CHEMWORLD ENVIRONMENTAL, INC.

Environmental Consulting Services

October 16, 2008 **

Mr. Kyle Boretsky Fleming-Lee Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001 * Re-issued
11-14-2008 with
updates.

RE:

Data Usability Summary Report (DUSR) #1 West 34th Street, 34th and 11th Avenue Project Accutest Laboratories, Dayton, NJ

Lab Job No. J80708

Soil / Solid and Water Samples

Analyses for Volatile Organics, Semi-Volatiles (Base/Neutral and Acid Extractable Organics), Herbicides, Pesticides, Polychlorinated Biphenyls (PCB's), Inorganics (Metals), Cyanide, Hexavalent Chromium (Soluble and Insoluble)

Dear Mr. Boretsky:

Data Usability Summary Report (DUSR) technical services were performed by ChemWorld Environmental, Inc. for the West 34th Street, 34th and 11th Avenue Project for the soil / solid and water sampling event of January 7, 2008. The DUSR review was performed in accordance with United States Environmental Protection Agency (USEPA) Region II data validation guidelines and New York State Department of Environmental Conservation (NYSDEC) Analytical Service Protocol (ASP) requirements, where applicable.

The analytical data from Lab Job No. J80708 was reviewed (screened) for the parameters noted. The data screening consisted of a review of the Quality Control (QC) Summary Forms and a brief review of various chromatograms and quantitation reports. The QC Forms were reviewed to determine whether any data required qualification based upon QC deviations noted on the Forms. The associated Analytical Data Result Forms are included as Attachment A. These Forms include data qualifiers as described within this letter report. Unless otherwise noted, all results included on the Forms are considered usable, based upon the DUSR review items noted below. Attachment B includes copies of the associated Case Narratives and the Chain-of-Custody forms.

The DUSR review items include the following, as method appropriate:

- Completeness of Data Package
- Chain-of-Custody Review
- Holding Times from Verified Time of Sample Receipt (VTSR) and Collection
- Surrogate Recovery
- GC/MS Instrument Performance Check
- Initial and Continuing Calibration
- Matrix Spike / Matrix Spike Duplicates (MS/MSD)
- Matrix Spike Blank (MSB) or Laboratory Control Sample (LCS)
- Internal Standards
- Method and Field Blanks
- CRDL Standards for ICP
- Laboratory Duplicate Samples
- ICP Interference Check
- ICP Serial Dilutions

The QC Summary Forms included various deviations based upon the acceptable limits for quality control. The following should be noted regarding qualification of the data set for the review items above.

Volatiles - Soil / Solid and Water, Lab Job No. J80708

Initial Calibration: The associated initial calibration for waters analyzed on 11/06/08 was found to generate an Average Relative Response Factor (AvgRRF) of < 0.05 for Acetone at 0.035 (Limit \geq 0.05). The non-detectable results for Acetone for one of the Field Blanks and the Trip Blank were qualified as 'UJ', estimated. Positive results were not detected.

Semi-Volatiles - Soil / Solid and Water, Lab Job No. J80708

Internal Standards: Low internal standard reported area counts were generated for sample G-4 (21-23) and the re-analysis of this sample, for the Perylene-d12 internal standard, only. Sample G-4 (21-23) was qualified as 'J', estimated, for the positive results, and 'UJ', estimated, for the non-detectable results for the compounds associated with the Perylene-d12 internal standard.

Field Blanks: Nine Semi-Volatile compounds were detected in a Field Blank collected from the soil / solid matrix (in ug/Kg). The compounds include the following mostly at trace levels in ug/Kg: Benzo(a) anthracene (at 40.9), Benzo(a)pyrene (at 34.1), Benzo(b) fluoranthene (at 25.7), Benzo(g,h,i) perylene (at 20.4), Benzo(k) fluoranthene (at 27.1), Chrysene (at 39.2), Fluoranthene (at 80.2), Phenanthrene (at 87.8) and Pyrene (at 72.8). This Field Blank was not used to qualify the soil / solid samples. The traditional aqueous Field Blank sample was found to be free of contamination by Semi-Volatiles.

Herbicides – Soil / Solid and Water, Lab Job No. J80708

Continuing Calibrations: Three associated continuing calibrations on 1/11/08 at 10:30, 1/12/08 at 04:39 and 1/14/08 at 08:25 were found to generate Percent Difference (%D's) of greater than 15% for 2,4,5-T and 2,4,5-TP in the range of 16.5% and 23.2%. The associated samples were qualified as 'UJ', estimated, for the

non-detectable results for these compounds. Positive results were not detected for any of the Herbicide compounds.

Pesticides – Soil / Solid and Water, Lab Job No. J80708

Percent Difference Between Two GC Columns: Soil samples A-1 (12-14), G-5 (28-30) and A-9 (28-30) generated %D's which exceeded the 25% limit for alpha-Chlordane and 4,4'-DDT in the range of 48.0% to 76.2%, comparing the results between the two GC columns. These samples were qualified as 'J', estimated for the positive results, associated with these compounds. However, sample G-5 (28-30) was qualified as 'JN', presumptively present at an approximated quantity, for alpha-Chlordane, due to a %D of >70%.

Continuing Calibrations: Eight associated continuing calibrations on 1/10/08 at 10:48, 1/10/08 at 11:24, 1/11/08 at 07:25, 1/11/08 at 01:46, 1/14/08 at 11:05, 1/14/08 at 03:18, 1/17/08 at 09:38 and 1/17/08 at 04:03 were found to generate %D's of greater than 15%. The compounds include: delta-BHC, Methoxychlor, Endrin, 4,4'-DDT, alpha-BHC, gamma-BHC, Heptachlor, beta-BHC and Aldrin in the range of 17.3% and 34.7%. The associated sample results were qualified as 'J', estimated for the positive results and 'UJ', estimated, for the non-detectable results for these compounds.

PCBs - Soil / Solid and Water, Lab Job No. J80708

Qualification of the data set was not required for the PCB analyses. The associated quality control information was found to be acceptable.

Inorganics (Metals) - Soil / Solid and Water, Lab Job No. J80708

Field Blanks: Many Inorganics were detected in a Field Blank collected from the soil / solid matrix (in mg/Kg). The inorganics include the following reported in mg/Kg: Aluminum (at 12600), Barium (at 88.5), Beryllium (at 0.75), Calcium (at 1800), Chromium (at 28.6), Cobalt (at 8.6), Copper (at 21.3), Iron (at 19000), Lead (at 50.5), Magnesium (at 3810), Manganese (at 440), Nickel (at 22.1), Potassium (at 3230), Vanadium (at 31.2) and Zinc (at 45.5). This Field Blank was not used to qualify the soil / solid samples. The traditional aqueous Field Blank sample was found to be free of contamination by Inorganics.

Qualification of the data set was not required for the Inorganic analyses. The associated quality control information was found to be acceptable.

Hexavalent Chromium (Soluble and Insoluble) and Cyanide - Soil / Solid and Water, Lab Job No. J80708

Holding Times: Analysis for Hexavalent Chromium (Soluble and Insoluble) is required within 24 hours of receipt at the laboratory. The Hexavalent Chromium samples for the soil / solids were analyzed 10 to 17 days after receipt. Therefore, all of the sample results for Soluble and Insoluble Hexavalent Chromium were qualified as 'UJ', estimated, for the non-detectable results. Hexavalent Chromium was not detected in any of the soil / solid samples or the one water sample (Field Blank) analyzed. It should be noted that the one water sample (Field Blank) was analyzed within 24 hours of receipt at the lab.

Matrix Spike Recovery: The soil / solid matrix spike sample generated low recovery for Soluble Hexavalent Chromium at 72.4% (Limit 75-125%). The associated sample result for A-1 (12-14) was qualified as 'UJ', estimated, for the non-detectable result for Soluble Hexavalent Chromium. Additional qualification was not required.

Please contact me by telephone or Fax at 301-294-6144, should you require additional information or clarification regarding this Letter Report.

Sincerely,

Andrea P. Schuessler, CHMM

ChemWorld Environmental, Inc.

Andrea PAchnessler

c: FL-2008.1 file

*Re-issued 11-14-2008 with updates.

Andrew P. Schnessler

11-14-08

ABS

ORGANIC DATA QUALIFIERS

- Indicates that the compound was analyzed for, but not detected at or above the Contract Required U-Quantitation Limit (CRQL), or the compound is not detected due to qualification through the method or field blank.
- The associated numerical value is an estimated quantity. **J** -
- JN Tentatively identified with approximated concentrations (Volatile and Semi-Volatile Organics). Presumptively present at an approximated quantity (Pesticides/PCBs).
- UJ The compound was analyzed for, but not detected. The sample quantitation limit is an estimated quantity due to variance from quality control limits.
- Applies to Pesticide results where the identification has been confirmed by GC/MS. **C** -
- Reported value is estimated due to quantitation above the calibration range. E -
- Reported result taken from diluted sample analysis. D-
- Aldol condensation product. A -
- Reported value is unusable and rejected due to variance from quality control limits. R-
- NA Not Analyzed.

INORGANIC DATA QUALIFIERS

- U Indicates analyte not detected at or above the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- **B** Indicates analyte result is between Instrument Detection Limit (IDL) and CRDL.
- J The reported value is estimated due to variance from quality control limits.
- UJ The element was analyzed for, but not detected. The sample quantitation limit is an estimate due to variance from quality control limits.
- E Reported value is estimated because of the presence of interference.
- R Reported value is unusable and rejected due to variance from quality control limits.
- NA Not analyzed.

ATTACHMENT A *

* Re-issued 11-14-2008 with updates.

Volatile Compounds added:

Sec-Butyl benzene

tert-Butyl benzene

1,2,4- Trimethyl benzene

1,3,5 - Trimethyl benzene

aps.

11-14-08

See Job Change Order-last page of Report.

Report of Analysis

By

SJM

Page 1 of 2

Client Sample ID: A-1(12-14)

Lab Sample ID:

J80708-1

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8260B

DF

1

Percent Solids: 87.6

Prep Date

n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch n/a

Analytical Batch VG5178

Run #1 Run #2

Initial Weight

File ID

4.8 g

G106559.D

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.88	ug/kg	
75-27-4	Bromodichloromethane	ND	5.9	0.30	ug/kg	
75-25-2	Bromoform	ND	5.9	1.0	ug/kg	
74-83-9	Bromomethane	ND	5.9	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.4	ug/kg	
104-51-8	n-Butylbenzene	ND	5.9	0.31	ug/kg	
75-15-0	Carbon disulfide	ND	5.9	0.35	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.9	0.30	ug/kg	
108-90-7	Chlorobenzene	ND	5.9	0.68	ug/kg	
75-00-3	Chloroethane	ND	5.9	0.63	ug/kg	
67-66-3	Chloroform	ND	5.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	5.9	0.64	ug/kg	
124-48-1	Dibromochloromethane	ND	5.9	0.26	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.9	0.84	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.29	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.9	0.56	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.9	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.9	0.67	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.9	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.9	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	0.61	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	0.98	ug/kg	
123-91-1	1,4-Dioxane	ND	150	46	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.59	ug/kg	
591-78-6	2-Hexanone	ND	5.9	2.1	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.77	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.9	2.4	ug/kg	
75-09-2	Methylene chloride	ND	5.9	0.57	ug/kg	
103-65-1	n-Propylbenzene	ND	5.9	0.35	ug/kg	
100-42-5	Styrene	ND	5.9	0.28	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	0.36	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: A-1(12-14) Lab Sample ID: J80708-1

Matrix:

Method:

Project:

SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 87.6

SW846 8260B Percent S West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	5.9	0.41	ug/kg	
108-88-3	Toluene	ND	1.2	0.51	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.9	0.46	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.9	0.36	ug/kg	
79-01-6	Trichloroethene	ND	5.9	0.39	ug/kg	
75-01-4	Vinyl chloride	ND	5.9	0.68	ug/kg	
1330-20-7	Xylene (total)	ND	2.4	0.32	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%	77.6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	68-1	123%	
17060-07-0	1,2-Dichloroethane-D4	85%		59-1	136%	
2037-26-5	Toluene-D8	114%		75-1	l 23 %	
460-00-4	4-Bromofluorobenzene	91%		65-1	l 40 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-1(12-14)

Lab Sample ID: Matrix:

J80708-1U SO - Soil

Date Sampled: Date Received: 01/07/08

01/07/08

Method:

SW846 8260B

Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch Prep Date File ID DF Analyzed Ву VG5178 G106559U.D 1 01/10/08 SJM n/a n/a Run #1 Run #2

Initial Weight

4.8 g

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8 98-06-6 95-63-6 108-67-8	sec-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND ND ND	5.9 5.9 5.9 5.9	0.58 0.33 0.29 0.41	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 85% 114% 91%		67-1 64-1 73-1 61-1	31% 24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

SJM

Page 1 of 2

Client Sample ID: A-2(8-10)

File ID

G106560.D

Lab Sample ID:

J80708-2 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Prep Date

n/a

Matrix: Method:

SW846 8260B

DF

1

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch n/a

Analytical Batch VG5178

Run #1 Run #2

Initial Weight

Run #1 4.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	14	5.8	ug/kg	
71-43-2	Benzene	ND	1.4	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	7.0	0.36	ug/kg	
75-25-2	Bromoform	ND	7.0	1.2	ug/kg	
74-83-9	Bromomethane	ND	7.0	0.70	ug/kg	
78-93-3	2-Butanone (MEK)	ND	14	4.0	ug/kg	
104-51-8	n-Butylbenzene	ND	7.0	0.36	ug/kg	
75-15-0	Carbon disulfide	ND	7.0	0.42	ug/kg	
56-23-5	Carbon tetrachloride	ND	7.0	0.36	ug/kg	
108-90-7	Chlorobenzene	ND :	7.0	0.80	ug/kg	
75-00-3	Chloroethane	ND	7.0	0.74	ug/kg	
67-66-3	Chloroform	ND	7.0	0.57	ug/kg	
74-87-3	Chloromethane	ND	7.0	0.75	ug/kg	
124-48-1	Dibromochloromethane	ND	7.0	0.30	ug/kg	
75-34-3	1,1-Dichloroethane	ND	7.0	0.99	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.34	ug/kg	
75-35-4	1,1-Dichloroethene	ND	7.0	0.66	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	7.0	0.27	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	7.0	0.79	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	7.0	0.27	ug/kg	
78-87-5	1,2-Dichloropropane	ND	7.0	0.59	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND.	7.0	0.72	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND -	7.0	1.2	ug/kg	
123-91-1	1,4-Dioxane	ND	170	54	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.69	ug/kg	
591-78-6	2-Hexanone	ND	7.0	2.5	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.4	0.90	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	7.0	2.8	ug/kg	
75-09-2	Methylene chloride	ND	7.0	0.67	ug/kg	
103-65-1	n-Propylbenzene	ND	7.0	0.42	ug/kg	
100-42-5	Styrene	ND	7.0	0.33	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND:	7.0	0.42	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

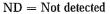
Report of Analysis

Client Sample ID: A-2(8-10)

Lab Sample ID:

J80708-2 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: Project:


SW846 8260B

Percent Solids: 85.3

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4 108-88-3	Tetrachloroethene Toluene	ND ND	7.0 1.4	0.48 0.60	ug/kg ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	7.0	0.54	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	7.0	0.42	ug/kg	
79-01-6	Trichloroethene	ND	7.0	0.46	ug/kg	
75-01-4	Vinyl chloride	ND	7.0	0.79	ug/kg	
1330-20-7	Xylene (total)	ND	2.8	0.37	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	95%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	86%		59-1	.36%	
2037-26-5	Toluene-D8	113%		75-1	23%	
460-00-4	4-Bromofluorobenzene	90%		65-1	40%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SJM

Page 1 of 1

Client Sample ID: A-2(8-10) Lab Sample ID: J80708-2U

Matrix:

SO - Soil SW846 8260B

DF

1

Date Sampled: Date Received:

Prep Date

n/a

01/07/08 01/07/08 Percent Solids: 85.3

n/a

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch Analytical Batch

VG5178

Run #1 Run #2

Initial Weight

File ID

Run #1 Run #2

4.2 g

G106560U.D

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8 98-06-6 95-63-6 108-67-8	sec-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND ND	7.0 7.0 7.0 7.0 7.0	0.68 0.39 0.34 0.48	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 86% 113% 90%	190 Nacrounds - Principal St.	64-1 73-1	.25% .31% .24% .36%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

SJM

Page 1 of 2

Client Sample ID: A-3(9-11)

File ID

4.2 g

G106561.D

Lab Sample ID:

J80708-3

Date Sampled: Date Received: 01/07/08

01/07/08

Matrix:

SO - Soil SW846 8260B

DF

1

Percent Solids: 86.4

n/a

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Date

n/a

Prep Batch Analytical Batch

VG5178

Run #1 Run #2

Initial Weight

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	14	5.8	ug/kg	
71-43-2	Benzene	ND	1.4	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	6.9	0.35	ug/kg	
75-25-2	Bromoform	ND	6.9	1.2	ug/kg	
74-83-9	Bromomethane	ND	6.9	0.69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	14	4.0	ug/kg	
104-51-8	n-Butylbenzene	ND	6.9	0.36	ug/kg	
75-15-0	Carbon disulfide	ND	6.9	0.41	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.9	0.35	ug/kg	
108-90-7	Chlorobenzene	ND	6.9	0.79	ug/kg	
75-00-3	Chloroethane	ND	6.9	0.73	ug/kg	
67-66-3	Chloroform	ND	6.9	0.56	ug/kg	
74-87-3	Chloromethane	ND	6.9	0.74	ug/kg	
124-48-1	Dibromochloromethane	ND	6.9	0.30	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.9	0.98	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.33	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.9	0.65	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.9	0.27	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.9	0.78	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.9	0.27	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.9	0.58	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.9	0.71	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.9	1.1	ug/kg	
123-91-1	1,4-Dioxane	ND	170	53	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.68	ug/kg	
591-78-6	2-Hexanone	ND	6.9	2.4	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.4	0.89	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.9	2.8	ug/kg	
75-09-2	Methylene chloride	ND	6.9	0.66	ug/kg	
103-65-1	n-Propylbenzene	ND	6.9	0.41	ug/kg	
100-42-5	Styrene	ND	6.9	0.32	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.9	0.41	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-3(9-11)

Lab Sample ID:

J80708-3 SO - Soil Date Sampled: Date Received: 01/07/08

01/07/08

Matrix: Method: Project:

SW846 8260B

Percent Solids: 86.4

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.9	0.47	ug/kg	
108-88-3	Toluene	ND	1.4	0.59	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.9	0.53	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.9	0.41	ug/kg	
79-01-6	Trichloroethene	ND	6.9	0.46	ug/kg	
75-01-4	Vinyl chloride	ND	6.9	0.78	ug/kg	
1330-20-7	Xylene (total)	ND	2.8	0.37	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	86%		59-136%		
2037-26-5	Toluene-D8	114%	9.6 9.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	75 -1	23%	
460-00-4	4-Bromofluorobenzene	90%	676 506 608 608 608 708 708 708 708 708 708 708 708 708 7	65-1	140%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: A-3(9-11) Lab Sample ID:

J80708-3U

Date Sampled: Date Received:

01/07/08

Matrix:

SO - Soil SW846 8260B

01/07/08 Percent Solids: 86.4

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch Prep Date DF Analyzed Ву File ID VG5178 SJM n/a 01/10/08 n/a G106561U.D Run #1

Run #2

Initial Weight Run #1 4.2 g

Run #2

MDL Units Q RLCAS No. Compound Result 6.9 0.67 ug/kg 135-98-8 sec-Butylbenzene ND ug/kg tert-Butylbenzene ND 6.9 0.3998-06-6 ug/kg 6.90.33 95-63-6 1,2,4-Trimethylbenzene ND ug/kg 6.90.48108-67-8 1,3,5-Trimethylbenzene ND Run#1 Run# 2 Limits CAS No. Surrogate Recoveries 67-125% 95% 1868-53-7 Dibromofluoromethane 64-131% 86% 17060-07-0 1,2-Dichloroethane-D4 Toluene-D8 114% 73-124% 2037-26-5 90% 61-136% 4-Bromofluorobenzene 460-00-4

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

SJM

Page 1 of 2

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4

Date Sampled:

Prep Date

n/a

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8260B

DF

1

Percent Solids: 85.0

n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Analytical Batch Prep Batch

VG5178

Run #1 Run #2

Initial Weight

File ID

5.0 g

G106562.D

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	4.9	ug/kg	
71-43-2	Benzene	ND	1.2	0.87	ug/kg	
75-27-4	Bromodichloromethane	ND	5.9	0.30	ug/kg	
75-25-2	Bromoform	ND	5.9	0.99	ug/kg	
74-83-9	Bromomethane	ND	5.9	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.4	ug/kg	
104-51-8	n-Butylbenzene	ND	5.9	0.31	ug/kg	
75-15-0	Carbon disulfide	ND	5.9	0.35	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.9	0.30	ug/kg	
108-90-7	Chlorobenzene	ND	5.9	0.67	ug/kg	
75-00-3	Chloroethane	ND	5.9	0.63	ug/kg	
67-66-3	Chloroform	ND	5.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	5.9	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	5.9	0.25	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.9	0.83	ug/kg	
107-06-2	1,2-Dichloroethane	ND.	1.2	0.28	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.9	0.56	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.9	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND.	5.9	0.67	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.9	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.9	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	0.60	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	0.97	ug/kg	
123-91-1	1,4-Dioxane	ND	150	46	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.58	ug/kg	
591-78-6	2-Hexanone	ND	5.9	2.1	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.76	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.9	2.4	ug/kg	
75-09-2	Methylene chloride	ND	5.9	0.57	ug/kg	
103-65-1	n-Propylbenzene	ND	5.9	0.35	ug/kg	
100-42-5	Styrene	ND	5.9	0.27	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	0.35	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: Project:

SW846 8260B

Percent Solids: 85.0

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL .	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	5.9	0.40	ug/kg	
108-88-3	Toluene	ND	1.2	0.51	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.9	0.45	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.9	0.35	ug/kg	
79-01-6	Trichloroethene	ND	5.9	0.39	ug/kg	
75-01-4	Vinyl chloride	ND	5.9	0.67	ug/kg	
1330-20-7	Xylene (total)	ND	2.4	0.31	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	94%		68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	84%		59-1	36%	
2037-26-5	Toluene-D8	114%		75-1	23%	
460-00-4	4-Bromofluorobenzene	91%	65-140%			

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Ву

SJM

Page 1 of 1

Client Sample ID: A-4(12-14) Lab Sample ID: J80708-4U

File ID

Matrix:

SO - Soil

Date Sampled: Date Received:

Prep Date

n/a

01/07/08 01/07/08

Method:

SW846 8260B

DF

1

85.0 Percent Solids:

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch	Analytical Batch
n/a	VG5178

Run #1 Run #2

Initial Weight

G106562U.D

Run #1

5.0 g

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8	sec-Butylbenzene	ND	5.9	0.57	ug/kg	
98-06-6	tert-Butylbenzene	ND	5.9	0.33	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND -	5.9	0.29	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.9	0.41	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	94%	197 197 198 198 198 198 198 198	67-125%		
17060-07-0	1,2-Dichloroethane-D4	84% 64-131%			l31%	
2037-26-5	Toluene-D8	114%		73-1	124%	
460-00-4	4-Bromofluorobenzene	91%		61-3	136%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: A-5(21-23)

Lab Sample ID: Matrix:

Method:

J80708-5

Date Sampled: Date Received:

SO - Soil SW846 8260B

01/07/08 01/07/08 Percent Solids: 89.2

West 34th Street, 34th and 11th Avenue, New York, NY Project:

DF Prep Date Prep Batch Analytical Batch File ID Analyzed By SJM VG5178 G106563.D 01/10/08 n/a n/a Run #1 1

Run #2

Initial Weight

Run #1 4.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.2	ug/kg	
71-43-2	Benzene	ND	1.2	0.93	ug/kg	
75-27-4	Bromodichloromethane	ND	6.2	0.32	ug/kg	
75-25-2 .	Bromoform	ND ·	6.2	1.0	ug/kg	
74-83-9	Bromomethane	ND	6.2	0.62	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.6	ug/kg	
104-51-8	n-Butylbenzene	ND	6.2	0.32	ug/kg	
75-15-0	Carbon disulfide	ND.	6.2	0.37	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.2	0.32	ug/kg	
108-90-7	Chlorobenzene	ND	6.2	0.71	ug/kg	
75-00-3	Chloroethane	ND	6.2	0.66	ug/kg	
67-66-3	Chloroform	ND :	6.2	0.51	ug/kg	
74-87-3	Chloromethane	ND	6.2	0.67	ug/kg	
124-48-1	Dibromochloromethane	ND	6.2	0.27	ug/kg	
75-34-3	1,1-Dichloroethane	ND:	6.2	0.88	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.30	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.2	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND.	6.2	0.25	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	0.71	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND :-	6.2	0.25	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.2	0.53	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	0.64	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	1.0	ug/kg	
123-91-1	1,4-Dioxane	ND	160	48	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.62	ug/kg	
591-78-6	2-Hexanone	ND	6.2	2.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.80	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	6.2	2.5	ug/kg	
75-09-2	Methylene chloride	ND	6.2	0.60	ug/kg	
103-65-1	n-Propylbenzene	ND	6.2	0.37	ug/kg	
100-42-5	Styrene	ND	6.2	0.29	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.2	0.37	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: A-5(21-23)

Lab Sample ID: Matrix:

J80708-5 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08

Method: Project:

SW846 8260B

Percent Solids: 89.2

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.2	0.42	ug/kg	
108-88-3	Toluene	ND	1.2	0.54	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.2	0.48	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.2	0.37	ug/kg	
79-01-6	Trichloroethene	ND	6.2	0.41	ug/kg	
75-01-4	Vinyl chloride	ND	6.2	0.71	ug/kg	
1330-20-7	Xylene (total)	ND	2.5	0.33	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%		68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	83%		59-1	36%	
2037-26-5	Toluene-D8	113%		75-1	.23%	
460-00-4	4-Bromofluorobenzene	92%	100 A	65-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-5(21-23)

Lab Sample ID:

J80708-5U SO - Soil

01/07/08 Date Sampled: Date Received: 01/07/08

Matrix: Method:

SW846 8260B

89.2 Percent Solids:

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch Analyzed Ву Prep Date File ID DF VG5178 01/10/08 SJM n/a n/a Run #1 G106563U.D 1

Run #2

Initial Weight 4.5 g

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8	sec-Butylbenzene	ND	6.2	0.61	ug/kg	
98-06-6	tert-Butylbenzene	ND -	6.2	0.35	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND.	6.2	0.30	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	6.2	0.43	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%	7% 76 76	67-1	L 25 %	
17060-07-0	1,2-Dichloroethane-D4	83%		64-3	l31%	
2037-26-5	Toluene-D8	113%		73-3	124%	
460-00-4	4-Bromofluorobenzene	92%	it it	61-3	136%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: A-6(30-32)

Lab Sample ID: Matrix:

J80708-6 SO - Soil Date Sämpled: 01/07/08 Date Received: 01/07/08

Method: Project:

SW846 8260B

Percent Solids: 88.6

West 34th Street, 34th and 11th Avenue, New York, NY

DF Prep Date Prep Batch Analytical Batch File ID Analyzed By SJM n/a VG5178 Run #1 G106564.D 01/10/08 n/a 1

Run #2

Initial Weight

Run #1 5.3 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	4.5	ug/kg	
71-43-2	Benzene	ND	1.1	0.79	ug/kg	
75-27-4	Bromodichloromethane	ND	5.3	0.27	ug/kg	
75-25-2	Bromoform	ND	5.3	0.89	ug/kg	
74-83-9	Bromomethane	ND	5.3	0.53	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	3.1	ug/kg	
104-51-8	n-Butylbenzene	ND ·	5.3	0.28	ug/kg	
75-15-0	Carbon disulfide	ND	5.3	0.32	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.3	0.27	ug/kg	
108-90-7	Chlorobenzene	ND	5.3	0.61	ug/kg	
75-00-3	Chloroethane	ND	5.3	0.57	ug/kg	
67-66-3	Chloroform	ND	5.3	0.43	ug/kg	
74-87-3	Chloromethane	ND	5.3	0.57	ug/kg	
124-48-1	Dibromochloromethane	ND.	5.3	0.23	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.3	0.75	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.26	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.3	0.51	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.3	0.21	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.3	0.60	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.3	0.21	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.3	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.3	0.55	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	0.88	ug/kg	
123-91-1	1,4-Dioxane	ND	130	41	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.53	ug/kg	
591-78-6	2-Hexanone	ND	5.3	1.9	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.69	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.3	2.2	ug/kg	
75-09-2	Methylene chloride	ND	5.3	0.51	ug/kg	
103-65-1	n-Propylbenzene	ND	5.3	0.32	ug/kg	
100-42-5	Styrene	ND	5.3	0.25	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.3	0.32	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6

Date Sampled:

01/07/08

Matrix: Method: SO - Soil

Date Received:

01/07/08

Project:

SW846 8260B

West 34th Street, 34th and 11th Avenue, New York, NY

Percent Solids: 88.6

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	5.3	0.36	ug/kg	
108-88-3	Toluene	ND	1.1	0.46	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.3	0.41	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.3	0.32	ug/kg	
79-01-6	Trichloroethene	ND	5.3	0.35	ug/kg	
75-01-4	Vinyl chloride	ND	5.3	0.61	ug/kg	
1330-20-7	Xylene (total)	ND	2.1	0.28	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	87%		59-1	136%	
2037-26-5	Toluene-D8	114%		75-1	23%	
460-00-4	4-Bromofluorobenzene	90%		65-1	L 40 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6U

01/07/08 Date Sampled:

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8260B

Percent Solids: 88.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID G106564U.D Analyzed 01/10/08

Prep Date By SJM n/a

n/a

Q

VG5178

Run #2

Initial Weight

Compound

5.3 g

Run #1

CAS No.

135-98-8 98-06-6

95-63-6

Run #2

DF

1

Result

MDL 0.52

Units ug/kg

1,2,4-Trimethylbenzene

ND ND ND ND

0.300.260.37

ug/kg ug/kg ug/kg

CAS No.

1868-53-7

108-67-8 1,3,5-Trimethylbenzene Surrogate Recoveries

Dibromofluoromethane

sec-Butylbenzene

tert-Butylbenzene

Run# 1

95%

87%

Run# 2

RL

5.3

5.3

5.3

5.3

Limits

67-125% 64-131%

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 460-00-4

Toluene-D8 4-Bromofluorobenzene

114% 90%

73-124% 61-136%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

SJM

Page 1 of 2

Client Sample ID: A-7(40-42) Lab Sample ID: J80708-7

G106565.D

Matrix:

SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Method:

SW846 8260B

Percent Solids: 87.1

n/a

Project: West 34th Street, 34th and 11th Avenue, New York, NY

1

Prep Batch

n/a

Analytical Batch

VG5178

DF Prep Date File ID Analyzed By

01/10/08

Run #1 Run #2

Initial Weight Run #1 4.6 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.2	ug/kg	
71-43-2	Benzene	ND	1.2	0.93	ug/kg	
75-27-4	Bromodichloromethane	ND	6.2	0.32	ug/kg	
75-25-2	Bromoform	ND	6.2	1.0	ug/kg	
74-83-9	Bromomethane	ND	6.2	0.62	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.6	ug/kg	
104-51-8	n-Butylbenzene	ND	6.2	0.32	ug/kg	
75-15-0	Carbon disulfide	ND	6.2	0.37	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.2	0.32	ug/kg	
108-90-7	Chlorobenzene	ND	6.2	0.71	ug/kg	
75-00-3	Chloroethane	ND	6.2	0.66	ug/kg	
67-66-3	Chloroform	ND	6.2	0.51	ug/kg	
74-87-3	Chloromethane	ND	6.2	0.67	ug/kg	
124-48-1	Dibromochloromethane	ND	6.2	0.27	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.2	0.88	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.30	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.2	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.2	0.25	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	0.71	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.2	0.25	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.2	0.53	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	0.64	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	1.0	ug/kg	
123-91-1	1,4-Dioxane	ND	160	48	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.62	ug/kg	
591-78-6	2-Hexanone	ND	6.2	2.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.80	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	6.2	2.5	ug/kg	
75-09-2	Methylene chloride	ND	6.2	0.60	ug/kg	
103-65-1	n-Propylbenzene	ND	6.2	0.37	ug/kg	
100-42-5	Styrene	ND	6.2	0.29	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.2	0.37	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: A-7(40-42)

Lab Sample ID:

J80708-7

Date Sampled: Date Received: 01/07/08

01/07/08

Matrix: Method: SO - Soil SW846 8260B

Percent Solids: 87.1

Project: West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.2	0.43	ug/kg	
108-88-3	Toluene	ND	1.2	0.54	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.2	0.48	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.2	0.37	ug/kg	
79-01-6	Trichloroethene	ND	6.2	0.41	ug/kg	
75-01-4	Vinyl chloride	ND	6.2	0.71	ug/kg	
1330-20-7	Xylene (total)	ND	2.5	0.33	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	84%		59-1	.36%	
2037-26-5	Toluene-D8	114%		75-1	.23%	
460-00-4	4-Bromofluorobenzene	91%		65-1	.40%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-7(40-42)

Lab Sample ID:

J80708-7U

Date Sampled:

01/07/08

Matrix: Method:

SO - Soil SW846 8260B

DF

1

Date Received: Percent Solids: 87.1

Units

ug/kg

ug/kg

ug/kg

ug/kg

01/07/08

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID G106565U.D Analyzed 01/10/08

By SJM

RL

6.2

6.2

6.2

Prep Date n/a

MDL

0.61

0.35

0.30

Prep Batch n/a

Q

VG5178

Run #2

Initial Weight

Run #1 Run #2 4.6 g

CAS No.	Compound

135-98-8	sec-Butylbenzene
98-06-6	tert-Butylbenzene
95-63-6	1,2,4-Trimethylbenzene
108 67 8	1 2 5 Trimothylhonzone

CAS No.	Surrogate	Recoveries

1868-53-7	Dibromofluoromethane
17060-07-0	1,2-Dichloroethane-D4
2037-26-5	Toluene-D8
460-00-4	4-Bromofluorobenzene

ΝI	D		1

Run#1

95%

84%

114%

91%

Result

ND

ND

ND

6.2	0.43		
Run# 2	L		

61-136%

67-125%
64-131%
73-124%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: @106566.0

Accutest Laboratories

Report of Analysis

 $\mathbf{B}\mathbf{y}$

SJM

Page 1 of 2

Client Sample ID: G-1(36-38)

File ID

G106566.D

Lab Sample ID: Matrix:

J80708-8 SO - Soil

SW846 8260B

DF

1

Date Sampled: 01/07/08

Date Received:

Percent Solids: 81.7

Prep Date

n/a

01/07/08

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Analytical Batch Prep Batch VG5178 n/a

Run #1 Run #2

Initial Weight

Run #1 4.8 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	5.3	ug/kg	
71-43-2	Benzene	ND	1.3	0.95	ug/kg	
75-27-4	Bromodichloromethane	ND	6.4	0.33	ug/kg	
75-25-2	Bromoform	ND	6.4	1.1	ug/kg	
74-83-9	Bromomethane	ND.	6.4	0.63	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.7	ug/kg	
104-51-8	n-Butylbenzene	ND	6.4	0.33	ug/kg	
75-15-0	Carbon disulfide	ND	6.4	0.38	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.4	0.33	ug/kg	
108-90-7	Chlorobenzene	ND	6.4	0.73	ug/kg	
75-00-3	Chloroethane	ND	6.4	0.68	ug/kg	
67-66-3	Chloroform	ND :	6.4	0.52	ug/kg	
74-87-3	Chloromethane	ND	6.4	0.69	ug/kg	
124-48-1	Dibromochloromethane	ND:	6.4	0.27	ug/kg	
75-34-3	1,1-Dichloroethane	ND.	6.4	0.90	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.31	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.4	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.4	0.25	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.4	0.72	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.4	0.25	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.4	0.54	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.4	0.65	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.4	1.1	ug/kg	
123-91-1	1,4-Dioxane	ND	160	49	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.63	ug/kg	
591-78-6	2-Hexanone	ND	6.4	2.3	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.82	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.4	2.6	ug/kg	
75-09-2	Methylene chloride	ND	6.4	0.61	ug/kg	
103-65-1	n-Propylbenzene	ND	6.4	0.38	ug/kg	
100-42-5	Styrene	ND	6.4	0.30	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	0.38	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

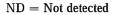
Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08

Matrix: Method:


SW846 8260B

Percent Solids: 81.7

Project: West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.4	0.43	ug/kg	
108-88-3	Toluene	ND	1.3	0.55	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.4	0.49	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.4	0.38	ug/kg	
79-01-6	Trichloroethene	ND	6.4	0.42	ug/kg	
75-01-4	Vinyl chloride	ND	6.4	0.73	ug/kg	
1330-20-7	Xylene (total)	ND	2.5	0.34	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%	24 15 15 15 15 15 15 15 15 15 15 15 15 15	68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	84%		59-1	.36%	
2037-26-5	Toluene-D8	114%		75-1	23%	
460-00-4	4-Bromofluorobenzene	92%		65-1	40%	

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Data: เต้าไปเลือดเป็นอาเ

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID: Matrix:

J80708-8U SO - Soil

Date Sampled:

01/07/08 Date Received: 01/07/08

Method:

SW846 8260B

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	G106566U.D	1	01/10/08	SJM	n/a	n/a	VG5178

Run #2

Initial Weight

4.8 g Run #1

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8 98-06-6 95-63-6 108-67-8	sec-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND ND	6.4 6.4 6.4	0.62 0.36 0.31 0.44	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim		
1868-53-7	Dibromofluoromethane	93%			25%	
17060-07-0	1,2-Dichloroethane-D4	84%		64-1	31%	
2037-26-5	Toluene-D8	114%		73-1	24%	
460-00-4	4-Bromofluorobenzene	92%		61-1	36%	

ND = Not detected

MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By SJM Page 1 of 2

Client Sample ID: G-2(33-35)

Lab Sample ID:

J80708-9 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method:

SW846 8260B

Percent Solids: 86.4

West 34th Street, 34th and 11th Avenue, New York, NY Project:

File ID Run #1 G106567.D DF 1

Analyzed 01/10/08

Prep Date n/a

Prep Batch

Analytical Batch

VG5178 n/a

Run #2

Initial Weight

Run #1 4.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.2	ug/kg	
71-43-2	Benzene	ND	1.2	0.91	ug/kg	
75-27-4	Bromodichloromethane	ND	6.2	0.31	ug/kg	
75-25-2	Bromoform	ND	6.2	1.0	ug/kg	
74-83-9	Bromomethane	ND	6.2	0.61	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.6	ug/kg	
104-51-8	n-Butylbenzene	ND	6.2	0.32	ug/kg	
75-15-0	Carbon disulfide	ND	6.2	0.37	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.2	0.31	ug/kg	
108-90-7	Chlorobenzene	ND	6.2	0.70	ug/kg	
75-00-3	Chloroethane	ND	6.2	0.66	ug/kg	
67-66-3	Chloroform	ND	6.2	0.50	ug/kg	
74-87-3	Chloromethane	ND	6.2	0.66	ug/kg	
124-48-1	Dibromochloromethane	ND	6.2	0.26	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.2	0.87	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.30	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.2	0.58	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.2	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	0.70	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.2	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND -	6.2	0.52	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	0.63	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	1.0	ug/kg	
123-91-1	1,4-Dioxane	ND	150	48	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.61	ug/kg	
591-78-6	2-Hexanone	ND	6.2	2.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.79	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.2	2.5	ug/kg	
75-09-2	Methylene chloride	ND	6.2	0.59	ug/kg	
103-65-1	n-Propylbenzene	ND	6.2	0.37	ug/kg	
100-42-5	Styrene	ND	6.2	0.29	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND -	6.2	0.37	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

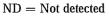
Page 2 of 2

Client Sample ID: G-2(33-35)

Lab Sample ID: Matrix: J80708-9 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8260B


Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.2	0.42	ug/kg	
108-88-3	Toluene	ND	1.2	0.53	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.2	0.48	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.2	0.37	ug/kg	
79-01-6	Trichloroethene	ND	6.2	0.41	ug/kg	
75-01-4	Vinyl chloride	ND	6.2	0.70	ug/kg	
1330-20-7	Xylene (total)	ND	2.5	0.33	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	89%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	82%	and	59-1	36%	
2037-26-5	Toluene-D8	114%		75-1	.23%	
460-00-4	4-Bromofluorobenzene	91%		65-1	40%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-2(33-35)

Lab Sample ID:

J80708-9U

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8260B

Percent Solids:

86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

ND

ND

ND

ND

Prep Batch

Analytical Batch

Run #1 Run #2 File ID G106567U.D Ву SJM Prep Date n/a

n/a

Q

VG5178

Initial Weight

Compound

sec-Butylbenzene

tert-Butylbenzene

Run #1 Run #2

CAS No.

135-98-8

98-06-6

95-63-6

108-67-8

4.7 g

DF

1

Units Result RL**MDL**

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene

6.2 0.60 6.2 0.35 6.2

6.2

0.30 0.43

ug/kg ug/kg ug/kg

Limits

ug/kg

CAS No. Surrogate Recoveries

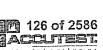
Dibromofluoromethane 1868-53-7

1.2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8 4-Bromofluorobenzene 460-00-4

Run#1 Run# 2

89% 67-125% 64-131% 82% 114% 73-124% 61-136% 91%

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SJM

Page 1 of 2

Client Sample ID: G-3(29-31)

File ID

G106568.D

Lab Sample ID: Matrix: J80708-10 SO - Soil Date Sampled: Date Received:

Prep Date

n/a

01/07/08 01/07/08

Method:

SW846 8260B

DF

1

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch Analytical Batch n/a VG5178

Run #1 Run #2

Initial Weight

Run #1 4.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	14	5.7	ug/kg	
71-43-2	Benzene	ND	1.4	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	6.8	0.35	ug/kg	
75-25-2	Bromoform	ND	6.8	1.1	ug/kg	
74-83-9	Bromomethane	ND	6.8	0.68	ug/kg	
78-93-3	2-Butanone (MEK)	ND	14	3.9	ug/kg	
104-51-8	n-Butylbenzene	ND	6.8	0.35	ug/kg	
75-15-0	Carbon disulfide	ND	6.8	0.41	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.8	0.35	ug/kg	
108-90-7	Chlorobenzene	ND	6.8	0.78	ug/kg	
75-00-3	Chloroethane	ND	6.8	0.73	ug/kg	
67-66-3	Chloroform	ND	6.8	0.55	ug/kg	
74-87-3	Chloromethane	ND	6.8	0.73	ug/kg	
124-48-1	Dibromochloromethane	ND	6.8	0.29	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.8	0.97	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.33	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.8	0.65	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.8	0.27	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.8	0.77	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.8	0.27	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.8	0.58	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.8	0.70	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.8	1.1	ug/kg	
123-91-1	1,4-Dioxane	ND	170	53	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.68	ug/kg	
591-78-6	2-Hexanone	ND	6.8	2.4	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.4	0.88	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.8	2.8	ug/kg	
75-09-2	Methylene chloride	ND	6.8	0.66	ug/kg	
103-65-1	n-Propylbenzene	ND	6.8	0.41	ug/kg	
100-42-5	Styrene	ND	6.8	0.32	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.8	0.41	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: G-3(29-31)

Lab Sample ID:

J80708-10 SO - Soil

Date Sampled:

01/07/08

Matrix: Method:

SW846 8260B

Date Received: 01/07/08 Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.8	0.47	ug/kg	
108-88-3	Toluene	ND	1.4	0.59	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.8	0.53	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.8	0.41	ug/kg	
79-01-6	Trichloroethene	ND	6.8	0.45	ug/kg	
75-01-4	Vinyl chloride	ND	6.8	0.78	ug/kg	
1330-20-7	Xylene (total)	ND	2.7	0.36	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	82%		59-1	36%	
2037-26-5	Toluene-D8	113%		75-1	.23%	
460-00-4	4-Bromofluorobenzene	85%		65-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SJM

n/a

61-136%

Page 1 of 1

Client Sample ID: G-3(29-31)

Lab Sample ID: Matrix: J80708-10U SO - Soil

DF

1

Date Sampled: 0
Date Received: 0

01/07/08 01/07/08 87.3

Method: Project: SW846 8260B Percent Solids: West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Date Prep Batch Analytical Batch

VG5178

n/a

Run #1 Run #2

Initial Weight Run #1 4.2 g

File ID

G106568U.D

Run #2

460-00-4

CAS No. Compound Result RL**MDL** Units Q 135-98-8 sec-Butylbenzene ND 6.8 0.66ug/kg 98-06-6 tert-Butylbenzene ND 6.8 0.38 ug/kg 95-63-6 1,2,4-Trimethylbenzene ND 6.8 0.33 ug/kg 1,3,5-Trimethylbenzene 108-67-8 ND 6.8 0.47ug/kg CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 93% 67-125% 1,2-Dichloroethane-D4 82% 17060-07-0 64-131% 2037-26-5 Toluene-D8 113% 73-124%

85%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

SJM

Page 1 of 2

Client Sample ID: G-4(21-23)

File ID

Lab Sample ID: Matrix:

Accutest Laboratories

J80708-11 SO - Soil

Date Sampled: Date Received: 01/07/08

Prep Date

n/a

01/07/08

n/a

Method:

SW846 8260B

DF

1

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch **Analytical Batch**

VG5178

Run #1 Run #2

Initial Weight

G106569.D

Run #1 4.9 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.1	ug/kg	
71-43-2	Benzene	ND	1.2	0.90	ug/kg	
75-27-4	Bromodichloromethane	ND	6.1	0.31	ug/kg ug/kg	
75-25-2	Bromoform	ND	6.1	1.0	ug/kg	
74-83-9	Bromomethane	ND	6.1	0.60	ug/kg ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.5	ug/kg ug/kg	
104-51-8	n-Butylbenzene	ND	6.1	0.32	ug/kg ug/kg	
75-15-0	Carbon disulfide	ND	6.1	0.32	ug/kg ug/kg	
56-23-5	Carbon tetrachloride	ND	6.1	0.31	ug/kg ug/kg	
108-90-7	Chlorobenzene	ND	6.1	0.69	ug/kg ug/kg	
75-00-3	Chloroethane	ND	6.1	0.65	ug/kg ug/kg	
67-66-3	Chloroform	ND	6.1	0.49	ug/kg ug/kg	
74-87-3	Chloromethane	ND	6.1	0.45	ug/kg ug/kg	
124-48-1	Dibromochloromethane	ND	6.1	0.26		
75-34-3	1,1-Dichloroethane	ND	6.1	0.20	ug/kg ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.29	ug/kg ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.1	0.29		
156-59-2	cis-1,2-Dichloroethene	ND ND	6.1	0.38	ug/kg	
156-60-5		ND	6.1	0.69	ug/kg	
540-59-0	trans-1,2-Dichloroethene	ND	6.1	0.09	ug/kg	
	1,2-Dichloroethene (total)	SEASON CONTRACTOR	21921		ug/kg	
78-87-5 10061-01-5	1,2-Dichloropropane	ND ND	6.1 6.1	0.51	ug/kg	
	cis-1,3-Dichloropropene	ND ND	13410	0.62	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND ND	6.1	1.0	ug/kg	
123-91-1	1,4-Dioxane	100000000000000000000000000000000000000	150	47	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.60	ug/kg	
591-78-6	2-Hexanone	ND	6.1	2.1	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.78	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.1	2.5	ug/kg	
75-09-2	Methylene chloride	ND	6.1	0.58	ug/kg	
103-65-1	n-Propylbenzene	ND	6.1	0.36	ug/kg	
100-42-5	Styrene	ND	6.1	0.28	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND .	6.1	0.36	ug/kg	

ND = Not detected

MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: G-4(21-23)

Lab Sample ID:

J80708-11

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: SO - Soil SW846 8260B

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.1	0.41	ug/kg	
108-88-3	Toluene	ND	1.2	0.52	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.1	0.47	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.1	0.36	ug/kg	
79-01-6	Trichloroethene	ND	6.1	0.40	ug/kg	
75-01-4	Vinyl chloride	ND	6.1	0.69	ug/kg	
1330-20-7	Xylene (total)	ND	2.4	0.32	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%		68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	80%		59-1	.36%	
2037-26-5	Toluene-D8	113%		75-1	23%	
460-00-4	4-Bromofluorobenzene	102%		65-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID:

J80708-11U SO - Soil

Date Sampled: 01/07/08

Matrix:

SW846 8260B

Date Received: 01/07/08 Percent Solids: 84.1

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Run #1 Run #2 File ID DF Analyzed 01/10/08 G106569U.D 1

Prep Date By SJM n/a

Prep Batch n/a

Analytical Batch VG5178

Initial Weight

Run #1 Run #2

CAS No.

4.9 g

Compound CAS No.

135-98-8 sec-Butylbenzene 98-06-6 tert-Butylbenzene 95-63-6 1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene 108-67-8

Surrogate Recoveries

1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0

2037-26-5 Toluene-D8 4-Bromofluorobenzene 460-00-4

RL MDL Units Q Result

ND 6.1 0.59ug/kg ug/kg ND6.1 0.34ug/kg ND 6.1 0.29 6.1 0.42 ug/kg ND

Run#1 Run#2 Limits 93% 67-125%

80% 64-131% 113% 73-124% 61-136% 102%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: G-5(28-30)

Lab Sample ID: Matrix:

J80708-12 SO - Soil

01/07/08 Date Sampled: Date Received: 01/07/08

Method:

SW846 8260B

1

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch

Run #1

File ID G106591.D DF Analyzed 01/10/08

Prep Date Ву SJM n/a

n/a

VG5180

Run #2

Initial Weight

Run #1 5.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	4.9	ug/kg	
71-43-2	Benzene	ND	1.2	0.87	ug/kg	
75-27-4	Bromodichloromethane	ND	5.9	0.30	ug/kg	
75-25-2	Bromoform	ND	5.9	0.99	ug/kg	
74-83-9	Bromomethane	ND	5.9	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.4	ug/kg	
104-51-8	n-Butylbenzene	ND	5.9	0.31	ug/kg	
75-15-0	Carbon disulfide	ND	5.9	0.35	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.9	0.30	ug/kg	
108-90-7	Chlorobenzene	ND	5.9	0.67	ug/kg	
75-00-3	Chloroethane	ND	5.9	0.63	ug/kg	
67-66-3	Chloroform	ND	5.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	5.9	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	5.9	0.25	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.9	0.83	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.28	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.9	0.56	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.9	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.9	0.67	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.9	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.9	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	0.60	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	0.97	ug/kg	
123-91-1	1,4-Dioxane	ND	150	46	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.58	ug/kg	
591-78-6	2-Hexanone	ND	5.9	2.1	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.76	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.9	2.4	ug/kg	
75-09-2	Methylene chloride	ND	5.9	0.57	ug/kg	
103-65-1	n-Propylbenzene	ND	5.9	0.35	ug/kg	
100-42-5	Styrene	ND	5.9	0.27	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	0.35	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: G-5(28-30)

Lab Sample ID:

J80708-12

Date Sampled: 01/07/08

Matrix: Method: SO - Soil SW846 8260B Date Received: 01/07/08 Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	5.9	0.40	ug/kg	
108-88-3	Toluene	ND	1.2	0.51	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.9	0.45	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND.	5.9	0.35	ug/kg	
79-01-6	Trichloroethene	ND	5.9	0.39	ug/kg	
75-01-4	Vinyl chloride	ND	5.9	0.67	ug/kg	
1330-20-7	Xylene (total)	ND	2.4	0.31	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	97%	76 1	68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	90%		59-1	.36%	
2037-26-5	Toluene-D8	114%		75-1	.23%	
460-00-4	4-Bromofluorobenzene	91%		65-1	.40%	

ND = Not detected

MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

Ву

SJM

Page 1 of 1

Client Sample ID: G-5(28-30)

Lab Sample ID:

J80708-12U

DF

1

Date Sampled:

01/07/08

Matrix: Method: SO - Soil

Date Received: Percent Solids:

01/07/08

SW846 8260B

Prep Date

n/a

85.0

n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch

Analytical Batch VG5180

Run #1 Run #2

Initial Weight

File ID

G106591U.D

Run #1 5.0 g

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8	sec-Butylbenzene	ND	5.9	0.57	ug/kg	
98-06-6	tert-Butylbenzene	ND	5.9	0.33	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.9	0.29	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.9	0.41	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	97%		67-1	25%	
17060-07-0	1,2-Dichloroethane-D4	90%		64-1	l 3 1%	
2037-26-5	Toluene-D8	114%		73-1	L 24 %	
460-00-4	4-Bromofluorobenzene	91%		61-1	136%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13 SO - Soil

Date Sampled: Date Received:

01/07/08 01/07/08

Method:

SW846 8260B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch

Run #1

File ID G106594.D DF 1

Ву SJM Prep Date n/a

Analytical Batch

n/a VG5180

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	4.8	ug/kg	
71-43-2	Benzene	ND	1.1	0.84	ug/kg	
75-27-4	Bromodichloromethane	ND	5.7	0.29	ug/kg	
75-25-2	Bromoform	ND .	5.7	0.95	ug/kg	
74-83-9	Bromomethane	ND	5.7	0.57	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	3.3	ug/kg	
104-51-8	n-Butylbenzene	ND	5.7	0.30	ug/kg	
75-15-0	Carbon disulfide	ND	5.7	0.34	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.7	0.29	ug/kg	
108-90-7	Chlorobenzene	ND	5.7	0.65	ug/kg	
75-00-3	Chloroethane	ND	5.7	0.60	ug/kg	
67-66-3	Chloroform	ND	5.7	0.46	ug/kg	
74-87-3	Chloromethane	ND	5.7	0.61	ug/kg	
124-48-1	Dibromochloromethane	ND	5.7	0.24	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.7	0.80	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.7	0.54	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.7	0.22	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.7	0.64	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.7	0.22	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.7	0.48	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.7	0.58	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.7	0.94	ug/kg	
123-91-1	1,4-Dioxane	ND	140	44	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.56	ug/kg	
591-78-6	2-Hexanone	ND	5.7	2.0	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.73	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.7	2.3	ug/kg	
75-09-2	Methylene chloride	ND	5.7	0.55	ug/kg	
103-65-1	n-Propylbenzene	ND	5.7	0.34	ug/kg	
100-42-5	Styrene	ND	5.7	0.26	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.7	0.34	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13 SO - Soil

Date Sampled: Date Received: 01/07/08

01/07/08

Method:

SW846 8260B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	5.7	0.39	ug/kg	
108-88-3	Toluene	ND	1.1	0.49	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.7	0.44	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.7	0.34	ug/kg	
79-01-6	Trichloroethene	1.9	5.7	0.38	ug/kg	J
75-01-4	Vinyl chloride	ND	5.7	0.65	ug/kg	
1330-20-7	Xylene (total)	ND	2.3	0.30	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		68-1	23%	
17060-07-0	1,2-Dichloroethane-D4	84%		59-1	36%	
2037-26-5	Toluene-D8	114%		75-1	23%	
460-00-4	4-Bromofluorobenzene	92%		65-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13U SO - Soil

Date Sampled: Date Received:

01/07/08 01/07/08

Method:

SW846 8260B

DF

1

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1 Run #2 File ID G106594U.D Analyzed By 01/10/08 SJM Prep Date n/a

n/a

VG5180

Initial Weight 5.1 g

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8	sec-Butylbenzene	ND	5.7	0.55	ug/kg	
98-06-6	tert-Butylbenzene	ND	5.7	0.32	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.7	0.28	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.7	0.39	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		67-125%		
17060-07-0	1,2-Dichloroethane-D4	84%		64-131%		
2037-26-5	Toluene-D8	114%		73-124%		
460-00-4	4-Bromofluorobenzene	92%		61-136%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

MKP

Page 1 of 2

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14 AQ - Field Blank Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix:

SW846 8260B

Percent Solids: n/a

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

141

Prep Batch Analytical Batch

Run #1

File ID 2C41099.D DF Analyzed 1 01/11/08

Prep Date n/a

n/a

V2C1826

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	TU GA	10	2.9	ug/l	
71-43-2	Benzene	ND	1.0	0.19	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.15	ug/l	
75-25-2	Bromoform	ND	4.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.38	ug/l	
78-93-3	2-Butanone (MEK)	ND:	10	2.7	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.56	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.14	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.19	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l	
75-00-3	Chloroethane	ND	1.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.25	ug/l	
74-87-3	Chloromethane	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.29	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.28	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.32	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.27	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.13	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.17	ug/l	
123-91-1	1,4-Dioxane	ND	130	47	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.21	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.94	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/I	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.4	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.21	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.74	ug/l	
100-42-5	Styrene	ND	5.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.80	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14 AQ - Field Blank Soil Date Sampled: 01/07/08

Matrix: Method:

SW846 8260B

Date Received: 01/07/08

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.49	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	106%		76-1	23%	
17060-07-0	1,2-Dichloroethane-D4	126%	#8 #9 #4 #4 #4 #4	63-1	40%	
2037-26-5	Toluene-D8	98%		78-1	17%	
460-00-4	4-Bromofluorobenzene	96%	Control of the contro	73-1	25%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14U AQ - Field Blank Soil

DF

1

Date Sampled:

Prep Date

n/a

01/07/08 Date Received: 01/07/08

Matrix:

SW846 8260B

Percent Solids: n/a

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

By

MKP

Analyzed

01/11/08

Analytical Batch Prep Batch V2C1826 n/a

Run #1 Run #2

Purge Volume

File ID

2C41099U.D

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
135-98-8 98-06-6 95-63-6 108-67-8	sec-Butylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND ND	5.0 5.0 5.0 5.0	0.27 0.15 0.22 0.58	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	106%		72-13	20%	
17060-07-0	1,2-Dichloroethane-D4	126%		59-13	37%	
2037-26-5	Toluene-D8	98%		73-1	16%	
460-00-4	4-Bromofluorobenzene	96%		69-1	26%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15

Date Sampled:

01/07/08

Matrix:

SO - Field Blank Soil

DF

1

Date Received: 01/07/08

Method:

SW846 8260B

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch

Analytical Batch

Run #1

File ID G106595.D Analyzed 01/10/08

Ву SJM Prep Date n/a

n/a

VG5180

Run #2

Initial Weight

Run #1 4.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	5.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.88	ug/kg	
75-27-4	Bromodichloromethane	ND	6.0	0.30	ug/kg	
75-25-2	Bromoform	ND	6.0	1.0	ug/kg	
74-83-9	Bromomethane	ND	6.0	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.4	ug/kg	
104-51-8	n-Butylbenzene	ND	6.0	0.31	ug/kg	
75-15-0	Carbon disulfide	ND	6.0	0.35	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.0	0.30	ug/kg	
108-90-7	Chlorobenzene	ND	6.0	0.68	ug/kg	
75-00-3	Chloroethane	ND	6.0	0.63	ug/kg	
67-66-3	Chloroform	ND	6.0	0.48	ug/kg	
74-87-3	Chloromethane	ND	6.0	0.64	ug/kg	
124-48-1	Dibromochloromethane	ND	6.0	0.26	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.0	0.84	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.29	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.0	0.57	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.0	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.0	0.68	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.0	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.0	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	0.61	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	0.98	ug/kg	
123-91-1	1,4-Dioxane	ND	150	46	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.59	ug/kg	
591-78-6	2-Hexanone	ND	6.0	2.1	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.77	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.0	2.4	ug/kg	
75-09-2	Methylene chloride	ND	6.0	0.57	ug/kg	
103-65-1	n-Propylbenzene	ND	6.0	0.35	ug/kg	
100-42-5	Styrene	ND	6.0	0.28	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	0.36	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15

Date Sampled: 01/07/08

Matrix: Method: SO - Field Blank Soil SW846 8260B

Date Received: 01/07/08 Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	6.0	0.41	ug/kg	
108-88-3	Toluene	ND.	1.2	0.51	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.0	0.46	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.0	0.36	ug/kg	
79-01-6	Trichloroethene	ND	6.0	0.40	ug/kg	
75-01-4	Vinyl chloride	ND	6.0	0.68	ug/kg	
1330-20-7	Xylene (total)	ND	2.4	0.32	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	97%		68-1	.23%	
17060-07-0	1,2-Dichloroethane-D4	87%		59-1	36%	
2037-26-5	Toluene-D8	114%	96 57 50 50 50 50 50 50 50 50 50 50 50 50 50	75-1	.23%	
460-00-4	4-Bromofluorobenzene	90%	76 76 76 76 76 76 76 76 76	65-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@470733 15:13 27-Oct-2008

Report of Analysis

By

SJM

Page 1 of 1

Client Sample ID: FB-SOIL

File ID

Lab Sample ID:

I80708-15U

SO - Field Blank Soil

DF

1

Date Sampled: Date Received:

01/07/08

Matrix: Method:

SW846 8260B

01/07/08 Percent Solids: 85.3

Prep Date

n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch Analytical Batch

VG5180 n/a

Run #1 Run #2

Initial Weight

G106595U.D

Run #1 4.2 g

Run #2

Result RLMDL Units Q CAS No. Compound

ND 7.0 0.68 ug/kg 135-98-8 sec-Butylbenzene ug/kg ND 7.0 0.3998-06-6 tert-Butylbenzene 1,2,4-Trimethylbenzene ND 7.0 0.34 ug/kg 95-63-6 1,3,5-Trimethylbenzene ND 7.0 0.48ug/kg 108-67-8

Run# 2 Limits Run#1 CAS No. Surrogate Recoveries

Dibromofluoromethane 97% 67-125% 1868-53-7 1,2-Dichloroethane-D4 87% 64-131% 17060-07-0 Toluene-D8 114% 73-124% 2037-26-5 90%

460-00-4 4-Bromofluorobenzene

61-136%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

J80708-16

AQ - Trip Blank Soil

01/07/08 Date Sampled:

Matrix: Method:

SW846 8260B

Date Received: 01/07/08 Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

File ID 2C41100.D Run #1

DF 1

Analyzed By 01/11/08 MKP Prep Date n/a

Prep Batch n/a

V2C1826

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	CU UN	10	2.9	ug/l	
71-43-2	Benzene	ND	1.0	0.19	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.15	ug/l	
75-25-2	Bromoform	ND	4.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.38	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.56	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.14	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.19	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l	
75-00-3	Chloroethane	ND	1.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.25	ug/l	
74-87-3	Chloromethane	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.29	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.28	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.32	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.27	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.13	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.17	ug/l	
123-91-1	1,4-Dioxane	ND	130	47	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.21	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.94	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.4	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.21	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.74	ug/l	
100-42-5	Styrene	ND	5.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.80	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

J80708-16

Date Sampled: Date Received: 01/07/08

01/07/08

Matrix: Method: AQ - Trip Blank Soil SW846 8260B

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.49	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	107%		76-1	23%	
17060-07-0	1,2-Dichloroethane-D4	126%	74 44 15 16 16 16 16 16 16 16 16 16 16 16 16 16	63-1	L 40 %	
2037-26-5	Toluene-D8	99%		78-1	17%	
460-00-4	4-Bromofluorobenzene	98%		73-1	125%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

By

OYA

Page 1 of 3

Client Sample ID: A-1(12-14)

Lab Sample ID:

J80708-1

Date Sampled:

Prep Date

01/12/08

01/07/08 01/07/08

Matrix:

SO - Soil

Date Received:

Method:

SW846 8270C SW846 3550B

Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/15/08

Analytical Batch Prep Batch OP30823 ER2346

Run #1 Run #2

Initial Weight

R64380.D

File ID

Final Volume

Run #1 30.0 g 1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	46	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	760	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	760	70	ug/kg	
95-48-7	2-Methylphenol	ND :	190	37	ug/kg	
	3&4-Methylphenol	ND	190	47	ug/kg	
88-75-5	2-Nitrophenol	ND	190	44	ug/kg	
100-02-7	4-Nitrophenol	ND	760	67	ug/kg	
87-86-5	Pentachlorophenol	ND	760	40	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	72	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	77	ug/kg	
83-32-9	Acenaphthene	20.7	76	12	ug/kg	J
208-96-8	Acenaphthylene	17.2	76	7.7	ug/kg	J
120-12-7	Anthracene	61.0	76	35	ug/kg	J
56-55-3	Benzo(a)anthracene	229	76	7.9	ug/kg	
50-32-8	Benzo(a)pyrene	233	76	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	169	76	12	ug/kg	
191-24-2	Benzo(g,h,i)perylene	140	76	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	192	76	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	76	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND ·	76	11	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	25.0	76	13	ug/kg	J
218-01-9	Chrysene	229	76	15	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	76	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND.	76	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: Matrix:

J80708-1 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 87.6

Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	76	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	76	11	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	76	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	76	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	76	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	38.9	76	9.8	ug/kg	J
132-64-9	Dibenzofuran	ND	76	7.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	16	ug/kg	
84-66-2	Diethyl phthalate	ND	76	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	23	ug/kg	
206-44-0	Fluoranthene	428	76	7.1	ug/kg	
86-73-7	Fluorene	16.8	76	7.7	ug/kg	J
118-74-1	Hexachlorobenzene	ND	76	18	ug/kg	
87-68-3	Hexachlorobutadiene	ND	76	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	760	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	128	76	36	ug/kg	
78-59-1	Isophorone	ND	76	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	76	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	25	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	76	8.6	ug/kg	
98-95-3	Nitrobenzene	ND	76	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.4	ug/kg	
85-01-8	Phenanthrene	282	76	9.5	ug/kg	
129-00-0	Pyrene	391	76	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	76	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
367-12-4	2-Fluorophenol	67%		26-3	105%	
4165-62-2	Phenol-d5	72%			106%	
118-79-6	2,4,6-Tribromophenol	68%			126%	
4165-60-0	Nitrobenzene-d5	74%			115%	
321-60-8	2-Fluorobiphenyl	75%		44-1	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: A-1(12-14)

Lab Sample ID: Matrix:

J80708-1 SO - Soil Date Sampled:

01/07/08 Date Received:

Method:

01/07/08

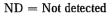
Project:

SW846 8270C SW846 3550B

Percent Solids: 87.6

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List


CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0

Terphenyl-d14

70%

42-133%

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit E = Indicates value exceeds calibration range

Report of Analysis

By OYA Page 1 of 3

A-2(8-10) Client Sample ID:

File ID

R64381.D

Lab Sample ID:

J80708-2 SO - Soil Date Sampled: 01/07/08

Prep Date

01/12/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: Percent Solids: 85.3

01/07/08

OP30823

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/15/08

Prep Batch **Analytical Batch**

ER2346

Run #1 Run #2

Final Volume

Initial Weight Run #1 30.1 g

1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	53	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	780	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	780	71	ug/kg	
95-48-7	2-Methylphenol	ND	190	38	ug/kg	
	3&4-Methylphenol	ND	190	48	ug/kg	
88-75-5	2-Nitrophenol	ND	190	4 5	ug/kg	
100-02-7	4-Nitrophenol	ND	780	69	ug/kg	
87-86-5	Pentachlorophenol	ND	780	41	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	74	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	79	ug/kg	
83-32-9	Acenaphthene	40.2	78	12	ug/kg	J
208-96-8	Acenaphthylene	52.8	78	7.9	ug/kg	J
120-12-7	Anthracene	133	78	36	ug/kg	
56-55-3	Benzo(a)anthracene	492	78	8.1	ug/kg	
50-32-8	Benzo(a)pyrene	494	78	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	411	78	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	199	78	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	421	78	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	52.8	78	13	ug/kg	J
218-01-9	Chrysene	477	78	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	78	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	78	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: A-2(8-10)

Lab Sample ID: Matrix:

J80708-2 SO - Soil Date Sampled: Date Received:

01/07/08 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	78	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	78	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	78	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	78	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	78	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	62.0	78	10	ug/kg	J
132-64-9	Dibenzofuran	23.5	78	7.7	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	78	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	78	16	ug/kg	
84-66-2	Diethyl phthalate	ND	78	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	78	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	56.3	78	23	ug/kg	J
206-44-0	Fluoranthene	883	78	7.2	ug/kg	
86-73-7	Fluorene	36.6	78	7.9	ug/kg	J
118-74-1	Hexachlorobenzene	ND	78	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND		18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	780	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	208	78	36	ug/kg	
78-59-1	Isophorone	ND	78	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	78	35	ug/kg	
88-74-4	2-Nitroaniline	ND	190	25	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	78	8.8	ug/kg	
98-95-3	Nitrobenzene	ND	78	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	78	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.6	ug/kg	
85-01-8	Phenanthrene	518	78	9.7	ug/kg	
129-00-0	Pyrene	797	78	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	78	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	70%		26-1	105%	
4165-62-2	Phenol-d5	74%	68		106%	
118-79-6	2,4,6-Tribromophenol	69%	928 807 175 275	30-1	l 26 %	
4165-60-0	Nitrobenzene-d5	73%		36-1	l15%	
321-60-8	2-Fluorobiphenyl	75%		44-1	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: A-2(8-10)

Lab Sample ID:

J80708-2

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0

Terphenyl-d14

73%

42-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Appendix W Data Usability Summary Reports

Report of Analysis

Ву

OYA

Page 1 of 3

Client Sample ID: A-3(9-11)

Lab Sample ID: Matrix:

J80708-3 SO - Soil Date Sampled: 01/07/08

Prep Date

01/12/08

Method:

SW846 8270C SW846 3550B

DF

1

Date Received: 01/07/08 Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/15/08

Prep Batch

OP30823

Analytical Batch ER2346

Run #1 Run #2

Initial Weight

File ID

R64382.D

Final Volume

Run #1 30.0 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	:ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	770	71	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	48	ug/kg	
88-75-5	2-Nitrophenol	ND	190	45	ug/kg	
100-02-7	4-Nitrophenol	ND	770	68	ug/kg	
87-86-5	Pentachlorophenol	ND	770	41	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	78	ug/kg	
83-32-9	Acenaphthene	ND	77	12	ug/kg	
208-96-8	Acenaphthylene	ND	77	7.8	ug/kg	
120-12-7	Anthracene	ND	77	36	ug/kg	
56-55-3	Benzo(a)anthracene	17.8	77	8.0	ug/kg	J
50-32-8	Benzo(a)pyrene	ND	77	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	77	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	77	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	77	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND		12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	77	13	ug/kg	
218-01-9	Chrysene	ND	77	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	. 77	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: A-3(9-11) J80708-3

SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Report of Analysis

ABN TCL List

Lab Sample ID:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	77	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	77	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	77	9.9	ug/kg	
132-64-9	Dibenzofuran	ND	77	7.6	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	77	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg	
84-66-2	Diethyl phthalate	ND	77	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	77	23	ug/kg	
206-44-0	Fluoranthene	25.2	77	7.2	ug/kg	J
86-73-7	Fluorene	ND	77	7.8	ug/kg	J
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	770	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	77	36	ug/kg	
78-59-1	Isophorone	ND	77	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	77	35	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	77	8.7	ug/kg	
98-95-3	Nitrobenzene	ND	77	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.5	ug/kg	
85-01-8	Phenanthrene	ND	77	9.6	ug/kg	
129-00-0	Pyrene	24.5	77	13	ug/kg	J
120-82-1	1,2,4-Trichlorobenzene	ND	77	12	ug/kg	_
	• •	is also a manufal distributed edenina	5 M		0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	72%		26-1	.05%	
4165-62-2	Phenol-d5	77%		34-1	. 06 %	
118-79-6	2,4,6-Tribromophenol	72%		30-1	L 26 %	
4165-60-0	Nitrobenzene-d5	79%		36-1	15%	
321-60-8	2-Fluorobiphenyl	81%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Run#2

Client Sample ID: A-3(9-11)

Lab Sample ID:

J80708-3

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 86.4

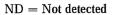
Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries

Run# 1


Limits

1718-51-0

Terphenyl-d14

78%

42-133%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4 SO - Soil Date Sampled:

01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

DF

1

Date Received:

01/07/08

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

01/15/08

Percent Solids: 85.0

File ID

R64383.D

Analyzed By

OYA

Prep Date 01/12/08

Prep Batch OP30823

Analytical Batch ER2346

Run #1 Run #2

Final Volume

Initial Weight Run #1 30.1 g

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	53	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	780	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	780	72	ug/kg	
95-48-7	2-Methylphenol	ND	200	38	ug/kg	
	3&4-Methylphenol	ND	200	48	ug/kg	
88-75-5	2-Nitrophenol	ND	200	45	ug/kg	
100-02-7	4-Nitrophenol	ND	780	69	ug/kg	
87-86-5	Pentachlorophenol	ND	780	41	ug/kg	
108-95-2	Phenol	ND	200	37	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	74	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	79	ug/kg	
83-32-9	Acenaphthene	117	78	12	ug/kg	
208-96-8	Acenaphthylene	ND	78	7.9	ug/kg	
120-12-7	Anthracene	188	78	36	ug/kg	
56-55-3	Benzo(a)anthracene	358	78	8.1	ug/kg	
50-32-8	Benzo(a)pyrene	324	78	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	237	78	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	150	78	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	271	78	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	12	ug/kg	
106-47-8	4-Chloroaniline	ND.	200	14	ug/kg	
86-74-8	Carbazole	78.8	78	13	ug/kg	
218-01-9	Chrysene	356	78	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	78	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	78	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J80708

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	78	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	78	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	78	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	78	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	78	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	47.3	78	10	ug/kg	J
132-64-9	Dibenzofuran	60.8	78	7.7	ug/kg	Ĵ
84-74-2	Di-n-butyl phthalate	ND	78	11	ug/kg	ū
117-84-0	Di-n-octyl phthalate	ND	78	16	ug/kg	
84-66-2	Diethyl phthalate	ND	78	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	78	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	78	24	ug/kg	
206-44-0	Fluoranthene	893	78	7.3	ug/kg	
86-73-7	Fluorene	79.3	78	7.9	ug/kg	
118-74-1	Hexachlorobenzene	ND	78	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	78	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	780	18	ug/kg	
67-72-1	Hexachloroethane	ND	200	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	149	78	36	ug/kg	
78-59-1	Isophorone	ND	78	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND.	78	35	ug/kg	
88-74-4	2-Nitroaniline	ND	200	25	ug/kg	
99-09-2	3-Nitroaniline	ND	200	26	ug/kg	
100-01-6	4-Nitroaniline	ND	200	22	ug/kg	
91-20-3	Naphthalene	23.6	78	8.8	ug/kg	J
98-95-3	Nitrobenzene	ND	78	13	ug/kg	•
621-64-7	N-Nitroso-di-n-propylamine	ND	78	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	8.6	ug/kg	
85-01-8	Phenanthrene	916	78	9.8	ug/kg	
129-00-0	Pyrene	772	78	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	78	12	ug/kg	
		2-17-1-22-22-4-12-22-2-12-22-23-23-23-23-23-23-23-23-23-23-23-23			0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	77%		26 -1	105%	
4165-62-2	Phenol-d5	82%		34-1	106%	
118-79-6	2,4,6-Tribromophenol	75%		30 -1	126%	
4165-60-0	Nitrobenzene-d5	84%		36 -1	115%	
321-60-8	2-Fluorobiphenyl	84%		44-1	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: A-4(12-14)

Lab Sample ID: J80708-4

Matrix:

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 01/07/08

Percent Solids: 85.0

Date Received: 01/07/08

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0

Terphenyl-d14

78%

42-133%

ND = Not detected

MDL - Method Detection Limit

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

OYA

Page 1 of 3

Client Sample ID: A-5(21-23)

Lab Sample ID: Matrix:

J80708-5 SO - Soil Date Sampled: Date Received:

01/07/08 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 89.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/14/08

Analytical Batch

Run #1 Run #2

R64379.D

File ID

Prep Date 01/12/08

Prep Batch OP30823

ER2346

Initial Weight

Final Volume

Run #1 30.0 g 1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	51	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	39	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	46	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	750	41	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	750	68	ug/kg	
95-48-7	2-Methylphenol	ND	190	36	ug/kg	
	3&4-Methylphenol	ND	ii 190	46	ug/kg	
88-75-5	2-Nitrophenol	ND	190	43	ug/kg	
100-02-7	4-Nitrophenol	ND	750	66	ug/kg	
87-86-5	Pentachlorophenol	ND	750	39	ug/kg	
108-95-2	Phenol	ND	190	35	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	71	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	75	ug/kg	
83-32-9	Acenaphthene	ND	. 75	12	ug/kg	
208-96-8	Acenaphthylene	ND	75	7.6	ug/kg	
120-12-7	Anthracene	ND	75	34	ug/kg	
56-55-3	Benzo(a)anthracene	ND	75	7.7	ug/kg	
50-32-8	Benzo(a)pyrene	ND	75	18	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	75	12	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	75	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	75	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	75	16	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	75	11	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	75	13	ug/kg	
218-01-9	Chrysene	ND	75	15	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	75	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J80708

Page 2 of 3

Report of Analysis

Client Sample ID: A-5(21-23)

Lab Sample ID:

J80708-5 SO - Soil Date Sampled:

01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 01/07/08 Percent Solids: 89.2

Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	75	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	75	11	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	75	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	75	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	75	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	27	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	75	9.6	ug/kg	
132-64-9	Dibenzofuran	ND	75	7.4	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	10	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	15	ug/kg	
84-66-2	Diethyl phthalate	ND	75	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	75	22	ug/kg	
206-44-0	Fluoranthene	ND	75	7.0	ug/kg	
86-73-7	Fluorene	ND	75	7.5	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	18	ug/kg	
87-68-3	Hexachlorobutadiene	ND	75	17	ug/kg	
· 77-47-4	Hexachlorocyclopentadiene	ND	750	17	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	75	35	ug/kg	
78-59-1	Isophorone	ND	75	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	75	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	25	ug/kg	
100-01-6	4-Nitroaniline	ND	190	21	ug/kg	
91-20-3	Naphthalene	ND	75	8.4	ug/kg	
98-95-3	Nitrobenzene	ND	75	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	75	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.2	ug/kg	
85-01-8	Phenanthrene	ND	7 5	9.3	ug/kg	
129-00-0	Pyrene	ND	75	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	75	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
367-12-4	2-Fluorophenol	71%	26-105%			
4165-62-2	Phenol-d5	77%	34-106%			
118-79-6	2,4,6-Tribromophenol	72%	30-126%			
4165-60-0	Nitrobenzene-d5	79%		36-1	15%	
321-60-8	2-Fluorobiphenyl	79%		44-1	.12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: A-5(21-23)

Lab Sample ID: J80708-5

Matrix: Method:

Project:

SO - Soil

Date Sampled:

01/07/08 Date Received: 01/07/08

SW846 8270C SW846 3550B Percent Solids: 89.2

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0 Terphenyl-d14 75%

42-133%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 3

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6 SO - Soil Date Sampled:

01/07/08

Matrix:

SW846 8270C SW846 3550B

Date Received:

01/07/08

Method:

Percent Solids:

88.6

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID R64384.D DF 1

Analyzed Ву 01/15/08 OYA Prep Date 01/12/08

OP30823

ER2346

Run #2

Initial Weight

Final Volume

Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q

95-57-8	2-Chlorophenol	ND	190	24	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	190	51	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	190	39	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	190	46	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	750	41	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	750	68	ug/kg		
95-48-7	2-Methylphenol	ND	190	36	ug/kg		
	3&4-Methylphenol	ND	190	46	ug/kg		
88-75-5	2-Nitrophenol	ND	190	43	ug/kg		
100-02-7	4-Nitrophenol	ND	750	66	ug/kg		
87-86-5	Pentachlorophenol	ND	750	39	ug/kg		
108-95-2	Phenol	ND .	190	35	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	190	71	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	190	75	ug/kg		
83-32-9	Acenaphthene	ND	75	12	ug/kg		
208-96-8	Acenaphthylene	ND	75	7.6	ug/kg		
120-12-7	Anthracene	ND	75	34	ug/kg		
56-55-3	Benzo(a)anthracene	23.8	75	7.7	ug/kg	J	
50-32-8	Benzo(a)pyrene	23.4	75	18	ug/kg	J	
205-99-2	Benzo(b)fluoranthene	19.0	75	12	ug/kg	J	
191-24-2	Benzo(g,h,i)perylene	ND	75	15	ug/kg		
207-08-9	Benzo(k)fluoranthene	20.7	75	16	ug/kg	J	**
101-55-3	4-Bromophenyl phenyl ether	ND	75	16	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	75	14	ug/kg		
91-58-7	2-Chloronaphthalene	ND	75	11	ug/kg		
106-47-8	4-Chloroaniline	ND	190	14	ug/kg		
86-74-8	Carbazole	ND	75	13	ug/kg		
218-01-9	Chrysene	21.9	75	15	ug/kg	J	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	15	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	75	17	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	75	22	ug/kg		
700F 70 0	4.011 1 1 1 1 1	A TTN	8 00	4.4	/1		

ND = Not detected

7005-72-3

MDL - Method Detection Limit

4-Chlorophenyl phenyl ether ND 75

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

ug/kg

11

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6 SO - Soil Date Sampled: 01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 01/07/08 Percent Solids: 88.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-50-1	1,2-Dichlorobenzene	ND	75	13	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	75	11	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	75	10	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	75	12	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	75	15	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	190	27	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	75	9.6	ug/kg		
132-64-9	Dibenzofuran	ND	75	7.4	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	75	10	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	75	15	ug/kg		
84-66-2	Diethyl phthalate	ND	75	13	ug/kg		
131-11-3	Dimethyl phthalate	ND	75	10	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	66.6	75	22	ug/kg	J	
206-44-0	Fluoranthene	37.5	75	7.0	ug/kg	J	
86-73-7	Fluorene	ND	75	7.5	ug/kg		
118-74-1	Hexachlorobenzene	ND	75	18	ug/kg		
87-68-3	Hexachlorobutadiene	ND	75	17	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	750	17	ug/kg		
67-72-1	Hexachloroethane	ND	190	16	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	75	35	ug/kg		
78-59-1	Isophorone	ND	75	12	ug/kg		
91-57-6	2-Methylnaphthalene	ND	75	34	ug/kg		
88-74-4	2-Nitroaniline	ND	190	24	ug/kg		
99-09-2	3-Nitroaniline	ND	190	25	ug/kg		
100-01-6	4-Nitroaniline	ND	190	21	ug/kg		
91-20-3	Naphthalene	ND	75	8.4	ug/kg		
98-95-3	Nitrobenzene	ND	75	13	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	75	13	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	190	8.2	ug/kg		
85-01-8	Phenanthrene	22.8	75	9.3	ug/kg	J	
129-00-0	Pyrene	50.9	75	13	ug/kg	J	
120-82-1	1,2,4-Trichlorobenzene	ND	75	12	ug/kg		
		The Control of the Co	101.100		0 0		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
367-12-4	2-Fluorophenol	67%		26-105%			
4165-62-2	Phenol-d5	71%	34-106%				
118-79-6	2,4,6-Tribromophenol	67%	30-126%				
4165-60-0	Nitrobenzene-d5	74%	36-115%				
321-60-8	2-Fluorobiphenyl	75%		44-1	12%		

 $ND = Not \ detected$

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6 SO - Soil Date Sampled:

01/07/08 Date Received:

01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 88.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0

Terphenyl-d14

75%

42-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

OYA

Page 1 of 3

Client Sample ID: A-7(40-42)

File ID

Lab Sample ID: Matrix:

J80708-7 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

R64385.D Run #1

DF 1

Analyzed 01/15/08

Prep Date 01/12/08

Prep Batch OP30823

ER2346

Run #2

Initial Weight Final Volume

Run #1 30.0 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	770	70	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	47	ug/kg	
88-75-5	2-Nitrophenol	ND	190	44	ug/kg	
100-02-7	4-Nitrophenol	ND	770	67	ug/kg	
87-86-5	Pentachlorophenol	ND	770	40	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	77	ug/kg	
83-32-9	Acenaphthene	22.3	77	12	ug/kg	J
208-96-8	Acenaphthylene	ND	77	7.8	ug/kg	
120-12-7	Anthracene	49.7	77	35	ug/kg	J
56-55-3	Benzo(a)anthracene	99.6	77	7.9	ug/kg	
50-32-8	Benzo(a)pyrene	98.7	. 77	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	90.5	77	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	40.9	77	15	ug/kg	J
207-08-9	Benzo(k)fluoranthene	96.6	77	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	15.1	77	13	ug/kg	J
218-01-9	Chrysene	102	77	15	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	•
111-44-4	bis(2-Chloroethyl)ether	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	77	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: A-7(40-42)

Lab Sample ID: J80708-7 Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 87.1

West 34th Street, 34th and 11th Avenue, New York, NY

Project:

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	77	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	77	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	15.3	- 77	9.8	ug/kg	J
132-64-9	Dibenzofuran	ND	77	7.5	ug/kg	_
84-74-2	Di-n-butyl phthalate	ND	77	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg	
84-66-2	Diethyl phthalate	ND	77	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	44.6	77	23	ug/kg	J
206-44-0	Fluoranthene	206	77	7.1	ug/kg	_
86-73-7	Fluorene	22.3	77	7.7	ug/kg	J
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg	_
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	770	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	41.3	77	36	ug/kg	J
78-59-1	Isophorone	ND	77	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	77	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	77	8.6	ug/kg	
98-95-3	Nitrobenzene	ND	77	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.4	ug/kg	
85-01-8	Phenanthrene	217	77	9.6	ug/kg	
129-00-0	Pyrene	203	77	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	. ND	77	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	74%	178 178 178	26-1	05%	
4165-62-2	Phenol-d5	79%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	74%		30-1	26%	
4165-60-0	Nitrobenzene-d5	83%	57 413 135	36-1	15%	
321-60-8	2-Fluorobiphenyl	82%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $E = Indicates \ value \ exceeds \ calibration \ range$

Page 3 of 3

Client Sample ID: A-7(40-42)

Lab Sample ID:

J80708-7

Date Sampled: 01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

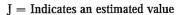
Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run#2 Limits


1718-51-0

Terphenyl-d14

81%

42-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

By

OYA

Page 1 of 3

Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8

Date Sampled: Date Received: 01/07/08

01/07/08

Matrix: Method: SO - Soil SW846 8270C SW846 3550B

Percent Solids: 81.7

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

DF 1

Analyzed 01/15/08

Prep Date 01/12/08

Prep Batch OP30823

ER2346

Run #2

Initial Weight

File ID

R64386.D

Final Volume

Run #1 30.0 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	26	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	55	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	42	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	50	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	820	45	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	820	75	ug/kg	
95-48-7	2-Methylphenol	ND	200	39	ug/kg	
	3&4-Methylphenol	ND	200	51	ug/kg	
88-75-5	2-Nitrophenol	ND	200	47	ug/kg	
100-02-7	4-Nitrophenol	ND	820	72	ug/kg	
87-86-5	Pentachlorophenol	ND	820	43	ug/kg	
108-95-2	Phenol	ND	200	38	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	78	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	82	ug/kg	
83-32-9	Acenaphthene	ND	82	13	ug/kg	
208-96-8	Acenaphthylene	ND	82	8.3	ug/kg	
120-12-7	Anthracene	ND	82	38	ug/kg	
56-55-3	Benzo(a)anthracene	85.9	82	8.4	ug/kg	
50-32-8	Benzo(a)pyrene	72.2	82	20	ug/kg	J
205-99-2	Benzo(b)fluoranthene	64.9	82	13	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	29.3	82	16	ug/kg	J
207-08-9	Benzo(k)fluoranthene	63.0	82	18	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	82	18	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	82	15	ug/kg	
91-58-7	2-Chloronaphthalene	ND	82	12	ug/kg	
106-47-8	4-Chloroaniline	ND	200	15	ug/kg	
86-74-8	Carbazole	ND	82	14	ug/kg	
218-01-9	Chrysene	87.1	82	17	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	82	16	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	82	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	82	24	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	82	12	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 2 of 3

Client Sample ID: G-1(36-38)

Lab Sample ID: Matrix:

J80708-8 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	82	14	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	82	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	82	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	82	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	82	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	30	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	82	10	ug/kg	
132-64-9	Dibenzofuran	ND	82	8.0	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	82	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	82	17	ug/kg	
84-66-2	Diethyl phthalate	ND	82	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	82	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	82.6	82	25	ug/kg	
206-44-0	Fluoranthene	171	82	7.6	ug/kg	
86-73-7	Fluorene	ND	82	8.2	ug/kg	
118-74-1	Hexachlorobenzene	ND	82	20	ug/kg	
87-68-3	Hexachlorobutadiene	ND	82	19	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	820	19	ug/kg	
67-72-1	Hexachloroethane	ND	200	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	82	38	ug/kg	
78-59-1	Isophorone	ND	82	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	82	37	ug/kg	
88-74-4	2-Nitroaniline	ND	200	26	ug/kg	
99-09-2	3-Nitroaniline	ND	200	27	ug/kg	
100-01-6	4-Nitroaniline	ND	200	23	ug/kg	
91-20-3	Naphthalene	ND	82	9.2	ug/kg	
98-95-3	Nitrobenzene	ND	82	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	82	14	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	9.0	ug/kg	
85-01-8	Phenanthrene	139	82	10	ug/kg	
129-00-0	Pyrene	166	82	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	82	13	ug/kg	
•						
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	73%		26-1	05%	
4165-62-2	Phenol-d5	79%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	77%		30-1	26%	
4165-60-0	Nitrobenzene-d5	82%		36-1	15%	
321-60-8	2-Fluorobiphenyl	81%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1 Run#2 Limits

1718-51-0

Terphenyl-d14

78%

42-133%

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

OYA

Page 1 of 3

Client Sample ID: G-2(33-35)

File ID

R64387.D

Lab Sample ID: Matrix: J80708-9

SO - Soil SW846 8270C SW846 3550B Date Sampled: 01/07/08 Date Received: 01/07/08

Date Received: 01/07/08 Percent Solids: 86.4

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/15/08

JIK, IVI

Prep Date

01/12/08

Prep Batch Analytical Batch OP30823 ER2346

Run #1 Run #2

Final Volume

Initial Weight Run #1 30.1 g

1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	770	70	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	48	ug/kg	
88-75-5	2-Nitrophenol	ND	190	45	ug/kg	
100-02-7	4-Nitrophenol	ND	770	68	ug/kg	
87-86-5	Pentachlorophenol	ND	770	40	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	78	ug/kg	
83-32-9	Acenaphthene	ND	77	12	ug/kg	
208-96-8	Acenaphthylene	22.2	77	7.8	ug/kg	J
120-12-7	Anthracene	52.4	77	35	ug/kg	J
56-55-3	Benzo(a)anthracene	136	77	8.0	ug/kg	
50-32-8	Benzo(a)pyrene	105	77	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	102	77	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	36.8	77	15	ug/kg	J
207-08-9	Benzo(k)fluoranthene	95.0	77	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	17.6	77	13	ug/kg	J
218-01-9	Chrysene	123	77	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND.	- 77	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: G-2(33-35)

Lab Sample ID:

J80708-9

Date Sampled: Date Received:

01/07/08

Matrix:

SO - Soil SW846 8270C SW846 3550B Date Received: 01/07/08 Percent Solids: 86.4

Method: SW846 8270C SW846 3550B Percent S Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	77	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	77	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	77	9.9	ug/kg	
132-64-9	Dibenzofuran	19.2	77	7.6	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	77	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg	
84-66-2	Diethyl phthalate	ND	77	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	514	77	23	ug/kg	
206-44-0	Fluoranthene	277	77	7.2	ug/kg	
86-73-7	Fluorene	ND	77	7.8	ug/kg	
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	770	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	36.1	77	36	ug/kg	J
78-59-1	Isophorone	ND	77	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	77	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	77	8.7	ug/kg	
98-95-3	Nitrobenzene	ND	77	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.5	ug/kg	
85-01-8	Phenanthrene	272	77	9.6	ug/kg	
129-00-0	Pyrene	246	77	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	77	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	74%		26-1	05%	
4165-62-2	Phenol-d5	77%	3	34-1		
118-79-6	2,4,6-Tribromophenol	67%		30-1	26%	
4165-60-0	Nitrobenzene-d5	80%		36-1	15%	
321-60-8	2-Fluorobiphenyl	80%		44-1		
			rive.			

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

$$\begin{split} B &= \text{Indicates analyte found in associated method blank} \\ N &= \text{Indicates presumptive evidence of a compound} \end{split}$$

Page 3 of 3

Client Sample ID: G-2(33-35)

Lab Sample ID:

J80708-9

Date Sampled:

01/07/08

Matrix: Method: SO - Soil

Date Received:

01/07/08

SW846 8270C SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1 Run# 2 Limits

1718-51-0

Terphenyl-d14

78%

42-133%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 3

Client Sample ID: G-3(29-31)

Lab Sample ID: Matrix:

Method:

J80708-10

SO - Soil

Date Sampled:

01/07/08 01/07/08

Date Received: SW846 8270C SW846 3550B

Percent Solids: 87.3

Project: West 34th Street, 34th and 11th Avenue, New York, NY

File ID DF Analyzed Prep Date Prep Batch Analytical Batch By Run #1 R64388.D 1 01/15/08 OYA 01/12/08 OP30823 ER2346

Run #2

Initial Weight

Final Volume

Run #1 30.0 g

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	760	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	760	70	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	47	ug/kg	
88-75-5	2-Nitrophenol	ND	190	44	ug/kg	
100-02-7	4-Nitrophenol	ND	760	67	ug/kg	
87-86-5	Pentachlorophenol	ND	760	40	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	77	ug/kg	
83-32-9	Acenaphthene	ND	76	12	ug/kg	
208-96-8	Acenaphthylene	ND	76	7.8	ug/kg	
120-12-7	Anthracene	ND	76	35	ug/kg	
56-55-3	Benzo(a)anthracene	44.5	76	7.9	ug/kg	J
50-32-8	Benzo(a)pyrene	40.0	76	19	ug/kg	J
205-99-2	Benzo(b)fluoranthene	31.4	76	13	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	16.7	76	15	ug/kg	J
207-08-9	Benzo(k)fluoranthene	35.3	76	16	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	76	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	76	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	76	13	ug/kg	
218-01-9	Chrysene	49.0	76	15	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	76	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	76	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: G-3(29-31)

Lab Sample ID:

J80708-10 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: Project:

SW846 8270C SW846 3550B

Percent Solids: 87.3

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	76	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	76	11	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	76	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	76	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	76	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	76	9.8	ug/kg	
132-64-9	Dibenzofuran	ND	76	7.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	16	ug/kg	
84-66-2	Diethyl phthalate	ND	76	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	42.5	76	23	ug/kg	J
206-44-0	Fluoranthene	94.5	76	7.1	ug/kg	
86-73-7	Fluorene	ND	76	7.7	ug/kg	
118-74-1	Hexachlorobenzene	ND	76	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	76	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	760	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	76	36	ug/kg	
78-59-1	Isophorone	ND	76	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	76	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND:	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	76	8.6	ug/kg	
98-95-3	Nitrobenzene	ND	76	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.4	ug/kg	
85-01-8	Phenanthrene	115	76	9.5	ug/kg	
129-00-0	Pyrene	97.0	76	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	76	12	ug/kg	
					_	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	70%		26-1	05%	
4165-62-2	Phenol-d5	76%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	72%		30-1	26%	
4165-60-0	Nitrobenzene-d5	77%		36-1	15%	
321-60-8	2-Fluorobiphenyl	78%	1000	44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: G-3(29-31)

Lab Sample ID: Matrix:

J80708-10

Date Sampled:

01/07/08

SO - Soil SW846 8270C SW846 3550B

Date Received: 01/07/08

Percent Solids: 87.3

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

1718-51-0 Terphenyl-d14 74%

42-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11 SO - Soil

Date Sampled: 01/07/08

01/07/08 Date Received:

Method:

SW846 8270C SW846 3550B

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

File ID DF Analyzed Prep Date Ву Run #1 R64389.D 01/15/08 OYA 01/12/08 OP30823 ER2346 1 Run #2 a R64406.D 01/15/08 OYA 01/12/08 OP30823 ER2347 1

Initial Weight Final Volume Run #1 1.0 ml 30.1 g Run #2 1.0 ml 30.1 g

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	54	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	790	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	790	72	ug/kg	
95-48-7	2-Methylphenol	ND	200	38	ug/kg	
	3&4-Methylphenol	ND	200	49	ug/kg	
88-75-5	2-Nitrophenol	ND	200	46	ug/kg	
100-02-7	4-Nitrophenol	ND	790	70	ug/kg	
87-86-5	Pentachlorophenol	ND	790	41	ug/kg	
108-95-2	Phenol	ND	200	37	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	7 5	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	80	ug/kg	
83-32-9	Acenaphthene	ND	79	13	ug/kg	
208-96-8	Acenaphthylene	ND	79	8.0	ug/kg	
120-12-7	Anthracene	ND.	79	36	ug/kg	
56-55-3	Benzo(a)anthracene	150	79	8.2	ug/kg	
50-32-8	Benzo(a)pyrene 🗸	204 ゴ	79	19	ug/kg	
205-99-2	Benzo(b)fluoranthene 🗸	251 丁	79	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	144 J	79	16	ug/kg	
207-08-9	Benzo(k)fluoranthene 🗸	166 J	79	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	79	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	79	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND 📒	79	12	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
86-74-8	Carbazole	ND	79	13	ug/kg	
218-01-9	Chrysene	186	79	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	79	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	79	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	79	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	79	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	79	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	79	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	79	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	79	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	79	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	29	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	40.6 ブ	79	10	ug/kg	J
132-64-9	Dibenzofuran	ND	79	7.8	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	79	11	ug/kg	
117-84-0	Di-n-octyl phthalate	TUGA	79	16	ug/kg	
84-66-2	Diethyl phthalate	ND	79	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	79	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	74.2	79	24	ug/kg	J
206-44-0	Fluoranthene	186	79	7.3	ug/kg	
86-73-7	Fluorene	ND	79	8.0	ug/kg	
118-74-1	Hexachlorobenzene	ND	79	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	79	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	790	18	ug/kg	
67-72-1	Hexachloroethane	ND	200	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	111 👅	79	37	ug/kg	
78-59-1	Isophorone	ND	79	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	79	35	ug/kg	
88-74-4	2-Nitroaniline	ND	200	25	ug/kg	
99-09-2	3-Nitroaniline	ND	200	26	ug/kg	
100-01-6	4-Nitroaniline	ND	200	23	ug/kg	
91-20-3	Naphthalene	ND	79	8.9	ug/kg	
98-95-3	Nitrobenzene	ND	79	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	79	14	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	8.7	ug/kg	
85-01-8	Phenanthrene	66.7	79	9.9	ug/kg	J
129-00-0	Pyrene	316	79	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	79	12	ug/kg	
•					0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	68%	68%	26-1	05%	
4165-62-2	Phenol-d5	73%	73%	34-1	06%	
118-79-6	2,4,6-Tribromophenol	72%	71%	30-1	26%	
4165-60-0	Nitrobenzene-d5	73%	69%	36-1	15%	
321-60-8	2-Fluorobiphenyl	76%	75%	44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: G-4(21-23)

Lab Sample ID: J80708-11

Matrix:

SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1 Run# 2 Limits

Terphenyl-d14 1718-51-0

89%

82%

42-133%

(a) Confirmation run.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: G-5(28-30)

Lab Sample ID:

J80708-12 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix:

SW846 8270C SW846 3550B

Percent Solids: 85.0

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID R64390.D DF Analyzed 01/15/08

Prep Date Ву OYA 01/12/08

OP30823

ER2346

Run #2

Initial Weight

Final Volume

Run #1 30.0 g 1.0 ml

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	53	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	780	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	780	72	ug/kg	
95-48-7	2-Methylphenol	ND	200	38	ug/kg	
	3&4-Methylphenol	ND	200	49	ug/kg	
88-75-5	2-Nitrophenol	ND	200	45	ug/kg	
100-02-7	4-Nitrophenol	ND	780	69	ug/kg	
87-86-5	Pentachlorophenol	ND	780	41	ug/kg	
108-95-2	Phenol	ND	200	37	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	7 5	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	79	ug/kg	
83-32-9	Acenaphthene	32.3	78	12	ug/kg	J
208-96-8	Acenaphthylene	31.6	78	8.0	ug/kg	J
120-12-7	Anthracene	103	78	36	ug/kg	
56-55-3	Benzo(a)anthracene	320	378	8.1	ug/kg	
50-32-8	Benzo(a)pyrene	310	78	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	281	78	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	102	78	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	268	78	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	12	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
86-74-8	Carbazole	42.0	78	13	ug/kg	J
218-01-9	Chrysene	323	78	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	78	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	78	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: G-5(28-30)

Lab Sample ID: Matrix:

J80708-12 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	78	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	78	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	78	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	78	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	78	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	38.1	78	10	ug/kg	J
132-64-9	Dibenzofuran	19.4	78	7.7	ug/kg	Ĵ
84-74-2	Di-n-butyl phthalate	23.7	78	11	ug/kg	Ĵ
117-84-0	Di-n-octyl phthalate	ND	78	16	ug/kg	•
84-66-2	Diethyl phthalate	ND	78	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	78	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	298	78	24	ug/kg	
206-44-0	Fluoranthene	645	78	7.3	ug/kg	
86-73-7	Fluorene	37.9	78	7.9	ug/kg	J
118-74-1	Hexachlorobenzene	ND	78	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	78	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	780	18	ug/kg	
67-72-1	Hexachloroethane	ND	200	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	109	78	37	ug/kg	
78-59-1	Isophorone	ND	78	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	78	35	ug/kg	
88-74-4	2-Nitroaniline	ND	200	25	ug/kg	
99-09-2	3-Nitroaniline	ND	200	26	ug/kg	
100-01-6	4-Nitroaniline	ND	200	. 22	ug/kg	
91-20-3	Naphthalene	16.1	78	8.9	ug/kg	J
98-95-3	Nitrobenzene	ND	78	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	78	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	8.6	ug/kg	
85-01-8	Phenanthrene	458	78	9.8	ug/kg	
129-00-0	Pyrene	618	78	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND.	78	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	67%		26-1	05%	
4165-62-2	Phenol-d5	71%		34-1	06%	
118-79-6	2,4,6-Tribromophenol	70%		30-1	26%	
4165-60-0	Nitrobenzene-d5	72%		36-1	15%	
321-60-8	2-Fluorobiphenyl	74%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: G-5(28-30)

Lab Sample ID: Matrix:

J80708-12 SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 85.0

Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

1718-51-0

Terphenyl-d14

76%

42-133%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

3.25

Accutest Laboratories

Report of Analysis

Page 1 of 3

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13 SO - Soil

Date Sampled:

01/07/08 Date Received: 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 86.4

West 34th Street, 34th and 11th Avenue, New York, NY Project:

Analytical Batch File ID DF Analyzed Ву Prep Date Prep Batch OP30823 ER2346 Run #1 R64391.D 01/15/08 OYA 01/12/08 1 Run #2

Final Volume Initial Weight

Run #1 30.0 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	770	71	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	48	ug/kg	
88-75-5	2-Nitrophenol	ND	190	45	ug/kg	
100-02-7	4-Nitrophenol	ND	770	68	ug/kg	
87-86-5	Pentachlorophenol	ND	770	41	ug/kg	
108-95-2	Phenol	ND	190	36	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	73	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	78	ug/kg	
83-32-9	Acenaphthene	38.2	77	12	ug/kg	J
208-96-8	Acenaphthylene	37.7	77	7.8	ug/kg	J
120-12-7	Anthracene	142	77	36	ug/kg	
56-55-3	Benzo(a)anthracene	487	77	8.0	ug/kg	
50-32-8	Benzo(a)pyrene	436	77	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	427	77	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	125	77	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	430	77	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND :	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	12	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	43.4	77	13	ug/kg	J
218-01-9	Chrysene	498	77	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	77	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix: J80708-13 SO - Soil Date Sampled: Date Received:

01/07/08 01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	77	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	77	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	47.8	77	9.9	ug/kg	J
132-64-9	Dibenzofuran	22.8	77	7.6	ug/kg	Ĵ
84-74-2	Di-n-butyl phthalate	ND	77	11	ug/kg	-
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg	
84-66-2	Diethyl phthalate	ND	77	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	167	77	23	ug/kg	
206-44-0	Fluoranthene	961	77	7.2	ug/kg	
86-73-7	Fluorene	42.4	77	7.8	ug/kg	J
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg	•
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	770	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	149	77	36	ug/kg	
78-59-1	Isophorone	ND	77	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	77	35	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	26	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	42.0	77	8.7	ug/kg	J
98-95-3	Nitrobenzene	ND	77	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.5	ug/kg	
85-01-8	Phenanthrene	644	77	9.6	ug/kg	
129-00-0	Pyrene	902	77	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	77	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	65%		26-1	. 05 %	
4165-62-2	Phenol-d5	69%			106%	
118-79-6	2,4,6-Tribromophenol	69%		30-1	26 %	
4165-60-0	Nitrobenzene-d5	70%	552 562 542 553 555	36-1	15%	
321-60-8	2-Fluorobiphenyl	73%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

$$\begin{split} B &= \text{Indicates analyte found in associated method blank} \\ N &= \text{Indicates presumptive evidence of a compound} \end{split}$$

Page 3 of 3

Client Sample ID: A-9(28-30)

Lab Sample ID:

J80708-13

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8270C SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1 Run# 2

Limits

1718-51-0

Terphenyl-d14

74%

42-133%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14

Date Sampled:

01/07/08

Matrix:

AQ - Field Blank Soil

DF

1

Date Received: 01/07/08

Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch

Run #1

File ID P34516.D Analyzed

Prep Date

Run #2

01/09/08

By WG 01/08/08

OP30742

EP1404

Initial Volume

Final Volume

1000 ml Run #1

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.87	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	1.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	20	1.1	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	20	2.2	ug/l	
95-48-7	2-Methylphenol	ND	5.0	1.0	ug/l	
	3&4-Methylphenol	ND	5.0	1.1	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.5	ug/l	
100-02-7	4-Nitrophenol	ND	20	1.6	ug/l	
87-86-5	Pentachlorophenol	ND	20	0.93	ug/l	
108-95-2	Phenol	ND	5.0	0.68	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.1	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.0	ug/l	
83-32-9	Acenaphthene	ND :::	2.0	0.25	ug/l	
208-96-8	Acenaphthylene	ND	2.0	0.31	ug/l	
120-12-7	Anthracene	ND	2.0	0.33	ug/l	
56-55-3	Benzo(a)anthracene	ND	2.0	0.35	ug/l	
50-32-8	Benzo(a)pyrene	ND	2.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	2.0	0.75	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	2.0	0.36	ug/I	
207-08-9	Benzo(k)fluoranthene	ND	2.0	0.68	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.64	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.20	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.35	ug/l	
86-74-8	Carbazole	ND	2.0	0.40	ug/l	
218-01-9	Chrysene	ND	2.0	0.45	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.67	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.58	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.29	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method: AQ - Field Blank Soil SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	2.0	0.17	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	0.15	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	0.14	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	2.0	0.54	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	2.0	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.97	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	2.0	0.48	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.40	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.48	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.34	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.34	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.88	ug/l	
206-44-0	Fluoranthene	ND	2.0	0.36	ug/l	
86-73-7	Fluorene	ND	2.0	0.36	ug/l	
118-74-1	Hexachlorobenzene	ND	2.0	0.31	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.13	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	20	0.10	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.16	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	2.0	0.79	ug/l	
78-59-1	Isophorone	ND	2.0	0.49	ug/l	
91-57-6	2-Methylnaphthalene	ND	2.0	0.76	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.50	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.32	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.59	ug/l	
91-20-3	Naphthalene	ND	2.0	0.18	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.38	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.41	ug/l	
85-01-8	Phenanthrene	ND	2.0	0.28	ug/l	
129-00-0	Pyrene	ND	2.0	0.37	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.12	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	#2 Limits		
367-12-4	2-Fluorophenol	47%		10-6	9%	
4165-62-2	Phenol-d5	32%		10-5		
118-79-6	2,4,6-Tribromophenol	83%			25%	
4165-60-0	Nitrobenzene-d5	86%			20%	
321-60-8	2-Fluorobiphenyl	87%		31-1	.11%	

ND = Not detected

MDL - Method Detection Limit

 $RL = Reporting\ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14

Date Sampled:

01/07/08

Matrix:

AQ - Field Blank Soil

Date Received:

01/07/08

Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run# 1 Run# 2 Limits

1718-51-0

Terphenyl-d14

83%

31-124%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 3

Client Sample ID: FB-SOIL

File ID

3M2388.D

Lab Sample ID:

J80708-15

SO - Field Blank Soil

Date Sampled: 01/07/08

Prep Date

01/10/08

Matrix: Method:

SW846 8270C SW846 3550B

Date Received: 01/07/08

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

By

LP

Analyzed

01/10/08

Prep Batch Analytical Batch

OP30789 E3M97

Run #1 Run #2

Initial Weight Final Volume

DF

1

Run #1 30.0 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	170	21	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	45	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	35	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	41	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	670	37	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	670	61	ug/kg	
95-48-7	2-Methylphenol	ND	170	32	ug/kg	
	3&4-Methylphenol	ND	170	41	ug/kg	
88-75-5	2-Nitrophenol	ND	170	39	ug/kg	
100-02-7	4-Nitrophenol	ND	670	59	ug/kg	
87-86-5	Pentachlorophenol	ND	670	35	ug/kg	
108-95-2	Phenol	ND	170	31	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	63	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	67	ug/kg	
83-32-9	Acenaphthene	ND	67	11	ug/kg	
208-96-8	Acenaphthylene	ND	67	6.8	ug/kg	
120-12-7	Anthracene	ND	67	31	ug/kg	
56-55-3	Benzo(a)anthracene	40.9	67	6.9	ug/kg	J
50-32-8	Benzo(a)pyrene	34.1	67	16	ug/kg	J
205-99-2	Benzo(b)fluoranthene	25.7	67	11	ug/kg	J J J
191-24-2	Benzo(g,h,i)perylene	20.4	67	13	ug/kg	J
207-08-9	Benzo(k)fluoranthene	27.1	67	14	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	67	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	67	12	ug/kg	
91-58-7	2-Chloronaphthalene	ND	67	10	ug/kg	
106-47-8	4-Chloroaniline	ND	170	12	ug/kg	
86-74-8	Carbazole	ND:	67	11	ug/kg	
218-01-9	Chrysene	39.2	67	13	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	67	13	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	67	15	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	67	19	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	67	9.5	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 2 of 3

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15

SO - Field Blank Soil

Date Sampled: Date Received: 01/07/08

01/07/08

Matrix: Method:

SW846 8270C SW846 3550B

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	67	11	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	67	10	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	67	8.9	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	67	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	67	13	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	170	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	67	8.6	ug/kg	
132-64-9	Dibenzofuran	ND	67	6.6	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	67	9.3	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	67	14	ug/kg	
84-66-2	Diethyl phthalate	ND	67	12	ug/kg	
131-11-3	Dimethyl phthalate	ND	67	9.0	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	67	20	ug/kg	
206-44-0	Fluoranthene	80.2	67	6.2	ug/kg	
86-73-7	Fluorene	ND	67	6.7	ug/kg	
118-74-1	Hexachlorobenzene	ND	67	16	ug/kg	
87-68-3	Hexachlorobutadiene	ND	67	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	670	15	ug/kg	
67-72-1	Hexachloroethane	ND	170	14	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	67	31	ug/kg	
78-59-1	Isophorone	ND	67	11	ug/kg	
91-57-6	2-Methylnaphthalene	ND	67	30	ug/kg	
88-74-4	2-Nitroaniline	ND	170	21	ug/kg	
99-09-2	3-Nitroaniline	ND	170	22	ug/kg	
100-01-6	4-Nitroaniline	ND	170	19	ug/kg	
91-20-3	Naphthalene	ND	67	7.5	ug/kg	
98-95-3	Nitrobenzene	ND	67	11	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	67	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	170	7.3	ug/kg	
85-01-8	Phenanthrene	87.8	67	8.3	ug/kg	
129-00-0	Pyrene	72.8	67	12	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	67	10	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	76%		26-1	05%	
4165-62-2	Phenol-d5	78%	312 4.6 5.0 5.0 5.0 5.0 5.0	34-1	06%	
118-79-6	2,4,6-Tribromophenol	90%		30-1	26%	
4165-60-0	Nitrobenzene-d5	90%		36-1	15%	
321-60-8	2-Fluorobiphenyl	89%		44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

 $RL = Reporting \ Limit$

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15 SO - Field Blank Soil Date Sampled: 01/07/08

Matrix:

Date Received: 01/07/08

Method:

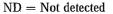
SW846 8270C SW846 3550B

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List


CAS No. Surrogate Recoveries Run# 1 Run#2 Limits

1718-51-0

Terphenyl-d14

91%

42-133%

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Report of Analysis

By OPM Page 1 of 1

Client Sample ID: A-1(12-14)

File ID

Lab Sample ID:

J80708-1

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

Prep Date

01/09/08

01/07/08

Method:

SW846 8151 SW846 3550B

DF

1

Percent Solids: 87.6

OP30787

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/11/08

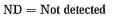
Prep Batch

Analytical Batch GWW2314

Run #1 Run #2

Initial Weight

WW70202.D


Final Volume

Run #1 30.2 g 10.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND UJ	19 3.8 3.8	8.1 0.89 0.77	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	22% 25%		10-1 10-1	47% 47%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

OPM

Page 1 of 1

Client Sample ID: A-2(8-10)

Lab Sample ID:

J80708-2

Date Sampled: 01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8151 SW846 3550B

DF

1

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Run #1

File ID WW70203.D Analyzed 01/11/08

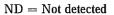
Prep Date 01/09/08

Prep Batch OP30787

Analytical Batch GWW2314

Run #2

Initial Weight


Final Volume

Run #1 30.2 g 10.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND UST	3.9	8.3 0.91 0.80	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	65% 67%		10-14 10-14		

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-3(9-11)

Lab Sample ID:

J80708-3

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID WW70204.D DF Analyzed 01/11/08

By Prep Date OPM 01/09/08

OP30787

GWW2314

Run #2

Initial Weight

Final Volume

30.2 g

10.0 ml

1

Run #1 Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND UJ	19 3.8 3.8	8.2 0.90 0.79	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	57% 64%		10-1 10-1		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4 SO - Soil Date Sampled: 01/07/08

Matrix: Method:

SW846 8151 SW846 3550B

Date Received: 01/07/08

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

File ID WW70205.D Run #1

DF 1

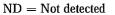
Analyzed Ву 01/11/08 OPM Prep Date 01/09/08

Prep Batch OP30787

Analytical Batch GWW2314

Run #2

Initial Weight


Final Volume

Run #1 30.4 g 10.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND NÐ レゴ	3.9	8.3 0.91 0.79	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	66% 83%			47% 47%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

I = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-5(21-23)

WW70201.D

Lab Sample ID:

J80708-5

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 89.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

01/11/08

File ID DF Analyzed Ву Prep Date

Prep Batch OP30787

Analytical Batch GWW2314

Run #1 Run #2

Initial Weight

Final Volume

Run #1 30.0 g 10.0 ml

1

Run #2

Herbicide List

CAS No. Compound Result

RL

OPM

MDL

01/09/08

Units

Q

94-75-7 93-72-1

CAS No.

2,4-D

2,4,5-TP (Silvex)

NDND

19 3.7 TUU EM 3.7

8.0 0.88 0.77

ug/kg ug/kg ug/kg

93-76-5 2,4,5-T

Surrogate Recoveries

Run#1

Run#2

Limits

19719-28-9 2,4-DCAA

19719-28-9 2,4-DCAA

33% 45%

10-147% 10-147%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: WW70206.D

Accutest Laboratories

Report of Analysis

By

OPM

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 88.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1 Run #2 File ID DF WW70206.D 1

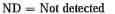
Analyzed 01/11/08

Prep Date 01/09/08

Prep Batch OP30787

GWW2314

Initial Weight 30.2 g


Final Volume

10.0 ml

Run #1 Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND UJ	3.7	8.0 0.88 0.77	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	46% 68%			47% 47%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-7(40-42)

Lab Sample ID: Matrix:

J80708-7

Date Sampled:

Date Received:

01/07/08 01/07/08

Method:

SO - Soil

SW846 8151 SW846 3550B

Percent Solids: 87.1

Project: West 34th Street, 34th and 11th Avenue, New York, NY

File ID DF Run #1 WW70265.D 1

Analyzed Ву OPM 01/14/08

Prep Date 01/09/08

Prep Batch OP30787

Analytical Batch GWW2317

Run #2

Initial Weight

Final Volume

30.2 g

10.0 ml

Run #1 Run #2

Herbicide List

CAS No.	Compound	Result	RL -	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND TCU GR DD	19 3.8 3.8	8.1 0.89 0.78	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	65% 64%			47% 47%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

File ID WW70266.D DF Analyzed 01/14/08

By OPM Prep Date 01/09/08

Prep Batch OP30787

GWW2317

Run #1 Run #2

Initial Weight

Final Volume

Run #1 30.0 g

10.0 ml

1

Run #2

Herbicide List

CAS No. Compound Result

RL

MDL

Units

Q

94-75-7

2,4-D

2,4,5-TP (Silvex)

ND TJJ-UM 8.7

ug/kg

93-72-1 93-76-5

2,4,5-T

ND

20 4.1 4.1

Run#2

0.96 0.84 ug/kg ug/kg

CAS No.

Surrogate Recoveries

Run# 1

Limits

19719-28-9 2,4-DCAA 19719-28-9 2,4-DCAA 43%

10-147%

65%

10-147%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-2(33-35)

Lab Sample ID: Matrix:

J80708-9 SO - Soil Date Sampled:

Date Received:

01/07/08 01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

File ID DF

1

Analyzed By OPM 01/14/08

Prep Date 01/09/08

Prep Batch OP30787

GWW2317

Run #1 Run #2

Initial Weight

WW70267.D

Final Volume

Run #1 30.1 g 10.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND (プー	3.8	8.2 0.90 0.79	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	34% 44%		10-147% 10-147%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-3(29-31)

Lab Sample ID:

J80708-10 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method:

SW846 8151 SW846 3550B

 $\mathbf{D}\mathbf{F}$

1

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID WW70268.D Analyzed 01/15/08

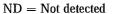
Ву Prep Date OPM 01/09/08

Prep Batch OP30787

GWW2317

Run #2

Initial Weight


Final Volume

Run #1 30.3 g 10.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	3.8	8.1 0.89 0.77	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	40% 60%		10-1- 10-1-		

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.21

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID:

J80708-11

Date Sampled: 01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8151 SW846 3550B

DF

1

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID WW70269.D Analyzed 01/15/08

Prep Date By OPM 01/09/08

Prep Batch OP30787

GWW2317

Run #2

Initial Weight

Final Volume

Run #1 30.3 g $10.0 \, \mathrm{ml}$

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND Uゴ ND	1	8.4 0.92 0.80	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	52% 65%		10-14 10-14		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.23

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: G-5(28-30)

File ID

Lab Sample ID:

J80708-12 SO - Soil

Date Sampled: 01/07/08

Matrix:

DF

1

Date Received: 01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1 Run #2 WW70270.D

Analyzed 01/15/08

Prep Date Ву OPM 01/09/08

Prep Batch OP30787

GWW2317

Initial Weight

Final Volume

30.1 g

10.0 ml

Run #1 Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND Cゴ ND	3.9	8.4 0.92 0.80	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	72% 82%		10-1- 10-1-		

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

By

Page 1 of 1

Client Sample ID: A-9(28-30)

Lab Sample ID:

J80708-13

Date Sampled:

01/07/08

Matrix: Method: SO - Soil

DF

1

Date Received:

01/07/08

SW846 8151 SW846 3550B

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID WW70271.D Analyzed 01/15/08

Prep Date 01/09/08 OPM

OP30787

GWW2317

Run #2

Initial Weight

Final Volume

Run #1 30.1 g 10.0 ml

Run #2

Herbicide List

CAS No. Compound Result

RL

19

3.8

MDL

Units Q

94-75-7 93-72-1

2,4-D

2,4,5-TP (Silvex)

Surrogate Recoveries

ND DN GN 8.2 0.90

0.79

ug/kg ug/kg ug/kg

93-76-5

2,4,5-T

ND Run#1 3.8 Run# 2

Limits

CAS No.

19719-28-9

2,4-DCAA

72%

10-147%

19719-28-9 2,4-DCAA

78%

10-147%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14

AQ - Field Blank Soil

DF

1

Date Sampled:

01/07/08

Matrix: Method:

SW846 8151 SW846 3510C

Date Received:

01/07/08 Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID WW70238.D Analyzed 01/12/08

Prep Date **OPM** 01/10/08

Prep Batch OP30707

GWW2316

Run #2

Initial Volume 1000 ml

Final Volume

10.0 ml

Run #1 Run #2

Herbicide List

CAS No. Compound

Result

RL

0.10

MDL

Units

Q

94-75-7 93-72-1

CAS No.

2,4-D

2,4,5-TP (Silvex)

Surrogate Recoveries

ND 0.50 TID GK 0.10 0.330.034

0.033

ug/l ug/l

ug/l

93-76-5

2,4,5-T

Run# 1

ND

Run#2

Limits

52-151%

19719-28-9 2,4-DCAA 19719-28-9 2,4-DCAA

106% 99%

52-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15

Date Sampled:

01/07/08

Matrix:

SO - Field Blank Soil

DF

1

Date Received: 01/07/08

Method:

SW846 8151 SW846 3550B

Percent Solids: 85.3

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID WW70272.D Analyzed 01/15/08

By Prep Date 01/09/08 OPM

Prep Batch OP30787

GWW2317

Run #2

Initial Weight

Final Volume

30.3 g

10.0 ml

Run #1 Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	3.9	8.3 0.91 0.79	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	17% 24%		10-14 10-14		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-1(12-14)

Lab Sample ID:

J80708-1 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix: Method:

SW846 8081A SW846 3545

DF

1

Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID 2G25964.D Analyzed 01/11/08

Ву Prep Date **JSE** 01/09/08

OP30785

G2G1019

Run #2

Initial Weight

Final Volume

Run #1 15.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
000 00 0	A11.	ATD.	33 . r	0.00		

CASNo	Currente Passyonias	Dun# 1	Dun# 2	T imi	ita
8001-35-2	Toxaphene	ND	19	7.2	ug/kg
53494-70-5	Endrin ketone	ND	1.5	0.41	ug/kg
72-43-5	Methoxychlor	ND	1.5	0.50	ug/kg
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg
76-44-8	Heptachlor	ND	1.5	0.39	ug/kg
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg
959-98-8	Endosulfan-I	ND	1.5	0.40	ug/kg
7421-93-4	Endrin aldehyde	ND	1.5	0.35	ug/kg
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg
72-20-8	Endrin	TUU-GM	1.5	0.37	ug/kg
50-29-3	4,4'-DDT a	2.8 🗂	1.5	0.46	ug/kg
72-55-9	4,4'-DDE	ND	1.5	0.37	ug/kg
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg
5103-74-2	gamma-Chlordane a	2.7	1.5	0.40	ug/kg
5103-71-9	alpha-Chlordane	1.9 ブ	1.5	0.41	ug/kg
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg
319-86-8	delta-BHC	TJJ -GIA	1.5	0.55	ug/kg
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg
309-00-2	Aldrin	ND	1.5	0.33	ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

877-09-8	Tetrachloro-m-xylene	87%	38-130%
877-09-8	.	85%	38-130%
011-09-0	Tetrachloro-m-xylene	63%	30-130%
2051-24-3	Decachlorobiphenyl	93%	32-142%
2051 24 2	1 ,	920/	32-142%
2051-24-3	Decachlorobiphenyl	83%	34-14470

(a) Reported from 2nd signal due to interference on 1st signal.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-2(8-10)

Lab Sample ID: Matrix:

J80708-2 SO - Soil

Date Sampled: Date Received: 01/07/08

01/07/08

Method:

SW846 8081A SW846 3545

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID 2G25961.D DF Analyzed 01/11/08

Ву Prep Date **JSE** 01/09/08

OP30785

G2G1019

Run #2

Initial Weight

Final Volume

Run #1 15.1 g 10.0 ml

1

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	1.6	0.34	ug/kg		
319-84-6	alpha-BHC	ND	1.6	0.29	ug/kg		
319-85-7	beta-BHC	ND.	1.6	0.34	ug/kg		
319-86-8	delta-BHC	TJJ GA	1.6	0.57	ug/kg		
58-89-9	gamma-BHC (Lindane)	ND	1.6	0.31	ug/kg		
5103-71-9	alpha-Chlordane	ND	1.6	0.42	ug/kg		
5103-74-2	gamma-Chlordane	ND	1.6	0.42	ug/kg		
60-57-1	Dieldrin	ND	1.6	0.39	ug/kg		
72-54-8	4,4'-DDD	ND	1.6	0.37	ug/kg		
72-55-9	4,4'-DDE	ND	1.6	0.39	ug/kg		
50-29-3	4,4'-DDT	ND	1.6	0.48	ug/kg		
72-20-8	Endrin	T.U.GM	1.6	0.39	ug/kg		
1031-07-8	Endosulfan sulfate	ND	1.6	0.42	ug/kg		
7421-93-4	Endrin aldehyde	ND	1.6	0.37	ug/kg		
959-98-8	Endosulfan-I	ND	1.6	0.42	ug/kg		
33213-65-9	Endosulfan-II	ND	1.6	0.41	ug/kg		
76-44-8	Heptachlor	ND	1.6	0.40	ug/kg		
1024-57-3	Heptachlor epoxide	ND	1.6	0.43	ug/kg		
72-43-5	Methoxychlor	ND	1.6	0.52	ug/kg		
53494-70-5	Endrin ketone	ND	1.6	0.43	ug/kg		
8001-35-2	Toxaphene	ND	19	7.4	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	87%		38-1	30%		
877-09-8	Tetrachloro-m-xylene	89%		38-1	130%		
2051-24-3	Decachlorobiphenyl	87%		32-1	142%		
2051-24-3	Decachlorobiphenyl	87%		32-142%			

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Ву

JSE

Page 1 of 1

G2G1019

Client Sample ID: A-3(9-11) Lab Sample ID: J80708-3

Matrix:

SO - Soil

Date Sampled:

01/09/08

01/07/08 Date Received: 01/07/08

Method:

SW846 8081A SW846 3545

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Date Prep Batch Analytical Batch

OP30785

Run #1 Run #2

Initial Weight

File ID

2G25955.D

Final Volume

Run #1 15.4 g 10.0 ml

DF

1

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND.	1.5	0.33	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	NÐ UJ	1.5	0.55	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.37	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.46	ug/kg	
72-20-8	Endrin	ND	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.35	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.39	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	LIN-COM	1.5	0.50	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.41	ug/kg	
8001-35-2	Toxaphene	ND	19	7.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	87%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	88%		38-1	30%	
2051-24-3	Decachlorobiphenyl	86%		32-1	42%	
2051-24-3	Decachlorobiphenyl	86%		32-1	42%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Ву

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID:

J80708-4 SO - Soil Date Sampled:

01/07/08

Matrix: Method:

SW846 8081A SW846 3545

DF

1

Date Received: 01/07/08

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID 2G25962.D Analyzed 01/11/08

Prep Date 01/09/08 **JSE**

Prep Batch OP30785

G2G1019

Run #2

Initial Weight 15.1 g

Final Volume

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.6	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.6	0.29	ug/kg	
319-85-7	beta-BHC	ND	1.6	0.34	ug/kg	
319-86-8	delta-BHC	AP CCT	1.6	0.57	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.6	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.6	0.42	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.6	0.42	ug/kg	
60-57-1	Dieldrin	ND	1.6	0.39	ug/kg	
72-54-8	4,4'-DDD	ND .	1.6	0.38	ug/kg	
72-55-9	4,4'-DDE	ND	1.6	0.39	ug/kg	
50-29-3	4,4'-DDT	ND	1.6	0.48	ug/kg	
72-20-8	Endrin	LUCIN	1.6	0.39	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.6	0.42	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.6	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	1.6	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND .	1.6	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.6	0.41	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.6	0.43	ug/kg	
72-43-5	Methoxychlor	ND	1.6	0.52	ug/kg	
53494-70-5	Endrin ketone	ND	1.6	0.43	ug/kg	
8001-35-2	Toxaphene	ND	19	7.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	88%	9,500,000	38-1	30%	
877-09-8	Tetrachloro-m-xylene	89%	economic de la company de la c	38-1	30%	
2051-24-3	Decachlorobiphenyl	89%		42%		

ND = Not detected

2051-24-3

MDL - Method Detection Limit

84%

J = Indicates an estimated value

32-142%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Report of Analysis

Ву

JSE

Page 1 of 1

Client Sample ID: A-5(21-23)

Lab Sample ID:

J80708-5 SO - Soil Date Sampled: 01/07/08

Prep Date

01/09/08

Matrix:

SW846 8081A SW846 3545

Date Received: 01/07/08

Method:

Percent Solids: 89.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/11/08

Prep Batch Analytical Batch OP30785 G2G1019

Run #1 Run #2

Initial Weight

File ID

2G25963.D

Final Volume

Run #1 15.0 g 10.0 ml

DF

1

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.33	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	TUN CIA	1.5	0.55	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.40	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.40	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.37	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.46	ug/kg	
72-20-8	Endrin	アグAN	1.5	0.37	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.35	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.39	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.41	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.50	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.41	ug/kg	
8001-35-2	Toxaphene	ND	19	7.1	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	90%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	90%		38-1	30%	
2051-24-3	Decachlorobiphenyl	84%		32-1	42%	
2051-24-3	Decachlorobiphenyl	82%	32-142%			

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID: Matrix:

J80708-6 SO - Soil Date Sampled:

Date Received:

01/07/08 01/07/08

Method:

SW846 8081A SW846 3545

Percent Solids: 88.6

Units

Q

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Result

Analytical Batch

Run #1

File ID 2G25998.D

Compound

DF Analyzed 01/14/08 1

By **JSE**

RL

Prep Date 01/09/08

MDL

Prep Batch OP30785

G2G1022

Run #2

Initial Weight

Final Volume

Run #1 15.3 g 10.0 ml

Run #2

CAS No.

Pesticide TCL List

0215 110.	Compound	Koban	TCD	1111111	Onns Q
309-00-2	Aldrin	ND	1.5	0.33	ug/kg
319-84-6	alpha-BHC	ND	1.5	0.27	ug/kg
319-85-7	beta-BHC	ND	1.5	0.32	ug/kg
319-86-8	delta-BHC	ー ト リ リ リ リ リ リ リ リ リ リ リ リ リ リ リ リ リ リ	1.5	0.54	ug/kg
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg
5103-71-9	alpha-Chlordane	ND	1.5	0.40	ug/kg
5103-74-2	gamma-Chlordane	ND	1.5	0.40	ug/kg
60-57-1	Dieldrin	ND	1.5	0.37	ug/kg
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg
72-55-9	4,4'-DDE	ND	1.5	0.37	ug/kg
50-29-3	4,4'-DDT	TUNGN	1.5	0.45	ug/kg
72-20-8	Endrin	ND	1.5	0.37	ug/kg
1031-07-8	Endosulfan sulfate	ND	1.5	0.40	ug/kg
7421-93-4	Endrin aldehyde	ND	1.5	0.35	ug/kg
959-98-8	Endosulfan-I	ND.	1.5	0.40	ug/kg
33213-65-9	Endosulfan-II	ND	1.5	0.39	ug/kg
76-44-8	Heptachlor	ND	1.5	0.38	ug/kg
1024-57-3	Heptachlor epoxide	ND	1.5	0.41	ug/kg
72-43-5	Methoxychlor	てい-GI4	1.5	0.49	ug/kg
53494-70-5	Endrin ketone	ND	1.5	0.40	ug/kg
8001-35-2	Toxaphene	ND	18	7.0	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts ·
877-09-8	Tetrachloro-m-xylene	83%		38-1	30%
877-09-8	Tetrachloro-m-xylene	82%		38-13	30%

ND = Not detected

2051-24-3

2051-24-3

MDL - Method Detection Limit

90%

74%

J = Indicates an estimated value

32-142%

32-142%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

Report of Analysis

Ву

JSE

Page 1 of 1

Client Sample ID: A-7(40-42)

File ID

2G25999.D

Lab Sample ID:

J80708-7

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Prep Date

01/09/08

Method:

SW846 8081A SW846 3545

DF

1

Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/14/08

Prep Batch Analytical Batch OP30785 G2G1022

Run #1 Run #2

Initial Weight

Final Volume

Run #1 15.1 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	MDUJ	1.5	0.56	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT a 3.0	3.0 J	1.5	0.47	ug/kg	
72-20-8	Endrin	ND	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	AD MIT	1.5	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND	19	7.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	96%		38-13	80%	
877-09-8	Tetrachloro-m-xylene	90%		38-13	30%	
2051-24-3	Decachlorobiphenyl	99%		32-14	12%	
2051-24-3	Decachlorobiphenyl	82%		32-14	12%	

(a) Reported from 1st signal. %D of check on 2nd signal excess method criteria (15 %) so using for confirmation only.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Matrix:

SW846 8081A SW846 3545

Percent Solids: 81.7

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

File ID 2G26000.D DF Analyzed 01/14/08 1

Ву Prep Date **JSE** 01/09/08

Prep Batch OP30785

Analytical Batch G2G1022

Run #1 Run #2

Initial Weight

Final Volume

Run #1 15.3 g

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.6	0.35	ug/kg	
319-84-6	alpha-BHC	ND	1.6	0.30	ug/kg	
319-85-7	beta-BHC	ND	1.6	0.35	ug/kg	
319-86-8	delta-BHC	TU (K	1.6	0.59	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.6	0.32	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.6	0.43	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.6	0.43	ug/kg	
60-57-1	Dieldrin	ND	1.6	0.40	ug/kg	
72-54-8	4,4'-DDD	ND	1.6	0.39	ug/kg	
72-55-9	4,4'-DDE	ND	1.6	0.40	ug/kg	
50-29-3	4,4'-DDT	L M O M	1.6	0.49	ug/kg	
72-20-8	Endrin	ND	1.6	0.40	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.6	0.43	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.6	0.38	ug/kg	
959-98-8	Endosulfan-I	ND	1.6	0.43	ug/kg	
33213-65-9	Endosulfan-II	ND	1.6	0.42	ug/kg	
76-44-8	Heptachlor	ND	1.6	0.42	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.6	0.44	ug/kg	
72-43-5	Methoxychlor	CM-GN	1.6	0.53	ug/kg	
53494-70-5	Endrin ketone	ND	1.6	0.44	ug/kg	
8001-35-2	Toxaphene	ND	20	7.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	86%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	79%		38-13	30%	
2051-24-3	Decachlorobiphenyl	83%		32-1	42%	
2051-24-3	Decachlorobiphenyl	72%		32-1	42%	

ND = Not detected

MDL - Method Detection Limit

I = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J80708

Report of Analysis

Page 1 of 1.

Client Sample ID: G-2(33-35)

Lab Sample ID:

J80708-9

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8081A SW846 3545

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch

Run #1

File ID 2G26077.D DF 1

Analyzed By 01/17/08 **JSE** Prep Date 01/09/08

OP30785

G2G1024

Run #2

Initial Weight

Final Volume

Run #1 15.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	TJU-GM	1.5	0.34	ug/kg	
319-84-6	alpha-BHC	ND-UJ	1.5	0.28	ug/kg	
319-85-7	beta-BHC	AD UCT	1.5	0.33	ug/kg	
319-86-8	delta-BHC	ND UUT	1.5	0.56	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND UUT	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.39	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.47	ug/kg	
72-20-8	Endrin	ND	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	LTN GN	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND	19	7.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	93%		38-13	30%	
877-09-8	Tetrachloro-m-xylene	90%		38-13	30%	
2051-24-3	Decachlorobiphenyl	90%		32-14	12%	
2051-24-3	Decachlorobiphenyl	90%		32-14	42%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

By

JSE

Page 1 of 1

Client Sample ID: G-3(29-31)

File ID

2G26078.D

Lab Sample ID:

J80708-10

Date Sampled: 01/07/08

Prep Date

01/09/08

Matrix:

SO - Soil

Date Received: 01/07/08

OP30785

Method:

SW846 8081A SW846 3545

DF

1

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/17/08

Prep Batch Analytical Batch

G2G1024

Run #1 Run #2

Final Volume

Initial Weight Run #1 15.1 g

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	てい -GK	1.5	0.33	ug/kg	
319-84-6	alpha-BHC	TLU-GK	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND UJ	1.5	0.33	ug/kg	
319-86-8	delta-BHC	TU GK	1.5	0.56	ug/kg	
58-89-9	gamma-BHC (Lindane)	MD-UJJ	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.47	ug/kg	
72-20-8	Endrin	ND	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	プリーGN	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.50	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND	19	7.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	95%		38-13	30%	
877-09-8	Tetrachloro-m-xylene	90%		38-13	30%	
2051-24-3	Decachlorobiphenyl	99%		32-14	12%	
2051-24-3	Decachlorobiphenyl	93%		32-14	1 2%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

ω. 2<u>1</u>

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11

Date Sampled: 01/07/08

SO - Soil

Date Received: 01/07/08

Method:

SW846 8081A SW846 3545

DF

1

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID 2G26079.D Analyzed 01/17/08

Prep Date Ву 01/09/08 JSE

Prep Batch OP30785

G2G1024

Run #2

Initial Weight

Final Volume

15.1 g

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND UJ	1.6	0.35	ug/kg	
319-84-6	alpha-BHC	ND-UJ	1.6	0.29	ug/kg	
319-85-7	beta-BHC	NDUJ	1.6	0.34	ug/kg	
319-86-8	delta-BHC	TIN CH		0.58	ug/kg	
58-89-9	gamma-BHC (Lindane)	トプスス	1.6	0.32	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.6	0.43	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.6	0.42	ug/kg	
60-57-1	Dieldrin	ND	1.6	0.40	ug/kg	
72-54-8	4,4'-DDD	ND	1.6	0.38	ug/kg	
72-55-9	4,4'-DDE	ND	1.6	0.39	ug/kg	
50-29-3	4,4'-DDT	ND	1.6	0.48	ug/kg	
72-20-8	Endrin	ND	1.6	0.39	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.6	0.43	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.6	0.37	ug/kg	
959-98-8	Endosulfan-I	ND.	1.6	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND	1.6	0.42	ug/kg	
76-44-8	Heptachlor	CJ GK	1.6	0.41	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.6	0.44	ug/kg	
72-43-5	Methoxychlor	ND	1.6	0.52	ug/kg	
53494-70-5	Endrin ketone	ND	1.6	0.43	ug/kg	
8001-35-2	Toxaphene	ND	20	7.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	94%		38-13	30%	
877-09-8	Tetrachloro-m-xylene	88%		38-13	30%	
2051-24-3	Decachlorobiphenyl	99%		32-14	12%	
2051-24-3	Decachlorobiphenyl	78%		32-14	12%	

ND = Not detected

RL = Reporting Limit

MDL - Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-5(28-30)

Lab Sample ID: Matrix:

J80708-12 SO - Soil

Date Sampled:

01/07/08 Date Received: 01/07/08

Method:

SW846 8081A SW846 3545 West 34th Street, 34th and 11th Avenue, New York, NY

Percent Solids: 85.0

Project:

File ID DF Prep Date Prep Batch Analytical Batch Analyzed By 01/09/08 Run #1 2G26089.D 1 01/17/08 JSE OP30785 G2G1025 Run #2

Final Volume Initial Weight

Run #1 15.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND-UJ	1.5	0.34	ug/kg	
319-84-6	alpha-BHC	ND U.T	#	0.29	ug/kg	
319-85-7	beta-BHC	TJJ-GK	*	0.34	ug/kg	
319-86-8	delta-BHC	Cuj du		0.57	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND-UJ		0.31	ug/kg	
5103-71-9	alpha-Chlordane a	2.6 JN	1.5	0.42	ug/kg	
5103-74-2	gamma-Chlordane	6.0	1.5	0.42	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.39	ug/kg	
72-54-8	4,4'-DDD	2.8	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.39	ug/kg	
50-29-3	4,4'-DDT	49.9	1.5	0.47	ug/kg	
72-20-8	Endrin	2.2	1.5	0.39	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.42	ug/kg	
7421-93-4	Endrin aldehyde	3.6	1.5	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.41	ug/kg	
76-44-8	Heptachlor	1.6 3	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.43	ug/kg	
72-43-5	Methoxychlor	43.4	1.5	0.51	ug/kg	
53494-70-5	Endrin ketone	6.3	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND.	19	7.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	99%		38-13	30%	
877-09-8	Tetrachloro-m-xylene	98%		38-13	30%	
2051-24-3	Decachlorobiphenyl	105%		32-14	12%	
2051-24-3	Decachlorobiphenyl	106%		32-14	12%	

(a) Reported from 2nd signal due to interference on 1st signal.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13 SO - Soil

Date Sampled:

Date Received: 01/07/08

01/07/08

Method:

SW846 8081A SW846 3545

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch **Analytical Batch**

Run #1

File ID 2G25970.D DF Analyzed 01/11/08

Prep Date By 01/09/08 **JSE**

OP30785

G2G1019

Run #2

Initial Weight

Final Volume

Run #1 15.1 g 10.0 ml

1

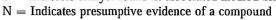
Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	TUN-GK	1.5	0.57	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.39	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT a	2.1	1.5	0.47	ug/kg	
72-20-8	Endrin	UJ G N	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.42	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND	19	7.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	100%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	102%		38-1	30%	
2051-24-3	Decachlorobiphenyl	99%		32-1	42%	
2051-24-3	Decachlorobiphenyl	101%		32-1	42%	

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected


MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID: Matrix:

J80708-14

AQ - Field Blank Soil

DF

1

Date Sampled: Date Received: 01/07/08

01/07/08

Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID XX74435.D Analyzed 01/11/08

Prep Date Ву **JSE** 01/08/08

OP30703

GXX3039

Run #2

Initial Volume Run #1

Final Volume

1000 ml

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.020	0.0033	ug/l	
319-84-6	alpha-BHC	ND	0.020	0.0026	ug/l	
319-85-7	beta-BHC	ND	0.020	0.0062	ug/l	
319-86-8	delta-BHC	しとしまる	0.020	0.0031	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.020	0.0017	ug/l	
5103-71-9	alpha-Chlordane	ND	0.020	0.0044	ug/I	
5103-74-2	gamma-Chlordane	ND	0.020	0.0017	ug/l	
60-57-1	Dieldrin	ND	0.020	0.0017	ug/l	
72-54-8	4,4'-DDD	ND	0.020	0.0024	ug/l	
72-55-9	4,4'-DDE	ND	0.020	0.0017	ug/l	
50-29-3	4,4'-DDT	ND	0.020	0.0049	ug/l	
72-20-8	Endrin	してい -GK	0.020	0.0030	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.020	0.0046	ug/l	
7421-93-4	Endrin aldehyde	ND	0.020	0.0064	ug/l	
53494-70-5	Endrin ketone	ND	0.020	0.0035	ug/l	
959-98-8	Endosulfan-I	ND	0.020	0.0021	ug/l	
33213-65-9	Endosulfan-II	ND	0.020	0.0032	ug/l	
76-44-8	Heptachlor	ND	0.020	0.0026	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.020	0.0015	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0068	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.094	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		30-12	28%	
877-09-8	Tetrachloro-m-xylene	82%		30-12	28%	
2051-24-3	Decachlorobiphenyl	51%		10-13	38%	
2051-24-3	Decachlorobiphenyl	60%		10-13	38%	

ND = Not detected

RL = Reporting Limit

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range.

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15

SO - Field Blank Soil

Date Sampled:

01/07/08

Matrix: Method:

SW846 8081A SW846 3545

Date Received: 01/07/08 Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

01/10/08

Analyzed Prep Date File ID DF Ву

Prep Batch Analytical Batch OP30781 GXX3038

01/11/08 **JSE** Run #1 XX74419.D 1

Run #2

Initial Weight

Final Volume

Run #1 15.3 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	TJJ CIK	1.5	0.57	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.41	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.41	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.39	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.47	ug/kg	
72-20-8	Endrin	NÐ-UUJ	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.42	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	1.5	0.42	ug/kg	
8001-35-2	Toxaphene	ND:	19	7.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	80%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	73%		38-1	30%	
2051-24-3	Decachlorobiphenyl	78%		32-1	42%	
2051-24-3	Decachlorobiphenyl	89%		32-1	42%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: A-1(12-14)

Lab Sample ID:

J80708-1 SO - Soil Date Sampled: 01/07/08

Matrix: Method:

SW846 8082 SW846 3545

Date Received: 01/07/08 Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID OA42774.D

15.2 g

DF Analyzed 01/10/08

Prep Date By 01/09/08 **TDR**

7.1

23

20

12

13

18

7.6

OP30786

GOA1530

Run #2

Final Volume Initial Weight

1

Run #1

10.0 ml

Run #2

PCB List

CAS No. Compound

Result

ND

ND

ND

ND

ND

ND

ND

MDL Units

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Q

12674-11-2 Aroclor 1016

11104-28-2 Aroclor 1221

11141-16-5 Aroclor 1232

53469-21-9 Aroclor 1242 12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254 Aroclor 1260 11096-82-5

CAS No. Surrogate Recoveries

Run#1

Run# 2

RL

38

38

38

38

38

38

38

Limits

877-09-8 Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene

2051-24-3 Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl 98% 87% 89%

86%

37-140% 37-140% 40-151%

40-151%

ND = Not detected RL = Reporting Limit MDL - Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TDR

Page 1 of 1

Client Sample ID: A-2(8-10)

File ID

OA42775.D

Compound

Lab Sample ID:

J80708-2

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8082 SW846 3545

DF

1

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Date

01/09/08

Prep Batch Analytical Batch OP30786 GOA1530

Run #1

Run #2

Final Volume

Initial Weight Run #1 15.1 g

10.0 ml

Run #2

PCB List

CAS No.

Result RLMDL Units Q

12674-11-2	Aroclor 1016	ND :	39	7.4	ug/kg
11104-28-2	Aroclor 1221	ND :	39	23	ug/kg
11141-16-5	Aroclor 1232	ND :	39	21	ug/kg
53469-21-9	Aroclor 1242	ND : : :	39	12	ug/kg
12672-29-6	Aroclor 1248	ND :	39	13	ug/kg
11097-69-1	Aroclor 1254	ND :	39	18	ug/kg
11096-82-5	Aroclor 1260	ND :	39	7.8	ug/kg

CAS No.	Surrogate Recoveries	Run# 1 Run	n# 2 Limits
877-09-8	Tetrachloro-m-xylene	103%	37-140%
877-09-8	Tetrachloro-m-xylene	94%	37-140%
2051-24-3	Decachlorobiphenyl	93%	40-151%
2051-24-3	Decachlorobiphenyl	93%	40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-3(9-11)

Lab Sample ID:

J80708-3

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received: 01/07/08

Method:

SW846 8082 SW846 3545

DF

1

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID OA42776.D Analyzed 01/10/08

By Prep Date **TDR** 01/09/08

7.2

23

21

12

13

18

7.6

Prep Batch OP30786

Q

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

GOA1530

Run #2

Initial Weight

Final Volume

Run #1 15.3 g 10.0 ml

Run #2

PCB List

CAS No. Compound Result RL**MDL** Units

ND

ND

ND

ND

ND

ND

ND

103%

96%

95%

97%

12674-11-2 Aroclor 1016

11104-28-2 Aroclor 1221 11141-16-5 Aroclor 1232

53469-21-9 Aroclor 1242 12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254 11096-82-5 Aroclor 1260

CAS No. Surrogate Recoveries

877-09-8 Tetrachloro-m-xylene

877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl

Run#1

Run#2

38

38

38

38

38

38

38

Limits

37-140%

37-140% 40-151%

40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID: Matrix:

J80708-4

Date Sampled:

SO - Soil

Date Received: 01/07/08

01/07/08

Method:

SW846 8082 SW846 3545

1

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID OA42777.D DF Analyzed 01/10/08

By **TDR** Prep Date 01/09/08

MDL

7.4

23

21

12

13

18

7.9

OP30786

GOA1530

Run #2

Initial Weight

Compound

Final Volume

Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.

2051-24-3

CAS No.

_	
Res	1

ND

ND

ND

ND

ND

ND

ND

ult RL

39

39

39

39

39

39

39

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Units Q

12674-11-2 Aroclor 1016 11104-28-2 Aroclor 1221

Aroclor 1232 11141-16-5

53469-21-9 Aroclor 1242 12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254 11096-82-5 Aroclor 1260

Run#2

Limits

877-09-8 Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl

Surrogate Recoveries

Decachlorobiphenyl

98% 89% 89% 92%

Run#1

37-140% 37-140%

40-151% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-5(21-23)

Lab Sample ID:

J80708-5

01/07/08 Date Sampled:

Matrix:

SO - Soil SW846 8082 SW846 3545

1

Date Received: 01/07/08 Percent Solids: 89.2

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch

Run #1

File ID OA42780.D DF Analyzed 01/10/08

By Prep Date **TDR** 01/09/08

OP30786

GOA1530

Run #2

Initial Weight

Final Volume

Run #1 15.0 g 10.0 ml

Run #2

PCB List

CAS No.

877-09-8

877-09-8

2051-24-3

2051-24-3

CAS No. Compound

Result

ND

ND

ND

ND

ND

ND

ND

MDL

7.1

22

20

12

13

18

7.5

Units

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Q

12674-11-2 Aroclor 1016 Aroclor 1221 11104-28-2

Aroclor 1232 11141-16-5

Aroclor 1242 53469-21-9 12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260

Surrogate Recoveries

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

Run#1

Run#2

RL

37

37

37

37

37

37

37

Limits

104% 96% 97%

98%

37-140%

37-140% 40-151% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID:

J80708-6 SO - Soil Date Sampled: 01/07/08

Matrix:

SW846 8082 SW846 3545

Date Received: 01/07/08

Method: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Percent Solids: 88.6

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch OA42781.D 01/10/08 **TDR** 01/09/08 OP30786 GOA1530 Run #1 1 Run #2

Initial Weight Final Volume

Run #1 15.3 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	37	7.0	ug/kg	
11104-28-2	Aroclor 1221	ND	37	22	ug/kg	
11141-16-5	Aroclor 1232	ND	37	20	ug/kg	
53469-21-9	Aroclor 1242	ND	37	12	ug/kg	
12672-29-6	Aroclor 1248	ND	37	13	ug/kg	
11097-69-1	Aroclor 1254	ND	37	17	ug/kg	
11096-82-5	Aroclor 1260	ND	37	7.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	98%	Aurose	37-1	140%	
877-09-8	Tetrachloro-m-xylene	90%	50 m	37-1	140%	
2051-24-3	Decachlorobiphenyl	89%		40-1	l 51 %	
2051-24-3	Decachlorobiphenyl	90%	ž Ž	40-1	l 51 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

TDR

Page 1 of 1

Client Sample ID: A-7(40-42)

File ID

OA42782.D

Lab Sample ID:

J80708-7

Date Sampled:

01/07/08

Matrix:

SO - Soil SW846 8082 SW846 3545

DF

1

Date Received: 01/07/08 Percent Solids: 87.1

Method:

Prep Date

01/09/08

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch Analytical Batch OP30786 GOA1530

Run #1

Run #2

Initial Weight Final Volume

Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.

Result RL**MDL** Units Q

12674-11-2 Aroclor 1016 11104-28-2 Aroclor 1221 11141-16-5 Aroclor 1232 53469-21-9 Aroclor 1242

Compound

ND 38 7.2 ug/kg ND 38 23 ug/kg ND 38 21 ug/kg ND 38 12 ug/kg

12672-29-6 Aroclor 1248 11097-69-1 Aroclor 1254 11096-82-5 Aroclor 1260

38 ug/kg ND 13 ug/kg ND 38 18 ND 38 7.7 ug/kg

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

877-09-8 Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl

108% 37-140% 95% 37-140% 95% 40-151% 96% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID:

J80708-8

Date Sampled:

01/07/08

Matrix:

SO - Soil

Date Received:

01/07/08

Method:

SW846 8082 SW846 3545

1

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch

Analytical Batch

Run #1

File ID OA42783.D DF Analyzed 01/10/08

By TDR Prep Date 01/09/08

OP30786

GOA1530

Run #2

Initial Weight

Final Volume

Run #1 15.3 g 10.0 ml

Run #2

PCB List

CAS No.

Compound	Result	${ m RL}$	\mathbf{MDL}	Units	Q

19674 11 9	Aroclor 1016	ND	40	7.6	/1
		ND	40	7.6	ug/kg
11104-28-2	Aroclor 1221	ND	40	24	ug/kg
11141-16-5	Aroclor 1232	ND	40	22	ug/kg
53469-21-9	Aroclor 1242	ND	40	13	ug/kg
12672-29-6	Aroclor 1248	ND	40	14	ug/kg
11097-69-1	Aroclor 1254	ND	40	19	ug/kg
11096-82-5	Aroclor 1260	ND	40	8.1	ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	99%		37-140%
877-09-8	Tetrachloro-m-xylene	90%		37-140%
2051-24-3	Decachlorobiphenyl	90%		40-151%
2051-24-3	Decachlorobiphenyl	88%		40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-2(33-35)

File ID

Compound

Lab Sample ID:

J80708-9 SO - Soil Date Sampled: 01/07/08

Matrix: Method:

Date Received: 01/07/08

SW846 8082 SW846 3545

DF

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1 Run #2 OA42784.D 1 Analyzed Ву 01/10/08 **TDR**

Prep Date 01/09/08

Prep Batch OP30786

GOA1530

Initial Weight

Final Volume

Run #1 15.2 g

10.0 ml

Run #2

PCB List

CAS No.

Result RL MDL Units (its Q	Units	MDL	RL	Result
-----------------------	-------	-------	-----	----	--------

12674-11-2	Aroclor 1016	ND	38	7.2	ug/kg
11104-28-2	Aroclor 1221	ND	38	23	ug/kg
11141-16-5	Aroclor 1232	ND	38	21	ug/kg
53469-21-9	Aroclor 1242	ND	38	12	ug/kg
12672-29-6	Aroclor 1248	ND	38	13	ug/kg
11097-69-1	Aroclor 1254	ND	38	18	ug/kg
11096-82-5	Aroclor 1260	ND	38	7.7	ug/kg

CAS No.	Surrogate Recoveries	Run# 1 Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	104%	37-140%
877-09-8	Tetrachloro-m-xylene	93%	37-140%
2051-24-3	Decachlorobiphenyl	92%	40-151%
2051-24-3	Decachlorobiphenyl	93%	40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

TDR

Page 1 of 1

Client Sample ID: G-3(29-31)

Lab Sample ID: Matrix:

J80708-10 SO - Soil

Date Sampled: Date Received:

01/07/08

Method:

DF

1

Percent Solids: 87.3

01/07/08

SW846 8082 SW846 3545

Prep Date

01/09/08

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/10/08

Prep Batch Analytical Batch OP30786 GOA1530

Run #1 Run #2

File ID

OA42785.D

Initial Weight Run #1 15.1 g

Final Volume 10.0 ml

Run #2

PCB List

CAS No.

Compound	Result	RL	MDL	Units	Q

12674-11-2	Aroclor 1016	ND	38	7.2	ug/kg
11104-28-2	Aroclor 1221	ND	38	23	ug/kg
11141-16-5	Aroclor 1232	ND	38	21	ug/kg
53469-21-9	Aroclor 1242	ND	38	12	ug/kg
12672-29-6	Aroclor 1248	ND.	38	13	ug/kg
11097-69-1	Aroclor 1254	ND	38	18	ug/kg
11096-82-5	Aroclor 1260	$\overline{\mathbf{ND}}$	38	7.7	ug/kg

#1 Run#2 Limits
37-140% 37-140% 40-151% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11 SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Method:

SW846 8082 SW846 3545

Percent Solids: 84.1

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch File ID DF Analyzed Prep Date Prep Batch By **TDR** 01/09/08 OP30786 GOA1530 Run #1 OA42786.D 1 01/10/08

Run #2

Initial Weight Final Volume

Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	39 ·	7.5	ug/kg	
11104-28-2	Aroclor 1221	ND	39	24	ug/kg	
11141-16-5	Aroclor 1232	ND	39	21	ug/kg	
53469-21-9	Aroclor 1242	ND	39	13	ug/kg	
12672-29-6	Aroclor 1248	ND	39	14	ug/kg	
11097-69-1	Aroclor 1254	ND	39	19	ug/kg	
11096-82-5	Aroclor 1260	ND	39	8.0	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	106%		37-1	40%	
877-09-8	Tetrachloro-m-xylene	94%		37-1	40%	
2051-24-3	Decachlorobiphenyl	96%		40-1	51%	
2051-24-3	Decachlorobiphenyl	88%		40-1	151%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.23

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: G-5(28-30) Lab Sample ID:

J80708-12

Date Sampled:

01/07/08

Matrix: Method: SO - Soil SW846 8082 SW846 3545

1

Date Received:

01/07/08 Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID OA42787.D DF Analyzed 01/10/08

Ву Prep Date 01/09/08 **TDR**

Prep Batch OP30786

GOA1530

Run #2

Initial Weight 15.2 g

Final Volume

10.0 ml

Run #1 Run #2

PCB List

877-09-8

Compound CAS No.

Result

Run#1

ND

MDL

7.4

Units Q

ug/kg

ug/kg

ug/kg

ug/kg

12674-11-2 Aroclor 1016 Aroclor 1221 11104-28-2

11141-16-5 Aroclor 1232 53469-21-9 Aroclor 1242

39 23 ND 39 21 ND 39 ND 12 ND 39 13

RL

39

12672-29-6 Aroclor 1248 11097-69-1 Aroclor 1254 11096-82-5 Aroclor 1260

ug/kg 39 ND 18 ug/kg ND 39 7.8 ug/kg

Run# 2

CAS No. Surrogate Recoveries

Tetrachloro-m-xylene

110% 96%

37-140% 37-140%

Limits

877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl

98% 40-151% 97% 40-151%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13 SO - Soil

Date Sampled:

01/07/08 01/07/08 Date Received:

Method:

SW846 8082 SW846 3545

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

File ID DF Prep Batch Analytical Batch Analyzed Prep Date By OA42788.D **TDR** 01/09/08 OP30786 GOA1530 Run #1 1 01/10/08

Run #2

Initial Weight Final Volume 10.0 ml 15.1 g

Run #1 Run #2

PCB List

2051-24-3

2051-24-3

CAS No.	Compound	Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016	ND	38	7.3	ug/kg		
11104-28-2	Aroclor 1221	ND	38	23	ug/kg		
11141-16-5	Aroclor 1232	ND	38	21	ug/kg		
53469-21-9	Aroclor 1242	ND	38	12	ug/kg		
12672-29-6	Aroclor 1248	ND	38	13	ug/kg		
11097-69-1	Aroclor 1254	ND	38	18	ug/kg		
11096-82-5	Aroclor 1260	ND.	38	7.7	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
877-09-8	Tetrachloro-m-xylene	126%		37-1	37-140%		
877-09-8	Tetrachloro-m-xylene	107%		37-140%			

101%

102%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

40-151%

40-151%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-14

AQ - Field Blank Soil

Date Sampled:

01/07/08

Matrix: Method:

Date Received:

01/07/08

SW846 8082 SW846 3510C

Percent Solids: n/a

West 34th Street, 34th and 11th Avenue, New York, NY Project:

Prep Batch

Analytical Batch

Run #1

File ID AB70950.D DF Analyzed 01/09/08 1

Prep Date By **JSE** 01/08/08

OP30646

GAB4012

Run #2

Initial Volume 1000 ml

Final Volume

Run #1 Run #2

 $10.0 \, ml$

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q		
12674-11-2	Aroclor 1016	ND	0.50	0.094	ug/l			
11104-28-2	Aroclor 1221	ND	0.50	0.47	ug/l			
11141-16-5	Aroclor 1232	ND	0.50	0.39	ug/l			
53469-21-9	Aroclor 1242	ND	0.50	0.16	ug/l			
12672-29-6	Aroclor 1248	ND	0.50	0.15	ug/l			
11097-69-1	Aroclor 1254	ND	0.50	0.11	ug/l			
11096-82-5	Aroclor 1260	ND	0.50	0.12	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
877-09-8	Tetrachloro-m-xylene	83%		38-1	33%			
877-09-8	Tetrachloro-m-xylene	96%		38-133% 18-156%				
2051-24-3	Decachlorobiphenyl	53%						
2051-24-3	Decachlorobiphenyl	72%	18-156%					

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: FB-SOIL

File ID

Lab Sample ID:

J80708-15

SO - Field Blank Soil

Date Sampled:

01/07/08

Matrix: Method:

SW846 8082 SW846 3545

DF

1

Date Received: Percent Solids:

01/07/08 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch Prep Batch

Run #1

OA42809.D

Analyzed 01/11/08

Prep Date By **TDR** 01/10/08

OP30791

GOA1531

Run #2

Final Volume

Initial Weight Run #1 15.3 g

10.0 ml

Run #2

PCB List

CAS No. Compound

Result

ND

ND

ND

ND

ND

ND

ND

MDL Units

6.2

20

18

10

11

15

6.6

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Q

12674-11-2 Aroclor 1016

11104-28-2 Aroclor 1221 Aroclor 1232 11141-16-5

Aroclor 1242 53469-21-9

12672-29-6 Aroclor 1248 11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260

CAS No. Surrogate Recoveries

877-09-8 Tetrachloro-m-xylene

877-09-8 Tetrachloro-m-xylene 2051-24-3

Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl Run#1

107%

95%

84%

83%

Run#2

RL

33

33

33

33

33

33

33

Limits

37-140%

37-140%

40-151% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: A-1(12-14)

Lab Sample ID: Matrix:

J80708-1 SO - Soil Date Sampled:

01/07/08 Date Received: 01/07/08

Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	11700	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	4.2	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	201	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.59	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	3680	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	28.4	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	9.0	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	61.1	2.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	22600	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	274	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	4010	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	440	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	28.3	3.5	mg/kg	100	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	21.7	4.5	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	3350	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	34.0	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	133	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-2(8-10) Lab Sample ID: J80708-2

Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	13000	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	107	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.82	0.59	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.59	0.59	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	3530	590	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	37.3	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	9.5	5.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	29.0	3.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	20000	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	61.1	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	4010	590	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	610	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.29	0.036	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	24.7	4.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	3030	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	32.6	5.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	84.4	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-3(9-11) Lab Sample ID:

J80708-3 SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 86.4

Matrix: Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	10800	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	78.3	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.61	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1410	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	26.5	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	6.3	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	17.5	2.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	15100	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	11.8	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	2960	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	309	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.035	0.035	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	19.1	4.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	2490	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	24.0	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	35.7	2.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID: J80708-4 Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 85.0

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	13700	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2.9	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	57.1	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.60	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1510	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	21.4	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	7.8	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	21.1	2.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	20100	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	13.7	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3720	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	429	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.034	0.034	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	16.7	4.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	1690	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	25.3	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	44.1	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-5(21-23) Lab Sample ID: J80708-5

Matrix: SO - Soil

Date Sampled: 01/07/08
Date Received: 01/07/08
Percent Solids: 89.2

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Project:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6990	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	108	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.54	0.54	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.54	0.54	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1150	540	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	18.5	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	< 5.4	5.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	14.3	2.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	11400	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	5.4	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	1880	540	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	266	1.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.034	0.034	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	16.1	4.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	1470	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	18.5	5.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	26.1	2.3	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID: J80708-6 Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 88.6

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	11100	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2.3	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	124	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.62	0.56	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1870	560	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	29.0	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	9.0	5.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	30.8	2.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	16000	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	10.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3410	560	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	482	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.034	0.034	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	25.3	4.5	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	1720	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	33.3	5.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	31.4	2.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-7(40-42)

Lab Sample ID: Matrix: J80708-7 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6340	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	71.8	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.58	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	1.6	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	2340	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	15.8	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	6.0	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	24.1	2.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	14300	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	46.8	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	2940	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	228	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.043	0.038	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	16.6	4.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	2380	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	21.4	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	96.8	2.3	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: G-1(36-38) J80708-8

Lab Sample ID: Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	12700	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	157	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.69	0.60	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.60	0.60	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	2800	600	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	30.5	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	9.4	6.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	31.7	3.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	21600	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	13.6	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	5490	600	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	563	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.041	0.040	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	24.0	4.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	4520	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	40.4	6.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	83.1	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: G-2(33-35) Lab Sample ID: J80708-9

Matrix: SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08 Percent Solids: 86.4

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Project:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	11900	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	161	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.58	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	4950	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	29.3	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	9.1	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	27.2	2.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	23400	12	mg/kg	1.	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	27.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	6000	580	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	368	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.074	0.035	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	22.1	4.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	5580	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Vanadium	48.2	5.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	189	2.3	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: G-3(29-31) Lab Sample ID:

J80708-10 Matrix: SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	9680	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	122	22	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.56	0.56	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1660	560	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	22.8	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	7.7	5.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	16.7	2.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	16700	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	11.8	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3560	560	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	430	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.035	0.035	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	21.0	4.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	3440	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴
Vanadium	29.8	5.6	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	42.4	2.3	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

(1) Instrument QC Batch: MA20356 (2) Instrument QC Batch: MA20360 (3) Instrument QC Batch: MA20374(4) Prep QC Batch: MP42229

(5) Prep QC Batch: MP42240

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11 SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5940	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	54.2	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.61	0.61	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.61	0.61	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	2060	610	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	14.6	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	< 6.1	6.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	25.6	3.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	12300	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	37.3	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	1980	610	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	372	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.045	0.037	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	16.3	4.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	1250	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴
Vanadium	20.4	6.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	42.4	2.3	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: G-5(28-30) Lab Sample ID: J80708-12

Matrix:

SO - Soil

Date Sampled:

01/07/08

Percent Solids: 85.0

Date Received: 01/07/08

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	10300	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	272	24	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.61	0.60	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.60	0.60	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	8050	600	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	22.8	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	7.4	6.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	24.5	3.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	17000	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	84.9	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3340	600	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	464	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.12	0.037	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	21.6	4.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	2580	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.4	2.4	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴
Vanadium	27.1	6.0	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	106	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

(1) Instrument QC Batch: MA20356 (2) Instrument QC Batch: MA20360 (3) Instrument QC Batch: MA20374 (4) Prep QC Batch: MP42229

(5) Prep QC Batch: MP42240

Page 1 of 1

Client Sample ID: A-9(28-30) Lab Sample ID: J80708-13

Matrix:

SO - Soil

Date Sampled:

01/07/08

Date Received: 01/07/08

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	10000	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	<2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	176	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.60	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	5300	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	22.8	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	8.4	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	23.7	2.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	17600	11	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	56.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3160	570	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	519	1.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.21	0.038	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	22.1	4.5	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	2390	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1100	1100	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴
Vanadium	26.2	5.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	83.7	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID: J80708-14

AQ - Field Blank Soil

Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: n/a

Project:

Matrix:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	01/10/08	01/14/08 ND	SW846 6010B ³	SW846 3010A ⁴
Arsenic	< 8.0	8.0	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Beryllium	<1.0	1.0	ug/I	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Cadmium	<4.0	4.0	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Calcium	< 5000	5000	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Chromium	<10	10	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Copper	<25	25	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Iron	<100	100	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Lead	<3.0	3.0	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Magnesium	< 5000	5000	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Manganese	<15	15	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	01/10/08	01/10/08 JW	SW846 7470A ¹	SW846 7470A ⁵
Nickel	<40	40	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Potassium	<10000	10000	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Selenium	<10	10	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Silver	<10	10	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Sodium	<10000	10000	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Thallium	<10	10	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	01/10/08	01/11/08 WP	SW846 6010B ²	SW846 3010A ⁴

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID: J80708-15

Matrix: SO - Field Blank Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 85.3

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	12600	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Arsenic	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Barium	88.5	23	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Beryllium	0.75	0.59	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.59	0.59	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Calcium	1800	590	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Chromium	28.6	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cobalt	8.6	5.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Copper	21.3	2.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Iron	19000	12	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Lead	50.5	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Magnesium	3810	590	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Manganese	440	1.8	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.032	0.032	mg/kg	1	01/11/08	01/11/08 JW	SW846 7471A ¹	SW846 7471A ⁵
Nickel	22.1	4.7	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Potassium	3230	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.2	1.2	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Sodium	<1200	1200	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.2	1.2	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴
Vanadium	31.2	5.9	mg/kg	1	01/10/08	01/15/08 DM	SW846 6010B ²	SW846 3050B ⁴
Zinc	45.5	2.4	mg/kg	1	01/16/08	01/16/08 DM	SW846 6010B ³	SW846 3050B ⁴

Page 1 of 1

Client Sample ID: A-1(12-14)

Lab Sample ID: Matrix:

J80708-1 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 87.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 UJ		mg/kg	1	01/17/08 11:09	BD	SW846 3060A/7196A
Chromium, Trivalent a	28.4	2.2	mg/kg	1	01/17/08 11:09	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:34	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	323		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	87.6		%	1	01/11/08	TS	EPA 160.3 M
pН	7.81		su	1	01/10/08	LMM	SW846 9045D

Client Sample ID: A-1(12-14)

Lab Sample ID: Matrix:

Project:

J80708-1R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 87.6

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

RLUnits Analyte Result DF Analyzed By Method

Chromium, Hexavalent <1.1 UJ 1.1 mg/kg 1 01/24/08 14:05 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-2(8-10)

Lab Sample ID: Matrix:

J80708-2 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 UJ	1.2	mg/kg	1	01/17/08 14:11	BD	SW846 3060A/7196A
Chromium, Trivalent ^a	37.3	2.4	mg/kg	1	01/17/08 14:11	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:35	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	346		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	85.3		%	1	01/11/08	TS	EPA 160.3 M
pH	7.79		su	1	01/10/08	LMM	SW846 9045D

Client Sample ID: A-2(8-10) Lab Sample ID: J80708-2R

Matrix: SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 85.3

West 34th Street, 34th and 11th Avenue, New York, NY Project:

General Chemistry

Analyte Result RLUnits DF Analyzed By Method

Chromium, Hexavalent <1.2 UJ 1.2 01/24/08 15:10 MS mg/kg 1 SW846 3060A/7196A

Report of Analysis

Page 1 of 1

Client Sample ID: A-3(9-11)

Lab Sample ID: J807 Matrix: SO

J80708-3 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 UJ	1.2	mg/kg	1	01/17/08 14:11	BD	SW846 3060A/7196A
Chromium, Trivalent a	26.5	2.3	mg/kg	1	01/17/08 14:11	BD	SW846 6010/7196A M
Cyanide			mg/kg	1	01/15/08 10:36	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	351		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	86.4		%	1	01/11/08	TS	EPA 160.3 M
pH	7.67		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: A-3(9-11)

Lab Sample ID:

J80708-3R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 86.4

Project:

Matrix:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result

RLUnits

DF

Analyzed

By Method

Chromium, Hexavalent

<1.2 UJ 1.2

mg/kg

1

01/24/08 15:10 MS

SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID: Matrix:

J80708-4 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a Cyanide	<1.2 して 21.4 <0.26	2.4 0.26	mg/kg mg/kg mg/kg	1 1 1	01/17/08 14:11 01/17/08 14:11 01/15/08 10:37	BD BD	SW846 3060A/7196A SW846 6010/7196A M SW846 9012 M/LACHAT
Redox Potential Vs H2	349		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	85		%	1	01/11/08	TS	EPA 160.3 M
pН	7.72		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: A-4(12-14)

Lab Sample ID: Matrix:

J80708-4R SO - Soil

Date Sampled:

01/07/08

Date Received: 01/07/08

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte

Result

RL

Units

Analyzed

By Method

Chromium, Hexavalent

<1.2 UJ 1.2

mg/kg

1

DF

01/24/08 15:10 MS

SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-5(21-23)

Lab Sample ID: Matrix: J80708-5 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Per cent Solids: 89.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 אָל	1.1	mg/kg	1	01/17/08 14:11	BD	SW846 3060A/7196A
Chromium, Trivalent a	18.5	2.2	mg/kg	1	01/17/08 14:11	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:40	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	331		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	89.2		%	1	01/11/08	TS	EPA 160.3 M
pH	7.35		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: A-5(21-23)

Lab Sample ID: Matrix: J80708-5R SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 89.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Chromium, Hexavalent <1.1 U 1.1 mg/kg 1 01/24/08 15:10 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID: Matrix: J80708-6 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 88.6

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a	<1.1 以丁 29.0		mg/kg mg/kg	1 1	01/17/08 14:11 01/17/08 14:11		SW846 3060A/7196A SW846 6010/7196A M
Cyanide	< 0.26		mg/kg	1	01/15/08 10:41	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	312	or control of the con	mv	1 .	01/10/08	TM	ASTM D1498-76M
Solids, Percent	88.6	nigation.	%	1	01/11/08	TS	EPA 160.3 M
pH ·	7.82	Tapacient	su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: A-6(30-32)

Lab Sample ID: Matrix:

J80708-6R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Project:

Percent Solids: 88.6 West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RLUnits DF Analyzed $\mathbf{B}\mathbf{y}$ Method

Chromium, Hexavalent <1.1 UJ 1.1 mg/kg 1 01/24/08 15:10 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-7(40-42)

Lab Sample ID: Matrix:

J80708-7 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 U.5	ፓ 1.1	mg/kg	1	01/17/08 14:11	BD	SW846 3060A/7196A
Chromium, Trivalent a	15.8	2.3	mg/kg	1	01/17/08 14:11	BD	SW846 6010/7196A M
Cyanide	< 0.26		mg/kg	1	01/15/08 10:42	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	336		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	87.1		%	1	01/11/08	TS	EPA 160.3 M
pН	7.61		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: A-7(40-42)

Lab Sample ID: Matrix:

J80708-7R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 87.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RLUnits DF Analyzed By Method

Chromium, Hexavalent <1.1 UJ 1.1 mg/kg 1 01/24/08 15:10 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID: J Matrix: S

J80708-8 SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 UJ	1.2	mg/kg	1	01/17/08 14:11	BD	SW846 3060A/7196A
Chromium, Trivalent a	30.5	2.4	mg/kg	1	01/17/08 14:11	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:43	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	285		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	81.7		%	1	01/11/08	TS	EPA 160.3 M
pН	8.65		su	. 1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: G-1(36-38)

Lab Sample ID: Matrix:

J80708-8R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 81.7

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RLUnits DF Analyzed Ву Method

<1.2 UJ 1.2 Chromium, Hexavalent mg/kg 01/24/08 15:10 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: G-2(33-35)

Lab Sample ID: Matrix:

Project:

J80708-9 SO - Soil Date Sampled: 01/07/08

Date Received: 01/07/08

Per cent Solids: 86.4 West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 นุว	1.2	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent a	29.3		mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:44	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	163		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	86.4	100 mg	%	1	01/11/08	TS	EPA 160.3 M
pН	10.81		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: G-2(33-35)

Lab Sample ID: Matrix:

J80708-9R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result

RL

DF

Analyzed

Ву Method

Chromium, Hexavalent

<1.2 UJ 1.2

mg/kg

Units

1

01/24/08 15:59 MS

SW846 3060A/7196A

Page 1 of 1

Client Sample ID: G-3(29-31)

Lab Sample ID: J80708-10 Matrix: SO - Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 UJ	1.1	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent ^a	22.8	2.2	mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.25		mg/kg	1	01/15/08 10:45	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	341		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	87.3		%	1	01/11/08	TS	EPA 160.3 M
pH	8.23	¥	su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: G-3(29-31)

Lab Sample ID: Matrix:

J80708-10R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 87.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RL

Units

DF Analyzed

 $\mathbf{B}\mathbf{y}$ Method

Chromium, Hexavalent

<1.1 UJ 1.1

mg/kg

1

01/24/08 15:59 MS

SW846 3060A/7196A

Page 1 of 1

Client Sample ID: G-4(21-23) Lab Sample ID:

J80708-11 Matrix: SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 84.1

West 34th Street, 34th and 11th Avenue, New York, NY Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 UJ	1.2	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent ^a	14.6	2.4	mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:46	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	342	44	mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	84.1		%	1	01/11/08	TS	EPA 160.3 M
pН	8.02		su	1	01/10/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: G-4(21-23)

Lab Sample ID: Matrix:

J80708-11R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 84.1

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Method Analyte Result RLUnits DF Analyzed By

Chromium, Hexavalent <1.2 UJ 1.2 mg/kg 1 01/24/08 15:59 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: G-5(28-30)

Lab Sample ID: J80708-12 Matrix: SO - Soil

Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 UJ	1.2	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent a	22.8	2.4	mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:47	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	265		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	85		%	1	01/11/08	TS	EPA 160.3 M
pН	8.96		su	1	01/10/08	LMM	SW846 9045D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: G-5(28-30)

Lab Sample ID: Matrix:

J80708-12R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 85.0

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

RLUnits Analyte Result DF Analyzed By Method

Chromium, Hexavalent <1.2 LJ 1.2 mg/kg 01/24/08 15:59 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: A-9(28-30) Lab Sample ID:

Matrix:

J80708-13 SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08 Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 以丁	1.2	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent ^a	22.8	2.3	mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.27	0.27	mg/kg	1	01/15/08 10:48	BD	SW846 9012 M/LACHAT
Redox Potential Vs H2	297		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	86.4		%	1	01/11/08	TS	EPA 160.3 M
pН	8.37	63 113 114	su	1	01/10/08	LMM	SW846 9045D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: A-9(28-30)

Lab Sample ID: Matrix:

J80708-13R SO - Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 86.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte Result RLUnits DF Analyzed Method By

Chromium, Hexavalent mg/kg 01/24/08 15:59 MS SW846 3060A/7196A

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID: Matrix:

J80708-14

AQ - Field Blank Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent Chromium, Trivalent ^a Cyanide	<0.010 4.5 <0.020 <0.010	0.020	mg/l mg/l mg/l	1 1 1	01/07/08 20:23 01/11/08 21:42 01/14/08 13:09	WP	SW846 7196A SW846 6010/7196A M EPA 335.4/LACHAT

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID: J8
Matrix: S

J80708-15 SO - Field Blank Soil Date Sampled: 01/07/08 Date Received: 01/07/08

Percent Solids: 85.3

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.2 <i>UJ</i>	1.2	mg/kg	1	01/17/08 15:29	BD	SW846 3060A/7196A
Chromium, Trivalent a	28.6	2.4	mg/kg	1	01/17/08 15:29	BD	SW846 6010/7196A M
Cyanide	< 0.24	0.24	mg/kg	1	01/17/08 12:18	AE	SW846 9012 M/LACHAT
Redox Potential Vs H2	332		mv	1	01/10/08	TM	ASTM D1498-76M
Solids, Percent	85.3		%	1	01/11/08	TS	EPA 160.3 M
pH	8.05	113 113	su	1	01/10/08	LMM	SW846 9045D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: FB-SOIL

Lab Sample ID:

J80708-15R

SO - Field Blank Soil

Date Sampled: 01/07/08

Date Received: 01/07/08

Percent Solids: 85.3

Project:

Matrix:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte

Result

RL

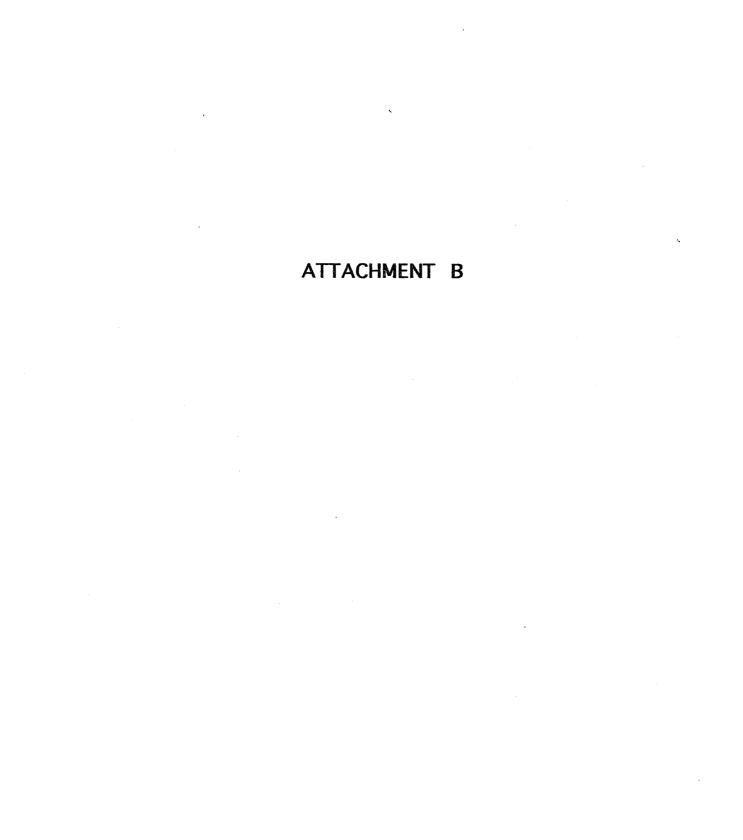
Units

Analyzed

By Method

Chromium, Hexavalent

<1.2 UJT 1.2


mg/kg

1

DF

01/24/08 15:59 MS

SW846 3060A/7196A

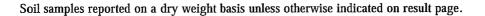
Sample Summary

Fleming-Lee Shue, Inc.

West 34th Street, 34th and 11th Avenue, New York, NY Project No: 10090-001

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
J80708-1	01/07/08	09:00 KB	01/07/08	so	Soil	A-1(12-14)
J80708-1R	01/07/08	09:00 KB	01/07/08	so	Soil	A-1(12-14)
J80708-1RD	01/07/08	09:00 KB	01/07/08	so	Soil Dup/MSD	A-1(12-14)
J80708-1RS	01/07/08	09:00 KB	01/07/08	so	Soil Matrix Spike	A-1(12-14)
J80708-2	01/07/08	09:05 KB	01/07/08	SO	Soil	A-2(8-10)
J80708-2R	01/07/08	09:05 KB	01/07/08	so	Soil	A=2(8=10)
J80708-3	01/07/08	09:10 KB	01/07/08	so	Soil	A-3(9-11)
J80708-3R	01/07/08	09:10 KB	01/07/08	so	Soil	A-3(9-11)
J80708-4	01/07/08	09:20 KB	01/07/08	so	Soil	A-4(12-14)
J80708-4R	01/07/08	09:20 KB	01/07/08	SO	Soil	A-4(12-14)
J80708-5	01/07/08	09:25 KB	01/07/08	SO	Soil	A-5(21-23)
J80708-5R	01/07/08	09:25 KB	01/07/08	so	Soil	A-5(21-23)
J80708-6	01/07/08	09:30 KB	01/07/08	so	Soil	A-6 (30-32)

Soil samples reported on a dry weight basis unless otherwise indicated on result page.


Sample Summary (continued)

Fleming-Lee Shue, Inc.

West 34th Street, 34th and 11th Avenue, New York, NY Project No: 10090-001

rah	No:	18070
เดก	NO:	18070

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
J80708-6R	01/07/08	09:30 KB	01/07/08	so	Soil	A-6(30-32)
J80708-7	01/07/08	09:35 KB	01/07/08	SO	Soil	A-7(40-42)
J80708-7R	01/07/08	09:35 KB	01/07/08	SO	Soil	A-7(40-42)
J80708-8	01/07/08	11:00 KB	01/07/08	SO	Soil	G-1(36-38)
J80708-8R	01/07/08	11:00 KB	01/07/08	so	Soil	G-1(36-38)
J80708-9	01/07/08	11:05 KB	01/07/08	SO	Soil	G-2(33-35)
J80708-9R	01/07/08	11:05 KB	01/07/08	so	Soil	G-2(33-35)
J80708-10	01/07/08	11:10 KB	01/07/08	SO	Soil	G-3(29-31)
J80708-10R	01/07/08	11:10 KB	01/07/08	so	Soil	G-3(29-31)
J80708-11	01/07/08	11:15 KB	01/07/08	so	Soil	G-4(21-23)
J80708-11R	01/07/08	11:15 KB	01/07/08	SO	Soil	G-4(21-23)
J80708-12	01/07/08	11:20 KB	01/07/08	SO	Soil	G-5(28-30)
J80708-12R	01/07/08	11:20 KB	01/07/08	so	Soil	G-5(28-30)

Sample Summary (continued)

Fleming-Lee Shue, Inc.

J80708 Job No:

West 34th Street, 34th and 11th Avenue, New York, NY Project No: 10090-001

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
J80708-13	01/07/08	11:25 KB	01/07/08	SO	Soil	A-9(28-30)
J80708-13R	01/07/08	11:25 KB	01/07/08	so	Soil	A-9(28-30)
J80708-14	01/07/08	12:00 KB	01/07/08	AQ	Field Blank Soil	FB-SOIL
J80708-15	01/07/08	12:30 KB	01/07/08	so	Field Blank Soil	FB-SOIL
J80708-15R	01/07/08	12:30 KB	01/07/08	so	Field Blank Soil	FB-SOIL
J80708-16	01/07/08	12:30 KB	01/07/08	AQ	Trip Blank Soil	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Fleming-Lee Shue, Inc.

Job No

J80708

Site:

West 34th Street, 34th and 11th Avenue, New York, NY

Report Date

10/27/2008 12:17:17 P

On 01/07/2008, 13 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.6 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of J80708 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: V2C1826

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80890-3MS, J80890-3MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Carbon tetrachloride are outside control limits. High percent recoveries and no associated positive found in the QC batch.

Matrix: SO

Batch ID: V

VG5178

- All samples were analyzed within the recommended method holding time.
- Sample(s) J80820-1MS, J80820-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Matrix: SO

Batch ID: VG5180

- All samples were analyzed within the recommended method holding time.
- Sample(s) J80708-12MS, J80708-12MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270C

Matrix: AQ

Batch ID: OP30742

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80569-1MS, J80569-1MSD were used as the QC samples indicated.
- = All method blanks for this batch meet method specific criteria.

Matrix: SO

Batch ID: OP30789

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80908-1MS, J80908-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Carbazole, Di-n-octyl phthalate, Dibenzo(a,h)anthracene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, N-Nitrosodiphenylamine are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Carbazole, Di-n-octyl phthalate, Dibenzo(a,h)anthracene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, N-Nitrosodiphenylamine are outside control limits. Outside control limits due to matrix interference.

Matrix: SO

Batch ID: OP30823

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80708-5MS, J80708-5MSD were used as the QC samples indicated.
- J80708-11: Confirmation run.

Extractables by GC By Method SW846 8081A

Matrix: AQ

Batch ID: OP30703

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80307-1MS, J80307-1MSD, OP30703-MSMSD were used as the QC samples indicated.

Matrix: SO

Batch ID: OP30781

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80786-5MS, J80786-5MSD, OP30781-MSMSD were used as the QC samples indicated.
- Matrix Spike Duplicate Recovery(s) for alpha-Chlordane, gamma-Chlordane are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for gamma-Chlordane are outside control limits for sample OP30781-MSD. Outside control limits due to matrix interference.
- OP30781-BS2 for delta-BHC: Reported from 1st signal. %D of check on 2nd signal exceed method criteria (15%) so using for confirmation only.
- OP30781-MS / MSD for Aldrin: Reported from 2nd signal. %D of check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- OP30781-MS / MSD for delta-BHC: Reported from 2nd signal. %D of check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- OP30781-BS2 for Endosulfan sulfate: Reported from 1st signal. %D of check on 2nd signal exceed method criteria (15%) so using for confirmation only.

Matrix: SO

Batch ID: OP30785

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80708-3MS, J80708-3MSD, OP30785-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- J80708-7 for 4,4'-DDT: Reported from 1st signal. %D of check on 2nd signal excess method criteria (15 %) so using for confirmation only.
- OP30785-BS1 for Methoxychlor: Reported from 1st signal. %D of check on 2nd signal exceed method criteria (15%) so using for confirmation only.
- J80708-13 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- J80708-12 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J80708-1 for gamma-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J80708-1 for 4,4'-DDT: Reported from 2nd signal due to interference on 1st signal.

Extractables by GC By Method SW846 8082

Matrix: AQ

Batch ID: OP30646

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79908-5MS, J79908-5MSD, OP30646-MSMSD were used as the QC samples indicated.

Matrix: SO

Batch ID: OP30786

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80708-2MS, OP30786-MSMSD, J80708-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MSD for Aroclor 1016, Aroclor 1260 are outside control limits for sample OP30786-MSD. Outside of in house control limits,

Matrix: SO

Batch ID: OP30791

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) OP30791-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GC By Method SW846 8151

Matrix: AQ

Batch ID: OP30707

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80309-1MS, J80309-1MSD were used as the QC samples indicated.
- RPD(s) for MSD for 2,4,5-T, 2,4,5-TP (Silvex), 2,4-D are outside control limits for sample OP30707-MSD. High percent recoveries due to low MS recovery.

Matrix: SO

Batch ID: OP30787

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80708-5MS, J80708-5MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010B

Matrix: AQ

Batch ID: MP42230

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80788-2MS, J80788-2MSD, J80788-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Cobalt, Potassium are outside control limits for sample MP42230-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Matrix: SO

Batch ID: MP42229

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80784-2MS, J80784-2MSD, J80784-2SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony, Iron, Manganese are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Antimony, Cadmium, Calcium, Iron, Manganese, Barium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Lead, Zinc are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Zinc, Barium, Lead, Sodium are outside control limits for sample MP42229-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Arsenic, Beryllium, Cobalt, Nickel, Sodium are outside control limits for sample MP42229-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- RPD(s) for Serial Dilution for Potassium are outside control limits for sample MP42229-SD1. Serial dilution indicates possible matrix interference.

Metals By Method SW846 7470A

Matrix: AQ

Batch ID: MP42236

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP42240

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80708-1MSD, J80708-1MS were used as the QC samples for metals.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Mercury are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Mercury are outside control limits for sample MP42240-S2. Probable cause due to sample homogeneity.

Wet Chemistry By Method ASTM D1498-76M

Matrix: SO

Batch ID: GN11028

Sample(s) J80708-1DUP were used as the QC samples for Redox Potential Vs H2.

Page 5 of 8

Wet Chemistry By Method EPA 160.3 M

Matrix: SO

Batch ID: GN11076

The data for EPA 160.3 M meets quality control requirements.

Wet Chemistry By Method EPA 335.4/LACHAT

Matrix: AQ

Batch ID:

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80282-2DUP, J80282-2MS were used as the QC samples for Cyanide.
- Blank Spike Recovery(s) for Cyanide are outside control limits.
- GP42334-S1 for Cyanide: Spike blank of 111% associated with this matrix spike.
- GP42334-B4 for Cyanide: Spike blank indicates possible high bias, but all associated samples < DL.

Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO

Batch ID: GP42450

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80708-1DUP, J80708-1MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (96.5%) on this sample.
- GP42450-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

Matrix: SO

Batch ID:

GP42517

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80708-1RDUP, J80708-1RMS were used as the QC samples for Chromium, Hexavalent.
- GP42517-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Good recovery (91.5%) on the post-spike.
- GP42517-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

The display of the di	lata for SW846 6010/7196A M m 8-14 for Chromium, Trivalent: Ca Matrix: SO lata for SW846 6010/7196A M m 18-1 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-5 for Chromium, Trivalent: Calc	Batch ID: Bets quality control in Batch ID: Bets quality control	R69577 requirements. um) - (Chromium, Hexavalent) R69578 requirements. um) - (Chromium, Hexavalent) R69578 requirements. um) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d J8070 The d J8070	Matrix: SO lata for SW846 6010/7196A M m 18-1 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	Batch ID: neets quality control of culated as: (Chromiu Batch ID: neets quality control of culated as: (Chromiu Batch ID: neets quality control of culated as: (Chromiu	R69577 requirements. rm) - (Chromium, Hexavalent) R69578 requirements. rm) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d J8070 The d	lata for SW846 6010/7196A M m 18-1 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 18-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	Batch ID:	requirements. Im) - (Chromium, Hexavalent) R69578 requirements. Im) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d J8070 The d	Matrix: SO lata for SW846 6010/7196A M m 08-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	Batch ID: neets quality control culated as: (Chromiu Batch ID: neets quality control culated as: (Chromiu	rm) - (Chromium, Hexavalent) R69578 requirements. rm) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d J8070	Matrix: SO lata for SW846 6010/7196A M m 08-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	Batch ID: neets quality control culated as: (Chromiu Batch ID: neets quality control culated as: (Chromiu	R69578 requirements. um) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d	lata for SW846 6010/7196A M m 08-3 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	neets quality control culated as: (Chromiu Batch ID: neets quality control culated as: (Chromiu	requirements. am) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070 The d	08-3 for Chromium, Trivalent: Calc Matrix: SO data for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO data for SW846 6010/7196A M m	Batch ID: Batch ID: neets quality control culated as: (Chromiu	nm) - (Chromium, Hexavalent) R69579 requirements.
The d J8070 The d J8070	Matrix: SO lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Calc Matrix: SO lata for SW846 6010/7196A M m	Batch ID: neets quality control culated as: (Chromiu	R69579 requirements.
The d	lata for SW846 6010/7196A M m 08-2 for Chromium, Trivalent: Cald Matrix: SO data for SW846 6010/7196A M m	neets quality control culated as: (Chromiu	requirements.
The d	08-2 for Chromium, Trivalent: Calo Matrix: SO data for SW846 6010/7196A M m	culated as: (Chromiu	
The d	Matrix: SO data for SW846 6010/7196A M m		ım) - (Chromium, Hexavalent)
J8070	lata for SW846 6010/7196A M m	Batch ID:	
J8070			R69580
The d	08-5 for Chromium, Trivalent: Cal	neets quality control	requirements.
		culated as: (Chromiu	ım) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69581
. 19070	lata for SW846 6010/7196A M n	neets quality control	requirements.
. J 00 / U	08-4 for Chromium, Trivalent: Cal	culated as: (Chromic	ım) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69582
The d	data for SW846 6010/7196A M n	neets quality control	requirements.
J8070	08-10 for Chromium, Trivalent: Ca	alculated as: (Chrom	ium) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69583
The c	data for SW846 6010/7196A M n	neets quality control	requirements.
J8070	08-9 for Chromium, Trivalent: Cal	culated as: (Chromit	um) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69584
The c	data for SW846 6010/7196A M n	neets quality control	requirements.
J8070	08-8 for Chromium, Trivalent: Cal	lculated as: (Chromi	um) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69585
The o	data for SW846 6010/7196A M r	neets quality control	requirements.
J8070	08-7 for Chromium, Trivalent: Cal	lculated as: (Chromi	um) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69586
The	data for SW846 6010/7196A M r	neets quality control	l requirements.
J8070	08-6 for Chromium, Trivalent: Ca	lculated as: (Chromi	ium) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69587
The	data for SW846 6010/7196A M r	neets quality control	l requirements.
J807	08-11 for Chromium, Trivalent: C	alculated as: (Chron	nium) - (Chromium, Hexavalent)
	Matrix: SO	Batch ID:	R69588
The	1	meets quality control	l requirements.

Batch ID: R69590

Matrix: SO

The data for SW846 6010/7196A M meets quality control requirements.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: SO

Batch ID:

R69590

J80708-12 for Chromium, Trivalent: Calculated as: (Chromium) - (Chromium, Hexavalent)

Matrix: SO

Batch ID: R69591

- The data for SW846 6010/7196A M meets quality control requirements.
- J80708-13 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AQ

Batch ID: GN10936

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SW846 9012 M/LACHAT

Matrix: SO

Batch ID: GP42443

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80954-3DUP, J80954-3MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

Matrix: SO

Batch ID: GP42469

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80786-2DUP, J80786-2MS were used as the QC samples for Cyanide.

Wet Chemistry By Method SW846 9045D

Matrix: SO

Batch ID:

Sample(s) J80708-1DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

	CITA THE ON STREET		ω
	CHAIN OF CUSTO	DY FED-EX Tracking #	e/
ACCUTEST.	2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/348	1 -	Battle Order Control #
SO Laboratories	www.accutest.com	Acculest Quote #	Accutest Job # \ 85 7 08
的连续的数据基础的数据数据 Client / Reporting Information 器器 開始的		Red	uested Analysis Matrix Codes
Company Name	Project Name W 34 W St.		DW - Drinking Water
Address W29 WSF.	Street 555 W. 35# St.	_	GW - Ground Water
City State Zip	City State	PAUG D PAUG D IS D IATEIL	SW - Surface Water
NY NY 10001	NY NY	STARS CI	SO - Soil
Project Contact E-mail Ma # Carroll	Project# 10090 - 001	82 a5 a5	SL - Sludge
Phone #	Fax#	18 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DI - Oil
(2/2) 675-3225 Sampler's Name	Client Purchase Order #		LIQ - Other Liquid AIR - Air
Kyle Borelsky			3
Accutest Field ID / Point of Chilection SUMMA # Sample #	Collection Number of preserved Bottles	Ser	WP - Wipe
MEOH Val#	Date Time Sampled Matrix # of bottles # 5 5 5 5 5 5 5 5 5	827 827 827 ABA	LAB USE ONLY
-\ A-1(12-14)	1/7/08 0500 KB SO 3	111	Ex53,
-2 A-2 (8-10)	0905		1906,
-3 A-3 (9-11)	09/0		%3'
-4 A-4 (12-14)	0930		22990.
-5 A-5 (21-23)	0525		WCZG,
-6 A-6 (30-32)	0250		ME32
-7 A-7 (48-42)	6935		AMET4.
-8 G-1 (34-38)	1100	 	EXT
-9 6-2 (33-35)	1105	 	
-10 6-3 (29-31)	Jr 1110 3 4 34		
Turnaround Time (Business Days)			Comments / Remarks 4319 12 13 13 13 13 13 13 13 13 13 13 13 13 13
☐ Std. 15 Business Days Approved By: / Date: ☐ 10 Day RUSH ————————————————————————————————————	☐ Commercial "A" ☐ FULL CLP		
3 5 Day RUSH	☐ Commercial 'B' ☐ NYASP Category A ☐ NJ Reduced ☐ NYASP Category B		
J 3 Day EMERGENCY	□ NJ Full □ State Forms		
1 2 Day EMERGENCY	Other DEDD Format		
J 1 Day EMERGENCY	Commercial *A" = Results Only		
mergency & Rush T/A data available VIA LabLink	Gommercial A – Results Only		
	Sample Custody must be documented below each time samples change possession, in	 Juding courier delivery.	
anquished by Sampler Data Time: 188 Recei	Quelili	Date Tirge: /745	Received by: ///
ilinquished by: Date time: Recei	ved by: Railroguished by:	Date Time:	2 Proof Received by:
sinquished by: Date Type: Recei	red by: Circlinfy Seal #		4
/ Received	red by: Custody Seal # 394 396	Preserved where applicable	Onless Spoker Temps
		www.	396 = 3.6%

Page 2 of 6

飄					(CH	ΑI	N	o	\mathbf{F}	C	U	S	ГС	D	Y											(ک)
ACCUTEST	-					т	22 EL. 73	35 Ro	ute 1	30, I	Dayte	on N.	J 088	310	100	FED-	EX Trac	king #			-	1	Order 0				
SO th Laboratorie	5									accu.				-2713-	*00	Accut	est Quo	le#	-			Accul	lest Job	8 	07	108	
Company Name	tion Earlie			roject N			F	roject tr	iforma	tlan									A 100 A 100 A		Requ	ested A	vnalysis				Matrix Codes
FLS	_		ľ	rojeci Na W	ame } Z4	in	SŁ									ł	ļ	3	1	l		l	1	1]	DW - Drinking Water GW - Ground Water
158 W 29 W St.			s	ilmeel 5	55	w	35	μς	١٠.]	THE []	-Pest/Pes									WW - Water
City Stale	10	Zip	C	:iiv	UΥ			Sta	ite J. V							PAUG	STARS () WIBE	STARS CI	۱.,								SW - Surface Water SO - Soli
Project Contact Math Carroll	E-mail		Pi	rojeci#	10090	-0	0 1									602 C	Pt. 0. St	PPI. CI SI	41014	1/5							SL - Sludge O1 - Oil
Phone # (212) 675-3225			Fi	ax#												1824 17.	10.01 10.01	TO D PA	3	5./5			2	,		C.R.3	LIC - Other Liquid
Sampler's Name Kyle Borets Ly			CI	lient Pun	chase Ord	er#										624 CI	624 CD 1	825 C 1	Soil	55	3		7	1 ~		8	AIR - Air SOL - Other Solid
Acculest Field ID / Point of Collection	1	SUMMA# EOHVal#		Co ate	llection Time	Sampled By	Matrix	# of	. p	Nui	mber		erved g	Bottles	3000	8260 C			(V)	8	1	3	K	UEEA	99	Meta	WP - Wipe
-11 6-4 (21-23)		CONTRA			1115	ICB		3	+	ž	2	_	3	= =	<u> </u>	-			-	1	1	├-	 ^		+		LAS USE UNLY
-12 6-5 (24-30)			7	7, 0	1120	1	1	Ť	t	\vdash	П		11	Ť		1.			-	i	1		\vdash		 		
-13 A-49 (28-30)					1125	1	t	卜	1	Н		寸:	₩			-	 	_			1	I	_		╁		
-14 FB- SOIL			\sqcap		1200		WW	163	3	1	7		97	1.0	+	 	-	a	_¥	<u>_w</u>	Š	١,	-	1	٦		
-15 FB-SOIL 01070	8		\Box		1230	1.	50	3	-	H	H	-	3	+	╁	一	<u> </u>	α.	-		7	-	ť	~	0		
- 16 TRIP BLANK	-		1		1630	Ť	NW		a	Н		╗	4	+	t					<u> </u>	a		\vdash	 	<u> </u>		
							_		-	П	П		┪	\top	1	-					5				一		
					Ì				İ	П			T	\top	T								<u> </u>	\vdash	╁		
												\neg	T	T	T							_		\vdash	 		
					T			Π		П		_	\top	1	T							\vdash			<u> </u>		
Turnaround Time (Business Days)			, Alte				14	Data D	elivera	sble In	forma	tion			翻数	PECS PE	in a			1988		Commer	its / Ren	narks	1980		
☐ Std. 15 Business Days Approved By: ☐ 10 Day RUSH	/ Date:				Commerci					FUL				-			ø	TI	3 F	:41	11	4	105	2 /	1:3	0	2021/7/A
☐ 5 Day RUSH			-	1	NJ Reduc					NYA:							\vdash	- 12	_1 6	700	- 17	//			/	0	11/10
☐ 3 Day EMERGENCY		-	-		NJ Full	-u				State			п				<u> </u>										
☐ 2 Day EMERGENCY					Other					EDD	mm 11.7						1 -							_	••••		
1 Day EMERGENCY		•	_	1													-										
Other			_		Comme	rcial "A"	= Resi	ults Onl	ly								_										
Emergency & Rush T/A data available V/A LabLink																											
Reinqu'd ed by Sangler			Sam	nole Cus	lody must	be docu	nented t	elow ea	ch tin	e san	ıples d	change	possi	ession,	includ	ng cour	er deliv	ery. 鞣粉		Marie Marie	34	210		地图	********	a de la	
111/	Date Time	Rec	300	10	111					Relin	nquistro	20	,).	0,1	10				Date	Tima: /	700	Receive	i by:		a .		
Relinguished by:	Daty Time:	Rec	eived by:	u	11					Relin	quishe	2./\ d by:	74	alli	4_				1/2	ime:	- 1	2 Receive	d by:		1		
/										l.									1			4	1.		, :	39 4 1	2327
Relinquished by:	Date Time:	Reci	eved by:	:						Custo	ody Sa	al#	-	OL!	Í,-	ral	Pipra	rved whe	re 1000	2			,		-	ooler Tem	
	<u> </u>									<u> </u>	<u> ၃</u>	77	<u>ر</u>	701	dr	1000	"		10			ベ			39	8=	200

Page 3 of 6

**					(СН	AJ	(N	O	F	C	U	ST	'O]	DY	Y					J	80-	708	Cen	nsea	A c.	CP T
ACCUTEST.					2235 Route 130, Dayton NJ 08810 TEL_ 732-329-0200 FAX: 732-329-3499/3480								FED-EX Tracking #				80708 sevised cac										
	Laboratories												est Quote #				Accu	Accutest Job#									
Company N	Client / Reporting Informa	ition and a					9	roject li	nforma	riion	E		ricinata							A	Dog	torlod	nalysis	101-32	Pr. 1575	er (anerit	Matrix Codes
	FLS			Proje	ct Name . (U) 3			4.									******	200		l	T	T Sied ,	SILEAY SIS	Т	PROPER		DW - Drinking Water
Address /5	8 W 29 FL St.			Stree	•	w.			. <	į.					1									ĺ			GW - Ground Water WW - Water
City V	Sinta		Zip	City				Sla	ile						- [PAIG D	10, 0 Pt 0 stars 0 wise 1	0 5				-			1		SW - Surface Water
Project Con	lact	E-mai	0001	Proie	υY			N	γ						_J,	,	STARS	STARS	- I				1				SO · Soil
Phone #	H Carroll			1,100	10	090	-0	ð I								25 €	무두	PPL C STARS CO PADF CO +71Cs C	1.7	25			ŀ	ł			St Sludge
(21:	1) 675-3225			Fax #												ž Ž			14014	12		1	1				C1 - Cil LIC - Cliter Liquid
Sampler's N	vle Borehsky			Client	Purchase Or	der#												현품	**	S	7						AIR - Air
Accutest	Field ID / Point of Collection		SUMMA#	┦	Collection		_								_			0 KB	1,2	00	101	3		1			SOL - Other Solid
Sample #	· ·		SUMMA# ÆOHV⊠#		1	Sampled By	1	# of bottles		17		o y	rved Bo		#250 F	are a	288 184 C	8270 CI ABN CI	ν,	N	~	1	l	İ			WP - Wipe
-1	A-1 (12-14)		AEUH VEI #	1/2/08	Time	KK	SO	Bottles	Ŧ	2	ž į	ĝ ŝ	- F	ğ	*	3 in	-5 E	23 12	,		<u> </u>		↓_	<u> </u>	-		LAB USE ONLY
-2	A-2 (A-13)			114,00	0905	1	1	竹	╁╴	\vdash	-	\dashv	╁	\vdash	+	\dashv		-	1		1	\vdash	⊢	╄			
-3	A-3 (9-11)					 	++	H	╁	\vdash	+		+	\vdash	-	\dashv			+		├┼	-	-	├			1-71
-u	A-4/12-14)			-	0910	+-	++-		-	\vdash	+	-#	- -	$\vdash \vdash$	+	-	\dashv		+	+	1	├	}_	┼—			:
-5	A-5 (21-23)			+	0930	-	1	1	 	\vdash	+	-#	-	\vdash	┿	+			- -	1		-	ļ	<u> </u>			
-10	A-6 (30-32)			+	0925	H	1	H	├	$\vdash \vdash$		-	-	H	+	-	_		+	-	Ļ	<u> </u>	_	<u> </u>			
_1	4-7 (40-42)				0930	 	-	H		$\vdash \vdash$	+		╄	Н	- -				+	-	Ш	<u> </u>	<u> </u>				
-8	G-1 (36-38)				6935	-	+	1	-	\vdash	-	-	+		\bot	-			\Box	\bot	1	_	<u> </u>				-
-9	6-2 (33-35)	-+		+	1100	-	\vdash	-	\vdash	\vdash	4	- }	+-	$\vdash \vdash$	4	_	4	_	$\downarrow \downarrow$	\perp	4	<u> </u>	<u> </u>				
-10	6.3 (29-31)			-}	1105	 	-	- -		\vdash	-	4	+-	\sqcup	4.				11	\perp	1	L	<u> </u>	<u>L</u> .			
416-01-07-0	Turnaround Time (Business Days)	2340		√	1110	J	<u> </u>	Data D		112 12		14							Ψ	Ŵ.	Ψ		<u>L_</u>				
	Business Days Approved By: I		1.02.50.37.22.2	*****	☐ Commer	ciel "A"	-	Data th		FULL		on	24232	野村島	in it		T										
☐ 10 Day R					Commer					NYAS							_	מת	tcl	, X :	PPT	'LL	MT	AL,	XXZ	RA	PCR3.
☐ 3 Day EN					□ NJ Redu □ NJ Full	cea				NYAS State			3 .				L	CN	, HE	KB	[s	LVE	*]	Ma	ð		1
☐ 2 Day E&				-	Other					EDD			_				≠ 2										
☐ 1 Day EM	HERGENCY			.													┝		PE	- v	MS	161	- 7 0	MS	- 14 0	1101	ANE,
Olher	& Rush T/A data available VIA LabLink				Comm	ercial "A"	= Rest	ilts Onl	y								<u> </u>	+N	BBX	压,	4 N	(TB	€ ,+	PRO	PBN	2,+	SBBNZ,
阿拉斯斯 斯斯克斯	Name and Address of the State o	distanta		Come	Company Company												L				+17	24 t	MB	, + t	351	MB	Ma
Relinquished by	Spinotera	Date Time:	Rect	sample igfd.by:	Custody must	DE COCUI	nented t	Blow ea	ch lim	e samp	ies ch	ange	055855	ion, inc	uding c	ourier	delive	у. 🏣	Date		real			daja			Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de
Relinquished by:	£ .	Date Time;	152	5 A.C.	Elect				J	2		-1.							Uate .	auć;		Receive	ο ογ:				
3 A		'Date Time:	Reco	ived by:					\neg	Reinq	uished	by:							Date 1	ime:		Receive	d by:				
Relinquished by:		Date Time:	J Rece	ived by:					_	4	de Part											4					
5 '			5						- 1	-using	sy Seal	ĴĖ.	39	6			Hase		re applica	d)le		On lot	1		Ca	oler Ten	p.
										_	, -	• • •	~ /														i

Page 4 of 6

ACCUTEST. Laboratories					TEL. 732-329-0200 FAX: 732-329-3499/3480 www.accutest.com								FED-EX Tracking # Accutest Quote #				J80708 reusel Coc Bottle Order Control # Accoulest Job #											
Company Na	THE LS	non priority	1571190		minat &	lassa				forma	tion					de.						Requ	ested A	alysis	1			Matrix Codes
Address	FLS				· la	U 34	1 1100	<u>5/-</u>									1		75									DW - Orinking Water GW - Ground Water
157				s	ireal _	555	121	25	FJ. 5	ī.							l	E 2	Postfee									WW - Water
City //	State NY	/	Zip /	c		NY			Sta								PAUG CI	PPL 디 STARS 디 NFDE +15 디	PPLEI STARGE	# 1410 M								SW - Surface Water
Project Conta	sct.	E-ma		Pi	miect #					. 7		-	1				E02 CI	S##5	3 STAB	1	7/3	l						SO - Soil SL - Sludge
Phone #					ax #	10090	- 0	0 /									l na	F. +	7.0	2	1.	3					ŀΫ́	01-08
	· · · · · · · · · · · · · · · · · · ·																8021 C TBA	다 다 다	를 다 다 다	~	Ϋ́	7	1	CRS			3	LIQ - Other Liquid
Sampler's Na	yle Boretsky			CI	lient Pu	rchase Ord	er#										024 CI NYBE CI		625 C T	Sail	6 F	01		Ü	1		رکي ا	AIR - Air
Accutest Sample #	Field ID / Paint of Collection		SUMMA#	<u> </u>	C	allection		1	Г		Nur	mber c	of pres		Bottles			8 ≨		Ŋ	60		3	XCP	HERB	3	Metal	SOL - Other Solid WP - Wipe
		A	VEOH Viel#	Da		Time	Sampled By	Matrix	Domes	Ē	NaCH HOM	Bist	7082H	2 P	HEDH.	HOOFE	8260 CD BTEX CD	8260 TBA C	8270 C				O	×	17	ACN	17	LAB USE ONLY
-11	G-4 (21-23)			1/7	1/28	1115	KB	50	.3					3						1	ŧ	7						
-12	G-5 (24-30)			1		1120	- [1	1			Π	T	П							I	1						
-13	A-19 (de-30)					(125	- (1	V		П		7	F					-	1	V	V.						
-14	FB- SOIL			1		1200		Wh	酗	3	T	1	1	駉					a	-		3	1	7	2	3	į	
-15	FB-SOIL 01070	8			\neg	12.50	1	50	.3	Γ	П	П	- 6						-	1	1	1		<u> </u>	- A	-6-7	·	:/\0
-14	TRIP BLANK					0630	-	لها زيوا	8	2			f	\top	_	П						-17) 1611	<u> </u>		-	\vdash	-	
	•				\neg							-	十		+							\$417			-	\vdash		Jeirs.
					\neg					-	\vdash	\dashv		+	1	Н	-			_					-	\vdash		變
								-		-	H		\dashv	+	+													***
					\dashv							-	\dashv	+	+	\dashv												
	Tumeround Time (Business Days)								Data D	elivera	bie inf	format	tion			235	341110		n sala	ienn)	erenen	2200		la / Da-		-/C-03C2		
☐ Sld. 15 B		/ Date:				Commerc					FULL	L CLP				W 24.102	14221122	* ABTCL, XPPTCL, MTAL, XXCRA, PCR3,										
☐ 5 Day RU				-		Commerci NJ Reduc							legory legory					-									<u>ra,</u>	PCES
3 Day EM	ERGENCY			-		NJ Full	cu				Stale			ы					CN	<u> </u>	ERI	<u>B [</u> 5	11	EX] (w		
□ 2 Day EM				-		Other					EDO	Form	at					*	<u>'</u> v1	45+	CL	ž V	M5.1	- 14	DIC	жАh	JE 4	- NBBNZ,
☐ 1 Day EM	ERGENCY			-		C	!! • • •												ادسا	и т п	F	. · ·	0.0	DAJ	2 L	~ 10 40	12	4-00/01/2
mergency	Rush T/A data available VIA LabLink			٠.		Comme				•							,	\vdash			دسر	<u> </u>	KUY	<u> </u>	22 j 4	>6E	3102	+TBBNZ,
along short by	Telegraphe (1) period and the Period State (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	inge sije	a de la composição de l	Şam	ple Cus	slody must	be docu	nented t	elow ea	ch lim	e sam	ples c	hange	posse	ession, ir	cludir	ng couri	er delivi	+ 124 TMB, + 1			r 134	135+MB (B)					
UU	он одлаг. -	Dale Time: /	Reg	Trid by	19.	18/4				.]	HEHO	quishe	d by:						- 503 %	Date	Time:	Ī	Received	by:	-12415	AND DESCRIPTION OF THE PERSON		
eligidustred by:		Daté Time:	Rec	ived by:	1-05	FRE!				-	2 Relin	quishe	d by:							Date	Time:		2 Received	by:				
esinquished by:		Date Time:	3	ived by.							4												4					
	· .	water rang;	5	aveu sy.							Custo	3	34	.3	96			Prese	rved whe	ra applic	able		On los			С	poler Ten	ър.

Page 5 of 6

J80708_5/22/2008

Job Change Order:

Requested

5/22/2008

Received Date:

1/7/2008

Account

Fleming-Lee Shue, Inc.

Due Date:

1/21/2008

Project CSR:

Deliverable: TAT (Days):

соммв 1

Sample J80708-all

Change:

West 34th Street, 34th and 11th Avenue, New

please upgrade to NYASPB

J80708: Chain of Custody

Above Changes Per:

Matt Carroll

Date: 5/22/2008

Page 6 of 6

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Page 1 of 1

Job Change Order:

J80708_10/21/2008

Requested Date:

10/21/2008

Received Date:

1/7/2008

Account Name:

Fleming-Lee Shue, Inc.

Due Date:

1/21/2008

Project Description:

West 34th Street, 34th and 11th Avenue, New York, Deliverable: TAT (Days): NYASPB 1

CSR:

Sample #: J80708-1 through 16

Above Changes

Change:

please retrieve 124TMB, 135TMB, sec-butylbenzene &

tert-butylbenzene

J80708: Chain of Custody

Page 8 of 8

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Miko Coppard / chain of custody

Page 1 of 1

Date: 10/21/2008

CW CHEMWORLD ENVIRONMENTAL, INC.

Environmental Consulting Services

October 21, 2008

Mr. Kyle Boretsky Fleming-Lee Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001

RE:

Data Usability Summary Report (DUSR) #2
West 34th Street, 34th and 11th Avenue Project
Accutest Laboratories, Dayton, NJ
Lab Job Nos. J80262 and J80261
Soil / Solid and Water Samples
Analyses for Volatile Organics, Semi-Volatiles (Base/Neutral and Acid Extractable Organics), Herbicides, Pesticides, Polychlorinated Biphenyls (PCB's), Inorganics (Metals), Cyanide, Hexavalent Chromium

Dear Mr. Boretsky:

Data Usability Summary Report (DUSR) technical services were performed by ChemWorld Environmental, Inc. for the West 34th Street, 34th and 11th Avenue Project for the soil / solid and water sampling event of December 28, 2007. The DUSR review was performed in accordance with United States Environmental Protection Agency (USEPA) Region II data validation guidelines and New York State Department of Environmental Conservation (NYSDEC) Analytical Service Protocol (ASP) requirements, where applicable.

The analytical data from the Lab Job Nos. above were reviewed (screened) for the parameters noted. The data screening consisted of a review of the Quality Control (QC) Summary Forms and a brief review of various chromatograms and quantitation reports. The QC Forms were reviewed to determine whether any data required qualification based upon QC deviations noted on the Forms. The associated Analytical Data Result Forms are included as Attachment A. These Forms include data qualifiers as described within this letter report. Unless otherwise noted, all results included on the Forms are considered usable, based upon the DUSR review items noted below. Attachment B includes copies of the associated Case Narratives and the Chain-of-Custody forms.

The DUSR review items include the following, as method appropriate:

- Completeness of Data Package
- · Chain-of-Custody Review
- Holding Times from Verified Time of Sample Receipt (VTSR) and Collection
- Surrogate Recovery
- GC/MS Instrument Performance Check
- Initial and Continuing Calibration
- Matrix Spike / Matrix Spike Duplicates (MS/MSD)
- Matrix Spike Blank (MSB) or Laboratory Control Sample (LCS)
- Internal Standards
- Method and Field Blanks
- CRDL Standards for ICP
- Laboratory Duplicate Samples
- ICP Interference Check
- ICP Serial Dilutions

The QC Summary Forms included various deviations based upon the acceptable limits for quality control. The following should be noted regarding qualification of the data set for the review items above.

Volatiles – Soil / Solid and Water, Lab Job Nos. J80262 and J80261

Qualification of the data sets were not required for the Volatile Organic analyses. The associated quality control information was found to be acceptable.

Semi-Volatiles – Soil / Solid, Lab Job No. J80262

Qualification of the data set was not required for the Semi-Volatile Organic analyses. The associated quality control information was found to be acceptable.

Semi-Volatiles – Soil / Solid, Lab Job No. J80261

Continuing Calibration: One associated continuing calibration on 12/31/07 at 09:32 was found to generate Percent Difference (%D) of greater than 25% for 4-Nitrophenol at 39.3%. Sample Pier B7 was qualified as 'UJ', estimated, for the non-detectable result for 4-Nitrophenol. Positive results were not detected for any of the Semi-Volatile compounds.

Herbicides - Soil / Solid, Lab Job Nos. J80262 and J80261

Qualification of the data sets were not required for the Herbicide analyses. The associated quality control information was found to be acceptable.

Pesticides – Soil / Solid, Lab Job Nos. J80262 and J80261

Qualification of the data sets were not required for the Pesticide analyses. The associated quality control information was found to be acceptable.

PCBs – Soil / Solid, Lab Job Nos. J80262 and J80261

Qualification of the data sets were not required for the PCB analyses. The associated quality control information was found to be acceptable.

Inorganics (Metals) – Soil / Solid, Lab Job No. J80262

Laboratory Control Sample (LCS): The LCS for soils for Mercury generated low recovery at 71.3% (Limit 80-120%). Soil sample results for Mercury for BHW-NW and BHW-SW were qualified as 'UJ', estimated, for the non-detectable results. Positive results were not detected for Mercury.

Inorganics (Metals) - Soil / Solid, Lab Job No. J80261

Qualification of the data set was not required for the Inorganic analyses. The associated quality control information was found to be acceptable.

Hexavalent Chromium and Cyanide - Soil / Solid, Lab Job Nos. J80262 and J80261

Holding Times: Analysis for Hexavalent Chromium is required within 24 hours of receipt at the laboratory. The Hexavalent Chromium samples for the soil / solids were analyzed 5 days after receipt. Therefore, the sample results for Hexavalent Chromium for BHW-NW, BHW-SW and Pier B7 were qualified as 'UJ', estimated, for the non-detectable results. Hexavalent Chromium was not detected in any of the soil / solid samples.

Please contact me by telephone or Fax at 301-294-6144, should you require additional information or clarification regarding this Letter Report.

Sincerely,

Andrea P. Schuessler, CHMM ChemWorld Environmental, Inc.

andread Schnessler

c: FL-2008.2 file

ORGANIC DATA QUALIFIERS

- Indicates that the compound was analyzed for, but not detected at or above the Contract Required U-Quantitation Limit (CRQL), or the compound is not detected due to qualification through the method or field blank.
- The associated numerical value is an estimated quantity. J-
- JN Tentatively identified with approximated concentrations (Volatile and Semi-Volatile Organics). Presumptively present at an approximated quantity (Pesticides/PCBs).
- UJ The compound was analyzed for, but not detected. The sample quantitation limit is an estimated quantity due to variance from quality control limits.
- Applies to Pesticide results where the identification has been confirmed by GC/MS. C-
- Reported value is estimated due to quantitation above the calibration range. E -
- Reported result taken from diluted sample analysis. D-
- Aldol condensation product. A -
- Reported value is unusable and rejected due to variance from quality control limits. R-
- NA Not Analyzed.

INORGANIC DATA QUALIFIERS

- U Indicates analyte not detected at or above the Contract Required Detection Limit (CRDL), or the compound is not detected due to qualification through the method or field blank.
- B Indicates analyte result is between Instrument Detection Limit (IDL) and CRDL.
- J The reported value is estimated due to variance from quality control limits.
- UJ The element was analyzed for, but not detected. The sample quantitation limit is an estimate due to variance from quality control limits.
- E Reported value is estimated because of the presence of interference.
- R Reported value is unusable and rejected due to variance from quality control limits.
- NA Not analyzed.

Accutest Laboratories

Report of Analysis

By

SJM

Page 1 of 2

Client Sample ID: BHW NW

File ID

Lab Sample ID: Matrix:

J80262-1 SO - Soil Date Sampled: 12/28/07 Date Received:

12/28/07

Method:

SW846 8260B

DF

1

Percent Solids: 88.2

West 34th Street, 34th and 11th Avenue, New York, NY Project:

> Analytical Batch Prep Batch

Run #1

G106383.D

Analyzed 01/02/08

Prep Date n/a

n/a

VG5170

Run #2

Initial Weight

Run #1 4.3 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	5.5	ug/kg	
71-43-2	Benzene	ND	1.3	0.98	ug/kg	
75-27-4	Bromodichloromethane	ND	6.6	0.34	ug/kg	
75-25-2	Bromoform	ND	6.6	1.1	ug/kg	
74-83-9	Bromomethane	ND	6.6	0.66	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.8	ug/kg	
104-51-8	n-Butylbenzene	ND	6.6	0.34	ug/kg	
135-98-8	sec-Butylbenzene	ND	6.6	0.43	ug/kg	
98-06-6	tert-Butylbenzene	ND	6.6	0.54	ug/kg	
75-15-0	Carbon disulfide	ND	6.6	0.39	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.6	0.34	ug/kg	
108-90-7	Chlorobenzene	ND	6.6	0.75	ug/kg	
75-00-3	Chloroethane	ND	6.6	0.70	ug/kg	
67-66-3	Chloroform	ND	6.6	0.54	ug/kg	
74-87-3	Chloromethane	ND	6.6	0.71	ug/kg	
124-48-1	Dibromochloromethane	ND	6.6	0.28	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.6	0.93	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.32	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.6	0.63	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.6	0.26	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.6	0.75	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.6	0.26	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.6	0.56	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.6	0.68	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.6	1.1	ug/kg	
123-91-1	1,4-Dioxane	ND	160	51	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.65	ug/kg	
591-78-6	2-Hexanone	ND	6.6	2.3	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.85	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.6	2.7	ug/kg	
75-09-2	Methylene chloride	ND	6.6	0.64	ug/kg	
103-65-1	n-Propylbenzene	ND	6.6	0.39	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: BHW NW

Lab Sample ID:

J80262-1

Date Sampled:

12/28/07

Matrix:

SO - Soil

Date Received:

12/28/07

Method:

SW846 8260B

Percent Solids: 88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
100-42-5	Styrene	ND	6.6	0.31	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.6	0.40	ug/kg		
127-18-4	Tetrachloroethene	ND	6.6	0.45	ug/kg		
108-88-3	Toluene	ND	1.3	0.57	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	6.6	0.51	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	6.6	0.40	ug/kg		
79-01-6	Trichloroethene	ND	6.6	0.44	ug/kg		
95-63-6	1,2,4-Trimethylbenzene	ND	6.6	0.41	ug/kg		
108-67-8	1,3,5-Trimethylbenzene	ND	6.6	0.36	ug/kg		
75-01-4	Vinyl chloride	ND	6.6	0.75	ug/kg		
1330-20-7	Xylene (total)	ND	2.6	0.35	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	95%	TIS \$25 \$25	68-1	.23%		
17060-07-0	1,2-Dichloroethane-D4	86%	000 000 000 000 000 000 000	59-136%			
2037-26-5	Toluene-D8	114%		75-123%			
460-00-4	4-Bromofluorobenzene	90%	774 774	65-1	40%		
		. e e e e e e e e e e e e e e e e e e e					

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest Laboratories

Report of Analysis

Page 1 of 2

Client Sample ID: BHW SW

Lab Sample ID: Matrix:

J80262-2 SO - Soil Date Sampled: 12/28/07 Date Received: 12/28/07

Method:

SW846 8260B

1

Percent Solids: 88.5

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch

Analytical Batch

Run #1

File ID G106384.D DF Analyzed 01/02/08

By SJM Prep Date n/a

n/a

VG5170

Run #2

Initial Weight

Run #1 5.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND ==	11	4.7	ug/kg	
71-43-2	Benzene	ND	1.1	0.84	ug/kg	
75-27-4	Bromodichloromethane	ND	5.6	0.29	ug/kg	
75-25-2	Bromoform	ND ==	5.6	0.95	ug/kg	
74-83-9	Bromomethane	ND	5.6	0.56	ug/kg	
78-93-3	2-Butanone (MEK)	ND	- 11	3.3	ug/kg	
104-51-8	n-Butylbenzene	ND	5.6	0.29	ug/kg	
135-98-8	sec-Butylbenzene	ND	5.6	0.37	ug/kg	
98-06-6	tert-Butylbenzene	ND	5.6	0.46	ug/kg	
75-15-0	Carbon disulfide	ND	5.6	0.34	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.6	0.29	ug/kg	
108-90-7	Chlorobenzene	ND	5.6	0.65	ug/kg	
75-00-3	Chloroethane	ND	5.6	0.60	ug/kg	
67-66-3	Chloroform	ND	5.6	0.46	ug/kg	
74-87-3	Chloromethane	ND	5.6	0.61	ug/kg	
124-48-1	Dibromochloromethane	ND	5.6	0.24	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.6	0.80	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.6	0.54	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.6	0.22	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.6	0.64	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.6	0.22	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.6	0.48	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.6	0.58	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.6	0.93	ug/kg	
123-91-1	1,4-Dioxane	ND	140	44	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.56	ug/kg	
591-78-6	2-Hexanone	ND	5.6	2.0	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.73	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.6	2.3	ug/kg	
75-09-2	Methylene chloride	ND	5.6	0.54	ug/kg	
103-65-1	n-Propylbenzene	ND .	5.6	0.34	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: BHW SW

Lab Sample ID: Matrix:

J80262-2

Date Sampled: 12/28/07 Date Received: 12/28/07

Method:

SO - Soil SW846 8260B

Percent Solids: 88.5

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
100-42-5	Styrene	ND	5.6	0.26	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.6	0.34	ug/kg	
127-18-4	Tetrachloroethene	ND	5.6	0.39	ug/kg	
108-88-3	Toluene	ND	1.1	0.49	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.6	0.44	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.6	0.34	ug/kg	
79-01-6	Trichloroethene	ND	5.6	0.38	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND -	5.6	0.35	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.6	0.31	ug/kg	
75-01-4	Vinyl chloride	ND	5.6	0.64	ug/kg	
1330-20-7	Xylene (total)	ND	2.3	0.30	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	93%	2000 2000 2000 2000 2000	68-1	123%	
17060-07-0	1,2-Dichloroethane-D4	83%		59-1	l 36 %	
2037-26-5	Toluene-D8	113%		75-1	123%	
460-00-4	4-Bromofluorobenzene	91%		65 -1	140%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

 $E = Indicates \ value \ exceeds \ calibration \ range$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest Laboratories

Report of Analysis

By

EMG

Page 1 of 2

Client Sample ID: TB

Lab Sample ID:

J80262-3

AQ - Trip Blank Soil

DF

1

Date Sampled: 12/28/07

Date Received:

12/28/07

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Prep Date

n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/03/08

Prep Batch Analytical Batch

n/a

VY2931

Run #1 Run #2

Purge Volume

File ID

Y71642.D

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.9	ug/l	
71-43-2	Benzene	ND	1.0	0.19	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.15	ug/l	
75-25-2	Bromoform	ND	4.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.38	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.56	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.65	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.20	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.14	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.19	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l	
75-00-3	Chloroethane	ND	1.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.25	ug/l	
74-87-3	Chloromethane	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.29	ug/l	
75-35-4	1,1-Dichloroethene	ND :	1.0	0.28	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.32	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.27	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.13	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.17	ug/l	
123-91-1	1,4-Dioxane	ND	130	47	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.21	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.94	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.4	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.21	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.74	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J80262

Page 2 of 2

Report of Analysis

Client Sample ID: TB

Lab Sample ID: J80262-3

Matrix:

AQ - Trip Blank Soil

Date Sampled: 12/28/07

Method:

SW846 8260B

Date Received: 12/28/07 Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
100-42-5	Styrene	ND	5.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.80	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.49	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.2	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	108%	100000000000000000000000000000000000000	76-1	23%	
17060-07-0	1,2-Dichloroethane-D4	118%		63-1	40%	
2037-26-5	Toluene-D8	105%		78-1	17%	
460-00-4	4-Bromofluorobenzene	102%		73-1	25%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 2

Client Sample ID: PIER B7

 Lab Sample ID:
 J80261-1
 Date Sampled:
 12/28/07

 Matrix:
 SO - Soil
 Date Received:
 12/28/07

 Method:
 SW846 8260B
 Percent Solids:
 84.4

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch **Analytical Batch** Prep Date File ID DF Analyzed By VG5169 G106358.D 01/01/08 SJM n/a Run #1 1 n/a Run #2

Initial Weight
Run #1 4.7 g

Commound

Run #2

CACATA

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	ND	13	5.3	ug/kg	
Benzene	ND	1.3	0.94	ug/kg	
Bromodichloromethane	ND	6.3	0.32	ug/kg	
Bromoform	ND	6.3	1.1	ug/kg	
Bromomethane	ND	6.3	0.63	ug/kg	
2-Butanone (MEK)	ND	13	3.6	ug/kg	
n-Butylbenzene	ND	6.3	0.33	ug/kg	
sec-Butylbenzene	ND	6.3	0.41	ug/kg	
tert-Butylbenzene	ND	6.3	0.52	ug/kg	
Carbon disulfide	ND	6.3	0.38	ug/kg	
Carbon tetrachloride	ND	6.3		ug/kg	
Chlorobenzene	ND			ug/kg	
Chloroethane	ND	6.3	0.67	ug/kg	
Chloroform				ug/kg	
Chloromethane					
Dibromochloromethane		4			
1,1-Dichloroethane	ND				
1,2-Dichloroethane	ND				
1,1-Dichloroethene	ND	6.3			
cis-1,2-Dichloroethene		6.3			
trans-1,2-Dichloroethene					
1,2-Dichloroethene (total)					
1,2-Dichloropropane					
cis-1,3-Dichloropropene					
trans-1,3-Dichloropropene	ND				
1,4-Dioxane	ND				
Ethylbenzene					
2-Hexanone					
Methylene chloride		6.3			
n-Propylbenzene	ND	6.3	0.38	ug/kg	
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene 1,4-Dioxane Ethylbenzene 2-Hexanone Methyl Tert Butyl Ether 4-Methyl-2-pentanone(MIBK) Methylene chloride	Acetone Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone (MEK) ND n-Butylbenzene ND sec-Butylbenzene ND Carbon disulfide Carbon disulfide Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND Chloromethane ND Chloromethane ND Dibromochloromethane ND 1,1-Dichloroethane ND 1,2-Dichloroethene ND trans-1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloropropane Cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,4-Dioxane Ethylbenzene ND 2-Hexanone ND Methyl Tert Butyl Ether ND Methyl-2-pentanone(MIBK) ND Methylene chloride	Acetone ND 13 Benzene ND 1.3 Bromodichloromethane ND 6.3 Bromoform ND 6.3 Bromomethane ND 6.3 Bromomethane ND 6.3 Bromomethane ND 6.3 2-Butanone (MEK) ND 13 n-Butylbenzene ND 6.3 sec-Butylbenzene ND 6.3 tert-Butylbenzene ND 6.3 Carbon disulfide ND 6.3 Carbon tetrachloride ND 6.3 Chlorobenzene ND 6.3 Chlorotehane ND 6.3 Chloroform ND 6.3 Chloromethane ND 6.3 Chloromethane ND 6.3 1,1-Dichloroethane ND 6.3 1,2-Dichloroethane ND 6.3 trans-1,2-Dichloroethene ND 6.3 trans-1,2-Dichloroethene ND 6.3 trans-1,2-Dichloroethene ND 6.3 1,2-Dichloroethene ND 6.3 trans-1,3-Dichloropropene ND 6.3 1,2-Dichloropropene ND 6.3 trans-1,3-Dichloropropene ND 6.3	Acetone ND 13 5.3 Benzene ND 1.3 0.94 Bromodichloromethane ND 6.3 0.32 Bromoform ND 6.3 1.1 Bromomethane ND 6.3 0.63 2-Butanone (MEK) ND 13 3.6 n-Butylbenzene ND 6.3 0.33 sec-Butylbenzene ND 6.3 0.41 tert-Butylbenzene ND 6.3 0.52 Carbon disulfide ND 6.3 0.38 Carbon tetrachloride ND 6.3 0.32 Chlorobenzene ND 6.3 0.72 Chloroethane ND 6.3 0.67 Chloroform ND 6.3 0.51 Chloromethane ND 6.3 0.51 Chloromethane ND 6.3 0.51 Chloromethane ND 6.3 0.51 Chloromethane ND 6.3 0.51 Chloromethane ND 6.3 0.89 1,2-Dichloroethane ND 6.3 0.89 1,2-Dichloroethene ND 6.3 0.60 cis-1,2-Dichloroethene ND 6.3 0.25 trans-1,2-Dichloroethene ND 6.3 0.25 trans-1,2-Dichloroethene ND 6.3 0.25 trans-1,2-Dichloroethene ND 6.3 0.25 trans-1,3-Dichloropropene ND 6.3 0.53 cis-1,3-Dichloropropene ND 6.3 0.65 trans-1,3-Dichloropropene ND 6.3 0.65 trans-1,3-Dichloropropene ND 6.3 0.62 2-Hexanone ND 6.3 0.81 4-Methyl-2-pentanone(MIBK) ND 6.3 0.61	Acetone ND 13 5.3 ug/kg Benzene ND 1.3 0.94 ug/kg Bromodichloromethane ND 6.3 0.32 ug/kg Bromoform ND 6.3 1.1 ug/kg Bromomethane ND 6.3 0.63 ug/kg Bromomethane ND 6.3 0.63 ug/kg 2-Butanone (MEK) ND 13 3.6 ug/kg n-Butylbenzene ND 6.3 0.41 ug/kg sec-Butylbenzene ND 6.3 0.52 ug/kg tert-Butylbenzene ND 6.3 0.52 ug/kg Carbon disulfide ND 6.3 0.38 ug/kg Carbon tetrachloride ND 6.3 0.32 ug/kg Chlorobenzene ND 6.3 0.32 ug/kg Chlorobenzene ND 6.3 0.72 ug/kg Chlorothane ND 6.3 0.67 ug/kg Chlorothane ND 6.3 0.51 ug/kg Chloromethane ND 6.3 0.51 ug/kg Chloromethane ND 6.3 0.51 ug/kg Thloromethane ND 6.3 0.51 ug/kg Chlorothane ND 6.3 0.51 ug/kg Thlorothorothane ND 6.3 0.50 ug/kg Thlorothorothane ND 6.3 0.50 ug/kg Trans-1,2-Dichloroethene ND 6.3 0.51 ug/kg Trans-1,2-Dichloropropene ND 6.3 0.53 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.53 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.65 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.65 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.62 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.61 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.61 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.61 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.61 ug/kg Trans-1,3-Dichloropropene ND 6.3 0.61 ug/kg

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

Thite

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

Client Sample ID: PIER B7

Lab Sample ID: Matrix:

J80261-1 SO - Soil Date Sampled: 12/28/07 Date Received: 12/28/07

Percent Solids: 84.4

Method: SW846 8260B Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
100-42-5	Styrene	ND	6.3	0.29	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.3	0.38	ug/kg	
127-18-4	Tetrachloroethene	ND	6.3	0.43	ug/kg	
108-88-3	Toluene	ND	1.3	0.54	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	6.3	0.49	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	6.3	0.38	ug/kg	
79-01-6	Trichloroethene	ND	6.3	0.42	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	6.3	0.39	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	6.3	0.35	ug/kg	
75-01-4	Vinyl chloride	ND	6.3	0.72	ug/kg	
1330-20-7	Xylene (total)	ND	2.5	0.33	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	95%		68-123%		
17060-07-0	1,2-Dichloroethane-D4	85%		59 -1	136%	
2037-26-5	Toluene-D8	115%		75-1	123%	
460-00-4	4-Bromofluorobenzene	91%		65 -1	140%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: TB

Lab Sample ID:

J80261-2

Date Sampled: 12/28/07

Matrix: Method: AQ - Trip Blank Soil SW846 8260B

Date Received: 12/28/07 Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch **Analytical Batch** Prep Date File ID DF Analyzed By VY2927 Run #1 Y71588.D 1 12/31/07 **EMG** n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.9	ug/l	
71-43-2	Benzene	ND	1.0	0.19	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.15	ug/l	
75-25-2	Bromoform	ND	4.0	0.34	ug/l	
74-83-9	Bromomethane	ND	2.0	0.38	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	0.56	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	0.65	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	0.20	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.14	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.19	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l	
75-00-3	Chloroethane	ND	1.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.25	ug/l	
74-87-3	Chloromethane	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.29	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.28	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.32	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.27	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.13	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.17	ug/l	
123-91-1	1,4-Dioxane	ND	130	47	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.21	ug/l	
591-78-6	2-Hexanone	ND	5.0	0.94	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.4	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.21	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.74	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

 $\frac{\omega}{N}$

Page 2 of 2

Client Sample ID: TB

Lab Sample ID:

J80261-2

Date Sampled: 12/28/07

Matrix: Method: AQ - Trip Blank Soil

Date Received: 12/28/07

SW846 8260B

Percent Solids: n/a

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
100-42-5	Styrene	ND	5.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.80	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.30	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.49	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.26	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.2	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.22	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		76 -1	123%	
17060-07-0	1,2-Dichloroethane-D4	111%		63-1	140%	
2037-26-5	Toluene-D8	102%		78-3	117%	
460-00-4	4-Bromofluorobenzene	102%		73-	125%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E =Indicates value exceeds calibration range

Accutest Laboratories

Report of Analysis

Page 1 of 3

Client Sample ID: BHW NW

Date Sampled:

Lab Sample ID: Matrix:

J80262-1 SO - Soil

12/28/07 Date Received: 12/28/07

Method:

SW846 8270C SW846 3550B

Percent Solids: 88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID P34381.D

30.0 g

DF 1

Analyzed Ву 01/02/08 WG Prep Date 12/31/07

OP30677

EP1398

Run #2

Initial Weight

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	51	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	39	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	46	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	760	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	760	69	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	47	ug/kg	
88-75-5	2-Nitrophenol	ND	190	44	ug/kg	
100-02-7	4-Nitrophenol	ND	760	67	ug/kg	
87-86-5	Pentachlorophenol	ND	760	40	ug/kg	
108-95-2	Phenol	ND	190	35	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	72	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	76	ug/kg	
83-32-9	Acenaphthene	ND .	76	12	ug/kg	
208-96-8	Acenaphthylene	ND	76	7.7	ug/kg	
120-12-7	Anthracene	ND	76	35	ug/kg	
56-55-3	Benzo(a)anthracene	ND	76	7.8	ug/kg	
50-32-8	Benzo(a)pyrene	ND	76	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	76	12	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	76	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	76	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	76	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	76	11	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	76	13	ug/kg	
218-01-9	Chrysene	ND	76	15	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	76	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	76	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	11	ug/kg	

ND = Not detected RL = Reporting Limit

MDL - Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 12/28/07

(§.

Client Sample ID: BHW NW

Lab Sample ID: J80262-1 Matrix: SO - Soil

 SO - Soil
 Date Received:
 12/28/07

 SW846 8270C
 SW846 3550B
 Percent Solids:
 88.2

Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

Method:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	76	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	76	11	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	76	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	76	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	76	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	27	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	76	9.7	ug/kg	
132-64-9	Dibenzofuran	ND	76	7.4	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	15	ug/kg	
84-66-2	Diethyl phthalate	ND	76	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	23	ug/kg	
206-44-0	Fluoranthene	ND	76	7.0	ug/kg	
86-73-7	Fluorene	ND	76	7.6	ug/kg	
118-74-1	Hexachlorobenzene	ND	76	18	ug/kg	
87-68-3	Hexachlorobutadiene	ND	76	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	760	18	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	76	35	ug/kg	
78-59-1	Isophorone	ND	76	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	76	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	25	ug/kg	
100-01-6	4-Nitroaniline	ND	190	22	ug/kg	
91-20-3	Naphthalene	ND	76	8.5	ug/kg	
98-95-3	Nitrobenzene	ND	76	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.3	ug/kg	
85-01-8	Phenanthrene	ND	76	9.4	ug/kg	
129-00-0	Pyrene	ND	76	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	76	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
367-12-4	2-Fluorophenol	60%		. 26-1	105%	
4165-62-2	Phenol-d5	68%		34-1	106%	
118-79-6	2,4,6-Tribromophenol	82%		30-	126%	
4165-60-0	Nitrobenzene-d5	83%		36-	115%	
321-60-8	2-Fluorobiphenyl	77%			112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID: BHW NW

Lab Sample ID:

J80262-1 SO - Soil Date Sampled: 12/28/07

Matrix:

Date Received: 12/28/07

Method:

SW846 8270C SW846 3550B

Percent Solids: 88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1

Run# 2 Limits

1718-51-0

Terphenyl-d14

96%

42-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3.2

Accutest Laboratories

Report of Analysis

Page 1 of 3

Client Sample ID: BHW SW Lab Sample ID: J80262-2

Matrix:

SO - Soil

Date Sampled: 12/28/07 Date Received:

Method:

SW846 8270C SW846 3550B

12/28/07

Percent Solids: 88.5

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch

Run #1

File ID P34382.D DF Analyzed 01/02/08

Prep Date 12/31/07

Analytical Batch

Run #2

30.2 g

1

 $\mathbf{B}\mathbf{y}$ WG

OP30677

EP1398

Initial Weight

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	24	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	51	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	39	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	46	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	750	41	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	750	68	ug/kg	
95-48-7	2-Methylphenol	ND	190	36	ug/kg	
	3&4-Methylphenol	ND	190	46	ug/kg	
88-75-5	2-Nitrophenol	ND	190	43	ug/kg	
100-02-7	4-Nitrophenol	ND :	750	66	ug/kg	
87-86-5	Pentachlorophenol	ND	750	39	ug/kg	
108-95-2	Phenol	ND	190	35	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	71	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND -	190	76	ug/kg	
83-32-9	Acenaphthene	ND	75	12	ug/kg	
208-96-8	Acenaphthylene	ND	75	7.6	ug/kg	
120-12-7	Anthracene	ND	75	34	ug/kg	
56-55-3	Benzo(a)anthracene	ND	75	7.7	ug/kg	
50-32-8	Benzo(a)pyrene	ND	75	18	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	75	12	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	75	15	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	75	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	75	16	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	75	11	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	75	13	ug/kg	
218-01-9	Chrysene	ND	75	15	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	. 15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	75	22	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: BHW SW Lab Sample ID: J80262-2

Matrix:

SO - Soil

Date Sampled: 1
Date Received: 1

12/28/07 12/28/07

Method:

SW846 8270C SW846 3550B

Percent Solids: 88.5

Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	75	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	75	11	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	75	10	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	75	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	75	15	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	27	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	75	9.6	ug/kg	
132-64-9	Dibenzofuran	ND	75	7.4	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	10	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	15	ug/kg	
84-66-2	Diethyl phthalate	ND	75	13	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	10	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	75	23	ug/kg	
206-44-0	Fluoranthene	ND	75	7.0	ug/kg	
86-73-7	Fluorene	ND	75	7.6	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	18	ug/kg	
87-68-3	Hexachlorobutadiene	ND	75	17	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	750	17	ug/kg	
67-72-1	Hexachloroethane	ND	190	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	75	35	ug/kg	
78-59-1	Isophorone	ND	75	12	ug/kg	
91-57-6	2-Methylnaphthalene	ND	75	34	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	25	ug/kg	
100-01-6	4-Nitroaniline	ND	190	21	ug/kg	
91-20-3	Naphthalene	ND	75	8.5	ug/kg	
98-95-3	Nitrobenzene	ND	75	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	75	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.2	ug/kg	
85-01-8	Phenanthrene	ND	75	9.4	ug/kg	
129-00-0	Pyrene	ND	75	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	75	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	63%			05%	
4165-62-2	Phenol-d5	73%			06%	
118-79-6	2,4,6-Tribromophenol	88%		30-1	26%	
4165-60-0	Nitrobenzene-d5	88%			15%	
321-60-8	2-Fluorobiphenyl	83%	66 66 65	44-1	12%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

 $E = Indicates \ value \ exceeds \ calibration \ range$

$$\begin{split} B &= \text{Indicates analyte found in associated method blank} \\ N &= \text{Indicates presumptive evidence of a compound} \end{split}$$

Page 3 of 3

Client Sample ID: BHW SW

Lab Sample ID: J80262-2

Matrix:

SO - Soil

Date Sampled: 12/28/07

Method:

SW846 8270C SW846 3550B .

Date Received: 12/28/07 Percent Solids: 88.5

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.

Surrogate Recoveries

Run#1

Run# 2 Limits

1718-51-0

Terphenyl-d14

100%

42-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

Client Sample ID: PIER B7

File ID

2M12859.D

Lab Sample ID:

J80261-1

Date Sampled:

12/28/07

Matrix:

SO - Soil

Date Received:

Prep Date

12/28/07

Method:

SW846 8270C SW846 3550B

Percent Solids: 84.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/01/08

Prep Batch

Analytical Batch

Run #1 Run #2

SG 12/29/07 OP30629

E2M522

Final Volume Initial Weight

Run #1 30.1 g 1.0 ml

DF

1

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	54	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	790	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	790	72	ug/kg	
95-48-7	2-Methylphenol	ND	200	38	ug/kg	
	3&4-Methylphenol	ND	200	49	ug/kg	
88-75-5	2-Nitrophenol	ND	200	46	ug/kg	
100-02-7	4-Nitrophenol	TUUEM	790	69	ug/kg	
87-86-5	Pentachlorophenol	ND	790	41	ug/kg	
108-95-2	Phenol	ND	200	37	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	7 5	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	80	ug/kg	
83-32-9	Acenaphthene	ND	79	13	ug/kg	
208-96-8	Acenaphthylene	ND	79	8.0	ug/kg	
120-12-7	Anthracene	ND	79	36	ug/kg	
56-55-3	Benzo(a)anthracene	ND	79	8.1	ug/kg	
50-32-8	Benzo(a)pyrene	ND	79	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	79	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	. 79	16	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	79	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	79	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	79	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	79	12	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
86-74-8	Carbazole	ND	79	13	ug/kg	
218-01-9	Chrysene	ND	79	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	79	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	79	18	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	79	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	79	11	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: PIER B7

Lab Sample ID: J80261-1 Matrix: SO - Soil

Date Sampled: 12/28/07 Date Received: 12/28/07

Method: SW846 8270C SW846 3550B Percent Solids: 84.4 Project: West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	79	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	79	12	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	79	11	ug/kg	
121-14-2	2.4-Dinitrotoluene	ND	79	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	79	16	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	200	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	79	10	ug/kg	
132-64-9	Dibenzofuran	ND	79	7.8	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	79	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	79	16	ug/kg	
84-66-2	Diethyl phthalate	ND	79	14	ug/kg	
131-11-3	Dimethyl phthalate	ND	79	11	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	79	24	ug/kg	
206-44-0	Fluoranthene	ND	79	7.3	ug/kg	
86-73-7	Fluorene	ND	79	8.0	ug/kg	
118-74-1	Hexachlorobenzene	ND	79	19	ug/kg	
87-68-3	Hexachlorobutadiene	ND	79	18	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	790	18	ug/kg	
67-72-1	Hexachloroethane	ND	200	16	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	79	37	ug/kg	
78-59-1	Isophorone	ND	79	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	79	35	ug/kg	
88-74-4	2-Nitroaniline	ND	200	25	ug/kg	
99-09-2	3-Nitroaniline	ND	200	26	ug/kg	
100-01-6	4-Nitroaniline	ND	200	23	ug/kg	
91-20-3	Naphthalene	ND	79	8.9	ug/kg	
98-95-3	Nitrobenzene	ND	79	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	79	13	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	8.7	ug/kg	
85-01-8	Phenanthrene	ND	79	9.8	ug/kg	
129-00-0	Pyrene	ND	79	14	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	79	12	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
367-12-4	2-Fluorophenol	89%		26-	105%	
4165-62-2	Phenol-d5	89%			106%	
118-79-6	2,4,6-Tribromophenol	72%			126%	
4165-60-0	Nitrobenzene-d5	86%		36-	115%	
321-60-8	2-Fluorobiphenyl	83%		44-	112%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N =Indicates presumptive evidence of a compound

Client Sample ID: PIER B7

Lab Sample ID: J80261-1

Matrix: SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 12/28/07

Date Received: 12/28/07 Percent Solids: 84.4

West 34th Street, 34th and 11th Avenue, New York, NY

ABN TCL List

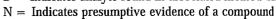
Method:

Project:

Run# 1 Run#2 Limits CAS No. Surrogate Recoveries

80% 42-133% 1718-51-0 Terphenyl-d14

ND = Not detected


MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: BHW NW

Lab Sample ID:

J80262-1

Date Sampled:

12/28/07

Matrix:

SO - Soil

Date Received:

12/28/07

Method:

SW846 8151 SW846 3550B

Percent Solids:

88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/03/08

Prep Batch

Analytical Batch

Run #1

File ID WW70017.D DF 1

By OPM Prep Date 12/31/07

OP30603

GWW2302

Run #2

Run #1

Initial Weight 30.2 g

Final Volume

Run #2

10.0 ml

Herbicide List

CAS No. Compound

RLResult

MDL Units Q

94-75-7

2,4-D

2,4,5-TP (Silvex)

Surrogate Recoveries

ND

8.0

ug/kg

93-72-1 93-76-5

ND ND 0.88 0.77

ug/kg ug/kg

CAS No.

2,4,5-T

Run#1

Run#2

19

3.8

3.8

Limits

19719-28-9 2,4-DCAA

34%

10-147%

19719-28-9 2,4-DCAA

42%

10-147%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: PIER B7

Lab Sample ID:

J80261-1 SO - Soil Date Sampled: Date Received:

12/28/07

Matrix:

12/28/07

Method:

SW846 8151 SW846 3550B

Percent Solids: 84.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analytical Batch

Run #1

File ID WW70016.D Analyzed 01/03/08

By OPM

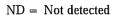
Prep Date 12/31/07

Prep Batch OP30603

GWW2302

Run #2

Initial Weight Final Volume


Run #1 30.1 g 10.0 ml

DF

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	20 3.9 3.9	8.4 0.93 0.81	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	70% 66%		10-1 10-1	47% 47%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Data: 3G24816.D

Accutest Laboratories

Report of Analysis

By

TDR

Page 1 of 1

Client Sample ID: BHW NW

Lab Sample ID: Matrix:

J80262-1 SO - Soil Date Sampled: 12/28/07 Date Received: 12/28/07

Prep Date

12/31/07

Method:

SW846 8081A SW846 3545

Percent Solids: 88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/02/08

Prep Batch

Analytical Batch

OP30680 G3G956

Run #1 Run #2

Initial Weight

File ID

15.1 g

3G24816.D

Final Volume

Run #1

10.0 ml

DF

1

Run #2

Pesticide PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.33	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.55	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg	
12789-03-6	Chlordane	ND	38	9.8	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.37	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.46	ug/kg	
72-20-8	Endrin	ND	1.5	0.37	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.35	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.39	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	3.8	0.50	ug/kg	
8001-35-2	Toxaphene	ND	19	7.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	81%		38-1	l 30 %	
877-09-8	Tetrachloro-m-xylene	79%		38-1	30%	
2051-24-3	Decachlorobiphenyl	80%	5.0.5 10.00 10.00 10.00 10.00 10.00	32-1	142%	
2051-24-3	Decachlorobiphenyl	87%	V. Je V. Je 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	32-1	142%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: 3G24815.D

Accutest Laboratories

Report of Analysis

By

TDR

Page 1 of 1

Client Sample ID: BHW SW

Lab Sample ID: J80262-2

SO - Soil

Date Sampled: 12/28/07

Prep Date

12/31/07

Matrix:

Date Received:

12/28/07

Method: Project:

SW846 8081A SW846 3545

DF

1

Percent Solids: 88.5

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/02/08

Prep Batch

Analytical Batch

OP30680 G3G956

Run #1 Run #2

Initial Weight

File ID

3G24815.D

Final Volume

Run #1 15.0 g 10.0 ml

Run #2

Pesticide PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.33	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.28	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.33	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.56	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.30	ug/kg	
12789-03-6	Chlordane	ND	38	9.8	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.38	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.36	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.38	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.46	ug/kg	
72-20-8	Endrin	ND	1.5	0.38	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.41	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.39	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.42	ug/kg	
72-43-5	Methoxychlor	ND	3.8	0.50	ug/kg	
8001-35-2	Toxaphene	ND	19	7.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	73%		38-1	130%	
877-09-8	Tetrachloro-m-xylene	72%		38-1	30%	
2051-24-3	Decachlorobiphenyl	73%		32-1	L 42 %	
2051-24-3	Decachlorobiphenyl	78%		32-1	42%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: 3G24817.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: PIER B7

 Lab Sample ID:
 J80261-1
 Date Sampled:
 12/28/07

 Matrix:
 SO - Soil
 Date Received:
 12/28/07

 Method:
 SW846 8081A
 SW846 3545
 Percent Solids:
 84.4

Project: West 34th Street, 34th and 11th Avenue, New York, NY

File ID Prep Date Prep Batch **Analytical Batch** DF Analyzed By 3G24817.D 01/03/08 TDR 12/31/07 OP30680 G3G956 Run #1 1 Run #2

Initial Weight Final Volume
Run #1 15.3 g 10.0 ml
Run #2

Pesticide TCL List

CAS No.	Compound	Result RL		MDL	Units	Q
309-00-2	Aldrin	ND 1.5		0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.29	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.34	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.57	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.31	ug/kg	
5103-71-9	alpha-Chlordane	ND	1.5	0.42	ug/kg	
5103-74-2	gamma-Chlordane	ND	1.5	0.42	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.39	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.37	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.39	ug/kg	
50-29-3	4,4'-DDT	ND 1.5 0.		0.47	ug/kg	
72-20-8	Endrin	ND	1.5	0.39	ug/kg	
1031-07-8	Endosulfan sulfate			0.42	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.40	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.43	ug/kg	
72-43-5	Methoxychlor	ND	3.9	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	3.9	0.43	ug/kg	
8001-35-2	Toxaphene	ND	19	7.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	77%		38-1	130%	
877-09-8	Tetrachloro-m-xylene	76%		38-1	130%	
2051-24-3	Decachlorobiphenyl	78%		32 -1	142%	
2051-24-3	Decachlorobiphenyl	84%		32-1	142%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

Raw Data: AB70824.D

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

BHW NW

J80262-1

Date Sampled:

12/28/07

Matrix:

SO - Soil

Date Received:

12/28/07

Method:

SW846 8082 SW846 3545

DF

1

Percent Solids: 88.2

Units

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Prep Batch Analytical Batch

Run #1

File ID AB70824.D Analyzed 01/02/08

By JSE Prep Date 12/31/07

MDL

7.1

23

7.6

OP30681

Q

GAB4008

Run #2

Initial Weight

Final Volume

Run #1

15.1 g

Run #2

PCB List

CAS No. Compound	CAS	No.	Compound
------------------	-----	-----	----------

	•	
674-11-2	Aroclor	101

CAS No. Surrogate Recoveries

877-09-8 Tetrachloro-m-xylene 877-09-8 Tetrachloro-m-xylene

Decachlorobiphenyl 2051-24-3 Decachlorobiphenyl 2051-24-3

10.0 ml

ND ND

Result

ND

ND

ND

ND

Run#1

77%

38 20 38 12 38 13 ND18

RL

38

38

38 38

Limits

37-140%

Run#2

87% 37-140% 77% 40-151% 108% 40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: AB70823.D

Accutest Laboratories

Report of Analysis

By

JSE

Page 1 of 1

Client Sample ID: BHW SW Lab Sample ID: J80262-2

Matrix:

SO - Soil

Date Sampled: 12/28/07

Prep Date

12/31/07

Date Received: 12/28/07

Method: Project:

SW846 8082 SW846 3545

DF

1

Percent Solids: 88.5

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

01/02/08

Prep Batch

Analytical Batch

Run #1 Run #2

AB70823.D

File ID

OP30681

GAB4008

Initial Weight 15.0 g

Final Volume 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	7.2	ug/kg	
11104-28-2	Aroclor 1221	ND	38	23	ug/kg	
11141-16-5	Aroclor 1232	ND	38	20	ug/kg	
53469-21-9	Aroclor 1242	ND	38	12	ug/kg	
12672-29-6	Aroclor 1248	ND	38	13	ug/kg	
11097-69-1	Aroclor 1254	ND	38	18	ug/kg	
11096-82-5	Aroclor 1260	ND	38	7.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	75%		37-1	40%	
877-09-8	Tetrachloro-m-xylene	83%		37-1	.40%	
2051-24-3	Decachlorobiphenyl	72%		40-1	.51%	
2051-24-3	Decachlorobiphenyl	102%		40-1	.51%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: PIER B7

Lab Sample ID: Matrix:

J80261-1 SO - Soil **Date Sampled:** 12/28/07

Date Received: 12/28/07

Method:

SW846 8082 SW846 3545

Percent Solids: 84.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

Analyzed

Prep Batch

Analytical Batch

Run #1

Run #2

1

DF

01/02/08

By

JSE 12/31/07

Prep Date

OP30681

GAB4008

File ID

AB70812.D

Initial Weight Final Volume

Run #1 15.3 g 10.0 ml

Run #2

PCB List

2051-24-3

CAS No.	Compound	Result	\mathbf{RL}	MDL	Units	Q
---------	----------	--------	---------------	-----	-------	---

12674-11-2	Aroclor 1016	ND 39	7.4	ug/kg
11104-28-2	Aroclor 1221	ND 39	23	ug/kg
11141-16-5	Aroclor 1232	ND 39	21	ug/kg
53469-21-9	Aroclor 1242	ND 39	12	ug/kg
12672-29-6	Aroclor 1248	ND 39	13	ug/kg
11097-69-1	Aroclor 1254	ND 39	18	ug/kg
11096-82-5	Aroclor 1260	ND 39	7.8	ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	76%		37-140%
877-09-8	Tetrachloro-m-xylene	83%		37-140%
2051-24-3	Decachlorobiphenyl	80%		40-151%

99%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

40-151%

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: BHW NW

Lab Sample ID: J80262-1 Date Sampled: 12/28/07 Matrix: SO - Soil Date Received: 12/28/07

Percent Solids: 88.2

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	9870	23	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Antimony	<2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Arsenic	<2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Barium	85.9	23	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Beryllium	0.63	0.57	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Cadmium	< 0.57	0.57	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Calcium	3360	570	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Chromium	23.1	1.1	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Cobalt	7.4	5.7	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Copper	16.2	2.8	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Iron	16400	110	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Lead	7.4	2.2	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵
Magnesium	3540	570	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Manganese	482	1.7	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Mercury	< 0.034 (0.034 رز	mg/kg	1	01/04/08	01/04/08 JF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	27.9	4.5	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Potassium	2870	1100	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Selenium	< 2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Silver	<1.1	1.1	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵
Sodium	<1100	1100	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Thallium	<1.1	1.1	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Vanadium	24.8	5.7	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Zinc	31.9	2.2	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵

(1) Instrument QC Batch: MA20325(2) Instrument QC Batch: MA20341(3) Instrument QC Batch: MA20355(4) Prep QC Batch: MP42169

(5) Prep QC Batch: MP42184

Page 1 of 1

Client Sample ID: BHW SW Lab Sample ID: J80262-2

Matrix: SO - Soil Date Sampled: 12/28/07 Date Received: 12/28/07

Percent Solids: 88.5

Project: West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	9470	23	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Antimony	<2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Arsenic	< 2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Barium	87.4	23	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Beryllium	0.62	0.56	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Cadmium	< 0.56	0.56	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Calcium	15300	560	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Chromium	21.4	1.1	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Cobalt	6.7	5.6	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Copper	15.9	2.8	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Iron	15800	110	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Lead	8.4	2.2	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵
Magnesium	6170	560	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Manganese	408	1.7	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Mercury	< 0.037 U	J 0.037	mg/kg	1	01/04/08	01/04/08 JF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	24.9	4.5	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Potassium	2990	1100	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Selenium	< 2.3	2.3	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Silver	<1.1	1.1	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵
Sodium	<1100	1100	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Thallium	<1.1	1.1	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Vanadium	21.8	5.6	mg/kg	1	01/07/08	01/09/08 ND	SW846 6010B ²	SW846 3050B ⁵
Zinc	30.6	2.2	mg/kg	1	01/09/08	01/10/08 ND	SW846 6010B ³	SW846 3050B ⁵

(1) Instrument QC Batch: MA20325 (2) Instrument QC Batch: MA20341 (3) Instrument QC Batch: MA20355 (4) Prep QC Batch: MP42169

(5) Prep QC Batch: MP42184

Page 1 of 1

Client Sample ID: PIER B7 Lab Sample ID:

J80261-1 SO - Soil Date Sampled: 12/28/07 Date Received: 12/28/07

Percent Solids: 84.4

Project:

Matrix:

West 34th Street, 34th and 11th Avenue, New York, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	12300	23	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Antimony	< 2.3	2.3	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Arsenic	< 2.3	2.3	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Barium	89.3	23	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Beryllium	0.64	0.58	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Cadmium	< 0.58	0.58	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Calcium	1770	580	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Chromium	24.1	1.2	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Cobalt	8.2	5.8	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Copper	17.0	2.9	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Iron	17500	12	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Lead	10.7	2.3	mg/kg	- 1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Magnesium	3750	580	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Manganese	468	1.7	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Mercury	< 0.038	0.038	mg/kg	1	12/31/07	12/31/07 JW	SW846 7471A ¹	SW846 7471A ⁴
Nickel	27.4	4.6	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Potassium	3220	1200	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Selenium	< 2.3	2.3	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Silver	< 1.2	1.2	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Sodium	< 1200	1200	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Vanadium	26.7	5.8	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³
Zinc	33.5	2.3	mg/kg	1	12/31/07	01/01/08 ND	SW846 6010B ²	SW846 3050B ³

(1) Instrument QC Batch: MA20305 (2) Instrument QC Batch: MA20309 (3) Prep QC Batch: MP42100 (4) Prep QC Batch: MP42101

Page 1 of 1

Client Sample ID: BHW NW

Lab Sample ID: Matrix:

J80262-1 SO - Soil Date Sampled: 12/28/07

Date Received: 12/28/07

Percent Solids: 88.2

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 UJ		mg/kg	1	01/02/08 11:55	MS	SW846 3060A/7196A
Chromium, Trivalent ^a	23.1	2.2	mg/kg	1	01/09/08 00:39	ND	SW846 6010/7196A M
Cyanide	< 0.23	0.23	mg/kg	1	01/03/08 12:33	JA	SW846 9012 M/LACHAT
Redox Potential Vs H2	313		mv	1	01/03/08	TM	ASTM D1498-76M
Solids, Percent	88.2		%	1	12/31/07	NS	EPA 160.3 M
pH	8.32		su	1	01/02/08	LMM	SW846 9045D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 1

Client Sample ID: BHW SW

Lab Sample ID: J80262-2

Matrix: SO - Soil

Date Sampled: 12/28/07

Date Received: 12/28/07

Percent Solids: 88.5

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	<1.1 นร		mg/kg	1	01/02/08 11:55	MS	SW846 3060A/7196A
Cyanide	< 0.25		mg/kg	1	01/03/08 12:34	JA	SW846 9012 M/LACHAT
Redox Potential Vs H2	294		mv	1	01/03/08	TM	ASTM D1498-76M
Solids, Percent	88.5		%	1	12/31/07	NS	EPA 160.3 M
pΗ	8.78		su	1	01/02/08	LMM	SW846 9045D

Page 1 of 1

Client Sample ID: PIER B7 Lab Sample ID: J80261-1

Matrix: SO - Soil

Date Sampled: 12/28/07 Date Received: 12/28/07

Percent Solids: 84.4

Project:

West 34th Street, 34th and 11th Avenue, New York, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 1.2 UJ	1.2	mg/kg	1	01/02/08 11:03	MS	SW846 3060A/7196A
Chromium, Trivalent a	24.1	2.4	mg/kg	1	01/02/08 11:03	MS	SW846 6010/7196A M
Cyanide	< 0.28	0.28	mg/kg	1	01/03/08 12:57	JA	SW846 9012 M/LACHAT
Redox Potential Vs H2	332		mv	1	01/03/08	TM	ASTM D1498-76M
Solids, Percent	84.4		%	1	12/31/07	NS	EPA 160.3 M
рH	7.65		su	1	01/03/08	TM	SW846 9045D

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Sample Summary

Fleming-Lee Shue, Inc.

Job No:

J80262

West 34th Street, 34th and 11th Avenue, New York, NY Project No: 10090-001-2

Sample Number	Collected	Time By		Matri Code		Client Sample ID
J80262-1	12/28/07	10:00 MC	12/28/07	SO	Soil	BHW NW
J80262-2	12/28/07	10:30 MC	12/28/07	so	Soil	BHW SW
J80262-3	12/28/07	10:30 MC	12/28/07	AQ	Trip Blank Soil	TB

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:

Fleming-Lee Shue, Inc.

Job No

J80262

Site:

West 34th Street, 34th and 11th Avenue, New York, NY

Report Date

5/23/2008 10:23:37 AM

On 12/28/2007, 2 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.8 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of J80262 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: VY2931

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80248-1MS, J80248-1MSD were used as the QC samples indicated.

Matrix: SO

Batch ID: VG5170

- All samples were analyzed within the recommended method holding time.
- Sample(s) J80333-1MS, J80333-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270C

Matrix: SO

Batch ID: OP30677

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80262-1MS, J80262-1MSD were used as the QC samples indicated.

Extractables by GC By Method SW846 8081A

Matrix: SO

Batch ID: OP30680

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80262-2MS, J80262-2MSD, OP30680-MSMSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for Aldrin, alpha-BHC, beta-BHC, Endrin, gamma-BHC (Lindane), Heptachlor are outside control limits.
- OP30680-BS1 for Aldrin: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for alpha-BHC: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for beta-BHC: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for Endrin: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for gamma-BHC (Lindane): Outside control limits due to possible extract concentrated.
- OP30680-BS1 for Heptachlor: Outside control limits due to possible extract concentrated.

Extractables by GC By Method SW846 8082

Matrix: SO

Batch ID: OP30681

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80262-2MS, J80262-2MSD, OP30681-MSMSD were used as the QC samples indicated.

Extractables by GC By Method SW846 8151

Matrix: SO

Batch ID: OP30603

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79859-1MS, J79859-1MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 2,4,5-T are outside control limits. Outside control limits due to matrix interference.

Metals By Method SW846 6010B

Matrix: SO

Batch ID:

MP42184

- All samples were digested within the recommended method holding time.
- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79565-2TMS, J79565-2TMSD, J79565-2TSDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony, Copper, Iron, Magnesium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Copper, Magnesium, Potassium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Recovery(s) for Calcium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Zinc are outside control limits for sample MP42184-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Beryllium are outside control limits for sample MP42184-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP42184-MB1 for Chromium: All reported results for EXQC samples >10X MB level for this element.
- MP42184-SD1 for Vanadium: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Potassium: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Nickel: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Manganese: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Copper: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Iron: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Barium: Serial dilution indicates possible matrix interference.
- MP42184-SD1 for Cobalt: Serial dilution indicates possible matrix interference.

12

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP42169

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79894-1MS, J79894-1MSD were used as the QC samples for metals.

Wet Chemistry By Method ASTM D1498-76M

Matrix: SO

Batch ID: GN10851

Sample(s) J80260-1DUP were used as the QC samples for Redox Potential Vs H2.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO

Batch ID: GN10756

The data for EPA 160.3 M meets quality control requirements.

Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO

Batch ID: GP42309

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80261-1DUP, J80261-1MS were used as the QC samples for Chromium, Hexavalent.
- GP42309-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Good recovery (98.5%) on the post-spike.
- GP42309-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: SO

Batch ID: R69423

- The data for SW846 6010/7196A M meets quality control requirements.
- J80262-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 9012 M/LACHAT

Matrix: SO

Batch ID:

GP42317

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79987-1DUP, J79987-1MS were used as the QC samples for Cyanide.
- Blank Spike Recovery(s) for Cyanide are outside control limits.
- GP42317-B1 for Cyanide: Spike blank indicates possible high bias, but all associated samples < DL.

Wet Chemistry By Method SW846 9045D

Matrix: SO

Batch ID: GN10789

Sample(s) J80260-1DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample Summary

Fleming-Lee Shue, Inc.

Job No:

J80261

West 34th Street, 34th and 11th Avenue, New York, NY Project No: 10090-001-02

_		Time By	Received	Matri Code		Client Sample ID
J80261-1	12/28/07	08:00 MC	12/28/07	SO	Soil	PIER B7
J80261-2	12/28/07	08:00 MC	12/28/07	AQ	Trip Blank Soil	TB

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Fleming-Lee Shue, Inc. Job No J80261

Site: West 34th Street, 34th and 11th Avenue, New York, NY Report Date 5/23/2008 2:34:04 PM

On 12/28/2007, 1 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.8 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of J80261 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ Batch ID: VY2927

- All samples were analyzed within the recommended method holding time.
- Sample(s) J79584-3MS, J79584-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 1,2,4-Trimethylbenzene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 1,2,4-Trimethylbenzene are outside control limits. Outside control limits due to matrix interference.

Matrix: SO Batch ID: VG5169

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80263-1MS, J80263-1MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 1,1,2,2-Tetrachloroethane, Trichloroethene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 1,1,2,2-Tetrachloroethane, Trichloroethene are outside control limits. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270C

Matrix: SO Batch ID: OP30629

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J79992-2MS, J79992-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Friday, May 23, 2008 Page 1 of 4

Extractables by GC By Method SW846 8081A

Matrix: SO

Batch ID: OP30680

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80262-2MS, J80262-2MSD, OP30680-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for Aldrin, alpha-BHC, beta-BHC, Endrin, gamma-BHC (Lindane), Heptachlor are outside control limits. Outside control limits due to possible extract concentrated.
- OP30680-BS1 for alpha-BHC: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for Heptachlor: Outside control limits due to possible extract concentrated.
- OP30680-BS1 for gamma-BHC (Lindane): Outside control limits due to possible extract concentrated.

Extractables by GC By Method SW846 8082

Matrix: SO

Batch ID: OP30681

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J80262-2MS, J80262-2MSD, OP30681-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GC By Method SW846 8151

Matrix: SO

Batch ID: OP30603

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J79859-1MS, J79859-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for 2,4,5-T are outside control limits. Outside control limits due to matrix interference.

Metals By Method SW846 6010B

Matrix: SO

Batch ID: MP42100

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79124-2MS, J79124-2MSD, J79124-2SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony, Magnesium, Potassium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Antimony, Copper, Barium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Recovery(s) for Iron, Lead are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Barium, Calcium, Lead, Magnesium, Manganese, Potassium, Zinc are outside control limits for sample MP42100-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Arsenic, Beryllium, Cobalt, Potassium, Selenium, Sodium are outside control limits for sample MP42100-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- = RPD(s) for MSD for Calcium, Iron, Lead, Manganese, Zinc are outside control limits for sample MP42100-S2. Spike amount low relative to the sampole amount. Refer to lab control or spike blank for recovery information.

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP42101

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79124-2MSD, J79124-2MS were used as the QC samples for metals.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Mercury are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

Wet Chemistry By Method ASTM D1498-76M

Matrix: SO

Batch ID: GN10847

Sample(s) J80261-1DUP were used as the QC samples for Redox Potential Vs H2.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO

Batch ID: GN10756

The data for EPA 160.3 M meets quality control requirements.

Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO

Batch ID: GP42309

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J80261-1DUP, J80261-1MS were used as the QC samples for Chromium, Hexavalent.
- m GP42309-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Good recovery (98.5%) on the post-spike.
- GP42309-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: SO

Batch ID: R69358

- The data for SW846 6010/7196A M meets quality control requirements.
- J80261-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 9012 M/LACHAT

Matrix: SO

Batch ID: GP42296

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J79759-1DUP, J79759-1MS were used as the QC samples for Cyanide.

Wet Chemistry By Method SW846 9045D

Matrix: SO

Batch ID: GN10848

Sample(s) J80261-1DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

1 E				40	192					- ·				- ~-	_	~ .	- ,	_						14					
E 1		JTES1	r ·					T	22 († 73	35 Rou 2-329-(te 13	0, Da	yton • 737	NJ 0	8810 -3490	/3/19		1-EU-E	X Track	ing #				Boille	Order C	Control #			
		oratorie	_								ww.a				-34,,	7340		Accule	st Quol	e#				Accut	est Job t	y	J	T81	0262
		Client / Reporting Inform	alion 85385						F	roject in	homatic	20	3635			6265	383B-8			ilensien Silensien			energe energe	ested A	-	esta de la composión de la com		tion and the	Matrix Codes
Company Na	me	7	SA PAR	<u>latermente</u>		roject N	Vame W) ~	14				398	2510000	1111111111		*****	SECRETA			AND THE SE		requ	ested A	narysis	\Box	ENERGENE	3003900	DW - Drinking Water
Address	FLS	·			_		•		7	<u> 8</u>										/-səhd	(8)			ļ .					GW - Ground Water
Address	58 W 29	7th St , 9t	MPI		S	ireel c	555	S W	3	74J,	` {	4							35.03	-/-	A				1				WW - Water
City		State		Zip	C	ity		_		Stat						_	\dashv	PAUG 🗆	M	<u>8</u> 🗆					ı				SW - Surface Water
N		NY		00	_		<u> 177</u>					17	4						STARS	STARS C	1								SO - Seil
Project Cont	Tatten	Corroll	E-m	131	P	roject #	10	09	ر ر	00	l - j	2_	•				Ì	602 C NAP (PPL C STARS CIMTBE CI +15 CI	PPL C								Z,	SL - Sludge
Phone #	717 4 67	5.3225			Fi	ax#	217											1021 C	g .				ı		_			3	OI - Cil LIQ - Other Liquid
Damalasia Ma	212.01	3.3265					uchase Orde		- T	J # 5	224	-7					_	D	75. -10.	덛줖		Ļ	บี		A A	m	į ,	187	AIR - Air
Complete Site	Mather	Caroll			16	lieni Po	inchase Orde	er#									l	624 CI MTDC C	624 C	626 CI	፟¥.	Ų	1	1	5			[N	SOL - Other Solid
PULCUESI	Field	ID / Point of Collection		SUMMA	#	C	Collection					Numb		_	exi Bot			<u>=</u> 0	00	6270 C (13	ABT	APX	也工	×	8	12	EK	WP - Wipe
Sample #				MEOHVI	i# Da	ate	Time	Sampled By	Matrix	# of bottles	g	100	12804		DEXISO	HO3	200	8260 CI BTEX CI	8260 CI TOA CI	8270 ABN	5	4	×	7	×	ام	3	圣	LAB USE ONLY
1_	BHW N	W			12/2	8/67	1000	MC	50	3	П	T		3						X	×	M	X	×	¥	×	M	7/	EX95
_ Z	BHW S	w			1.1	!	1030	T	П	3	П		1	Τ						1	J	4	J	1	1	7	J	7	1902
-3	TB		¥			,		1	V	2			┰	1	T	H	П				¥				-	\vdash		\vdash	9044
										_	H	+	+	+	T		Н			_	_		_	\vdash		H	\vdash	-	
					+					 	Н	+	╁	+	╁╌	-	\vdash		_		-			\vdash	-	\vdash	$\vdash\vdash$	₩	2231
					-				-	 	\vdash	+	╁	╁	\vdash	Н	Н												
					+-				<u> </u>	ļ	\sqcup	-	- -	+	╄.														
					<u> </u>						Ш		1	┸	L													Ŀ	
															L											<u> </u>			L
													1	1															
		ınd Time (Business Days)				Marine 21		A ALSO STATE	#	Data D	elvera	ale Info	rmatio			ri i								Contriber	nts / Res	narks			
☐ Sid. 15	Business Days	Approved By	y: / Date:				Commerc				_	FULL (1	x /	HE	TC	<u>-</u> 1_	مدح	V.	NS"	r 10	400	OXANE,
5 Day RI			-		_		NJ Reduc					nyase Nyase																	
☐ 3 Day El					_		NJ Ful					State F		jui, D												-			いろう
☐ 2 Day <i>El</i>						[J Olher					EDD F	omat						+	58	BN	记。	+	TB	BN	12.	, 11	24-	TMB,
1 Day El	WERGENCY					1															5+!		,						
☐ Other	. 9 David 714 dad						Comme	Scial *A]= Res	uits Onl <i>obso</i>		7.1							-	102) 1	PVD							
		available VIA LabLink			Sar	nola Ci	来力 Istody must	be docu	nented	obje below ea		23/67		nna n	nssere	ion in	rdudi.	io cons	at delia	-rv 36%		318181855	323	HSH94		STATE OF THE	200		
Refinguished by	Sampler:	1	Sate Time:	725			10	7.4.			T	Relino		y: 0	4.	-2+4 H		a a a a a a a	64171	· /· #25	Date	Tyne:	1/84	Receive	d by:	-7-	101	<u> </u>	POST CHARGE STATE OF THE PARTY AND ADDRESS OF
1 Relinquished by		\mathcal{M}_{-}	Die Tre		Received by	[2	20	Ukr.			_	2 Polon	isted t	<u> </u>	W						2/	28/0	2	2 Receive		ou,	a Yi	no	
3					3						-	4	nated [,							Date	.me;		4	u uy.				
Reinquished by	r		Date Time.		Received by	<i>r</i> .						Custod	y Seal I	ŧ	-				Press		ere applio	able		Onlo	!		C	Cooler Ter	"7 8e/

J80262: Chain of Custody

Page 1 of 3

靈	ì		50 1	'Ly	•	CH					•	US.		D		X Track		en	M) l	Order (Ц.	-		
	Laboratorie	-				Ţ		2-329-		FAX	X: 73	NJ 088 2-329-3 m		180 -	L	est Quo						est Job			T8	0262
Company Nar	Client / Reporting Information	ion 🔛		Project	ect Name			rojeci k		en									20000	Requ	ested A	nalysis				Matrix Codes
	FLS			110	V	<u>7</u>	44	78	Ł								(mas-/	B	l	l						DW - Drinking Wate GW - Ground Wate
Address (5	8 W 29th St, 9th	PI		Stree	" 559	5 1	J 3	54g	,	3+						星星		(2)	1						1	WW - Water
City N	J State NJ		Zip	City				Sta	le	N	Ч		•		PAUG	ARS [] I	STARS C									SW - Surface Water SO - Soil
Project Contac	actilew Corroll	E-1	mail	Proje	ect#	09	0 -	00	۱ -	2	-				602 D	PPLO STARS CIMBECT	74.0 P. C. C.	١.							爻	St Shølge
	212 * 675 · 3225			Fax	# Z1	2.0	679	5 ~ 3	322	24					器庫	다 다 다 다	70. 20.00		١.	ہـ ا		1			3	OI - Oil LIQ - Other Liquid
Sampler's Nan	Pather Carroll			Clien	t Purchase Or										624 C	624 C TC	7 0 26 10 17	x .	Ÿ	J	د	8	3		318	AIR - Air SOL - Other Solid
Acculest	Field ID / Point of Collection		SUMMA#	\Box	Collection	,	1.		口	Numb	ber of	reserved		,			п.,	2	8	dd	AL	×	8	-	ERB	WP-Wine
Sample #	·		MEOH Val#	Date	Time	Sample: By	Matrix	# of bottles	Ē	HOP S	12304	물	HEORIE AND AND AND AND AND AND AND AND AND AND	Hoore	1260 ITEX	1260 ET	6270 ABN [5	4	×	3	X	ŏ	2	星	LAB USE ONLY
1	BHW NW			12/28/	07 1000	M C	Se	3	\Box		Т	3	T	П			X	X	×	X	×	¥	х	М	V	EX95
_ Z	BHW SW		1	11	1030		\prod	3	Π.	T		Π	$\cdot \top$	П			4	r	4	J	ナ	1	J	L	7	1902
-3	TB	×		V		1	W	2	П	7	\top	11		П				V								9044
									П	┪			1	П						_		_				7011 7231
					· · · · · ·		1		\vdash	+	┪~			<u> </u>			-,	. 1	\dashv							65
				 			 		H	+	┪								·			'			\vdash	
	***************************************			├──			-	\vdash	\vdash	-												-	-		\dashv	
-	•			 			\vdash	\vdash	Н	+	_															
-	<u> </u>			 -				-	\vdash	+	-	_	. /	_				\neg				_				
 	·					 	-		\vdash	+	_		Χ, У.,	Xί	\mathcal{C}_{-}	(./	٦.	/					-			
	Turnaround Time (Business Days)							Data D	eliverah	le info			\/	' '		+	1	\						95655A	38-446	
☐ Sid. 15 Bi	siness Days Approved By:	Date:			☐ Commer	cial "A"				FULL (-		.7	,	`		•									
10 Day RL				-	☐ Commer					NYASF			Ye	ر ه												XANE,
5 Day RUS				-	NJ Redu	ced				NYASE State I			1-	7	7.							3 E	, + 1	१८०	199	12、
2 Day EM				_	Other_					EDD I				10	u.											MB,
☐ 1 Day EMI				_																		,,,			- · · ·	<u> </u>
☐ Other				-		efcial "A			•	, .																
Emergency d	L Rush T/A data available VIA LabLink	10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10		S Samele	Custody mus	1 12	12/07	0630	n/	23/1											į.	****		pertundani i san	Name and Part	
Reinquished by 5	ampler:	Date Time	/2 <i>S</i> /Re	celved by:	odsitory into	77	machica (JEKUW BE	GI IIME	Reinqu	i Steph	r. 0		٠							įd	by:	運動			
1 VVP	rm m	2/57	07 1	ceived by:	つけば	1/1/4			_	<u> </u>	X4).	<u>Illu</u>	1					17/	8/07	7	⁽	<u> </u>	ny	Ste	no	
3		n'ame iame	3	versea ax;						melings 4	uished b	y:						Dáte	Turbe.		eceived	by:				

J80262: Chain of Custody

Page 2 of 3

Job Change Order:

J80262_5/22/2008

Requested

5/22/2008

Received Date:

12/28/2007

Account

Fleming-Lee Shue, Inc.

Due Date:

1/11/2008

Project

West 34th Street, 34th and 11th Avenue, New

Deliverable:

COMMB

CSR:

TM

TAT (Days):

Sample J80262-all Change:

please upgrade to NYASPB

Above Changes Per:

Matt Carroll

Date: 5/22/2008

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

CHAIN	OF	CUST	ODY
--------------	----	-------------	-----

30	AT .	(0	<u>π</u> β	•		ΑĮ	N	U)	H	CI	U١	5 L	U.	ŊΊ	(•
	ACCUTES				TE	223 L. 733	35 Rou 2-329-0	te 13	30, D FA	ayton X: 73	NJ 2-32	08814 9-349	9/348		ED-EX	(Tracki	ng #				Boitle	Order	Control i	#		
	Laboratorie									test.co					cules	l Quote	#				Accul	est Job	#	JS	302	61
	Client / Reporting Inform	ation (Carlotte State)	241 S18555		PERENCES IN	Р	roject Infi	ormali	lon	193	esne	1910000000	essentia		00 o 04			R CONTRACT	MARKET AND	lanessass;	CORES	SECURE OF THE	RSSE		OBSERIE!	220200000000000000000000000000000000000
Company N	FLS		Project	Name	MAINTENANT.		姓 <	_									oʻ	W	 	Requ	ested A	nalysis	T			Matrix Codes DW - Drinking Water
Address	SB W 29世 St, 9世		Street								١.			\dashv	İ	.	1. SOLIP	HEROPENSAGE	ľ							GW - Ground Water
City	Ct-t-	Zip	City		5 W	est	34 State		. 5	tree	-				PALG	HIBE	. <u>.</u> .	1 3								YVW - Water SW - Surface Water
Project Con	VY NY	10001		NY			OID!	N	Y						Æ.	PPLO STARS DIMIDED +15 D	PPL CI STAKS CI PADF CI +TICS CI	1								SO - Soi
	Matthew Carroll	E-mail	Project	100	90 -	00	- 2								N.	<u>-</u> =	YOF C	1		ĺ						SL - Sludge
Phone #	212.675.3225		Fax#	212.											18A	다 다 다 다		1	İ				ļ	ŀ	K	OI - OI LiQ - Other Liquid
Sampler's N	Hatthen Carroll		Client P	urchase Ord		JE .	<u> </u>						_			624 🗆 TCI	625 C TCL 8N C PAH	F F		4		l at		ŀ	[צורי	AIR - Air
Accutest	Field ID / Point of Collection	SUMMA #		Collection			_		Мил	nber of r	nmse	rved Bo	Hies			29.≩		1	ξ,	12	1 7	94	100	į	ERB	SOL - Other Solid
Sample #		MEOH Viai #	Date	Time	Sampled By	Matrix	# of bottles	ğ.	\neg	HG504	$\overline{}$	12	_	900€ 8260	BTEX [18.4 C	8270 D	454	AESTCL	XPP 7CL	MTAL	XXCRA	PCR3	3	HE	WP - Wipe LAB USE ONLY
- 1	PIER B7		12/28/0	1 0800	UC	50	3					3			1	\dashv	×	X	X	X	X	×	×	Z	_	EX95
- 2	TB	<u>*</u>	Į.		ı	¥	2	2			I							X								1902
<u> </u>										_	\perp		Ш													J044
				<u> </u>				\bot			1	_													,	2231
ļ								_	\perp		\perp			\perp	1	\perp										
								_	_	1	1	_	Ш	\perp	1	_										
								\downarrow	_	_	\perp	_	Ш		_	_					_					
								_	4	\perp	1	-	\sqcup	_	_	_							_			
								_	4		4			_	4	4	_							<u> </u>		
Date of the							Data Del	liverat	de Infe	ormatio	بـ	1986	5-111-26-15-15-15-15-15-15-15-15-15-15-15-15-15-			- BEBBB	Element &	50000000	228	2883	<u>L</u>	<u> </u>	L	***************************************		
	Business Days Approved By:		[Commerc	ial "A"				FULL			A636-74	G G G G G G	- C	88882	4	ir il	4 -	<u> </u>	- L	Ommer A	IS / Her	narks :		British St.	
i⊡ 10 Day <i>i</i> □ 5 Day <i>R</i>				☐ Commerc						P Cate						-	<u> </u>	-		une	~ //	451	141) IOX	ANE	+NBBNZ,
3 Day E		+B, will call	-	⊒ NJ Full	:ea					P Cate Forms	gory	В														BBNZ,
2 Day E	_		. [Other					EDD I	Format		_				+1	24	<u> </u>	3,+	135	TM	В				
☐ 1 Day El	MERGENCY			Comme	ercial "A"	= Resu	ilte: Oniv																			
Emergency	& Rush T/A data avallable VIA LabLink		_ -	* 51	12/21	ha 1	n63n	nh	Nov	~																
	Sampler:	Date Tytie: //252 Rece		ustody must	be docum	enled b	ielow eac	h time	samp	ples cha	inge	possess	sion, inc	cluding o	ourier	delive	y. 誤									
Relinquished by	\star M (M)	12/2867	0B &	tillel	t a				Heliod	lushed b	hu	W						Date	Time: /	80a	Receive:	l by:	he	a H	ui	
3 resudested pi		Date Time Rece	ived by:					1	Reling	wished h	y:							Date	Tirlie:	-	Received	by:		-01		
Relinquished by		Date Time: Rece	ived by:			_		\dashv	4 Custos	dy Seal A	i					Preser		га аррбса	able		On Ice	, -		C	ooler Teg	щ. О.4
5		5																			_5/					7.8%
																										/ il

J80261: Chain of Custody

Page 1 of 2

Job Change Order:

J80261_5/22/2008

Requested

5/22/2008

Received Date:

12/28/2007

Account

Fleming-Lee Shue, Inc.

Due Date:

1/3/2008

Project

West 34th Street, 34th and 11th Avenue, New

Deliverable: TAT (Days): COMMB 1

CSR; TM

Sample J80261-all Change: please upgrade to NYASPB

J80261: Chain of Custody

Above Changes Per:

Matt Carroll

Date: 5/22/2008

Page 2 of 2

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Page 1 of 1