

December 12, 2023

Michael MacCabe New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7016

RE: Quarterly Groundwater Monitoring Report

April 2023 to July 2023 – 5^{th} and 6^{th} Monitoring Events 561 Greenwich Street

New York, New York BCP Site No.: C231129

Langan Project No.: 190043702

Dear Mr. MacCabe:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) prepared this letter report to summarize the fifth and sixth quarterly performance groundwater monitoring events at 561 Greenwich Street in Manhattan, New York (the site). The site was remediated pursuant to a Brownfield Cleanup Agreement (BCA) (Site No. C231129) with the New York State Department of Environmental Conservation (NYSDEC). The remediation was completed and a Certificate of Completion (COC) was issued by NYSDEC on December 29, 2021.

Langan conducted quarterly performance groundwater monitoring in accordance with the NYSDEC-approved December 2021 Site Management Plan (SMP), prepared by Langan. As stated in the SMP, groundwater monitoring was originally proposed to be conducted on a quarterly basis in off-site groundwater monitoring wells MW21, MW22, and MW23 for two years after the in-situ remedy, and on an annual basis thereafter, unless otherwise determined or discontinued in consultation with the NYSDEC. As presented in the *Q2-Q4 Quarterly Groundwater Monitoring Report*, prepared by Langan, significant contaminant reduction was achieved in off-site monitoring wells MW22 and MW23, and a request was made to discontinue monitoring and decommission these wells. Additionally, Langan proposed decommissioning the existing off-site monitoring well MW21 and reinstalling a new monitoring well in conjunction with the installation of a new sidewalk to increase transmissivity of groundwater into MW21A. The NYSDEC approved the proposed approach for the off-site monitoring wells via e-mail on December 16, 2022.

Groundwater monitoring wells MW21 through MW23 were decommissioned in March 2023 and a replacement well for MW21, MW21A, was installed on March 10, 2023. Well decommissioning and reinstallation details are provided below and in the 2021-2023 Periodic Review Report (PRR), prepared by Langan. This groundwater monitoring report presents the findings from the 5th and 6th performance monitoring events. A copy of the December 16, 2022 email from the NYSDEC is included in Attachment 1.

BCP Site No.: C231129

Langan Project No.: 190043702

The results of the first quarterly performance groundwater monitoring event are presented in the NYSDEC-approved December 2021 Final Engineering Report (FER), prepared by Langan. Additionally, the results for the baseline, post-injection, and first through fourth quarterly performance groundwater monitoring events are provided in Table 1 of this report.

Background

The site is at 561 Greenwich Street in Manhattan, New York and is identified as Block 598, Lot 42 on the New York City (NYC) Manhattan Borough Tax Map. The 20,045-square-foot site is bound by King Street to the north, a 17-story commercial office building to the east (Block 598, Lot 58), Charlton Street to the south, and Greenwich Street to the west. A site location map is provided as Figure 1.

The Rector, Church-Wardens, and Vestrymen of Trinity Church, in the city of New-York; 561 HH LLC; and Remainderman 561 Greenwich LLC (the Participants) entered into a BCA with the NYSDEC to remediate the site as Participants in the NYS Brownfield Cleanup Program (BCP) on July 24, 2019. The site was assigned an E-Designation (E-288) by the New York City Department of City Planning (NYCDCP) as part of the March 20, 2013 Hudson Square Rezoning (City Environmental Quality Review [CEQR] No. 12DCP045M). The E-Designation for hazardous materials requires an environmental assessment of soil, groundwater, and soil vapor, which was satisfied by the remedial investigation performed pursuant to the BCA, and is administered by the New York City Office of Environmental Remediation (NYCOER). The site was remediated for restricted commercial use and is improved with an 18-story commercial office building with ground-floor retail space and a full cellar.

Remediation was performed in advance of and concurrently with site redevelopment. The remediation included demolition, installation of a support of excavation (SOE) system, site-wide soil/fill excavation to elevation (el.) -2.5 (about 14 to 16 feet below grade surface [bgs]) with localized deeper excavation to el. -5 to remove petroleum-impacted soil, removal of underground storage tanks, recovery of light non-aqueous phase liquid (LNAPL), in-situ remediation of petroleum-impacted groundwater both on- and off-site, and site-wide groundwater dewatering and treatment of dewatered groundwater.

Groundwater Treatment

A two-phase in-situ groundwater treatment program, consisting of in-situ chemical oxidation (ISCO) injections followed by activated carbon (powdered activated carbon [PAC] or Petrofix) injections, was performed to treat petroleum-impacted groundwater associated with NYSDEC Spill No. 1801068. In-situ treatment and injection events were performed during the events listed below:

- On- and off-site ISCO injections March 6 to March 20, 2020
- On-site PAC injections August 24 to August 28, 2020
- On-site dewatering and treatment April 2 to June 25, 2021
- Off-site dewatering and treatment April 19 to June 28, 2021
- Off-site Petrofix injections July 30 to August 5, 2021

March 2023 - Monitoring Well Decommissioning and Reinstallation

On March 10, 2023, Lakewood Environmental Services Corp. (Lakewood) decommissioned MW21 and OS-RW03 by tremie grouting in place, in accordance with NYSDEC Commissioner Policy (CP)-43: Groundwater Monitoring Well Decommissioning Policy. The remaining monitoring and recovery wells (MW22, MW23, OS-RW01, and OS-RW02) were decommissioned between March 27 and 29, 2023 by tremie grouting in place.

On March 10, 2023, Lakewood used a Geoprobe 6610DT to install monitoring well MW21A proximate to the original MW21 location within the Greenwich Street sidewalk. The monitoring well borehole was

561 Greenwich Street BCP Site No.: C231129

Langan Project No.: 190043702

advanced to 25 feet bgs and a 4-inch-diameter, 20-foot-long continuously wrapped 30-slot well screen was installed from about 5 to 25 feet bgs and a solid PVC riser pipe was installed from 5 feet bgs to surface grade. The annulus of the groundwater monitoring well was backfilled with No. 2 sand to about 3 feet bgs followed by an about 2-foot-thick hydrated bentonite seal. The well was completed with a flush-mounted road box and concrete pad. Following installation, the groundwater monitoring well was developed by Lakewood personnel using a whale pump to clarify purged development water. A monitoring well construction log for MW21A is included in Attachment 2. The locations of former monitoring wells and newly installed monitoring well MW21A are presented on Figure 2.

Groundwater Sampling

Fifth Quarterly Groundwater Monitoring Event - April 2023

Groundwater monitoring well MW21A was sampled on April 6, 2023, in accordance with the United States Environmental Protection Agency (USEPA) low-flow groundwater sampling procedure. The groundwater sample was collected using a field filter.

Langan used a photoionization detector (PID) to screen the headspace of MW21A and recorded a total volatile organic compound (VOC) reading of 29.4 parts per million (ppm). Langan measured the depth to groundwater using a Solinst oil/water interface probe. No NAPL was detected in MW21A, and groundwater was encountered at 6.38 feet below the top of the well casing. Prior to collecting the groundwater sample, about 8.25 gallons was purged from the well using a peristaltic pump with dedicated polyethylene tubing. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Groundwater was initially light brown in color and exhibited a faint petroleum-like odor. Prior to sample collection, groundwater was purged for one hour and all groundwater quality parameters stabilized with the exception of turbidity. Groundwater measurements and observations were recorded on a groundwater sampling log, which is included in Attachment 3.

For quality assurance and quality control (QA/QC) purposes, one field blank and one matrix spike/matrix spike duplicate (MS/MSD) sample set were collected during the sampling event. A field duplicate was not collected during the 5th monitoring event since only one monitoring well was sampled. A trip blank sample was included in the shipment for quality control during transport. All samples were analyzed for target compound list (TCL) VOCs and sulfate by Alpha Analytical Laboratories (Alpha), a New York State Department of Health Environmental Laboratory Accreditation Program-certified laboratory in Westborough, Massachusetts.

Sixth Quarterly Groundwater Monitoring Event – July 2023

Groundwater monitoring well MW21A was sampled on July 28, 2023, in accordance with the USEPA low-flow groundwater sampling procedure.

Langan used a PID to screen the headspace of MW21A and recorded a total VOC concentration of 5.8 ppm. Langan measured the depth to groundwater using a Solinst oil/water interface probe. No NAPL was detected in MW21A, and groundwater was encountered at 8.42 feet below the top of the well casing. Prior to collecting the groundwater sample, about 3.25 gallons was purged from the well using a peristaltic pump. During purging, the turbidity, pH, temperature, conductivity, ORP, and DO were monitored using a Horiba U-52 water quality meter with a flow-through cell. Groundwater was purged until physical and chemical groundwater parameters stabilized and was initially light brown in color and exhibited a faint petroleum-like odor. Groundwater measurements and observations were recorded on a groundwater sampling log, which is included in Attachment 3.

BCP Site No.: C231129

Langan Project No.: 190043702

For QA/QC purposes, one field blank and one MS/MSD sample set were collected during the sampling event. A field duplicate was not collected since only one groundwater well was sampled. A trip blank sample was included in the shipment for quality control during transport. All samples were analyzed for TCL VOCs and sulfate by Alpha.

Validation Overview

Data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34, "Trace Volatile Data Validation" (February 19, 2013, Revision 3). Validation includes reconstruction of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. The data was found to be valid and usable for its intended application. A Data Usability Summary Report (DUSR) is included in Attachment 4.

Groundwater Monitoring Analytical Results

Laboratory analytical data was compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values (SGV) for Class GA Water (collectively referred to as SGVs). The laboratory analytical reports are included as Attachment 5.

Fifth and Sixth Quarterly Groundwater Monitoring Event - April 2023 and July 2023

Eleven VOCs were detected above the SGVs in the groundwater sample collected from MW21A during the April 2023 and July 2023 sampling events. The following table provides a summary of each VOC that exceeded the SGVs during the fifth and sixth quarters in MW21A, as compared to baseline concentrations and the maximum concentrations, which were detected during January 2022 (Q2) in MW21.

Baseline, January 2022, A	Baseline, January 2022, April 2023 and July 2023 Groundwater Monitoring Event										
Summary of Exceedances											
	NYSDEC	MW21	MW21	MW21A	MW21A						
Analyte	SGV (µg/L)	Baseline	Q 2	Q5	Q6						
1,2,4,5- Tetramethylbenzene	5	57	ND	22	14 J						
1,2,4-Trimethylbenzene	5	1,100	490	120	360						
1,3,5-Trimethylbenzene	5	180	80 J	67	99						
Benzene	1	140	1,400	31	300						
Ethylbenzene	5	690	980	45	300						
Isopropylbenzene	5	38	ND	7.5	13 J						
m,p-Xylene	5	1,200	4,800	180	1,200						
Naphthalene	10	310	ND	25	81						
n-Propylbenzene	5	96	ND	15	24 J						
o-Xylene	5	69	2,900	160	810						
Toluene	5	89	8,700	100	1,900						
Total Xylenes	5	1,300	7,700	340	2,000						
Total BTEX	NS	2,219	18,780	516	4,510						
Total VOCs	NS	4,328.8	19,800	1,054.73	5,384.80						

 μ g/L = microgram per liter

ND = Not detected

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample

561 Greenwich Street BCP Site No.: C231129

Langan Project No.: 190043702

A table comparing concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) and total VOCs in monitoring well MW21A between the fifth and sixth monitoring events is shown below.

Q5 and Q6 BTEX and Total VOC Percent Reduction from Q2 Event at MW21A								
Analysta	MW21A	MW21A						
Analyte	Q5	Q6						
BTEX	- 97%	- 76%						
Total VOCs	- 95%	- 73%						

Post-injection and quarterly groundwater sample analytical results are presented in Table 1 and on Figure 2.

Geochemical Conditions

Geochemical parameters, including pH, ORP, and DO, were field documented at each monitoring well during purging (Attachment 3). Sulfate (as SO₄) was also analyzed by the laboratory. The analytical laboratory reports from the fifth and sixth quarterly monitoring event are included in Attachment 5. The results and conclusions of the geochemical analyses are summarized as follows:

- DO and ORP levels indicated a subsurface aerobic and oxidative environment during the fifth quarterly sampling event in monitoring well MW21A.
- ORP levels indicated a subsurface reducing environment during the sixth quarterly sampling event in MW21A.¹

Findings

Significant contaminant reduction was observed in MW21/MW21A between the second quarter (January 2022) sampling event and the fifth and sixth quarter (April and July, 2023, respectively) sampling events, as evidenced by the reduction in VOC concentrations (-95% and -73%, respectively) and BTEX concentrations (-97% and -76% respectively).

Despite the increase in VOC and BTEX concentrations observed between the fifth and sixth quarters, VOCs have shown a declining trend at monitoring well MW21/MW21A since the second quarter (January 2022). During the next quarterly sampling event, Langan proposes installation of five 1-foot-long, 4-inch-diameter Oxygen Release Compound (ORC) socks, manufactured by Regenesis, to promote degradation of residual petroleum compounds in groundwater in the vicinity of MW21A. The socks will be placed across the top ten feet of the groundwater table within MW21A. The efficacy of this groundwater remediation measure will be evaluated during subsequent performance monitoring events.

¹ DO levels measured during the sixth quarterly sampling event were over 9 mg/L, indicating an equipment malfunction with the Horiba groundwater quality device. DO readings from the sixth groundwater monitoring event are thus erroneous and will not be used to evaluate subsurface groundwater conditions.

BCP Site No.: C231129

Langan Project No.: 190043702

Sincerely,

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C

Michael D. Burke, PG, CHMM

Principal/Vice President

Enclosures:

Figure 1 Site Location Map

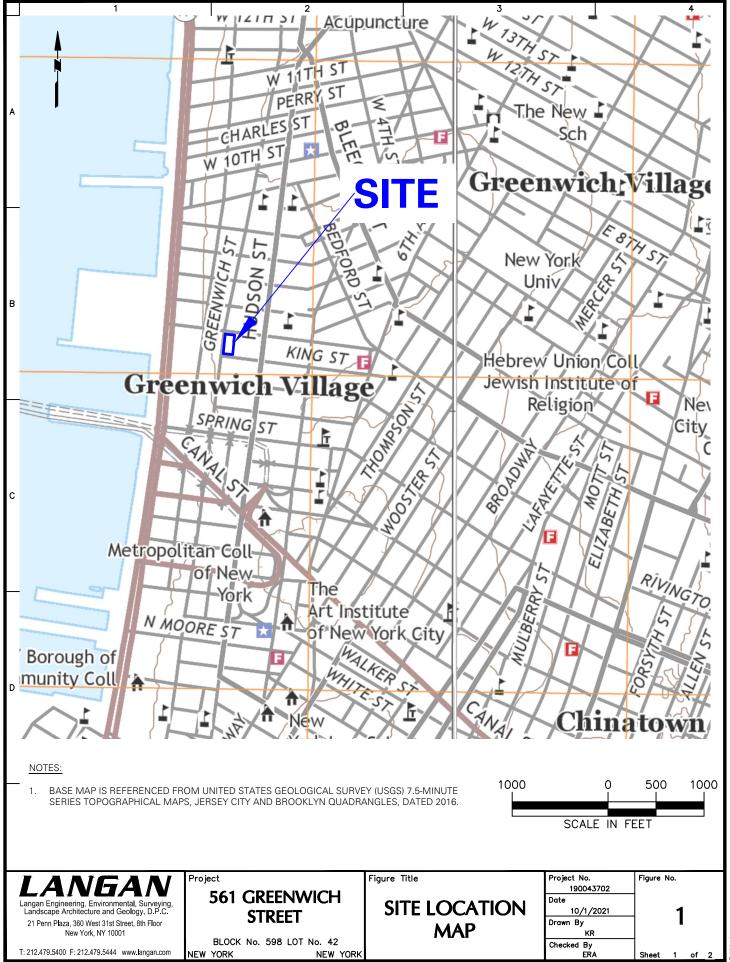
Figure 2 Groundwater Sample Analytical Results Map

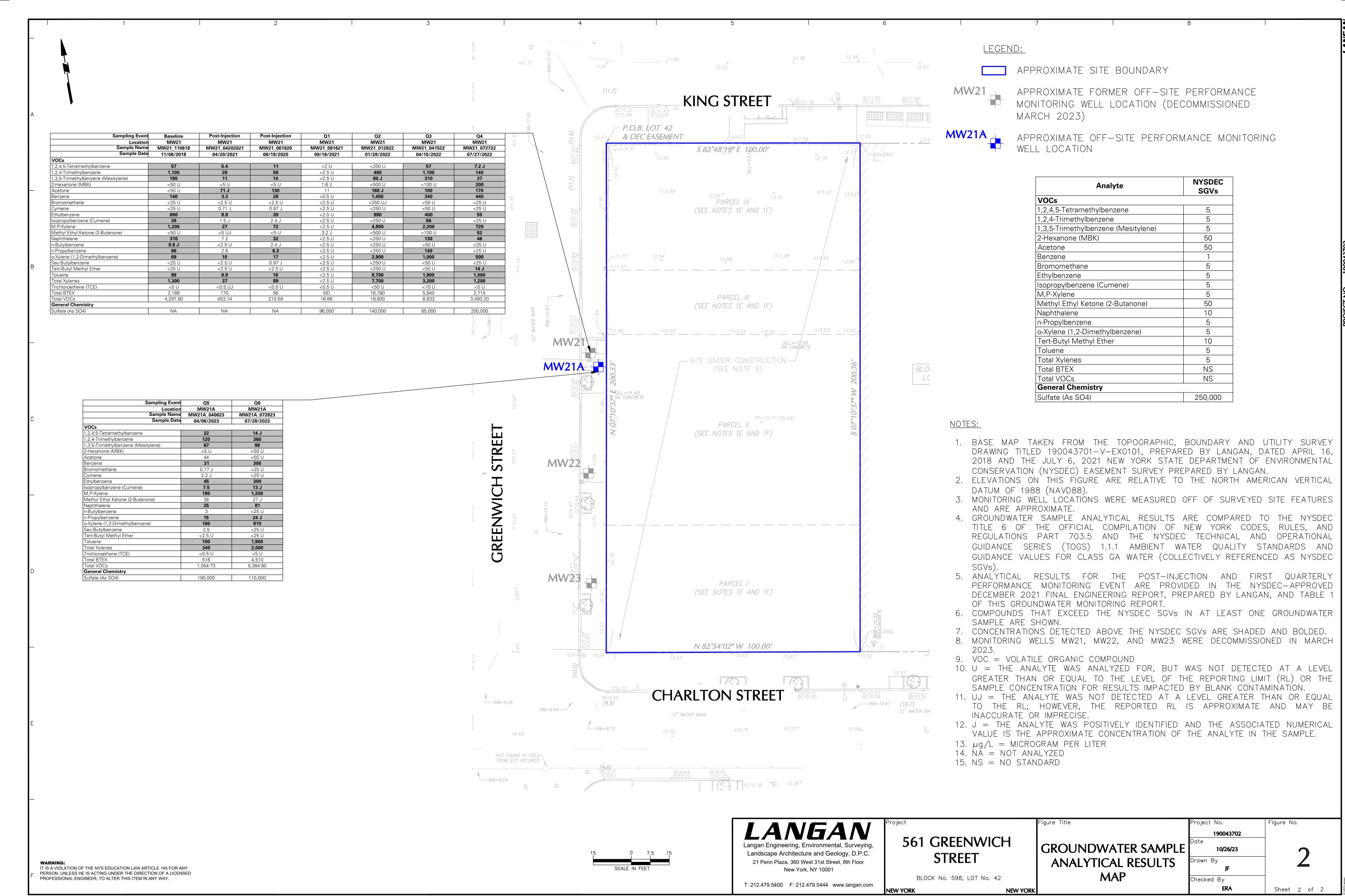
Table 1 Performance Groundwater Sample Analytical Results

Table 2 Quality Assurance/Quality Control Sample Analytical Results

Attachment 1 NYSDEC Correspondence

Attachment 2 Monitoring Well Construction Log
Attachment 3 Groundwater Sampling Logs
Attachment 4 Data Usability Summary Reports
Attachment 5 Laboratory Analytical Reports


cc: Paul McMahon, Elizabeth Adkins, Jack Frey - Langan


Matthew Fox – The Rector, Church-Wardens, and Vestrymen of Trinity Church, in the city of New-York

561 HH LLC

Remainderman 561 Greenwich LLC Aliza Cinamon – Proskauer Rose LLP

FIGURES

Filename: \\langan.com\\data\\WPW\\data7\190043701\\Project Data\CAD\\01\SheetFiles\Environmental\\BCP - Quarterly Groundwater Monitoring Reports\Figure 2 - Groundwater Sample Analytical Map_20230601.dwg Date: 10/26/2023 Time: 13:41 User: jfrey Style Table: Langan.stb Layout: //

TABLES

			Sampling Event	Baseline	Post-Injection	Post-Injection	Q1	Q2	Q3	Ω4	Q5	Ω6
	CAS	NYSDEC	Sampling Event Location	MW21	MW21	MW21	MW21	MW21	MW21	MW21	MW21A	MW21A
Analyte	Number	SGVs	Sample Name	MW21_110618	MW21_061920	MW21_04202021	MW21_091621	MW21_012822	MW21_041522	MW21_072722	MW21A_040623	MW21A_072823
			Sample Date Unit	11/06/2018 Result	06/19/2020 Result	04/20/2021 Result	09/16/2021 Result	01/28/2022 Result	04/15/2022 Result	07/27/2022 Result	04/06/2023 Result	07/28/2023 Result
Volatile Organic Compounds												
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5 5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<250 U <250 U	<50 U <50 U	<25 U <25 U	<2.5 U <2.5 U	<25 U <25 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
1,1,2-Trichloroethane	79-00-5	1_	ua/l	<15 U	<1.5 U	<1.5 U	<1.5 U	<150 UJ	<30 U	<15 U	<1.5 U	<15 U
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	5 5	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<250 U <50 U	<50 U <10 U	<25 U <5 U	<2.5 U <0.5 U	<25 U <5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<25 U 57	<2.5 U	<2.5 U 5.4	<2.5 U <2 U	<250 U <200 U	<50 U 57	<25 U 7.2 J	<2.5 U 22	<25 U 14 J
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	1,100	58	28	<2.5 U	490	1,100	140	120	360
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane (Ethylene Dibromide)	96-12-8 106-93-4	0.04 0.0006	ug/l ug/l	<25 U <20 U	<2.5 U <2 U	<2.5 UJ <2 U	<2.5 U <2 U	<250 U <200 UJ	<50 U <40 U	<25 U <20 U	<2.5 U <2 U	<25 U <20 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,2-Dichloroethane	107-06-2	0.6	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene)	78-87-5 108-67-8	1 5	ug/l ug/l	<10 U 180	<1 U 14	<1 U	<1 U <2.5 U	<100 U 80 J	<20 U 310	<10 U 37	<1 U 67	<10 U 99
1,3-Dichlorobenzene	541-73-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,3-Dichloropropane	142-28-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	ug/l ug/l	<25 U 80	<2.5 U <2 U	<2.5 U 10	<2.5 U <2 U	<250 U <200 U	<50 U 140	<25 U 14 J	<2.5 U 51	<25 U 35
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<2,500 U	<250 U	<250 UJ	<250 U	<25,000 UJ	<5,000 U	<2,500 U	<250 U	<2,500 U
2,2-Dichloropropane	594-20-7	5	ug/l	<25 U	<2.5 U	<2.5 UJ	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
2-Chlorotoluene 2-Hexanone (MBK)	95-49-8 591-78-6	5 50	ug/l ug/l	<25 U <50 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U 1.6 J	<250 U <500 U	<50 U <100 U	<25 U 200	<2.5 U <5 U	<25 U <50 U
4-Chlorotoluene	106-43-4	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
4-Ethyltoluene	622-96-8	NS	ug/l	240	23	14	<2 U	290	960	87	140	220
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l ug/l	<50 U <50 U	130 <5 U	71 J <5 UJ	11 <5 ∪	160 J <500 U	100 <100 U	170 <50 U	44 <5 U	<50 U <50 U
Benzene	71-43-2	1	ug/l	140	26	3.2	<0.5 U	1,400	340	440	31	300
Bromobenzene	108-86-1	5 5	ug/l	<25 U	<2.5 U <2.5 U	<2.5 U <2.5 UJ	<2.5 U <2.5 U	<250 U <250 U	<50 U <50 U	<25 U <25 U	<2.5 U <2.5 U	<25 U <25 U
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	50	ug/l ug/l	<25 U <5 U	<2.5 U	<2.5 UJ <0.5 U	<2.5 U	<50 UJ	<10 U	<5 U	<2.5 U	<25 U
Bromoform	75-25-2	50	ug/l	<20 U	<2 U	<2 UJ	<2 U	<200 U	<40 U	<20 U	<2 U	<20 U
Bromomethane	74-83-9 75-15-0	5	ug/l	<25 U <50 U	<2.5 U 2.1 J	<2.5 U <5 U	<2.5 U	<250 UJ <500 U	<50 U <100 U	<25 U <50 U	0.77 J <5 U	<25 U <50 U
Carbon Disulfide Carbon Tetrachloride	56-23-5	60 5	ug/l ug/l	<5 U	<0.5 U	<0.5 U	<5 U <0.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
Chlorobenzene	108-90-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Chloroethane Chloroform	75-00-3 67-66-3	5 7	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 UJ 2.9	<2.5 U 0.86 J	<250 U <250 U	<50 U <50 U	<25 U <25 U	<2.5 U <2.5 U	<25 U <25 U
Chloromethane	74-87-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Cis-1,3-Dichloropropene Cymene	10061-01-5 99-87-6	0.4 5	ug/l ug/l	<5 U <25 U	<0.5 U 0.97 J	<0.5 U 0.71 J	<0.5 U <2.5 U	<50 UJ <250 U	<10 U <50 U	<5 U <25 U	<0.5 U 2.2 J	<5 U <25 U
Dibromochloromethane	124-48-1	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
Dibromomethane	74-95-3	5	ug/l	<50 U	<5 U	<5 U	<5 U	<500 U	<100 U	<50 U	<5 U	<50 U
Dichlorodifluoromethane Diethyl Ether (Ethyl Ether)	75-71-8 60-29-7	5 NS	ug/l ug/l	<50 U <25 U	<5 U <2.5 U	<5 UJ <2.5 U	<5 U <2.5 U	<500 U <250 U	<100 U <50 U	<50 U <25 U	<5 U <2.5 U	<50 U <25 U
Ethylbenzene	100-41-4	5	ug/l	690	39	8.8	<2.5 U	980	400	55	45	300
Hexachlorobutadiene	87-68-3	0.5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Isopropylbenzene (Cumene) M,P-Xylene	98-82-8 179601-23-1	5 5	ug/l ug/l	38 1,200	2.4 J 72	1.5 J 27	<2.5 U <2.5 U	<250 U 4,800	56 2,200	<25 U 720	7.5 180	13 J 1,200
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<50 U	<5 U	<5 UJ	3.2 J	<500 U	<100 U	52	38	27 J
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylene Chloride	108-10-1	NS 5	ug/l	<50 U	<5 U	<5 UJ	<5 U	<500 U	<100 U	11 J	<5 U	<50 U
Naphthalene	75-09-2 91-20-3	10	ug/l ug/l	<25 U 310	<2.5 U 32	<2.5 U 7.2	<2.5 U <2.5 U	<250 U <250 U	<50 U 130	<25 U 46	<2.5 U 25	<25 U 81
n-Butylbenzene	104-51-8	5	ug/l	8.8 J	2.4 J	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	3	<25 U
n-Propylbenzene o-Xylene (1,2-Dimethylbenzene)	103-65-1 95-47-6	5 5	ug/l ug/l	96 69	6.3 17	2.8	<2.5 U <2.5 U	<250 U 2,900	140 1,000	<25 U 500	15 160	24 J 810
Sec-Butylbenzene	135-98-8	5	ug/l	<25 U	0.97 J	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	2.5	<25 U
Styrene	100-42-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
T-Butylbenzene Tert-Butyl Methyl Ether	98-06-6 1634-04-4	5 10	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<250 U <250 U	<50 U <50 U	<25 U 14 J	<2.5 U <2.5 U	<25 U <25 U
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<5 U	<0.5 U	0.18 J	<0.5 U	<50 U	<10 U	<5 U	0.76	1.8 J
Toluene	108-88-3	5	ug/l	89	16	6.9	<2.5 U	8,700	1,900	1,000	100	1,900
Total 1,2-Dichloroethene (Cis and Trans) Total Xylenes	540-59-0 1330-20-7	NS 5	ug/l ug/l	<25 U 1,300	<2.5 U 89	<2.5 U 37	<2.5 U <2.5 U	<250 U 7,700	<50 U 3,200	<25 U 1,200	<2.5 U 340	<25 U 2,000
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene	10061-02-6 110-57-6	0.4 5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 UJ	<0.5 U <2.5 U	<50 U <250 U	<10 U <50 U	<5 U <25 U	<0.5 U <2.5 U	<5 U <25 U
Trichloroethene (TCE)	79-01-6	5 5	ug/l	<5 U	<2.5 U	<0.5 UJ	<2.5 U	<50 U	<10 U	<5 U	<0.5 U	<5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<250 U	<50 U	<25 U	<2.5 U	<25 U
Vinyl Acetate Vinyl Chloride	108-05-4 75-01-4	NS 2	ug/l ug/l	<50 U <10 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<500 U <100 U	<100 U <20 U	<50 U <10 U	<5 U <1 U	<50 U <10 U
Total BTEX	BTEX	NS	ug/l	2,188	170	55.9	ND	18,780	5,840	2,715	516	4,510
Total VOCs	TOTAL VOCS	NS	ug/l	4,297.80	453.14	210.59	16.66	19,800.00	8,833.00	3,493.20	1,054.73	5,384.80
General Chemistry Sulfate (As SO4)	14808-79-8	250000	ug/l	NA	NA	NA	96,000	140,000	85,000	200,000	190,000	110,000
0311310 (70 007)	17000-70-0	200000	ag/i	1.4/5	1.4/4	13/7	55,000	1-0,000	55,000	200,000	100,000	110,000

Γ		Г	Complian Front	Danelina Danelina	Dont Inication	Dank Injunktur	01	01	02	Ω2	02	Ω4
	242	NIVODEO.	Sampling Event Location	Baseline MW22	Post-Injection MW22	Post-Injection MW22	Q1 MW22	Q1 MW22	Q2 MW22	MW22	Q3 MW22	MW22
Analyte	CAS Number	NYSDEC SGVs	Sample Name	MW22_110718	MW22_061920	MW22_04202021	MW22_091621	GWDUP01_091621	MW22_012822	GWDUP01_012822	MW22_041522	MW22_072622
			Sample Date Unit	11/07/2018 Result	06/19/2020 Result	04/20/2021 Result	09/16/2021 Result	09/16/2021 Result	01/28/2022 Result	01/28/2022 Result	04/15/2022 Result	07/26/2022 Result
Volatile Organic Compounds			One	Hoodit	Hoodie	Hoodit	Hoodit	Hoodit	riodate	riodaic	Hoodie	Hoodit
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5 5	ug/l ug/l	<250 U <50 U	<120 U <25 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<150 U	<75 U	<1.5 U	<1.5 U	<1.5 U	<1.5 UJ	<1.5 UJ	<1.5 U	<1.5 U
1,1-Dichloroethane	75-34-3	5	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5 5	ug/l	<50 U <250 U	<25 U <120 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l ug/l	<250 U	<120 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	68 J	32 J	120	<2 U	<2 U	<2 U	0.58 J	<2 U	<2 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	5 5	ug/l ug/l	<250 U 1,400 J	<120 U 900	<2.5 U 560	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 0.89 J	<2.5 U <2.5 U	<2.5 U <2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<250 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<200 U	<100 U	<2 U	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3 0.6	ug/l	<250 U <50 U	<120 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	0.6	ug/l ug/l	<100 U	<25 U <50 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U	<0.5 U <1 U	<0.5 U	<0.5 U <1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	390 J	250	280	<2.5 U	<2.5 U	<2.5 U	1.4 J	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5 3	ug/l ug/l	<250 U <250 U	<120 U <120 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,4-Diethyl Benzene	105-05-5	NS	ug/l	190 J	96 J	350	<2 U	<2 U	<2 U	2.6	<2 U	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<25,000 U	<12,000 U	<250 UJ	<250 U	<250 U	<250 UJ	<250 UJ	<250 U	<250 U
2,2-Dichloropropane 2-Chlorotoluene	594-20-7 95-49-8	5 5	ug/l	<250 U <250 U	<120 U <120 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
2-Cniorotoluene 2-Hexanone (MBK)	95-49-8 591-78-6	50	ug/l ug/l	<500 U	<120 U <250 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U
4-Chlorotoluene	106-43-4	5	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	1,000	650	530	<2 U	<2 U	<2 U	0.8 J	<2 U	<2 U
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l ug/l	150 J <500 H	510 <250 U	110 J <5 UJ	3 J <5 U	12 J <5 U	42 <5 U	54 <5 U	190 <5 U	24 <5 U
Benzene	71-43-2	1	ug/l	2,200	3,000	58	2.1	2.8	1.5 J	4.6 J	<0.5 U	1.5
Bromobenzene	108-86-1	5	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	5 50	ug/l	<250 U <50 U	<120 U <25 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 UJ	<2.5 U <0.5 UJ	<2.5 U <0.5 U	<2.5 U <0.5 U
Bromoform	75-27-4 75-25-2	50	ug/l ug/l	<200 U	<100 U	<2 UJ	<2 U	<2 U	<2 U	<0.5 U	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<250 U	<120 UJ	1.2 J	1.4 J	0.83 J	4.4 J	2.3 J	<2.5 U	0.85 J
Carbon Disulfide	75-15-0	60	ug/l	<500 U	<250 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5 5	ug/l ug/l	<50 U <250 U	<25 U <120 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U 3.5	<0.5 U 2.1 J	<0.5 U <2.5 U	<0.5 U <2.5 U
Chloroethane	75-00-3	5	ug/l	<250 U	<120 UJ	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroform	67-66-3	7	ug/l	<250 U	<120 U	3.3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<250 U	<120 U	<2.5 U	2.2 J	1.7 J	0.88 J	0.9 J	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	156-59-2 10061-01-5	5 0.4	ug/l ug/l	<250 U <50 U	<120 U <25 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 UJ	<2.5 U <0.5 UJ	<2.5 U <0.5 U	<2.5 U <0.5 U
Cymene	99-87-6	5	ug/l	<250 U	<120 U	8.4	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Dibromochloromethane	124-48-1	50	ug/l	<50 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	5 5	ug/l ug/l	<500 U <500 U	<250 U <250 U	<5 U <5 UJ	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<250 U	<120 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Ethylbenzene	100-41-4	5	ug/l	920	780	68	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3	0.5 5	ug/l	<250 U <250 U	<120 U <120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	98-82-8 179601-23-1	5	ug/l ug/l	4,000	3,100	16 350	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 0.76 J	<2.5 U <2.5 U	<2.5 U 0.8 J
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<500 U	<250 U	<5 UJ	<5 U	5.8	4.7 J	14 J	11	6.1
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<500 U	<250 U	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methylene Chloride Naphthalene	75-09-2 91-20-3	5 10	ug/l ug/l	<250 U 360 J	<120 U 240 J	<2.5 U 83	0.84 J <2.5 U	<2.5 U <2.5 U	1.6 J <2.5 U	1.6 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
n-Butylbenzene	104-51-8	5	ug/l	<250 U	<120 U	12	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1	5	ug/l	140 J	86 J	36	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6 135-98-8	5 5	ug/l	2,200 <250 U	1,900	230 9.9	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	0.8 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U
Sec-Butylbenzene Styrene	100-42-5	5	ug/l ug/l	<250 U	<120 U <120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	5	ug/l	<250 U	<120 U	0.87 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5 5	ug/l ug/l	<50 U 8,000	<25 U 6,100	<0.5 U 220	<0.5 U <2.5 U	<0.5 U <2.5 U	1.5 J <2.5 U	0.33 J <2.5 ∪	<0.5 U <2.5 U	<0.5 U 1.5 J
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<250 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	6,200	5,000	580	<2.5 U	<2.5 U	<2.5 U	1.6 J	<2.5 U	0.8 J
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6 156-60-5	0.4	ug/l	<50 U	<25 U	<0.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l ug/l	<250 U <50 U	<120 U <25 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<250 U	<120 UJ	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<50 U	<25 U	<0.5 UJ	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	5 NS	ug/l ug/l	<250 U <500 U	<120 U <250 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U
Vinyl Acetate Vinyl Chloride	75-01-4	2	ug/l ug/l	<100 U	<250 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U
Total BTEX	BTEX	NS	ug/l	17,320	14,880	926	2.1	2.8	1.5	6.16	ND	3.8
Total VOCs	TOTAL VOCS	NS	ug/l	21,018.00	17,644.00	3,046.67	9.54	23.13	60.08	87.66	201.00	34.75
General Chemistry Sulfate (As SO4)	14808-79-8	250000	ug/l	NA	31,000,000	NA	2,000,000	1,800,000	590,000	680,000	160,000	300,000
/ 10 00 1/	000 / 0 0		ag,ı	14/5	0.,000,000	- 17/7	_,550,500	.,000,000	555,000	000,000	.00,000	555,000

			Sampling Event	Baseline	Post-Injection	Post-Injection	Q1	Q2	Q3	Q3	Q4	Q4
	CAS	NYSDEC	Location	MW23	MW23	MW23	MW23	MW23	MW23	MW23	MW23	MW23
Analyte	Number	SGVs	Sample Name	MW23_110718	MW23_061920	MW23_04202021	MW23_091621	MW23_012822	MW23_041522	GWDUP01_041522 04/15/2022	MW23_072622	DUP01_072622
			Sample Date Unit	11/07/2018 Result	06/19/2020 Result	04/20/2021 Result	09/16/2021 Result	01/28/2022 Result	04/15/2022 Result	Result	07/26/2022 Result	07/26/2022 Result
Volatile Organic Compounds												
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5 5	ug/l	<62 U <62 U	<120 U <120 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<38 U	<75 U	<1.5 U	<1.5 U	<1.5 UJ	<1.5 UJ	<1.5 UJ	<1.5 U	<1.5 U
1,1-Dichloroethane	75-34-3	5	ua/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5 5	ug/l ug/l	<12 U <62 U	<25 U <120 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l	52 J <62 U	<100 U <120 U	12 <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 UJ <2.5 UJ	<2 UJ <2.5 UJ	<2 U <2.5 U	<2 U <2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l ug/l	1,600 J	94 J	49	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<50 U	<100 U	<2 U	<2 U	<2 UJ	<2 UJ	<2 UJ	<2 U	<2 U
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	3 0.6	ug/l ug/l	<62 U <12 U	<120 U <25 U	<2.5 U 0.22 J	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 UJ <0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 U <0.5 U	<2.5 U <0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<25 U	<50 U	<1 U	<1 U	<1 U	<1 UJ	<1 UJ	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	470 J	<120 U	22	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5 3	ug/l ug/l	<62 U <62 U	<120 U <120 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
1,4-Diethyl Benzene	105-05-5	NS	ug/l	150	<100 U	31	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<6,200 U	<12,000 U	<250 UJ	<250 U	<250 UJ	<250 UJ	<250 UJ	<250 U	<250 U
2,2-Dichloropropane 2-Chlorotoluene	594-20-7 95-49-8	5 5	ug/l ug/l	<62 U <62 U	<120 U <120 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
2-Hexanone (MBK)	591-78-6	50	ug/l	<120 U	<250 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
4-Chlorotoluene	106-43-4	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	930	<100 U	37	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l ug/l	<120 U <120 U	190 J <250 U	35 J <5 UJ	3.5 J <5 ∪	40 <5 ∪	34 J <5 UJ	55 J <5 UJ	46 J <5 U	22 J <5 ∪
Benzene	71-43-2	1	ug/l	22	<25 U	15	0.16 J	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Bromobenzene	108-86-1	5	ua/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	5 50	ug/l ug/l	<62 U <12 U	<120 U <25 U	<2.5 UJ <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 U <0.5 U	<2.5 U <0.5 U
Bromoform	75-25-2	50	ug/l	<50 U	<100 U	<2 UJ	<2 U	<2 U	<2 UJ	<2 UJ	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<62 U	<120 U	2.5	2.7	7.5 J	3.7 J	7.6 J	6.8 J	4.7 J
Carbon Disulfide	75-15-0	60	ug/l	<120 U	<250 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5 5	ug/l ug/l	<12 U <62 U	<25 U <120 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Chloroethane	75-00-3	5	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 UJ	<2.5 U
Chloroform	67-66-3	7	ug/l	<62 U	<120 U	1.2 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Chloromethane Cis-1,2-Dichloroethene	74-87-3 156-59-2	5 5	ug/l ug/l	<62 U <62 U	<120 U <120 U	<2.5 U 0.73 J	4.1 J <2.5 U	2.7 <2.5 U	1.8 J <2.5 UJ	2.1 J <2.5 UJ	<2.5 U <2.5 U	0.92 J <2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Cymene	99-87-6	5	ug/l	<62 U	<120 U	1.3 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Dibromochloromethane	124-48-1	50	ug/l	<12 U	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	5 5	ug/l ug/l	<120 U <120 U	<250 U <250 U	<5 U <5 UJ	<5 U <5 U	<5 U <5 U	<5 UJ <5 UJ	<5 UJ <5 UJ	<5 U <5 U	<5 U <5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Ethylbenzene	100-41-4	5	ug/l	950	<120 U	18	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l ug/l	<62 U 93	<120 U <120 U	<2.5 U 2.1 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
M,P-Xylene	179601-23-1	5	ug/l	4,000	50 J	83	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<120 U	<250 U	<5 UJ	<5 U	18	4.2 J	4.2 J	23	20
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS 5	ug/l	<120 U	<250 U	<5 UJ	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U
Methylene Chloride Naphthalene	75-09-2 91-20-3	10	ug/l ug/l	<62 U 440 J	<120 U 47 J	<2.5 U 13	0.76 J <2.5 U	2.2 J <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
n-Butylbenzene	104-51-8	5	ug/l	<62 U	<120 U	1.2 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1	5	ug/l	150	<120 U	3.7	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	95-47-6 135-98-8	5	ug/l ug/l	700 <62 U	<120 U <120 U	48 0.83 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 UJ	<2.5 UJ <2.5 UJ	<2.5 U <2.5 U	<2.5 U <2.5 U
Styrene	100-42-5	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	5	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<62 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5 5	ug/l ug/l	<12 U 300	<25 U <120 U	2.3 54	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<62 U	<120 U	0.73 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	4,700	50 J	130	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans) Trans-1,2-Dichloroethene	542-75-6 156-60-5	0.4 5	ug/l ug/l	<12 U <62 U	<25 U <120 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 UJ <2.5 UJ	<0.5 UJ <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<12 U	<120 U	<2.5 U	<2.5 U	<2.5 U	<0.5 UJ	<2.5 UJ <0.5 UJ	<2.5 U	<2.5 U
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<62 U	<120 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<12 U	<25 U	9.3 J	<0.5 U	<0.5 U	<0.5 UJ	<0.5 UJ	<0.5 U	<0.5 U
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	5 NS	ug/l ug/l	<62 U <120 U	<120 U <250 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 UJ	<2.5 UJ <5 UJ	<2.5 U <5 U	<2.5 U <5 U
Vinyl Chloride	75-01-4	2	ug/l	<25 U	<50 U	<1 U	<1 U	<1 U	<1 UJ	<1 UJ	<1 U	<1 U
Total BTEX	BTEX	NS	ug/l	5,972	50	218	0.16	ND	ND	ND	ND	ND
Total VOCs General Chemistry	TOTAL VOCS	NS	ug/l	9,857.00	381.00	443.11	11.22	70.40	43.70	68.90	75.80	47.62
Sulfate (As SO4)	14808-79-8	250000	ug/l	NA	NA	NA	1,500,000	1,600,000	780,000	800,000	710,000	720,000

561 Greenwich Street New York , NY NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

Notes: CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter RL - Reporting limit <RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

Table 2 Quarterly Groundwater Monitoring Report - 5th and 6th Monitoring Events Qaulity Assurance/Quality Control Sample Analytical Results

					Langan Project No	J.: 10004070E						
		Sampling Event	Q2	Q2	O3	Q3	Q4	Q4	Ω5	Q5	Ω6	Q6
	CAS	Sample Type	FB	TB	FB	TB	FB	TB	FB	TB	FB	TB
Analyte	Number	Sample Name Sample Date	GWFB01_012822 01/28/2022	GWTB01_012822 01/28/2022	GWFB01_041522 04/15/2022	GWTB01_041522 04/15/2022	FB01_072622 07/26/2022	TB01_072622 07/26/2022	GWFB01_040623 04/06/2023	GWTB01_040623 04/06/2023	GWFB01_072823 07/28/2023	GWTB01_072823 07/28/2023
		Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds		OTHE	Hesait	ricourt	ricourt	ricodit	ricodit	ricodit	riesait	ricourt	Hosait	Hesuit
1,1,1,2-Tetrachloroethane	630-20-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1,2-Trichloroethane	79-00-5	ug/l	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane	75-34-3	ug/l	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	ug/l ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U <2.5 U	<0.50 U	<0.50 U <2.5 U
1,2,3-Trichlorobenzene	87-61-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene	95-93-2	ug/l	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U
1,2,4-Trichlorobenzene	120-82-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4-Trimethylbenzene	95-63-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	ug/l	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U
1,2-Dichlorobenzene	95-50-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	ug/l	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U	<0.50 U <1.0 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane	142-28-9	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene	106-46-7	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Diethyl Benzene	105-05-5	ug/l	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U
1,4-Dioxane (P-Dioxane)	123-91-1	ug/l	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U
2,2-Dichloropropane	594-20-7	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK)	591-78-6	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
4-Chlorotoluene 4-Ethyltoluene	106-43-4 622-96-8	ug/l	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U	<2.5 U <2.0 U
Acetone	67-64-1	ug/l ug/l	<5.0 U	<5.0 U	<5.0 U	2.1 J	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Acrylonitrile	107-13-1	ug/l	<5.0 U	<5.0 U	7.2	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Benzene	71-43-2	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Bromobenzene	108-86-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromochloromethane	74-97-5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Bromoform	75-25-2	ug/l	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U
Bromomethane	74-83-9	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Carbon Disulfide	75-15-0	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Carbon Tetrachloride	56-23-5 108-90-7	ug/l	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U
Chlorobenzene Chloroethane	75-00-3	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroform	67-66-3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloromethane	74-87-3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene	156-59-2	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene	10061-01-5	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Cymene	99-87-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Dibromochloromethane	124-48-1	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Dibromomethane	74-95-3	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Dichlorodifluoromethane	75-71-8	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Diethyl Ether (Ethyl Ether)	60-29-7	ug/l	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	ug/l ug/l	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U
Isopropylbenzene (Cumene)	98-82-8	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Methylene Chloride	75-09-2	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Naphthalene	91-20-3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Butylbenzene	104-51-8	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	95-47-6 135-98-8	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Styrene	100-42-5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE)	127-18-4	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Toluene	108-88-3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	0.82 J	0.76 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Trans-1,2-Dichloroethene	156-60-5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene	10061-02-6	ug/l	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U	<0.50 U
Trans-1,4-Dichloro-2-Butene Trichloroethene (TCE)	110-57-6 79-01-6	ug/l	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U	<2.5 U <0.50 U
Trichlorofluoromethane	79-01-6 75-69-4	ug/l ug/l	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U	<0.50 U <2.5 U
Vinyl Acetate	108-05-4	ug/l	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Vinyl Chloride	75-01-4	ug/l	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U	<1.0 U
General Chemistry												
Sulfate (As SO4)	14808-79-8	ug/l	<10000 U	NA	<10000 U	NA	<10000 U	NA	1700 J	NA	2000 J	NA

Table 2 Quarterly Groundwater Monitoring Report - 5th and 6th Monitoring Events Qaulity Assurance/Quality Control Sample Analytical Results

561 Greenwich Street New York , NY NYSDEC BCP Site No.: C231129 Langan Project No.: 190043702

<u>Notes:</u> FB - Field Blank TB - Trip Blank CAS - Chemical Abstract Service NS - No standard

ug/l - microgram per liter NA - Not analyzed RL - Reporting limit <RL - Not detected

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

ATTACHMENT 1 NYSDEC CORRESPONDENCE

Jack Frey

From: MacCabe, Michael (DEC) <michael.maccabe@dec.ny.gov>

Sent: Friday, December 16, 2022 3:37 PM

To: Elizabeth Adkins

Cc: Michael D. Burke; Paul McMahon; Laura Grose

Subject: [External] RE: C231129 - 561 Greenwich Street - Groundwater Performance Monitoring

Report

Lizzie,

Upon review of the December 6 Groundwater Monitoring Report and the data therein, the data show that the groundwater remedy has effectively addressed the groundwater contamination in the proximity of MW22 and MW23. Therefore, the request to discontinue monitoring of both wells is acceptable.

Replacement of MW21 in its immediate proximity with a monitoring well intended to provide better recharge is acceptable. Suspension of the sampling of MW21 until it is replaced is acceptable.

It is understood that all three wells will be properly abandoned.

Thank you,

Michael D. MacCabe, P.E.

Senior Environmental Engineer
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, Albany, NY 12233-7016
518-402-9687 | michael.maccabe@dec.ny.gov

www.dec.ny.gov

From: Elizabeth Adkins <eadkins@langan.com> Sent: Monday, December 5, 2022 12:26 PM

To: MacCabe, Michael (DEC) <michael.maccabe@dec.ny.gov>

Cc: mburke@langan.com; pmcmahon@langan.com; Laura Grose < lgrose@langan.com> **Subject:** C231129 - 561 Greenwich Street - Groundwater Performance Monitoring Report

Michael,

The Quarterly Groundwater Performance Monitoring Report for the 2nd through 4th Quarterly Monitoring Events can be downloaded from the below link for your review and comment. Please note that we are proposing the following:

- 1. Discontinuing groundwater monitoring in MW22 and MW23 based on consistent groundwater sample results
- 2. Decommissioning MW22 and MW23 prior to installation of a new sidewalk (anticipated during the first quarter of 2023)
- 3. Based on the slow recharge rate identified in MW21, we propose temporarily suspending groundwater sample collection from MW21 until a replacement well can be installed concurrent with the new sidewalk early next year. The replacement well will be designed to maximize groundwater recovery during future sampling events.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1532733410

Name	Type	Size
561 Greenwich_Q2-Q4 Groundwater Monitoring Report_DRAFT_2022.12.05.docx	.docx	166.85 KB
561 Greenwich_Q2-Q4 Groundwater Monitoring Report_DRAFT_2022.12.05.pdf	.pdf	27.13 MB

Please let us know if you would like to discuss the results or if you have any questions regarding the above proposal for future quarterly monitoring events.

Best,

Elizabeth Adkins, PE, LEED Green Associate (she/her) Project Engineer

LANGAN

Direct: 212.479.5445 Mobile: 803.381.5282 File Sharing Link www.langan.com

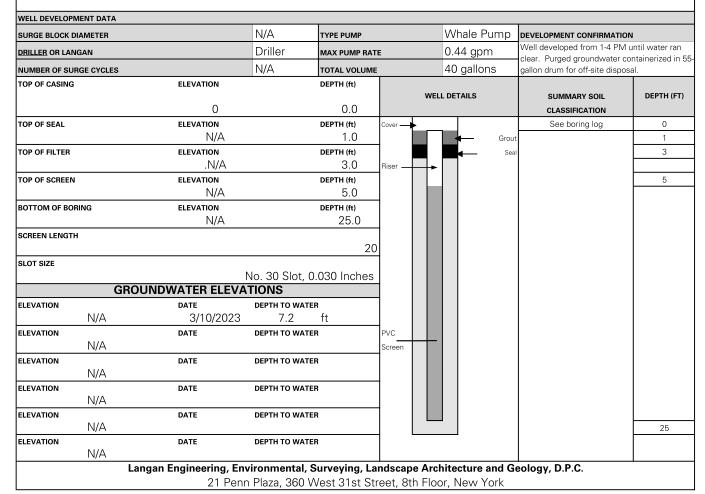
NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA WASHINGTON, DC VIRGINIA OHIO ILLINOIS FLORIDA TEXAS ARIZONA COLORADO WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

A Carbon-Neutral Firm | Langan's goal is to be SAFE (Stay Accident Free Everyday)

Build your career with a premier firm. Join Langan.

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT 2 MONITORING WELL CONSTRUCTION LOG


WELL CONSTRUCTION AND DEVELOPMENT SUMMARY

Well No. MW21A

PROJECT		PROJECT NO.			
561 Greenwich Street		190043704			
LOCATION		ELEVATION AND DATUM			
561 Greenwich Street		N/A			
DRILLING AGENCY		DATE STARTED	DATE FINISHED		
Lakewood Environmental Services Corp.		3/10/2023	3/10/2023		
DRILLING EQUIPMENT		DRILLER			
Geoprobe® 6610 DT		Tim Kelley			
SIZE AND TYPE OF BIT		INSPECTOR			
6-inch Hollow Stem Auger		Seyena Simpson			
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)			
5.625 inches		Overburden			
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL			
PVC	4-inch	No.2 Sand			
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL		
Sch. 40 PVC 30-slot continuously wrapped	4-inch	Other Bentonite			
METHOD OF INSTALLATION					

A Geoprobe 6610 DT was used to advance the boring to approximately 25 feet bgs. A four-inch-diameter PVC monitoring well was installed which consisted of 20 feet of 30-slot (0.030-inch) continuously wrapped well screen, and a solid PVC riser. The well screen

was installed from approximately 5 to 25 feet bgs with riser from 5 feet bgs to surface. The well was finished with a flush-mount road box and concrete pad.

ATTACHMENT 3 GROUNDWATER SAMPLING LOGS

Project	t Information	Well Info	rmation	Equipment Information			S	ampling Condition	ıs	Sampling Ir	formation	
Project Name:	561 Greenwich St	Well No:	MW21A	Water Qua	lity Device Model:	Horiba U-52		Weather:	40-60s °F		MW21A_0406202	
Project Number:	190043702	Well Depth:	25		Pine Number:		Backo	ground PID (ppm):	0.0	Sample(s):		
Site Location:	New York, NY	Well Diameter:	4-inch	Pump	Make and Model:	Solinst Peri-Pump	PID Beneath	Inner Cap (ppm):	29.4			
Sampling	Maitland Robinson	Well Screen	5'		Pine Number:		Pu	ımp Intake Depth:	14.8	Sample Date:	4/6/2023	
Personnel:		Interval:	25'		Tubing Diameter:	5/8" OD	Depth to W	ater Before Purge:	6.38	Sample Time:	9:20	
			STA	ABILIZATION = 3 su	iccessive readings	within limits						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES		
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative			
									Discharge		Stabilized?	
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)			
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)		color, odor etc.		
					BEGIN PURG	ING						
8:15	13.43	6.80	220	0.917	338.0	2.78	6.38		0.5	Slightly turbid	N/A	
8:20	13.38	8.29	214	0.900	268.0	2.86	6.38	0.05	0.75	Slightly turbid	N/A	
8:25	13.29	8.87	210	0.895	297.0	1.94	6.38	0.01	0.8	Slightly turbid	N	
										Faint petroleum-		
8:30	13.32	9.58	199	0.891	268.0	1.47	6.38	0.09	1.25	like odor	N	
8:35	13.00	9.77	189	0.891	185.0	1.41	6.38	0.15	2	Slightly turbid	N	
8:40	13.04	9.80	184	0.890	105.0	1.43	6.38	0.05	2.25	Clear	N	
8:45	12.85	9.83	179	0.891	84.1	1.39	6.38	0.35	4	Clear	N	
8:50	12.82	9.84	176	0.892	79.8	1.41	6.38	0.1	4.5	Clear	N	
8:55	12.75	9.83	176	0.892	67.6	1.35	6.38	0.2	5.5	Clear	N	
9:00	12.70	9.85	174	0.893	64.4	1.44	6.38	0.1	6	Clear	N	
9:05	12.74	9.86	172	0.894	76.2	1.42	6.38	0.1	6.5	Clear	N	
9:10	12.61	9.87	171	0.896	52.3	1.53	6.38	0.2	7.5	Clear	N	
9:15	12.54	9.85	170	0.898	76.2	1.54	6.38	0.15	8.25	Clear	N	
9:20		Sample collected after purging well for 1 hour										

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Projec	t Information	Well Info	rmation	Eq	uipment Informati	ion	Sampling Conditions			Sampling Infor	mation
Project Name:	561 Greenwich St	Well No:	MW21A	Water Qual	ity Device Model:	Horiba U-52		Weather:	78-85s °F		MW21A_07282023
Project Number:	190043702	Well Depth:	25		Pine Number:	FA05384	Backę	ground PID (ppm):	0.0 5.8	Sample(s):	
Site Location:	New York, NY	Well Diameter:	4-inch	Pump	Make and Model:			PID Beneath Inner Cap (ppm):			
Sampling	Jack Frey	Well Screen	5		Pine Number:			ımp Intake Depth:		Sample Date:	7/28/2023
Personnel:		Interval:	25		Tubing Diameter:			ater Before Purge:	8.42	Sample Time:	10:15
				STABILIZATION	= 3 successive rea	dings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	*DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
						_			Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)		color, odor etc.	
		<u> </u>			BEGII	N PURGING					
										Yellow water, petroluem-like	
9:15	21.07	6.85	-93	2.520	13.0	12.11		0.1	0.5	odor	N/A
9:20	20.88	6.78	-105	2.480	8.9	11.22		0.1	0.75		N/A
9:25	20.37	6.64	-126	2.450	5.2	10.20		0.1	1	[N
9:30	20.13	6.72	-132	2.420	7.2	10.15		0.1	1.25		N
9:35	20.25	6.74	-138	2.460	5.8	9.84		0.1	1.5		N
9:40	20.47	6.76	-147	2.460	4.9	9.64		0.1	1.75		N
9:45	20.48	6.76	-147	2.460	4.5	9.52		0.1	2	Clear water, petroluem-like	N
9:50	20.48	6.76	-147	2.470	8.9	9.28		0.1	2.25	odor	N
9:55	20.50	6.76	-147	2.470	9.1	9.25		0.1	2.5		N
10:00	20.53	6.76	-147	2.470	9.2	9.23		0.1	2.75		Y
10:05								0.1	3]	N
10:10			Continued Pu	rging/Sampled at 10	D:15			0.1	3.25		N
10:15								0.1	3.5		N

Notes

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- * DO levels measured during the this sampling event were over 9 mg/L, indicating an equipment malfunction with the Horiba groundwater quality device.

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

ATTACHMENT 4 DATA USABILITY SUMMARY REPORTS

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Paul McMahon, Langan Senior Project Manager

From: Joe Conboy, Langan Senior Staff Chemist

Date: May 24, 2023

Re: Data Usability Summary Report

For 561 Greenwich Street

Quarterly Groundwater (Q5) Samples Langan Project No.: 190043702

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in March 2023 by Langan Engineering and Environmental Services at 561 Greenwich Street. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) and sulfate by the methods specified below.

- VOCs by SW-846 Method 8260C
- Sulfate by Method EPA 9038

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit

Technical Memorandum

Data Usability Summary Report For 561 Greenwich Street Quarterly Groundwater (Q5) Samples Langan Project No.: 190043702 May 24, 2023 Page 2 of 3

ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	TB	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All SDGs underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. No major deficiencies were identified.

Technical Memorandum

Data Usability Summary Report For 561 Greenwich Street Quarterly Groundwater (Q5) Samples Langan Project No.: 190043702

May 24, 2023 Page 3 of 3

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were identified.

Sulfate by Method EPA 9038

L2318150

The MB for batch WG1765180 exhibited a detection of sulfate (as SO4) (1.6 mg/l). The associated

results are >10X the contamination. No qualification is necessary.

The FB (GWFB01_040623) exhibited a detection of sulfate (as so4) (1.7 mg/l). The associated

results are >10X the contamination. No qualification is necessary.

VOCs by SW-846 Method 8650C

L2318150

The MS/MSD performed on sample MW21A_040623 exhibited percent recoveries outside of

control limits for numerous compounds. Organic results are not qualified on the basis of MS/MSD

recoveries alone. No qualification is necessary.

FIELD DUPLICATE:

There were no field duplicates collected for this sampling event.

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned above,

that means that all specified criteria were met for that parameter. All of the data packages met

ASP Category B requirements.

All data are considered usable. In addition, completeness, defined as the percentage of analytical

results that are judged to be valid, is 100%.

Signed:

Joe Conboy

Senior Staff Chemist

LANGAN

Data Usability Summary Report For 561 Greenwich Street Q5 2023 Groundwater Samples

Table 1: Sample Summary

SDG	Lab Sample ID	Client Sample ID	Sample Date	Validation Level	Analytical Parameters
L2318150	L2318150-01	MW21A_040623	4/6/2023	Tier 1	VOCs, Sulfate
L2318150	L2318150-02	GWTB01_040623	4/6/2023	Tier 1	VOCs
L2318150	L2318150-03	GWFB01_040623	4/6/2023	Tier 1	VOCs, Sulfate

Data Usability Summary Report For 561 Greenwich Street

Q5 2023 Groundwater Samples

Table 2: Validator-Applied Qualification

Client Sample				Validator		
ID	Analysis	CAS#	Analyte	Qualifier		
No Qualifications Required						

Technical <u>Memoran</u>dum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Jack Frey, Langan Senior Staff Engineer

From: Joe Conboy, Langan Senior Staff Chemist

Date: September 11, 2023

Re: Data Usability Summary Report

For 561 Greenwich Street

Quarterly Groundwater (Q6) Samples Langan Project No.: 190043702

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in July 2023 by Langan Engineering and Environmental Services at 561 Greenwich Street. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) and sulfate by the methods specified below.

- VOCs by SW-846 Method 8260D
- Sulfate by SW-846 Method 9038

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference		Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate

Technical Memorandum

Data Usability Summary Report For 561 Greenwich Street Quarterly Groundwater (Q6) Samples Langan Project No.: 190043702 September 11, 2023 Page 2 of 4

ICAL	Initial Calibration	RF	Response Factor	
ICV	Initial Calibration Verification	RL	Reporting Limit	
ISTD	Internal Standard	RPD	Relative Percent Difference	
LCL	Lower Control Limit	RSD	Relative Standard Deviation	
LCS	Laboratory Control Sample	TB	Trip Blank	
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit	

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. One SDGs underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

Technical Memorandum Data Usability Summary Report For 561 Greenwich Street Quarterly Groundwater (Q6) Samples

> Langan Project No.: 190043702 September 11, 2023 Page 3 of 4

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate

qualification, but do not result in unusable data. No minor deficiencies were identified.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were

identified.

VOCs by SW-846 Method 8260D

L2343606

The MS/MSD performed on sample MW21A_072823 exhibited percent recoveries below the LCL for toluene (0%, 0%), m,p-xylene (50%, 50%), and trans-1,4-dichloro-2-butene (64%).

Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is

necessary.

The MS/MSD performed on sample MW21A_072823 exhibited a RPD above the control limit for acetone (24%). Organic results are not qualified on the basis of MS/MSD recoveries alone.

No qualification is necessary.

Sulfate by SW-846 Method 9038

L2343606

The FB (GWFB01_072823) exhibited a detection of sulfate (as so4) (2.0 mg/l). The associated

results are >10X the contamination. No qualification is necessary.

The MB for batch L2343606_WG1810782-1 exhibited a detection of sulfate (as so4) (1.7 mg/l).

The associated results are >10X the contamination. No qualification is necessary.

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned above,

that means that all specified criteria were met for that parameter. All of the data packages met

ASP Category B requirements.

LANGAN

Technical Memorandum

Data Usability Summary Report For 561 Greenwich Street Quarterly Groundwater (Q6) Samples Langan Project No.: 190043702 September 11, 2023 Page 4 of 4

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Joe Conboy

Senior Staff Chemist

Data Usability Summary Report For 561 Greenwich Street Q6 2023 Groundwater Samples Table 1: Sample Summary

	Analytical Parameters			VOCs	Sulfate
SDG	Lab Sample ID	Client ID	Sample Date	SW8260D	SW9038
L2343606	L2343606-01	MW21A_072823	7/28/2023	Х	Х
L2343606	L2343606-02	GWFB01_072823	7/28/2023	х	Х
L2343606	L2343606-03	GWTB01_072823	7/28/2023	х	

Data Usability Summary Report For 561 Greenwich Street Q6 2023 Groundwater Samples Table 1: Sample Summary

SDG	Client Sample ID	Analysis	CAS#	Total / Dissolved	Analyte	Validator Qualifier	
No qualifications required							

ATTACHMENT 5 LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L2318150

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Elizabeth Adkins Phone: (212) 479-5400

Project Name: 561 GREENWICH ST

Project Number: 190043702 Report Date: 04/13/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2318150-01	MW21A_040623	WATER	561 GREENWICH ST, NY, NY	04/06/23 09:20	04/06/23
L2318150-02	GWTB01_040623	WATER	561 GREENWICH ST, NY, NY	04/06/23 00:00	04/06/23
L2318150-03	GWFB01_040623	WATER	561 GREENWICH ST, NY, NY	04/06/23 10:00	04/06/23

L2318150

Lab Number:

Project Name: 561 GREENWICH ST

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 561 GREENWICH ST Lab Number: L2318150

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2318150-01: The acetone and 2-butanone results should be considered estimated due to co-elution with a non-target compound.

The WG1766111-6 MS recoveries, performed on L2318150-01, are outside the acceptance criteria for toluene (0%) and 4-ethyltoluene (0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/13/23

ORGANICS

VOLATILES

L2318150

Project Name: 561 GREENWICH ST

Project Number: 190043702

Report Date: 04/13/23

Lab Number:

SAMPLE RESULTS

Lab ID: L2318150-01

Client ID: MW21A_040623

Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/11/23 15:02

Analyst: KJD

Date Collected:	04/06/23 09:20
Date Received:	04/06/23
Ciald Dage.	D - ((- 000

Refer to COC Field Prep:

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 Carbon tetrachlorode ND ug/l 0.50 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1-2-Trichloroethane ND ug/l 0.50 0.18 1 1,1-2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichlorofiburomethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.14 1 1,1-1-Dichloropro	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1.2-Dichloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1.12-Trichloroethane ND ug/l 0.50 0.18 1 1.12-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobanzene ND ug/l 0.50 0.18 1 Trichlorofluoromethane ND ug/l 0.50 0.18 1 1.1-1-Trichloroethane ND ug/l 0.50 0.13 1 1.1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Ital-1-Tichloropropene ND ug/l 0.50	Volatile Organics by GC/MS - We	estborough Lab					
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.14 1 1,1-2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorotucromethane ND ug/l 2.5 0.70 1 1,1-1-Trichlorotucromethane ND ug/l 0.50 0.13 1 1,1-1-Trichlorotromethane ND ug/l 0.50 0.19 1 1,1-1-Trichlorotromethane ND ug/l 0.50 0.14 1 1,1-1-Dichloropropene ND ug/l 0.50 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane 0.76 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,-1-2-Tetrachloroethane ND ug/l	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane 0.76 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-1,2-Tetrachloroethane ND ug/l	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 0.76 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 0.76 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Encapene 31 ug/l 0.50	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 0.76 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene 31 ug/l 0.50 <t< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>0.15</td><td>1</td></t<>	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene 31 ug/l 0.50 0.17 1 Ethylbenzene 45 ug/l 2.5 0.70	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.17 1 Bromoform ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 <td< td=""><td>Tetrachloroethene</td><td>0.76</td><td></td><td>ug/l</td><td>0.50</td><td>0.18</td><td>1</td></td<>	Tetrachloroethene	0.76		ug/l	0.50	0.18	1
1,2-Dichloroethane ND	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 <	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.19</td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 1.0 0.07 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Benzene 31 ug/l 0.50 0.16 1 Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene 100 ug/l 2.5 0.70 1 Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene 45 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	31		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	100		ug/l	2.5	0.70	1
Bromomethane 0.77 J ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	45		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	0.77	J	ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
	Chloroethane	ND		ug/l	2.5	0.70	1
trans-1.2-Dichloroethene ND un/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2318150

04/13/23

Project Name: 561 GREENWICH ST

L2318150-01

MW21A_040623

561 GREENWICH ST, NY, NY

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 04/06/23 09:20

Date Received: 04/06/23

Lab Number:

Report Date:

Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	180		ug/l	2.5	0.70	1
o-Xylene	160		ug/l	2.5	0.70	1
Xylenes, Total	340		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	44		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	38		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	3.0		ug/l	2.5	0.70	1
sec-Butylbenzene	2.5		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	7.5		ug/l	2.5	0.70	1
p-Isopropyltoluene	2.2	J	ug/l	2.5	0.70	1
Naphthalene	25		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST Lab Number: L2318150

Project Number: 190043702 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: Date Collected: 04/06/23 09:20

Client ID: MW21A_040623 Date Received: 04/06/23 Sample Location: 561 GREENWICH ST, NY, NY Field Prep: Refer to COC

, ,

Sample Depth:

Volatile Organics by GC/MS - Westbor	ough Lab					
Volatile Organics by GC/NG - Westbol	•					
n-Propylbenzene	15	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	67	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	120	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	51	ug/l	2.0	0.70	1	
p-Ethyltoluene	140	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	22	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	97		70-130	

04/06/23 00:00

Not Specified

04/06/23

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2318150

Report Date: 04/13/23

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2318150-02

Client ID: GWTB01_040623

Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/11/23 14:12

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2318150

04/13/23

Project Name: 561 GREENWICH ST

L2318150-02

GWTB01_040623

561 GREENWICH ST, NY, NY

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 04/06/23 00:00

Date Received: 04/06/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 561 GREENWICH ST Lab Number: L2318150

Project Number: 190043702 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2318150-02 Date Collected: 04/06/23 00:00

Client ID: GWTB01_040623 Date Received: 04/06/23

Sample Location: 561 GREENWICH ST, NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	119	70-130	

L2318150

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Report Date: 04/13/23

Lab Number:

Lab ID: L2318150-03

Client ID: GWFB01_040623

Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/11/23 14:37

Analyst: KJD

Date Collected:	04/06/23 10:00
Date Received:	04/06/23
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2318150

04/13/23

Project Name: 561 GREENWICH ST

L2318150-03

GWFB01 040623

561 GREENWICH ST, NY, NY

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 04/06/23 10:00

Date Received: 04/06/23 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

MDL Qualifier Units RL **Dilution Factor Parameter** Result Volatile Organics by GC/MS - Westborough Lab Trichloroethene ND 0.50 0.18 1 ug/l 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1.2-Dichloroethene. Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND 1 ug/l 2.5 0.70 Acrylonitrile ND 5.0 1.5 1 ug/l ND Styrene ug/l 2.5 0.70 1 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l ND 5.0 Acetone 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l Vinyl acetate ND 5.0 1.0 1 ug/l 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 ND 2-Hexanone 5.0 1.0 1 ug/l Bromochloromethane ND 2.5 0.70 1 ug/l ND 2.5 0.70 1 2,2-Dichloropropane ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 1,3-Dichloropropane ND 2.5 0.70 1 ug/l ND 2.5 1,1,1,2-Tetrachloroethane 0.70 1 ug/l Bromobenzene ND 2.5 0.70 1 ug/l n-Butylbenzene ND 2.5 0.70 1 ug/l ND 2.5 0.70 1 sec-Butylbenzene ug/l ND 2.5 0.70 tert-Butylbenzene 1 ug/l o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND 2.5 0.70 1 ug/l 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l ND 2.5 0.70 1 Hexachlorobutadiene ug/l ND 0.70 1 Isopropylbenzene 2.5 ug/l p-Isopropyltoluene ND 2.5 0.70 1 ug/l

ND

1

2.5

ug/l

0.70

Naphthalene

Project Name: Lab Number: 561 GREENWICH ST L2318150

Project Number: Report Date: 190043702 04/13/23

SAMPLE RESULTS

Lab ID: L2318150-03 Date Collected: 04/06/23 10:00

Client ID: Date Received: 04/06/23 GWFB01_040623 Not Specified

Sample Location: Field Prep: 561 GREENWICH ST, NY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	90	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	118	70-130	

L2318150

Project Name: 561 GREENWICH ST Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/11/23 08:32

Analyst: PID

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-03 Batch:	WG1766111-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2318150

Project Name: 561 GREENWICH ST Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/11/23 08:32

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1766111-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2318150

Report Date: 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/11/23 08:32

Analyst: PID

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample(s):	01-03	Batch:	WG1766111-5
o-Chlorotoluene	ND	ug	/I	2.5	0.70
p-Chlorotoluene	ND	ug	/I	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70
Hexachlorobutadiene	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
p-Isopropyltoluene	ND	ug	/I	2.5	0.70
Naphthalene	ND	ug,	/I	2.5	0.70
n-Propylbenzene	ND	ug,	/I	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug,	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug,	/I	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug,	/I	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug,	/I	2.5	0.70
1,4-Dioxane	ND	ug	/I	250	61.
p-Diethylbenzene	ND	ug,	/I	2.0	0.70
p-Ethyltoluene	ND	ug	/I	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug,	/I	2.0	0.54
Ethyl ether	ND	ug,	/I	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug,	/I	2.5	0.70

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	92	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	118	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2318150

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1766111-3	WG1766111-4			
Methylene chloride	94		100		70-130	6	20	
1,1-Dichloroethane	99		100		70-130	1	20	
Chloroform	94		98		70-130	4	20	
Carbon tetrachloride	110		120		63-132	9	20	
1,2-Dichloropropane	98		100		70-130	2	20	
Dibromochloromethane	87		85		63-130	2	20	
1,1,2-Trichloroethane	80		77		70-130	4	20	
Tetrachloroethene	95		95		70-130	0	20	
Chlorobenzene	88		92		75-130	4	20	
Trichlorofluoromethane	100		110		62-150	10	20	
1,2-Dichloroethane	96		100		70-130	4	20	
1,1,1-Trichloroethane	99		100		67-130	1	20	
Bromodichloromethane	91		95		67-130	4	20	
trans-1,3-Dichloropropene	76		74		70-130	3	20	
cis-1,3-Dichloropropene	89		90		70-130	1	20	
1,1-Dichloropropene	93		96		70-130	3	20	
Bromoform	73		72		54-136	1	20	
1,1,2,2-Tetrachloroethane	76		76		67-130	0	20	
Benzene	96		99		70-130	3	20	
Toluene	85		87		70-130	2	20	
Ethylbenzene	84		88		70-130	5	20	
Chloromethane	110		120		64-130	9	20	
Bromomethane	68		78		39-139	14	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2318150

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - W	estborough Lab Associate	d sample(s):	01-03 Batch: W	VG1766111-3	WG1766111-4				
Vinyl chloride	92		98		55-140	6		20	
Chloroethane	84		91		55-138	8		20	
1,1-Dichloroethene	100		110		61-145	10		20	
trans-1,2-Dichloroethene	98		100		70-130	2		20	
Trichloroethene	91		93		70-130	2		20	
1,2-Dichlorobenzene	85		88		70-130	3		20	
1,3-Dichlorobenzene	86		91		70-130	6		20	
1,4-Dichlorobenzene	86		89		70-130	3		20	
Methyl tert butyl ether	91		90		63-130	1		20	
p/m-Xylene	85		90		70-130	6		20	
o-Xylene	85		90		70-130	6		20	
cis-1,2-Dichloroethene	98		100		70-130	2		20	
Dibromomethane	93		96		70-130	3		20	
1,2,3-Trichloropropane	73		72		64-130	1		20	
Acrylonitrile	100		100		70-130	0		20	
Styrene	80		85		70-130	6		20	
Dichlorodifluoromethane	93		99		36-147	6		20	
Acetone	100		100		58-148	0		20	
Carbon disulfide	97		100		51-130	3		20	
2-Butanone	99		98		63-138	1		20	
Vinyl acetate	100		100		70-130	0		20	
4-Methyl-2-pentanone	81		77		59-130	5		20	
2-Hexanone	75		74		57-130	1		20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2318150

Parameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery imits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Wes	tborough Lab Associated	sample(s): 0	1-03 Batch: Wo	G1766111-3 W	G1766111-4			
Bromochloromethane	110		110	7	0-130	0		20
2,2-Dichloropropane	100		100	6	3-133	0		20
1,2-Dibromoethane	86		82	7	0-130	5		20
1,3-Dichloropropane	81		77	7	0-130	5		20
1,1,1,2-Tetrachloroethane	87		86	6	4-130	1		20
Bromobenzene	90		94	7	0-130	4		20
n-Butylbenzene	80		84	5	3-136	5		20
sec-Butylbenzene	84		90	7	0-130	7		20
tert-Butylbenzene	88		92	7	0-130	4		20
o-Chlorotoluene	83		87	7	0-130	5		20
p-Chlorotoluene	81		84	7	0-130	4		20
1,2-Dibromo-3-chloropropane	77		78	4	1-144	1		20
Hexachlorobutadiene	91		100	6	3-130	9		20
Isopropylbenzene	86		90	7	0-130	5		20
p-Isopropyltoluene	84		89	7	0-130	6		20
Naphthalene	88		90	7	0-130	2		20
n-Propylbenzene	82		86	6	9-130	5		20
1,2,3-Trichlorobenzene	89		93	7	0-130	4		20
1,2,4-Trichlorobenzene	90		95	7	0-130	5		20
1,3,5-Trimethylbenzene	80		82	6	4-130	2		20
1,2,4-Trimethylbenzene	81		84	7	0-130	4		20
1,4-Dioxane	90		90	5	6-162	0		20
p-Diethylbenzene	85		90	7	0-130	6		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date:

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03	Batch:	WG1766111-3	WG1766111-4				
p-Ethyltoluene	85			89		70-130	5		20	
1,2,4,5-Tetramethylbenzene	84			89		70-130	6		20	
Ethyl ether	91			93		59-134	2		20	
trans-1,4-Dichloro-2-butene	88			86		70-130	2		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	102	102	70-130	
Toluene-d8	95	94	70-130	
4-Bromofluorobenzene	95	95	70-130	
Dibromofluoromethane	107	110	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW21A_040623	- Westborough	Lab Asso	ciated sample	(s): 01-03 Q	C Batch ID:	WG1766	I11-6 WG176	6111-7	QC Sample	: L2318	3150-01	Client ID:
Methylene chloride	ND	10	9.4	94		9.1	91		70-130	3		20
1,1-Dichloroethane	ND	10	9.7	97		9.2	92		70-130	5		20
Chloroform	ND	10	10	100		9.4	94		70-130	6		20
Carbon tetrachloride	ND	10	11	110		11	110		63-132	0		20
1,2-Dichloropropane	ND	10	11	110		10	100		70-130	10		20
Dibromochloromethane	ND	10	10	100		10	100		63-130	0		20
1,1,2-Trichloroethane	ND	10	34	340	Q	37	370	Q	70-130	8		20
Tetrachloroethene	0.76	10	11	102		12	112		70-130	9		20
Chlorobenzene	ND	10	9.6	96		9.5	95		75-130	1		20
Trichlorofluoromethane	ND	10	10	100		9.9	99		62-150	1		20
1,2-Dichloroethane	ND	10	9.9	99		9.9	99		70-130	0		20
1,1,1-Trichloroethane	ND	10	10	100		10	100		67-130	0		20
Bromodichloromethane	ND	10	9.1	91		8.9	89		67-130	2		20
trans-1,3-Dichloropropene	ND	10	8.8	88		8.7	87		70-130	1		20
cis-1,3-Dichloropropene	ND	10	9.5	95		9.5	95		70-130	0		20
1,1-Dichloropropene	ND	10	11	110		11	110		70-130	0		20
Bromoform	ND	10	8.2	82		8.4	84		54-136	2		20
1,1,2,2-Tetrachloroethane	ND	10	8.4	84		8.6	86		67-130	2		20
Benzene	31	10	40	90		41	100		70-130	2		20
Toluene	100	10	100	0	Q	110	100		70-130	10		20
Ethylbenzene	45	10	51	60	Q	55	100		70-130	8		20
Chloromethane	ND	10	11	110		11	110		64-130	0		20
Bromomethane	0.77J	10	8.6	86		9.2	92		39-139	7		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21A_040623	- Westborough L	₋ab Asso	ciated sample(s): 01-03 (QC Batch ID): WG17661	I11-6 WG176	6111-7	QC Sample	: L2318	3150-01	Client ID:
Vinyl chloride	ND	10	9.5	95		9.1	91		55-140	4		20
Chloroethane	ND	10	8.3	83		8.1	81		55-138	2		20
1,1-Dichloroethene	ND	10	10	100		10	100		61-145	0		20
rans-1,2-Dichloroethene	ND	10	9.8	98		9.6	96		70-130	2		20
Trichloroethene	ND	10	11	110		11	110		70-130	0		20
,2-Dichlorobenzene	ND	10	9.2	92		9.3	93		70-130	1		20
,3-Dichlorobenzene	ND	10	9.3	93		9.3	93		70-130	0		20
1,4-Dichlorobenzene	ND	10	9.2	92		9.2	92		70-130	0		20
Methyl tert butyl ether	ND	10	10	100		10	100		63-130	0		20
n/m-Xylene	180	20	190	50	Q	200	100		70-130	5		20
p-Xylene	160	20	170	50	Q	180	100		70-130	6		20
sis-1,2-Dichloroethene	ND	10	10	100		10	100		70-130	0		20
Dibromomethane	ND	10	9.6	96		9.5	95		70-130	1		20
,2,3-Trichloropropane	ND	10	12	120		12	120		64-130	0		20
Acrylonitrile	ND	10	67	670	Q	72	720	Q	70-130	7		20
Styrene	ND	20	15	75		15	75		70-130	0		20
Dichlorodifluoromethane	ND	10	8.9	89		8.7	87		36-147	2		20
Acetone	44	10	190	1460	Q	210E	1660	Q	58-148	10		20
Carbon disulfide	ND	10	9.6	96		9.4	94		51-130	2		20
2-Butanone	38	10	39	10	Q	42	40	Q	63-138	7		20
/inyl acetate	ND	10	12	120		12	120		70-130	0		20
4-Methyl-2-pentanone	ND	10	10	100		11	110		59-130	10		20
2-Hexanone	ND	10	10	100		11	110		57-130	10		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21A_040623	- Westborough	Lab Assoc	ciated sample(s): 01-03 QC	Batch ID: WG1766	111-6 WG176	6111-7	QC Sample	e: L2318	3150-01	Client ID:
Bromochloromethane	ND	10	10	100	10	100		70-130	0		20
2,2-Dichloropropane	ND	10	8.3	83	8.0	80		63-133	4		20
1,2-Dibromoethane	ND	10	9.9	99	10	100		70-130	1		20
1,3-Dichloropropane	ND	10	9.3	93	9.4	94		70-130	1		20
1,1,1,2-Tetrachloroethane	ND	10	11	110	11	110		64-130	0		20
Bromobenzene	ND	10	9.2	92	9.3	93		70-130	1		20
n-Butylbenzene	3.0	10	11	80	12	90		53-136	9		20
sec-Butylbenzene	2.5	10	11	85	12	95		70-130	9		20
ert-Butylbenzene	ND	10	9.5	95	9.6	96		70-130	1		20
o-Chlorotoluene	ND	10	8.8	88	8.1	81		70-130	8		20
o-Chlorotoluene	ND	10	8.5	85	8.5	85		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	8.0	80	8.2	82		41-144	2		20
Hexachlorobutadiene	ND	10	9.6	96	10	100		63-130	4		20
Isopropylbenzene	7.5	10	16	85	16	85		70-130	0		20
p-Isopropyltoluene	2.2J	10	11	110	12	120		70-130	9		20
Naphthalene	25	10	32	70	34	90		70-130	6		20
n-Propylbenzene	15	10	23	80	24	90		69-130	4		20
1,2,3-Trichlorobenzene	ND	10	9.2	92	9.4	94		70-130	2		20
1,2,4-Trichlorobenzene	ND	10	9.4	94	9.6	96		70-130	2		20
1,3,5-Trimethylbenzene	67	10	74	70	77	100		64-130	4		20
1,2,4-Trimethylbenzene	120	10	130	100	140	200	Q	70-130	7		20
1,4-Dioxane	ND	500	400	80	430	86		56-162	7		20
o-Diethylbenzene	51	10	57	60	Q 62	110		70-130	8		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date:

Parameter	Native Sample	MS Adde	MS ed Found	MS %Recove	ery Qu	MSD al Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21A_040623	- Westborough I	Lab A	Associated sample	e(s): 01-03	QC Batcl	n ID: WG1766	111-6 WG176	6111-7	QC Sample	e: L231	8150-01	Client ID:
p-Ethyltoluene	140	10	0 140	0	Q	150	100		70-130	7		20
1,2,4,5-Tetramethylbenzene	22	10	0 31	90		32	100		70-130	3		20
Ethyl ether	ND	10	9.6	96		9.4	94		59-134	2		20
trans-1,4-Dichloro-2-butene	ND	10	8.2	82		8.5	85		70-130	4		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	94	95	70-130
4-Bromofluorobenzene	90	90	70-130
Dibromofluoromethane	98	97	70-130
Toluene-d8	97	97	70-130

INORGANICS & MISCELLANEOUS

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date: 04/13/23

SAMPLE RESULTS

Lab ID: L2318150-01

MW21A_040623

Sample Location: 561 GREENWICH ST, NY, NY

Date Collected:

04/06/23 09:20

Date Received:

04/06/23

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
General Chemistry - Westborough Lab													
Sulfate	190		mg/l	50	6.8	5	04/11/23 10:02	04/11/23 10:02	1,9038	MCU			

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2318150

Report Date: 04/13/23

SAMPLE RESULTS

Lab ID: L2318150-03

Client ID: GWFB01_040623

Sample Location: 561 GREENWICH ST, NY, NY

Date Collected:

04/06/23 10:00

Date Received:

04/06/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
General Chemistry - Westborough Lab													
Sulfate	1.7	J	mg/l	10	1.4	1	04/11/23 10:02	04/11/23 10:02	1,9038	MCU			

L2318150

Project Name: 561 GREENWICH ST

Project Number: 190043702 Report Date: 04/13/23

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough La	b for sam	ple(s): 01,	03 Bat	tch: WC	31765180-	1			
Sulfate	1.6	J	mg/l	10	1.4	1	04/11/23 10:02	04/11/23 10:02	1.9038	MCU

Project Name: 561 GREENWICH ST Lab Number:

L2318150

Project Number: 190043702

Report Date:

Parameter	LCS %Recovery Qua	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,0	3 Batch: WG1765	180-2				
Sulfate	95	-		90-110	-		

Project Name: 561 GREENWICH ST

Project Number:

190043702

Lab Number:

L2318150

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ual Limits RPI	RPD D Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01,03	QC Batch ID	D: WG1765180-4	QC Sample: L23	318150-01 Client ID	: MW21A_040623
Sulfate	190	250	440	98	-	-	55-147 -	14

L2318150

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST

04/13/23 Project Number: 190043702 Report Date:

Parameter	Native Samp	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG1765180-3	QC Sample:	L2318150-01	Client ID:	MW21A_040623
Sulfate	190		190	mg/l	0		14

Project Name: 561 GREENWICH ST

Project Number: 190043702 **Report Date:** 04/13/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Final Temp			Frozen		
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2318150-01A	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01A1	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01A2	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01A3	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01B	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01B1	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01B2	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01B3	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01C	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01C1	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01C2	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01C3	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-01D	Plastic 120ml unpreserved	Α	7	7	4.8	Υ	Absent		SO4-9038(28)
	L2318150-01D1	Plastic 120ml unpreserved	Α	7	7	4.8	Υ	Absent		SO4-9038(28)
	L2318150-01D2	Plastic 120ml unpreserved	Α	7	7	4.8	Υ	Absent		SO4-9038(28)
	L2318150-01D3	Plastic 120ml unpreserved	Α	7	7	4.8	Υ	Absent		SO4-9038(28)
	L2318150-02A	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-02B	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-03A	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-03B	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-03C	Vial HCl preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260(14)
	L2318150-03D	Plastic 120ml unpreserved	Α	7	7	4.8	Υ	Absent		SO4-9038(28)

Project Name: 561 GREENWICH ST Lab Number: L2318150

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:561 GREENWICH STLab Number:L2318150Project Number:190043702Report Date:04/13/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Project Name:561 GREENWICH STLab Number:L2318150Project Number:190043702Report Date:04/13/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Serial_No:04132314:45

Project Name:561 GREENWICH STLab Number:L2318150Project Number:190043702Report Date:04/13/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04132314:45

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581		Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	05	Pag	e of	-	Date in		4)	6/	23	ALPHA Job # L 2318160 Billing Information)
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 56	Green Green 43702	wich St wich St	NY	NY		ASP	-A IS (1 Fi	/e) [ASP EQu	-B IS (4 File)	Same as Client Info	
Client: Lengan E	ingineering	(Use Project name as P					Reg		Requir	ement	250	121 155	Disposal Site Information	
Address: 560	W 315+SF New York 100	Project Manager: E1	zebeta	Alkins			2	NY T	OGS Standar	ds [NYP	art 375 P-51	Please identify below location of applicable disposal facilities.	of
Phone: (212) C Fax: Email: Eackin	179-5400	Turn-Around Time Standar		Due Date				NYU	estricted nrestricte Sewer D	d Use	Other		Disposal Facility: NJ NY Other:	
These samples have b	peen previously analyz	ed by Alpha					ANA	LYSIS	3				Sample Filtration	T
Other project specific	.t-menagen	nents: rentelangan.	,om 9	Imccon	nell®l	engan:le	Volatiles EPA	e-SM 4500	5				Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o .
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Colle	ction	Sample Matrix	Sampler's Initials	72	Sulfele			1.		Sample Specific Comments	- 1
18150 - 01	MWZIA_	040623	416/23		GW	MIL	×	×	\vdash	_	+		Field Filered/MS(MS)	0
-02	GWTBOI -	040623	4/6/23		QA/QL	MK	X			_	+		11-16-11-16-11-16	1
-03	GWTBOI_ GWFBOI_	040623	4/6/23	10:00	QA/QL	MR	X	X						\top
														T
														T
														_
= None	Container Code P = Plastic A = Amber Glass	Westboro: Certification No.			Cont	ainer Type	V	P		+			Please print clearly, legibl and completely. Samples	ly
= HNO ₃ = H ₂ SO ₄	V = Vial G = Glass B = Bacteria Cup	Manager Continuation N	5. MAO 15		Pr	reservative	HCL						not be logged in and turnaround time clock will start until any ambiguities	not
	C = Cube O = Other	Relinquished E	ly:	Date/T	ime	F	Receiv	ed By			Date/	Time	resolved. BY EXECUTING	G
= Na ₂ S ₂ O ₃ E = Zn Ac/NaOH = Other	E = Encore D = BOD Bottle	Ma. Hone Rob.	L ,	13	15:4	53 1	Pau Min		04 1200	06	19	3/6	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPH TERMS & CONDITIONS. (See reverse side.)	S A'S
rm No: 01-25 HC (rev. 30- ge 40 of 40	Sept-2013)	(And muren)	1AL 46	23 2	315	_ U			_	166	53	3.15	77	

ANALYTICAL REPORT

Lab Number: L2343606

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Elizabeth Adkins Phone: (212) 479-5400

Project Name: 561 GREENWICH ST

Project Number: 190043702 Report Date: 08/04/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2343606-01	MW21A_072823	WATER	561 GREENWICH ST, NY, NY	07/28/23 10:15	07/28/23
L2343606-02	GWFB01_072823	WATER	561 GREENWICH ST, NY, NY	07/28/23 09:45	07/28/23
L2343606-03	GWTB01_072823	WATER	561 GREENWICH ST, NY, NY	07/28/23 00:00	07/28/23

L2343606

Lab Number:

Project Name: 561 GREENWICH ST

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 561 GREENWICH ST Lab Number: L2343606

Project Number: 190043702 **Report Date:** 08/04/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG1810847-6/-7 MS/MSD recoveries, performed on L2343606-01, are outside the acceptance criteria for toluene (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Selly Many Ashaley Moynihan

Authorized Signature:

Title: Technical Director/Representative

Date: 08/04/23

ORGANICS

VOLATILES

07/28/23 10:15

07/28/23

None

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2343606

Date Collected:

Date Received:

Field Prep:

Report Date: 08/04/23

Lab ID: L2343606-01 D

Client ID: MW21A_072823

Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/02/23 04:39

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	1.8	J	ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10	
1,1-Dichloropropene	ND		ug/l	25	7.0	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	300		ug/l	5.0	1.6	10	
Toluene	1900		ug/l	25	7.0	10	
Ethylbenzene	300		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	ND		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	

L2343606

08/04/23

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 07/28/23 10:15

Lab Number:

Report Date:

Lab ID: L2343606-01 D

Client ID: MW21A_072823

Sample Location: 561 GREENWICH ST, NY, NY

Date Received: 07/28/23 Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	1200		ug/l	25	7.0	10	
o-Xylene	810		ug/l	25	7.0	10	
Xylenes, Total	2000		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10	
Dibromomethane	ND		ug/l	50	10.	10	
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10	
Acrylonitrile	ND		ug/l	50	15.	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	ND		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	27	J	ug/l	50	19.	10	
Vinyl acetate	ND		ug/l	50	10.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
Bromochloromethane	ND		ug/l	25	7.0	10	
2,2-Dichloropropane	ND		ug/l	25	7.0	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
1,3-Dichloropropane	ND		ug/l	25	7.0	10	
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10	
Bromobenzene	ND		ug/l	25	7.0	10	
n-Butylbenzene	ND		ug/l	25	7.0	10	
sec-Butylbenzene	ND		ug/l	25	7.0	10	
tert-Butylbenzene	ND		ug/l	25	7.0	10	
o-Chlorotoluene	ND		ug/l	25	7.0	10	
p-Chlorotoluene	ND		ug/l	25	7.0	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Hexachlorobutadiene	ND		ug/l	25	7.0	10	
Isopropylbenzene	13	J	ug/l	25	7.0	10	
p-Isopropyltoluene	ND		ug/l	25	7.0	10	
Naphthalene	81		ug/l	25	7.0	10	

Project Name: 561 GREENWICH ST Lab Number: L2343606

Project Number: 190043702 **Report Date:** 08/04/23

SAMPLE RESULTS

Lab ID: L2343606-01 D Date Collected: 07/28/23 10:15

Client ID: MW21A_072823 Date Received: 07/28/23 Sample Location: 561 GREENWICH ST, NY, NY Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	ıgh Lab						
n-Propylbenzene	24	J	ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	99		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	360		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	35		ug/l	20	7.0	10	
p-Ethyltoluene	220		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	14	J	ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	104		70-130	

L2343606

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number:

Report Date: 08/04/23

Lab ID: L2343606-02 Date Collected: 07/28/23 09:45

Client ID: GWFB01_072823 Date Received: 07/28/23 Field Prep: Sample Location: 561 GREENWICH ST, NY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/01/23 22:01

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2343606

Project Name: Lab Number: 561 GREENWICH ST

Project Number: Report Date: 190043702 08/04/23

SAMPLE RESULTS

Lab ID: L2343606-02 Date Collected: 07/28/23 09:45

Client ID: Date Received: 07/28/23 GWFB01_072823

Sample Location: Field Prep: Not Specified 561 GREENWICH ST, NY, NY

Sample Depth:

Parameter	Result	Qualifier Ur	nits RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Trichloroethene	ND	uç	g/l 0.5	0 0.18	1
1,2-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
1,3-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
1,4-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
Methyl tert butyl ether	ND	uç	g/l 2.5	5 0.70	1
p/m-Xylene	ND	uç	g/l 2.5	5 0.70	1
o-Xylene	ND	uç	g/l 2.5	5 0.70	1
Xylenes, Total	ND	uç	g/l 2.5	5 0.70	1
cis-1,2-Dichloroethene	ND	uç	g/l 2.5	5 0.70	1
1,2-Dichloroethene, Total	ND	uç	g/l 2.5	5 0.70	1
Dibromomethane	ND	uç	g/l 5.0	1.0	1
1,2,3-Trichloropropane	ND	uç	g/l 2.5	5 0.70	1
Acrylonitrile	ND	uç	g/l 5.0	1.5	1
Styrene	ND	uç	g/l 2.5	5 0.70	1
Dichlorodifluoromethane	ND	uç	g/l 5.0	1.0	1
Acetone	ND	uç	g/l 5.0	1.5	1
Carbon disulfide	ND	uç	g/l 5.0	1.0	1
2-Butanone	ND	uç	g/l 5.0	1.9	1
Vinyl acetate	ND	uç	g/l 5.0	1.0	1
4-Methyl-2-pentanone	ND	uç	g/l 5.0	1.0	1
2-Hexanone	ND	uç	g/l 5.0	1.0	1
Bromochloromethane	ND	uç	g/l 2.5	5 0.70	1
2,2-Dichloropropane	ND	uç	g/l 2.5	5 0.70	1
1,2-Dibromoethane	ND	uç	g/l 2.0	0.65	1
1,3-Dichloropropane	ND	uç	g/l 2.5	5 0.70	1
1,1,1,2-Tetrachloroethane	ND	uç	g/l 2.5	5 0.70	1
Bromobenzene	ND	uç	g/l 2.5	5 0.70	1
n-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
sec-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
tert-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
o-Chlorotoluene	ND	uç	g/l 2.5	5 0.70	1
p-Chlorotoluene	ND	uç	g/l 2.	5 0.70	1
1,2-Dibromo-3-chloropropane	ND	uç	g/l 2.	5 0.70	1
Hexachlorobutadiene	ND	uç	g/l 2.5	5 0.70	1
Isopropylbenzene	ND	uç	g/l 2.	5 0.70	1
p-Isopropyltoluene	ND	uç	g/l 2.5	5 0.70	1
Naphthalene	ND	uç	g/l 2.5	5 0.70	1

Project Name: 561 GREENWICH ST Lab Number: L2343606

Project Number: 190043702 **Report Date:** 08/04/23

SAMPLE RESULTS

Lab ID: L2343606-02 Date Collected: 07/28/23 09:45

Client ID: GWFB01_072823 Date Received: 07/28/23 Sample Location: 561 GREENWICH ST, NY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Lab Number: L2343606

Report Date: 08/04/23

Lab ID: L2343606-03 Date Collected: 07/28/23 00:00

Client ID: Date Received: 07/28/23 GWTB01_072823 Field Prep: Sample Location: 561 GREENWICH ST, NY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/01/23 22:26

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2343606

08/04/23

Project Name: 561 GREENWICH ST

Project Number: 190043702

SAMPLE RESULTS

Date Collected: 07/28/23 00:00

Lab Number:

Report Date:

Lab ID: L2343606-03

Client ID: GWTB01_072823

Sample Location: 561 GREENWICH ST, NY, NY

Date Received: 07/28/23
Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	· Westborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 561 GREENWICH ST L2343606

Project Number: Report Date: 190043702 08/04/23

SAMPLE RESULTS

Lab ID: L2343606-03 Date Collected: 07/28/23 00:00

Client ID: Date Received: 07/28/23 GWTB01_072823

Field Prep: Not Specified Sample Location: 561 GREENWICH ST, NY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	112	70-130	

L2343606

Project Name: 561 GREENWICH ST Lab Number:

Project Number: 190043702 **Report Date:** 08/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/01/23 21:24

Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-03 Batch:	WG1810847-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2343606

Lab Number:

Project Name: 561 GREENWICH ST

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/01/23 21:24

Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1810847-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2343606

Report Date: 08/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/01/23 21:24

Analyst: KJD

Parameter	Result	Qualifier Units	: RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab	for sample(s):	01-03 Batch:	WG1810847-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance
Surrogate	%Recovery Qu	•
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	108	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2343606

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1810847-3	WG1810847-4			
Methylene chloride	120		110		70-130	9	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		100		70-130	10	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	95		100		70-130	5	20	
Dibromochloromethane	81		83		63-130	2	20	
1,1,2-Trichloroethane	85		89		70-130	5	20	
Tetrachloroethene	95		95		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	89		84		62-150	6	20	
1,2-Dichloroethane	95		95		70-130	0	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	91		96		67-130	5	20	
trans-1,3-Dichloropropene	83		85		70-130	2	20	
cis-1,3-Dichloropropene	90		95		70-130	5	20	
1,1-Dichloropropene	97		96		70-130	1	20	
Bromoform	77		81		54-136	5	20	
1,1,2,2-Tetrachloroethane	89		92		67-130	3	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	90		84		64-130	7	20	
Bromomethane	75		72		39-139	4	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2343606

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: W	G1810847-3 WG1810847-4		
Vinyl chloride	71		69	55-140	3	20
Chloroethane	84		78	55-138	7	20
1,1-Dichloroethene	120		110	61-145	9	20
trans-1,2-Dichloroethene	120		110	70-130	9	20
Trichloroethene	88		87	70-130	1	20
1,2-Dichlorobenzene	98		99	70-130	1	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	99		99	70-130	0	20
Methyl tert butyl ether	90		95	63-130	5	20
p/m-Xylene	105		105	70-130	0	20
o-Xylene	105		105	70-130	0	20
cis-1,2-Dichloroethene	120		110	70-130	9	20
Dibromomethane	100		100	70-130	0	20
1,2,3-Trichloropropane	86		91	64-130	6	20
Acrylonitrile	100		100	70-130	0	20
Styrene	105		105	70-130	0	20
Dichlorodifluoromethane	110		100	36-147	10	20
Acetone	88		86	58-148	2	20
Carbon disulfide	120		110	51-130	9	20
2-Butanone	72		84	63-138	15	20
Vinyl acetate	110		110	70-130	0	20
4-Methyl-2-pentanone	78		78	59-130	0	20
2-Hexanone	68		74	57-130	8	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number: L2343606

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	01-03 Batch:	WG1810847-3	WG1810847-4			
Bromochloromethane	110		110		70-130	0	20	
2,2-Dichloropropane	100		100		63-133	0	20	
1,2-Dibromoethane	85		87		70-130	2	20	
1,3-Dichloropropane	86		88		70-130	2	20	
1,1,1,2-Tetrachloroethane	85		85		64-130	0	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	110		100		53-136	10	20	
sec-Butylbenzene	110		110		70-130	0	20	
tert-Butylbenzene	100		100		70-130	0	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	82		90		41-144	9	20	
Hexachlorobutadiene	110		110		63-130	0	20	
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	110		110		70-130	0	20	
Naphthalene	100		100		70-130	0	20	
n-Propylbenzene	110		100		69-130	10	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trichlorobenzene	100		100		70-130	0	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
1,4-Dioxane	112		110		56-162	2	20	
p-Diethylbenzene	100		100		70-130	0	20	

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Report Date:

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03	Batch:	WG1810847-3	WG1810847-4				
p-Ethyltoluene	110			100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	94			94		70-130	0		20	
Ethyl ether	100			100		59-134	0		20	
trans-1,4-Dichloro-2-butene	75			77		70-130	3		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	95	97	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	101	103	70-130
Dibromofluoromethane	104	102	70-130

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW21A_072823	- Westborough	Lab Assoc	ciated sample((s): 01-03 C	C Batch ID	: WG18108	347-6 WG1810	0847-7	QC Sample	e: L2343	606-01	Client ID:
Methylene chloride	ND	100	100	100		110	110		70-130	10		20
1,1-Dichloroethane	ND	100	100	100		110	110		70-130	10		20
Chloroform	ND	100	100	100		110	110		70-130	10		20
Carbon tetrachloride	ND	100	120	120		120	120		63-132	0		20
1,2-Dichloropropane	ND	100	92	92		100	100		70-130	8		20
Dibromochloromethane	ND	100	92	92		100	100		63-130	8		20
1,1,2-Trichloroethane	ND	100	94	94		110	110		70-130	16		20
Tetrachloroethene	1.8J	100	100	100		120	120		70-130	18		20
Chlorobenzene	ND	100	97	97		110	110		75-130	13		20
Trichlorofluoromethane	ND	100	110	110		120	120		62-150	9		20
1,2-Dichloroethane	ND	100	100	100		110	110		70-130	10		20
1,1,1-Trichloroethane	ND	100	110	110		120	120		67-130	9		20
Bromodichloromethane	ND	100	100	100		110	110		67-130	10		20
trans-1,3-Dichloropropene	ND	100	89	89		100	100		70-130	12		20
cis-1,3-Dichloropropene	ND	100	88	88		100	100		70-130	13		20
1,1-Dichloropropene	ND	100	98	98		110	110		70-130	12		20
Bromoform	ND	100	88	88		100	100		54-136	13		20
1,1,2,2-Tetrachloroethane	ND	100	86	86		100	100		67-130	15		20
Benzene	300	100	380	80		390	90		70-130	3		20
Toluene	1900	100	1900	0	Q	1900	0	Q	70-130	0		20
Ethylbenzene	300	100	370	70		390	90		70-130	5		20
Chloromethane	ND	100	88	88		92	92		64-130	4		20
Bromomethane	ND	100	96	96		100	100		39-139	4		20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW21A_072823	Westborough	Lab Asso	ciated sample(s): 01-03	QC Batch I	D: WG18108	347-6 WG181	0847-7	QC Sample	e: L2343	3606-01	Client ID:
Vinyl chloride	ND	100	87	87		88	88		55-140	1		20
Chloroethane	ND	100	99	99		110	110		55-138	11		20
1,1-Dichloroethene	ND	100	110	110		120	120		61-145	9		20
trans-1,2-Dichloroethene	ND	100	110	110		110	110		70-130	0		20
Trichloroethene	ND	100	89	89		100	100		70-130	12		20
1,2-Dichlorobenzene	ND	100	95	95		100	100		70-130	5		20
1,3-Dichlorobenzene	ND	100	96	96		110	110		70-130	14		20
1,4-Dichlorobenzene	ND	100	95	95		110	110		70-130	15		20
Methyl tert butyl ether	ND	100	97	97		110	110		63-130	13		20
o/m-Xylene	1200	200	1300	50	Q	1300	50	Q	70-130	0		20
o-Xylene	810	200	950	70		980	85		70-130	3		20
cis-1,2-Dichloroethene	ND	100	110	110		110	110		70-130	0		20
Dibromomethane	ND	100	97	97		100	100		70-130	3		20
1,2,3-Trichloropropane	ND	100	86	86		100	100		64-130	15		20
Acrylonitrile	ND	100	110	110		120	120		70-130	9		20
Styrene	ND	200	200	100		220	110		70-130	10		20
Dichlorodifluoromethane	ND	100	95	95		100	100		36-147	5		20
Acetone	ND	100	120	120		94	94		58-148	24	Q	20
Carbon disulfide	ND	100	100	100		110	110		51-130	10		20
2-Butanone	27J	100	100	100		100	100		63-138	0		20
Vinyl acetate	ND	100	120	120		130	130		70-130	8		20
4-Methyl-2-pentanone	ND	100	78	78		92	92		59-130	16		20
2-Hexanone	ND	100	70	70		80	80		57-130	13		20

Project Name: 561 GREENWICH ST

Project Number: 190043702 Lab Number:

L2343606

	Report D	Pate:	08	/04/23	
y Qual	Recovery Limits	RPD	Qual	RPD Limits	

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery G	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW21A_072823	6 - Westborough	Lab Assoc	iated sample	(s): 01-03 QC	Batch ID: WG18108	347-6 WG18108	47-7 QC Sample	: L234	3606-01 Client ID:
Bromochloromethane	ND	100	110	110	120	120	70-130	9	20
2,2-Dichloropropane	ND	100	100	100	110	110	63-133	10	20
1,2-Dibromoethane	ND	100	89	89	100	100	70-130	12	20
1,3-Dichloropropane	ND	100	86	86	100	100	70-130	15	20
1,1,1,2-Tetrachloroethane	ND	100	100	100	120	120	64-130	18	20
Bromobenzene	ND	100	97	97	110	110	70-130	13	20
n-Butylbenzene	ND	100	96	96	110	110	53-136	14	20
sec-Butylbenzene	ND	100	98	98	110	110	70-130	12	20
ert-Butylbenzene	ND	100	97	97	110	110	70-130	13	20
o-Chlorotoluene	ND	100	90	90	100	100	70-130	11	20
o-Chlorotoluene	ND	100	95	95	110	110	70-130	15	20
,2-Dibromo-3-chloropropane	ND	100	90	90	96	96	41-144	6	20
Hexachlorobutadiene	ND	100	100	100	120	120	63-130	18	20
sopropylbenzene	13J	100	110	110	120	120	70-130	9	20
o-Isopropyltoluene	ND	100	100	100	120	120	70-130	18	20
Naphthalene	81	100	200	119	210	129	70-130	5	20
n-Propylbenzene	24J	100	120	120	130	130	69-130	8	20
,2,3-Trichlorobenzene	ND	100	100	100	110	110	70-130	10	20
1,2,4-Trichlorobenzene	ND	100	100	100	110	110	70-130	10	20
,3,5-Trimethylbenzene	99	100	190	91	200	101	64-130	5	20
1,2,4-Trimethylbenzene	360	100	440	80	450	90	70-130	2	20
1,4-Dioxane	ND	5000	5400	108	4800	96	56-162	12	20
o-Diethylbenzene	35	100	140	105	150	115	70-130	7	20

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ery Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW21A_072823	- Westborough	Lab Assoc	iated sample	(s): 01-03	QC Batch ID): WG18108	347-6 WG1810	847-7	QC Sample	: L2343	3606-01	Client ID:
p-Ethyltoluene	220	100	300	80		320	100		70-130	6		20
1,2,4,5-Tetramethylbenzene	14J	100	130	130		130	130		70-130	0		20
Ethyl ether	ND	100	94	94		100	100		59-134	6		20
trans-1,4-Dichloro-2-butene	ND	100	64	64	Q	74	74		70-130	14		20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	101	98	70-130	_
4-Bromofluorobenzene	99	99	70-130	
Dibromofluoromethane	100	97	70-130	
Toluene-d8	100	100	70-130	

INORGANICS & MISCELLANEOUS

Project Name: 561 GREENWICH ST

Project Number: 190043702 Lab Number:

L2343606

Report Date:

08/04/23

SAMPLE RESULTS

Lab ID: L2343606-01

MW21A_072823

Client ID:

Date Collected:

07/28/23 10:15

Sample Location: 561 GREENWICH ST, NY, NY

Date Received:

07/28/23

Field Prep:

None

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Sulfate	110		mg/l	50	6.8	5	08/02/23 15:00	08/02/23 15:00	1,9038	MRW

Project Name: 561 GREENWICH ST

Project Number: 190043702

Lab Number:

L2343606

Report Date:

08/04/23

SAMPLE RESULTS

Lab ID:

L2343606-02

GWFB01_072823

Sample Location: 561 GREENWICH ST, NY, NY

Date Collected:

07/28/23 09:45

Date Received:

07/28/23

Field Prep:

Not Specified

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Sulfate	2.0	J	mg/l	10	1.4	1	08/02/23 15:00	08/02/23 15:00	1,9038	MRW

L2343606

Project Name: 561 GREENWICH ST

and Plank Analysis

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough La	b for sam	ple(s): 01	02 Ba	tch: WC	G1810782-	1			
Sulfate	1.7	J	mg/l	10	1.4	1	08/02/23 15:00	08/02/23 15:00	1.9038	MRW

Project Name: 561 GREENWICH ST

Lab Number:

L2343606

Project Number: 190043702

o. onez....o.

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG1810	782-2				
Sulfate	95		-		90-110	-		

Project Name: 561 GREENWICH ST

Project Number:

190043702

Lab Number: L2343606 Report Date: 08/04/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recover al Limits	,	RPD Qual Limits
General Chemistry - Westbor	rough Lab Asso	ciated samp	ole(s): 01-02	QC Batch IE	D: WG1810782-4	QC Sample: L234	13606-01 C	Client ID:	MW21A_072823
Sulfate	110	200	310	100	-	-	55-147	-	14

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 561 GREENWICH ST L2343606

08/04/23 Project Number: 190043702 Report Date:

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1810782-3	QC Sample:	L2343606-01	Client ID:	MW21A_072823
Sulfate	110		110	mg/l	0		14

Project Name: 561 GREENWICH ST

YES

Project Number: 190043702 **Report Date:** 08/04/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2343606-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01A1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01A2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01B1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01B2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01C1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01C2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-01D	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-9038(28)
L2343606-01D1	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-9038(28)
L2343606-01D2	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-9038(28)
L2343606-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-02D	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-9038(28)
L2343606-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2343606-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Project Name: 561 GREENWICH ST Lab Number: L2343606

Project Number: 190043702 **Report Date:** 08/04/23

GLOSSARY

Acronyms

EPA

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:561 GREENWICH STLab Number:L2343606Project Number:190043702Report Date:08/04/23

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Project Name:561 GREENWICH STLab Number:L2343606Project Number:190043702Report Date:08/04/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:561 GREENWICH STLab Number:L2343606Project Number:190043702Report Date:08/04/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Διрна	NEW JERSEY CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105				e f	Date Rec'd 1/28/23					3	ALPHA JOB# 12343606	
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: 5'61 Greenwich St. Project Location: 561 Greenwich St., NY, NY					Deliverables NJ Full / Reduced EQuIS (1 File) Sther ASP-B						Billing Information Same as Client Info	
Client Information		Project # 190043702						NAME OF TAXABLE PARTY.	AND DESCRIPTION OF THE PERSON.	CAL STREET		Carrier and Carrie		
Client: Lang		(Use Project name as Project #)						latory Rec	Service of the servic			Site Information		
Address: 360 V		Project Manager: Eliza Geth Adkins						SRS Res				Is this site impacted by Petroleum? Yes		
Suite 8, NY	NY 10001	ALPHAQuote #:						SRS Imp						
Phone: (2/2) 47	19-5400	Turn-Around Time						NJ Ground Water Quality Standards					Petroleum Product:	
Fax:		Standard Due Date:						NJ IGW SPLP Leachate Criteria						
Email: EadKins	Q. Laingon . com						DOther NY TOUS							
These samples have b						ANALYSIS						Sample Filtration		
For EPH, selection is REQUIRED: Category 1 Category 2	For VOC, selection is REQUIRED: 1,4-Dioxane 8011	Other project specific CC: Jfrcy Please specify Metals Bata manage	requirements/ DL9 19 or TAL.	comments: gan: 00 angan.	om E	†	JOS-8-5001	5.4					Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID		-	Collection			Sampler's	701	7	1 1					
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	12	N				12	Sample Specific Comments	
43606 - 01	11/1/2/4	012823	7/28/23	10:15	aw	JF	X	×					MSIMSD &	
02	MW21A- GWA301L FIW TBON	072823		9:45	AQ	JP	×	X						
03	Tily TROM	077873	1		AQ	SP	X							
- 05	PI-V IDCOM	2072023	Today 4								+		No Field Filter	
	17												ACIE ON Agreem	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification No: MA015				atainer Type Preservative							Please print clearly, legibly and completely. Samples car not be logged in and turnaround time clock will not start until any ambiguities are	
F = MeOH	C = Cube	Relinquished	Time	Time F		Received By:			Date/ Time		resolved. BY EXECUTING			
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	Paul Massella 7/3/8			and the second s	ul Mazzella			7/28/33 1114			THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S 'TERMS & CONDITIONS. (See reverse side.)		
Form No: 01-14 HC (rev. 3)	0-Sept-2013)	1 Km - Meller	2 3/2	0153	223	PINC	-11	1-	1128	103	105)		