

December 5, 2022

Michael MacCabe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7016

RE: Quarterly Groundwater Monitoring Report

January 2022 to July 2022 – 2^{nd} , 3^{rd} , and 4^{th} Monitoring Events

561 Greenwich Street New York, New York BCP Site No.: C231129

Langan Project No.: 190043702

Dear Mr. MacCabe:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) prepared this letter report to summarize the quarterly performance groundwater monitoring events at 561 Greenwich Street in Manhattan, New York (the site). The site was remediated pursuant to a Brownfield Cleanup Agreement (BCA) (Site No. C231129) with the New York State Department of Environmental Conservation (NYSDEC). The remediation was completed and a Certificate of Completion (COC) was issued by NYSDEC on December 29, 2021.

Langan conducted quarterly performance groundwater monitoring events in accordance with the NYSDEC-approved December 2021 Site Management Plan (SMP), prepared by Langan. The second, third, and fourth quarterly performance groundwater monitoring events were completed in January, April, and July 2022, respectively. The SMP and results of the first quarterly performance groundwater monitoring event can be found in the NYSDEC-approved December 2021 Final Engineering Report (FER), prepared by Langan. Additionally, the results for the baseline, post-injection, and first quarterly performance groundwater monitoring event are provided in Table 1 of this report.

Background

The site is at 561 Greenwich Street in Manhattan, New York and is identified as Block 598, Lot 42 on the New York City (NYC) Manhattan Borough Tax Map. The about 20,045-square-foot site is bound by King Street to the north, a 17-story commercial office building to the east (Block 598, Lot 58), Charlton Street to the south, and Greenwich Street to the west. A site location map is provided as Figure 1.

The Rector, Church-Wardens, and Vestrymen of Trinity Church, in the city of New-York; 561 HH LLC; and Remainderman 561 Greenwich LLC (the Participants) entered into a BCA with the NYSDEC as Participants in the NYS Brownfield Cleanup Program (BCP) on July 24, 2019 to remediate the site. The site was assigned an E-Designation (E-288) by the New York City Department of City Planning (NYCDCP) as part of the March 20, 2013 Hudson Square Rezoning (City Environmental Quality Review [CEQR] No.

12DCP045M). The E-Designation for hazardous materials requires an environmental assessment of soil, groundwater, and soil vapor, which was satisfied by the remedial investigation performed pursuant to the BCA, and is administered by the New York City Office of Environmental Remediation (NYCOER). The site was remediated for restricted commercial use and, is improved with an 18-story commercial office building with ground-floor retail space and a full cellar. Construction is anticipated to be completed in April 2023.

Remediation was performed in advance of and concurrently with site redevelopment. The remediation included demolition, installation of a support of excavation (SOE) system, site-wide soil/fill excavation to elevation (el.) -2.5 (about 14 to 16 feet below grade surface [bgs]) with localized deeper excavation to el. -5 to remove petroleum-impacted soil, removal of underground storage tanks, recovery of light non-aqueous phase liquid (LNAPL), in-situ remediation of petroleum-impacted groundwater both on- and off-site, and site-wide groundwater dewatering and treatment of dewatered groundwater.

The NYSDEC-approved March 10, 2020 Remedial Action Work Plan (RAWP) anticipated that off-site petroleum impacts in groundwater (NYSDEC Spill No. 1801068) would be addressed via on-site dewatering and treatment during site-wide remediation, in addition to in-situ remediation via sodium persulfate and powdered activated carbon (PAC) injections

Groundwater Treatment

A two-phase in-situ groundwater treatment program, consisting of in situ chemical oxidation (ISCO) injections followed by activated carbon (PAC or Petrofix) injections, was performed to treat petroleum-impacted groundwater associated with NYSDEC Spill No. 1801068. In-situ treatment and injection events were performed during the events listed below:

- On- and off-site ISCO injections March 6 to March 20, 2020
- On-site PAC injections August 24 to August 28, 2020
- On-site dewatering and treatment April 2 to June 25, 2021
- Off-site dewatering and treatment April 19 to June 28, 2021
- Off-site Petrofix injections July 30 to August 5, 2021

Groundwater Sampling

Post-injection groundwater samples were collected from off-site monitoring wells MW21, MW22, and MW23 on June 19, 2020; April 20 and 21, 2021; and August 20, 2021. Quarterly off-site performance groundwater monitoring began on September 16, 2021 and was conducted for the second, third, and fourth quarters on January 21, April 15, and July 26 and 27, 2022, respectively. A groundwater analytical results map is included as Figure 2.

Quarterly groundwater performance monitoring to assess volatile organic compound (VOC) concentrations in groundwater will continue, as determined by the NYSDEC in consultation with New York State Department of Health (NYSDOH), until residual groundwater concentrations are below the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values (SGV) for Class GA Water (collectively referred to as SGVs) or are asymptotic at an acceptable level over an extended period. As stated in the SMP, groundwater monitoring for VOCs will continue on a quarterly basis for two years following the in-situ remedy, and on an annual basis thereafter.

Analytical results for the baseline, post-injection, and quarterly groundwater performance monitoring events are presented in Table 1. The post-injection groundwater monitoring events and first quarterly performance groundwater monitoring event are summarized in the December 2021 FER.

To access monitoring wells MW22 and MW23 during construction, a central monitoring well access network was installed on August 6, 2021 by inserting polyethylene tubing into MW22 and MW23. Three

Langan Project No.: 190043702

off-site recovery wells (OS_RW01 – OS_RW03) were also connected to the central monitoring well access network via polyethylene tubing. Individual lengths of tubing were extended into each respective monitoring well to about 2 feet above the bottom of the well screen. The five individual tubing extensions were then threaded through 4-inch diameter polyvinyl chloride (PVC) tubing that was installed in an excavated access trench approximately 10 inches bgs. The PVC tubing and access trench extends to a central collection manhole in the southwestern part of the site. The PVC tubing was encased in concrete to protect the central monitoring well access network during construction. Due to the installation of the monitoring well access network, depth to groundwater measurements were not recorded for MW22 and MW23 during the second, third, and fourth quarterly performance groundwater monitoring events.

This groundwater monitoring report presents the findings from the second, third, and fourth quarterly performance groundwater monitoring events occurring January, April, and July 2022, respectively.

Second Quarterly Groundwater Monitoring Event – January 2022

Groundwater monitoring wells MW21, MW22, and MW23 were sampled on January 28, 2022 in accordance with the United States Environmental Protection Agency (USEPA) low-flow groundwater sampling procedure ("Low Stress [low-flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells," dated July 30, 1996 and revised September 19, 2017).

Prior to sampling, the monitoring well manhole cover at MW21 was observed to be damaged. The PVC riser pipe at MW21 extended above the manhole casing and the protective J-plug at MW21 was broken; therefore, the well casing was open to the sidewalk above. No evidence of damage was observed at the central access manhole for monitoring wells MW22 and MW23. Following completion of the monitoring event, Langan oversaw repair and replacement of the MW21 well cover and J-Plug by Lakewood Environmental Services Corp. of Smithtown, New York in February 2022.

Langan used a photoionization detector (PID) to record the initial headspace VOC reading (recorded in parts per million [ppm]) from MW21 and the central access manhole. At MW21, Langan measured the depth to groundwater using a Solinst oil/water interface probe. No NAPL was detected in MW21. Prior to sample collection, groundwater was purged from MW21, MW22, and MW23 while monitoring physical and chemical groundwater parameters (i.e., pH, conductivity, turbidity, dissolved oxygen [DO], temperature, and oxidation-reduction potential [ORP]). Groundwater was purged until physical and chemical groundwater parameters stabilized, after the well was purged for one hour, or until the well was purged dry, whichever was sooner. Purged groundwater from MW21 was light brown in color and had a petroleum-like odor. Purged groundwater from both MW22 and MW23 was dark brown to black and had no apparent odor. Groundwater measurements and observations were recorded on groundwater sampling logs, which are included in Attachment 1.

Prior to sampling, MW22 and MW23 were purged dry before groundwater quality parameters had stabilized. Both MW22 and MW23 were sampled after purging about 1 and about 0.5 gallons, respectively. MW21 was purged dry and then fully recharged before sampling. Groundwater samples were collected directly from the pump discharge line into laboratory supplied containers that were sealed, labeled, and placed in an ice-chilled cooler (to attempt to maintain a temperature of about 4°C), and relinquished under standard chain-of-custody protocol, to a courier for delivery to Alpha Analytical Laboratories (Alpha), a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory in Westborough, Massachusetts, for analysis of VOCs and sulfate via USEPA 8260C and 9038, respectively.

Langan Project No.: 190043702

<u>Third Quarterly Groundwater Monitoring Event – April 2022</u>

Groundwater monitoring wells MW21, MW22, and MW23 were sampled on April 15, 2022 in accordance with the USEPA low-flow groundwater sampling procedure. Langan used a PID to record the initial headspace VOC reading (recorded in ppm) from MW21 and the central access manhole. At MW21, Langan measured the depth to groundwater using a Solinst oil/water interface probe. No NAPL was detected in MW21. Prior to sample collection, groundwater was purged from MW21, MW22, and MW23 while monitoring physical and chemical groundwater parameters (i.e., pH, conductivity, turbidity, DO, temperature, and ORP. Groundwater was purged until physical and chemical groundwater parameters stabilized, after the well was purged for one hour, or until the well was purged dry, whichever was sooner. Purged groundwater from MW21 was light brown in color and had a petroleum-like odor. Purged groundwater from both MW22 and MW23 was black to dark gray and had no apparent odor. Groundwater measurements and observations were recorded on groundwater sampling logs, which are included in Attachment 1.

Prior to sampling, MW21 was purged dry before groundwater quality parameters had stabilized. Groundwater in MW21 fully recharged before sampling, however, due to equipment power supply loss MW21 was sampled manually using a dedicated disposable polyethylene bailer. MW22 was purged dry and then sampled after fully recharging. MW23 was sampled after groundwater quality parameters had stabilized. MW22 and MW23 were sampled after purging about 2 and about 1.55 gallons, respectively. Groundwater samples were collected directly from the pump discharge line into laboratory supplied containers that were sealed, labeled, and placed in an ice-chilled cooler, and relinquished under standard chain-of-custody protocol, to a courier for delivery to Alpha for analysis of VOCs and sulfate via USEPA 8260C and 9038, respectively.

Fourth Quarterly Groundwater Monitoring Event – July 2022

Groundwater monitoring wells MW22 and MW23 were sampled on July 26, 2022, and MW21 was sampled on July 27, 2022, in accordance with the USEPA low-flow groundwater sampling procedure. To allow for adequate recharge, MW21 was gauged and purged on July 26, 2022.

Langan recorded an initial headspace VOC reading (recorded in ppm), using a PID from MW21 and the central access manhole. At MW21, Langan measured the depth to groundwater using a Solinst oil/water interface probe. No NAPL was detected in MW21. Prior to collecting groundwater samples, each well was purged using a peristaltic pump. During purging, the turbidity, pH, temperature, conductivity, ORP, and DO were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater from MW21 was light brown in color and had a petroleum-like odor on July 26th, and was light brown in color and had no apparent odor on July 27th. Purged groundwater from both MW22 and MW23 was black and had no apparent odor. Groundwater measurements and observations were recorded on groundwater sampling logs, which are included in Attachment 1.

While purging, MW22 and MW23 did not have a sufficient recharge rate to purge three well volumes. Both MW22 and MW23 were sampled after purging about 0.53 and 0.76 gallons, respectively. Prior to sampling, MW21 was purged dry twice on July 26, 2022, and fully recharged before sampling on July 27, 2022. Groundwater samples were collected directly from the pump discharge line into laboratory supplied containers that were sealed, labeled, and placed in an ice-chilled cooler, and relinquished under standard chain-of-custody protocol, to a courier for delivery to Alpha for analysis of VOCs and sulfate via USEPA 8260C and 9038, respectively.

A table summarizing the initial headspace reading and the initial groundwater elevation measurement at each well is summarized below.

Langan Project No.: 190043702

Well	Second (Groundwate Event – Jai	r Monitoring		y Groundwater ent – April 2022	Fourth Quarterly Groundwater Monitoring Event – July 2022			
Number	Headspace Reading (ppm)	Reading Water Readi		Depth to Water (Feet bgs)	Headspace Reading (ppm)	Depth to Water (Feet bgs)		
MW21	37.5	6.93	0.1	6.07	1.2	8.4		
MW22	0.0	NA	0.0	NA	0.0	NA		
MW23	0.0	NA	0.0	NA	0.0	NA		

NA = Not applicable due to monitoring well access network

Groundwater samples were collected using a Solinst 410 peristaltic pump, except for sample MW21_041522 from MW21 that was collected using a dedicated disposable polyethylene bailer during the third quarterly sampling event. For quality assurance and quality control (QA/QC), one field blank, one duplicate, and one matrix spike/matrix spike duplicate (MS/MSD) was collected during each sampling event. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for TCL VOCs and sulfate by Alpha in Westborough, Massachusetts.

Quality Assurance/Quality Control

The duplicate sample results from the quarterly performance groundwater monitoring events are presented in Table 1 alongside the parent sample. Analytical results for the second, third, and fourth quarterly sampling event field and trip blank samples are summarized in Table 2.

A field blank sample was collected during each quarterly sampling event to determine the effectiveness of the laboratory decontamination procedures for laboratory-supplied bottleware and to identify the presence of any ambient contamination at the field site. The field blanks were collected by pouring deionized water provided by the laboratory directly into sample bottleware.

A coded field duplicate was collected during each quarterly sampling event to evaluate the precision of the analytical methods and uniformity of the sample matrix. The duplicates were collected from the same material as the primary sample by splitting the volume of sample collected in the field into two sample containers. The samples are termed "coded" because they were labeled in such a manner that the laboratory would not be able to determine the parent sample associated with the duplicate sample. This coding serves to eliminate possible bias that could arise during lab analysis. The field duplicates were analyzed for the same parameters as the parent sample.

A trip blank sample was collected during each quarterly sampling event to assess the potential for contamination of the sample containers and samples during the trip from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) in vials sealed by the laboratory when the empty sample containers are shipped to the field, and are unsealed and analyzed by the laboratory when a sample shipment is received from the field.

Validation Overview

Data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34, "Trace Volatile Data Validation" (February 19, 2013, Revision 3). Validation includes reconstruction of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. The data was found to be valid and usable for its intended application. A Data Usability Summary Report (DUSR) is included in Attachment 2.

Groundwater Monitoring Analytical Results

Laboratory analytical data was compared to the NYSDEC SGVs. The laboratory analytical reports are included as Attachment 3.

Second Quarterly Groundwater Monitoring Event – January 2022

Ten VOCs were detected above the SGVs in groundwater samples collected from MW21, MW22, and MW23 during the January 2022 sampling event. The following table provides a summary of each VOC that exceeded the SGVs.

Base	line Results	and Januar	y 2022 Grou	ndwater Mo	nitoring Eve	ent		
		Summa	ry of Exceed	ances				
	NYSDEC	MV	V21	MV	V22	MW23		
Analyte	SGV (µg/L)	Baseline Q2		Baseline	Q2*	Baseline	Q2	
1,2,4-Trimethylbenzene	5	1,100	490	1,400 J	-	1,600 J	1	
1,3,5-Trimethylbenzene	5	180	80 J	390	-	470	-	
Acetone	50	-	160 J	150 J	54	-	_	
Benzene	1	140	1,400	2,200	4.6 J	22	-	
Bromomethane	5	_	-	_	-	_	7.5 J	
Ethylbenzene	5	690	980	920	-	950	-	
M,P-Xylene	5	1,200	4,800	4,000	-	4,000	-	
O-Xylene	5	69	2,900	2,200	-	700	-	
Toluene	5	89	8,700	8,000	-	300	-	
Total Xylenes	5	1,300	7,700	6,200	_	4,700	_	
Total BTEX	NS	2,219	18,780	17,320	6.2	5,972		
Total VOCs	NS	4,328.8	19,800	21,018	87.7	9,857	70.4	

NS = no standard

 μ g/L = microgram per liter

The extent of the petroleum-related VOC-impacted groundwater has decreased relative to the baseline sampling event after implementation of the two-phase groundwater treatment program. Comparing analytical results from the November 2018 baseline event to the January 2022 sampling event indicates a significant decrease in total benzene, toluene, ethyl benzene, and xylene (BTEX) constituents and VOCs in monitoring wells MW23 and MW23: In contrast, there was a notable increase in petroleum related VOCs in groundwater in MW21, relative to the baseline.

January 2022 Groundw	ater Monitoring Event Perc	ent Reduction from Novemb	per 2018 Baseline Event
Analyte	MW21	MW22*	MW23
Total BTEX	+ 746%	- 99.96%	- 100%
Total VOCs	+ 357%	- 99.58%	- 99.29%

^{*}baseline event results compared to duplicate sample GWDUP01_012822

At MW21, BTEX compounds were detected at concentrations one to two magnitudes higher than the baseline sampling event. Concentrations in MW21 decreased from the baseline sampling event for the VOCs 1,2,4,5-tetramethylbenzene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; isopropylbenzene; naphthalene; and n-propylbenzene. During the January 2022 sampling event, MW21 was purged dry prior

^{- =} sample did not exceed NYSDEC SGVs

^{*}results reported for duplicate sample GWDUP01_012822

to sampling and was sampled after groundwater within the well fully recharged. In response to the analytical results from this well and petroleum-like odors identified during sampling, Langan returned to the site on February 15, 2022 to purge groundwater from MW21 and to oversee off-site disposal of previously containerized purge water.

<u>Third Quarterly Groundwater Monitoring Event – April 2022</u>

Fourteen VOCs were detected above the SGVs in groundwater samples collected from MW21, MW22, and MW23 during the April 2022 sampling event. The following table provides a summary of each VOC that exceeded the SGVs.

Basel	ine Results	-		water Monit	oring Even	t	
	NYSDEC	MW	of Exceeda /21	MW	/22	MW	/23
Analyte	SGV (µg/L)	Baseline	Q3	Baseline	Q3	Baseline	Q3*
1,2,4-Trimethylbenzene	5	1,100	1,100	1,400 J	-	1,600 J	_
1,2,4,5-Trimethylbenzene	5	57	57	68 J	_	52 J	_
1,3,5-Trimethylbenzene	5	180	310	390 J	_	470 J	-
Acetone	50	_	100	150 J	190	-	55J
Benzene	1	140	340	2,200	_	22	-
Bromomethane	5	7-	-	-	_	_	7.6 J
Ethylbenzene	5	690	400	920	-	950	_
Isopropylbenzene	5	38	56	-	-	93	-
M,P-Xylene	5	1,200	2,200	4,000	_	4,000	-
n-Propylbenzene	5	96	140	140 J	_	150	-
Naphthalene	10	310	130	360 J	_	440 J	-
O-Xylene	5	69	1,000	2,200	_	700	-
Toluene	5	89	1,900	8,000	_	300	-
Total Xylenes	5	1,300	3,200	6,200	_	4,700	_
Total BTEX	NS	2,219	5,840	17,320	_	5,972	_
Total VOCs	NS	4,328.8	8,833	21,018	201	9,857	68.9

NS = no standard

μg/L = microgram per liter

The extent of the petroleum-related VOC-impacted groundwater has decreased relative to the baseline sampling event after implementation of the two-phase groundwater treatment program. Comparing analytical results from the November 2018 baseline event to the April 2022 sampling event indicates a significant decrease in total BTEX constituents and VOCs in monitoring wells MW23 and MW23.

^{-- =} sample did not exceed NYSDEC SGVs

^{*}results reported for duplicate sample GWDUP01_041522

Petroleum-related VOC concentrations in MW21 were generally similar to the baseline concentrations, but were notably less than the Ω 2 results:

April 2022 Groundwa	ter Monitoring Event Percer	nt Reduction from Novembe	er 2018 Baseline Event
Analyte	MW21	MW22	MW23
Total BTEX	+ 163%	- 100%	- 100%
Total VOCs	+ 104%	- 99.04%	- 99.30%

^{*}baseline event results compared to duplicate sample GWDUP01_041522

At MW21, VOCs were detected at concentrations up to two magnitudes higher than the baseline sampling event, but were generally similar. Concentrations of both total BTEX and total VOCs decreased compared to the second quarter sampling event. Total BTEX and total VOCs detected in MW21 in the April 2022 sampling event were about one-third and one-half, respectively, of the January 2022 sampling event concentrations. Naphthalene, n-propylbenzene, and isopropylbenzene, which were not detected in the January 2022 sampling event, were detected above the SGVs in the April 2022 sampling event.

Fourth Quarterly Groundwater Monitoring Event – July 2022

Fifteen VOCs were detected above the SGVs in groundwater samples collected from MW21, MW22, and MW23 during the July 2022 sampling event. The following table provides a summary of each VOC that exceeded the SGVs.

Base	line Results	-	22 Groundy of Exceeda	water Monit	oring Even	t	
	NYSDEC	MV	V21	MV	V22	MW	/23
Analyte	SGV (µg/L)	Baseline	Q4	Baseline	Q4	Baseline	Q4
1,2,4-Trimethylbenzene	5	1,100	140	1,400 J	_	1,600 J	_
1,2,4,5-Trimethylbenzene	5	57	7.2 J	68 J	_	52 J	_
1,3,5-Trimethylbenzene	5	180	37	390 J	_	470 J	_
2-Hexanone	50	-	200	-	_	_	_
Acetone	50	-	170	150 J	_	_	_
Benzene	1	140	440	2,200	1.5	22	_
Bromomethane	5	-	_	_	_	_	6.8 J
Ethylbenzene	5	690	55	920	_	950	_
M,P-Xylene	5	1,200	720	4,000	_	4,000	_
Methyl ethyl ketone	50	_	52	-	_	_	_
Naphthalene	10	310	46	360 J	_	440 J	_
O-Xylene	5	69	500	2,200	_	700	_
Tert-Butyl Methyl Ether (MTBE)	10	-	14 J	-	_	-	_
Toluene	5	89	1,000	8,000	_	300	_
Total Xylenes	5	1,300	1,200	6,200	_	4,700	_
Total BTEX	NS	2,219	2,695	17,320	3.8	5,972	_
Total VOCs	NS	4,328.8	3,473.2	21,018	34.75	9,857	75.8

NS = no standard

 μ g/L = microgram per liter

-- = sample did not exceed NYSDEC SGVs

Langan Project No.: 190043702

The extent of the petroleum-related VOC-impacted groundwater has decreased relative to the baseline sampling event after implementation of the two-phase groundwater treatment program. Comparing analytical results from the November 2018 baseline event to the July 2022 sampling event indicates a significant decrease in total BTEX constituents and VOCs for all wells with the exception of total BTEX in MW21, which are generally similar to those detected in Q3:

July 2022 Groundwat	er Monitoring Event Percen	t Reduction from Novembe	r 2018 Baseline Event
Analyte	MW21	MW22	MW23
Total BTEX	+ 21.45%	- 99.98%	- 100%
Total VOCs	- 19.77%	- 99.83%	- 99.23%

At MW21, benzene, ethylbenzene, o-xylene, and m/p-xylene were detected at concentrations about one order of magnitude lower than the second quarterly event (January 2022), but at similar concentrations to the baseline event (November 2018) and the third quarter sampling event (April 2022). Concentrations of 2-hexanone and MTBE were detected for the first time in MW21 during the fourth quarterly sampling event. The analytes n-propylbenzene and isopropylbenzene were detected in the third quarterly event; however, they were not detected in the fourth quarterly sampling event.

During the Q1 through Q4 quarterly groundwater monitoring events, a slow groundwater recharge rate necessitated groundwater sample collection prior to stabilization of physical and chemical groundwater parameters. To increase transmissivity of groundwater into MW21 and efficiently collect a representative groundwater sample, MW21 will be decommissioned and reinstalled in conjunction with installation of a new sidewalk (anticipated during the first quarter of 2023). Langan proposes a temporary suspension of groundwater sampling until the replacement well is installed. Following installation of the replacement well, Langan will continue quarterly groundwater monitoring events for MW21 to evaluate performance of the groundwater remedy.

Post-injection and quarterly groundwater sample analytical results are presented in Table 1.

Geochemical Conditions

Geochemical parameters, including pH, ORP, and DO, were field documented at each monitoring well during purging (Attachment 1). Sulfate (as SO₄) was also analyzed by the laboratory. The analytical laboratory reports from the second, third, and fourth quarterly monitoring events are included in Attachment 3. The results and conclusions of the geochemical analyses are summarized as follows:

• DO and ORP levels indicated a subsurface aerobic environment during the fourth quarterly sampling event (July 2022) in all three wells. Aerobic conditions are favorable for the biodegradation of petroleum hydrocarbons.

Findings and Recommendations

Significant contaminant reduction has been achieved since the November 2018 baseline sampling event, as evidenced by the reduction in VOC concentrations at MW22 (-99.83%) and MW23 (-99.23%). Total VOC concentrations detected at MW21 increased significantly in the second quarterly sampling event (January 2022) compared to the baseline concentrations (+357%), but decreased in the third (+104%) and fourth (-19.77%) quarterly sampling events to concentrations similar to the baseline sampling event. The declining trend at monitoring well MW21 between the second and fourth quarterly events is expected to continue as further degradation occurs over time.

Langan proposes discontinuing quarterly groundwater monitoring at monitoring wells MW22 and MW23, where significant contaminant reduction has been demonstrated over the past 4 quarterly sampling events. If acceptable to the NYSDEC, the wells will be decommissioned in-place in accordance with NYSDEC Commissioner Policy 43 (CP-43). Additionally, Langan proposes temporarily suspending quarterly groundwater sample collection from MW21 until the well can be reinstalled concurrent with sidewalk replacement during the first quarter of 2023. Once accessible, a new 4-inch-diameter monitoring well will be installed with a 15-foot-long well screen to maximize groundwater recovery during subsequent sampling events. Following well reinstallation, Langan will resume quarterly groundwater monitoring at MW21.

Sincerely,

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C

DRAFT

Michael D. Burke, PG, CHMM Principal/Vice President

Enclosures:

Figure 1 Site Location Map

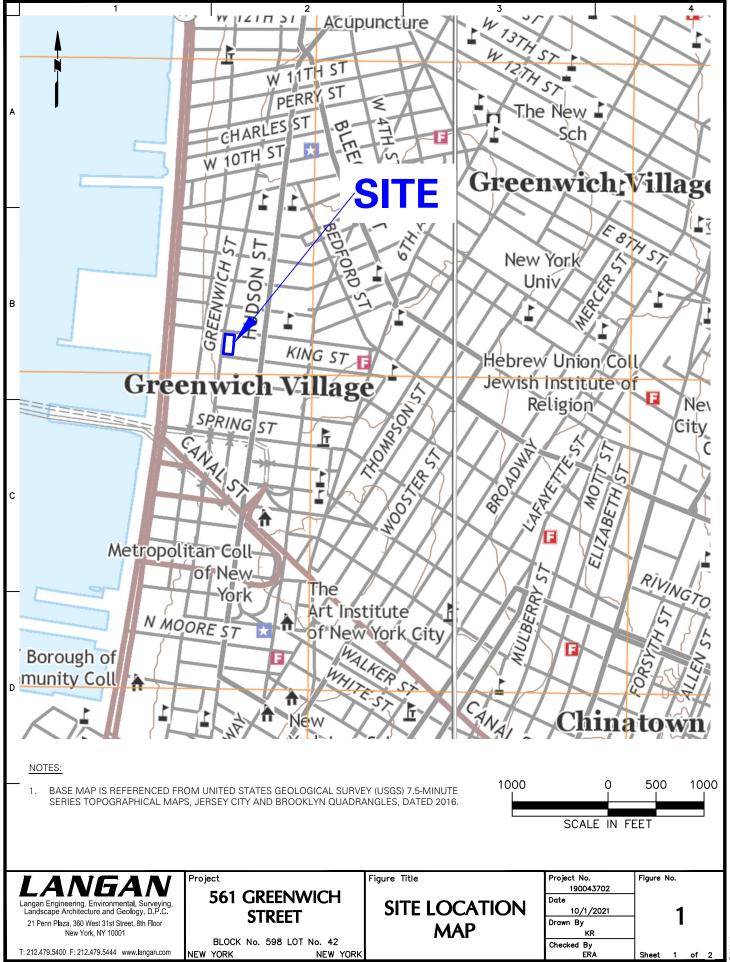
Figure 2 Groundwater Sample Analytical Results Map

Table 1 Baseline, Post-Injection, and Quarterly Performance Groundwater Sample Analytical Results

Table 2 Q2 – Q4 Quality Assurance/Quality Control Sample Analytical Results

Attachment 1 Groundwater Sampling Logs
Attachment 2 Data Usability Summary Report
Laboratory Analytical Reports

cc: Paul McMahon, Elizabeth Adkins – Langan


Matthew Fox - The Rector, Church-Wardens, and Vestrymen of Trinity Church, in the city of New-York

561 HH LLC

Remainderman 561 Greenwich LLC Aliza Cinnamon – Proskauer Rose LLP

FIGURES

Sampling Event	Baseline	Q2	Q2	Q3	Q4
Location	MW22	MW22	MW22	MW22	MW22
Sample Name	MW22_110718	MW22_012822	GWDUP01_012822	MW22_041522	MW22_072622
Sample Date	11/07/2018	01/28/2022	01/28/2022	04/15/2022	07/26/2022
VOCs		•			•
1,2,4,5-Tetramethylbenzene	68 J	<2 U	0.58 J	<2 U	<2 U
1,2,4-Trimethylbenzene	1,400 J	<2.5 U	0.89 J	<2.5 U	<2.5 U
1,3,5-Trimethylbenzene (Mesitylene)	390 J	<2.5 U	1.4 J	<2.5 U	<2.5 U
2-Hexanone (MBK)	<500 U	<5 U	<5 U	<5 U	<5 U
Acetone	150 J	42	54	190	24
Benzene	2,200	1.5 J	4.6 J	<0.5 U	1.5
Bromomethane	<250 U	4.4 J	2.3 J	<2.5 U	0.85 J
Ethylbenzene	920	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Isopropylbenzene (Cumene)	<250 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	4,000	<2.5 U	0.76 J	<2.5 U	0.8 J
Methyl Ethyl Ketone (2-Butanone)	<500 U	4.7 J	14 J	11	6.1
Naphthalene	360 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	140 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	2,200	<2.5 U	0.8 J	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	<250 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Toluene	8,000	<2.5 U	<2.5 U	<2.5 U	1.5 J
Total Xylenes	6,200	<2.5 U	1.6 J	<2.5 U	0.8 J
Total BTEX	17,320	1.5	6.2	ND	3.8
Total VOCs	21,018	60.08	87.7	201	34.75
General Chemistry		•	'		•
Culfata (Aa COA)	NIA	E00.000	600 000	160.000	200.000

Sampling Event	Baseline	Q2	Q3	O3	Q 4	Q4
Location	MW23	MW23	MW23	MW23	MW23	MW23
Sample Name	MW23_110718	MW23_012822	MW23_041522	GWDUP01_041522	MW23_072622	DUP01_072622
Sample Date	11/07/2018	01/28/2022	04/15/2022	04/15/2022	07/26/2022	07/26/2022
VOCs		•	•			•
1,2,4,5-Tetramethylbenzene	52 J	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
1,2,4-Trimethylbenzene	1,600 J	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,3,5-Trimethylbenzene (Mesitylene)	470 J	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
2-Hexanone (MBK)	<120 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Acetone	<120 U	40	34 J	55 J	46 J	22 J
Benzene	22	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Bromomethane	<62 U	7.5 J	3.7 J	7.6 J	6.8 J	4.7 J
Ethylbenzene	950	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
sopropylbenzene (Cumene)	93	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
M,P-Xylene	4,000	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	<120 U	18	4.2 J	4.2 J	23	20
Naphthalene	440 J	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
n-Propylbenzene	150	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	700	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	<62 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Toluene	300	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total Xylenes	4,700	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total BTEX	5,972	ND	ND	ND	ND	ND
Total VOCs	9,857	70.4	43.7	68.9	75.8	47.62

LEGEND:

APPROXIMATE SITE BOUNDARY

-BUILDING

×13.20 | 13.52

APPROXIMATE OFF-SITE PERFORMANCE MONITORING WELL LOCATION

> NYSDEC Analyte **SGVs** VOCs 1,2,4,5-Tetramethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesitylene) 2-Hexanone (MBK) 50 50 Acetone Benzene 1 Bromomethane Ethylbenzene 5 Isopropylbenzene (Cumene) 5 M,P-Xylene 5 50 Methyl Ethyl Ketone (2-Butanone) 10 Naphthalene n-Propylbenzene o-Xylene (1,2-Dimethylbenzene) Tert-Butyl Methyl Ether 10 Toluene Total Xylenes Total BTEX NS Total VOCs NS **General Chemistry** Sulfate (As SO4) 250,000

NOTES:

BLO

- 1. BASE MAP TAKEN FROM THE TOPOGRAPHIC, BOUNDARY AND UTILITY SURVEY DRAWING TITLED 190043701-V-EX0101, PREPARED BY LANGAN, DATED APRIL 16, 2018 AND THE JULY 6, 2021 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) EASEMENT SURVEY PREPARED BY LANGAN.
- 2. ELEVATIONS ON THIS FIGURE ARE RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88)
- 3. MONITORING WELL LOCATIONS WERE MEASURED OFF OF SURVEYED SITE FEATURES AND ARE APPROXIMATE.
- 4. GROUNDWATER SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE NYSDEC TITLE 6 OF THE OFFICIAL COMPILATION OF NEW YORK CODES, RULES, AND REGULATIONS PART 703.5 AND THE NYSDEC TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES FOR CLASS GA WATER (COLLECTIVELY REFERENCED AS NYSDEC SGVs).
- 5. ANALYTICAL RESULTS FOR THE POST—INJECTION AND FIRST QUARTERLY PERFORMANCE MONITORING EVENT ARE PROVIDED IN THE NYSDEC-APPROVED DECEMBER 2021 FINAL ENGINEERING REPORT, PREPARED BY LANGAN, AND TABLE 2 OF THIS GROUNDWATER MONITORING REPORT.
- 6. COMPOUNDS THAT EXCEEDED THE NYSDEC SGVs IN AT LEAST ONE GROUNDWATER SAMPLE ARE SHOWN.
- 7. CONCENTRATIONS DETECTED ABOVE THE NYSDEC SGVs ARE SHADED AND BOLDED.
- 8. VOC = VOLATILE ORGANIC COMPOUND
- 9. U = THE ANALYTE WAS ANALYZED FOR, BUT WAS NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE LEVEL OF THE REPORTING LIMIT (RL) OR THE

SAMPLE CONCENTRATION FOR RESULTS IMPACTED BY BLANK CONTAMINATION.

- 10. UJ = THE ANALYTE WAS NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; HOWEVER, THE REPORTED RL IS APPROXIMATE AND MAY BE INACCURATE OR IMPRECISE
- 11. J = THE ANALYTE WAS POSITIVELY IDENTIFIED AND THE ASSOCIATED NUMERICAL VALUE IS THE APPROXIMATE CONCENTRATION OF THE ANALYTE IN THE SAMPLE.
- 12. µg/L = MICROGRAM PER LITER
- 13. NA = NOT ANALYZED
- 14. NS = NO STANDARD
- 15. ND = NOT DETECTED

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

561 GREENWICH **STREET**

---RIM=10.47 (10.7)

12" WATER MA

BLOCK No. 598, LOT No. 42

GROUNDWATER SAMPLE **ANALYTICAL RESULTS** MAP

Figure No. 190043702 11/16/2022 Checked By Sheet 2 of 2

IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Sulfate (As SO4)

T: 212.479.5400 F: 212.479.5444 www.langan.com

12" WATER MAIN

(11.7)

- P.O.B. LOT 42

SILL=11.49 ON CONCRETE

STREE

MW21

MW23 ___

RIM=9.64-

NOT FOUND IN FIELD-FROM ECS RECORDS

(9.9)

L = RIM = 9.72

& DEC EASEMENT

KING STREET

\$ 82°48'19" E 100.00'

PARCEL IV

(SEE NOTES 1E AND 1F)

PARCEL III (SEE NOTES 1E AND 1F)

- site under construction -

PARCEL II ×

(SEE NOTES 1E AND 1F)

PARCEL I

(SEE NOTES 1E AND 1F)

N 82°54′02" W 100.00′

{6°, } × 10.32 ⊕ °G 10.36×

(SEE NOTE 9)

×13.28

igure Title

TABLES

Table 1 Quarterly Groundwater Monitoring Report Baseline, Post-Injection, and Quarterly Performance Groundwater Sample Analytical Results

561 Greenwich Street New York, New York NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

Part				O	I Decelled	Donald Section	Dest Literatur	T 04	I 00	I 00	T 04	D F	Description of the	I Book Internetion I	01	T 01	1 00	1 00 1		D 04
Mary		CAC	NVCDEC	Sampling Event Location	Baseline MW21	Post-Injection MW21	Post-Injection MW21	Q1 MW21	Q2 MW21	Q3 MW21	Q4 MW21	Baseline MW22	Post-Injection MW22	Post-Injection MW22	Q1 MW22	Q1 MW22	Q2 MW22	Q2 MW22	Q3 MW22	Q4 MW22
The column	Analyte																			
Company																				
Company Comp	Volatile Organic Compounds										0.011					2.71		2 - 11	0.711	2.511
Scheller (1964) 1			5 5																	
Second Column	1,1,2,2-Tetrachloroethane		5																	
Company Comp	1,1,2-Trichloroethane		1 -																	
## Company Fig. 12 18 18 18 18 18 18 18			5 5																	
2 Printenden	1,1-Dichloropropene		5																	
See	1,2,3-Trichlorobenzene		5																	
## Section 1965 196											1200	12000	11200							
Company Comp	1,2,4-Trichlorobenzene																			
Company Comp	1,2,4-Trimethylbenzene																			
Service Servic																				
20 According 1989 1	1,2-Dichlorobenzene																			
Seminarional March 1866 5 4 19 19 19 19 19 19 19 19 19 19 19 19 19	1,2-Dichloroethane		0.6																	
Scheller 19 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1			1																	
Schwarzen 1984 5 19	1,3-Dichlorobenzene																			
**************************************	1,3-Dichloropropane	142-28-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<250 U	<120 U	<2.5 U		<2.5 U				
Company Comp			3 NS																	
Schermers 1962 1 or 10 1963 1 o	1,4-Diethyl benzene 1,4-Dioxane (P-Dioxane)																			
No.	2,2-Dichloropropane	594-20-7	5	ug/l		<2.5 U	<2.5 UJ	<2.5 U	<250 U	<50 U	<25 U	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
	2-Chlorotoluene 2-Hexanone (MRK)		5																	
According 1968 and 1969 and 1969 1970 1970 1970 1970 1970 1970 1970 197	4-Chlorotoluene		5																	
Property (1964) 2 96 1 97 198 199 199 199 199 199 199 199 199 199	4-Ethyltoluene																			
The control of the co	Acetone Acetone																			
Trimeneme 16464 5	Benzene				100 0	10 0					100 0				10 0	10 0	10.0	10.0		100
**************************************	Bromobenzene		5	ug/l																
Fig. 2. 10 will see the second	Bromochloromethane		5																	
Company Comp	Bromoform																			
real Property and	Bromomethane			ug/l							<25 U									
recentement 1997 9 say c20			60																	
recommend (1964) 7 (291 429) 429 429 429 429 429 429 429 429 429 429	Chlorobenzene		5																	
April Apri	Chloroethane		5																	
## 25 Description 120 per 120 pe	Chloropothano		7																	
## 1500 April 1985 1500 Apri	Cis-1,2-Dichloroethene		5	-																
124-81 10	Cis-1,3-Dichloropropene			ug/l							<5 U					<0.5 U		<0.5 UJ		<0.5 U
International property Park Par	Cymene Dibromochloromethane		-																	
ethyle Effect (Fight Fight 60-287 NS up	Dibromomethane		5																	
Information 100-14 5	Dichlorodifluoromethane		5																	
Company Comp			NS 5		1200					100 0		12000								
Paymen 17801/371 5	Hexachlorobutadiene		0.5																	
ethylefty Karone (26 utanoma) 78833 50 upf 450	Isopropylbenzene (Cumene)																			
ethylere Chindre 191-203 191																				
pathsharene 9:203 10 ugl 810 32 7.2 <25 U	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)					<5 U														
Butybenzene 104-518 5 upl 8.8 J 2.4 J <55 U <55	Methylene Chloride		5		7200					100 0	1000		<120 O	10.00						
Procylemene 103-65-1 5 ugl 96 6.3 2.8 -2.5 U -2.			5																	
se Burylberane 138988 5 ug/l 25 U 25	n-Propylbenzene		5						<250 U				86 J							
yene 100-426 5 ugf	o-Xylene (1,2-Dimethylbenzene)		5																	
Buybenzee	Styrene		5 5																	
Introchlorocheme (PCE) 127-18-4 5 ug/l <5 ug/l	T-Butylbenzene	98-06-6									<25 U									
State 108-88-3 5 Ug/l 85 16 6.9 <2.5 U 8.700 1.900 1.000 8.000 6.100 220 <2.5 U	Tert-Butyl Methyl Ether																			
\$\chin{a}\ch	Tetrachloroethene (PCE) Toluene																			
natal Xylenes 1300-07 5 ug/l 1,300 89 37 <2.5 U 7,700 3,200 1.200 6,200 5,000 80 <2.5 U <2.5 U <2.5 U <2.5 U <2.5 U <2.5 U <0.5	Total 1,2-Dichloroethene (Cis and Trans)	540-59-0			<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U		<2.5 U	<2.5 U
ans-1,2-Dichloroethene 156-60-5 5 ug/l <25 U <25 U <2.5 U U <2.5 U U U U U U U U U U U U U U U U U U U	Total Xylenes			ug/l																
ans-1,3-Dichloropropene 10061-02-6 0.4 ug/l <5U <0.5U																				
ans-1,4-Dichloro-2-Butene 110-57-6 5 ug/l <25 U <2.5 U <2.	Trans-1,3-Dichloropropene																			
ichlorofluoromethane 75-69-4 5 ug/l <25 U <2.5 U <2	Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<25 U	<2.5 U	<2.5 UJ	<2.5 U	<250 U	<50 U	<25 U	<250 U	<120 UJ	<2.5 UJ	<2.5 U					
nyl Acetate 108-05-4 NS ug/l <50 U <5	Trichlorofluoromethane																			
ryl Chloride 75-01-4 2 ug/l <10 U <1	Vinyl Acetate																			
tal VOCs TOTAL VOCS NS ug/l 4,328.8 453.14 210.59 16.66 19,800 8,833 3,473.2 21,018 17,644 3,046.67 9.54 23.13 60.08 87.7 201 34.75 eneral Chemistry	Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<100 U	<20 ∪	<10 U	<100 U	<50 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
eneral Chemistry	Total VOCs																			
	General Chemistry	TOTAL VOCS	ONI	ug/i	4,020.0	403.14	210.09	10.00	13,000	0,033	3,473.2	21,010	17,044	3,040.07	5.04	23.13	00.00	0/./	201	JH./D
	Sulfate (As SO4)	14808-79-8	250,000	ug/l	NA	NA	NA	96,000	140,000	85,000	200,000	NA	31,000,000	NA	2,000,000	1,800,000	590,000	680,000	160,000	300,000

Table 1 Quarterly Groundwater Monitoring Report Baseline, Post-Injection, and Quarterly Performance Groundwater Sample Analytical Results

561 Greenwich Street New York, New York NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

			Compling Event	Baseline	Post-Injection	Post-Injection	Q1	Q2	Q3	Q3	Q4	Q4
	040	NVCDEC	Sampling Event Location	MW23	MW23	MW23	MW23	MW23	MW23	MW23	MW23	MW23
Analyte	CAS Number	NYSDEC SGVs	Sample Name	MW23_110718	MW23_061920	MW23_04202021	MW23_091621	MW23_012822	MW23_041522	GWDUP01_041522	MW23_072622	DUP01_072622
			Sample Date Unit	11/07/2018 Result	06/19/2020 Result	04/20/2021 Result	09/16/2021 Result	01/28/2022 Result	04/15/2022 Result	04/15/2022 Result	07/26/2022 Result	07/26/2022 Result
Volatile Organic Compounds			Onit	rtesuit	riesuit	riesuit	riesuit	riesuit	Hesuit	riesuit	riesuit	rtesuit
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	5 1	ug/l ug/l	<12 U <38 U	<25 U <75 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 UJ	<0.5 UJ <1.5 UJ	<0.5 UJ <1.5 UJ	<0.5 U <1.5 U	<0.5 U <1.5 U
1,1-Dichloroethane	75-34-3	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<62 U 52 J	<120 U <100 U	<2.5 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 UJ <2 UJ	<2.5 UJ <2 UJ	<2.5 U <2 U	<2.5 U <2 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	1,600 J	94 J	49	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	106-93-4 95-50-1	0.0006 3	ug/l	<50 U <62 U	<100 U <120 U	<2 U <2.5 U	<2 U <2.5 U	<2 UJ <2.5 U	<2 UJ <2.5 UJ	<2 UJ <2.5 UJ	<2 U <2.5 U	<2 U <2.5 U
1,2-Dichloroethane	107-06-2	0.6	ug/l ug/l	<12 U	<25 U	0.22 J	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<25 U	<50 U	<1 U	<1 U	<1 U	<1 UJ	<1 UJ	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	470 J	<120 U	22	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5 3	ug/l ug/l	<62 U <62 U	<120 U <120 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	105-46-7	NS	ug/l	150	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ <2 UJ	<2.5 UJ	<2.5 U <2 U	<2.5 U
1,4-Dioxane (P-Dioxane)	123-91-1	NS	ug/l	<6,200 U	<12,000 U	<250 UJ	<250 U	<250 UJ	<250 UJ	<250 UJ	<250 U	<250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
2-Hexanone (MBK) 4-Chlorotoluene	591-78-6 106-43-4	50	ug/l ug/l	<120 U <62 U	<250 U <120 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 UJ <2.5 UJ	<5 UJ <2.5 UJ	<5 U <2.5 U	<5 U <2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	930	<100 U	37	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
Acetone	67-64-1	50	ug/l	<120 U	190 J	35 J	3.5 J	40	34 J	55 J	46 J	22 J
Acrylonitrile	107-13-1	5	ug/l	<120 U	<250 U	<5 UJ	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Benzene	71-43-2	1	ug/l	22	<25 U	15	0.16 J	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Bromobenzene Bromochloromethane	108-86-1 74-97-5	5 5	ug/l ug/l	<62 U <62 U	<120 U <120 U	<2.5 U <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<50 U	<100 U	<2 UJ	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<62 U	<120 U	2.5	2.7	7.5 J	3.7 J	7.6 J	6.8 J	4.7 J
Carbon Disulfide	75-15-0 56-23-5	60 5	ug/l	<120 U <12 U	<250 U <25 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 UJ <0.5 UJ	<5 UJ <0.5 UJ	<5 U <0.5 U	<5 U <0.5 U
Carbon Tetrachloride Chlorobenzene	108-90-7	5	ug/l ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Chloroethane	75-00-3	5	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 UJ	<2.5 U
Chloroform	67-66-3	7	ug/l	<62 U	<120 U	1.2 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<62 U	<120 U	<2.5 U	4.1 J	2.7	1.8 J	2.1 J	<2.5 U	0.92 J
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	156-59-2 10061-01-5	5 0.4	ug/l ug/l	<62 U <12 U	<120 U <25 U	0.73 J <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 U <0.5 U	<2.5 U <0.5 U
Cymene	99-87-6	5	ug/l	<62 U	<120 U	1.3 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Dibromochloromethane	124-48-1	50	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Dibromomethane	74-95-3	5	ug/l	<120 U	<250 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Dichlorodifluoromethane	75-71-8	5 NS	ug/l	<120 U <62 U	<250 U	<5 UJ <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 UJ	<5 UJ	<5 U	<5 U <2.5 U
Diethyl Ether (Ethyl Ether) Ethylbenzene	60-29-7 100-41-4	5 5	ug/l ug/l	950	<120 U <120 U	18	<2.5 U	<2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U
Hexachlorobutadiene	87-68-3	0.5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	93	<120 U	2.1 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	5	ug/l	4,000	50 J	83	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	78-93-3 108-10-1	50 NS	ug/l ug/l	<120 U <120 U	<250 U <250 U	<5 UJ <5 UJ	<5 U <5 U	18 <5 ∪	4.2 J <5 UJ	4.2 J <5 UJ	23 <5 ∪	20 <5 U
Methylene Chloride	75-09-2	5	ug/l	<62 U	<120 U	<2.5 U	0.76 J	2.2 J	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Naphthalene	91-20-3	10	ug/l	440 J	47 J	13	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
n-Butylbenzene	104-51-8	5	ug/l	<62 U	<120 U	1.2 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1 95-47-6	5 5	ug/l	150 700	<120 U <120 U	3.7 48	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	135-98-8	5	ug/l ug/l	<62.11	< 120 U	0.83 J	<2.5 U	<2.5 U	<2.5 UJ <2.5 LLI	<2.5 0.5	<2.5 U	<2.5 U
Styrene	100-42-5	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5 5	ug/l	<12 U 300	<25 U <120 U	2.3 54	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l ug/l	<62 U	<120 U	0.73 J	<2.5 U	<2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	4,700	50 J	130	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene	10061-02-6 110-57-6	0.4 5	ug/l ug/l	<12 U <62 U	<25 U <120 U	<0.5 U <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<12 U	<25 U	9.3 J	<0.5 U	<0.5 U	<0.5 UJ	<2.5 UJ	<2.5 U	<0.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Vinyl Acetate	108-05-4	NS	ug/l	<120 U	<250 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<25 U	<50 U	<1 U	<1 U	<1 U	<1 UJ	<1 UJ	<1 U	<1 U
Total BTEX Total VOCs	BTEX TOTAL VOCS	NS NS	ug/l ug/l	5,972 9,857	50 381	217 442.11	0.16 11.22	ND 70.4	ND 43.7	ND 68.9	ND 75.8	ND 47.62
General Chemistry	TOTAL VOCS	143	ug/i	5,007	301	772.11	11.22	70.4	TO./	00.3	73.0	77.02
Sulfate (As SO4)	14808-79-8	250,000	ug/l	NA	NA	NA	1,500,000	1,600,000	780,000	800,000	710,000	720,000

Table 1 Quarterly Groundwater Monitoring Report Baseline, Post-Injection, and Quarterly Performance GW Sample Analytical Results

561 Greenwich Street New York, New York NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

Notes:

CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed RL - Reporting limit <RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

The Total VOCs calculation consists of all detected Volatile Organic Compounds for a given sample. This calculation includes Total Xylenes, and excludes M,P-Xylene and o-Xylene (1,2-Dimethylbenzene).

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

Table 2 Quarterly Groundwater Monitoring Report Q2 - Q4 Quality Assurance/Quality Control Sample Analytical Results

561 Greenwich Street New York, New York NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

CAS Seminary Fig.					00	00	00		0.
Sompton Number Sompton Number Sompton Sompto			Sampling Event	Q2 FR	Q2 TR	Q3 EB	Q3 TB	Q4 FR	Q4 TR
Seminate	Analyte								TB01 072622
	·	Number	-						
13.5 parentsembles	V-1-4'l- 0		Unit	Result	Result	Result	Result	Result	Result
Lite shoreshaw 7.566 vic. 45.01 42.01		630-20-6	ua/l	<2.5.I.I	-2511	<2.5.H	<2.5.I.I	-2 5 I I	<2.5.I.I
122 Finance movements									
12 Institution	1,1,2,2-Tetrachloroethane								
Debtoordere	1,1,2-Trichloroethane	79-00-5		<1.5 U					
Dischargerope \$55.566	1,1-Dichloroethane								
22 Fire Information									
23-Piedergroppine 66-18-4 198 29 28 28 28 28 28 28									
2.4.5 February-Sharens 95032 sg0 c2 0 c2 0									
As Technomeromerome 10987 vg 458	1,2,4,5-Tetramethylbenzene								
20 Elbarros-Chilosopragnare	1,2,4-Trichlorobenzene								
20 Entroverdanse Entrylene Disconnicided 0569-1 agl 20 U	1,2,4-Trimethylbenzene		ug/l						
Policy P	1,2-Dibromo-3-Chloropropane								
Chelmontestante	· ·								
Pickers Pick									
1.56 Franchijsmenne Mensylene 109 07 8									
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.00000 20.00000 20.00000 20.000000 20.0000000000									
13-cented companies 142-289	1,3-Dichlorobenzene								
Coheronterare	1,3-Dichloropropane								
ABONATION POPOSITIES 1284-1 1081 280 2	1,4-Dichlorobenzene		ug/l						
2-Schlingsprospone 99-207	1,4-Diethyl Benzene								
Chitoroclune									
Hearone (MRN)									
Differentiation	2-Hexanone (MBK)								
Ethylourien	4-Chlorotoluene								
Institution	4-Ethyltoluene								
memen 71-432 ugif <0.50 U <0	Acetone	67-64-1	ug/l	<5.0 U					
amobenzene 1888-1	Acrylonitrile								
amochlomenthane 74-97-5 ugit 4-25-U 4	Benzene								
Comparison									
Section Sect									
25 25 25 25 25 25 25 25	Bromoform								
then Disalfide then Disalfide then Disalfide then Disalfide 575-15 ug/l 45.0 U 45.0	Bromomethane								
Idenbenzene	Carbon Disulfide	75-15-0		<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Ideochane	Carbon Tetrachloride		ug/l						
IdeoTerm	Chlorobenzene								
Informethane									
s-1,2-Dichloroethene									
si-3-Dichiropropene 10081-01-5 ug/l < 0.50 U < 0									
Manee	Cis-1,3-Dichloropropene								
bromomethane 74.95.3 ug/l <50.U <50.	Cymene	99-87-6		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
chlorodifluoremethane 75-71-8 ug/l <50 U <50 U	Dibromochloromethane		ug/l	<0.50 U					
ethyl Ether (Ethyl Ether) 60-29-7	Dibromomethane								
hybenzene 100-41-4 ug/l < 25 U <25 U									
Seachiopoutadiene									
25 25 25 25 25 25 25 25									
P.Xylene	Isopropylbenzene (Cumene)								
ethyl Isobutyl Ketone (4-Methyl-2-Pentanone) 108-10-1 ug/l < 5.0 U <5.0	M,P-Xylene								
ethylene Chloride 75-09-2 ug/l < 2.5 U	Methyl Ethyl Ketone (2-Butanone)		ug/l						
Septimentale									
Butylbenzene									
Propylbenzene 103-65-1 ug/l <2.5 U <2									
Xylene (1,2-Dimethylbenzene) 95-47-6 ug/l <2.5 U	n-Propylbenzene								
Control Cont	o-Xylene (1,2-Dimethylbenzene)								
Putylbenzene 98-06-6 ug/l < 2.5 U < 2.	Sec-Butylbenzene	135-98-8		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
refluity Methyl Ether 1634-04-4 ug/l < 2.5 U <	Styrene								
Attachloroethene (PCE) 127-18-4 108-88-3 10g/l 2.5 U	T-Butylbenzene								
Numer 108-88-3 ug/l < 2.5 U <									
tal 1,2-Dichloroethene (Cis and Trans) 540-59-0 ug/l < 2.5 U	Toluene								
stal Xylenes 1330-20-7 ug/l < 2.5 U									
stal, 1,3-Dichloropropene (Cis And Trans) 542-75-6 ug/l < 0.50 U	Total Xylenes								
ans-1,3-Dichloropropene 10061-02-6 ug/l <0.50 U <0.50	Total, 1,3-Dichloropropene (Cis And Trans)						<0.50 U	<0.50 U	
ans-1,4-Dichloro-2-Butene 110-57-6 ug/l < 2.5 U < 2.5	Trans-1,2-Dichloroethene								
ichloroethene (TCE) 79-01-6 ug/l < 0.50 U U U < 0.50 U U U U U U U U U U U U U U U U U U U	Trans-1,3-Dichloropropene								
ichlorofluoromethane 75-69-4 ug/l <2.5 U U <2.5 U <2.5 U <2.5 U <2.5 U U <2.5 U <2.5 U <2.5 U <2.5 U									
nyl Acetate 108-05-4 ug/l <5.0 U <5.0									
ryl Chloride 75-01-4 ug/l <1.0 U <1.0	Vinyl Acetate								
eneral Chemistry	Vinyl Chloride								
	General Chemistry		291.						
	Sulfate (As SO4)	14808-79-8	ug/l	<10,000 U	NA	<10,000 U	NA	<10,000 U	NA

Table 2 Quarterly Groundwater Monitoring Report Q2 - Q4 Quality Assurance/Quality Control Sample Analytical Results

561 Greenwich Street New York, New York NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

Notes: FB - Field Blank TB - Trip Blank

CAS - Chemical Abstract Service

NS - No standard

ug/l - microgram per liter

NA - Not analyzed

RL - Reporting limit

<RL - Not detected

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

ATTACHMENT 1 GROUNDWATER SAMPLING LOGS

Project In		Well Info			quipment Informat		S	ampling Condition		Sampling Ir	
Project Name:	561 Greenwich St.	Well No:	MW-21	Water Qua	lity Device Model:			Weather:	Snow, 30-34 °F		MW21_012822
Project Number:	190043702	Well Depth:	15.8		Pine Number:		Backo	ground PID (ppm):	0.0	Sample(s):	MS/MSD
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:	Peri Solinst 410		Inner Cap (ppm):			
Sampling	Caroline Devin	Well Screen	15.8		Pine Number:		Pu	mp Intake Depth:	14.00	Sample Date:	1/28/2022
Personnel:		Interval:	5.8		Tubing Diameter:	3/8" ID x 5/8" OD	Depth to Wa	ater Before Purge:	6.93	Sample Time:	14:45
				STABILIZATION =	3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <	.01			Stabilizeds
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	, , , , , ,		, ,		BEGIN P			J, ,			
13:40	16.35	9.46	-17	1.02	154.0	1.98	6.93	-	1.25		N/A
13:45	17.71	9.38	-36	1.02	144.0	1.91		0.05	1.50	Light brown color,	N/A
13:50	18.90	9.34	-49	1.00	160.0	1.68		0.05	1.75	petroleum-like	N
13:55	17.81	9.32	-46	1.01	170.0	6.22		0.02	1.85	odor	N
14:00	17.75	9.36	-33	1.01	143.0	6.10		0.03	2.00	Ī	N
14:45		,	Well purged dry	y and fully recharg	ed before samplin	g. Samples collec	ted before stabiliz	ation due to poor	recharge rate.		

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

	ormation	Well Info			uipment Informati		S	ampling Condition		Sampling I	
Project Name:	561 Greenwich St.	Well No:	MW-22	Water Qua	lity Device Model:	Horiba U52-2			Snow, 30-34 °F		MW22_012822
Project Number:	190043702	Well Depth:	18.0		Pine Number:	21537	Backo	round PID (ppm):		Sample(s):	GWDUP01_012822
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:		PID Beneath	Inner Cap (ppm):			
Sampling	Caroline Devin	Well Screen	18.0		Pine Number:	042483	Pι	mp Intake Depth:	N/A	Sample Date:	1/28/2022
Personnel:		Interval:	6.0		Tubing Diameter:	3/8" ID x 5/8" OD	Depth to Wa	ater Before Purge:	N/A	Sample Time:	11:45
·				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)			Stabilized?
					(+/- 10%) above		Drawdown <	,51 ,	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
-	, , , , , , , ,				BEGIN PU			J, ,			
11:40	7.94	9.51	40	3.55	370.0		-		1.00	black, no odor	N/A
11:45			Well purged		echarge to continu	ie purging. Samp	les collected from	purged groundwa			
			1	•]	, <u>J J</u>		. 5 5			

<u>Notes</u>

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Project In		Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	ıs	Sampling I	
	561 Greenwich St.	Well No:	MW-23	Water Qua	lity Device Model:	Horiba U52-2			Snow, 30-34 °F		MW23_012822
Project Number:	190043702	Well Depth:	17.0		Pine Number:	21537		ground PID (ppm):	0.0	Sample(s):	
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:			Inner Cap (ppm):	0.0		
Sampling	Caroline Devin	Well Screen	17.0		Pine Number:	042483		ımp Intake Depth:	N/A	Sample Date:	1/28/2022
Personnel:		Interval:	7.0		Tubing Diameter:		Depth to Wa	ater Before Purge:	N/A	Sample Time:	11:15
					3 successive readi						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above		Drawdown <		Volume (Gal)		Otubilizou.
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN PI						
11:05	7.92	8.39	74	6.30	234.0	3.69	-		0.50	dark brown, black	N/A
11:10										no odor	N/A
11:15			Well purged	dry. Insufficient i	recharge to continu	ue purging. Samp	les collected from	purged groundwa	ter bucket		
 											
<u> </u>											
-											

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Project In		Well Info			uipment Informat		S	ampling Condition		Sampling I	
Project Name:	551 Greenwich	Well No:	MW-21	Water Qua	lity Device Model:	Horiba U52		Weather:			MW21_041522
Project Number:	190043702	Well Depth:	14.43		Pine Number:	N/A		ground PID (ppm):		Sample(s):	
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:			n Inner Cap (ppm):			
Sampling	Daniel Arnstein	Well Screen	15.8		Pine Number:	N/A		ımp Intake Depth:		Sample Date:	4/15/2022
Personnel:	Jack Millman	Interval:	5.8		Tubing Diameter:		Depth to W	ater Before Purge:	6.07	Sample Time:	16:20
				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.11. 12
					(+/- 10%) above		Drawdown <	.01	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(17 570)	(17 01.17	(17 1011117)	(17 670)	BEGIN PI	,	1100	J			
13:15					DEGINATO	Jildiild			1.8		N/A
13:20	11.17	9.43	107	3.110	30.5	5.48		0.14	2.5		N/A N/A
13:25	11.65	9.08	82	3.120	50.4	7.04		0.14	3.3		N
13:30	13.18	8.87	83	3.100	54.2	9.56	11.17	0.66	3.3		N
13:35	11.91	8.79	 85	3.130	33.0	8.69	12.66	0.76	3.8	Light brown,	N
13:40	12.46	8.72		3.090	70.7	8.74	12.60	0.06	4.1	petroleum-like	N
13:45	13.20	8.66	81	3.090	37.7	9.98	12.55	0.04	4.3	odor	N
13:50	13.23	8.65	83	3.080	21.6	9.74	12.60	0.04	4.55	1	N
13:55	13.03	8.65	84	3.080	14.9	9.74	12.61	0.05	4.8		N
14:00	13.15	8.66	84	3.070	13.3	10.21	12.01	0.06	5.1		N
14:05	13.10	0.00	04	3.070	13.3	No recharge		0.00	3.1		IN .
16:20			Man	:4:	ed with dedicated						
10.20			IVIOII	itoring wen sampi	lea with dealcated	poryetriylerie bari	er due to equipme	iit power supply it	JSS.		

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project In		Well Info			uipment Informati		S	ampling Condition		Sampling I	
Project Name:	551 Greenwich	Well No:	MW-22	Water Qua	lity Device Model:	Horiba U52		Weather:			MW22_041522
Project Number:	190043702	Well Depth:	N/A		Pine Number:	N/A		ground PID (ppm):		Sample(s):	
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:		PID Beneath	n Inner Cap (ppm):	0.1		
Sampling	Daniel Arnstein	Well Screen	18.0		Pine Number:	N/A	Pι	ımp Intake Depth:	N/A	Sample Date:	4/15/2022
Personnel:	Jack Millman	Interval:	6.0		Tubing Diameter:		Depth to W	ater Before Purge:	N/A	Sample Time:	16:15
					3 successive readi	ngs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.111 13
						(+/- 10%) above	Drawdown <	(3)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
111112	(17 070)	(17 011)	(17 1011117)	(17 070)	BEGIN PL	,		J			
4:20	N/A	8.62	110	2.560	372.0	10.99	N/A	N/A	1	No recharge	N/A
16:10	12.89	8.61	125	2.370	513.0	2.92	N/A	N/A	2	ino recharge	N N
16:15	12.09	0.01			echarge to continu				horae line		IN .
10.10			vven purgea	ury. Ilisumcient r	echarge to contint	ie purging. Samp	es conecteu direc	uy nom pump aise	inarge iiie.	1	
1											

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

	formation	Well Info			uipment Informat		S	ampling Condition		Sampling I	
Project Name:	551 Greenwich	Well No:	MW-23	Water Qua	lity Device Model:	Horiba U52		Weather:	55°F		MW23_041522
Project Number:	190043702	Well Depth:	N/A		Pine Number:	N/A	Backg	ground PID (ppm):	0.0	Sample(s):	GWDUP_041522
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:	Solinst 410	PID Beneath	Inner Cap (ppm):	0.1		
Sampling	Daniel Arnstein	Well Screen	17.0		Pine Number:	N/A	Pu	ımp Intake Depth:	N/A	Sample Date:	4/15/2022
Personnel:	Jack Millman	Interval:	7.0		Tubing Diameter:	3/8" ID x 5/8" OD	Depth to W	ater Before Purge:	N/A	Sample Time:	10:30
				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
						(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
111112	(17 070)	(17 0.17	(17 101114)	(17 570)	BEGIN PI	•	0.00 1.0	torre gp,		55.5., 545. 545.	
9:40		1			DEGINT	Jiidiivd					N/A
9:45	15.06	9.68	48	6.040	744.0	8.95		0.23	1.15	Black	N/A N/A
9:50	15.45	9.80	47	6.050	774.0	9.52		0.23	1.13	DidCK	N N
10:00	15.45	9.81	52	9.050	770.0	9.64		0.02	1.3		N
10:10	15.93	9.79	55 55	6.050	755.0	9.69		0.02	1.4		N
10:15	16.03	9.76	55 57	6.060	750.0	9.79		0.02	1.5		N
								0.02			Y
10:20	16.10	9.75	59	6.090	755.0	10.09			1.55		Y
10:25	16.13	9.74	60	6.090	759.0	10.14					Y
								·			
	•										

Equipment Information

Sampling Conditions

Sampling Information

Notes:

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration

Project Information

- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Project Inf		Well Info			uipment Informat		S	ampling Condition		Sampling I	
	561 Greenwich St.	Well No:	MW-21	Water Qua	lity Device Model:	Horiba U52-2		Weather:	Clear, 70°F		MW21_072722
Project Number:	190043702	Well Depth:	14.6		Pine Number:	51666		ground PID (ppm):	0.0	Sample(s):	MS/MSD
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:			Inner Cap (ppm):	1.2		
Sampling	Liz McConnell	Well Screen	15.8		Pine Number:	51859		ımp Intake Depth:		Sample Date:	7/27/2022
Personnel:		Interval:	5.8		Tubing Diameter:		Depth to W	ater Before Purge:	8.4	Sample Time:	6:10
				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1 13
					(+/- 10%) above		Drawdown <	.01	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(11 0 /0)	(5,	(17 10)	(17 070)	BEGIN PI			31 /			
6:00	20.85	5.44	163	2.290	67.6	6.01	8.40	N/A	0.45		N/A
6:10	20.65	5.44			zing due to poor re						IN/A
0.10			Samples colle		l	cilarge rate. Sam	ipies conected une	city from pump un	scharge line.		
+											
+											

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	ormation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	ıs	Sampling I	nformation
	561 Greenwich St.	Well No:	MW-22	Water Qua	lity Device Model:			Weather:	Clear, 70°F		MW22_072622
Project Number:	190043702	Well Depth:	18.0		Pine Number:	51666		ground PID (ppm):	0.0	Sample(s):	
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:			Inner Cap (ppm):	0.0		
Sampling	Liz McConnell	Well Screen	18.0		Pine Number:	51859		ımp Intake Depth:	N/A	Sample Date:	7/26/2022
Personnel:		Interval:	6.0		Tubing Diameter:		Depth to W	ater Before Purge:	N/A	Sample Time:	12:15
					3 successive readi						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <				Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PL	JRGING					
12:00	25.11	6.75	207	1.610	405.0	9.37	N/A	N/A	0.53		N/A
12:15			Well purged	dry. Insufficient i	echarge to continu	ie purging. Samp	les collected from	purged groundwa	ter bucket		

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	าร	Sampling I	nformation
	561 Greenwich St.	Well No:	MW-23	Water Qua	lity Device Model:			Weather:			MW23_072622
Project Number:	190043702	Well Depth:	17.0		Pine Number:	51666	Backo	ground PID (ppm):	0.0	Sample(s):	DUP01_072622
Site Location:	New York, NY	Well Diameter:	2-inch	Pump	Make and Model:			Inner Cap (ppm):			
Sampling	Liz McConnell	Well Screen	17.0		Pine Number:	51859		ımp Intake Depth:		Sample Date:	7/26/2022
Personnel:		Interval:	7.0		Tubing Diameter:		Depth to W	ater Before Purge:	N/A	Sample Time:	12:10
					3 successive readi						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <				Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PU	JRGING					
12:05	21.70	8.17	189	4.720	113.0	5.28	N/A	N/A	0.76		N/A
12:10		-	Well purged	dry. Insufficient i	recharge to continu	ue purging. Samp	les collected from	purged groundwa	ter bucket		

- 1. Well depths and groundwater depths could not be measured due to the permanent well network sampling configuration.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit

ATTACHMENT 2 DATA USABILITY SUMMARY REPORT

989 Lenox Drive Lawrenceville, NJ 08648 T: 609.282.8000 Mailing Address: 989 Lenox Drive Lawrenceville, NJ 08648

To: Elizabeth Adkins, Langan Project Engineer

From: Joe Conboy, Langan Senior Staff Chemist

Date: August 8, 2022

Re: Data Usability Summary Report

For 561 Greenwich Street

January, April, and July 2022 Groundwater Samples

Langan Project No.: 190043702

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in January, April, and July 2022 by Langan Engineering and Environmental Services at the 561 Greenwich Street site as part of the quarterly performance monitoring. The samples were analyzed by Alpha Analytical Laboratories, Inc. (a New York State Department of Health [NYSDOH] National Environmental Laboratory Accreditation Program [NELAP] registration # 11148) for volatile organic compounds (VOCs) and sulfate by the methods specified below.

- VOCs by SW-846 Method 8260C
- Sulfate by SW-846 Method 9038

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- United States Environmental Protection Agency (USEPA) Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- Published analytical methodologies.

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Langan Project No.: 190043702 August 8, 2022 Page 2 of 5

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit
ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	TB	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

Tier 1 data validation is based on completeness and compliance checks of sample-related quality control (QC) results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All sample delivery groups (SDG) underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Langan Project No.: 190043702

August 8, 2022 Page 3 of 5

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of

results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate

qualification, but do not result in unusable data. The section below describes the minor

deficiencies that were identified.

VOCs by SW-846 Method 8260C

L2219936

The case narrative noted sample MW23_041522 exhibited headspace in the sample container.

The associated results are qualified as J/UJ because of potential indeterminate bias.

The case narrative noted sample GWDUP01_041522 exhibited headspace in the sample

container. The associated results are qualified as J/UJ because of potential indeterminate bias.

L2239801

The LCS for batch WG1668615 exhibited a percent recovery above the UCL for bromomethane

(140%). The associated results in samples MW22_072622 and DUP01_072622 are gualified as

J because of potential high bias.

The LCS/LCSD for batch WG1668961 exhibited percent recoveries below the LCL for

bromomethane (33%, 31%) and chloroethane (54%). The associated results in sample

MW23_072622 are qualified as J or UJ because of potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C

L2204920

The MS/MSD performed on sample MW21_012822 exhibited percent recoveries below the LCL

for toluene (20%, 20%). Organic results are not qualified on the basis of MS/MSD recoveries

alone. No qualification is necessary.

LANGAN

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Langan Project No.: 190043702

August 8, 2022 Page 4 of 5

L2219936

The MS performed on sample MW21_041522 exhibited a percent recovery below the LCL for toluene (50%, 50%) and also exhibited a RPD above the control limit for 1,4-dioxane (22%).

Organic results are not qualified on the basis of MS recoveries or RPDs alone. No qualification

is necessary.

L2239801

The LCS/LCSD for batch WG1668961 exhibited a percent recovery above the UCL for vinyl

acetate (140%, 150%). The associated results are non-detect. No qualification is necessary.

L2240044

The MB for batch WG1670009-5 exhibited a detection of acetone (1.6 ug/l). The associated

results are >10X the contamination. No qualification is necessary.

The MS/MSD performed on sample MW21_072722 exhibited percent recoveries above the UCL for acrylonitrile (180%, 200%), 2-butanone (148%), chloroethane (140%) and also exhibited a RPD above the control limit for bromomethane (23%). Organic results are not qualified on the

basis of MS/MSD recoveries or RPDs alone. No qualification is necessary.

FIELD DUPLICATE:

Three field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than $\pm X$ the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent

sample pairs were compared to the precision criteria:

GWDUP01_012822 and MW22_012822

GWDUP01_041522 and MW23_041522

DUP01_072622 and MW23_072622

The field duplicate and parent sample (GWDUP01_012822 and MW22_012822) exhibited RPDs above the control limit for 2-butanone (99.5%), benzene (101.6%), and tetrachloroethene

(127.9%). The associated results are qualified as J because of potential indeterminate bias.

The field duplicate and parent sample (GWDUP01_041522 AND MW23_041522) exhibited RPDs

above the control limit for acetone (47.2%) and bromomethane (69%). The associated results

are qualified as J because of potential indeterminate bias.

LANGAN

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Langan Project No.: 190043702

August 8, 2022 Page 5 of 5

The field duplicate and parent sample (DUP01_072622 and MW23_072622) exhibited a RPD above the control limit for acetone (70.6%). The associated results are qualified as J because of potential indeterminate bias.

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met Analytical Services Protocol (ASP) Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Joe Conboy

Senior Staff Chemist

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Table 1: Sample Summary

SDG	Lab Sample ID	Client Sample ID	Sample Date	Validation Level	Analytical Parameters
L2204920	L2204920-01	MW21_012822	1/28/2022	Tier 1	VOCs and Sulfate
L2204920	L2204920-02	MW22_012822	1/28/2022	Tier 1	VOCs and Sulfate
L2204920	L2204920-03	MW23_012822	1/28/2022	Tier 1	VOCs and Sulfate
L2204920	L2204920-04	GWDUP01_012822	1/28/2022	Tier 1	VOCs and Sulfate
L2204920	L2204920-05	GWFB01_012822	1/28/2022	Tier 1	VOCs and Sulfate
L2204920	L2204920-06	GWTB01_012822	1/28/2022	Tier 1	VOCs
L2219936	L2219936-01	MW21_041522	4/15/2022	Tier 1	VOCs and Sulfate
L2219936	L2219936-02	MW22_041522	4/15/2022	Tier 1	VOCs and Sulfate
L2219936	L2219936-03	MW23_041522	4/15/2022	Tier 1	VOCs and Sulfate
L2219936	L2219936-04	GWDUP01_041522	4/15/2022	Tier 1	VOCs and Sulfate
L2219936	L2219936-05	GWFB01_041522	4/15/2022	Tier 1	VOCs and Sulfate
L2219936	L2219936-06	GWTB01_041522	4/15/2022	Tier 1	VOCs
L2239801	L2239801-01	MW22_072622	7/26/2022	Tier 1	VOCs and Sulfate
L2239801	L2239801-02	MW23_072622	7/26/2022	Tier 1	VOCs and Sulfate
L2239801	L2239801-03	DUP01_072622	7/26/2022	Tier 1	VOCs and Sulfate
L2239801	L2239801-04	FB01_072622	7/26/2022	Tier 1	VOCs and Sulfate
L2239801	L2239801-05	TB01_072622	7/26/2022	Tier 1	VOCs
L2240044	L2240044-01	MW21_072722	7/27/2022	Tier 1	VOCs and Sulfate

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Table 2: Validator-Applied Qualification

L2204920 L2204920 L2204920 L2204920	MW22_012822	SW8260C	78-93-3	2-Butanone	-
L2204920 L2204920	MANA/22 012022		70 00 0	Z-Dutanone	J
L2204920	MW22_012822	SW8260C	71-43-2	Benzene	J
	MW22_012822	SW8260C	127-18-4	Tetrachloroethene	J
	GWDUP01_012822	SW8260C	78-93-3	2-Butanone	J
L2204920	GWDUP01_012822	SW8260C	71-43-2	Benzene	J
L2204920	GWDUP01_012822	SW8260C	127-18-4	Tetrachloroethene	J
L2219936	MW23 041522	SW8260C	630-20-6	1.1.1.2-Tetrachloroethane	ŰJ
L2219936	MW23_041522	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
L2219936	MW23_041522	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
L2219936	MW23_041522	SW8260C	79-00-5	1,1,2-Trichloroethane	UJ
L2219936	MW23_041522	SW8260C	75-34-3	1,1-Dichloroethane	UJ
L2219936	MW23_041522	SW8260C	75-35-4	1,1-Dichloroethene	UJ
L2219936	MW23_041522	SW8260C	563-58-6	1,1-Dichloropropene	UJ
L2219936	MW23_041522	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
L2219936	MW23 041522	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
L2219936	MW23_041522	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
L2219936	MW23_041522	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
L2219936	MW23_041522	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
L2219936	MW23_041522	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
L2219936	MW23_041522	SW8260C	106-93-4	1,2-Dibromoethane	UJ
L2219936	MW23_041522	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
L2219936	MW23_041522	SW8260C	107-06-2	1,2-Dichloroethane	UJ
L2219936	MW23_041522	SW8260C	540-59-0	Total Cis and Trans 1,2-Dichloroethene	UJ
L2219936	MW23_041522	SW8260C	78-87-5	1,2-Dichloropropane	UJ
L2219936	MW23_041522	SW8260C	108-67-8	1,3,5-Trimethylbenzene	UJ
L2219936	MW23_041522	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
L2219936	MW23_041522	SW8260C	142-28-9	1,3-Dichloropropane	UJ
L2219936	MW23_041522	SW8260C	542-75-6	Total Cis And Trans 1,3-Dichloropropene	UJ
					UJ
L2219936	MW23_041522	SW8260C	106-46-7	1,4-Dichlorobenzene	
L2219936	MW23_041522	SW8260C	123-91-1	1,4-Dioxane	UJ
L2219936	MW23_041522	SW8260C	594-20-7	2,2-Dichloropropane	UJ
L2219936	MW23_041522	SW8260C	78-93-3	2-Butanone	J
L2219936	MW23_041522	SW8260C	591-78-6	2-Hexanone	UJ
L2219936	MW23 041522	SW8260C	108-10-1	4-Methyl-2-Pentanone	UJ
L2219936	MW23_041522	SW8260C	67-64-1	Acetone	J
L2219936	MW23 041522	SW8260C	107-13-1	Acrylonitrile	UJ
L2219936	MW23_041522	SW8260C	71-43-2	Benzene	UJ
L2219936	MW23_041522	SW8260C	108-86-1	Bromobenzene	UJ
L2219936	MW23_041522	SW8260C	74-97-5	Bromochloromethane	UJ
L2219936	MW23_041522	SW8260C	75-27-4	Bromodichloromethane	UJ
L2219936	MW23_041522	SW8260C	75-25-2	Bromoform	UJ
L2219936	MW23_041522	SW8260C	74-83-9	Bromomethane	J
L2219936	MW23_041522	SW8260C	75-15-0	Carbon Disulfide	UJ
L2219936	MW23_041522	SW8260C	56-23-5	Carbon Tetrachloride	UJ
L2219936	MW23_041522	SW8260C	108-90-7	Chlorobenzene	UJ
L2219936	MW23_041522	SW8260C	75-00-3	Chloroethane	UJ
L2219936	MW23_041522	SW8260C	67-66-3	Chloroform	UJ
L2219936	MW23_041522	SW8260C	74-87-3	Chloromethane	J
L2219936	MW23_041522	SW8260C	124-48-1	Dibromochloromethane	UJ
L2219936	MW23_041522	SW8260C	74-95-3	Dibromomethane	UJ
L2219936	MW23_041522	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
L2219936	MW23_041522	SW8260C	60-29-7	Diethyl Ether	UJ
L2219936	MW23_041522	SW8260C	100-41-4	Ethylbenzene	UJ
L2219936	MW23_041522	SW8260C	87-68-3	Hexachlorobutadiene	UJ
L2219936	MW23_041522	SW8260C	98-82-8	Isopropylbenzene	UJ
L2219936	MW23_041522	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
L2219936	MW23_041522	SW8260C	75-09-2	Methylene Chloride	UJ
_2219936					UJ
	MW23_041522	SW8260C	91-20-3	Naphthalene	
_2219936	MW23_041522	SW8260C	100-42-5	Styrene	UJ
2219936	MW23_041522	SW8260C	127-18-4	Tetrachloroethene	UJ
_2219936	MW23_041522	SW8260C	108-88-3	Toluene	UJ
_2219936	MW23_041522	SW8260C	79-01-6	Trichloroethene	UJ
_2219936	MW23_041522	SW8260C	75-69-4	Trichlorofluoromethane	UJ
2219936	MW23_041522	SW8260C	108-05-4	Vinyl Acetate	UJ
_2219936	MW23_041522	SW8260C	75-01-4	Vinyl Chloride	UJ
_2219936	MW23_041522	SW8260C	1330-20-7	Total Xylenes	UJ
_2219936	MW23_041522	SW8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
		SW8260C SW8260C		Cis-1,2-Dichloroptopene	
_2219936	MW23_041522		10061-01-5		UJ
L2219936	MW23_041522	SW8260C	104-51-8	n-Butylbenzene	UJ
L2219936	MW23_041522	SW8260C	103-65-1	n-Propylbenzene	UJ
L2219936	MW23_041522	SW8260C	95-49-8	2-Chlorotoluene	UJ
L2219936	MW23_041522	SW8260C	95-47-6	o-Xylene	UJ
L2219936	MW23_041522	SW8260C	106-43-4	4-Chlorotoluene	UJ
L2219936	MW23_041522	SW8260C	105-05-5	1,4-Diethyl Benzene	UJ
L2219936	MW23_041522	SW8260C	622-96-8	4-Ethyltoluene	UJ
				·	
_2219936	MW23_041522	SW8260C	99-87-6	Cymene	UJ
_2219936	MW23_041522	SW8260C	179601-23-1	M,P-Xylene	UJ
_2219936	MW23_041522	SW8260C	135-98-8	Sec-Butylbenzene	UJ
_2219936	MW23_041522	SW8260C	98-06-6	T-Butylbenzene	UJ

Data Usability Summary Report For 561 Greenwich Street January, April, and July 2022 Groundwater Samples Table 2: Validator-Applied Qualification

SDG	Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
L2219936	MW23_041522	SW8260C	10061-02-6	Trans-1,3-Dichloropropene	UJ
L2219936	MW23_041522	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
L2219936	GWDUP01_041522	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	79-00-5	1,1,2-Trichloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	75-34-3	1,1-Dichloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	75-35-4	1,1-Dichloroethene	UJ
L2219936	GWDUP01_041522	SW8260C	563-58-6	1,1-Dichloropropene	UJ
L2219936	GWDUP01_041522	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
L2219936	GWDUP01_041522	SW8260C	96-18-4	1,2,3-Trichloropropane	UJ
L2219936	GWDUP01 041522	SW8260C	95-93-2	1,2,4,5-Tetramethylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
L2219936	GWDUP01_041522	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
L2219936	GWDUP01 041522	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
L2219936	GWDUP01_041522	SW8260C	106-93-4	1,2-Dibromoethane	UJ
L2219936	GWDUP01 041522	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
L2219936	GWDUP01 041522	SW8260C	107-06-2	1,2-Dichloroethane	UJ
L2219936	GWDUP01_041522	SW8260C	540-59-0	Total Cis and Trans 1,2-Dichloroethene	UJ
L2219936	GWDUP01_041522	SW8260C	78-87-5	1,2-Dichloropropane	UJ
				1,3,5-Trimethylbenzene	
L2219936 L2219936	GWDUP01_041522 GWDUP01_041522	SW8260C SW8260C	108-67-8 541-73-1		UJ
				1,3-Dichlorobenzene	
L2219936	GWDUP01_041522	SW8260C	142-28-9	1,3-Dichloropropane	UJ
L2219936	GWDUP01_041522	SW8260C	542-75-6	Total Cis And Trans 1,3-Dichloropropene	UJ
L2219936	GWDUP01_041522	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
L2219936	GWDUP01_041522	SW8260C	123-91-1	1,4-Dioxane	UJ
L2219936	GWDUP01_041522	SW8260C	594-20-7	2,2-Dichloropropane	UJ
L2219936	GWDUP01_041522	SW8260C	78-93-3	2-Butanone	J
L2219936	GWDUP01_041522	SW8260C	591-78-6	2-Hexanone	UJ
L2219936	GWDUP01_041522	SW8260C	108-10-1	4-Methyl-2-Pentanone	UJ
L2219936	GWDUP01_041522	SW8260C	67-64-1	Acetone	J
L2219936	GWDUP01_041522	SW8260C	107-13-1	Acrylonitrile	UJ
L2219936	GWDUP01_041522	SW8260C	71-43-2	Benzene	UJ
L2219936	GWDUP01_041522	SW8260C	108-86-1	Bromobenzene	UJ
L2219936	GWDUP01_041522	SW8260C	74-97-5	Bromochloromethane	UJ
L2219936	GWDUP01_041522	SW8260C	75-27-4	Bromodichloromethane	UJ
L2219936	GWDUP01_041522	SW8260C	75-25-2	Bromoform	UJ
L2219936	GWDUP01_041522	SW8260C	74-83-9	Bromomethane	J
L2219936	GWDUP01_041522	SW8260C	75-15-0	Carbon Disulfide	UJ
L2219936	GWDUP01_041522	SW8260C	56-23-5	Carbon Tetrachloride	UJ
L2219936	GWDUP01_041522	SW8260C	108-90-7	Chlorobenzene	UJ
L2219936	GWDUP01 041522	SW8260C	75-00-3	Chloroethane	UJ
L2219936	GWDUP01 041522	SW8260C	67-66-3	Chloroform	UJ
L2219936	GWDUP01_041522	SW8260C	74-87-3	Chloromethane	J
L2219936	GWDUP01_041522	SW8260C	124-48-1	Dibromochloromethane	UJ
L2219936	GWDUP01_041522	SW8260C	74-95-3	Dibromomethane	UJ
L2219936	GWDUP01_041522	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
L2219936	GWDUP01 041522	SW8260C	60-29-7	Diethyl Ether	UJ
L2219936	GWDUP01 041522	SW8260C	100-41-4	Ethylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	87-68-3	Hexachlorobutadiene	UJ
L2219936	GWDUP01_041522	SW8260C	98-82-8	Isopropylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
L2219936	GWDUP01_041522	SW8260C	75-09-2	Methylene Chloride	UJ
L2219936	GWDUP01_041522	SW8260C	91-20-3	Naphthalene	UJ
L2219936	GWDUP01_041522 GWDUP01_041522	SW8260C SW8260C	100-42-5	Styrene	UJ
L2219936 L2219936	GWDUP01_041522	SW8260C SW8260C	127-18-4	Tetrachloroethene	UJ
	GWDUP01_041522 GWDUP01_041522			Tetrachioroethene	
L2219936 L2219936	GWDUP01_041522 GWDUP01_041522	SW8260C SW8260C	108-88-3 79-01-6	Trichloroethene	UJ
			79-01-6 75-69-4		
L2219936	GWDUP01_041522	SW8260C		Trichlorofluoromethane	UJ
L2219936	GWDUP01_041522	SW8260C	108-05-4	Vinyl Acetate	UJ
L2219936	GWDUP01_041522	SW8260C	75-01-4	Vinyl Chloride	UJ
L2219936	GWDUP01_041522	SW8260C	1330-20-7	Total Xylenes	UJ
L2219936	GWDUP01_041522	SW8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
L2219936	GWDUP01_041522	SW8260C	10061-01-5	Cis-1,3-Dichloropropene	UJ
L2219936	GWDUP01_041522	SW8260C	104-51-8	n-Butylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	103-65-1	n-Propylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	95-49-8	2-Chlorotoluene	UJ
L2219936	GWDUP01_041522	SW8260C	95-47-6	o-Xylene	UJ
L2219936	GWDUP01_041522	SW8260C	106-43-4	4-Chlorotoluene	UJ
L2219936	GWDUP01_041522	SW8260C	105-05-5	1,4-Diethyl Benzene	UJ
L2219936	GWDUP01_041522	SW8260C	622-96-8	4-Ethyltoluene	UJ
L2219936	GWDUP01_041522	SW8260C	99-87-6	Cymene	UJ
L2219936	GWDUP01_041522	SW8260C	179601-23-1	M,P-Xylene	UJ
L2219936	GWDUP01_041522	SW8260C	135-98-8	Sec-Butylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	98-06-6	T-Butylbenzene	UJ
L2219936	GWDUP01_041522	SW8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
L2219936	GWDUP01_041522	SW8260C	10061-02-6	Trans-1,3-Dichloropropene	UJ
L2219936	GWDUP01_041522	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
L2239801	MW23_072622	SW8260C	67-64-1	Acetone	J
LZZJJOUI	DUP01_072622	SW8260C	67-64-1	Acetone	J

JOSEPH CONBOY

SENIOR STAFF CHEMIST ENVIRONMNETAL

Mr. Conboy has eight years of environmental chemistry, quality assurance, and environmental database management experience, with a current emphasis on validation of laboratory data for submittal to NJDEP via the New Jersey Data of Known Quality Protocols and to NYSDEC. Previous work experience includes performing validation of data for projects in USEPA Regions 2 and 3 while employing appropriate validation guidelines for each region, managing large data sets, updating appropriate regulatory limits, performing statistical evaluations, and preparing electronic data deliverables and report deliverables using the Earthsoft EQuIS database program, and acted as an intermediary between project managers, field staff, and laboratories. Mr. Conboy also has experience in field sampling techniques and maintains current OSHA HAZWOPER certification.

SELECTED PROJECTS

- 1400 Ferris, Bronx, NY Completed validation of soil and groundwater data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOCs and SVOCs including 1,4-dioxane, and tangentially used based on professional judgment to perform validation of PFAS data.
- Broome Street Parking Lot, NY Completed validation of waste characterization data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOCs, SVOCs, herbicides, PCBs, pesticides, metals including mercury, ignitability temperature, pH, reactive cyanide, reactive sulfide, cyanide, and hexavalent chromium. Toxicity characteristic leachate procedure extraction data for VOCs, SVOCs, herbicides, pesticides, metals, and mercury were also validated.
- 215 North 10th Street, Brooklyn, NY Completed validation of soil and groundwater data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data.
- 35 Commercial Street, Brooklyn, NY Completed validation of soil data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data, and tangentially used based on professional judgment to perform validation of PFAS data.
- Suffolk Street, Lower East Side, NY- Completed validation of soil, groundwater, and soil vapor data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II

EDUCATION

B.Sc., Chemistry with a minor in Mathematics Rowan University

CERTIFICATIONS & TRAINING

OSHA 40-Hour HAZWOPER 29 CFR 1910.120(e)(4) Certification

NJ Analytical Guidance and Data Usability Training

USEPA Data Validation Training

Earthsoft EQuIS Environmental Database Training guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, VOCs by USEPA TO-15, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data, and tangentially used based on professional judgment to perform validation of PFAS data.

- Managed a database for a confidential client containing 10+ years of environmental chemical data from multiple laboratories, requiring select data validation in accordance with New Jersey Data of Known Quality Protocols and identifying areas of delineation from historic field information. Once identified, NJDEP designated groundwater, surface water, soil, sediment, soil vapor, and custom screening criteria were researched and applied to each area, requiring individualized flagging for reporting.*
- Prepared the New Jersey Data of Known Quality Protocol Data Usability Evaluation and managed the database for a confidential client for a data set greater than 20 years old. A DUE or any validation effort was not prepared in the 20 years prior to current. This included data from variations of methods for volatile organic compounds, semivolatile organic compounds, total and dissolved metals, pesticides, herbicides, natural attenuation parameters, and per- and polyfluoroalkyl substances in multiple media.*
- Performed 200+ Stage 2a validations for a combined 87-acre USEPA designated Corrective Action site under the Resource Conservation and Recovery Act, including a quick-turn USEPA required PCB by soxhlet extraction investigation across multiple plants. Once a former train car painting facility, USEPA required a quick-turn PCB by soxhlet extraction soil investigation.
- Preparation of a quality assurance program for a confidential client in West Virginia. A quick turn QAPP was prepared in a service location new to the consultant, resulting in research into state requirements for data usability and auditing newly employed laboratories. The QAPP was understood to be prepared for groundwater only, but the client did not reveal the need for sediment and soil. Two QAPPs were submitted for review to governing agencies.*
- Used statistical software to determine a localized background upper confidence limit of chromium for a confidential client's sand and gravel site. Validation was used to confirm laboratory procedures, and data was used in ProUCL calculations to compare to researched background chromium levels for Pennsylvania soils. *
- Prepared daily perimeter dust and air monitoring summaries and validation of low level mirex data for a confidential client's superfund site. Low level mirex data was generated by university laboratories and subject to validation following national functional guidelines to aide in river clean-up, including sediment, surface water, and treatment system water matrices.*

^{*}Project completed prior to employment at LANGAN.

ATTACHMENT 3 LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L2204920

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Elizabeth Adkins Phone: (212) 479-5400

Project Name: 561 GREENWICH ST

Project Number: 190043702

Report Date: 02/03/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST

Project Number: 190043702

 Lab Number:
 L2204920

 Report Date:
 02/03/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2204920-01	MW21_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 14:45	01/28/22
L2204920-02	MW22_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 11:45	01/28/22
L2204920-03	MW23_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 11:15	01/28/22
L2204920-04	GWDUP01_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 00:00	01/28/22
L2204920-05	GWFB01_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 00:00	01/28/22
L2204920-06	GWTB01_012822	WATER	561 GREENWICH ST, NEW YORK, NY	01/28/22 00:00	01/28/22

L2204920

Lab Number:

Project Name: 561 GREENWICH ST

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 561 GREENWICH ST Lab Number: L2204920

Project Number: 190043702 **Report Date:** 02/03/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2204920-03D: Differences were noted between the results of the analyses which have been attributed to vial discrepancies. Further re-analysis could not be performed due to the existing vials being compromised.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/03/22

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

01/28/22 14:45

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Report Date: 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-01 D

Client ID: MW21_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY Date Received: 01/28/22 Field Prep: Refer to COC

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 10:45

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	250	70.	100	
1,1-Dichloroethane	ND		ug/l	250	70.	100	
Chloroform	ND		ug/l	250	70.	100	
Carbon tetrachloride	ND		ug/l	50	13.	100	
1,2-Dichloropropane	ND		ug/l	100	14.	100	
Dibromochloromethane	ND		ug/l	50	15.	100	
1,1,2-Trichloroethane	ND		ug/l	150	50.	100	
Tetrachloroethene	ND		ug/l	50	18.	100	
Chlorobenzene	ND		ug/l	250	70.	100	
Trichlorofluoromethane	ND		ug/l	250	70.	100	
1,2-Dichloroethane	ND		ug/l	50	13.	100	
1,1,1-Trichloroethane	ND		ug/l	250	70.	100	
Bromodichloromethane	ND		ug/l	50	19.	100	
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100	
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100	
1,3-Dichloropropene, Total	ND		ug/l	50	14.	100	
1,1-Dichloropropene	ND		ug/l	250	70.	100	
Bromoform	ND		ug/l	200	65.	100	
1,1,2,2-Tetrachloroethane	ND		ug/l	50	17.	100	
Benzene	1400		ug/l	50	16.	100	
Toluene	8700		ug/l	250	70.	100	
Ethylbenzene	980		ug/l	250	70.	100	
Chloromethane	ND		ug/l	250	70.	100	
Bromomethane	ND		ug/l	250	70.	100	
Vinyl chloride	ND		ug/l	100	7.1	100	
Chloroethane	ND		ug/l	250	70.	100	
1,1-Dichloroethene	ND		ug/l	50	17.	100	
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100	

L2204920

02/03/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 01/28/22 14:45

Lab ID: L2204920-01 D

Client ID: MW21_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Received: 01/28/22

Lab Number:

Report Date:

Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Trichloroethene	ND		ug/l	50	18.	100	
1,2-Dichlorobenzene	ND		ug/l	250	70.	100	
1,3-Dichlorobenzene	ND		ug/l	250	70.	100	
1,4-Dichlorobenzene	ND		ug/l	250	70.	100	
Methyl tert butyl ether	ND		ug/l	250	70.	100	
p/m-Xylene	4800		ug/l	250	70.	100	
o-Xylene	2900		ug/l	250	70.	100	
Xylenes, Total	7700		ug/l	250	70.	100	
cis-1,2-Dichloroethene	ND		ug/l	250	70.	100	
1,2-Dichloroethene, Total	ND		ug/l	250	70.	100	
Dibromomethane	ND		ug/l	500	100	100	
1,2,3-Trichloropropane	ND		ug/l	250	70.	100	
Acrylonitrile	ND		ug/l	500	150	100	
Styrene	ND		ug/l	250	70.	100	
Dichlorodifluoromethane	ND		ug/l	500	100	100	
Acetone	160	J	ug/l	500	150	100	
Carbon disulfide	ND		ug/l	500	100	100	
2-Butanone	ND		ug/l	500	190	100	
Vinyl acetate	ND		ug/l	500	100	100	
4-Methyl-2-pentanone	ND		ug/l	500	100	100	
2-Hexanone	ND		ug/l	500	100	100	
Bromochloromethane	ND		ug/l	250	70.	100	
2,2-Dichloropropane	ND		ug/l	250	70.	100	
1,2-Dibromoethane	ND		ug/l	200	65.	100	
1,3-Dichloropropane	ND		ug/l	250	70.	100	
1,1,1,2-Tetrachloroethane	ND		ug/l	250	70.	100	
Bromobenzene	ND		ug/l	250	70.	100	
n-Butylbenzene	ND		ug/l	250	70.	100	
sec-Butylbenzene	ND		ug/l	250	70.	100	
tert-Butylbenzene	ND		ug/l	250	70.	100	
o-Chlorotoluene	ND		ug/l	250	70.	100	
p-Chlorotoluene	ND		ug/l	250	70.	100	
1,2-Dibromo-3-chloropropane	ND		ug/l	250	70.	100	
Hexachlorobutadiene	ND		ug/l	250	70.	100	
Isopropylbenzene	ND		ug/l	250	70.	100	
p-Isopropyltoluene	ND		ug/l	250	70.	100	
Naphthalene	ND		ug/l	250	70.	100	

Project Name: 561 GREENWICH ST **Lab Number:** L2204920

Project Number: 190043702 **Report Date:** 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-01 D Date Collected: 01/28/22 14:45

Client ID: MW21_012822 Date Received: 01/28/22

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
n-Propylbenzene	ND		ug/l	250	70.	100	
1,2,3-Trichlorobenzene	ND		ug/l	250	70.	100	
1,2,4-Trichlorobenzene	ND		ug/l	250	70.	100	
1,3,5-Trimethylbenzene	80	J	ug/l	250	70.	100	
1,2,4-Trimethylbenzene	490		ug/l	250	70.	100	
1,4-Dioxane	ND		ug/l	25000	6100	100	
p-Diethylbenzene	ND		ug/l	200	70.	100	
p-Ethyltoluene	290		ug/l	200	70.	100	
1,2,4,5-Tetramethylbenzene	ND		ug/l	200	54.	100	
Ethyl ether	ND		ug/l	250	70.	100	
trans-1,4-Dichloro-2-butene	ND		ug/l	250	70.	100	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	98	70-130	

01/28/22 11:45

Refer to COC

01/28/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2204920

Report Date: 02/03/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2204920-02

Client ID: MW22_012822

Sample Location:

561 GREENWICH ST, NEW YORK, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 11:08

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	1.6	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.5		ug/l	0.50	0.18	1
Chlorobenzene	3.5		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	1.5		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	0.88	J	ug/l	2.5	0.70	1
Bromomethane	4.4		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2204920

02/03/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 01/28/22 11:45

Lab Number:

Report Date:

L2204920-02

Client ID: Date Received: 01/28/22 MW22_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	42		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	4.7	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2204920

Project Number: 190043702 **Report Date:** 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-02 Date Collected: 01/28/22 11:45

Client ID: MW22_012822 Date Received: 01/28/22

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	90		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	109		70-130	

01/28/22 11:15

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2204920

Report Date: 02/03/22

Lab ID: L2204920-03

Client ID: MW23_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY Date Received: 01/28/22 Field Prep: Refer to COC

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 11:31

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	2.2	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	2.7		ug/l	2.5	0.70	1
Bromomethane	7.5		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2204920

02/03/22

Project Name: 561 GREENWICH ST

L2204920-03

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 01/28/22 11:15

Lab Number:

Report Date:

Client ID: MW23_012822 Date Received: 01/28/22

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND			2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.70	1
p/m-Xylene o-Xylene	ND ND		ug/l	2.5	0.70	<u>'</u> 1
·	ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	220	E	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	18		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

Project Name: 561 GREENWICH ST **Lab Number:** L2204920

Project Number: 190043702 **Report Date:** 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-03 Date Collected: 01/28/22 11:15

Client ID: MW23_012822 Date Received: 01/28/22

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	114	70-130	

L2204920

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

02/03/22

Report Date:

Lab Number:

Lab ID: L2204920-03 D

Client ID: MW23_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY Date Collected: 01/28/22 11:15 Date Received: 01/28/22

Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/02/22 09:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough I	_ab					
Acetone	40		ug/l	20	5.8	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	92		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	106		70-130

01/28/22 00:00

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2204920

Report Date: 02/03/22

Lab ID: L2204920-04

Client ID: GWDUP01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY Date Received: 01/28/22 Field Prep: Refer to COC

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 11:54

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	1.6	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.33	J	ug/l	0.50	0.18	1
Chlorobenzene	2.1	J	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	4.6		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	0.90	J	ug/l	2.5	0.70	1
Bromomethane	2.3	J	ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2204920

02/03/22

Project Name: 561 GREENWICH ST

L2204920-04

GWDUP01_012822

561 GREENWICH ST, NEW YORK, NY

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 01/28/22 00:00

Lab Number:

Report Date:

Date Received: 01/28/22

Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	0.76	J	ug/l	2.5	0.70	1
o-Xylene	0.80	J	ug/l	2.5	0.70	1
Xylenes, Total	1.6	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	54		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	14		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2204920

Project Number: 190043702 **Report Date:** 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-04 Date Collected: 01/28/22 00:00

Client ID: GWDUP01_012822 Date Received: 01/28/22

Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	igh Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	1.4	J	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	0.89	J	ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	2.6		ug/l	2.0	0.70	1	
p-Ethyltoluene	0.80	J	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	0.58	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	104	70-130	

01/28/22 00:00

01/28/22

None

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2204920

Report Date: 02/03/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2204920-05

Client ID: GWFB01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 09:59

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2204920

02/03/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 01/28/22 00:00

Lab ID: L2204920-05

Client ID: GWFB01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Received: 01/28/22

Field Prep: None

Lab Number:

Report Date:

Volatile Organics by GC/MS - Westborough Lab Viol ughl 0.50 0.18 1 1.2-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 Methyl feet Luyl ether ND ughl 2.5 0.70 1 PmXylene ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene, Total ND ughl 2.5 0.70 1 Dibroordeflere ND ughl 2.5 0.70 1 Als-(2-Olchoroethene ND ughl 2.5 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2 Dichlorobenzene	Volatile Organics by GC/MS - Westbor	ough Lab					
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 Methyl terb tuyl ether ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 dis-1,2-Dichloroethene ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 Actychirline ND ugil 2,5 0,70 1 Styrene ND ugil 2,5 0,70 1 <td>Trichloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.18</td> <td>1</td>	Trichloroethene	ND		ug/l	0.50	0.18	1
1,3-Dichlorobenzene ND ugl 2,5 0,70 1 1,4-Dichlorobenzene ND ugl 2,5 0,70 1 Methyl tert buryl ether ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 xylenes, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 2,2-Dichloroethene, Total ND ugl 2,0 1,0 1 Styrene ND ugl 2,0 1,0 1 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>_</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,2-Dichlorobenzene	ND		_	2.5	0.70	1
Methyl tert budyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylenes ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromemsthane ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Obchtorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Vilyi acetate	1,3-Dichlorobenzene	ND			2.5	0.70	1
ND	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Styrene ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.0 1 Carbon disulfide ND<	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene, Total ND ug/l 2.5 0.70 1 Dichloromethane ND ug/l 2.5 0.70 1 L;2-Dichloroptopane ND ug/l 2.5 0.70 1 Acytonitrile ND ug/l 5.0 1.5 1 Syrene ND ug/l 5.0 1.5 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Trichloropropane ND ug/l 5.0 0.70 1 Acrylontrile ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Styria acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexthyl-2-pentanone ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total ND ug/l 2,5 0,70 1	Xylenes, Total	ND		ug/l	2.5	0.70	1
Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,3-Dichropropane ND ug/l 2.5 0.70 1 1,1,1,2-T	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2,3-Trichioropropane ND ug/l 2,5 0,70 1	1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1-ynyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromochlane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1	Dibromomethane	ND		ug/l	5.0	1.0	1
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Pethacanone ND ug/l 5.0 1.0 1 1-Pethacanone ND ug/l 2.5 0.70 1 2-Pethacanone ND ug/l 2.5 0.70 1 1,2-Dictoromethane ND ug/l 2.5 0.70 1 1,1,1,2	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 -Butylbenzene ND ug/l 2.5 0.70 1 <	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	Carbon disulfide	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltenue ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST L2204920

Project Number: Report Date: 190043702 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-05 Date Collected: 01/28/22 00:00

Client ID: Date Received: 01/28/22 GWFB01_012822

Field Prep: Sample Location: 561 GREENWICH ST, NEW YORK, NY None

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	106	70-130	

01/28/22 00:00

01/28/22

None

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Report Date: 02/03/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2204920-06

Client ID: GWTB01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/01/22 10:22

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2204920

02/03/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

01/28/22 00:00

Lab Number:

Report Date:

L2204920-06 Date Collected:

Client ID: Date Received: 01/28/22 GWTB01_012822 Sample Location: Field Prep: 561 GREENWICH ST, NEW YORK, NY None

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST L2204920

Project Number: Report Date: 190043702 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-06 Date Collected: 01/28/22 00:00

Client ID: Date Received: 01/28/22 GWTB01_012822

Sample Location: Field Prep: 561 GREENWICH ST, NEW YORK, NY None

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	106	70-130	

L2204920

Lab Number:

Project Name: 561 GREENWICH ST

> Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260C

02/01/22 08:50

Analyst: PD

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-06 Batch:	WG1600511-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Report Date: 02/03/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/01/22 08:50

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 0	1-06 Batch:	WG1600511-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Report Date: 02/03/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/01/22 08:50

Parameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	01-06 Batch:	WG1600511-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	108		70-130	

L2204920

02/03/22

Lab Number:

Project Name: 561 GREENWICH ST

Project Number: 190043702 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/02/22 08:49

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): (3 Batch:	WG1600835-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2204920

Project Name: 561 GREENWICH ST Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/02/22 08:49

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 03	Batch:	WG1600835-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Report Date: 02/03/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/02/22 08:49

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 03	Batch:	WG1600835-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Acceptance			
%Recovery Qu	alifier Criteria		
95	70-130		
97	70-130		
100	70-130		
104	70-130		
	95 97 100		

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1600511-3	WG1600511-4			
Methylene chloride	95		93		70-130	2	20	
1,1-Dichloroethane	96		95		70-130	1	20	
Chloroform	98		98		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	97		98		70-130	1	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	99		100		70-130	1	20	
Tetrachloroethene	120		110		70-130	9	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	96		92		62-150	4	20	
1,2-Dichloroethane	95		96		70-130	1	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	97		96		67-130	1	20	
trans-1,3-Dichloropropene	87		88		70-130	1	20	
cis-1,3-Dichloropropene	97		98		70-130	1	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	97		100		54-136	3	20	
1,1,2,2-Tetrachloroethane	95		100		67-130	5	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	83		82		64-130	1	20	
Bromomethane	130		110		39-139	17	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1600511-3	WG1600511-4			
Vinyl chloride	95		94		55-140	1	20	
Chloroethane	90		88		55-138	2	20	
1,1-Dichloroethene	110		110		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	100		110		63-130	10	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	105		105		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	100		110		70-130	10	20	
1,2,3-Trichloropropane	90		95		64-130	5	20	
Acrylonitrile	100		110		70-130	10	20	
Styrene	105		105		70-130	0	20	
Dichlorodifluoromethane	86		84		36-147	2	20	
Acetone	98		93		58-148	5	20	
Carbon disulfide	100		98		51-130	2	20	
2-Butanone	100		96		63-138	4	20	
Vinyl acetate	97		98		70-130	1	20	
4-Methyl-2-pentanone	100		100		59-130	0	20	
2-Hexanone	86		89		57-130	3	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: WG	G1600511-3 WG1600511-4		
Bromochloromethane	110		110	70-130	0	20
2,2-Dichloropropane	100		100	63-133	0	20
1,2-Dibromoethane	110		110	70-130	0	20
1,3-Dichloropropane	98		98	70-130	0	20
1,1,1,2-Tetrachloroethane	100		100	64-130	0	20
Bromobenzene	100		100	70-130	0	20
n-Butylbenzene	96		96	53-136	0	20
sec-Butylbenzene	100		100	70-130	0	20
tert-Butylbenzene	100		100	70-130	0	20
o-Chlorotoluene	92		93	70-130	1	20
p-Chlorotoluene	94		94	70-130	0	20
1,2-Dibromo-3-chloropropane	100		110	41-144	10	20
Hexachlorobutadiene	110		110	63-130	0	20
Isopropylbenzene	100		100	70-130	0	20
p-Isopropyltoluene	100		100	70-130	0	20
Naphthalene	110		120	70-130	9	20
n-Propylbenzene	99		99	69-130	0	20
1,2,3-Trichlorobenzene	110		120	70-130	9	20
1,2,4-Trichlorobenzene	110		110	70-130	0	20
1,3,5-Trimethylbenzene	97		97	64-130	0	20
1,2,4-Trimethylbenzene	97		98	70-130	1	20
1,4-Dioxane	136		128	56-162	6	20
p-Diethylbenzene	100		100	70-130	0	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date:

02/03/22

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1600511-3	WG1600511-4				
p-Ethyltoluene	100			100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	99			100		70-130	1		20	
Ethyl ether	97			96		59-134	1		20	
trans-1,4-Dichloro-2-butene	80			85		70-130	6		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	102	101	70-130	
Toluene-d8	95	96	70-130	
4-Bromofluorobenzene	90	91	70-130	
Dibromofluoromethane	102	102	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westb	orough Lab Associated	sample(s): 0	3 Batch: WG1	1600835-3	WG1600835-4			
Methylene chloride	110		99		70-130	11	20	
1,1-Dichloroethane	100		92		70-130	8	20	
Chloroform	97		87		70-130	11	20	
Carbon tetrachloride	95		88		63-132	8	20	
1,2-Dichloropropane	99		90		70-130	10	20	
Dibromochloromethane	86		88		63-130	2	20	
1,1,2-Trichloroethane	91		93		70-130	2	20	
Tetrachloroethene	100		98		70-130	2	20	
Chlorobenzene	100		95		75-130	5	20	
Trichlorofluoromethane	79		73		62-150	8	20	
1,2-Dichloroethane	86		88		70-130	2	20	
1,1,1-Trichloroethane	87		82		67-130	6	20	
Bromodichloromethane	92		88		67-130	4	20	
trans-1,3-Dichloropropene	88		87		70-130	1	20	
cis-1,3-Dichloropropene	88		88		70-130	0	20	
1,1-Dichloropropene	98		84		70-130	15	20	
Bromoform	96		100		54-136	4	20	
1,1,2,2-Tetrachloroethane	94		94		67-130	0	20	
Benzene	100		87		70-130	14	20	
Toluene	98		92		70-130	6	20	
Ethylbenzene	99		94		70-130	5	20	
Chloromethane	85		75		64-130	13	20	
Bromomethane	69		63		39-139	9	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 03	Batch:	WG1600835-3	WG1600835-4			
Vinyl chloride	92		79		55-140	15		20
Chloroethane	82		86		55-138	5		20
1,1-Dichloroethene	120		110		61-145	9		20
trans-1,2-Dichloroethene	100		98		70-130	2		20
Trichloroethene	99		93		70-130	6		20
1,2-Dichlorobenzene	96		95		70-130	1		20
1,3-Dichlorobenzene	100		99	_	70-130	1		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	86		90		63-130	5		20
p/m-Xylene	100		95		70-130	5		20
o-Xylene	100		95		70-130	5		20
cis-1,2-Dichloroethene	100		87		70-130	14		20
Dibromomethane	91		91		70-130	0		20
1,2,3-Trichloropropane	84		91		64-130	8		20
Acrylonitrile	82		88		70-130	7		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	65		56		36-147	15		20
Acetone	110		120		58-148	9		20
Carbon disulfide	120		100		51-130	18		20
2-Butanone	81		76		63-138	6		20
Vinyl acetate	84		94		70-130	11		20
4-Methyl-2-pentanone	81		82		59-130	1		20
2-Hexanone	76		88		57-130	15		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	Batch: WG1	600835-3	WG1600835-4				
Bromochloromethane	100		110		70-130	10		20	
2,2-Dichloropropane	84		74		63-133	13		20	
1,2-Dibromoethane	93		95		70-130	2		20	
1,3-Dichloropropane	92		95		70-130	3		20	
1,1,1,2-Tetrachloroethane	95		91		64-130	4		20	
Bromobenzene	100		100		70-130	0		20	
n-Butylbenzene	85		90		53-136	6		20	
sec-Butylbenzene	92		95		70-130	3		20	
tert-Butylbenzene	97		95		70-130	2		20	
o-Chlorotoluene	98		94		70-130	4		20	
p-Chlorotoluene	100		96		70-130	4		20	
1,2-Dibromo-3-chloropropane	91		100		41-144	9		20	
Hexachlorobutadiene	92		97		63-130	5		20	
Isopropylbenzene	99		93		70-130	6		20	
p-Isopropyltoluene	93		94		70-130	1		20	
Naphthalene	89		94		70-130	5		20	
n-Propylbenzene	96		92		69-130	4		20	
1,2,3-Trichlorobenzene	96		97		70-130	1		20	
1,2,4-Trichlorobenzene	100		100		70-130	0		20	
1,3,5-Trimethylbenzene	94		92		64-130	2		20	
1,2,4-Trimethylbenzene	94		91		70-130	3		20	
1,4-Dioxane	124		158		56-162	24	Q	20	
p-Diethylbenzene	89		92		70-130	3		20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date:

02/03/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 03	Batch: WG	1600835-3	WG1600835-4			
p-Ethyltoluene	97		94		70-130	3		20
1,2,4,5-Tetramethylbenzene	91		92		70-130	1		20
Ethyl ether	100		100		59-134	0		20
trans-1,4-Dichloro-2-butene	93		93		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	89	92	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	99	97	70-130
Dibromofluoromethane	102	104	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date:

02/03/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW21_012822	- Westborough	Lab Assoc	ciated sample((s): 01-06 Q	C Batch ID	: WG16005	511-6 WG160	0511-7	QC Sample	e: L2204	1920-01	Client ID:
Methylene chloride	ND	1000	930	93		930	93		70-130	0		20
1,1-Dichloroethane	ND	1000	940	94		950	95		70-130	1		20
Chloroform	ND	1000	950	95		970	97		70-130	2		20
Carbon tetrachloride	ND	1000	910	91		1000	100		63-132	9		20
1,2-Dichloropropane	ND	1000	980	98		990	99		70-130	1		20
Dibromochloromethane	ND	1000	1000	100		1000	100		63-130	0		20
1,1,2-Trichloroethane	ND	1000	1000	100		1000	100		70-130	0		20
Tetrachloroethene	ND	1000	1100	110		1200	120		70-130	9		20
Chlorobenzene	ND	1000	970	97		1000	100		75-130	3		20
Trichlorofluoromethane	ND	1000	920	92		1000	100		62-150	8		20
1,2-Dichloroethane	ND	1000	980	98		980	98		70-130	0		20
1,1,1-Trichloroethane	ND	1000	1000	100		1100	110		67-130	10		20
Bromodichloromethane	ND	1000	920	92		940	94		67-130	2		20
trans-1,3-Dichloropropene	ND	1000	800	80		820	82		70-130	2		20
cis-1,3-Dichloropropene	ND	1000	880	88		910	91		70-130	3		20
1,1-Dichloropropene	ND	1000	990	99		1100	110		70-130	11		20
Bromoform	ND	1000	930	93		920	92		54-136	1		20
1,1,2,2-Tetrachloroethane	ND	1000	1000	100		1000	100		67-130	0		20
Benzene	1400	1000	2300	90		2300	90		70-130	0		20
Toluene	8700	1000	8900	20	Q	8900	20	Q	70-130	0		20
Ethylbenzene	980	1000	1800	82		1900	92		70-130	5		20
Chloromethane	ND	1000	890	89		910	91		64-130	2		20
Bromomethane	ND	1000	1000	100		1000	100		39-139	0		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS · MW21_012822	- Westborough	Lab Asso	ciated sample	(s): 01-06 QC	Batch ID: WG16005	511-6 WG1600	0511-7 QC Sample	e: L220	4920-01 Client ID:
Vinyl chloride	ND	1000	960	96	1000	100	55-140	4	20
Chloroethane	ND	1000	890	89	930	93	55-138	4	20
,1-Dichloroethene	ND	1000	1000	100	1100	110	61-145	10	20
rans-1,2-Dichloroethene	ND	1000	1000	100	1100	110	70-130	10	20
Frichloroethene	ND	1000	1000	100	1000	100	70-130	0	20
,2-Dichlorobenzene	ND	1000	990	99	1000	100	70-130	1	20
1,3-Dichlorobenzene	ND	1000	960	96	1000	100	70-130	4	20
,4-Dichlorobenzene	ND	1000	960	96	1000	100	70-130	4	20
Methyl tert butyl ether	ND	1000	1100	110	1100	110	63-130	0	20
o/m-Xylene	4800	2000	6200	70	6400	80	70-130	3	20
o-Xylene	2900	2000	4600	85	4700	90	70-130	2	20
cis-1,2-Dichloroethene	ND	1000	1000	100	1000	100	70-130	0	20
Dibromomethane	ND	1000	1000	100	1000	100	70-130	0	20
1,2,3-Trichloropropane	ND	1000	990	99	970	97	64-130	2	20
Acrylonitrile	ND	1000	1200	120	1200	120	70-130	0	20
Styrene	ND	2000	2000	100	2100	105	70-130	5	20
Dichlorodifluoromethane	ND	1000	800	80	900	90	36-147	12	20
Acetone	160J	1000	1200	120	1100	110	58-148	9	20
Carbon disulfide	ND	1000	920	92	970	97	51-130	5	20
2-Butanone	ND	1000	1100	110	910	91	63-138	19	20
/inyl acetate	ND	1000	1100	110	1000	100	70-130	10	20
l-Methyl-2-pentanone	ND	1000	1200	120	1100	110	59-130	9	20
2-Hexanone	ND	1000	980	98	980	98	57-130	0	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date:

02/03/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		SD und	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW21_012822	Westborough	Lab Assoc	ciated sample(s): 01-06 Q(Batch ID: WG	16005	11-6 WG1600)511-7	QC Sample	: L2204	920-01	Client ID:
Bromochloromethane	ND	1000	1100	110	11	100	110		70-130	0		20
2,2-Dichloropropane	ND	1000	840	84	8	30	83		63-133	1		20
1,2-Dibromoethane	ND	1000	1100	110	11	100	110		70-130	0		20
1,3-Dichloropropane	ND	1000	1000	100	10	000	100		70-130	0		20
1,1,1,2-Tetrachloroethane	ND	1000	980	98	10	000	100		64-130	2		20
Bromobenzene	ND	1000	980	98	10	000	100		70-130	2		20
n-Butylbenzene	ND	1000	860	86	9	30	93		53-136	8		20
sec-Butylbenzene	ND	1000	930	93	10	000	100		70-130	7		20
ert-Butylbenzene	ND	1000	940	94	10	000	100		70-130	6		20
o-Chlorotoluene	ND	1000	1000	100	11	100	110		70-130	10		20
o-Chlorotoluene	ND	1000	860	86	9	10	91		70-130	6		20
1,2-Dibromo-3-chloropropane	ND	1000	1000	100	10	000	100		41-144	0		20
Hexachlorobutadiene	ND	1000	940	94	10	000	100		63-130	6		20
sopropylbenzene	ND	1000	950	95	10	000	100		70-130	5		20
o-Isopropyltoluene	ND	1000	950	95	10	000	100		70-130	5		20
Naphthalene	ND	1000	1200	120	12	200	120		70-130	0		20
n-Propylbenzene	ND	1000	930	93	10	000	100		69-130	7		20
1,2,3-Trichlorobenzene	ND	1000	1100	110	11	100	110		70-130	0		20
1,2,4-Trichlorobenzene	ND	1000	1000	100	11	100	110		70-130	10		20
1,3,5-Trimethylbenzene	80J	1000	980	98	10	000	100		64-130	2		20
1,2,4-Trimethylbenzene	490	1000	1400	91	14	100	91		70-130	0		20
1,4-Dioxane	ND	50000	68000	136	63	000	126		56-162	8		20
o-Diethylbenzene	ND	1000	950	95	10	000	100		70-130	5		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21_012822	- Westborough	Lab Assoc	ciated sample(s): 01-06	QC Batch ID): WG16005	511-6 WG1600)511-7	QC Sample	: L220	4920-01	Client ID:
p-Ethyltoluene	290	1000	1200	91		1300	101		70-130	8		20
1,2,4,5-Tetramethylbenzene	ND	1000	930	93		980	98		70-130	5		20
Ethyl ether	ND	1000	1000	100		1000	100		59-134	0		20
trans-1,4-Dichloro-2-butene	ND	1000	790	79		820	82		70-130	4		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifie	er % Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	103	103	70-130
4-Bromofluorobenzene	92	91	70-130
Dibromofluoromethane	100	99	70-130
Toluene-d8	95	97	70-130

INORGANICS & MISCELLANEOUS

L2204920

Project Name: 561 GREENWICH ST

Lab Number:

Project Number: Report Date: 02/03/22 190043702

SAMPLE RESULTS

Lab ID: Date Collected: L2204920-01 01/28/22 14:45

Client ID: MW21_012822 Date Received: 01/28/22

Refer to COC Sample Location: 561 GREENWICH ST, NEW YORK, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Sulfate	140		mg/l	120	17.	12.5	02/02/22 08:39	02/02/22 08:39	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date: 02/03/22

SAMPLE RESULTS

Lab ID: L2204920-02

MW22_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Collected:

01/28/22 11:45

Date Received:

01/28/22

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Sulfate	590		mg/l	500	68.	50	02/02/22 08:39	02/02/22 08:39	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date: 02/0

02/03/22

SAMPLE RESULTS

Lab ID: L2204920-03

MW23_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Collected:

01/28/22 11:15

Date Received:

01/28/22

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Client ID:

Water

Paramet	er Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General C	hemistry - Westborough L	ab								
Sulfate	1600		mg/l	500	68.	50	02/02/22 08:39	02/02/22 08:39	1,9038	MC

Project Name: 561 GREENWICH ST

190043702

Lab Number:

L2204920

Report Date:

02/03/22

SAMPLE RESULTS

Lab ID: L2204920-04

Client ID: GWDUP01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Collected: 01/28/22 00:00

Date Received: 01/28/22

Field Prep:

Refer to COC

Sample Depth:

Project Number:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Sulfate	680		mg/l	500	68.	50	02/02/22 08:39	02/02/22 08:39	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2204920

Report Date:

02/03/22

SAMPLE RESULTS

Lab ID: L2204920-05

GWFB01_012822

Sample Location: 561 GREENWICH ST, NEW YORK, NY

Date Collected:

01/28/22 00:00

Date Received:

01/28/22

Field Prep:

None

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Sulfate	ND		mg/l	10	1.4	1	02/02/22 08:39	02/02/22 08:39	1,9038	MC

L2204920

Project Name: 561 GREENWICH ST

Project Number: 190043702 **Report Date:**

02/03/22

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	-05 Ba	tch: W0	G1600560-1				
Sulfate	ND	mg/l	10	1.4	1	02/02/22 08:39	02/02/22 08:39	1,9038	MC

Project Name: 561 GREENWICH ST

Lab Number:

L2204920

Project Number: 190043702

Report Date:

02/03/22

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG16005	560-2				
Sulfate	95	-		90-110	-		

Project Name: 561 GREENWICH ST

Project Number:

190043702

Lab Number:

L2204920

Report Date:

02/03/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery	,	RPD Qual Limits
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01-05	QC Batch IE	D: WG1600560-4	QC Sample: L2	204920-01 C	Client ID:	MW21_012822
Sulfate	140	500	700	111	-	-	55-147	-	14

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST L2204920

Project Number: 190043702 Report Date: 02/03/22

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-05	QC Batch ID:	WG1600560-3	QC Sample:	L2204920-01	Client ID:	MW21_012822
Sulfate	140		140	mg/l	0		14

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2204920 **Report Date:** 02/03/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2204920-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01A1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01A2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01B1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01B2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01C1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01C2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-01D	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2204920-01D1	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2204920-01D2	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2204920-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-02D	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2204920-03A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-03B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-03C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-03D	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2204920-04A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-04B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2204920-04C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)

Lab Number: L2204920

Report Date: 02/03/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C Pres		Seal	Date/Time	Analysis(*)
	L2204920-04D	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
	L2204920-05A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
	L2204920-05B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
	L2204920-05C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
	L2204920-05D	Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		SO4-9038(28)
	L2204920-06A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
	L2204920-06B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)

Project Name: 561 GREENWICH ST Lab Number: L2204920

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or (SML) and the second of EDLs is specific to the analysis of PALIs using Salid Phase Microsystems (SML).

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2204920Project Number:190043702Report Date:02/03/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2204920Project Number:190043702Report Date:02/03/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2204920Project Number:190043702Report Date:02/03/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:02032209:34

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co Project Information	Vay	5	Page			Date R in L		1/2	18/2	2	ALPHA Job # LZZ04920 Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193 Client Information	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 561 Greenwich 5+ Project Location: 561 Greenwich St. New Yor				w NY		ASP-A EQuIS Other	(1 File)	7	ASP-B EQuIS (4 File)	Same as Client Info	
and the second s	n DPC	Project # J 90 ((Use Project name as Pr	43 700				Pegu	- Greeners	equireme	nt		THE W	Disposal Site Information	
Address: 3108 V	v. 315+5+.		lizabet	M Adl	Sins			NY TOO AWQ SI NY Res	ss		IY Part 3 IY CP-51 Other		Please identify below location of applicable disposal facilities. Disposal Facility:	
	@langan.com	Rush (only if pre approved		# of Days:				NYC Se	wer Discha	rge			Other:	
	peen previously analyze						ANA	NALYSIS Sample Filtration						
Other project specific MS/MSD F Please specify Metals	ior MW21_01	2022220					Cs.	ulfate					Done t Lab to do Preservation Lab to do	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ction Time	Sample Matrix	Sampler's Initials	VOC	Sal					(Please Specify below)	
04920 01	MW21-0	12822	1/28/27	1445	GW	CD	X	×		\vdash	(Ms	1 -	Field Filtered	
202	MW22-01			1145	GW	CD	X	yo				MPD		
703	MW 23_0	12822		1115	GW	CD	p	8						
704	GWDUPOI	-012822			GW	CD	X	X					\	
705	COWFBOI-					CD	yo	y						
706	CIWIBOL-	012822	7				<i>≫</i>							
Preservative Code: A = None B = HCI	Container Code P = Plastic	Westboro: Certification N			Con	tainer Type	V	ρ			+	+	Please print clearly, legibly	
C = HNO ₃					Preservative			BA		/ Date/Time 5/2,2 / 5 2 1/3/63 / 7			and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS BEAD AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	
				Date/ 1/28/22 1/28/22	Die P		Received By:					75		

ANALYTICAL REPORT

Lab Number: L2219936

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

ATTN: Elizabeth Adkins Phone: (212) 479-5400

Project Name: 561 GREENWICH ST

Project Number: 190043702

Report Date: 04/21/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936 **Report Date:** 04/21/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2219936-01	MW21_041522	WATER	561 GREENWICH ST	04/15/22 16:20	04/15/22
L2219936-02	MW22_041522	WATER	561 GREENWICH ST	04/15/22 16:15	04/15/22
L2219936-03	MW23_041522	WATER	561 GREENWICH ST	04/15/22 10:30	04/15/22
L2219936-04	GWDUP01_041522	WATER	561 GREENWICH ST	04/15/22 00:00	04/15/22
L2219936-05	GWFB01_041522	WATER	561 GREENWICH ST	04/15/22 15:15	04/15/22
L2219936-06	GWTB01_041522	WATER	561 GREENWICH ST	04/15/22 00:00	04/15/22

L2219936

Lab Number:

Project Name: 561 GREENWICH ST

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.							

Serial_No:04212212:40

Project Name: 561 GREENWICH ST Lab Number: L2219936

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2219936-03 and -04: Headspace was noted in the sample containers submitted for TCL Volatiles - EPA 8260C. The analysis was performed at the client's request.

Volatile Organics

L2219936-04: Headspace was noted in the sample container utilized for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative Date: 04/21/22

ALPHA

ORGANICS

VOLATILES

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

Date Collected:

Lab ID: L2219936-01 D

Client ID: MW21_041522 Sample Location: 561 GREENWICH ST Date Received: 04/15/22 Field Prep: Not Specified

04/15/22 16:20

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/18/22 14:19

Analyst: MV

Methylene chloride ND ug/l 50 14. 20 1,1-Dichloroethane ND ug/l 50 14. 20 Chloroform ND ug/l 50 14. 20 Chloroform ND ug/l 50 14. 20 Carbon tetrachloride ND ug/l 10 2.7 20 1,2-Dichloropropane ND ug/l 10 3.0 20 1,2-Tichloroethane ND ug/l 30 10. 20 Tetrachloroethane ND ug/l 30 10. 20 Chlorobenzene ND ug/l 50 14. 20 Chlorobenzene ND ug/l 50 14. 20 Chlorobenzene ND ug/l 50 14. 20 Chloroethane ND ug/l 50 14. 20 1,1,1-Tichloroethane ND ug/l 10 3.8 20 Br	n Factor	Dilution	MDL	RL	Units	Qualifier	Result	Parameter
1,1-Dichloroethane ND ug/l 50 14. 20 Chloroform ND ug/l 50 14. 20 Carbon tetrachloride ND ug/l 10 2.7 20 1,2-Dichloropropane ND ug/l 20 2.7 20 Dibromochloromethane ND ug/l 10 3.0 20 1,1,2-Trichloroethane ND ug/l 30 10. 20 Tetrachloroethene ND ug/l 50 14. 20 Chlorobenzene ND ug/l 50 14. 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 I,1-1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.3 20 Irans-1,3-Dichloropropene ND ug/l 10 2.9 20<							orough Lab	Volatile Organics by GC/MS - Westb
1,1-Dichloroethane ND ug/l 50 14. 20 Chloroform ND ug/l 50 14. 20 Carbon tetrachloride ND ug/l 10 2.7 20 1,2-Dichloropropane ND ug/l 20 2.7 20 Dibromochloromethane ND ug/l 10 3.0 20 1,1,2-Trichloroethane ND ug/l 30 10. 20 Chlorobenzene ND ug/l 50 14. 20 Chlorofluoromethane ND ug/l 50 14. 20 Trichloroethane ND ug/l 50 14. 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodioloromethane ND ug/l 10 3.3 20 Bromodioloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 40 13. 20	20	. 2	14.	50	ug/l		ND	Methylene chloride
Carbon tetrachloride ND ug/l 10 2.7 20 1,2-Dichloropropane ND ug/l 20 2.7 20 Dibromochloromethane ND ug/l 10 3.0 20 1,1,2-Trichloroethane ND ug/l 30 10. 20 Tetrachloroethane ND ug/l 10 3.6 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 60 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloropropene ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,1-Dichloropropene, Total ND ug/l 40	20	2	14.	50			ND	1,1-Dichloroethane
1,2-Dichloropropane ND	20	2	14.	50	ug/l		ND	Chloroform
Dibromochloromethane ND ug/l 10 3.0 20 1,1,2-Trichloroethane ND ug/l 30 10. 20 Tetrachloroethene ND ug/l 10 3.6 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 10 2.6 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 40 13. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 50 14.	20	2	2.7	10	ug/l		ND	Carbon tetrachloride
1,1,2-Trichloroethane ND ug/l 10 3.6 20 Tetrachloroethene ND ug/l 10 3.6 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1-Trichloroethane ND ug/l 50 14. 20 1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20	20	2	2.7	20	ug/l		ND	1,2-Dichloropropane
Tetrachloroethene ND ug/l 10 3.6 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.2 20 Toluene 1900 ug/l 50 14.	20	2	3.0	10	ug/l		ND	Dibromochloromethane
Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14 20 Bromoform ND ug/l 40 13 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.2 20 Toluene 1900 ug/l 50 14 20 Ethylbenzene 400 ug/l 50 14 20<	20	2	10.	30	ug/l		ND	1,1,2-Trichloroethane
Trichlorofluoromethane ND ug/l 50 14. 20 1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene, Total ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14.	20	2	3.6	10	ug/l		ND	Tetrachloroethene
1,2-Dichloroethane ND ug/l 10 2.6 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 <	20	2	14.	50	ug/l		ND	Chlorobenzene
1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 50 14. 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	. 2	14.	50	ug/l		ND	Trichlorofluoromethane
Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14 20 Bromoform ND ug/l 40 13 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14 20 Ethylbenzene 400 ug/l 50 14 20 Chloromethane ND ug/l 50 14 20 Bromomethane ND ug/l 50 14 20	20	2	2.6	10	ug/l		ND	1,2-Dichloroethane
trans-1,3-Dichloropropene ND ug/l 10 3.3 20 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene, Total ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Ethylbenzene ND ug/l 50 14. 2	20	2	14.	50	ug/l		ND	1,1,1-Trichloroethane
cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	3.8	10	ug/l		ND	Bromodichloromethane
1,3-Dichloropropene, Total ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	3.3	10	ug/l		ND	trans-1,3-Dichloropropene
1,1-Dichloropropene ND ug/l 50 14. 20 Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	2.9	10	ug/l		ND	cis-1,3-Dichloropropene
Bromoform ND ug/l 40 13. 20 1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	2.9	10	ug/l		ND	1,3-Dichloropropene, Total
1,1,2,2-Tetrachloroethane ND ug/l 10 3.3 20 Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	14.	50	ug/l		ND	1,1-Dichloropropene
Benzene 340 ug/l 10 3.2 20 Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	13.	40	ug/l		ND	Bromoform
Toluene 1900 ug/l 50 14. 20 Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	3.3	10	ug/l		ND	1,1,2,2-Tetrachloroethane
Ethylbenzene 400 ug/l 50 14. 20 Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	3.2	10	ug/l		340	Benzene
Chloromethane ND ug/l 50 14. 20 Bromomethane ND ug/l 50 14. 20	20	2	14.	50	ug/l		1900	Toluene
Bromomethane ND ug/l 50 14. 20	20	2	14.	50	ug/l		400	Ethylbenzene
	20	2	14.	50	ug/l		ND	Chloromethane
	20	2	14.	50	ug/l		ND	Bromomethane
Vinyl chloride ND ug/l 20 1.4 20	20	. 2	1.4	20	ug/l		ND	Vinyl chloride
Chloroethane ND ug/l 50 14. 20	20	2	14.	50	ug/l		ND	Chloroethane
1,1-Dichloroethene ND ug/l 10 3.4 20	20	. 2	3.4	10	ug/l		ND	1,1-Dichloroethene
trans-1,2-Dichloroethene ND ug/l 50 14. 20	20	2	14.	50	ug/l		ND	trans-1,2-Dichloroethene

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-01 D Date Collected: 04/15/22 16:20

Client ID: MW21_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Trichloroethene	ND		ug/l	10	3.5	20		
1,2-Dichlorobenzene	ND		ug/l	50	14.	20		
1,3-Dichlorobenzene	ND		ug/l	50	14.	20		
1,4-Dichlorobenzene	ND		ug/l	50	14.	20		
Methyl tert butyl ether	ND		ug/l	50	14.	20		
p/m-Xylene	2200		ug/l	50	14.	20		
o-Xylene	1000		ug/l	50	14.	20		
Xylenes, Total	3200		ug/l	50	14.	20		
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20		
1,2-Dichloroethene, Total	ND		ug/l	50	14.	20		
Dibromomethane	ND		ug/l	100	20.	20		
1,2,3-Trichloropropane	ND		ug/l	50	14.	20		
Acrylonitrile	ND		ug/l	100	30.	20		
Styrene	ND		ug/l	50	14.	20		
Dichlorodifluoromethane	ND		ug/l	100	20.	20		
Acetone	100		ug/l	100	29.	20		
Carbon disulfide	ND		ug/l	100	20.	20		
2-Butanone	ND		ug/l	100	39.	20		
Vinyl acetate	ND		ug/l	100	20.	20		
4-Methyl-2-pentanone	ND		ug/l	100	20.	20		
2-Hexanone	ND		ug/l	100	20.	20		
Bromochloromethane	ND		ug/l	50	14.	20		
2,2-Dichloropropane	ND		ug/l	50	14.	20		
1,2-Dibromoethane	ND		ug/l	40	13.	20		
1,3-Dichloropropane	ND		ug/l	50	14.	20		
1,1,1,2-Tetrachloroethane	ND		ug/l	50	14.	20		
Bromobenzene	ND		ug/l	50	14.	20		
n-Butylbenzene	ND		ug/l	50	14.	20		
sec-Butylbenzene	ND		ug/l	50	14.	20		
tert-Butylbenzene	ND		ug/l	50	14.	20		
o-Chlorotoluene	ND		ug/l	50	14.	20		
p-Chlorotoluene	ND		ug/l	50	14.	20		
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20		
Hexachlorobutadiene	ND		ug/l	50	14.	20		
Isopropylbenzene	56		ug/l	50	14.	20		
p-Isopropyltoluene	ND		ug/l	50	14.	20		
Naphthalene	130		ug/l	50	14.	20		

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-01 D Date Collected: 04/15/22 16:20

Client ID: MW21_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	140		ug/l	50	14.	20	
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20	
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20	
1,3,5-Trimethylbenzene	310		ug/l	50	14.	20	
1,2,4-Trimethylbenzene	1100		ug/l	50	14.	20	
1,4-Dioxane	ND		ug/l	5000	1200	20	
p-Diethylbenzene	140		ug/l	40	14.	20	
p-Ethyltoluene	960		ug/l	40	14.	20	
1,2,4,5-Tetramethylbenzene	57		ug/l	40	11.	20	
Ethyl ether	ND		ug/l	50	14.	20	
trans-1,4-Dichloro-2-butene	ND		ug/l	50	14.	20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Result

L2219936

Lab Number:

Report Date: 04/21/22

Lab ID: L2219936-02

Client ID: MW22_041522

Sample Location: 561 GREENWICH ST

Sample Depth:

Parameter

Matrix: Water 1,8260C Analytical Method: Analytical Date: 04/18/22 13:55

Analyst: MV

Date Collected: 04/15/22 16:15 Date Received: 04/15/22 Field Prep: Refer to COC

MDL

Dilution Factor

Parameter	Result	Qualifier Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1	
Chloroform	ND	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND	ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1	
Dibromochloromethane	ND	ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1	
Tetrachloroethene	ND	ug/l	0.50	0.18	1	
Chlorobenzene	ND	ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1	
Bromodichloromethane	ND	ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1	
Bromoform	ND	ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1	
Benzene	ND	ug/l	0.50	0.16	1	
Toluene	ND	ug/l	2.5	0.70	1	
Ethylbenzene	ND	ug/l	2.5	0.70	1	
Chloromethane	ND	ug/l	2.5	0.70	1	
Bromomethane	ND	ug/l	2.5	0.70	1	
Vinyl chloride	ND	ug/l	1.0	0.07	1	
Chloroethane	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	

Qualifier

Units

RL

L2219936

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Report Date: 04/21/22

Lab Number:

Lab ID: L2219936-02

Client ID: MW22_041522

Sample Location: 561 GREENWICH ST Date Collected: 04/15/22 16:15 Date Received: 04/15/22

Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	240	Е	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	11		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-02 Date Collected: 04/15/22 16:15

Client ID: MW22_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

Lab ID: D L2219936-02

Client ID: MW22_041522 Sample Location: 561 GREENWICH ST Date Collected: 04/15/22 16:15 Date Received: 04/15/22 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/20/22 03:54

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Acetone	190		ua/l	25	7.3	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	102		70-130

04/15/22 10:30

Refer to COC

04/15/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2219936-03

Lab ID: L2219936-03
Client ID: MW23_041522

Sample Location: 561 GREENWICH ST

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/18/22 13:32

Analyst: MV

Volatile Organics by GC/MS - Westborough Lab Methylene chloride NE 1,1-Dichloroethane NE Chloroform NE Carbon tetrachloride NE 1,2-Dichloropropane NE Dibromochloromethane NE 1,1,2-Trichloroethane NE Chlorobenzene NE Chlorobenzene NE Trichlorofluoromethane NE 1,2-Dichloroethane NE 1,1,1-Trichloroethane NE Bromodichloromethane NE trans-1,3-Dichloropropene NE 1,3-Dichloropropene NE 1,3-Dichloropropene NE 1,1-Dichloropropene NE		ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 0.50 1.0 0.50	0.70 0.70 0.70 0.13 0.14	1 1 1 1 1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane NE 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane NE 1,1-Trichloroethane NE 1,2-Dichloroethane NE 1,3-Dichloropropene NE Total NE NE NE NE NE NE NE NE NE N		ug/l ug/l ug/l ug/l ug/l	2.5 2.5 0.50 1.0 0.50	0.70 0.70 0.13 0.14	1 1 1 1
Chloroform NE Carbon tetrachloride NE 1,2-Dichloropropane NE Dibromochloromethane NE 1,1,2-Trichloroethane NE Tetrachloroethene NE Chlorobenzene NE Trichlorofluoromethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,1,1-Trichloroethane NE 1,1,1-Trichloroethane NE Bromodichloromethane NE trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l ug/l ug/l ug/l	2.5 0.50 1.0 0.50	0.70 0.13 0.14	1 1 1
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane NE 1,1,1-Trichloroethane NE 1,1,1-Trichloroethane NE Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE		ug/l ug/l ug/l	0.50 1.0 0.50	0.13 0.14	1 1
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE		ug/l ug/l	1.0 0.50	0.14	1
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE		ug/l	0.50		
1,1,2-Trichloroethane NE Tetrachloroethene NE Chlorobenzene NE Trichlorofluoromethane NE 1,2-Dichloroethane NE 1,1,1-Trichloroethane NE Bromodichloromethane NE trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE				0.15	
Tetrachloroethene NE Chlorobenzene NE Trichlorofluoromethane NE 1,2-Dichloroethane NE 1,1,1-Trichloroethane NE Bromodichloromethane NE trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l			1
Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE			1.5	0.50	1
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE		ug/l	0.50	0.18	1
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene, Total 1,1-Dichloropropene NE		ug/l	2.5	0.70	1
1,1,1-Trichloroethane NE Bromodichloromethane NE trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l	2.5	0.70	1
Bromodichloromethane NE trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene NE cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene NE 1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total NE 1,1-Dichloropropene NE		ug/l	0.50	0.16	1
1,1-Dichloropropene NE		ug/l	0.50	0.14	1
		ug/l	0.50	0.14	1
D (ug/l	2.5	0.70	1
Bromoform NE		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane		ug/l	0.50	0.17	1
Benzene		ug/l	0.50	0.16	1
Toluene		ug/l	2.5	0.70	1
Ethylbenzene NE		ug/l	2.5	0.70	1
Chloromethane 1.8	J	ug/l	2.5	0.70	1
Bromomethane 3.7		ug/l	2.5	0.70	1
Vinyl chloride NE		ug/l	1.0	0.07	1
Chloroethane		ug/l	2.5	0.70	1
1,1-Dichloroethene NE		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene NE		ug/l	2.5	0.70	1

L2219936

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Report Date: 04/21/22

Lab ID: L2219936-03

Client ID: MW23_041522

Sample Location: 561 GREENWICH ST Date Collected: 04/15/22 10:30

Lab Number:

Date Received: 04/15/22

Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	34		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	4.2	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-03 Date Collected: 04/15/22 10:30

Client ID: MW23_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	106	70-130	

04/15/22 00:00

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Date Collected:

Report Date: 04/21/22

Lab ID: L2219936-04

Client ID: GWDUP01_041522 Sample Location: 561 GREENWICH ST Date Received: 04/15/22 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/18/22 13:09

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	2.1	J	ug/l	2.5	0.70	1
Bromomethane	7.6		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST

L2219936

Lab Number:

Project Number: 190043702 Report Date: 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-04 Date Collected: 04/15/22 00:00

Client ID: Date Received: 04/15/22 GWDUP01_041522 Sample Location: Field Prep: 561 GREENWICH ST Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	55		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	4.2	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-04 Date Collected: 04/15/22 00:00

Client ID: GWDUP01_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	107	70-130	

04/15/22 15:15

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

Date Collected:

Lab ID: L2219936-05

Client ID: GWFB01_041522 Sample Location: 561 GREENWICH ST Date Received: 04/15/22 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/18/22 12:22

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2219936

04/21/22

Project Name: 561 GREENWICH ST

L2219936-05

GWFB01_041522

561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Data Callagtad: 04/45/22 45:45

Date Collected: 04/15/22 15:15

Lab Number:

Report Date:

Date Received: 04/15/22 Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	7.2		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-05 Date Collected: 04/15/22 15:15

Client ID: GWFB01_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

04/15/22 15:15

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

Date Collected:

Lab ID: R L2219936-05

Client ID: GWFB01_041522 Sample Location: 561 GREENWICH ST Date Received: 04/15/22 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/19/22 20:56

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2219936

Lab Number:

Project Name: 561 GREENWICH ST

Project Number: Report Date: 190043702 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-05 R Date Collected: 04/15/22 15:15

Client ID: Date Received: 04/15/22 GWFB01_041522 Sample Location: Field Prep: 561 GREENWICH ST Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	2.2	J	ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-05 R Date Collected: 04/15/22 15:15

Client ID: GWFB01_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Refer to COC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2219936

Report Date: 04/21/22

SAMPLE RESUL

Lab ID: L2219936-06
Client ID: GWTB01_041522

Sample Location: 561 GREENWICH ST

Date Received: Field Prep:

Date Collected:

04/15/22 00:00 04/15/22 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/18/22 12:45

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2219936

04/21/22

Project Name: 561 GREENWICH ST

L2219936-06

GWTB01_041522

561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 04/15/22 00:00

Date Received: 04/15/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST **Lab Number:** L2219936

Project Number: 190043702 **Report Date:** 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-06 Date Collected: 04/15/22 00:00

Client ID: GWTB01_041522 Date Received: 04/15/22 Sample Location: 561 GREENWICH ST Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	103	70-130	

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/22 08:30

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1628745-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/22 08:30

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s): (01-06 Batch:	WG1628745-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/22 08:30

Analyst: PD

arameter	Result	Qualifier Unit	s RL	MDL	
olatile Organics by GC/MS - West	borough Lab	for sample(s):	01-06 Batch:	WG1628745-5	
o-Chlorotoluene	ND	ug/	l 2.5	0.70	
p-Chlorotoluene	ND	ug/	1 2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/	l 2.5	0.70	
Hexachlorobutadiene	ND	ug/	l 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
p-Isopropyltoluene	ND	ug/	l 2.5	0.70	
Naphthalene	ND	ug/	l 2.5	0.70	
n-Propylbenzene	ND	ug/	l 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,4-Dioxane	ND	ug/	l 250	61.	
p-Diethylbenzene	ND	ug/	1 2.0	0.70	
p-Ethyltoluene	ND	ug/	1 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	1 2.0	0.54	
Ethyl ether	ND	ug/	1 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	1 2.5	0.70	

		Acceptance
Surrogate	%Recovery Quali	•
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	104	70-130

L2219936

Project Name: 561 GREENWICH ST Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/19/22 20:33

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02,05 Batch:	WG1629419-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/19/22 20:33

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02,05 Batch:	WG1629419-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/19/22 20:33

Analyst: LAC

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample(s):	02,05 Batch:	WG1629419-5	
o-Chlorotoluene	ND	ug/	l 2.5	0.70	
p-Chlorotoluene	ND	ug/	1 2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/	1 2.5	0.70	
Hexachlorobutadiene	ND	ug/	l 2.5	0.70	
Isopropylbenzene	ND	ug/	1 2.5	0.70	
p-Isopropyltoluene	ND	ug/	1 2.5	0.70	
Naphthalene	ND	ug/	1 2.5	0.70	
n-Propylbenzene	ND	ug/	1 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,4-Dioxane	ND	ug/	l 250	61.	
p-Diethylbenzene	ND	ug/	1 2.0	0.70	
p-Ethyltoluene	ND	ug/	1 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	1 2.0	0.54	
Ethyl ether	ND	ug/	1 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	1 2.5	0.70	

	Acceptance
%Recovery Qua	lifier Criteria
102	70-130
96	70-130
100	70-130
104	70-130
	102 96 100

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Parameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-06 Batch:	WG1628745-3 V	VG1628745-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	99		99		70-130	0	20	
Dibromochloromethane	96		100		63-130	4	20	
1,1,2-Trichloroethane	97		100		70-130	3	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	95		98		70-130	3	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	94		96		70-130	2	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	94		100		54-136	6	20	
1,1,2,2-Tetrachloroethane	91		99		67-130	8	20	
Benzene	100		110		70-130	10	20	
Toluene	100		110		70-130	10	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	100		98		64-130	2	20	
Bromomethane	96		93		39-139	3	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01-06 Batch: \	NG1628745-3 WG1628745-4		
Vinyl chloride	110		120	55-140	9	20
Chloroethane	110		110	55-138	0	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	110		110	70-130	0	20
Trichloroethene	92		94	70-130	2	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	94		99	63-130	5	20
p/m-Xylene	110		110	70-130	0	20
o-Xylene	105		110	70-130	5	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Dibromomethane	92		99	70-130	7	20
1,2,3-Trichloropropane	91		94	64-130	3	20
Acrylonitrile	88		92	70-130	4	20
Styrene	105		105	70-130	0	20
Dichlorodifluoromethane	120		120	36-147	0	20
Acetone	87		92	58-148	6	20
Carbon disulfide	110		110	51-130	0	20
2-Butanone	91		92	63-138	1	20
Vinyl acetate	99		110	70-130	11	20
4-Methyl-2-pentanone	89		95	59-130	7	20
2-Hexanone	91		96	57-130	5	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - We	estborough Lab Associated	sample(s): 01-	-06 Batch: W	G1628745-3	WG1628745-4			
Bromochloromethane	98		100		70-130	2	20	
2,2-Dichloropropane	120		120		63-133	0	20	
1,2-Dibromoethane	92		96		70-130	4	20	
1,3-Dichloropropane	98		100		70-130	2	20	
1,1,1,2-Tetrachloroethane	99		100		64-130	1	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	110		110		70-130	0	20	
tert-Butylbenzene	100		100		70-130	0	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	79		87		41-144	10	20	
Hexachlorobutadiene	110		110		63-130	0	20	
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	110		110		70-130	0	20	
Naphthalene	88		99		70-130	12	20	
n-Propylbenzene	110		110		69-130	0	20	
1,2,3-Trichlorobenzene	94		100		70-130	6	20	
1,2,4-Trichlorobenzene	97		100		70-130	3	20	
1,3,5-Trimethylbenzene	110		110		64-130	0	20	
1,2,4-Trimethylbenzene	100		110		70-130	10	20	
1,4-Dioxane	104		108		56-162	4	20	
p-Diethylbenzene	110		110		70-130	0	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2219936

Report Date:

04/21/22

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1628745-3	WG1628745-4				
p-Ethyltoluene	110			110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100			100		70-130	0		20	
Ethyl ether	93			96		59-134	3		20	
trans-1,4-Dichloro-2-butene	75			80		70-130	6		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	99	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	100	101	70-130
Dibromofluoromethane	100	100	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02,05 Batch:	WG1629419-3	WG1629419-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	98		100		63-130	2	20	
1,1,2-Trichloroethane	100		110		70-130	10	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	100		110		67-130	10	20	
Bromodichloromethane	100		110		67-130	10	20	
trans-1,3-Dichloropropene	100		110		70-130	10	20	
cis-1,3-Dichloropropene	96		98		70-130	2	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	97		100		54-136	3	20	
1,1,2,2-Tetrachloroethane	98		100		67-130	2	20	
Benzene	110		110		70-130	0	20	
Toluene	100		110		70-130	10	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	120		120		64-130	0	20	
Bromomethane	100		100		39-139	0	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	02,05 Batch:	WG1629419-3	WG1629419-4			
Vinyl chloride	120		120		55-140	0	20	
Chloroethane	100		100		55-138	0	20	
1,1-Dichloroethene	110		110		61-145	0	20	
trans-1,2-Dichloroethene	100		110		70-130	10	20	
Trichloroethene	92		96		70-130	4	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	100		110		63-130	10	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	100		100		70-130	0	20	
1,2,3-Trichloropropane	94		100		64-130	6	20	
Acrylonitrile	97		100		70-130	3	20	
Styrene	105		110		70-130	5	20	
Dichlorodifluoromethane	120		110		36-147	9	20	
Acetone	100		110		58-148	10	20	
Carbon disulfide	110		110		51-130	0	20	
2-Butanone	110		110		63-138	0	20	
Vinyl acetate	110		120		70-130	9	20	
4-Methyl-2-pentanone	99		100		59-130	1	20	
2-Hexanone	110		110		57-130	0	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Bromochloromethane 100 2,2-Dichloropropane 120 1,2-Dibromoethane 94 1,3-Dichloropropane 100 1,1,1,2-Tetrachloroethane 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 99 Hexachlorobutadiene 100 Isopropylbenzene 100 Isopropyltoluene 99 Naphthalene 98	e(s): 02,05 Batch: WG162 100 120 100 110 110 100 110 110 110 1	70-130 63-133 70-130 70-130 70-130 70-130 64-130 70-130 53-136 70-130 70-130 70-130 70-130	0 0 6 10 0 2 0 0	20 20 20 20 20 20 20 20 20 20 20
2,2-Dichloropropane 120 1,2-Dibromoethane 94 1,3-Dichloropropane 100 1,1,1,2-Tetrachloroethane 100 Bromobenzene 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	120 100 110 100 100 110 110 110	63-133 70-130 70-130 64-130 70-130 53-136 70-130 70-130	0 6 10 0 2 0 0	20 20 20 20 20 20 20 20
1,2-Dibromoethane 94 1,3-Dichloropropane 100 1,1,1,2-Tetrachloroethane 100 Bromobenzene 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100 110 100 100 110 110 110	70-130 70-130 64-130 70-130 53-136 70-130	6 10 0 2 0 0	20 20 20 20 20 20 20
1,3-Dichloropropane 100 1,1,1,2-Tetrachloroethane 100 Bromobenzene 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	110 100 100 110 110 110	70-130 64-130 70-130 53-136 70-130	10 0 2 0 0	20 20 20 20 20 20
1,1,1,2-Tetrachloroethane 100 Bromobenzene 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100 100 110 110 110	64-130 70-130 53-136 70-130	0 2 0 0	20 20 20 20 20
Bromobenzene 98 n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100 110 110 100	70-130 53-136 70-130 70-130	2 0 0 0	20 20 20
n-Butylbenzene 110 sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	110 110 100	53-136 70-130 70-130	0 0 0	20 20
sec-Butylbenzene 110 tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	110	70-130 70-130	0	20
tert-Butylbenzene 100 o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100	70-130	0	
o-Chlorotoluene 100 p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100				20
p-Chlorotoluene 99 1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100	70-130		
1,2-Dibromo-3-chloropropane 89 Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100		70-130	0	20
Hexachlorobutadiene 100 Isopropylbenzene 100 p-Isopropyltoluene 100	100	70-130	1	20
Isopropylbenzene 100 p-Isopropyltoluene 100	93	41-144	4	20
p-Isopropyltoluene 100	110	63-130	10	20
	110	70-130	10	20
Naphthalene 98	110	70-130	10	20
	100	70-130	2	20
n-Propylbenzene 100	110	69-130	10	20
1,2,3-Trichlorobenzene 100	100	70-130	0	20
1,2,4-Trichlorobenzene 100	100	70-130	0	20
1,3,5-Trimethylbenzene 100	100	64-130	0	20
1,2,4-Trimethylbenzene 100	100	70-130	0	20
1,4-Dioxane 142	136	56-162	4	20
p-Diethylbenzene 100	110	70-130	10	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L22

L2219936

Report Date:

04/21/22

Parameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02,05	Batch:	WG1629419-3	WG1629419-4				
p-Ethyltoluene	110			110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100			100		70-130	0		20	
Ethyl ether	97			100		59-134	3		20	
trans-1,4-Dichloro-2-butene	96			100		70-130	4		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	104	104	70-130	
Toluene-d8	102	101	70-130	
4-Bromofluorobenzene	100	100	70-130	
Dibromofluoromethane	101	103	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21_041522	- Westborough	Lab Assoc	ciated sample(s): 01-06 QC	Batch ID: WG1628	745-6 WG162	8745-7	QC Sample	e: L2219	9936-01	Client ID:
Methylene chloride	ND	200	180	90	210	105		70-130	15		20
1,1-Dichloroethane	ND	200	190	95	220	110		70-130	15		20
Chloroform	ND	200	180	90	200	100		70-130	11		20
Carbon tetrachloride	ND	200	200	100	230	115		63-132	14		20
1,2-Dichloropropane	ND	200	180	90	210	105		70-130	15		20
Dibromochloromethane	ND	200	180	90	210	105		63-130	15		20
1,1,2-Trichloroethane	ND	200	220	110	240	120		70-130	9		20
Tetrachloroethene	ND	200	200	100	230	115		70-130	14		20
Chlorobenzene	ND	200	180	90	210	105		75-130	15		20
Trichlorofluoromethane	ND	200	220	110	240	120		62-150	9		20
1,2-Dichloroethane	ND	200	180	90	200	100		70-130	11		20
1,1,1-Trichloroethane	ND	200	190	95	220	110		67-130	15		20
Bromodichloromethane	ND	200	190	95	210	105		67-130	10		20
trans-1,3-Dichloropropene	ND	200	190	95	220	110		70-130	15		20
cis-1,3-Dichloropropene	ND	200	170	85	190	95		70-130	11		20
1,1-Dichloropropene	ND	200	200	100	230	115		70-130	14		20
Bromoform	ND	200	190	95	220	110		54-136	15		20
1,1,2,2-Tetrachloroethane	ND	200	190	95	220	110		67-130	15		20
Benzene	340	200	530	95	550	105		70-130	4		20
Toluene	1900	200	2000	50	Q 2000	50	Q	70-130	0		20
Ethylbenzene	400	200	590	95	610	105		70-130	3		20
Chloromethane	ND	200	210	105	230	115		64-130	9		20
Bromomethane	ND	200	170	85	200	100		39-139	16		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2219936

Report Date: 04/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW21_041522	- Westborough	Lab Asso	ciated sample(s): 01-06 QC	Batch ID: WG1628	745-6 WG162	8745-7	QC Sample	e: L2219	9936-01 Client ID:
Vinyl chloride	ND	200	220	110	240	120		55-140	9	20
Chloroethane	ND	200	180	90	220	110		55-138	20	20
1,1-Dichloroethene	ND	200	200	100	230	115		61-145	14	20
trans-1,2-Dichloroethene	ND	200	190	95	220	110		70-130	15	20
Trichloroethene	ND	200	170	85	200	100		70-130	16	20
1,2-Dichlorobenzene	ND	200	190	95	210	105		70-130	10	20
1,3-Dichlorobenzene	ND	200	190	95	210	105		70-130	10	20
1,4-Dichlorobenzene	ND	200	180	90	200	100		70-130	11	20
Methyl tert butyl ether	ND	200	210	105	240	120		63-130	13	20
o/m-Xylene	2200	400	2600	100	2500	75		70-130	4	20
o-Xylene	1000	400	1400	100	1400	100		70-130	0	20
cis-1,2-Dichloroethene	ND	200	180	90	200	100		70-130	11	20
Dibromomethane	ND	200	180	90	210	105		70-130	15	20
1,2,3-Trichloropropane	ND	200	200	100	230	115		64-130	14	20
Acrylonitrile	ND	200	420	210	Q 460	230	Q	70-130	9	20
Styrene	ND	400	380	95	440	110		70-130	15	20
Dichlorodifluoromethane	ND	200	220	110	250	125		36-147	13	20
Acetone	100	200	240	70	260	80		58-148	8	20
Carbon disulfide	ND	200	200	100	220	110		51-130	10	20
2-Butanone	ND	200	320	160	Q 350	175	Q	63-138	9	20
Vinyl acetate	ND	200	200	100	240	120		70-130	18	20
4-Methyl-2-pentanone	ND	200	200	100	240	120		59-130	18	20
2-Hexanone	ND	200	210	105	240	120		57-130	13	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L22

L2219936

Report Date: 04/21/22

	Native	MS	MS	MS	MSD	MSD		ecovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS MW21_041522	- Westborough l	_ab Asso	ciated sample	(s): 01-06 QC	Batch ID: WG1628	745-6 WG162	8745-7 C	C Sample	e: L2219	9936-01	Client ID:
Bromochloromethane	ND	200	180	90	210	105		70-130	15		20
2,2-Dichloropropane	ND	200	180	90	210	105		63-133	15		20
1,2-Dibromoethane	ND	200	180	90	200	100		70-130	11		20
1,3-Dichloropropane	ND	200	190	95	220	110		70-130	15		20
1,1,1,2-Tetrachloroethane	ND	200	180	90	210	105		64-130	15		20
Bromobenzene	ND	200	180	90	210	105		70-130	15		20
n-Butylbenzene	ND	200	220	110	250	125		53-136	13		20
sec-Butylbenzene	ND	200	210	105	240	120		70-130	13		20
ert-Butylbenzene	ND	200	190	95	220	110		70-130	15		20
o-Chlorotoluene	ND	200	180	90	210	105		70-130	15		20
o-Chlorotoluene	ND	200	180	90	200	100		70-130	11		20
1,2-Dibromo-3-chloropropane	ND	200	170	85	200	100		41-144	16		20
Hexachlorobutadiene	ND	200	190	95	220	110		63-130	15		20
sopropylbenzene	56	200	250	97	280	112		70-130	11		20
o-Isopropyltoluene	ND	200	220	110	250	125		70-130	13		20
Naphthalene	130	200	330	100	370	120		70-130	11		20
n-Propylbenzene	140	200	340	100	370	115		69-130	8		20
1,2,3-Trichlorobenzene	ND	200	190	95	220	110		70-130	15		20
1,2,4-Trichlorobenzene	ND	200	190	95	220	110		70-130	15		20
1,3,5-Trimethylbenzene	310	200	500	95	520	105		64-130	4		20
1,2,4-Trimethylbenzene	1100	200	1300	100	1300	100		70-130	0		20
1,4-Dioxane	ND	10000	12000	120	15000	150		56-162	22	Q	20
o-Diethylbenzene	140	200	340	100	370	115		70-130	8		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2219936

Report Date:

04/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21_041522	- Westborough	Lab Asso	ciated sample((s): 01-06	QC Batch ID	: WG16287	745-6 WG1628	3745-7	QC Sample	: L2219	9936-01	Client ID:
p-Ethyltoluene	960	200	1200	120		1100	70		70-130	9		20
1,2,4,5-Tetramethylbenzene	57	200	250	96		280	112		70-130	11		20
Ethyl ether	ND	200	180	90		200	100		59-134	11		20
trans-1,4-Dichloro-2-butene	ND	200	170	85		200	100		70-130	16		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	105	107	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	99	99	70-130
Toluene-d8	100	100	70-130

INORGANICS & MISCELLANEOUS

Project Name: 561 GREENWICH ST

Project Number: 190043702 Lab Number:

L2219936

Report Date:

04/21/22

SAMPLE RESULTS

Lab ID: L2219936-01

Client ID: MW21_041522 Date Collected: Date Received:

04/15/22 16:20

Sample Location: 561 GREENWICH ST

Field Prep:

04/15/22 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Sulfate	85.		mg/l	50	6.8	5	04/20/22 10:57	04/20/22 10:57	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702 Lab Number:

L2219936

04/21/22

Report Date:

SAMPLE RESULTS

Lab ID:

L2219936-02

MW22_041522

Client ID: Sample Location: 561 GREENWICH ST Date Collected:

04/15/22 16:15

Date Received:

04/15/22

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Sulfate	160		mg/l	50	6.8	5	04/20/22 10:57	04/20/22 10:57	1,9038	MC

Project Name: 561 GREENWICH ST

Report Date:

Lab Number:

L2219936

Project Number: 190043702 04/21/22

SAMPLE RESULTS

Lab ID: L2219936-03

MW23_041522

Date Collected: Date Received: 04/15/22 10:30

Sample Location: 561 GREENWICH ST

Field Prep:

04/15/22 Refer to COC

Sample Depth:

Matrix:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Sulfate	780		mg/l	500	68.	50	04/20/22 10:57	04/20/22 10:57	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2219936

Report Date:

04/21/22

SAMPLE RESULTS

Lab ID: L2219936-04

Client ID: GWDUP01_041522 Sample Location: 561 GREENWICH ST Date Collected:

04/15/22 00:00

Date Received:

04/15/22

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Sulfate	800		mg/l	500	68.	50	04/20/22 10:57	04/20/22 10:57	1,9038	MC

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2219936

Report Date:

04/21/22

SAMPLE RESULTS

Lab ID: L2219936-05

Client ID: GWFB01_041522 Sample Location: 561 GREENWICH ST Date Collected:

04/15/22 15:15

Date Received:

04/15/22

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Sulfate	ND		mg/l	10	1.4	1	04/20/22 10:57	04/20/22 10:57	1,9038	MC

L2219936

Project Name: 561 GREENWICH ST

Project Number: 190043702 **Report Date:** 04/21/22

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for samp	ole(s): 01-	-05 Bat	tch: W0	G1628608-1				
Sulfate	ND	mg/l	10	1.4	1	04/20/22 10:57	04/20/22 10:57	1,9038	MC

Lab Control Sample Analysis Batch Quality Control

Project Name: 561 GREENWICH ST

Lab Number:

L2219936

Project Number: 190043702

Report Date:

04/21/22

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG162860	08-2				
Sulfate	105	-		90-110	-		

Project Name: 561 GREENWICH ST

Project Number:

190043702

Lab Number:

L2219936

Report Date:

04/21/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery G	Recover Qual Limits	y RPD	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01-05	QC Batch IE	D: WG1628608-4	QC Sample: L2	2219936-01	Client ID:	MW21_041522
Sulfate	85.	250	360	108	-	-	55-147	-	14

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST L2219936 **Project Number:** Report Date: 04/21/22 190043702

Parameter	Native Sam	ipie Di	uplicate Sample	<u>Units</u>	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1628608-3	QC Sample:	L2219936-01	Client ID:	MW21 041522
, 3	, ,	Q				00	
Sulfate	85.		85	mg/l	0		14

Project Name: 561 GREENWICH ST

 Project Number:
 190043702

 Report Date:
 04/21/22

YES

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

ormation		Initial	Final	Temp			Frozen	
Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		FILTER(1)
Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		FILTER(1)
Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		FILTER(1)
Plastic 250ml unpreserved Filtrates	Α	N/A	N/A	2.8	Υ	Absent		SO4-9038(28)
Plastic 250ml unpreserved Filtrates	Α	N/A	N/A	2.8	Υ	Absent		SO4-9038(28)
Plastic 250ml unpreserved Filtrates	Α	N/A	N/A	2.8	Υ	Absent		SO4-9038(28)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		SO4-9038(28)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
	Vial HCl preserved Plastic 120ml unpreserved Plastic 120ml unpreserved Plastic 120ml unpreserved Plastic 250ml unpreserved Plastic 250ml unpreserved Filtrates Plastic 250ml unpreserved Filtrates Vial HCl preserved	Container TypeCoolerVial HCl preservedAVial HCl preservedAPlastic 120ml unpreservedAPlastic 120ml unpreservedAPlastic 250ml unpreserved FiltratesAPlastic 250ml unpreserved FiltratesAPlastic 250ml unpreserved FiltratesAVial HCl preservedAVial HCl preservedA	Container Type Cooler PH Vial HCl preserved A NA Plastic 120ml unpreserved A 7 Plastic 120ml unpreserved A 7 Plastic 250ml unpreserved Filtrates A N/A Plastic 250ml unpreserved Filtrates A N/A Vial HCl preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Plastic 250ml unpreserved Filtrates A N/A Plastic 250ml unpreserved Filtrates A N/A Vial HCl preserved A NA Vial HCl preserved A NA	Container Type Cooler PH Vial HCl preserved A NA Plastic 120ml unpreserved A 7 7 Plastic 120ml unpreserved A 7 7 Plastic 250ml unpreserved Filtrates A N/A Plastic 250ml unpreserved Filtrates A N/A Vial HCl preserved A NA Vial HCl preserved A NA Plastic 250ml unpreserved Filtrates A N/A Plastic 250ml unpreserved Filtrates A N/A Plastic 120ml unpreserved Filtrates A N/A Vial HCl preserved A NA Vial HCl preserved A NA	Container Type Cooler Initial pH Initial	Container Type Cooler PH Find deg C Pres Vial HCl preserved A NA 2.8 Y Plastic 120ml unpreserved A 7 7 2.8 Y Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Vial HCl preserved <	Container Type Cooler pH PH deg C Pres Seal Vial HCI preserved A NA 2.8 Y Absent Vial HCI preserved A 7 7 2.8 Y Absent Plastic 120ml unpreserved Filtrates A N/A	Container Type Cooler PH PH deg C Pres Seal Vial HCl preserved A NA 2.8 Y Absent Plastic 120ml unpreserved A 7 7 2.8 Y Absent Plastic 120ml unpreserved A 7 7 2.8 Y Absent Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Absent Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Absent Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Absent Plastic 250ml unpreserved Filtrates A N/A N/A 2.8 Y Absent Vial HCl preserved A NA 2.8 Y Absent

Lab Number: L2219936

Report Date: 04/21/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2219936-04A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-04B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-04C	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-04D	Plastic 120ml unpreserved	Α	9	9	2.8	Υ	Absent		SO4-9038(28)
L2219936-05A	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-05B	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-05C	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-05D	Plastic 120ml unpreserved	Α	7	7	2.8	Υ	Absent		SO4-9038(28)
L2219936-06A	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2219936-06B	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)

Project Name: 561 GREENWICH ST Lab Number: L2219936

Project Number: 190043702 Report Date: 04/21/22

GLOSSARY

Acronyms

EDL

EMPC

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2219936Project Number:190043702Report Date:04/21/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2219936Project Number:190043702Report Date:04/21/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 561 GREENWICH ST Lab Number: L2219936
Project Number: 190043702 Report Date: 04/21/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05	Page	-	Date Rec'd in Lab 4 16122				2	ALPHA Job# LZZ (9,936
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables				Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 5(3)	Greenwi					ASP-A		X ASP-E	3	Same as Client Info
1700. 300-030-3133	1701.000-022-0200	Project Location: 56/	Greenw	th St				EQuIS (1	File)	EQuis	6 (4 File)	PO#
Client Information		Project # 1900 43		ATTRICO TOURS				Other				
Client: Langan E	ngineeving.	(Use Project name as Pr	oject#)				Regu	latory Requ	uirement			Disposal Site Information
Address: 360 W	315 CH	Project Manager: E.	A dicin	5				NY TOGS		NY Par	t 375	Please identify below location of
13 VA		ALPHAQuote #:	,	,				AWQ Stand	lards	☐ NY CP	-51	applicable disposal facilities.
Phone: 212 4	19 5300	Turn-Around Time	ALL THE			N ESTA		NY Restricte	ed Use	Other		Disposal Facility:
Fax:		Standard	M	Due Date:				NY Unrestri	cted Use			□ ил □ ил
Email: EAdkins	a) Langens (U) m	Rush (only if pre approved)		# of Days:				NYC Sewer	Discharge	в		Other:
These samples have b							ANA	LYSIS				Sample Filtration
Other project specifi							3		T			Done
CC dat		etlangan.com					Vdatile, Paco	SM4500				Lab to do Preservation Lab to do
Trease speeny metal							Sab	575				(Please Specify below)
ALPHA Lab ID	Sa	ample ID	Coll	ection	Sample	Sampler's	1.3	SIE				1
(Lab Use Only)		510*1850EE	Date	Time	Matrix	Initials	1	5				Sample Specific Comments
19936-01	MW21-0415		04/15/22	16:20	6W	DA	DC.	K				MS/MSD X YZ
-02	MW22 - 041	522	1, 2	16:15	6~	10/8	N.	K				Lt.
-03	MW23 - 04			10130	GW	1000	X	K				4
ote	GW DUPOL-	041522		-	62	DA.	R	K				4
-05	GWFBO1-	.041522	1 1.	15:15	W	AQ	K	K				4
-06	Frip Blank	GWTB01-041522	M.	16:30	W	DA	K					2
	3.	Wi=		32		199	25-					
												at Lab to filter
												sulphate on
												MW21-041522
Preservative Code: A = None B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N			Con	tainer Type						Please print clearly, legibly and completely. Samples can
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup					reservative						not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished I	By: //	Date/	Time		Receiv	ved By:		λ Date	Time	resolved, BY EXECUTING
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Moun (my)		4/15/22	19:40	Juli	NA	The	er.	4/18/2 4/15/2	2 300	
	10 Sant 2012)	Jaction y		1415 0		1	7	des	24	15/2	223	TERMS & CONDITIONS. See reverse side.)
Form No: 01-25 HC (rev. 3	0-3ept-2013)		De 9	16/2	or CD				-	47612	0120	

ANALYTICAL REPORT

Lab Number: L2239801

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

Elizabeth Adkins

ATTN: Elizabeth Adkins
Phone: (212) 479-5400

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Report Date: 08/01/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801 **Report Date:** 08/01/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2239801-01	MW22_072622	WATER	561 GREENWICH ST. NY, NY	07/26/22 12:15	07/26/22
L2239801-02	MW23_072622	WATER	561 GREENWICH ST. NY, NY	07/26/22 12:10	07/26/22
L2239801-03	DUP01_072622	WATER	561 GREENWICH ST. NY, NY	07/26/22 00:00	07/26/22
L2239801-04	FB01_072622	WATER	561 GREENWICH ST. NY, NY	07/26/22 12:30	07/26/22
L2239801-05	TB01 072622	WATER	561 GREENWICH ST. NY, NY	07/26/22 00:00	07/26/22

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/01/22

Jufani Morrissey-Tiffani Morrissey

ANALYTICAL

ORGANICS

VOLATILES

L2239801

08/01/22

Lab Number:

Project Name: 561 GREENWICH ST.

Report Date:

Project Number: 190043702 **SAMPLE RESULTS**

Lab ID: L2239801-01 Date Collected: 07/26/22 12:15

Client ID: Date Received: MW22_072622

07/26/22 Field Prep: Sample Location: 561 GREENWICH ST. NY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/28/22 09:18

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	1.5		ug/l	0.50	0.16	1	
Toluene	1.5	J	ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	0.85	J	ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-01 Date Collected: 07/26/22 12:15

Client ID: Date Received: 07/26/22 MW22_072622

Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	0.80	J	ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	0.80	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	24		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	6.1		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST. **Lab Number:** L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-01 Date Collected: 07/26/22 12:15

Client ID: MW22_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	102	70-130	

L2239801

07/26/22 12:10

Not Specified

07/26/22

Project Name: 561 GREENWICH ST.

Project Number: 190043702

SAMPLE RESULTS

Report Date: 08/01/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2239801-02 Client ID: MW23_072622

Sample Location: 561 GREENWICH ST. NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/28/22 21:18

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	6.8		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-02 Date Collected: 07/26/22 12:10

Client ID: MW23_072622 Date Received: 07/26/22

Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	
Xylenes, Total	ND		ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	 1
Dibromomethane	ND		ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	46		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	23		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST. **Lab Number:** L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-02 Date Collected: 07/26/22 12:10

Client ID: MW23_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	112	70-130	

L2239801

Project Name: 561 GREENWICH ST.

Project Number: 190043702

SAMPLE RESULTS

Lab Number:

Report Date: 08/01/22

Lab ID: L2239801-03 Date Collected: 07/26/22 00:00

Client ID: Date Received: 07/26/22 DUP01_072622 Field Prep: Sample Location: 561 GREENWICH ST. NY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/28/22 09:44

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	0.92	J	ug/l	2.5	0.70	1	
Bromomethane	4.7		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-03 Date Collected: 07/26/22 00:00

Client ID: Date Received: 07/26/22 DUP01_072622

Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Trichloroethene	ND		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	 1
1,2,3-Trichloropropane	ND			2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND ND		ug/l	5.0	1.0	1
Acetone	22		ug/l			1
Carbon disulfide	ND		ug/l	5.0	1.5	
	20		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	
4-Methyl-2-pentanone 2-Hexanone			ug/l			1
Bromochloromethane	ND ND		ug/l	2.5	0.70	1
			ug/l			
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-03 Date Collected: 07/26/22 00:00

Client ID: Date Received: 07/26/22 DUP01_072622

Field Prep: Sample Location: 561 GREENWICH ST. NY, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	102		70-130	

L2239801

08/01/22

07/26/22 12:30

Not Specified

07/26/22

Project Name: 561 GREENWICH ST.

Project Number: 190043702

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2239801-04

Client ID: FB01_072622

Sample Location: 561 GREENWICH ST. NY, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/28/22 08:24

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND ND ND ND		ug/l ug/l ug/l	2.5	0.70 0.70	1
1,1-Dichloroethane Chloroform	ND ND ND		ug/l	2.5		
Chloroform	ND ND				0.70	1
	ND		ug/l	2.5		
Carbon tetrachloride				2.5	0.70	1
	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane			ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	0.82	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-04 Date Collected: 07/26/22 12:30

Client ID: Date Received: 07/26/22 FB01_072622

Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab Viol ughl 0.50 0.18 1 1.2-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 Methyl feet Luyl ether ND ughl 2.5 0.70 1 PmXylene ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene, Total ND ughl 2.5 0.70 1 Dibroordeflere ND ughl 2.5 0.70 1 Als-(2-Olchoroethene ND ughl 2.5 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2 Dichlorobenzene	Volatile Organics by GC/MS - Westbor	ough Lab					
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 Methyl terb tuyl ether ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 dis-1,2-Dichloroethene ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 Actychirline ND ugil 2,5 0,70 1 Syrene ND ugil 2,5 0,70 1 <td>Trichloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.18</td> <td>1</td>	Trichloroethene	ND		ug/l	0.50	0.18	1
1,3-Dichlorobenzene ND ugl 2,5 0,70 1 1,4-Dichlorobenzene ND ugl 2,5 0,70 1 Methyl tert buryl ether ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 xylenes, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 2,2-Dichloroethene, Total ND ugl 2,0 1,0 1 Styrene ND ugl 2,0 1,0 1 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,2-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert budyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylenes ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromemsthane ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Obchtorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Vilyi acetate	1,3-Dichlorobenzene	ND			2.5	0.70	1
ND	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Styrene ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.0 1 Carbon disulfide ND<	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene, Total ND ug/l 2.5 0.70 1 Dichloromethane ND ug/l 2.5 0.70 1 L;2-Dichloroptopane ND ug/l 2.5 0.70 1 Acytonitrile ND ug/l 5.0 1.5 1 Syrene ND ug/l 5.0 1.5 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Trichloropropane ND ug/l 5.0 0.70 1 Acrylontrile ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Styria acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexthyl-2-pentanone ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total ND ug/l 2,5 0,70 1	Xylenes, Total	ND		ug/l	2.5	0.70	1
Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,3-Dichropropane ND ug/l 2.5 0.70 1 1,1,1,2-T	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2,3-Trichioropropane ND ug/l 2,5 0,70 1	1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1-ynyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromochlane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1	Dibromomethane	ND		ug/l	5.0	1.0	1
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Pethacanone ND ug/l 5.0 1.0 1 1-Pethacanone ND ug/l 2.5 0.70 1 2-Pethacanone ND ug/l 2.5 0.70 1 1,2-Dictoromethane ND ug/l 2.5 0.70 1 1,1,1,2	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 -Butylbenzene ND ug/l 2.5 0.70 1 <	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	Carbon disulfide	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltenue ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-04 Date Collected: 07/26/22 12:30

Client ID: Date Received: 07/26/22 FB01_072622

Sample Location: Field Prep: Not Specified 561 GREENWICH ST. NY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	102	70-130	

L2239801

07/26/22 00:00

Not Specified

07/26/22

Project Name: 561 GREENWICH ST.

Project Number: 190043702

SAMPLE RESULTS

Report Date: 08/01/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2239801-05 Client ID: TB01_072622

Sample Location: 561 GREENWICH ST. NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/28/22 08:51

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	0.76	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST. L2239801

Project Number: Report Date: 190043702 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-05 Date Collected: 07/26/22 00:00

Client ID: Date Received: 07/26/22 TB01_072622

Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Unit	s RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l		0.70	1

Project Name: 561 GREENWICH ST. **Lab Number:** L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-05 Date Collected: 07/26/22 00:00

Client ID: TB01_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	104	70-130	

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 04:24

Analyst: MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,03-05 Bate	ch: WG1668615-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 04:24

Analyst: MM

arameter	Result	Qualifier Units	RL	. MDL	
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01,03-05	Batch: WG1668615-	5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 04:24

Analyst: MM

Parameter	Result	Qualifier	Units	RL	•	MDL	
Volatile Organics by GC/MS - We	stborough Lab	for sample	(s):	01,03-05	Batch:	WG1668615-5	
o-Chlorotoluene	ND		ug/l	2.5	i	0.70	
p-Chlorotoluene	ND		ug/l	2.5	;	0.70	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	5	0.70	
Hexachlorobutadiene	ND		ug/l	2.5	5	0.70	
Isopropylbenzene	ND		ug/l	2.5	j	0.70	
p-Isopropyltoluene	ND		ug/l	2.5	;	0.70	
Naphthalene	ND		ug/l	2.5	;	0.70	
n-Propylbenzene	ND		ug/l	2.5	j	0.70	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	5	0.70	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	5	0.70	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	5	0.70	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	5	0.70	
1,4-Dioxane	ND		ug/l	250)	61.	
p-Diethylbenzene	ND		ug/l	2.0)	0.70	
p-Ethyltoluene	ND		ug/l	2.0)	0.70	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0)	0.54	
Ethyl ether	ND		ug/l	2.5	5	0.70	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	;	0.70	

	Acceptance
%Recovery Qua	-
101	70-130
100	70-130
90	70-130
106	70-130
	101 100 90

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 19:21

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02 Batch:	WG1668961-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 19:21

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1668961-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 190043702 **Report Date:** 08/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/28/22 19:21

Analyst: AJK

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 02	Batch:	WG1668961-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	93	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	106	70-130

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

ırameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westbord	ough Lab Associated	sample(s):	01,03-05 Batch:	WG1668615-3 WG1668	615-4	
Methylene chloride	100		96	70-130	4	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	100		100	63-132	0	20
1,2-Dichloropropane	95		96	70-130	1	20
Dibromochloromethane	96		97	63-130	1	20
1,1,2-Trichloroethane	97		98	70-130	1	20
Tetrachloroethene	110		110	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	96		95	70-130	1	20
1,1,1-Trichloroethane	99		100	67-130	1	20
Bromodichloromethane	95		94	67-130	1	20
trans-1,3-Dichloropropene	95		94	70-130	1	20
cis-1,3-Dichloropropene	98		98	70-130	0	20
1,1-Dichloropropene	100		100	70-130	0	20
Bromoform	96		98	54-136	2	20
1,1,2,2-Tetrachloroethane	89		92	67-130	3	20
Benzene	100		100	70-130	0	20
Toluene	99		99	70-130	0	20
Ethylbenzene	98		99	70-130	1	20
Chloromethane	98		93	64-130	5	20
Bromomethane	140	Q	130	39-139	7	20

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

arameter	9	LCS %Recovery	Qual	LC: %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS -	- Westborough Lat	b Associated	sample(s):	01,03-05	Batch:	WG166861	5-3 WG166861	5-4			
Vinyl chloride		110		1	10		55-140	0		20	
Chloroethane		120		1	10		55-138	9		20	
1,1-Dichloroethene		110		10	00		61-145	10		20	
trans-1,2-Dichloroethene		100		10	00		70-130	0		20	
Trichloroethene		99		10	00		70-130	1		20	
1,2-Dichlorobenzene		95		9	7		70-130	2		20	
1,3-Dichlorobenzene		96		9	7		70-130	1		20	
1,4-Dichlorobenzene		96		9	8		70-130	2		20	
Methyl tert butyl ether		95		9	4		63-130	1		20	
p/m-Xylene		100		10	05		70-130	5		20	
o-Xylene		100		10	00		70-130	0		20	
cis-1,2-Dichloroethene		100		10	00		70-130	0		20	
Dibromomethane		94		9	2		70-130	2		20	
1,2,3-Trichloropropane		88		9	0		64-130	2		20	
Acrylonitrile		98		9	4		70-130	4		20	
Styrene		105		10	05		70-130	0		20	
Dichlorodifluoromethane		99		9	5		36-147	4		20	
Acetone		84		9	2		58-148	9		20	
Carbon disulfide		100		10	00		51-130	0		20	
2-Butanone		90		9	0		63-138	0		20	
Vinyl acetate		120		12	20		70-130	0		20	
4-Methyl-2-pentanone		83		8	6		59-130	4		20	
2-Hexanone		87		8	6		57-130	1		20	

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

Parameter	LCS %Recovery		.CSD ecovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - \	Westborough Lab Associated	sample(s): 01,03-0	5 Batch:	WG1668615-3 WG1668615	i-4	
Bromochloromethane	100		100	70-130	0	20
2,2-Dichloropropane	110		110	63-133	0	20
1,2-Dibromoethane	93		96	70-130	3	20
1,3-Dichloropropane	95		94	70-130	1	20
1,1,1,2-Tetrachloroethane	98		100	64-130	2	20
Bromobenzene	91		95	70-130	4	20
n-Butylbenzene	99		100	53-136	1	20
sec-Butylbenzene	97		98	70-130	1	20
tert-Butylbenzene	96		98	70-130	2	20
o-Chlorotoluene	94		97	70-130	3	20
p-Chlorotoluene	94		95	70-130	1	20
1,2-Dibromo-3-chloropropane	88		90	41-144	2	20
Hexachlorobutadiene	100		100	63-130	0	20
Isopropylbenzene	94		96	70-130	2	20
p-Isopropyltoluene	99		100	70-130	1	20
Naphthalene	88		91	70-130	3	20
n-Propylbenzene	98		100	69-130	2	20
1,2,3-Trichlorobenzene	96		96	70-130	0	20
1,2,4-Trichlorobenzene	100		100	70-130	0	20
1,3,5-Trimethylbenzene	96		98	64-130	2	20
1,2,4-Trimethylbenzene	96		98	70-130	2	20
1,4-Dioxane	98		88	56-162	11	20
p-Diethylbenzene	97		99	70-130	2	20

Project Name: 561 GREENWICH ST.

Project Number:

190043702

Lab Number: L2

L2239801

Report Date:

08/01/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	01,03-05 Batch:	WG166861	15-3 WG1668615	5-4		
p-Ethyltoluene	97		100		70-130	3		20
1,2,4,5-Tetramethylbenzene	92		94		70-130	2		20
Ethyl ether	99		97		59-134	2		20
trans-1,4-Dichloro-2-butene	89		89		70-130	0		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	94	93	70-130	
Toluene-d8	97	98	70-130	
4-Bromofluorobenzene	92	92	70-130	
Dibromofluoromethane	98	101	70-130	

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	2 Batch: WG1	668961-3	WG1668961-4		
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	97		97		70-130	0	20
Chloroform	95		93		70-130	2	20
Carbon tetrachloride	100		100		63-132	0	20
1,2-Dichloropropane	90		89		70-130	1	20
Dibromochloromethane	88		89		63-130	1	20
1,1,2-Trichloroethane	82		85		70-130	4	20
Tetrachloroethene	100		99		70-130	1	20
Chlorobenzene	99		99		75-130	0	20
Trichlorofluoromethane	64		63		62-150	2	20
1,2-Dichloroethane	98		100		70-130	2	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	94		94		67-130	0	20
trans-1,3-Dichloropropene	83		85		70-130	2	20
cis-1,3-Dichloropropene	87		88		70-130	1	20
1,1-Dichloropropene	95		96		70-130	1	20
Bromoform	77		81		54-136	5	20
1,1,2,2-Tetrachloroethane	87		92		67-130	6	20
Benzene	92		92		70-130	0	20
Toluene	92		92		70-130	0	20
Ethylbenzene	94		93		70-130	1	20
Chloromethane	110		100		64-130	10	20
Bromomethane	33	Q	31	Q	39-139	6	20

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02 Batch: WG1	668961-3	WG1668961-4		
Vinyl chloride	89		83		55-140	7	20
Chloroethane	56		54	Q	55-138	4	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	110		110		70-130	0	20
Trichloroethene	89		89		70-130	0	20
1,2-Dichlorobenzene	97		98		70-130	1	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	98		98		70-130	0	20
Methyl tert butyl ether	94		100		63-130	6	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	95		95		70-130	0	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Dibromomethane	87		88		70-130	1	20
1,2,3-Trichloropropane	78		84		64-130	7	20
Acrylonitrile	97		100		70-130	3	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	90		88		36-147	2	20
Acetone	99		110		58-148	11	20
Carbon disulfide	100		100		51-130	0	20
2-Butanone	94		110		63-138	16	20
Vinyl acetate	140	Q	150	Q	70-130	7	20
4-Methyl-2-pentanone	75		84		59-130	11	20
2-Hexanone	88		99		57-130	12	20

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG1	668961-3	WG1668961-4		
Bromochloromethane	120		120		70-130	0	20
2,2-Dichloropropane	120		120		63-133	0	20
1,2-Dibromoethane	92		99		70-130	7	20
1,3-Dichloropropane	85		89		70-130	5	20
1,1,1,2-Tetrachloroethane	95		98		64-130	3	20
Bromobenzene	100		100		70-130	0	20
n-Butylbenzene	97		96		53-136	1	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	100		100		70-130	0	20
o-Chlorotoluene	99		99		70-130	0	20
p-Chlorotoluene	98		96		70-130	2	20
1,2-Dibromo-3-chloropropane	80		86		41-144	7	20
Hexachlorobutadiene	94		95		63-130	1	20
Isopropylbenzene	100		100		70-130	0	20
p-Isopropyltoluene	100		100		70-130	0	20
Naphthalene	87		94		70-130	8	20
n-Propylbenzene	100		98		69-130	2	20
1,2,3-Trichlorobenzene	88		93		70-130	6	20
1,2,4-Trichlorobenzene	92		95		70-130	3	20
1,3,5-Trimethylbenzene	99		100		64-130	1	20
1,2,4-Trimethylbenzene	98		100		70-130	2	20
1,4-Dioxane	100		102		56-162	2	20
p-Diethylbenzene	99		99		70-130	0	20

Project Name: 561 GREENWICH ST.

Project Number: 190043702

Lab Number: L2239801

Parameter	LCS %Recovery	Qual	%	LCSD 6Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02	Batch:	WG1668961-3	WG1668961-4				
p-Ethyltoluene	100			100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	92			94		70-130	2		20	
Ethyl ether	60			65		59-134	8		20	
trans-1,4-Dichloro-2-butene	82			80		70-130	2		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	93	93	70-130	
Toluene-d8	98	98	70-130	
4-Bromofluorobenzene	100	97	70-130	
Dibromofluoromethane	104	102	70-130	

INORGANICS & MISCELLANEOUS

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-01 Date Collected: 07/26/22 12:15

Client ID: MW22_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Sulfate	300		mg/l	100	14.	10	07/28/22 11:04	07/28/22 11:04	1,9038	KH

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-02 Date Collected: 07/26/22 12:10

Client ID: MW23_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Sulfate	710		mg/l	250	34.	25	07/28/22 11:04	07/28/22 11:04	1,9038	KH

Project Name: Lab Number: 561 GREENWICH ST.

L2239801 **Project Number: Report Date:** 08/01/22 190043702

SAMPLE RESULTS

Lab ID: Date Collected: L2239801-03 07/26/22 00:00

Client ID: DUP01_072622 Date Received: 07/26/22 Not Specified Sample Location: 561 GREENWICH ST. NY, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab									
Sulfate	720		mg/l	250	34.	25	07/28/22 11:04	07/28/22 11:04	1,9038	KH

Project Name: 561 GREENWICH ST. Lab Number: L2239801

Project Number: 190043702 **Report Date:** 08/01/22

SAMPLE RESULTS

Lab ID: L2239801-04 Date Collected: 07/26/22 12:30

Client ID: FB01_072622 Date Received: 07/26/22 Sample Location: 561 GREENWICH ST. NY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Sulfate	ND		mg/l	10	1.4	1	07/28/22 11:04	07/28/22 11:04	1,9038	KH

L2239801

Project Name: 561 GREENWICH ST.

Project Number: 190043702 **Report Date:** 08/01/22

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	-04 Ba	tch: Wo	G1668400-1	ſ			
Sulfate	ND	mg/l	10	1.4	1	07/28/22 11:04	07/28/22 11:04	1,9038	KH

Lab Number: L2239801

Project Number: 190043702 Report Date:

08/01/22

Parameter	LCS %Recovery Q	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 0	01-04	Batch: WG16684	100-2				
Sulfate	105		-		90-110	-		

Project Name:

561 GREENWICH ST.

Matrix Spike Analysis Batch Quality Control

Project Name: 561 GREENWICH ST.

L2239801

Project Number: 190043702 Lab Number: Report Date:

08/01/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits		RPD Qual Limits
General Chemistry - Westborou	ugh Lab Asso	ociated samp	ole(s): 01-04	QC Batch ID	D: WG1668400-4	QC Sample: L22	238669-01 C	lient ID:	MS Sample
Sulfate	11.	40	51	100	-	-	55-147	-	14

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST. L2239801 **Project Number:** Report Date: 08/01/22 190043702

Parameter Native Sample Duplicate Sample Units **RPD** Qual **RPD Limits** General Chemistry - Westborough Lab Associated sample(s): 01-04 QC Batch ID: WG1668400-3 QC Sample: L2238669-01 Client ID: DUP Sample mg/l 14 Sulfate 11. 11 0

Serial_No:08012213:20 *Lab Number:* L2239801

Project Name: 561 GREENWICH ST.

Project Number: 190043702 **Report Date:** 08/01/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2239801-01A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-01B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-01C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-01D	Plastic 120ml unpreserved	Α	10	10	3.9	Υ	Absent		SO4-9038(28)
L2239801-02A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-02B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-02C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-02D	Plastic 120ml unpreserved	Α	10	10	3.9	Υ	Absent		SO4-9038(28)
L2239801-03A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-03B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-03C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-03D	Plastic 120ml unpreserved	Α	10	10	3.9	Υ	Absent		SO4-9038(28)
L2239801-04A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-04B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-04C	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-04D	Plastic 120ml unpreserved	Α	10	10	3.9	Υ	Absent		SO4-9038(28)
L2239801-05A	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L2239801-05B	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)

Project Name:561 GREENWICH ST.Lab Number:L2239801Project Number:190043702Report Date:08/01/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH ST.Lab Number:L2239801Project Number:190043702Report Date:08/01/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH ST.Lab Number:L2239801Project Number:190043702Report Date:08/01/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH ST.Lab Number:L2239801Project Number:190043702Report Date:08/01/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coc	fay	5	Page			Date I	Rec'd	126	22		ALPHA Job #3 9801
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				-Xis	Deliv	erable	•		444		Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 561 (ASP-	A	M	ASP-B	1	Same as Client Info
1707. 300-030-5153	FAA. 000-022-3200	Project Location: 561	Greenwi	ch St. N	YM.Y			EQuis	S (1 File)		EQuIS	(4 File)	PO#
Client Information		Project # 190043	702		7.0			Other					
Client: LANGAN	Engineerina	(Use Project name as Pro	oject#)				Regu	latory	Requirem	ent			Disposal Site Information
Address: 360 W	31st St."	Project Manager: Tito	beth Ad	kins				NY TO	GS	X	NY Par	1 375	Please identify below location of
New York, 1	10001	ALPHAQuote #:						AWQ S	Standards		NY CP-	51	applicable disposal facilities.
Phone: 212-4	19-5400	Turn-Around Time			No. of the last	0000		NY Re	stricted Use		Other		Disposal Facility:
Fax:		Standard	€Z	Due Date:				NY Un	restricted U	se			□ NJ ☑ NY
Email: eadkins	@langan.com	Rush (only if pre approved)		# of Days:			\Box	NYC S	ewer Disch	arge			Other:
	een previously analyz			-			ANA	LYSIS					Sample Filtration
Other project specific							,50			T			Done t
Please cc: 19		n.com, datamar	nagement	t@lange	an.com		315/rcL VOCS	3					Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	90	imple ID	Colle	ection	Sample	Sampler's		ulfat					1
(Lab Use Only)	58	Imple ID	Date	Time	Matrix	Initials	Part	S					Sample Specific Comments
39801-01	MW22-07	2622	7/26/22	12:15	W	LM	×	X					
-02	MW23_072	622	1	12:10			X	X					
-23	DUP01-072						X	Z					
-04	FB01-0726		*	12:30	+	4	X.	X					
05	TB01_0724		36	13:00	业	#TR	X			\top		\neg	
		7				1.		\Box				\neg	
										+		-	
							-		_	1		_	
									_	1		_	
SVERSORALINE SEE											\rightarrow	_	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vlal G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No			19000	tainer Type							Please print clearly, legibly and completely, Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH	C = Cube	Relinquished B	By: \	Date/	Time	F	Receiv	ed By:			Date/T	ime	resolved, BY EXECUTING
G = NaHSO ₄	O = Other E = Encore	2 h.	M	7 126/22		Nei	4/	il.	-	7/30		1394	THIS COC, THE CLIENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	Carr Culton		. /	(130	1/1	1/45	16		13%	16	1930	HAS READ AND AGREES
O = Other		1111111		Tadar	2115	147	1) 	1	Va 5	1335	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 3	0. Sant 2013)	100	-	7/26			7		=				(See reverse side.)
age 51 of 51	0 Ocpr-2010)	~		(1000	ナノン					110	2710	7335	

ANALYTICAL REPORT

Lab Number: L2240044

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Elizabeth Adkins Phone: (212) 479-5400

Project Name: 561 GREENWICH ST

Project Number: 190043702

Report Date: 08/02/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2240044

Report Date:

08/02/22

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2240044-01 MW21_072722 WATER 561 GREENWICH ST, NY, NY 07/27/22 06:10 07/27/22

L2240044

Lab Number:

Project Name: 561 GREENWICH ST

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 561 GREENWICH ST Lab Number: L2240044

Project Number: 190043702 **Report Date:** 08/02/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/02/22

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

07/27/22 06:10

Not Specified

07/27/22

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Report Date: 08/02/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2240044-01 D

Client ID: MW21_072722

Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/01/22 15:55

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	440		ug/l	5.0	1.6	10
Toluene	1000		ug/l	25	7.0	10
Ethylbenzene	55		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10

L2240044

07/27/22 06:10

Lab Number:

Date Collected:

Project Name: 561 GREENWICH ST

Project Number: 190043702 **Report Date:** 08/02/22

SAMPLE RESULTS

D

L2240044-01

Client ID: MW21_072722 Date Received: 07/27/22

Sample Location: 561 GREENWICH ST, NY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	14	J	ug/l	25	7.0	10
p/m-Xylene	720		ug/l	25	7.0	10
o-Xylene	500		ug/l	25	7.0	10
Xylenes, Total	1200		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	170		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	52		ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	11	J	ug/l	50	10.	10
2-Hexanone	200		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	46		ug/l	25	7.0	10

Project Name: 561 GREENWICH ST Lab Number: L2240044

Project Number: 190043702 **Report Date:** 08/02/22

SAMPLE RESULTS

Lab ID: L2240044-01 D Date Collected: 07/27/22 06:10

Client ID: MW21_072722 Date Received: 07/27/22 Sample Location: 561 GREENWICH ST, NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ugh Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	37		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	140		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	14	J	ug/l	20	7.0	10	
p-Ethyltoluene	87		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	7.2	J	ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Report Date: 08/02/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/01/22 08:32

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01 Batch:	WG1670009-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2240044

Lab Number:

Project Name: 561 GREENWICH ST

> Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260C

08/01/22 08:32

Analyst: PD

Analytical Method:

Analytical Date:

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for samp	le(s): ()1 Batch:	WG1670009-5
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylenes, Total	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	1.6	J	ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Report Date: 08/02/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/01/22 08:32

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	for sample(s): 01	Batch:	WG1670009-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		 Acceptance	
Surrogate	%Recovery	Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 01	Batch: WG1	670009-3	WG1670009-4			
Methylene chloride	96		98		70-130	2		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	100		110		70-130	10		20
Carbon tetrachloride	96		99		63-132	3		20
1,2-Dichloropropane	110		100		70-130	10		20
Dibromochloromethane	85		88		63-130	3		20
1,1,2-Trichloroethane	94		100		70-130	6		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	120		120		62-150	0		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	100		100		67-130	0		20
Bromodichloromethane	100		99		67-130	1		20
trans-1,3-Dichloropropene	84		88		70-130	5		20
cis-1,3-Dichloropropene	86		90		70-130	5		20
1,1-Dichloropropene	110		110		70-130	0		20
Bromoform	72		78		54-136	8		20
1,1,2,2-Tetrachloroethane	89		96		67-130	8		20
Benzene	100		110		70-130	10		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		110		70-130	10		20
Chloromethane	100		110		64-130	10		20
Bromomethane	93		96		39-139	3		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Parameter	LCS %Recovery		SD overy Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01 Batc	h: WG1670009-	3 WG1670009-4		
Vinyl chloride	110	1	10	55-140	0	20
Chloroethane	100	1	10	55-138	10	20
1,1-Dichloroethene	110	1	10	61-145	0	20
trans-1,2-Dichloroethene	100	1	10	70-130	10	20
Trichloroethene	110	1	10	70-130	0	20
1,2-Dichlorobenzene	100	1	00	70-130	0	20
1,3-Dichlorobenzene	100	1	10	70-130	10	20
1,4-Dichlorobenzene	100	1	10	70-130	10	20
Methyl tert butyl ether	87	9	92	63-130	6	20
p/m-Xylene	105	1	10	70-130	5	20
o-Xylene	105	1	10	70-130	5	20
cis-1,2-Dichloroethene	100	1	00	70-130	0	20
Dibromomethane	97	9	96	70-130	1	20
1,2,3-Trichloropropane	90	9	96	64-130	6	20
Acrylonitrile	83	Ş	98	70-130	17	20
Styrene	105	1	10	70-130	5	20
Dichlorodifluoromethane	120	1	20	36-147	0	20
Acetone	110	1	00	58-148	10	20
Carbon disulfide	110	1	20	51-130	9	20
2-Butanone	92	1	10	63-138	18	20
Vinyl acetate	100	1	10	70-130	10	20
4-Methyl-2-pentanone	81	8	89	59-130	9	20
2-Hexanone	76		82	57-130	8	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 01	Batch: WG1	670009-3	WG1670009-4		
Bromochloromethane	98		100		70-130	2	20
2,2-Dichloropropane	96		98		63-133	2	20
1,2-Dibromoethane	95		100		70-130	5	20
1,3-Dichloropropane	93		100		70-130	7	20
1,1,1,2-Tetrachloroethane	93		99		64-130	6	20
Bromobenzene	97		100		70-130	3	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	110		110		70-130	0	20
tert-Butylbenzene	100		110		70-130	10	20
o-Chlorotoluene	100		110		70-130	10	20
p-Chlorotoluene	100		110		70-130	10	20
1,2-Dibromo-3-chloropropane	73		83		41-144	13	20
Hexachlorobutadiene	110		110		63-130	0	20
Isopropylbenzene	100		110		70-130	10	20
p-Isopropyltoluene	100		110		70-130	10	20
Naphthalene	83		90		70-130	8	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	94		100		70-130	6	20
1,2,4-Trichlorobenzene	97		100		70-130	3	20
1,3,5-Trimethylbenzene	100		100		64-130	0	20
1,2,4-Trimethylbenzene	99		100		70-130	1	20
1,4-Dioxane	94		96		56-162	2	20
p-Diethylbenzene	100		110		70-130	10	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2240044

08/02/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1670009-3	WG1670009-4			
p-Ethyltoluene	100		110		70-130	10		20
1,2,4,5-Tetramethylbenzene	96		100		70-130	4		20
Ethyl ether	96		110		59-134	14		20
trans-1,4-Dichloro-2-butene	84		97		70-130	14		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	111	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	99	99	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW21_072722	- Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG1670009-	6 WG167000	9-7 QC Sample: L	224004	4-01 Client ID:
Methylene chloride	ND	100	100	100	110	110	70-130	10	20
1,1-Dichloroethane	ND	100	110	110	120	120	70-130	9	20
Chloroform	ND	100	100	100	120	120	70-130	18	20
Carbon tetrachloride	ND	100	86	86	100	100	63-132	15	20
1,2-Dichloropropane	ND	100	100	100	120	120	70-130	18	20
Dibromochloromethane	ND	100	85	85	94	94	63-130	10	20
1,1,2-Trichloroethane	ND	100	100	100	110	110	70-130	10	20
Tetrachloroethene	ND	100	98	98	110	110	70-130	12	20
Chlorobenzene	ND	100	98	98	110	110	75-130	12	20
Trichlorofluoromethane	ND	100	110	110	130	130	62-150	17	20
1,2-Dichloroethane	ND	100	120	120	130	130	70-130	8	20
1,1,1-Trichloroethane	ND	100	99	99	120	120	67-130	19	20
Bromodichloromethane	ND	100	95	95	100	100	67-130	5	20
trans-1,3-Dichloropropene	ND	100	81	81	90	90	70-130	11	20
cis-1,3-Dichloropropene	ND	100	82	82	94	94	70-130	14	20
1,1-Dichloropropene	ND	100	110	110	120	120	70-130	9	20
Bromoform	ND	100	76	76	86	86	54-136	12	20
1,1,2,2-Tetrachloroethane	ND	100	110	110	120	120	67-130	9	20
Benzene	440	100	540	100	560	120	70-130	4	20
Toluene	1000	100	1100	100	1100	100	70-130	0	20
Ethylbenzene	55	100	150	95	160	105	70-130	6	20
Chloromethane	ND	100	91	91	100	100	64-130	9	20
Bromomethane	ND	100	58	58	73	73	39-139	23	Q 20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

	Native	MS	MS	MS	MSD	MSD		Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual	Limits	RPD	Qual Limits
Volatile Organics by GC/MS - MW21_072722	- Westborough	Lab Ass	ociated sample(s): 01 QC Ba	tch ID: WG1670009	9-6 WG167000	9-7 Q0	C Sample: L	224004	4-01 Client ID:
Vinyl chloride	ND	100	110	110	120	120		55-140	9	20
Chloroethane	ND	100	120	120	140	140	Q	55-138	15	20
1,1-Dichloroethene	ND	100	110	110	120	120		61-145	9	20
rans-1,2-Dichloroethene	ND	100	100	100	120	120		70-130	18	20
Frichloroethene	ND	100	99	99	120	120		70-130	19	20
,2-Dichlorobenzene	ND	100	96	96	110	110		70-130	14	20
1,3-Dichlorobenzene	ND	100	96	96	110	110		70-130	14	20
1,4-Dichlorobenzene	ND	100	95	95	110	110		70-130	15	20
Methyl tert butyl ether	14J	100	120	120	130	130		63-130	8	20
o/m-Xylene	720	200	900	90	940	110		70-130	4	20
o-Xylene	500	200	690	95	720	110		70-130	4	20
cis-1,2-Dichloroethene	ND	100	100	100	110	110		70-130	10	20
Dibromomethane	ND	100	100	100	110	110		70-130	10	20
1,2,3-Trichloropropane	ND	100	110	110	120	120		64-130	9	20
Acrylonitrile	ND	100	180	180	Q 200	200	Q	70-130	11	20
Styrene	ND	200	200	100	220	110		70-130	10	20
Dichlorodifluoromethane	ND	100	110	110	130	130		36-147	17	20
Acetone	170	100	290	120	300	130		58-148	3	20
Carbon disulfide	ND	100	110	110	120	120		51-130	9	20
2-Butanone	52	100	180	128	200	148	Q	63-138	11	20
/inyl acetate	ND	100	120	120	130	130		70-130	8	20
1-Methyl-2-pentanone	11J	100	130	130	130	130		59-130	0	20
2-Hexanone	200	100	320	120	320	120		57-130	0	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2240044

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limits
Volatile Organics by GC/MS - MW21_072722	- Westborough La	ab Asso	ociated sample(•	tch ID: WG1670009-	6 WG167000	9-7 QC Sample:	L224004	4-01 Client ID:
Bromochloromethane	ND	100	100	100	120	120	70-130	18	20
2,2-Dichloropropane	ND	100	77	77	89	89	63-133	14	20
,2-Dibromoethane	ND	100	100	100	110	110	70-130	10	20
,3-Dichloropropane	ND	100	100	100	110	110	70-130	10	20
1,1,1,2-Tetrachloroethane	ND	100	90	90	99	99	64-130	10	20
Bromobenzene	ND	100	94	94	100	100	70-130	6	20
n-Butylbenzene	ND	100	96	96	110	110	53-136	14	20
ec-Butylbenzene	ND	100	96	96	110	110	70-130	14	20
ert-Butylbenzene	ND	100	94	94	110	110	70-130	16	20
-Chlorotoluene	ND	100	110	110	120	120	70-130	9	20
-Chlorotoluene	ND	100	96	96	110	110	70-130	14	20
,2-Dibromo-3-chloropropane	ND	100	87	87	95	95	41-144	9	20
Hexachlorobutadiene	ND	100	90	90	110	110	63-130	20	20
sopropylbenzene	ND	100	100	100	120	120	70-130	18	20
-Isopropyltoluene	ND	100	96	96	110	110	70-130	14	20
Naphthalene	46	100	150	104	150	104	70-130	0	20
n-Propylbenzene	ND	100	100	100	120	120	69-130	18	20
,2,3-Trichlorobenzene	ND	100	94	94	110	110	70-130	16	20
,2,4-Trichlorobenzene	ND	100	93	93	100	100	70-130	7	20
,3,5-Trimethylbenzene	37	100	130	93	140	103	64-130	7	20
,2,4-Trimethylbenzene	140	100	240	100	250	110	70-130	4	20
,4-Dioxane	ND	5000	4000	80	4900	98	56-162	20	20
o-Diethylbenzene	14J	100	110	110	120	120	70-130	9	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2240044

Report Date:

08/02/22

Parameter	Native Sample	MS Added		MS covery	MSD Qual Found	MSD MSCovery	Recovei Qual Limits	,	RPD Qual Limits
Volatile Organics by GC/MS MW21_072722	- Westborough	Lab Assoc	ciated sample(s): 01	QC Bate	ch ID: WG167000)9-6 WG16700	09-7 QC Sample	: L2240044	-01 Client ID:
p-Ethyltoluene	87	100	180	93	200	113	70-130	11	20
1,2,4,5-Tetramethylbenzene	7.2J	100	98	98	110	110	70-130	12	20
Ethyl ether	ND	100	110	110	120	120	59-134	9	20
rans-1,4-Dichloro-2-butene	ND	100	85	85	92	92	70-130	8	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	121	120	70-130
4-Bromofluorobenzene	102	103	70-130
Dibromofluoromethane	100	103	70-130
Toluene-d8	96	98	70-130

INORGANICS & MISCELLANEOUS

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2240044

Report Date: 08/02/22

SAMPLE RESULTS

Lab ID: L2240044-01

Client ID: MW21_072722

Sample Location: 561 GREENWICH ST, NY, NY

Date Collected:

07/27/22 06:10

Date Received:

07/27/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Sulfate	200		mg/l	100	14.	10	07/28/22 12:57	07/28/22 12:57	1,9038	KH

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2240044

Report Date: 08/02/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	Batch	: WG16	68571-1				
Sulfate	ND	mg/l	10	1.4	1	07/28/22 12:57	07/28/22 12:57	1,9038	KH

Lab Number: L2240044

Project Number: Report Date: 08/02/22 190043702

LCS **LCSD** %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1668571-2 Sulfate 105 90-110

Project Name:

561 GREENWICH ST

Project Name: 561 GREENWICH ST

Project Number: 190043702 Lab Number:

L2240044

Report Date:

08/02/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD (RPD Qual Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1668571-4	QC Sample: L224004	14-01 Client	ID: MW	21_072722
Sulfate	200	500	670	94	-	-	55-147	-	14

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST L2240044

Project Number: 190043702 Report Date: 08/02/22

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Associated	I sample(s): 01 QC Batch ID:	WG1668571-3	QC Sample: L2240	0044-01 C	Client ID: I	MW21_072722	
Sulfate	200	190	mg/l	5		14	

Serial_No:08022213:41 *Lab Number:* L2240044

Project Name: 561 GREENWICH ST

Project Number: 190043702 **Report Date:** 08/02/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2240044-01A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01A1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01A2	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01B1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01B2	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01C1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01C2	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2240044-01D	Plastic 120ml unpreserved	Α	7	7	3.3	Υ	Absent		SO4-9038(28)
L2240044-01D1	Plastic 120ml unpreserved	Α	7	7	3.3	Υ	Absent		SO4-9038(28)
L2240044-01D2	Plastic 120ml unpreserved	Α	7	7	3.3	Υ	Absent		SO4-9038(28)

Project Name: 561 GREENWICH ST Lab Number: L2240044

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2240044Project Number:190043702Report Date:08/02/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2240044Project Number:190043702Report Date:08/02/22

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2240044Project Number:190043702Report Date:08/02/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08022213:41

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Eroject Information Project Name: 56	Way copper Ave, Suite 1	wich		f		Date Rein La erables ASP-A EQuis (7/	Ø	ASP-B		ALPHA Job # L2240044 Billing Information Same as Client Info	
Client Information		Project # 19004	13707	ore st.	1 1 1	4.1	1 🗖	Other				:: 01.040 % :	Miles See 1	
Client: LANGAN								ilatory Re	quireme	int	Disposal Site Information			
Address: 360 W	NY 10001	Project Manager: Elizabeth Adkins ALPHAQuote #:						NY TOGS AWQ Sta	ndards		Please identify below location of applicable disposal facilities.			
Phone: 717-479-5400 Turn-Around Time.							NY Restricted Use Other NY Unrestricted Use						Disposal Facility:	
Fax: Standard ☑ Due Date: Email: @ad Kins ② [ang an Core Rush (only if pre approved) ☐ # of Days:								NYC Sew			□ NJ □ NY □ Other;			
These samples have been previously analyzed by Alpha							ANALYSIS						Sample Filtration	
Please cc: lo	grase@lange	on.com, datam	anageme	nt@lar	ngan.Co	m	375/TCL YOCS	fate					Done t Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID				ple Sampler's	Rati	SCA				t		
	111 (0)	25.00	Date	Time	Matrix	Initials	GE.		_	-	_	_	Sample Specific Comments	
40044-01	MW21-07	2722	7/27	6:10	W	LM	X		_	\vdash	-	-	WS/WSD	
			-			-			+	\vdash	-	-		
			-		-			\vdash	_	+	-	-		
			-			_			_	\vdash	-	+		
										\vdash		_		
										\vdash				
										\Box				
										\Box				
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification No: MA015 Relinquished By: Date/Time 7:30 7/27/3				tainer Type reservative							Please print clearly, legibly and completely. Samples ca- not be logged in and turnaround time clock will no start until any ambiguities are	
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3)	C = Cube O = Other E = Encore D = BOD Bottle				Time 7/27/22 1540	Dewl	Received By: A COMM A AI and Margelle 1 1 2 1			1-27	Date/Time 1-21-22 0730		resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	