.2465	0	20	76	20	130
Carbon Tetrachloride	1	15.0733	0	20	75	50	130
Trichloroethene	1	13.0559	0	20	65	50	130
Benzene	1	14.9756	0	20	75	50	130
Tetrachloroethene	1	11.8592	0	20	59	50	130
Toluene	1	12.7344	0	20	64	50	130
Chlorobenzene	1	10.9038	0	20	55	50	130
1,4-Dichlorobenzene	1	7.6697	0	20	38*	50	130
1,2-Dichlorobenzene	1	9.9207	0	20	50	50	130
n-Propylbenzene	1	10.1796	0	20	51	50	130
sec-Butylbenzene	1	10.5532	0	20	53	50	130

Form3 RPD DATA

QC Batch: MBS36480

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M17683.D Duplicate(If applicable): 2M17682.D

AC79132-002(T:MSD) AC79132-002(T:MS) 6/17/2014 9:55:00 PM 6/17/2014 9:39:00 PM

Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	12.8005	13.0439	1.9	40
1,1-Dichloroethene	1	13.2851	16.5829	22	40
1,1-Dichloroethane	1	15.5749	17.2757	10	40
Chloroform	1	16.3455	17.3927	6.2	40
1,2-Dichloroethane	1	15.7471	16.6677	5.7	40
2-Butanone	1	15.2465	17.7459	15	40
Carbon Tetrachloride	1	15.0733	16.0786	6.5	40
Trichloroethene	1	13.0559	12.9741	0.63	40
Benzene	1	14.9756	15.8153	5.5	40
Tetrachloroethene	1	11.8592	12.6612	6.5	40
Toluene	1	12.7344	13.4206	5.2	40
Chlorobenzene	1	10.9038	11.997	9.5	40
1,4-Dichlorobenzene	1	7.6697	7.672	0.03	40
1,2-Dichlorobenzene	1	9.9207	9.5696	3.6	40
n-Propylbenzene	1	10.1796	10.2108	0.31	40
sec-Butylbenzene	111	10.5532	10.308	2.4	40

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Qt Meth : 2M_A0520.M
Qt On : 06/17/14 19:45 Operator : WP Sam Mult : 1 Vial# : 27 Misc : A,5ML!A6 SampleID : AC79132-002(T) Data File: 2M17673.D Acq On : 06/17/14 19:11 Qt Upd On: 05/21/14 10:07

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards	·					
4) Fluorobenzene	4.647	96	187096	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.495	117	182851	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.927	152	107669	30.00	ug/l	0.00
System Monitoring Compounds						
37) Dibromofluoromethane	4.207	111	81526	35.45	ug/l	0.00
Spiked Amount 30.000			Recove	Recovery = 118		
39) 1,2-Dichloroethane-d4	4.436	67	48208	37.80	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	126.00%	
66) Toluene-d8	5.616	98	215189	28.58	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	95.27%	
76) Bromofluorobenzene	7.199	174	89573	28.65	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	95.50%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

_		**					
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Inte	rnal Standards						
	Fluorobenzene	4.646	96	198917	30.00 ug/		.00
	Chlorobenzene-d5	6.494		183334	30.00 ug/		.00
70)	1,4-Dichlorobenzene-d4	7.927	152	116359	30.00 ug/	1 0	0.00
Q	Maritarian Campunda						
	em Monitoring Compounds Dibromofluoromethane	4.207	111	80369	32.87 ug/	1 0	0.00
	iked Amount 30.000	4.207	111	Recove		.57%	7.00
_	1,2-Dichloroethane-d4	4.436	67	44486	32.81 ug/		0.00
	iked Amount 30.000	1.150	٠,	Recove	·	.37%	
	Toluene-d8	5.615	98	221009	29.27 ug/		0.00
	iked Amount 30.000			Recove	•	.57%	
	Bromofluorobenzene	7.205	174	101060	29.91 ug/	1 (0.01
	iked Amount 30.000			Recove	-	.70%	
-							
	et Compounds)value
	Chlorodifluoromethane	1.341	51	88294	23.3777	ug/l	58
	Dichlorodifluoromethane	1.325	85	25249	10.1625	ug/l	89
	Chloromethane	1.458		31552	15.9115	ug/l	85
	Bromomethane	1.791		17452	14.3218	ug/l	64
	Vinyl Chloride	1.541		21987	13.0439	ug/l	91
	Chloroethane	1.858		18348	16.8462	ug/l	99 87
	Trichlorofluoromethane	2.041	101 59	44176 19602m	16.6990 14.6102	ug/l ug/l	0 /
	Ethyl ether Furan	2.305	39	61143m	15.6478	ug/l	
	1,1,2-Trichloro-1,2,2	2.449		24616	17.3451	ug/l	93
	Methylene Chloride	2.828	84	103950	53.2924	ug/l	87
	Acrolein	2.377		19569	67.1390	ug/l	76
,	Acrylonitrile	3.039		11088	16.6720	ug/l	65
	Iodomethane	2.582		41979	14.1440	ug/1	97
	Acetone	2.503		46451	92.9044	ug/l	94
	Carbon Disulfide	2.630		60948	13.1436	ug/l	100
	t-Butyl Alcohol	2.919		6535	80.7510	ug/l	82
	n-Hexane	3.262	57	10393	7.8152	ug/l	89
-	Di-isopropyl-ether	3.430	45	87085	15.2548	ug/l	97
	1,1-Dichloroethene	2.455	61	41984m	16.5829	ug/l	
25)	Methyl Acetate	2.750	43	83324	45.9525	ug/l	100
26)	Methyl-t-butyl ether	3.045	73	49904	15.5148	ug/l	86
27)	1,1-Dichloroethane	3.394	63	55255m	17.2757	ug/l	
28)	trans-1,2-Dichloroethene	3.045	96	23840	13.7793	ug/l	88
	Ethyl-t-butyl ether	3.737		48758	36.5249	ug/l	94
	cis-1,2-Dichloroethene	3.864		54370m	16.6247	ug/l	
	Bromochloromethane	4.044		25196	14.7903	ug/l	94
	2,2-Dichloropropane	3.870	77	42237	19.8711	ug/l	87
	Ethyl acetate	3.918	43	32264	17.9160	ug/l	97
	1,4-Dioxane	5.092	88	12039	691.6049	ug/l	73 91
	1,1-Dichloropropene	4.339		35098	13.9299 17.3927	ug/l ug/l	83
	Chloroform	4.098	83 56	64526 32640	13.9223	ug/l	99
	Cyclohexane 1,2-Dichloroethane	4.484	62	61554	16.6677	ug/l	88
	2-Butanone	3.882	43	13525	17.7459	ug/l	84
42)		4.231	97	54239	16.0177	ug/l	98
	Carbon Tetrachloride	4.339	117	49683	16.0786	ug/l	90
	Vinyl Acetate	3.430	43	83342	16.8999	ug/l	100
	Bromodichloromethane	5.182	83	55139	16.1245	ug/l	97
	Methylcyclohexane	4.995	83	25838	13.1722	ug/l	95
47)	Dibromomethane	5.098	174	31148	14.8896	ug/l	84
48)		5.019	63	30502	14.6303	ug/l	87
49)	Trichloroethene	4.875	130	30515	12.9741	ug/l	96
50)	Benzene	4.478	78	119964	15.8153	ug/l	100
51)	tert-Amyl methyl ether	4.532	73	42824	14.6077	ug/l	97
53)		4.502	43	47843	14.4411	ug/l	75
	Methyl methacrylate	5.068	41	29644	14.9318	ug/l	87
	Dibromochloromethane	6.145	129	40598	12.9867	ug/l	98
	2-Chloroethylvinylether	5.351	63	14323	10.0547	ug/l	80
	cis-1,3-Dichloropropene	5.453	75	42947	12.1125	ug/l	98
	trans-1,3-Dichloropropene	5.778	75	39399	12.4887	ug/l	86
	Ethyl methacrylate	5.814	41	35167	15.7956	ug/l	85
	1,1,2-Trichloroethane	5.898	97 107	28871	13.1769	ug/l	89 97
	1,2-Dibromoethane	6.223	107	29729 50974	13.0614	ug/l	
	1,3-Dichloropropane 4-Methyl-2-Pentanone	6.001 5.537	76 43	50974 27362	13.8898 12.3983	ug/l ug/l	93 98
-	2-Hexanone	6.031	43	19105	12.5332	ug/l	99
65)		5.995	164	29391	12.6612	ug/l	85
	Toluene	5.658	92	75226	13.4206	ug/l	95
/		1	-			3, 3	

Quantitation Report (QT Reviewed)

Qt Meth : 2M_A0520.M SampleID : AC79132-002(T:MS) Operator : WP Sam Mult : 1 Vial# : 27 Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07 Data File: 2M17682.D Acq On : 06/17/14 21:39 Misc : A,5ML!A6

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
68)	1,1,1,2-Tetrachloroethane	6.554	133	36832	14.5145	uq/l	72
69)	Chlorobenzene	6.512	112	80083	11.9970	ug/l	89
71)	n-Butyl acrylate	6.801	55	48750	9.9034	ug/l	93
72)		6.934	43	43599	10.5810	ug/l	77
73)	Bromoform	7.018	173	29212	11.6470	ug/l	98
74)	Ethylbenzene	6.560	106	30296	12.9608	ug/l	87
75)	1,1,2,2-Tetrachloroethane	7.265	83	33325	13.8501	ug/l	98
77)	Styrene	6.880	104	71969	11.3112	ug/l	89
78)	m&p-Xylenes	6.627	106	90769	25.1465	ug/l	90
79)	o-Xylene	6.873	106	48144	13.0354	ug/l	84
80)	trans-1,4-Dichloro-2-b	7.295	53	16968	12.7602	ug/l	100
81)	1,3-Dichlorobenzene	7.891	146	42055	8.1059	ug/l	91
82)	1,4-Dichlorobenzene	7.945	146	41758	7.6720	ug/l	96
83)	1,2-Dichlorobenzene	8.186	146	47473	9.5696	ug/l	90
84)	Isopropylbenzene	7.090	105	108557	12.2824	ug/1	93
85)	Cyclohexanone	7.174	55	4561	70.2505	ug/l	92
86)	Camphene	7.277	93	26590	12.9419	ug/l	96
87)	1,2,3-Trichloropropane	7.307	75	40387	13.2229	ug/l	98
88)	2-Chlorotoluene	7.415	91	71896	12.5892	ug/l	96
89)	p-Ethyltoluene	7.409	105	97772	11.0984	ug/l	75
90)	4-Chlorotoluene	7.481	91	61704	10.4967	ug/l	94
91)	n-Propylbenzene	7.343	91	104467	10.2108	ug/1	96
92)	Bromobenzene	7.313	77	75785	11.6944	ug/l	94
93)	1,3,5-Trimethylbenzene	7.439	105	84050	11.8032	ug/l	82
94)	Butyl methacrylate	7.457	41	44398	13.2655	ug/l	81
95)	t-Butylbenzene	7.656	119	81980	12.1555	ug/l	87
96)	1,2,4-Trimethylbenzene	7.686	105	91291	12.0585	ug/l	94
97)	sec-Butylbenzene	7.794	105	75509	10.3080	ug/l	96
98)	4-Isopropyltoluene	7.873	119	70064	10.7011	ug/l	94
99)	n-Butylbenzene	8.132	91	48629	7.0799	ug/l	85
100)	p-Diethylbenzene	8.114	119	31066	8.1759	ug/l	90
101)	1,2,4,5-Tetramethylben	8.625	119	52975	7.6164	ug/l	99
102)	1,2-Dibromo-3-Chloropr	8.691	157	5111	9.8447	ug/l	85
103)	Camphor	9.173	95	16834	91.5332	ug/l	82
104)	Hexachlorobutadiene	9.323	225	16716	7.1598	ug/l	98
105)	1,2,4-Trichlorobenzene	9.233	180	13375	4.8513	ug/l	95
106)	1,2,3-Trichlorobenzene	9.564		13343m	6.2133	ug/l	
107)	Naphthalene	9.408	128	35556m	7.5510	ug/l	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

 SampleID : AC79132-002(T:MSD)
 Operator : WP

 Data File: 2M17683.D
 Sam Mult : 1 Vial# : 28

 Acq On : 06/17/14 21:55
 Misc : A,5ML!A6

 Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

ye kesp	via : iniciai caribración						
	Compound	R.T.	QIon	Response	Conc Unita	s Dev(M	in)
	rnal Standards						
		4.646		206636	30.00 ug		.00
	Chlorobenzene-d5	6.494		192104	30.00 ug		.00
70)	1,4-Dichlorobenzene-d4	7.927	152	116598	30.00 ug	/1 0	.00
Carat	em Monitoring Compounds						
	Dibromofluoromethane	4.213	111	83694	32.95 ug	/1 0	.00
	oiked Amount 30.000	1.213		Recove		9.83%	.00
	1,2-Dichloroethane-d4	4.436	67	46535	33.04 ug		.00
	oiked Amount 30.000			Recove		0.13%	
66)	Toluene-d8	5.616	98	222985	28.18 ug	/1 0	.00
Sp	oiked Amount 30.000			Recove		3.93%	
	Bromofluorobenzene	7.199	174	98984	29.23 ug		.00
Sp	oiked Amount 30.000			Recove	ry = 9	7.43%	
m							7
	get Compounds Chlorodifluoromethane	1 2/1	51	02070	20.9203	ug/l	value 58
	Dichlorodifluoromethane	1.341		82079 23424	9.0757	ug/1	95
	Chloromethane	1.458		31975	15.5224	ug/l	90
	Bromomethane	1.791		19849	15.6804	ug/l	84
	Vinyl Chloride	1.541		22414	12.8005	ug/l	93
	Chloroethane	1.858		18364	16.2273	ug/l	95
11)	Trichlorofluoromethane	2.057		47534	17.2971	ug/l	79
12)	Ethyl ether	2.275	59	26297	18.8681	ug/l	82
13)	Furan	2.311	39	58385	14.3838	ug/l	100
	1,1,2-Trichloro-1,2,2	2.449	101	24029	16.2990	ug/l	96
	Methylene Chloride	2.829		110023	54.2988	ug/l	93
	Acrolein	2.383		18880	62.3441	ug/l	89
	Acrylonitrile	3.033		9961m	14.4180	ug/l	
	Iodomethane	2.582		38941	12.6303	ug/l	100
	Acetone	2.503		48520m	93.4174	ug/l	100
	Carbon Disulfide	2.630		56568	11.7434	ug/l	100
	t-Butyl Alcohol n-Hexane	2.913		6344 9423	75.4626 6.8211	ug/l ug/l	94 79
	Di-isopropyl-ether	3.436		91998	15.5134	ug/l	96
	1,1-Dichloroethene	2.455		34940	13.2851	ug/l	95
	Methyl Acetate	2.750		91407	48.5271	ug/l	100
	Methyl-t-butyl ether	3.045		49842	14.9167	ug/1	88
	1,1-Dichloroethane	3.400		51748	15.5749	ug/l	89
	trans-1,2-Dichloroethene	3.051	96	23295	12.9613	ug/l	93
29)	Ethyl-t-butyl ether	3.737	59	52088	37.5619	ug/l	94
	cis-1,2-Dichloroethene	3.870	61	54112	15.9278	ug/l	99
31)	Bromochloromethane	4.044	49	24793	14.0101	ug/l	81
	2,2-Dichloropropane	3.870		41534	18.8105	ug/l	94
	Ethyl acetate	3.918	43	31540	16.8597	ug/l	100
	1,4-Dioxane	5.098	88	13187		ug/l	71
	1,1-Dichloropropene	4.339	75	31664	12.0975	ug/l	92
	Chloroform	4.093	83	62994	16.3455	ug/1	82
	Cyclohexane	4.267	56	32664	13.4121	ug/l	94
	1,2-Dichloroethane 2-Butanone	4.484 3.876	62 43	60411 12071	15.7471 15.2465	ug/l	90 93
	1,1,1-Trichloroethane	4.231	97	53075	15.0884	ug/l	97
	Carbon Tetrachloride	4.339	117	48384	15.0733	ug/l	87
	Vinyl Acetate	3.436	43	86787	16.9411	ug/l	100
	Bromodichloromethane	5.182	83	57165	16.0925	ug/l	96
	Methylcyclohexane	4.996	83	24971	12.2546	ug/l	99
	Dibromomethane	5.098	174	30845	14.1940	ug/l	94
48)	1,2-Dichloropropane	5.020	63	31198	14.4052	ug/l	99
49)	Trichloroethene	4.875	130	31899	13.0559	ug/l	90
	Benzene	4.478	78	118003	14.9756	ug/l	100
	tert-Amyl methyl ether	4.532	73	43134	14.1638	ug/l	98
53)		4.502	43	45062	12.9808	ug/l	83
	Methyl methacrylate	5.068	41	30551	14.6862	ug/l	88
	Dibromochloromethane	6.145	129	42746	13.0496	ug/l	100
	2-Chloroethylvinylether	5.351	63	15181	10.1706	ug/l	73
	cis-1,3-Dichloropropene	5.453	75 75	40736	10.9644	ug/l	97
	trans-1,3-Dichloropropene	5.778	75 41	37883	11.4599	ug/l	91 77
	Ethyl methacrylate 1,1,2-Trichloroethane	5.814 5.899	41 97	34102 28652	14.6180 12.4800	ug/l ug/l	77 86
	1,2-Dibromoethane	6.224	107	29025	12.1699	ug/l ug/l	87
	1,3-Dichloropropane	6.001	76	51756	13.4591	ug/l	92
	4-Methyl-2-Pentanone	5.537	43	26616m	11.5094	ug/1	, ,
	2-Hexanone	6.031	43	19685	12.3240	ug/1	94
	Tetrachloroethene	5.995	164	28846	11.8592	ug/1	96
67)		₹.658	92	74794	12.7344	ug/l	99
	*1						

(QT Reviewed) Quantitation Report

Qt Meth : 2M_A0520.M Qt On : 06/18/14 08:00 Qt Upd On: 05/21/14 10:07 Operator : WP Sam Mult : 1 Vial# : 28 Misc : A,5ML!A6 SampleID : AC79132-002(T:MSD) Data File: 2M17683.D Acq On : 06/17/14 21:55 Misc

Data Path : G:\GcMsData\2014\GCMS_2\Data\06-17-14\Qt Path : G:\GcMsData\2014\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
68)	1,1,1,2-Tetrachloroethane	6.555	133	40014	15.0486	ug/l	77
69)	Chlorobenzene	6.513	112	76267	10.9038	ug/l	100
71)	n-Butyl acrylate	6.801	55	47944	9.7200	ug/l	92
72)	n-Amyl acetate	6.934	43	44616	10.8052	ug/l	76
73)	Bromoform	7.018	173	27454	10.9237	ug/l	89
74)	Ethylbenzene	6.561	106	30104	12.8523	ug/l	85
75)	1,1,2,2-Tetrachloroethane	7.265	83	32067	13.2999	ug/l	92
77)	Styrene	6.880	104	72695	11.4019	ug/l	88
78)	m&p-Xylenes	6.627	106	90834	25.1129	ug/l	91
79)	o-Xylene	6.874	106	48903	13.2138	ug/l	84
80)	trans-1,4-Dichloro-2-b	7.295	53	17378	13.0418	ug/l	94
81)	1,3-Dichlorobenzene	7.891	146	45021	8.6598	ug/l	88
82)	1,4-Dichlorobenzene	7.939	146	41831	7.6697	ug/l	93
83)	1,2-Dichlorobenzene	8.192	146	49316	9.9207	ug/l	94
84)	Isopropylbenzene	7.090	105	108586	12.2605	ug/l	94
85)	Cyclohexanone	7.175	55	4971	76.4086	ug/l	82
86)	Camphene	7.277	93	24707	12.0008	ug/l	90
87)	1,2,3-Trichloropropane	7.307	75	38998	12.7420	ug/l	93
88)	2-Chlorotoluene	7.415	91	72390	12.6498	ug/l	99
89)	p-Ethyltoluene	7.409	105	89957	10.1904	ug/l	83
90)	4-Chlorotoluene	7.482	91	56048	9.5150	ug/l	94
91)	n-Propylbenzene	7.343	91	104362	10.1796	ug/l	98
92)	Bromobenzene	7.307	77	74963	11.5438	ug/l	96
93)	1,3,5-Trimethylbenzene	7.440	105	91948	12.8858	ug/l	88
94)	Butyl methacrylate	7.458	41	44992	13.4154	ug/l	78
95)	t-Butylbenzene	7.656	119	81207	12.0162	ug/l	88
96)	1,2,4-Trimethylbenzene	7.680	105	92167	12.1493	ug/l	88
97)	sec-Butylbenzene	7.795	105	77464	10.5532	ug/l	99
98)	4-Isopropyltoluene	7.873	119	69248	10.5548	ug/l	93
99)	n-Butylbenzene	8.132	91	48766	7.0853	ug/l	89
100)	p-Diethylbenzene	8.114	119	28717	7.5422	ug/l	98
101)	1,2,4,5-Tetramethylben	8.625	119	57041	8.1848	ug/l	98
102)	1,2-Dibromo-3-Chloropr	8.692	157	6685	12.8501	ug/l	69
103)	Camphor	9.173	95	20605m	111.8049	ug/l	
	Hexachlorobutadiene	9.324		17030	7.2794	ug/l	90
	1,2,4-Trichlorobenzene	9.233		17116	6.1954	ug/l	98
	1,2,3-Trichlorobenzene	9.570		18118m	8.4195	ug/l	
107)	Naphthalene	9.408	128	42131m	8.9308	ug/l	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

GC/MS Volatile Data Logbook Data

RUN LOG

••••	1-1-2	M16102		Reviewed			Surr	Sam		Analysis
Data File	Sample Number	Flags	Comments	By	Test Group	Matrix			Method(s)	D-4-
2M16102.D	BFB TUNE		V-182113,V183755,V-186273	WP 05/22/14						05/20 15:14
2M16103.D	20 PPB	CnAnc	-	KL 05/21/14		Aqueous	3 1	1	624\826	05/20 15:30
2M16104.D	BLK	CnAnc	-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 15:50
2M16105.D	CAL @ 20 PPB	C16C18	-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 16:06
2M16106.D	BLK	C8fC6f	=	KL 05/21/14		Aqueous	3 1	1	624\826	05/20 16:22
2M16111.D	CAL @ 0.5 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 17:45
2M16112.D	CAL @ 1 PPB		B-17408	WP 05/22/14		Aqueous	3 1	1	624\826	05/20 18:01
2M16113.D	CAL @ 5 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 18:17
2M16114.D	CAL @ 10 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 18:33
2M16115.D	CAL @ 20 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 18:49
2M16116.D	BLK	Is	-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 19:05
2M16117.D	CAL @ 50 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 19:21
2M16118.D	CAL @ 100 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 19:37
2M16119.D	BLK		-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 19:53
2M16120.D	BLK		-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 20:09
	CAL @250 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 20:25
2M16122.D	BLK		-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 20:41
2M16123.D			-	KL 05/21/14		Aqueous	s 1	1	624\826	05/20 20:56
	CAL @ 500 PPB		B-17408	WP 05/22/14		Aqueous	s 1	1	624\826	05/20 21:12
2M16125.D			-	KL 05/21/14		Aqueous		1	624\826	05/20 21:28
2M16126.D			-	KL 05/21/14		Aqueous		1	624\826	05/20 21:44
2M16127.D			-	KL 05/21/14		Aqueous		1	624\826	05/20 22:00
2M16128.D			-	KL 05/21/14		Aqueous		1	624\826	05/20 22:16
2M16129.D		lvo	V-187291	WP 05/22/14		Aqueous		1	624\826	05/20 22:32
2M16130.D		Ivo	-	WP 05/22/14		Aqueous		1	624\826	05/20 22:48
2M16131.D			-	KL 05/21/14		Methano		1	8260C	05/20 23:04
	DAILY BLANK		OK	KL 05/21/14		Methano		1	8260C	05/20 23:20
	DAILY BLANK		OK	KL 05/21/14		Aqueous		1	624\826	05/20 23:36
	AC78679-001		OK	KL 05/21/14	VO15-8260	Aqueous		1	8260C	05/20 23:52
	AC78677-001		OK .	KL 05/21/14	VO15-8260	Aqueous		1	8260C	05/21 00:08
	AC78740-004		OK	KL 05/21/14	VO-8260	Aqueous		1	8260C	05/21 00:24
	AC78740-003		OK	KL 05/21/14	VO-8260	Aqueous		<u> </u>	8260C	05/21 00:40
	AC78629-005		OK .	KL 05/21/14	VO-8260	Methano		1	8260C	05/21 00:56
	AC78682-003		OK	KL 05/21/14	VO-8260	Methano		1	8260C	05/21 01:12
2M16140.D			-	KL 05/21/14	VO 0200	Aqueous		1	624\826	05/21 01:12
	AC78716-002(400u		OK	KL 05/21/14	VO-8260	Methano		2	8260C	05/21 01:43
2M16142.D		· · · · · · · · · · · · · · · · · · ·	OK MBS35793	KL 05/21/14	7,5 0200	Aqueous		1	624\826	05/21 01:59
2M16143.D			OK,NG MBS35794	KL 05/21/14		Aqueous		1	624\826	05/21 01:05
2M16144.D		***************************************	OK MBS35795	KL 05/21/14		Methano		1	8260C	05/21 02:31
2M16144.D		Ti8	-	KL 05/21/14		Aqueous		1	624\826	05/21 09:19
2M16147.D		Ti8		KL 05/21/14		Aqueous		1	624\826	05/21 09:35
2M16147.D		Ti8	-	KL 05/21/14		Aqueous		1	624\826	05/21 09:55
	AC78732-001		- OK	KL 05/21/14	VOBTEX-624			1	624	05/21 09:51
					VOBTEX-624			1		
	AC78732-016 AC78722-009	 	OK OK	KL 05/21/14 KL 05/21/14	VOBTEX-624			1	624 624	05/21 10:33
			OK OK		VOBTEX-624			1		05/21 10:50
	AC78732-009		OK OK	KL 05/21/14	VOBTEX-624				624 624	05/21 11:06
	AC78732-008		OK OK	KL 05/21/14				1	624	05/21 11:22
	AC78732-010	-	OK OK	KL 05/21/14	VORTEX 624			1	624	05/21 11:38
∠IVI 10135.D	AC78732-011		OK	KL 05/21/14	VOBTEX-624	Aqueous	, 1	1	624	05/21 11:54

Anc	Area Nnt Checked
An	Area Out
B6m	Blank 600 series missino
B8m	Blank 8000 series missino
Bnf	Blank Not Enund/Assigned
C16	Calibration Column 1 Out (600 Series)
C18	Calibration Column 1 Out (8000 Series)
C26	Calibration Column 2 Out (600 Series)
C28	Calibration Column 2 Out (8000 Series)
C6f	600 series sample/blank did not have passion cat
C8f	8000 series sample/blank did not have passion cal
Cme	Ending Cal missing for sample (8000 series)
Cn	Calibration Not Checked for sample/blank/eval

Eo Extraction Performed Past Hold
Esm Solvent Extraction Date Missino/Not check'd
Eth Tcln/Solvent Extraction Date Missino/Not check'd
Eth Tcln/Solvent Extraction Date Missino/Not check'd
Eve Eval Time Exceeded
His Analysis Before Collection Date
His Sample Analysed outside of hold lime
Initial cal 8000 series failed Collumn 1 and or 2
Initial Cal 8000 series failed Collumn 1 and or 2
Is Initial cal 8000 series failed Collumn 1 and or 2
Is Initial Cal Not Checked
Iv Prob with calmit cay for init calibration chek ris
Iv linitial cal warnino. Ini cal file <> method.
Initial Cal Eiles Not Undated Property for a sample

Cn W
CRN W
Crn C:
EVR:
EVR:
EVR:
EVR:
R18 R28 R:
R18 R28 R:
R0 R:
R10 R20 R:
S6 60
S8 86

Wamino Possibla Carry Over
Wamino c30/r20... not checked
C30/C20 falled for enh
Eval Mix Failed
Eval Mix Failed
Eval Mix Not Checked
Eval Mix missino diff or endrin
Rod Out on MsMsd (cott and or cot2) 600 series
Rod Out on MsMsd (cott and or cot2) 600 series
Rod Out on MsMsd (cott and or cot2) 8000 series
Retention Time Out Or %Diff Out
Cart Calculate Drift
600 series surmonate out
Acid and or BN. Surmonate Out. (600 series).

1-1-2M17649	
-------------	--

	1-1-2	■			Devience	ı			C	C		Analysis
Data File	Sample Number	Flags		omments	Reviewed By	ı	Test Group	Matrix	Surr Dil	Sam Dil	Method(s)	D-4-
2M17649.D	BFB TUNE	-	Œ V	-18\$113,V-183755,V-186273,V- 88723	SGG 06/18/	/14			-	· ·		06/17 12:49
2M17650.D	20 PPB	CnAnc	-		SGG 06/18/	/14		Aqueous	1	1	624\826	06/17 12:59
2M17651.D	BLK	CnAnc	_		SGG 06/18/	/14		Aqueous	1	1	624\826	06/17 13:15
2M17652.D	CAL @ 20 PPB		C	OK .	SGG 06/18	/14		Aqueous	1	1	624\826	06/17 13:31
2M17653.D	BLK	_	-		SGG 06/18	/14		Aqueous	1	1	624\826	06/17 13:47
2M17654.D	BLK	B8m	-		SGG 06/18	/14		Methano	1	1	8260C	06/17 14:03
2M17655.D	BLK	_	-		SGG 06/18			Aqueous	1	1	624\826	06/17 14:19
2M17656.D		S6S8A	-		SGG 06/18			Aqueous		1	624\826	06/17 14:41
2M17657.D			-		SGG 06/18			Aqueous		1	624\826	06/17 14:57
2M17658.D		_	-		SGG 06/18/	-		Aqueous		1	624\826	06/17 15:13
2M17659.D		_	-		SGG 06/18/			Aqueous		1	624\826	06/17 15:29
2M17660.D		-	-		SGG 06/18/			Aqueous		1	624\826	06/17 15:45
2M17661.D		_	-	NZ	SGG 06/18/			Aqueous		1	624\826	06/17 16:00
	DAILY BLANK D MBS36472			OK MBS36472	SGG 06/18/			Aqueous		1	624\826	06/17 16:15 06/17 16:31
	AC79174-025(T)	-		OK MB330472	SGG 06/18/		VOTCLP-826			1	8260C	06/17 16:31
	AC79174-025(T) AC79174-026(T)	_		OK	SGG 06/18/		VOTCLP-826			1	8260C	06/17 17:03
2M17666.D		-			SGG 06/18/		VOTOL1-020	Aqueous		1	624\826	06/17 17:03
2M17667.D					SGG 06/18/			Aqueous		1	624\826	06/17 17:19
	79225-001				SGG 06/18/			Aqueous		1	624\826	06/17 17:51
	AC79162-017	-		OK .	SGG 06/18	-	VO-8260	Aqueous		1	8260C	06/17 18:07
	AC79170-001			OK	SGG 06/18		VO-8260	Aqueous		1	8260C	06/17 18:23
	AC79123-023(MS)	_		DK MBS36472	SGG 06/18		VO15-624	Aqueous		1	624\826	06/17 18:39
	AC79123-023(MSD))		DK MBS36472	SGG 06/18		VO15-624	Aqueous		1	624\826	06/17 18:55
	AC79132-002(T)			DK MBS36480	SGG 06/18		VOTCLP-826			1	8260C	06/17 19:11
	EF-1-V-188693(061	1		OK	SGG 06/18			Aqueous		6171	8260C	06/17 19:27
	AC79132-004(T)	Oc		OK	SGG 06/18		VOTCLP-826			1	8260C	06/17 19:43
	AC79132-006(T)	-		OK	SGG 06/18	/14	VOTCLP-826			1	8260C	06/17 20:03
	AC79132-008(T)			OK	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	8260C	06/17 20:19
	AC79197-001(T)		-	OK .	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	8260C	06/17 20:35
2M17679.D	AC79197-002(T)	_	<u> </u>	K	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	8260C	06/17 20:51
2M17680.D	AC79197-003(T)		C	K	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	8260C	06/17 21:07
2M17681.D	AC79207-001(T)	_	C	OK .	SGG 06/18/	/14	VOTCLP-826	Aqueous	1	1	8260C	06/17 21:23
2M17682.D	AC79132-002(T:MS	M16M1	8 C	K MBS36480	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	624\826	06/17 21:39
2M17683.D	AC79132-002(T:MS	M16M1	8 C	K MBS36480	SGG 06/18	/14	VOTCLP-826	Aqueous	1	1	624\826	06/17 21:55
2M17684.D	MBS36480		C	K MBS36480	SGG 06/18/	/14		Aqueous	1	1	624\826	06/17 22:11
2M17685.D	BLK		-		SGG 06/18/	/14		Aqueous	1	1	624\826	06/17 22:27
2M17686.D	AC79170-002		C	oK	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/17 22:43
2M17687.D	AC79170-003		C	oK	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/17 22:59
2M17688.D	AC79188-006	_	C	K	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/17 23:15
2M17689.D	AC79188-007		C	K	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/17 23:31
2M17690.D	AC79188-008	_	C	K	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/17 23:47
2M17691.D	AC79188-009		С	K	SGG 06/18/	/14	VO-8260	Aqueous	1	1	8260C	06/18 00:03
2M17692.D			-		SGG 06/18/			Aqueous		1	624\826	06/18 00:18
2M17693.D			-		SGG 06/18/			Aqueous		1		06/18 00:34
2M17694.D		Ti8 _		K	SGG 06/18/			Aqueous		1		06/18 00:50
	MBS36481	Ti8	C	K MBS36481	SGG 06/18/			Aqueous		1		06/18 01:06
2M17696.D		Ti8	-		SGG 06/18/			Aqueous		1		06/18 01:22
	AC79175-003	Ocf		R-50X	SGG 06/18/		VOBTEXM-62			1		06/18 01:38
	AC79175-005	_		R-1X	SGG 06/18/		VOBTEXM-62			1		06/18 01:54
	AC79175-007	T:0	K	R-1X	SGG 06/18/		VOBTEXM-62			1		06/18 02:10
2M17700.D		Ti8	-	D EV	SGG 06/18/			Aqueous		1		06/18 02:25
	AC79175-001(200X	_		R-5X	SGG 06/18/		VOBTEXM-62			200		06/18 02:41
	AC79175-006(200X	Ti8		K	SGG 06/18/ SGG 06/18/		VOBTEXM-62			200		06/18 02:57
	79135-006(50X) 79135-007(50X)	Ti8	<u>-</u>		SGG 06/18/			Aqueous Aqueous		50 50		06/18 03:13 06/18 03:29
	a Nnt Checked	110	En -	Extraction Performed Past Hold	Co		Possible Carry Over	Aqueous	<u>'</u>		0241020	00/16 03.29
An Are. B6m Blai B8m Blai B8m Blai C16 Cali C18 Cali C26 Cali C28 Cali C8f 800 C8f 800	a Out hk 600 series missinn hk 800 series missinn hk Not Frund/Assinned hratinn Chlumn 1 Out (600 Series hratinn Chlumn 1 Out (600 Series hratinn Chlumn 1 Out (600 Series hratinn Chlumn 2 Out (600 Series hratinn Chlumn 2 Out (600 Series series samnler/blank did not have o series samnler/blank did not have	es) s) es) enssino cal enassino cal	Esm Etn Etn Ev Hb Ho I18.I28 Is Iv	Solvent Extraction Date Missinor/Not check'd Tcln/Solvent Extraction Date Missinor/Not check'd Tcln Extraction Performed Outside of Hold Evel Time Exceeded Analysis Before Collection Date Sample Analyzed outside of hold time Initial cal 800 series failed Column 1 and or 2 Initial cal 8000 series failed Column 1 and or 2 Initial Cal Not Checked Pmb with calmt.csv for init calibration chek rfs	CRN Cm EvF Evnc Evrc R16. R26 R18. R28 R0 Rtn	Warning C30/C20 Evel Mix Eval Mix Eval Mix Rnd Out Retention Can't Cal 800 sedes	c30/c20 not check failed for each Failed Not Checked mission dot or endot on MSMsd (col1 and on MSMsd (col1 and on MSMsd (col1 and on MSMsd (col1 and on the Col1 and s summonte out	n or col2) 600 : or col2) 8000	series series			
	lino Cal missino for semnle (8000 ibration Not Checked for semole/b		lw lx	Initial cal warningIni cal file <> methodInitial Cal Files Not Updated Properly for a sampl	S8 Sa6 Sb6		es surronate out or BN Surronate Out	(600 series)				

Instrument: G4061226..0109 Analyst: WP

1-1-2M17705			Reviewed			Surr	Sam	1	Analysis	
Data File	Sample Number	Flags	Comments	Ву	Test Group	Matrix	Dil	Dil	Method(s)	Date
2M17705.D	79135-004(50X)	Ti8	-	SGG 06/18/14		Aqueous	s 1	50	624\826	06/18 03:46
2M17706.D	79135-003(20X)	Ti8	-	SGG 06/18/14		Aqueous	s 1	20	624\826	06/18 04:02
2M17707.D	AC79175-002(20X)	Ocf	RR-100X	SGG 06/18/14	VOBTEXM-62	Aqueous	s 1	20	624	06/18 04:18
2M17708.D	AC79175-004(5X)		RR-5X	SGG 06/18/14	VOBTEXM-62	Aqueous	s 1	5	624	06/18 04:34
2M17709.D	MBS36482	Ti8	OK MBS36482	SGG 06/18/14		Aqueous	s 1	1	624\826	06/18 04:49
2M17710.D	AC79195-002(MS)	Ti8	OK MBS36482	SGG 06/18/14	VO15-624	Aqueous	s 1	1	624\826	06/18 05:05
2M17711.D	AC79195-002(MSD)Ti8	OK MBS36482	SGG 06/18/14	VO15-624	Aqueous	s 1	1	624\826	06/18 05:22

Anc	Area Not Checked
An	Area Out
B6m	Blank 600 series mission
B8m	Blank 8000 series missino
Bnf	Blank Nnt Found/Assigned
C16	Calibration Column 1 Out (600 Series)
C18	Calibration Column 1 Out (8000 Series)
C26	Calibration Column 2 Out (600 Series)
C28	Calibration Column 2 Out (6000 Series)
C6f	800 series sample/blank did not have passion cat
C8f	8000 sedes sample/blank did not have nassing ca
Cme	Enring Cal missing for sample (8000 series)
Cn	Calibration Not Checked for sample/blank/eval

Extraction Performed Past Hold
Solvent Extraction Date Missino/Not check'd
Tcln/Solvent Extraction Date Missino/Not check'd
Tcln/Solvent Extraction Date Missino/Not check'd
Tcln Extraction Performed Outside of Hold
Eval Time Exceeded
Analysis Before Collection Date
Sample Analyzed outside of hold time
Initial cal 800 sendes failed Column 1 and or 2
Initial cal 800 sendes failed Column 1 and or 2
Initial Cal Not Checked
Prob with calrot-csv for Init calibretion chek ris
Initial Cal Waming. Ini cal file <> method...
Initial Cal Elles Not Undated Property for a sample.

Warninn Pnssihle Carry Over
Warninn c30/c20 ... not checked
C30/C20 failed for eoh
Eval Mix Fallod
Eval Mix Fallod
Eval Mix Not Checked
Eval Mix Missino did or endrin
Rid Our in MsMsd (cnl1 and or col2) 600 series
Rid Our in MsMsd (cnl1 and or col2) 8000 series
Rid Our in MsMsd (cnl1 and or col2) 8000 series
Retention Time Our Or %Diff Our
Can't Calculate Orff
600 series surrocate out
3000 series surrocate out
Acid and or BN Surrocate Out (600 series) Cn CRN Crn EvF Evn: Evrc R16.R26 R18.R28 Rn Rtn S6 S8 Sa6.Sb6

Veritech Lot Number: V-172965

Prepared By: Batelli, Daniel Department: Organics ApprovedBy: DAN Description: Ethyl ether/Furan Mix ApproveDate: 09/18/13 BatchNumber: Concentration: 5000 ppm Checked: Yes Prep Date: 9/13/2013 Final Volume: 10 ml Expiration Date: 9/13/2014 Veritech Conc of Final Lot# /Rec# Std Conc Amount Used Lot Description 5555 **NEAT** 5000 ppm Ethyl ether 50 mg Neat neat 5000 ppm 8141 Furan 50 mg 1230 **METHANOL** 10 ml **NEAT**

Veritech Lot Number: V-172966

Prepared By: Batelli, Daniel Department: Organics ApprovedBy: DAN Description: Ethyl ether/Furan Mix(2nd Source) BatchNumber: ApproveDate: 09/18/13 Prep Date: 9/13/2013 Concentration: 5000 ppm Checked: Yes Final Volume: 10 ml Expiration Date: 9/13/2014 Conc of Veritech Final Lot# /Rec# Conc Std Amount Used Lot Description 5555 NEAT 5000 ppm Ethyl ether 50 mg 8141 Furan 50 mg Neat neat 5000 ppm 1230 **METHANOL** 10 ml NEAT

Veritech Lot Number: V-172993

Department: Organics ApprovedBy: DAN Prepared By: Batelli, Daniel Description: VOA STOCK INT/SURR MIX ApproveDate: 09/19/13 BatchNumber: Prep Date: 9/19/2013 Concentration: 1500 ppm Checked: Yes Expiration Date: 8/31/2014 Final Volume: 100 ml Conc of Final Veritech Lot# /Rec# Conc Amount Used Lot Description 6948 1,4-Dichlorobenzene(D4) 150 mg neat neat 1500 ppm **NEAT** 1500 ppm 1297 **TOLUENE-D8** 150 mg 8033 150 mg **NEAT** neat 1500 ppm Fluorobenzene 5769 Dibromofluoromethane 150 mg **NEAT** 1500 ppm **NEAT** neat 1500 ppm 8047 Chlorobenzene-d5 150 mg **NEAT** neat 8034 1,2-Dichloroethane-d4 150 ma 1500 ppm 7966 Methanol 100 ml neat neat

4-BROMOFLUOROBENZENE(1-BROMO-4-FLUOROBEN

5746

Veritech Lot Number: V-179161

150 mg

NEAT

1500 ppm

Department: Organics ApprovedBy: jean Prepared By: Hamid, Akmal ApproveDate: 01/20/14 Description: VOA ADD MIX BatchNumber: Prep Date: 12/30/2013 Concentration: 5000 ppm Checked: Yes Final Volume: 10 ml Expiration Date: 7/31/2014 Veritech Conc of Final Lot# /Rec# Std Conc Amount Used Lot Description 2889 1.2.4.5-TETRAMETHYLBENZENE 50 mg NEAT 5000 ppm 7554 p-Diethylbenzene 50 mg Neat neat 5000 ppm 5533 p-Ethyltoluene 50 mg Neat neat 5000 ppm 250 mg Neat neat 25000 ppm 5531 Cyclohexanone neat neat 8315 Methanol

Veritech Lot Number: V-182113

Prepared By: Previlon, Wilner Description: VOA WORKING INT/SURR MIX

Prep Date: 2/27/2014 Expiration Date: 8/31/2014

Veritech

Lot#/Rec#

7966

Veritech

Lot# /Rec#

1230

5014

V-182113

Department: Organics BatchNumber:

Concentration: 150 ppm Final Volume: 250 ml

ApprovedBy: jean ApproveDate: 03/03/14

Checked: Yes

Final

Conc

150 ppm

VOA STOCK INT/SURR MIX V-172993 Veritech Lot Number: V-183755

225 ml neat neat

25 ml | 1500 ppm

Conc of

Amount Used Std

1000 ul

Prepared By: Goring, Shawn Description: BFB Tune Mix

Prep Date: 3/18/2014 Expiration Date: 8/31/2014

Lot Description

METHANOL

Description: Voa Extra Add Mix

Prepared By: Revolus, Jean

Prep Date: 3/26/2014

VOA WORKING INT/SURR MIX

Lot Description

Methanol

Department: Organics BatchNumber: Concentration: 50 ppm Final Volume: 1.5 ml

ApprovedBy: jean ApproveDate: 03/25/14 Checked: Yes

Conc of Final Conc Amount Used 500 ul 150 ppm 50 ppm

NEAT

Veritech Lot Number: V-184432

Department: Organics BatchNumber: Concentration: 2000-20000 p

ApprovedBy: jean ApproveDate: 04/02/14 Checked: Yes

Expiration Date: 6/30/2014 Final Volume: 10 ml Conc of Final Veritech Lot#/Rec# Std Conc Lot Description **Amount Used** 5101 Methyl methacrylate 20 mg Neat 2000 ppm 7781 Ethyl methacrylate 20 mg **NEAT** neat 2000 ppm **NEAT** neat 7780 Butyl methacrylate 20 mg 2000 ppm 5098 20 mg n-Butyl acrylate Neat 2000 ppm 5097 n-Amyl acetate 20 mg Neat 2000 ppm 5096 Iso-propyl acetate 20 mg Neat 2000 ppm 5095 Ethyl acetate 20 mg Neat 2000 ppm 7773 Methanol 10 ml neat neat NEAT 5013 d-Camphor 200 mg 20000 ppm

Veritech Lot Number: V-184443

NEAT

20 mg

Prepared By: Revolus, Jean Description: Voa Extra Add Mix(2nd Source) Prep Date: 3/26/2014

Camphene

Department: Organics BatchNumber: Concentration: 2000-20000 p

ApprovedBy: jean ApproveDate: 04/02/14 Checked: Yes

2000 ppm

Expiration Date: 6/30/2014 Final Volume: 10 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5101	Methyl methacrylate	20 mg	Neat	2000 ppm
7781	Ethyl methacrylate	20 mg	NEAT neat	2000 ppm
7780	Butyl methacrylate	20 mg	NEAT neat	2000 ppm
5098	n-Butyl acrylate	20 mg	Neat	2000 ppm
5097	n-Amyl acetate	20 mg	Neat	2000 ppm
5096	Iso-propyl acetate	20 mg	Neat	2000 ppm
5095	Ethyl acetate	20 mg	Neat	2000 ppm
7773	Methanol	10 ml	neat neat	
5013	d-Camphor	200 mg	NEAT	20000 ppm
5014	Camphene	20 mg	NEAT	2000 ppm

Veritech Lot Number: V-186272

Prepared By: Goring, Shawn Department: Organics ApprovedBy: jean Description: 200ppm VOA Working Std BatchNumber: ApproveDate: 05/08/14 Prep Date: 5/5/2014 Concentration: VARIOUS pp Checked: Yes Expiration Date: 6/30/2014 Final Volume: 1 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	220 ul	NEAT	neat
8203	Gases	100 ul	2000 ppm	200 ppm
8531	502/524 VOA CAL MIX	100 ul	2000 ppm	200 ppm
8530	8260 ADDITIONS(CAL MIX2)	100 ul	2000 ppm	200 ppm
8565	CUSTOM VOC STANDARD	100 ul	VARIOUS	various ppm
8211	tert-Amyl methyl ether	100 ul	2000 ppm	200 ppm
V-179161	VOA ADD MIX	40 ul	5000 ppm	various ppm
V-172965	Ethyl ether/Furan Mix	40 ul	5000 ppm	200 ppm
V-184432	Voa Extra Add Mix	100 ul	2000-20000 p	200 ppm
8245	Ethyl-tert-Butyl Ether(ETBE)	100 ul	2000 ppm	200 ppm

Veritech Lot Number: V-186273

Department: Organics ApprovedBy: jean Prepared By: Goring, Shawn Description: MBS BatchNumber: ApproveDate: 05/08/14 Prep Date: 5/5/2014 Concentration: 100 ppm Checked: Yes Expiration Date: 6/30/2014 Final Volume: 1 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	610 ul	NEAT	neat neat
8192	Gases	50 ul	2000 ppm	100 ppm
8202	502/524 MegaMix	50 ul	2000 ppm	100 ppm
8650	ss 8260 Cal.Mix 2	50 ul	2000 ppm	100 ppm
8569	CUSTOM VOC STANDARD(2nd Source)	50 ul	VARIOUS	various ppn
7936	tert-Amyl methyl ether	50 ul	2000 ppm	100 ppm
V-179161	VOA ADD MIX	20 ul	5000 ppm	various ppn
V-184443	Voa Extra Add Mix(2nd Source)	50 ul	2000-20000 p	100-1000 p
V-172966	Ethyl ether/Furan Mix(2nd Source)	20 ul	5000 ppm	100 ppm
7563	Ethyl-tert-Butyl Ether	50 ul	2000 ppm	100 ppm

Veritech Lot Number: V-187282

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 250 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Conc of Final Veritech Lot# /Rec# Std Conc Lot Description **Amount Used** V-186272 200ppm VOA Working Std 125 ul VARIOUS pp 250 ppb 5381 P&T Water 100 ml Neat neat 250 ppb 125 ul 200 ppm 8197 Chlorodifluoromethane

Veritech Lot Number: V-187283

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean ApproveDate: 05/22/14 Description: 624/8260 CAL @ 100 PPB BatchNumber: B-17408 Concentration: VARIOUS ppb Prep Date: 5/20/2014 Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Сопс Lot Description Amount Used 100 ppb V-186272 200ppm VOA Working Std 50 ul VARIOUS pp 5381 P&T Water 100 ml Neat neat 50 ul 200 ppm 8197 Chlorodifluoromethane 100 ppb

Veritech Lot Number: V-187284

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 50 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Conc Std Amount Used Lot Description V-186272 200ppm VOA Working Std 25 ul VARIOUS pp 50 ppb P&T Water 5381 100 ml Neat neat 8197 Chlorodifluoromethane 25 ul | 200 ppm 50 ppb

Veritech Lot Number: V-187285

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 20 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Conc Std Amount Used Lot Description V-186272 200ppm VOA Working Std 10 ul VARIOUS pp 20 ppb 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane 10 ul 200 ppm 20 ppb

Veritech Lot Number: V-187286

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 10 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description V-186272 200ppm VOA Working Std 5 ul VARIOUS pp | 10 ppb 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane 5 ul 200 ppm 10 ppb

Veritech Lot Number: V-187287

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 5 PPB ApproveDate: 05/22/14 BatchNumber: B-17408 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Conc of Veritech Final Lot# /Rec# Conc Lot Description Amount Used V-186272 200ppm VOA Working Std 2.5 ul VARIOUS pp 5 ppb 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane 2.5 ul 200 ppm 5 ppb

Veritech Lot Number: V-187288

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: 624/8260 CAL @ 1 PPB ApproveDate: 05/22/14 BatchNumber: B-17408 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used V-186272 200ppm VOA Working Std VARIOUS pp .5 ul 1 ppb 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane .5 ul | 200 ppm 1 ppb

Veritech Lot Number: V-187289

Department: Organics Prepared By: Previlon, Wilner ApprovedBy: jean Description: 624/8260 CAL @ 0.5 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Conc of Final Veritech Lot# /Rec# Std Conc Lot Description Amount Used V-186272 200ppm VOA Working Std .25 ul VARIOUS pp 0.5 ppb 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane .25 ul 200 ppm 0.5 ppb

	 _
Veritech Lot Number: V-187290	
Veriteen Let Maniber. V-107250	

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: iean Description: 624/8260 CAL @ 500 PPB BatchNumber: B-17408 ApproveDate: 05/22/14 Concentration: VARIOUS ppb Checked: Yes Prep Date: 5/20/2014 Final Volume: 100 ml Expiration Date: 5/27/2014 Conc of Final Veritech Lot# /Rec# Conc Amount Used Lot Description V-186272 VARIOUS pp 500 ppb 200ppm VOA Working Std 250 ul 5381 P&T Water 100 ml Neat neat 8197 Chlorodifluoromethane 250 ul 200 ppm 500 ppb

Veritech Lot Number: V-187291

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: jean Description: ICV CAL @ 20 PPB BatchNumber: ApproveDate: 05/22/14 Prep Date: 5/20/2014 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/27/2014 Final Volume: 100 ml Veritech Final Conc of Lot# /Rec# Std Conc Lot Description Amount Used V-186273 **MBS** 10 ul 100 ppm 20 ppb 5381 100 ml Neat neat P&T Water neat 8197 Chlorodifluoromethane 20 ul 200 ppm 20 ppb

Veritech Lot Number: V-188723

Prepared By: Goring, Shawn Department: Organics ApprovedBy: jean Description: CAL @ 20 PPB BatchNumber: ApproveDate: 06/19/14 Concentration: VARIOUS ppb Prep Date: 6/17/2014 Checked: Yes Final Volume: 100 ml Expiration Date: 6/24/2014 Veritech Conc of Final Lot# /Rec# Std Conc Amount Used Lot Description V-186272 200ppm VOA Working Std VARIOUS pp 10 ul 20 ppb 5381 P&T Water 100 ml Neat neat 200 ppm 7414 Chlorodifluoromethane 10 ul 20 ppb

		Veritech Control/Receipt Number: 1230									
			Descrip	tion				dBy: jean			
			METHAI					Date: 07/30	/09		
							Chec	ked: Yes			
Manufacturer	Catalog Num:	Lot Num:	Data Bass	Exp Date:	Pec Bu	Num of Cont	f Volum /Cont	_	Units:		
FISHER	Catalog Num: A453-1	045850	06/22/05	06/22/15	Revolus, Jean	36	1L	NEAT	Units.		
TIOTIE!	7,400 1							<u> </u>			
		Veritec	h Control/Red	eipt Nun	nber: 1297						
			Descrip	tion				dBy: jean			
			TOLUEN	E-D8				Date: 07/30 ked: Yes	/09		
						Num of					
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec Bv:	Cont	/Cont	Conc:	Units:		
SIGMA-ALDRICH		02504HB	09/06/05	09/30/15	Revolus, Jean	1	5g	NEAT			
		Veritec	h Control/Red	ceipt Nun	nber: 2889	_					
			Descrip	otion				dBy: jean			
		12	4,5-TETRAMET,		ZENE		Approve	Date: 07/30	/09		
		1,2,	.,				Chec	ked: Yes			
Manufacturas	Catalog Num	Lot Num:	Data Basi	Exp Date:	Pac Pur	Num of Cont	f Volum /Cont		Units:		
Manufacturer ACROS ORGANI	Catalog Num: 409390050	A0214190	11/20/07	11/30/20	Rec by:	1	1ML	NEAT	Offics.		
, ONCO ONGAM	1-703030030				<u> </u>		IIVIL	14671			
		Veritec	h Control/Red	ceipt Nun	nber: 5013						
			Descrip					dBy: jean Date: 06/29	2/10		
			d-Camp	phor				cked: Yes	,, 10		
						Num of					
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont		Units:		
CHEMSERVICE	F2404	402-140B	06/21/10	06/30/14	Revolus, Jean	1	2g	NEAT			
3 1 - 3 2 1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Veritec	h Control/Red	ceipt Nun	nber: 5014						
			Descrip	otion				dBy: jean			
			Camph	ene				Date: 06/29 ked: Yes	9/10		
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec Bv:	Num of Cont		ne Conc:	Units:		
CHEMSERVICE	O-747	419-138A	06/21/10	03/31/15	Revolus, Jean	1	2g	NEAT			
		Varitee	h Control/Red	ceint Nun	nher: 5095						
		¥ 6111.6C					Approve	dBy: jean	118181		
			Descrip					oby: jean Date: 07/26	5/10		
			Ethyl ace	etate				ked: Yes			
						Num of	f Volum				
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	,	Cont	/Cont		Units:		
CHEM SERVICE	O-412	433-138B	07/26/10	03/31/15	Revolus, Jean	1	1g	Neat			
		Veritec	h Control/Red	ceipt Nun	nber: 5096						
			Descrip	tion				dBy: jean	40		
							ApproveD	Date: 07/26	/10		
			Iso-propyl a	acetate			Chec	ked. Vec			
			Iso-propyl a	acetate		Num of		ked: Yes			
Manufacturer	Catalog Num:	Lot Num:		acetate Exp Date:	Rec By:	Num of Cont		ne	Units:		

		Veritech Control/Receipt Number: 5097									
			Descrip	tion			Approved	• •			
			n-Amyl a				ApproveD		/10		
		1					Chec	ked: Yes			
						Num of		-			
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:		
CHEM SERVICE	o-2003	414-70B	07/26/10	11/30/14	Revolus, Jean	1	5g	Neat			
		Veritec	h Control/Red	ceipt Nun	nber: 5098						
			Descrip	tion			Approve				
			n-Butyl ac	crylate			ApproveD		/10		
							Chec	ked: Yes			
			5 /- 5-		_	Num of					
Manufacturer	Catalog Num: O-1004	Lot Num:	Date Rec: 07/26/10	Exp Date: 09/30/14	Rec By:	Cont	/Cont	,	Units:		
CHEM SERVICE	U-1004	409-80A	07/26/10	09/30/14	Revolus, Jean	1	10g	Neat			
		Verited	h Control/Red	ceipt Nun	nber: 5101						
			Descrip	otion				dBy: jean			
			Methyl meth					Date: 07/26	5/10		
								ked: Yes			
						Num of					
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		Rec By:	Cont	/Cont	Conc:	Units:		
CHEM SERVICE	F982	422-28B	07/26/10	04/30/15	Revolus, Jean	1	5g	Neat			
		Verited	h Control/Red	ceipt Nun	nber: 5381						
			Descrip	tion				dBy: DAN			
			P&T W	ater				Date: 10/27 :ked: Yes	7/10		
						<u> </u>					
Manufacturer	Catalog Norm	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:		
Veritech	Catalog Num:	N/A	10/01/10	10/01/15	Batelli, Daniel	1	N/A	Neat	Neat		
						<u> </u>	14/7	, reat	11601		
		Verited	h Control/Re	ceipt Nun	nber: 5531						
			Descrip	tion				dBy: DAN			
			Cyclohex			ApproveDate: 01/07/11 Checked: Yes					
							Chec	ked: Yes			
	0-1-1	1 - 1 5/	D / D			Num of			11 **		
Manufacturer	Catalog Num: F2326	Lot Num: 428-78B	12/28/10	Exp Date: 07/31/14		Cont 1	/Cont	Conc:	Units:		
ChemService	F 2320	420-10D	12/20/10	01/31/14	Batelli, Daniel		5g	Neat	INEST		
		Verited	h Control/Red	ceipt Nun	nber: 5533						
			Descrip	tion				dBy: DAN			
			p-Ethylto				ApproveD		711		
								ked: Yes			
	0-4-1	I -4 MJ	D-1- D-	F P - 1 -	D D	Num of		_	11-7		
Manufacturer ChemService	Catalog Num: O-2413	Lot Num: 453-143B	12/28/10	Exp Date: 12/31/15	Rec By:	Cont 1	/Cont	Conc: Neat	Units: Neat		
Cilemoervice	U-2413	453-143B	12/28/10	12/31/15	Batelli, Daniel	1 1	1g	iveat	ineat		
		Veritec	h Control/Red	eipt Nun	nber: 5555						
			Descrip	tion			Approved		7		
							ApproveD	ate: 01/19	/11		
			Ethyl et	iner							
			Ethyl et	iner			Chec	ked: Yes			
						Num of	Volum	е			
Manufacturer CHEMSERVICE	Catalog Num:	Lot Num: 444-37B			Rec By: Revolus, Jean	Num of Cont		е	Units:		

		Veritech Control/Receipt Number: 5746									
			Descrip	tion				edBy: jean			
		4-BROMOFLUOR	ROBENZENE(1	I-BROMO-	4-FLUOROBEN	E		Date: 03/15 cked: Yes)/11		
						No.					
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num of Cont	f Volum /Cont		Units:		
CHEM SERVICE	F833	426-67B	03/09/11	08/31/14	Revolus, Jean	1	5g	NEAT	7		
		Veritech	h Control/Red	ceipt Nun	nber: 5769						
			Descrip	tion				edBy: akma			
			Dibromofluoro	omethane				Date: 03/24 cked: Yes	1/11		
Manufacturor	Catalog Num:	Lot Num:	Data Rec	Exp Date:	Pec By:	Num o Cont	of Volun /Cont		Units:		
Manufacturer RESTEK	Catalog Num: 30634	A069728	03/21/11	08/31/14	Revolus, Jean	4	100 m		Jints.		
, LOTEIX	10001										
		Veritech	h Control/Red	ceipt Nun	nber: 6948						
	Γ		Descrip	tion				edBy: akma			
			1,4-Dichlorobe)			Date: 04/23	3/12		
								cked: Yes			
Manufacture	Catalan N	Lat Nove	Deta De	Eva Date	Dog Dur	Num o			l leite:		
Manufacturer CIL	Catalog Num: DLM-268-0	Lot Num: PR-18488/07257		Exp Date: 04/19/20	Rec By: Hamid, Akmal	Cont 1	/Cont 5g	Conc:	Units:		
OIL	DLIVI-200-U						Jy	ileat	Tieat		
	_	Veritecl	h Control/Red	ceipt Nun	nber:7414						
			Descrip					edBy: DAN Date: 11/0			
			Chlorodifluor	omethane				cked: Yes	5/12		
						NI					
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num o Cont	of Volun /Cont		Units:		
Accustandard	ALR-CFC-003S-2X	211111240	10/23/12	11/17/21	Batelli, Daniel	30	1mL	200	ppm		
		Vanitani	h Control/Da	coint Nu-			### ### ###				
	_	veriteci	h Control/Red	ceibi unu							
			Descrip					edBy: dan Date: 01/02	2/13		
			p-Diethylbe	enzene				cked: Yes	2/13		
						NI					
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec Bv:	Num o Cont		ne : Conc:	Units:		
ChemService	O-2296	1132000	12/31/13	12/31/16	Batelli, Daniel	1	100m		Neat		
				- alect Pi							
		Veritech	h Control/Red	ceipt Nun	nper: /563						
			Descrip	tion				edBy: dan			
			Ethyl-tert-Bu				• •	Date: 01/04	4/13		
								cked: Yes			
Manufacture	Cotolog Norm	Lot Numer	Data Bass	Evn Date:	Poc Bur	Num o Cont	of Volum /Cont		l loite:		
Manufacturer Restek	Catalog Num: 30628	Lot Num: A088495	01/02/13	Exp Date: 05/31/17	Rec By: Batelli, Daniel	Cont 2	1mL	2000	Units:		
I/egier/	30020			1			IIIL	2000	ppiii		
		Veritech	h Control/Red	ceipt Nun	nber: 7773						
			Descrip	tion				edBy: jean			
			Methai					Date: 04/17	7/13		
	L		- IVICUIAI				Cher	cked: Yes			
						Num o	f Volun	ne			
						Nulli					
Manufacturer Spectrum	Catalog Num:	Lot Num: 2BL0039	Date Rec: 03/12/13	Exp Date: 03/11/23	Rec By: Lopez, Jose	Cont 30	/Cont		Units:		

		Veritec	h Control/Red	ceipt Nun	nber:7780				
			Descrip	otion			Approve		
			Butyl metha				ApproveD		3/13
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	-	Units:
ChemService	N-11371-1G	605200	03/13/13	01/30/16	Batelli, Daniel	1	1g	NEAT	NEAT
		N							
		Veritec	h Control/Red	ceipt Nun	nber: 7781				
			Descrip	otion			Approve		
			Ethyl metha	acrylate				oate: 03/13 ked: Yes	i/13
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
ChemService	N-11903-5G	1188000	03/13/13	01/31/17	Batelli, Daniel	1	5g	NEAT	NEAT
		\/a=itaa	h Control/Do	a alm4 Nive					
		veritec	h Control/Red	seipt Nun	nber: / 936				
			Descrip				Approve	•	
			tert-Amyl me	thyl ether				Date: 05/31 ked: Yes	/13
						Aluma s f			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	ie Conc:	Units:
Restek	506737	A078931	05/20/13	01/31/16	Batelli, Daniel	3	1mL	2000	ppm
		Voritos	h Control/Red	ceint Nur	nher: 7966				
		v eritec	Control/Rec	seihr Mail	11DC1.1300				<u> </u>
			Descrip					dBy: jean	7/12
			Metha	nol				Date: 06/20 ked: Yes	#13
						Num of			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont		Units:
spectrum	PT705-02	2CE0318	06/19/13	06/18/18	Lopez, Jose	30	1L	neat	neat
		Veritec	h Control/Red	ceipt Nur	nber: 8033				
			Descrip	otion			Approve	-	
			Fluorober					Date: 08/01	/13
								ked: Yes	
Manufacturer	Catalog Niver	I of Numer	Date Dani	Eve Dete	Pag Pur	Num of	10.0	-	11-14-
ChemService	Catalog Num: F839	Lot Num: 1361700	07/30/13	Exp Date: 03/31/19	Rec By: Batelli, Daniel	Cont 1	/Cont	Conc:	Units:
2.10.110014100									
		Veritec	h Control/Red	ceipt Nun	nber: 8034			52 2 I	
			Descrip	otion			Approve	-	
			1,2-Dichloroe				ApproveD		/13
								ked: Yes	
Manufacturer	Catalog Num	Lot Num:	Data Bass	Exp Date:	Poc Pur	Num of Cont	Volum /Cont	-	l laite.
Supelco	Catalog Num: 44-2228	LB98031V	07/30/13	02/29/16	Rec By: Batelli, Daniel	Cont 1	1000	Conc: NEAT	Units:
- Cupolico	177 2220				1				
		Veritec	h Control/Red	eipt Nun	nber: 8047				
			Descrip	tion			Approved		
			Chlorobenz				ApproveD		/13
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num	Data Basi	Exp Date:	Rec By:	Num of	Volum	e Conc:	Units:
BOATH HACTINET	Catalou Num:	Lot Num:	Date Rec:	EXD Date:	REC DV:	Cont	/Cont	Conc:	Units.
Supelco	44-2517	LC00086V	08/09/13	07/31/16	Batelli, Daniel	1	500m	NEAT	NEAT

		Veritech Control/Receipt Number: 8141								
			Descrip	tion			Approved	-		
			Fura				ApproveD		/13	
							Chec	ked: Yes		
Manufacturer	Catalog Num:	Lot Num:	Date Pac	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:	
ChemService	N-12101-10G	1927800	09/13/13	09/30/16	Batelli, Daniel	1	10g	Neat	Neat	
	11. 12.101.100				1					
		Veritecl	n Control/Red	ceipt Nun	nber: 8192					
			Descrip	tion			Approved	-		
			Gase	es			ApproveD		/13	
								ked: Yes		
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:	
Supelco	48799-U	LCS00573	10/10/13	07/18/14	Batelli, Daniel	4	1mL	2000	ppm	
p										
		Veritec	n Control/Red	ceipt Nun	nper: 8197	-				
			Descrip	otion			Approve	-	.42	
			Chlorodifluor	omethane			ApproveD)ate: 10/11 ked: Yes	/13	
						Nium of				
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	/Cont	e Conc:	Units:	
Accustandard	M-REF-03	211111240	10/10/13	11/17/21	Batelli, Daniel	30	1mL	200	ppm	
		Varitaa	h Control/Bo	ooint Num	mho=: 9202					
		ventec	h Control/Red	ceipt Nui	11Der: 0202					
			Descrip	otion				dBy: DAN	1/42	
			502/524 M	legaMix			ApproveD	oate: 10/11 ked: Yes	/13	
						Ni 4				
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:	
Restek	30431	A094950	10/10/13	04/30/15	Batelli, Daniel	3	1mL	2000	ppm	
		Veritec	h Control/Red	ceipt Nur	nber: 8203					
			Descrip	otion				dBy: jean		
			Gase			ApproveDate: 01/09/14				
								ked: Yes		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:	
Restek	30042	A095831	10/10/13	02/29/20	Batelli, Daniel	4	1mL	2000	ppm	
			4 - 1/5	! - 4 * 4	- b 0044					
		Veritec	h Control/Red	ceipt Nun	nber:8211					
		Veritec	h Control/Red Descrip		nber:8211		Approve	dBy: jean		
		Verited		otion	nber:8211		ApproveD	dBy: jean oate: 01/09	/14	
		Veritec	Descrip	otion	nber: 8211		ApproveD ApproveD Chec	dBy: jean oate: 01/09 ked: Yes	9/14	
Manufacturer	Catalog Num		Descrip tert-Amyl me	otion othyl ether		Num of	ApproveD ApproveD Chec	dBy: jean 0ate: 01/09 ked: Yes e		
Manufacturer Supelco	Catalog Num:	Lot Num:	Descrip tert-Amyl me	otion othyl ether	Rec By: Batelli, Daniel		ApproveD ApproveD Chec	dBy: jean oate: 01/09 ked: Yes	Units:	
	Catalog Num: 5-06737	Lot Num: LB86221	Descriptert-Amyl me Date Rec:	Exp Date:	Rec By: Batelli, Daniel	Num of Cont	ApproveD ApproveD Chec Volum /Cont 1mL	dBy: jean pate: 01/09 ked: Yes e Conc:	Units:	
		Lot Num: LB86221	Descrip tert-Amyl me Date Rec:	Exp Date:	Rec By: Batelli, Daniel	Num of Cont	Approved Approved Chec Volum /Cont 1mL	dBy: jean Pate: 01/09 ked: Yes e Conc: 2000	Units:	
		Lot Num: LB86221	Descriptert-Amyl me Date Rec:	ethyl ether Exp Date: 07/31/14	Rec By: Batelli, Daniel	Num of Cont	Approved Approved Chec Volum /Cont 1mL Approved	dBy: jean pate: 01/09 ked: Yes e Conc: 2000	Units:	
Manufacturer Supelco		Lot Num: LB86221 Veritec	Descriptert-Amyl me Date Rec: 10/15/13	Exp Date: 07/31/14 ceipt Num	Rec By: Batelli, Daniel nber: 8245	Num of Cont	Approved Approved Chec Volum /Cont 1mL Approved Approved	dBy: jean pate: 01/09 ked: Yes e Conc: 2000 dBy: jean pate: 01/09	Units:	
		Lot Num: LB86221 Veritec	Descriptert-Amyl me Date Rec: 10/15/13 Control/Rec Descrip	Exp Date: 07/31/14 ceipt Num	Rec By: Batelli, Daniel nber: 8245	Num of Cont 4	Approved Approved Chec Volum /Cont 1mL Approved Approved Chec	dBy: jean pate: 01/09 ked: Yes Conc: 2000 dBy: jean pate: 01/09 ked: Yes	Units:	
		Lot Num: LB86221 Veritec	Descrip tert-Amyl me Date Rec: 10/15/13 h Control/Rec Descrip Ethyl-tert-Butyl I	Exp Date: 07/31/14 ceipt Num	Rec By: Batelli, Daniel nber: 8245	Num of Cont	Approved Approved Chec Volum /Cont 1mL Approved Approved Chec	dBy: jean pate: 01/09 ked: Yes Conc: 2000 dBy: jean pate: 01/09 ked: Yes	Units:	

		Veritecl	n Control/Red Descrip	<u> </u>	nber:8315		Approve	dBy: jean	
		Methanol						ate: 01/09/ ked: Yes	14
Manufacturer	Catalaa Num:	Lot Num:	Data Basi	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
Spectrum	Catalog Num: PT705	2CH0087	12/04/13	07/27/15	Lopez, Jose	48	1L	neat	neat
opection	11703	20110007	12/04/10	01721713	Lopez, Jose	70		noat	Ticat
		Veritecl	n Control/Red Descrip		nber: 8530		Approve	dBy: jean	
		82	260 ADDITION	S(CAL MI)	(2)			ate: 02/28/ ked: Yes	14
						Num of	Volum		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	e Conc:	Units:
SUPELCO	46831-U	LC02539	02/28/14	07/31/16	Revolus, Jean	4	1ml	2000	PPM
		Veritec	h Control/Red	ceipt Nun	nber: 8531				
			Descrip	otion			Approve		
			502/524 VOA					ate: 02/28/	14
							Chec	ked: Yes	
					***	Num of	_		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		-	Cont	/Cont	Conc:	Units:
SUPELCO	5-02111	LC03979	02/28/14	10/31/15	Revolus, Jean	2	1ml	2000	PPM
		Veritec	h Control/Red	-	nber: 8565			dBy: jean	
			CUSTOM VOC		<u> </u>		ApproveD	ate: 04/22/	14
			JOSTOW VOC	CIANDAN			Chec	ked: Yes	
						Num of	f Volum	e	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:		Cont	/Cont	Conc:	Units:
ACCUSTANDAR	S-16418	214031149	03/18/14	09/14/14	Revolus, Jean	5	1ml	VARIOU	
		Veritec	h Control/Re	ceipt Nun	nber: 8569				
			Descrip	otion			Approve	dBy: jean	
		CUSTO	M VOC STANI		Source)		ApproveD)ate: 04/22/	14
		00310	JIVI VOO STANI	טיזויט(בווע	Journey)		Chec	ked: Yes	
						Num of	Volum	e	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
ACCUSTANDAR	S-16418	214031157	03/18/14	09/14/14	Revolus, Jean	5	1ml	VARIOU	
		Veritec	h Control/Red	ceipt Nun	nber: 8650				
			Descrip	otion			Approve		
		AAAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA	ss 8260 Ca				ApproveD	ate: 04/22/	14
			33 0200 00	A111111/ E			Chec	ked: Yes	
								100. 100	
						Num of			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont			Units:
Manufacturer Supelco	Catalog Num:	Lot Num: LC01014	Date Rec: 04/16/14	Exp Date: 07/31/15	Rec By: Hamid, Akmal		Volum	e	Units:

Last Page of Report