

September 17, 2014

Mr. Douglas MacNeal New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Technical Support, 11th Floor 625 Broadway Albany, NY 12233

RE: Site Management Plan Annual Review - August 2014

> West 42nd Street – River Place I West 41st - West 42nd Streets New York, New York 110036 NYSDEC BCP Site No. C231024 Langan Project No.: 170040901

Dear Mr. MacNeal:

This letter documents ongoing compliance with the July 2006 Site Management Plan (SMP) that was prepared in accordance with the New York State Brownfields Cleanup Program (BCP) for the River Place I property (the "Site"). The Site is located between West 41st Street and West 42nd Street and 11th and 12th Avenues on the west side of Manhattan, New York. Construction activities have been completed at the Site. The last review letter was submitted to you in September 2013.

The following is an update on the status of the requirements of the SMP for the Site including: 1) institutional control/engineering controls (IC/EC) and 2) groundwater monitoring. The last round of indoor air sampling was conducted on December 22, 2011. correspondence between Mr. MacNeal of the New York State Department of Environmental Conservation (NYSDEC) and Langan dated August 31, 2011, indoor air sampling was discontinued after the December 2011 sampling event.

Institutional Control/Engineering Controls (IC/EC) Inspection

Institutional and engineering controls at the Site include a cover system and an environmental easement as described below. The signed and completed NYSDEC IC/EC Certification Form is provided as Attachment A.

Cover System - The site cover system includes the building foundation slabs, asphalt parking lots, concrete walkways, and top soil used in landscaped areas. The construction of the cover system is complete. The building slab and the park area were inspected by Langan on August 12, 2014 and were observed to be intact. Photographs of site cover are provided as Attachment B.

<u>Environmental Easement</u> – Groundwater is not used for any purpose. Land use remains as multi-story residential.

Quarterly Groundwater Monitoring

Quarterly groundwater monitoring was required for the first two years following completion of the remedial construction, as specified in the SMP. On February 28 and March 7, 2009, two groundwater monitoring wells were installed in the park area at the Site. Langan performed the third annual monitoring event on October 8, 2013. The third annual groundwater monitoring report is included as Attachment C. The next annual groundwater monitoring event is anticipated to occur in October 2014.

Annual Indoor Air Monitoring

The SMP required annual indoor air sampling in River Place I for three years. The final round of indoor air sampling was conducted by GCI Environmental Advisory, Inc. on December 22, 2011. The Ambient/Indoor Air Monitoring Assessment Survey report was provided as Attachment E in the June 2011 SMP Annual Review document. On August 31, 2011, NYSDEC agreed that no further indoor air sampling would be required after the December 2011 event.

Closing

The SMP is being implemented in accordance with the schedules discussed above. Should you have any questions, please contact me at 212-479-5404.

Kindest Regards,

Langan Engineering & Environmental Services, P.C.

.

Joel B Fandes

Joel B. Landes, P.E. Senior Associate

Enclosures:

Attachment A NYSDEC Institutional and Engineering Controls Certification Form

Attachment B Site Cover Photographs

Attachment C Annual Groundwater Monitoring Report- 2013

Cc: William R. Dacunto - River Place 1 LLC

Richard Rienzo - Con Edison

Attachment A

NYSDEC Institutional and Engineering Controls Certification Forms

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Sit	Site Details	Box 1	
		e Name CE - W 42nd St River Place I	6	3
	Site	e Address: 640 W 42nd Street Zip Code: 10036 y/Town: New York		
	Co	unty: New York e Acreage: 2.7		e g
	Re	porting Period: September 5, 2013 to September 5, 2014		
			VEO	NO
	1	In the information above correct?	YES	NO
	1.	Is the information above correct?		, ° 2
		If NO, include handwritten above or on a separate sheet.		
	2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		⊠ =
	3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		
	4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		
		If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
	5.	Is the site currently undergoing development?		
			Pay 2	-
			Box 2	NO
			YES	NO
	6,	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	Ø	D 83
	7.	Are all ICs/ECs in place and functioning as designed?	K	
		IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below as DO NOT COMPLETE THE REST OF THIS FORM.	nd .	
	A C	orrective Measures Work Plan must be submitted along with this form to address the	ese issu	es.
		*		
504	Sign	nature of Owner, Remedial Party or Designated Representative Date		3

=							Box	2 A
	s						YES	NO
	any new informa ssment regardir					the Qualitative Exposure)	⊠
					·			۵
	u answered YE documentation					n or evidence his certification form,	, ,	œ i
	he assumptions Qualitative Expo						\boxtimes	
						eport must include an new assumptions.		法
SITE ŃO.	C231024			-			Во	x 3
Descr	ption of Institu	tional Cont	rols			***	€	
Parcel	•	Owner		ů.		Institutional Control	10.5	
10890001	-	River Plac	e I, LLC					
		£1	ra i			Ground Water Use Re	striction	
						Landuse Restriction		
						Site Management Plan Soll Management Plan		
	14	*	*********				Во	x 4
Descr	ption of Engine	eering Cont	role					
	phon of Engine	orning cont		a Cantra	.I			
Parcel 10890001		.8	Engineerin	ig Contro	<u>'l</u>		7	
10030001			Subsurface	e Barriers	\$			E
								4
*1								
				*		······································		
		Contr	ol Descripti	on for S	ite No.	C231024		
Parcel: 1	0890001			77				
Annual re	ports on quarter	ly groundwa	ter monitorir	ng and ar	nual ind	door air monitoring even	ts arè req	uired
as well as	an annual certif	fcation that t	he ground co	over is in	tact as v	well as the continued eff	fectivenes	s of
the newly	installed vapor	barrier and t	hat the gour	ndwater	estriction	ons are still in force.		**

_	_		-
н	n	x	

Periodic Review Report (PRR) Certification Statements

1.	I certify by checking "YES" below that:	2	Ĭ.
*11	 a) the Periodic Review report and all attachments were prepared reviewed by, the party making the certification; 	ared under the direction of, and	
	b) to the best of my knowledge and belief, the work and concare in accordance with the requirements of the site remedial	program, and generally accepted	
	engineering practices; and the information presented is accur	ate and compete. YES NO	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decis or Engineering control listed in Boxes 3 and/or 4, I certify by checkir following statements are true:	ion Document), for each Institutional g "YES" below that all of the	
	(a) the Institutional Control and/or Engineering Control(s) em the date that the Control was put in-place, or was last approve		Э
	(b) nothing has occurred that would impair the ability of such the environment;	Control, to protect public health and	
	(c) access to the site will continue to be provided to the Depa including access to evaluate the continued maintenance of th	urtment, to evaluate the remedy, is Control;	
	(d) nothing has occurred that would constitute a violation or f Management Plan for this Control; and	allure to comply with the Site	
	(e) if a financial assurance mechanism is required by the overmechanism remains valid and sufficient for its intended purpo		
6		YES NO	
	e e	. 🛛 🗆	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and DO NOT COMPLETE THE REST OF THIS		
,	A Corrective Measures Work Plan must be submitted along with this	form to address these issues.	
		W	
,	Signature of Owner, Remedial Party or Designated Representative	Date	
,		x .	
		ž.	
		* * * * * * * * * * * * * * * * * * * *	

IC CERTIFICATIONS SITE NO. C231024

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address

am certifying as Remedial Party (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner or Remedial Party Rendering Certification

The Site of Owner or Remedial Party Rendering Certification

The Site of Owner or Remedial Party Rendering Certification

The Site of Owner or Remedial Party Rendering Certification

The Site of Owner or Remedial Party Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I ALAN POE PPEL at 21 PENN PLAZA, WEW YORK, NEW YORK print name print business address

am certifying as a for the PEMEDIAL ENGINEER

Signature of , for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE) Date

dial Party)

Attachment BSite Cover Photographs

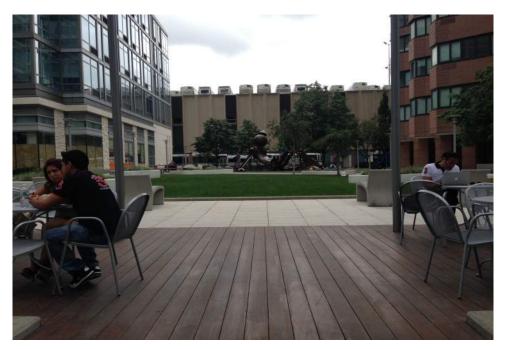


Photo 1: View of patio area at the Site

Photo 2: View of parking area breezeway

Photo 3: View of paved area at Site building entrance

Photo 4: View of ground cover at play area

Photo 5: View of pet area ground cover at Site

Photo 6: Surface cover in Site lobby

Photo 7: Typical surface cover in ground floor hallway area of Site

Photo 8: Surface cover in Site mechanical room

Photo 9: Surface cover in Site pump room

Photo 10: Surface cover in Site boiler room

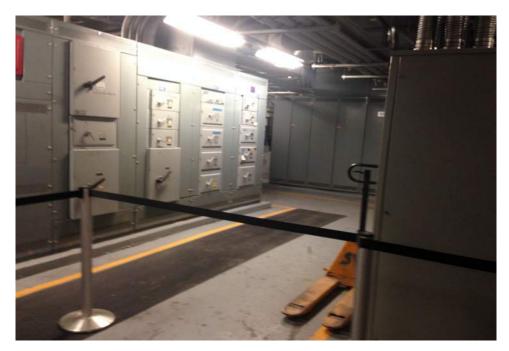


Photo 11: Surface cover in Site electrical room

Photo 12: Surface cover in Site dry cleaners

Photo 13: Site bowling alley

Photo 14: Site bowling alley pin set room

Photo 15: Surface cover at vacant commercial space within Site

Photo 16: Surface cover at vacant commercial space within Site

Photo 17: West 42nd Street sidewalk - Facing east

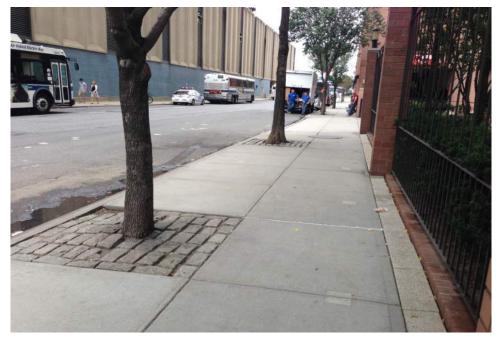


Photo 18: W41st Street sidewalk - Facing west

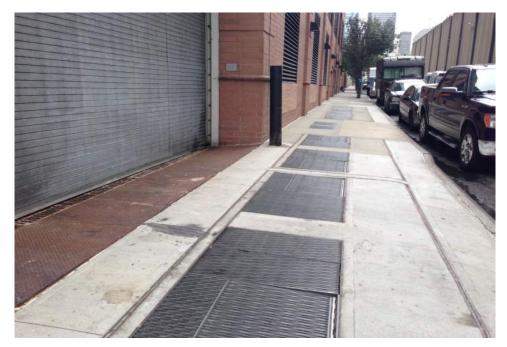


Photo 19: W41st Street sidewalk - Facing east

Attachment C

Annual Groundwater Monitoring Report - 2013

December 19, 2013

Mr. Douglas MacNeal New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Technical Support, 11th Floor 625 Broadway Albany, New York 12233

RE: **Annual Groundwater Monitoring Report - 2013** River Place I & II West 42nd Street, New York, New York

> BCP Site No. C231024, C231012 Langan Project No.: 170040901

Dear Mr. MacNeal:

Langan Engineering & Environmental Services, PC (Langan) is pleased to present this letter report summarizing groundwater monitoring well sampling activities for River Place I & II located between West 41st and West 42nd Streets and 11th and 12th Avenues in New York, New York (the "Site"). A Site Location Map is attached as Figure 1. A Final Engineering Report (FER) for the site was approved by the New York Stated Department of Environmental Conservation (NYSDEC) and a Certificate of Completion (COC) was issued on June 19, 2007. A Site Management Plan (SMP) dated July 2006 was approved by NYSDEC.

In accordance with the SMP, quarterly groundwater monitoring began on March 16, 2009 and was conducted for two years. Following quarterly monitoring, an annual monitoring program was implemented and will continue until groundwater exhibits consistent or declining levels of contamination. This report summarizes the results of the third annual sampling event conducted in October 2013.

2013 Annual Groundwater Sampling

On October 8, 2013, Langan sampled groundwater monitoring wells MW-N2 and MW-S2. During sampling, Langan visually inspected the monitoring wells for evidence of tampering or damage, and measured the depth to groundwater. The water level was measured using a Solinst oil/water interface probe. Water level measurements were repeated at least once to verify the accuracy of the initial measurement. All measurements were recorded on Langan field sampling forms. Copies of the completed field forms are included in Attachment A of this report.

Langan Project No.: 170040901

Prior to collecting groundwater samples, MW-N2 and MW-S2 were purged using low-flow purge and sample techniques. The wells were purged using clean, dedicated, polyethylene tubing attached to a Waterra positive displacement pump. During purging, groundwater was monitored for dissolved oxygen, pH, temperature, turbidity, and specific conductance. These readings are included on the sampling forms in Attachment A. Prior to sampling, the wells were allowed to recover to approximately 80% or more of the static water level.

MW-N2 and MW-S2 were purged until physical and chemical parameters stabilized. Approximately 9.0 and 10.5 gallons were purged from each monitoring well, respectively. After purging, samples MW-N2-100813 and MW-S2-100813 were collected using a Waterra pump and dedicated tubing.

The groundwater samples, MW-N2-100813 and MW-S2-100813 were collected into laboratory-prepared containers, tightly sealed, uniquely labeled, and then stored on ice for transport to Alpha Analytical (Alpha) in Westborough, Massachusetts, under standard chain-of-custody procedures. The groundwater samples were analyzed for VOCs by EPA Method 8260, SVOCs by EPA Method 8270, Target Analyte List (TAL) metals by EPA SW 6000/7000, cyanide (total) by EPA SW 9012, and cyanide (available) by EPA 9014.

Findings

Observations

During this sampling event no free product was observed in MW-N2 and MW-S2. The wells were observed to be in good condition.

Groundwater Analytical Results

Analytical results for the second annual 2013 monitoring event that exceeded the NYSDEC TOGS 1.1.1 AWQS Class GA Standards are summarized below.

	MW	/-N2	
VO	<u>Cs</u>		
•	1,2,4-trimethylbenzene	•	p/m-xylene
•	benzene	•	o-xylene
•	ethylbenzene	•	toluene
•	naphthalene		
SV	OCs		
•	2,4-dimethylphenol	•	benzo(b)fluoranthene
•	acenaphthene	•	chrysene
•	benzo(a)pyrene	•	naphthalene
Ino	rganics		
•	cyanide	•	manganese
•	iron	•	sodium
•	magnesium		

	WOCs 1,2,4-trimethylbenzene benzene ethylbenzene isopropylbenzene syoocs acenaphthene benzo(a)pyrene benzo(b)fluoranthene words chrysene indeno(1,2,3-cd)pyrene naphthalene llnorganics														
VO	<u>Cs</u>														
•	1,2,4-trimethylbenzene	•	naphthalene												
•	benzene	•	n-propylbenzene												
•	ethylbenzene	•	o-xylene												
•	isopropylbenzene														
SV	OCs														
•	acenaphthene	•	chrysene												
•	benzo(a)pyrene	•	indeno(1,2,3-cd)pyrene												
•	benzo(b)fluoranthene	•	naphthalene												
lno	rganics														
•	cyanide	•	magnesium												
•	iron	•	sodium												
•	lead														

Analytical results for the First Quarter 2009 through Third Annual 2013 sampling rounds are summarized in Tables 1 through 3 and the laboratory analytical report for the 2013 annual sampling results is included as Attachment B.

Langan Project No.: 170040901

Please contact us if you have any questions.

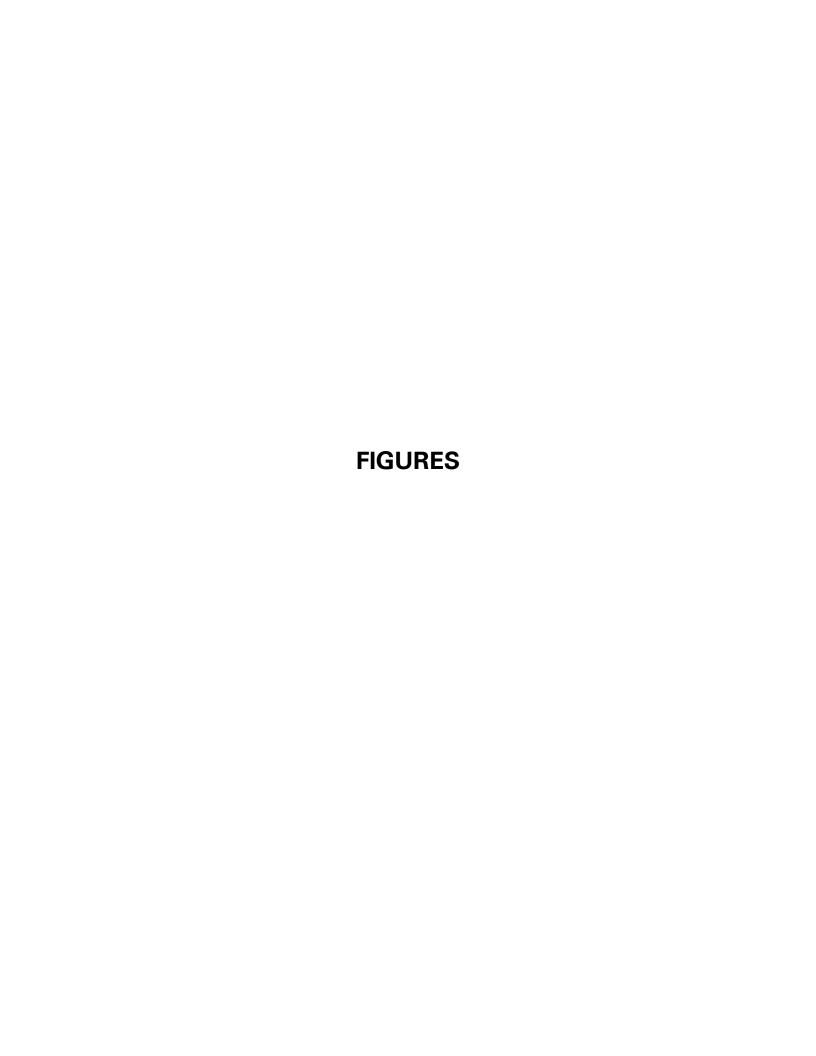
Sincerely,

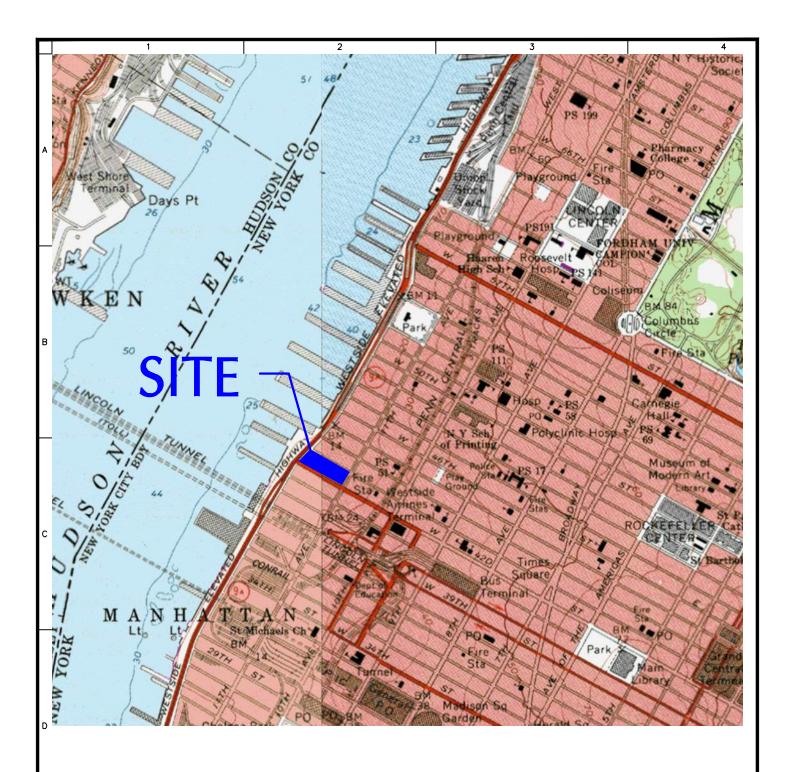
Langan Engineering & Environmental Services, P.C.

Joel B. Landes, P.E. Senior Associate

Enclosure(s):

Figure 1 Site Location Map Figure 2 Well Location Map


Table 1 VOC Detections in Groundwater Samples
 Table 2 SVOC Detections in Groundwater Samples
 Table 3 Total Metals and Cyanide in Groundwater Sample


Attachment A Groundwater Sampling Forms

Attachment B Laboratory Analytical Reports, Chain-of-Custody and Certifications

CC:

Richard Rienzo- Con Edison William R. Dacunto- River Place II LLC Jason Hayes – Langan

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

BASE MAP OBTAINED FROM THE UNITED STATES GEOLOGICAL SURVEY (USGS), TOPOGRAPHIC MAPS, CENTRAL PARK, NY QUADRANGLE, DATED 1979, AND WEEHAWKEN NJ, NY QUADRANGLE, DATED 1967 ABD REVISED 1981.

NEW YORK

Figure Title

LANGAN

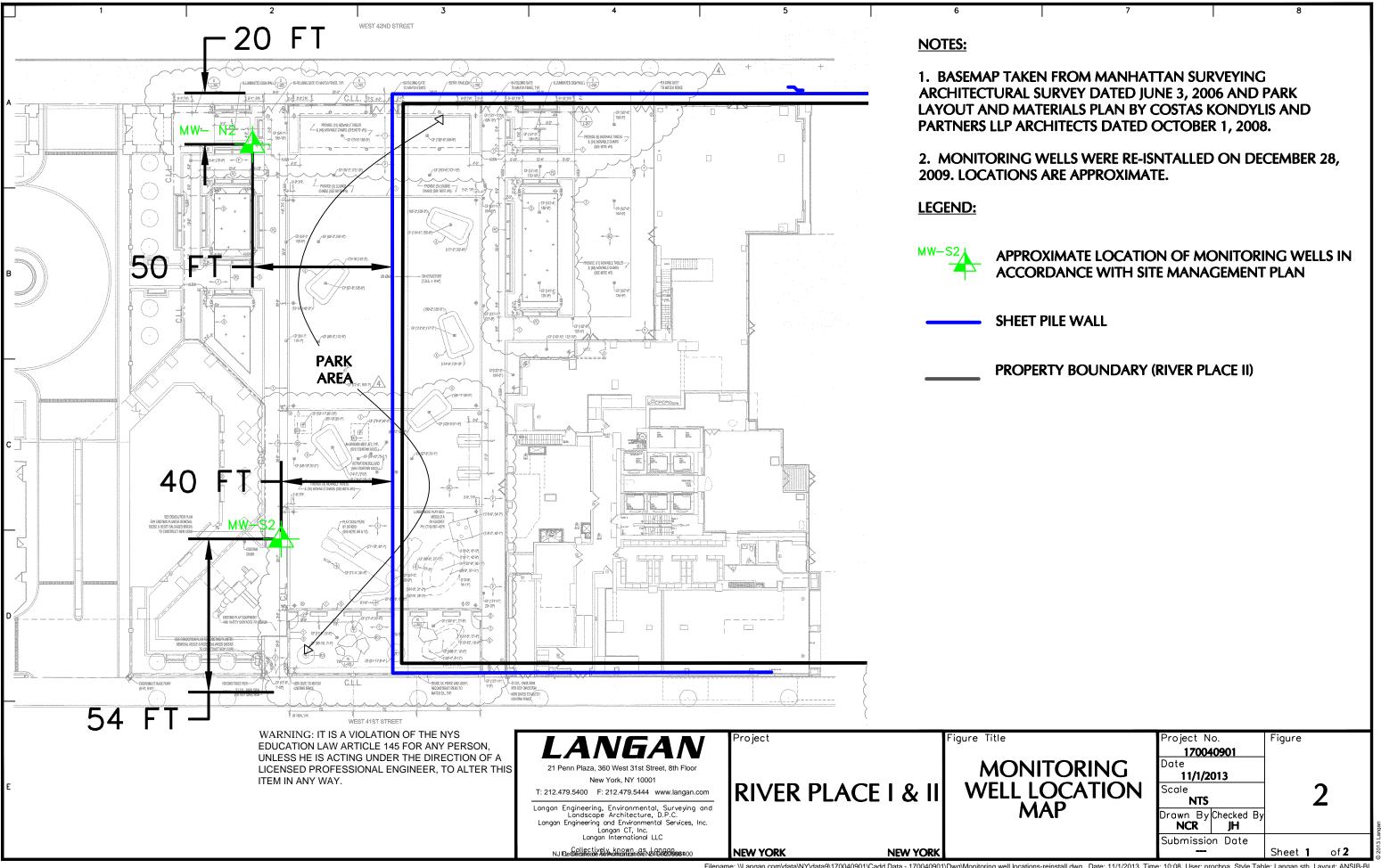
21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

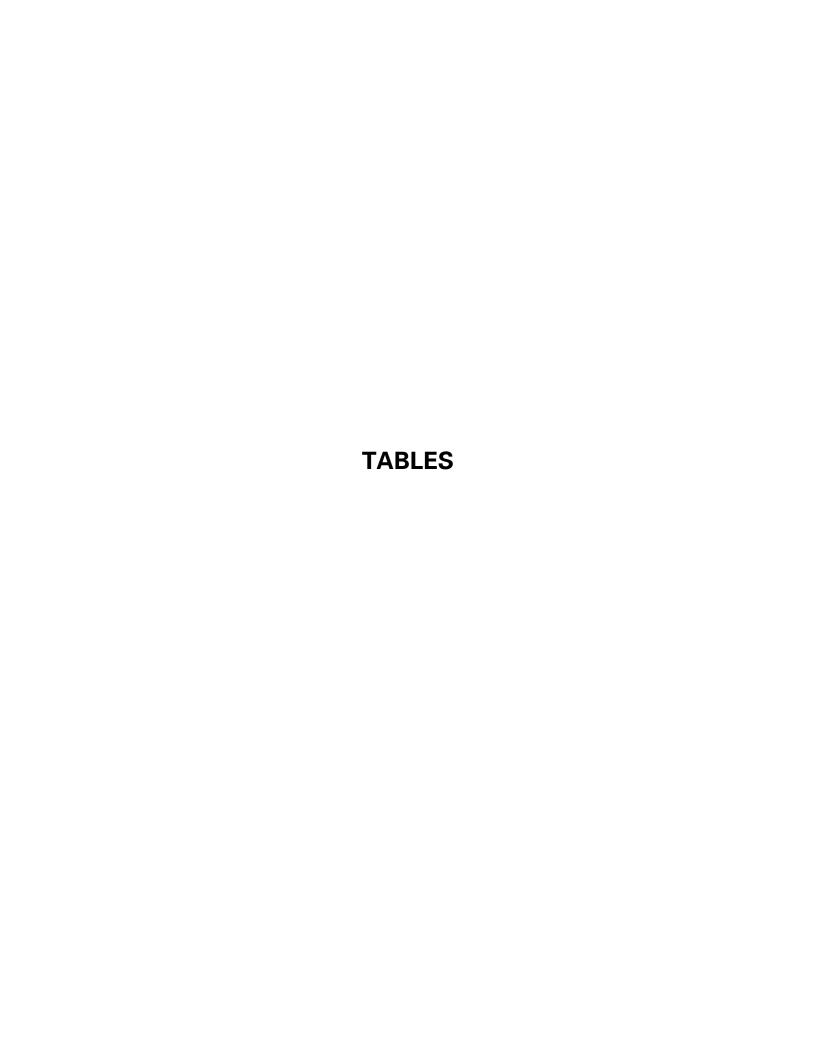
T: 212.479.5400 F: 212.479.5444 www.langan.com

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. Langan Engineering and Environmental Services, Inc. Langan CT, Inc. Langan International LLC

Collectively known as Langan

Project


NEW YORK


RIVER PLACE I AND II

SITE LOCATION MAP

© 2013 Langan

Table 1 VOC Exceedances in Groundwater Samples River Place II New York, New York Langan Project No. 170040901

											Park	Area North	nern Well										
		1st Quart	ter 2009	2nd Quart	ter 2009	3rd Quart	er 2009*	4th Quarte	r 2009**	1st Quar	ter 2010	2nd Quar	ter 2010	3rd Quar	ter 2010	4th Quart	er 2010	YEAR 1 -	2011	YEAR 2 -	2012	YEAR 3 - 201	3
SAMPLING DATE LANGAN SAMPLE ID LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS	3/16/2 MW-N-3 L09031	3-16-09	6/17/2 MW-N-6 L09080	-17-09	9/18/2 MW-N-9 L09131	9-18-09	1/7/20 MW-N2-1 L10002	-07-10	3/1/2 MW-N2- L10030	3-01-10	6/10/2 MW-N2-6 L10087	6-10-10	9/8/2 MW-N2- L10139	9-8-10	12/15/2 MW-N2-1 L10200	2-15-10	10/17/20 MW-N2-10 L111695	-17-11	10/17/20 MW-N2-10		10/8/2013 MW-N2-10081 L1320135-02	-
Volatile Organics by GC/MS (μg/L) Westborough Lab																							
1,2,4-Trimethylbenzene	5	1200	U, D ⁵⁰⁰	1200	U, D ⁵⁰⁰	1200	U, D ⁵⁰⁰	1200	U	250	U, D ¹⁰⁰	500	U, D ²⁰⁰	620	U, D ²⁵⁰	620	D^{250}	270	J	240	J	80	J
1,3,5-Trimethylbenzene	5	1200	U, D ⁵⁰⁰	1200	U, D ⁵⁰⁰	1200	U, D ⁵⁰⁰	1200	U	250	U, D ¹⁰⁰	500	U, D ²⁰⁰	620	U, D ²⁵⁰	620	U, D ²⁵⁰	96	J	620	U	250	U
Benzene	1	19000	D ⁵⁰⁰	17000	D ⁵⁰⁰	15000	D ⁵⁰⁰	2900	D ⁵⁰⁰	610	D ¹⁰⁰	1100		2100	D ²⁵⁰	2400	D ²⁵⁰	2400		1600		1100	4
Ethylbenzene	5	1900	D ⁵⁰⁰	1900	D ⁵⁰⁰	1800	D ⁵⁰⁰	1400	D ⁵⁰⁰	170	D ¹⁰⁰	410		810	D ²⁵⁰	980	D ²⁵⁰	810		580	J	250	1
Isopropylbenzene	5	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U	50	U, D ¹⁰⁰	100	U, D ²⁰⁰	120	U, D ²⁵⁰	120	U, D ²⁵⁰	37	U	620	U	250	U
Methylene chloride	5	2500	U, D ⁵⁰⁰	2500	_ U, D ⁵⁰⁰	2500	U	2500	U	500	U, D ¹⁰⁰	1000	_ U, D ²⁰⁰	1200	_ U, D ²⁵⁰	1200	U, D ²⁵⁰	110	U	620	U	250	U
Naphthalene	10	15000	D ⁵⁰⁰	18000	D ⁵⁰⁰	19000	D ⁵⁰⁰	22000	D ⁵⁰⁰	4200	D ¹⁰⁰	5400		12000	D ²⁵⁰	15000	D ²⁵⁰	10000		9200		3600	
n-Butylbenzene	5	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U	250	U	50	U, D ¹⁰⁰	100	U, D ²⁰⁰	120	U, D ²⁵⁰	120	U, D ²⁵⁰	39	U	620	U	250	U
n-Propylbenzene	5	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U	50	U, D ¹⁰⁰	ND	U, D ²⁰⁰	120	U	120	U	35	U	620	U	250	U
o-Xylene	5	1400	D ⁵⁰⁰	1400	D ⁵⁰⁰	1200	D ⁵⁰⁰	1000	D ⁵⁰⁰	180	D ¹⁰⁰	330		590	D ²⁵⁰	760	D ²⁵⁰	630		470	J	230	J
p/m-Xylene	5	3200	D ⁵⁰⁰	3100	D ⁵⁰⁰	2900	D ⁵⁰⁰	2200	D ⁵⁰⁰	330	D ¹⁰⁰	600		1100	D ²⁵⁰	1400	D ²⁵⁰	1200		760		280	1
p-Isopropyltoluene	5	250	U, D ⁵⁰⁰	250	U, D ⁵⁰⁰	250	U	250	U	50	U, D ¹⁰⁰	100	U, D ²⁰⁰	120	U, D ²⁵⁰	120	U, D ²⁵⁰	38	U	620	U	250	U
Styrene	5	500	U, D ⁵⁰⁰	500	_ U, D ⁵⁰⁰	500	U	500	U	100	U, D ¹⁰⁰	200	U, D ²⁰⁰	250	U, D ²⁵⁰	250	U, D ²⁵⁰	72	U	620	U	250	U
Toluene	5	4200	D ⁵⁰⁰	4400	D ⁵⁰⁰	4100	D ⁵⁰⁰	740	D ⁵⁰⁰	75	U, D ¹⁰⁰	150	U, D ²⁰⁰	290	D ²⁵⁰	420	D ²⁵⁰	410		240	J	90	J

Notes:

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are
- Method Detection Limits (MDLs) are elevated above
- μg/L: Micrograms per liter
- * Monitoring well MW-S was destroyed during
- ** Monitoring wells MW-N and MW-S were destroyed

Qualifiers:

U - Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the

D^x - Dillution factor of X

Table 1 **VOC Exceedances in Groundwater Samples** River Place II New York, New York Langan Project No. 170040901

			3/16/2009 3/16/2009								Par	k Area Sout	hern Wel	 *									
		1st Quarte	6/2009 3/16/2009 5-3-16-09 DUP-3-16-09 MV			2nd Qua	rter 2009	4th Quarte	r 2009**	1st Quart	er 2010	2nd Quart	er 2010	3rd Quart	er 2010	4th Quart	er 2010	YEAR 1	- 2011	YEAR 2	- 2012	YEAR 3 - 2	2013
SAMPLING DATE LANGAN SAMPLE ID LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS	3/16/2 MW-S-3- L090314	-16-09		16-09	6/17/ MW-S-(L0908)	6-17-09	1/7/20 MW-S2-1 L100028	-07-10	3/1/20 MW-S2-3 L10030	-01-10	6/10/2 MW-S2-6 L10087	-10-10	9/8/20 MW-S2- L10139	9-8-10	12/15/2 MW-S2-1 L10200	2-15-10	10/17/2 MW-S2-10 L111695)-17-11	10/17/2 MW-S2-1	_	10/8/201 MW-S2-100 L1320125	0813
Volatile Organics by GC/MS (μg/L) Westborough Lab				Duplicate of N-3-16																			
1,2,4-Trimethylbenzene	5	76	D ²⁵	1200	U, D ⁵⁰⁰	25	U, D ¹⁰	280	D ¹⁰	130	D ⁵⁰	180	D ⁵⁰	150	U, D ⁵⁰	200	D ⁵⁰	45		79		26	
1,3,5-Trimethylbenzene	5	62	U, D ²⁵	1200	U, D ⁵⁰⁰	25	U, D ¹⁰	61	D ¹⁰	120	U, D ⁵⁰	120	U, D ⁵⁰	120	U, D ⁵⁰	120	U, D ⁵⁰	1	U	3	J	10	U
Benzene	1	140	D ²⁵	19000	D ⁵⁰⁰	170	D ¹⁰	200	D ¹⁰	75	D ⁵⁰	120	D ⁵⁰	110	D ⁵⁰	120	D ⁵⁰	23		94		99	
Ethylbenzene	5	160	D ²⁵	1900	D ⁵⁰⁰	20	D ¹⁰	710	D ¹⁰	330	D ⁵⁰	590	D ⁵⁰	460	D ⁵⁰	560	D ⁵⁰	100		260		160	
Isopropylbenzene	5	35	D ²⁵	250	U, D ⁵⁰⁰	5.4	D ¹⁰	64	D ¹⁰	30	D ⁵⁰	61	D ⁵⁰	44	D ⁵⁰	63	D ⁵⁰	13		46		55	
Methylene chloride	5	120	U, D ²⁵	2500	U, D ⁵⁰⁰	50	U, D ¹⁰	420	D ¹⁰	250	U, D ⁵⁰	250	U, D ⁵⁰	250	U, D ⁵⁰	250	U, D ⁵⁰	2.7	U	6.2	U	10	U
Naphthalene	10	610	D ²⁵	15000	D ⁵⁰⁰	350	D ¹⁰	4900	D ¹⁰	1800	D ⁵⁰	1700	D ⁵⁰	1900	D ⁵⁰	1100	D ⁵⁰	170		150		62	
n-Butylbenzene	5	12	U, D ²⁵	250	U, D ⁵⁰⁰	5	U, D ¹⁰	6.2	D ¹⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	0.98	U	6.2	U	10	U
n-Propylbenzene	5	19	D ²⁵	250	U, D ⁵⁰⁰	5	U, D ¹⁰	42	D ¹⁰	25	U, D ⁵⁰	37	D ⁵⁰	30		37	D ⁵⁰	8.5		34		22	
o-Xylene	5	43	D ²⁵	1300	D ⁵⁰⁰	16	D ¹⁰	320	D ¹⁰	110	D ⁵⁰	150	D ⁵⁰	70	D ⁵⁰	50	U, D ⁵⁰	24		20		12	
p/m-Xylene	5	50	D ²⁵	3100	D ⁵⁰⁰	21	D ¹⁰	410	D ¹⁰	150	D ⁵⁰	150	D ⁵⁰	82	D ⁵⁰	50	U, D ⁵⁰	17		9.2		10	U
p-Isopropyltoluene	5	12	U, D ²⁵	250	U, D ⁵⁰⁰	5	U, D ¹⁰	11	D ¹⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	25	U, D ⁵⁰	0.94	U	6.2	U	10	U
Styrene	5	25	U, D ²⁵	500	_ U, D ⁵⁰⁰	10	U, D ¹⁰	40		50	_ U, D ⁵⁰	50	U, D ⁵⁰	50	U, D ⁵⁰	50	U, D ⁵⁰	1.8	U	6.2	U	10	U
Toluene	5	19	U, D ²⁵	4000	D ⁵⁰⁰	29	D ¹⁰	180	D ¹⁰	46	D ⁵⁰	38	U, D ⁵⁰	38	U, D ⁵⁰	38	U, D ⁵⁰	8.5		4.2	J	10	U

Notes:

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are
- Method Detection Limits (MDLs) are elevated above

- μg/L: Micrograms per liter
 Monitoring well MW-S was destroyed during
 ** Monitoring wells MW-N and MW-S were destroyed

Qualifiers:

U - Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the

D^x - Dillution factor of X

Table 1 **VOC Exceedances in Groundwater Samples** River Place II New York, New York Langan Project No. 170040901

											Qı	uality Contro	ol										
		1st Quart	er 2009	1st Quarte	Auarter 2009 2nd Quarter 2009 3rd Quarter 2009 3rd Quarter 2009 6/17/2			er 2009	4th Quarte	r 2009	1st Quarte	r 2010	2nd Quarter	2010	3rd Quarter	2010	4th Quarte	r 2010	YEAR 1 -	2011	YEAR :	2 - 2012	
SAMPLING DATE LANGAN SAMPLE ID LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS	3/16/2 FB-3-1 L09031	6-09		.ANK		ANK		LANK	1/7/20 TRIP BL L100028	ANK	3/1/201 TRIP BL/ L1003000	ANK	6/10/2010 TRIP BLAN L1008735-	IK	9/8/201 TRIP BLA L1013903	NK	12/15/20 TRIP BL/ L1020042	ANK	10/17/2 TRIP BL L111695	.ANK		7/2012 BLANK
Volatile Organics by GC/MS (μg/L) Westborough Lab																							
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	0.5	U	2.5	U	2.5	U	2.5	U	2.5	C	2.5	C	0.27	U	2.5	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	0.75	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	0.21	U	2.5	U
Benzene	1	0.5	U	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.19	U	0.5	U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.26	U	2.5	U
Isopropylbenzene	5	0.5	U	0.5	U	0.5	U	1	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.19	U	2.5	U
Methylene chloride	5	5	U	5	U	5	U	0.5	U	5	U	5	U	5	U	5	U	5	U	0.54	U	2.5	U
Naphthalene	10	2.5	U	2.5	U	2.5	U	1	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	0.22	U	2.5	U
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.20	U	2.5	U
n-Propylbenzene	5	0.5	U	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.19	U	2.5	U
o-Xylene	5	1	U	1	U	1	U	2	U	1	U	1	U	1	U	1	U	1	U	0.33	U	2.5	U
p/m-Xylene	5	1	U	1	U	1	U	0.5	U	1	U	1	U	1	U	1	U	1	U	0.35	U	2.5	U
p-Isopropyltoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.19	U	2.5	U
Styrene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	0.36	U	2.5	U
Toluene	5	0.75	U	0.75	U	0.75	U	2.5	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.23	U	2.5	U

Notes:

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are
- Method Detection Limits (MDLs) are elevated above
- μg/L: Micrograms per liter
- * Monitoring well MW-S was destroyed during

 ** Monitoring wells MW-N and MW-S were destroyed

Qualifiers:

U - Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the

D^x - Dillution factor of X

Table 2 SVOC Exceedances in Groundwater Samples River Place II New York, New York Langan Project No. 170040901

											Park Are	a Northern	Well										
		1st Qua	1st Quarter 2nd Quarter 3/16/2009 6/17/2009 W-N-3-16-09 MW-N-6-17-09				arter	4th Qu	arter**	1st Quart			rter 2010	3rd Quart	er 2010	4th Quart	ter 2010	YEAR 1 -	- 2011	YEAR	2 - 2012	YEAR 3 -	2013
SAMPLING DATE LANGAN SAMPLE ID LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS		6-09		-09	9/18/20 MW-N-9- L091318	18-09	1/7/2 MW-N2- L10002	-1-7-10	3/1/2 MW-N2- L10030	-3-1-10		2010 -6-10-10 735-02	9/8/20 MW-N2-9 L101390	-8-10	12/15/: MW-N2-1 L10200	2-15-10	10/17/2 MW-N2-10 L111695	0-17-11		7/2012 ?-101712	10/8/20 MW-N210 L132013	00813
Semi-Volatile Organics (µg/L) Westborough Lab																							
2,4-Dimethylphenol	50	1800	D ⁵⁰	830	D ⁵	1200	D ¹⁰⁰	270	D ⁵	500	U, D ⁵⁰	29		160		10	U, D ¹	1.4	U	150		89	
Acenaphthene	20	120	D ²⁰	95	D ⁴⁰	99	D ⁵⁰	61	D ²⁰⁰	65	D ⁵⁰	17		97		170	D ⁵⁰⁰	140		190		96	
Benzo(a)pyrene	0	7.2	D ²⁰	8.2	U, D ⁴⁰	9.6	U, D ⁵⁰	40	U, D ²⁰⁰	10	U, D ⁵⁰	5	U	80	U	100	U, D ⁵⁰⁰	28	U	50	U	1.2	
Benzo(b)fluoranthene	0.002	8.4	D ²⁰	8.2	U, D ⁴⁰	9.6	U, D ⁵⁰	40	U, D ²⁰⁰	10	U, D ⁵⁰	7.2	D^{20}	80	U	100	U, D ⁵⁰⁰	28	U	50	U	1.2	
Bis(2-Ethylhexyl)phthalate	5	24	U, D⁵	26	U, D⁵	46	D ⁵	25	U, D⁵	250	U, D ⁵⁰	5	U	5	U	5	D ¹	1.4	U	3	U	15	U
Chrysene	0.002	4.1	D ²⁰	8.2	U, D ⁴⁰	9.6	U, D ⁵⁰	40	U, D ²⁰⁰	10	U, D ⁵⁰	4200	R1, D ⁴⁰⁰	80	U	100	U, D ⁵⁰⁰	20	U	50	U	1	
Fluorene	50	56	D ²⁰	59	D ⁴⁰	47	D^{50}	40	U, D ²⁰⁰	39	D^{50}	7.2	D ²⁰	80	U	100	D ⁵⁰⁰	58	J	67		29	
Indeno(1,2,3-cd)Pyrene		NA	_	NA		NA		NA		10	U, D ⁵⁰	29	D^{20}	NA		NA		32	U	50	U	0.64	J
Naphthalene	10	12000	D ⁴⁰⁰	8900	D ⁴⁰⁰	9400	D ¹⁰⁰⁰	2200	D ²⁰⁰	2700	D ⁵⁰	8.9	D^{20}	6900		9100	D ⁵⁰⁰	6800		8400		2800	
Phenanthrene	50	100	D ²⁰	53	D ⁴⁰	62	D ⁵⁰	40	D ²⁰⁰	52	D ⁵⁰	84	D ²⁰	80	U	100	D ⁵⁰⁰	97		90		33	
Phenol	1	120	D ⁵	61	D ⁵	87	D ⁵	35	U, D ⁵	350	U, D ⁵⁰	17		27		16	D ¹	0.26	U	5	U	25	U

- Groundwater samples were compared to New York State
 Department of Environmental Conservation (NYSDEC) Technical and
 Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are highlighted and BOLD.
- Method Detection Limits (MDLs) are elevated above TOGS criteria in the majority of the samples due to high levels of contamination.
- μg/L: Micrograms per liter
 Monitoring well MW-S was destroyed during construction activities. No data is available for the 3rd Quarter 2009.
- ** Monitoring wells MW-N and MW-S were destroyed due to construction activities. Monitoring wells MW-N2 and MW-S2 were installed in the approximate locations of MW-N and MW-S once construction was complete. New monitoring well locations are shown on Figure 2.

- U Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the MDL.
- D^x Dillution factor of X R1 Analyte Results are from sample re-analysis

Table 2 SVOC Exceedances in Groundwater Samples River Place II New York, New York Langan Project No. 170040901

											Park Area S	Southern Wel	*											Quality C	ontrol
		1st Qu	ıarter	1st Qua	rter	2nd Qu	arter	4th Qu	arter**	1st Quart	er 2010	2nd Quart	er 2010	3rd Quar	ter 2010	4th Quar	rter 2010	YEAR 1	1 - 2011	YEAR 2	2 - 2012	YEAR 3 - 2	2013	1st Qua	arter
SAMPLING DATE LANGAN SAMPLE ID LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS	3/16/2 MW-S-3 L09031	-16-09	3/16/20 DUP-3-1 L090314	6-09	6/17/2 MW-S-6- L09080	-17-09	MW-S2	-	3/1/20 MW-S2- L10030	3-1-10	6/10/2 MW-S2-6 L10087:	-10-10	9/8/2 MW-S2- L10139	-9-8-10	MW-S2-	/2010 12-15-10 042-02				/2012 -101712	10/8/201 MW-S2-100 L1320135	0813	3/16/20 FB-3-16 L090314	6-09
Semi-Volatile Organics (µg/L) Westborough Lab					L0903143-03 L0908040-02 L0908040-02 Duplicate of IW-N-3-16-09 IW-N-3-16-09 IW-N-3-16-09																				
2,4-Dimethylphenol	50	10	U	1800	D ²⁵	10	U	10	U	500	U, D ⁵⁰	10	U	10	U	10	D^{50}	1.2	U	5	U	25	U	9.6	U
Acenaphthene	20	14		160	D ²⁰⁰	0.2	U	200	U, D ¹⁰⁰⁰	63	D ⁵⁰	7	U	41		63	D ⁵⁰	15		49		39		0.19	U
Benzo(a)pyrene	0	0.2	U	39	U, D ⁵	0.2	U	200	U, D ¹⁰⁰⁰	15	D ⁵⁰	5	U	10	U	100	U, D ⁵⁰	4.0		5.4		6.4		0.19	U
Benzo(b)fluoranthene	0.002	0.2	U	39	U, D⁵	0.2	U	200	U, D ¹⁰⁰⁰	14	D ⁵⁰	4	D ¹⁰	10	U	17	D ⁵⁰	2.9		3		4.7		0.19	U
Bis(2-Ethylhexyl)phthalate	5	5	U	24	U, D⁵	5.1	U	5	U	250	U, D ⁵⁰	5	U	5	U	5	U, D⁵	1.4	U	3	U	15	U	4.8	U
Chrysene	0.002	0.2	U	39	U, D⁵	0.2	U	200	U, D ¹⁰⁰⁰	10	U, D ⁵⁰	1600	D ¹⁰⁰	10	U	10	U, D⁵	3.2		5.3		6		0.19	U
Fluorene	50	8.9		80	D ⁵	0.2	U	200	U, D ¹⁰⁰⁰	61	D ⁵⁰	4	D^{10}	36		42	U, D⁵	13		33		16		0.19	U
Indeno(1,2,3-cd)Pyrene		NA		NA		NA		NA		10	U, D ⁵⁰	10	D^{10}	NA		15	D ⁵⁰	1.8		3.3		3.1		NA	
Naphthalene	10	300	D ¹⁰	14000	D ⁴⁰⁰	0.62		11000	D ¹⁰⁰⁰	1400	D ¹⁰⁰	4.8	D^{10}	990		400	D ⁵⁰	9.3		90		51		0.34	
Phenanthrene	50	11		150	D ⁵	0.2	U	200	U, D ¹⁰⁰⁰	120	D ⁵⁰	74	D^{10}	52		63	D ⁵⁰	16		32		11		0.19	U
Phenol	1	7	U	110	D ⁵	7.2	U	7.7		350	U, D ⁵⁰	7	U	7	U	7	D^{50}	0.26	U	5	U	25	U	6.7	U

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are highlighted and BOLD.
- Method Detection Limits (MDLs) are elevated above TOGS criteria in the majority of the samples due to high levels of contamination.
- μg/L: Micrograms per liter
 Monitoring well MW-S was destroyed during construction activities. No data is available for the 3rd Quarter 2009.
- ** Monitoring wells MW-N and MW-S were destroyed due to construction activities. Monitoring wells MW-N2 and MW-S2 were installed in the approximate locations of MW-N and MW-S once construction was complete. New monitoring well locations are shown on Figure 2.

- U Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the MDL.
- Dx Dillution factor of X
- R1 Analyte Results are from sample re-analysis

Table 3 **Total Metals and Cyanide Exceedances in Groundwater Samples** River Place II New York, New York

Langan Project No. 170040901

	Ī										P	ark Area No	orthern We	ell									
		1st Qu	arter	2nd Qı	ıarter	3rd Qu	arter	4th Qu	arter**	1st Quar	ter 2010	2nd Quar	ter 2010	3rd Quar	ter 2010	4th Quar	ter 2010	YEAR 1	- 2011	YEAR 2	- 2012	YEAR 3-2	2013
LANGAN SAMPLE ID SAMPLING DATE LAB SAMPLE ID	NYSDEC TOGS 1.1.1 AWQS	MW-N-3 3/16/2 L09031	2009	MW-N-6 6/17/2 L09080	2009	MW-N-9 9/18/2 L09131	2009	MW-N2-1 1/7/2 L10002	010	MW-N2-3 3/1/2 L10002	010	MW-N2- 6/10/2 L10087	2010	MW-N2- 9/8/2 L10139	010	MW-N2-1 12/15/ L10200	2010	MW-N2-1 10/17/ L11169	2011	MW-N2-1 10/17/2		MW-N2-10 10/8/20	
Total Metals (µg/L) Wesborough Lab	AMPLE ID Wetals (µg/L) prough Lab		45-01	L09000	140-01	L09131	05-01	L10002	202-01	L10002	.02-01	L10007	33-02	LIUIS	703-01	L10200	J42-01	LITIOS	33-02				
Iron, Total	300	5300		1900		1200		3500		4000		4800		2600		12000		3300		1270		1780	
Lead, Total	25	15		10	U	10	U	10	U	10	U	10	U	10	U	67		3	U	2.4	J	1.79	
Magnesium, Total	35000	70000		70000		59000		83000		46000		46000		51000		86000		64000		42000		57700	
Manganese, Total	300	1570		1570		1340		746		603		632		528		816		582		542.8		337.5	
Mercury, Total	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	ND		ND		0.3	U	0.1	U	0.2	U	0.2	U
Sodium, Total	20000	300000	D^5	270000		250000		240000		110000		160000		200000		240000		210000		127000		175000	
Cyanide (ug/L) - Wesborough La	b																						
Cyanide, Total	200	1100	D ¹⁰	789	D ⁵	799	D^2	890	D ¹⁰	1780	D ¹⁰	1500	D ⁵	1060	D ¹⁰	1680	D ¹⁰	612		126		1210	

Notes:

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are highlighted and BOLD.
- Method Detection Limits (MDLs) are elevated above TOGS criteria in the majority of the samples due to high levels of contamination
- μg/L: Micrograms per liter
 Monitoring well MW-S was destroyed during construction activities. No data is available for the 3rd Quarter 2009.
- ** Monitoring wells MW-N and MW-S were destroyed due to construction activities. Monitoring wells MW-N2 and MW-S2 were installed in the approximate locations of MW-N and MW-S once construction was complete. New monitoring well locations are shown on Figure 2.

- U Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the MDL.
- Dx Dillution factor of X
- R1 Analytical Results are from sample re-analysis

Table 3 **Total Metals and Cyanide Exceedances in Groundwater Samples** River Place II New York, New York Langan Project No. 170040901

	•																								
											Pa	ark Area So	uthern We	*										Quality (Control
		1st Qu	arter	1st Qu	arter	2nd Q	uarter	4th Qu	arter**	1st Quart	er 2010	2nd Quar	ter 2010	3rd Quar	ter 2010	4th Quart	ter 2010	YEAR 1	l - 2011	YEAR 2 - 20	012	YEAR 3 -	2013	1st Qu	uarter
LANGAN SAMPLE ID		MW-S-3	-16-09	DUP-3-	16-09	MW-S-6	5-17-09	MW-S2-1	-7-2010	MW-N2-3	-1-2010	MW-S2-	6-10-10	MW-S2	-9-8-10	MW-S2-1	2-15-10	MW-S2-	10-17-11	MW-S2-101	712	MW-S2-10	0813	FB-3-1	16-09
SAMPLING DATE	NYSDEC TOGS 1.1.1 AWQS	3/16/2	2009	3/16/2	2009	6/17/2	2009	1/7/2	010	3/1/20	010	6/10/2	2010	9/8/2	2010	12/15/	2010	10/17	/2011	10/17/201	2	10/8/20	13	3/16/2	2009
LAB SAMPLE ID		L09031	43-02	L09031	43-03	L09080	040-02	L10002	282-02	L10002	82-01	L10087	735-01	L10139	903-02	L10200	42-02	L1116	955-02			L132013	5-01	L09031	143-04
Total Metals (µg/L)				Duplic	ate of																				
Wesborough Lab				MW-N-3	-16-09																		,		
Iron, Total	300	21000		2700		9200		3200		11000		5000		9800		12000		9900		12100		5830		50	U
Lead, Total	25	158		10	U	45		17		117		29		86		166		42		108.7		70.29	ļ	10	U
Magnesium, Total	35000	71000		72000		48000		120000		87000		85000		93000		84000		68000		43800		53800	ļ	100	U
Manganese, Total	300	598		1430		403		327		636		430		492		558		537		574.9		279.6	ļ	10	U
Mercury, Total	0.7	0.5		0.2	U	0.2	U	0.3		0.6		0.0002		0.00005		0.9		0.1	U	0.8		0.2	U	0.2	U
Sodium, Total	20000	96000		320000	D⁵	100000		98000		89000		68000		76000		67000		42000		32600		49400	ļ	2000	U
Cyanide (ug/L) - Wesborough Lab)																								
Cyanide, Total	200	1920	D ¹⁰	1090	D ¹⁰	1920	D^5	1090	D ¹⁰	973	D ⁵	1110	D^5	1540	D ¹⁰	1410	D ¹⁰	798	_	152		798		5	U, D⁵

Notes:

- Groundwater samples were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operations Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards (AWQS).
- Values exceeding NYSDEC TOGS 1.1.1 AWQS are highlighted and BOLD.
- Method Detection Limits (MDLs) are elevated above TOGS criteria in the majority of the samples due to high levels of contamination
- μg/L: Micrograms per liter
 Monitoring well MW-S was destroyed during construction activities. No data is available for the 3rd Quarter 2009.
- ** Monitoring wells MW-N and MW-S were destroyed due to construction activities. Monitoring wells MW-N2 and MW-S2 were installed in the approximate locations of MW-N and MW-S once construction was complete. New monitoring well locations are shown on Figure 2.

- U Indicates the minimum detection Limit (MDL) is reported. The concentration of the analyte is less than the MDL.
- D^x Dillution factor of X
- R1 Analytical Results are from sample re-analysis

ATTACHMENT A GROUNDWATER SAMPLING FORMS

GROUND WATER SAMPLE FIELD INFORMATION FORM

Site:	Riverplace I and II	Well#/Location:	MW-N2	Job No.	170040901
Date:	10/8/2013	Weather:	Low 60s - Partly Cloudy	Sampling Personnel:	B. Howard

Well Information							
Sample ID	MW-N2-100813						
Well Depth (ft)	19.45						
Screened Interval (ft)							
Casing Elevation (msl)							
Casing Diameter (in)	2						
Depth to Water (ft)	10.11						
Water Elevation (msl)							
Casing Volume (gal)	1.52						
PID/FID Reading (ppm)							

Purging I	nformation
Purging Method	Wattera Pump
Purging Rate (gpm)	0.11
Start Purge Time	13:00
End Purge Time	14:20
Volume Purged (gal)	9

Sampling I	Sampling Information								
Sampling Method	Wettera Pump								
Start Sampling Time	14:20								
End Sampling Time	14:30								
Depth Before Sampling (ft)	10.92								
Number Bottles Collected	8								

Parameters											
Sample Time	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp (∘C)	ORP (mV)	Depth to Water (ft)	Purged Volume (gallons)	Notes		
13:00					***Start Pu	rging***					
13:10	7.20	2.48	67.8	3.21	18.12	-91	10.35	1.5			
13:20	7.22	2.53	53.9	3.20	18.10	-108	10.42	2.5			
13:30	7.25	2.55	45.0	3.18	18.09	-117	10.45	3.5			
13:40	7.25	2.59	44.8	3.18	18.11	-122	10.47	4.5			
13:50	7.25	2.60	44.5	3.18	18.10	-127	10.50	5.5			
14:00	7.24	2.70	40.1	2.98	18.28	-126	10.51	6.5			
14:10	7.25	2.71	42.2	2.90	18.30	-125	10.51	8.5			
14:20	7.25	2.72	43.10	2.89	18.33	-125	10.50	9.0			
•		•	•	***Col	llect Sample***	•	•	•			
					'						

Notes/Remarks

GROUND WATER SAMPLE FIELD INFORMATION FORM

Site:	Riverplace I and II	Well#/Location:	MW-S2	Job No.	170040901	
Date:	10/8/2013	Weather:	Low 60s - Partly Cloudy	Sampling Personnel:	B Howard	

Well Information							
Sample ID	MW-S2-100813						
Well Depth (ft)	19.45						
Screened Interval (ft)							
Casing Elevation (msl)							
Casing Diameter (in)	2						
Depth to Water (ft)	10.71						
Water Elevation (msl)							
Casing Volume (gal)	1.43						
PID/FID Reading (ppm)							

Purging Info	Purging Information							
Purging Method	Wattera Pump							
Purging Rate (gpm)	0.09							
Start Purge Time	10:45							
End Purge Time	12:45							
Volume Purged (gal)	10.5							

Sampling Information							
Sampling Method	Wettera Pump						
Start Sampling Time	12:45 PM						
End Sampling Time	12:55 PM						
Depth Before Sampling (ft)	12.00						
Number Bottles Collected	8						

Sample Time	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp (∘C)	ORP (mV)	Depth to Water (ft)	Purged Volume (gallons)	Notes
10:45		•	***	Start Purging We	***				
10:55	7.12	1.77	375	18.41	16.36	-150	11.10	0.5	
11:05	7.15	1.77	349	15.60	16.86	-172	11.12	1.0	
11:15	7.19	1.78	313	11.10	17.10	-201	11.21	1.5	
11:25	7.23	1.70	227	12.01	17.00	-220	11.25	2.0	
11:35	7.24	1.76	210	12.15	16.99	-220	11.28	3.0	
11:45	7.24	1.75	198	11.08	17.00	-231	11.30	4.5	
11:55	7.22	1.75	213	10.12	17.00	-238	11.29	5.0	
12:05	7.23	1.73	196	9.56	17.01	-240	11.30	6.0	
12:15	7.25	1.71	195	9.17	17.00	-241	11.31	7.0	
12:25	7.25	1.70	201	8.39	17.00	-243	11.30	8.5	
12:35	7.25	1.70	188	7.52	17.00	-245	11.30	10.0	
12:45	7.26	1.69	182	7.45	17.01	-245	11.30	10.5	
			;	***Collect Samp	le***				

Notes/Remarks

^{*} After two hours of purging the monitoring well, the turbidity did not drop below 50 NTUs.

ATTACHMENT B LABORATORY ANALYTICAL REPORTS, CHAIN-OFCUSTODY AND CERTIFICATIONS

ANALYTICAL REPORT

Lab Number: L1320135

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Jason Hayes
Phone: (212) 479-5427

Project Name: RIVER PLACE I+II

Project Number: 170040901 Report Date: 10/15/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RIVER PLACE I+II Lab Number: L1320135

Project Number: 170040901 **Report Date:** 10/15/13

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1320135-01	MW-S2-100813	MANHATTAN, NY	10/08/13 12:45
L1320135-02	MW-N2-100813	MANHATTAN, NY	10/08/13 14:20
L1320135-03	TB01-100813	MANHATTAN, NY	10/08/13 00:00

Project Name: RIVER PLACE I+II Lab Number: L1320135

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: RIVER PLACE I+II Lab Number: L1320135

Project Number: 170040901 **Report Date:** 10/15/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L1320135-01 and -02 have elevated detection limits due to the dilutions required by the sample matrices.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Season Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 10/15/13

ORGANICS

VOLATILES

10/08/13

Not Specified

Date Received:

Field Prep:

Project Name: Lab Number: RIVER PLACE I+II L1320135

Project Number: Report Date: 170040901 10/15/13

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Sample Location: MANHATTAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/14/13 14:24

PDAnalyst:

cis-1,3-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 10 2.8 4 Chloroethane ND ug/l 4.0 1.3 4 Chloroethene ND ug/l 10 2.8 4 Chloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 10 2.8 4 Carbon tetrachloride ND ug/l 2.0 0.54 4 1.2-Dichloropropane ND ug/l 4.0 0.53 4 Dibromochloromethane ND ug/l 6.0 0.50 4 Tetrachloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Tichlorofluoromethane ND ug/l 10 2.8 4 Tichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 trans-1,2-Dichloropropene ND ug/l 2.0 0.57	Methylene chloride	ND		ug/l	10	2.8	4
Carbon tetrachloride ND ug/l 2.0 0.54 4 1,2-Dichloropropane ND ug/l 4.0 0.53 4 Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 10 2.8 4 Trichlorofitoromethane ND ug/l 10 2.8 4 Trichloroethane ND ug/l 10 2.8 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.57 4 Bromodichloropropene ND ug/l 2.0 0.66 4 1,1-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 2.0 0.5	1,1-Dichloroethane	ND		ug/l	10	2.8	4
1,2-Dichloropropane ND	Chloroform	ND		ug/l	10	2.8	4
Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 1,1,2-Trichloroethane ND ug/l 2.0 0.72 4 1,1,2-Trichloroethane ND ug/l 10 2.8 4 1,1,2-Dichloroethane ND ug/l 10 2.8 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.77 4 1,1,1-Trichloroethane ND ug/l 2.0 0.66 4 1,1,1-Trichloropropene ND ug/l 2.0 0.66 4 1,1,1-Trichloropropene ND ug/l 2.0 0.57 4 1,1,1-Trichloropropene ND ug/l 2.0 0.57 4 1,1,1-Trichloropropene ND ug/l 10 2.8 4 1,1-Trichloropropene ND ug/l 10 2.8 4 1,1-Trichloropr	Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,1,2-Trichloroethane ND ug/l 6.0 2.0 4	1,2-Dichloropropane	ND		ug/l	4.0	0.53	4
Tetrachloroethene ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.66 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 trans-1,3-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 10 2.8 4 Bromoform ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.57 4 Ethylbenzene 160 ug/l 10 2.8 4	Dibromochloromethane	ND		ug/l	2.0	0.60	4
Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 1,1-1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Chloroethane ND ug/l 10 2.8 4	1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Trichlorofluoromethane ND Ug/l 10 2.8 4 1,2-Dichloroethane ND Ug/l 10 2.8 4 1,1,1-Trichloroethane ND Ug/l 10 2.8 4 1,1,1-Trichloroethane ND Ug/l 10 2.8 4 Bromodichloromethane ND Ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND Ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND Ug/l 2.0 0.57 4 1,1-Dichloropropene ND Ug/l 10 2.8 4 Bromoform ND Ug/l 10 2.8 4 Bromoform ND Ug/l 2.0 0.57 4 1,1-2,2-Tetrachloroethane ND Ug/l 2.0 0.57 4 1,1-2,2-Tetrachloroethane ND Ug/l 2.0 0.57 4 1-1-Dichloropropene ND Ug/l 2.0 0.57 4 1-1-Dichloropropene ND Ug/l 2.0 0.57 4 1-1-Dichloroethane ND Ug/l 10 2.8 4 Chloromethane ND Ug/l 10 2.8 4 Chloromethane ND Ug/l 10 2.8 4 Chloroethane ND Ug/l 10 2.8 4 Trichloroethene ND Ug/l 10	Tetrachloroethene	ND		ug/l	2.0	0.72	4
1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 Bromoform ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.57 4 Benzene 99 ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chlo	Chlorobenzene	ND		ug/l	10	2.8	4
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	10	2.8	4
ND	1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.57 4 Ethylbenzene 160 ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Tichloroethene ND ug/l 2.0 0.57 4 Trans-1,2-Dichloroethene ND ug/l 2.0 0.57 4 Trans-1,2-Dichloroethene ND ug/l 2.0 0.57 4 Trans-1,2-Dichloroethene ND ug/l 2.0 0.70 4 Tichloroethene ND ug/l 2.0 0.70 4 Tichloroethene ND ug/l 2.0 0.70 4 Tichloroethene ND ug/l 10 2.8 4 Tichloroethene ND ug/l 2.0 0.70 4 Tichloroethene ND ug/l 10 2.8 4	1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
cis-1,3-Dichloropropene ND ug/l 2.0 0.57 4 1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Smomomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dic	Bromodichloromethane	ND		ug/l	2.0	0.77	4
1,1-Dichloropropene ND ug/l 10 2.8 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 2.0 0.70 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene	trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
ND	cis-1,3-Dichloropropene	ND		ug/l	2.0	0.57	4
1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.57 4 Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	1,1-Dichloropropene	ND		ug/l	10	2.8	4
Benzene 99 ug/l 2.0 0.63 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 Chloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Bromoform	ND		ug/l	8.0	2.6	4
Toluene ND ug/l 10 2.8 4 Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.57	4
Ethylbenzene 160 ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Benzene	99		ug/l	2.0	0.63	4
Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Toluene	ND		ug/l	10	2.8	4
Bromomethane ND ug/l 10 2.8 4 Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Ethylbenzene	160		ug/l	10	2.8	4
Vinyl chloride ND ug/l 4.0 1.3 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Chloromethane	ND		ug/l	10	2.8	4
Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Bromomethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene ND ug/l 2.0 0.57 4 trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Vinyl chloride	ND		ug/l	4.0	1.3	4
trans-1,2-Dichloroethene ND ug/l 10 2.8 4 Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	Chloroethane	ND		ug/l	10	2.8	4
Trichloroethene ND ug/l 2.0 0.70 4 1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	1,1-Dichloroethene	ND		ug/l	2.0	0.57	4
1,2-Dichlorobenzene ND ug/l 10 2.8 4 1,3-Dichlorobenzene ND ug/l 10 2.8 4	trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4
1,3-Dichlorobenzene ND ug/l 10 2.8 4	Trichloroethene	ND		ug/l	2.0	0.70	4
<i>-</i>	1,2-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene ND ug/l 10 2.8 4	1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
	1,4-Dichlorobenzene	ND		ug/l	10	2.8	4

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Date Received: 10/08/13
Sample Location: MANHATTAN, NY Field Prep: Not Specified

Sample Location:	MANHATTAN, NY				Field Prep):	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough	Lab					
Methyl tert butyl ether		ND		ug/l	10	2.8	4
p/m-Xylene		ND		ug/l	10	2.8	4
o-Xylene		12		ug/l	10	2.8	4
cis-1,2-Dichloroethene		ND		ug/l	10	2.8	4
Dibromomethane		ND		ug/l	20	4.0	4
1,2,3-Trichloropropane		ND		ug/l	10	2.8	4
Acrylonitrile		ND		ug/l	20	6.0	4
Styrene		ND		ug/l	10	2.8	4
Dichlorodifluoromethane		ND		ug/l	20	4.0	4
Acetone		ND		ug/l	20	4.0	4
Carbon disulfide		ND		ug/l	20	4.0	4
2-Butanone		ND		ug/l	20	4.0	4
Vinyl acetate		ND		ug/l	20	4.0	4
4-Methyl-2-pentanone		ND		ug/l	20	4.0	4
2-Hexanone		ND		ug/l	20	4.0	4
Bromochloromethane		ND		ug/l	10	2.8	4
2,2-Dichloropropane		ND		ug/l	10	2.8	4
1,2-Dibromoethane		ND		ug/l	8.0	2.6	4
1,3-Dichloropropane		ND		ug/l	10	2.8	4
1,1,1,2-Tetrachloroethane		ND		ug/l	10	2.8	4
Bromobenzene		ND		ug/l	10	2.8	4
n-Butylbenzene		ND		ug/l	10	2.8	4
sec-Butylbenzene		ND		ug/l	10	2.8	4
tert-Butylbenzene		ND		ug/l	10	2.8	4
o-Chlorotoluene		ND		ug/l	10	2.8	4
p-Chlorotoluene		ND		ug/l	10	2.8	4
1,2-Dibromo-3-chloropropane		ND		ug/l	10	2.8	4
Hexachlorobutadiene		ND		ug/l	10	2.8	4
Isopropylbenzene		46		ug/l	10	2.8	4
p-Isopropyltoluene		ND		ug/l	10	2.8	4
Naphthalene		62		ug/l	10	2.8	4
n-Propylbenzene		22		ug/l	10	2.8	4
1,2,3-Trichlorobenzene		ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene		ND		ug/l	10	2.8	4
1,3,5-Trimethylbenzene		ND		ug/l	10	2.8	4
1,2,4-Trimethylbenzene		26		ug/l	10	2.8	4
1,4-Dioxane		ND		ug/l	1000	160	4
1,4-Diethylbenzene		4.9	J	ug/l	8.0	2.8	4
4-Ethyltoluene		4.0	J	ug/l	8.0	2.8	4

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Date Received: 10/08/13
Sample Location: MANHATTAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,2,4,5-Tetramethylbenzene	2.7	J	ug/l	8.0	2.6	4	
Ethyl ether	ND		ug/l	10	2.8	4	
trans-1,4-Dichloro-2-butene	ND		ug/l	10	2.8	4	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	102		70-130	

10/08/13

Not Specified

Date Received:

Field Prep:

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Sample Location: MANHATTAN, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/14/13 15:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	250	70.	100	
1,1-Dichloroethane	ND		ug/l	250	70.	100	
Chloroform	ND		ug/l	250	70.	100	
Carbon tetrachloride	ND		ug/l	50	13.	100	
1,2-Dichloropropane	ND		ug/l	100	13.	100	
Dibromochloromethane	ND		ug/l	50	15.	100	
1,1,2-Trichloroethane	ND		ug/l	150	50.	100	
Tetrachloroethene	ND		ug/l	50	18.	100	
Chlorobenzene	ND		ug/l	250	70.	100	
Trichlorofluoromethane	ND		ug/l	250	70.	100	
1,2-Dichloroethane	ND		ug/l	50	13.	100	
1,1,1-Trichloroethane	ND		ug/l	250	70.	100	
Bromodichloromethane	ND		ug/l	50	19.	100	
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100	
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100	
1,1-Dichloropropene	ND		ug/l	250	70.	100	
Bromoform	ND		ug/l	200	65.	100	
1,1,2,2-Tetrachloroethane	ND		ug/l	50	14.	100	
Benzene	1100		ug/l	50	16.	100	
Toluene	90	J	ug/l	250	70.	100	
Ethylbenzene	250		ug/l	250	70.	100	
Chloromethane	ND		ug/l	250	70.	100	
Bromomethane	ND		ug/l	250	70.	100	
Vinyl chloride	ND		ug/l	100	33.	100	
Chloroethane	ND		ug/l	250	70.	100	
1,1-Dichloroethene	ND		ug/l	50	14.	100	
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100	
Trichloroethene	ND		ug/l	50	17.	100	
1,2-Dichlorobenzene	ND		ug/l	250	70.	100	
1,3-Dichlorobenzene	ND		ug/l	250	70.	100	
1,4-Dichlorobenzene	ND		ug/l	250	70.	100	

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Campio Eccationi				о.аор.	-	rtot oposinou
Parameter	Re	sult Qualifie	r Units	RL	MDL	Dilution Factor
Volatile Organics by GC	/MS - Westborough Lab					
Methyl tert butyl ether		ND	ug/l	250	70.	100
p/m-Xylene		280	ug/l	250	70.	100
o-Xylene		230 J	ug/l	250	70.	100
cis-1,2-Dichloroethene		ND	ug/l	250	70.	100
Dibromomethane		ND	ug/l	500	100	100
1,2,3-Trichloropropane		ND	ug/l	250	70.	100
Acrylonitrile		ND	ug/l	500	150	100
Styrene		ND	ug/l	250	70.	100
Dichlorodifluoromethane		ND	ug/l	500	100	100
Acetone		ND	ug/l	500	100	100
Carbon disulfide		ND	ug/l	500	100	100
2-Butanone		ND	ug/l	500	100	100
Vinyl acetate		ND	ug/l	500	100	100
4-Methyl-2-pentanone		ND	ug/l	500	100	100
2-Hexanone		ND	ug/l	500	100	100
Bromochloromethane		ND	ug/l	250	70.	100
2,2-Dichloropropane		ND	ug/l	250	70.	100
1,2-Dibromoethane		ND	ug/l	200	65.	100
1,3-Dichloropropane		ND	ug/l	250	70.	100
1,1,1,2-Tetrachloroethane		ND	ug/l	250	70.	100
Bromobenzene		ND	ug/l	250	70.	100
n-Butylbenzene		ND	ug/l	250	70.	100
sec-Butylbenzene		ND	ug/l	250	70.	100
tert-Butylbenzene		ND	ug/l	250	70.	100
o-Chlorotoluene		ND	ug/l	250	70.	100
p-Chlorotoluene		ND	ug/l	250	70.	100
1,2-Dibromo-3-chloropropane		ND	ug/l	250	70.	100
Hexachlorobutadiene		ND	ug/l	250	70.	100
Isopropylbenzene		ND	ug/l	250	70.	100
p-Isopropyltoluene		ND	ug/l	250	70.	100
Naphthalene		600	ug/l	250	70.	100
n-Propylbenzene		ND	ug/l	250	70.	100
1,2,3-Trichlorobenzene		ND	ug/l	250	70.	100
1,2,4-Trichlorobenzene		ND	ug/l	250	70.	100
1,3,5-Trimethylbenzene		ND	ug/l	250	70.	100
1,2,4-Trimethylbenzene		80 J	ug/l	250	70.	100
1,4-Dioxane		ND	ug/l	25000	4100	100
1,4-Diethylbenzene		ND	ug/l	200	70.	100
4-Ethyltoluene		ND	ug/l	200	70.	100
· • · · · · · · · · · · · · · · · · · ·	·		-5.			

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D

Client ID: MW-N2-100813 Sample Location: MANHATTAN, NY Date Collected: 10/08/13 14:20

Date Received: 10/08/13
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	200	65.	100
Ethyl ether	ND		ug/l	250	70.	100
trans-1,4-Dichloro-2-butene	ND		ug/l	250	70.	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	102		70-130	

Project Name: RIVER PLACE I+II Lab Number: L1320135

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough L	ab for sample(s):	01-02 Batch:	WG643772-3
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.33
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.17
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: RIVER PLACE I+II Lab Number: L1320135

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough I	Lab for sample(s):	01-02 Batch:	WG643772-3	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.0	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.0	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	

Project Name: RIVER PLACE I+II Lab Number: L1320135

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/14/13 12:31

Parameter	Result (Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab f	or sample(s):	01-02 Batch:	WG643772-3	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	41.	
1,4-Diethylbenzene	ND	ug/l	2.0	0.70	
4-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	114		70-130					
Toluene-d8	101		70-130					
4-Bromofluorobenzene	103		70-130					
Dibromofluoromethane	109		70-130					

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG643772-1	WG643772-2			
Methylene chloride	103		106		70-130	3	20	
1,1-Dichloroethane	104		108		70-130	4	20	
Chloroform	108		109		70-130	1	20	
Carbon tetrachloride	122		124		63-132	2	20	
1,2-Dichloropropane	101		102		70-130	1	20	
Dibromochloromethane	109		112		63-130	3	20	
1,1,2-Trichloroethane	102		106		70-130	4	20	
Tetrachloroethene	106		107		70-130	1	20	
Chlorobenzene	102		105		75-130	3	20	
Trichlorofluoromethane	119		120		62-150	1	20	
1,2-Dichloroethane	111		113		70-130	2	20	
1,1,1-Trichloroethane	114		115		67-130	1	20	
Bromodichloromethane	111		115		67-130	4	20	
trans-1,3-Dichloropropene	105		111		70-130	6	20	
cis-1,3-Dichloropropene	96		102		70-130	6	20	
1,1-Dichloropropene	103		107		70-130	4	20	
Bromoform	90		99		54-136	10	20	
1,1,2,2-Tetrachloroethane	88		95		67-130	8	20	
Benzene	100		103		70-130	3	20	
Toluene	103		104		70-130	1	20	
Ethylbenzene	107		108		70-130	1	20	

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: V	VG643772-1	WG643772-2			
Chloromethane	109		120		64-130	10		20
Bromomethane	83		85		39-139	2		20
Vinyl chloride	132		134		55-140	2		20
Chloroethane	109		109		55-138	0		20
1,1-Dichloroethene	94		104		61-145	10		20
trans-1,2-Dichloroethene	102		104		70-130	2		20
Trichloroethene	101		106		70-130	5		20
1,2-Dichlorobenzene	97		101		70-130	4		20
1,3-Dichlorobenzene	98		100		70-130	2		20
1,4-Dichlorobenzene	96		98		70-130	2		20
Methyl tert butyl ether	92		102		63-130	10		20
p/m-Xylene	108		108		70-130	0		20
o-Xylene	110		110		70-130	0		20
cis-1,2-Dichloroethene	101		104		70-130	3		20
Dibromomethane	105		109		70-130	4		20
1,2,3-Trichloropropane	89		94		64-130	5		20
Acrylonitrile	102		117		70-130	14		20
Styrene	111		110		70-130	1		20
Dichlorodifluoromethane	113		148	Q	36-147	27	Q	20
Acetone	111		131		58-148	17		20
Carbon disulfide	107		111		51-130	4		20

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: V	VG643772-1	WG643772-2			
2-Butanone	84		97		63-138	14	20	
Vinyl acetate	77		90		70-130	16	20	
4-Methyl-2-pentanone	85		96		59-130	12	20	
2-Hexanone	79		93		57-130	16	20	
Bromochloromethane	102		105		70-130	3	20	
2,2-Dichloropropane	109		115		63-133	5	20	
1,2-Dibromoethane	95		100		70-130	5	20	
1,3-Dichloropropane	99		105		70-130	6	20	
1,1,1,2-Tetrachloroethane	115		116		64-130	1	20	
Bromobenzene	95		97		70-130	2	20	
n-Butylbenzene	103		102		53-136	1	20	
sec-Butylbenzene	103		103		70-130	0	20	
tert-Butylbenzene	101		102		70-130	1	20	
o-Chlorotoluene	98		99		70-130	1	20	
p-Chlorotoluene	99		99		70-130	0	20	
1,2-Dibromo-3-chloropropane	95		113		41-144	17	20	
Hexachlorobutadiene	108		117		63-130	8	20	
Isopropylbenzene	112		111		70-130	1	20	
p-Isopropyltoluene	104		104		70-130	0	20	
Naphthalene	82		100		70-130	20	20	
n-Propylbenzene	97		100		69-130	3	20	

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westbore	ough Lab Associated san	nple(s): 01-02	2 Batch:	WG643772-1	WG643772-2			
1,2,3-Trichlorobenzene	88		107		70-130	19		20
1,2,4-Trichlorobenzene	87		101		70-130	15		20
1,3,5-Trimethylbenzene	102		100		64-130	2		20
1,2,4-Trimethylbenzene	102		103		70-130	1		20
1,4-Dioxane	110		123		56-162	11		20
1,4-Diethylbenzene	99		105		70-130	6		20
4-Ethyltoluene	100		102		70-130	2		20
1,2,4,5-Tetramethylbenzene	104		104		70-130	0		20
Ethyl ether	93		101		59-134	8		20
trans-1,4-Dichloro-2-butene	84		93		70-130	10		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	117		116		70-130	
Toluene-d8	101		100		70-130	
4-Bromofluorobenzene	92		94		70-130	
Dibromofluoromethane	109		108		70-130	

SEMIVOLATILES

10/08/13

Not Specified

10/10/13 03:42

EPA 3510C

Date Received:

Extraction Date:

Extraction Method:

Field Prep:

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813
Sample Location: MANHATTAN, NY

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 10/15/13 13:18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	25	3.3	5
Bis(2-chloroethyl)ether	ND		ug/l	10	1.9	5
1,2-Dichlorobenzene	ND		ug/l	10	2.7	5
1,3-Dichlorobenzene	ND		ug/l	10	2.7	5
1,4-Dichlorobenzene	ND		ug/l	10	2.8	5
3,3'-Dichlorobenzidine	ND		ug/l	25	4.3	5
2,4-Dinitrotoluene	ND		ug/l	25	2.2	5
2,6-Dinitrotoluene	ND		ug/l	25	2.3	5
4-Chlorophenyl phenyl ether	ND		ug/l	10	3.0	5
4-Bromophenyl phenyl ether	ND		ug/l	10	3.4	5
Bis(2-chloroisopropyl)ether	ND		ug/l	10	2.5	5
Bis(2-chloroethoxy)methane	ND		ug/l	25	2.0	5
Hexachlorocyclopentadiene	ND		ug/l	100	10.	5
Isophorone	ND		ug/l	25	1.7	5
Nitrobenzene	ND		ug/l	10	2.5	5
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	10	3.5	5
n-Nitrosodi-n-propylamine	ND		ug/l	25	2.0	5
Bis(2-Ethylhexyl)phthalate	ND		ug/l	15	7.0	5
Butyl benzyl phthalate	ND		ug/l	25	2.3	5
Di-n-butylphthalate	ND		ug/l	25	2.7	5
Di-n-octylphthalate	ND		ug/l	25	2.7	5
Diethyl phthalate	ND		ug/l	25	2.2	5
Dimethyl phthalate	ND		ug/l	25	2.2	5
Biphenyl	13		ug/l	10	2.5	5
4-Chloroaniline	ND		ug/l	25	4.1	5
2-Nitroaniline	ND		ug/l	25	2.0	5
3-Nitroaniline	ND		ug/l	25	3.0	5
4-Nitroaniline	ND		ug/l	25	2.8	5
Dibenzofuran	10		ug/l	10	2.4	5
1,2,4,5-Tetrachlorobenzene	ND		ug/l	50	3.3	5
Acetophenone	ND		ug/l	25	2.8	5

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor	
estborough Lab						
ND		ug/l	25	2.2	5	
ND		ug/l	10	2.5	5	
ND		ug/l	10	1.7	5	
ND		ug/l	25	2.1	5	
ND		ug/l	25	6.2	5	
ND		ug/l	50	2.4	5	
ND		ug/l	50	6.1	5	
ND		ug/l	100	7.0	5	
ND		ug/l	50	2.9	5	
ND		ug/l	25	1.3	5	
ND		ug/l	25	2.6	5	
ND		ug/l	25	2.4	5	
ND		ug/l	25	2.2	5	
ND		ug/l	250	5.0	5	
ND		ug/l	10	2.4	5	
22		ug/l	10	2.6	5	
	ND N	ND N	ND	ND	ND	ND

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	24		10-120	
Nitrobenzene-d5	104		23-120	
2-Fluorobiphenyl	94		15-120	
2,4,6-Tribromophenol	91		10-120	
4-Terphenyl-d14	94		41-149	

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 D Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813
Sample Location: MANHATTAN, NY

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 1,8270D-SIM 10/12/13 03:02

Analyst: HL

Date Received: 10/08/13
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 10/10/13 03:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	/I - Westborough La	ab					
Acenaphthene	39		ug/l	1.0	0.32	5	
2-Chloronaphthalene	ND		ug/l	1.0	0.33	5	
Fluoranthene	15		ug/l	1.0	0.22	5	
Hexachlorobutadiene	ND		ug/l	2.5	0.36	5	
Naphthalene	51		ug/l	1.0	0.32	5	
Benzo(a)anthracene	6.5		ug/l	1.0	0.28	5	
Benzo(a)pyrene	6.4		ug/l	1.0	0.34	5	
Benzo(b)fluoranthene	4.7		ug/l	1.0	0.36	5	
Benzo(k)fluoranthene	3.3		ug/l	1.0	0.34	5	
Chrysene	6.0		ug/l	1.0	0.24	5	
Acenaphthylene	5.9		ug/l	1.0	0.25	5	
Anthracene	6.0		ug/l	1.0	0.32	5	
Benzo(ghi)perylene	4.7		ug/l	1.0	0.35	5	
Fluorene	16		ug/l	1.0	0.28	5	
Phenanthrene	11		ug/l	1.0	0.32	5	
Dibenzo(a,h)anthracene	0.84	J	ug/l	1.0	0.36	5	
Indeno(1,2,3-cd)Pyrene	3.1		ug/l	1.0	0.40	5	
Pyrene	21		ug/l	1.0	0.28	5	
2-Methylnaphthalene	ND		ug/l	1.0	0.30	5	
Pentachlorophenol	ND		ug/l	4.0	0.94	5	
Hexachlorobenzene	ND		ug/l	4.0	0.07	5	
Hexachloroethane	ND		ug/l	4.0	0.32	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	34	21-120
Phenol-d6	18	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	110	15-120
2,4,6-Tribromophenol	111	10-120
4-Terphenyl-d14	117	41-149

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D2 Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Date Received: 10/08/13
Sample Location: MANHATTAN, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/10/13 03:43

Analytical Date: 10/15/13 09:48

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL
 Dilution Factor

 Semivolatile Organics by GC/MS-SIM - Westborough Lab

 Naphthalene
 2800
 ug/l
 50
 16.
 250

Analyst:

HL

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813
Sample Location: MANHATTAN, NY

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 10/15/13 13:42

Analyst: PS

Date Received: 10/08/13
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 10/10/13 03:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	25	3.3	5
Bis(2-chloroethyl)ether	ND		ug/l	10	1.9	5
1,2-Dichlorobenzene	ND		ug/l	10	2.7	5
1,3-Dichlorobenzene	ND		ug/l	10	2.7	5
1,4-Dichlorobenzene	ND		ug/l	10	2.8	5
3,3'-Dichlorobenzidine	ND		ug/l	25	4.3	5
2,4-Dinitrotoluene	ND		ug/l	25	2.2	5
2,6-Dinitrotoluene	ND		ug/l	25	2.3	5
4-Chlorophenyl phenyl ether	ND		ug/l	10	3.0	5
4-Bromophenyl phenyl ether	ND		ug/l	10	3.4	5
Bis(2-chloroisopropyl)ether	ND		ug/l	10	2.5	5
Bis(2-chloroethoxy)methane	ND		ug/l	25	2.0	5
Hexachlorocyclopentadiene	ND		ug/l	100	10.	5
Isophorone	ND		ug/l	25	1.7	5
Nitrobenzene	ND		ug/l	10	2.5	5
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	10	3.5	5
n-Nitrosodi-n-propylamine	ND		ug/l	25	2.0	5
Bis(2-Ethylhexyl)phthalate	ND		ug/l	15	7.0	5
Butyl benzyl phthalate	ND		ug/l	25	2.3	5
Di-n-butylphthalate	ND		ug/l	25	2.7	5
Di-n-octylphthalate	ND		ug/l	25	2.7	5
Diethyl phthalate	ND		ug/l	25	2.2	5
Dimethyl phthalate	ND		ug/l	25	2.2	5
Biphenyl	28		ug/l	10	2.5	5
4-Chloroaniline	ND		ug/l	25	4.1	5
2-Nitroaniline	ND		ug/l	25	2.0	5
3-Nitroaniline	ND		ug/l	25	3.0	5
4-Nitroaniline	ND		ug/l	25	2.8	5
Dibenzofuran	41		ug/l	10	2.4	5
1,2,4,5-Tetrachlorobenzene	ND		ug/l	50	3.3	5
Acetophenone	ND		ug/l	25	2.8	5

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 D Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Date Received: 10/08/13
Sample Location: MANHATTAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
2,4,6-Trichlorophenol	ND		ug/l	25	2.2	5
P-Chloro-M-Cresol	ND		ug/l	10	2.5	5
2-Chlorophenol	ND		ug/l	10	1.7	5
2,4-Dichlorophenol	ND		ug/l	25	2.1	5
2,4-Dimethylphenol	89		ug/l	25	6.2	5
2-Nitrophenol	ND		ug/l	50	2.4	5
4-Nitrophenol	ND		ug/l	50	6.1	5
2,4-Dinitrophenol	ND		ug/l	100	7.0	5
4,6-Dinitro-o-cresol	ND		ug/l	50	2.9	5
Phenol	ND		ug/l	25	1.3	5
2-Methylphenol	ND		ug/l	25	2.6	5
3-Methylphenol/4-Methylphenol	ND		ug/l	25	2.4	5
2,4,5-Trichlorophenol	ND		ug/l	25	2.2	5
Benzoic Acid	ND		ug/l	250	5.0	5
Benzyl Alcohol	ND		ug/l	10	2.4	5
Carbazole	110		ug/l	10	2.6	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	28		10-120	
Nitrobenzene-d5	100		23-120	
2-Fluorobiphenyl	89		15-120	
2,4,6-Tribromophenol	101		10-120	
4-Terphenyl-d14	89		41-149	

10/08/13

Date Received:

Project Name: Lab Number: RIVER PLACE I+II L1320135

Project Number: 170040901 Report Date: 10/15/13

SAMPLE RESULTS

Lab ID: L1320135-02 D Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Sample Location: MANHATTAN, NY

Sample Location:	MANHATTAN, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	10/10/13 03:43
Analytical Date:	10/12/13 03:30		
Analyst:	HL		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SII	M - Westborough La	b					
Acenaphthene	96		ug/l	1.0	0.32	5	
2-Chloronaphthalene	ND		ug/l	1.0	0.33	5	
Fluoranthene	7.3		ug/l	1.0	0.22	5	
Hexachlorobutadiene	ND		ug/l	2.5	0.36	5	
Naphthalene	740	E	ug/l	1.0	0.32	5	
Benzo(a)anthracene	1.5		ug/l	1.0	0.28	5	
Benzo(a)pyrene	1.2		ug/l	1.0	0.34	5	
Benzo(b)fluoranthene	1.2		ug/l	1.0	0.36	5	
Benzo(k)fluoranthene	0.80	J	ug/l	1.0	0.34	5	
Chrysene	1.0		ug/l	1.0	0.24	5	
Acenaphthylene	6.9		ug/l	1.0	0.25	5	
Anthracene	4.8		ug/l	1.0	0.32	5	
Benzo(ghi)perylene	0.74	J	ug/l	1.0	0.35	5	
Fluorene	29		ug/l	1.0	0.28	5	
Phenanthrene	33		ug/l	1.0	0.32	5	
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.36	5	
Indeno(1,2,3-cd)Pyrene	0.64	J	ug/l	1.0	0.40	5	
Pyrene	5.2		ug/l	1.0	0.28	5	
2-Methylnaphthalene	40		ug/l	1.0	0.30	5	
Pentachlorophenol	ND		ug/l	4.0	0.94	5	
Hexachlorobenzene	ND		ug/l	4.0	0.07	5	
Hexachloroethane	ND		ug/l	4.0	0.32	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	21-120
Phenol-d6	22	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	97	15-120
2,4,6-Tribromophenol	114	10-120
4-Terphenyl-d14	113	41-149

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Report Date: 10/15/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 1,8270D-SIM 10/12/13 00:15

Analyst: HL

Extraction Method: EPA 3510C Extraction Date: 10/10/13 03:43

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample(s)	: 01-02	Batch: WG642708-1
Acenaphthene	ND		ug/l	0.20	0.06
2-Chloronaphthalene	ND		ug/l	0.20	0.07
Fluoranthene	ND		ug/l	0.20	0.04
Hexachlorobutadiene	ND		ug/l	0.50	0.07
Naphthalene	ND		ug/l	0.20	0.06
Benzo(a)anthracene	ND		ug/l	0.20	0.06
Benzo(a)pyrene	ND		ug/l	0.20	0.07
Benzo(b)fluoranthene	ND		ug/l	0.20	0.07
Benzo(k)fluoranthene	ND		ug/l	0.20	0.07
Chrysene	ND		ug/l	0.20	0.05
Acenaphthylene	ND		ug/l	0.20	0.05
Anthracene	ND		ug/l	0.20	0.06
Benzo(ghi)perylene	ND		ug/l	0.20	0.07
Fluorene	ND		ug/l	0.20	0.06
Phenanthrene	ND		ug/l	0.20	0.06
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.07
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20	0.08
Pyrene	ND		ug/l	0.20	0.06
2-Methylnaphthalene	ND		ug/l	0.20	0.06
Pentachlorophenol	ND		ug/l	0.80	0.19
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.07

Project Name: RIVER PLACE I+II Lab Number: L1320135

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 10/12/13 00:15 Extraction Date: 10/10/13 03:43

Analyst: HL

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-02 Batch: WG642708-1

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
2-Fluorophenol	38		21-120					
Phenol-d6	22		10-120					
Nitrobenzene-d5	86		23-120					
2-Fluorobiphenyl	94		15-120					
2,4,6-Tribromophenol	126	Q	10-120					
4-Terphenyl-d14	116		41-149					

Project Name: RIVER PLACE I+II

Project Number: 170040901 Lab Number: L1320135

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D An

An

Extraction Method: EPA 3510C

10/15/13

Analytical Date:	10/13/13 19:36	Extraction Date:	10/10/13 03:42
Analyst:	PS		

arameter	Result	Qualifier	Units	RL		MDL	
emivolatile Organics by GC/MS	- Westborougl	h Lab for s	ample(s):	01-02	Batch:	WG642712-	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.67	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.39	
1,2-Dichlorobenzene	ND		ug/l	2.0		0.55	
1,3-Dichlorobenzene	ND		ug/l	2.0		0.55	
1,4-Dichlorobenzene	ND		ug/l	2.0		0.55	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		0.85	
2,4-Dinitrotoluene	ND		ug/l	5.0		0.45	
2,6-Dinitrotoluene	ND		ug/l	5.0		0.46	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.61	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.67	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.50	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.40	
Hexachlorocyclopentadiene	ND		ug/l	20		2.1	
Isophorone	ND		ug/l	5.0		0.35	
Nitrobenzene	ND		ug/l	2.0		0.50	
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	2.0		0.70	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.39	
Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0		1.4	
Butyl benzyl phthalate	ND		ug/l	5.0		0.46	
Di-n-butylphthalate	ND		ug/l	5.0		0.54	
Di-n-octylphthalate	ND		ug/l	5.0		0.53	
Diethyl phthalate	ND		ug/l	5.0		0.45	
Dimethyl phthalate	ND		ug/l	5.0		0.45	
Biphenyl	ND		ug/l	2.0		0.50	
4-Chloroaniline	ND		ug/l	5.0		0.83	
2-Nitroaniline	ND		ug/l	5.0		0.40	
3-Nitroaniline	ND		ug/l	5.0		0.59	
4-Nitroaniline	ND		ug/l	5.0		0.55	
Dibenzofuran	ND		ug/l	2.0		0.47	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.65	
Acetophenone	ND		ug/l	5.0		0.55	

L1320135

Lab Number:

Project Name: RIVER PLACE I+II

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 1,8270D 10/13/13 19:36

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 10/10/13 03:42

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/M	S - Westborough	n Lab for s	ample(s):	01-02	Batch:	WG642712-1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.45	
P-Chloro-M-Cresol	ND		ug/l	2.0		0.50	
2-Chlorophenol	ND		ug/l	2.0		0.34	
2,4-Dichlorophenol	ND		ug/l	5.0		0.43	
2,4-Dimethylphenol	ND		ug/l	5.0		1.2	
2-Nitrophenol	ND		ug/l	10		0.48	
4-Nitrophenol	ND		ug/l	10		1.2	
2,4-Dinitrophenol	ND		ug/l	20		1.4	
4,6-Dinitro-o-cresol	ND		ug/l	10		0.59	
Phenol	ND		ug/l	5.0		0.26	
2-Methylphenol	ND		ug/l	5.0		0.53	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.47	
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.45	
Benzoic Acid	ND		ug/l	50		1.0	
Benzyl Alcohol	ND		ug/l	2.0		0.47	
Carbazole	ND		ug/l	2.0		0.53	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	23	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	86	15-120
2,4,6-Tribromophenol	95	10-120
4-Terphenyl-d14	97	41-149
4-Terphenyl-d14	97	41-149

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recove Qual Limits		RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - V	Vestborough Lab A	ssociated sample(s): 01-02	Batch: WG642708-2	WG642708-3	
Acenaphthene	91	91	37-111	0	40
2-Chloronaphthalene	95	95	40-140	0	40
Fluoranthene	106	110	40-140	4	40
Hexachlorobutadiene	78	80	40-140	3	40
Naphthalene	85	87	40-140	2	40
Benzo(a)anthracene	97	103	40-140	6	40
Benzo(a)pyrene	87	96	40-140	10	40
Benzo(b)fluoranthene	82	108	40-140	27	40
Benzo(k)fluoranthene	106	98	40-140	8	40
Chrysene	92	98	40-140	6	40
Acenaphthylene	107	108	40-140	1	40
Anthracene	94	98	40-140	4	40
Benzo(ghi)perylene	75	101	40-140	30	40
Fluorene	102	105	40-140	3	40
Phenanthrene	92	94	40-140	2	40
Dibenzo(a,h)anthracene	82	103	40-140	23	40
Indeno(1,2,3-cd)Pyrene	81	104	40-140	25	40
Pyrene	103	106	26-127	3	40
2-Methylnaphthalene	88	87	40-140	1	40
Pentachlorophenol	77	87	9-103	12	40
Hexachlorobenzene	103	108	40-140	5	40

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1320135

Report Date:

10/15/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Semivolatile Organics by GC/MS-SIM - We	stborough Lab Asse	ociated sam	ple(s): 01-02	Batch: WG	9642708-2 WG642	708-3	
Hexachloroethane	66		69		40-140	4	40

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	42		43		21-120	
Phenol-d6	25		25		10-120	
Nitrobenzene-d5	93		97		23-120	
2-Fluorobiphenyl	108		109		15-120	
2,4,6-Tribromophenol	140	Q	147	Q	10-120	
4-Terphenyl-d14	126		133		41-149	

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

ameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS - Westl	borough Lab Associated sample	(s): 01-02 Batch	: WG642712-2 WG642712	2-3	
1,2,4-Trichlorobenzene	80	82	39-98	2	30
Bis(2-chloroethyl)ether	83	92	40-140	10	30
1,2-Dichlorobenzene	75	75	40-140	0	30
1,3-Dichlorobenzene	70	72	40-140	3	30
1,4-Dichlorobenzene	73	74	36-97	1	30
3,3'-Dichlorobenzidine	65	68	40-140	5	30
2,4-Dinitrotoluene	88	101	Q 24-96	14	30
2,6-Dinitrotoluene	86	96	40-140	11	30
4-Chlorophenyl phenyl ether	97	104	40-140	7	30
4-Bromophenyl phenyl ether	94	103	40-140	9	30
Bis(2-chloroisopropyl)ether	82	91	40-140	10	30
Bis(2-chloroethoxy)methane	82	91	40-140	10	30
Hexachlorocyclopentadiene	49	50	40-140	2	30
Isophorone	85	99	40-140	15	30
Nitrobenzene	97	103	40-140	6	30
NitrosoDiPhenylAmine(NDPA)/DPA	91	102	40-140	11	30
n-Nitrosodi-n-propylamine	90	102	29-132	13	30
Bis(2-Ethylhexyl)phthalate	112	118	40-140	5	30
Butyl benzyl phthalate	89	99	40-140	11	30
Di-n-butylphthalate	99	110	40-140	11	30
Di-n-octylphthalate	104	114	40-140	9	30

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	iated sample(s):	01-02 Batch:	WG642712-2 WG642712-3	3	
Diethyl phthalate	94		102	40-140	8	30
Dimethyl phthalate	94		104	40-140	10	30
Biphenyl	91		100		9	30
4-Chloroaniline	56		69	40-140	21	30
2-Nitroaniline	82		92	52-143	11	30
3-Nitroaniline	54		64	25-145	17	30
4-Nitroaniline	70		84	51-143	18	30
Dibenzofuran	95		104	40-140	9	30
1,2,4,5-Tetrachlorobenzene	108		114	2-134	5	30
Acetophenone	87		97	39-129	11	30
2,4,6-Trichlorophenol	85		96	30-130	12	30
P-Chloro-M-Cresol	79		90	23-97	13	30
2-Chlorophenol	72		81	27-123	12	30
2,4-Dichlorophenol	88		98	30-130	11	30
2,4-Dimethylphenol	71		77	30-130	8	30
2-Nitrophenol	86		95	30-130	10	30
4-Nitrophenol	30		34	10-80	13	30
2,4-Dinitrophenol	31		41	20-130	28	30
4,6-Dinitro-o-cresol	66		82	20-164	22	30
Phenol	26		30	12-110	14	30
2-Methylphenol	55		63	30-130	14	30

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Report Date: 10/15/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01-02 Batch	: WG6427′	12-2 WG642712-	3		
3-Methylphenol/4-Methylphenol	56		64		30-130	13		30
2,4,5-Trichlorophenol	84		98		30-130	15		30
Benzoic Acid	2		2			9		30
Benzyl Alcohol	54		64			17		30
Carbazole	94		106		55-144	12		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	43		48		21-120	
Phenol-d6	26		31		10-120	
Nitrobenzene-d5	97		109		23-120	
2-Fluorobiphenyl	101		115		15-120	
2,4,6-Tribromophenol	111		128	Q	10-120	
4-Terphenyl-d14	93		108		41-149	

METALS

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

 Lab ID:
 L1320135-01
 Date Collected:
 10/08/13 12:45

 Client ID:
 MW-S2-100813
 Date Received:
 10/08/13

Sample Location: MANHATTAN, NY Field Prep: Not Specified Matrix: Water

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - West	borough L	ab									
Aluminum, Total	1.96		mg/l	0.200	0.0400	20	10/12/13 10:30	10/14/13 20:20	EPA 3005A	1,6020A	ВМ
Antimony, Total	0.00028	J	mg/l	0.00100	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Arsenic, Total	0.00904		mg/l	0.00050	0.00020	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Barium, Total	0.1727		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Beryllium, Total	0.00016	J	mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Cadmium, Total	0.00012	J	mg/l	0.00020	0.00005	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Calcium, Total	201.		mg/l	2.00	0.640	20	10/12/13 10:30	10/14/13 20:20	EPA 3005A	1,6020A	ВМ
Chromium, Total	0.00611		mg/l	0.00100	0.00020	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Cobalt, Total	0.00457		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Copper, Total	0.01026		mg/l	0.00100	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Iron, Total	5.83		mg/l	0.0500	0.0130	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Lead, Total	0.07029		mg/l	0.00100	0.00020	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Magnesium, Total	53.8		mg/l	1.40	0.460	20	10/12/13 10:30	10/14/13 20:20	EPA 3005A	1,6020A	ВМ
Manganese, Total	0.2796		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Mercury, Total	ND		mg/l	0.00020	0.00006	1	10/10/13 08:00	10/10/13 13:43	EPA 7470A	1,7470A	DR
Nickel, Total	0.00602		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Potassium, Total	19.8		mg/l	0.100	0.0270	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Selenium, Total	0.00215	J	mg/l	0.00500	0.00030	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Silver, Total	ND		mg/l	0.00040	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Sodium, Total	49.4		mg/l	2.00	0.300	20	10/12/13 10:30	10/14/13 20:20	EPA 3005A	1,6020A	ВМ
Thallium, Total	0.00003	J	mg/l	0.00050	0.00003	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Vanadium, Total	0.00651		mg/l	0.00500	0.00010	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ
Zinc, Total	0.02243		mg/l	0.01000	0.00120	1	10/12/13 10:30	10/15/13 02:41	EPA 3005A	1,6020A	ВМ

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

 Lab ID:
 L1320135-02
 Date Collected:
 10/08/13 14:20

 Client ID:
 MW-N2-100813
 Date Received:
 10/08/13

Sample Location: MANHATTAN, NY Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Westb	orough L	.ab									
Aluminum, Total	0.0341		mg/l	0.0100	0.00200	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Antimony, Total	0.00047	J	mg/l	0.00100	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Arsenic, Total	0.00678		mg/l	0.00050	0.00020	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Barium, Total	0.2345		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Calcium, Total	209.		mg/l	2.00	0.640	20	10/12/13 10:30	10/14/13 20:27	EPA 3005A	1,6020A	ВМ
Chromium, Total	0.00130		mg/l	0.00100	0.00020	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Cobalt, Total	0.00829		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Copper, Total	0.00169		mg/l	0.00100	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Iron, Total	1.78		mg/l	0.0500	0.0130	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Lead, Total	0.00179		mg/l	0.00100	0.00020	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Magnesium, Total	57.7		mg/l	1.40	0.460	20	10/12/13 10:30	10/14/13 20:27	EPA 3005A	1,6020A	ВМ
Manganese, Total	0.3375		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Mercury, Total	ND		mg/l	0.00020	0.00006	1	10/10/13 08:00	10/10/13 13:49	EPA 7470A	1,7470A	DR
Nickel, Total	0.00298		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Potassium, Total	27.8		mg/l	0.100	0.0270	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Selenium, Total	0.00418	J	mg/l	0.00500	0.00030	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Silver, Total	ND		mg/l	0.00040	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Sodium, Total	175.		mg/l	2.00	0.300	20	10/12/13 10:30	10/14/13 20:27	EPA 3005A	1,6020A	ВМ
Thallium, Total	ND		mg/l	0.00050	0.00003	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Vanadium, Total	0.00329	J	mg/l	0.00500	0.00010	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ
Zinc, Total	0.01730		mg/l	0.01000	0.00120	1	10/12/13 10:30	10/15/13 02:47	EPA 3005A	1,6020A	ВМ

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Report Date: 10/15/13

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westboro	ugh Lab	for sample(s	s): 01-02	Batch:	WG64	2730-1				
Mercury, Total	ND		mg/l	0.00020	0.0000	6 1	10/10/13 08:00	10/10/13 13:28	3 1,7470A	DR

Prep Information

Digestion Method: EPA 7470A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westborou	igh Lab	for sample(s): 01-02	Batch:	WG643	3449-1				
Aluminum, Total	ND		mg/l	0.0100	0.00200	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Antimony, Total	0.00019	J	mg/l	0.00100	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Arsenic, Total	ND		mg/l	0.00050	0.00020	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Barium, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Calcium, Total	ND		mg/l	0.100	0.0320	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Chromium, Total	0.00047	J	mg/l	0.00100	0.00020	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Cobalt, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Copper, Total	ND		mg/l	0.00100	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Iron, Total	ND		mg/l	0.0500	0.0130	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Lead, Total	ND		mg/l	0.00100	0.00020	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Magnesium, Total	ND		mg/l	0.0700	0.0230	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Manganese, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Nickel, Total	ND		mg/l	0.00050	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Potassium, Total	ND		mg/l	0.100	0.0270	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Selenium, Total	ND		mg/l	0.00500	0.00030	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Silver, Total	ND		mg/l	0.00040	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Sodium, Total	ND		mg/l	0.100	0.0150	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Thallium, Total	ND		mg/l	0.00050	0.00003	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Vanadium, Total	ND		mg/l	0.00500	0.00010	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ
Zinc, Total	ND		mg/l	0.01000	0.00120	1	10/12/13 10:30	10/14/13 19:43	1,6020A	ВМ

Project Name: RIVER PLACE I+II Lab Number: L1320135

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: RIVER PLACE I+II

Lab Number:

L1320135

Project Number: 170040901

Poport Data

Report Date: 10/15/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sa	mple(s): 01-02	Batch: WG	642730-2					
Mercury, Total	114		-		80-120	-		

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Report Date: 10/15/13

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Fotal Metals - Westborough Lab Associated sar	mple(s): 01-02	Batch: WG643449-2			
Aluminum, Total	106	-	80-120	-	
Antimony, Total	92	-	80-120	-	
Arsenic, Total	104	-	80-120	-	
Barium, Total	101	-	80-120	-	
Beryllium, Total	103	-	80-120	-	
Cadmium, Total	107	-	80-120	-	
Calcium, Total	106	-	80-120	-	
Chromium, Total	99	-	80-120	-	
Cobalt, Total	102	-	80-120	-	
Copper, Total	101	-	80-120	-	
Iron, Total	98	-	80-120	-	
Lead, Total	104	-	80-120	-	
Magnesium, Total	110	-	80-120	-	
Manganese, Total	114	-	80-120	-	
Nickel, Total	101	-	80-120	-	
Potassium, Total	107	-	80-120	-	
Selenium, Total	107	-	80-120	-	
Silver, Total	99	-	80-120	-	
Sodium, Total	112	-	80-120	-	
Thallium, Total	98	-	80-120	-	
Vanadium, Total	99	-	80-120	-	

Project Name: RIVER PLACE I+II

Project Number:

170040901

Lab Number:

L1320135

Report Date:

10/15/13

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab Assoc	iated sample(s): 01-02 Ba	tch: WG643449-2			
Zinc, Total	106	-	80-120	-	

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1320135

Report Date:

10/15/13

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Qual	RPD Limits
Total Metals - Westborough Lab	o Associated	sample(s):	01-02 QC	Batch ID: WG	642730-4	4 QCS	sample: L131985	7-01	Client ID:	MS Sample	
Mercury, Total	ND	0.005	0.00605	121		-	-		70-130	-	20

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135

Report Date: 10/15/13

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD		RPD Limits
Total Metals - Westborough Lab	o Associated	l sample(s):	01-02 QC	Batch ID: WG	643449-3 WG6434	49-4 QC Sa	mple: L1320138-01	Clier	nt ID:	MS Sample
Aluminum, Total	0.122	2	2.24	106	2.32	110	80-120	4		20
Antimony, Total	0.00011J	0.5	0.4741	95	0.3673	73	Q 80-120	25	Q	20
Arsenic, Total	0.00058	0.12	0.1309	109	0.1198	100	80-120	9		20
Barium, Total	0.03407	2	2.058	101	2.172	107	80-120	5		20
Beryllium, Total	ND	0.05	0.05037	101	0.05337	107	80-120	6		20
Cadmium, Total	0.00015J	0.051	0.05520	108	0.05825	114	80-120	5		20
Calcium, Total	76.2	10	85.4	92	90.2	140	Q 80-120	5		20
Chromium, Total	0.00176	0.2	0.1988	99	0.2079	104	80-120	4		20
Cobalt, Total	0.00130	0.5	0.5132	103	0.5327	106	80-120	4		20
Copper, Total	0.00544	0.25	0.2543	102	0.2627	105	80-120	3		20
Iron, Total	0.513	1	1.63	107	1.60	104	80-120	2		20
Lead, Total	0.00086J	0.51	0.5357	105	0.5568	109	80-120	4		20
Magnesium, Total	15.8	10	28.6	106	29.8	118	80-120	4		20
Manganese, Total	1.303	0.5	1.802	100	1.877	115	80-120	4		20
Nickel, Total	0.00338	0.5	0.5041	101	0.5240	105	80-120	4		20
Potassium, Total	7.93	10	19.2	105	19.8	111	80-120	3		20
Selenium, Total	0.00165J	0.12	0.139	116	0.133	111	80-120	4		20
Silver, Total	ND	0.05	0.04957	99	0.03225	64	Q 80-120	42	Q	20
Sodium, Total	87.0	10	96.1	91	102	150	Q 80-120	6		20
Thallium, Total	0.00007J	0.12	0.1212	101	0.1260	105	80-120	4		20
Vanadium, Total	0.00048J	0.5	0.5003	100	0.5141	103	80-120	3		20

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1320135

Report Date:

10/15/13

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westborough La	b Associated	sample(s):	01-02 QC	Batch ID: WG643	3449-3 WG6434	49-4 QC Sam	ple: L1320138-01	Client	ID: MS Sample
Zinc, Total	0.02846	0.5	0.5516	110	0.5733	115	80-120	4	20

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

RIVER PLACE I+II

L1320135

10/15/13 Project Number: 170040901 Report Date:

Parameter	Nativ	ve Sample	Duplicate	Duplicate Sample		RPD	Qual RI	PD Limits
Total Metals - Westborough Lab Associated sample(s): 01-02	QC Batch ID:	WG642730-3	QC Sample:	L1319857-01	Client ID	: DUP Samp	le
Mercury, Total		ND	N	D	mg/l	NC		20

Project Name:

INORGANICS & MISCELLANEOUS

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-01 Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Matrix: Water

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Cyanide, Total	1.03	mg/l	0.025	0.006	5	10/11/13 13:15	10/11/13 16:00	1,9010C/9012A	JO

Project Name: RIVER PLACE I+II Lab Number: L1320135

SAMPLE RESULTS

Lab ID: L1320135-02 Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Matrix: Water

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Cyanide, Total	1.21		mg/l	0.025	0.006	5	10/11/13 13:15	10/11/13 16:01	1,9010C/9012A	JO

Project Name: RIVER PLACE I+II

L1320135 Project Number: 170040901 **Report Date:**

10/15/13

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for samp	ole(s): 01	1-02 Bat	tch: W0	G643212-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	10/11/13 13:15	10/11/13 15:54	1,9010C/9012	2A JO

Project Name: RIVER PLACE I+II

Lab Number:

L1320135 10/15/13

Project Number: 170040901

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG6432	212-2 WG	643212-3				
Cyanide, Total	100	102		80-120	2		20	

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1320135

Report Date:

10/15/13

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry - Westbo Sample	rough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG643	212-4 V	WG643212-5	QC Sample: L1320	138-01	Client ID: MS
Cyanide, Total	0.003J	0.2	0.194	97		0.196	98	80-120	1	20

Project Name: RIVER PLACE I+II

Lab Number: L1320135 **Report Date:** 10/15/13 Project Number: 170040901

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1320135-01A	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-01B	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-01C	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-01D	Plastic 500ml HNO3 preserved	Α	<2	3.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),KI-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),BB-6020T(180),BB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AG-6020T(180),AL-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180)
L1320135-01E	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	TCN-9010(14)
L1320135-01F	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1320135-01G	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1320135-01H	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	TCN-9010(14)
L1320135-02A	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-02B	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-02C	Vial HCI preserved	Α	N/A	3.8	Υ	Absent	NYTCL-8260(14)
L1320135-02D	Plastic 500ml HNO3 preserved	A	<2	3.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),KI-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),BB-6020T(180),BB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AS-6020T(180),CD-6020T(180),CO-6020T(180),CO-6020T(180)
L1320135-02E	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	TCN-9010(14)

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number: L1320135 **Report Date:** 10/15/13

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1320135-02F	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1320135-02G	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1320135-02H	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	TCN-9010(14)

Project Name: RIVER PLACE I+II Lab Number: L1320135

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with "J" Qualifiers

Project Name:RIVER PLACE I+IILab Number:L1320135Project Number:170040901Report Date:10/15/13

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with "J" Qualifiers

Project Name: RIVER PLACE I+II Lab Number: L1320135
Project Number: 170040901 Report Date: 10/15/13

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised October 1, 2013 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223, Enumeration and P/A), E. Coli. – Colilert (SM9223, Enumeration and P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

State of Illinois Certificate/Lab ID: 003155. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM2120B, 2320B, 2510B, 2540C, SM4500CN-CE, 4500F-C, 4500H-B, 4500NO3-F, 5310C, EPA 200.7, 200.8, 245.1, 300.0. Organic Parameters: EPA 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: SM2120B, 2310B, 2320B, 2340B, 2510B, 2540B, 2540C, 2540D, SM4500CL-E, 4500CN-E, 4500F-C, 4500H-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-E, 4500S-D, 4500SO3-B, 5210B, 5220D, 5310C, 5540C, EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1. Organic Parameters: EPA 608, 624, 625.)

Hazardous and Solid Waste (Inorganic Parameters: EPA 1010A, 1030, 1311, 1312, 6010C, 6020A, 7196A, 7470A, 7471B, 9012B, 9014, 9038, 9040C, 9045D, 9050A, 9065, 9251. Organic Parameters: 8011 (NPW only), 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8315A, 8330.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2120B, 2130B, 2320B, 2510C, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, 5310C, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 8315A, 9010C, SM2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-C, 4500NH3-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-B, 4500S2-D, 4500SO3-B, 5540C, 5210B, 5220D, 5310C, 9010B, 9030B, 9040C, 7470A, 7196A, 2340B, EPA 200.7, 6010C, 200.8, 6020A, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. Organic Parameters: 608, 624, 625, 8011, 8081B, 8082A, 8330, 8151A, 8260C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014, 9040B, 9045C, 6010C, 6020A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B, 9038, 9251. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260C, 8270D, 8330, 8151A, 8081B, 8082A, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn); (EPA 200.7 for: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9030, 9040B, 9040C, SM2120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 9014, 9030B, 9040C, 9045C, 9045D, 9050, 9065, 9251, 1311, 1312, 3005A, 3050B, 3060A. Organic Parameters: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 2064. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: **EPA 524.2**: Di-isopropyl ether (DIPE), Ethyl-t-butyl ether (ETBE), Tert-amyl methyl ether (TAME)).

Non-Potable Water (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene. EPA 8015C(M): TPH.)

Solid & Chemical Materials (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310C, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, 4500SO4-E, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 9040C, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010C, 9030B. Organic Parameters: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 5030C, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Page *Solid & Chemical Materials* (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010A, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9010C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D,

9050A, 9065, 9251. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5030C, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.1, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2340B, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010C, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 7470A, SM2120B, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 8315A, 3005A, 9010C, 9030B. Organic Parameters: EPA 624, 8260C, 8270D, 8270D-SIM, 625, 608, 8081B, 8151A, 8330A, 8082A, EPA 3510C, 5030B, 5030C, 8015C, 8011.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010C, 6020A, 7196A, 7471B, 8315A, 9012B, 9014, 9065, 9050A, 9038, 9251, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. Organic Parameters: EPA 8260C, 8270D, 8270D-SIM, 8015C, 8081B, 8151A, 8330A, 8082A, 3540C, 3546, 3580A, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. (Inorganic Parameters: SM2310B, 2320B, 4500Cl-E, 4500Cn-E, 9012B, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. Organic Parameters: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited.*Drinking Water (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A,3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500Cl-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010C, 6020A, 7196A, 7471B, 9010C, 9012B, 9014, 9040B, 9045D, 9050A, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. Organic Parameters: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476. **NELAP Accredited.** *Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited*. *Drinking Water* (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.1, 2320B, 4500F-C, 4500NO3-F, 4500H+B, 5310C. Organic Parameters: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 351.2, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 2340B, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-60-1-6,7196A, 7470A, 2310B, 2320B, 2510B, 2540B, 2540D, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C,

4500NH3-H, 4500NO2-B, 4500NO3-F, 4500 SO3-B, 4500H-B, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C, 9010Cm 9030B, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, 7196A, 7471A, 7471B, 6020A, 9010C, 9012B, 9030B, 9014, 9038, 9040C, 9045D, 9251, 9050A, 9065. Organic Parameters: EPA 5030B, 5035, 3540C, 3546, 3550B, 3580A, 3620C, 3630C, 6020A, 8260B, 8260C, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010C, 6020A, 245.1, 7470A, 9040B, 9010B, 180.1, 300.0, 332.0, 6860, 351.1, 353.2, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500Norg-C, 4500NO3-F, 5310C, 2130B, 2320B, 2340B, 2540C, 5540C, 3005A, 3015, 9056, 7196A, 3500-Cr-D. Organic Parameters: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A, 8082A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010C, 6020A, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9040B, 9045C, 9010C, 9012B, 9251, SM3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A/B-prep, 8082A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether. **EPA 8260B:** 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8260 Non-potable water matrix:** Iodomethane (methyl iodide), Methyl methacrylate. **EPA 8260 Soil matrix:** Tert-amyl methyl ether (TAME), Diisopropyl ether (DIPE), Azobenzene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine. **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.

ANALYTICAL REPORT

Lab Number: L1321434

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Jason Hayes
Phone: (212) 479-5427

Project Name: RIVER PLACE I+II

Project Number: 170040901 Report Date: 10/28/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RIVER PLACE I+IILab Number:L1321434

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1321434-01	MW-S2-100813	MANHATTAN, NY	10/08/13 12:45
L1321434-02	MW-N2-100813	MANHATTAN, NY	10/08/13 14:20

Project Name: RIVER PLACE I+II Lab Number: L1321434

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client S	ervices	at 800-	-624-922	20 with a	any c	questions.	

Project Name: RIVER PLACE I+II Lab Number: L1321434

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Cyanide, Physiologically Available

L1321434-01 and -02 were analyzed with the method required holding time exceeded.

The WG647441-5 MS recovery (54%), performed on L1321434-02, is below the acceptance criteria; however, the associated LCS recovery was within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

lithelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/28/13

INORGANICS & MISCELLANEOUS

Project Name: RIVER PLACE I+II Lab Number: L1321434

SAMPLE RESULTS

Lab ID: L1321434-01 Date Collected: 10/08/13 12:45

Client ID: MW-S2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	tborough Lab)								
Cyanide, Physiologically Available	0.321		mg/l	0.005	0.00005	1	10/28/13 09:25	10/28/13 11:59	64,9014(M)	JO

Project Name: RIVER PLACE I+II Lab Number: L1321434

SAMPLE RESULTS

Lab ID: L1321434-02 Date Collected: 10/08/13 14:20

Client ID: MW-N2-100813 Date Received: 10/08/13 Sample Location: MANHATTAN, NY Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Cyanide, Physiologically Available	0.266		mg/l	0.005	0.00005	1	10/28/13 09:25	10/28/13 12:00	64,9014(M)	JO

L1321434

Project Name: RIVER PLACE I+II

Project Number: 170040901 **Report Date:** 10/28/13

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for sar	nple(s): 01	I-02 Ba	itch: WC	G647441-1				
Cyanide, Physiologically Available	ND	mg/l	0.005	0.00005	1	10/28/13 09:25	10/28/13 11:56	64,9014(M)	JO

Lab Control Sample Analysis Batch Quality Control

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1321434

10/28/13

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ociated sample(s): 01-02	Batch: WG6474	41-2					
Cyanide, Physiologically Available	99		-		80-120	-			
General Chemistry - Westborough Lab NEG	ATIVE LCS Ass	ociated s	ample(s): 01-02	Batch: Wo	G647441-3				
Cyanide, Physiologically Available	2		-		0-10	-			

Matrix Spike Analysis Batch Quality Control

Project Name: RIVER PLACE I+II

Project Number: 170040901

Lab Number:

L1321434

Report Date:

10/28/13

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits	RPD Qua	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG647441-5	QC Sample: L1321	434-02 Client	t ID: MW-N	2-100813
Cyanide, Physiologically Available	0.266	0.2	0.375	54	Q -	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1321434 10/28/13

Report Date:

Parameter	Native Sam	ple Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sa	ample(s): 01-02	QC Batch ID: WG647441-4	QC Sample:	L1321434-01	Client ID:	MW-S2-100813
Cyanide, Physiologically Available	0.321	0.378	mg/l	16		20

Project Name:

Project Number: 170040901

RIVER PLACE I+II

Project Name: RIVER PLACE I+II Lab Number: L1321434

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1321434-01A	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	PACN(14)
L1321434-02A	Plastic 250ml NaOH preserved	Α	>12	3.8	Υ	Absent	PACN(14)

Project Name: RIVER PLACE I+II Lab Number: L1321434

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with "J" Qualifiers

Project Name:RIVER PLACE I+IILab Number:L1321434Project Number:170040901Report Date:10/28/13

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with "J" Qualifiers

Project Name:RIVER PLACE I+IILab Number:L1321434Project Number:170040901Report Date:10/28/13

REFERENCES

Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised October 1, 2013 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223, Enumeration and P/A), E. Coli. – Colilert (SM9223, Enumeration and P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

State of Illinois Certificate/Lab ID: 003155. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM2120B, 2320B, 2510B, 2540C, SM4500CN-CE, 4500F-C, 4500H-B, 4500NO3-F, 5310C, EPA 200.7, 200.8, 245.1, 300.0. Organic Parameters: EPA 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: SM2120B, 2310B, 2320B, 2340B, 2510B, 2540B, 2540C, 2540D, SM4500CL-E, 4500CN-E, 4500F-C, 4500H-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-E, 4500S-D, 4500SO3-B, 5210B, 5220D, 5310C, 5540C, EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1. Organic Parameters: EPA 608, 624, 625.)

Hazardous and Solid Waste (Inorganic Parameters: EPA 1010A, 1030, 1311, 1312, 6010C, 6020A, 7196A, 7470A, 7471B, 9012B, 9014, 9038, 9040C, 9045D, 9050A, 9065, 9251. Organic Parameters: 8011 (NPW only), 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8315A, 8330.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2120B, 2130B, 2320B, 2510C, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, 5310C, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 8315A, 9010C, SM2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-C, 4500NH3-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-B, 4500S2-D, 4500SO3-B, 5540C, 5210B, 5220D, 5310C, 9010B, 9030B, 9040C, 7470A, 7196A, 2340B, EPA 200.7, 6010C, 200.8, 6020A, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. Organic Parameters: 608, 624, 625, 8011, 8081B, 8082A, 8330, 8151A, 8260C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014, 9040B, 9045C, 6010C, 6020A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B, 9038, 9251. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260C, 8270D, 8330, 8151A, 8081B, 8082A, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn); (EPA 200.7 for: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9030, 9040B, 9040C, SM2120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 9014, 9030B, 9040C, 9045C, 9045D, 9050, 9065, 9251, 1311, 1312, 3005A, 3050B, 3060A. Organic Parameters: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 2064. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: **EPA 524.2**: Di-isopropyl ether (DIPE), Ethyl-t-butyl ether (ETBE), Tert-amyl methyl ether (TAME)).

Non-Potable Water (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene. EPA 8015C(M): TPH.)

Solid & Chemical Materials (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310C, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, 4500SO4-E, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 9040C, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010C, 9030B. Organic Parameters: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 5030C, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Page 50/id & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010A, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9010C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D,

9050A, 9065, 9251. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5030C, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.1, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2340B, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010C, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 7470A, SM2120B, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 8315A, 3005A, 9010C, 9030B. Organic Parameters: EPA 624, 8260C, 8270D, 8270D-SIM, 625, 608, 8081B, 8151A, 8330A, 8082A, EPA 3510C, 5030B, 5030C, 8015C, 8011.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010C, 6020A, 7196A, 7471B, 8315A, 9012B, 9014, 9065, 9050A, 9038, 9251, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. Organic Parameters: EPA 8260C, 8270D, 8270D-SIM, 8015C, 8081B, 8151A, 8330A, 8082A, 3540C, 3546, 3580A, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. (Inorganic Parameters: SM2310B, 2320B, 4500Cl-E, 4500Cn-E, 9012B, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. Organic Parameters: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited.*Drinking Water (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A, 3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500Cl-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010C, 6020A, 7196A, 7471B, 9010C, 9012B, 9014, 9040B, 9045D, 9050A, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. Organic Parameters: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476. **NELAP Accredited.** *Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited*. *Drinking Water* (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.1, 2320B, 4500F-C, 4500NO3-F, 4500H+B, 5310C. Organic Parameters: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 351.2, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 2340B, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-2, 7196A, 7470A, 2310B, 2320B, 2510B, 2540B, 2540D, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C,

4500NH3-H, 4500NO2-B, 4500NO3-F, 4500 SO3-B, 4500H-B, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C, 9010Cm 9030B, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, 7196A, 7471A, 7471B, 6020A, 9010C, 9012B, 9030B, 9014, 9038, 9040C, 9045D, 9251, 9050A, 9065. Organic Parameters: EPA 5030B, 5035, 3540C, 3546, 3550B, 3580A, 3620C, 3630C, 6020A, 8260B, 8260C, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010C, 6020A, 245.1, 7470A, 9040B, 9010B, 180.1, 300.0, 332.0, 6860, 351.1, 353.2, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500Norg-C, 4500NO3-F, 5310C, 2130B, 2320B, 2340B, 2540C, 5540C, 3005A, 3015, 9056, 7196A, 3500-Cr-D. Organic Parameters: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A, 8082A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010C, 6020A, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9040B, 9045C, 9010C, 9012B, 9251, SM3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A/B-prep, 8082A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether. **EPA 8260B:** 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8260 Non-potable water matrix:** Iodomethane (methyl iodide), Methyl methacrylate. **EPA 8260 Soil matrix:** Tert-amyl methyl ether (TAME), Diisopropyl ether (DIPE), Azobenzene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine. **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.