REMEDIAL INVESTIGATION REPORT

U-Haul Site 555 West 22nd Street New York, NY 10001 NYSDEC BCP No. C231101

Submitted to:

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau B 625 Broadway, 12th Floor Albany, NY 12233-7016

Prepared for: 23rd and 11th Associates, L.L.C. c/o The Related Companies 60 Columbus Circle New York, NY 10023

Prepared by:

integral engineering p.c.

61 Broadway Suite 1601 New York, NY 10006

> FINAL January 2018

CONTENTS

LI	STOF	FIGUR	ES	v
LI	ST OF	TABLE	S	vi
Ce	rtificat	ion		1-1
1	INTR	ODUC'	ΓΙΟΝ	1-2
	1.1	SITE I	DESCRIPTION	1-2
	1.2		HISTORY	
	1.3		LATORY INTERACTION	
	1.4	OBJEC	CTIVES	1-4
2	SITE	BACKO	GROUND	2-6
	2.1	PHYS	ICAL SETTING	2-6
		2.1.1	Geologic Setting	2-6
		2.1.2	Hydrogeologic Setting	2-7
		2.1.3	Subsurface Features	2-7
	2.2 PREVI		IOUS INVESTIGATIONS	2-8
		2.2.1	Boring Report, U-Haul Corporation New York City, American Hi- Tech, Inc., 1994	2-9
		2.2.2	Tank Removal Letter, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., April 1997	2-9
		2.2.3	Closure Report for the Excavation of Underground Storage Tanks, U-Haul #803-62 562 West 23 rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., July 1997	2-10
		2.2.4	Site Assessment Report and Quarterly Groundwater Sampling Reports; U-Haul Moving Center #803-62, 562 West 23 rd Street, New York, NY, Pinnacle Environmental Technologies, 1997-1999	
		2.2.5	Site Closure Letter, NYSDEC Spills 9000199 & 9700188, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2000	
		2.2.6	Phase I Environmental Site Assessment, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001	
		2.2.7	Site Investigation Report, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001	2-11
		2.2.8	Supplement to the Site Investigation Report, Groundwater Modeling, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001	2-11

		2.2.9	Underground Storage Tank Closure and Focused Subsurface Investigation, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002	2-11
		2.2.10	Report on Drum Removal, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002	
		2.2.11	Tank Closure Report, 562 West 23rd Street, New York, NY,	
			Environmental Resources Management, 2006	
			Phase I Environmental Site Assessment, Integral 2015.	2-12
		2.2.13	Limited Phase II Environmental Site Investigation (Lots 5, 60, 61 and 65), Integral 2016	2-13
		2.2.14	Limited Phase II Environmental Site Investigation (Lot 2), Integral 2017	2-14
		2.2.15	Summary of Previous Investigations	
3	REME	EDIAL I	NVESTIGATION	3-17
	3.1	GROU	IND PENETRATING RADAR	3-17
	3.2	SOIL I	BORING INSTALLATION AND SAMPLING	3-17
	3.3	MONI	TORING WELL INSTALLATION AND SAMPLING	3-19
	3.4	SOIL V	VAPOR POINT INSTALLATION AND SAMPLING	3-20
	3.5	RIWP	DEVIATIONS	3-22
	3.6	QUAL	ITATIVE EXPOSURE ASSESMENT	3-22
	3.7	INVES	STIGATION DERIVED WASTE	3-23
	3.8	HEAL	TH AND SAFETY PLAN (HASP)	3-23
	3.9	QUAL	ITY ASSURANCE / QUALITY CONTROL (QA/QC)	3-23
	3.10		MARY TABLE OF SAMPLING LOCATIONS	
	3.11	AIR M	IONITORING	3-24
4	REME	EDIAL I	NVESTIGATION RESULTS	4-25
	4.1	GPR		4-25
	4.2	SOIL		4-25
		4.2.2	Applicable Regulatory Standards for Soil	4-25
		4.2.3	Soil Results	4-25
	4.3	GROU	INDWATER	4-28
		4.3.1	Applicable Regulatory Standards for Groundwater	4-28
		4.3.2	Groundwater Results	4-28
	4.4	SOIL V	VAPOR	4-29
		4.4.1	Applicable Regulatory Standards	4-30
		4.4.2	Soil Vapor Results	4-30

		4.4.3	3 Indoor Air Results	4-31	
	4.5	QU.	ALITATIVE EXPOSURE ASSESSMENT RESULTS	4-32	
		4.5.	1 Soil Results	4-32	
		4.5.2	2 Groundwater Results	4-32	
		4.5.3	3 Soil Vapor Results	4-32	
5	QUAI	LITA	TIVE EXPOSURE ASSESSMENT	5-34	
	5.1	CO	NTAMINANT SOURCES	5-34	
	5.2	CO	NTAMINANT RELEASE AND TRANSPORT MECHANISMS	5-34	
	5.3	PO	FENTIAL RECEPTOR POPULATIONS	5-35	
	5.4	PO	FENTIAL ROUTES AND POINTS OF EXPOSURE	5-35	
	5.5	SUN	MMARY OF QUALITATIVE EXPOSURE ASSESSMENT	5-35	
6	CONC	CLUS	SIONS	6-38	
	6.1	SOI	L	6-38	
	6.2	GRO	OUNDWATER	6-38	
	6.3	SOI	L VAPOR	6-39	
7	REFEI	REN	CES	7-40	
LI	ST OF A	APPE	ENDICIES		
Appendix A		A	Previous Investigations		
Appendix B			Boring Logs, Monitoring Well Construction, Monitoring Well Sampling Logs, and Vapor sampling Logs		
Appendix C		C	Field Sampling Plan (FSP)		
Appendix D		D	Quality Assurance Project Plan (QAPP)		
Appendix E		E	Health and Safety Plan with Community Air Monitoring Plan (HASP/CAMP)		
Appendix F		F	Electronic Data Summary		
			Laboratory Data Packages		
			Data Usability Summary Report (DUSR)		

LIST OF FIGURES

Figure 1.	Site Location Map
Figure 2.	Site Plan
Figure 3.	Groundwater Contour Map
Figure 4.	Previous Soil Sample Results - VOCs and SVOCs, 1994 Boring Report and 2001 Site Investigation Report
Figure 5.	Previous Soil Sample Results - VOCs and SVOCs, 1997 UST Closure Report
Figure 6.	Previous Soil Sample Results - VOCs and SVOCs, 1997 Site Assessment Report
Figure 7.	Previous Groundwater Sample Results, 1997-1999 Site Assessment Reports and 2001 Site Investigation Report
Figure 8.	Previous Soil Boring Locations, 2016 and 2017 Limited Phase II Investigations
Figure 9.	Previous Soil Sample Results – VOCs and SVOCs, 2016 Limited Phase II Investigation
Figure 10.	Previous Soil Sample Results – Metals, 2016 Limited Phase II Investigation
Figure 11.	Previous Soil Sample Results – SVOCs and Metals, 2017 Limited Phase II Investigation
Figure 12.	Remedial Investigation (RI) Sample Locations
Figure 13.	RI – SVOCs and Metals in Soil Exceeding Part 375 Unrestricted SCOs
Figure 14.	RI - SVOCs and Metals in Soil Exceeding Part 375 Restricted Residential SCOs
Figure 15.	Lot 2 RI - SVOCs and Metals in Soil Exceeding Part 375 Unrestricted and Restricted Residential SCOs
Figure 16.	RI – VOCs and SVOCs in Groundwater Exceeding TOGS AWQSs

LIST OF TABLES

Table 1. Soil Analytical Data Summary – VOCs, 2016 Limited Phase II Investigation (Lots 5, 60, 61 & 65) Table 2. Soil Analytical Data Summary - SVOCs, 2016 Limited Phase II Investigation (Lots 5, 60, 61 & 65) Table 3. Soil Analytical Data Summary – Total Metals, 2016 Limited Phase II Investigation (Lots 5, 60, 61 & 65) Table 4. Soil Analytical Data Summary - Pesticides, 2016 Limited Phase II Investigation (Lots 5, 60, 61 & 65) Table 5. Soil Analytical Data Summary - PCBs, 2016 Limited Phase II Investigation (Lots 5, 60, 61 & 65) Table 6. Soil Analytical Data Summary – VOCs, 2016 Limited Phase II Investigation (Lot 2) Soil Analytical Data Summary - SVOCs, 2016 Limited Phase II Investigation Table 7. (Lot 2) Table 8. Soil Analytical Data Summary – Total Metals, 2016 Limited Phase II Investigation (Lot 2) Table 9. Soil Analytical Data Summary - Pesticides, 2016 Limited Phase II Investigation (Lot 2) Table 10. Soil Analytical Data Summary - PCBs, 2016 Limited Phase II Investigation (Lot 2) Table 11. Summary of Remedial Investigation (RI) Sampling Locations Table 12. RI - Soil Analytical Results for VOCs Table 13. RI - Soil Analytical Results for SVOCs Table 14. RI - Soil Analytical Results for Metals Table 15. RI - Soil Analytical Results for PCBs Table 16. RI - Soil Analytical Results for Pesticides Table 17. RI - Groundwater Analytical Results for VOCs Table 18. RI - Groundwater Analytical Results for SVOCs Table 19. RI - Groundwater Analytical Results for Metals Table 20. RI - Groundwater Analytical Results for PCBs Table 21. RI - Groundwater Analytical Results for Pesticides

- Table 22. RI Ambient Air and Indoor Air Analytical Results for VOCs
- Table 23. RI Soil Vapor Analytical Results for VOCs

CERTIFICATION

NYCRR Part 375 and that this Remedial In	ently a Qualified Environmental Professional as defined in 6 avestigation Report was prepared in accordance with all ubstantial conformance with the DER Technical Guidance fo 10).
 Signature	Date

1 INTRODUCTION

Integral Engineering P. C. (Integral) has prepared this Remedial Investigation Report (RIR) on behalf of 23rd and 11th Associates, L.L.C. for the property located at 555 West 22nd Street (Block 694, Lots 2, 5, 60, 61 and 65), New York, NY (Site). The Site is currently enrolled in the New York State Brownfield Cleanup Program (BCP) and listed as Site No. C231101.

This RIR presents the results of the Remedial Investigation (RI) performed onsite in November 2016 and November 2017 as well as the Qualitative Exposure Assessment (QEA) performed at the Site in June 2017. This RIR includes summaries of the Site history, previous environmental assessments and investigations, a description of the Site geologic and hydrogeologic setting, subsurface features, conclusions and recommendations that will aid in the development of a Remedial Action Work Plan.

1.1 SITE DESCRIPTION

The Site is located in a mixed use area of the West Chelsea section of the Borough of Manhattan. The Site is comprised of five tax lots (approximately 33,671 SF) identified on New York City tax maps as Block 694 Lots 2, 5, 60, 61, and 65. The Site is bounded to the north by West 23rd Street, to the east by 10th Avenue, to the south by West 22nd Street, and to the west by 11th Avenue. A USGS Topographic Map is included as Figure 1. A map showing the Site property boundaries is included as Figure 2.

The Site is currently zoned C6-3A, C6-3 and M (Commercial, Mixed Buildings and Manufacturing) and is owned by 23rd and 11th Associates, L.L.C. Lot 2 is currently improved with a vacant three-story slab on grade brick building. Lots 5, 60, 61 and 65 were previously owned and operated by U-Haul International Inc. (U-Haul property). The U-Haul property footprint contains three separate buildings, each designated with the letters; A, B and C that identifies their location on specific tax lots. Building A encompasses Lot 65, located at the corner of West 23rd Street and 11th Avenue, and Lot 5 which adjoins the southeastern corner of Lot 65 and has frontage on West 22nd Street; Building B encompasses Lot 61, which adjoins Lot 65 along its eastern property boundary; Building C encompasses Lot 60, which adjoins Lot 61 to the east. The locations of Buildings A, B, C, and their associated tax lot numbers are outlined on Figure 2.

Building A (Lot 65) is a three story commercial building constructed of brick and concrete with a steel frame structure. Adjoining Building A (Lot 65) to the south is a paved parking area, which is the only exposed area of the Site. The area is currently used by U-Haul for rental vehicle parking. Building A does not currently contain vehicle service operations and is now used for moving supply retail, mini-storage units, vehicle hand washing and parking. The first floor of Building A contains U-Haul's show room and retail space as well as an interior

driveway. The second floor of Building A contains storage units, a single apartment, and rental truck parking. The third floor of Building A contains mini-storage units and an apartment.

Lot 5 contains an extension of Building A consisting of a single-story storage warehouse with portions also used for vehicle parking (Figure 2).

Building B (Lot 61) and Building C (Lot 60) are single story garages constructed of brick and concrete with a steel frame structure (Figure 2). Five rows of parking are marked out, where approximately seven vehicles can park in line. Adjacent properties include mixed use commercial/residential to the north, industrial/manufacturing and commercial/residential to the east, office space and commercial/residential to the south and the West Side Highway to the west.

Based on a review of the New York City Mayor's Office of Environmental Remediation's (OER's) Searchable Property Environmental E-Database (SPEED), no hospitals, day care facilities, or schools are present within 500 feet of the Site.

1.2 SITE HISTORY

Environmental records indicate that historic Site uses included: lumber yard, wood factory, residential and office spaces, restaurant, theater, iron works, garage, automotive repair services, and storage and dispensing of petroleum products. It is unknown whether U-Haul continued to dispense gasoline after taking title to the property in the late 1970's/early 1980's. Currently, no vehicle repair or fueling takes place onsite.

1.3 REGULATORY INTERACTION

23rd and 11th Associates, L.L.C. entered into the BCP as a Volunteer on August 15, 2016 via the execution of a Brownfield Cleanup Agreement (BCA) with New York State Department of Environmental Conservation (NYSDEC). In October 2017, NYSDEC approved an amendment to the BCA for the inclusion of additional tax lot (Lot 2) to the BCP Site. Accordingly, the work performed under this RIR, as well as all future remedial work, was and will be performed in accordance with the requirements set forth in the BCA.

1.3.1.1 NYS Spills Program

Numerous environmental actions/investigations associated with the procedural mandates of NYSDEC Spills Program and the removal or abandonment of several underground storage tanks (USTs) and/or above ground storage tanks (ASTs) have been conducted on the Site from 1991 through 2006. A summary of previous site investigations and/or actions is presented in Section 2.2 of this RIR. A description of spills associated with the Site is provided below.

Four spills are associated with the Site:

- 1. NYSDEC Spill No. 9000199 was reported to the Department in April 1990 as an unknown amount of gasoline impacting groundwater due to a tank failure. The spill was closed in June 2000.
- 2. NYSDEC Spill No. 9305627 was reported to the Department on August 5, 1993 and closed by the Department the next day. The spill was reported as waste oil emanating from abandoned drums in the amount of 55 gallons which impacted soil.
- 3. NYSDEC Spill No. 9700188 was reported to the Department in April 1997 as a 40-gallon gasoline spill impacting soil; cause unknown. The spill was closed in February 2002.
- 4. NYSDEC Spill No. 0205608 was reported to the Department in August 2002 as an unknown amount of #2 fuel oil impacting soil due to a tank failure. The spill was closed in December 2002.

NYSDEC Spill Nos. 9000199, 9700188, and 0205608 were closed following satisfactory investigation and/or remediation through agreements under the NYSDEC Spills Program. There is no information regarding investigation or remediation activities associated with Spill No. 9305627. The above-referenced information for Spill No. 9305627 was obtained via NYSDEC's Spill Database.

1.3.1.2 NYCOER E-Designation Program

As part of the West Chelsea re-zoning, approved by the City on June 23, 2005, Hazardous Materials and Noise E-Designations were assigned to tax lots 60, 61, and 65. Lot 5, while it has no E-Designation associated with it, will be subject to the Hazardous Materials and Noise E-Designation requirements for Lots 60, 61, and 65 in the event that they are merged. The E-Designation program is administered by OER; E-Designations are assigned to development sites identified by a lead agency during the City Environmental Quality Review (CEQR) of a proposed zoning action in order to apply environmental requirements related to potential hazardous materials, air quality, or noise impacts resulting from the proposed action.

Work Plans and reports submitted to the NYSDEC as part of the BCP will also be submitted to OER for its records and will satisfy the Hazardous Materials E-Designation for the Site. A separate Noise Remedial Action Plan (RAP) will be submitted to OER to satisfy the Noise E-Designation.

1.4 OBJECTIVES

The objectives of the RI, as outlined in the RIWP (Integral, October 2016), are as follows:

To define the nature and extent of contamination on and offsite;

- To identify if residual contaminant source areas are present on the Site;
- To determine whether remedial action is needed to protect human health and the environment; and
- To produce data of sufficient quantity and quality to prepare a Remedial Action Work Plan (including alternatives analysis) to support the remediation of the Site, if warranted.

The RI was developed in general accordance with the NYSDEC's Division of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10), dated May 2010.

References used in assessment of this Site and for development of this Report are identified in the References section at the end of this document.

2 SITE BACKGROUND

2.1 PHYSICAL SETTING

The Site incorporates approximately 0.77 acres of fairly level land situated in the City of New York, New York County, New York. The Site is mapped on the Jersey City, NY-NJ Quadrant 7.5 Minute Topographic Map, published by the United States Geological Survey (USGS). Site topography generally slopes down across the Site from northeast to southwest. Ground surface elevations range from about El. +8 in the northeast corner of the site to about El. +5.5 in the southwest corner (MRCE, 2017). All elevations in this report are referenced to North American Vertical Datum of 1988 (NAVD 88). The entire area surrounding the Site is urban land which has been developed and manually contoured to be level with street grade.

2.1.1 Geologic Setting

The shallow subsurface at the Site consists of historic fill material underlain by sands, silts, clay, and glacial till. The uppermost stratum is a layer historic of fill extending between 14 and 34 feet below ground surface. The layer is comprised of loose to very compact brown, gray, black, and tan fine to coarse sand, trace to some brick, cinders, concrete, wood, rubber, metal, ash, silt, and gravel. Native soil underlies the fill and generally consists of the following strata summarized by in order of their occurrence with depth (MRCE, 2017):

Stratum S1 - Sand and Gravel: Underlying the fill in the southeast portion of Lot 60 and south of Lot 5; between 8 to 10 feet thick; comprised of compact brown and black fine to coarse sand and fine to coarse sandy gravel.

Stratum O – Organic Silty Clay: Underlying the fill in all areas of the Site, excluding the two areas underlain by Stratum S1; between 9 to 48 feet thick; comprised of soft to medium gray to black organic silty clay, trace to some fine to medium sand, shells, and peat.

Stratum S2 – Glacial Sand: Underlying the O layer; between 4 to 56 feet thick; comprised of loose to very compact red, brown, and gray fine to coarse sand, trace silt, gravel, and shells.

Stratum T – Glacial Till: Underlying the sand layer in one area of the Site (southeast portion of Lot 61); 4 foot-thick layer of gray boulders and cobbles.

The Site is situated within the Manhattan Prong region of the Highlands Province, characterized by highly deformed Paleozoic to Proterozoic metasedimentary and metaigneous rocks. The crystalline rocks of the Manhattan Prong are separated by complexly deformed, northeast-trending ductile thrust faults mapped as the St. Nicholas thrust and Cameron's Line (Merguerian, 1983a; Merguerian and Baskerville, 1987), which separate contrasting sequences of metamorphosed Lower Paleozoic strata formerly lumped together as the Manhattan Schist formation.

Bedrock was encountered during the geotechnical investigation (performed by others) underlying the glacial sand till layers (approximately 80 to 100 feet below grade), and is comprised of intermediate to unweathered gray gneissic schist, schistose gneiss, mica schist, and hornblende schist, trace pegmatite, blocky, slightly weathered, mineral coated, and sand filled joints (MRCE, 2017).

2.1.2 Hydrogeologic Setting

Groundwater has been measured at depths ranging from approximately 6.6 to 8.5 ftbg, which is several feet shallower than the proposed excavation depth. The topography of the Site is relatively flat. Given the relatively shallow depth to groundwater, the existence of numerous subsurface structures and infrastructure, and the Site's proximity to the Hudson River, groundwater flow is expected to both locally and tidally influenced. A formal elevation survey was conducted on December 2, 2016 to provide groundwater elevations. The local groundwater flow is to the northwest toward the Hudson River; however, the monitoring wells surveyed on site show groundwater flowing to the north which could be due to influence of subsurface infrastructure. A groundwater contour map is included as Figure 3.

The entire Site and most of the surrounding areas are developed. The Chelsea Waterside Park is located approximately 85 feet west of the Site and the High Line Park is located approximately 500 feet east of the Site. The Site is located in the 100-yr floodplain and there are no wetlands or surface water bodies present at the Site. The nearest surface water body is the Hudson River, located approximately 525 feet west of the Site.

2.1.3 Subsurface Features

Based on record reviews, the Site currently contains one abandoned 1,000-gallon USTs, one abandoned 550-gallon UST, and an abandoned 5,000-gallon AST. A geophysical survey was conducted as part of this RI to identify the presence of USTs; however, the survey was inconclusive due to interference from the reinforced concrete that comprises the building(s) foundation slab. The current locations of USTs remain unknown, but based review of records, it is assumed that they are within the bounds of Lot 65. Approximate locations of the tanks are depicted on Figure 2.

Two basement areas exist beneath Building A (Lot 65), both of which are accessed through exterior steel doors (Bilco doors) located within the sidewalks on West 23rd Street and 11th Avenue (Figure 2). The West 23rd Street Bilco doors lead to a concrete capped boiler room containing an abandoned 5,000-gallon AST, an inactive fuel oil boiler system, and two sump areas with discharge pumps reportedly connected to the combined sewer. The 11th Avenue Bilco doors lead to a concrete capped basement area which contains Building A's sewer line and one sump area with a discharge reportedly connected to a combined sewer. Additionally, Lot 65 contains a zipper drain at the automobile hand wash station near 11th Avenue, which is

plumbed to the building's combined sewer line and discharged into NYC's combined municipal sewer system. A crawl space is located in the southeastern corner of Lot 2.

2.2 PREVIOUS INVESTIGATIONS

Previous investigations include work performed for spill and tank closure reports, a 2015 Phase I Environmental Site Assessment, and a 2016 Limited Phase II Environmental Site Investigation. Findings from these previous investigations are discussed in the following sections. A list of the investigations detailed in this section is included herein:

- 1. Boring Report, U-Haul Corporation New York City, American Hi-Tech, Inc., 1994.
- 2. Tank Removal Letter, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., April 1997.
- 3. Closure Report for the Excavation of Underground Storage Tanks, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., July 1997.
- 4. Site Assessment Report; U-Haul Moving Center #803-62, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1997.
- 5. Groundwater Sampling Report, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1998.
- 6. Quarterly Groundwater Sampling Reports, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1999.
- 7. Site Closure Letter, NYSDEC Spills 9000199 & 9700188, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2000.
- 8. Site Investigation Report, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001.
- 9. Supplement to the Site Investigation Report, Groundwater Modeling, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001.
- 10. Underground Storage Tank Closure and Focused Subsurface Investigation, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002.
- 11. Report on Drum Removal, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002.

- 12. Phase I Environmental Site Assessment, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002.
- 13. 5,000-gallon Tank Closure Report, 562 West 23rd Street, New York, NY, Environmental Resources Management, 2006.
- 14. Phase I Environmental Site Assessment and Update, 562 West 23rd Street, New York, NY, Integral Engineering, 2015 and 2017, respectively.
- 15. Limited Phase II Environmental Site Investigation, 555 West 22nd Street, New York, NY, Integral Engineering, 2016.
- 16. Limited Phase II Environmental Site Investigation, West 23rd Street Development (Lot 2), New York, NY, Integral Engineering, 2017.

Copies of available environmental records and reports are included in their entirety, as received, in Appendix A. Findings and conclusions from these reports are summarized in the following sections.

2.2.1 Boring Report, U-Haul Corporation New York City, American Hi-Tech, Inc., 1994

American Hi-Tech (AHT) identified the Site as Site #9 (Building A [Lot65]) and noted it to be NYSDEC PBS Facility No. 2-084069 with two active 1,000-gallon USTs which store gasoline and diesel, a closed-in-place 550-gallon gasoline UST, and a removed 1,000-gallon fuel oil UST. AHT performed a Subsurface Site Investigation in the vicinity of the abandoned 550-gallon and 1,000-gallon USTs. The results of the investigation revealed that VOCs were present in Site soils above NYSDEC applicable soil cleanup objectives in boring B-4. This boring was reportedly located adjacent to the abandoned 1,000-gallon fuel oil UST and was collected at the soil and groundwater interface. Available results from this investigation are shown on Figure 4.

Subsequent to a tank test failure, a spill was reported to the NYSDEC and assigned Spill No. 9000199. After a number of tank removal/closure actions and monitoring of groundwater, this spill was closed in 2000. The spill closure is summarized in Section 2.2.5.

2.2.2 Tank Removal Letter, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., April 1997

In April 1997, Tyree Brothers Environmental Services, Inc. cut and cleaned two 1,000-gallon USTs located in Building A and removed their associated piping. Excavation of the USTs was anticipated during this time; however, a spill was encountered during tank decommissioning, and therefore the USTs were left in place for excavation at a later date. NYSDEC Spill Number

9700188¹ was assigned to the property. The spill was closed in February 2002, and is summarized in Section 2.2.8.

2.2.3 Closure Report for the Excavation of Underground Storage Tanks, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., July 1997

In July 1997, Tyree Brothers Environmental Services, Inc. excavated and removed one 1,000-gallon gasoline UST and one 1,000-gallon diesel UST within the western portion of Building A (Lot 65). These USTs were connected to a previously demolished pump island located near Building A's exit onto 11th Avenue. Post-excavation soil samples revealed that VOCs were present in soil beneath the fill lines (located under the sidewalk adjacent at 11th Avenue) at concentrations exceeding NYSDEC applicable soil cleanup objectives (Figure 5). Approximately 8.5 tons of petroleum-contaminated soil was excavated and removed from the Site in the vicinity of the remote fill lines. The soil was thermally treated and recycled at Posillico Brothers Asphalt Company in July 1997. Available soil analytical results from this investigation are depicted on Figure 5.

2.2.4 Site Assessment Report and Quarterly Groundwater Sampling Reports; U-Haul Moving Center #803-62, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1997-1999

In 1997, Pinnacle Environmental Technologies (Pinnacle) installed three groundwater monitoring wells at the Site. Two wells were installed within the sidewalk along 11th Avenue and one well was installed within Lot 65. Soil sampling was performed during the installation of the wells, and laboratory results indicated that VOCs were detected at concentrations exceeding NYSDEC applicable soil cleanup objectives in two of nine soil samples collected from three soil borings, including the former fill line trench adjacent to 11th Avenue and formerly excavated by Tyree (Figure 6). Laboratory results from groundwater samples collected from the wells indicated that total BTEX concentrations exceeded the NYSDEC Ambient Groundwater Quality Criteria in wells MW-1 and MW-3 (Figure 7). From 1997 to 1999, Pinnacle initiated a groundwater-monitoring program consisting of biannual sampling of the three wells and associated reporting. During this period, dissolved BTEX and MTBE decreased to non-detect in MW-1, non-detect in MW-2 and fluctuated in MW-3. The last sampling event (June 27, 1999) indicated BTEX and MTBE concentrations in MW-3 at 45.8 µg/l and at 53 µg/l, respectively. Available soil results from this investigation are depicted on Figure 6. Available groundwater results from quarterly monitoring are depicted on Figure 7

Integral Engineering, P.C.

¹ It appears that the NYSDEC recorded the date of this spill incorrectly, documenting it as having taken place in 1990.

2.2.5 Site Closure Letter, NYSDEC Spills 9000199 & 9700188, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2000

In a site closure letter dated May 18, 2000, ATC summarized previous remedial actions and groundwater monitoring and petitioned NYSDEC to close Spills 9000199 and 9700188 and issue a no further action (NFA) letter. On June 21, 2000 NYSDEC closed out Spill 9000199, and left 9700188 open pending additional investigation.

2.2.6 Phase I Environmental Site Assessment, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001

A Phase I ESA was completed at the Site by ATC in November 2001 for Americo Real Estate Company. The ESA was completed in accordance with the ASTM E1527-00. ATC concluded that there were no recognized environmental conditions (RECs) associated with the property.

2.2.7 Site Investigation Report, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001

On May 15, 2001, ATC collected additional soil and groundwater samples to delineate the contamination around former boring B-4 to characterize the subsurface conditions along the western boundary of Building A (Lot 65), and to evaluate subsurface conditions downgradient of the abandoned 1,000-gallon fuel oil UST. Laboratory analysis indicated petroleum related VOCs were present in groundwater at concentrations exceeding TOGS AWQS. Available soil and groundwater results from this investigation are shown on Figures 4 and 7, respectively.

2.2.8 Supplement to the Site Investigation Report, Groundwater Modeling, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001

In December 2001, ATC performed Bioscreen groundwater modeling to evaluate the potential for dissolved phase petroleum impacts to migrate offsite and downgradient of Lot 65. The results of the Bioscreen model suggested that natural attenuation was the appropriate remedial technology for the dissolved hydrocarbons. Based upon the results of the model, ATC requested that the Department issue a NFA letter.

NYSDEC issued a NFA letter for 562 West 23rd Street on February 22, 2002 and NYSDEC Spill Number 9700188 was closed. In May 2002, ATC abandoned the three groundwater monitoring wells in accordance with NYSDEC guidelines.

2.2.9 Underground Storage Tank Closure and Focused Subsurface Investigation, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002

In July 2002 ATC oversaw the removal of eight 550-gallon petroleum USTs and the in-place closure of one 1,000-gallon heating oil UST in in Lots 60, 61 and 58 (abuts Lot 60 to the east).

Laboratory analysis of endpoint samples indicated the presence of petroleum related VOCs in soil exceeding applicable regulatory standards. NYSDEC spill number 0205608 was assigned to the Site.

In August 2002, ATC performed a subsurface investigation in the area of the former USTs. Laboratory analysis indicated that low concentrations (exceeding AWQS) of petroleum related VOCs and SVOCs were present in one groundwater sample. ATC concluded that there was minimal risk of exposure and requested that the Department issue a NFA letter. In December 2002, NYSDEC closed spill number 0205608.

Boring and/or sample locations and associated analytical results were not available for review. The above results were summarized from a letter report prepared by ATC and included in Appendix A.

2.2.10 Report on Drum Removal, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2002

In June 2002, seven drums were removed from Lot 65 and sent to Cyclechem in NJ. Laboratory analysis of the contents indicated that 4 plastic drums contained dilute aqueous formic acid and ammonium hydrogen fluoride solution; 1 plastic drum contained a dilute aqueous sodium bicarbonate solution; 1 plastic drum contained an aqueous trifluoroacetic acid and ammonium hydrogen fluoride solution; and a 55-gallon steel drum contained spent granulated activated carbon (GAC). Chemical analysis indicated that the contents of each drum were non-hazardous and non-regulated under RCRA. According to ATC, the aqueous solutions discovered are believed to be spent process liquids typically used in the cleaning and flushing of tap lines in breweries and/or tayerns.

2.2.11 Tank Closure Report, 562 West 23rd Street, New York, NY, Environmental Resources Management, 2006

In 2006, ERM abandoned in-place one 5,000-gallon #2 fuel oil AST located in the basement of Lot 65. The AST was filled with foam and all pipes were plugged. No samples were collected.

2.2.12 Phase I Environmental Site Assessment, Integral 2015

A Phase I Environmental Site Assessment (ESA) was conducted by Integral in December 2015. Five RECs in connection with the Site:

- 1. Historic Site Usage for Automotive Services and Petroleum Storage
- 2. NYSDEC Spill Numbers 9000199, 9700188, and 0205608 [all closed]
- 3. Historic Site Occupancy by Brake Labs Inc.
- 4. Historic Site Usage for Chemical Storage
- 5. Presence of a Hazardous Materials E-Designation

Detailed descriptions of the above cited RECs are included in the Phase I ESA Report, Appendix A to this Report.

2.2.13 Limited Phase II Environmental Site Investigation (Lots 5, 60, 61 and 65), Integral 2016

A Limited Phase II Environmental Site Investigation (ESI) was performed in February 2016 to evaluate subsurface soil conditions beneath the Site. The ESI consisted of the advancement of 12 soil borings to investigate the potential onsite soil sources, evaluate previously identified RECs, and investigate areas of the Site that had not been previously investigated. A copy of the Limited Phase II Investigation Report is provided in Appendix A.

2.2.13.1 Scope of Limited Phase II Investigation

Two to four borings were advanced within each tax lot to the groundwater/soil interface (~9 ftbg). A total of 12 borings were advanced over the Site (Figure 8). Borings were located with bias toward areas of concern identified in the 2015 Phase I ESA (Figure 2). One soil sample was collected from each boring for chemical analysis at the soil/water interface or area of highest suspected contamination. These samples were analyzed for the following:

- TCL VOCs via EPA Method 8260C
- TCL SVOCs via EPA Method 8270D
- TAL Metals via EPA Method 6010C/7471B

One soil sample was also collected and held from each boring from the 0-2' interval directly below the slab. These samples (secondary samples) were held pending the analytical results of the samples collected from the soil/water interface or highest level of suspected contamination (primary samples). Secondary samples, if run, were analyzed for the following:

- TCL SVOCs via EPA Method 8270D
- Target Analyte List (TAL) Metals via EPA Method 6010C/7471B
- Polychlorinated Biphenyls (PCBs) via EPA Method 8082A
- Pesticides via EPA Method 8081B

Continuous soil sampling was performed with a track mounted Geoprobe® utilizing direct push technology to the groundwater interface depth, approximately 8 to 10 ftbg. Continuous soil samples were collected using five (5) foot macrocore samplers fitted with dedicated acetate liners. The soil/fill retrieved from each sampler was field screened with a photoionization detector (PID) for VOCs and described by Integral field personnel on boring logs. Additionally, evidence of contamination (e.g., Non Aqueous Phase Liquid [NAPL], sheens, odors, staining, elevated PID readings) was documented by Integral field personnel.

2.2.13.2 Results of Limited Phase II Investigation

Minor exceedances of petroleum related VOCs above Unrestricted Use SCOs (UUSCOs) were detected in soil samples collected from 2 borings: SB-08 [7.5-8.5] and SB-02 [8-9]. Low levels of petroleum related compounds were found in soils below Lot 65 and Lot 60 and are consistent with areas of former onsite petroleum storage (Figure 9).

Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals (specifically, lead and mercury) above Restricted Residential Soil Cleanup Objectives (RRSCOs) were present in soils/fill material site-wide from approximately 0-10 ftbg (Figures 9 and 10) and are consistent with presence of historic fill material. Metal and PAH concentrations detected in excess of their respective RRSCOs are summarized below.

- Concentrations of lead found in Site soils range from 30 ppm in SB-07[6.5-7.5'] to 980 ppm in SB-08[1-2'], exceeding its RRSCO of 400 ppm.
- Concentrations of mercury found in Site soils range from .06 ppm in SB-07[6.5-7.5'] to 0.96 ppm in SB-05[1-2'], exceeding its RRSCO of 0.81 ppm.
- Concentrations of benzo(a)anthracene found in Site soils range from non-detect (ND) in SB-07[6.5-7.5'] to 11 ppm in SB-02[2-3'], exceeding its RRSCO of 1 ppm.
- Concentrations of benzo(a)pyrene found in Site soils range from ND in 4 of 18 samples to 20 ppm in SB-10[1-2'], exceeding its RRSCO of 1 ppm.
- Concentrations of benzo(b)fluoranthene found in Site soils range from ND in 3 of 18 samples to 19 ppm in SB-10[1-2'], exceeding its RRSCO of 1 ppm.
- Concentrations of benzo(k)fluoranthene found in Site soils range from ND in 4 of 18 samples to 8.5 ppm in SB-10[1-2'], exceeding its RRSCO of 3.9 ppm.
- Concentrations of chrysene found in Site soils range from ND in 4 of 18 samples to 9.8 ppm in SB-02[2-3'], exceeding its RRSCO of 3.9 ppm.
- Concentrations of dibenzo(a,h)anthracene found in Site soils range from ND in 7 of 18 samples to 5.2 ppm in SB-08[1-2'], exceeding its RRSCO of .33 ppm.
- Concentrations of indeno(1,2,3-cd)pyrene found in Site soils range from ND in 4 of 18 samples to 19 ppm in SB-08[1-2'], exceeding its RRSCO of 0.5 ppm.

Results of the 2016 ESI are provided in Tables 1 – 5 and shown on Figures 9 and 10.

2.2.14 Limited Phase II Environmental Site Investigation (Lot 2), Integral 2017

Four borings were advanced onsite to the groundwater/soil interface (~9 ftbg). One soil sample was collected from each boring for chemical analysis at the soil/water interface or area of highest suspected contamination. These samples were analyzed for the following:

TCL VOCs via EPA Method 8260C

- TCL SVOCs via EPA Method 8270D
- TAL Metals via EPA Method 6010C/7471B

Continuous soil sampling was performed with a track mounted Geoprobe® utilizing direct push technology to the groundwater interface depth, approximately 10 ftbg. Continuous soil samples were collected using five (5) foot macrocore samplers fitted with dedicated acetate liners. The soil/fill retrieved from each sampler was field screened with a PID for VOCs and described by Integral field personnel on boring logs. Additionally, evidence of contamination (e.g., NAPL, sheens, odors, staining, elevated PID readings) was documented by Integral field personnel.

Soil samples selected for laboratory analysis were placed in laboratory supplied containers, sealed and labeled, and placed in a cooler and chilled to 4°C for transport under chain-of-custody procedures. Soil samples were submitted to Alpha Analytical Laboratory of Westborough, MA, NYSDOH ELAP #11148, via courier service and analyzed for all of the compounds included in NYCRR Part 375 SCOs and Final CP-51 SCLs.

2.2.14.1 Results of Limited Phase II Investigation

No VOCs were detected above UUSCOs.

Benzo(k)fluoranthene and chrysene were detected above their respective UUSCOs of 0.8 and 1 ppm, but below their respective Restricted Residential SCOs (RRSCOs) of 3.9 ppm, in one (1) of four (4) samples collected from Lot 2: LOT2-SB-1 [7-9'] at 1.1 and 2.1 ppm, respectively.

Several polycyclic aromatic hydrocarbons (PAHs) including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene were detected in two (2) of four (4) samples collected from the Site at concentrations in excess of their respective RRSCOs.

Concentrations of lead exceeded its UUSCO of 63 ppm in three (3) of four (4) samples collected from Lot 2: LOT2-SB-2 [4-6'], LOT2-SB-3 [6-8'] and LOT2-SB-4 [6-8'] at 153 ppm, 141 ppm and 175 ppm, respectively. Concentrations of mercury exceeded its UUSCO of 0.18 ppm in three (3) of four (4) samples collected from Lot 2: LOT2-SB-2 [4-6'], LOT2-SB-3 [6-8'] and LOT2-SB-4 [6-8'] at 0.34 ppm, 0.29 ppm and 0.24 ppm, respectively.

No metals were detected in excess of RRSCOs.

Results of the 2017 ESI are provided in Tables 6 – 10 and shown on Figure 11.

2.2.15 Summary of Previous Investigations

Several Site documents describe numerous environmental imperatives associated with the removal or abandonment of several USTs and/or ASTs on the Site from 1993 through 2002. The majority of these actions took place on Lot 65. Based on the data collected as part of these

earlier actions/investigations, prior usage of the Site for petroleum storage and fueling has historically impacted both soil and groundwater (Figures 4 – 7). Historic investigations indicate the presence of petroleum related VOCs in soil and groundwater above applicable regulatory standards in the vicinity of either closed in-place and/or removed USTs beneath Lot 65 (Figures 4 - 7). Analytical results from the last groundwater sample collected onsite (June 1999) indicate exceedances of benzene, ethylbenzene, isopropylbenzene and MTBE concentrations above NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards (AWQSs) (Figure 7).

Based upon the results of the February 2016 Limited Phase II Investigation, low levels of petroleum related compounds are present in soils below Lot 65 and Lot 60 and are consistent with areas of former onsite petroleum storage (Figure 9). Based upon the results of the 2016 and 2017 Limited Phase II Investigations, elevated concentrations of PAHs and metals (specifically, lead and mercury) are present in soils/fill material Site-wide from approximately 0-10 ftbg (Figures 9 and 10) and are consistent with the presence of historic fill material.

3 REMEDIAL INVESTIGATION

This section provides a description of the methodologies used during the field investigation of the 555 West 22nd Street Site. These field activities were conducted in accordance with the methods and procedures specified in the NYSDEC approved RIWP (Integral, October, 2016), the 6 NYCRR Part 375 Brownfield Cleanup Regulations and in general conformance with NYSDEC DER-10. Implementation of the RI took place from November 8 through November 22, 2016. All samples were collected in accordance with the approved Quality Assurance Project Plan (QAPP) and Field Sampling Plan (FSP). The RI scope of work included a geophysical survey, the advancement of soil borings, the installation of three monitoring wells, the installation of five temporary wells, and the sampling of soil/fill, native soil, soil vapor and groundwater.

The location and number of samples collected, along with the corresponding analytical parameters, are presented in the followings subsections. Descriptions of the field activities are included by task and/or environmental media. The RI sample locations are illustrated on Figure 12. A summary table of all RI sample locations, deviations and rationale is included as Table 11.

3.1 GROUND PENETRATING RADAR

A ground penetrating radar (GPR) survey was conducted over the entire Site (where accessible) prior to the advancement of the soil borings (Section 3.2). The GPR survey was done to evaluate the potential presence of unidentified and/or unconfirmed USTs and aid in the identification of potential utilities, piping, and other subsurface infrastructure. The GPR survey involved traversing the Site with a portable digital pulse GPR system in order to obtain detailed horizontal profiles. Spacing of the traverse lines were dependent upon the interference and resolution.

3.2 SOIL BORING INSTALLATION AND SAMPLING

The RI included twenty-one (21) soil borings to investigate the potential of onsite soil sources, to further evaluate previously identified RECs/AOCs, to investigate areas of the Site that have not been previously investigated and that were identified as data gaps, and to assess the conditions of soils to remain onsite. Soil boring locations are depicted on Figure 12.

Soil borings SB-13 and SB-25 were advanced in the sidewalk along West 23rd Street, north of the Site, to evaluate offsite soil conditions.

Soil borings SB-14, SB-15, SB-16, SB-18, SB-23, SB-24, SB-26, and SB-28 were advanced to evaluate potential soil impacts downgradient of former tanks areas and/or petroleum impacts identified in previous reports.

Soil borings SB-17, SB-19, SB-20, SB-21, SB-22, SB-27, SB-29, SB-30, SB-34, SB-36 and SB-38 were advanced to provide general site coverage and site characterization.

<u>Methodology</u>

Soil borings were advanced by AARCO Environmental Services Corp (AARCO) subsequent to the geophysical survey. The concrete slab varied in thickness over the Site; for the purposes of sample collection, grade is considered to begin at the top of slab. Two (2) soil samples were collected from each boring. In general, one (1) sample was collected from the interval exhibiting the highest PID reading or visual/olfactory impact and one (1) sample was collected below the proposed excavation to evaluate soil that will be left onsite (15-17 ftbg). If no obvious signs of impacts were observed within the soil column, a soil sample was collected from the interval directly above the groundwater interface.

Continuous soil sampling was performed with a track mounted Geoprobe® utilizing direct push technology to a depth approximately 1 foot below the proposed excavation depth (~17 ftbg). A smaller handcart Geoprobe® was used to advance SB-15, located within the retail area where a track mounted Geoprobe® could not be accommodated. Continuous soil samples were collected using five (5) foot macrocore samplers fitted with dedicated acetate liners. The soil/fill retrieved from each sampler was field screened with a PID for VOCs and described by Integral field personnel on boring logs, included as Appendix B. Additionally, evidence of contamination (e.g., Non Aqueous Phase Liquid [NAPL], sheens, odors, staining, elevated PID readings) was documented by Integral field personnel.

Soil samples selected for laboratory analysis were placed in laboratory supplied containers, sealed and labeled, and placed in a cooler and chilled to 4°C for transport under chain-of-custody procedures. Soil samples were submitted to Alpha Analytical Laboratory of Westborough, MA, NYSDOH ELAP #11148, via courier service and analyzed for all of the compounds included in NYCRR Part 375 SCOs and Final CP-51 SCLs. Laboratory analytical parameters and methods are outlined below. Sampling protocol and QA/QC procedures were followed in accordance with the approved FSP (Appendix C) and QAPP (Appendix D).

Soil samples were analyzed for the following parameters:

- VOCs via USEPA Method 8260C;
- SVOCs via USEPA Method 8270D;
- Target Analyte List (TAL) Metals via USEPA Method 6010B/7470A;
- Polychlorinated Biphenyls (PCBs) via USEPA Method 8082; and
- Pesticides via USEPA 8081A.

Soil sample analytical results are discussed in Section 4.0.

3.3 MONITORING WELL INSTALLATION AND SAMPLING

The RI included the installation of two offsite monitoring wells, one downgradient monitoring well, installation of six temporary 1-inch wells, and the collection of one round of groundwater samples from newly-installed monitoring wells and temporary wells in order to characterize the groundwater at the Site. Monitoring well and temporary well locations are depicted on Figure 12.

Monitoring well MW-01 and MW-02 were installed in the western boundary of the Site, in order to evaluate potential offsite mitigation of contaminants (if present).

Monitoring well MW-03 was installed to evaluate groundwater conditions upgradient to the Site to aid in the evaluation of potential onsite migration of contaminants from an offsite source and support onsite characterization of groundwater.

GW-14 and GW-18 were installed to evaluate groundwater conditions downgradient of the former pump island and an abandoned in place USTs.

GW-26, GW-28 and GW-33 were installed to evaluate impacts to groundwater onsite (if present).

GW-29 was installed to evaluate potential onsite migration of contaminants from an offsite source and support the onsite characterization of groundwater.

Depth-to-groundwater measurements were collected from all three (3) permanent wells on November 21, 2016 by Integral. The wells were surveyed by a licensed land surveyor (Donald R. Stedge, PLS) on December 2, 2016. A groundwater contour map is included as Figure 3.

<u>Methodology</u>

MW-1, MW-2, and MW-3 were installed using a track mounted Geoprobe, outfitted with 4¼" hollow-stem auger attachments. All three (3) wells were installed to a depth of 15 ftbg, approximately 7′ below the groundwater table, in order to collect samples in the shallow saturated zone and constructed of 2″ diameter PVC riser with 10′ of .020″ slotted PVC screen. The screen interval straddles the groundwater interface. The annular space around the well was backfilled with No. 2 Morie quartz sand to a depth of 2′ above the top of the well screen, followed by 2′ of bentonite. The remainder of the annulus was backfilled with screened soil cuttings to approximately 6″ below grade. A locking flush-mounted road box, set in a cement apron, was placed around the wells, and the wells were developed on November 14, 2016 to clear the sand pack. Well construction logs are included as Appendix B.

Six (6) temporary 1-inch wells were installed concurrent with six (6) onsite soil borings. Temporary wells were constructed of 1"diameter PVC riser with 10' of 0.020" slotted screen. The screened interval straddled the groundwater interface. The annular space around the well was backfilled with No. 2 Morie quartz sand to a depth of 2' above the top of the well screen. Following the installation of the temporary well, the well was purged with a 3/8"checkball until

purge water was clear or 8 gallons of water were removed from the sampling point. After the water was purged from the temporary wells, a groundwater sample was collected as described below.

Sampling of permanent monitoring wells took place one week following the development of MW-1, MW-2, and MW-3. All wells were purged prior to sampling in accordance with DER-10 requirements. Upon completion of purging, one (1) representative groundwater sample was collected from each well, using dedicated polyethylene tubing attached to a peristaltic pump capable of low flow control. Water quality indicators (pH, temperature, specific conductivity, and turbidity) were monitored every 3-5 minutes while purging. Groundwater samples were collected according to EPA's *Low Flow Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells* (Low Flow Procedures, January 2010). Monitoring well purge logs are included in Appendix B. Sampling protocol and QA/QC procedures were followed in accordance with the approved FSP (Appendix C) and QAPP (Appendix D).

Groundwater samples were pumped directly into laboratory-supplied sample bottles. Samples were sealed, labeled, and placed in a cooler and chilled to 4°C for transport under chain-of-custody procedures. Groundwater samples were submitted to Alpha Analytical Laboratory of Westborough, MA, NYSDOH ELAP #11148, via courier service, and analyzed for the following parameters:

- VOCs via USEPA Method 8260B;
- SVOCs via USEPA Method 8270D;
- TAL Metals via USEPA Method 6010B/7470A (filtered and unfiltered);
- PCBs via USEPA Method 8082 (only new wells); and
- Pesticides via USEPA 8081A (only new wells).

Groundwater sample analytical results are discussed in Section 4.0.

3.4 SOIL VAPOR POINT INSTALLATION AND SAMPLING

The RI included the installation of nine (9) temporary sub-slab soil vapor points, the collection of nine (9) sub-slab soil vapor samples, two (2) ambient air samples, and (1) indoor air sample for the purpose of further characterizing soil vapor and vapor intrusion at the Site. Integral collected the ambient air sample on November 8, 2016 and November 10, 2017. Viridian Environmental Field Services (Viridian) installed and sampled temporary sub-slab soil vapor points on November 9, 2016 and November 10, 2017.

Due to the presence of a tight clay layer beneath the sub-basement areas, the collection of soil vapor from SV-02 was not viable and the ending pressure for the collection of SV-01 was -17 in Hg, resulting in sample dilution. NYSDEC was contacted regarding the aforementioned

sampling issues and on November 17, 2016 requested that indoor air samples be collected in both sub-basement areas. On November 22, 2016 one (1) indoor air sample was collected from each sub-basement area (IA3 and IA4), and the retail store area. Soil vapor and indoor air sample locations are depicted on Figure 12.

Temporary sub-slab soil vapor point SV-03 was installed downgradient of the Site on Lot 65's southwestern boundary to evaluate potential offsite migration of soil vapor west of the Site.

Temporary sub-slab soil vapor points SV-04 and SV-05 were installed along the upgradient Site boundaries to assess potential impacts coming from an offsite source(s).

Temporary sub-slab soil vapor point SV-06 was installed downgradient of the former Lot 60 and Lot 61 UST area to assess potential impacts to onsite soil vapor and provide site coverage.

Temporary sub-slab soil vapor points SV-11 and SV-12 were installed along the west/southwest property boundary of Lot 2 to assess potential impacts coming from an offsite adjacent source(s).

Temporary sub-slab soil vapor point SV-13 was installed downgradient of Lot 5 to assess potential impacts to onsite soil vapor and provide site coverage.

Methodology

Each soil vapor point was installed approximately 2" below the building or parking area slab using dedicated 1/8" Teflon tubing. The tubing was implanted into the hole and the annular space sealed with bentonite to prevent ambient air from entering the area around the point. Once the seal was secure, a "T" fitting and valve was connected on the above-surface end of the tubing. A syringe was used to purge the vapors in the probe and tubing of three volumes. As required by NYSDOH, a helium (He) tracer was used as part of the sampling process; all testing followed the NYSDOH Soil Vapor Guidance.² Prior to sample collection, the He vapor was screened using a field meter and the measurement recorded at each soil vapor sampling location. Prior to sample collection, a multi-gas meter was used to measure the concentration of O₂, CO₂, and CH₄ in each probe, to assess the persistence of hydrocarbon vapors. Following this procedure, each soil vapor sample was collected in clean, batch certified, two (2) liter Summa™ canisters at flow rates no greater than 200 ml/min.

Soil vapor samples were collected over a period of two (2) hours. Soil vapor samples were analyzed for VOCs via USEPA Method TO-15 at a NYSDOH ELAP-certified analytical laboratory.

² Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final. October 2006.

Indoor and Ambient Air Sample

In accordance with the NYSDOH *Guidance for Evaluating Soil Vapor Intrusion*, one (1) ambient air sample was collected prior to the collection of sub-slab soil vapor samples.³ The background ambient air sample was collected in the empty parking along 11th Avenue.

Indoor air samples were collected from the vehicle return and retail areas within Lot 65, and both sub-basement areas (IA-1, IA-2, IA-3, and IA-4, respectively).

Indoor and background air samples were collected in six (6) liter, batch-certified clean SUMMATM canisters attached to 8-hour flow controllers. Samples were collected in the breathing zone (approximately four (4) to six (6) feet above the floor) at flow rates no greater than 200 ml/min.

Sampling protocol and QA/QC procedures were followed in accordance with the approved FSP (Appendix C) and QAPP (Appendix D).

Soil vapor and indoor air samples were analyzed for VOCs via USEPA Method TO-15.

3.5 RIWP DEVIATIONS

A soil boring and permanent monitoring well, SB-13/MW-01, was initially proposed to be advanced offsite along 11th Avenue northwest of the Site; however, due to access limitations along 11th Avenue (aka the Westside Highway), the location was moved approximately ten (10) feet east and installed within the sidewalk along West 23rd Street.

A soil boring and permanent monitoring well, SB-19/MW-02, was initially proposed to be advanced offsite along 11th Avenue southwest of the Site; however, due to access limitations along 11th Avenue, the location was moved approximately five (5) feet east and installed within the boundary of Lot 5.

3.6 QUALITATIVE EXPOSURE ASSESMENT

As a Volunteer in the BCP, 23rd and 11th Associates, L.L.C. is responsible to do a qualitative exposure assessment (QEA) of offsite impacts pursuant to ECL §27-1415(2)(b). Offsite impacts were identified during the performance of the 2016 RI scope. In response, Integral prepared a QEA scope of work that was approved by NYSDEC on April 3, 2017. All QEA sampling locations are depicted on Figure 12.

The QEA included the advancement of two (2) soil borings (SB-31 and SB-32) and the installation of two (2) temporary 1-inch monitoring wells (GW-31 and GW-32) along West 23rd Street to further evaluate petroleum impacts found in RI sample locations SB-25/MW-03. The

³ This limits interference from the soil vapor matrix.

QEA was competed on June 21, 2017 and was performed in accordance with the methodology described in Sections 3.2 and 3.3 of this Report. One soil sample was collected from above the water table and analyzed for TCL VOCs via USEPA Method 8260C and SVOCs via USEPA Method 8270D. If impacts were observed, an additional soil sample was collected from the highest impacted area and run for the same analysis. Two soil samples were collected from SB-32 and one soil sample was collected from SB-31. QEA soil sample results are discussed in Section 4.5.

Groundwater samples were collected from the two newly installed monitoring wells and MW-3 on June 23, 2017 following the methodology described in Section 3.3. Groundwater samples were analyzed for VOCs via USEPA Method 8260B and SVOCs via USEPA Method 8270C. QEA groundwater sample results are discussed in Section 4.5.

The QEA included the installation and sampling of two (2) temporary soil vapor points (SV-07 and SV-08) to further evaluate the PCE impacts located at RI sample location SV-04. On June 22, 2017 Viridian installed and sampled the temporary sub-slab soil vapor points following the methodology described in Section 3.4. The soil vapor samples were analyzed for VOCs via USEPA Method TO-15. QEA soil vapor results are discussed in Section 4.5.

3.7 INVESTIGATION DERIVED WASTE

Un-impacted soil from boreholes not converted to monitoring wells was returned to its original location within approximately 12 inches of the surface and then backfilled with clean fill and patched with concrete. Soil cuttings generated from boreholes converted to monitoring wells, along with purge water from the wells, was contained in 55-gallon drums. Drummed soil cuttings and purge water were characterized and disposed of offsite in accordance with federal, state and local regulations by AARCO on December 15, 2016.

3.8 HEALTH AND SAFETY PLAN (HASP)

All work at the Site was completed in accordance with the Health and Safety Plan (HASP) included as Appendix E.

3.9 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

Samples collected during the RI were collected in accordance with the approved QAPP included as Appendix D.

A Data Usability Summary Report (DUSR) is being prepared by Integral's data management team for the purpose of data validation and will be included with the submission of the final RIR. The DUSR, electronic data summary, and laboratory data packages will be included as Appendix F of the final RIR.

3.10 SUMMARY TABLE OF SAMPLING LOCATIONS

The proposed sampling and analysis table included as part of the RIWP has been updated to reflect sample location deviations discussed in Section 3.5 and is included as Table 11.

3.11 AIR MONITORING

During exterior soil boring and monitoring well installation, community air monitoring was conducted by locating a PID along the work zone perimeter (upwind and downwind) and continuously measuring ambient VOC concentrations. The PID was equipped with an audible alarm and capable of calculating 15-minute running average concentrations, which were compared to programmed action levels. The PID was calibrated at least once daily. Upwind VOC concentrations were measured at the start of each work day and periodically thereafter to establish background conditions. VOC concentrations were measured from the downwind station at a minimum of once every two hours.

4 REMEDIAL INVESTIGATION RESULTS

Section 4 presents the results and findings for work completed as part of the RI. This includes GPR, soil and groundwater sampling, and soil vapor, indoor air and ambient air sampling. Analytical results from the RI are summarized in Tables 12 through 23.

4.1 **GPR**

The GPR was not able to locate any USTs due to interference from reinforced concrete throughout the Site.

4.2 SOIL

A total of 43 soil samples (including 3 duplicates) were collected as part of this RI. Soil boring locations are depicted on Figure 12. PID readings were detected in seven (7) of the 43 samples and ranged from 1.3 ppm in sample SB-20[4-6] to 1076 ppm in sample SB-25[6-8]. The remaining 37 soil samples exhibited no PID readings. PID readings are included in the boring logs provided as Appendix B. Soil analytical results are detailed in Tables 12 -16.

4.2.2 Applicable Regulatory Standards for Soil

The results of the soil analysis were compared to the NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) and the NYSDEC Restricted Residential Use Soil Cleanup Objectives. The Unrestricted Use SCOs are listed in 6 NYCRR Part 375-6.8(a); the restricted Residential SCOs are listed in 6 NYCRR Part 375-6.8(b). The Unrestricted Use SCOs are generally the NYSDEC's most conservative cleanup objectives and represent the concentration of a contaminant in soil which, when achieved at a site, will require no use restrictions on the site for the protection of public health, groundwater and ecological resources due to the presence of contaminants in the soil. The Restricted Residential SCOs are use-based criteria that are compatible with the surrounding area and take into account the future usage of the Site combined with the implementation of institutional and engineering controls.

4.2.3 Soil Results

4.2.3.1 VOCs

Acetone, a common laboratory contaminant, was detected in seven (7) of 43 soil samples at concentrations ranging from 0.054 mg/kg to 0.14 mg/kg, exceeded its Unrestricted SCO of 0.05 mg/kg.

Methylene chloride, another common laboratory contaminant, was detected in one (1) of 43 soil samples [SB-16(6-8)] at a concentration of 0.08 mg/kg, exceeding its Unrestricted SCO of 0.05 mg/kg.

Dedicated sampling equipment was used for soil sample collection, and neither acetone nor methylene chloride was detected in the associated QA/QC samples, suggesting possible laboratory contamination.

Concentrations of benzene, ethylbenzene, total xylenes, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenze exceeded their respective Restricted Residential SCOs in one (1) of 43 soil samples [SB-25 (6-8)].

4.2.3.2 SVOCs

Analytical results for SVOCs indicate that concentrations of various SVOCs exceeded their respective Unrestricted or Restricted Residential SCOs in 10 of 43 soil samples, with the majority of the exceedances occurring in shallow samples above the groundwater table. These samples are SB-14[3-5]; SB-19[5-7], SB-20[4-6]; SB-20[15-17], SB-22 [4-6]; SB-26[3-5]; SB-27[3-5]; SB-34[3-5] and SB-34[14-17].

Concentrations of 3-methylphenol/4-methylphenol exceeded its Unrestricted SCO of 0.33 mg/kg in 2 of 43 soil samples: SB-20[15-17] and SB-36[14-17]

Concentrations of fluoranthene exceeded its Restricted Residential SCO of 100 mg/kg at SB-28 [5-7].

Concentrations of benzo(k)fluoranthene and chrysene exceeded their Restricted Residential SCO of 3.9 mg/kg in five (5) of the above referenced soil samples with two (2) samples, SB-22[4-6] and SB-34[3-5], exceeding the Unrestricted SCO for benzo(k)fluoranthene and chrysene (0.8 mg/kg and 1 mg/kg, respectively).

Eight (8) of the above-referenced soil samples contained concentrations of indeno(1,2,3-cd)pyrene in excess of its Restricted Residential SCO of 0.5 mg/kg.

Six (6) of the above-referenced soil samples exceeded the Restricted Residential SCOs for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene (1 mg/kg, 1 mg/kg, and 0.5 mg/kg, respectively).

SVOC exceedances for Unrestricted SCOs in soil samples for lots 5, 60, 61 and 65 are depicted on Figure 13. SVOC exceedances for Restricted Residential SCOs in soil samples for lots 5, 60, 61 and 65 are depicted on Figure 14. Metal exceedances for Unrestricted and Restricted SCOs in soil samples for lot 2 are depicted in on Figure 15.

4.2.3.3 Metals

Unrestricted SCOs

Lead was detected at concentrations ranging from 65 mg/kg to 2225 mg/kg in 20 of 43 soil samples, exceeding its Unrestricted SCO of 63 mg/kg.

Mercury was detected at concentrations ranging from 0.18 mg/kg to 0.72 mg/kg in 15 of 43 soil samples, exceeding its Unrestricted SCO of 0.18 mg/kg.

Copper was detected at concentrations ranging from 58 mg/kg to 140 mg/kg in 4 of the 43 soil samples, exceeding its Unrestricted SCO of 50 mg/kg.

Zinc was detected at concentrations ranging from 110 mg/kg to 140 mg/kg in 3 of the 43 soil samples, exceeding its Unrestricted SCO of 109 mg/kg.

Arsenic was detected at 14 mg/kg in sample SB-27[3-5], exceeding its Unrestricted SCO of 13 mg/kg.

Restricted Residential SCOs

Lead was detected at concentrations ranging from 550 mg/kg to 750 mg/kg in 3 of 43 soil samples, exceeding its Restricted Residential SCO of 400 mg/kg.

Mercury was detected at concentrations ranging from 0.87 mg/kg to 2.7 mg/kg in 6 of 43 soil samples, exceeding its Restricted Residential SCO of .81 mg/kg.

Arsenic was detected at concentrations ranging from 16 mg/kg to 25.4 mg/kg in 4 of 43 soil samples, exceeding its Restricted Residential SCO of 16 mg/kg.

Soil throughout the Site was found to contain a variety of metals in addition to the ones discussed above, including: aluminum, antimony, barium, beryllium, cadmium, calcium, chromium, cobalt, iron, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium and zinc. Metal concentrations in Site soils are consistent with the presence of historic fill material.

Metal exceedances for Unrestricted SCOs in soil samples for lots 5, 60, 61 and 65 are depicted on Figure 13. Metal exceedances for Restricted Residential SCOs in soil samples for lots 5, 60, 61 and 65 are depicted on Figure 14. Metal exceedances for Unrestricted and Restricted SCOs in soil samples for lot 2 are depicted in on Figure 15.

4.2.3.4 PCBs

PCBs were detected at concentrations well below their respective Restricted Residential SCOs in 1 of 43 samples; SB-38[14-17].

4.2.3.5 Pesticides

4,4'-DDD was detected at concentrations ranging from 0.00441 mg/kg to 0.00953 mg/kg in two (2) of 43 soil samples, exceeding its Unrestricted SCO of 0.0033 mg/kg.

4,4'-DDT was detected at concentrations ranging from 0.00346 mg/kg to 0.00919 mg/kg in two (2) of 43 soil samples, exceeding its Unrestricted SCO of 0.0033 mg/kg.

No pesticide concentrations were detected exceeding Restricted Residential SCOs.

4.3 GROUNDWATER

Nine (9) groundwater samples and one (1) duplicate sample were collected as part of the RI. Monitoring well and temporary well locations are depicted on Figure 12. All groundwater samples were analyzed for VOCs, SVOCs, PCBs, pesticides, and filtered and unfiltered metals. Groundwater analytical results are detailed in Tables 17-21.

4.3.1 Applicable Regulatory Standards for Groundwater

The results of the groundwater analysis were compared to New York State Division of Water Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards (AWQSs) and Guidance Values and Groundwater Effluent Limitations. TOGS standards and guidance values are ambient water quality values that are set to protect the state's waters.

4.3.2 Groundwater Results

4.3.2.1 VOCs

Concentrations of petroleum related VOCs (benzene, toluene, ethylbenzene, m/p-xylene, o-xylene, isopropylbenze, naphthalene, n-propylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and 1,2,4,5-tetramethylbenzne) exceeded TOGS AWQSs in one (1) of nine (9) groundwater samples: GW-25 and its associated duplicate, both collected from monitoring well MW-3. Groundwater sample results for VOCs are depicted on Figure 16.

4.3.2.2 SVOCs

Concentrations of phenol and naphthalene exceeded TOGS AWQS in one (1) of eight (8) groundwater samples: GW-25 and its associated duplicate, both collected from monitoring well MW-3.

Benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene exceeded their TOGS AWQS of $0.002~\mu g/L$ at GW-19, GW-26, GW-28 and GW-33. Benzo(k)fluoranthene exceeded its TOGS AWQS of $0.002~\mu g/L$ at GW-19 and GW-28. The concentrations at each of these locations were very low and are likely biased high due to the presence of sediment entrapped in the groundwater samples. Due to the nature of the soil strata (very fine), turbidity below 10 NTUs was not achieved when collecting the groundwater samples. Groundwater sample results for SVOCs are depicted on Figure 16.

4.3.2.3 Metals

Groundwater throughout the Site was found to contain a variety of total metals, the following of which exceeded TOGS AWQS in one or more samples: antimony, arsenic, barium, beryllium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, sodium, thallium, and zinc.

Analysis for dissolved metals, however, detected only antimony, arsenic, barium, iron, lead, magnesium, manganese, and sodium at concentrations that exceeded TOGS AWQS. A dissolved metals analysis of groundwater is performed by removing the particulates found in the sample with a filter, then analyzing the filtered water for metals. Sediment particulates can result in an erroneous detection of metal concentrations.

4.3.2.4 PCBs

Aroclor 1242 was detected at .059 ug/l, below its TOGS AWQS of .09 ug/l in groundwater sample GW-33.

4.3.2.5 Pesticides

No pesticides were detected in any of the samples collected.

4.4 SOIL VAPOR

Eight (8) soil vapor samples, one (1) duplicate sample, two (2) ambient air sample, and four (4) indoor air samples were collected as part of the RI. Soil vapor sample locations are depicted on Figure 12. Soil vapor and indoor air analytical results are summarized in Tables 22 and 23.

4.4.1 Applicable Regulatory Standards

Soil vapor sample results were compared to NYSDOH Soil Vapor/Indoor Air Matrix 1 and 2 found in the *Guidance for Evaluating Soil Vapor Intrusion in New York State* (NYSDOH 2006) and the NYSDOH Memorandum dated June 25, 2007, which added three additional VOCs to the soil vapor/indoor air decision matrix. The NYSDOH Matrices are used for evaluating human health risk and are based on the relationship between sub-slab soil vapor concentrations and corresponding indoor air concentrations. These matrices are risk management tools, developed by the NYSDOH in conjunction with other agencies, to provide guidance on case-by-case basis regarding actions that should be taken to address current and potential exposures related to soil vapor intrusion. The matrices are intended to be used when evaluating the results from buildings with full slab foundations.

Comparing soil vapor sampling results to the sub-slab vapor concentration range column of the NYSDOH Matrix (Matrix 1 for TCE and Matrix 2 for PCE), allows a comparison to be made relevant to the adjacent lots in order to evaluate the probability of offsite indoor air impacts.

Indoor air sampling results were compared to NYSDOH Indoor Air Guidance Values (AGVs).

In addition to the NYSDOH AGVs, soil vapor and indoor air results were compared to the following known background databases that are referenced in the 2006 NYSDOH guidance:

- NYSDOH 2003, Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes
- EPA 2001, Building Assessment and Survey Evaluation (BASE) Database
- Health Effects Institute (HEI) 2005, Relationship of Indoor, Outdoor, and Personal Air (RIOPA).

Chemical compounds were highlighted as an exceedance if their concentration exceeded the highest value of the above-referenced background databases.

4.4.2 Soil Vapor Results

Laboratory analysis of soil vapor showed PCE to be present in one (1) soil vapor sample, SV-04, at a concentration of 173 μ g/m³. TCE was not detected in any of the soil vapor samples. A comparison of PCE concentrations in soil vapor sample SV-04 to PCE concentrations in indoor air with Matrix 2 indicates that monitoring may be needed to minimize current or potential exposures.

Concentrations of petroleum products were detected in all eight (8) soil vapor samples, including the duplicate. Although petroleum constituents are not included in the NYSDOH Matrices for evaluating soil vapor intrusion they were compared to the background databases described in Section 4.4.1. Of the eight (8) soil vapor samples collected, SV-05 (and its duplicate) was the only sample that did not contain concentrations of VOCs that exceeded the highest background value.

Concentrations of 1,2,4-trimethylbenze exceeded the highest background database value of 9.5 μ g/m³ at three (3) of eight (8) soil vapor samples, with the highest concentration of 1370 μ g/m³ at SV-06.

Concentrations of 1,2-Dichloroethane exceeded the highest background database value of 0.9 $\mu g/m^3$ at three (3) of eight (8) soil vapor samples, with the highest concentration of 6.75 $\mu g/m^3$ at SV-11.

1,3,5-Trimethylbenze was detected at concentrations ranging from 52.1 μ g/m³ to 954 μ g/m³ in two (2) soil vapor samples, exceeding its highest background database value of 3.9 μ g/m³.

4-Ethyltoluene was detected at concentrations ranging from 23.8 μ g/m³ to 346 μ g/m³ in two (2) soil vapor samples, exceeding its highest background database value of 3.6 μ g/m³.

Benzene exceeded the highest background database value of 13 μ g/m³ at SV-01 at a concentration of 84.7 μ g/m³.

Chloroethane exceeded the highest background database value of 1.1 μ g/m³ at SV-11 at a concentration of 1.16 μ g/m³.

Ethylbenzene was detected at concentrations ranging from 87.7 $\mu g/m^3$ to 486 $\mu g/m^3$ in two (2) soil vapor samples (SV-1 and SV-6, respectively), exceeding its highest background database value of 7.62 $\mu g/m^3$.

P/M-xylene was detected at concentrations ranging from 569 μ g/m³ to 2890 μ g/m³ in two (2) soil vapor samples (SV-1 and SV-6, respectively), exceeding its highest background database value of 22.2 μ g/m³.

Toluene was detected at concentrations ranging from 99.5 μ g/m³ to 407 μ g/m³ in two (2) soil vapor samples (SV-1 and SV-6, respectively), exceeding its highest background database value of 43 μ g/m³.

Tetrahydrofuran exceeded the highest background database value of .8 $\mu g/m^3$ at SV-11 at a concentration of 1.18 $\mu g/m^3$.

The presence of petroleum compounds in soil vapor is likely attributable to historical Site operations.

4.4.3 Indoor Air Results

On November 8, 2016 indoor air sample IA-1 was collected by error within the vehicle return area (open to outside air) and was tampered with during collection; therefore, it does not represent a viable indoor air sample and has not been included in the data analysis for this

investigation. As a result, IA-1 was collected the next day within the commercial retail space, the location at which it was intended to be collected. No VOCs were detected in indoor air exceeding AGVs or background levels other than cyclohexane and chloroform, which exceeded the highest background level in IA-3 and IA-4, respectively.

4.5 QUALITATIVE EXPOSURE ASSESSMENT RESULTS

4.5.1 Soil Results

4.5.1.1 VOCs

Ethylbenzene, total xylene, 1,3,5-trimethylbenze, and 1,2,4-trimethylbenzene exceeded their respective Restricted Residential SCO in one of three soil samples (SB-32 [4-5]) collected for the QEA.

4.5.1.2 SVOCs

No SVOC concentrations were detected exceeding Restricted Residential SCOs.

4.5.2 Groundwater Results

4.5.2.1 VOCs

Concentrations of petroleum related VOCs (benzene, toluene, ethylbenzene, xylene, isopropylbenzene, naphthalene, n-propylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenze, and 1,2,4,5-tetramethylbenze) exceeded TOGS AWQS in two of the three groundwater samples (GW-32 and MW-3[GW-25]). Additionally, n-butylbenzene and sec-butylbenzene exceeded their respected TOGS AWQS in GW-32.

4.5.3 Soil Vapor Results

Laboratory analysis of soil vapor showed PCE to be present in the two (2) soil vapor samples, including the duplicate, with a concentration of 111 $\mu g/m^3$ at SV-07 and a concentration of 238 $\mu g/m^3$ at SV-08. A comparison of PCE concentration in both samples to PCE concentrations in indoor air with Matrix 2 indicates that monitoring may be needed to minimize current or potential exposures.

Laboratory analysis also showed TCE to be present in one (1) of the soil vapor samples, SV-08, with a concentration of 2.91 μ g/m³. A comparison of TCE concentration in indoor air with Matrix 1 indications that no further action is required.

Concentrations of VOC compounds (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 4-methyl-2-pentanone, carbon disulfide, ethyl acetate, ethylbenzene, and o-xylene) were detected in the two soil vapor samples, including the duplicate, exceeded the highest background value described in Section 4.4.1. Additionally, concentrations of 1,1,1-trichloroethane, 1,1-dichloroethane, 1,3-butadiene, 2,2,4-trimethylpentane, 4-ethyltoluene, acetone, benzene, cyclohexane, n-hexane, p/m-xylene, and toluene ex the highest background value for SV-08 while chloroform exceeded its highest background value for SV-07 and its duplicate.

5 QUALITATIVE EXPOSURE ASSESSMENT

A QEA has been completed in accordance with Section 3.3(c)4 of DER-10 and the NYSDOH guidance for performing a qualitative EA (NYSDEC DER-10,Technical Guidance for Site Investigation and Remediation, Appendix 3 B).

The objectives of the QEA are to evaluate and document how humans might be exposed to Siterelated contaminants and to assess whether there are complete or potentially complete exposure pathways now and under the reasonably anticipated future land use(s) of the Site.

An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements: (1) a contaminant source; (2) contaminant release and transport mechanisms to an exposed population; (3) a receptor population; (4) a route of exposure; and (5) a point of exposure to a receptor population. The following sections discuss the potential exposure pathways to chlorinated solvents and petroleum at the Site. A table describing the environmental media, potential exposure routes and a human exposure assessment is included at the end of this section.

5.1 CONTAMINANT SOURCES

The contaminants of concern at the Site for this RI include petroleum related VOCs, SVOCs, and metals.

PCE and TCE were detected in one (1) soil vapor sample collected along the eastern boundary of the Site. No sources of PCE were found onsite and historical operations at the Site are not indicative of chlorinated solvent usage.

While no petroleum related VOCs were detected in soil or groundwater collected from onsite RI samples, previous investigations indicate petroleum impacts are present in both media proximal to areas of former petroleum storage.

SVOCs and metals were detected in soils and groundwater throughout the Site and are consistent with the presence of historic fill material.

5.2 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS

The source of SVOCs and metals contaminants is historic fill, with historic Site operations likely contributing to the petroleum concentrations in both soil and groundwater.

5.3 POTENTIAL RECEPTOR POPULATIONS

The potential onsite receptors include Site workers (primarily environmental professionals and contractors), construction workers, visitors and trespassers. Future potential onsite receptors include residents, their visitors and building workers. The potential offsite receptors include offsite workers and offsite residents.

5.4 POTENTIAL ROUTES AND POINTS OF EXPOSURE

Dermal contact and inhalation of VOCs, SVOCs and metals in soil is expected to be limited to construction workers performing excavation at the Site. The Site is currently covered with an asphalt or concrete cap.

Concentrations of VOCs (from previous investigations), SVOCs and metals were detected above TOGS AWQSs, which were developed to be protective of public health based upon groundwater as a potential drinking water source. While concentrations SVOCs and metals exceed TOGS AWQSs, exposure to contaminants via drinking water is not applicable to the Site given the depth to water and the fact that the Site and surrounding community are supplied by New York City's municipal water system.

Dermal and inhalation exposure to VOCs in groundwater is not expected.

There is little potential for volatilization of chlorinated solvents to migrate into ambient air, as the entire Site is capped with an asphalt or concrete slab. Ambient and indoor air was tested November 2016, and no evidence of elevated chlorinated solvents was detected.

The proposed redevelopment of the Site includes the excavation of the entire parcel footprint to a depth approximately 5 feet below the groundwater table. Excavation of this entire volume of material will remove onsite soil sources (if present) and excavation below to groundwater table will eliminate the risk of soil vapor intrusion into the new building. The development will also incorporate, as additional measures, engineering controls (i.e., vapor barrier and composite cover system) to protect against additional offsite sources that may exist in the area.

5.5 SUMMARY OF QUALITATIVE EXPOSURE ASSESSMENT

The table below summarizes the environmental media and potential exposure routes and presents a human exposure assessment for each.

Potential Exposure	Human Exposure Assessment		
Route	Current Occupants	Future Occupants	
Dermal contact with soil/ Inhalation of dust	The entire Site is capped preventing dermal contact to subsurface soils. Inhalation of dust is mitigated by the cap and fresh air exchanges provided by large garage door openings that remain open while the building is occupied	Future exposure during construction will be avoided by having workers conducting subsurface work be properly trained and completing this work using procedures specified in a HASP.	
Ingestion of groundwater	Groundwater is not used as a potable source for the Site or surrounding community.	Groundwater is not used as a potable source for the Site or surrounding community.	
Dermal contact with groundwater/ Inhalation of volatile groundwater constituents	The entire Site is capped preventing dermal contact with groundwater. Inhalation of constituents in groundwater is mitigated by the cap and fresh air exchanges provided by large garage door openings that remain open while the building is occupied	Future exposure would be avoided by having environmental professionals sampling groundwater adhere to a HASP.	

Potential Exposure	Human Exposure Assessment	
Route	Current Occupants	Future Occupants
Inhalation of vapors	Elevated levels are currently present onsite for two constituents (cyclohexane and chloroform) that were detected in soil vapor and within indoor air (indoor air concentrations exceeded background levels).	Exposure of future building residents and workers to volatile constituents in indoor air will be addressed via engineering controls

6 CONCLUSIONS

6.1 SOIL

The results of the RI and previous investigations indicate the presence of SVOC and metal concentrations in Site soils consistent with historic fill. No petroleum related impacts were found in soil samples collected from RI borings advanced onsite and proximal to former or current onsite tanks; however, previous investigations indicate that petroleum impacts may be present in areas of former petroleum storage. The results of the RI do not indicate significant issues or potential releases from the former Site operations.

Petroleum related VOC impacts exceeding Restricted Residential SCOs were detected in one (1) offsite soil sample collected upgradient of the Site [SB-25 (6-8')]. SB-25 was advanced proximal to the former UST and AST area located onsite on Lots 60 and 61 and directly adjacent to the portion of this area located on eastern adjacent Lot 58. Offsite upgradient petroleum impacts were investigated as part of the QEA discussed in Sections 3.6 and 4.5 of this Report.

Current redevelopment plans for the Site include excavation and removal of soil and fill material within the Site boundary (to the extent practicable) to a depth of approximately 16 feet below grade. Excavation of Site soils will address onsite sources contributing to compound exceedances in excess of SCOs in order to achieve the preferred remedial Track, which has yet to be determined.

6.2 GROUNDWATER

Groundwater results from samples collected onsite as part of the RI indicate minor exceedences of TOGS AWQSs for SVOCs and exceedences for naturally occurring dissolved metals. Previous investigations have indicated that groundwater collected in the vicinity of former tank areas is impacted by petroleum related VOCs; this investigation did not find evidence of onsite petroleum impacts to groundwater. Low level concentrations of SVOCs found in onsite groundwater are likely the result of sediment entrapped in the groundwater; as previously stated, turbidity below 10 NTU was not achieved during groundwater sampling due to the fine nature of the soil strata. Groundwater samples that have SVOC exceedances coincided with soil exceedances above the Restricted Residential SCOs.

Petroleum impacts above TOGS AWQS were detected in groundwater sample GW-25 collected from offsite upgradient monitoring well MW-3. MW-3 was installed concurrent with soil boring SB-25, where petroleum impacts to soil were also found. MW-3 was installed directly adjacent to the former UST and AST area present on Site Lots 60 and 61 and offsite eastern adjacent Lot 58. Offsite upgradient petroleum impacts were investigated as part of the QEA discussed in Sections 3.6 and 4.5 of this Report.

Excavation of the Site into and below the groundwater table will eliminate onsite soil sources that would contribute to groundwater contamination.

6.3 SOIL VAPOR

Soil vapor results indicate the presence of elevated concentrations of petroleum compounds in all eight (8) soil vapor samples, including the duplicate and PCE in one sample collected along the southwest Site boundary. No sources of PCE were found onsite, and historical operations at the Site are not indicative of chlorinated solvent usage. PCE was not detected in groundwater and was not detected at concentrations exceeding UUSCOs in Site soils. The presence of petroleum compounds in soil vapor is likely attributable to historical Site operations.

Excavation of the Site into and below the groundwater table will eliminate onsite soil sources of soil vapor contamination. As an additional measure, engineering controls (a vapor barrier) will be installed as part of new construction in order to protect against potential offsite sources that may exist in the area.

7 REFERENCES

AHT, 1994. Boring Report, U-Haul Corporation New York City, American Hi-Tech, Inc., 1994.

ATC, 2000. Site Closure Letter, NYSDEC Spills 9000199 & 9700188, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2000.

ATC, 2001. Site Investigation Report, 562 West 23rd Street, New York, NY, ATC Associates, Inc., 2001.

ATC, December 2001. Supplement to the Site Investigation Report, Groundwater Modeling, 562 West 23rd Street, New York, NY, ATC Associates, Inc., December 2001.

ATC, September 2002. Underground Storage Tank Closure and Focused Subsurface Investigation, 562 West 23rd Street, New York, NY, ATC Associates, Inc., September 2002.

ATC, July 2002. Report on Drum Removal, 562 West 23rd Street, New York, NY, ATC Associates, Inc., July 2002.

ATC, November 2002. Phase I Environmental Site Assessment, 562 West 23rd Street, New York, NY, ATC Associates, Inc., November 2002.

ERM, November 2006. 5,000-gallon Tank Closure Report, 562 West 23rd Street, New York, NY, Environmental Resources Management, November 2006

FEMA. Federal Emergency Management Area National Flood Hazard Layer Web Map Service. https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS.

Integral, December, 2015. Phase I Environmental Site Assessment, U-Haul Site, 562 West 23rd Street, New York, NY, 10011, Integral Engineering, P.C., December 2015.

Integral, February, 2016. Limited Phase II Investigation, 562 West 23rd Street, New York, NY, Integral Engineering, P.C., February 29, 2016.

MRCE, January 2017. Geotechnical Report, West 23rd Street and Eleventh Avenue Development, New York, NY, Mueser Rutledge Consulting Engineers, January 18, 2017.

NYSDEC, 2010. New York State Department of Environmental Conservation, Division of Environmental Remediation. DER Technical Guidance for Site Investigation and Remediation (DER-10). 2010.

NYSDEC, 2010. New York State Department of Environmental Conservation DEC Policy. Commissioner's Policy 51 – Soil Cleanup Guidance. October 21, 2010.

NYSDEC, 2007. Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR), September 2007.

NYSDEC, 2006. 6 NYCRR Part 375 Environmental Remediation Programs. Division of Environmental Remediation, December, 2006.

NYSDEC, 1998. Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values and Effluent Limitations, as revised June 1998.

NYSDEC, undated. DER-23 Citizen Participation Handbook for Remedial Programs, Division of Environmental Remediation.

Pinnacle, 1999. Quarterly Groundwater Sampling Reports, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1999.

Pinnacle, 1998. Groundwater Sampling Report, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1998.

Pinnacle, 1997. Site Assessment Report; U-Haul Moving Center #803-62, 562 West 23rd Street, New York, NY, Pinnacle Environmental Technologies, 1997.

Tyree, April 1997. Tank Removal Letter, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., April 1997.

Tyree, July 1997. Closure Report for the Excavation of Underground Storage Tanks, U-Haul #803-62 562 West 23rd Street, New York, NY, Tyree Brothers Environmental Services, Inc., July 1997.

USEPA, 2015. Web site for Freedom of Information Act request. November 17. United States Environmental Protection Agency.

FIGURES

61 Broadway, Suite 1601 New York, New York 10006 www.integral-corp.com

Figure 1.
Site Location Map
Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

Figure 2.
Site Plan
Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

61 Broadway, Suite 1601 New York, New York 10006 www.integral-corp.com

Groundwater Contour Map Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

GP-1		
5/15/2001	8 ft	
Volatile Organics	mg/kg	
Benzene	ND	
Ethylbenzene	ND	
n-Propylbenzene	ND	
n-Butylbenzene	ND	
sec-Butylbenzene	ND	
1,2,4-Trimethylbenzene	ND	
Toluene	ND	
Semivolatile Organics		
Benzo(k)fluoranthene	ND	

GP-3	
5/15/2001	8 ft
Volatile Organics	mg/kg
Benzene	ND
Ethylbenzene	ND
n-Propylbenzene	ND
n-Butylbenzene	ND
sec-Butylbenzene	ND
1,2,4-Trimethylbenzene	ND
Toluene	ND
Semivolatile Organics	
Benzo(k)fluoranthene	ND

GP-2	
5/15/2001	8 ft
Volatile Organics	mg/kg
Benzene	ND
Ethylbenzene	ND
n-Propylbenzene	ND
n-Butylbenzene	ND
sec-Butylbenzene	ND
1,2,4-Trimethylbenzene	ND
Toluene	ND
Semivolatile Organics	
Benzo(k)fluoranthene	ND

Approximate Area of

GP-1 and GP-3

GP-4		GP	
5/15/2001 Volatile Organics		8 ft	5/15/2001
		mg/kg	Volatile Organics
Benzene		ND	Benzene
Ethylbenzene		ND	- Ethylbenzene
n-Propylbenzene	Э	ND	n-Propylbenzene
n-Butylbenzene		ND	n-Butylbenzene
sec-Butylbenzer	ne	ND	sec-Butylbenzene
1,2,4-Trimethylb	enzene	ND	1,2,4-Trimethylbenz
Toluene		ND	Toluene
Sem ivolatile O	rganics		Semivolatile Orga
Benzo(k)fluoran	thene	ND	Benzo(k)fluoranther
			-

Approximate Area of

GP-2, GP-4, and GP-5

GP-5	
5/15/2001	8 ft
Volatile Organics	mg/kg
Benzene	ND
Ethylbenzene	0.782
n-Propylbenzene	ND
n-Butylbenzene	0.533
sec-Butylbenzene	0.708
1,2,4-Trimethylbenzene	ND
Toluene	0.947
Semivolatile Organics	
Benzo(k)fluoranthene	ND

West 23rd Street

Sam	ple ID	
Date	**NV-RESRR	*NY-UNRES
Depth	INT-INEORIN	IVI-ONINEO
Analyte	mg/kg	mg/kg
Volatile Organics		
Benzene	4.8	0.06
Ethylbenzene	41	1
n-Propylbenzene	100	3.9
n-Butylbenzene	100	12
sec-Butylbenzene	100	11
1,2,4-Trimethylbenzene	52	3.6
Toluene	100	0.7
Semivolatile Organics		
Benzo(k)fluoranthene	3.9	0.8

Soil Boring Location

Removed UST/AST Area Subject Property Location

Soil Boring Location (see Note 8) Closed in Place UST/AST Area

B-1	
1994	8 ft
Volatile Organics	mg/kg
Benzene	ND
Ethylbenzene	ND
n-Propylbenzene	ND
n-Butylbenzene	ND
sec-Butylbenzene	ND
1,2,4-Trimethylbenzene	ND
Toluene	ND
Semivolatile Organics	
Benzo(k)fluoranthene	ND

B-3		
1994	8 ft	1994
Volatile Organics	mg/kg	Volatile O
Benzene	ND	Benzene
Ethylbenzene	ND	Ethylbenze
n-Propylbenzene	ND	n-Propylbe
n-Butylbenzene	ND	n-Butylben
sec-Butylbenzene	ND	sec-Butylb
1,2,4-Trimethylbenzene	ND	1,2,4-Trime
Toluene	ND	Toluene
Semivolatile Organics		Sem ivolat
Benzo(k)fluoranthene	1.8	Benzo(k)flu

B-2		
1994	8 ft	
Volatile Organics	mg/kg	
Benzene	0.0011	
Ethylbenzene	0.0016	
n-Propylbenzene	ND	
n-Butylbenzene	ND	
sec-Butylbenzene	ND	
1,2,4-Trimethylbenzene	0.0009	
Toluene	ND	
Semivolatile Organics		
Benzo(k)fluoranthene	ND	

B-4		
1994	8 ft	
Volatile Organics	mg/kg	
Benzene	0.2	
Ethylbenzene	9.9	
n-Propylbenzene	10	
n-Butylbenzene	19	
sec-Butylbenzene	15	
1,2,4-Trimethylbenzene	16	
Toluene	1.5	
Semivolatile Organics		
Benzo(k)fluoranthene	ND	

- 1. Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
- 2. Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs
- 3. All results in mg/kg
- 4. ND = Not Detected
- 5. * = 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs
- 6. ** = 6 NYCRR Part 375-6.8(b) Restricted Residential Use SCOs
- 7. All results are in mg/kg
- 8. Soil boring locations B-1 through B-4; locations are approximate and individual Sample IDs are unknown
- Results from Boring Report, American Hi-Tech, Inc., 1994; and Site Investigation Report, ATC Associates Inc., 2001

Figure 4.

Historical Soil Sample Results - VOCs and SVOCs, 1994 Boring Report and 2001 Site Investigation Report Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

www.integral-corp.com

Figure 5.Historical Soil Sample Results - VOCs and SVOCs, 1997 UST Closure Report
Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

5/31/1997	5 ft	10 ft	15 ft
Volatile Organics			
Benzene	ND	ND	ND
n-Butylbenzene	ND	ND	ND
sec-Butlybenzene	ND	ND	ND
tert-Butlybenzene	ND	ND	ND
Methyl tert butyl ether	8.2	1.7	2.9
Ethylbenzene	ND	ND	ND
Napthalene	ND	ND	16
n-Propylbenzene	ND	ND	ND
Toluene	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND
Total Xylenes	ND	ND	ND
Semivolatile Organics			
Anthracene	ND	ND	2500
Benzo(a)anthracene	ND	ND	1600
Benzo(a)pyrene	ND	ND	1300
Benzo(b)fluoranthene	ND	ND	900
Benzo(g,h,i)perylene	ND	ND	ND
Benzo(k)fluoranthene	ND	ND	1000
Indeno(1,2,3-cd)pyrene	ND	ND	ND
Chrysene	ND	ND	1400
Dibenzo(a,h)anthracene	ND	ND	ND
Fluoranthene	ND	ND	3600
Fluorene	ND	ND	1200
Napthalene	ND	ND	940
Phenanthrene	ND	ND	3800
Pyrene	ND	ND	3200

	MW-2		
5/31/1997	3 ft	10 ft	15 ft
Volatile Organics			
Benzene	320	ND	ND
n-Butylbenzene	1400	ND	ND
sec-Butlybenzene	170	ND	ND
ert-Butlybenzene	ND	ND	ND
Methyl tert butyl ether	5600	37	12
Ethylbenzene	230	ND	ND
Napthalene	ND	ND	ND
n-Propylbenzene	ND	ND	ND
Toluene	1100	ND	ND
1,3,5-Trimethylbenzene	690	ND	ND
Total Xylenes	2270	ND	ND
Semivolatile Organics			
Anthracene	930	ND	ND
Benzo(a)anthracene	4100	ND	ND
Benzo(a)pyrene	6000	ND	ND
Benzo(b)fluoranthene	5000	ND	ND
Benzo(g,h,i)perylene	2300	ND	ND
Benzo(k)fluoranthene	3600	ND	ND
ndeno(1,2,3-cd)pyrene	2600	ND	ND
Chrysene	3900	ND	ND
Dibenzo(a,h)anthracene	1300	ND	ND
Fluoranthene	5200	ND	ND
Fluorene	ND	ND	ND
Napthalene	ND	ND	ND
Phenanthrene	2500	ND	ND
Pyrene	5100	ND	ND

Basement		MW-3				
5/31/1997		5/31/1997	5 ft	10 ft	15 ft	
Volatile Organics		Volatile Organics				
Benzene	ND	Benzene	ND	ND	ND	
n-Butylbenzene	20000	n-Butylbenzene	ND	ND	ND	
sec-Butlybenzene	4400	sec-Butlybenzene	75	15	ND	
tert-Butlybenzene	ND	tert-Butlybenzene	66	11	ND	
Methyl tert butyl ether	ND	Methyl tert butyl ether	ND	1.8	1.4	
Ethylbenzene	ND	Ethylbenzene	ND	ND	ND	
Napthalene	1300	Napthalene	ND	ND	ND	
n-Propylbenzene	ND	n-Propylbenzene	ND	25	ND	
Toluene	4900	Toluene	ND	4.3	ND	
1,3,5-Trimethylbenzene	5600	1,3,5-Trimethylbenzene	140	1.5	ND	
Total Xylenes	ND	Total Xylenes	37	8.9	ND	
Semivolatile Organics		Semivolatile Organics			•	
Anthracene	ND	Anthracene	540	ND	ND	
Benzo(a)anthracene	ND	Benzo(a)anthracene	3200	ND	ND	
Benzo(a)pyrene	ND	Benzo(a)pyrene	6600	ND	ND	
Benzo(b)fluoranthene	ND	Benzo(b)fluoranthene	6100	ND	ND	
Benzo(g,h,i)perylene	ND	Benzo(g,h,i)perylene	2500	ND	ND	
Benzo(k)fluoranthene	ND	Benzo(k)fluoranthene	3900	ND	ND	
Indeno(1,2,3-cd)pyrene	ND	Indeno(1,2,3-cd)pyrene	2900	ND	ND	
Chrysene	ND	Chrysene	2800	ND	ND	
Dibenzo(a,h)anthracene	ND	Dibenzo(a,h)anthracene	1700	ND	ND	
Fluoranthene	ND	Fluoranthene	2200	ND	ND	
Fluorene	ND	Fluorene	ND	ND	ND	
Napthalene	ND	Napthalene	ND	ND	ND	
Phenanthrene	ND	Phenanthrene	1400	ND	ND	
Pyrene	ND	Pyrene	2400	ND	ND	

Lot 61:

Building B

Lot 65: Building A

Lot 5

Parking Lot

Lot 2

Four Story

Residential Building

Lot 60: Building C

Commercial and

Residential Buildings

Commercial Building also Operated by U-Haul

Depth		
Analyte	mg/kg	mg/kg
Volatile Organics		
Benzene	4.8	0.06
n-Butylbenzene	100	12
sec-Butlybenzene	100	11
tert-Butlybenzene	100	5.9
Methyl tert butyl ether	100	0.93
Ethylbenzene	41	1
Napthalene	100	12
n-Propylbenzene	100	3.9
Toluene	100	0.7
1,3,5-Trimethylbenzene	52	8.4
Total Xylenes	100	0.93
Semivolatile Organics		
Anthracene	100	100
Benzo(a)anthracene	1	1
Benzo(a)pyrene	1	1
Benzo(b)fluoranthene	1	1
Benzo(g,h,i)perylene	100	100
Benzo(k)fluoranthene	3.9	0.8
Indeno(1,2,3-cd)pyrene	0.5	0.5
Chrysene	3.9	1
Dibenzo(a,h)anthracene	0.33	0.33
Fluoranthene	100	100
Fluorene	100	30
Napthalene	100	12
Phenanthrene	100	100
Pyrene	100	100

Note

- Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
- Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs
- 3. * = 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs
- 4. ** = 6 NYCRR Part 375-6.8(b) Restricted Residential Use SCOs
- 5. All results are in mg/kg
- 6. ND = Not detected
- Results from Site Assessment Report, Pinnacle Environmental Technologies, 1997

www.integral-corp.com

Historical Soil Sample Results - VOCs and SVOCs, 1997 Site Assessment Report Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

Methyl tert butyl ether	ND	-	ND	17	12	ND
MW-1						
Date	5/31/1997	3/6/1998	6/20/1998	11/22/1998	3/31/1999	6/27/1999
VOCs						
Benzene	63	ND	ND	ND	ND	ND
n-Butylbenzene	ND		ND	ND	ND	ND
sec-Butlybenzene	ND		ND	ND	ND	ND
tert-Butlybenzene	ND		ND	ND	ND	ND
Ethylbenzene	13	ND	ND	ND	ND	ND
Isopropylbenzene	1.6		ND	ND	ND	ND
p-Isopropylbenzene	ND		-	-	-	-
Napthalene	ND		ND	ND	ND	ND
n-Propylbenzene	2.2		ND	ND	ND	ND
Toluene	1.8	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	12		ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND		ND	ND	ND	ND
m+p-Xylene	4.9		-	-	-	-
o-Xylene	ND		-	-	-	-
Total Xylenes	4.9	ND	ND	ND	ND	ND
Methyl tert butyl ether	ND	-	ND	ND	25	ND

ND

ND

ND

ND

11th Avenue

BWTR		
Date	5/31/1997	
VOCs		
Benzene	ND	
n-Butylbenzene	ND	
sec-Butlybenzene	ND	
tert-Butlybenzene	ND	
Ethylbenzene	ND	
Isopropylbenzene	ND	
p-Isopropylbenzene	ND	
Napthalene	ND	
n-Propylbenzene	ND	
Toluene	ND	
1,2,4-Trimethylbenzene	ND	
1,3,5-Trimethylbenzene	ND	
m+p-Xylene	ND	
o-Xylene	ND	
Total Xylenes	ND	
Methyl tert butyl ether	20	

Approximate Area of

West 23rd Street

Approximate Area of GP-2, GP-4, and GP-5

Lot 61:

Building B Building C

Commercial and

Residential Buildings

GP-1 and GP-3

Lot 65:

Building A

Lot 5

Parking Lot

Lot 2

Four Story

Residential Buildin

GPW-1		
Date	5/15/2001	Date
VOCs		VOCs
Benzene	1.2	Benze
n-Butylbenzene	5.6	n-Buty
sec-Butylbenzene	4.4	sec-B
tert-Butylbenzene	7.2	tert-Bu
Ethylbenzene	2.9	Ethylb
Isopropylbenzene	ND	Isopro
p-Isopropyltoluene	ND	p-Isop
Naphthalene	6.9	Napht
n-Propylbenzene	12.8	n-Prop
Toluene	16.2	Toluer
1,2,4-Trimethylbenzene	10	1,2,4-
1,3,5-Trimethylbenzene	1.6	1,3,5-
m+p-Xylene	7.5	m+p->
o-Xylene	4.4	o-Xyle
Total Xylenes	-	Total 2
Methyl tert butyl ether	18.9	Methy
SVOCs		svoc
Naphthalene	ND	Napht

GPW-2		GPW-3
Date	5/15/2001	Date
VOCs		VOCs
Benzene	ND	Benzene
n-Butylbenzene	ND	n-Butylbenzene
sec-Butylbenzene	1.9	sec-Butylbenzene
tert-Butylbenzene	1	tert-Butylbenzene
Ethylbenzene	2.3	Ethylbenzene
sopropylbenzene	2.2	Isopropylbenzene
p-Isopropyltoluene	ND	p-IsopropyItoluene
Naphthalene	ND	Naphthalene
n-Propylbenzene	2.5	n-Propylbenzene
Toluene	2.7	Toluene
1,2,4-Trimethylbenzene	ND	1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene	ND	1,3,5-Trimethylbenzene
m+p-Xylene	ND	m+p-Xylene
o-Xylene	2.5	o-Xylene
Total Xylenes	-	Total Xylenes
Methyl tert butyl ether	37.6	Methyl tert butyl ether
SVOCs		SVOCs
Naphthalene	ND	Naphthalene

GPW-4		GPW-5	
Date	5/15/2001	Date	
VOCs		VOCs	
Benzene	ND	Benzene	
n-Butylbenzene	ND	n-Butylbenzene	
sec-Butylbenzene	2.2	sec-Butylbenzene	
tert-Butylbenzene	ND	tert-Butylbenzene	
Ethylbenzene	ND	Ethylbenzene	
Isopropylbenzene	3.4	Isopropylbenzene	
p-IsopropyItoluene	ND	p-IsopropyItoluene	
Naphthalene	ND	Naphthalene	
n-Propylbenzene	2.9	n-Propylbenzene	
Toluene	1.9	Toluene	
1,2,4-Trimethylbenzene	ND	1,2,4-Trimethylbenzene	
1,3,5-Trimethylbenzene	ND	1,3,5-Trimethylbenzene	
m+p-Xylene	ND	m+p-Xylene	
o-Xylene	1.6	o-Xylene	
Total Xylenes	-	Total Xylenes	
Methyl tert butyl ether	182	Methyl tert butyl ether	
SVOCs		SVOCs	
Naphthalene	ND	Naphthalene	
		GPW-6	
-	Date	5/15/2001	

VOCs

Commercial Building

also Operated by U-Haul

Approximate Area of GP-6

Benzene

n-Butvlbenzene

sec-Butylbenzene

ert-Butylbenzene

sopropylbenzene

o-Isopropyltoluene

n-Propylbenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Ethylbenzene

Naphthalene

m+p-Xylene

Total Xylenes Methyl tert butyl ether

Naphthalene

o-Xylene

SVOCs

Toluene

парпинанене	ND		
GPW-5			
Date	5/15/2001		
VOCs			
Benzene	3.5		
n-Butylbenzene	2.7		
sec-Butylbenzene	6.6		
ert-Butylbenzene	2.3		
Ethylbenzene	ND		
Isopropylbenzene	11.3		
p-lsopropyltoluene	3.2		
Naphthalene	4.4		
n-Propylbenzene	10.2	l	
Toluene	8.9		
1,2,4-Trimethylbenzene	1.3	l	
1,3,5-Trimethylbenzene	ND	l	
m+p-Xylene	1.4	l	
o-Xylene	4.4	l	
Total Xylenes	-	l	
Methyl tert butyl ether	125	l	
SVOCs		l	
Naphthalene	ND		

24.1

62.1

444

483

147

ND

ND

85

43.4

ND

363

98 1

249

165

ND

21.2

GPW-3

5/15/2001

3.1

6.7

4.2

ND

23.9

ND

3.1

16.8

8.5

ND

2.7

4.2

58.3

	Abandoned Monitoring Wells, Installed by Pinnacle
	X Grab Sample Location
	Closed in Place UST/AST Area
4	Removed UST/AST Area
	Subject Property Location

Sample ID

Analyte	TOGS Class GA Standards*
VOCs	μg/L
Benzene	1
n-Butylbenzene	5
sec-Butylbenzene	5
tert-Butylbenzene	5
Ethylbenzene	5
Isopropylbenzene	5
p-lsopropyltoluene	5
Naphthalene	10
n-Propylbenzene	5
Toluene	5
1,2,4-Trimethylbenzene	5
1,3,5-Trimethylbenzene	5
m+p-Xylene	5
o-Xylene	5
Total Xylenes	5
Methyl tert butyl ether	10
SVOCs	μg/L
Naphthalene	10

- 1. Bold and shaded value indicates an exceedance of Class GA Standards
- 2. * = NYSDEC Division of Water Technical and OperationalGuidance Series (TOGS) 1.1.1, Class GA AmbientWater Quality Standards and Guidance Values
- 3. All results are in µg/L
- 4. ND = Not Detected
- 5. = Not tested
- 6. For MW-1, MW-2, and MW-3, only summary results for five analytes could be found for sampling date 3/6/98
- 7. Results from Site Assessment Reports, Pinnacle Environmental Technologies, 1997-1999; and Site Investigation Report, ATC Associates Inc., 2001

New York, New York 10006

www.integral-corp.com

m+p-Xylene

Total Xylenes

o-Xylene

ND

ND

ND

Feet

Figure 7.

Historical Groundwater Sample Results, 1997-1999 Site Assessment Reports and 2001 Site Investigation Report Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

Figure 8.Soil Boring Locations, 2016 and 2017 Limited Phase II Investigations Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

3.3

4.6

5.8

1.8

3.3

0.85

3.9

NT

NT

NT

1.8

3.6

3.6

1.2

1.6

0.65

3.5

ND

ND

ND

0.039J

0.054J

0.052J

ND

0.033J

ND

0.033J

Ethylbenzene

Xylenes, Total

n-Propylbenzene

Benzo(a)pyrene

Chrysene

Semivolatile Organics

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)Pyrene

Ethylbenzene

Xylenes, Total

n-Propylbenzene

Benzo(a)pyrene

Chrysene

Semivolatile Organics

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)Pyrene

	W23-SB07	
1-2'	2/2/2015	6.5-7.5
	Volatile Organics	
ND	Benzene	ND
ND	Ethylbenzene	ND
ND	Xylenes, Total	ND
ND	n-Propylbenzene	ND
	Semivolatile Organics	•
0.16	Benzo(a)anthracene	ND
0.24	Benzo(a)pyrene	ND
0.24	Benzo(b)fluoranthene	ND
0.12	Benzo(k)fluoranthene	ND
0.14	Chrysene	ND
.045J	Dibenzo(a,h)anthracene	ND
0.16	Indeno(1,2,3-cd)Pyrene	ND

W23-SB03

-Propylbenzene

Semivolatile Organics

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)Pyrene

Benzo(a)pyrene

ND

ND

ND

4.5

4.8

5.2

3.4

3.6

1.1

2-3'

ND

ND

ND

ND

7

6.3

9.8

2.6

6

1.5

3.6

W23-SB01		
2/1/2016	2-3'	9-10'
Volatile Organics		
Benzene	NT	ND
Ethylbenzene	NT	ND
Xylenes, Total	NT	ND
n-Propylbenzene	NT	ND
Semivolatile Organics		
Benzo(a)anthracene	1.2	ND
Benzo(a)pyrene	1.2	ND
Benzo(b)fluoranthene	1.5	ND
Benzo(k)fluoranthene	0.55	ND
Chrysene	1	ND
Dibenzo(a,h)anthracene	0.17	ND
Indeno(1,2,3-cd)Pyrene	0.88	ND

W23-SB02 2/1/2016 2-3' 8-9' 8-9' DUP Volatile Organics Benzene NT ND ND Ethylbenzene NT 1.2J 0.34J NT 0.19J Xylenes, Total 0.59J NT n-Propylbenzene 15 5.5 Semivolatile Organics **11** 0.028J Benzo(a)anthracene 0.22 ND Benzo(a)pyrene 10 0.35 0.35 Benzo(b)fluoranthene 13 0.042J Benzo(k)fluoranthene 4.6 ND 0.16 9.8 0.026J 0.2 Chrysene 0.071J 1.6 ND Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene 6.9 ND 0.2

 Soil Boring Location Closed in Place UST/AST Area

Removed UST/AST Area

Subject Property Location

Sam	ple ID	
Date	**NY-RESRR	*NY-UNRES
Depth	INT-INDOININ	NI-ONICEO
Analyte	mg/kg	mg/kg
Volatile Organics	•	
Benzene	4.8	0.06
Ethylbenzene	41	1
Xylenes, Total	100	0.26
n-Propylbenzene	100	3.9
Semivolatile Organics	•	
Benzo(a)anthracene	1	1
Benzo(a)pyrene	1	1
Benzo(b)fluoranthene	1	1
Benzo(k)fluoranthene	3.9	0.8
Chrysene	3.9	1
Dibenzo(a,h)anthracene	0.33	0.33
Indeno(1,2,3-cd)Pyrene	0.5	0.5

- 1. Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
- 2. **Bold** and shaded value indicates concentration exceeds Restricted-Residential SCOs
- 3. J = Estimated value
- 4. ND = Not Detected
- 5. NT = Not Tested
- 6. * = 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs
- 7. ** = 6 NYCRR Part 375-6.8(b) Restricted Residential Use SCOs
- 8. All results are in mg/kg
- 9. Results from Limited Phase II Investigation, Integral Engineering, 2016

New York, New York 10006

www.integral-corp.com

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)Pyrene

Chrysene

8.5

8.5

3.7

14

Semivolatile Organics

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)Pyrene

Benzo(a)pyrene

Chrysene

Figure 9. Soil Sample Results - VOCs and SVOCs, 2016 Limited Phase II Investigation Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

www.integral-corp.com

Figure 10.

Sample Results – Metals, 2016 Limited Phase II Investigation Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

integral 61 Broadway, Suite 1601 New York, NY 10006 www.integral-corp.com

Figure 11.
Soil Sampling Results - SVOCs and Metals - Lot 2
2016 Limited Phase II Investigation
Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

61 Broadway, Suite 1601 New York, New York 10006 www.integral-corp.com

Remedial Investigation (RI) Sample Locations Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

61 Broadway Suite 1601 New York New York 10006 www.integral-corp.com

Part 375 Unrestricted SCOs Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

61 Broadway, Suite 1601 New York, New York 10006 www.integral-corp.com

RI - SVOCs and Metals in Soil Exceeding Part 375 Restricted Residential SCOs

Remedial Investigation Report 555 West 22nd Street, New York, NY 10011

Figure 15.Soil Sampling Results - SVOCs and Metals - Lot 2
Remedial Investigation Report
555 West 22nd Street, New York, NY 10011

TABLES

Soil Analytical Data Summary - VOCs Phase II Subsurface Investigation Block 694, Lot 5, 60, 61, and 65 Manhattan, New York

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	**NY- RESRR	*NY- UNRES	W23-SB01 (9-10') L1602637-01 2/1/2016 Soil mg/kg	W23-SB02 (8-9') L1602637-02 2/1/2016 Soil mg/kg	W23-SB02 (8-9') DUPLICATE L1602637-07 2/1/2016 Soil mg/kg	W23-SB03 (2-3') L1602637-03 2/1/2016 Soil mg/kg	W23-SB04 (5-7') L1602637-04 2/1/2016 Soil mg/kg	W23-SB05 (1-2') L1602637-05 2/1/2016 Soil mg/kg	W23-SB06 (1-2') L1602637-06 2/1/2016 Soil mg/kg	W23-SB07 (6.5-7.5') L1602736-01 2/2/2016 Soil mg/kg	W23-SB08 (7.5-8.5') L1602736-02 2/2/2016 Soil mg/kg	W23-SB09 (1-2') L1602736-03 2/2/2016 Soil mg/kg	W23-SB10 (1-2') L1602736-04 2/2/2016 Soil mg/kg	W23-SB11 (6.5-7.5') L1602736-05 2/2/2016 Soil mg/kg	W23-SB12 (1-2') L1602736-06 2/2/2016 Soil mg/kg
Volatile Organics															
	100	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	26 (0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0016J	ND	ND
	2.4	0.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0024	ND	ND
1,2-Dichloropropane	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.034	0.00059J	0.0083
Chlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	3.1	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.68	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0016	ND ND	0.0031
		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NS I	NS NC											ND ND		
	NS I	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform	NS I	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4.8	0.06	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.44J	ND ND	ND ND	ND ND	ND ND
	100	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0016J	0.00064J	ND
	41	1	ND	1.2J	0.34J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	21 (0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0011
1,2-Dichlorobenzene	100	1.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
	13	1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		0.93	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p/m-Xvlene		0.93 NS	ND ND	0.59J	0.19J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00077.1	0.0012J	ND ND	ND ND
o-Xylene		NS	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	0.0008J
		0.26	ND	0.59J	0.19J	ND	ND	ND ND	ND	ND ND	ND	0.00077J	0.0012J	ND ND	0.0008J
cis-1,2-Dichloroethene	100	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		0.05	0.026	ND	ND	0.01J	0.0054J	0.012	0.0049J	0.019	ND	0.028	0.0069J	0.034	0.041
Carbon disulfide	NS I	NS	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	0.0012J	ND 0.0036.I
		0.12	0.0053J				ND	ND		0.0023J				0.0054J	
	NS I	NS NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Bromochloromethane		NS	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromoethane	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	100	12	ND	4.2	2	ND	ND	ND	ND	ND	3.6	ND	ND	ND	ND
	100	11	ND	3.1	1.3	ND ND	ND ND	ND ND	ND ND	ND ND	2.8	ND ND	ND ND	ND ND	ND ND
	100	5.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND
		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Chlorotoluene 1.2-Dibromo-3-chloropropane	NS I	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobutadiene	NS I	NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	7.8	2.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.4	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene		NS NS	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.4	ND ND	ND ND	ND ND	0.0016
	100	12	ND	1.6J	0.97J	0.0034J	ND ND	ND ND	ND ND	ND ND	1.4J	ND	ND ND	ND ND	ND
		NS	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		3.9	ND	15	5.5	ND	ND	ND	ND	ND	8	ND	ND	ND	ND
	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52 8	8.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0015J	ND	0.0013J
	52 3	3.6	ND	1J	0.4J	ND	ND	ND	ND	ND	ND	ND	0.0026J	ND	0.0014J
	13 (0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	NS I	NS	ND	10	5.1	ND	ND	ND	ND	ND	3.8	ND	0.00057J	ND	0.00046J
		NS	ND	0.58J	ND	ND	ND	ND	ND	ND	0.45J	ND	0.0012J	ND	0.00057J
		NS	ND	36	22	ND	ND	ND	ND	ND	6.3	ND	ND	ND	ND
Ethyl ether	NS I	NS NS	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

Bold and fancized value indicates concentration exceeds Unrestricted SCOs
Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs
J = Estimated value
ND = Not detected
NS = No Standard
** = 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs
*** = 6 NYCRR Part 375-6.8(b) Restricted Residential Use SCOs Restricted-Residential

Integral Engineering P.C. Page 1 of 1

Soil Analytical Data Summary - SVOCs Phase II Subsurface Investigation Block 694, Lot 5, 60, 61, and 65 Manhattan, New York

			1				W23-SB02 (8-9')							1			1			
Sample ID Lab Sample ID	**NY.	*NY-	W23-SB01 (2-3°)	W23-SB01 (9-10°)	W23-SB02 (2-3')	W23-SB02 (8-9')	DUPLICATE	W23-SB03 (2-3')	W23-SB04 (5-7')	W23-SB05 (1-2')	W23-SB06 (1-2')	W23-SB07 (6.5-7.5')	W23-SB08 (1-2')	W23-SB08 (7.5-8.5')	W23-SB09 (1-2')	W23-SB09 (6-7')	W23-SB10 (1-2')	W23-SB11 (1-2')	W23-SB11 (6.5-7.5')	W23-SB12 (1-2')
Lab Sample ID Sample Date	RESRR U	NRES	L1602637-08 2/1/2016	L1602637-01 2/1/2016	L1602637-09 2/1/2016	L1602637-02 2/1/2016	1.1602637-07 2/1/2016	L1602637-03 2/1/2016	L1602637-04 2/1/2016	L1602637-05 2/1/2016	L1602637-06 2/1/2016	L1602736-01 2/2/2016	L1602736-08 2/2/2016	L1602736-02 2/2/2016	L1602736-03 2/2/2016	L1602736-09 2/2/2016	1.1602736-04 2/2/2016	L1602736-11 2/2/2016	L1602736-05 2/2/2016	L1602736-06 2/2/2016
Sample Date Sample Media Unit of Measure			Seil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Semivolatile Organics			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.2.4-Trichlorobenzene	NS NS	-		ND		ND	ND	ND	ND	ND	ND	ND		ND	ND		ND		ND	ND
1,2-Dichlorobenzene	100 1.1			ND		ND	ND	ND	ND	ND	ND	ND		ND	ND		ND		ND	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene	49 2.4 13 1.8			ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND		ND ND		ND ND	ND ND
Benzoic Acid	NS NS		-	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND		ND ND	ND ND
Benzyl Alcohol	NS NS			ND ND		ND	ND ND	ND	ND 0.26	ND 0.62	ND	ND		ND	ND		ND		ND	ND 0.16
Acenaphthene 2-Chloronaphthalene	100 20 NS NS		0.13J ND	ND ND	1 ND	ND ND	ND ND	0.6 ND	0.26 ND	0.62 ND	ND ND	ND ND	0.94 ND	ND ND	ND ND	ND ND	1 ND	0.17 ND	ND ND	0.16 ND
Hexachiorobenzene	1.2 0.3		ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
Bis(2-chloroethyf)ether	NS NS		ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND
3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,6-Dinitrotoluene	NS NS		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100 100	0	2.3	ND ND	23 ND	0.037J ND	0.25 ND	15 ND	5.8 ND	8.8 ND	0.18 ND	ND ND	7.3	ND ND	0.097J ND	0.032J ND	9.2 ND	1.6	0.033J ND	5.4 ND
4-Chlorophenyl phenyl ether Bis(2-chloroisopropyl)ether	NS NS	-	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND	ND ND ND	ND ND ND	ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND	ND ND ND
Bis(2-chloroethoxy)methane	NS NS		ND					ND			ND	ND ND							ND	
Hexachlorobutadiene Hexachlorocyclopentadiene	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachioroethane	NS NS		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND				
Isophorone Naphthalene	NS NS		ND 0.062.I	ND ND	ND 0.97	ND ND	ND ND	ND 0.28	ND 0.0941	ND 0.341	ND ND	ND ND	ND 1.7	ND 0.86	ND ND	ND ND	ND 0.361	ND 0.17.1	ND ND	0.034J 0.23
Nitrobenzene	15 NS		0.062J ND	ND ND	0.97 ND	ND ND	ND ND	0.28 ND	0.094J ND	ND	ND ND	ND ND	1./ ND	ND	ND ND	ND ND	ND	0.1/J ND	ND ND	0.23 ND
NitrosoDiPhenylAmine(NDPA)/DP	A NS NS		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Ntrosodi-n-propylamine	NS NS		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS NS		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-butylphthalate Di-n-octylphthalate	NS NS		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate Diethyl phthalate	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dimethyl phthalate	NS NS		ND ND	ND ND	ND	ND	ND 0.22	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND 9.4	ND 1.8	ND	ND 3.3
Benzo(a)anthracene Benzo(a)pyrene	1 1	_	1.2	ND ND	11	0.028J ND	0.22 0.35	6.3	4.5 4.8	8.3 14	0.16 0.24	ND ND	8.2 18	ND ND	0.068J 0.082J	0.04J ND	9.4	1.8	0.039J 0.054 I	3.3 4.6
Benzo(b)fluoranthene	i i	_	1.5	ND	13	0.042J	0.35	9.8	5.2	16	0.24	ND	18	ND	0.094J	0.053	19	3.6	0.052J	5.8
Benzo(k)fluoranthene	3.9 0.8	3	0.55	ND	4.6	ND	0.16	2.6	3.4	5.3	0.12	ND	5.2	ND	0.036J	0.018J	8.5	1.2	ND	1.8
Chrysene Acenaphthylene	3.9 1 100 100	0	0.2	ND ND	9.8	0.026J ND	0.2 ND	0.66	3.6 0.034J	7.6 0.11J	0.14 ND	ND ND	7.8 0.16	ND ND	0.059J ND	0.035J ND	8.5 ND	1.6 0.079J	0.033J ND	3.3 0.47
Anthracene	100 100	0	0.39	ND	4.2	ND	0.064J	2.2	1.3	1.7	ND	ND	1.4	ND	ND	ND	1.7	0.32	ND	0.62
Benzo(ghi)perylene Fluorene	100 100	0	0.78 0.1J	ND ND	6.8 0.8	0.034J ND	0.22 ND	4 0.6	2.7 0.14J	9.2 0.28J	0.17 ND	ND ND	16 0.35	ND ND	0.054J ND	0.025J ND	17 0.38J	3.1 0.074J	0.043J ND	3.6 0.12J
Phenanthrene	100 10	0	1.2	ND	15E	0.05J	0.21	6.9	3.5	4.8	0.083J	ND	4	ND	0.066J	0.024J	5.1	0.91	ND	2.4
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene	0.33 0.3 0.5 0.5		0.17 0.88	ND ND	1.6 6.9	ND ND	0.071J 0.2	1.5	1.1	3.1 9.1	0.045J 0.16	ND ND	5.2 19	ND ND	ND 0.044J	ND 0.027J	3.7	0.65 3.5	ND 0.033J	0.85 3.9
Pyrene Pyrene	100 10	0	2	ND	17E	0.035J	0.24	13	4.6	7.8	0.16	ND ND	7.2	ND	0.09J	0.036J	9.2	1.6	0.033J	5.2
4-Chloroaniline	NS NS		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroanline 3-Nitroanline	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Nitroaniline	NS NS		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	59 7 NS NS		0.057J 0.024J	ND ND	1 0.42	ND 0.1.I	ND	0.29	0.14J 0.041J	0.28J 0.13J	ND ND	ND ND	0.28	ND 1.1	ND ND	ND ND	0.28J 0.12J	0.059J 0.095.I	ND ND	0.13J 0.1J
2-Methylnaphthalene 2.4.6-Trichlorophenol	NS NS		ND	ND ND	0.42 ND	0.1J ND	0.2J ND	0.1J ND	ND	0.13J ND	ND ND	ND ND	0.94 ND	1.1 ND	ND ND	ND ND	ND	0.095J ND	ND ND	ND
P-Chloro-M-Cresol	NS NS		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol 2,4-Dichlorophenol	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dimethylphenol	NS NS		ND	ND	0.067J	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol 2,4-Dinitrophenol	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-Dinitro-o-cresol	NS NS		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7 0.8		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol 2 Methylphenol	100 0.3	13	ND ND	ND ND	0.082J 0.042J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Methylphenol 3-Methylphenol/4-Methylphenol 2,4,5-Trichlorophenol	100 0.3	13	ND	ND	0.16J	ND	ND	0.045J	ND	ND	0.038J	ND								
2,4,5-Trichlorophenol	NS NS		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND 0.7	ND	ND ND	ND ND	ND	ND	ND ND	ND
Carbazole 4-Ntrophenol	NS NS		0.16J ND	ND ND	1.7 ND	ND ND	ND ND	0.84 ND	0.45 ND	0.68J ND	ND ND	ND ND	U.7 ND	ND ND	ND ND	ND ND	0.96 ND	0.17J ND	ND ND	0.27 ND
4-Bromophenyl phenyl ether	NS NS		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzaldehyde	NS NS		ND ND		ND ND								ND ND			ND ND		ND ND		
Caprolactam Acetophenone	NS NS		ND ND	ND	ND	, ND	ND	, ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND .	ND ND	, ND	, ND
Biphenyl	NS NS		ND	ND	0.16J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene Atrazine	NS NS	-	ND ND	ND .	ND ND	ND .	ND .	ND .	ND .	ND .	ND .	ND .	ND ND	ND .	ND .	ND ND	ND .	ND ND	ND	ND .
2,3,4,6-Tetrachlorophenol	NS NS		ND		ND ND								ND			ND ND		ND		
	•		•																	

About

Ab

Soil Analytical Data Summary - Total Metals Phase II Subsurface Investigation Block 694, Lot 5, 60, 61, and 65 Manhattan, New York

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	°NY- RESRR	**NY- UNRES		W23-SB01 (9-10') L1602637-01 2/1/2016 Soil mg/kg	W23-SB02 (2-3') L1602637-09 2/1/2016 Soil mg/kg	W23-SB02 (8-9°) L1602637-02 2/1/2016 Soil mg/kg	W23-SB02 (8-9') DUPLICATE L1692637-07 2/1/2016 Soil mg/kg	W23-SB03 (2-3') L1602637-03 2/1/2016 Soil mg/kg	W23-SB04 (5-7') L1602637-04 2/1/2016 Soil mg/kg	W23-SB05 (1-2*) L1602637-05 2/1/2016 Soil mg/kg	W23-SB06 (1-2*) L1602637-06 2/1/2016 Soil mg/kg	W23-SB07 (6.5-7.5') L1602736-01 2/2/2016 Soil mg/kg	W23-SB08 (1-2') L1692736-08 2/2/2016 Soil mg/kg	W23-SB08 (7.5-8.5') 1.1602736-02 2/2/2016 Soil mg/kg	W23-SB09 (1-2*) L1602736-03 2/2/2016 Soil mg/kg	W23-SB09 (6-7') L1602736-09 2/2/2016 Soil mg/kg	W23-SB10 (1-2*) L1602736-04 2/2/2016 Soil mg/kg	W23-SB11 (1-2') L1602736-11 2/2/2016 Soil mg/kg	W23-SB11 (6.5-7.5') 1.1602736-05 2/2/2016 Soil mg/kg	W23-SB12 (1-2') L1692736-06 2/2/2016 Soil mg/kg
Total Metals																				
Aluminum, Total	NS	NS	1900	7300	3700	6300	7600	3500	7000	4200	5200	6800	5000	6600	7100	6600	6300	4700	5800	4700
Antimony, Total	NS	NS	18	ND	1.8J	1.4J	ND	3.8J	1.4J	3.1J	ND	ND	6.4	ND	1J	1J	0.79J	1.5J	ND	1.4J
Arsenic, Total	16	13	2.8	1.6	3.2	11	14	4.2	6.6	16	33	3.5	18	3	5.4	3.6	5.5	3	3.3	3.8
Barium, Total	400	350	110	68	89	60	85	100	120	180	180	54	86	61	110	65	74	93	83	63
Beryllium, Total	72	7.2	0.1J	0.27J	0.13J	0.3J	0.29J	0.14J	0.32J	0.26J	0.38J	0.3J	0.37J	0.29J	0.32J	0.3J	0.55	0.29J	0.28J	0.24J
Cadmium, Total	4.3	2.5	0.22J	ND	0.13J	ND	ND	ND	ND	0.1J	ND	ND	ND	ND	ND	ND	ND	0.09J	ND	ND
Calcium, Total	NS	NS	12000	2900	22000	8100	30000	36000	5700	8100	5900	22000	9100	9500	6200	4000	3700	23000	9000	16000
Chromium, Total	NS	NS	10	14	9.5	18	18	8	13	26	12	10	16	11	11	11	12	11	11	8.7
Cobalt, Total	NS	NS	6.7	4.9	3.7	5.2	11	2.9	5.3	4.8	4.8	5	5.6	4.9	4.6	5.5	5.4	4.2	3.5	3.5
Copper, Total	270	50	73	13	110	57	57	220	29	60	73	13	44	16	27	16	30	49	14	90
Iron, Total	NS	NS	6400	10000	8200	13000	20000	8700	14000	20000	11000	12000	17000	13000	12000	12000	13000	8700	9300	12000
Lead, Total	400	63	87	37	120	150	580	210	110	350	420	30	980	120	100	96	88	94	120	280
Magnesium, Total	NS	NS	1400	2200	3600	2600	9900	2800	2200	1800	1400	3600	1400	2500	2300	2500	2000	2600	2100	2200
Manganese, Total	2000	1600	87	130	160	170	540	170	130	210	140	350	140	180	210	170	260	260	190	200
Mercury, Total	0.81	0.18	0.68	0.22	0.37	0.14	0.38	0.51	0.1	0.96	0.77	0.06J	0.25	0.26	0.3	1.2	0.14	0.28	0.7	0.25
Nickel, Total	310	30	7.1	9	8.5	16	110	9.2	13	12	11	18	14	14	11	12	15	14	9	9.8
Potassium, Total	NS	NS	420	980	1200	640	1200	820	820	1000	1000	630	680	750	1500	1200	710	970	1000	740
Selenium, Total	180	3.9	ND	0.43J	ND	1.8J	1.6J	0.42J	0.44J	1.4J	0.83J	0.52J	0.6J	0.55J	0.48J	ND	0.34J	ND	0.35J	0.52J
Silver, Total	180	2	0.2J	ND	0.26J	ND	0.42J	0.45J	ND	0.27J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium, Total	NS	NS	580	190	790	540	700	390	320	950	580	250	1400	640	230	280	320	650	240	280
Thallium, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium, Total	NS	NS	7.4	19	12	18	41	13	16	16	15	15	12	13	16	14	15	15	14	12
Zinc Total	10000	100																		

Places
Bedd and halicines value indicates concentration exceeds Unrestricted SCOs
Bedd and halicines value
10.6 - Stort discharge
10.8 -

Soil Analytical Data Summary - Pesticides Phase II Subsurface Investigation Block 694, Lot 5, 60, 61, and 65 Manhattan, New York

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	W23-SB01 (2-3') L1602637-08 2/1/2016 Soil mg/kg	W23-SB01 (9-10°) L1692637-01 2/1/2016 Soil mg/kg	W23-SB02 (2-3') L1602637-09 2/1/2016 Soil mg/kg	W23-SB02 (8-9') L1602637-02 2/1/2016 Soil mg/kg	W23-SB02 (8-9') DUPLICATE L1602637-07 2/1/2016 Soil mg/kg	W23-SB03 (2-3') L1602637-03 2/1/2016 Soil mg/kg	W23-SB04 (5-7°) L1602637-04 2/1/2016 Soil mg/kg	W23-SB05 (1-2') L1602637-05 2/1/2016 Soil mg/kg	W23-SB06 (1-2') L1602637-06 2/1/2016 Soil mg/kg	W23-SB07 (6.5-7.5') L1602736-01 2/2/2016 Soil mg/kg	W23-SB08 (1-2') L1602736-08 2/2/2016 Soil mg/kg	W23-SB08 (7.5-8.5') L1602736-02 2/2/2016 Soil mg/kg	W23-SB09 (1-2') L1602736-03 2/2/2016 Soil mg/kg	W23-SB09 (6-7') L1692736-09 2/2/2016 Soil mg/kg	W23-SB10 (1-2*) L1602736-04 2/2/2016 Soil mg/kg	W23-SB11 (1-2') L1602736-11 2/2/2016 Soil mg/kg	W23-SB11 (6.5-7.5') L1602736-05 2/2/2016 Soil mg/kg	W23-SB12 (1-2') L1692736-06 2/2/2016 Soil mg/kg
Pesticides																				
Delta-BHC	100	0.04	ND		ND								ND			ND		ND		
Lindane	1.3	0.1	ND		ND								ND			ND		ND		
Alpha-BHC	0.48	0.02	ND		ND								ND			ND		ND		
Beta-BHC	0.36	0.036	ND		ND								ND			ND		ND		-
Heptachlor	2.1	0.042	ND		ND								ND			ND		ND		
Aldrin	0.097	0.005	ND		ND								ND			ND		ND		-
Heptachlor epoxide	NS	NS	ND		ND								ND			ND		ND		
Endrin	11	0.014	ND		ND								ND			ND		ND		-
Endrin aldehyde	NS	NS	ND		ND								ND			ND		ND		
Endrin ketone	NS	NS	ND	-	ND	-							ND			ND		ND		
Dieldrin	0.2	0.005	ND		ND								ND			ND		ND		
4,4'-DDE	8.9	0.0033	ND	-	0.0296	-							ND			ND		ND		
4,4'-DDD	13	0.0033	ND	-	0.00189								ND			ND		ND		
4,4'-DDT	7.9	0.0033	ND ND		0.0195	-				-			ND			ND ND		ND ND		
Endosulfan I	24	2.4	ND ND	-	ND ND								ND ND			ND ND		ND		
Endosulfan II Endosulfan sulfate	24	2.4	ND ND		ND ND							•	ND ND			ND ND		ND ND		-
Methoxychlor	24	2.4	ND ND	-	ND ND							-				ND ND		ND ND		
	NS	NS NS	ND ND		ND ND				- :	- :			ND ND	- :		ND ND		ND ND		
Toxaphene Chlordane	NS NC	NS	ND ND	-	ND ND			- :	- :			-	ND ND	- :		ND ND	- :	ND ND		_
cis-Chlordane	IVO	0.094	ND ND		ND ND			_	_			-	ND ND			ND	_	ND		
trans-Chlordane	4.2 NC	U.U94	ND ND		ND ND								ND ND	-		ND ND		ND ND		
trans-Uniordane	NS	NS	ND		ND		-						ND			ND		ND		

Bods and fall allicated value indicates concentration exceeds Unrestricted SCDs
Bods and shaded value

J = Estimated value
NS + NS Sandard

- Stort Analyzed

- 8 NYCRR Part 37% S(a) Unrestricted Use SCDs

- 6 NYCRR Part 37%

Soil Analytical Data Summary - PCBs Phase II Subsurface Investigation Block 694, Lot 5, 60, 61, and 65 Manhattan, New York

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure Polychlorinated B	*NY- RESRR	**NY- UNRES	W23-SB01 (2-3') L1602637-08 2/1/2016 Soil mg/kg	W23-SB01 (9-10') L1602637-01 2/1/2016 Soil mg/kg	W23-SB02 (2-3') L1602637-09 2/1/2016 Soil mg/kg	W23-SB02 (8-9') L1602637-02 2/1/2016 Soil mg/kg	W23-SB02 (8-9') DUPLICATE L1602637-07 2/1/2016 Soil mg/kg	W23-SB03 (2-3') L1602637-03 2/1/2016 Soil mg/kg	W23-SB04 (5-7') L1602637-04 2/1/2016 Soil mg/kg	W23-SB05 (1-2') L1602637-05 2/1/2016 Soil mg/kg	W23-SB06 (1-2') L1602637-06 2/1/2016 Soil mg/kg	W23-SB07 (6.5-7.5') L1602736-01 2/2/2016 Soil mg/kg	W23-SB08 (1-2') L1602736-08 2/2/2016 Soil mg/kg	W23-SB08 (7.5-8.5') L1602736-02 2/2/2016 Soil mg/kg	W23-SB09 (1-2') L1602736-03 2/2/2016 Soil mg/kg	W23-SB09 (6-7') L1602736-09 2/2/2016 Soil mg/kg	W23-SB10 (1-2') L1602736-04 2/2/2016 Soil mg/kg	W23-SB11 (1-2') L1602736-11 2/2/2016 Soil mg/kg	W23-SB11 (6.5-7.5') L1602736-05 2/2/2016 Soil mg/kg	W23-SB12 (1-2') L1602736-06 2/2/2016 Soil mg/kg
Aroclor 1016	pnenyis (i	0.1	ND		ND							1	ND			ND		ND		
Aroclor 1221	1	0.1	ND ND		ND ND		-				-		ND ND			ND ND		ND ND		
Aroclor 1232	1	0.1	ND.		ND.								ND			ND ND	-	ND.		
Aroclor 1242	1	0.1	ND ND	-	ND ND	-			-				ND ND	-		ND ND	-	ND ND	-	
Aroclor 1248	1	0.1	ND		ND								ND			ND		ND		
Aroclor 1254	1	0.1	ND	-	ND		-		-				ND			ND	-	ND	-	
Aroclor 1260	1	0.1	ND	-	ND		-		-				ND			ND	-	0.0156J	-	
Aroclor 1262	1	0.1	ND	-	ND			-	-		-		ND		-	ND	-	ND		
Aroclor 1268	1	0.1	ND	-	ND		-		-				ND			ND	-	ND	-	
PCBs, Total	NS	NS	ND		ND								ND			ND		0.0156J		

Notes:
Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
Bold and shaded
J = Estimated value
ND = Not detected
NS = No Standard
- = NK CRAIN_STATUS = NK CRAIN_STATUS

Soil Analytical Data Summary - VOCs Phase II Subsurface Investigation Block 694, Lot 2 Manhattan, New York

Sample Media Unit of Measure Volatile Organics Methylene chloride	NY-	NY-	LOT2-SB1 (7-9) L1721363-09 6/22/2017 Soil	LOT2-SB2 (4-6) L1721363-10 6/22/2017 Soil	LOT2-SB3 (6-8) L1721363-11 6/22/2017 Soil	LOT2-SB4 (6- L1721363-12 6/22/2017 Soil
Methylene chloride	RESRR	UNRES	mg/kg	mg/kg	mg/kg	mg/kg
Methylene chloride						
	100	0.05	ND	ND	ND	ND
,1-Dichloroethane	26	0.27	ND	ND	ND	ND
Chloroform Carbon tetrachloride	49 2.4	0.37	ND ND	ND ND	ND ND	ND ND
,2-Dichloropropane	NS NS	NS	ND	ND ND	ND	ND
Dibromochloromethane	NS	NS	ND	ND	ND	ND
,1,2-Trichloroethane	NS	NS	ND	ND	ND	ND
etrachloroethene	19	1.3	ND	ND	ND	ND
Chlorobenzene	100	1.1	ND	ND	ND	ND
richlorofluoromethane	NS	NS	ND	ND	ND	ND
,2-Dichloroethane .1.1-Trichloroethane	3.1 100	0.02	ND ND	ND ND	ND ND	ND ND
3romodichloromethane	NS	NS	ND ND	ND ND	ND ND	ND ND
rans-1,3-Dichloropropene	NS	NS	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND
,3-Dichloropropene, Total	NS	NS	ND	ND	ND	ND
,1-Dichloropropene	NS	NS	ND	ND	ND	ND
Bromoform	NS	NS	ND	ND	ND	ND
,1,2,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND
Benzene	4.8 100	0.06	ND ND	ND ND	ND ND	ND ND
Foluene Ethylbenzene	100 41	0.7	ND ND	ND ND	ND ND	ND ND
Chloromethane	NS NS	NS	ND ND	ND ND	ND ND	ND ND
Bromomethane	NS	NS	ND	ND	ND	ND
/inyl chloride	0.9	0.02	ND	ND	ND	ND
Chloroethane	NS	NS	ND	ND	ND	ND
,1-Dichloroethene	100	0.33	ND	ND	ND	ND
rans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND
richloroethene 2-Dichlorobenzene	21 100	0.47	ND ND	ND ND	ND ND	ND ND
.3-Dichlorobenzene	49	2.4	ND ND	ND ND	ND ND	ND ND
.4-Dichlorobenzene	13	1.8	ND ND	ND ND	ND ND	ND ND
Methyl tert butyl ether	100	0.93	ND	ND	ND	ND
/m-Xylene	NS	NS	ND	ND	ND	ND
-Xylene	NS	NS	ND	ND	ND	ND
(ylenes, Total	100	0.26	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	0.25	ND	ND	ND	ND
,2-Dichloroethene, Total Dibromomethane	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
Styrene	NS	NS	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane	NS	NS	ND	ND	ND	ND
Acetone	100	0.05	0.011	0.0038 J	0.0073 J	0.0046 J
Carbon disulfide	NS	NS	ND	ND	ND	ND
2-Butanone	100	0.12	ND	ND	ND	ND
/inyl acetate	NS	NS	ND	ND	ND	ND
I-Methyl-2-pentanone	NS	NS	ND ND	ND ND	ND ND	ND ND
2-Hexanone	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
Bromochloromethane	NS	NS	ND ND	ND ND	ND ND	ND ND
2,2-Dichloropropane	NS	NS	ND	ND	ND	ND
,2-Dibromoethane	NS	NS	ND	ND	ND	ND
,3-Dichloropropane	NS	NS	ND	ND	ND	ND
,1,1,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND
Bromobenzene	NS	NS	ND	ND	ND	ND
i-Butylbenzene ec-Butylbenzene	100	12 11	ND ND	ND ND	ND ND	ND ND
ec-Butylbenzene ert-Butylbenzene	100 100	11 5.9	ND ND	ND ND	ND ND	ND ND
-Chlorotoluene	NS	NS NS	ND ND	ND	ND	ND ND
-Chlorotoluene	NS	NS	ND	ND	ND	ND
,2-Dibromo-3-chloropropane	NS	NS	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND
lexachlorobutadiene	NS	NS	ND	ND	ND	ND
sopropylbenzene	NS 100	NS 12	ND ND	ND ND	ND ND	ND ND
sopropylbenzene -Isopropyltoluene		NS NS	ND ND	ND ND	ND ND	ND ND
sopropylbenzene I-sopropyltoluene Iaphthalene	NS			, ND		
sopropylbenzene i-Isopropyltoluene laphthalene kcrylonitrile	NS 100	3.9	ND	ND	ND	ND
sopropylbenzene I-Isopropyltoluene Iaphthalene Icrylonitrile I-Propylbenzene			ND ND	ND ND	ND ND	ND ND
sopropylbenzene I-Isopropyltoluene Japhthalene Acrylonitrile I-Propylbenzene J.2,3-Trichlorobenzene	100	3.9				
sopropylbenzene -Isopropyltoluene laphthalene korylonitrile -Propylbenzene .2,3-Trichlorobenzene .3,5-Trimethylbenzene	100 NS NS 52	3.9 NS NS 8.4	ND ND ND	ND ND ND	ND ND ND	ND ND ND
sopropylbenzene -Isopropyltoluene Agphthalene Acrylonitrile -Propylbenzene -2,3-Trichlorobenzene -2,4-Trinchlorobenzene -2,4-Trimethylbenzene -2,4-Trimethylbenzene	100 NS NS 52	3.9 NS NS 8.4 3.6	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
sopropylbenzene -lsopropyltoluene daphthalene kcrylonitrile -Propylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	100 NS NS 52 52 13	3.9 NS NS 8.4 3.6 0.1	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
sopropylbenzene -bispropylbenzene -bispropylbenzene -laphthalene -korylonitrille -Propylbenzene -2,3-1 richilorobenzene -3,3-5 rimethylbenzene -3,5-5 rimethylbenzene -4,4-Dioxane -Diethylbenzene	100 NS NS 52 52 13	3.9 NS NS 8.4 3.6 0.1	ND ND ND ND ND ND	ND	ND ND ND ND ND ND	ND ND ND ND ND ND
sopropylbenzene -isopropyliohene laghthaliene korjointille -Pripopylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	100 NS NS 52 52 13	3.9 NS NS 8.4 3.6 0.1	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
lexachlorobutadiene sopropylbarene -Isopropyltoluene laghthalene korjonitrile -Propylbenzene 1,2,3-Trichlorobenzene 1,24-Trinderbylbenzene 1,4-Tinderbylbenzene 1,4-Tinderbylbenzene -I-Ethyltoluene 2,4,4-Tiramethylbenzene -Ithyltoluene 2,4,5-Teramethylbenzene -Ithyltoluene 2,4,5-Teramethylbenzene -Ithyltoluene 2,4,5-Teramethylbenzene -Ithyltoluene	100 NS NS 52 52 13 NS	3.9 NS NS 8.4 3.6 0.1 NS	ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND	ND

Integral Consulting, P.C. Page 1 of 1 Soil Analytical Data Summary- SVOCs Phase II Subsurface Investigation Block 694, Lot 2 Manhattan, New York

Sample ID	ı		LOT2-SB1 (7	7-9)	LOT2-S	R2 (4.6)	LOT2-S	R3 (6-8)	LOT2-S	R4 (6-8)
Lab Sample ID			L1721363-0		L1721		L17213		L17213	
Date of Sampling			6/22/2017		6/22/		6/22/2		6/22/	
Sample Media	NY-	NY-	Soil		Se	oil	So	il	So	il
Unit of Measure	RESRR	UNRES	mg/kg		mg	/kg	mg/	kg	mg/	kg
Semivolatile Organics										
Acenaphthene	100	20	0.17		0.84		ND		ND	
1,2,4-Trichlorobenzene	NS	NS	ND		ND		ND		ND	
Hexachlorobenzene	1.2 NS	0.33 NS	ND ND		ND ND		ND ND		ND ND	
Bis(2-chloroethyl)ether 2-Chloronaphthalene	NS NS	NS NS	ND ND		ND		ND		ND ND	
1,2-Dichlorobenzene	100	1.1	ND	+	ND		ND		ND	
1,3-Dichlorobenzene	49	2.4	ND	t	ND		ND		ND	
1,4-Dichlorobenzene	13	1.8	ND		ND		ND		ND	
3,3'-Dichlorobenzidine	NS	NS	ND		ND		ND		ND	
2,4-Dinitrotoluene	NS	NS	ND	Į.	ND		ND		ND	
2,6-Dinitrotoluene Fluoranthene	NS 100	NS 100	ND 3.2	1	ND 8.8		ND 0.032		ND 0.12	
4-Chlorophenyl phenyl ether	NS NS	NS	ND		ND		0.032 ND	J	0.12 ND	
4-Bromophenyl phenyl ether	NS NS	NS NS	ND ND		ND		ND ND		ND ND	
Bis(2-chloroisopropyl)ether	NS	NS	ND	t	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	NS	ND		ND		ND		ND	
Hexachlorobutadiene	NS	NS	ND		ND		ND		ND	
Hexachlorocyclopentadiene	NS	NS	ND		ND		ND		ND	
Hexachloroethane	NS	NS	ND		ND		ND		ND	
Isophorone Naphthalene	NS 100	NS 12	ND 0.14	J	ND 0.78		ND ND		ND 0.037	
Nitrobenzene	15	NS	ND	J	ND		ND		ND	J
NDPA/DPA	NS	NS	ND		ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	NS	ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	NS	ND		ND		ND		ND	
Butyl benzyl phthalate	NS	NS	ND		ND		ND		0.058	J
Di-n-butylphthalate	NS NS	NS NS	ND ND		ND ND		ND ND		ND ND	
Di-n-octylphthalate Diethyl phthalate	NS	NS NS	ND ND		ND		ND		ND ND	
Dimethyl phthalate	NS	NS	ND	t	ND		ND		ND	
Benzo(a)anthracene	1	1	2.2		9.2		0.031	J	0.072	J
Benzo(a)pyrene	1	1	3.3		14		ND		0.082	J
Benzo(b)fluoranthene	1	11	3.6		23		0.052	J	0.09	J
Benzo(k)fluoranthene Chrysene	3.9	0.8	1.1 2.1	_	4.8 8.9		ND 0.028	J	0.037	J
Acenaphthylene	100	100	0.13		0.08	J	ND		ND	
Anthracene	100	100	0.57		1.9		ND		ND	
Benzo(ghi)perylene	100	100	2.3		11		0.045	J	0.055	J
Fluorene	100	30	0.16	J	0.44		ND		ND	
Phenanthrene Dibenzo(a,h)anthracene	100 0.33	100 0.33	2.3 0.53	_	6.4 2.6		ND ND		0.11 ND	
Indeno(1,2,3-cd)pyrene	0.5	0.5	2.6		12		0.044		0.057	
Pyrene	100	100	2.9		8.5		0.031	J	0.11	
Biphenyl	NS	NS	ND		0.12	J	ND		ND	
4-Chloroaniline	NS	NS	ND		ND		ND		ND	
2-Nitroaniline	NS	NS	ND		ND		ND		ND	
3-Nitroaniline 4-Nitroaniline	NS NS	NS NS	ND ND		ND ND		ND ND		ND ND	
Dibenzofuran	59	7	0.12	J	0.5		ND ND		ND ND	
2-Methylnaphthalene	NS	NS	0.053	Ĵ	0.7		ND		0.036	J
1,2,4,5-Tetrachlorobenzene	NS	NS	ND		ND		ND		ND	
Acetophenone	NS	NS	ND		ND		ND		ND	
2,4,6-Trichlorophenol	NS NS	NS NS	ND ND		ND ND		ND ND		ND ND	
p-Chloro-m-cresol 2-Chlorophenol	NS NS	NS NS	ND ND		ND ND		ND ND		ND ND	
2.4-Dichlorophenol	NS NS	NS NS	ND		ND		ND		ND ND	
2,4-Dimethylphenol	NS	NS	ND		ND		ND		ND	
2-Nitrophenol	NS	NS	ND		ND		ND		ND	
4-Nitrophenol	NS	NS	ND ND		ND		ND ND		ND ND	
2,4-Dinitrophenol	NS NC	NS NS	ND ND		ND ND		ND ND		ND ND	
4,6-Dinitro-o-cresol Pentachlorophenol	NS 6.7	0.8	ND ND		ND ND		ND ND		ND ND	
Phenol	100	0.33	ND		ND		ND		ND ND	
2-Methylphenol	100	0.33	ND		ND		ND		ND	
3-Methylphenol/4-Methylphenol	100	0.33	ND		ND		ND		ND	
2,4,5-Trichlorophenol	NS	NS	ND		ND		ND		ND	
Benzoic Acid Benzyl Alcohol	NS NS	NS NS	ND ND		ND ND		ND ND		ND ND	
Carbazole	NS NS	NS NS	0.26		1.1		ND ND		ND ND	
	140	140	0.20		- 10.1					

Notes:

Bold and Italicized value indicates concentration
exceeds Unrestricted SCOs
Bold and Stadied Value indicates concentration
exceeds Restricted-Residential SCOs
"NY-RESRR: Restricted-Residential Citeria, New
York Restricted use current as of 5/2007
"NY-UNRES New York Unrestricted use Criteria
current as of 5/2007
J = Estimated value
P - The RPD between the results for the two columns exceeds the method-specified criteria.
I - The lower value for the two columns has been reported due to obvious interference.
ND = Not detected
NS = No Standard
- = Not Analyzed

Integral Engineering, P.C. Page 1 of 1

Soil Analytical Data Summary- Metals Phase II Subsurface Investigation Block 694, Lot 2 Manhattan, New York

Sample ID Lab Sample ID Date of Sampling Sample Media Unit of Measure	NY- RESRR	NY- UNRES	LOT2-SI L17213 6/22/2 So mg/	363-09 2017 il	LOT2-SI L17213 6/22/2 So mg/	363-10 2017 il	LOT2-SI L17213 6/22/2 So mg/	63-11 2017 il	LOT2-SI L17213 6/22/2 So mg/	63-12 2017 il
Total Metals			1							
Aluminum	NS	NS	5960		1230		4790		6310	
Antimony	NS	NS	ND		ND		ND		ND	
Arsenic	16	13	2.54		8.49		7.14		2.04	
Barium	400	350	99.9		275		39.2		147	
Beryllium	72	7.2	0.26	J	0.13	J	0.263	J	0.315	J
Cadmium	4.3	2.5	0.327	J	0.195	J	0.385	J	0.568	J
Calcium	NS	NS	2830		2680		21000		12100	
Chromium	NS	NS	9.08		5.04		9.2		11.8	
Cobalt	NS	NS	5.87		3.95		4.04		4.59	
Copper	270	50	12.7		33.6		14.1		21.2	
Iron	NS	NS	12300		4610		14600		12400	
Lead	400	63	13		153		141		175	
Magnesium	NS	NS	2770		369		2420		2200	
Manganese	2000	1600	282		62.7		245		307	
Mercury	0.81	0.18	0.06	J	0.34		0.29		0.24	
Nickel	310	30	12.6		6.7		11.5		10.7	
Potassium	NS	NS	430		192	J	719		927	
Selenium	180	3.9	ND		ND		0.841	J	ND	
Silver	180	2	ND		ND		ND		ND	
Sodium	NS	NS	162	J	179	J	201	J	196	
Thallium	NS	NS	ND		ND		ND		ND	
Vanadium	NS	NS	11.9		11.8		13.8		16	
Zinc	10000	109	33.9		44.2		58		81.2	

Notes:

Bold and *Italicized* value indicates concentration exceeds Unrestricted SCOs

Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007

**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value

P - The RPD between the results for the two columns exceeds the method-specified criteria.

I - The lower value for the two columns has been reported due to obvious interference.

ND = Not detected

NS = No Standard

- = Not Analyzed

Integral Engineering, P.C.
Page 1 of 1

Soil Analytical Data Summary- Pesticides Phase II Subsurface Investigation Block 694, Lot 2 Manhattan, New York

Sample ID			LOT2-SB1 (7-9)	LOT2-SB2 (4-6)	LOT2-SB3 (6-8)	LOT2-SB4 (6-8)
Lab Sample ID			L1721363-09	L1721363-10	L1721363-11	L1721363-12
Date of Sampling			6/22/2017	6/22/2017	6/22/2017	6/22/2017
Sample Media	NY-	NY-	Soil	Soil	Soil	Soil
Unit of Measure	RESRR	UNRES	mg/kg	mg/kg	mg/kg	mg/kg
Organochlorine Pe	sticides					
Delta-BHC	100	0.04	-	-	-	-
Lindane	1.3	0.1	•	-	-	-
Alpha-BHC	0.48	0.02	-	-	-	-
Beta-BHC	0.36	0.036	-	-	-	-
Heptachlor	2.1	0.042	-	-	-	-
Aldrin	0.097	0.005	•	-	-	-
Heptachlor epoxide	NS	NS	•	-	•	=
Endrin	11	0.014	-	-	-	-
Endrin aldehyde	NS	NS	-	-	-	-
Endrin ketone	NS	NS	1	-		-
Dieldrin	0.2	0.005	•	-	•	=
4,4'-DDE	8.9	0.0033	•	-	•	=
4,4'-DDD	13	0.0033	1	-	ı	-
4,4'-DDT	7.9	0.0033	1	-		-
Endosulfan I	24	2.4	•	-	•	-
Endosulfan II	24	2.4	•	-	-	-
Endosulfan sulfate	24	2.4	ı	-	ı	-
Methoxychlor	NS	NS	1	-	-	-
Toxaphene	NS	NS	•	-	-	-
cis-Chlordane	4.2	0.094	•	-	-	-
trans-Chlordane	NS	NS	•	-	•	-
Chlordane	NS	NS	=	-	-	=

Notes:

Bold and *Italicized* value indicates concentration exceeds Unrestricted SCOs

Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007

**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value

P - The RPD between the results for the two columns exceeds the method-specified criteria.

I - The lower value for the two columns has been reported due to obvious interference.

ND = Not detected

NS = No Standard

- = Not Analyzed

Soil Analytical Data Summary - PCBs Phase II Subsurface Investigation Block 694, Lot 2 Manhattan, New York

Sample ID Lab Sample ID Date of Sampling Sample Media Unit of Measure	NY- RESRR	NY- UNRES	LOT2-SB1 (7-9) L1721363-09 6/22/2017 Soil mg/kg	LOT2-SB2 (4-6) L1721363-10 6/22/2017 Soil mg/kg	LOT2-SB3 (6-8) L1721363-11 6/22/2017 Soil mg/kg	LOT2-SB4 (6-8) L1721363-12 6/22/2017 Soil mg/kg
Polychlorinated E	sipnenyis	5				
Aroclor 1016	1	0.1	-	•	-	-
Aroclor 1221	1	0.1	-	-	-	-
Aroclor 1232	1	0.1	-	-	-	-
Aroclor 1242	1	0.1	-	-	-	-
Aroclor 1248	1	0.1	-	-	-	-
Aroclor 1254	1	0.1	-	-	-	-
Aroclor 1260	1	0.1	-	-	-	-
Aroclor 1262	1	0.1	-	-	-	-
Aroclor 1268	1	0.1	-	-	-	-
PCBs, Total			-	-	-	-

Notes:

Bold and *Italicized* value indicates concentration exceeds Unrestricted SCOs

Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007

**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value

P - The RPD between the results for the two columns exceeds the method-specified criteria.

I - The lower value for the two columns has been reported due to obvious interference.

ND = Not detected

NS = No Standard

- = Not Analyzed

RIR Sample Rationale and Analysis Remedial Investigation Report 555 West 22nd Steet

Matrix	Sample ID	Sample Depth	Rationale	Drilling Method	QA/QC	Sampling Method	Analytical Method	Deviations from Work Plan
	SB13	(5-7) (15-17)	Evaluate offsite soil conditions	Geoprobe with a Hollow Stem Auger				Location moved from 11th Avenue ~10 feet to the west to West 23rd Street due to access.
	SB14	(3-5) (15-17)	Evaluate potential soil impacts from former onsite pump island					
	SB15	(7-9) (15-17)	Evaluate potential soil impacts from former boiler room source(s)					
	SB16	(6-8) (15-17)	Evaluate potential soil impacts from former onsite UST and boiler room source(s)	Geoprobe				None
	SB17	(5-7) (15-17)	General site coverage and site characterization					
	SB18	(5-7) (15-17)	Evaluate potential soil impacts from former onsite USTs					
	SB19	(5-7) (15-17)	Evaluate downgradient soil conditions	Geoprobe with a Hollow Stem Auger				Location moved from 11th Avenue ~5 feet to the west to be on Lot 5 parking lot due to access.
	SB20	(4-6) (15-17)					VOCs by EPA 8260C,	
	SB21	(3-5) (15-17) (4-6)	General site coverage and site characterization		DUP-01		SVOCs by EPA 8270D, TAL Metals by 6010C/7471B, PCBs by EPA 8082, and	
	SB22 SB23	(15-17) (5-7)		Geoprobe	SB-27(3-5)		pesticides by 8081B	None
Soil	SB24	(15-17) (3-5) (15-17)	Evaluate potential soil impacts from former onsite USTs		DUP-02 SB-17(5-7)	PID Screening/		
JUII	SB25	(15-17) (6-8) (15-17)	Evaluate potential offsite soil conditions	Geoprobe with a Hollow Stem Auger	MS/MSD SB-14 (3-5)	Grab		
	SB26	(3-5) (13-15)	Evaluate potential soil impacts from former onsite USTs	Stom Plugol	MS/MSD SB-19(15-17)			The bottom sample was collected from 13-15 feet bgs, there was no recovery in the last macrocore.
	SB27	(3-5) (15-17)	General site coverage and site characterization					
	SB28	(5-7) (15-17)	Evaluate potential soil impacts from former onsite USTs					
	SB29	(5-7) (15-17)	General site coverage and site characterization					
	SB30	(8-10) (15-17)	General site coverage and site characterization	Geoprobe				
	SB31	(5-7)	Further evaluate potential petroleum impacts found in SB25	·			VOCs by EPA 8260C,	None
	SB32	(4 - 5) (6 - 8)	Further evaluate potential petroleum impacts found in SB25				SVOCs by EPA 8270D	
	SB-34	(3 - 5) (14 - 17)	General site coverage and site characterization				VOCs by EPA 8260C, SVOCs by EPA 8270D,	
	SB-36	(3 - 5) (14 - 17)	General site coverage and site characterization				TAL Metals by 6010C/7471B, PCBs by EPA 8082, and	
	SB-38	(5 - 7) (14 - 17)	General site coverage and site characterization				pesticides by 8081B	
	GW13 (MW01)		Evaluate groundwater flow direction and potential for offsite migration	Hollow Stem Auger		Low Flow Peristaltic Pump		Location moved from 11th Avenue ~10 feet to the west to West 23rd Street due to access.
	GW14 GW18		Evaluate groundwater flow direction and estimate impacts to onsite groundwater downgradient of abandoned in place USTs and/or former pump island	Geoprobe		Checkball Checkball		None
	GW19 (MW02)		Evaluate groundwater flow direction and potential for offsite migration			Low Flow Peristaltic	VOCs by EPA 8260C; SVOCs by EPA 8270D,	Location moved from 11th Avenue ~5 feet to the west to be on Lot 5 parking lot due to access.
	GW25		Evaluate groundwater flow direction and potential impacts from upgradient offsite	Hollow Stem Auger		Pump Low Flow Peristaltic	TAL Metals by 6010C/7472B (filtered and unfiltered), PCBs by EPA 8082, and	west to be on Lot's parking for due to access.
	(MW03) GW26		source(s)		DUP	Pump Checkball	pesticides by EPA 8081B	
Groundwater	GW28	~ 9 ft	Evaluate groundwater flow direction and estimate impacts to onsite groundwater		GW25	Checkball	1	
			Evaluate groundwater flow direction and		MS/MSD GW-19		1	
	GW29 GW31		potential impacts from upgradient offsite source(s)			Checkball		None
			Further evaluate potential petroleum impacts found in MW03	Geoprobe			VOCs by EPA 8260B; SVOCs by EPA 8270D	
	GW32					Checkball	VOCs by EPA 8260C;	
	GW33		Evaluate groundwater flow direction and estimate impacts to onsite groundwater			Checkball	VOCS by EPA 8260C; SVOCs by EPA 8270D, TAL Metals by 6010C/7472B (filtered and unfiltered), PCBs by EPA 8082, and pesticides by EPA 8081B	
	SV01	2 inches below the	Evaluate potential onsite soil vapor impacts in basement area					Sample was diluted due to half of the required air to be collected. The sub surface is clay and did not allow for proper soil vapor to flow.
	SV02	building slab	Evaluate potential onsite soil vapor impacts in former boiler room					Sample was not viable due to no air collected. The sub surface is clay and did not allow any soil vapor to flow.
Soil Vapor	SV03	2 inches below the	Perimeter sample to evaluate potential for offsite migration	Soil Vapor Probe (Geoprobe or	DUP SV05	2-Hour Summa	VOCs by EPA TO-15	
	SV04 SV05	parking lot / storage area slab	Perimeter sample to evaluate potential for offsite vapor intrusion	Hammer Drill)		Canister		None
	SV06	2 inches below the building slab	Located in the center of the Site to provide site coverage					

RIR Sample Rationale and Analysis Remedial Investigation Report 555 West 22nd Steet

Matrix	Sample ID	Sample Depth	Rationale	Drilling Method	QA/QC	Sampling Method	Analytical Method	Deviations from Work Plan
	SV07		Further evaluate PCE impacts found in SV-04					
	SV08		Further evaluate PCE impacts found in SV- 04					
Soil Vapor	SV11	2 inches below the building	Perimeter sample to evaluate potential for offsite vapor intrusion	Soil Vapor Probe (Geoprobe or	DUP SV05	2-Hour Summa	VOCs by EPA TO-15	None
	SV12	slab	Perimeter sample to evaluate potential for offsite vapor intrusion	Hammer Drill)	3003	Canister		
	SV13		General site coverage and site characterization					
	IA01	4 - 6 ft above building slab	Indoor air sample to evaluate potential air impacts to retail space					None
	IA02	4 - 6 ft above building slab	Indoor air sample to evaluate potential air impacts to retail space in Building A					None
Air	IA03	5 - 6 ft above building slab	Indoor air sample to evaluate potential air impacts to sub-basement in Building A along West 23rd Street	Not Applicable	None	8-Hour Summa Canister	VOCs by EPA TO-15	At the request of NYSDEC, this sample was collected in basement area since SV02 was not viable.
	IA04	6 - 6 ft above building slab	Indoor air sample to evaluate potential air impacts to sub-basement in Building A along 11th Avenue					At the request of NYSDEC, this sample was collected in basement area since SV01 was diluted by the lab due to the final ending pressure.
	Ambient Air	4 - 6 ft above ground surface	Ambient air sample for background comparison purposes					None

Notes: MS/MSD = matrix spike / matrix spike duplicate

The following QA/QC samples are proposed for collection:

Soil: One (1) field duplicate and one (1) MS/MSD with the full suite of analyses per 20 samples.

Groundwater: One (1) field duplicate and one (1) MS/MSD with the full suite of analyses per 20 samples.

Supple 1985			1										DYID 00 0045444	
Supple December 1988 1		*NY-	**NY-											SB-17(15-17) L1637143-10
Surgis Note Surgis Surgi		RESRR	UNRES											11/15/2016
Unit Number Compounds (VOCA) Organization Org														Soil
Visite V														mg/kg
11,13 Translationarium PS	Volatile Organics Compounds (VOCs)													
11.1-Triconalment		NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11.2 Freintenbergeren														ND
1,62 Total contents 16,2 Total contents 16,2 Total contents 16,3 Total contents 16,4 Total contents 16,5 Total contents 16,5					ND ND			ND						ND
11-0bits considered 100 0.30 ND														ND
10.00000000000000000000000000000000000				ND	ND			ND				ND		ND
12.3 Instructuremen		100	0.33	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
1/2-1 Technopherame	1,1-Dichloropropene	NS	NS	ND		ND	ND	ND	ND		ND		ND	ND
1.6.4 Freezement Processor 1.5	1,2,3-Trichlorobenzene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4 Interdescenters	1,2,3-Trichloropropane	NS	NS							ND			ND	ND
12.4 Transpherence	1,2,4,5-Tetramethylbenzene													ND
1,20 100	1,2,4-Trichlorobenzene													ND
12-Deteriorementaries														ND
12-Deteroriement 100 11														ND
12-Delinoperature														ND
12-Delhoprophene Vest Ve														ND
15-Delinfourpropens														ND
13.5 Firmetyphensene														ND
13-Dishiptorprogreeme														ND ND
15-Dehtkorpropene, Total NS NS ND ND ND ND ND ND														ND ND
18-0bit hoperpenent Total NS NS NO NO NO NO NO NO														ND ND
14-Discissoremen														ND ND
February February														ND ND
22-Dichrioprogene														ND ND
2-891anone 100 0.12 ND	-,													ND ND
2-Hearannee														0.013
Methytz-Spentanone														ND
Apetencie														ND
Acytonitrie														0.062
Benzene														ND
Bromoethioromethane														ND
Bromocifortoromethane	Bromobenzene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromonethane														ND
Erromomethane	Bromodichloromethane	NS	NS	ND			ND						ND	ND
Carbon testrachioride														ND
Carbon tetrachloride														ND
Chioroehane														ND
Chicroform														ND
Chioronform														ND
Chicromethane														ND
cis-1,2-Dichloroethene 100 0.25 ND														ND
Sich 3-Dichloropropene NS NS ND ND ND ND ND ND														ND
Dibromochloromethane														ND
Dibromomethane														ND ND
Dichlorodiffuoromethane														ND ND
Ethylether NS NS NS ND														ND ND
Ethylbenzene														ND ND
Hexachlorobutadiene			1											ND ND
Isopropylbenzene NS NS NS ND ND ND ND ND ND 0.00064 J ND 1.3 ND 0.41 0.91			NS											ND
Methyl tert butyl either 100 0.93														ND
Methylene chloride 100 0.05 ND ND 0.0019 J 0.0016 J ND ND <t< td=""><td></td><td></td><td></td><td>ND</td><td>0.0005 J</td><td></td><td>0.0019 J</td><td>0.00021 J</td><td></td><td></td><td></td><td></td><td>ND</td><td>0.0026</td></t<>				ND	0.0005 J		0.0019 J	0.00021 J					ND	0.0026
n-Butylbenzene 100 12 ND ND ND ND ND ND 0.43 ND 0.32 0.93 n-Propylbenzene 100 3.9 ND ND ND ND ND ND 1.9 ND ND 0.64 1.5 o-Chlorotoluene NS NS ND														0.0015 J
n-Propylbenzene 100 3.9 ND ND ND ND ND ND 1.9 ND 0.64 1.5 o-Chlorotoluene NS NS ND														ND
n-Propylbenzene 100 3.9 ND ND ND ND ND ND 1.9 ND 0.64 1.5 o-Chlorotoluene NS NS ND														ND
o-Chlorotoluene NS NS ND														ND
p/m-Xylene NS NS ND														ND
p-Chlorotoluene NS NS ND	o-Xylene													ND
p-Diethylbenzene NS NS ND ND ND ND ND 0.00057 J ND 1.1 ND 0.38 0.99 p-Ethyltoluene NS NS ND														ND
p-Ethyltoluene NS NS ND ND ND ND ND 0.0011 J ND ND ND ND 0.12 p-Isopropyltoluene NS NS ND ND ND ND ND ND 0.0096 J ND 0.1 ND 0.05 J 0.08														ND
p-Isopropyltoluene NS NS ND ND ND ND ND 0.00096 J ND 0.1 ND 0.05 J 0.08														ND
														ND
The Distillations of the Land Land Land Land Land Land Land Land														ND
	sec-Butylbenzene		11	ND	ND	ND	ND	0.0017	ND	1.3	ND	0.53	1.4	ND
Styrene NS NS ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>														ND
tert-Butylbenzene 100 5.9 ND ND ND ND 0.00073 J ND 0.25 J ND 0.15 J 0.34														ND
Tetrachloroethene 19 1.3 ND	Tetrachloroethene	19	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

												DUP-02-20161115	
Sample ID			SB-13 (5-7)	SB-13 (15-17)	SB-14(3-5)	SB-14(15-17)	SB-15 (7-9)	SB-15 (15-17)	SB-16(6-8)	SB-16(15-17)	SB-17(5-7)	SB-17(5-7)	SB-17(15-17)
Lab Sample ID	*NY-	**NY-	L1636632-01	L1636632-02	L1637143-01	L1637143-02	L1637974-01	L1637974-02	L1637143-03	L1637143-04	L1637143-09	L1637143-11	L1637143-10
Sample Date	RESRR	UNRES	11/10/2016	11/10/2016	11/15/2016	11/15/2016	11/21/2016	11/21/2016	11/15/2016	11/15/2016	11/15/2016	11/15/2016	11/15/2016
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toluene	100	0.7	ND	ND	ND	ND	0.0003 J	ND	ND	ND	ND	0.048 J	ND
trans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	21	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.9	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	100	0.26	ND	ND	ND	ND	0.0024 J	ND	ND	ND	ND	0.2	ND

Sample ID			SB-18(5-7)	SB-18(15-17)	SB-19 (5-7)	SB-19 (15-17)	SB-20 (4-6)	SB-20 (15-17)	SB-21 (3-5)	SB-21 (15-17)	SB-22 (4-6)	SB-22 (15-17)	SB-23(5-7)
Lab Sample ID	*NY-	**NY-	L1637143-05	L1637143-06	L1636796-01	L1636796-02	L1636796-05	L1636796-06	L1636796-03	L1636796-04	L1636796-07	L1636796-08	L1637143-07
Sample Date	RESRR	UNRES	11/15/2016	11/15/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/15/2016
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Volatile Organics Compounds (VOCs)													
1,1,1,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	100	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	26	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene		NS	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
1,2,3-Trichlorobenzene		NS	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene		NS NS	ND 2.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.9
1,2,4-Trichlorobenzene	NS	NS	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1,2,4-Trimethylbenzene	52	3.6	0.045 J	ND ND	0.00053 J	ND ND	ND	ND ND	0.00019 J	ND ND	ND ND	ND ND	ND ND
1,2-Dibromo-3-chloropropane	NS	NS	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane	NS	NS	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
1,2-Dichlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	3.1	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	8.4	ND	ND	0.00021 J	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	13	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
1,4-Dioxane	13	0.1	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
2,2-Dichloropropane	NS 100	NS 0.12	ND ND	ND 0.0042 J	ND	ND 0.0037 J	ND ND	ND ND	ND ND	ND 0.017 J	ND ND	ND ND	ND ND
2-Butanone 2-Hexanone	NS	0.12 NS	ND ND	0.0042 J ND	ND ND	0.0037 J ND	ND ND	ND ND	ND ND	0.017 J	ND ND	ND ND	ND ND
4-Methyl-2-pentanone	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acetone		0.05	ND ND	0.028	ND	0.023	0.0063 J	0.05	ND ND	0.094	ND	0.024	ND
Acrylonitrile	NS	NS	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Benzene	4.8	0.06	0.0086 J	ND	0.00015 J	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	NS	NS	ND	ND	ND	ND	0.0093 J	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	2.4	0.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.055
Chloroethane Chloroform	NS 49	NS 0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.055 J ND
Chloromethane	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	100	0.25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl ether		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	41	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NS	NS	0.56	ND	ND	ND 0.000	ND	ND	ND	ND	ND	ND	0.064 J
Methyl tert butyl ether	100	0.93	ND	0.0015 J	ND	0.003	ND	ND	ND	0.0025 J	ND	ND	ND
Methylene chloride	100	0.05	ND 1.5	0.0014 J	0.0013 J	ND ND	0.0012 J	ND ND	0.0012 J	ND ND	ND ND	ND ND	ND
Naphthalene n-Butylbenzene	100	12	1.5	ND ND	0.0011 J ND	ND ND	ND ND	ND ND	0.00058 J ND	ND ND	ND ND	ND ND	ND 0.56
n-Butylbenzene n-Propylbenzene	100	3.9	2.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
o-Chlorotoluene	NS	NS	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p/m-Xylene	NS	NS	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND
p-Chlorotoluene	NS	NS	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NS	NS	0.75	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	1.1
p-Diethylbenzene						ND	ND	ND	0.00011 J	ND	ND	ND	ND
	NS	NS	ND	ND	0.0003 J								
p-Diethylbenzene		NS NS	ND 0.1	ND ND	0.0003 J ND	ND ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene p-Ethyltoluene	NS NS								ND ND			ND ND	ND 0.71
p-Diethylbenzene p-Ethyltoluene p-Isopropyltoluene sec-Butylbenzene Styrene	NS NS 100 NS	NS 11 NS	0.1 0.5 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	0.71 ND
p-Diethylbenzene p-Ethyltoluene p-Isopropyltoluene sec-Butylbenzene	NS NS 100 NS 100	NS 11	0.1 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.71

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-18(5-7) L1637143-05 11/15/2016 Soil mg/kg	SB-18(15-17) L1637143-06 11/15/2016 Soil mg/kg	SB-19 (5-7) L1636796-01 11/11/2016 Soil mg/kg	SB-19 (15-17) L1636796-02 11/11/2016 Soil mg/kg	SB-20 (4-6) L1636796-05 11/11/2016 Soil mg/kg	SB-20 (15-17) L1636796-06 11/11/2016 Soil mg/kg	SB-21 (3-5) L1636796-03 11/11/2016 Soil mg/kg	SB-21 (15-17) L1636796-04 11/11/2016 Soil mg/kg	SB-22 (4-6) L1636796-07 11/11/2016 Soil mg/kg	SB-22 (15-17) L1636796-08 11/11/2016 Soil mg/kg	SB-23(5-7) L1637143-07 11/15/2016 Soil mg/kg
Toluene	100	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	21	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.9	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	100	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Column C	Sample ID Lab Sample ID Sample Date Sample Media	*NY- RESRR	**NY- UNRES	SB-23(15-17) L1637143-08 11/15/2016 Soil	SB-24(3-5) L1636970-06 11/14/2016 Soil	SB-24(15-17) L1636970-07 11/14/2016 Soil	SB-25 (6-8) L1636632-03 11/10/2016 Soil	SB-25 (15-17) L1636632-04 11/10/2016 Soil	SB-26 (3-5) L1636970-10 11/14/2016 Soil	SB-26 (13-15) L1636970-11 11/14/2016 Soil	SB-27(3-5) L1636970-02 11/14/2016 Soil	DUP01-20161114 SB-27(3-5) L1636970-01 11/14/2016 Soil	SB-27(15-17) L1636970-03 11/14/2016 Soil	SB-28(5-7) L1636970-04 11/14/2016 Soil
Visite V														mg/kg
11.51 11.52 11.5	Volatile Organics Compounds (VOCs)													
17.23 Front Standard 18.5 18.		NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10.2-International content	1,1,1-Trichloroethane	100	0.68	ND	ND	ND	ND	ND	0.0013	ND	ND	ND	ND	ND
11.0 Extracolorization 19	1,1,2,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 Concenter 100 2.50 2.00 3.00														ND
10.0 tempospees														ND
1.5. Principolement 1.5. Principolement														ND
1,42 Informerspeed 15														ND
1.4.5 Frequent Peterser 15														
1,24-1-10-10-10-10-10-10-10-10-10-10-10-10-1														
12.4 Transportation 15														ND ND
1.20 1.20														0.0002 J
1-Discretionstrates														ND ND
12-Delicocontentary														ND
12-Delictoroptemer, Total NS NS ND NO NO NO NO NO NO NO														ND
12-DERIOSCOPIONE NS NS ND ND ND ND ND ND	1,2-Dichloroethane	0.1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13.5 Transplanemen	1,2-Dichloroethene, Total													ND
13-Defendencemen 49	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -													ND
18-20-Printerprograms, Total NS NS NS ND ND ND ND ND		02												ND
15-Delinoprogreemen Total NS														ND ND
February 13														ND ND
14-Discore														
22-Descriptopropers														
Education 100 112 0.011 3 ND ND ND ND ND ND ND														
24fearanne														0.0027 J
Methyl-2-pertanene														ND ND
Apylontifies														ND
Benzenen	Acetone	100	0.05	0.054	ND	0.0088 J	ND	0.0083 J	ND	0.0052 J	ND	0.0018 J	0.027	0.03
Bromochlormethane	Acrylonitrile	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoelplocomethane														0.00015 J
Bromode/Intermete NS NS ND ND ND ND ND ND														ND
Bromonethane														ND
Bromomethane														ND
Carbon instudied														
Carbon tetrachioride														
Chloroberzene 100 1.1 ND ND ND ND ND ND ND N														ND ND
Ebloroethane														ND
Chloroform	Chloroethane		NS											ND
Cis-12-Dichloreethene 100 0.25 ND ND ND ND ND ND ND N	Chloroform		0.37	ND	ND	ND		ND	0.00084 J	ND	ND	ND	ND	ND
List-12-Dichlorgropene NS NS ND ND<	Chloromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	cis-1,2-Dichloroethene	100	0.25											ND
Dibromomethane														ND
Dichlorodifiluoromethane														ND ND
Ethylether														ND
Ethylbenzene														
Hexachlorobutadiene			1											
Isopropylbenzene		71	NS											ND ND
Methyl tert butyl ether														ND
Methylene chloride														ND
n-Butylbenzene 100 12 ND ND ND 7.7 0.00015 J ND ND <td></td> <td>100</td> <td>0.05</td> <td>0.0017 J</td> <td>0.0013 J</td> <td>0.0012 J</td> <td>ND</td> <td>ND</td> <td>0.0013 J</td> <td>0.0012 J</td> <td>ND</td> <td>0.0013 J</td> <td>ND</td> <td>0.0015 J</td>		100	0.05	0.0017 J	0.0013 J	0.0012 J	ND	ND	0.0013 J	0.0012 J	ND	0.0013 J	ND	0.0015 J
n-Propylbenzene 100 3.9 ND ND ND 29 0.00047 J ND ND </td <td>Naphthalene</td> <td>100</td> <td>12</td> <td>ND</td> <td>0.00028 J</td> <td>ND</td> <td>22</td> <td>0.0004 J</td> <td>ND</td> <td>0.00038 J</td> <td>0.00025 J</td> <td>0.00032 J</td> <td>0.12</td> <td>0.0042 J</td>	Naphthalene	100	12	ND	0.00028 J	ND	22	0.0004 J	ND	0.00038 J	0.00025 J	0.00032 J	0.12	0.0042 J
o-Chlorotoluene NS NS ND	n-Butylbenzene	100												ND
6-Xylene NS NS ND ND ND ND 76 0.0016 J ND ND ND 0.033 NI p/m-Xylene NS NS ND ND </td <td></td> <td>ND</td>														ND
p/m-Xylene NS NS ND ND ND 300 0.0052 ND ND ND 0.0091 NE p-Chieftycluene NS NS ND														ND
p-Chlorotoluene NS NS ND														ND
p-Diethylbenzene NS NS ND ND ND ND 57 0.001 J ND 0.0005 J ND ND 0.0029 J NI p-Ethyltoluene NS NS ND ND ND ND 140 0.0023 J ND 0.00014 J ND 0.00018 J 0.0079 NI p-Isopropyltoluene NS NS ND														ND
p-Ethyltoluene NS NS ND ND ND 140 0.0023 J ND 0.00014 J ND 0.00018 J 0.0079 NE p-Isopropyltoluene NS NS ND														
p-Isopropyltoluene NS NS ND														
Sec-Butylbenzene 100 11 ND														ND ND
Styrene NS NS ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND ND</td></t<>														ND ND
tert-Butylbenzene 100 5.9 ND		1.00												ND ND
														ND
Tetrachloroethene	Tetrachloroethene	19	1.3	ND	ND	ND	ND	ND	0.01	0.00016 J	ND	ND	ND	ND

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID			SB-23(15-17)	SB-24(3-5)	SB-24(15-17)	SB-25 (6-8)	SB-25 (15-17)	SB-26 (3-5)	SB-26 (13-15)	SB-27(3-5)	DUP01-20161114 SB-27(3-5)	SB-27(15-17)	SB-28(5-7)
Lab Sample ID	*NY-	**NY-	L1637143-08	L1636970-06	L1636970-07	L1636632-03	L1636632-04	L1636970-10	L1636970-11	L1636970-02	L1636970-01	L1636970-03	L1636970-04
Sample Date	RESRR	UNRES	11/15/2016	11/14/2016	11/14/2016	11/10/2016	11/10/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Toluene	100	0.7	ND	ND	ND	8.2	0.00023 J	ND	ND	ND	0.00032 J	0.00036 J	ND
trans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	21	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.9	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	100	0.26	ND	ND	ND	380	0.0068 J	ND	ND	ND	0.00048 J	0.042	ND

													ı	
Sample ID			SB-28(15-17)	SB-29 (5-7)	SB-29 (15-17)	SB-30(8-10)	SB-30(15-17)	SB-31 (5-7)	DUP01	SB-32 (6-8)	SB-32 (4-5)	SB-34 (14-17)	SB-34 (3-5)	DUP01-11142017
Lab Sample ID	*NY-	**NY-	L1636970-05	L1636970-12	L1636970-13	L1636970-08	L1636970-09	L1721000-03	L1721000-04	L1721000-01	SB-32 (4-5) L1721000-02	L1741853-01	L1741853-02	L1741853-03
	RESRR	UNRES			11/14/2016		11/14/2016	6/21/2017		6/21/2017		11/14/2017	11/14/2017	11/14/2017
Sample Date	KESKK	UNKES	11/14/2016	11/14/2016		11/14/2016			6/21/2017		6/21/2017		11/14/2017 Soil	
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Soil
Unit of Measure Volatile Organics Compounds (VOCs)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	T													
1,1,1,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	100	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	26	0.27	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1-Dichloroethene 1,1-Dichloropropene	100 NS	0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroproperie 1,2,3-Trichlorobenzene	NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
1,2,4,5-Tetramethylbenzene	NS	NS	ND ND	0.25 J	ND	ND	ND	ND	ND	25	2.9	ND	ND	ND ND
1,2,4-Trichlorobenzene	NS	NS	ND ND	ND S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,2,4-Trimethylbenzene	52	3.6	ND	0.091 J	ND	ND	ND	ND	ND	220	16	ND	ND ND	ND
1,2-Dibromo-3-chloropropane	NS	NS	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
1.2-Dibromoethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
1,2-Dichlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	3.1	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	8.4	ND	0.044 J	ND	ND	ND	ND	ND	70	4.8	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	13	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	13	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	100	0.12	ND	ND	0.0036 J	ND	0.0048 J	0.0019 J	ND	ND	ND	ND	ND	ND
2-Hexanone	NS	NS	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Acetone	100 NS	0.05 NS	0.013 ND	0.12 J ND	0.027 ND	0.0058 J ND	0.033 ND	0.013 ND	0.014 J ND	ND ND	ND ND	0.03 ND	0.0031 、 ND	J ND ND
Acrylonitrile Benzene	4.8	0.06	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.58 J	0.13 J	ND ND	ND ND	ND ND
Bromobenzene	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND S	ND ND	ND	ND ND	ND ND
Bromochloromethane	NS	NS	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane	NS	NS	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
Bromoform	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	NS	NS	ND	ND	ND	ND	ND	0.0017 J	0.0022 J	ND	ND	0.0022 J	ND	ND
Carbon tetrachloride	2.4	0.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	49	0.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00042	J 0.00042 J
Chloromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	0.25	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	NS	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND
Dibromochloromethane Dibromomethane	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl ether	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	41	1	ND ND	0.031 J	ND	ND	ND	ND	ND	62	4.5	ND	ND	ND
Hexachlorobutadiene	NS	NS	ND ND	ND 5	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
Isopropylbenzene	NS	NS	ND ND	0.24	ND	ND	ND	ND	ND	12	1.1	ND	ND ND	ND ND
Methyl tert butyl ether	100	0.93	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0.002 J	ND	ND ND
Methylene chloride	100	0.05	0.0012 J	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Naphthalene	100	12	0.00048 J	0.063 J	ND	0.00019 J	0.00062 J	ND	ND	26	2.6	ND	ND	ND
n-Butylbenzene	100	12	ND	0.099	ND	ND	ND	ND	ND	9.6	0.96	ND	ND	ND
n-Propylbenzene	100	3.9	ND	0.16	ND	ND	ND	ND	ND	34	3.1	ND	ND	ND
o-Chlorotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	NS	NS	ND	0.093 J	ND	ND	ND	ND	ND	41	2.3	ND	ND	ND
p/m-Xylene	NS	NS	ND	0.13 J	ND	ND	ND	ND	ND	210	12	ND	ND	ND
p-Chlorotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	NS	ND	0.14 J	ND	ND	ND	ND	ND	78	6.3	ND	ND	ND
p-Ethyltoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	170	9.2	ND	ND	ND
p-Isopropyltoluene	NS	NS	0.00039 J	0.051 J	ND	ND	ND	ND	ND	2.9	0.32	ND	ND	ND
sec-Butylbenzene	100	11	ND	0.28	ND	ND	ND	ND	ND	4	0.4	ND	ND	ND
Styrene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		5 0	1	0.00-	- 10	1	ND.		N.D.	NE	ME			NE
tert-Butylbenzene Tetrachloroethene	100	5.9 1.3	ND ND	0.062 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-28(15-17) L1636970-05 11/14/2016 Soil mg/kg	SB-29 (5-7) L1636970-12 11/14/2016 Soil mg/kg	SB-29 (15-17) L1636970-13 11/14/2016 Soil mg/kg	SB-30(8-10) L1636970-08 11/14/2016 Soil mg/kg	SB-30(15-17) L1636970-09 11/14/2016 Soil mg/kg	SB-31 (5-7) L1721000-03 6/21/2017 Soil mg/kg	DUP01 L1721000-04 6/21/2017 Soil mg/kg	SB-32 (6-8) L1721000-01 6/21/2017 Soil mg/kg	SB-32 (4-5) L1721000-02 6/21/2017 Soil mg/kg	SB-34 (14-17) L1741853-01 11/14/2017 Soil mg/kg	SB-34 (3-5) L1741853-02 11/14/2017 Soil mg/kg	DUP01-11142017 L1741853-03 11/14/2017 Soil mg/kg
Toluene	100	0.7	ND	0.017 J	ND	ND	ND	ND	ND	1.5 J	0.23	ND	ND	ND
trans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	21	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.9	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	100	0.26	ND	0.22 J	ND	ND	ND	ND	ND	250	14	ND	ND	ND

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID	*NY-	**NY-	SB-36 (14-17) L1741853-04	SB-36 (3-5) L1741853-05	SB-38 (14-17) L1741853-06	SB-38 (5.5-7.5) L1741853-07
Sample Date	RESRR	UNRES	11/14/2017	11/14/2017	11/14/2017	11/14/2017
Sample Media			Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg
Volatile Organics Compounds (VOCs)						
1,1,1,2-Tetrachloroethane	NS	NS	ND	ND	ND	ND
1,1,1-Trichloroethane	100	0.68	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	ND	ND	ND ND	ND
1,1,2-Trichloroethane	NS 26	NS 0.27	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane 1,1-Dichloroethene	100	0.27	ND ND	ND ND	ND ND	ND ND
1,1-Dichloropropene	NS	NS	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene	NS	NS	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	NS	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	NS	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	3.6	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	NS	ND	ND	ND	ND
1,2-Dibromoethane	NS 100	NS 1.1	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene 1,2-Dichloroethane	3.1	0.02	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane 1,2-Dichloroethene, Total	NS	NS	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane	NS	NS	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	8.4	0.00031 J	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND
1,3-Dichloropropane	NS	NS	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	NS	ND	ND	ND	ND
1,4-Dichlorobenzene	13 13	1.8	ND ND	ND ND	ND ND	ND ND
1,4-Dioxane 2,2-Dichloropropane	NS	0.1 NS	ND ND	ND ND	ND ND	ND ND
2-Butanone	100	0.12	0.024	ND ND	0.017 J	ND ND
2-Hexanone	NS	NS	ND	ND	ND ND	ND
4-Methyl-2-pentanone	NS	NS	ND	ND	ND	ND
Acetone	100	0.05	0.14	0.0059 J	0.094	0.0085 J
Acrylonitrile	NS	NS	ND	ND	ND	ND
Benzene	4.8	0.06	ND	ND	ND	ND
Bromobenzene Bromochloromethane	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane	NS	NS	ND ND	ND ND	ND ND	ND ND
Bromoform	NS	NS	ND ND	ND ND	ND ND	ND ND
Bromomethane	NS	NS	ND	ND	ND	ND
Carbon disulfide	NS	NS	0.0031 J	ND	0.0026 J	0.0014 J
Carbon tetrachloride	2.4	0.76	ND	ND	ND	ND
Chlorobenzene	100	1.1	ND	ND	ND	ND
Chloroethane	NS	NS	ND	ND	ND	ND
Chloroform	49	0.37	ND	ND	ND	ND
Chloromethane	NS 100	NS 0.2F	ND ND	ND	ND	ND
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	100 NS	0.25 NS	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	NS	NS	ND ND	ND ND	ND ND	ND ND
Dibromomethane	NS	NS	ND	ND	ND	ND
Dichlorodifluoromethane	NS	NS	ND	ND	ND	ND
Ethyl ether	NS	NS	ND	ND	ND	ND
Ethylbenzene	41	1	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	ND	ND	ND	ND
Isopropylbenzene Methyd tort buttel other	NS 100	NS 0.93	ND ND	ND ND	ND ND	ND ND
Methyl tert butyl ether Methylene chloride	100	0.93	ND ND	ND ND	ND ND	ND ND
Naphthalene	100	12	ND ND	ND ND	ND ND	ND ND
n-Butylbenzene	100	12	ND	ND	ND	ND
n-Propylbenzene	100	3.9	0.00086 J J	ND	ND	ND
o-Chlorotoluene	NS	NS	ND	ND	ND	ND
o-Xylene	NS	NS	ND	ND	ND	ND
p/m-Xylene	NS	NS	ND	ND	ND	ND
p-Chlorotoluene	NS	NS	ND	ND	ND	ND
p-Diethylbenzene	NS	NS NC	ND	ND	ND	ND ND
p-Ethyltoluene p-Isopropyltoluene	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
p-isopropyitoluene sec-Butylbenzene	100	11	ND ND	ND ND	ND ND	ND ND
Styrene	NS	NS	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene	100	5.9	ND	ND	ND	ND
Tetrachloroethene	19	1.3	ND	ND	ND	ND

Soil Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-36 (14-17) L1741853-04 11/14/2017 Soil mg/kg	SB-36 (3-5) L1741853-05 11/14/2017 Soil mg/kg	SB-38 (14-17) L1741853-06 11/14/2017 Soil mg/kg	SB-38 (5.5-7.5) L1741853-07 11/14/2017 Soil mg/kg
Toluene	100	0.7	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	0.19	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	NS	ND	ND	ND	ND
Trichloroethene	21	0.47	ND	ND	ND	ND
Trichlorofluoromethane	NS	NS	ND	ND	ND	ND
Vinyl acetate	NS	NS	ND	ND	ND	ND
Vinyl chloride	0.9	0.02	ND	ND	ND	ND
Xylenes, Total	100	0.26	ND	ND	ND	ND

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007
**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value ND = Not detected

NS = No Standard

Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

Sample ID Lab Sample ID Sample Date Sample Media	*NY- RESRR	**NY- UNRES	SB-13 (5-7) L1636632-01 11/10/2016 Soil	SB-13 (15-17) L1636632-02 11/10/2016 Soil	SB-14(3-5) L1637143-01 11/15/2016 Soil	SB-14(15-17) L1637143-02 11/15/2016 Soil	SB-15 (7-9) L1637974-01 11/21/2016 Soil	SB-15 (15-17) L1637974-02 11/21/2016 Soil	SB-16(6-8) L1637143-03 11/15/2016 Soil	SB-16(15-17) L1637143-04 11/15/2016 Soil	SB-17(5-7) L1637143-09 11/15/2016 Soil	DUP-02-20161115 SB-17(5-7) L1637143-11 11/15/2016 Soil	SB-17(15-17) L1637143-10 11/15/2016 Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Semivolatile Organics Comp	ounds (S	/OCs)											
1,2,4,5-Tetrachlorobenzene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
2,4-Dinitrophenol		NS NS	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dinitrotoluene				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
2,6-Dinitrotoluene		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloronaphthalene 2-Chlorophenol		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol 2-Methylnaphthalene	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.042 J	ND ND	ND ND	ND ND	ND ND
2-Methylphenol		0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.042 J ND	ND ND	ND ND	ND ND	ND ND
2-Nitroaniline		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Nitrophenol		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3,3'-Dichlorobenzidine	NS	NS	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
3-Methylphenol/4-Methylphenol	100	0.33	ND	35 J	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
3-Nitroaniline	NS	NS	ND	ND 0	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
4,6-Dinitro-o-cresol		NS	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
4-Bromophenyl phenyl ether		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
4-Chloroaniline		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
4-Chlorophenyl phenyl ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	1	1	ND	ND	0.39	ND	ND	ND	ND	ND	0.053 J	ND	ND
Benzo(a)pyrene	1	1	ND	ND	0.8	ND	ND	ND	ND	ND	0.085 J	ND	ND
Benzo(b)fluoranthene	1	1	ND	ND	0.9	ND	ND	ND	ND	ND	0.095 J	ND	ND
Benzo(ghi)perylene	100	100	0.029 J	ND	0.59	ND	ND	ND	ND	ND	0.088 J	ND	ND
Benzo(k)fluoranthene		0.8	ND	ND	0.37	ND	ND	ND	ND	ND	0.038 J	ND	ND
Benzoic Acid	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate		NS	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Carbazole		NS 1	ND ND	ND ND	ND 0.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.048	ND ND	ND
Chrysene	3.9	0.33	ND ND	ND ND	0.4	ND ND	ND ND	ND ND	ND ND	ND ND	0.048 J	ND ND	ND ND
Dibenzo(a,h)anthracene	0.33 59	0.33	ND ND	ND ND	0.16 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibenzofuran Diethyl phthalate		/ NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dimethyl phthalate		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dimetnyi phthalate Di-n-butvlphthalate		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octylphthalate	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fluoranthene	100	100	0.026 J	ND ND	0.31	ND ND	ND ND	ND ND	ND ND	ND ND	0.054 J	ND ND	ND ND
Fluorene		30	ND 5	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Hexachlorobenzene		0.33	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobutadiene		NS	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Hexachlorocyclopentadiene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Hexachloroethane		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene		0.5	ND	ND	0.71	ND	ND	ND	ND	ND	0.086 J	ND	ND
Isophorone		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	100	12	ND	ND	ND	ND	ND	ND	0.065 J	ND	ND	ND	ND
NDPA/DPA	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol		0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	ND	ND	0.1 J	ND	ND	ND	ND	ND	0.028 J	ND	ND
Phenol		0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	0.026 J	ND	0.3	ND	ND	ND	ND	ND	0.056 J	ND	ND

				1				1			1		
Sample ID			SB-18(5-7)	SB-18(15-17)	SB-19 (5-7)	SB-19 (15-17)	SB-20 (4-6)	SB-20 (15-17)	SB-21 (3-5)	SB-21 (15-17)	SB-22 (4-6)	SB-22 (15-17)	SB-23(5-7)
Lab Sample ID	*NY-	**NY-	L1637143-05	L1637143-06	L1636796-01	L1636796-02	L1636796-05	L1636796-06	L1636796-03	L1636796-04	L1636796-07	L1636796-08	L1637143-07
Sample Date	RESRR	UNRES	11/15/2016	11/15/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/15/2016
	KESKK	UNKES											
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure		(00-)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Semivolatile Organics Comp													
1,2,4,5-Tetrachlorobenzene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
.,	49	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		NS	0.14 J	ND	0.42 J	ND	0.46 J	ND	ND	ND	0.13 J	ND	ND
2-Methylphenol	.00	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.33	ND	ND	ND	0.042 J	0.14	0.74	ND	0.22 J	ND	0.16 J	ND
3-Nitroaniline		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene		20	ND	ND	1.7	ND	1.8	ND	ND	ND	0.69 J	ND	0.058
Acenaphthylene	100	100	ND	ND	ND	ND	0.12 J	ND ND	ND	ND	ND V	ND	ND
Acetophenone		NS	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Anthracene	100	100	ND	ND	1	ND	5.7	ND	ND	ND	1.4	ND	0.047
Benzo(a)anthracene	1	1	ND	ND	3.7	ND	24	0.071 J	ND	ND	8.8	ND	0.074
Benzo(a)pyrene	1	1	ND	ND	3.4	ND ND	38	0.069 J	ND ND	ND	19	ND	ND.
Benzo(b)fluoranthene	1	1	ND	ND	4.3	ND	37	0.07 J	ND	ND	19	ND	0.066
Benzo(ghi)perylene	100	100	ND	ND	2.1	ND	29	0.035 J	ND	ND	14	ND	0.026
Benzo(k)fluoranthene		0.8	ND	ND	1.4	ND	13	ND S	ND	ND	6.4	ND ND	ND
		NS	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Biphenyl		NS NS	ND ND	ND ND	0.22 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS	ND ND	ND ND	ND S	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroisopropyl)ether		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-ethylhexyl)phthalate		NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate		NS	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbazole		NS	ND ND	ND ND	0.63 J	ND ND	2.9	ND ND	ND ND	ND ND	0.91 J	ND ND	ND ND
	3.9	1	ND ND	ND ND	3.5	ND ND	2.9	0.069 J	ND ND	ND ND	8.5	ND ND	0.065
. ,	-	0.33	ND ND	ND ND	0.54 J	ND ND	6.2	0.069 J	ND ND	ND ND	2.8	ND ND	0.065 ND
Dibenzo(a,h)anthracene Dibenzofuran	0.33 59	7	ND ND	ND ND	1.2	ND ND	0.99	ND ND	ND ND	ND ND	0.24 J	ND ND	0.028
		/ NS	ND ND	ND ND	ND	ND ND	0.99 ND	ND ND	ND ND	ND ND	0.24 J ND	ND ND	0.028 ND
Diethyl phthalate Dimethyl phthalate		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-octylphthalate			ND ND	ND ND						ND ND			
Fluoranthene		100	ND ND	ND ND	10	ND ND	28	0.078 J	ND ND	ND ND	10 0.28 J	ND ND	0.22 0.064
Fluorene Hexachlorobenzene	1.2	0.33	ND ND	ND ND	1.1 ND	ND ND	1.1 ND	ND ND	ND ND	ND ND	0.28 J ND	ND ND	0.064 ND
Hexachlorobutadiene		NS NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene		0.5	ND ND	ND ND	2.3	ND ND	30	0.037 J	ND ND	ND ND	ND 16	ND ND	0.032
		NS 42	ND 0.00	ND ND	ND	ND	ND 4.4	ND 0.055	ND	ND	ND	ND ND	ND
Naphthalene		12	0.28	ND	0.84 J	ND	1.1	0.055 J	ND	ND	0.4 J	ND	ND
NDPA/DPA		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	8.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene		100	ND	ND	11	ND	18	0.055 J	ND	ND	4.9	ND	ND
Phenol	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	ND	ND	7.9	ND	28	0.091 J	ND	0.032 J	9.9	ND	0.21

Sample ID			SB-23(15-17)	SB-24(3-5)	SB-24(15-17)	SB-25 (6-8)	SB-25 (15-17)	SB-26 (3-5)	SB-26 (13-15)	SB-27(3-5)	DUP01-20161114 SB-27(3-5)	SB-27(15-17)	SB-28(5-7)
Lab Sample ID	*NY-	**NY-	L1637143-08	L1636970-06	L1636970-07	L1636632-03	L1636632-04	L1636970-10	L1636970-11	L1636970-02	L1636970-01	L1636970-03	L1636970-04
Sample Date	RESRR	UNRES	11/15/2016	11/14/2016	11/14/2016	11/10/2016	11/10/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure Semivolatile Organics Comp	oundo (C)	(OCa)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			110	T 115	110				T No.	1 110	T un I		
1,2,4,5-Tetrachlorobenzene	NS	NS	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NS 100	NS 1.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	49	2.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.4-Dichlorobenzene	13	1.8	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
2,4,5-Trichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	NS NS	NS NS	ND ND	ND ND	ND ND	ND 4.1	ND ND	ND 0.15 J	ND ND	ND 0.23 J	ND 0.28	ND 0.26 J	ND 1.2
2-Methylnaphthalene 2-Methylphenol	100	0.33	ND ND	ND ND	ND ND	ND	ND ND	0.15 J ND	ND ND	0.23 J 0.047 J	0.28	0.26 J ND	ND
2-Nitroaniline	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.047 J ND	0.037 ND	ND ND	ND ND
2-Nitrophenol	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3,3'-Dichlorobenzidine	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
3-Methylphenol/4-Methylphenol	100	0.33	ND	ND ND	ND	ND	ND	0.032 J	ND	0.094 J	0.081	ND	ND
3-Nitroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	20	ND	ND	ND	0.041 J	ND	0.68	ND	0.79	0.79	0.039 J	7.4
Acenaphthylene	100	100	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND
Acetophenone Anthracene	NS 100	NS 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.5	ND ND	ND 4.5	ND 3.1	ND ND	ND 26
Benzo(a)anthracene	100	1	ND ND	0.024 J	ND ND	ND ND	ND ND	23	0.028 J	25	16	0.034 J	52
Benzo(a)pyrene	1	1	ND	ND ND	ND	ND ND	ND ND	45	ND 5	32	25	ND 5	45
Benzo(b)fluoranthene	1	1	ND	ND	ND	ND	ND	47	ND	36	27	ND	58
Benzo(ghi)perylene	100	100	ND	ND	ND	ND	ND	30	0.027 J	13	9.4	ND	19
Benzo(k)fluoranthene	3.9	0.8	ND	ND	ND	ND	ND	6	ND	5.7	4.4	ND	6.9
Benzoic Acid	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl	NS	NS	ND	ND	ND	0.11 J	ND	0.054 J	ND	0.059 J	0.067 J	ND	0.44
Bis(2-chloroethoxy)methane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate	NS	NS	ND ND	ND ND	ND ND		ND ND		ND ND			ND ND	
Carbazole Chrysene	NS 3.9	NS 1	ND ND	0.019 J	ND ND	ND ND	ND ND	1.4 22	0.023 J	1.7 22	1.3 15	ND ND	4.7 46
Dibenzo(a,h)anthracene	0.33	0.33	ND ND	0.019 J	ND ND	ND ND	ND ND	4.8	0.023 J ND	3.1	2.9	ND ND	4.2
Dibenzofuran	59	7	ND ND	ND ND	ND ND	ND ND	ND ND	0.39	ND ND	0.6	0.51	ND ND	3.2
Diethyl phthalate	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
Dimethyl phthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	ND	0.021 J	ND	ND	ND	23	0.028 J	29	20	0.031 J	110
Fluorene	100	30	ND	ND	ND	0.064 J	ND	0.44	ND	0.74	0.63	ND	6.9
Hexachlorobenzene	1.2	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloroethane	NS 0.5	NS 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND 0.037	ND	ND 16	ND ND	ND 24
Indeno(1,2,3-cd)pyrene Isophorone	0.5 NS	0.5 NS	ND ND	ND ND	ND ND	ND ND	ND ND	33 ND	0.027 J ND	17 ND	16 ND	ND ND	ND
Naphthalene	100	12	ND ND	ND ND	ND ND	6.3	ND ND	0.59	ND ND	0.34	0.44	1.1	1.1
NDPA/DPA		NS	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
Nitrobenzene	15	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Nitrosodi-n-propylamine	NS	NS	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
p-Chloro-m-cresol	NS	NS	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	ND	ND	ND	0.11 J	ND	7.3	ND	17	8.5	0.095 J	90
Phenol	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	100	ND	ND	ND	ND	ND	23	0.024 J	24	18	0.029 J	89

		1							1	ı		1		
Sample ID			SB-28(15-17)	SB-29 (5-7)	SB-29 (15-17)	SB-30(8-10)	SB-30(15-17)	SB-31 (5-7)	DUP01	SB-32 (6-8)	SB-32 (4-5)	SB-34 (14-17)	SB-34 (3-5)	DUP01-11142017
Lab Sample ID	*NY-	**NY-	L1636970-05	L1636970-12	L1636970-13	L1636970-08	L1636970-09	L1721000-03	L1721000-04	L1721000-01	L1721000-02	L1741853-01	L1741853-02	L1741853-03
Sample Date	RESRR	UNRES	11/14/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2016	6/21/2017	6/21/2017	6/21/2017	6/21/2017	11/14/2017	11/14/2017	11/14/2017
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Semivolatile Organics Comp	ounds (S	VOCs)												
1,2,4,5-Tetrachlorobenzene	NS	NS ,	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	0.043 J
1,2-Dichlorobenzene	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	13	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.74	ND	ND	ND
2-Methylnaphthalene	NS 100	NS 0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.1 ND	0.71 ND	ND ND	ND ND	ND ND
2-Methylphenol 2-Nitroaniline	NS	0.33 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
3-Methylphenol/4-Methylphenol		0.33	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	0.2 J	ND	ND
3-Nitroaniline	NS	NS	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
4-Chloroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	20	ND	ND	ND	ND	ND	ND	ND	0.05 J	ND	0.032 J	0.085	0.058 J
Acenaphthylene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.056 J	ND	ND
Acetophenone	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.3	0.14
Benzo(a)anthracene	1	1	0.031 J	ND	ND	0.056 J	ND	ND	ND	ND	ND	0.79	1.4	0.73
Benzo(a)pyrene	1	1	ND	ND	ND	0.086 J	ND	ND	ND	ND	ND	0.9	1.8	0.74
Benzo(b)fluoranthene	1	1	ND	ND	ND	0.088 J	ND	ND	ND	ND	ND	1.1	2	0.95
Benzo(ghi)perylene	100	100	ND ND	ND ND	ND ND	0.062 J	ND ND	ND	ND ND	ND	ND ND	0.49	0.85	0.73
Benzo(k)fluoranthene	3.9	8.0	ND ND			0.033 J		ND	ND	ND		0.39	0.83	0.41
Benzoic Acid Benzvl Alcohol	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.1 J	ND ND	ND ND	ND ND	ND ND
	NS	NS	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND S	ND ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.087 J	0.13	0.071 J
Chrysene	3.9	1	0.021 J	ND	ND	0.047 J	ND	ND	ND	ND	ND	0.79	1.3	0.66
Dibenzo(a,h)anthracene	0.33	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11 J	0.3	0.22
Dibenzofuran	59	7	ND	ND	ND	ND	ND	ND	ND	0.033 J	ND	0.034 J	0.06	0.028 J
Diethyl phthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	100	0.026 J	ND ND	ND ND	0.05 J ND	ND ND	ND ND	ND ND	ND 0.073 J	ND ND	0.97 0.041 J	0.059	0.68 I 0.032 I
Fluorene Hexachlorobenzene	1.2	30 0.33	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.073 J ND	ND ND	0.041 J ND	0.059 . ND	0.032 J ND
Hexachlorobenzene Hexachlorobutadiene	1.2 NS	0.33 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloroethane	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-cd)pyrene	0.5	0.5	ND ND	ND ND	ND ND	0.075 J	ND	ND ND	ND ND	ND ND	ND ND	0.45	1.1	0.92
	NS	NS	ND	ND	ND	ND V	ND	ND	ND ND	ND	ND	ND	ND	ND
Naphthalene	100	12	ND	ND	ND	ND	ND	ND	ND ND	5.8	1	0.037 J	0.08	0.039 J
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
Nitrobenzene	15	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	8.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	100	ND	ND	ND	ND	ND	ND	ND	0.14	0.042 J	0.6	0.72	0.35
		0.00	ND	ND	ND	ND	ND	ND	ND	NID	ND	NIP		NID
Phenol Pyrene	100 100	0.33 100	0.023 J	ND ND	ND ND	0.047 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.84	ND 1.1	ND 0.6

Soil Analytical Data Summary - SVOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-36 (14-17) L1741853-04 11/14/2017 Soil mg/kg	SB-36 (3-5) L1741853-05 11/14/2017 Soil mg/kg	SB-38 (14-17) L1741853-06 11/14/2017 Soil mg/kg	SB-38 (5.5-7.5) L1741853-07 11/14/2017 Soil mg/kg
Semivolatile Organics Comp	ounds (S	VOCs)				
1,2,4,5-Tetrachlorobenzene	NS	NS	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	NS	ND	ND	ND	ND
1,2-Dichlorobenzene	100	1.1	ND	ND	ND	ND
1,3-Dichlorobenzene	49	2.4	ND	ND	ND	ND
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	13 NS	1.8 NS	ND ND	ND ND	ND ND	ND ND
2,4,6-Trichlorophenol	NS	NS	ND ND	ND ND	ND	ND ND
2,4-Dichlorophenol	NS	NS	ND	ND	ND	ND
2,4-Dimethylphenol	NS	NS	ND	ND	ND	ND
2,4-Dinitrophenol	NS	NS	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	NS	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	NS	ND	ND	ND	ND
2-Chloronaphthalene	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol 2-Methylnaphthalene	NS	NS	ND ND	ND ND	ND ND	ND ND
2-Methylphenol	100	0.33	ND ND	ND ND	ND ND	ND ND
2-Nitroaniline	NS	NS	ND	ND	ND	ND
2-Nitrophenol	NS	NS	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	NS	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	0.33	0.56	ND	0.24 J	ND
3-Nitroaniline	NS	NS	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	NS	ND	ND	ND	ND
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
4-Chlorophenyl phenyl ether	NS	NS	ND ND	ND ND	ND ND	ND ND
4-Nitroaniline	NS	NS	ND	ND.	ND	ND
4-Nitrophenol	NS	NS	ND	ND	ND	ND
Acenaphthene	100	20	0.032 J	ND	ND	ND
Acenaphthylene	100	100	ND	ND	ND	ND
Acetophenone	NS	NS	ND	ND	ND	ND
Anthracene	100	100	ND	ND	ND	0.055 J
Benzo(a)anthracene	1	1	0.11 J 0.35	ND ND	ND ND	0.17 0.14 J
Benzo(a)pyrene Benzo(b)fluoranthene	1	1	0.32	ND ND	ND ND	0.14 3
Benzo(ghi)perylene	100	100	0.34	ND	ND	0.081 J
Benzo(k)fluoranthene	3.9	0.8	0.12 J	ND	ND	0.06 J
Benzoic Acid	NS	NS	ND	ND	ND	ND
Benzyl Alcohol	NS	NS	ND	ND	ND	ND
Biphenyl	NS	NS	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	NS	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	NS	NS	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate	NS	NS	ND	ND	ND	ND
Carbazole	NS	NS	ND	ND	ND	0.029 J
Chrysene	3.9	1	0.12 J	ND	ND	0.17
Dibenzo(a,h)anthracene	0.33	0.33	0.069 J	ND	ND	0.024 J
Dibenzofuran	59	7	ND	ND	ND	ND
Diethyl phthalate	NS	NS	ND	ND	ND	ND
Dimethyl phthalate	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND
Di-n-butylphthalate Di-n-octylphthalate	NS	NS	ND ND	ND ND	ND ND	ND ND
Fluoranthene	100	100	0.19	0.023 J	ND ND	0.37
Fluorene	100	30	ND	ND	ND	ND
Hexachlorobenzene	1.2	0.33	ND	ND	ND	ND
Hexachlorobutadiene	NS	NS	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	NS	ND	ND	ND	ND
Hexachloroethane	NS 0.5	NS 0.5	ND 0.22	ND ND	ND ND	ND 0.092 J
Indeno(1,2,3-cd)pyrene Isophorone	0.5 NS	0.5 NS	0.32 ND	ND ND	ND ND	0.092 J ND
Naphthalene	100	12	0.066 J		0.037 J	ND ND
NDPA/DPA	NS	NS	ND ND	ND	ND ND	ND
Nitrobenzene	15	NS	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	NS	ND	ND	ND	ND
p-Chloro-m-cresol	NS	NS	ND	ND	ND	ND
Pentachlorophenol	6.7	0.8	ND	ND	ND	ND
Phenanthrene Phenol	100	100	0.099 J	ND	0.048 J	0.23
	100	0.33	ND	ND	ND	ND

^{*}NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007
**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

Integral Engineering P.C. Page 5 of 5

J = Estimated value

ND = Not detected

NS = No Standard

Bold and Italiazed value indicates concentration exceeds Unrestricted SCOs
Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

Soil Analytical Data Summary - TAL Metals Remedial Investigation Report 555 West 22nd Street

Sample ID			SB-13 (5-7)	SB-13 (15-17)	SB-14(3-5)	SB-14(15-17)	SB-15 (7-9)	SB-15 (15-17)	SB-16(6-8)	SB-16(15-17)	SB-17(5-7)	DUP-02-20161115 SB-17(5-7)	SB-17(15-17)
Lab Sample ID	*NY-	**NY-	L1636632-01	L1636632-02	L1637143-01	L1637143-02	L1637974-01	L1637974-02	L1637143-03	L1637143-04	L1637143-09	L1637143-11	L1637143-10
Sample Date	RESRR	UNRES	11/10/2016	11/10/2016	11/15/2016	11/15/2016	11/21/2016	11/21/2016	11/15/2016	11/15/2016	11/15/2016	11/15/2016	11/15/2016
Sample Media			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit of Measure			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Metals													
Aluminum, Total		NS	7800	5500	5800	7200	5200	6100	5700	7000	6100	5600	6400
Antimony, Total	NS	NS	ND	ND	0.46 J	ND	ND	ND	ND	0.43 J	0.65 J	0.65 J	0.77 J
Arsenic, Total	16	13	4.8	3	2.3	1.4	2.4	2.6	1.2	1.3	3.6	5	3.3
Barium, Total	400	350	71	60	45	26	35	33	22	30	47	62	31
Beryllium, Total	72	7.2	0.34 J	0.34 J	0.28 J	0.3 J	0.17 J	0.15 J	0.23 J	0.3 J	0.27 J	0.34 J	0.28 J
Cadmium, Total	4.3	2.5	0.74 J	0.42 J	ND	ND	0.09 J	ND	ND	ND	ND	ND	ND
Calcium, Total	NS	NS	14000	8000	1800	1300	3400	3100	5700	3600	22000	12000	3300
Chromium, Total	NS	NS	17	13	9.3	8.7	9.5	9.5	9.2	9.1	8	7.6	9.1
Cobalt, Total	NS	NS	6.8	4.8	6.9	4.4	5.4	5.8	5.7	7.1	5	4.6	6.2
Copper, Total	270	50	34	19	34	9.7	10	13	13	13	16	18	16
Iron, Total	NS	NS	21000	12000	12000	11000	17000	23000	12000	14000	11000	11000	12000
Lead, Total		63	120	44	21	15	34	8.4	19	30	75	120	12
Magnesium, Total	NS	NS	3600	3300	2800	2000	2100	3400	3400	3600	2300	2000	2800
Manganese, Total	2000	1600	320	390	210	96	300	490	450	360	240	120	150
Mercury, Total	0.81	0.18	0.25	0.6	0.04 J	0.07 J	0.07 J	0.03 J	0.11	0.06 J	0.47	0.39	0.05 J
Nickel, Total	310	30	18	10	13	9.6	11	13	13	14	9.9	10	13
Potassium, Total		NS	2200	780	790	410	510	320	390	400	550	580	400
Selenium, Total	180	3.9	ND	ND	ND	ND	0.32 J	ND	ND	ND	ND	ND	ND
Silver, Total	180	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium, Total		NS	570	200	420	86 J	220	140 J	410	100 J	600	440	140 J
Thallium, Total	NS	NS	ND	ND	ND	0.36 J	ND	ND	ND	ND	ND	ND	ND
Vanadium, Total		NS	18	17	13	12	12	11	12	11	12	13	13
Zinc, Total	10000	109	82	33	38	26	22	36	36	38	28	31	42

Soil Analytical Data Summary - TAL Metals Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-18(5-7) L1637143-05 11/15/2016 Soil mg/kg	SB-18(15-17) L1637143-06 11/15/2016 Soil mg/kg	SB-19 (5-7) L1636796-01 11/11/2016 Soil mg/kg	SB-19 (15-17) L1636796-02 11/11/2016 Soil mg/kg	SB-20 (4-6) L1636796-05 11/11/2016 Soil mg/kg	SB-20 (15-17) L1636796-06 11/11/2016 Soil mg/kg	SB-21 (3-5) L1636796-03 11/11/2016 Soil mg/kg	SB-21 (15-17) L1636796-04 11/11/2016 Soil mg/kg	SB-22 (4-6) L1636796-07 11/11/2016 Soil mg/kg	SB-22 (15-17) L1636796-08 11/11/2016 Soil	SB-23(5-7) L1637143-07 11/15/2016 Soil mg/kg
Total Metals			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aluminum, Total	NS	NO	7900	5400	7400	0000	4200	12000	6100	14000	5900	7300	8000
		NS NS	7900 0.45 J	5400 ND	7400 0.84 J	9000 0.69 J	4200 0.57 J	12000 1.1 J	0.44 J	0.79 J	0.99 J	7300 0.42 J	0.48 J
Antimony, Total Arsenic, Total	16	13	1.6	2	3.9	0.69 J	9.8	1.1 J	1.7	0.79 J	7.8	4.9	1.7
Barium, Total	400	350	43	35	120	110	9.6 150	120	39	58	40	4.9 58	45
Bervllium, Total	72	7.2	0.28 J	0.22 J	0.38 J	0.46	0.69	0.6	0.32 J	0.75	0.4 J	0.34 J	0.31 J
Cadmium, Total	4.3	2.5	0.28 J	0.22 J	0.36 J	ND	ND	ND	ND ND	ND	ND ND	0.34 J	0.31 J
Calcium, Total		NS	3000	2900	27000	5200	6400	5300	820	2900	2700	4900	1900
Chromium, Total	NS	NS	13	9.6	16	22	5.8	28	12	26	8.7	11	10
Cobalt, Total	NS	NS	5.9	5.2	4.6	6.7	4.5	9.3	5.6	10	5.5	5.2	6.2
Copper, Total	270	50	15	10	30	58	38	60	13	42	23	29	14
Iron, Total	NS	NS	13000	11000	12000	18000	15000	23000	10000	29000	14000	14000	12000
Lead. Total	400	63	31	7.7	130	550	94	640	15	210	38	87	180
Magnesium, Total	NS	NS	3000	3300	10000	3400	1100	5100	2000	5900	2000	2900	3000
Manganese, Total	2000	1600	140	220	410	220	400	380	230	340	230	290	98
Mercury, Total	0.81	0.18	1.1	0.03 J	0.29	1.1	0.08	1.9	0.11	0.87	0.05 J	0.08 J	0.1
Nickel, Total	310	30	17	11	12	16	12	22	9.8	24	13	12	14
Potassium, Total	NS	NS	1100	540	1600	1600	520	2400	1100	2200	340	810	470
Selenium, Total	180	3.9	ND	ND	ND	0.61 J	0.42 J	0.62 J	ND	0.83 J	0.32 J	ND U	ND
Silver, Total	180	2	ND	ND	ND	0.51 J	ND	0.47 J	ND	ND	ND	ND	ND
Sodium, Total	NS	NS	230	150 J	500	650	280	1300	100 J	1600	140 J	100 J	350
Thallium, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J
Vanadium, Total	NS	NS	16	11	21	20	13	28	15	29	16	14	13
Zinc, Total	10000	109	31	28	69	110	45	100	22	79	48	40	43

Soil Analytical Data Summary - TAL Metals Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-23(15-17) L1637143-08 11/15/2016 Soil mg/kg	SB-24(3-5) L1636970-06 11/14/2016 Soil mg/kg	SB-24(15-17) L1636970-07 11/14/2016 Soil mg/kg	SB-25 (6-8) L1636632-03 11/10/2016 Soil mg/kg	SB-25 (15-17) L1636632-04 11/10/2016 Soil mg/kg	SB-26 (3-5) L1636970-10 11/14/2016 Soil mg/kg	SB-26 (13-15) L1636970-11 11/14/2016 Soil mg/kg	SB-27(3-5) L1636970-02 11/14/2016 Soil mg/kg	DUP01-20161114 SB-27(3-5) L1636970-01 11/14/2016 Soil mg/kg	SB-27(15-17) L1636970-03 11/14/2016 Soil mg/kg	SB-28(5-7) L1636970-04 11/14/2016 Soil mg/kg
Total Metals													
Aluminum, Total	NS	NS	6400	5600	7400	3800	6800	5700	5900	4300	4500	12000	6400
Antimony, Total		NS	ND	2.4 J	ND	ND	ND	0.49 J	0.38 J	1.3 J	0.49 J	0.83 J	2.7 J
Arsenic, Total		13	1.5	3.9	20	1.8	2.7	2.8	1.8	14	5.9	9.5	4.6
Barium, Total	400	350	22	47	26	41	57	43	37	210	240	34	84
Beryllium, Total		7.2	0.28 J	0.35 J	0.28 J	0.24 J	0.42 J	0.46 J	0.33 J	0.56	0.31 J	0.7	0.26 J
Cadmium, Total		2.5	ND	ND	ND	0.25 J	0.4 J	ND	ND	ND	ND	ND	0.22 J
Calcium, Total		NS	1500	1200	1800	2600	1300	4900	6100	10000	9400	5200	79000
Chromium, Total	NS	NS	10	11	10	9.7	16	13	15	7.4	7	24	11
Cobalt, Total	NS	NS	6	4.7	4.5	3.6	6	6.1	5.3	4.9	5.8	8.9	3.2
Copper, Total	270	50	18	17	23	14	17	48	15	140	64	20	170
Iron, Total	NS	NS	13000	13000	13000	7100	11000	12000	10000	10000	10000	36000	8600
Lead, Total	400	63	7.2	71	11	65	18	68	43	210	170	28	130
Magnesium, Total	NS	NS	3200	1700	2900	1700	2300	4700	2500	610	1000	5500	5300
Manganese, Total	2000	1600	150	240	200	270	220	260	140	90	150	1600	540
Mercury, Total	0.81	0.18	ND	0.29	0.07 J	0.06 J	0.03 J	0.13	0.08	2.7	0.5	0.24	0.72
Nickel, Total	310	30	14	9.8	10	8.8	14	12	12	12	10	22	9.6
Potassium, Total	NS	NS	480	510	400	670	810	840	870	430	330	2200	1200
Selenium, Total	180	3.9	ND	ND	ND	ND	ND	ND	ND	0.6 J	0.43 J	ND	ND
Silver, Total	180	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7
Sodium, Total	NS	NS	300	290	290	420	500	210	220	650	490	4000	780
Thallium, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium, Total	NS	NS	14	17	11	11	21	21	14	15	12	32	15
Zinc, Total	10000	109	44	29	50	17	24	69	40	94	140	57	140

Soil Analytical Data Summary - TAL Metals Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-28(15-17) L1636970-05 11/14/2016 Soil mg/kg	SB-29 (5-7) L1636970-12 11/14/2016 Soil mg/kg	SB-29 (15-17) L1636970-13 11/14/2016 Soil mg/kg	SB-30(8-10) L1636970-08 11/14/2016 Soil mg/kg	SB-30(15-17) L1636970-09 11/14/2016 Soil mg/kg	SB-34_14-17 L1741853-01 11/14/2017 Soil mg/kg	SB-34_3-5 L1741853-02 11/14/2017 Soil mg/kg	DUP01-11142017 L1741853-03 11/14/2017 Soil mg/kg	SB-36_14-17 L1741853-04 11/14/2017 Soil mg/kg	SB-36_3-5 L1741853-05 11/14/2017 Soil mg/kg	SB-38_14-17 L1741853-06 11/14/2017 Soil mg/kg
Total Metals													
Aluminum, Total		NS	2900	4800	2200	6100	9400	7650	7500	8210	9810	5040	15500
Antimony, Total		NS	ND	0.58 J	ND	0.44 J	ND	2.54 J	ND	ND	0.579 J	ND	ND
Arsenic, Total		13	1.4	9.4	0.84 J	2.9	6.4	5.93	3.7	4.55	9.36	25.4	11.8
Barium, Total		350	26	110	16	25	28	128	51	44.3	65	198	51.4
Beryllium, Total		7.2	0.24 J	0.3 J	0.12 J	0.22 J	0.48 J	0.385 J	0.366 J	0.4 J	0.499 J	0.583	0.834
Cadmium, Total		2.5	ND	ND	ND	ND	ND	0.602 J	0.471 J	0.567 J	0.749 J	0.673 J	1.19 J
Calcium, Total		NS	5000	2600	2000	7000	5800	9010	16000	4920	4710	6780	2740
Chromium, Total	NS	NS	8.7	15	4.2	10	17	12.2	21.1	14.8	17.4	8.85	29.8
Cobalt, Total	NS	NS	4	4.6	2	4.5	7.7	6.54	5.06	4.85	7.35	7.62	11.5
Copper, Total	270	50	14	29	6.5	10	14	26	16.6	13.2	25.7	34.8	37.4
Iron, Total	NS	NS	6700	10000	4700	10000	21000	14600	11900	15300	19500	12800	30600
Lead, Total	400	63	26	750	9.7	74	160	225	195	46.9	124	80.2	145
Magnesium, Total	NS	NS	2300	1700	1000	2700	4200	2570	2490	2160	4060	1510	6480
Manganese, Total	2000	1600	330	160	68	140	450	165	289	253	259	303	484
Mercury, Total	0.81	0.18	0.06 J	0.67	0.07 J	1.4	0.18	0.16	0.4	0.2	0.23	0.29	0.61
Nickel, Total	310	30	9.9	26	4.7	10	17	14.5	14.4	11.7	18.1	17	29.2
Potassium, Total	NS	NS	780	810	270	460	1500	1390	946	715	1460	706	2550
Selenium, Total	180	3.9	ND	ND	ND	ND	ND	0.355 J	0.244 J	0.437 J	0.692 J	0.888 J	0.462 J
Silver, Total	180	2	D	0.42 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium, Total	NS	NS	1000	360	110 J	660	2300	288	376	262	1000	350	2080
Thallium, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium, Total	NS	NS	12	16	4.7	8.2	20	16.3	19.9	19	22.5	16.6	37.4
Zinc, Total	10000	109	12	38	13	32	52	70.5	58.8	32.5	52	85	80.3

Soil Analytical Data Summary - TAL Metals Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-38_5.5-7.5 L1741853-07 11/14/2017 Soil mg/kg	
Total Metals				
Aluminum, Total	NS	NS	5420	
Antimony, Total	NS	NS	ND	
Arsenic, Total	16	13	2.27	
Barium, Total	400	350	69.6	
Beryllium, Total	72	7.2	0.27	J
Cadmium, Total	4.3	2.5	0.351	J
Calcium, Total	NS	NS	14000	
Chromium, Total	NS	NS	12.1	
Cobalt, Total	NS	NS	3.7	
Copper, Total	270	50	16.5	
Iron, Total	NS	NS	8880	
Lead, Total	400	63	78.7	
Magnesium, Total	NS	NS	2020	
Manganese, Total	2000	1600	224	
Mercury, Total	0.81	0.18	0.21	
Nickel, Total	310	30	8.4	
Potassium, Total	NS	NS	1310	
Selenium, Total	180	3.9	0.232	U
Silver, Total	180	2	ND	
Sodium, Total	NS	NS	161	J
Thallium, Total	NS	NS	ND	
Vanadium, Total	NS	NS	18.7	
Zinc, Total	10000	109	31.8	

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007

**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value ND = Not detected

NS = No Standard

Bold and Italicized value indicates concentration exceeds Unrestricted SCOs
Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

Integral Engineering P.C. Page 5 of 5

Soil Analytical Data Summary - PCBs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-13 (5-7) L1636632-01 11/10/2016 Soil mg/kg	SB-13 (15-17) L1636632-02 11/10/2016 Soil mg/kg	SB-14(3-5) L1637143-01 11/15/2016 Soil mg/kg	SB-14(15-17) L1637143-02 11/15/2016 Soil mg/kg	SB-15 (7-9) L1637974-01 11/21/2016 Soil mg/kg	SB-15 (15-17) L1637974-02 11/21/2016 Soil mg/kg	SB-16(6-8) L1637143-03 11/15/2016 Soil mg/kg	SB-16(15-17) L1637143-04 11/15/2016 Soil mg/kg	SB-17(5-7) L1637143-09 11/15/2016 Soil mg/kg	DUP-02-20161115 SB-17(5-7) L1637143-11 11/15/2016 Soil mg/kg
Polychlorinated Biphenyls												
Aroclor 1016	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - PCBs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure Polychlorinated Biphenyls	*NY- RESRR	SB-17(15-17) L1637143-10 11/15/2016 Soil mg/kg	SB-18(5-7) L1637143-05 11/15/2016 Soil mg/kg	SB-18(15-17) L1637143-06 11/15/2016 Soil mg/kg	SB-19 (5-7) L1636796-01 11/11/2016 Soil mg/kg	SB-19 (15-17) L1636796-02 11/11/2016 Soil mg/kg	SB-20 (4-6) L1636796-05 11/11/2016 Soil mg/kg	SB-20 (15-17) L1636796-06 11/11/2016 Soil mg/kg	SB-21 (3-5) L1636796-03 11/11/2016 Soil mg/kg	SB-21 (15-17) L1636796-04 11/11/2016 Soil mg/kg	SB-22 (4-6) L1636796-07 11/11/2016 Soil mg/kg	SB-22 (15-17) L1636796-08 11/11/2016 Soil mg/kg
Aroclor 1016	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - PCBs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	SB-23(5-7) L1637143-07 11/15/2016 Soil mg/kg	SB-23(15-17) L1637143-08 11/15/2016 Soil mg/kg	SB-24(3-5) L1636970-06 11/14/2016 Soil mg/kg	SB-24(15-17) L1636970-07 11/14/2016 Soil mg/kg	SB-25 (6-8) L1636632-03 11/10/2016 Soil mg/kg	SB-25 (15-17) L1636632-04 11/10/2016 Soil mg/kg	SB-26 (3-5) L1636970-10 11/14/2016 Soil mg/kg	SB-26 (13-15) L1636970-11 11/14/2016 Soil mg/kg	SB-27(3-5) L1636970-02 11/14/2016 Soil mg/kg	DUP01-20161114 SB-27(3-5) L1636970-01 11/14/2016 Soil mg/kg
Polychlorinated Bipheny	Is										
Aroclor 1016	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - PCBs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure Polychlorinated Biphenyls	*NY- RESRR	SB-27(15-17) L1636970-03 11/14/2016 Soil mg/kg	SB-28(5-7) L1636970-04 11/14/2016 Soil mg/kg	SB-28(15-17) L1636970-05 11/14/2016 Soil mg/kg	SB-29 (5-7) L1636970-12 11/14/2016 Soil mg/kg	SB-29 (15-17) L1636970-13 11/14/2016 Soil mg/kg	SB-30(8-10) L1636970-08 11/14/2016 Soil mg/kg	SB-30(15-17) L1636970-09 11/14/2016 Soil mg/kg	SB-34_14-17 L1741853-01 11/14/2017 Soil mg/kg	SB-34_3-5 L1741853-02 11/14/2017 Soil mg/kg	DUP01-11142017 L1741853-03 11/14/2017 Soil mg/kg	SB-36_14-17 L1741853-04 11/14/2017 Soil mg/kg
Aroclor 1016	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	1	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
Aroclor 1232	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - PCBs Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	SB-36_3-5 L1741853-05 11/14/2017 Soil mg/kg	SB-38_14-17 L1741853-06 11/14/2017 Soil mg/kg	SB-38_5.5-7.5 L1741853-07 11/14/2017 Soil mg/kg
Polychlorinated Biphenyls	1.			
Aroclor 1016	1	ND	ND	ND
Aroclor 1221	1	ND	ND	ND
Aroclor 1232	1	ND	ND	ND
Aroclor 1242	1	ND	0.04 J	ND
Aroclor 1248	1	ND	ND	ND
Aroclor 1254	1	ND	0.0304 J	ND
Aroclor 1260	1	ND	ND	ND
Aroclor 1262	1	ND	ND	ND
Aroclor 1268	1	ND	ND	ND
PCBs, Total	NS	ND	0.0704 J	ND

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007

**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

J = Estimated value

ND = Not detected

NS = No Standard

Bold and Halicized value indicates concentration exceeds Unrestricted SCOs
Bold and shaded value indicates concentration exceeds Restricted-Residential SCOs

Integral Engineering P.C. Page 5 of 5

Soil Analytical Data Summary - Pesticides Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	**NY- UNRES	SB-13 (5-7) L1636632-01 11/10/2016 Soil mg/kg	SB-13 (15-17) L1636632-02 11/10/2016 Soil mg/kg	SB-14(3-5) L1637143-01 11/15/2016 Soil mg/kg	SB-14(15-17) L1637143-02 11/15/2016 Soil mg/kg	SB-15 (7-9) L1637974-01 11/21/2016 Soil mg/kg	SB-15 (15-17) L1637974-02 11/21/2016 Soil mg/kg	SB-16(6-8) L1637143-03 11/15/2016 Soil mg/kg	SB-16(15-17) L1637143-04 11/15/2016 Soil mg/kg	SB-17(5-7) L1637143-09 11/15/2016 Soil mg/kg	DUP-02-20161115 SB-17(5-7) L1637143-11 11/15/2016 Soil mg/kg	SB-17(15-17) L1637143-10 11/15/2016 Soil mg/kg	SB-18(5-7) L1637143-05 11/15/2016 Soil mg/kg	SB-18(15-17) L1637143-06 11/15/2016 Soil mg/kg
Organochlorine Pesticides b	y GC														
4,4'-DDD	13	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	8.9	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	7.9	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0.097	0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.48	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta-BHC	0.36	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4.2	0.094	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	24	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ticptacriloi	2.1	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1.3	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-Chlordane	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - Pesticides Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	SB-19 (5-7) L1636796-01 11/11/2016 Soil mg/kg	SB-19 (15-17) L1636796-02 11/11/2016 Soil mg/kg	SB-20 (4-6) L1636796-05 11/11/2016 Soil mg/kg	SB-20 (15-17) L1636796-06 11/11/2016 Soil mg/kg	SB-21 (3-5) L1636796-03 11/11/2016 Soil mg/kg	SB-21 (15-17) L1636796-04 11/11/2016 Soil mg/kg	SB-22 (4-6) L1636796-07 11/11/2016 Soil mg/kg	SB-22 (15-17) L1636796-08 11/11/2016 Soil mg/kg	SB-23(5-7) L1637143-07 11/15/2016 Soil mg/kg	SB-23(15-17) L1637143-08 11/15/2016 Soil mg/kg	SB-24(3-5) L1636970-06 11/14/2016 Soil mg/kg	SB-24(15-17) L1636970-07 11/14/2016 Soil mg/kg	SB-25 (6-8) L1636632-03 11/10/2016 Soil mg/kg
Organochlorine Pesticides b	y GC													
4,4'-DDD	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	8.9	ND	ND	ND	ND	ND	0.00953 P	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	7.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0.097	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta-BHC	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-Chlordane	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Delta-BHC	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00266 P
Dieldrin	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	24	ND	ND	ND	ND	ND	0.0114 P	ND	ND	ND	ND	ND	ND	ND
Endrin	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	NS	ND	ND	ND	ND	ND	ND	ND	0.00102 J	ND	ND	ND	ND	ND
Endrin ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lindane	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-Chlordane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - Pesticides Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	SB-25 (15-17) L1636632-04 11/10/2016 Soil mg/kg	SB-26 (3-5) L1636970-10 11/14/2016 Soil mg/kg	SB-26 (13-15) L1636970-11 11/14/2016 Soil mg/kg	SB-27(3-5) L1636970-02 11/14/2016 Soil mg/kg	DUP01-20161114 SB-27(3-5) L1636970-01 11/14/2016 Soil mg/kg	SB-27(15-17) L1636970-03 11/14/2016 Soil mg/kg	SB-28(5-7) L1636970-04 11/14/2016 Soil mg/kg	SB-28(15-17) L1636970-05 11/14/2016 Soil mg/kg	SB-29 (5-7) L1636970-12 11/14/2016 Soil mg/kg	SB-29 (15-17) L1636970-13 11/14/2016 Soil mg/kg	SB-30(8-10) L1636970-08 11/14/2016 Soil mg/kg	SB-30(15-17) L1636970-09 11/14/2016 Soil mg/kg	SB-34 (14-17) L1741853-01 11/14/2017 Soil mg/kg
Organochlorine Pesticides b	y GC													
4,4'-DDD	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00105 J
4,4'-DDE	8.9	ND	ND	ND	ND	ND	ND	0.00441	ND	ND	ND	ND	ND	0.00152 J
4,4'-DDT	7.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00919
Aldrin	0.097	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta-BHC	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-Chlordane	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Delta-BHC	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lindane	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-Chlordane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Analytical Data Summary - Pesticides Remedial Investigation Report 555 West 22nd Street

Sample ID Lab Sample ID Sample Date Sample Media Unit of Measure	*NY- RESRR	SB-34 (3-5) L1741853-02 11/14/2017 Soil mg/kg	DUP01-11142017 L1741853-03 11/14/2017 Soil mg/kg	SB-36 (14-17) L1741853-04 11/14/2017 Soil mg/kg	SB-36 (3-5) L1741853-05 11/14/2017 Soil mg/kg	SB-38 (14-17) L1741853-06 11/14/2017 Soil mg/kg	SB-38 (5.5-7.5) L1741853-07 11/14/2017 Soil mg/kg
Organochlorine Pestic	ides by GC						
4,4'-DDD	13	ND	ND	0.000957 J	ND	0.00154 J	ND
4,4'-DDE	8.9	0.000603 J	0.000604 J	0.00117 J	ND	ND	0.000566 J
4,4'-DDT	7.9	0.00286 J	0.00242 J	0.00346 J	ND	ND	0.00178 J
Aldrin	0.097	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.48	ND	ND	ND	ND	ND	ND
Beta-BHC	0.36	ND	ND	ND	ND	ND	ND
Chlordane	NS	ND	ND	ND	ND	ND	ND
cis-Chlordane	4.2	ND	ND	ND	ND	ND	ND
Delta-BHC	100	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	ND	ND	ND	ND	ND	ND
Endosulfan I	24	ND	ND	ND	ND	ND	ND
Endosulfan II	24	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	24	ND	ND	ND	ND	ND	ND
Endrin	11	ND	ND	ND	ND	ND	ND
Endrin aldehyde	NS	ND	ND	ND	ND	ND	ND
Endrin ketone	NS	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	NS	ND	ND	ND	ND	ND	ND
Lindane	1.3	ND	ND	ND	ND	ND	ND
Methoxychlor	NS	ND	ND	ND	ND	ND	ND
Toxaphene	NS	ND	ND	ND	ND	ND	ND
trans-Chlordane	NS	ND	ND	ND	ND	ND	ND

*NY-RESRR: Restricted-Residential Criteria, New York Restricted use current as of 5/2007
**NY-UNRES: New York Unrestricted use Criteria current as of 5/2007
P - The RPD between the results for the two columns exceeds the method-specified criteria.
J = Estimated value
ND = Not detected
NS = No Standard
Bold and Malicized value indicates concentration exceeds Unrestricted SCOs
Bold and Malicized

Integral Engineering P.C. Page 4 of 4

Groundwater Analytical Summary-VOCs Remedial Investigation Report 555 West 22nd Street

							DUP01-20161121		DUP 01						
Sample ID	*NY-	GW-13	GW-14	GW-18	GW-19	GW-25	GW-25	GW-25 (MW-3)	GW-25 (MW-3)	GW-26	GW-28	GW-29	GW-31	GW-32	GW-33
Sample Date	AWQS	11/21/2016	11/15/2016	11/15/2016	11/22/2016	11/21/2016	11/21/2016	6/23/2017	6/23/2017	11/14/2016	11/14/2016	11/14/2016	6/23/2017	6/23/2017	11/14/2017
Lab Sample ID	TOGS	L1637972-01	L1637142-01	L1637142-02	L1638171-01	L1637972-02	L1637972-03	L1721487-02	L1721487-04	L1636969-01	L1636969-02	L1636969-03	L1721487-01	L1721487-03	L1741853-08
Sample Media		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Volatile Organics (VOCs)															
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane Tetrachloroethene	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	0.22	ND	2000	1900	2800	2800	ND	0.2 J	ND ND	ND	66	ND ND
Toluene Ethylbenzene	5	ND ND	ND ND	ND ND	ND ND	340 1300	330 1200	520 1600	500 1500	ND ND	ND ND	ND ND	ND ND	10 200	ND ND
	NS NS	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Bromomethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride	2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10	3.4	4.4	ND	8.1	ND	ND	ND	ND	0.79 J	1.4 J	ND	1.3 J	ND	8.5
p/m-Xylene	5	ND ND	ND ND	ND ND	ND ND	4000 1400	3900 1400	6000 2000	5800 1900	ND ND	ND ND	ND ND	ND ND	750 110	ND ND
o-Xylene	5	ND ND	ND ND	ND ND	ND ND	5400	5300	8000	7700	ND ND	ND ND	ND ND	ND ND	860	ND ND
Xylenes, Total cis-1,2-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
1.2-Dichloroethene. Total	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
Dibromomethane	5	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
710010110	50	ND	ND	ND	5.4	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND
	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone Vinyl acetate	50 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl acetate 4-Methyl-2-pentanone	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
2,2-Dichloropropane	5	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
1,2-Dibromoethane	0.0006	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75 J	ND	6 J	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	ND	5.1 J	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76 J	ND	ND	ND
o-Chlorotoluene	5	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
p-Chlorotoluene	5	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
1,2-Dibromo-3-chloropropane	0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Hexachlorobutadiene	U.D	ND ND	ND ND	ND ND	ND ND	ND 92 J	ND 92 J	ND 74	ND 68 J	ND ND	ND ND	ND 3.7	ND ND	ND 110	ND ND
												3.7 ND			ND ND
Isopropylbenzene	5	ND	ND	ND	ND										
p-Isopropyltoluene	5	ND ND	ND ND	ND ND	ND ND	ND 220	ND 240	ND 200	ND 200	ND ND	ND ND		ND ND	2.4 J	
p-Isopropyltoluene	5 10 5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	220 170	240 170	200 150	200 140	ND ND	ND ND ND	1.2 J 1.7 J	ND ND ND	49 110	ND ND

Groundwater Analytical Summary-VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date Lab Sample ID Sample Media Unit of Measure	*NY- AWQS TOGS	GW-13 11/21/2016 L1637972-01 Groundwater µg/l	GW-14 11/15/2016 L1637142-01 Groundwater µg/l	GW-18 11/15/2016 L1637142-02 Groundwater µg/l	GW-19 11/22/2016 L1638171-01 Groundwater µg/l	GW-25 11/21/2016 L1637972-02 Groundwater µg/l	DUP01-20161121 GW-25 11/21/2016 L1637972-03 Groundwater µg/l	GW-25 (MW-3) 6/23/2017 L1721487-02 Groundwater µg/l	DUP 01 GW-25 (MW-3) 6/23/2017 L1721487-04 Groundwater μg/l	GW-26 11/14/2016 L1636969-01 Groundwater µg/l	GW-28 11/14/2016 L1636969-02 Groundwater µg/l	GW-29 11/14/2016 L1636969-03 Groundwater µg/l	GW-31 6/23/2017 L1721487-01 Groundwater μg/l	GW-32 6/23/2017 L1721487-03 Groundwater µg/l	GW-33 11/14/2017 L1741853-08 Groundwater µg/l
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	300	290	330	310	ND	ND	ND	ND	83	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	1000	1000	1200	1200	ND	ND	ND	ND	350	ND
1,4-Dioxane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	ND	ND	ND	ND	ND	ND	100	100	ND	ND	1.8 J	ND	27	ND
p-Ethyltoluene	NS	ND	ND	ND	ND	ND	ND	870	850	ND	ND	ND	ND	160	ND
1,2,4,5-Tetramethylbenzene	5	ND	ND	1.2 J	ND	61 J	59 J	44 J	50 J	ND	ND	4.9	ND	39	ND
Ethyl ether	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Groundwater Analytical Summary-VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date Lab Sample ID Sample Media Unit of Measure	*NY- AWQS TOGS	TRIP BLANK- 20161110 11/10/2016 L1636632-05 Aqueous µg/l	TRIP BLANK- 20161111 11/11/2016 L1636796-09 Aqueous µg/l	TRIP BLANK- 20161114 11/14/2016 L1636970-14 Aqueous µg/l	TRIP BLANK- 20161115 11/15/2016 L1637143-12 Aqueous µg/l	TRIP BLANK- 20161121 11/21/2016 L1637974-03 Aqueous µg/l	TRIP BLANK 112216 11/22/2016 L1638171-02 Aqueous µg/l	TRIP BLANK- 20170623 6/23/2017 L1721487-05 Aqueous µg/l
Volatile Organics (VOCs)								
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane Chloroform	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon tetrachloride	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane	1	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	50	ND	ND	ND	ND ND	ND	ND	ND ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene 1,3-Dichloropropene, Total	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloropropene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform	50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	5	ND	ND ND	ND	ND	ND	ND ND	ND ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NS	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene trans-1.2-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	3	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	3	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether	10	ND	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	ND	ND	ND	ND	ND	ND	ND
o-Xylene	5	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND ND	ND	ND ND
1,2,3-Trichloropropane Acrylonitrile	0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	50	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2-Dichloropropane	5 0.0006	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromoethane 1,3-Dichloropropane	5.0000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1,2-Tetrachloroethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromobenzene	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Butylbenzene	5	ND	ND ND	ND	ND	ND	ND ND	ND ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
o-Chlorotoluene	5	ND	ND	ND	ND	ND	ND	ND
p-Chlorotoluene	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND ND	ND	ND ND
Isopropylbenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene Naphthalene	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

Groundwater Analytical Summary-VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date Lab Sample ID Sample Media Unit of Measure	*NY- AWQS TOGS	TRIP BLANK- 20161110 11/10/2016 L1636632-05 Aqueous µg/l	TRIP BLANK- 20161111 11/11/2016 L1636796-09 Aqueous µg/l	TRIP BLANK- 20161114 11/14/2016 L1636970-14 Aqueous µg/l	TRIP BLANK- 20161115 11/15/2016 L1637143-12 Aqueous µg/l	TRIP BLANK- 20161121 11/21/2016 L1637974-03 Aqueous µg/l	TRIP BLANK 112216 11/22/2016 L1638171-02 Aqueous µg/l	TRIP BLANK- 20170623 6/23/2017 L1721487-05 Aqueous µg/l
1.2.4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	NS	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	ND	ND	ND	ND	ND	ND	ND
p-Ethyltoluene	NS	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Ethyl ether	NS	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ND	ND	ND	ND	ND	ND	ND

Notes:
Bold and shaded value indicates concentration exceeds TOGS AWQS
J = Estimated value
ND = Not detected
NS = No Standard
- = Not Analyzed
* = NYSDEC TOGS 1.1.1. Ambient Water Quality Standards (AWQS)

Integral Engineering P.C. Page 4 of 4

Groundwater Analytical Summary-SVOCs Remedial Investigation Report 555 West 22nd Street

							DUP01-20161121		DUP01		
Sample ID	*NY-	GW-13	GW-14	GW-18	GW-19	GW-25	GW-25	GW-25 (MW-3)	GW-25 (MW-3)	GW-26	GW-28
Sample Date	AWOS	11/21/2016	11/15/2016	11/15/2016	11/22/2016	11/21/2016	11/21/2016	6/23/2017	6/23/2017	11/14/2016	11/14/2016
Lab Sample ID	TOGS	L1637972-01	L1637142-01	L1637142-02	L1638171-01	L1637972-02	L1637972-03	L1721487-02	L1721487-04	L1636969-01	L1636969-02
Sample Media	1003	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Semivolatile Organics (SVO	Cs)										
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.6-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NDPA/DPA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	48	29	68	90	ND	ND
2-Nitrophenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	16	9.1	ND	ND	ND	ND
2-Methylphenol	NS	ND	ND	ND	ND	6	3.4 J	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	NS	ND	ND	ND	ND	7.7	4.2 J	22	28	ND	ND
2,4,5-Trichlorophenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzoic Acid	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	20	ND	ND	ND	0.11	0.32	0.31	0.24	0.28	ND	0.08 J
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	0.21	ND	ND	ND	ND	0.08 J	0.24
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Groundwater Analytical Summary-SVOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date Lab Sample ID Sample Media Unit of Measure	*NY- AWQS TOGS	GW-13 11/21/2016 L1637972-01 Groundwater µg/l	GW-14 11/15/2016 L1637142-01 Groundwater µg/l	GW-18 11/15/2016 L1637142-02 Groundwater µg/l	GW-19 11/22/2016 L1638171-01 Groundwater µg/l	GW-25 11/21/2016 L1637972-02 Groundwater µg/l	DUP01-20161121 GW-25 11/21/2016 L1637972-03 Groundwater µg/l	GW-25 (MW-3) 6/23/2017 L1721487-02 Groundwater µg/l	DUP01 GW-25 (MW-3) 6/23/2017 L1721487-04 Groundwater µg/l	GW-26 11/14/2016 L1636969-01 Groundwater µg/l	GW-28 11/14/2016 L1636969-02 Groundwater µg/l
Naphthalene	10	ND	0.06 J	0.17 J	0.42	140	140	120	190	ND	0.17 J
Benzo(a)anthracene	0.002	ND	ND	ND	0.12 J	ND	ND	ND	ND	0.05 J	0.09 J
Benzo(a)pyrene	0.002	ND	ND	ND	0.16 J	ND	ND	ND	ND	0.07 J	0.08 J
Benzo(b)fluoranthene	0.002	ND	ND	ND	0.1 J	ND	ND	ND	ND	0.07 J	0.12 J
Benzo(k)fluoranthene	0.002	ND	ND	ND	0.1 J	ND	ND	ND	ND	ND	0.04 J
Chrysene	0.002	ND	ND	ND	0.11 J	ND	ND	ND	ND	0.05 J	0.09 J
Acenaphthylene	NS	ND	ND	ND	0.12 J	ND	ND	0.07 J	0.08 J	ND	0.05 J
Anthracene	50	ND	ND	ND	0.05 J	0.04 J	0.04 J	ND	ND	ND	0.11 J
Benzo(ghi)perylene	NS	ND	ND	ND	0.08 J	ND	ND	ND	ND	0.05 J	ND
Fluorene	50	ND	ND	ND	0.07 J	0.29	0.28	0.3	0.36	ND	0.06 J
Phenanthrene	50	ND	0.07	ND	0.23	0.25	0.24	0.2	0.24	0.08 J	0.24
Dibenzo(a,h)anthracene	NS	ND	ND	ND	0.04 J	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	0.09 J	ND	ND	ND	ND	0.06 J	0.04 J
Pyrene	50	ND	ND	ND	0.2	ND	ND	ND	ND	0.07 J	0.23
2-Methylnaphthalene	NS	ND	ND	0.14 J	0.09 J	35	36	26	33	0.07 J	0.09 J
Pentachlorophenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Groundwater Analytical Summary-SVOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date	*NY-	GW-29 11/14/2016	GW-31 6/23/2017	GW-32 6/23/2017	GW-33 11/14/2017
Lab Sample ID	AWQS	L1636969-03	L1721487-01	L1721487-03	L1741853-08
Sample Media	TOGS	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l
Semivolatile Organics (SVO	Cs)	P5 /1	PS/1	µg/1	Pg/1
1,2,4-Trichlorobenzene	ls l	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND ND	ND	ND	ND ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND
1.4-Dichlorobenzene	3	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ND	ND ND	ND	ND ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND
2.6-Dinitrotoluene	5	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	ND	ND ND	ND	ND ND
4-Bromophenyl phenyl ether	NS	ND	ND ND	ND	ND ND
Bis(2-chloroisopropyl)ether	5	ND	ND ND	ND	ND ND
Bis(2-chloroethoxy)methane	5	ND ND	ND	ND	ND ND
Hexachlorocyclopentadiene	5	ND	ND ND	ND	ND ND
Isophorone	50	ND	ND	ND	ND
Nitrobenzene	0.4	ND	ND	ND	ND
NDPA/DPA	50	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND
Di-n-octylphthalate	50	ND	ND	ND	ND
Diethyl phthalate	50	ND	ND	ND	ND
Dimethyl phthalate	50	ND	ND	ND	ND
Biphenyl	NS	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND
2-Nitroaniline	5	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND
Dibenzofuran	NS	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene	5	ND	ND	ND	ND
Acetophenone	NS	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	ND	ND	ND	ND
p-Chloro-m-cresol	NS	ND	ND	ND	ND
2-Chlorophenol	NS	ND	ND	ND	ND
2,4-Dichlorophenol	1	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND
2-Nitrophenol	NS	ND	ND	ND	ND
4-Nitrophenol	NS	ND	ND	ND	ND
2,4-Dinitrophenol	10	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND
2-Methylphenol	NS	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	NS	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	ND	ND	ND	ND
Benzoic Acid	NS	ND	ND	ND	ND
Benzyl Alcohol	NS	ND	ND	ND	ND
Carbazole	NS	ND	ND	ND	ND
Acenaphthene	20	0.11	ND	0.05 J	ND
2-Chloronaphthalene	10	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	0.05 J
Hexachlorobutadiene	0.5	ND	ND	ND	ND

Groundwater Analytical Summary-SVOCs Remedial Investigation Report 555 West 22nd Street

Sample ID Sample Date Lab Sample ID Sample Media Unit of Measure	*NY- AWQS TOGS	GW-29 11/14/2016 L1636969-03 Groundwater µg/l	GW-31 6/23/2017 L1721487-01 Groundwater µg/l	GW-32 6/23/2017 L1721487-03 Groundwater µg/l	GW-33 11/14/2017 L1741853-08 Groundwater μg/l
Naphthalene	10	ND	ND	20	ND
Benzo(a)anthracene	0.002	ND	ND	ND	0.05 J
Benzo(a)pyrene	0.002	ND	ND	ND	0.05 J
Benzo(b)fluoranthene	0.002	ND	ND	ND	0.05 J
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	0.04 J
Acenaphthylene	NS	ND	ND	ND	ND
Anthracene	50	ND	ND	ND	ND
Benzo(ghi)perylene	NS	ND	ND	ND	ND
Fluorene	50	0.05 J	ND	0.05 J	ND
Phenanthrene	50	0.16 J	ND	0.04 J	ND
Dibenzo(a,h)anthracene	NS	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	0.04 J
Pyrene	50	0.04 J	ND	ND	ND
2-Methylnaphthalene	NS	0.06 J	ND	1.8	ND
Pentachlorophenol	1	ND	ND	ND	ND
Hexachlorobenzene	0.04	ND	ND	ND	ND
Hexachloroethane	5	ND	ND	ND	ND

Notes:
Bold and shaded value indicates concentration exceeds TOGS AWQS
J = Estimated value

J = Estimated value
ND = Not detected
NS = No Standard
-- = Not Analyzed
* = NYSDEC TOGS 1.1.1. Ambient Water Quality Standards (AWQS)

Integral Engineering P.C. Page 4 of 4

Groundwater Analytical Summary- Metals Dissolved and Total Remedial Investigation Report 555 West 22nd Street

	1	Ī	I			1	DUP01-20161121			1	
Sample ID		GW-13	GW-14	GW-18	GW-19	GW-25	GW-25	GW-26	GW-28	GW-29	GW-33
	*NY-	11/21/2016	11/15/2016	11/15/2016	11/22/2016	11/21/2016	11/21/2016	11/14/2016	11/14/2016	11/14/2016	11/14/2017
Sample Date	AWQS										
Lab Sample ID	TOGS	L1637972-01	L1637142-01	L1637142-02	L1638171-01	L1637972-02	L1637972-03	L1636969-01	L1636969-02	L1636969-03	L1741853-08
Sample Media		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Dissolved Metals											
Aluminum	NS	20.1	6.28 J	7.91 J	110	10.4	14.9	5.22 J	2090	11.8	ND
Antimony	3	4.85	1.38 J	0.85 J	5.81	7.56	7.5	0.95 J	1.7 J	0.86 J	ND
Arsenic	25	0.94	5.57	56.78	7.19	2.74	2.68	4.49	45.24	7.53	0.73
Barium	1000	840.5	444	236.7	509.1	2406	2388	135.4	77.59	194.2	164.4
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	0.53	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	ND
Calcium	NS	485000	396000	268000	158000	547000	538000	185000	53900	146000	199000
Chromium	50	0.28 J	0.22 J	0.19 J	0.67 J	0.26 J	0.23 J	1.42	51.89	0.4 J	ND
Cobalt	NS	0.33 J	2.3	0.67	0.97	1.5	1.64	2.92	3.49	1.11	0.99
Copper	200	2.05	0.83 J	0.76 J	2.48	0.85 J	0.86 J	ND	41.94	ND	0.56 J
Iron	300	260	276	91.2	5560	629	777	111	4030	49.3 J	123
Lead	25	0.52 J	9.22	1.46	10.4	11.69	12.2	ND	69.41	0.42 J	ND
Magnesium	35000	68900	96800	56300	56500	41300	41200	52300	32400	41600	72000
Manganese	300	2518	2522	930.1	2063	7370	7135	1546	69.21	1298	1711
Mercury	0.7	0.1 J	ND	ND	ND	ND	ND	ND	0.07 J	ND	ND
Nickel	100	1.41 J	21.73	2.61	3.57	4.06	4.08	4.77	11.47	3.2	2.68
Potassium	NS	50700	49400	122000	46200	65600	65600	82200	38000	63800	42600
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Sodium	20000	1130000	681000	212000	330000	2250000	2220000	391000	1430000	355000	187000
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NS	ND	4.64 J	2.34 J	3.31 J	ND	ND	ND ND	309.4	4.12 J	ND
Zinc	2000	ND	ND V	ND V	6.8 J	ND	ND	3.65 J	26.64	ND ND	ND
Total Metals	2000	1.10			0.0 0	113		0.00	20.01	1,12	
	INO	705	054000	057000	0400	0400	2072	05000	71000	105000	044
Aluminum	NS	725	254000	257000	2160	3120	2970	35000	71200	165000	844
Antimony	3	ND	0.71 J	0.97 J	3.3 J	1.1 J	1.2 J	0.4 J	1.4 J	0.5 J	0.7 J
Arsenic	25	2.9	49.26	852.4	11.29	8.6	7.4	37.1	84.8	98.5	3.09
Barium	1000	937.4	4884	4348	601.8	2872	3000	984	1584	6417	277.8
Beryllium	3	ND	19.81	16.48	0.19 J	ND U		3.2	8.3	26.2	0.12 J
Cadmium	5	ND	3.14	4.83	0.06 J	ND U		0.7	1.7	3.8	ND
Calcium	NS	447000	593000	427000	151000	513000	534000	254000	200000	400000	200000
Chromium	50	1.7	297.2	281.7	5.62	7.1	7.3	91.4	251.8	408.1	2.15
Cobalt	NS	0.6	151.1	146.6	2.13	3.6	3.7	35.8	62	217.2	1.48
Copper	200	5.1	677	2481	13.35	11.3	9.7	218.1	638.2	1611	3.13
Iron	300	5880	270000	329000	12700	80700	75800	73300	151000	516000	17400
Lead	25	17.1	4372	7890	97.98	212.8	198	1350	1837	4927	56.76
Magnesium	35000	66500	116000	92600	54000	40800	39100	64400	59600	148000	71000
Manganese	300	2399	9716	9288	2087	8565	8202	3630	2485	15090	1755
Mercury	0.7	ND	1.75	0.64	ND	0.07 J	ND	0.19 J	3.37	0.08 J	0.2
Nickel	100	1.5 J	376.5	300.8	6.2	7.5	6.4	71.2	130.6	442.3	3.77
Potassium	NS	50300	39600	154000	43200	66100	65200	88200	42000	70900	42600
Selenium	10	ND	6.03	6.68	ND	ND	ND	8	24	81	ND
Silver	50	ND	5.29	3.84	ND	ND	ND	1	2	3.4	ND
Sodium	20000	1210000	639000	214000	316000	2390000	2500000	403000	1480000	349000	191000
Thallium	0.5	ND	1.39	1.54	ND	ND	ND	0.47 J	1.1	2.3	ND
Vanadium	NS	2.3 J	364.3	357	9.53	11.3	9.7	111.4	549.7	534	5.74
Zinc	2000	6 J	1170	2392	30.22	12.3	12.5	420.1	608.6	2131	20.11

Notes:

Bold and shaded value indicates concentration exceeds TOGS AWQS J = Estimated value

ND = Not detected

NS = No Standard

* = Not Analyzed
* = NYSDEC TOGS 1.1.1. Ambient Water Quality Standards (AWQS)

Integral Engineering P.C. Page 1 of 1

Groundwater Analytical Summary-PCBs Remedial Investigation Report 555 West 22nd Street

						DUP01-20161121					
Sample ID	*NY-	GW-13	GW-14	GW-18	GW-25	GW-25	GW-26	GW-28	GW-29	GW-19	GW-33
Sample Date	AWOS	11/21/2016	11/15/2016	11/15/2016	11/21/2016	11/21/2016	11/14/2016	11/14/2016	11/14/2016	11/22/2016	11/14/2017
Lab Sample ID	TOGS	L1637972-01	L1637142-01	L1637142-02	L1637972-02	L1637972-03	L1636969-01	L1636969-02	L1636969-03	L1638171-01	L1741853-08
Sample Media	1068	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Polychlorinated Biphenyls (F	PCBs)										
Aroclor 1016	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.059 J
Aroclor 1248	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1262	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.059 J

Notes:

Bold and shaded value indicates concentration exceeds TOGS AWQS

J = Estimated value

ND = Not detected

NS = No Standard

-- = Not Analyzed

* = NYSDEC TOGS 1.1.1. Ambient Water Quality Standards (AWQS)

Groundwater Analytical Summary- Pesticides Remedial Investigation Report 555 West 22nd Street

						DUP01-20161121					
Sample ID		GW-13	GW-14	GW-18	GW-25	GW-25	GW-26	GW-28	GW-29	GW-19	GW-33
Sample Date	*NY-	11/21/2016	11/15/2016	11/15/2016	11/21/2016	11/21/2016	11/14/2016	11/14/2016	11/14/2016	11/22/2016	11/14/2017
Lab Sample ID	AWQS	L1637972-01	L1637142-01	L1637142-02	L1637972-02	L1637972-03	L1636969-01	L1636969-02	L1636969-03	L1638171-01	L1741853-08
Sample Media	TOGS	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Unit of Measure		μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Pesticides											
Delta-BHC	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lindane	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha-BHC	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDD	0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	0.06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-Chlordane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

Bold and shaded value indicates concentration exceeds TOGS AWQS J = Estimated value

ND = Not detected

NS = No Standard

-- = Not Analyzed

* = NYSDEC TOGS 1.1.1. Ambient Water Quality Standards (AWQS)

Integral Engineering P.C. Page 1 of 1

Ambient and Indoor Air Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID	AMBIENT AIR	Indoor Air (IA1)	IA2	IA3	IA4	AA-1
Sample Date	11/8/2016	11/9/2016	11/22/2016	11/22/2016	11/22/2016	11/10/2017
Lab Sample ID	L1636414-01	11636414-02	L1638210-01	L1638210-02	L1638210-03	L1741525-01
Sample Media	Air	Air	Air	Air	Air	Air
Unit of Measure	μg/m ³	$\mu g/m^3$	μg/m3	μg/m ³	μg/m3	μg/m3
Volatile Organics Compound	ls (VOCs)					
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	3.66	ND	ND	ND	ND
1,1-Dichloroethane	ND	2.66	ND	ND	ND	ND
1,1-Dichloroethene	ND	1.87	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	1.06	1.06	ND	ND
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	0.428	ND	ND	ND	ND
1,2-Dichloroethane	ND	3.15	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND
1,3-Butadiene	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	1.51	ND	ND
1,4-Dioxane	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane	1.21	19.7	1.34	ND	ND	ND
2-Butanone	1.67	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND
3-Chloropropene	ND	ND	ND	ND	ND	ND
4-Ethyltoluene	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND
Acetone	5.23	ND	ND	ND	3.56	3.28
Benzene	1.66	ND	5.81	7.16	ND	ND
Benzyl chloride	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	3.47	ND
Bromoform	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND
Carbon disulfide	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	0.409	7.38	0.453	0.459	0.465	0.453
Chlorobenzene	ND	1.13	ND	ND	ND	ND
Chloroethane	ND	27.1	ND	ND	ND	ND
Chloroform	ND	8.14	1.83	3.87	23.1	ND
Chloromethane	1.02	1.15	1.05	0.985	0.702	0.907
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND

Integral Engineering, P.C.

Page 1 of 2

Ambient and Indoor Air Analytical Data Summary - VOCs

Remedial Investigation Report 555 West 22nd Street

Sample ID	AMBIENT AIR	Indoor Air (IA1)	IA2	IA3	IA4	AA-1
Sample Date	11/8/2016	11/9/2016	11/22/2016	11/22/2016	11/22/2016	11/10/2017
Lab Sample ID	L1636414-01	11636414-02	L1638210-01	L1638210-02	L1638210-03	L1741525-01
Sample Media	Air	Air	Air	Air	Air	Air
Unit of Measure	$\mu g/m^3$	$\mu g/m^3$	μg/m3	$\mu g/m^3$	μg/m3	μg/m3
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND
Cyclohexane	ND	5.82	ND	7.23	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	1.38	1.46	2.27	2.52	2	1.72
Ethyl Acetate	ND	ND	ND	NS	ND	ND
Ethyl Alcohol	19.2	ND	490	29.4	ND	ND
Ethylbenzene	ND	1.13	ND	ND	ND	ND
Freon-113	ND	ND	ND	ND	ND	ND
Freon-114	ND	ND	ND	ND	ND	ND
Heptane	ND	ND	0.869	2.23	ND	ND
Hexachlorobutadiene	ND	0.651	ND	ND	ND	ND
iso-Propyl Alcohol	1.91	ND	70.1	10.2	ND	ND
Methyl tert butyl ether	ND	2.37	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND	ND	ND
n-Hexane	1.36	ND	1.32	2.42	ND	ND
o-Xylene	0.93	ND	1.09	1.21	ND	ND
p/m-Xylene	2.7	3.97	3.03	3.08	ND	ND
Styrene	ND	ND	ND	ND	ND	ND
tert-Butyl Alcohol	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.746	4.15	0.292	0.224	0.285	ND
Tetrahydrofuran	ND	19.4	ND	ND	ND	ND
Toluene	4.15	11.7	7.5	5.8	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	0.532	ND	ND	ND
Trichlorofluoromethane	ND	5.11	1.21	1.56	1.49	1.23
Vinyl bromide	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	0.883	ND	ND	ND	ND

Notes:

ND = Not detected

Soil Vapor Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

			1		1	T		1				1
Sample ID	SV-01	SV-03	SV-04	SV-05	SV-05 DUP	SV-06	SV-07	SV-08	DUP-6/22/17	SV-11	SV-12	SV-13
Sample Date	11/9/2016	11/9/2016	11/9/2016	11/9/2016	11/9/2016	11/9/2016	L1721321-01	L1721321-02	L1721321-03	11/10/2017	11/10/2017	11/10/2017
Lab Sample ID	L1636414-03	L1636414-05	L1636414-06	L1636414-07	L1636414-09	L1636414-08	6/22/2017	6/22/2017	6/22/2017	L1741525-02	L1741525-03	L1741525-04
Sample Media	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air
Unit of Measure	μg/m³	μg/m3	μg/m ³	μg/m3	μg/m³	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3
Volatile Organics Compoun	<u> </u>											
1,1,1-Trichloroethane	ND	ND	31.8	ND	ND	ND	1.34	33.6	1.37	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	2.54	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	1.04	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	68.8	7.87	12.2	8.95	9.19	1370	18.1	142	17.6	4.22	3.07	3.36
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND 50.4	ND 0.75	ND 0.74	ND 0.00	ND	ND 05.4	ND	ND	ND	ND 4.40	ND	ND
1,3,5-Trimethylbenzene	52.1	3.75	3.71	2.38	2.5	954	7.08	66.4	6.64	1.18	ND	ND
1,3-Butadiene	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.9	ND ND	ND	ND	ND
1,3-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	ND	ND	ND ND	ND	ND ND	ND	ND 0.000	ND 10.7	ND 0.000	ND ND	ND ND	ND ND
1,4-Dioxane	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.962	16.7	0.868			
2,2,4-Trimethylpentane	ND	34.3	ND F.F.4	ND	ND	ND	1.01	7.47	ND 0.03	ND	ND	ND
2-Butanone	86.1 ND	2.61 ND	5.54 ND	3.07 ND	3.16 ND	ND ND	8.08 ND	58.1 ND	9.02 ND	3.78 ND	2.78 ND	4.36 ND
2-Hexanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
3-Chloropropene 4-Ethyltoluene	23.8	1.82	2.97	1.76	1.88	ND 346	2.84	29.5	ND 2.96	1.04	ND ND	ND ND
	23.8 ND	1.82 ND	2.97	1.76 ND	1.88 ND	ND	12.9	29.5 61.9	12.4	1.04 ND	ND ND	ND ND
4-Methyl-2-pentanone Acetone	2420	11.5	19.8	14.1	14.7	167	75.1	641	82.9	6.75	4.56	4.56
Benzene	84.7	1.24	2.21	1.3	1.22	ND	5.46	24	5.34	0.901	ND	ND
	ND	ND	ND	ND	ND	ND ND	5.46 ND	ND	5.34 ND	0.901 ND	ND ND	ND ND
Benzyl chloride Bromodichloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.46	ND ND	3.43	ND ND	ND ND	ND
Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
Bromomethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
Carbon disulfide	40.8	2.85	3.27	1.16	1.13	ND ND	10.8	16.4	10.9	ND	ND	ND
Carbon tetrachloride	ND	ND	16.9	ND	ND	ND ND	1.65	4.05	1.69	ND ND	ND ND	ND
Chlorobenzene	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	14.6	32.5	1.2	1.27	ND ND	187	3.42	198	14.4	ND ND	ND
Chloromethane	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	3610	3.03	1.66	0.826	ND	816	2.14	14.5	2.23	1.16	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	1.45	2.9	1.45	1.65	ND	2.66	2.27	2.46	1.64	12.8	19.8
Ethyl Acetate	ND	ND	ND	ND	ND	ND	35.4	48.8	36.9	ND	ND	ND
Ethyl Alcohol	4220	ND	12.7	13.8	27.7	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	87.7	1.8	2.75	1.92	2.05	486	5.26	62.5	5.04	1.06	ND	ND
Freon-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon-114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane	1260	3.14	0.881	ND	ND	4510	3.82	22.6	3.82	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
iso-Propyl Alcohol	54.1	ND	ND	12.1	12.7	ND	5.26	30	6.05	ND	2.27	ND
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	8.2	ND	ND	ND	ND	8.16	ND	ND	ND	ND
n-Hexane	592	1.79	0.737	ND	ND	687	3	16.5	2.95	ND	ND	ND
o-Xylene	46	3.71	5.13	3.34	3.56	1310	8.95	80.8	8.47	1.64	0.951	0.890
p/m-Xylene	569	8.47	12.5	8.43	9.12	2890	19.6	218	18.5	3.91	2.17	2.03
Styrene	ND	ND	ND	ND	ND	ND	ND	2.29	ND	ND	ND	ND
tert-Butyl Alcohol	ND	ND	ND	2.43	2.58	ND	4.61	5.27	5.31	ND	ND	ND
Tetrachloroethene	ND	ND	173	ND	ND	ND	111	238	104	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	99.5	4.86	5.05	3.73	3.75	407	10.6	67.5	9.57	2.05	0.935	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Soil Vapor Analytical Data Summary - VOCs Remedial Investigation Report 555 West 22nd Street

Sample ID	SV-01	SV-03	SV-04	SV-05	SV-05 DUP	SV-06	SV-07	SV-08	DUP-6/22/17	SV-11	SV-12	SV-13
Sample Date	11/9/2016	11/9/2016	11/9/2016	11/9/2016	11/9/2016	11/9/2016	L1721321-01	L1721321-02	L1721321-03	11/10/2017	11/10/2017	11/10/2017
Lab Sample ID	L1636414-03	L1636414-05	L1636414-06	L1636414-07	L1636414-09	L1636414-08	6/22/2017	6/22/2017	6/22/2017	L1741525-02	L1741525-03	L1741525-04
Sample Media	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air
Unit of Measure	μg/m ³	μg/m3	μg/m ³	μg/m3	μg/m ³	μg/m3						
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	1.1	2.91	1.52	ND	ND	ND
Trichlorofluoromethane	ND	ND	1.75	1.24	1.25	ND	13.4	7.98	14.3	1.19	1.26	1.26
Vinyl bromide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

ND = Not detected