Site Characterization Study Report for the Former West 18th Street Gas Works Manhattan, New York VCA Site # V00530-2

Prepared For:

Consolidated Edison Company of New York, Inc. 31-01 20th Avenue Long Island City, NY 11105-2048

Prepared By:

TRC Environmental Corporation 1200 Wall Street West Lyndhurst, New Jersey 07071

January 2006

Site Characterization Study Report for the Former West 18th Street Gas Works

Table of Contents

]	DESC	CRIPTION	<u>PAGE</u>
E	XECU	TIVE	E SUMMARY	E-1
1		INT	RODUCTION	1
	1.1	Proi	ject Background	1
	1.2		ject Objectives	
	1.3		S Report Outline	
2	1.0		E BACKGROUND	
	2.1		Description	
	2.2		rent Land Use and Zoning	
	2.3		History, Process Operations and Uses	
	2.3		Pre-MGP Ownership and Site Operations	
	2.3		Active MGP History	
	2.3		Post-MGP Ownership and Use	
	2.4		Operations	
	2.5		vious/Other Investigations	
	2.5		Site Investigation of Block 689, Lot 17	
	2.5	5.2	Geotechnical Investigation Block 689, Lot 17	14
	2.5	5.3	Site Investigation Tax Block 690, Lot 12	16
	2.5		Site Investigation Tax Block 715, Lot 59	
	2.5		Route 9A Reconstruction Project	
	2.6		ironmental Records Search	
	2.7	Regi	ional Geology/Hydrogeology	21
3		SITI	E CHARACTERIZATION SCOPE OF WORK	22
	3.1	Und	lerground Utility Clearance	22
	3.2	Com	nmunity Air Monitoring	23
	3.3	Subs	surface Soil Sampling	23
	3.3	3.1	Exploratory Test Pits	23
	3.3		Soil Borings	
	3.4		nitoring Well Installation and Development	
	3.5		undwater Sampling	
	3.6		and Groundwater Analyses	
	3.7	_	llity Assurance / Quality Control	
	3.8		V Management	
	3.9		veying	
	3 10	Site	Restoration	29

	3.11	Summary	of Changes from the Approved SCS Work Plan	29
4		RESULT	S	32
	4.1	Data Usa	bility Summary Reports and QA/QC Samples	32
	4.2		rific Geology	
	4.3		Summary of Findings	
	4.3		nmary of Field Observations	
	4.3		alytical Results for Subsurface Soil	
			Volatile Organic Compounds	
		4.3.2.2	Semi-Volatile Organic Compounds	36
			Inorganics	
		4.3.2.4	Fingerprint Results	37
	4.3	.3 Ana	alytical Results for Groundwater	38
		4.3.1.1	Volatile Organic Compounds	38
		4.3.1.2	Semi-Volatile Organic Compounds	38
		4.3.1.3	Inorganics	38
	4.4	Area 2 –	Summary of Findings	38
	4.4	.1 Sur	nmary of Field Observations	39
	4.4		alytical Results for Subsurface Soil	
			Volatile Organic Compounds	
			Semi-Volatile Organic Compounds	
		4.4.2.3	Inorganics	43
			Pesticides, Herbicides, and PCBs	
		4.4.2.5	C 1	
	4.4		oundwater Analytical Results and Field Measurements	
		4.4.3.1	Volatile Organic Compounds	
			Semi-Volatile Organic Compounds	
		4.4.3.3	$\boldsymbol{\mathcal{E}}$	
	4.5			
			nmary of Field Observations	
	4.5		alytical Results for Subsurface Soil	
			Volatile Organic Compounds	
			Semi-Volatile Organic Compounds	
			Inorganics	
			Pesticides, Herbicides, and PCBs	
	4.5		oundwater Analytical Results and Field Measurements	
		4.5.3.1	Volatile Organic Compounds	
		4.5.3.2	Semi-Volatile Organic Compounds	
		4.5.3.3	Inorganics	
	4.6			
	4.6		mmary of Field Observations	
	4.6		alytical Results for Subsurface Soil	
		4.6.2.1	Volatile Organic Compounds	
		4.6.2.2	Semi-Volatile Organic Compounds	
		4.6.2.3	Inorganics	
	4.6		oundwater Analytical Results and Field Measurements	
		4.6.3.1	Volatile Organic Compounds	52

		4.6.3.2	Semi-Volatile Organic Compounds	52		
		4.6.3.3	Inorganics	52		
	4.7	Area 5	-	52		
	4.7	.1 Sur	nmary of Field Observations	53		
	4.7	.2 An	alytical Results for Subsurface Soil	54		
		4.7.2.1	Volatile Organic Compounds	54		
		4.7.2.2	Semi-Volatile Organic Compounds	55		
			Inorganics			
	4.7		oundwater Analytical Results and Field Measurements			
		4.7.3.1	Volatile Organic Compounds			
		4.7.3.2	Semi-Volatile Organic Compounds			
		4.7.3.3	Inorganics	56		
	4.8					
			nmary of Field Observations			
	4.8		alytical Results for Subsurface Soil			
			Volatile Organic Compounds			
			Semi-Volatile Organic Compounds			
	4.8.2.3 Inorganics					
	4.8.3 Groundwater Analytical Results and Field Measurements					
			e Summary of Organic Compounds Detected in Subsurface Soil			
	4.9		al VOCs			
	4.9		al SVOCs			
			ater Flow			
			ity Air Monitoring Results			
	4.12	Summary	of Findings	62		
5		QUALIT	ATIVE EXPOSURE ASSESSMENT	67		
	5.1	Exposure	Pathway Assessment	67		
	5.2	Contamir	nant Source	68		
	5.3	Contamir	nant Release and Transport Mechanisms	68		
	5.4	Points of	Exposure	68		
	5.5	Receptor	Populations	68		
	5.6	Routes of	Exposure	69		
	5.7	Identifica	tion of Chemicals of Concern	70		
	5.8	Surface S	oil	70		
	5.9	Subsurfac	ce Soils	70		
	5.10		ater			
	5.11	Sub-Slab	Vapors	70		
6		CONCLU	JSIONS AND RECOMMENDATIONS	73		
7		REFERE	NCES	74		

FIGURES

- 1. U.S.G.S. 7.5-Minute Quadrangle Map, Jersey City, NJ (Photorevised 1981)
- 2. Site Map Showing Historical MGP Features
- 3 Site Map Showing Current Layout and Tax Block and Lot Numbers
- 4. Site Characterization Study Sample Location Map
- 4A. Cross Section of Subsurface Stratigraphy and Field Observations
- 5. Summary of VOCs, SVOCs, and Inorganics Detected in Subsurface Soil Area 1
- 6. Summary of VOCs, SVOCs, and Inorganics, Detected in Subsurface Soil Area 2
- 7. Summary of VOCs, SVOCs, and Inorganics, Detected in Subsurface Soil Area 3
- 8. Summary of VOCs, SVOCs, and Inorganics Detected in Subsurface Soil Area 4
- 9. Summary of VOCs, SVOCs, and Inorganics Detected in Subsurface Soil Area 5
- 10. Summary of VOCs, SVOCs, and Inorganics Detected in Subsurface Soil Area 6
- 11. Summary of VOCs, SVOCs, and Inorganics Detected in Groundwater
- 12. Summary of Total VOCs in Subsurface Soil
- 13. Summary of Total SVOCs in Subsurface Soil
- 14. Groundwater Elevation Contour and Flow Map

TABLES

Summary of Site Characterization Study Field Program

- 4-1 Summary of Site Characterization Study Field Program for Area 1
- 4-2 Summary of Site Characterization Study Field Program for Area 2
- 4-3 Summary of Site Characterization Study Field Program for Area 3
- 4-4 Summary of Site Characterization Study Field Program for Area 4
- 4-5 Summary of Site Characterization Study Field Program for Area 5
- 4-6 Summary of Site Characterization Study Field Program for Area 6

Site Characterization Study Analytical Results and Field Observations

- 4-7 Summary of Field Work and Observations in Area 1
- 4-8 Summary of Volatile Organic Compounds in Subsurface Soil Area 1
- 4-9 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 1
- 4-10 Summary of Metals and Cyanide in Subsurface Soil Area 1
- 4-11 Summary of Field Work and Observations in Area 2
- 4-12 Summary of Volatile Organic Compounds in Subsurface Soil Area 2
- 4-13 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 2
- 4-14 Summary of Metals and Cyanide in Subsurface Soil Area 2
- 4-15 Summary of Pesticides, Herbicides and PCBs in Subsurface Soil Area 2
- 4-16 Summary of Field Work and Observations in Area 3
- 4-17 Summary of Volatile Organic Compounds in Subsurface Soil Area 3
- 4-18 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 3
- 4-19 Summary of Metals and Cyanide in Subsurface Soil Area 3
- 4-20 Summary of Pesticides, Herbicides and PCBs in Subsurface Soil Area 3
- 4-21 Summary of Field Work and Observations in Area 4
- 4-22 Summary of Volatile Organic Compounds in Subsurface Soil Area 4
- 4-23 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 4
- 4-24 Summary of Metals and Cyanide in Subsurface Soil Area 4
- 4-25 Summary of Field Work and Observations in Area 5
- 4-26 Summary of Volatile Organic Compounds in Subsurface Soil Area 5
- 4-27 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 5
- 4-28 Summary of Metals and Cyanide in Subsurface Soil Area 5

- 4-29 Summary of Field Work and Observations in Area 6
- 4-30 Summary of Volatile Organic Compounds in Subsurface Soil Area 6
- 4-31 Summary of Semi-Volatile Organic Compounds in Subsurface Soil Area 6
- 4-32 Summary of Metals and Cyanide in Subsurface Soil Area 6
- 4-33 Summary of Volatile Organic Compounds in Groundwater
- 4-34 Summary of Semi-Volatile Organic Compounds in Groundwater
- 4-35 Summary of Metals and Cyanide in Groundwater
- 4-36 Monitoring Well Construction Details and Groundwater Elevations

APPENDICES

- A. Boring, Test Pit, and Monitoring Well Construction Logs
- B. Data Usability Summary Reports
- C. Laboratory Analytical Data Packages (Compact Discs)
- D. Site Photographs taken during Site Characterization Study
- E. Remedial Investigation Work Plan

EXECUTIVE SUMMARY

The former West 18th Street Gas Works Site (Site), which is located in the Chelsea section of Manhattan, New York, was investigated by the Consolidated Edison Company of New York, Inc. (Con Edison) to determine if structures of the former gas plant or residual byproducts from the gas production process are present at the Site. The former Site, which operated from approximately 1833 to approximately 1914 when the last of the gas holders were demolished, occupied a four-block area bounded by West 16th and West 20th Streets between 10th Avenue and the bulkhead along the Hudson River. In addition, a small parcel located along the south side of West 18th Street, west of 10th Avenue, contained two gas holders. The plant included the gas works, which was located on the block between West 17th and West 18th Streets, a total of eleven above-ground gas holders previously located on various parcels, and coal storage areas. The former plant site currently contains commercial and industrial businesses that include storage warehouses, office buildings, art galleries, commercial studios and public parking lots.

Site characterization study (SCS) activities were performed in accordance with a Voluntary Cleanup Agreement (VCA) (Index #D2-0003-02-08), between Con Edison and the New York State Department of Environmental Conservation (NYSDEC), and in accordance with the NYSDEC-approved SCS Work Plan. Due to the number of property owners involved and access conditions, the SCS was conducted in a discontinuous manner from April 2004 to November 2005.

For ease of discussion, the Site has been segmented in to six areas, as designated below.

FORMER WEST 18 th STREET GAS WORKS						
HISTORICAL MGP STRUCTURES						
DESIGNATED	HISTORICAL STRUCTURES					
AREAS						
Two former gas holders (Designated Gas Holder No. 1 an						
Area 1	No. 2), located on the south side of West 18 th Street between 9 th and 10 th Avenues.					
Area 2	Two former gas holders (Designated Gas Holder No. 3 and Gas Holder					
	No. 4), and the former Gas Light Company pipe and store yards.					
Located between West 19 th and 18 th Streets and between 10 th Aven						
and the bulkhead along the Hudson River.						

	FORMER WEST 18 th STREET GAS WORKS						
	HISTORICAL MGP STRUCTURES						
DESIGNATED AREAS	HISTORICAL STRUCTURES						
Area 3	Former structures include a retort house, purifying house, workshops, and laboratory. Located between West 17 th and 18 th Streets and between 10 th Avenue and the bulkhead of the Hudson River.						
Area 4	The former Gas Light Company coal yards. Located between West 16 th and 17 th Streets and between Route 9A and 10 th Avenue.						
Area 5	Three former gas holders (Designated Gas Holder No. 5, Gas Holder No. 6, and Gas Holder No. 7), located between West 19 th and 20 th Streets and between the bulkhead along the Hudson River and 10 th Avenue.						
Area 6	Four former gas holders (Designated Gas Holders No. 8 through No. 11), centrally located along current Route 9A, between Area #4 and the bulkhead along the Hudson River.						

The following table summarizes the types and numbers of investigation activities that were conducted in each of the six Areas of the Site.

Although the SCS entailed a significant number of sampling locations within the Site, additional investigation is required to characterize and fully delineate the subsurface soil and groundwater contamination present there. A proposed remedial investigation strategy is presented as an appendix to this SCS Report.

SCS Activity Description	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6
Exploratory Test Pits	2	1	2	0	1	0
Soil Boring Locations	7	13	15	2	12	3
Soil Samples (Including Duplicates)	33	58	61	11	39	10
Monitoring Wells	2	3	2	1	3	0
Groundwater Samples (Including Duplicates)	2	4	1	1	3	0
Collection of NAPL Samples	2	1	0	0	0	0

The key findings from the Site Characterization Study are summarized below.

- Soils encountered beneath the Site consist of four primary stratigraphies, overlying bedrock and consisted of urban fill, an upper sand unit, a low-permeability silty-clay unit, and a lower sand unit. Auger refusal, believed to be due to bedrock, occurred at depths ranging from approximately 45 feet below ground surface (ft bgs) in SB-07 to 86 ft bgs in SB-30 and SB-24. Based upon depths to auger refusal, bedrock appears to dip from the northeast to the west/southwest. Bedrock core samples were not collected as part of this SCS. The silty-clay unit is absent or discontinuous to the east (upgradient) of the majority of the former MGP site (i.e., east of 10th Avenue). Depth to top of the silty-clay ranged from approximately 20 ft bgs in the east to approximately 41 ft bgs in the western portions of the Site.
- Groundwater occurs in the shallow water table aquifer and deeper aquifer. The water table generally resides in the fill unit and the deeper aquifer occurs in the lower sand unit. The deep aquifer is effectively isolated from the water table aquifer beneath the former MGP by the low permeability silt/clay unit.
- The shallow water table occurs at depths between approximately 5 and 11 ft bgs and groundwater in this aquifer generally flows from east to west towards the Hudson River.
- Impacted subsurface soil, where detected, was almost exclusively present in the urban fill and upper sand units above the silty-clay unit. With one exception, no impacts were detected in the deeper aquifer.
- The presence of former MGP related structures were identified in the subsurface in Areas 1, 2, 3 and 5. Gas holder foundations were encountered in Areas 1, 2 and 5. Retort House, Laboratory and Scrubber foundations were encountered in Area 3.
- Physical evidence of both petroleum and MGP-related contamination was detected in subsurface soil in Areas 1, 2, 3, 4 and 5. Evidence of contamination included odors, staining, sheen, oil-like material (OLM), tar-like material (TLM), light non-aqueous phase liquid (LNAPL) and or dense non-aqueous phase liquid (DNAPL). Where detected, MGP impacts were typically encountered in discrete bands within the 10-foot interval above the top of the silty-clay unit.
- All petroleum impacts detected are not attributed to operations of the former MGP, but rather are due to operations of on-site underground storage tanks (USTs) used to store petroleum or to documented petroleum spills in adjacent and upgradient off-site areas.
- Approximately five feet of coal tar DNAPL was measured in groundwater monitoring well
 MW-24B (screened in the deep aquifer) prior to groundwater sampling. During drilling and

soil sampling at this well location, no evidence of contamination was detected. The source and mechanism for the occurrence of the DNAPL in this well is not known.

- The concentrations of volatile organic compounds (VOCs), Total VOCs, semi-volatile organic compounds (SVOCs), Total SVOCs and several metals detected in subsurface soil exceeded their NYSDEC recommended soil cleanup objectives (RSCOs) in all Areas of the Site. It is noted that some of the elevated VOCs and SVOCs and the majority, if not all, of the elevated metals concentrations are attributed to the ambient quality of soil that constitutes the urban fill, and are not related to the former MGP.
- The concentrations of VOCs, SVOCs, several metals, and total cyanide detected in shallow groundwater exceeded their NYSDEC ambient water quality standards and guidance values (AWQSGVs) in Area 1. In Areas 3 and 5 only VOCs and SVOCs were detected at elevated concentrations. Only one metal and one VOC were detected at elevated concentrations in Area 2. In area 4 only one metal was detected in groundwater at an elevated concentration. In Area 1 the elevated VOCs and SVOCs concentrations are attributed almost exclusively to documented petroleum releases from existing and former USTs that were operated in this Area and are generally not due to operations of the former gas holders here.
- With the exception of coal tar in monitoring well MW-24B (discussed above), no MGPrelated impacts were detected in the deep groundwater.
- The results of the qualitative exposure assessment showed that there are no potential risks of exposure to subsurface soil and groundwater under the current site conditions. Under the current site configuration, all surfaces at the former MGP Site are covered by concrete or asphalt pavement or concrete building foundations. However maintenance, construction and or utility workers may be exposed through direct contact and or inhalation of vapors and or airborne dust containing contaminants of interest.

Recommendations and Conclusions

Residuals from the operations of the former MGP have been identified at the former West 18th Street Gas Works Site. Elevated concentrations of VOCs, SVOCs and metals were detected in subsurface soil and groundwater. Based on these subsurface conditions a Remedial Investigation (RI) will be conducted at the Site to delineate impacts identified during the SCS. A RI Work Plan is provided in Appendix E of this SCS Report.

1 INTRODUCTION

This report (Report) presents the results of the Site Characterization Study (SCS) that was conducted by TRC Environmental Corporation (TRC) on behalf of the Consolidated Edison Company of New York, Inc. (Con Edison) for the former West 18th Street Gas Works Site, located on the lower west side of Manhattan (Chelsea section). The site is a former manufactured gas plant (MGP) that was operated by one of Con Edison's predecessor companies through the early 1900's. Figure 1 shows the Site location. The SCS for the properties that once comprised the grounds of the former West 18th Street Gas Works (the "Site") was conducted pursuant to the terms of Voluntary Cleanup Agreement (VCA) Index # D2-0003-02-08 (the VCA) between Con Edison and the New York State Department of Environmental Conservation (NYSDEC). The SCS field investigation activities for the Site were carried out and completed in accordance with a NYSDEC-approved Site Characterization Work Plan (SCSWP) that was prepared for Con Edison by TRC.

1.1 Project Background

In 2002, Con Edison entered a VCA with the NYSDEC. Under the agreement, Con Edison agreed to investigate and, if necessary, remediate former MGP sites that were operated by its predecessor companies. The West 18th Street former MGP was identified as one of these former sites. Therefore, in compliance with the VCA, Con Edison implemented a SCS at this Site. The details of the SCS are presented herein.

1.2 Project Objectives

The objectives of the SCS were to:

- Determine the presence or absence of residues related to operations of the former MGP;
- Determine if remnant structures of the former MGP are present in the subsurface at the Site; and
- Determine the need for additional site investigation, if any.

As a initial step in satisfying these objectives TRC, on behalf of Con Edison prepared the *Site Characterization Study Work Plan for the Former West 18th Street MGP Site, Manhattan, New York* [SCSWP] (TRC, 2003). The workplan was developed based on the *West 18th Street Manufactured Gas Plant Site History Report* [SHR] (Parsons, 2002), the draft NYSDEC Guidelines for Site Characterization and Remedial Investigation (Draft NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, 2002) and observations made during

a site reconnaissance conducted by Con Edison and TRC in August, 2003. The SCS Work Plan was approved by NYSDEC in February 2004.

1.3 SCS Report Outline

The remainder of this Report is organized as follows:

Section 2.0 outlines the Site Background, including a description of the Site and adjoining properties, current land use and zoning, Site history and ownership, regional geologic and hydrogeologic conditions, findings of previous Site investigations, and the findings of the environmental records search performed by Parsons on behalf of Con Edison.

Section 3.0 provides descriptions of the key aspects of the Site Characterization Study. For the purposes of this Report, the Site has been divided into six Areas as defined below. Note that, with the exception with the adjunct parcel (designated Area 1), all areas are bound on the east and by 10th Avenue and on the west by 11th Avenue (as it existed when the plant was operating – See Figure 2).

Area Number	Current Boundaries	Tax Block and Lot	Key MGP Features
1	Along West 18 th Street between 9 th and 10 th Avenues	Block 715, Lot 59	Gas Holders No. 1 and No. 2
2	Between West 18 th and West 19 th Streets, from 10 th Avenue westward to the bulkhead of the Hudson River	,	Gas Holders No. 3 and No. 4, Pipe and Storage Yards
3	Between West 17 th and West 18 th Streets, from 10 th Avenue westward to the bulkhead of the Hudson River	Block 689, Lot 17; a portion of Block 622	
4	Between West 16 th and West 17 th Streets, from 10 th Avenue westward to Route 9A	Block 688, Lots 1001 and 1002	Coal Yard

Area Number	Current Boundaries	Tax Block and Lot	Key MGP Features
5	The western portion of the block between West 19 th and West 20 th Streets, westward to the bulkhead along the Hudson River	Block 691, Lots 1 and 11; a portion of Block 622	Gas Holders No. 5, No. 6, and No. 7
6	A portion of Route 9A westward to the bulkhead along the Hudson River, from West 16 th Street to West 17 th Street	A portion of Block 662	Gas Holders No. 8, No. 9, No. 10, and No. 11

Section 4.0 presents site-specific geologic and hydrogeologic information, and discusses the field observations and analytical data in comparison to the applicable NYSDEC regulatory standards.

Section 5.0 presents the qualitative exposure assessment, which consists of characterizing the exposure setting (including the physical environment and potentially exposed human populations), identifying exposure pathways, and evaluating contaminant fate and transport.

Sections 6.0 presents the conclusions and recommendations developed in consideration of the findings and observations discussed in Section 4.0.

Section 7.0 presents the references used in preparation of this SCS Report.

2 SITE BACKGROUND

A detailed summary of the Site Background was developed by Parsons for Con Edison, and is presented in the August 2002 MGP Site History Report (SHR). That report was prepared based on Parson's review of available data and records for the Site with respect to both historical operations and current Site conditions. A summary description of the information presented in the SHR, and supplemented by additional information, is provided below. The Site background presented in the SHR was supplemented present-day conditions observed by Con Edison and TRC during a site walk on August 5, 2003.

2.1 Site Description

The former West 18th Street Gas Works is located in the Borough of Manhattan, New York City and New York County, New York (Figure 1). As is recorded in the SHR and the VCA, thirteen present-day Blocks/Lots comprise the former MGP Site, which covers portions of five modern city blocks, parts of Route 9A, and parts of the Chelsea Piers (Figure 3) along the Hudson River bulkhead. Specifically, the former MGP includes:

- Block 688, tax Lots 1001 and 1002 (entire block bounded by West 16th Street, West 17th Street, 10th Avenue and Route 9A);
- Block 689, tax Lot 17 (entire block bounded by West 17th Street, West 18th Street, 10th Avenue and Route 9A);
- Block 690, tax Lots 12, 20, 29, 40, 42, and 54 (entire block [except tax Lot 46] bounded by West 18th Street, West 19th Street, 10th Avenue and Route 9A);
- Block 691, tax Lots 1 and 11 (western end of block bounded by West 19th Street, West 20th Street, 10th Avenue and Route 9A);
- Block 715, tax Lot 59 (northwestern area of block bounded by West 17th Street, West 18th Street, 9th Avenue and 10th Avenue);
- The line of Route 9A between West 16th Street and West 20th Street (formerly parts of Blocks 688, 689, 690 and 691); and
- Portions of the Chelsea Piers (Piers 59, 60, 61 and 62) designated Block 662, (formerly part of Blocks 666, 688, and 689) along the Hudson River bulkhead.

The western ends of Blocks 688, 689, 690, and 691 were truncated for the inland extension of the Hudson River piers (now designated Block 662, City 3, 7, 11, 16, 19, and 62) and the reconfiguration of 11th Avenue and Marginal Street in the early twentieth century, and the later construction of the Route 9A during the 1920s and 1930s. A major reconstruction project for segments of Route 9A took place in the vicinity of the Site from 1996 to 2001. Block 666, a wedge-shaped area of the gas plant formerly located west of present-day Blocks 688, 689, and 690 along the then bank of the Hudson River, was condemned when the piers were extended inland. It should be noted that the existing tax Lots are an amalgam of smaller real estate lots, which were historically sold to the Manhattan Gas Light Company (one of Con Edison's

predecessor companies) by individual owners. Figure 3 shows the current street configuration with an overlay of the former MGP structures (based on historical maps and drawings (e.g., Sanborn Fire Insurance maps, Viele maps, Beers maps, etc.) and aerial photographs.

2.2 Current Land Use and Zoning

Within the general geographic area of the Site, property usage is light commercial, light industrial, local service district, and residential. All of the tax Lots contained on the Blocks (688, 689, 690, 691, and 715) that comprise the former MGP Site are zoned as M1-5 and are defined as Light Manufacturing District - High Performance. The Site usage includes storefront retail facilities to the east and west and a sports/entertainment complex located to the west and adjacent to the Site. A mixture of commercial office/warehouse facilities, art galleries and residential properties are located to the north and adjacent to the Site. An office facility and high-rise apartment building are located to the south. Details of current land use are described in the following paragraphs.

No aboveground remnants of MGP-related structures or by-products were observed during the site walk.

2.3 Site History, Process Operations and Uses

A summary of the Site history, ownership and use based on the SHR, is presented below chronologically as pre-, active, and post-MGP periods. In addition to the title search results, Sanborn Insurance Maps from 1895 to 1996 and other historical maps and atlases were used to develop the chain of ownership and evolution of site operations. A complete and tabular description of the real estate property transfers for each block/lot, as of Summer 2002, is included in the SHR (Parsons, August 2002).

2.3.1 Pre-MGP Ownership and Site Operations

The West 18th Street Gas Works property housed various structures prior to its use as a MGP, as described below by location and or present-day Tax Block number. Note that 11th Avenue was later replaced by Route 9A, and 13th Avenue was destroyed when the Hudson River shoreline/bulkhead was re-aligned.

Block 688 (bounded by West 16th and West 17th Streets, 10th and 11th Avenues)

As described above, Block 688 was completely under water until the 1830s, when landfilling began west of 10th Avenue. By the late 1830s and early 1840s the eastern half of the block, now reclaimed from the river, supported two houses along 10th Avenue (Assessed Valuation of Real Estate 1836 through 1842). By 1857, there were fifteen houses along 10th Avenue; six houses, a

stone yard, and two sheds on the south side of West 17th Street; and two houses east of 11th Avenue (Assessed Valuation of Real Estate 1857). These structures are depicted on the 1852 Dripps map. On the eastern end of the block, various residences, shops, a "Whiting Factory," a wagon factory, and a wood yard appeared on the 1859 Perris and Company map and the 1869 Perris and Browne map.

Block 689 (bounded by West 17th and West 18th Streets, 10th and 11th Avenues)

Housed little or no development prior to its use as an MGP. Once the eastern end of the block had been filled, the Manhattan Gas Light Company purchased the lots along West 18th Street and part of 10th Avenue in 1833 from various owners. Concurrently, individuals bought lots and constructed five houses at the southeast end of the block, adjacent to the MGP Works. These houses endured until the late 1850s, when the gas company bought these lots and razed the houses to make room for additional MGP structures.

Block 690 (bounded by West 18th and West 19th Streets, 10th and 11th Avenues)

The earliest development on Block 690 was a steam mill, constructed by William Hockman on the south side of the block along the newly filled shoreline by the late 1830s or early 1840s. Block 690 also contained a lumberyard, a coal yard, several houses, various sheds and shanties, a "Distillery and Manufactory of Compressed Yeast" complex, a paint factory, a cooperage (repair and making of barrels and tubs), and the "Manhattan Pottery" complex.

Block 691 (bounded by West 19th and West 20th Streets, 10th and 11th Avenues)

Housed primarily residences from the 1830s, when its eastern end was reclaimed from the Hudson River, through 1866, when the gas company purchased its first lots on the block. In the late 1830s and early 1840s, the block supported a stable and 8 houses. By 1857, the block had 19 houses, 8 lots with sheds, and a lumberyard.

Block 715 (bounded by West 17th and West 18th Streets, 9th and 10th Avenues)

Supported a number of houses and shops, although tax Lot 59, the property later owned by the gas company, was vacant during these years. In 1845 and 1846, individuals sold what would become tax Lot 59 to the Manhattan Gas Light Company for construction of a building to house two gasholders.

Block 662 - Former Block 666 (bounded by West 16th and West 19th Streets, former 11th and 13th Avenues)

Was under water through the 1830s and early 1840s, but had been filled by the early 1850s. The gas company purchased the central part of Block 666 in 1846 and 1849 and the southern part in 1858.

2.3.2 Active MGP History

MGP operations began at the West 18th Street Gas Works in 1834. During 1834, the Manhattan Gas Light Company purchased its initial property on the eastern end of Area 3 (Block 689) and began construction of the gas plant. The Manhattan Gas Light Company had formed in 1830, and by 1834, was providing gas to all of Manhattan north of Grand and Canal streets. The West 18th Street Gas Works was to be the second gas plant in the city, and the first erected by the Manhattan Gas Light Company. Construction of the West 18th Street Gas Works began in the fall of 1833, and continued for the next year. By November 1834, the plant was manufacturing and distributing coal gas to customers (Collins, 1934). During the nineteenth century, the West 18th Street Gas Works grew in size as the Manhattan Gas Light Company continued to purchase land and construct additional facility structures.

The first property bought by the Gas Works was on the south side of West 18th Street, at the eastern end of Area 3 (Block 689). A Retort House, Condensers, Scrubbers, and Purifying House, likely contained in one or two structures were constructed on this parcel.

In 1845 and 1846, the company purchased lots on Block 715 (Area 1) and built its first gas holders, enclosed in a brick warehouse-type structure along the south side of West 18th Street. Also purchased at this time was the center section of former Block 662, which allowed direct access to the river and a company pier. It used this area as a coal yard as well.

The purchase of more property at the eastern end of Area 3 in 1848 and 1849 allowed the MGP to expand its operations by constructing a new, detached Purifying House at the northeastern corner of the block. The company also bought land at the eastern end of Area 2 (Block 690), directly to the north, and constructed the initial pair of large, open gasholders.

In 1858, the Manhattan Gas Light Company purchased the western two-thirds of Block 688 (western portion of Area 4), and the southern section of former Block 666 (Area 6). The company erected four additional gas holders (250,000 cubic feet) in the middle of Area 6 and used the western end of Block 688 as a coal yard (now the Hudson River). The western-most portion of the then newly purchased part of former Block 666 was used for a lime yard. Also during this period, the Retort House (Area 3) had been expanded to include six groups of 160 retorts each, for a total of 960 retorts. To the west of the Retort House was a large coal house,

where coal was stored after being unloaded from the adjacent waterfront pier. To the east of the Retort House was a Laboratory along West 18th Street, and south of that, a building containing Condensers, Scrubbers and Washers.

In the late 1860s, the company purchased additional properties on Area 2 and Area 4, as well as lots on Area 5 (Block 691). The MGP works were expanded to include several large coal yards in Areas 2, 4 and 5, a pipe yard in Area 2, and another pair of large gas holders in Area 5. The West 18th Street Gas Works continued to operate through the final decades of the nineteenth century, although it did not acquire any additional property or change its configuration markedly during that period. The West 18th Street Gas Works appears to have operated only one or two years into the twentieth century.

In 1909, the two smaller gas holders in Area 5 were demolished, and in 1914, the remaining gas holders in Areas 1 and 2 were razed. During the 1910s, the gas company began to sell its property on the West 18th Street Gas Works blocks to other owners, marking the end of the MGP history.

2.3.3 Post-MGP Ownership and Use

The Site covered approximately four contiguous city blocks bound by West 20th Street to the north, West 16th Street to the south, 10th Avenue to the east, and the present Hudson River bulkhead to the west; as well one property located along 18th Street between 9th and 10th Avenues. Con Edison no longer owns any of the parcels that comprise the site of the former MGP. Figure 3 presents the current tax block/lot numbers referenced below.

<u>Area 1 (Block 715</u>, bounded by West 17th and West 18th Streets, 9th and 10th Avenues) housing tax Lot 59 contains the former gas holder house, now used as a garage. Although the gas holders have been removed and the building has been retrofitted, the exterior shell of the building has changed little.

Area 2 (Block 690, bounded by West 18th and West 19th Streets, 10th Avenue and the Hudson River bulkhead) had its western end condemned for pier and roadway reconfigurations, nearly all of the remaining property on the block belonged to the Consolidated Gas Company through the early 1900s. Specifically, the former MGP occupied modern tax Lots 12, part of 20, 29, part of 40, 42, and 54, as well as a portion of Block 662 (Chelsea Piers). After that time, tax Lot 12 was used as a wagon yard until 1922, when a large garage (with buried gasoline tanks), was built over nearly the entire lot. This structure, with some modifications, still stands in its original location.

• On tax Lot 12, the owners (West 19th Street Development, LLC) entered into an independent VCA with the NYSDEC, which required it to conduct a site investigation

and remediate impacts identified in the subsurface. Subsequently, West 19th Street Development, LLC, conducted two extensive site investigations to assess soil and groundwater quality beneath the site, as part of its property redevelopment. The results of the investigations showed that soil and groundwater beneath this parcel were impacted by MGP residuals as well as various petroleum products. Due to the thorough site investigations and NYSDEC-approved remediation that has taken place, residual contamination is being let in place;

- On tax Lot 20, a large garage was erected over the portion fronting West 18th Street in 1919, and is still standing in its original location. The smaller portion of tax Lot 20 along West 19th Street contained two row houses, built in the 1890s. They were razed for construction of a private garage, erected in 1947, which remains;
- Tax Lot 29 was used as a wagon yard after the gas holders were razed; it later became an truck parking lot, and last, a public automobile parking lot. Two structures located on the southeast corner of the lot were built in the mid-1920s. The lot contains underground gasoline tanks;
- Tax Lot 40 originally contained two halves: the Consolidated Gas Company owned one part, and used it as a pipe yard, while the second part was owned by other individuals, and contained a shop, which later became an automobile repair facility. In 1923, the Huntoon Ice Company purchased both halves of the lot, and in 1929, constructed a warehouse for ice storage over the entire lot. In 1969, Eli Studios purchased the building and lot; the former warehouse has been used as a movie studio since that time;
- Tax Lot 42 was sold to the Huntoon Ice Company in 1922, which erected a two-story warehouse the following year. A spring water company occupied the building later, which is still standing in its original location;
- Tax Lot 54 located at the corner of West 19th Street and Route 9A contained a two-story hotel, which later burned. The lot has been vacant since the 1960s; and
- The portion of Block 662, along the Hudson River bulkhead, where the Chelsea Piers Sports and Entertainment Complex, constructed in 1995, is now present.

<u>Area 3</u> (Block 689, bounded by West 17th and West 18th Streets, 10th Avenue and the Hudson River bulkhead) also was owned entirely by the gas company, and is now designated principally as tax Lot 17. A portion of this area also extends to the Hudson River bulkhead, abutting Chelsea Piers (Block 662). In 1917, the Consolidated Gas Company sold the whole block (West 17th to West 18th Streets) to the New York State Realty and Terminal Company. From 1932-

1960, the property was owned by the New York Central Railroad Company. Since 1960, the block has been owned by a series of realty companies and corporations. After the gas company sold the property, some of the former MGP buildings on the block were used for other purposes. The remainders of the old MGP buildings were razed after the railroad acquired the property (1932), and a railroad yard (with tracks) was built in their place. Later, the tracks were covered and the block was used as surface parking for cars. In the mid-1950s, an automobile service station and garage were also built along West 17th Street, near present-day Route 9A. The buildings were demolished in the 1980s.

Currently, the block is used exclusively as a parking lot. The remainder of this area encompasses the portion of Route 9A along the west side of the block and a portion of the Chelsea Piers Sports and Entertainment Complex (Block 662).

Area 4 (Block 688, bounded by West 16th and West 17th Streets, 10th Avenue and Route 9A) was owned entirely by the gas company, and was designated as tax Lots 1001 and 1002 (now 7501). In 1916, the Consolidated Gas Company sold the whole block to the Merchants Refrigerating Company, and the following year the new owner constructed a ten-story warehouse with basement, covering the entire block. The property purchased by the Able Empire Group in 1982, and by the Tenth Avenue Mini Storage Associates in 1984. This building, although somewhat modified since its initial construction, still stands on the lot in its original location. Today it is occupied by condominiums and a mini storage facility.

Area 5 (Block 691, bounded by West 19th and West 20th Streets, 10th Avenue and the Hudson River Bulkhead) is comprised of modern tax Lots 1 and 11. After the gas holders were demolished, tax Lot 1 contained a small office building at its northwest corner while the rest of the property was vacant and used as a "house wrecker's yard." The eastern portion of tax Lot 11 was used for the Department of Street Cleaning's wagon yard. The American Red Cross had a structure along the 11th Avenue side of the block during the 1920s, covering parts of tax Lots 1 and 11. In 1929, the YMCA of New York purchased tax Lot 1, and the following year constructed an eight-story building (with basement) for use of its members (after the American Red Cross building was razed). This building, with minor alterations, remains on the lot in its original location today. Tax Lot 11 has been vacant since the American Red Cross building was demolished, and currently is used as a parking lot.

<u>Area 6</u> (portion of Block 662, opposite of West 16th Street and west of Route 9A) is part of a paved pedestrian and bike path along the Hudson River bulkhead and Chelsea Piers Sports and Entertainment Complex. The original western ends of Blocks 662, 688, 689, 690, and 691 are now under the current alignment of Route 9A or were removed during waterfront modifications, which were laid out in the first decades of the twentieth century. By the 1930s, this roadway also supported the elevated Miller Highway, which was demolished in the early 1970s.

2.4 Site Operations

The processes and practices described in the following section are drawn from Harper's New Monthly Magazine (1862), historic maps, Con Edison records, Collins (1934), Hartgen (n.d.), Public Service Commission (PSC) Records, Brown's Directories, Eng (1985), Hornby (1911), Alrich (1934), Downing (1934), Stewart (1958), and EEI (1984), as described in the Parsons SHR.

The West 18th Street Gas Works manufactured coal gas from 1834 to the early 1900s (Collins, 1934 and Department of Docks and Ferries 1903 through 1905). Anthracite coal was delivered by barge or lighter to the Hudson River waterfront piers, and then by cart to the plant itself, located in Area 3. The coal was stored in a "coal house" at the western end of the block. Condensers and Scrubbers were located at the eastern end of the Retort House. Raw gas was piped to and went through the Purifying House, located at the far eastern end of the block. From the Purifying House the gas went to the holders at various locations in Areas 1, 2, and 5, for storage before being distributed to customers. At its peak, the West 18th Street Gas Works had 11 gas holders, with a combined capacity of approximately 3,500,000 cubic feet (PSC, 1908).

The Retort House was constructed of brick, and consisted of a furnace supporting a series of clay retorts on brick benches. Each bench contained 15 retorts, and there were 64 benches, for a total of 960 retorts (Perris and Company, 1859 and Harper's, 1862). The retorts were heated by lighting fires below them, which in turn heated the coal inside the retorts in the absence of ambient air. The retort gas was passed through a series of processes to recover byproducts and impurities. Once the raw gas was driven from the coal, it was drawn from the retort and through a hydraulic main located on the roof of the Retort House. The hydraulic main was sealed and contained water, which permitted steam, tar vapors, and some ammonia compounds to settle out before continuing to the condensers. From the hydraulic main, the gas traveled to the air condenser, located immediately east of the Retort House. The air condenser cooled the gas by indirect contact cooling water to remove heavy tars and water vapor. Tar byproducts were siphoned off at this stage, for reuse or sale. The gas was then fed through a second, water-cooled condenser, located just east of the air condenser, to remove additional impurities. Next, the gas flowed through an exhauster, situated south of the Condensers, which blew the gas through the Scrubber or Washer (located east of the Condensers) to remove ammonia and some sulfur. The Scrubber was a cylindrical structure filled with coke; materials in the Scrubber were sprayed with water, and these water soluble impurities settled to the bottom of the chamber, where they were collected (Harper's, 1862 and Hartgen, n.d.).

The final stage in the removal of impurities was the removal of sulfur. Sulfur was removed from the gas stream by the formation of calcium sulfate as the coal gas was passed through lime purifiers. The purifiers consisted of square tanks (eastern side of Area 3, see Figure 2) in which

stacked trays containing damp, powdered lime, were situated. The gas was forced up from beneath the trays, in the process removing sulfurous compounds like hydrogen sulfide through reaction with the calcium in the lime. At the West 18th Street Gas Works, a fresh lime house was attached to one side of the purifying house, while a foul lime house was located at the other end. The spent lime could then be sold for fertilizer (Harper's 1862, and Hartgen, n.d.).

From the Purifiers, the gas was metered and then passed into a storage holder, ready for distribution to the customers. The West 18th Street Gas Works began with only two gas holders (in Area 1), but by the turn of the twentieth century, there were eleven holders on four contiguous blocks.

A complete record of by-product quantities, reuse, sale, and disposal is not available. PSC reports began publication in 1908, after the West 18th Street Gas Works had essentially stopped producing gas. During the period that the West 18th Street Gas Works operated, there were no known published reports detailing byproduct output and sales. Typical residuals and byproducts produced at an MGP may include coal tar, ammonia, purifier wastes (calcium sulfate and/or spent ferric oxide impregnated wood chips), sulfur, coal ash and cinders. The disposal history of purifier residuals is unknown. The coal tar was sold as a byproduct, as was the sulfur. The coal tars could be distilled to produce ammonia liquors, light oils, creosote oils, anthracene oils, and pitch. The light oils could be further rectified yielding benzol, solvent naphtha, carbolic acid, and anthracene (Collins, 1934).

2.5 Previous/Other Investigations

Prior to and independent of the SCS, site investigations were performed at several of the present-day properties within the former MGP. The results of these investigations are summarized below by property location and or owner.

2.5.1 Site Investigation of Block 689, Lot 17

MTA performed a Phase I and Limited Phase II environmental site investigation in 1998 on Block 689, Lot 17 (MTA, 1998b and MTA, 1998c), AKRF prepared a summary document, *Soil Sample Summary and Result for Soil Safe Criteria* in April 1999 (AKRF, 1999), and Blasland, Bouck and Lee, Inc (BB&L) prepared a *Remediation Work Plan* in November, 1999 (BB&L, 1999). This investigation was conducted to characterize the subsurface soil quality and determine acceptance of the soil by a facility in New Jersey (Soil Safe) where soil excavated during planned future site development would be disposed. Towards this goal, paired soil borings were excavated at each of 18 locations to depths of approximately 20 feet below ground surface (ft bgs). During the investigation, subsurface soil samples were collected from two depth intervals (0 to 8 ft bgs and 8 to 20 ft bgs) from each boring. As ground water generally occurred

at 8 to 11 ft bgs, this sampling scheme was developed to evaluate soil quality above the water table and that below the water table. The soil recovered from each interval for each soil boring pair was composited and analyzed for metals using the Toxicity Characteristics Leaching Procedure (TCLP), polychlorinated biphenyls (PCBs), pesticides, VOCs, and total petroleum hydrocarbon (TPH). The sample interval was specific for the analysis being performed. The soil analytical results were compared to the appropriate New Jersey waste acceptance thresholds, Resource Recovery and Conservation Act (RCRA) toxicity criteria for waste acceptance purposes. The analytical results were also compared to NYSDEC RSCOs.

The findings of the investigation are summarized below:

- Total VOCs were detected at concentrations above the disposal facility acceptance criteria of 500 milligrams per kilogram (mg/kg) total in 8 of 66 composite samples;
- TPH concentrations exceeded New Jersey 30,000 parts per million (ppm) threshold for TPH in only 1 of 139 composite samples;
- No hazardous waste for TCLP Metals:
- PCBs and pesticides were not detected at above the disposal facility acceptance criteria;.
- A UST was identified at one soil boring location in the central portion of Block 689;
- VOCs and polycyclic aromatic hydrocarbons (PAHs) were detected in soils across the property;
- VOCs from 0 to 8 ft bgs did not exceed NYSDEC RSCOs for individual compounds detected:
- One PAH sample from 0 to 8 ft bgs exceeded the NYSDEC RSCO for Total SVOCs of 500 mg/kg. This sample was collected from a soil boring pair located on the western end of Block 689;
- Total VOC concentrations exceeded the NYSDEC RSCO for Total VOCs of 10 mg/kg in samples collected from 8 to 20 ft bgs in seven soil boring pairs. The borings were primarily located in the central and western portions of Block 689;
- Total PAHs were detected at concentrations exceeding the NYSDEC RSCO for Total SVOCs of 500 mg/kg in three composite samples collected from between 8 and 20 ft bgs in three soil boring pairs located in the central and western portions of Block 689;
- Worldwide Geosciences, Inc. performed an interpretive characterization of TPH results from 71 samples collected on the eastern portion of Block 689 to fingerprint the source materials contained in the soil samples. The conclusion was that 56 of the 58 interpretable chromatograms were indicative of coal tar or MGP residues; and

BTEX and PAHs were detected in all three groundwater samples collected on Block 689.
 The highest BTEX and PAH concentrations exceeded NYSDEC AWQSGVs for Class GA water in one groundwater monitoring well located near the northwest corner of Block 689.
 Benzene and naphthalene exceeded the standards in one monitoring well located at the eastern end of the site, and only benzene exceeded the standards in one well located near the southwest corner of the Block.

2.5.2 Geotechnical Investigation Block 689, Lot 17

In July 1998, Melick-Tully and Associates, P.C. (MTA) conducted a geotechnical investigation and limited Phase II environmental investigation at the property. The geotechnical engineering investigation was performed in support of design of a distribution center, which was planned for construction at the property at Block 689, Lot 17 (i.e., that portion of Area 3, the entire block bounded by West 17th and West 18th Streets and 10th and Route 9A).

The Phase II investigation was performed to assess soil quality to evaluate disposal options for soil that would ultimately be excavated as part of the site redevelopment. Two soil samples were collected from each of the intervals 0 to 5 ft bgs, 8 to 12 ft bgs, and 15 to 20 ft bgs. The samples were analyzed for the full suite RCRA constituents using the TCLP. The results of these investigations are summarized below.

Geotechnical Investigation Findings:

As presented in the report, the subsurface conditions encountered at the site consisted of the strata described listed below, presented in order of increasing depth:

<u>Surface Materials</u>: Surface materials at the site generally consisted of a thin (less than six inches) asphalt/stone base course layer. The asphalt thickness is generally on the order of two to three inches in thickness. The "stone" base course is variable, consisting of varying mixtures of clean stone, cinders, and silty sand.

<u>Fill:</u> Underlying the surface materials is a layer of a heterogeneous mixture of native and non-indigenous anthropogenic material ranging in thickness from roughly 20 feet in the eastern portions of the site to roughly 40 feet in the western portions. The fill consists of a heterogeneous mixture of silt, sand, gravel, and cinders, with frequent obstructions, particularly in the upper five to ten feet. Based on fragments collected in the split spoons or captured on the auger flights, the obstructions appeared to consist primarily of concrete and brick rubble. Frequent intermixing of organic silt was also encountered in the lower portions of the fill.

The fill is highly variable in consistency, ranging from very loose to very dense, although the higher Standard Penetrations Test results (i.e., N-values) appeared to be mostly due to the presence of obstructions.

Corrosivity testing results of two fill samples indicated moderately corrosive resistivity levels and moderately corrosive levels of sulfates. Sulfides, redox potential, and pH indicate low corrosivity potential.

Organic Silt: A layer of very soft to stiff clayey organic silt is present below the fill across most of the site, although several of the borings in the eastern portion of the site did not encounter any organic silt. One Atterberg Limits test was conducted on a sample of the organic silt indicated that this lithology was of low to moderate plasticity with a plastic limit of 19 percent and a liquid limit of 37 percent.

The organic silt is generally five to ten feet thick, ranging occasionally as thick as 15 to 20 feet. The bottom of the organic silt generally ranges in depth from approximately 20 to 25 feet below the ground surface in the eastern portion of the site to approximately 50 feet below the ground surface in the western portion.

<u>Silty Sand:</u> Silty sand typically underlies the organic silt (or the fill where organic silt is not present) and extends to the top of bedrock. The sand is generally loose to medium dense in consistency and is stratified with varying amounts of silt and generally low percentages of gravel. Occasional zones were encountered where the percentage of gravel in this stratum exceed the percentage of sand.

Based on the behavior of the drill rig while conducting the explorations, cobbles and/or boulders were believed to be present throughout this stratum, particularly below a depth of approximately 70 to 80 feet. High N-values reported at these depths are believed to be a result of cobbles/and or boulders.

<u>Interbedded Clayey Silt:</u> Discontinuous layers of medium to stiff clayey silt with varying amounts of fine sand were encountered at varying depths in many of the test borings within and above the silty sand stratum. The encountered thickness of these interbedded layers generally ranged from 5 to 15 feet.

<u>Schist Bedrock:</u> - Schist bedrock underlies the silty sand stratum at depths ranging from approximately 60 to 100 feet below the ground surface. The top of rock is generally shallowest in the eastern portion of the site (at depths ranging from 60 to 70 feet below the ground surface) and deepest in the central portion of the site (at depths ranging from 90 to 100 feet below the ground surface).

The upper one to five feet of the schist bedrock is generally highly to completely weathered and was occasionally penetrated several feet with hollow stem auger drilling equipment. Generally, below this depth, the schist is slightly to moderately weathered with a relatively high Rock Quality Designation, RQD (generally above 70 to 80 percent). At one location, however, in the center of the site (Boring B-13), the boring was advanced approximately 20 feet into the rock using hollow stem augers without obtaining refusal.

Phase II Findings:

- Groundwater was typically encountered at depths ranging from approximately 8 to 11 ft bgs. Due to the close proximity of the Site to the Hudson River, MTA concluded that tidal fluctuations in groundwater depths should be anticipated, particularly in the western portion of the Site;
- Groundwater table is relatively flat and flows to the west-southwest;
- The permeability of the soil that comprise the water table aquifer were estimated to range from 0.1 to 1.3 ft per day;
- No analytes were detected at concentrations that exceeded their respective RCRA Toxicity Criteria (TC);
- VOC and or SVOCs were detected in groundwater at concentrations that exceeded their respective NYSDEC AWQSGVs in monitoring wells MW-2, located in the central western-most portion of Block 689; and
- Naphthalene was detected in groundwater at a concentration that exceeded its NYSDEC AWQSGVs in monitoring wells MW-3, located in the central eastern-most portion of Block 689.

2.5.3 Site Investigation Tax Block 690, Lot 12

On October 16 and 17, 2002, Blasland, Bouck, and Lee, Inc. (BB&L, 2002) conducted a preliminary site investigation at Block 690, Lot 12. The subject of the investigation was the property that comprises the western-most portion of the block, which is located between West 18th and 19th Streets and between 10th Avenue and Route 9A.

The investigation entailed advancing eight soil borings and four temporary well points. Material indicative of urban fill was encountered to a depth of 4 ft bgs. Native materials included gravelly sands, sandy silts, and clayey sands and were described intermittently between 4 feet and 16 ft bgs. Groundwater was encountered at 7 feet to 8 ft bgs. Slight to strong odors were detected at all locations between 2 and 12 ft bgs. NAPLs were not observed in any borings.

BB&L concluded that the types of VOCs detected during the investigation (soil and groundwater) were indicative of gasoline/kerosene products, and MGP by-product tars. The highest benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations were detected adjacent to and down gradient of a series of former underground storage tanks (USTs) used to store petroleum products, including gasoline and fuel oils and north of the MGP Retort House located on Block 689, due south of the property investigated.

BB&L also concluded that the semi-volatile organic compounds detected in both soil and groundwater (including phenolic compounds and PAHs) was indicative of MGP-related tars. The highest PAH concentrations were detected in the same soil and groundwater samples, as were the BTEX compounds.

BB&L recommended supplemental investigation activities, including the installation of borings to delineate the horizontal and vertical extent of BTEX and PAH impacted soil, to determine the presence of the clay layer, and to confirm that NAPLs are not present at the property. BB&L also recommended the installation of additional monitoring wells to delineate the horizontal and vertical extent of BTEX, phenolic and PAH compounds, to evaluate groundwater flow direction, and to evaluate hydrogeologic properties.

2.5.4 Site Investigation Tax Block 715, Lot 59

The building that occupies this property has been utilized as a parking garage since its construction in 1915. Prior to that, the property contained two 85-foot diameter gas holders, which were used to store gas produced by the West 18th Street Gas Works that operated along the west side of 10th Avenue. In 1993, six USTs that were used as part of the garage operations were removed from this property. The USTs included five 550-gallon tanks used to store gasoline located under the northeast corner of the garage building and one 4,000-gallon tank used to store diesel fuel was located along the west side of the building. No evidence of soil contamination was reportedly observed during the tank removals.

In early 2000, Langan Engineering (Langan) conducted a Phase I Environmental Site Assessment (ESA). Based on the findings from this assessment, Langan identified several areas of concern, which included the locations of the former USTs and a hydraulic lift system.

In June 2001, during building renovation activities being performed by Verizon, the then and current building tenant, petroleum contaminated subsurface soil was encountered below the concrete building foundation slab. The soil was screened for total VOCs using an organic vapor meter equipped with a photoionization detector (PID). Total VOCs measured with the PID ranged in concentration from 16 ppm to 634 ppm. In addition, samples were submitted to

Worldwide Geosciences, Inc of Houston, Texas for product fingerprint analysis. The result of the fingerprint determined the source of the contamination to be gasoline.

In response to this finding, Verizon notified the NYSDEC, which assigned Spill No. 01-03363 to the property. The petroleum-contaminated soil was excavated at that time.

Based on the PID screening results, EnviroTrac sampled the contaminated soil, on behalf of the property owner. The analytical results for these samples showed that the concentrations of several VOCs and SVOCs exceeded their respective NYSDEC RSCOs.

In August 2001, EnviroTrac performed a Subsurface Investigation at the property. During the investigation 12 soil borings were advanced using GeoProbe drilling methods. One soil and one groundwater sample was collected from each boring. The samples were analyzed for VOCs and SVOCs.

The result of this investigation showed that VOCs and SVOCs were detected at concentrations above their respective NYSDEC RSCOs in 9 of the 12 borings. The VOCs detected at elevated concentrations included benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), isopropylbenzene, naphthalene, n-propylbenzene, methyl tert-butyl ether (MTBE) and 1,2,4- and 1,3,5-trimethylbenezenes. Two samples contained total VOCs at concentrations above the NYSDEC RSCO for total VOCs of 10 ppm. One or more of six SVOCs, all PAHs, were detected at elevated concentrations in eight of the 12 soil samples. Total SVOCs concentrations exceeded the NYSDEC RSCO for total SVOCs of 500 ppm in soil from two soil borings.

All groundwater samples contained VOCs at concentrations that exceeded their respective NYSDEC AWQSGVs. The VOCs detected at elevated concentrations at least once, were BTEX; isopropylbenzene; 1,2,4- and 1,3,5-trimethylbenezenes; n-propylbenzene and naphthalene. Benzene was detected at elevated concentrations in all groundwater samples.

Based on the findings of the investigation discussed above, an additional 60 cubic yards of contaminated soil were excavated from the property and disposed off-site.

Subsequently, eight permanent groundwater monitoring wells were installed at the property. Sampling of the wells was performed by EnviroTrac periodically between 2002 and May 2005. Analytical results of these sampling events, were similar to those previously detected.

2.5.5 Route 9A Reconstruction Project

The western end of the West 18th Street Gas Works was sampled by AKRF, Inc. as part of the Route 9A reconstruction project (AKRF et al, 1994). Six test borings were drilled between the

former MGP and the Hudson River and piers, three during Phase 1A and three during Phase 1B of the reconstruction. One monitoring well was installed two blocks south of the former MGP and one well was installed approximately two blocks north of the former MGP during Phase 1A. Analytical results for samples collected from these locations, which were all in the vicinity of the former MGP, indicated the following:

Soil

Heavy metals and PAHs were detected in most soil samples at concentrations below Extraction Procedure (EP) toxicity criteria. Total lead was detected in Site soils below the EP toxicity criteria and below NYSDEC RSCOs. VOCs, Cyanide, and TPH were detected sporadically at low concentrations in limited areas of the Site.

Groundwater

A groundwater sample from a monitoring well located mid-block along West 16th Street contained BTEX and PAHs concentrations of 1.0 mg/L and 0.063 mg/L, respectively. An additional groundwater sample collected from a monitoring well located two blocks south of the Site contained BTEX and PAHs concentrations of 132 mg/L and 63 mg/L respectively. This sample also exhibited the presence of many heavy metals.

2.6 Environmental Records Search

Files at Con Edison and the Department of City Planning were searched for records of additional site history and information on documented contaminant release sites. A freedom-of-information request was filed with the NYSDEC for information on potential waste sites (e.g., petroleum spill sites, hazardous waste sites, etc.) within and in the vicinity of the investigation area.

Summary Documented Spills in the Vicinity of the Site

Twenty-three petroleum spills were within approximately one-quarter mile of the Site, and an additional thirty petroleum spills were within approximately one-quarter to one-half mile of the Site, as reported in the Leaking Storage Tank Incident Reports (LTANKS) section of the environmental database search. The location of and distance/direction from the Site the LTANKS are as follows:

Equal/Higher Elevation	Address	Distance (mile)/Direction from the Site
528 West 19 th Street/Manhattan	528 West 19 th Street	0-1/8 ESE
555 West 17 th Street/Manhattan	555 West 17 th Street	0-1/8 SSE
501-513 West 19 th Street	513 West 19 th Street	0-1/8 ESE
Mendon Leasing Corporation	515 West 18 th Street	0-1/8 SE
GETTY 58542	152 Tenth Avenue	0-1/8 E
152-156 Tenth Avenue/Manhattan	152-156 Tenth Avenue	0-1/8 E
535 East 21 st Street	535 East 21 st Street	1/8-1/4 NE
507 West 21st Street	507 West 21 st Street	1/8-1/4 ENE
Pier 57- 11 th Avenue	Pier 57/11 th Avenue	1/8-1/4 S
NYC Transit Authority/Manhattan	West 15 th Street/ 11 th Avenue	1/8-1/4 S
193 10 th Avenue	193 10 th Avenue	1/8–1/4 ENE
Pier 57- Westside Highway	Pier 57/17 th Street	1/8–1/4 S
Auto Care West	458-460 West 18 th Street	1/8–1/4 SE
19 11 th Avenue/NYCTA-Hudson	19 11 th Ave	1/8–1/4 S
11 Eleventh Avenue	11 Eleventh Avenue	1/8–1/4 S
Freedman Cutouts	444 West 17 th Street	1/8–1/4 SE
562 West 23 rd Street/Manhattan	562 West 23 rd Street	1/8–1/4 NNE
Edison Parking Garage	527 West 23 rd Street	1/8–1/4 NE
Mendon Leasing Corporation	527 West 23 rd Street	1/8–1/4 NE
Tank failed Mendon Leasing	527 West 23 rd Street	1/8–1/4 NE
Menden Leasing	523 West 23 rd Street	1/8–1/4 NE
505 West 14 th Street	505West 14 th Street/ 10 th Ave	1/8-1/4 S
501 West 14 th Street/ SUNOCO	501 West 14 th Street	1/8-1/4 S

Additional information on spills and releases is presented in the Site History Report. It is noted that all LTANKS sites are located to the north, south, or east of the former MGP site. As the predominant groundwater flow direction in the fill unit was determined to be towards the west/southwest, many of these spills are upgradient of the Site.

2.7 Regional Geology/Hydrogeology

A U.S.G.S Quadrangle Map indicating the location of the Site is included as Figure 1. The geology beneath the site is based on data collected from two borings drilled as part of the Route 9A Reconstruction Project (AKRF, 1994).

According to the subsurface conditions encountered in the above-referenced borings, fill material is ubiquitous and consists of dredged river sediment, coal plant refuse, and construction debris in thickness of approximately 3 to 25 feet. Pockets of silt, sand and clay are found between the fill and bedrock (AKRF, 1994). Typical subsurface soils (fill) consisted of brown fine to coarse sand, with traces of silt and fine to medium gravel, brick, and ash fill to a depth of 13 ft bgs. Water was encountered at approximately 5 to 6 ft bgs. Fill materials encountered consisted of black slag-like material with brick-like material and glass from near the surface to approximately 3 ft bgs. Below the fill was light brown sand with silt and some gravel. Black-brown coarse to fine sand with abundant rock fragments and slight odor was encountered at approximately 9 ft bgs. Water was encountered at approximately 6 ft bgs. AKRF reports that in general, the overburden materials in the area consist of up to 35 feet of construction debris that may include brick, weathered schist, sand, silt, clay, stone, and wood above a 10 to 40 foot thick layer of organic silt above a layer of up to 50 feet of glacial till (AKRF, 1994).

The Hudson River forms the western boundary of the Site as it exists today. The Hudson River is a Class I surface water body adjacent to the West 18th Street Site (NYSDEC, 2001). Manhattan's drinking water is obtained from reservoirs located greater than 25 miles north of the city. No drinking water supply wells were identified in the vicinity of the Site (EDR, 2002 and NYSDOH, 1982). Old stream channels and buried utilities may act as preferential pathways and exert some influence on the occurrence and movement of shallow groundwater in the region. Depths to groundwater at the western end of the former West 18th Street Gas Works are approximately 5 to 6 ft bgs (AKRF, 1994), and depths to groundwater on Block 689 are approximately 8 to 11 ft bgs (MTA, 1998a). It is noted that differences in groundwater depths between those measured by AKRF and MTA likely reflect seasonal and daily changes in ground water elevations in response to seasonal and daily tidal fluctuations in water elevations in the Hudson River.

3 SITE CHARACTERIZATION SCOPE OF WORK

This section provides a description of the methodologies used during the field investigation of the West 18th Street former MGP Site. The location and number of samples taken, along with the corresponding analytical parameters, are presented in the following sections. Descriptions of all field activities conducted during the SCS are presented by field task and/or environmental media. The locations of the SCS samples are shown on Figure 4. Specific tasks performed during the SCS consisted of the following:

- Underground utility clearance and geophysical survey;
- Community air monitoring;
- Subsurface soil sampling;
- Test pit excavation;
- Soil boring installation;
- Monitoring well installation and development;
- Groundwater sampling;
- Soil and groundwater analysis;
- Quality assurance/quality control sampling (QA/QC);
- Investigation residuals management; and
- Site survey.

Due to delays posed by the owners of various properties, associated access restrictions, subcontractor availability and permit constraints, the field work was executed in a non-contiguous manner, beginning in April 2004 and extending until December 2005.

Ambient air, indoor air, and subsurface gas sampling was conducted at two properties during the SCS. The first was within Area 2, at Block 690, Lot 46. The second was conducted within Area 5, at Block 691, Lot 1. Separate reports were prepared and submitted independently for each investigation, and these activities are not discussed further in this SCS Report.

3.1 Underground Utility Clearance

Prior to initiation of intrusive investigation activities, sample locations were cleared in accordance with Con Edison's utility clearance procedures. Due to the highly developed nature of the Site and a review of available utility plates, subsurface utilities including natural gas, electric, and steam lines, telephone lines as well as fiber optic cables, water lines, and sewers, were located. The New York City "One Call" organization was contacted to request utility mark outs in accordance with Code 753, a minimum of three working days prior to start of the fieldwork. All mark outs by Code 753 participating companies were complete in the specified timeframes in advance of all field intrusive activities. Renewal calls were made in accordance with the timeframes allowed in the regulations.

A geophysical survey was also conducted using ground penetrating radar, electromagnetic conductivity, a magnetometer, and a pipe locator within an approximate 10-foot radius of each of the proposed sample locations (whenever possible). Manholes and other utility boxes (e.g., gas valve box) were opened and inspected in order to confirm or ascertain the depth to and orientation of the subsurface utilities. This non-intrusive investigation provided an added level of assurance with respect to confirming utilities marked out by the New York City One Call group, to trace utilities onto the private properties, and/or to identify anomalous areas where private utilities or other unknowns may be present.

As an additional precaution to ensure worker safety and to prevent damage to potential subsurface utilities, proposed boring locations were cleared by non-mechanical means (e.g., hand digging, and vacuum extraction). Soil was excavated, typically to a maximum of five feet below grade, by non-mechanical means to physically confirm the presence/absence of subsurface utilities at each of the proposed boring locations. If proposed sample locations were determined to be too close to subsurface utilities to safely conduct the field investigations, the location was moved to another area to achieve the same investigative objective. Alternatively, special precautions were taken (e.g., coordinating with Con Edison's Gas Operations Group and exposing the utility) when working in close proximity to a high pressure gas main. Concrete and asphalt materials were saw cut prior to excavation. Soil excavated from the pilot holes was stored on plastic poly sheeting adjacent to the area and then used as backfill. Temporary repairs using asphalt cold patch, concrete, and/or steel road plates were made as a means to secure the openings until in-kind, final repairs to the surface could be made.

3.2 Community Air Monitoring

The site-specific Health and Safety Plan for the SCS field investigation includes a Community Air Monitoring Program (CAMP) that was implemented during all ground intrusive activities. Community air monitoring was conducted using real-time, hand-held monitoring instruments (Mini-RAE organic vapor meter equipped with PID for volatile organic compounds and a MIE DataRam for airborne particulates). Two sets of air monitoring equipment were calibrated daily and set up at upwind and downwind stations near each invasive activity. If concurrent invasive activities were in close proximity, the two stations were sufficient to monitor the ambient air. If the invasive activities were distant, two sets of equipment were utilized for each activity.

3.3 Subsurface Soil Sampling

3.3.1 Exploratory Test Pits

In general, exploratory test pits were used to locate and investigate remnant MGP structures. The primary objectives of the exploratory test pits were to visually inspect and determine the

presence or absence of historic MGP features, such as ring wall structures of former gas holders or the foundations of supporting operational buildings, to identify the presence of MGP-related impacts (such as the presence of non-aqueous phase liquids), and to evaluate subsurface conditions in the vicinity of these structures.

The exploratory test pits were excavated using a backhoe with a qualified OSHA-certified operator. Asphalt surfaces were saw-cut prior to the excavations. Using a bucket attachment on the backhoe, soils were removed in lifts of one to two feet at a time to accurately correlate the soils brought to the surface with the depth from which they were obtained. The exploratory test pit was left open only for the amount of time needed to log and photo-document conditions within the test pit (i.e., sidewalls, presence of ring wall, foundation construction etc.), to physically inspect the excavated materials, screen with a PID, and to collect samples for laboratory analysis. All excavated materials were returned to the test pit and compacted with the backhoe bucket. Temporary patching was installed where necessary to minimize contact with the soil until such time that the final restoration to the surface could be made. In certain instances, the use of steel road plates was required.

3.3.2 Soil Borings

Prior to excavating soil borings, utility clearance was performed at each location in accordance with Con Edison's subsurface utility clearance procedure. Typically, locations were saw cut and shallow soil samples were obtained using a decontaminated steel spoon or a hand auger.

After confirming the absence of subsurface utilities, drilling at each soil boring location was performed using either hollow stem auger (HSA) or direct-push "DP" (e.g., GeoProbeTM) drilling methods. Using these methods soil was continuously sampled from approximately 5 ft bgs (i.e., below the interval excavated by hand during utility clearance) to the final depth. Using HSA methods, soil samples were obtained with a standard 2-inch diameter split-spoon sampler in accordance with the Standard Penetration Test (SPT) Method (ASTM D-1586). The SPT method entails recording the number of blows required to advance the split-spoon sampler the last 12 inches of the split-spoon using a 140 pound weight falling freely for 30 inches. A four-foot long by 2-inch diameter stainless steel macro core sampler containing a clean polyethylene liner was used to collect soil with the DP drilling method.

The retrieved soil was characterized by the field geologist for physical properties including lithology, grain size, and moisture content, and for physical evidence of contamination, including staining, sheen, light non-aqueous phase liquid (LNAPL), dense non-aqueous phase liquid (DNAPL), and/or odors, etc. Each sample was field screened with a PID for Total VOCs immediately upon opening the sampler. Soil was classified in accordance with the Unified Soil

Classification System (USCS). All field observations and measurement were recorded in a bound field notebook.

Based on field screening of the soil cores, soil samples were collected for chemical analysis from each boring, in general accordance with the following sampling strategy:

- (1) From the six-inch interval within the vadose zone that exhibited the strongest evidence of contamination (if any), such as staining, sheen, odors, elevated VOCs based on PID readings, etc.;
- (2) At the soil/water table interface;
- (3) From the 6-inch interval within the saturated zone that exhibited the strongest evidence of contamination (if any), such as staining, sheen, odors, elevated VOCs based on PID readings, etc.;
- (4) From the 6-inch interval above the top of the first low permeability unit encountered (if any) in the soil boring; and/or
- (5) In borings where contamination was apparent based upon field observations, from a 6-inch interval of apparently clean material below contaminated soil (to provide data for vertical delineation).

If there was insufficient sample volume to fill the sample jars for chemical analyses from the 6-inch interval, additional soil was collected from the split-spoon sampler within the same 2-foot interval. Samples for VOCs were collected first.

Samples were transferred from either the split-spoon sampler or macro-core samplers directly to laboratory-supplied sample jars. The jars were sealed, labeled and placed in a cooler containing ice for shipment to Chemtech Laboratories, located in Mountainside, New Jersey for analysis. The coolers were shipped under chain of custody protocols. The samples were analyzed as described in Section 3.6 of this report.

Retrieved drill cuttings were returned to the borehole if not grossly contaminated. Soil cuttings containing free product or staining were containerized in 55-gallon steel drums and managed as described in Section 3.8 of this report. Drums were labeled on a daily basis.

During setup of the drill rig at each location, a polyethylene plastic liner was placed under the working platform of the drill rig to contain any potential spills and drips resulting from equipment failure or leaks of motor oil, hydraulic fluid, and/or diesel fuel. Soil cuttings generated during drilling and soil samples that are not submitted for analysis were placed in DOT-approved 55-gallon drums and handled as described in Section 3.8 of this Report. Once sampling was complete, the borehole was then backfilled and sealed with cement-bentonite grout.

3.4 Monitoring Well Installation and Development

To accommodate each overburden aquifer monitoring well (designated with "A") installation, a soil boring was first completed using a HSA drill rig with 4.25-inch inside diameter (ID) augers. After advancing a soil boring to the desired depth, a well was installed in the boring. All wells were constructed using 2-inch diameter polyvinyl chloride (PVC) casing and 10-feet long 20-slot screen. The screen was installed such that it straddled the water table. In addition, a two-foot long sump for the collection of DNAPL, if any was encountered during drilling of the boring, was installed at the bottom of the well screen.

Semi-confined or confined monitoring wells (designated with a "B") were installed below the low permeability silty/clay unit. In order to prevent vertical migration of contamination from the vadose zone to deeper intervals via the soil boring/monitoring well, a 6-inch diameter steel casing was installed in the borehole to a depth of at least over two feet into the clay. The annulus between the steel casing and borehole was filled with grout from the base to grade using a tremie pipe. The grout was allowed to cure for a minimum of 24 hours prior to resuming drilling to final well depth inside the steel casing. The monitoring well construction was similar to that used for the overburden monitoring wells, with the exception that the top of the screen was set within one foot of the bottom of the low permeability unit.

Following well installation and prior to sampling, new wells were developed using surging and pumping. The wells were pumped at low flow rates to minimize the volume of development water generated, while also ensuring that they are sufficiently developed to achieve the target water quality. Development was not initiated sooner than 24 hours after well installation. Prior to development, the wells were checked for presence of LNAPL and/or DNAPL using an electronic oil/water interface probe. Wells that contained LNAPL and/or DNAPL greater than 1/16 inch were not developed.

Groundwater generated during well development was performed until a minimum of three well volumes was evacuated from each well and the discharge water was reasonably free of visible sediment, the field parameters have stabilized. Development was continued up to a maximum of two hours in efforts to achieve turbidity measurements below the NYSDEC goal of 50 Nephelometric Turbidity Units (NTUs). The well development observations and field measurements were recorded in a bound field logbook and well development log form.

All monitoring wells were developed in September 2005. The wells were pumped with a submersible pump and dedicated polyethylene tubing at low flows to minimize the volume of development water generated, while also ensuring sufficient development to achieve the target water quality. Properly decontaminated and/or dedicated equipment was used during development. Prior to development, the wells were checked for LNAPL and/or DNAPL.

Field parameters monitored during well development included temperature, pH, conductivity, and turbidity. Parameters were considered stabilized upon successive readings for temperature within 0.1°C, pH levels within 0.1 standard unit (S.U.), conductivity levels within 5 percent, and turbidity levels within 10 percent (for values greater than 1 NTU).

3.5 Groundwater Sampling

Prior to groundwater sampling an electronic oil/water interface probe was used at each well to measure static water levels, depth to water, and depth to the well bottom (to check for possible siltation). The oil/water interface probe was also used to confirm the absence of measurable separate-phase product. In accordance with the SCS Work Plan, groundwater samples were not collected from any wells containing of LNAPL and/or DNAPL of greater than 1/16 inch.

The well diameter and the length of water column in each well were used to calculate the volume of water in the well. A peristaltic pump and dedicated polyethylene tubing were used during sampling to minimize turbidity and purge water volumes. Using this method, water was drawn through the well screen from the formation at a flow rate that was equal to or less than the natural well recharge rate. A minimum of one well volume was required to be removed with the low flow method, assuming stabilization of field parameters was achieved, as the standing water column in the well above the screen zone was not drawn into the screen and removed, therefore, need not be purged from the well. Field parameters consisted of pH, temperature, conductivity, and turbidity. Additional parameters that were recorded in the field at selected wells included oxidation-reduction potential (ORP) and dissolved oxygen (DO). Parameter stabilization is described in the USEPA Standard Operating Procedure (SOP) #GW 0001.

Purge water and other IDW were containerized in DOT-approved 55-gallon drums and disposed off-site at a permitted waste disposal facility, as described Section 3.8 of this report.

After purging was complete, groundwater samples were collected directly from the polyethylene tubing discharge into laboratory-supplied sampled bottles containing appropriate preserving agents. Collected samples were stored in iced coolers and shipped under chain-of-custody procedures to the laboratory for analysis.

3.6 Soil and Groundwater Analyses

The soil and groundwater samples collected during the SCS were analyzed for:

- VOCs by USEPA SW-846 Method 8260B;
- SVOCs by USEPA SW-846 Method 8260C;
- Metals (Priority Pollutant List PPL) by USEPA SW-846 Method 6010B and 7471A;
- Total and Amenable Cyanide by USEPA SW-846 Method 9012A;

- Herbicides by USEPA SW-846 Method 8151;
- Pesticides by USEPA SW-846 Method 8081A; and
- PCBs by USEPA Method 8082.

All soil, groundwater, and waste classification samples were analyzed by Chemtech Laboratories of Mountainside, New Jersey in accordance with the NYSDOH's Analytical Services Protocol (ASP). Selected soil samples were also subject to pesticides, polychlorinated biphenyls (PCBs) and forensics analysis. Pesticides and PCBs were analyzed fusing USEPA Methods 9010 and 9012A, respectively. Forensics analysis was performed by Meta Environmental, located in Watertown, MA. The forensics analysis entailed solvent extraction of the samples, followed by analysis of the extractant fluid by gas chromatography with a flame ionization detector (GC/FID). The resulting chromatogram was then interpreted by comparisons to a library of chromatograms of known source materials.

3.7 Quality Assurance / Quality Control

Data quality objectives are qualitative and quantitative criteria, which specify the quality of data required to the objectives outlined in Section 1.2 of this report. All analytical data were validated independently by TRC. The review criteria used for the SC investigation data are from following United States Environmental Protection Agency, Region 2 documents:

- Standard Operating Procedure (SOP) Number HW-24, Revision 1, June 1999, Validating Volatile Organic Compounds by SW-846 Method 8260B;
- SOP Number HW-22, Revision 2, June 2001, Validating Semi-Volatile Organic Compounds by SW-846 Method 8270;
- SOP Number 23B, Revision 1.0, May 2002, Validating PCB Compounds by SW-846 Method 8082; and
- SOP Number HW-2, Revision 11, January 1992, Evaluation of Metals Data for the CLP Program.

Data usability summary reports were prepared and are included in Appendix B of this Report.

3.8 IDW Management

The IDW generated during this SCS was managed and properly classified, transported, and disposed of at a pre-approved, licensed off-site facility. IDW was contained in DOT-approved 55-gallon drums. Drums containing IDW were labeled at the end of each day with the date, contents, contact information, job name/number, location origin, and drum count number.

Four types of IDW were generated as listed below.

- Concrete and asphalt;
- Soil cuttings;
- Aqueous wastes (decontamination fluids, well development and purge groundwater); and
- Plastic/personal protective equipment/bottleware/miscellaneous waste.

Concrete and asphalt was placed in 55-gallon drums and disposed of as a non-DOT regulated non-hazardous waste. PPE, used bottle-ware, and miscellaneous waste (such as plastic used for the staging of soil from test pits) were disposed of in 55-gallon steel drums as non-DOT regulated non-hazardous waste. Soil cuttings and aqueous wastes were managed separately in 55-gallon drums, sampled, and chemically analyzed for Toxicity Characteristic Leaching Procedure (TCLP) volatile organic compounds, TCLP semi-volatile organic compounds, TCLP metals, RCRA Characteristics, and PCBs.

The drums were transported by Clean Earth of New Jersey, Inc., a licensed, Con Edison-approved waste hauler. The drums were disposed at properly licensed, permitted and Con Edison-approved disposal facility.

3.9 Surveying

The locations of all soil borings, test pits and groundwater monitoring wells were surveyed by a NYS-licensed surveyor. Other Site and proximal features, such as building corners, streets, etc., were also surveyed for purposes of establishing a base map for the SCS field investigation project. Horizontal locations were measured to an accuracy of 0.1-foot. Elevations were measured to an accuracy of 0.01-foot, and included the top of well casing and ground surface elevations. All horizontal coordinates were surveyed using the New York State Coordinate System (East), North American Datum (NAD) 83, as derived from the global positioning system (GPS). All vertical datum are based upon the North American Vertical Datum (NAVD) 88, as derived from GPS.

3.10 Site Restoration

All Areas of the Site properties that were disturbed by the SCS field investigation activities were restored to the satisfaction of the property owners.

3.11 Summary of Changes from the Approved SCS Work Plan

One test pit (TP-1) was planned in Area 1 across the ring walls of the two former gas holders in this portion of the Site. Due to the volume of vehicular traffic and parking in this area, a less intrusive approach was taken. Two smaller test pits (TP-1 and TP-1B) were completed manually based upon scaled drawings and field observations made during the utility clearance procedure

implementation. Brick structures consistent with remnants of ring walls were encountered in both test pits.

For all of the borings installed to a depth below a low permeability unit in order to achieve a target depth of 100 ft bgs or top of bedrock, whichever came first, the sampling strategy in the original work plan was modified to collect an additional sample directly below the bottom of the low permeability unit and at the bottom of each boring. Additional samples were collected at Con Edison's discretion to provide additional data in determining the horizontal and vertical extent of impacts.

Due to the presence of a multiple utility vaults and subsurface utilities, exploratory test pit TP-5 was deleted from the program.

The confined aquifer monitoring well MW-40B was deleted from the program based on the field observations that the confining unit was continuous/semi-continuous down to bedrock, and that there was no observed confined aquifer at the soil boring location.

Additional soil borings (SB-53, SB-54 and SB-55) were added to the field activities when Con Edison gained access to the building on West 19th Street (Block 690, Lot 42). The boring locations were advanced using direct push drilling techniques due to limited overhead clearance. As such, blow counts and SPT could not be recorded for the soil boring locations in this Area.

Due to overhead clearance constraints, all soil borings in Area 1 were completed using direct push techniques. As such, blow counts and SPT could not be recorded.

The boring locations SB-35 and SB-37 were deleted from the program due to restricted access at the original location and subsurface utilities and obstructions surrounding the location.

The boring locations SB-41 and SB-42 (western sidewalk along Route 9A) were deleted from the program due to subsurface utilities and electrical vaults on this block. One monitoring well (MW-41A) was planned for installation in Area 6 of the Site. However, this location could not be completed due to the presence of electrical vaults beneath the sidewalk.

At several soil boring locations where visible oil-like and/or tar-like material was encountered, a representative sample from the 6-inch interval of apparently clean material below the contaminated soil interval could not be collected. In these borings, there was too much potential carry down of the oil-like and/or tar-like material product into the clean interval for a representative clean sample to be collected.

At select boring locations, a temporary steel casing was installed into the low permeability unit to allow drilling to continue while minimizing the potential for carry down of contamination and/or NAPL.

4 RESULTS

This section discusses the field observations and analytical results for the samples collected during the SCS at the Site. The analytical results of the subsurface soil samples that were collected as part of the SCS are summarized and compared to the NYSDEC RSCOs specified in TAGM 4042. The analytical results of the groundwater samples are compared to NYSDEC AWQSGVs specified in the Technical and Operational Guidance Series 1.1.1 (TOGS), Class GA criteria.

Tables 4-7 through 4-35 organize the field observations and laboratory results into the six geographic areas of the Site (i.e., Areas 1 thought 6), as defined in Section 1.3 of this report. In general, all references to intervals in the tables and narrative are relative to feet below grade.

4.1 Data Usability Summary Reports and QA/QC Samples

In accordance with the Quality Assurance Project Plan (QAPP), QA/QC samples were collected periodically throughout the SCS investigation. The analytical results for the blind duplicate samples and the corresponding sample are presented in the data summary tables. Data usability summary reports (DUSRs) for all laboratory sample delivery groups are presented in Appendix B. The complete laboratory reports (NYSDEC ASP Category B deliverable format) are provided in Adobe Acrobat format on compact discs in Appendix C.

In brief, based on the data validation as discussed in the DUSRs, it is concluded that the data quality is usable for the purposes of satisfying the project objectives as summarized in Section 1.2 of this report.

4.2 Site-Specific Geology

Geology and hydrogeology was determined based on observations in the soil borings and test pits excavated across the Site. The stratigraphy and groundwater encountered at the Site is summarized below.

Stratigraphy:

Geology beneath the Site is consistent with that described by others (see Section 2.5.2) and consists of four primary stratigraphies, which are underlain by bedrock. The stratigraphic units, in order from shallowest to deepest, are: fill, upper sand, silty/clay and lower sand.

Fill Unit: The fill material consists of construction debris (brick, concrete, glass, wood timbers, ash, slag, rebar, etc.) co-mingled with brown to black, fine to coarse sand, gravel, cobbles and silt. The thickness of the fill is variable and was encountered from the near surface to depths

ranging from of 7 ft bgs to greater than 35 ft bgs. The apparent thickness is consistent with those reported during previous investigations.

Upper Sand Unit: In some areas of the Site, the fill is underlain by a layer of poorly sorted to well sorted sands. Where present, this unit ranges up to 29-feet thick. The sand is characterized by brown to gray, fine to coarse sand, trace silt, and trace gravel. This unit is generally absent from the eastern portion of the Site where the silty/clay unit was closer to or at the surface, prior to backfilling out from the shoreline.

Silty Clay Unit: The low-permeable silty clay is gray to black in color with intermittent peat lenses. The silty clay is likely a Holocene salt march deposit. Salt marshes were once prevalent along the Manhattan shoreline and, since the 1800s, have been filled and built over. This unit contains small marine shells, such as those from clams, mussels, and snails, etc, and organic material, such as decayed fibrous and non-fibrous plant materials. The upper surface of the clay-silt layer is irregular, but generally slopes down towards the Hudson River. Poorly sorted to well sorted sand, silty sand and gravel lenses were found within the silty clay unit, which are likely remnants of ancient stream channels or estuarine environments. In general, this unit pinches out to the east and is absent or discontinuous in the eastern portions of the Site and thickens to the west towards the Hudson River.

Lower Sand Unit: Underlying the silty clay is poorly sorted coarse to medium sand. In some areas of the Site, the lower sand unit is interbedded by silty sand, up to 13 feet thick.

A geologic cross section of the stratigraphic units extending across Areas 1 and 3 of the Site is presented as Figure 4A.

Groundwater

Groundwater occurs in the fill unit and occurs at depths ranging from 1.80 ft mean sea level (MSL) (MW-34A) to approximately -1.19 ft MSL (MW-12A). On October 11, 2005 a synoptic round of groundwater depth measurements was performed in all wells. Using the surveyed elevation of the measuring point on each well, the measured depths to groundwater were converted to elevations. The groundwater depth measurements and corresponding elevations are summarized in Table 4-36. The groundwater elevations were plotted on Figure 14 and contoured. Based on the plotted groundwater elevations shown on Figure 14, groundwater predominantly flows to the west/southwest in the fill unit towards the Hudson River. Based on variations in the depth to groundwater observed and or measured in various borings and monitoring wells during the course of the SCS, and in consideration of previous investigations conducted by others, it appears that groundwater levels are influenced by seasonal and daily tidal

fluctuations. In addition, there may be some localized groundwater mounding in the vicinity of MW-34A/Areas 2 and 5.

4.3 Area 1 – Summary of Findings

Area 1 has been designated as that portion of the Site where former Gas Holders No. 1 and No. 2 were located, along 18th Street between 9th and 10th Avenues (see Figures 2 and 4). At the time of the SCS activities, Verizon was using the property for vehicle parking and offices. This portion of the Site has been the subject of ongoing investigations of multiple leaking underground storage tanks, which are being conducted by the property owner. The results of these investigations to date are summarized in Section 2.5.4 of this report. The USTs were used to store gasoline, fuel oil and hydraulic oil.

A total of two test pits (TP-1 and TP-1B), seven soil boring locations (SB-1, SB-2, SB-3, SB-4, SB-5A, SB-5B, and SB-6) and two groundwater-monitoring wells (MW-5A and MW-5B) were completed in Area 1. These sample locations are shown on Figure 4. Table 4-7 presents a summary of the field work and observations. The following sections present a discussion of the field observations and analytical results for subsurface soil samples.

4.3.1 Summary of Field Observations

During excavation of the exploratory test pits, brick walls, which appeared to correlate with the approximate locations of the ring wall foundations for the two former gas holders were encountered at TP-01 (Gas Holder No. 2) and TP-01B (Gas Holder No. 1). While hand excavating for utility clearance at soil boring SB-6, a brick wall, which corresponded to the location of northwest portion of the ring wall for the former Gas Holder No. 2, was encountered. The apparent ring wall of former Gas Holder No. 1 was encountered in test pit TP-01B.

Note that all depths referenced on boring logs, tables, and subsequent text is relative to surface elevations (top of concrete slab) at each location. It is noted however, that the top of the concrete slab in the parking area of the building that occupies Area 1 is approximately 2.5 feet higher than street level at this location. It is believed that this elevated parking area is due to the placement of fill around the gas holder foundations during initial construction of the building. The source of this non-indigenous fill material (above street level elevation) does not represent soil conditions during operations of the former gas holders on this property.

No odors or staining were detected in subsurface soil encountered in exploratory test pit TP-01. In exploratory test pit TP-01B, gasoline-like odors were detected from 0 to 3 ft bgs. Wood timbers containing black staining were also observed in this test pit from 2 to 3 ft bgs.

Petroleum, fuel oil, gasoline, and/or MGP-related odors were observed in six of the seven soil borings (SB-2, SB-3, SB-4, SB-5A, SB-5B, and SB-6) completed in Area 1. It is noted that soil boring SB-1 in the southeastern portion of the property could not be advanced to the water table and, therefore, it is not known if the evidence of petroleum impacts also occur at this boring location. The most predominant odor detected was petroleum in five locations (SB-2, SB-4, SB-5A, SB-5B, and SB-6). The petroleum odors were detected consistently through the following depth intervals: 13 to 15 ft bgs in SB-2, 11 to 15 ft in SB-4, 10 to 22 ft bgs in SB-5A, 10 to 19 ft bgs in SB-5B, and 10 to 19 ft bgs in SB-6. These intervals all start at the approximate depth of the water table encountered at this parcel. This is indicative of a plume of petroleum contamination in groundwater across most of this parcel. A petroleum sheen was observed on the groundwater associated with soil samples from borings SB-4, SB-5A, SB-5B, and SB-6, and trace LNAPL was observed in SB-6. Gasoline odors were detected in subsurface soil at a depth interval of 0.8 to 2 ft bgs in soil boring SB-2, at a depth interval of 13 to 15 ft bgs in soil boring SB-3, and at a depth interval of 6.5 to 11 ft bgs in soil boring SB-4, which suggests a smear zone. Observations of gasoline odors are not consistent throughout the borings and do not indicate a consistent source. As noted previously, there is an ongoing groundwater investigation study at the Verizon building involving a gasoline release(s) from several former USTs.

MGP-related odors were only detected in SB-2 and SB-4 ranging from 15 to 20.5 ft bgs and 15 to 21 ft bgs, respectively. Both of these borings were excavated inside the footprints of former Gas Holders No. 1 and No. 2, respectively. It is noted that refusal at both of these locations was at approximately 21 ft bgs, which suggests that the holder bottoms are present at this depth. Soil borings MW-5B and SB-6 were excavated outside the former holders (e.g., in) were advanced to depths 42 ft bgs and 72 ft bgs, well below the 21 foot depth achieved at borings inside the holders. In addition, subsurface soil encountered in the upper 20 feet in these borings (i.e., outside the holder) was different than that inside the holder.

There were no observations of TLM in any of the seven soil borings completed in Area 1. OLM was only observed in soil boring SB-4 between 19 and 21 ft bgs, directly above the point of drilling refusal (i.e., the apparent holder bottom of Gas Holder No. 2). The affected soil in this interval also exhibited a very strong MGP-like odor, heavy black staining and an elevated PID reading of 3,124 ppm.

Depths to groundwater ranged from approximately 8 ft bgs in soil borings SB-4, 5 and 6 to approximately 13 ft bgs in soil borings SB-2 and SB-3. Groundwater elevations were 0.63 ft MSL and 0.84 ft MSL for MW-5A and MW-5B, respectively.

4.3.2 Analytical Results for Subsurface Soil

A total of thirty-three soil samples (from 30 discrete intervals plus 3 duplicates) and two groundwater samples were collected. The monitoring wells MW-5A and MW-5B were installed in soil boring locations SB-5B and SB-5A, respectively. Analytical results for VOCs, SVOCs and inorganics (metals and cyanide) for subsurface soil samples collected in Area 1 are summarized in Tables 4-8 through 4-10, respectively. Figure 5 presents a summary of constituents detected and a comparison with the NYSDEC RSCOs. Concentrations that exceeded their respective individual NYSDEC RSCOs have been bolded, italicized, and or colored in the summary tables and figures to for easy identification.

4.3.2.1 Volatile Organic Compounds

A total of 17 VOCs were detected in subsurface soil samples collected from Area 1. Six of these VOCs, namely benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene were detected at concentrations that exceeded their respective individual NYSDEC RSCOs. M/p-xylenes, ethylbenzene, and isopropylbenzene had the highest frequency of exceedances (approximately 12% of the number of samples analyzed), and m/p-xylenes and o-xylene were detected at the highest concentrations (320,000 ug/kg and 120,000 ug/kg, respectively) reported at location SB-6 in the 13 to 15 ft bgs interval. Strong petroleum-like odor, black staining, and trace LNAPL were also detected in this interval. The maximum PID reading in soil boring SB-6 was 3,520 ppm. None of the concentrations of the VOCs detected in the shallow subsurface soil samples collected from either of the test pits exceeded their respective NYSDEC RSCOs.

The concentrations of Total VOCs in soil samples SB-2 (19 to 20.5 ft bgs), SB-4 (19 to 21 ft bgs), SB-5B (11 to 12 ft bgs), and SB-6 (13 to 15 ft bgs) exceeded the NYSDEC RSCO of 10,000 ug/kg. As discussed above, soil borings SB-2 and SB-4 were excavated inside the former gas holder foundations. There was no evidence of Total VOC impacts to deeper soils in soil borings SB-5B or SB-6.

4.3.2.2 Semi-Volatile Organic Compounds

Twenty-three SVOCs were detected in subsurface soil samples. Eleven of the 23 SVOCs detected exceeded their respective NYSDEC RSCOs. Benzo(a)pyrene exhibited the highest frequency of exceedances (approximately 18%), followed by benzo(a) anthracene and chrysene (approximately 6%). Naphthalene had the highest detected concentration (220,000 ug/kg) in the soil sample SB-4 (19 to 21 ft bgs). This is consistent with the observation of OLM between 19 to 21 ft bgs in soil boring SB-4, which is located inside Gas Holder No. 2. None of the concentrations of the SVOCs detected in subsurface soil samples collected from the test pit exceeded their respective NYSDEC RSCOs.

The concentration of Total SVOCs in soil sample SB-4 (19 to 21 ft bgs) exceeded the NYSDEC RSCO of 500,000 ug/kg.

4.3.2.3 Inorganics

Twelve metals were detected in the subsurface soil samples. The concentrations of five metals, namely copper, lead, mercury, nickel, and zinc exceeded their respective NYSDEC RSCOs in one or more samples. The maximum concentration of lead of 2,240 mg/kg was detected in soil sample SB-2 (19 to 20.5 ft bgs). Mercury was detected at the highest frequency of exceedances (approximately 36%), although the maximum detected concentration was within one order of magnitude of its NYSDEC RSCO. Cyanide was sporadically detected and ranged in concentration from 0.66 mg/kg in soil sample SB-5B (21 to 22 ft bgs) to 190 mg/kg in SB-2 (19 to 20.5 ft bgs). There are no NYSDEC RSCOs established for total or amenable cyanide.

4.3.2.4 Fingerprint Results

Two soil samples (SB-4 [19 to 21 feet] and SB-6 [13 to 15 feet]) were submitted for fingerprint analysis from this Area. The soil sample from SB-4 contained monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) in a pyrogenic pattern. Pyrogenic substances are complex mixtures of primarily hydrocarbons produced from organic matter subjected to high temperatures, but with insufficient oxygen for complete combustion. Pyrogenic materials are produced by fires, internal combustion engines, and furnaces. They are also formed when coke or gas are produced from coal or oil. Coal-tar based products, such as roofing, pavement sealers, waterproofing, pesticides, and some shampoos contain pyrogenic materials. The fluoranthene/pyrene ratio (1.10) and the dibenzofuran/fluorine ratio (0.55) suggested that the pyrogenic material was coal tar. The predominance of naphthalene and the high relative concentrations of MAHs indicated that the coal tar had been subjected to little or no weathering.

The soil sample from SB-6 contained a petrogenic substance. Petrogenic substances include crude oil and crude oil derivatives such as gasoline, heating oil, and asphalt. The petrogenic material in this sample was characterized by aromatic and aliphatic hydrocarbons eluting about from about hexane (3 minutes on the GC/FID fingerprint) to about tetradecane (22 minutes). The sample contained primarily alkylated benzenes. Some common petroleum products with these characteristics include gasoline and some jet fuels. The reduced relative concentrations of benzene and toluene suggested that the material had been subjected to mild to moderate weathering.

4.3.3 Analytical Results for Groundwater

A total of 2 groundwater samples (2 locations) were collected from the 2 monitoring wells (MW-5A and MW-5B) that were completed in Area 1. Table 4-7 presents a summary of the field work and observations. Analytical results of the groundwater samples are presented in Tables 4-33 to 4-35. Well construction details and groundwater elevations are presented in Table 4-36. The concentrations of VOCs, SVOCs, and inorganics that exceeded the NYSDEC AWQSGVs concentrations are posted on Figure 11. Concentrations that exceeded their respective individual NYSDEC RSCOs are bolded and or italicized in the tables and figure to ease in their identification.

4.3.1.1 Volatile Organic Compounds

A total of eight VOCs were detected in shallow groundwater collected from monitoring well MW-5A, which is the only water table well installed in this area during the SCS. Six of these VOCs, acetone, benzene, m/p-xylenes, and o-xylene were detected at concentrations above their respective NYSDEC AWQSGVs. Acetone was detected at the highest concentration of 1,100 ug/l.

Only methyl tert-butyl ether (MTBE) was detected in the one deep well installed on this property during the SCS, MW-5B. MTBE is a gasoline additive and is not related to operations of the former gas holders.

4.3.1.2 Semi-Volatile Organic Compounds

Five SVOCs were detected in MW-5A. The concentrations of two of these (2,4-dimethylphenol and naphthalene) exceeding their NYSDEC AWQSGVs. The highest concentration was reported for 2,4-diemthylphenol (500 ug/l). No SVOCs were detected in groundwater sample MW-5B.

4.3.1.3 Inorganics

Six metals were detected in MW-5A, with concentrations of arsenic and lead exceeding their NYSDEC AWQSGVs. In MW-5B, antimony was the only metal out of the three detected that exceeded its' NYSDEC AWQSGVs. Both total and amenable cyanide were detected in MW-5A. The concentration of total cyanide of 1.4 mg/l exceeded the NYSDEC AWQSGV of 0.2 mg/l). There is no NYSDEC AWQSGV for amenable cyanide.

4.4 Area 2 – Summary of Findings

Area 2 has been designated as that portion of the Site bounded by West 18th and West 19th Streets, from 10th Avenue westward to the bulkhead along the Hudson River. Features of the

former gas works that were present in this area included (west to east) the former MGP storage and pipe yards, and Gas Holders Nos. 3 and 4 (see Figure 2). At the time of the SCS activities, demolition and remediation activities were being conducted on the western-most quarter of the block (abutting Route 9A) by the West 19th Street Development, LLC. The parcels that comprise the remainder of Area 2 are occupied by art galleries, a night club, a vacant building, a public parking lot, the adjacent portions of Route 9A, and Chelsea Piers Sports and Entertainment Complex.

One exploratory test pit (TP-2), 13 soil borings (SB-7, SB-8, SB-9, SB-10, SB-11, SB-12, SB-13, SB-14/SB-14A, SB-15, SB-18, SB-53, SB-54 and SB-55) and a total of three groundwater monitoring wells [two overburden (MW-7A and MW-12A) and one deep confined (MW-12B)] were completed in Area 2. The locations of all sampling points are shown on Figure 4.

One subsurface soil sample was collected from the test pit, a total of 58 subsurface soil samples (56 discrete intervals plus 2 duplicates) were collected from the 14 soil borings. A total of 4 groundwater samples were collected from the wells in Area 2; one groundwater sample was collected from each well, along with the collection of one blind duplicate sample. Table 4-2 presents a summary of the sample locations, the rationale for sample location selection, sample interval(s), list of the chemical analyses, and a summary of comparisons of the each analytical group to NYSDEC RSCOs. Table 4-11 presents a summary of the field work and observations. The following sections present a discussion of the field observations and analytical results.

4.4.1 Summary of Field Observations

Table 4-11 summarizes the field observations and other information (e.g., rationale for end of boring depth). The test pit was a series of excavations that targeted the ring walls of the two former gas holders located on the east end of Area 2.

Based on the soil encountered in the borings, stratigraphy encountered in Area 2 was consistent with that described in Sections 2.5.2 and 4.2.

Depths to groundwater ranged from approximately 7 ft bgs in soil borings SB-7, SB-13, SB-15 and SB-18 to approximately 11 ft bgs in soil boring SB-14A. Groundwater elevations measured in monitoring wells MW-7A and MW-12A were 0.97 ft MSL and -1.19 ft MSL, respectively, suggesting that the water table slopes down towards the west. The groundwater elevation in MW-12B was measured at -0.03 ft MSL, suggesting an upward hydraulic pressure (when compared to MW-12A) in this area of the Site.

Note that all depths referenced on boring logs, tables, and subsequent text is relative to surface elevations (e.g., sidewalk, top of concrete slab) at each location. Soil borings SB-53, SB-54 and SB-55 were drilled in the foundation slab inside the building at Block 660, Lot 42, which is level

with the top of the loading docks. The top of the loading docks, as well as the top of the foundation slab inside the building, are approximately 4 feet above the grade of the sidewalk in front of the building. Accordingly, the upper four feet of soil beneath the raised building foundation slab inside the building was imported from an unknown source during construction and does not represent ambient soil conditions/quality at this lot prior to construction of the building.

During the exploratory test pit activities, apparent remnants of former MGP structures were encountered. Photographs of these structures are presented in Appendix D. An intact brick wall, which correlates with the approximate location of the ring wall foundation for the former Gas Holder No. 3, was encountered at test pit TP-2. A slight petroleum odor was detected throughout the test pit to the final depth of 11 ft bgs. There was no evidence of staining or residual MGP products within the test pit.

Evidence of contamination, which included odors, NAPL, staining and or sheen, was detected in 11 of the 13 soil borings completed at Area 2. No evidence of contamination (odors, staining, sheen, visible product, etc.) was detected at soil borings SB-12, MW-12A, and MW-12B.

Petroleum, fuel oil, gasoline, and/or MGP-related odors were observed in eleven of the thirteen soil borings (soil borings SB-7, SB-8, SB-9, SB-10, SB-11, SB-13, SB-14A, SB-15, SB-53, SB-54, and SB-55) completed in Area 2. The most predominant odor detected in this Area was petroleum. These odors were detected in seven soil borings (SB-8, SB-9, SB-10, SB-11, SB-13, SB-14A, and SB15). The petroleum odors were consistently detected in subsurface soil from one foot bgs to several feet into the water table (i.e., to approximately 15 feet bgs). Specific intervals where petroleum odors were detected are: 1 to 15 ft bgs in SB-8; 1 to 10 ft bgs in SB-9; 1 to 14 ft bgs in SB-10; 1 to 9 ft bgs in SB-11; 11 to 13 ft bgs in SB-13; 7 to 19 ft bgs in SB-14A; and 5 to 13 ft bgs in SB-15. LNAPL, along with petroleum odors, black staining, sheen and or elevated PID readings, was observed from 5 to 13 ft bgs in soil boring SB-15. Elevated total VOCs concentrations based on field screening using a PID ranged from 1,000 ppm [SB-10 (6 to 10 ft bgs)] to over 2,800 ppm in [SB-10 (4 to 6 ft bgs)].

MGP-related odors were observed in seven locations (SB-7 from 19 to 35 ft bgs; SB-9 from 22 to 26 ft bgs; SB-11 from 21 to 33 ft bgs; SB-15 from 13 to 21 ft bgs; SB-53 from 1 to 4.5 ft bgs and 9 to 11 ft bgs; SB-54 from 0.8 to 1 ft bgs and 2 to 4 ft bgs; and SB-55 from 0.8 to 2 ft bgs. Several of these soil borings (SB-7, SB-9, and SB-11) were located within or near the footprints of former gas holders, while some are located within the former storage yard (SB-15, SB-53, SB-54, and SB-55). Some of these intervals correlate with physical evidence of MGP-related residue.

OLM was observed in two locations (SB-11 from 23 to 29 ft bgs, and SB-15 from 13 to 21 ft bgs). TLM was observed in three locations (SB-11 from 25 to 29 ft bgs, SB-15 from 13 to 21 ft bgs, and SB-54 from 2 to 4 ft bgs).

Based on the field observations contamination was identified in three potential portions of Area 2. The contamination in both of these areas is characterized by visible OLM, TLM, sheen, black staining, and MGP-related odors. One of these areas includes soil borings SB-7, SB-9, SB-11, which are located in the area immediately surrounding the former gas holders on the eastern-most end of Area 2. The observed contamination occurs at depths ranging from approximately 19 to 35 ft bgs. The second area includes SB-15 and the surrounding area and occurs at depths of approximately 13 to 21 ft bgs. Soil boring SB-15 is located approximately 15 feet due east of a parcel known to contain MGP-contamination and which has recently been remediated (see Section 2.5.3) The third area includes soil borings SB-53, SB-54, SB-55, and the surrounding area and is located approximately 0.8 to 5 ft bgs. However, based upon the physical difference in elevation between the street and the top of the concrete slab (upon which the soil sample intervals are referenced) for the borings in the third area, the contamination is limited to the fill materials brought in to construct the present building. The source of the fill material is unknown, and is not known to be related to former MGP operations.

The SHR indicated that there were 53 reported leaking storage tank incidents within 0.5-mile of the Site. There were at least 3 reported spills that involved leaded or unleaded gasoline that abut Area 2. In addition, numerous underground tanks were used throughout Area 2 to store various petroleum products. These underground storage tanks (USTs) are either still active, have been abandoned or their status is not known. Since petroleum was not known to have been used during operations of the former MGP, the relatively shallow petroleum contamination is due to spills or leaks of petroleum from on-site USTs and or off-site USTs. There does not appear to be any direct correlation between the other odors observed in this area and former Site operations.

4.4.2 Analytical Results for Subsurface Soil

Fifty-eight subsurface soil samples were collected from 13 soil borings and one test pit in Area 2 and analyzed for VOCs, SVOCs, and inorganics (metals and cyanide). Soil samples from several sample locations along 10th Avenue were also analyzed for pesticides, herbicides, and PCBs.

Analytical results for VOCs, SVOCs, and inorganics (metals and cyanide) and pesticide/PCBs in the subsurface soil samples are presented in Tables 4-12 to 4-15, respectively. Figure 6 presents a summary of constituents detected and a comparison with the NYSDEC RSCOs. Concentrations of analytes that exceeded NYSDEC RSCOs have been bolded, italicized, and or colored in that figure and respective tables to facilitate ease of identification.

4.4.2.1 Volatile Organic Compounds

As shown in Table 4-12, a total of 15 VOCs were detected in subsurface soil samples collected from Area 2. Eight of these VOCs, namely acetone, methyl-tert butyl ether (MTBE), benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene and were detected at concentrations that exceeded their respective individual NYSDEC RSCOs. Benzene had the highest frequency of exceedances (approximately 16% of the number of samples analyzed), and m/p-xylenes and o-xylene, which both had at the highest concentrations (250,000 ug/kg and 100,000 ug/kg, respectively) at sample SB-10 (6 to 8 ft bgs). A strong gasoline/fuel oil odor was detected in this interval, with the maximum concentration of total VOCs reading of 1,200 ppm measured in the headspace using a PID. Visible brown product was observed from 8.4 to 8.8 ft bgs, with a maximum concentration for total VOCs of 1,100 ppm measured in the sample headspace using a PID. Significant reductions in the PID measurements of total VOCs (maximum 3 ppm) were recorded in the 10 to 12 ft bgs interval, and only a slight petroleum odor was present. Significant reductions in soil VOC concentrations were observed at this location in the 20 to 22 ft bgs interval, where the only benzene was detected at an elevated concentration (64 ug/kg). In soil boring SB-10 the water table was encountered at a depth of approximately 9 ft bgs. None of the concentrations of the VOCs detected in subsurface soil samples collected from the test pit exceeded their respective NYSDEC RSCOs.

The concentrations of Total VOCs in seven soil samples (SB-9 [20 to 22 ft bgs], SB-10 [5 to 6 ft bgs, 6 to 8 ft bgs, 8 to 10 ft bgs], SB-11 [27 to 29 ft bgs], and SB-15 [5 to 6 ft bgs, 17 to 19 ft bgs] exceeded the NYSDEC RSCO for Total VOCs of 10,000 ug/kg. None of the concentrations for Total VOCs exceeded the NYSDEC RSCOs for Total VOCs in deeper soil samples from these borings.

4.4.2.2 Semi-Volatile Organic Compounds

Twenty-seven SVOCs were detected in subsurface soil samples. None of the concentrations of the SVOCs detected in subsurface soil samples collected from the test pit exceeded their respective NYSDEC RSCOs. Twenty-one of the 27 SVOCs detected exceeded their respective NYSDEC RSCOs. Benzo(a)pyrene exhibited the highest frequency of exceedances (approximately 36%), followed by benzo(a) anthracene and chrysene (approximately 29% and 26%, respectively). Of the SVOCs detected, naphthalene had the highest concentration (4,700,000 ug/kg) in soil sample SB-15 (17 to 19 ft bgs). This is consistent with the observation of OLM and TLM observed in this boring immediately above the low permeability silty/clay unit, with the unit commencing at 19 ft bgs.

Based upon a review of historical maps, there were no former MGP structures or features at or in the vicinity of soil boring SB-15. It is noted however, that soil boring SB-15 was located adjacent to a parcel where petroleum and MGP-impacted soil was recently remediated.

The concentrations of total SVOCs in three of the soil samples from Area 2 (SB-11 [27 to 29 ft bgs], SB-15 [17 to 19 ft bgs], and the duplicate sample for SB-55 [2 to 3 ft bgs]) exceeded the NYSDEC RSCO for total SVOCs of 500,000 ug/kg. The total SVOC concentrations in sample SB-55 2 to 3 ft bgs and its duplicate were 184,780 ug/kg and 542,100 ug/kg, respectively. This variability is consistent with the heterogeneity typical of urban fill such as that which comprises the shallow soils across the Site.

4.4.2.3 Inorganics

Thirteen metals were detected in the subsurface soil samples. The concentrations of eight metals, namely arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc exceeded their respective NYSDEC RSCOs in one or more samples. Lead was reported at a maximum concentration of 1,740 mg/kg in the subsurface soil sample SB-11 (27 to 29 ft bgs). The concentration of lead in the next interval sampled (35 to 37 ft bgs) at this location was below the NYSDEC RSCO for lead. Of the metals detected, zinc was detected at elevated concentrations most frequently (approximately 31%). The maximum concentration of zinc was within one order of magnitude of its NYSDEC RSCO. Cyanide was detected in 15 samples and ranged in concentration from 0.57 mg/kg in soil sample SB-14 (17 to 19 ft bgs) to 160 mg/kg in SB-53 (6 to 7 ft bgs). There are no NYSDEC RSCOs established for total or amenable cyanide.

4.4.2.4 Pesticides, Herbicides, and PCBs

Twenty-two subsurface soil samples were collected from 7 soil borings in Area 2. No pesticides were detected in any sample. Three herbicides were detected, at low concentrations. One PCB (Aroclor 1260) was detected in samples SB-9 and SB-10 at concentrations of 16 ug/kg and 21 ug/kg, respectively, which are below the NYSDEC RSCO for subsurface PCBs of 10,000 ug/kg.

4.4.2.5 Fingerprint Results

The fingerprint analytical results for soil sample SB-14A (3 to 4 ft bgs) indicated the presence of a petrogenic substance. Petrogenic substances include crude oil and crude oil derivatives such as gasoline, heating oil, and asphalt. The petrogenic material in this sample is characterized by an unresolved complex mixture (UCM), which is typically reflected as a "hump" on the gas chromatograms during the analysis, from approximately octane (C8 - 8 minutes) to tetradecane (C14 - 22 minutes) with a maximum at undecane (C11 - 16 minutes). Common petroleum products with these characteristics include kerosene and some jet fuels. The lack of a dominant normal alkane pattern in the chromatogram indicates that this material has been subject to mild to moderate weathering. The sample also contains a low level, late eluting UCM in the lube oil range. In addition to the petrogenic materials, the sample contains a series of low concentration heavy PAHs in a pyrogenic pattern. Pyrogenic substances are complex mixtures of primarily hydrocarbons produced from organic matter subjected to high temperatures but with insufficient

oxygen for complete combustion. Pyrogenic materials are produced by fires, internal combustion engines, and furnaces. They also are formed when coke or gas are produced from coal or oil. Coal-tar based products, such as roofing, pavement sealers, waterproofing, pesticides, and some shampoos contain pyrogenic materials. The specific source of these compounds could not be determined.

4.4.3 Groundwater Analytical Results and Field Measurements

A total of four groundwater samples (three locations plus one duplicate) were collected from the three monitoring wells (MW-7A, MW-12A, and MW-12B) that were completed in Area 2. Table 4-11 presents a summary of the field work and observations. Analytical results of the groundwater samples are presented in Tables 4-33 to 4-35. The concentrations of VOCs, SVOCs, and inorganics that exceeded the NYSDEC AWQSGVs concentrations are posted on Figure 11. Concentrations that exceeded their respective individual NYSDEC RSCOs are bolded and or italicized in the tables and figure to ease in their identification. Well construction details and groundwater elevations are presented in Table 4-36.

4.4.3.1 Volatile Organic Compounds

Six VOCs were detected in the three monitoring wells from this area of the Site, with only benzene exceeding the NYSDEC AWQSGVs. The highest concentration was for benzene which was detected at 65 ug/l in monitoring well MW-12B. Exceedances of the benzene NYSDEC AWQSGV were detected in groundwater sample MW-7A (20 ug/l) and MW-12A (1.2 ug/l, estimated). No VOCs detected in the blind duplicate sample of MW-12A (i.e., MW-22A) exceeded their NYSDEC AWQSGVs.

4.4.3.2 Semi-Volatile Organic Compounds

SVOCs were detected in groundwater samples from Area 2. No SVOCs concentrations exceeded their NYSDEC AWQSGVs for SVOCs. Di-n-butylphthalate was detected in all four samples as estimated and in the laboratory blank. Accordingly, the presence of this compound is attributed to a laboratory source and not associated with the Site.

4.4.3.3 Inorganics

Nine metals were detected in the four groundwater samples collected from this area of the Site. Only thallium (5.2 ug/l) exceeded its NYSDEC AWQSGVs in the blind duplicate sample of MW-12A. All other metals were in compliance with the NYSDEC criteria. This metal is not related to MGP residues.

Total cyanide was detected in three of the four samples, ranging from 0.01 mg/l to 0.013 mg/l. These concentrations are well below the NYSDEC AWQSGV of 0.2 mg/l for total cyanide. No amenable cyanide was detected in the groundwater samples collected from this area.

4.5 Area 3

Area 3 is bounded by West 17th and West 18th Streets, from 10th Avenue westward to the bulkhead along the Hudson River. At the time of the SCS activities, the property was being used as a private parking lot. Area 3 of the Site housed many of the former gas plant operational structures, including the Retort House, Scrubbers, the Purifying House, the Laboratory, and the Workshop. In its' original configuration, a Coal House was located on the western most portion of the block, however, the footprint of that former structure would now be in the Hudson River.

A total of two exploratory test pits (TP-3 and TP-6), 15 soil borings (SB-19, SB-20, SB-21, SB-22, SB-23, SB-24, SB-25, SB-26, SB-27, SB-47, SB-48, SB-49, SB-50, SB-51 and SB-52) and two monitoring wells MW-24A and MW-24B were completed in Area 3. The location of each of these is depicted on Figure 3. A total 61 soil samples (59 discrete intervals plus 2 duplicates) were collected for chemical analysis. Sample locations are shown on Figure 4. Table 4-3 presents a summary of the sample locations, the rationale behind the selection of the sample location, the sample interval(s), a listing of the chemical analyses conducted, and a comparison to the NYSDEC RSCOs for soil. Table 4-16 presents a summary of the field work and observations. The following sections provide summaries of the field observations and analytical results for subsurface soil samples.

4.5.1 Summary of Field Observations

Test pit excavations TP-3 and TP-6 were completed in Area 3 in efforts to determine the presence or absence of remnant foundation structures of the former Scrubbers and Laboratory Building, respectively. In test pit TP-3, a brick wall was encountered from 2.3 to 3.8 ft bgs. A tar-like residue was observed on the east wall of the test pit from 1.9 to 3.75 ft bgs. No other evidence of contamination was observed in test pit TP-3. In test pit TP-6, two ashlar (block-type) walls and two brick walls were encountered between 2 and 5 ft bgs. These walls are consistent with the approximate location of a former Laboratory building (See Figures 2 and 4). No physical evidence of contamination was detected in test pit TP-6.

Depths to groundwater ranged from approximately 5 ft bgs in soil boring SB-24 to approximately 12 ft bgs in soil boring SB-49. Groundwater elevations measured in monitoring wells MW-24A and MW-12A (in Areas 2) in the water table aquifer were 0.97 ft MSL and -1.19 ft MSL. The difference between these water elevations suggests that the water table is relatively flat and may have a slight slope toward the west.

Field observations of contamination in Area 3 included odors (MGP-related, unidentified, non-MGP-related, petroleum, solvent, and ammonia), black staining, sheen, OLM, and TLM/coal tar. Only one boring, SB-21, showed no evidence of contamination.

Petroleum odors were detected in soil boring SB-23 from 9 to 17 ft bgs.

MGP-related odors were detected in five of the 14 soil borings, which were SB-19 [9 to 15 ft bgs], in SB-24 [23 to 33.8 ft bgs], in SB-26 [15 to 33 ft bgs], in SB-48 [9 to 16 ft bgs], and in SB-52 [7 to 9 ft bgs, 15 to 17 ft bgs, and 25 to 31 ft bgs]. In three of these borings (SB-26, SB-48, and SB-52) MGP-related residue was also observed.

In SB-26, OLM occurred from 29 to 33 feet. The top of the silty clay layer was encountered at 32 ft bgs. Black staining was observed in this soil boring from 15 to 17 ft bgs and 19 to 33 ft bgs and sheen was present between 21 and 33 ft bgs. In soil boring SB-48, OLM and TLM occurred from 13 to 16 ft bgs. No staining was observed, but a sheen was present at the same depth as the OLM and TLM. At SB-52, visible OLM/coal tar was observed from 27 to 31 ft bgs. Black staining was present from 13 to 15 ft bgs and 23 to 31 ft bgs and sheen was observed from 25 to 27 ft bgs. These three borings are located within the footprint of either the former retort house (SB-26 and SB-52) or the former workshops (SB-48). In all other borings (except SB-21) in Area 3, either black staining and/or sheen were observed at various depths, both above and below the water table.

A strong ammonia-like odor was detected in SB-19 (17 to 21 ft bgs), which may be attributable to residues from the Scrubbers, which functioned to remove hydrogen sulfide and ammonia. A solvent-like odor was detected in soil boring SB-52 from 23 to 25 ft bgs. Sewage-like odors were detected in soil boring SB-26 from 11 to 13 ft bgs. Non-distinguishable odors were also detected in SB-49 (8 to 20 ft bgs), SB-50 (13 to 17 ft bgs, and 21 to 27 ft bgs), SB-51 (13 to 15 ft bgs and 17 to 27 ft bgs)

4.5.2 Analytical Results for Subsurface Soil

Analytical data for subsurface soil from soil borings and test pits are summarized in Tables 4-17 to 4-20. Figure 7 presents a summary of the constituents detected and a comparison of the sample results with NYSDEC RSCOs. Concentrations that exceed of the NYSDEC RSCOs are bolded, italicized, and or colored in the figure to facilitate identification.

4.5.2.1 Volatile Organic Compounds

A total of 18 VOCs were detected in subsurface soil samples collected from Area 3. Seven of these VOCs, namely acetone, benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene and were detected at concentrations that exceeded their respective individual

NYSDEC RSCOs. Benzene had the highest frequency of exceedances (approximately 48% of the number of samples analyzed). Of the VOCs detected, m/p-xylenes and toluene had the highest concentrations in soil sample SB-51 (21 to 22 ft bgs) at respective concentrations of 950,000 ug/kg and 640,000 ug/kg, respectively. This soil boring was located within the footprint of the former Retort House. A strong odor, elevated total VOCs of (140 ppm, based on PID measurement) and black staining were detected in this sample interval, which was immediately above the top of clay. Significant reductions in VOC concentrations were observed at this location in the 32 to 33 ft bgs interval where only benzene, with a concentration of 270 ug/kg, exceeded its NYSDEC RSCO. None of the concentrations of the VOCs detected in subsurface soil samples collected from the test pits exceeded their respective NYSDEC RSCOs.

Twelve samples exceeded the Total VOC NYSDEC RSCO of 10,000 ug/kg, with the maximum reported concentration of 2,851,248 ug/kg at the in soil sample SB-51 (21 to 22 ft bgs).

4.5.2.2 Semi-Volatile Organic Compounds

Thirty-three SVOCs were detected in subsurface soil samples. The concentrations of 20 of these 33 SVOCs exceeded their respective NYSDEC RSCOs. Benzo(a)pyrene exhibited the highest frequency of exceedances (approximately 72%), followed by benzo(a) anthracene and chrysene (approximately 61% and 54%, respectively). Of the SVOCs, naphthalene had the highest concentration (820,000 ug/kg) in soil sample SB-51 (21 to 22 ft bgs). This is consistent with the detection of the highest VOC concentrations reported in Area 3. The concentration of benzo(a)pyrene in soil sample TP-3 (7.5 ft bgs) of 150 ug/kg exceeded its NYSDEC RSCO (of 61 ug/kg.

Total SVOCs concentrations in soil samples SB-49 (17 to 18 ft bgs) SB-51 (14 to 15 ft bgs and 21 to 22 ft bgs), and SB-52 (27 to 29 ft bgs and 33 to 35 ft bgs) exceeded the NYSDEC RSCO for Total SVOCs of 500,000 ug/kg.

4.5.2.3 Inorganics

Thirteen metals were detected in the subsurface soil samples. The concentrations of seven metals, namely arsenic, cadmium, copper, lead, mercury, nickel, and zinc exceeded their respective NYSDEC RSCOs in one or more samples. Lead was detected at a maximum concentration of 677 mg/kg in subsurface soil sample TP-6 (9.5 ft bgs). Zinc was detected at elevated concentrations most frequently (approximately 41%). Total cyanide was detected in nine samples and ranged in concentration from 0.985 mg/kg in soil sample SB-20 (19 to 20 ft bgs) to 13.62 mg/kg in SB-19 (17 to 19 ft bgs). Amenable cyanide was detected in three soil samples, with the maximum concentration of 5.8 mg/kg in sample SB-21 (11 to 13 ft bgs). There are no NYSDEC RSCOs established for total or amenable cyanide.

4.5.2.4 Pesticides, Herbicides, and PCBs

Seven subsurface soil samples were collected from 2 soil borings in this Area. No pesticides, herbicides, or PCBs were detected in any sample.

4.5.3 Groundwater Analytical Results and Field Measurements

One groundwater sample was collected from the monitoring well MW-24A, which was installed in Area 3. Table 4-16 presents a summary of the field work and observations. Analytical results of the groundwater samples are presented in Tables 4-33 to 4-35. Well construction logs are provided in Appendix A. The concentrations of VOCs, SVOCs, and inorganics that exceeded the NYSDEC AWQSGVs concentrations are posted on Figure 11. Concentrations that exceeded their respective individual NYSDEC RSCOs are bolded and or italicized in the tables and figure to ease in their identification. Well construction details and groundwater elevations are summarized in Table 4-36.

DNAPL was observed in monitoring well MW-24B during well development. Accordingly, no ground water sample was collected. Initial measurements of the DNAPL thickness with two different types of oil/water interface probes (Solinst and GeoTech) did not detect any product. However, upon retrieval, the probes and cables were sporadically coated with DNAPL. TRC conducted an inspection of the monitoring well with a downhole camera, and observed oil-like globules suspended in the water column. At approximately 49 ft bgs, heavy black staining/DNAPL was observed entering the well screen. All threaded joints in the monitoring well were in good condition. The DNAPL entrance point approximately 4 feet below the bottom of the silty/clay layer, which occurs at approximately 45 ft bgs.

4.5.3.1 Volatile Organic Compounds

Six VOCs were detected in the groundwater sample collected from MW-24A, with two of them (benzene and ethyl benzene) exceeding the NYSDEC AWQSGVs. The benzene concentration was the higher of the two, reported at 19 ug/l.

4.5.3.2 Semi-Volatile Organic Compounds

Eleven SVOCs were detected in the groundwater sample collected from MW-24A, with three exceedances of the NYSDEC AWQSGVs (naphthalene, acenaphthene, and fluorene. Of these SVOCs exceedances, fluorene had the highest concentration of 54 ug/l. TLM observed in soil above the clay in this area of the Site, may be locally influencing groundwater quality.

4.5.3.3 Inorganics

Two metals were detected in the groundwater sample collected from MW-24A, with no exceedances of the NYSDEC AWQSGVs. Total cyanide was reported at 0.048 mg/l, below the NYSDEC AWQSGV.

4.6 Area 4

Area 4 has been designated as that portion of the Site where one of the former coal yards was located, from 16th Street to 17th Street, between 10th Avenue and the bulkhead along the Hudson River (see Figure 2). At the time of the SCS fieldwork, the property was used for below-ground vehicle parking and offices at this multi-story building. Sample locations were limited to sidewalk and roadways along the perimeter of the building. In addition, the basement of the building is vaulted and extends beneath the sidewalk on the south, east and west sides of this block. Presence of the structures further restricted the available spaces available for drilling of soil borings and installation of monitoring wells.

No exploratory test pits were planned or conducted in Area 4. Two soil borings (SB-29 and SB-30) and one groundwater monitoring well (MW-29A) were completed in Area 4 at the locations shown in Figure 4. Soil borings were proposed in additional locations, but could not be completed due to subsurface obstructions and utilities, safety considerations and restricted access. A total 11 soil samples (inclusive of two duplicate samples) were collected for chemical analysis.

Table 4-21 presents a summary of the field work and observations. The following sections present a discussion of the field observations and analytical results for subsurface soil samples. Figure 8 presents a summary of the detected constituents at each location, and comparison to the NYSDEC RSCOs.

4.6.1 Summary of Field Observations

Soil boring SB-29 was completed in the southeast corner of the Area 4 near the intersection of West 16th Street and 10th Avenue, and SB-30 was completed along the south side of West 17th Street. No evidence of contamination was observed in soil boring SB-29.

Depth to groundwater was approximately 11 ft bgs in soil borings SB-29 and SB-30. The groundwater elevation was measured in monitoring well MW-29A at -0.62 ft MSL.

Petroleum odors were detected from 12 to 16 ft bgs in SB-30.

MGP-like odors, and visible OLM and TLM blebs were detected in the 20 to 24 ft bgs interval in soil boring SB-30. Based on measurement with a PID, the maximum concentration of total

VOCS in this boring was 1,585 ppm, in the 22 to 24 ft bgs interval. MGP-related odors and a slight sheen on the water in the split spoon samplers were detected in soil boring SB-30 from 16 to 24 ft bgs. Within this interval, black staining was observed from 22 to 24 ft bgs and OLM and TLM blebs were observed from 20 to 24 ft bgs. The occurrence of the TLM and OLM may be related to operations of the gas works on the block directly north of soil boring SB-30.

The top of the silty clay layer was encountered at 24 ft bgs in soil boring SB-30. During drilling into and through this layer, a temporary steel casing was installed several feet into the clay to minimizing the potential for carry-down of the OLM and TLM observed from 20 to 24 ft bgs, above the top of the clay.

4.6.2 Analytical Results for Subsurface Soil

A total of 11 subsurface soil samples (9 discrete intervals plus 2 duplicates) were collected from the two borings that were completed in Area 4. Table 4-4 presents a summary of the sample locations, the rationale behind the selection of the sample location, the sample interval(s), a listing of the chemical analyses conducted, and a comparison to the NYSDEC RSCOs.

Analytical results for VOCs, SVOCs and inorganics (metals and cyanide) for subsurface soil samples collected in Area 4 are summarized in Tables 4-22 through 4-24, respectively. Figure 8 presents a summary of constituents detected and a comparison with NYSDEC RSCOs. Concentrations that exceeded their respective individual NYSDEC RSCOs have been bolded, italicized, and or colored in the summary tables and figures to for easy identification.

4.6.2.1 Volatile Organic Compounds

A total of 13 VOCs were detected in subsurface soil samples collected from Area 4. Eight of these VOCs, namely acetone, methylene chloride, benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene were detected at concentrations that exceeded their respective individual NYSDEC RSCOs. Of the VOCs detected, benzene concentrations exceeded its NYSDEC RSCO most frequently (approximately 27% of the number of samples analyzed), and m/p-xylenes and toluene were detected at the highest concentrations (150,000 ug/kg and 81,000 ug/kg, respectively) reported at location SB-30 in the 22 to 24 ft bgs interval. With the exception of benzene, which was detected at a concentration of 86 ug/kg, none of the other VOCs detected in soil sample SB-30 (28 to 30 ft bgs) exceeded their NYSDEC RSCOs. No VOCs were detected in soil sample SB-30 (84 to 86 ft bgs). Soil boring SB-30 was located approximately 100-300 feet to the east/northeast of the gas holders to the west end of Area 4. The main MGP operational facility was located approximately 100 to 250 feet north of the SB-30 location (i.e., in Area 3). Therefore, the source of the apparent impacts in soil boring SB-30 may be the OLM and TLM detected at former gas works in Area 3 or MGP residues that may be related to operations of the former gas holders in this Area 6.

Two samples exceeded the NYSDEC RSCO for Total VOCs of 10,000 ug/kg, with the maximum reported concentration of 390,900 ug/kg in soil sample SB-30 (22 to 24 ft bgs).

4.6.2.2 Semi-Volatile Organic Compounds

Twenty-three SVOC constituents were detected in subsurface soil samples. Six of the 23 SVOCs detected (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenz(a,h)anthracene) exceeded their respective NYSDEC RSCOs. Benzo(a) anthracene and benzo(a)pyrene exhibited the highest frequency of exceedances (approximately 18% each.) The highest concentrations of naphthalene and phenanthrene (6,600 ug/kg and 5,800 ug/kg, respectively) were detected in the soil samples SB-30 (22 to 24 ft bgs) for naphthalene, and SB-30 (10 to 12 ft bgs) for phenanthrene. The elevated concentrations for these SVOCs are consistent with the presence of OLM and TLM blebs between 20 to 24 ft bgs.

None of the samples exceeded the NYSDEC RSCO for Total SVOCs of 500,000 ug/kg.

4.6.2.3 Inorganics

Thirteen metals were detected in the subsurface soil samples. Of the metals detected, mercury and zinc concentrations exceeded their respective NYSDEC RSCOs in sample SB-30 (10 to 12 ft bgs). The concentrations for these two metals were only slightly elevated. Mercury was detected at 0.113 mg/kg as compared to its NYSDEC RSCO of 0.1 mg/kg. Zinc was detected at a concentration of 57.4 mg/kg as compared to its NYSDEC RSCO of 50 mg/kg. The concentrations of these and other metals detected are typical for urban fill. Based upon the data validation performed by TRC, the mercury result was rejected. Further details are presented in the DUSR in Appendix B.

Cyanide (total and amenable) was not detected in any of the soil samples from this Area.

4.6.3 Groundwater Analytical Results and Field Measurements

One groundwater sample was collected from Area 4 monitoring well MW-29A. Table 4-21 presents a summary of the field work and observations. Analytical results of the groundwater sample are presented in Tables 4-33 to 4-35. Well construction details and groundwater elevations are presented in Table 4-36. The concentrations of VOCs, SVOCs, and inorganics that exceeded the NYSDEC AWQSGVs concentrations are posted on Figure 11. Concentrations that exceeded their respective individual NYSDEC RSCOs are bolded and or italicized in the tables and figure to ease in their identification.

4.6.3.1 Volatile Organic Compounds

There were no exceedances of the NYSDEC AWQSGVs for VOCs in this area of the Site. Only one compound, cis-1,2-dichloroethene, was detected.

4.6.3.2 Semi-Volatile Organic Compounds

Two compounds were detected in the groundwater sample collected from MW-29A (dinbutylphthalate and bis(2-ethylhexyl phthalate)), both of which were in compliance with the NYSDEC AWQSGVs. Di-n-butylphthalate was also detected in the laboratory blank.

4.6.3.3 Inorganics

Four metals were detected in the groundwater sample collected from MW-29A, with thallium exceeding its NYSDEC AWQSGV. There were no detections for total or amenable cyanide in this sample.

4.7 Area 5

Area 5 covers the northern-most block of the former MGP. The western portion of this area formerly contained three former Gas Holders (Nos. 5, 6, and 7). Spatially, this Area covers a portion of Route 9A, an area along the Hudson River bulkhead adjacent to Chelsea Piers, and the western portion of the block between West 19th and West 20th Streets. The Correctional Facility and a public parking lot occupy the Area (see Figure 3). During the SCS, the property was used as a New York State-run medium security women's penitentiary, vehicle parking, and a public roadway.

One exploratory test pit (TP-4), 12 soil borings (SB-31, SB-32, SB-33, SB-34, SB-36, SB-38, SB-39, SB-40A, SB-40B, SB-90, SB-91 and SB-92) and three overburden aquifer monitoring wells (MW-31A, MW-34A and MW-40A) were completed in Area 5. Test pit TP-4 was relocated from the southeast to the northwest corner of the parking lot in part due to the presence of a 1.5 foot thick reinforced concrete slab at the original location. The test pit location is depicted in Figure 4. All of these locations are depicted in Figure 4.

A total of 39 subsurface soil samples (38 discrete samples plus 1 duplicate) were collected for chemical analysis from the twelve borings and one test pit that were completed in Area 5. Table 4-5 presents a summary of the sample locations, the rationale behind the selection of the sample location, the sample interval(s), a listing of the chemical analyses conducted, and a comparison to the NYSDEC RSCOs. Table 4-25 presents a summary of the field work and observations. The following sections present a discussion of the field observations and analytical results for subsurface soil samples.

4.7.1 Summary of Field Observations

During the excavation of test pit TP-4 a concrete structure and a 2-inch diameter metal pipe were encountered at 2 ft bgs. In addition, a brick wall trending from northeast to southwest was encountered in this test pit at a depth of 3 ft bgs, along the western edge of the excavation. This structure correlates with the approximate location of the ring wall foundation of former Gas Holder No. 6. No evidence of contamination was detected in the soil in this test pit.

Depths to groundwater ranged from approximately 4.5 ft bgs in soil borings SB-32, SB-36, and SB-38 to approximately 8 ft bgs in soil borings SB-39. Groundwater elevations measured in MW-31A, MW-34A, and MW-40A in the water table aquifer were -3.01 ft MSL, 1.80 ft MSL, and 1.73 ft MSL, respectively. Based on these elevations, it appears that groundwater is flowing towards the west.

Evidence of contamination, which were detected in soil borings in Area 5 included odors (petroleum, MGP-related, sewage, burned wood, sulfur, natural gas-like, sweet wood, or unspecified), black staining, sheen, and visible OLM.

Petroleum odors were detected in four of the five soil borings typically in the vicinity of the soil water interface. Specifically, the petroleum odors were detected in soil borings SB-32 (5 to 7 ft bgs), SB-32 (9 to 13 ft bgs), SB-33 (5 to 7 ft bgs), SB-34 (2 to 3 ft bgs), and SB-36 (5 to 9 ft bgs). There are several USTs present at the parcel where the borings were excavated. Additionally, these borings are all located in the area due north of (i.e., across the street from) a site where significant releases from operations of former underground storage tanks has been documented. MGP-related odors were only detected in SB-33 (23 to 25 ft bgs) and SB-33 (27 to 37 ft bgs). Visible OLM was only detected in soil boring SB-34 in fill material from 19 to 21 ft bgs. Sheen was observed in five borings (SB-32, SB-33, SB-34, SB-36, and SB-38) at various depths at or below the soil/water table interface between 5 and 27 ft bgs. In soil borings SB-32 and SB-33 sheen was detected in both shallow intervals between 5 and 13 ft bgs and deep intervals from 19 to 25 ft bgs. The shallow intervals show evidence of impacts by petroleum residues and the deeper intervals are associated with MGP residues. In soil borings SB-36 and SB-38 sheen was only observed in the shallow intervals and in SB-34 was only detected in the deep interval.

A strong natural gas-like or decaying odor was detected in soil boring SB-36 in the interval 23 to 27 ft bgs, with a maximum PID reading of 219 ppm recorded in the 25 to 27 ft bgs interval. A continuous clay layer of at least a 6-foot thickness was observed at this location from 28 to 34.7 ft bgs.

Soil boring SB-36, located in the parking lot along West 19th Street, is approximately 14 feet to the west/southwest of former Gas Holder No. 6; and 68 feet south/southeast of former Gas Holder No. 7. At nearby sample location SB-33 (inside of former Gas Holder No. 6), drilling proceeded through wood from approximately 27 to 35 ft bgs (no recovery in 3 split-spoons).

There were no PID readings greater than 75 ppm, and no observances of OLM or TLM. At soil boring location SB-38, located approximately 57 feet to the north of SB-36, the clay was encountered at a shallower depth (17.5 feet to 23.3 ft bgs), and there were no indications of organic contamination being present.

4.7.2 Analytical Results for Subsurface Soil

Analytical results of the subsurface soil samples are presented in Tables 4-26 to 4-28. Figure 9 presents a summary of the detected constituents at each location, and comparison to NYSDEC RSCOs. Samples that exceeded their respective individual NYSDEC RSCOs are highlighted (bolded and italicized) in the tables. The analytical results for soil samples from Area 5 are discussed below.

4.7.2.1 Volatile Organic Compounds

A total of 18 VOCs were detected in subsurface soil samples collected from Area 5. Six of these VOCs, namely acetone, benzene, toluene, ethylbenzene, m/p-xylenes, and o-xylene were detected at concentrations that exceeded their respective individual NYSDEC RSCOs. Acetone exceedances may be associated with laboratory activities. Benzene was detected at elevated concentrations most frequently (approximately 13% of the number of samples analyzed). Of the VOCs detected, m/p-xylenes and benzene had the highest concentrations of 45,000 ug/kg and 43,000 ug/kg, respectively). These elevated concentrations were both detected in soil sample SB-36 (25 to 27 ft bgs). With the exception of benzene (2,000 ug/kg), the concentrations of all VOCs detected in soil sample SB-36 (33 to 35 ft bgs), which is the deepest sample collected from this boring, were below their respective NYSDEC RSCOs. However, because no field evidence of contamination was detected in the clay layer in this sample interval, it is possible that the elevated benzene concentrations may be due to smearing of benzene-impacted soil from the upper interval near the top of the silt/clay layer. VOCs concentrations in the upper sampling intervals of SB-36 (3 to 4 ft bgs), (5 to 7 ft bgs), and (17 to 19 ft bgs [and its' duplicate]) were all in below their NYSDEC RSCOs for VOCs.

The concentration of Total VOCs in soil sample SB-36 (25 to 27 ft bgs) of 157,000 ug/kg exceeded the NYSDEC RSCO for Total VOCs of 10,000 ug/kg. The Total VOCs in this sample are primarily comprised of the BTEX compounds.

4.7.2.2 Semi-Volatile Organic Compounds

Twenty-seven SVOC constituents were detected in subsurface soil samples. Twelve of the 27 SVOCs detected (naphthalene, dibenzofuran, phenanthrene, di-n-butylphthalate, fluoranthene, butylbenzylphthalate, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenz(a,h)anthracene) exceeded their respective NYSDEC RSCOs. Benzo(a)pyrene and benzo(a)anthracene exhibited the highest frequency of exceedances (approximately 77% and 51%, respectively.) Butylbenzylphthalate and phenanthrene had the highest detected concentrations (170,000 ug/kg and 77,000 ug/kg, respectively) in the soil samples SB-36 (5 to 7 ft bgs for butylbenzylphthalate, and 25 to 27 ft bgs for phenanthrene).

None of total SVOCS concentrations exceeded the NYSDEC RSCO for Total SVOCs.

4.7.2.3 Inorganics

Thirteen metals were detected in the subsurface soil samples. The concentrations of seven metals, including arsenic, cadmium, copper, lead, mercury, nickel, and zinc, exceeded their respective NYSDEC RSCOs. The highest metal concentration detected in Area 5 was for lead (2,000 mg/kg) in the soil sample TP-4 (5 to 6 ft bgs). Zinc and mercury were detected at the highest frequency of exceedances (approximately 92% and 79%, respectively). The maximum concentrations of zinc and mercury were 311 mg/kg and 2.3 mg/kg, respectively.

Total cyanide was detected in five samples, with a maximum concentration of 3.26 mg/kg. Amenable cyanide was not detected in any soil samples from this Area. There are no NYSDEC RSCOs established for total or amenable cyanide.

4.7.3 Groundwater Analytical Results and Field Measurements

A total of three groundwater samples were collected; one from each of the monitoring wells MW-31A, MW-34A, and MW-40A, which were installed in Area 5. Table 4-25 presents a summary of the field work and observations. Analytical results of the groundwater samples are presented in Tables 4-33 to 4-35. Well construction details and groundwater elevations are presented in Table 4-36. The concentrations of VOCs, SVOCs, and inorganics that exceeded the NYSDEC AWQSGVs concentrations are posted on Figure 11. Concentrations that exceeded their respective individual NYSDEC AWQSGVs are bolded and or italicized in the tables and figure to ease in their identification.

4.7.3.1 Volatile Organic Compounds

Only one compound (acetone) was detected in any of the groundwater samples. The concentration of acetone was 76 ug/l, which exceeded its NYSDEC AWQSGV. Acetone is not related to MGP residues.

4.7.3.2 Semi-Volatile Organic Compounds

A total of five compounds were detected in the groundwater samples, with only one of them (naphthalene) exceeding the NYSDEC AWQSGV. The reported concentration was 11 ug/l, slightly above the NYSDEC AWQSGV of 10 ug/l for this compound. No SVOC compounds were detected in groundwater sample MW-40A.

4.7.3.3 Inorganics

Eight metals and total cyanide were detected in the groundwater samples collected from this area, however none of them exceeded their NYSDEC AWQSGVs. Amenable cyanide was not detected.

4.8 Area 6

Area 6 is situated in the southwestern portion of the Site, due west and adjacent to Area 4 and includes the southernmost end of the Chelsea Piers Sports and Entertainment Complex. Four of the former Gas Holders (Nos. 8, 9, 10, and 11) were located in this Area, partially under what is now Route 9A. Spatially, this Area covers a portion of Route 9A, from West 16th Street to West 17th Street and is bounded by the Hudson River to the west (see Figures 2 and 4). At the time of the SCS activities, the property was used by the public (e.g., for jogging, skating, biking, etc.), and as a public roadway.

A total of 10 subsurface soil samples were collected from the three boring locations that were completed in Area 6. Table 4-6 presents a summary of the sample locations, the rationale behind the selection of the sample location, the sample interval(s), a listing of the chemical analyses conducted, and a comparison to the NYSDEC RSCOs. The following sections present a discussion of the field observations and analytical results for subsurface soil samples.

The following sections present a discussion of the analytical results for each type of sample group.

4.8.1 Summary of Field Observations

Three soil borings, SB-43, SB-44B, and SB-45, were completed in Area 6. Observations during the field activities are summarized in Table 4-29 and discussed below.

One exploratory test pit (TP-5), two soil borings (SB-41 and SB-42) and one monitoring well (MW-41A) were planned for this area. However, these activities could not be performed at these locations due to restricted access, the presence of subsurface obstructions, structures related to the adjacent building, and or utilities and related safety considerations.

Similarly, despite several attempts to complete soil borings SB-43 and SB-44, refusal due to buried wood prevented their advancement to the target depth (i.e., 50 feet or top of clay). The maximum depth achieved for these borings (i.e., refusal depth) was 24 ft bgs in soil boring SB-43, and 9 ft bgs in soil boring SB-44. It is suspected that the refusal encountered in these borings was due to a wooden platform and/or wooden pilings, which are part of the bulkhead infrastructure in this area. Based on available information the relieving platform for the bulkhead in this Area extends westward approximately 25 to 30 feet from the bulkhead along the Chelsea Piers area. The wooden platform is set at approximately 8 ft bgs, with numerous wooden pilings, rip rap, and fill material beneath it. The original soil boring designated SB-46 was subsequently renumbered to SB-44, as noted in Table 4-31.

MGP-related odors were detected in soil boring SB-44B, from 6 to 9 ft bgs. An elevated concentration for Total VOCs of over 1,500 ppm was measured in soil sample SB-44 (8 to 9 ft bgs) using a PID. No physical evidence of contamination was detected in soil borings SB-43 and SB-45.

Groundwater was encountered from approximately 5.8 ft bgs in soil boring SB-44 to approximately 7.5 ft bgs in soil boring SB-45. Due to site conditions, the monitoring well planned for this area could not be installed, and no direct measurements of groundwater elevation were conducted.

4.8.2 Analytical Results for Subsurface Soil

Ten subsurface soil samples were collected from soil borings in Area 6 and were analyzed for VOCs, SVOCs and inorganics (metals and cyanide [total and amenable]). Analytical results of the subsurface soil samples are presented in Tables 4-30 to 4-32. Figure 10 presents a summary of the detected constituents at each location, and comparison to NYSDEC RSCOs. Samples that exceeded their respective individual NYSDEC RSCOs are highlighted (bolded and italicized) in the tables.

4.8.2.1 Volatile Organic Compounds

A total of 14 VOCs were detected in subsurface soil samples collected from Area 6. Four of these VOCs, namely acetone, benzene, m/p-xylenes, and o-xylene were detected at concentrations that exceeded their respective individual NYSDEC RSCOs. Acetone exceedances may be associated with laboratory activities. O-xylene and acetone had the highest

frequency of exceedances (approximately 20% of the number of samples analyzed), and m/p-xylenes and o-xylene were detected at the highest concentrations (5,900 ug/kg and 5,100 ug/kg, respectively). These elevated concentrations were both detected in soil sample SB-44 (8 to 10 ft bgs).

Concentrations of one or more VOCs were detected in excess of their NYSDEC RSCOs in two of the 10 subsurface soil samples [SB-44 (8 to 10 ft bgs) and SB-45 (31.5 to 32 ft bgs)]. The concentrations of VOCs detected in the shallow samples collected from both of these borings were below their NYSDEC RSCOs. Benzene, o-xylene and acetone were detected at concentrations that exceeded their respective NYSDEC RSCOs in soil sample SB-45 (31.5 to 32 ft bgs).

The concentration of Total VOCs in soil sample SB-44 (8 to 10 ft bgs) of 20,080 ug/kg exceeded the NYSDEC RSCO for Total VOCs of 10,000 ug/kg. The VOCs that contribute to the total concentrations were primarily comprised of o- and m/p-xylenes, acetone and methylcyclohexane.

4.8.2.2 Semi-Volatile Organic Compounds

Twenty-three SVOCs were detected in subsurface soil samples. Concentrations of six of the 23 SVOCs detected (4-nitrophenol, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) exceeded their respective NYSDEC RSCOs. Benzo(a)pyrene and benzo(a)anthracene exhibited the highest frequency of exceedances (approximately 70% and 60%, respectively). Pyrene and fluoranthene are PAHs that exhibited the highest detected concentrations (13,000 ug/kg and 7,000 ug/kg, respectively) in the soil samples SB-43 (8 to 10 ft bgs). The SVOCs concentrations detected in the deeper sample in soil boring SB-43 (23 to 23.5 ft bgs) were below their respective NYSDEC RSCOs except benzo(a)anthracene (270 ug/kg versus 224 ug/kg) and benzo(a)pyrene (230 ug/kg versus 61 ug/kg).

No Total SVOC concentrations exceeded the NYSDEC RSCO for Total SVOCs.

4.8.2.3 Inorganics

Thirteen metals were detected in the subsurface soil samples. Of these, the concentrations of arsenic, cadmium, copper, lead, mercury, nickel and zinc exceeded their respective NYSDEC RSCOs. The maximum reported metal concentration in Area 6 was that for lead of 956 mg/kg, which was detected in subsurface soil sample SB-43 (8 to 10 ft bgs). Of the metals detected, the concentrations of zinc and mercury exceeded their respective NYSDEC RSCOs most frequently (approximately 90% and 80%, respectively). The maximum concentrations of zinc and mercury were 485 mg/kg and 9.3 mg/kg, respectively.

Total cyanide was detected in two samples, with a maximum concentration of 0.72 mg/kg, Similarly, amenable cyanide was detected in two soil samples from this Area, with a maximum concentration of 0.72 mg/kg. There are no NYSDEC RSCOs established for total or amenable cyanide.

4.8.3 Groundwater Analytical Results and Field Measurements

There were no monitoring wells installed in this area of the Site, nor were any groundwater samples collected from this area as part of the SCS.

4.9 Site-Wide Summary of Organic Compounds Detected in Subsurface Soil

Figures 12 and 13 present a graphical interpretation of the ranges of concentrations reported in soil samples for Total VOCs and Total SVOCs, respectively. Concentrations below the NYSDEC RSCO for Total VOCs (10 mg/kg) and Total SVOCs (500 mg/kg) are presented in green. Other colors, as presented in the figures, represent different ranges of concentrations for each chemical class.

4.9.1 Total VOCs

The concentrations of Total VOCs exceeded the NYSDEC RSCO for Total VOCs in soil from 18 boring locations and 27 sample intervals across the six designated Areas of the Site. The majority of the exceedances were located in Area 3 (which was the location of the Retort House, Scrubbers, Purifying House, Laboratory and Workshops), with the central portion of this area in the vicinity of soil boring SB-51, which had the highest concentration of Total SVOCs of approximately 2,850 mg/kg. The occurrence and concentrations for Total VOCs above the NYSDEC RSCO are summarized by area in the table below.

Area	Sample Location	Sample Interval (ft bgs)	Concentration (mg/kg)
	SB-2	19 to 20.5	103.10
	SB-4	19 to 21	182.23
1	SB-5B	11 to 12	110.80
	SB-6	13 to 15	596.70

Area	Sample Location	Sample Interval (ft bgs)	Concentration (mg/kg)
	SB-9	20 to 22	13.81
	SB-10	5 to 6	68.96
2		6 to 8	535.60
2		8 to 10	234.80
	SB-11	27 to 29	72.37
	SB-15	5 to 6	28.00
		17 to 19	360.48
	SB-19	17 to 19	12.75
	SB-24	25 to 27	863.02
	SB-25	20 to 22	26.84
		33 to 34	40.49
	SB-48	15 to 16	35.38
		19 to 21	12.44
3	SB-49	10 to 12	243.86
		14 to 15	34.61
		17 to 18	300.02
	SB-51	14 to 15	447.52
		21 to 22	2,851.25
	SB-52	27 to 29	196.90
4	SB-30	22 to 24	390.90
		24 to 26	30.44
5	SB-36	25 to 27	157.50
6	SB-44	8 to 10	20.08

4.9.2 Total SVOCs

The concentrations of Total SVOCs exceeded the NYSDEC RSCO for Total SVOCs in soil from seven boring locations and nine sample intervals. Spatially, the highest density of exceedances was again in Area 3 of the Site (similar to the Total VOCs trend), with the maximum Total SVOC concentration reported in SB-15 (Area 2, 13,749 mg/kg). SB-15 was located on the

sidewalk, outside of the building at Block 690, Lot 46. The occurrence and concentrations for Total SVOCs above the NYSDEC RSCO are summarized by area in the table below.

Area	Sample Location	Sample Interval	Concentration
		(ft bgs)	(mg/kg)
		<u>_</u>	
1	SB-4	19 to 21	728.28
	SB-11	27 to 29	1,645.70
2	SB-15	17 to 19	13,749.00
	SB-56 (Dup.)	2 to 3	542.10
	SB-49	17 to 18	1,003.05
3	SB-51	14 to 15	561.09
		21 to 22	2,112.75
	SB-52	27 to 29	797.11
		33 to 35	1,391.60

4.10 Groundwater Flow

Based upon the synoptic water level measurements recorded on October 11, 2005, and field survey information, groundwater elevations were calculated in each of the eleven monitoring wells installed within the areas of the Site. Information related to monitoring well construction details, groundwater elevations, and other information is summarized in Table 4-36. The groundwater elevations were then plotted and a groundwater contour map developed, as presented in Figure 14.

Based upon the topography and regional hydrogeologic information, the expected groundwater flow is to the west, towards the Hudson River. It is anticipated that groundwater levels are likely influence by seasonal and tidal fluctuations of water levels in the river. Based upon the water table elevations, the groundwater flow direction within the fill unit on the majority of the Site is towards the west/southwest. There appears to be a hydraulic anomaly located near Area 2, where the water table appears to be mounded. There may be influences from the steel sheet pile that was installed on the Block 690, Lots 12 and 54 properties.

4.11 Community Air Monitoring Results

During the Site characterization study implementation, there was no work stoppage due to elevated PID or particulate readings in excess of the CAMP criteria. There were no complaints from tenants, owners, or operators of commercial establishments of nuisance odors or dust during the Con Edison/TRC investigative efforts. Periodically, an instantaneous reading above the action level on the PID and/or dust monitor was recorded. However, these anomalies were attributed to weather-related conditions (e.g., humidity) by the field personnel.

4.12 Summary of Findings

The key field observations and analytical results for each of the six designated areas are summarized below.

<u>Summary of Findings – Area 1</u>

- The silty/clay unit that forms an intermediate low permeability boundary elsewhere on the Site between the water table and the lower aquifer units is discontinuous or absent in Area 1.
- Evidence of petroleum-related impacts, which included odors and LNAPL, was prevalent in
 the water table aquifer. The petroleum is related releases from one or more of the 6 USTs
 that were operated at this property. The spill is actively being managed by the regional
 NYSDEC office and related actions are ongoing.
- The foundations of the two former gas holders are present in the subsurface of this Area. The bottoms of the holders appear to be intact. The soil fill inside the holders appears to be different than the soil encountered in soil borings outside the holders.
- Evidence of MGP-residues (e.g., OLM, odors, black staining, etc.) was only detected in two soil borings (SB-2 and SB-4) at a depth immediately above of the bottom of both of the former gas holders. These soil borings were advanced inside the holders.
- VOCs, Total VOCs, SVOCs, Total SVOCs and metals were detected at elevated concentrations in subsurface soil.
- Concentrations of VOCs, SVOCs, two metals, and total cyanide were detected at
 concentrations exceeding the NYSDEC AWQSGVs in shallow groundwater (MW-5A). The
 majority of the VOCs and SVOCs detected are related to the petroleum contamination at the
 property from garage operations conducted by others.

• No VOCs or SVOCs were detected at elevated concentrations in deep groundwater (MW-5B). One metal, arsenic, exceeded the NYSDEC AWQSGVs in this well.

Summary of Findings – Area 2

- The silty/clay unit that forms an intermediate low permeability boundary between the water table and the lower aquifer appears to be continuous across Area 2. The depth to the top of the silty/clay unit varies.
- Evidence of petroleum-related impacts, which included odors and LNAPL, was prevalent in
 the water table aquifer and was typically detected from 1 ft bgs to depths ranging to 15 ft bgs.
 The petroleum is likely related operations of one or more USTs that were operated in this
 Area or the numerous petroleum spills that have been identified and documented in the
 vicinity of the Site.
- Structures associated with the two former gas holders are present in the subsurface in the
 eastern-most portion of Area 2. The southern portion of the ring wall of former Gas Holder
 No. 3 was visually confirmed in test pit TP-2, although the ring wall of former Gas Holder
 No. 4 could not be located. At SB-10, located inside former Gas Holder No. 4, the gas
 holder bottom was encountered.
- Where detected, evidence of MGP-residues (e.g., OLM, TLM, naphthalene odors, black staining, etc.) was detected as discrete narrow bands in 6 soil borings within the interval of 19 to 35 ft bgs in the eastern-most portion of this Area and adjacent to the area being remediated (Georgetown property) on the western end of Area 2 along Route 9A.
- VOCS, Total VOCs, SVOCs, Total SVOCs and metals were detected in subsurface soil at concentrations exceeding NYSDEC RSCOs. No pesticides, herbicides or PCBs were detected at concentrations in subsurface soil in excess of the NYSDEC RSCOs.
- Concentrations of one VOC, benzene, in shallow groundwater exceeded the NYSDEC AWQSGV. SVOCs were not detected in excess of the NYSDEC AWQSGVs. One metal, thallium, was detected in excess of the NYSDEC AWQSGV in the duplicate sample of MW-12B.

Summary of Findings – Area 3

• The silty/clay unit that forms an intermediate low permeability boundary between the water table and the lower aquifer appears to be continuous across Area 3. The top of this unit ranged in depth from 15 ft bgs on the eastern portion of this Area to 33 ft bgs on the western portion.

- The remnant of the foundation for several former structures were are present in subsurface in the subsurface of this Area. Based upon historical maps, the structures encountered included portions of the retort house, laboratory and scrubbers.
- With the exception of soil boring SB-21, soil encountered in all borings in Area 3 exhibited some evidence of MGP-related impacts, which included OLM, TLM, naphthalene and ammonia odors, black staining, etc. The strongest evidence of MGP impacts (e.g., OLM, TLM and heavy black staining) was detected in four borings (SB-24/MW-24 cluster, SB-26, SB-48 and SB-52). Where present, OLM, TLM, and black staining were encountered in the interval 13 to 33 ft bgs. Ammonia odors were detected in the vicinity of the Scrubbers in the eastern side of this Area.
- VOCs, Total VOCs and SVOCs, Total SVOCs and metals were detected at elevated concentrations in subsurface soil in Area 3.
- Concentrations of 2 VOCs and 3 SVOCs in the groundwater sample collected from MW-24A
 exceeded the NYSDEC AWQSGVs. There were no other exceedances of the NYSDEC
 AWQSGVs in this Area.
- During monitoring well development and groundwater sampling, several feet of coal tar DNAPL was measured in the deep monitoring well MW-24 B located in the western portion of Area 3. It is noted that no evidence of contamination was detected during installation of this well. The source and mechanism for its migration in to the well has not been determined.

Summary of Findings – Area 4

- The silty/clay unit that forms an intermediate low permeability boundary between the water table and the lower aquifer may be continuous across Area 4, but becomes notably thin on the east side of the block.
- Of the two borings completed in Area 4, only subsurface soil in soil boring SB-30 exhibited evidence of contamination, which included petroleum odors, MGP-related odors, sheen, black staining, OLM and TLM. The OLM and TLM were detected in soil from 20 to 24 ft bgs.
- VOCs, Total VOCs, SVOCs, Total SVOCs and metals were detected at elevated concentrations in subsurface soil in Area 4.

 One VOC (1,2-dichloroethene) and one metal (thallium) were detected in groundwater at concentrations above their NYSDEC AWQSGVs. Neither parameter is associated with MGP residues.

Summary of Findings – Area 5

- The silty/clay unit that forms an intermediate low permeability boundary between the water table and the lower aquifer appears to be continuous across the western portion of Area 5. The depth to the top of the silty/clay unit varies.
- A brick-wall foundation, which appeared to correlate with Gas Holder No. 6 is present in the subsurface in the southwestern portion of this Area. No evidence of MGP-related impacts associated with this structure was observed.
- Evidence of petroleum-related impacts, which included odors and sheen, was detected in several borings completed in this area. The impacts were typically in the shallow overburden or in the immediate the vicinity of the water table, which occurred between 4 to 7 ft bgs. The petroleum may have several sources, which likely include the in-place USTs on-site and documented releases from historic or current USTs on adjacent properties.
- Evidence of MGP-residues (e.g., OLM, odors, black staining, sheen etc.) was detected in five borings. MGP-related odors were detected intermittently in soil boring SB-33 in the interval from 21 to 37 ft bgs. OLM was only detected in soil boring SB-34 in the interval of 19 to 21 ft bgs. Sheen was observed in soil borings SB-32, SB-33, SB-34, SB-36 and SB-38 at various depths in the interval 5 to 27 ft bgs.
- VOCs, Total VOCs, SVOCs, Total SVOCs and metals were detected at elevated concentrations in subsurface soil.
- Only acetone (VOC) and naphthalene (SVOC) were detected at elevated concentrations in groundwater in Area 5. Acetone is not associated with MGP residues.

Summary of Findings – Area 6

• The extent of the silty-clay unit that forms an intermediate low permeability boundary between the water table and the lower aquifer could not be determined in this Area due to the inability to advance soil borings to the target depth. Boring refusal is believed to have been due to the presence of subsurface structures related to the nearby bulkhead and relieving platform.

- Of the four soil borings completed in Area 6, only one boring contained MGP-related odors and an elevated PID reading. These observations are consistent with MGP-related waste that would occur near former gas holders, such as the four that were present in Area 6.
- VOCs, Total VOCs, SVOCs, and metals were detected at elevated concentrations in subsurface soil in Area 6.
- There were no monitoring wells installed in this area of the Site, nor were any groundwater samples collected from this area as part of the SCS.

5 QUALITATIVE EXPOSURE ASSESSMENT

A qualitative exposure assessment was conducted in accordance with NYSDEC, Division of Environmental Remediation, Draft DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC, 2002). The purpose of this qualitative exposure assessment is to determine whether Site conditions pose an unacceptable hazard to potentially exposed receptor populations. In order to pose an unacceptable hazard to receptor populations, the receptor must be exposed to contaminants at the Site. This assessment evaluates whether complete exposure pathways exist at the Site and identifies chemicals of concern (COCs) for those receptors and media of concern where a complete exposure pathway exists (NYSDEC, 2002).

The former West 18th Street Gas Works was located between West 16th Street and West 20th Street, and 10th Avenue and the Hudson River bulkhead (with one additional parcel on the block bounded by West 17th Street, West 18th Street, 9th Avenue and 10th Avenue) in western downtown Manhattan, New York. As discussed in Section 2.2, the Site is located in a mixed usage area with commercial properties including storefront retail facilities to the east and west and a sports/entertainment complex located to the west and adjacent to the Site. A mixture of commercial office/warehouse facilities, art galleries and residential properties are located to the north and adjacent to the Site. An office facility and high-rise apartment building are located to the south. The areas at and around the Site are anticipated to remain the same as the current use for the foreseeable future. Buildings and structures within the former Site boundaries are presently being demolished, with new construction planned. It is anticipated that additional properties within this area will also undergo future redevelopment in a similar manner.

This Qualitative Exposure Assessment addresses all six of the designated areas as one Site. These areas are in a heavily developed urban setting, and are characterized by numerous tightly spaced buildings, concrete, and asphalt covered areas. The analysis is broad in nature, capable of being applied to current and future activities. If a specific pathway exists in one of the designated areas, it was given further attention and analyzed in the context of the elements below.

5.1 Exposure Pathway Assessment

A complete exposure pathway consists of five elements (NYSDEC, 2002):

- A contaminant source;
- Contaminant release and transport mechanisms;
- A point of exposure;
- A receptor population; and
- A route of exposure.

The evaluation of these exposure pathway elements as they apply to the Site is presented below.

5.2 Contaminant Source

The Site is the location of the former West 18th Street Gas Works. MGP operations began at in 1834, with numerous production and storage-related expansions occurring throughout the history of the facility. The West 18th Street Gas Works appears to have operated only one or two years into the twentieth century. By 1914, all of the gas holders were razed. The available historical information on the West 18th Street Gas Works indicates that this Site was both a gas manufacturing and a gas storage facility. There were no known waste storage areas. Typical MGP residues, such as tars, purifier wastes (wood or other solids), clinkers (consolidated ashlike material), condensates (liquids), and oils, were generally observed at various locations within the Site. No historical records are available that describe waste management practices during the operation of the former gas works. However, based upon visual and olfactory field observations, tars (DNAPL), clinkers, and oils (petroleum-based LNAPL) were determined to be present intermittently across the Site.

5.3 Contaminant Release and Transport Mechanisms

Contaminant release and transport mechanisms carry contaminants from the source to points where people may be exposed. Potential contaminant release mechanisms include historic direct release of MGP-associated contaminants to soils, and the potential release from existing or historic utilities. Transport mechanisms include the leaching, percolation or infiltration of contaminants from contaminated soils to groundwater; volatilization of contaminants from soils or groundwater to air and the potential transport of contaminants in groundwater to surface water.

5.4 Points of Exposure

An exposure point is a location where actual or potential human contact with a contaminated medium may occur. With respect to the former West 18th Street Gas Works, possible exposure points include contaminants in soil, groundwater and soil gas/indoor air intrusion. Off-site potential exposures include particulates in ambient air generated during construction activities, as well as potential exposure to contaminated soil, groundwater and vapors.

5.5 Receptor Populations

Based on current and potential future land uses at the Site, potential receptor populations that may come in contact with Site-related contaminants are commercial tenants, building residents, off-site residents, indoor maintenance workers, outdoor workers (i.e., landscapers/groundskeepers) and construction/utility workers.

5.6 Routes of Exposure

A route of exposure is the way in which a receptor may be exposed to Site-related contaminants. Potential routes of exposure considered for this assessment include ingestion and dermal contact with soils, ingestion and dermal contact with groundwater, inhalation of indoor and ambient air that contains volatilized constituents present in Site soil and/or groundwater, and inhalation of soil particulates that enter the air column as fugitive dust emissions. The potential exposure routes for which a complete exposure pathway exists for a specific receptor are discussed below.

Commercial Tenants and Residential Receptors: A tenant in one or more of the buildings, or an adult or child residential receptor could, in general, be exposed to surface soil through incidental ingestion, inhalation, and/or dermal contact. For this Site, however, the prevalence of buildings, paving and concrete that cover almost the entire Site reduce the potential exposure routes, rendering these pathways as not being of potential significance. An adult or child resident or tenant may be exposed to surface and subsurface soil through the inhalation of particulates in ambient air associated with fugitive dust emissions during construction activities. Residential and commercial tenant receptors will not be exposed to groundwater at the Site through ingestion or dermal contact. Groundwater is not used as a drinking water supply in Manhattan. New York City residents receive their water supply from upstate reservoirs. Due to the Site's proximity to the Hudson River, groundwater beneath the Site is likely to be brackish or saline, and unsuitable for human consumption and therefore is not a media of concern for direct ingestion. Due to the presence of VOCs in groundwater which may volatilize into the residential buildings on-site, inhalation of volatiles in indoor air is a potential route of exposure for residents and commercial tenants at this Site.

<u>Off-Site Residents:</u> An adult or child off-site resident may be exposed to surface and subsurface soil through the inhalation of particulates in ambient air associated with fugitive dust emissions during construction activities.

<u>Indoor Maintenance Worker:</u> An indoor maintenance worker is assumed to work only indoors. Therefore, no routes of exposure to soils and groundwater exist for this Site. Due to the presence of VOCs in groundwater which may volatilize into the residential and commercial buildings onsite, inhalation of volatiles in indoor air is a potential route of exposure for indoor maintenance workers at this Site.

<u>Construction Worker:</u> A construction worker may be exposed to surface and subsurface soil and groundwater during construction activities that may occur in the future. The routes of exposure are incidental ingestion and dermal contact with soils and groundwater, inhalation of particulates in ambient air, and inhalation of volatiles in ambient air that have volatilized from soil and groundwater.

5.7 Identification of Chemicals of Concern

The evaluation of whether there are chemicals of concern at this Site considers the concentrations of Site-related chemicals and whether the concentrations pose a health hazard to the identified receptors through the complete routes of exposure identified in Section 5.6 above. Chemicals of concern that require further evaluation are those that exceed protective cleanup objectives in soil and groundwater cleanup standards (i.e., NYSDEC RSCOs and NYSDEC AWQSGVs) or applicable screening criteria. This evaluation was conducted for each medium of concern.

5.8 Surface Soil

There were no surface soil samples collected in association with this project, as paving, concrete or buildings dominate the urban landscape at the Site.

5.9 Subsurface Soils

A total of 9 VOCs, 25 SVOCs and 8 metals were detected across the six Areas of the Site in test pits and soil borings at concentrations exceeding their respective NYSDEC RSCOs. Therefore, subsurface soil is a medium of concern and could contribute to a potentially complete exposure pathway. The only receptors who may be exposed to subsurface soils is the construction worker, and possibly on-Site tenants/residents and off-site tenants (particulate inhalation during construction activities). For the construction worker, exposure may occur through incidental ingestion of surface/subsurface soil, dermal contact with surface/subsurface soil and/or groundwater, and inhalation of particulates in ambient air. Therefore, these VOCS, SVOCs and metals are COCs in subsurface soil for the construction worker.

5.10 Groundwater

A total of 5 VOCs, 5 SVOCs, 4 metals, and total cyanide were detected in groundwater at the Site in excess of the NYSDEC AWQSGVs. Therefore, groundwater is a medium of concern and could contribute to a potentially complete exposure pathway. The only receptors who may be exposed to groundwater is the construction worker, as there are no known pumping wells in vicinity of the Site. For the construction worker, exposure may occur through incidental dermal contact with groundwater. Therefore, these VOCS, SVOCs, metals, and total cyanide are COCs in groundwater for the construction worker.

5.11 Sub-Slab Vapors

A Site-wide investigation of sub-slab vapor conditions has not been conducted by Con Edison. Within Areas 2 and 5, however, Con Edison conducted limited studies (baseline sub-slab and

indoor air quality sampling program at Block 690, Lot 46 (Area 2) and at Block 691, Lot 1 (Area 5).

For the Area 2 study, a total of 12 compounds exceeded the 75th percentile NYSDOH criteria, indicating that there is a potential for vapor intrusion into indoor spaces at this location. The majority of the detected compounds can be attributed to tenant operations/storage and/or previous UST releases. As was demonstrated, certain types of construction activities by others on the adjacent parcel exacerbated the conditions, resulting in cracks in the buildings' concrete slab and walls. Tenants and residents complained of odors collecting inside the building during construction-related activities. Intrusion of sub-slab vapors was considered to be an exposure pathway for tenants and residents that would warrant further evaluation due to the limited amount of data available.

Subsequent to the Con Edison investigation, the cracks in the floor slab and walls were sealed, and construction techniques were changed. Additional soil vapor studies conducted by others indicated that there was no vapor intrusion. Since the performance of both of these studies, subsurface construction activities have been completed, the adjacent property is sealed below grade with a liner, and a new structure is being built atop it. In addition, the tenant on the first floor is reportedly moving out of this location.

The air and sub-slab soil gas sampling program conducted in Area 5 confirmed the presence of a total of 12 compounds above the 75th percentile NYSDOH criteria, five of which were in excess of the NYSDOH 90th percentile NYSDOH criteria. Two of these may be related to MGP sources and three of these compounds are not associated with former MGP operations. The data suggests that the presence of these compounds in sub-slab soil gas have the potential to impact indoor air quality. However, the analytical data, in conjunction with the observed presence of numerous VOC-containing products stored and used at the facility during routine operations and maintenance and the air flow in the basement, suggest that these potential sources are likely having a greater influence on the overall indoor air quality than intrusion of VOCs in the soil gas into the basement. Finally, comparison of the various VOCs detected in indoor air to the NYSDOH published background concentrations, it is concluded that their concentrations are generally typical for in indoor air. Although several VOCs were detected above background for residential indoor air, regardless of the source(s), the concentrations are well below published levels considered to pose an exposure risk.

In summary, subsurface soil and groundwater are mediums of concern that could contribute to potentially complete exposure pathways. The only receptors who may be directly exposed to subsurface soils is the construction worker. It is noted that on-Site tenants/residents and off-site tenants may be indirectly exposed to subsurface soil containing COCs if this media becomes

airborne as dust (e.g., particulate inhalation during construction activities). The only receptor who may be exposed to groundwater is the construction worker. The potential for a complete exposure pathway in association with sub-slab vapors exists across the Site due to the presence of elevated VOCs in subsurface soil and groundwater. However, the majority of the VOCs detected in the shallow subsurface soil and groundwater are not attributed to MGP residues but rather are most directly to the numerous documented and suspected petroleum spills throughout and in the vicinity of the Site.

6 CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of the SCS, soil and or groundwater quality in each of the six designated Areas of the West 18th Street Gas Works Site have been influenced by historical operations of the former MGP. In response to these findings and in accordance with the VCA, Con Edison will conduct a Remedial Investigation (RI) at the Site to delineate impacts in the affected areas. Towards this goal, a RI Work Plan was prepared and is presented in Appendix E of this report.

7 REFERENCES

Division of Water *Technical and Operational Guidance Series* (1.1.1), New York State Department of Environmental Conservation, June 1998.

Draft DER-10 *Technical Guidance for Site Investigation and Remediation*, New York State Department of Environmental Conservation, December 2002.

Draft Guidance for Evaluating Soil Vapor Intrusion in the State of New York", New York State Department of Health, February 2005.

Gas Research Institute, Management of Manufactured Gas Plant Sites, Volume 1, 1996.

Hudson River Park, Chelsea Type Bulkhead, Historic Bulkhead, ARUP, May 2002.

Manufactured Gas Plants: The Environmental Legacy, Fisher, Schmitter and Lane, November 1999.

Reconstruction of Route 9A from Horatio Street to W. 26th Street, A Length of 1.5 Kilometers in New York City, New York State Department of Transportation, Office of Engineering, August 1997.

Remedial Action Work Plan, West 19th Street Development Site, New York, NY, Blasland, Bouck & Lee, Inc., September 2003.

Report of Evaluation of Indoor Air, Soil Gas and Ambient Air Sampling, 524 West 19th Street, New York, New York, TRC Environmental Corporation, May 2005.

Site Characterization Study Work Plan for the Former West 18th Street Gas Works, Manhattan, New York, TRC Environmental Corporation, September 2003.

Site Investigation Report, West 19th Street Development Site, New York, NY, Blasland, Bouck & Lee, Inc., June 2003.

Technical and Administrative Guidance Memorandum #4046, New York State Department of Environmental Conservation, January 1994 (with revisions).

West 18th Street Manufactured Gas Plant Site History Report, Parsons, August 2002.

Work Plan for Indoor Air/Ambient Air/Sub-Slab Gas Investigation, Bayview Correctional Facility, 550 West 20th Street, TRC Environmental Corporation, September 2005.

Summary of Site Characterization Study Field Program for Area 1 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-1

Soil Borings

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale		ple Int	terval ground	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
SB-1	Located southeast of the former gas holder designated as Gas Holder No. 1 on the south side of West 18th Street between 9th and 10th Avenues (within the Verizon building).	5	to	5.5	No	No	No	No	No	NR	NR	NR	No	No
		1	to	1.5	No	No	V	No	No	NR	NR	NR	No	No
	Located within Gas Holder No. 1	2	to	2.5	No	No	✓	No	No	NR	NR	NR	No	No
SB-2	(within Verizon building).	5	to	7	No	No	V	No	No	NR	NR	NR	No	No
		13	to	15	No	No	\checkmark	No	No	NR	NR	NR	No	No
		19	to	20.5	✓	✓	V	No	No	NR	NR	NR		No
	Located between Gas Holder No. 1 and	3	to	3.5	No	No	No	No	No	NR	NR	NR	No	No
SB-3	the former gas holder designated as Gas Holder No.2 on the south side of West	5	to	7	No	No	No	No	No	NR	NR	NR	No	No
30-3	18th Street between 9th and 10th Avenues (at TP-1 location, within the	13	to	15	No	No	No	No	No	NR	NR	NR	No	No
	Verizon building).	17	to	19	No	No	No	No	No	NR	NR	NR	No	No
		5	to	5.5	No	No	\checkmark	No	No	NR	NR	NR	No	No
	Located within Gas Holder No. 2 on	7	to	9	No	No		No	No	NR	NR	NR	No	No
SB-4	the south side of West 18th Street between 9th and 10th Avenues	9	to	13	No	No		No	No	NR	NR	NR	No	No
	(within Verizon building).	17	to	19	No	No	\checkmark	No	No	NR	NR	NR	No	No
		19	to	21				No	No	NR	NR	NR	\checkmark	abla
		17	to	19	\checkmark	No	No	No	No	NR	NR	NR	No	No
CD EA		19	to	20	No	No	No	No	No	NR	NR	NR	No	No
SB-5A (MW-5B)	Located southwest of Gas Holder No. 2 (within the Verizon building).	26	to	28	No	No	No	No	No	NR	NR	NR	No	No
(5,	31	to	33	No	No	No	No	No	NR	NR	NR	No	No
		34	to	36	No	No	No	No	No	NR	NR	NR	No	No

Summary of Site Characterization Study Field Program for Area 1 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-1

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale		ple Into	erval ground	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
00.50		10	to	11	No	No	No	No	No	NR	NR	NR	No	No
SB-5B (MW-5A)	Located southwest of Gas Holder No. 2 (within the Verizon building).	11	to	12	✓	No	No	No	No	NR	NR	NR	V	No
(IVIVV-SA)		21	to	22	No	No	No	No	No	NR	NR	NR	No	No
		10	to	12	No	No	No	No	No	NR	NR	NR	No	No
		13	to	15	V	No	No	No	No	NR	NR	NR	V	No
SB-6	Located northwest of Gas Holder No. 2 (within the Verizon building).	19	to	21	V	No	No	No	No	NR	NR	NR	No	No
	, , , , , , , , , , , , , , , , , , , ,	24	to	26	No	No	No	No	No	NR	NR	NR	No	No
		28.5	to	30.5	No	No	No	No	No	NR	NR	NR	No	No
MW-55B	Duplicate of MW-5B	34	to	36	No	No	No	No	No	NR	NR	NR	No	No
SB-85A	Duplicate of SB-5A	19	to	20	No	No	V	No	No	NR	NR	NR	No	No
SB-66	Duplicate of SB-6	24	to	26	No	No	No	No	No	NR	NR	NR	No	No

Exploratory Test Pit Trenches

	Located in the central area of the Verizon parking garage, in search of the former ring walls.		to	1.5	No	No	V	No	No	NR	NR	NR	No	No
TP-21B	Duplicate of TP-1B	1	to	1.5	No	No	\checkmark	No	No	NR	NR	NR	No	No

Groundwater Samples

MW-5A	Located southwest of the former gas holder designated as Gas Holder No. 2 (within the Verizon building) - water table aquifer.		Ø	Ø	Ø	Ø	No	NR	NR	NR	Not Applicable	Not Applicable
MW-5B	Located southwest of the former gas holder designated as Gas Holder No. 2 (within the Verizon building) - deeper aquifer.	37	No	No	V	No	No	NR	NR	NR	Not Applicable	Not Applicable

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Site Characterization Study Field Program for Area 2 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-2

Soil Borings

Individual TAGM RSCO Exceedance?

								maivia	uai i AOIII i	x.				
Sample Location	Sample Location Rationale	(Feet	nple Inte below g surface)		VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
	I accepted on the couplewant common of	6	to	7	No	No	No	No	No	No	No	No	No	No
CD 7	Located on the southwest corner of	17	to	19	No	No	No	No	No	No	No	No	No	No
SB-7	West 19th Street and 10th Avenue	27	to	29	No	No	No	No	No	No	No	No	No	No
	(sidewalk area).	43	to	45	No	No	No	No	No	No	No	No	No	No
MW-7A	Same as above.	6	to	7	No	No	No	No	No	No	No	No	No	No
	Located east of and between the former gas holders designated as	4	to	5	No	No	No	No	No	No	No	No	No	No
SB-8	Gas Holder Nos. 3 and 4 near 10th Avenue between 18th and 19th	11	to	11.5	No	No	No	No	No	NR	NR	NR	No	No
	Streets (sidewalk area).	14.5	to	15	✓	No	No	No	No	NR	NR	NR	No	No
	Located within Gas Holder No. 3 in	4	to	5	No	V	No	No	No	No	No	No	No	No
	the vicinity of the southwest corner of	8	to	10	No	V	\square	No	No	No	No	No	No	No
SB-9	West 19th Street and 10th Avenue	20	to	22	✓	V	\square	No	No	No	No	No	✓	No
	(within the parking lot).	26	to	28	No	No	No	No	No	No	No	No	No	No
	(within the parking lot).	32	to	34	No	No	No	No	No	No	No	No	No	No
	Located within Gas Holder No. 4 in	5	to	6		✓	No	No	No	No	No	No		No
	the vicinity of the northwest corner of	6	to	8	✓	V	V	No	No	No	No	No	\square	No
SB-10	West 18th Street and 10th Avenue	8	to	10	✓	No	No	No	No	No	No	No	✓	No
	(within the parking lot).	20	to	22	V	No	No	No	No	No	No	No	No	No
	(within the parking lot).	48	to	50	No	No	V	No	No	No	No	No	No	No
		5	to	6	V	V	V	No	No	No	No	No	No	No
	Located southwest of Gas Holder	13	to	15	No	No	No	No	No	No	No	No	No	No
SB-11	No. 4 (within the parking lot).	27	to	29	✓	✓	✓	No	No	No	No	No	✓	V
	(Within the parking lot).	35	to	37	No	No	No	No	No	No	No	No	No	No
		37	to	39	No	No	No	No	No	No	No	No	No	No
	Located within the former Gas Light	5	to	7	No	No	No	No	No	NR	NR	NR	No	No
05.46	Company Pipe Yard (in the parking	7	to	9	No	✓	No	No	No	NR	NR	NR	No	No
SB-12	lot between West 18th and West	15	to	17	No	No	No	No	No	NR	NR	NR	No	No
	19th Streets).	25	to	27	✓	No	V	No	No	NR	NR	NR	No	No
		49	to	51	No	No	No	No	No	NR	NR	NR	No	No
	Located within the former Gas Light	6	to	6.5	No	No	✓	No	No	NR	NR	NR	No	No
SB-13	Company Store Yard (on the sidewalk), south side of West 19th	25	to	27	No	No	No	No	No	NR	NR	NR	No	No
	Street.	27	to	29	No	No	V	No	No	NR	NR	NR	No	No
SB-13A	Duplicate of SB-13	25	to	27	No	No	No	No	No	NR	NR	NR	No	No

Summary of Site Characterization Study Field Program for Area 2 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-2

Individual TAGM RSCO Exceedance?

								IIIuiviu	uai i AGM F	COCO EXC	eeuance:			
Sample Location	Sample Location Rationale	(Feet	nple Inte below gi surface)		VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
SB-14	Located within the former Gas Light Company Store Yard (within Block 690, Lot 20), close to West 18th Street.	4	to	5	No			No	No	No	No	No	No	No
	Located within the former Gas Light	11	to	13	No	No	No	No	No	NR	NR	NR	No	No
SB-14A	Company Store Yard (within Block 690, Lot 20), close to West 18th	17	to	19	No	No	No	No	No	NR	NR	NR	No	No
	Street.	23	to	25	No	No		No	No	NR	NR	NR	No	No
		4	to	5	No	No	No	No	No	NR	NR	NR	No	No
		5	to	6	No	No	No	No	No	NR	NR	NR	✓	No
SB-15	Located on the sidewalk, north of	7	to	9	No	V	\square	No	No	NR	NR	NR	No	No
30-13	Block 690, Lot 46.	11	to	13	No	No	No	No	No	NR	NR	NR	No	No
		17	to	19	V	V	No	No	No	NR	NR	NR	\square	\checkmark
		23	to	25	V	V	✓	No	No	NR	NR	NR	No	No
	Located on the sidewalk area	7.3	to	7.9	No	V	✓	No	No	NR	NR	NR	No	No
SB-18	immediately east of Chelsea Piers between West 18th and West 19th	28.5	to	29	✓	V	✓	No	No	NR	NR	NR	No	No
	Streets.	42.5	to	43	No	No	V	No	No	NR	NR	NR	No	No
		6	to	7	No	V	\square	No	No	NR	NR	NR	No	No
SB-53	Located in the southwest area inside the building at Block 690, Lot 42.	8.3	to	9.3	No	No	\square	No	No	NR	NR	NR	No	No
	3	14	to	15	No	No	V	No	No	NR	NR	NR	No	No
		3	to	4	No	V	V	No	No	NR	NR	NR	No	No
CD E4	Located in the southeast area inside	5	to	6	No		☑	No	No	NR	NR	NR	No	No
SB-54	the building at Block 690, Lot 42.	9	to	10	No	No	No	No	No	NR	NR	NR	No	No
		19	to	21	No	\square	No	No	No	NR	NR	NR	No	No
		2	to	3	No	\square	\square	No	No	NR	NR	NR	No	No
SB-55	Located in the northeast area inside	5	to	6	No	\square	\square	No	No	NR	NR	NR	No	No
3D- 33	the building at Block 690, Lot 42.	8	to	9	No	No	No	No	No	NR	NR	NR	No	No
		19	to	20	No	No	No	No	No	NR	NR	NR	No	No
SB-56	Duplicate of SB-55	2	to	3	No	V	V	No	No	NR	NR	NR	No	

Summary of Site Characterization Study Field Program for Area 2 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-2

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	(Feet b	ple Inter below gr surface)	ound	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
Explorator	y Test Pit Trenches													
TP-2	Located within the parking lot between 18th and 19th Street, parallel to 10th Avenue (Block 690, Lot 20).	10	to	11	No	No	No	No	No	NR	NR	NR	No	No

Groundwater Samples

MW-7A	Adjacent to former gas holder designated as Gas Holder No. 3 on the sidewalk east of Block 690, Lot 29.		V	No	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-12A	Located west of former gas holders designated as Gas Holder Nos. 3 and 4 in Block 690, Lot 20.	12		No	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-12B	Located west of former gas holders designated as Gas Holder Nos. 3 and 4 in Block 690, Lot 20.	42	V	No	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-22A	Duplicate of MW-12A	12	No	No	V	No	No	NR	NR	NR	Not Applicable	Not Applicable

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Site Characterization Study Field Program for Area 3 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-3

Soil Borings

Individual TAGM RSCO Exceedance?

						_								
Sample Location	Sample Location Rationale	(Feet	nple Inte below g surface)		VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
SB-19	Located within the former Purifier House (north side) along 10th	5	to	7	No	V	No	No	No	No	No	No	No	No
00-10	Avenue (Block 689, Lot 17).	17	to	19				No	No	No	No	No	\checkmark	No
		9	to	11	No	V	No	No	No	No	No	No	No	No
	Located within the former Purifier	13	to	15	No	V	No	No	No	No	No	No	No	No
SB-20	House (south side) along 10th	19	to	20	$\overline{\checkmark}$	No	No	No	No	No	No	No	No	No
	Avenue (Block 689, Lot 17).	41	to	43	No	V	No	No	No	No	No	No	No	No
		49	to	51	No	V	No	No	No	No	No	No	No	No
	Note that the second se	11	to	13	No	\checkmark	\square	No	No	NR	NR	NR	No	No
SB-21	Within the former Scrubbers near 10th Avenue (Block 689, Lot 17).	15	to	17	No	No	No	No	No	NR	NR	NR	No	No
	Total Avenue (Block 669, Lot 17).	21	to	23	No	No	No	No	No	NR	NR	NR	No	No
	Located in the northeast corner of	5	to	7	No	V	V	No	No	NR	NR	NR	No	No
		11	to	13	No	V	No	No	No	NR	NR	NR	No	No
SB-22	the former Retort House near West	15	to	17	No	V	No	No	No	NR	NR	NR	No	No
	18th Street (parking lot between West 17th and West 18th Streets).	22	to	23	V	V	✓	No	No	NR	NR	NR	No	No
	west 17th and west 18th Streets).	26	to	27	\checkmark	No	V	No	No	NR	NR	NR	No	No
	Locate within the southeast corner of	9	to	10	No	V	V	No	No	NR	NR	NR	No	No
SB-23	the former Retort House (Block 689,	15	to	16	No	✓	No	No	No	NR	NR	NR	No	No
OD-23	Lot 17).	17	to	18	V	V	\square	No	No	NR	NR	NR	No	No
	Lot 17).	24	to	25	V	V	V	No	No	NR	NR	NR	No	No
		5	to	7	No	V	✓	No	No	NR	NR	NR	No	No
	Located within the southern	7	to	9	No	V	V	No	No	NR	NR	NR	No	No
SB-24	boundary of the former Retort House	25	to	27	✓	✓	No	No	No	NR	NR	NR	<u> </u>	No
	near Marginal Street (Block 689, Lot	33	to	35	V	V	Ø	No	No	NR	NR	NR	No	No
	17).	53	to	55	No	No	No	No	No	NR	NR	NR	No	No
		82	to	84	No	No	No	No	No	NR	NR	NR	No	No
	Located within the northern boundary	7	to	9	No	✓	✓	No	No	NR	NR	NR	No	No
SB-25	of the former Retort House near	20	to	22	V	✓	No	No	No	NR	NR	NR	\checkmark	No
00 20	Marginal Street (Block 689, Lot 17).	32	to	33	V	V	No	No	No	NR	NR	NR	No	No
	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33	to	34	V	✓	V	No	No	NR	NR	NR	\checkmark	No
	Located on the bike path area	6.5	to	7	No	No	V	No	No	NR	NR	NR	No	No
SB-26	immediately east of Chelsea Piers between West 17th and West 18th	31	to	33			V	No	No	NR	NR	NR	No	No
	Streets.	35	to	37	No	No	V	No	No	NR	NR	NR	No	No

Summary of Site Characterization Study Field Program for Area 3 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-3

Individual TAGM RSCO Exceedance?

								marviac	Iai Tagivi R	OOO EXOC	caarioc .			
Sample Location	Sample Location Rationale	(Feet	mple Inte below g surface)	round	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
	Located on the bike path area	5	to	5.5	No	\checkmark	\square	No	No	NR	NR	NR	No	No
SB-27	immediately east of Chelsea Piers	5.9	to	6.3	No	V	\square	No	No	NR	NR	NR	No	No
3D-21	between West 17th and West 18th	40.9	to	41.3	No	No	\square	No	No	NR	NR	NR	No	No
	Streets.	44.5	to	45	✓	V	V	No	No	NR	NR	NR	No	No
	Located within the former Line	7	to	9	No	No	No	No	No	NR	NR	NR	No	No
SB-47	House/Laboratory near West 18th Street and 10th Avenue (Block 689,	13	to	15	No	✓	No	No	No	NR	NR	NR	No	No
	Lot 17).	17	to	19	V	No		No	No	NR	NR	NR	No	No
	Located within the former Workshop	7	to	9	No	✓	V	No	No	NR	NR	NR	No	No
SB-48	Area/Exhaust House near 17th Street (Block 689, Lot 17).	15	to	16	✓	✓	✓	No	No	NR	NR	NR		No
	Giroci (Biook 603, Est 17).	19	to	21		No	No	No	No	NR	NR	NR	\checkmark	No
	Centrally within the parking lot	10	to	12	✓	V	No	No	No	NR	NR	NR	\checkmark	No
SB-49	between West 17th and West 18th	14	to	15	V	No	No	No	No	NR	NR	NR	\checkmark	No
3D- 4 9	Streets (Block 689, Lot 17).	17	to	18	✓	✓	No	No	No	NR	NR	NR	\checkmark	
	Streets (Block 669, Lot 17).	23	to	24	V	V	\square	No	No	NR	NR	NR	No	No
	Located within the former Retort	2	to	3	No	V	\square	No	No	NR	NR	NR	No	No
SB-50	House near West 18th Street (Block	8	to	10	No	No	✓	No	No	NR	NR	NR	No	No
3D-30	689, Lot 17).	21	to	23	No	V	No	No	No	NR	NR	NR	No	No
	000, E01 17).	26	to	27	V	No	No	No	No	NR	NR	NR	No	No
		6	to	7	✓	✓	\square	No	No	NR	NR	NR	No	No
SB-51	Located within the former Retort	14	to	15		V	No	No	No	NR	NR	NR	\checkmark	✓
3D-31	House (Block 689, Lot 17).	21	to	22		V	No	No	No	NR	NR	NR	\checkmark	✓
		32	to	33	✓	V	No	No	No	NR	NR	NR	No	No
	Located within the former Retort	11	to	13	V	☑	V	No	No	NR	NR	NR	No	No
SB-52	House (western portion of Block 689, Lot 17).	27	to	29	V	✓	No	No	No	NR	NR	NR	\checkmark	V
	LOUIT).	33	to	35	✓	V	✓	No	No	NR	NR	NR	No	✓
SB-61	Duplicate of SB-20	41	to	43	No	✓	No	No	No	NR	NR	NR	No	No
SB-64	Duplicate of SB-24	33	to	35	✓	No	✓	No	No	NR	NR	NR	No	No

Summary of Site Characterization Study Field Program for Area 3 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-3

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	Sample (Feet belo surfa	w ground	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
Exploratory	y Test Pit Trenches	-			•								
TP-3	Located within the parking lot between 17th and 18th Street, parallel to West 17th Street (Block 689, Lot 17).	7.5 to	7.5	No	\square		No	No	NR	NR	NR	No	No
TP-6	Located within the parking lot between 17th and 18th Street, perpendicular to West 18th Street (Block 689, Lot 17).	9.5 to	9.5	No	No	Ø	No	No	NR	NR	NR	No	No

Groundwater Samples

MW-2	Located along the southern border of the former Retort House (western portion of Block 689, Lot 17).		Ø	V	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-2	Located along the southern border of the former Retort House (western portion of Block 689, Lot 17).	No groundwater sample was collected as DNAPL was present in the monitoring well.										

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Site Characterization Study Field Program for Area 4 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-4

Soil Borings

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	Sar	Sample Interval V Feet below ground			SVOCs	PP Metals	Total	Amenable	PCBs	Pesticides	Herbicides	Total	Total
		(Feet	below g	round				Cyanide	Cyanide				VOCs	SVOCs
		,	surface)					,	·					
		11	to	13	No	No	No	No	No	NR	NR	NR	No	No
SB-29	Located on the sidewalk near the	34	to	36	No	No	No	No	No	NR	NR	NR	No	No
3D-29	southwestern portion of the former Coal Yard (Block 688, Lot 1001).	38	to	39	No	No	No	No	No	NR	NR	NR	No	No
		48	to	50	No	No	No	No	No	NR	NR	NR	No	No
		10	to	12	No	V	V	No	No	NR	NR	NR	No	No
	Located on the sidewalk near the	22	to	24	\square	V	No	No	No	NR	NR	NR	\checkmark	No
SB-30	northern portion of the former Coal	24	to	26	\square	No	No	No	No	NR	NR	NR	\checkmark	No
	Yard (Block 688, Lot 1001).	28	to	30	\square	No	No	No	No	NR	NR	NR	No	No
		84	to	86	No	No	No	No	No	NR	NR	NR	No	No
SB-66	Duplicate of SB-30	84	to	86	No	No	No	No	No	NR	NR	NR	No	No
SB-71	Duplicate of SB-29	48	to	50	No	No	No	No	No	NR	NR	NR	No	No

Groundwater Samples

MW-29A	Located on the sidewalk near the southwestern portion of the former Coal Yard (Block 688, Lot 1001).	13	No	No	Ø	No	No	NR	NR	NR	Not Applicable	Not Applicable	÷
--------	--	----	----	----	---	----	----	----	----	----	-------------------	-------------------	---

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Site Characterization Study Field Program for Area 5 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-5

Soil Borings

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	(Feet	nple Inte below g surface)	round	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
	Located on the sidewalk east of the	7.1	to	7.7	No	V	✓	No	No	NR	NR	NR	No	No
SB-31	former gas holder designated as Gas Holder No. 5 (correctional facility)	21	to	23	\square	No	\square	No	No	NR	NR	NR	No	No
6 2 01	along the south side of West 20th Street.	25	to	27	No	No	V	No	No	NR	NR	NR	No	No
	Located east of Gas Holder No. 5	4	to	5	No		✓	No	No	NR	NR	NR	No	No
SB-32	and the former gas holder designated as Gas Holder No. 6	11	to	13	No		✓	No	No	NR	NR	NR	No	No
	(Block 691, Lot 11).	21	to	23	No	\square	\square	No	No	NR	NR	NR	No	No
		4	to	5	No	V	\square	No	No	NR	NR	NR	No	No
	Located within Gas Holder No. 6	11	to	13	No	V	✓	No	No	NR	NR	NR	No	No
SB-33	(Block 691, Lot 11).	13	to	15	No	No	V	No	No	NR	NR	NR	No	No
	(Blook 651, Lot 11).	35	to	37	V	✓	✓	No	No	NR	NR	NR	No	No
		39	to	41	No	No	✓	No	No	NR	NR	NR	No	No
	Located on the sidewalk south of	3	to	4	V	✓	V	No	No	NR	NR	NR	No	No
SB-34	Gas Holder No. 6 (Block 691, Lot	4	to	5	No	✓	V	No	No	NR	NR	NR	No	No
00 01	11).	20.5	to	21	No	V	No	No	No	NR	NR	NR	No	No
	, .	28.5	to	29	No	No	✓	No	No	NR	NR	NR	No	No
		3	to	4	No	I	✓	No	No	NR	NR	NR	No	No
00.00	Located southwest of Gas Holder	5	to	7	No	✓	✓	No	No	NR	NR	NR	No	No
SB-36	No. 6 (Block 691, Lot 11).	17	to	19	No	V	✓	No	No	NR	NR	NR	No	No
	(======================================	25	to	27	✓	<u> </u>	✓	No	No	NR	NR	NR	V	No
		33	to	35	V	<u> </u>	✓	No	No	NR	NR	NR	No	No
		3	to	4	No	✓	✓	No	No	NR	NR	NR	No	No
SB-38	Located east/southeast of Gas	4	to	5	No	Ø	✓	No	No	NR	NR	NR	No	No
02 00	Holder No. 7 (Block 691, Lot 11).	13	to	15	No	Ø	✓	No	No	NR	NR	NR	No	No
		21	to	23	No	V	V	No	No	NR	NR	NR	No	No
SB-39	Located within Gas Holder No. 7 on the Chelsea Piers access roadway	7.5	to	8	No	✓	✓	No	No	NR	NR	NR	No	No
32 33	(west of Route 9A, between West 19th and West 20th Streets).	22	to	23	No	\square	V	No	No	NR	NR	NR	No	No
SB-40/MW- 40A	Located southwest of Gas Holder No. 7 east on the sidewalk of Chelsea Piers (between West 19th and West 20th Streets)	4	to	5	No		V	No	No	NR	NR	NR	No	No

Summary of Site Characterization Study Field Program for Area 5 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-5

Individual TAGM RSCO Exceedance?

	marriada i Admitodo Excedence:													
Sample Location	Sample Location Rationale	(Feet	nple Inte below g surface)	round	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
00 40/004	Located southwest of Gas Holder	33	to	35	No	No	\square	No	No	NR	NR	NR	No	No
SB-40/MW- 40B	No. 7 east on the sidewalk of Chelsea Piers (between West 19th	35	to	37	\square	V	V	No	No	NR	NR	NR	No	No
400	and West 20th Streets)	41	to	43	No	No	\square	No	No	NR	NR	NR	No	No
SB-73	Duplicate of SB-36	17	to	19	No	No	✓	No	No	NR	NR	NR	No	No
SB-90	Southwestern portion of the alleyway in Block 691, Lot 1, east of former Gas Holder No. 7	4	to	5	No	✓	☑	No	No	NR	NR	NR	No	No
	Cough costory postion of the alloway	4	to	5	No	✓	✓	No	No	NR	NR	NR	No	No
SB-91	in Block 691, Lot 1, inside former	8	to	11	No	✓	✓	No	No	NR	NR	NR	No	No
	Gas Holder No. 5	11	to	15	No	✓	✓	No	No	NR	NR	NR	No	No
	Northeastern portion of Block 691,	0	to	1	No	Ø	\square	No	No	NR	NR	NR	No	No
SB-92	Lot 1, inside of former Gas Holder No. 5	3	to	3	No	V	✓	No	No	NR	NR	NR	No	No
		9	to	13	No	V	V	No	No	NR	NR	NR	No	No

Exploratory Test Pit Trenches

	Located within the parking lot on the													
TP-4	northeast corner of West 19th Street	5	to	6	No	✓	✓	No	No	NR	NR	NR	No	No
	and Marginal Street.												· '	1

Groundwater Samples

MW-31A	Located on the sidewalk northeast of the former gas holder designated as Gas Holder No. 5 along West 20th Street.	11.5	No	No	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-34A	Located on the sidewalk south of the former gas holder designated as Gas Holder No. 6, along the northern sidewalk of West 19th Street.	7	Ø	Ø	No	No	No	NR	NR	NR	Not Applicable	Not Applicable
MW-40A	Located on the sidewalk southwest of the former gas holder designated as Gas Holder No. 7, adjacent to Chelsea Piers.	10	No	No	No	No	No	NR	NR	NR	Not Applicable	Not Applicable

Summary of Site Characterization Study Field Program for Area 5 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-5

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	Sample Interval	VOCs	SVOCs	PP Metals	Total	Amenable	PCBs	Pesticides Herbicides	Total	Total
		(Feet below ground				Cyanide	Cyanide			VOCs	SVOCs
		surface)									

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Site Characterization Study Field Program for Area 6 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-6

Soil Borings

Individual TAGM RSCO Exceedance?

Sample Location	Sample Location Rationale	(Feet	mple Inte below g surface)	round	VOCs	SVOCs	PP Metals	Total Cyanide	Amenable Cyanide	PCBs	Pesticides	Herbicides	Total VOCs	Total SVOCs
		6	to	8	No	\square	V	No	No	NR	NR	NR	No	No
SB-43	Located within the former gas holder designated as Gas Holder No. 10 on	7	to	7.5	No	Ø	\square	No	No	NR	NR	NR	No	No
SB-43	the west side of Route 9A (west of the bike path at West 17th Street).	8	to	10	No	V	V	No	No	NR	NR	NR	No	No
			to	23.5	No	V		No	No	NR	NR	NR	No	No
	Located between Gas Holder No. 10 and the former gas holder designated as Gas Holder No. 11 on	6	to	8	No	Ø	Ø	No	No	NR	NR	NR	No	No
3D-44	the west side of Route 9A (west of the bike path between West 16th and West 17th Streets).	8	to	10	Ø	Ø		No	No	NR	NR	NR		No
SB-45 (first attempt)	Located within Gas Holder No. 11 on the west side of Route 9A (west of the bike path close to West 16th Street).	7	to	8	No	V	V	No	No	NR	NR	NR	No	No
SB-45 (second	Located within Gas Holder No. 11 on the west side of Route 9A (west of	7	to	7.5	No	No	V	No	No	NR	NR	NR	No	No
location)	the bike path close to West 16th Street).	31.5	to	32	Ø	Ø	✓	No	No	NR	NR	NR	No	No
SB-46	Located west of former Gas Holder No. 10, west of Route 9A and the bike path.	4.5	to	5.5	No	No	No	No	No	NR	NR	NR	No	No

Notes:

NA = Not Analyzed

NR = Not Required per the NYSDEC-approved SCS Work Plan

Summary of Field Work and Observations for Area1 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-7

Boring / Well ID	Date Completed	Boring Depth (ft bgs)	Well Screen Interval	Depth to GW (ft bgs)	Depth to top of Clay (ft bgs)	Field Observations
SB-1	14-May-05	6	N/A	N/A	N/A	6': Refusal due to rock, N/O, N/S, no sheen
SB-2	6-May-05	20.5	N/A	13	N/A	0.8'-2': Strong gasoline-like odor, N/S, PID = 22.1 ppm; 13'-15': Petroleum odor, N/S, PID = 0.8 ppm; 15'-17': MGP-related odor, N/S, PID = 0.5 ppm; 17'-19': Strong MGP-related odor, N/S, PID = 124 ppm; 19'-21': Strong MGP-related odor, N/S, PID = 19.2 ppm; Refusal doe to rocks at 20.5' - possible bottom of Former Gas Holder #1
\$B-3	6-May-05	20	N/A	13	N/A	13'-15': Strong gasoline-like odor, N/S, PID = 63 ppm
\$B-4	5-May-05	21	N/A	8	N/A	6.5'-9': Strong gasoline-like odor, black staining, sheen, PID = 5.7 ppm; 9'-11': Slight gasoline-like odor, N/S, trace sheen, PID = 0.9 ppm; 11'-13': Slight petroleum odor, trace black staining, trace sheen, PID = 4.4 ppm; 13'-15': Petroleum odor, N/S, sheen, PID = 30.5 ppm; 15'-17': Slight MGP-related odor, N/S, sheen, PID = 9.8 ppm; 17'-19': MGP-related odor, N/S, sheen, PID = 12.9 ppm; 19'-21': Very strong MGP-related odor, heavy black staining, visible OLM, PID = 3,124 ppm; Refusal due to rocks and brick at 21' - possible bottom of Former Gas Holder #2
\$8 -5	3-Jun-05	31	N/A	8	20	10'-11': Strong petroleum-like odor, sheen, N/S, PID = 387 ppm; 11'-15': Very strong petroleum-like odor, black staining, sheen, PID = 4085 ppm; 15'-19': Strong petroleum-like odor, sheen, black staining on wood, tr NAPL., PID = 198 ppm; 19'-20': Tr petroleum-like odor, N/S, PID = 6.8 ppm; 20 '-25': Very sl petroleum-like odor, N/S, PID = 8.4 ppm
SB-5A/MW-5B	8-Jun-05	42	32-42	11.5	18.5'-19 and 31-31.3'	10'-11': Strong petroleum-like odor, N/S, sheen, PID = 387 ppm; 11'-15': Very strong petroleum-like odor, black staining, sheen, PID = 4,085 ppm; 15'-19', Very strong petroleum-like odor, N/S, sheen, PID = 1,222 ppm; 19'-21': Sheen; 32'-36': Very slight non-MGP-related odor, N/S, PID = 0.0 ppm

Summary of Fletd Work and Observations for Area1 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-7

Boring / Well ID	Date Completed	Boring Depth (ft bgs)	Well Screen Interval	Depth to GW (ft bgs)	Depth to top of Clay (ft bgs)	Field Observations
SB-5B/MW-5A	2-May-05	22	9'-19'	11.5	N/A	10'-11': Strong petroleum-like odor, N/S, sheer PID = 387 ppm; 11'-15': Very strong petroleum like odor, black staining, sheen, PID = 4,085 pp 15'-20': Very strong petroleum-like odor, N/S, sheen, PID = 1,222 ppm; 20'-21': Slight petrole like odor, N/S, sheen, PID = 55 ppm; 21'-22': Slight petroleum-like odor, N/S, trace sheen, PI = 12.4 ppm; Refusal at 22' due to brick/concrete
SB-6	13-May-05	72	N/A	8	26.1'-28.2' and 38-40	10'-13': Slight petroleum-like odor (stronger at trace black staining, PID = 265 ppm (sleeve) ar PID = 2,060 ppm (tip); 13'-16': Strong petroleu like odor, some black staining, sheen, trace NA PID = 3,520 ppm; 16'-19': Slight petroleum-like odor, N/S PID = 134 ppm; Refusal at 72' due to rock (schist fragments in spoon)
TP-1B	4-May-05	3	N/A	N/A	N/A	0'-1': Gasoline-like odor, N/S, PID = 667 ppm; 3' Gasoline-like odor, black staining on wood timbers, PID = 78.2 ppm; at 3' Gasoline-like odor, N/S, PID = 46.0 ppm

Note: Elevations are reported in feet below ground surface (ft bgs).

The sample locations were inside a building that was elevated approximately 2.5 feet above street level.

Laboratory and Data Validation Qualifiers Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

						Table 4-8					
Sample Location		TP-1B	TP-21B	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3
Sample Interval (Feet bgs)		1.0 to 1.5	1.0 to 1.5	5.0 to 5.5	1.0 to 1.5	2.0 to 2.5	5 to 7	13 to 15	19 to 20.5	3.0 to 3.5	5 to 7
Sampling Date		05/04/05	05/04/05	05/03/05	05/02/05	05/02/05	05/06/05	05/06/05	05/06/05	04/29/05	05/06/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Volatile Organic Compounds	TAGM		Duplicate of								
(ug/Kg)	RSCO		TP-1B								
Dichlorodifluoromethane	NC	0.95 U	0.94 UJ	0.86 U	0.92 U	0.93 U	1.1 U	0.97 U	540 U	0.92 UR	0.95 U
Chloromethane	NC	0.95 U	0.93 UJ	0.86 U	0.91 U	0.93 U	1.1 U	0.97 U	1100 U	0.92 UR	0.95 U
Vinyl Chloride	200	0.91 U	0.9 UJ	0.83 U	0.88 U	0.89 U	1 U	0.93 U	430 U	0.89 UR	0.92 U
Bromomethane	NC	2.2 U	2.2 UJ	2 U	2.2 U	2.2 U	2.5 U	2.3 U	1300 U	2.2 UR	2.3 U
Chloroethane	1,900	2.4 U	2.3 UJ	2.2 U	2.3 U	2.3 U	2.7 U	2.4 U	1400 U	2.3 UR	2.4 U
Trichlorofluoromethane	NC	1.4 U	1.4 UJ	1.3 U	1.3 U	1.4 U	1.6 U	1.4 U	940 U	1.3 UR	1.4 U
1,1,2-Trichlorotrifluoroethane	6,000	0.74 U	0.73 UJ	0.67 U	0.71 U	0.72 U	0.83 U	0.75 U	1100 U	0.72 UR	0.74 U
1,1-Dichloroethene	400	0.64 U	0.63 UJ	0.58 U	0.61 U	0.62 U	0.71 U	0.65 U	520 U	0.62 UR	0.64 U
Acetone	200	8.2 JB	81 <u>BJ</u>	6 JB	3.7 J	3.6 U	13 JB	15 JB	5400 U	12 J	7 JB
Carbon Disulfide	2,700	0.41 U	0.4 UJ	0.37 U	0.39 U	0.4 U	0.46 U	0.42 U	630 U	0.4 UR	0.41 U
Methyl tert-butyl Ether	120	0.41 U	0.4 <u>UJ</u>	0.37 U	0.39 U	0.4 U	0.46 U	5.1 J	580 U	0.4 UR	0.41 U
Methyl Acetate	NC	0.96 U	0.95 UJ	0.87 U	0.93 U	0.94 U	1.1 U	0.98 U	1300 U	0.93 UR	0.96 U
Methylene Chloride	100	3.6 JB	2.2 J	1.8 U	6.1	5.9 B	2.3 U	2.1 U	1000 U	2 UR	2 U
trans-1,2-Dichloroethene	300	0.71 U	0.7 UJ	0.65 U	0.68 U	0.69 U	0.8 U	0.72 U	830 U	0.69 UR	0.71 U
1,1-Dichloroethane	200	0.3 U	0.29 UJ	0.27 U	0.29 U	0.29 U	0.34 U	0.3 U	350 U	0.29 UR	0.3 U
Cyclohexane	NC	0.36 U	0.35 UJ	0.33 U	0.35 U	0.35 U	0.4 U	0.37 U	1600 J	0.35 UR	0.36 U
2-Butanone	300	3.1 U	15 J	2.9 U	3 U	3.1 U	3.5 U	3.2 U	4600 U	3 UR	3.1 U
Carbon Tetrachloride	600	0.49 U	0.48 UJ	0.45 U	0.47 U	0.48 U	0.55 U	0.5 U	760 U	0.48 UR	0.49 U
cis-1,2-Dichloroethene	NC	0.36 U	0.36 UJ	0.33 U	0.35 U	0.35 U	0.41 U	0.37 U	1200 U	0.35 UR	0.36 U
Chloroform	300	0.39 U	0.38 UJ	0.35 U	0.37 U	0.38 U	0.43 U	0.39 U	930 U	0.38 UR	0.39 U
1,1,1-Trichloroethane	800 NC	0.46 U	0.46 UJ 4.1 J	0.42 U 0.42 U	0.45 U 0.45 U	0.45 U 0.46 U	0.52 U	0.47 U	660 U	0.45 UR	0.47 U
Methylcyclohexane		0.47 U					0.52 U	0.48 U	3500 J 22000	0.45 UR	0.47 U 0.44 U
Benzene 1,2-Dichloroethane	60 200	0.44 U 0.34 U	0.44 UJ 0.34 UJ	0.4 U 0.31 U	0.43 U 0.33 U	0.43 U 0.33 U	0.5 U 0.38 U	1.7 J 0.35 U	520 U	0.43 UR 0.33 UR	0.44 U 0.34 U
Trichloroethene	700	0.34 U	0.34 UJ	0.31 U	0.33 U	0.33 U	0.38 U	0.35 U	1100 U	0.33 UR	0.34 U
1,2-Dichloropropane	NC	0.44 U	0.43 UJ	0.4 U	0.43 U	43	0.5 U	0.45 U	510 U	0.43 UR	0.44 U
Bromodichloromethane	NC NC	0.44 U	0.43 UJ	0.4 U	0.45 U	0.36 U	0.42 U	0.43 U	560 U	0.45 UR	0.44 U
4-Methyl-2-Pentanone	1,000	2.2 U	2.2 UJ	2 U	2.1 U	2.1 U	2.5 U	2.2 U	2100 U	2.1 UR	2.2 U
Toluene	1,500	0.45 U	5.7 J	0.41 U	0.43 U	0.44 U	0.51 U	0.46 U	630 U	0.44 UR	0.45 U
t-1,3-Dichloropropene	NC	0.4 U	0.4 UJ	0.37 U	0.39 U	0.39 U	0.45 U	0.41 U	690 U	0.39 UR	0.4 U
cis-1,3-Dichloropropene	NC	0.37 U	0.36 UJ	0.33 U	0.35 U	0.36 U	0.41 U	0.37 U	250 U	0.36 UR	0.37 U
1,1,2-Trichloroethane	NC	0.33 U	0.32 UJ	0.3 U	0.31 U	0.32 U	0.37 U	0.33 U	840 U	0.32 UR	0.33 U
2-Hexanone	NC	4 U	3.9 UJ	3.6 U	3.9 U	3.9 U	4.5 U	4.1 U	1100 U	3.9 UR	4 U
Dibromochloromethane	NA	0.26 U	0.25 UJ	0.23 U	0.25 U	0.25 U	0.29 U	0.26 U	610 U	0.25 UR	0.26 U
1,2-Dibromoethane	NC	0.45 U	0.44 UJ	0.41 U	0.43 U	0.44 U	0.5 U	0.45 U	1000 U	0.43 UR	0.45 U
Tetrachloroethene	1,400	0.81 U	0.8 UJ	0.74 U	0.78 U	0.79 U	0.91 U	0.83 U	540 U	0.79 UR	0.81 U
Chlorobenzene	1,700	0.4 UJ	0.4 UJ	0.37 U	0.39 U	0.39 U	0.45 U	0.41 U	600 U	0.39 UR	0.4 U
Ethyl Benzene	5,500	0.39 U	4.4 J	0.36 U	0.38 U	0.38 U	0.44 U	0.4 U	35000	0.38 UR	0.39 U
m/p-Xylenes	1,200	0.96 U	67 J	0.87 U	0.93 U	1.2 J	1.1 U	0.98 U	13000 J	0.93 UR	0.96 U
o-Xylene	600	0.43 U	150 J	0.39 U	0.41 U	0.42 U	0.48 U	0.43 U	600 U	0.41 UR	0.43 U
Styrene	NC	0.51 U	0.5 UJ	0.46 U	0.49 U	0.5 U	0.57 U	0.52 U	560 U	0.5 UR	0.51 U
Bromoform	NC	0.34 U	0.34 UJ	0.31 U	0.33 U	0.34 U	0.39 U	0.35 U	410 U	0.33 UR	0.35 U
Isopropylbenzene	2,300	0.46 U	0.46 UJ	0.42 U	0.45 U	0.45 U	0.52 U	0.47 U	28000	0.45 UR	0.46 U
1,1,2,2-Tetrachloroethane	600	0.34 U	0.34 UJ	0.31 U	0.33 U	0.34 U	0.39 U	0.35 U	800 U	0.34 UR	0.35 U
1,3-Dichlorobenzene	1,600	0.62 U	0.61 UJ	0.56 U	0.6 U	0.61 U	0.7 U	0.63 U	600 U	0.6 UR	0.62 U
1,4-Dichlorobenzene	8,500	0.6 U	6 J	0.55 U	0.58 U	0.59 U	0.68 U	0.62 U	630 U	0.59 UR	0.61 U
1,2-Dichlorobenzene	7,900	0.43 U	0.42 UJ	0.39 U	0.41 U	0.42 U	0.48 U	0.44 U	590 U	0.42 UR	0.43 U
1,2-Dibromo-3-Chloropropane	NC	1 U	1 UJ	0.95 U	1 U	1 U	1.2 U	1.1 U	1500 U	1 UR	1 U
1,2,4-Trichlorobenzene	3,400	0.76 U	0.75 UJ	0.69 U	0.73 U	0.74 U	0.85 U	0.77 U	470 U	0.74 UR	0.76 U
Total Confident Conc. VOC	10,000	11.8	335.4	6.0	9.8	50.1	13.0	21.8	103,100	12	7

						Table 4-8				
Sample Location		SB-3	SB-3	SB-4	SB-4	SB-4	SB-4	SB-4	SB-5A	SB-5A
Sample Interval (Feet bgs)		13 to 15	17 to 19	5.0 to 5.5	7 to 9	9 to 13	17 to 19	19 to 21	17 to 19	19 to 20
Sampling Date		05/06/05	05/06/05	05/03/05	05/05/05	05/05/05	05/05/05	05/05/05	05/02/05	05/02/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Cinio		ug/itg	ug/Ng	ugrig	ug/11g	ug/Ng	ug/itg	ug/itg	uging	ug/ng
										1
Volatile Organic Compounds	TAGM									I
(ug/Kg)	RSCO									
Dichlorodifluoromethane	NC	48 U	1 U	0.95 U	0.97 U	1 U	1 U	52 U	5.1 U	0.98 U
Chloromethane	NC	98 U	0.99 U	0.95 U	0.97 U	1 U	1 U	110 U	5.1 U	0.97 U
Vinyl Chloride	200 NC	38 U 110 U	0.96 U 2.4 U	0.91 U 2.3 U	0.93 U	0.96 U 2.4 U	0.98 U 2.4 U	42 U 120 U	4.9 U	0.94 U 2.3 U
Bromomethane	1,900	130 U	2.4 U 2.5 U	2.3 U 2.4 U	2.3 U 2.4 U	2.4 U	2.4 U	120 U	12 U 13 U	2.3 U
Chloroethane Trichlorofluoromethane	1,900 NC	83 U	2.5 U	2.4 U	2.4 U	2.5 U	2.5 U	90 U	7.5 U	2.4 U
1,1,2-Trichlorotrifluoroethane	6,000	100 U	0.77 U	0.74 U	0.75 U	0.78 U	0.79 U	110 U	7.5 U	0.76 U
1,1-Dichloroethene	400	46 U	0.67 U	0.64 U	0.75 U	0.78 U	0.79 U	50 U	3.4 U	0.65 U
Acetone	200	480 U	13 JB	8.1 JB	19 JB	28 JB	19 JB	520 U	20 U	3.8 U
Carbon Disulfide	2,700	56 U	0.43 U	0.41 U	0.42 U	0.43 U	0.44 U	61 U	2.2 U	0.42 U
Methyl tert-butyl Ether	120	52 U	2.1 J	0.41 U	0.42 U	0.43 U	0.44 U	56 U	2.2 U	2.7 J
Methyl Acetate	NC	120 U	1 U	0.96 U	0.98 U	1 U	1 U	130 U	5.2 U	0.99 U
Methylene Chloride	100	89 U	2.1 U	2.5 JB	2.4 JB	2.1 U	2.8 J	97 U	37	6.9
trans-1,2-Dichloroethene	300	74 U	0.74 U	0.71 U	0.72 U	0.75 U	0.76 U	80 U	3.8 U	0.73 U
1,1-Dichloroethane	200	31 U	0.31 U	0.3 U	0.3 U	0.31 U	0.32 U	34 U	1.6 U	0.31 U
Cyclohexane	NC	53 U	0.38 U	0.36 U	0.37 U	1.4 J	0.38 U	57 U	1.9 U	0.37 U
2-Butanone	300	410 U	3.3 U	3.1 U	3.2 U	3.3 U	3.3 U	440 U	17 U	3.2 U
Carbon Tetrachloride	600	68 U	0.52 U	0.49 U	0.5 U	0.52 U	0.53 U	73 U	2.7 U	0.51 U
cis-1,2-Dichloroethene	NC	110 U	0.38 U	0.36 U	0.37 U	0.38 U	0.39 U	120 U	1.9 U	0.37 U
Chloroform	300	83 U	0.4 U	0.39 U	0.39 U	0.41 U	0.41 U	90 U	2.1 U	0.4 U
1,1,1-Trichloroethane	800	59 U	0.49 U	0.46 U	0.47 U	0.49 U	0.5 U	64 U	2.5 U	0.48 U
Methylcyclohexane	NC	1300	0.49 U	0.47 U	5.7	5 J	0.5 U	230 J	100	0.48 U
Benzene	60	35 U	0.46 U	0.44 U	0.45 U	2.4 J	0.47 U	19000	14 J	0.45 U
1,2-Dichloroethane	200	46 U	0.36 U	0.34 U	0.35 U	0.36 U	0.36 U	50 U	1.8 U	0.35 U
Trichloroethene	700	96 U	0.36 U	0.34 U	0.35 U	0.36 U	0.37 U	100 U	1.8 U	0.35 U
1,2-Dichloropropane	NC	46 U	0.46 U	0.44 U	0.45 U	0.46 U	0.47 U	50 U	2.4 U	0.45 U
Bromodichloromethane	NC	50 U	0.39 U	0.37 U	0.38 U	0.39 U	0.4 U	54 U	2 U	0.38 U
4-Methyl-2-Pentanone	1,000	190 U	2.3 U	2.2 U	2.2 U	2.3 U	2.3 U	210 U	12 U	2.3 U
Toluene	1,500	56 U	0.47 U	0.45 U	0.46 U	0.47 U	0.48 U	29000	2.4 U	0.46 U
t-1,3-Dichloropropene	NC	61 U	0.42 U	0.4 U	0.41 U	0.42 U	0.43 U	66 U	2.2 U	0.41 U
cis-1,3-Dichloropropene	NC	22 U	0.38 U	0.37 U	0.37 U	0.39 U	0.39 U	24 U	2 U	0.38 U
1,1,2-Trichloroethane	NC	74 U	0.34 U	0.33 U	0.33 U	0.34 U	0.35 U	81 U	1.8 U	0.34 U
2-Hexanone	NC	95 U	4.2 U	4 U	4.1 U	4.2 U	4.3 U	100 U	22 U	4.1 U
Dibromochloromethane	NA	54 U	0.27 U	0.26 U	0.26 U	0.27 U	0.27 U	59 U	1.4 U	0.26 U
1,2-Dibromoethane	NC	91 U	0.47 U	0.45 U	0.46 U	0.47 U	0.48 U	99 U	2.4 U	0.46 U
Tetrachloroethene	1,400	47 U	0.85 U	0.81 U	0.83 U	0.85 U	0.87 U	52 U	4.4 U	0.83 U
Chlorobenzene	1,700	53 U	0.42 U	0.4 U	0.41 U	0.42 U	0.43 U	58 U	2.2 U	0.41 U
Ethyl Benzene	5,500	59 U	0.41 U	0.39 U	0.4 U	0.41 U	0.42 U	48000 D	60	0.4 U
m/p-Xylenes	1,200	140 U	1 U	0.96 U	0.98 U	1.4 J	1 U	56000	250	3.9 J
o-Xylene	600	53 U	0.45 U	0.43 U	0.43 U	0.45 U	0.46 U	22000	8.7 J	0.44 U
Styrene	NC NC	49 U	0.53 U	0.51 U	0.52 U	0.54 U	0.55 U	53 U	2.8 U	0.52 U
Bromoform	NC 2 200	36 U	0.36 U	0.34 U 0.46 U	0.35 U	0.36 U	0.37 U	39 U	1.9 U	0.35 U 0.47 U
Isopropylbenzene	2,300 600	48 U 71 U	0.48 U 0.36 U	0.46 U 0.35 U	0.47 U 0.35 U	2.1 J 0.36 U	2.2 J 0.37 U	3000	2.5 U 1.9 U	0.47 U 0.35 U
1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene	1,600	71 U 53 U	0.36 U 0.65 U	0.35 U 0.62 U	0.35 U 0.63 U	0.36 U 0.65 U	0.37 U 0.66 U	77 U 58 U	1.9 U 3.3 U	0.35 U 0.64 U
	8,500	53 U 56 U	0.65 U	0.62 U 0.61 U	0.63 U	0.65 U	0.65 U	60 U	3.3 U 3.3 U	0.64 U
1,4-Dichlorobenzene 1,2-Dichlorobenzene	7,900	56 U 53 U	0.63 U 0.45 U	0.61 U 0.43 U	0.62 U 0.44 U	0.64 U 0.45 U	0.65 U 0.46 U	57 U	3.3 U 2.3 U	0.62 U 0.44 U
1,2-Dibromo-3-Chloropropane	7,900 NC	130 U	1.1 U	0.43 U	0.44 U	0.45 U	0.46 U	150 U	2.3 U 5.6 U	1.1 U
1,2,4-Trichlorobenzene	3,400	41 U	0.79 U	0.76 U	0.77 U	1.1 U 0.8 U	0.81 U	45 U	4.1 U	0.78 U
Total Confident Conc. VOC	10,000	1,300	15.1	10.6	27.1	40.3	24.0	182,230	469.7	13.5
. Star Cormount Conc. VCC	10,000	1,000	10.1	10.0	41.1	70.0	47.0	102,200	400.1	10.0

Sample Location		SB-85A	SB-5A	SB-5A	SB-5B	SB-5B	SB-5B	MW-5B	MW-55B	SB-6	SB-6
Sample Interval (Feet bgs)		19 to 20	26 to 28	31 to 33	10 to 11	11 to 12	21 to 22	34 to 36	34 to 36	10 to 12	13 to 15
Sampling Date		05/02/05	05/03/05	05/03/05	05/02/05	05/02/05	05/02/05	06/07/05	06/07/05	05/12/05	05/12/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Cinic		ugritg	ugritg	ug/itg	ug/itg	ug/Ng	ug/itg	ug/itg	ug/ng	ug/itg	ugritg
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1 U	1 U	1 U	0.92 U	36 U	1 U	1.1 U	1 U	0.96 U	50 U
Chloromethane	NC	1 U	1 U	1 U	0.92 U	73 U	1 U	1.1 U	1 U	0.96 U	100 U
Vinyl Chloride	200	0.97 U	0.99 U	0.96 U	0.88 U	29 U	0.99 U	1 U	1 U	0.92 U	40 U
Bromomethane	NC	2.4 U	2.4 U	2.4 U	2.2 U	84 U	2.4 U	2.6 U	2.5 U	2.3 U	120 U
Chloroethane	1,900	2.5 U	2.6 U	2.5 U	2.3 U	95 U	2.6 U	2.7 U	2.6 U	2.4 U	130 U
Trichlorofluoromethane	NC	1.5 U	1.5 U	1.5 U	1.3 U	62 U	1.5 U	1.6 U	1.5 U	1.4 U	87 U
1,1,2-Trichlorotrifluoroethane	6,000	0.78 U	0.8 U	0.78 U	0.71 U	75 U	0.8 U	0.84 U	0.81 U	0.75 U	100 U
1,1-Dichloroethene	400	0.67 U	0.69 U	0.67 U	0.61 U	35 U	0.69 U	0.72 U	0.7 U	0.64 U	48 U
Acetone	200	3.9 U	16 JB	17 JB	3.6 U	360 U	4 U	16 J	4.1 U	7.9 JB	500 U
Carbon Disulfide	2,700	0.43 U	0.44 U	0.43 U	0.39 U	42 U	0.44 U	0.46 U	0.45 U	0.41 U	59 U
Methyl tert-butyl Ether	120	2.6 J	0.44 U	0.43 U	0.39 U	39 U	0.44 U	0.46 U	0.45 U	0.41 U	54 U
Methyl Acetate	NC	1 U	1 U	1 U	0.93 U	89 U	1 U	1.1 U	1.1 U	0.97 U	120 U
Methylene Chloride	100	5.3 JB	2.2 U	3.7 JB	2 U	67 U	6.7	2.3 U	5.1 JB	2 U	94 U
trans-1,2-Dichloroethene	300	0.75 U	0.77 U	0.75 U	0.69 U	55 U	0.77 U	0.81 U	0.78 U	0.72 U	77 U
1,1-Dichloroethane	200	0.32 U	0.32 U	0.31 U	0.29 U	23 U	0.32 U	0.34 U	0.33 U	0.3 U	32 U
Cyclohexane	NC	0.38 U	0.39 U	0.38 U	0.35 U	39 U	0.39 U	0.41 U	0.39 U	0.36 U	55 U
2-Butanone	300	3.3 U	3.4 U	3.3 U	3 U	300 U	3.4 U	3.6 U	3.4 U	3.2 U	430 U 71 U
Carbon Tetrachloride	600	0.52 U 0.38 U	0.53 U	0.52 U 0.38 U	0.48 U	51 U	0.53 U 0.39 U	0.56 U	0.54 U 0.4 U	0.5 U	
cis-1,2-Dichloroethene Chloroform	NC 300	0.38 U 0.41 U	0.39 U 0.42 U	0.38 U 0.41 U	0.35 U 0.37 U	83 U 62 U	0.39 U 0.42 U	0.41 U 0.44 U	0.4 U 0.42 U	0.36 U 0.39 U	120 U 87 U
1,1,1-Trichloroethane	800	0.41 U	0.42 U	0.41 U	0.37 U	62 U 44 U	0.42 U	0.44 U	0.42 U 0.51 U	0.39 U 0.47 U	61 U
Methylcyclohexane	NC	0.49 U	0.51 U	0.49 U	0.45 U	2800	0.5 U	0.53 U	0.51 U	0.47 U	20000
Benzene	60	0.49 U	0.48 U	0.49 U	0.43 U	26 U	2 J	0.55 U	0.49 U	0.47 U	36 U
1,2-Dichloroethane	200	0.47 U	0.46 U	0.47 U	0.43 U	34 U	0.37 U	0.39 U	0.49 U	0.43 U	48 U
Trichloroethene	700	0.36 U	0.37 U	0.36 U	0.33 U	72 U	0.37 U	0.39 U	0.37 U	0.35 U	100 U
1,2-Dichloropropane	NC NC	0.47 U	0.48 U	0.46 U	0.43 U	34 U	0.48 U	0.5 U	0.48 U	0.45 U	48 U
Bromodichloromethane	NC	0.39 U	0.4 U	0.39 U	0.36 U	37 U	0.4 U	0.42 U	0.41 U	0.38 U	52 U
4-Methyl-2-Pentanone	1,000	2.3 U	2.4 U	2.3 U	2.1 U	140 U	2.6 J	2.5 U	2.4 U	2.2 U	200 U
Toluene	1,500	0.48 U	0.49 U	0.47 U	0.43 U	42 U	3 J	0.51 U	0.49 U	0.45 U	59000 DJ
t-1,3-Dichloropropene	NC	0.43 U	0.44 U	0.42 U	0.39 U	46 U	0.44 U	0.46 U	0.44 U	0.41 U	64 U
cis-1,3-Dichloropropene	NC	0.39 U	0.4 U	0.39 U	0.36 U	16 U	0.4 U	0.42 U	0.4 U	0.37 U	23 U
1,1,2-Trichloroethane	NC	0.35 U	0.35 U	0.34 U	0.32 U	56 U	0.35 U	0.37 U	0.36 U	0.33 U	78 U
2-Hexanone	NC	4.2 U	4.3 U	4.2 U	3.9 U	71 U	4.3 U	4.5 U	4.4 U	4 U	99 U
Dibromochloromethane	NA	0.27 U	0.28 U	0.27 U	0.25 U	41 U	0.28 U	0.29 U	0.28 U	0.26 U	57 U
1,2-Dibromoethane	NC	0.47 U	0.48 U	0.47 U	0.43 U	68 U	0.48 U	0.51 U	0.49 U	0.45 U	95 U
Tetrachloroethene	1,400	0.86 U	0.88 U	0.85 U	0.78 U	35 U	0.88 U	2.6 J	1.5 J	0.82 U	50 U
Chlorobenzene	1,700	0.43 U	0.44 U	0.42 U	0.39 U	40 U	0.44 U	0.46 U	0.44 U	0.41 U	55 U
Ethyl Benzene	5,500	0.42 U	0.43 U	0.41 U	0.38 U	18000	5.5 J	3 J	2.6 J	0.4 U	70000 DJ
m/p-Xylenes	1,200	1 U	1 U	1 U	0.93 U	74000 D	22	1.4 J	1.1 U	0.97 U	320000 DJ
o-Xylene	600	0.45 U	0.46 U	0.45 U	0.41 U	18000	5.3 J	4.4 J	4.2 J	0.43 U	120000 DJ
Styrene	NC	0.54 U	0.55 U	0.54 U	0.49 U	37 U	0.55 U	0.58 U	0.56 U	0.52 U	52 U
Bromoform	NC	0.36 U	0.37 U	0.36 U	0.33 U	27 U	0.37 U	0.39 U	0.38 U	0.35 U	38 U
Isopropylbenzene	2,300	0.49 U	0.5 U	0.49 U	0.45 U	4000	0.5 U	0.52 U	0.51 U	0.47 U	7700
1,1,2,2-Tetrachloroethane	600	0.37 U	0.37 U	0.36 U	0.33 U	53 U	0.37 U	0.39 U	0.38 U	0.35 U	75 U
1,3-Dichlorobenzene	1,600	0.66 U	0.67 U	0.65 U	0.6 U	40 U	0.67 U	0.7 U	0.68 U	0.63 U	56 U
1,4-Dichlorobenzene	8,500	0.64 U	0.66 U	0.64 U	0.58 U	42 U	1.8 J	0.69 U	0.66 U	0.61 U	58 U
1,2-Dichlorobenzene	7,900	0.45 U	0.47 U	0.45 U	0.41 U	39 U	0.46 U	0.49 U	0.47 U	0.43 U	55 U
1,2-Dibromo-3-Chloropropane	NC	1.1 U	1.1 U	1.1 U	1 U	100 U	1.1 U	1.2 U	1.1 U	1.1 U	140 U
1,2,4-Trichlorobenzene	3,400	0.8 U	0.82 U	0.8 U	0.73 U	31 U	0.82 U	0.86 U	0.83 U	0.77 U	43 U
Total Confident Conc. VOC	10,000	7.9	16.0	20.7	-	110,800	48.9	27.4	13.4	7.9	596,700

Sample Location		SB-6	SB-6	SB-66	SB-6	Table						
Sample Interval (Feet bgs)		19 to 21	24 to 26	24 to 26	28.5 to 30.5							
, , , , , , , , , , , , , , , , , , , ,												
Sampling Date		05/12/05	05/12/05	05/12/05	05/12/05							
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg							
										1-		
						Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Volatile Organic Compounds	TAGM			Duplicate of		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
(ug/Kg)	RSCO	4.4.11	4.11	SB-6	4.11			201	Exceedances	201	0.00	540
Dichlorodifluoromethane	NC	1.1 U	1 U	1 U	1 U	33		0%	0	0%	< 0.86	< 540
Chloromethane	NC	1.1 U	1 U	1 U	1 U	33		0%	0	- 7,0	< 0.86	< 1,100
Vinyl Chloride	200 NC	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	0.97 U 2.4 U	33 33		0% 0%	0		< 0.83 < 2	< 430 < 1,300
Bromomethane Chloroethane	1,900	2.6 U	2.5 U	2.5 U	2.4 U	33			0		< 2.2	< 1,400
Trichlorofluoromethane	1,900 NC	1.5 U	1.5 U	1.5 U	1.5 U	33		0%	0		< 1.3	< 940
1,1,2-Trichlorotrifluoroethane	6,000	0.82 U	0.81 U	0.8 U	0.79 U	33		0%	0		< 0.67	< 1,100
1,1-Dichloroethene	400	0.82 U	0.81 U	0.69 U	0.79 U	33		0%	0		< 0.58	< 520
Acetone	200	34 BJ	19 JB	19 JB	12 JB	33		64%	0	- 70	< 3.6	< 5,400
Carbon Disulfide	2,700	7	0.45 U	0.45 U	0.44 U	33		3%	0		< 0.37	630
Methyl tert-butyl Ether	120	23	0.45 U	0.45 U	0.44 U	33			0		< 0.37	< 580
Methyl Acetate	NC	1.1 U	1.1 U	1 U	1 U	33		0%	0	- 70	< 0.87	< 1,300
Methylene Chloride	100	2.3 U	2.2 U	2.2 U	2.2 U	33			0		< 1.8	< 1,000
trans-1,2-Dichloroethene	300	0.79 U	0.78 U	0.77 U	0.76 U	33		0%	0		< 0.65	< 830
1,1-Dichloroethane	200	0.33 U	0.33 U	0.33 U	0.32 U	33		0%	0		< 0.27	< 350
Cyclohexane	NC	5.7 J	0.39 U	0.39 U	0.38 U	33		9%	0		< 0.33	1,600
2-Butanone	300	3.5 U	3.4 U	3.4 U	3.3 U	33		3%	0	0%	< 2.9	< 4,600
Carbon Tetrachloride	600	0.55 U	0.54 U	0.54 U	0.52 U	33		0%	0		< 0.45	< 760
cis-1,2-Dichloroethene	NC	0.4 U	0.4 U	0.39 U	0.38 U	33		0%	0	0%	< 0.33	< 1,200
Chloroform	300	0.43 U	0.42 U	0.42 U	0.41 U	33		0%	0	0%	< 0.35	< 930
1,1,1-Trichloroethane	800	0.52 U	0.51 U	0.51 U	0.49 U	33		0%	0	0%	< 0.42	< 660
Methylcyclohexane	NC	6 J	0.51 U	0.51 U	0.5 U	33		30%	0	0%	< 0.42	20,000
Benzene	60	87	0.49 U	0.48 U	0.47 U	33	7	21%	3	9%	< 0.4	22,000
1,2-Dichloroethane	200	0.38 U	0.37 U	0.37 U	0.36 U	33	0	0%	0	0%	< 0.31	< 520
Trichloroethene	700	0.38 U	0.37 U	0.37 U	0.36 U	33	0	0%	0	0%	< 0.31	< 1,100
1,2-Dichloropropane	NC	0.49 U	0.48 U	0.48 U	0.47 U	33		3%	0	- 7.0	< 0.4	< 510
Bromodichloromethane	NC	0.41 U	0.41 U	0.41 U	0.4 U	33		0%	0	- 7.0	< 0.34	< 560
4-Methyl-2-Pentanone	1,000	2.4 U	2.4 U	2.4 U	2.3 U	33		3%	0		< 2	< 2,100
Toluene	1,500	5 J	3.6 J	1.7 J	2.1 J	33		24%	2		< 0.41	59,000
t-1,3-Dichloropropene	NC	0.45 U	0.44 U	0.44 U	0.43 U	33	0	0%	0		< 0.37	< 690
cis-1,3-Dichloropropene	NC	0.41 U	0.4 U	0.4 U	0.39 U	33	0	0%	0		< 0.33	< 250
1,1,2-Trichloroethane	NC	0.36 U	0.36 U	0.36 U	0.35 U	33		0%	0		< 0.3	< 840
2-Hexanone	NC	4.5 U	4.4 U	4.4 U	4.3 U	33		0%	0		< 3.6	< 1,100
Dibromochloromethane	NA	0.28 U	0.28 U	0.28 U	0.27 U	33		0%	0	- 7.0	< 0.23	< 610
1,2-Dibromoethane	NC 1 100	0.5 U	0.49 U	0.49 U	0.48 U	33		0,70	0		< 0.41	< 1,000
Tetrachloroethene	1,400	0.9 U	0.89 U	0.88 U	0.86 U	33		6%	0	- 7.0	< 0.74	< 540
Chlorobenzene	1,700	0.45 U	0.44 U	0.44 U	0.43 U	33		0%	0		< 0.37	< 600
Ethyl Benzene	5,500	0.44 U	2.7 J	0.43 U	2.8 J	33		33%	4		< 0.36	70,000
m/p-Xylenes	1,200	2.1 J	13	4.4 J	15	33			4	12%	< 0.87	320,000
o-Xylene	600 NC	0.47 U 0.57 U	4 J 0.56 U	1.2 J 0.56 U	5.1 J 0.54 U	33	11	33%	0	9% 0%	< 0.39 < 0.46	120,000 < 560
Styrene	NC NC		0.56 U	0.56 U	0.54 U	33		0%	0			< 560 < 410
Bromoform	2,300	0.38 U 4.1 J	0.38 U 0.51 U	0.38 U 0.5 U	0.37 U 0.49 U	33		21%	4		< 0.31 < 0.42	< 410 28,000
Isopropylbenzene 1,1,2,2-Tetrachloroethane	600	0.38 U	0.51 U	0.5 U	0.49 U	33		0%	0		< 0.42 < 0.31	28,000 < 800
1,3-Dichlorobenzene	1,600	0.38 U 0.69 U	0.38 U	0.38 U 0.68 U	0.37 U 0.66 U	33		0%	0		< 0.31 < 0.56	< 800 < 600
1,4-Dichlorobenzene	8,500	0.69 U	0.66 U	0.66 U	0.65 U	33		6%	0		< 0.55	< 630
1,2-Dichlorobenzene	7,900	0.67 U	0.66 U	0.66 U	0.65 U	33		0%	0		< 0.39	< 590
1,2-Dichioroberizerie	7,900 NC	1.2 U	1.1 U	1.1 U	1.1 U	33		0%	0		< 0.95	< 1,500
1,2,4-Trichlorobenzene	3,400	0.84 U	0.83 U	0.83 U	0.81 U	33			0		< 0.69	< 470
	40.00-	470.0	22.2	00.0	07.0					'		
Total Confident Conc. VOC	10,000	173.9	39.3	26.3	37.0							

Sample Location		TP-1B	TP-21B	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3	SB-3
Sample Interval (Feet bgs)		1.0 to 1.5	1.0 to 1.5	5.0 to 5.5	1.0 to 1.5	2.0 to 2.5	5 to 7	13 to 15	19 to 20.5	3.0 to 3.5	5 to 7	13 to 15
Sampling Date		05/04/05	05/04/05	05/03/05	05/02/05	05/02/05	05/06/05	05/06/05	05/06/05	04/29/05	05/06/05	05/06/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Office		ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/rkg	ug/itg	ug/Ng	ug/Ng	ug/Ng
Semivolatile Organic			Duplicate of									
Compounds (ug/kg)	TAGM RSCO		TP-1B									
Benzaldehyde	NC	75 U	73 UJ	68 U	72 U	73 U	84 U	77 U	87 U	73 UR	74 U	77 U
Phenol	30 or MDL	55 U	54 UJ	50 U	53 U	54 U	62 U	57 U	64 U	54 UR	55 U	57 U
bis(2-Chloroethyl)ether	NC	58 U	57 UJ	52 U	56 U	56 U	65 U	59 U	67 U	57 UR	57 U	59 U
2-Chlorophenol	800	58 U	57 UJ	53 U	56 U	57 U	66 U	60 U	68 U	57 UR	58 U	60 U
2-Methylphenol	100 or MDL	61 U	60 UJ	55 U	59 U	59 U	68 U	62 U	71 U	59 UR	60 U	62 U
2,2-oxybis(1-Chloropropane)	NC	59 U	58 UJ	53 U	57 UR	57 U	66 U	60 U	68 U	58 UR	58 U	60 U
Acetophenone	NC	53 U	52 UJ	48 U	52 U	52 U	60 U	55 U	62 U	52 UR	53 U	55 U
3+4-Methylphenols	900	58 U	56 UJ	52 U	56 U	56 U	65 U	59 U	67 U	56 UR	57 U	59 U
N-Nitroso-di-n-propylamine	NC	60 U	59 UJ	55 U	58 U	59 U	68 U	62 U	70 U	59 UR	60 U	62 U
Hexachloroethane	NC	62 U	61 UJ	56 U	60 U	60 U	70 U	64 U	72 U	61 UR	62 U	64 U
Nitrobenzene	200 or MDL	80 U	78 UJ	72 U	77 U	78 U	90 U	82 U	93 U	78 UR	79 U	82 U
Isophorone	4,400	55 U	54 UJ	50 U	53 U	53 U	62 U	56 U	64 U	54 UR	54 U	56 U
2-Nitrophenol	330 or MDL	56 U	55 UJ	51 U	54 U	55 U	63 U	58 U	65 U	55 UR	56 U	58 U
2,4-Dimethylphenol	NC	58 U	57 UJ	52 U	56 U	56 U	65 U	59 U	67 U	57 UR	58 U	59 U
bis(2-Chloroethoxy)methane	NC	60 U	59 UJ	54 U	58 U	58 U	68 U	62 U	70 U	59 UR	60 U	62 U
2,4-Dichlorophenol	400	68 U	66 UJ	61 U	65 U	66 U	76 U	69 U	79 U	66 UR	67 U	69 U
Naphthalene	13,000	1400	1200	56 U	110 J	61 U	70 U	64 U	11000 D	61 UR	62 U	64 U
4-Chloroaniline	220 or MDL	43 U	43 UJ	39 U	42 U	42 U	49 U	45 U	51 U	43 UR	43 U	45 U
Hexachlorobutadiene	NC	56 U	55 UJ	51 U	54 U	55 U	63 U	58 U	65 U	55 UR	56 U	58 U
Caprolatam	NC	59 U	58 UJ	53 U	57 U	57 U	66 U	60 U	68 U	57 UR	58 U	60 U
4-Chloro-3-methylphenol	240 or MDL	50 U	49 UJ	46 U	49 U	49 U	57 U	52 U	59 U	49 UR	50 U	52 U
2-Methylnaphthalene	36,400	1700	1700	55 U	120 J	59 U	69 U	63 U	5300 D	60 UR	61 U	63 U
Hexachlorocyclopentadiene	NC	58 UJ	57 UJ	53 UJ	56 UJ	57 UJ	66 UJ	60 UJ	68 UJ	57 UJR	58 UJ	60 UJI
2,4,6-Trichlorophenol	NC	54 U	53 UJ	48 U	52 U	52 U	60 U	55 U	62 U	53 UR	53 U	55 U
2,4,5-Trichlorophenol	100	56 UJ	55 UJ	50 U	54 U	54 U	63 U	57 U	65 U	55 UR	55 U	57 U
1,1-Biphenyl	NC	60 U	59 UJ	54 U	58 U	59 U	68 U	62 U	520	59 UR	60 U	62 U
2-Chloronaphthalene	NC	61 U	59 UJ	55 U	58 U	59 U	68 U	62 U	71 U	59 UR	60 U	62 U
2-Nitroaniline	430 or MDL	46 U	45 UJ	42 U	45 U	45 U	52 U	48 U	54 U	45 UR	46 U	48 U
Dimethylphthalate	2,000	59 U	58 UJ	53 U	57 U	57 U	66 U	60 U	68 U	57 UR	58 U	60 U
Acenaphthylene	41,000	59 U	58 UJ	54 U	57 U	58 U	67 U	61 U	250 J	58 UR	59 U	61 U
2,6-Dinitrotoluene	1,000	52 U	51 UJ	47 U	50 U	50 U	58 U	53 U	60 U	51 UR	51 U	53 U
3-Nitroaniline	500 or MDL	48 U	47 UJ	43 U	46 U	46 U	54 U	49 U	55 U	47 UR	47 U	49 U
Acenaphthene	50,000	65 UJ	64 UJ	59 U	76 J	63 U	73 U	67 U	870	64 UR	65 U	67 U
2,4-Dinitrophenol	200 or MDL	310 U	310 UJ	280 U	300 U	300 U	350 U	320 U	360 U	310 UR	310 U	320 U
4-Nitrophenol	100 or MDL	45 U	44 UJ	41 U	44 U	44 U	51 U	46 U	53 U	44 UR	45 U	46 U
Dibenzofuran	6,200	60 U	59 UJ	55 U	100 J	59 U	68 U	62 U	1200	59 UR	60 U	62 U
2,4-Dinitrotoluene	1,000	54 U	53 UJ	48 U	52 U	52 U	60 U	55 U	62 U	53 UR	53 U	55 U
Diethylphthalate	7,100	63 UJ	62 UJ	57 U	61 U	61 U	71 U	65 U	73 U	62 UR	63 U	65 U
4-Chlorophenyl-phenylether	NC	58 U	57 UJ	52 U	56 U	56 U	65 U	59 U	67 U	57 UR	57 U	59 U
Fluorene	50,000	62 U	60 UJ	56 U	64 J	60 U	69 U	63 U	1400	60 UR	61 U	63 U
4-Nitroaniline	NC	62 U	61 UJ	56 U	60 U	61 U	70 U	64 U	73 U	61 UR	62 U	64 U
4,6-Dinitro-2-methylphenol	NC	71 U	69 UJ	64 U	68 U	69 U	80 U	73 U	82 U	69 UR	70 U	73 UJ
N-Nitrosodiphenylamine	NC	60 U	59 UJ	54 U	58 U	59 U	68 U	62 U	70 U	59 UR	60 U	62 U
4-Bromophenyl-phenylether	NC	55 U	53 UJ	49 U	53 U	53 U	61 U	56 U	63 U	53 UR	54 U	56 U
Hexachlorobenzene	410	58 U	57 UJ	53 U	56 U	57 U	66 U	60 U	68 U	57 UR	58 U	60 U
Atrazine	NC	56 U	55 UJ	51 U	54 U	54 U	63 U	57 U	65 U	55 UR	56 U	57 U
Pentachlorophenol	1000 or MDL	85 U	83 UJ	76 U	82 U	82 U	95 U	87 U	98 U	83 UR	84 U	87 U
Phenanthrene	50,000	92 J	88 J	53 U	91 J	280 J	67 J	60 U	3800 JD	57 UR	58 U	83 J
Anthracene	50,000	55 U	54 UJ	50 U	53 U	91 J	62 U	57 U	880	54 UR	55 U	57 U
Carbazole	NC	56 U	55 UJ	50 U	54 U	54 U	63 U	57 U	560	55 UR	55 U	57 U
Di-n-butylphthalate	8,100	56 U	55 UJ	50 U	54 U	54 U	63 U	57 U	65 U	54 UR	55 U	57 U

Table 4-5												
Sample Location		TP-1B	TP-21B	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3	SB-3
Sample Interval (Feet bgs)		1.0 to 1.5	1.0 to 1.5	5.0 to 5.5	1.0 to 1.5	2.0 to 2.5	5 to 7	13 to 15	19 to 20.5	3.0 to 3.5	5 to 7	13 to 15
Sampling Date		05/04/05	05/04/05	05/03/05	05/02/05	05/02/05	05/06/05	05/06/05	05/06/05	04/29/05	05/06/05	05/06/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic			Duplicate of									
Compounds (ug/kg)	TAGM RSCO		TP-1B									
Fluoranthene	50,000	54 U	53 UJ	49 U	52 U	250 J	69 J	56 U	1700	53 UR	54 U	56 U
Pyrene	50,000	100 J	100 J	58 U	62 U	380	74 J	66 U	1800	63 UR	64 U	66 U
Butylbenzylphthalate	50,000	280 J	190 J	53 U	57 U	58 U	74 J	130 J	69 U	58 UR	59 U	61 UR
3,3-Dichlorobenzidine	NA	62 U	61 UJ	56 U	60 U	61 U	70 U	64 U	73 U	61 UR	62 U	64 U
Benzo(a)anthracene	224 or MDL	51 U	50 UJ	46 U	49 U	88 J	58 U	52 U	770	50 UR	51 U	52 U
Chrysene	400	66 U	64 UJ	59 U	63 U	110 J	74 U	67 U	660	64 UR	65 U	67 U
bis(2-Ethylhexyl)phthalate	50,000	410	280 J	63 U	68 U	68 U	150 J	140 J	82 U	69 UR	270 J	72 U
Di-n-octyl phthalate	50,000	62 U	61 UJ	56 U	60 U	61 U	70 U	64 U	72 U	61 UR	62 U	64 U
Benzo(b)fluoranthene	1,100	84 J	84 J	36 U	65 J	180 J	45 U	41 U	460	39 UR	40 U	41 U
Benzo(k)fluoranthene	1,100	80 U	79 UJ	73 U	78 UJ	82 J	91 U	82 U	170 J	79 UR	80 U	82 U
Benzo(a)pyrene	61 or MDL	79 J	74 J	53 U	62 J	110 J	66 U	60 U	480	57 UR	58 U	60 U
Indeno(1,2,3-cd)pyrene	3,200	100 J	93 J	42 U	45 U	45 U	52 U	48 U	190 J	45 UR	46 U	48 UJ
Dibenz(a,h)anthracene	14 or MDL	46 U	45 UJ	41 U	44 UJ	45 U	52 U	47 U	53 U	45 UR	46 U	47 U
Benzo(g,h,i)perylene	50,000	130 J	110 J	55 U	58 UJ	59 U	68 U	62 U	170 J	59 UR	60 U	62 U
Total Confident Conc. SVOC	,	4,375	3,919.0	-	688	1,571	434	270	32,180	- ND	270	83
Carcinogenic SVOCs in BaP	Equivalents	97.4	91.7	ND	68.5	138.7	ND	ND	630.3	ND	ND	ND

Table 4-9												
Sample Location		SB-3	SB-4	SB-4	SB-4	SB-4	SB-4	SB-5A	SB-5A	SB-85A	SB-5A	
Sample Interval (Feet bgs)		17 to 19	5.0 to 5.5	7 to 9	9 to 13	17 to 19	19 to 21	17 to 19	19 to 20	19 to 20	26 to 28	
Sampling Date		05/06/05	05/03/05	05/05/05	05/05/05	05/05/05	05/05/05	05/02/05	05/02/05	05/02/05	05/03/05	
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Office		ug/itg	ug/itg	ug/itg	ug/ng	ugritg	ugritg	ugritg	ug/itg	ug/itg	ugritg	
Semivolatile Organic												
Compounds (ug/kg)	TAGM RSCO											
Benzaldehyde	NC NC	78 U	75 U	75 U	79 U	79 U	840 U	81 U	78 U	79 U	81 U	
Phenol	30 or MDL	58 U	55 U	56 U	58 U	58 U	620 U	59 U	57 U	58 U	60 U	
bis(2-Chloroethyl)ether	NC NC	60 U	58 U	58 U	61 U	61 U	650 U	62 U	60 U	61 U	62 U	
2-Chlorophenol	800	61 U	58 U	59 U	61 U	61 U	650 U	63 U	60 U	61 U	63 U	
2-Methylphenol	100 or MDL	63 U	61 U	61 U	64 U	64 U	680 U	65 U	63 U	64 U	66 U	
2,2-oxybis(1-Chloropropane)	NC NC	61 U	59 U	59 U	62 U	62 U	660 U	63 UR	61 U	62 U	64 U	
Acetophenone	NC NC	56 U	53 U	54 U	56 U	56 U	600 U	57 U	55 U	56 U	58 U	
3+4-Methylphenols	900	60 U	58 U	58 U	61 U	61 U	650 U	62 U	60 U	61 U	62 U	
N-Nitroso-di-n-propylamine	NC NC	63 U	60 U	61 U	64 U	64 U	680 U	65 U	63 U	64 U	65 U	
Hexachloroethane	NC NC	65 U	62 U	62 U	65 U	65 U	700 U	67 U	64 U	65 U	67 U	
Nitrobenzene	200 or MDL	83 U	80 U	80 U	84 U	84 U	890 U	86 U	83 U	84 U	86 U	
	4,400	57 U	55 U	55 U	58 U	58 U	620 U	59 U	57 U	58 U	59 U	
Isophorone 2-Nitrophenol	330 or MDL	57 U	55 U 56 U	55 U 57 U	58 U	58 U 59 U	620 U	60 U	57 U 58 U	58 U	61 U	
·	NC	61 U	58 U	58 U	61 U	61 U	650 U	62 U	60 U	61 U	63 U	
2,4-Dimethylphenol bis(2-Chloroethoxy)methane	NC NC	63 U	60 U	60 U	63 U	63 U	670 U	65 U	62 U	63 U	65 U	
	400	71 U	68 U	68 U	71 U	71 U	760 U	73 U	70 U	71 U	73 U	
2,4-Dichlorophenol	13,000	65 U	82 J	63 U	370 J	66 U	220000 D	190 J	65 U	66 U		
Naphthalene 4-Chloroaniline	220 or MDL	45 U	43 U	44 U	46 U	46 U	490 U	47 U	45 U	46 U	67 U 47 U	
	NC NC	59 U	56 U	57 U	59 U	59 U	490 U	60 U	58 U	59 U	61 U	
Hexachlorobutadiene	NC NC	61 U	59 U	57 U		62 U	660 U	63 U	61 U	62 U	63 U	
Caprolatam	240 or MDL	53 U	59 U	59 U	62 U 53 U	53 U	570 U	54 U	52 U	53 U	54 U	
4-Chloro-3-methylphenol 2-Methylnaphthalene	36,400	64 U	61 U	61 U	99 J	64 U	60000 D	54 U 86 J	63 U	64 U	66 U	
Hexachlorocyclopentadiene	36,400 NC	61 UJ	58 UJ	59 UJ	99 J 61 UJ	61 UJ	650 UJ	63 UJ	60 UJ	61 UJ	63 UJ	
2,4,6-Trichlorophenol	NC NC	56 U	54 U	54 U	56 U	56 U	600 U	58 U	56 U	57 U	58 U	
2,4,5-Trichlorophenol	100	58 U	56 U	56 U	59 U	59 U	630 U	60 U	58 U	59 U	60 U	
1,1-Biphenyl	NC	63 U	60 U	61 U	63 U	63 U	8600	65 U	62 U	63 U	65 U	
2-Chloronaphthalene	NC NC	63 U	61 U	61 U	64 U	64 U	680 U	65 U	63 U	64 U	65 U	
2-Nitroaniline	430 or MDL	48 U	46 U	47 U	49 U	49 U	520 U	50 U	48 U	49 U	50 U	
Dimethylphthalate	2,000	61 U	59 U	59 U	62 U	62 U	660 U	63 U	61 U	62 U	63 U	
Acenaphthylene	41,000	62 U	59 U	60 U	62 U	62 U	9100	64 U	61 U	63 U	64 U	
2,6-Dinitrotoluene	1,000	54 U	59 U	52 U	54 U	54 U	580 U	56 U	54 U	54 U	56 U	
3-Nitroaniline	500 or MDL	50 U	48 U	48 U	50 U	50 U	530 U	51 U	49 U	50 U	51 U	
Acenaphthene	50,000	68 U	65 U	65 U	68 U	68 U	19000	70 U	67 U	69 U	70 U	
2,4-Dinitrophenol	200 or MDL	330 U	310 U	310 U	330 U	330 U	3500 U	340 U	320 U	330 U	340 U	
4-Nitrophenol	100 or MDL	47 U	45 U	46 U	48 U	48 U	510 U	49 U	47 U	48 U	49 U	
Dibenzofuran	6,200	63 U	60 U	61 U	64 U	63 U	24000	65 U	63 U	64 U	65 U	
2,4-Dinitrotoluene	1,000	56 U	54 U	54 U	56 U	56 U	600 U	58 U	56 U	57 U	58 U	
Diethylphthalate	7,100	66 U	63 UJ	63 U	66 U	66 U	710 U	68 U	65 U	66 U	68 U.	
4-Chlorophenyl-phenylether	7,100 NC	60 U	58 U	58 U	61 U	61 U	650 U	62 U	60 U	61 U	62 U	
Fluorene	50,000	64 U	62 U	62 U	65 U	65 U	35000 D	66 U	64 U	65 U	67 U	
4-Nitroaniline	30,000 NC	65 U	62 U	63 U	66 U	66 U	700 U	67 U	65 U	66 U	67 U	
4,6-Dinitro-2-methylphenol	NC NC	74 U	71 U	71 UR	75 U	74 U	790 UR	76 U	73 U	75 U	77 U	
N-Nitrosodiphenylamine	NC NC	63 U	60 U	61 U	63 U	63 U	670 U	65 U	62 U	63 U	65 U	
4-Bromophenyl-phenylether	NC NC	57 U	54 U	55 U	57 U	57 U	610 U	59 U	57 U	58 U	59 U	
Hexachlorobenzene	410	61 U	58 U	59 U	61 U	61 U	650 U	63 U	61 U	62 U	63 U	
Atrazine	NC NC	58 U	56 U	59 U	59 U	59 U	630 U	60 U	58 U	59 U	60 U	
Pentachlorophenol	1000 or MDL	88 U	84 U	85 U	89 U	89 U	950 U	91 U	88 U	89 U	91 U	
Phenanthrene	50,000	61 U	110 J	59 U	65 J	71 J	110000 D	63 U	60 U	61 U	63 U	
Anthracene	50,000	58 U	55 U	59 U	58 U	71 J 58 U	32000 DJ	59 U	57 U	58 U	59 U	
Carbazole	50,000 NC	58 U	56 U	55 U 56 U	58 U	58 U 59 U	12000 DJ	60 U	57 U	58 U	60 U	
	8,100	58 U	56 U	56 U	59 U	59 U 58 U	12000 620 U	60 U	58 U	59 U	60 U	
Di-n-butylphthalate	8,100	58 U	U ac	U dc	59 U	58 U	620 U	0U U	58 U	59 U		

Sample Interval (Feet bgs) Sample Interval (Feet bgs) O5/06/05 O5/03/05 O5/03/05 O5/05/05 O5/05/05 O5/05/05 O5/05/05 O5/05/05 O5/05/05 O5/05/05 O5/02/05 O5/03/05 O5/03/05 O5/03/05 O5/02/05 O5/02/						Tubic						
Sampling Date	Sample Location		SB-3	SB-4	SB-4	SB-4	SB-4	SB-4	SB-5A	SB-5A	SB-85A	SB-5A
Units	Sample Interval (Feet bgs)		17 to 19	5.0 to 5.5	7 to 9	9 to 13	17 to 19	19 to 21	17 to 19	19 to 20	19 to 20	26 to 28
Semivolatile Organic Compounds (ug/kg) Fluoranthene 50,000 57 U 88 J 55 U 57 U 88 J 55 U 57 U 88 J 5000 D 68 U 79 J 54000 D 69 U 67 U 68 U 67 U 68 U 70 U 84 J 85 U 66 U 66 U 66 U 66 U 67 U 68 U 68 U 69 U 70 U 68 U 69 U 70 U	Sampling Date		05/06/05	05/03/05	05/05/05	05/05/05	05/05/05	05/05/05	05/02/05	05/02/05	05/02/05	05/03/05
Compounds (ug/kg) TAGM RSCO	Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Fluoranthene 50,000 57 U 85 J 55 U 57 U 83 J 50000 D 58 U 56 U 57 U 59 U Pyrene 50,000 67 U 88 J 65 U 68 U 79 J 54000 D 69 U 67 U 68 U 70 U 84 J 50,000 Butylbenzylphthalate 50,000 88 J 59 U 62 U 62 U 66 U 700 U 67 U 65 U 66 U 67 U 68 U 68	Semivolatile Organic											
Pyrene 50,000 67 U 88 J 65 U 68 U 79 J 54000 D 69 U 67 U 68 U 70 U Butylbenzylphthalate 50,000 88 J 59 U 59 U 62 U 62 U 660 U 63 U 61 U 62 U 64 U 3,3-Dichlorobenzidine NA 65 U 62 U 63 U 66 U 70 U 67 U 65 U 66 U 67 U Benzo(a)anthracene 224 or MDL 53 U 51 U 51 U 54 U 59 J 23000 55 U 53 U 54 U 55 U Chrysene 400 68 U 66 U 66 U 69 U 20000 70 U 68 U 69 U 71 U bis(2-Ethylhexyl)phthalate 50,000 160 J 70 U 84 J 74 U 74 U 790 U 75 U 73 U 74 U 76 U Di-n-octyl phthalate 50,000 65 U 62 U 63 U 65 U 65 U 70 U 67 U 64 U 66 U 67 U <td>Compounds (ug/kg)</td> <td>TAGM RSCO</td> <td></td>	Compounds (ug/kg)	TAGM RSCO										
Butylbenzylphthalate 50,000 88 J 59 U 59 U 62 U 62 U 660 U 63 U 61 U 62 U 64 U 3,3-Dichlorobenzidine NA 65 U 62 U 63 U 66 U 66 U 700 U 67 U 65 U 66 U 67 U 65 U 68 U 68 U 68 U 59 J 23000 55 U 53 U 54 U 55 U 65 U 65 U 65 U 65 U 65 U 65	Fluoranthene	50,000	57 U	85 J	55 U	57 U	83 J	50000 D	58 U	56 U	57 U	59 U
3,3-Dichlorobenzidine NA 65 U 62 U 63 U 66 U 700 U 67 U 65 U 66 U 67 U 65 U 66 U 55 U 68 U 67 U 68 U 55 U 53 U 54 U 55 U 55 U 55 U 55 U 55	Pyrene	50,000	67 U	88 J	65 U	68 U	79 J	54000 D	69 U	67 U	68 U	70 U
Benzo(a)anthracene 224 or MDL 53 U 51 U 51 U 54 U 59 J 23000 55 U 53 U 54 U 55 U Chrysene 400 68 U 66 U 66 U 69 U 69 U 20000 70 U 68 U 69 U 71 U bis(2-Ethylhexyl)phthalate 50,000 160 J 70 U 84 J 74 U 74 U 790 U 75 U 73 U 74 U 76 U Di-n-octyl phthalate 50,000 65 U 62 U 63 U 65 U 65 U 700 U 67 U 64 U 66 U 67 U Benzo(b)fluoranthene 1,100 42 U 44 J 40 U 42 U 49 J 20000 J 43 U 42 U 42 U 49 J 20000 J 43 U 42 U 42 U 49 J 20000 J 43 U 42 U 42 U 48 U 6900 J 86 U 83 U 85 U 87 U Benzo(a)pyrene 61 or MDL 61 U 58 U 59 U 61 U 61 U 61 U	Butylbenzylphthalate	50,000	88 J	59 U	59 U	62 U	62 U	660 U	63 U	61 U	62 U	64 U
Chrysene 400 68 U 66 U 66 U 69 U 69 U 20000 70 U 68 U 69 U 71 U bis(2-Ethylhexyl)phthalate 50,000 160 J 70 U 84 J 74 U 74 U 790 U 75 U 73 U 74 U 76 U Di-n-octyl phthalate 50,000 65 U 62 U 63 U 65 U 65 U 700 U 67 U 64 U 66 U 67 U Benzo(b)fluoranthene 1,100 42 U 44 J 40 U 42 U 49 J 20000 J 43 U 42 U 42 U 43 U Benzo(k)fluoranthene 1,100 84 U 80 U 81 U 85 U 84 U 6900 J 86 U 83 U 85 U 87 U Benzo(a)pyrene 61 or MDL 61 U 58 U 59 U 61 U 61 U 18000 J 63 U 61 U 62 U 63 U	3,3-Dichlorobenzidine	NA	65 U	62 U	63 U	66 U	66 U	700 U	67 U	65 U	66 U	67 U
bis(2-Ethylhexyl)phthalate 50,000 160 J 70 U 84 J 74 U 74 U 790 U 75 U 73 U 74 U 76	Benzo(a)anthracene	224 or MDL	53 U	51 U	51 U	54 U	59 J	23000	55 U	53 U	54 U	55 U
Di-n-ocyl phthalate 50,000 65 U 62 U 63 U 65 U 65 U 700 U 67 U 64 U 66 U 67 U 69 U 69 U 69 U 69 U 69 U 69	Chrysene	400	68 U	66 U	66 U	69 U	69 U	20000	70 U	68 U	69 U	71 U
Benzo(b)fluoranthene 1,100 42 U 44 J 40 U 42 U 49 J 20000 J 43 U 42 U 42 U 43 U Benzo(k)fluoranthene 1,100 84 U 80 U 81 U 85 U 84 U 6900 J 86 U 83 U 85 U 87 U Benzo(a)pyrene 61 or MDL 61 U 58 U 59 U 61 U 61 U 18000 J 63 U 61 U 62 U 63 U	bis(2-Ethylhexyl)phthalate	50,000	160 J	70 U	84 J	74 U	74 U	790 U	75 U	73 U	74 U	76 U
Benzo(k)fluoranthene 1,100 84 U 80 U 81 U 85 U 84 U 6900 J 86 U 83 U 85 U 87 U Benzo(a)pyrene 61 or MDL 61 U 58 U 59 U 61 U 61 U 18000 J 63 U 61 U 62 U 63 U	Di-n-octyl phthalate	50,000	65 U	62 U	63 U	65 U	65 U	700 U	67 U	64 U	66 U	67 U
Benzo(a)pyrene 61 or MDL 61 U 58 U 59 U 61 U 61 U 18000 J 63 U 61 U 62 U 63 U	Benzo(b)fluoranthene	1,100	42 U	44 J	40 U	42 U	49 J	20000 J	43 U	42 U	42 U	43 U
	Benzo(k)fluoranthene	1,100	84 U	80 U	81 U	85 U	84 U	6900 J	86 U	83 U	85 U	87 U
Indepo(1.2.3-cd)pyrene 3.200 48.11 46.11 47.11 49.11 2400.1 50.11 48.11 49.11 50.11	Benzo(a)pyrene	61 or MDL	61 U	58 U	59 U	61 U	61 U	18000 J	63 U	61 U	62 U	63 U
110010(1,2,0 00/py) one 0,200 40 0 40 0 40 0 40 0	Indeno(1,2,3-cd)pyrene	3,200	48 U	46 U	47 U	49 U	49 U	2400 J	50 U	48 U	49 U	50 U
Dibenz(a,h)anthracene 14 or MDL 48 U 46 U 46 U 48 U 48 U 680 J 49 U 48 U 48 U 49 U	Dibenz(a,h)anthracene	14 or MDL	48 U	46 U	46 U	48 U	48 U	680 J	49 U	48 U	48 U	49 U
Benzo(g,h,i)perylene 50,000 63 U 60 U 61 U 64 U 63 U 3600 J 65 U 63 U 64 U 65 U	Benzo(g,h,i)perylene	50,000	63 U	60 U	61 U	64 U	63 U	3600 J	65 U	63 U	64 U	65 U
Total Confident Conc. SVOC 500,000 248 409 84 534 341 728,280 276	Total Confident Cone SVOC	500,000	249	400	94	F24	241	729 290	276			
Total colinidari Colin. SVCC 500,000 246 409 64 554 746,260 276		,	-							ND -	ND -	

				Cons		company of New Yo ole 4-9	ork, Inc.					
Comple Legation	1	SB-5A	SB-5B	SB-5B	SB-5B	MW-5B	MW-55B	SB-6	SB-6	SB-6	SB-6	SB-66
Sample Location												
Sample Interval (Feet bgs)		31 to 33	10 to 11	11 to 12	21 to 22	34 to 36	34 to 36	10 to 12	13 to 15	19 to 21	24 to 26	24 to 26
Sampling Date		05/03/05	05/02/05	05/02/05	05/02/05	06/07/05	06/07/05	05/12/05	05/12/05	05/12/05	05/12/05	05/12/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic Compounds (ug/kg)	TAGM RSCO											Duplicate of SB-6
Benzaldehyde	NC NC	78 U	73 U	72 U	82 U	85 U	82 U	76 U	81 U	83 U	82 U	82 U
Phenol	30 or MDL	58 U	54 U	53 U	60 U	63 U	61 U	56 U	60 U	61 U	60 U	61 U
		60 U		55 U	63 U	65 U		58 U	63 U	64 U		63 U
bis(2-Chloroethyl)ether	NC 800		56 U				63 U				63 U	
2-Chlorophenol		61 U	56 U	56 U	64 U	66 U	64 U	59 U	63 U	65 U	64 U	64 U
2-Methylphenol	100 or MDL	63 U	59 U	58 U	66 U	69 U	67 U	61 U	66 U	67 U	66 U	67 U
2,2-oxybis(1-Chloropropane)	NC	61 U	57 U	56 UR	64 U	67 U	65 U	59 U	64 U	65 U	64 U	65 U
Acetophenone	NC	56 U	52 U	51 U	58 U	60 U	59 U	54 U	58 U	59 U	58 U	59 U
3+4-Methylphenols	900	60 U	56 U	55 U	63 U	65 U	63 U	58 U	62 U	64 U	63 U	63 U
N-Nitroso-di-n-propylamine	NC	63 U	59 U	58 U	66 U	68 U	66 U	61 U	66 U	67 U	66 U	66 U
Hexachloroethane	NC	65 U	60 U	60 U	68 U	70 U	68 U	63 U	67 U	69 U	68 U	68 U
Nitrobenzene	200 or MDL	83 U	77 U	76 U	87 U	90 U	87 U	81 U	86 U	88 U	87 U	87 U
Isophorone	4,400	57 U	53 U	53 U	60 U	62 U	60 U	55 U	59 U	61 U	60 U	60 U
2-Nitrophenol	330 or MDL	59 U	54 U	54 U	61 U	64 U	62 U	57 U	61 U	62 U	61 U	62 U
2,4-Dimethylphenol	NC	60 U	56 U	56 U	63 U	66 U	64 U	59 U	63 U	64 U	63 U	64 U
bis(2-Chloroethoxy)methane	NC	63 U	58 U	58 U	65 U	68 U	66 U	61 U	65 U	67 U	65 U	66 U
2,4-Dichlorophenol	400	70 U	65 U	65 U	74 U	76 U	74 U	68 U	73 U	75 U	74 U	74 U
Naphthalene	13,000	65 U	73 J	6900 DJ	68 U	71 U	68 U	63 U	6600 D	69 U	68 U	68 U
4-Chloroaniline	220 or MDL	45 U	42 U	42 U	47 U	49 U	48 U	44 U	47 U	48 U	47 U	48 U
Hexachlorobutadiene	NC	59 U	54 U	54 U	61 U	64 U	62 U	57 U	61 U	62 U	61 U	62 U
Caprolatam	NC	61 U	57 U	56 U	64 U	66 U	64 U	59 U	64 U	65 U	64 U	64 U
4-Chloro-3-methylphenol	240 or MDL	53 U	49 U	48 U	55 U	57 U	55 U	51 U	55 U	56 U	55 U	55 U
2-Methylnaphthalene	36,400	64 U	79 J	4700 D	67 U	69 U	67 U	62 U	3800 D	68 U	67 U	67 U
Hexachlorocyclopentadiene	NC NC	61 UJ	56 UJ	56 UJ	64 UJ	66 UJ	64 UJ	59 UJ	63 UJ	65 UJ	64 UJ	64 UJ
2,4,6-Trichlorophenol	NC	56 U	52 U	51 U	58 U	61 U	59 U	54 U	58 U	60 U	58 U	59 U
2,4,5-Trichlorophenol	100	58 U	54 U	54 U	61 U	63 U	61 U	56 U	61 U	62 U	61 U	61 U
1,1-Biphenyl	NC	63 U	58 U	58 U	66 U	68 U	66 U	61 U	150 J	67 U	66 U	66 U
2-Chloronaphthalene	NC	63 U	59 U	58 U	66 U	69 U	66 U	61 U	66 U	67 U	66 U	66 U
2-Nitroaniline	430 or MDL	48 U	45 U	44 U	51 U	52 U	51 U	47 U	50 U	51 U	51 U	51 U
Dimethylphthalate	2,000	61 U	57 U	56 U	64 U	66 U	64 U	59 U	64 U	65 U	64 U	64 U
Acenaphthylene	41,000	62 U	57 U	57 U	65 U	67 U	65 U	60 U	64 U	66 U	65 U	65 U
2,6-Dinitrotoluene	1,000	54 U	57 U	50 U	56 U	58 U	57 U	52 U	56 U	57 U	56 U	57 U
3-Nitroaniline	500 or MDL	54 U	46 U	46 U	56 U	54 U	57 U	48 U	50 U	53 U	50 U	57 U
					52 U 71 U							
Acenaphthene	50,000	68 U	63 U	62 U		74 U	71 U	66 U	70 U 340 U	72 U	71 U 340 U	71 U 340 U
2,4-Dinitrophenol	200 or MDL	330 U	300 U	300 U	340 U	350 U	340 U	320 U		350 U		
4-Nitrophenol	100 or MDL	47 U	44 U	43 U	49 U	51 U	50 U	46 U	49 U	50 U	49 U	50 U
Dibenzofuran	6,200	63 U	58 U	58 U	66 U	68 U	66 U	61 U	65 U	67 U	66 U	66 U
2,4-Dinitrotoluene	1,000	56 U	52 U	51 U	58 U	61 U	59 U	54 U	58 U	60 U	58 U	59 U
Diethylphthalate	7,100	66 U	61 U	60 U	69 U	71 U	69 U	64 U	68 U	70 U	69 U	69 U
4-Chlorophenyl-phenylether	NC	60 U	56 U	55 U	63 U	65 U	63 U	58 U	63 U	64 U	63 U	63 U
Fluorene	50,000	64 U	60 U	79 J	67 U	70 U	68 U	62 U	110 J	68 U	67 U	68 U
4-Nitroaniline	NC	65 U	60 U	60 U	68 U	71 U	68 U	63 U	68 U	69 U	68 U	68 U
4,6-Dinitro-2-methylphenol	NC	74 U	69 U	68 U	77 U	80 U	78 U	72 UR	77 UR	79 UR	77 UR	78 U
N-Nitrosodiphenylamine	NC	63 U	58 U	58 U	66 U	68 U	66 U	61 U	65 U	67 U	66 U	66 U
4-Bromophenyl-phenylether	NC	57 U	53 U	52 U	59 U	62 U	60 U	55 U	59 U	61 U	59 U	60 U
Hexachlorobenzene	410	61 U	57 U	56 U	64 U	66 U	64 U	59 U	63 U	65 U	64 U	64 U
Atrazine	NC	58 U	54 U	54 U	61 U	63 U	61 U	57 U	61 U	62 U	61 U	61 U
Pentachlorophenol	1000 or MDL	88 U	82 U	81 U	92 U	96 U	93 U	85 U	92 U	94 U	92 U	93 U
Phenanthrene	50,000	61 U	56 U	100 J	63 U	66 U	64 U	59 U	120 J	65 U	63 U	64 U
Anthracene	50,000	57 U	53 U	53 U	60 U	62 U	60 U	56 U	60 U	61 U	60 U	60 U
Carbazole	NC NC	58 U	54 U	53 U	61 U	63 U	61 U	56 U	60 U	62 U	61 U	61 U
Di-n-butylohthalate	8 100	70 J	54 U	53 U	61 U	63 U	61 U	56 U	60 U	62 U	61 U	61 U

8,100

Di-n-butylphthalate

70 J

54 U

53 U

61 U

63 U

61 U

56 U

60 U

61 U

61 U

62 U

Sample Location		SB-5A	SB-5B	SB-5B	SB-5B	MW-5B	MW-55B	SB-6	SB-6	SB-6	SB-6	SB-66
Sample Interval (Feet bgs)		31 to 33	10 to 11	11 to 12	21 to 22	34 to 36	34 to 36	10 to 12	13 to 15	19 to 21	24 to 26	24 to 26
Sampling Date		05/03/05	05/02/05	05/02/05	05/02/05	06/07/05	06/07/05	05/12/05	05/12/05	05/12/05	05/12/05	05/12/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg							
Semivolatile Organic	T4 014 D000											Duplicate of
Compounds (ug/kg)	TAGM RSCO											SB-6
Fluoranthene	50,000	57 U	53 U	52 U	59 U	61 U	60 U	55 U	59 U	60 U	59 U	60 U
Pyrene	50,000	67 U	63 U	62 U	70 U	73 U	71 U	65 U	70 U	72 U	70 U	71 U
Butylbenzylphthalate	50,000	62 U	57 U	57 U	64 U	67 U	65 U	60 U	64 U	66 U	64 U	65 U
3,3-Dichlorobenzidine	NA	65 U	60 U	60 U	68 U	71 U	69 U	63 U	68 U	69 U	68 U	69 U
Benzo(a)anthracene	224 or MDL	53 U	49 U	49 U	56 U	58 U	56 U	52 U	55 U	57 U	56 U	56 U
Chrysene	400	68 U	63 U	63 U	71 U	74 U	72 U	66 U	71 U	73 U	71 U	72 U
bis(2-Ethylhexyl)phthalate	50,000	88 J	68 U	92 J	76 U	79 U	77 U	71 U	210 JB	160 J	170 J	140 JB
Di-n-octyl phthalate	50,000	65 U	60 U	60 U	68 U	70 U	68 U	63 U	67 U	69 U	68 U	68 U
Benzo(b)fluoranthene	1,100	42 U	39 U	39 U	44 U	45 U	44 U	41 U	44 U	45 U	44 U	44 U
Benzo(k)fluoranthene	1,100	84 U	78 U	77 U	88 U	91 U	88 U	81 U	87 U	89 U	88 U	88 U
Benzo(a)pyrene	61 or MDL	61 U	57 U	56 U	64 U	66 U	64 U	59 U	63 U	65 U	64 U	64 U
Indeno(1,2,3-cd)pyrene	3,200	48 U	45 U	44 U	51 U	52 U	51 U	47 U	50 U	51 U	51 U	51 U
Dibenz(a,h)anthracene	14 or MDL	48 U	44 U	44 U	50 U	52 U	50 U	46 U	50 U	51 U	50 U	50 U
Benzo(g,h,i)perylene	50,000	63 U	58 U	58 U	66 U	68 U	66 U	61 U	65 U	67 U	66 U	66 U
Total Confident Conc. SVOC	500,000	158	152	11,871		·		_	10,990	160	170	140
Carcinogenic SVOCs in BaP	,	ND	10,990 ND	ND	ND	ND						

[a	1	00.0	Ι			Table 4-	-		
Sample Location		SB-6							
Sample Interval (Feet bgs)		28.5 to 30.5							
Sampling Date		5/12/2005							
Units		ug/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic			Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO					Exceedances			
Benzaldehyde	NC	67 U	33	0	0%	0	0%	< 67	< 840
Phenol	30 or MDL	50 U	33	0	0%	0	0%	< 50	< 620
bis(2-Chloroethyl)ether	NC	52 U	33	0	0%	0	0%	< 52	< 650
2-Chlorophenol	800	52 U	33	0	0%	0	0%	< 52	< 650
2-Methylphenol	100 or MDL	55 U	33	0	0%	0	0%	< 55	< 680
2,2-oxybis(1-Chloropropane)	NC	53 U	33	0	0%	0	0%	< 53	< 660
Acetophenone	NC	48 U	33	0	0%	0	0%	< 48	< 600
3+4-Methylphenols	900	52 U	33	0	0%	0	0%	< 52	< 650
N-Nitroso-di-n-propylamine	NC	54 U	33	0	0%	0	0%	< 54	< 680
Hexachloroethane	NC	56 U	33	0	0%	0	0%	< 56	< 700
Nitrobenzene	200 or MDL	72 U	33	0	0%	0	0%	< 72	< 890
Isophorone	4.400	49 U	33	0	0%	0	0%	< 49	< 620
2-Nitrophenol	330 or MDL	50 U	33	0	0%	0	0%	< 50	< 630
2,4-Dimethylphenol	NC	52 U	33	0	0%	0	0%	< 52	< 650
bis(2-Chloroethoxy)methane	NC NC	54 U	33	0	0%	0	0%	< 54	< 670
2,4-Dichlorophenol	400	61 U	33	0	0%	0	0%	< 61	< 760
Naphthalene	13,000	56 U	33	11	33%	1	3%	< 56	220,000
4-Chloroaniline	220 or MDL	39 U	33	0	0%	0	0%	< 39	< 490
Hexachlorobutadiene	NC	50 U	33	0	0%	0	0%	< 50	< 630
Caprolatam	NC NC	53 U	33	0	0%	0	0%	< 53	< 660
_ '	240 or MDL	45 U	33	0	0%	0	0%	< 55 < 45	< 570
4-Chloro-3-methylphenol 2-Methylnaphthalene	36.400	55 U	33	10	30%	1	3%		60.000
Hexachlorocyclopentadiene	36,400 NC	52 UJ	33	0	0%	0	0%	< 55 < 52	,
2,4,6-Trichlorophenol	NC NC	48 U	33	0	0%	0	0%	< 48	< 650 < 600
	100	50 U	33	0	0%	0	0%	< 48	
2,4,5-Trichlorophenol	NC	50 U			9%	0	0%		< 630 8.600
1,1-Biphenyl			33	3					- /
2-Chloronaphthalene	NC NC	54 U	33	0	0%	0	0%	< 54	< 680
2-Nitroaniline	430 or MDL	42 U	33	0	0%	0	0%	< 42	< 520
Dimethylphthalate	2,000	53 U	33	0	0%	0	0%	< 53	< 660
Acenaphthylene	41,000	53 U	33	2	6%	0	0%	< 53	9,100
2,6-Dinitrotoluene	1,000	46 U	33	0	0%	0	0%	< 46	< 580
3-Nitroaniline	500 or MDL	43 U	33		0%	0	0%	< 43	< 530
Acenaphthene	50,000	58 U	33	3	9%	0	0%	< 58	19,000
2,4-Dinitrophenol	200 or MDL	280 U	33	0	0%	0	0%	< 280	< 3,500
4-Nitrophenol	100 or MDL	41 UJ	33	0	0%	0	0%	< 41	< 510
Dibenzofuran	6,200	54 U	33	3	9%	1	3%	< 54	24,000
2,4-Dinitrotoluene	1,000	48 U	33	0	0%	0	0%	< 48	< 600
Diethylphthalate	7,100	57 U	33	0	0%	0	0%	< 57	< 710
4-Chlorophenyl-phenylether	NC	52 U	33	0	0%	0	0%	< 52	< 650
Fluorene	50,000	55 U	33	5	15%	0	0%	< 55	35,000
4-Nitroaniline	NC	56 U	33	0	0%	0	0%	< 56	< 700
4,6-Dinitro-2-methylphenol	NC	64 U	33	0	0%	0	0%	< 64	< 790
N-Nitrosodiphenylamine	NC	54 U	33	0	0%	0	0%	< 54	< 670
4-Bromophenyl-phenylether	NC	49 U	33	0	0%	0	0%	< 49	< 610
Hexachlorobenzene	410	52 U	33	0	0%	0	0%	< 52	< 650
Atrazine	NC	50 U	33	0	0%	0	0%	< 50	< 630
Pentachlorophenol	1000 or MDL	76 U	33	0	0%	0	0%	< 76	< 950
Phenanthrene	50,000	52 U	33	13	39%	1	3%	< 52	110,000
Anthracene	50,000	50 U	33	3	9%	0	0%	< 50	32,000
Carbazole	NC NC	50 U	33	2	6%	0	0%	< 50	12,000
Di-n-butylphthalate	8.100	50 U	33		3%	0	0%	< 50	620
z zatyipritrialato	5,100	55 0	. 33	· '	370	0	070	` 00	020

Table 4-5												
Sample Location		SB-6										
Sample Interval (Feet bgs)		28.5 to 30.5										
Sampling Date		5/12/2005										
Units		ug/Kg										
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported			
Semivolatile Organic			Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration			
Compounds (ug/kg)	TAGM RSCO					Exceedances						
Fluoranthene	50,000	49 U	33	6	18%	0	0%	< 49	50,000			
Pyrene	50,000	58 U	33	8	24%	1	3%	< 58	54,000			
Butylbenzylphthalate	50,000	53 U	33	5	15%	0	0%	< 53	660			
3,3-Dichlorobenzidine	NA	56 U	33	0	0%	0	0%	< 56	< 700			
Benzo(a)anthracene	224 or MDL	46 U	33	4	12%	2	6%	< 46	23,000			
Chrysene	400	59 U	33	3	9%	2	6%	< 59	20,000			
bis(2-Ethylhexyl)phthalate	50,000	63 U	33	13	39%	0	0%	< 63	790			
Di-n-octyl phthalate	50,000	56 U	33		0%	0	0%	< 56	< 700			
Benzo(b)fluoranthene	1,100	36 U	33	8	24%	1	3%	< 36	20,000			
Benzo(k)fluoranthene	1,100	72 U	33	3	9%	1	3%	< 72	6,900			
Benzo(a)pyrene	61 or MDL	52 U	33	6	18%	6	18%	< 52	18,000			
Indeno(1,2,3-cd)pyrene	3,200	42 U	33	4	12%	0	0%	< 42	2,400			
Dibenz(a,h)anthracene	14 or MDL	41 U	33	1	3%	1	3%	< 41	680			
Benzo(g,h,i)perylene	50,000	54 U	33	4	12%	0	0%	< 54	3,600			
Total Confident Conc. SVOC	500,000	-										
Carcinogenic SVOCs in BaP	Equivalents	ND										

Sample Location		TP-1B	TP-21B	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3	SB-3	SB-3
Sample Interval (Feet bgs)		1.0 to 1.5	1.0 to 1.5	5.0 to 5.5	1.0 to 1.5	2.0 to 2.5	5 to 7	13 to 15	19 to 20.5	3.0 to 3.5	5 to 7	13 to 15	17 to 19
Sampling Date		05/04/05	05/04/05	05/03/05	05/02/05	05/02/05	05/06/05	05/06/05	05/06/05	04/29/05	05/06/05	05/06/05	05/06/05
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM		Duplicate of										
PP Metals	RSCO		TP-1B										
Antimony	В	0.366 U	0.763 J	0.33 U	0.35 U	0.804 J	0.412 U	0.373 U	0.581 J	0.358 UR	0.361 U	0.371 U	0.381 U
Arsenic	12	5.7	4.03	0.745 J	4.21	0.776 J	2.7	2.13	7.8	2.47	3.25	2.1	1.49
Beryllium	600	0.346 J	0.374 J	0.176 J	0.344 J	0.274 J	0.674	0.454 J	0.265 J	0.46 J	0.52 J	0.477 J	0.408 J
Cadmium	1	0.227 J	0.036 U	0.033 U	0.035 U	0.035 U	0.041 U	0.038 U	0.042 U	0.036 UR	0.036 U	0.037 U	0.038 U
Chromium	40	13.5	15.4	6.64 J	16.4 J	12.5 J	32.4 J	18.3 J	16.2 J	16.2 J	24.3 J	17.7 J	15 J
Copper	50	26.1	24.6	9.84	16.5	12.7	39.9	20.3	21.3	13.3	26.9	25	25.9
Lead	500	834	773	1.67	37.1 J	24.5 J	48.8	27.5	2240	65.1 J	42.1	5.98	4.68
Mercury	0.1	0.392 J	0.488 J	0.006 UJ	0.103	0.175	0.342 J	0.605 J	0.41 J	0.058 J	0.021 J	0.009 J	0.007 U
Nickel	25	8.78	8.9	7.18	18	14.5	18.3	17.1	9.29	14.1	22.5	19.5	17.5
Selenium	3.9	0.381 UJ	0.376 UJ	0.512 J	0.364 U	0.367 U	0.428 U	0.388 U	0.909 J	0.456 J	0.375 U	0.386 U	0.397 U
Silver	В	0.323 J	0.087 U	0.267 J	0.333 J	0.085 U	4.39	0.09 U	1.8	0.274 J	0.087 U	0.089 U	0.092 U
Thallium	В	0.589 U	0.582 U	0.53 U	0.562 U	0.567 U	0.662 U	0.6 U	0.674 U	0.575 UR	0.58 U	0.596 U	0.613 U
Zinc	50	219	106	13.4	37.2	26.1	65.1	55.6	250	46.6	37.4	39.9	32.7

Sample Location		TP-1B	TP-21B	SB-1	SB-2	SB-2	SB-2	SB-2	SB-2	SB-3	SB-3	SB-3	SB-3
Sample Interval (Feet bgs) Sampling Date Units		1.0 to 1.5 05/04/05 mg/Kg	1.0 to 1.5 05/04/05 mg/Kg	5.0 to 5.5 05/03/05 mg/Kg	1.0 to 1.5 05/02/05 mg/Kg	2.0 to 2.5 05/02/05 mg/Kg	5 to 7 05/06/05 mg/Kg	13 to 15 05/06/05 mg/Kg	19 to 20.5 05/06/05 mg/Kg	3.0 to 3.5 04/29/05 mg/Kg	5 to 7 05/06/05 mg/Kg	13 to 15 05/06/05 mg/Kg	17 to 19 05/06/05 mg/Kg
	TAGM RSCO		Duplicate of TP-1B										
Cyanide	NC	2.18 J	1.77	0.508 U	0.539 U	0.543 U	0.628 U	0.569 U	190	0.545 UR	0.556 U	0.577 U	0.581 U
Amenable Cvanide	NC	0.56	0.55	0.51 UJ	0.539 U	0.543 U	0.63 U	0.57 U	0.65 U	0.545 UR	0.56 U	0.58 U	0.58 U

Sample Location		SB-4	SB-4	SB-4	SB-4	SB-4	SB-5A	SB-5A	SB-85A	SB-5A	SB-5A	SB-5B	SB-5B
Sample Interval (Feet bgs)		5.0 to 5.5	7 to 9	9 to 13	17 to 19	19 to 21	17 to 19	19 to 20	19 to 20	26 to 28	31 to 33	10 to 11	11 to 12
Sampling Date		05/03/05	05/05/05	05/05/05	05/05/05	05/05/05	05/02/05	05/02/05	05/02/05	05/03/05	05/03/05	05/02/05	05/02/05
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM												
PP Metals	RSCO												
Antimony	В	0.485 J	0.363 U	0.382 U	0.557 J	0.411 U	1.17 J	0.379 U	0.388 U	0.81 J	0.382 U	0.691 J	0.352 U
Arsenic	12	2.12	0.458 J	2.01	2.07	1.16 J	0.6 J	1.52	1.57	1.1 J	0.457 U	1.29	0.903 J
Beryllium	600	0.388 J	0.29 J	0.363 J	0.725	0.289 J	0.144 J	0.663	0.811	0.381 J	0.217 J	0.337 J	0.314 J
Cadmium	1	0.036 U	0.307 J	0.038 U	0.038 U	0.309 J	0.039 U	0.038 U	0.039 U	0.039 U	0.22 J	0.035 U	0.035 U
Chromium	40	16.9	16.6 J	19.8 J	30.4 J	21.6 J	9.35 J	25.7 J	31.1 J	18.6	18	14.7 J	18.2 J
Copper	50	85.3	15.8	17.3	26.6	15.2	7.26	19.1	24.2	14.4	11	26.8	27.7
Lead	500	77.5	12.8 J	37.7	31.3	130 J	2.94 J	6.95 J	9.66 J	4.08	2.35	10 J	7.18 J
Mercury	0.1	0.454 J	0.359	0.499 J	0.365 J	0.272	0.007 U	0.009 J	0.014	0.009 J	0.036	0.01 J	0.009 J
Nickel	25	15.3	15.2	18.5	31.7	15.7	6.34	17.9	24.7	10.3	10.1	14.1	17.2
Selenium	3.9	0.376 UJ	0.377 U	0.397 U	0.394 U	0.427 U	0.404 U	0.394 U	0.403 U	0.401 UJ	0.397 U	0.365 U	0.431 J
Silver	В	0.319 J	1.04 J	0.092 U	5.76	1.06 J	0.094 U	3.15 J	1.3 J	0.093 U	0.092 U	0.085 U	0.227 J
Thallium	В	0.58 U	0.583 U	0.614 U	0.609 U	0.66 U	0.624 U	0.609 U	0.623 U	0.62 U	0.614 U	0.564 U	0.566 U
Zinc	50	75	35.6	44.8	106	68.1	13.6	39.7	55.4	30.2	18.2	32.2 J	30

Sample Location		SE	3-4	SB-4	SB-4	SB-4	SB-4	SB-5A	SB-5A	SB-85A	SB-5A	SB-5A	SB-5B	SB-5B
Sample Interval (Feet bgs)			0 5.5	7 to 9	9 to 13	17 to 19	19 to 21	17 to 19	19 to 20	19 to 20	26 to 28	31 to 33	10 to 11	11 to 12
Sampling Date Units			03/05 ng/Kg	05/05/05 mg/Kg	05/05/05 mg/Kg	05/05/05 mg/Kg	05/05/05 mg/Kg	05/02/05 mg/Kg	05/02/05 mg/Kg	05/02/05 mg/Kg	05/03/05 mg/Kg	05/03/05 mg/Kg	05/02/05 mg/Kg	05/02/05 mg/Kg
Onits			ig/itg	mg/kg	mg/kg	mg/rtg	mg/rtg	mg/rtg	mg/kg	mg/Kg	mg/kg	mg/rtg	mg/rtg	mg/rtg
	TAGM													
	RSCO													
Cyanide	NC	0.556	U	0.564 U	0.588 U	0.59 L	J 0.627 U	0.604 U	0.577 U	0.591 U	0.6 U	0.583 U	2.89	1.07
Amenable Cyanide	NC	0.56	U.I	10.56 U	0.59 U	0.59 L	156	0 604 LI	0.577 U	0.591 U	0.6 U.I	1 0 58 U.I	1.8	0.537 U

Sample Location		SB-5B	MW-5B	MW-55B	SB-6	SB-6	SB-6	SB-6	SB-66	SB-6
Sample Interval (Feet bgs)		21 to 22	34 to 36	34 to 36	10 to 12	13 to 15	19 to 21	24 to 26	24 to 26	28.5 to 30.5
Sampling Date		05/02/05	06/07/05	06/07/05	05/12/05	05/12/05	05/12/05	05/12/05	05/12/05	05/12/05
Units		mg/Kg	mg/Kg							
	TAGM								Duplicate of	
PP Metals	RSCO								SB-6	
Antimony	В	0.386 U	0.417 U	0.398 U	0.738 J	0.397 U	0.396 U	0.392 U	0.396 U	0.379 U
Arsenic	12	2.55	0.499 U	0.476 U	2.71	3.1	4.16	1.59	0.99 J	1.89
Beryllium	600	0.438 J	0.254 J	0.243 J	0.407 J	0.407 J	0.442 J	0.293 J	0.377 J	0.277 J
Cadmium	1	0.039 U	0.042 U	0.04 U	0.33 J	0.04 U	0.04 U	0.039 U	0.04 U	0.114 J
Chromium	40	15.9 J	6.74	6.44	14.9 J	19.2 J	16.5 J	9.91 J	12	11.6 J
Copper	50	17.4	14.5	11.8	17	18.4	21.1	8.74	11.6	11.6
Lead	500	6.34 J	2.29	1.82	27.2	24.1	8.19	2.21	4.8	3.87
Mercury	0.1	0.012	0.023 J	0.038 J	0.013 J	0.026 J	0.015 J	0.007 UJ	0.007 U	0.007 UJ
Nickel	25	16.5	9.8	8.14	15.8	15.7	14.1	10.4	12.5	11.8
Selenium	3.9	0.401 U	0.434 U	0.414 U	0.671 J	0.412 U	0.412 U	0.407 U	0.412 U	0.564 J
Silver	В	0.317 J	0.254 J	0.243 J	1.58	0.096 U	0.095 U	0.094 U	0.095 U	1.42
Thallium	В	0.62 U	0.67 U	0.64 U	0.591 U	0.637 U	0.636 U	0.629 U	0.636 U	0.609 U
Zinc	50	30.2	19.1	13.7	37.1	49.7	43.9	19.1	25.2	20.9

Sample Location		SB-5B	MW-5B	MW-55B	SB-6	SB-6	SB-6	SB-6	SB-66	SB-6
Sample Interval (Feet bgs) Sampling Date Units	TAGM	21 to 22 05/02/05 mg/Kg	34 to 36 06/07/05 mg/Kg	34 to 36 06/07/05 mg/Kg	10 to 12 05/12/05 mg/Kg	13 to 15 05/12/05 mg/Kg	19 to 21 05/12/05 mg/Kg	24 to 26 05/12/05 mg/Kg	24 to 26 05/12/05 mg/Kg Duplicate of	28.5 to 30.5 05/12/05 mg/Kg
	RSCO								SB-6	
Cyanide	NC	0.66	0.636 U	0.613 U	3.08 J	1.63	0.616	0.609 U	0.61 U	0.59 U
Amenable Cvanide	NC	0.6	J 0.64 U	0.61 U	1.4 J	0.6 U	0.62 U	0.61 U	0.61 U	0.59 U

						l able 4	-10	
Sample Location								
Sample Interval (Feet bgs)								
Sampling Date								
Units								
Office								
	•	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
PP Metals	RSCO	Campioo	20100110110	20100110110	Exceedances	2,000044.1000	0011001111011011	Concontiduon
Antimony	В	33	9	27%	0	0%	< 0.33	1.17
Arsenic	12	33	30	91%	0	0%	< 0.457	7.8
Beryllium	600	33	33	100%	0	0%	0.144	0.811
Cadmium	1	33	6	18%	0	0%	< 0.033	0.33
Chromium	40	33	33	100%	0	0%	6.44	32.4
Copper	50	33	33	100%	1	3%	7.26	85.3
Lead	500	33	33	100%	3	9%	1.67	2,240
Mercury	0.1	33	27	82%	12	36%	< 0.006	0.605
Nickel	25	33	33	100%	1	3%	6.34	31.7
Selenium	3.9	33	6	18%	0	0%	< 0.364	0.909
Silver	В	33	18	55%	0	0%	< 0.085	5.76
Thallium	В	33	0	0%	0	0%	< 0.53	< 0.674
Zinc	50	33	33	100%	9	27%	13.4	250
Sample Location								
· ·								
Sample Interval (Feet bgs) Sampling Date Units								
	j	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Overside	RSCO	20		070/	Exceedances	00/	0.500	100
Cyanide	NC	33	9	27%	0	0%	< 0.508	190
Amenable Cyanide	NC	33	5	15%	0	0%	< 0.51	5.6

Summary of Field Work and Observations for Area 2 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-11

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
SB-7	9-Aug-04	45.5	N/A	7	N/A	19' - 35' bgs: SI MGP-related odor, N/S. Max. PID: 3.7 ppm at 23' - 25' bgs. Bedrock refusal at 45.5' bgs.
MW-7A	10-Aug	17	6 to 16	. 7	N/A	7' - 17' bgs: Non-MGP related odor, N/S. Max. PID: 1.3 ppm at 7' to 9' bgs.
SB-8	11-Sep.	45	N/A	7.5	N/A	1' - 15' bgs: Petroleum odor, sheen, N/S. Max. PID: 406 ppm at 1' - 2' bgs. Bedrock refusal at 45' bgs.
\$B-9	18-Sep	34	N/A	9	28.2'-32.3'	1' - 6' bgs: Petroleum odor, N/S. Max. PID: 460 ppm at 4' - 5' bgs. 8'-10' bgs: slight petroleum odor, N/S, max PID: 0.0 ppm 22' - 28' bgs: SI MGP odor, N/S. Max. headspace PID: 750 ppm at 20' - 22' bgs.
SB-10	18-Sep	50	N/A	9	48.6	1' - 6' bgs: Petroleum odor, N/S. Max. PID: 2,862 ppm at 4' - 5' bgs. 6'-10' bgs: strong gasoline/fuel oil odor, N/S, Max PID: 1,200 ppm at 6'-8' bgs. visible brown product at 8.4'-8.8' bgs 10'-14' bgs: slight petroleum odor, N/S, Max PID: 3.0 ppm at 10'-12' bgs 20' - 34' bgs: SI Naphthalene odor. N/S. Max. PID: 5.7 ppm at 20' - 22' bgs. Weathered schist fragments in shoe at 50' bgs.
SB-11	18-Sep	39	N/A	9	29.3'-39.5'	1' - 9' bgs: Petroleum odor, N/S. Max. PID: 2,000 ppm at 1' - 2' bgs. 21' - 33' bgs: MGP-related odor, 23'-29' bgs black staining, sheen and visible OLM, 25'-29' bgs visible TLM, Max. PID: 1.036 ppm at 27'-29' bgs
\$B-12	12-Sep	50.75	N/A	9.6	21-29 and 35-37	N/O and N/S.
MW-12A	11-Sep	17	17 to 7	9.6	N/A	N/O and N/S.
MW-12B	12-Sep	49	37 to 47	9.6	21-29 and 35-37	N/O and N/S. MW-12B set in same location as Si 12.
SB-13	10-Oct	35	N/A	7	27-33	11' - 13' bgs: Petroleum odor in shoe, N/S. Max. PID: 30.3 ppm at 11' - 13' bgs.
SB-14A	3-Oct	25	N/A	11	19	1' - 6' bgs; Solvent-like odor, N/S. Max. PID: 244 ppm at 1' - 2' bgs. 7' - 19' bgs; SI petroleum odo N/S. Max. PID: 135 ppm at 7' - 9' bgs.

Summary of Field Work and Observations for Area 2 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-11

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
SB-15	19-Aug	25	N/A	7	19	5' - 13' bgs: Strong petroleum odor, sheen, visible product and black staining. Max. PID: 2,364 ppr at 7' - 9' bgs. 13' - 21' bgs: MGP-related odor, visible OLM and coal tar, sheen and black staining. Max. PID: 587 ppm at 15' - 19' bgs.
SB-16						philater of bgs.
SB-17		· ·····		· · · · · · · · · · · · · · · · · · ·		
SB-18	20-Jul .~	43	N/A	7	35	21'-23': Musty odor, N/S, PID = 1.5 ppm; 23'-25': Musty odor, N/S, PID = 1.4 ppm; 27'-29': SI odor in nose of spoon, N/S, PID = 23.8 ppm; 29' - 41' bgs: SI odor and N/S. Max. PID: 23.9 ppm at 29' 31' bgs.
\$B-53	24-Mar	26	N/A	8	15.9	1'-2': Strong tar odor, some black staining, PID = 1.2 ppm; 2'-4.5': Strong tar odor, black staining dk blue dye on wood and in soil, PID = 0.0 ppm; 6'-7': Non-MGP related odor, dk blue, staining on wood, PID = 0.0 ppm; 9'-11': SI MGP-related odor, N/S; 10'-14': Sewage-like odor, N/S PID = 0.0 ppm; 14'-18': Sewage-like odor, N/S, PID = 0.0 ppm
SB-54	24-Mar	29	N/A	. 8	21	0.8'-1.0': Tar-like odor, black staining, PID = 0.6 ppm; 1'-2': N/O, tr black staining, PID = 0. ppm, 2'-3': Tar-like odor, tr black staining, black, tar covering gravel and cobbles, PID = 1.1 ppm; 3'-4': Tar-like odor, tr black staining, black, tar covering gravel and cobbles, PID = 1.0 ppm; 5'-6.4': Tr solvent-like odor, N/S, PID = 31.8 ppm; 14'-18': Sewage-like odor, N/S, PID = 0.0 ppm;
SB-55	25-Mar	30	N/A	8.5	22	0.8'-2': Tar-like odor and pine odor, N/S, PID = 11.8 ppm; 4'-5': Tr non-MGP related odor, N/S, PID = 0.0 ppm;
TP-2	12-Sep	11	N/A	N/A	N/A	1'-11' bgs: SI petroleum odor, N/S

Note: Elevations are reported in feet below ground surface (ft bgs).
Soil borings SB-53, SB-54 and SB-55 were drilled inside a building where the top of the slab is approximately 4 feet higher that the street level.

The following qualifiers have been used for the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and groundwater data in the special transfer that the soil and the special transfer that the special transfer tr

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.

						I able 4-12							
Sample Location		TP2	SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-8	SB-8	SB-9	SB-9	SB-9
Sample Interval (Feet bgs)		10 to 11	6 to 7	17 to 19	27 to 29	43 to 45	6 to 7	4 to 5	11 to 11.5	14.5 to 15	4 to 5	8 to 10	20 to 22
Sampling Date		09/12/04	07/09/04	08/09/04	08/09/04	08/09/04	07/09/04	07/09/04	08/11/04	08/11/04	09/12/04	09/18/04	09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		0 0	0 0	0 0	0 0	5 5	5 5	0 0				0 0	0 0
Volatile Organic Compounds	TAGM												
(ug/Kg)	RSCO												
Dichlorodifluoromethane	NC	1.5 U	1.5 U	1.5 U	1.5 U	1.6 U	1.5 U	1.3 U	6.9 U	7.5 U	1.4 U	1.4 U	15
Chloromethane	NC	0.4 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.36 U	1.8 U	2 U	0.36 U	0.38 U	4.1
Vinyl Chloride	200	0.28 U	0.29 U	0.28 U	0.28 U	0.3 U	0.28 U	0.26 U	1.3 U	1.4 U	0.26 U	0.27 U	2.9
Bromomethane	NC	0.85 U	0.88 U	0.85 U	0.85 U	0.9 U	0.85 U	0.77 U	3.9 U	4.3 U	0.78 U	0.81 U	8.7
Chloroethane	1,900	0.63 U	0.66 U	0.63 U	0.63 U	0.66 U	0.63 U	0.57 U	2.9 U	3.2 U	0.58 U	0.6 U	6.5
Trichlorofluoromethane	NC	3 U	3.1 U	3 U	3 U	3.1 U	3 U	2.7 U	14 U	15 U	2.7 U	2.8 U	30
1,1,2-Trichlorotrifluoroethane	6,000	0.55 U	0.57 U	0.55 U	0.55 U	0.58 U 0.27 U	0.55 U	0.5 U	2.6 U	2.8 U	0.5 U	0.53 U	5.7 2.7
1,1-Dichloroethene	400 200	0.26 U 32 J	0.27 U 9.3 U	0.26 U 9 U	0.26 U 9 U	9.4 U	0.26 U 44	0.23 U 43	1.2 U 41 UB	1.3 U 230 BJ	0.24 U 30 J	0.25 U 54 J	92
Acetone Carbon Disulfide	2,700	0.12 U	9.3 U	0.12 U	0.12 U	0.13 U	0.12 U	0.11 U	0.56 U	0.62 U	0.11 U	1.8 J	1.2
Methyl tert-butyl Ether	120	69 J	0.13 U	0.12 U	0.12 U	0.13 U	0.12 U	0.11 U	1.3 U	1.4 U	0.25 U	0.26 U	2.8
Methyl Acetate	NC	1.5 U	1.6 U	1.5 U	1.5 U	1.6 U	1.5 U	1.4 U	7.1 U	7.8 U	1.4 U	1.5 U	16
Methylene Chloride	100	0.82 U	5.3 J	0.82 U	0.82 U	0.86 U	11 J	2.5 J	15 JBU	12 JBU	0.75 U	1.2 J	15
trans-1,2-Dichloroethene	300	0.45 U	0.46 U	0.45 U	0.45 U	0.47 U	0.45 U	0.4 U	2.1 U	2.3 U	0.41 U	0.43 U	4.6
1,1-Dichloroethane	200	0.43 U	0.44 U	0.43 U	0.43 U	0.45 U	0.43 U	0.38 U	2 U	2.2 U	0.39 U	0.41 U	4.4
Cyclohexane	NC	4.2 J	0.38 U	0.37 U	0.37 U	0.39 U	0.37 U	0.33 U	1.7 U	1.9 U	0.34 U	3.5 J	75
2-Butanone	300	2.7 U	2.8 U	2.7 U	2.7 U	2.9 U	2.7 U	2.5 U	13 U	14 U	2.5 U	2.6 U	28
Carbon Tetrachloride	600	0.36 U	0.37 U	0.36 U	0.36 U	0.38 U	0.36 U	0.32 U	1.7 U	1.8 U	0.33 U	0.34 U	3.7
cis-1,2-Dichloroethene	NC	0.42 U	0.44 U	0.42 U	0.42 U	0.45 U	0.42 U	0.38 U	2 U	2.1 U	0.39 U	0.4 U	4.3
Chloroform	300	0.29 U	0.3 U	0.29 U	0.29 U	0.3 U	0.29 U	0.26 U	1.3 U	1.4 U	0.26 U	0.27 U	2.9
1,1,1-Trichloroethane	800	0.33 U	0.34 U	0.33 U	0.33 U	0.34 U	0.33 U	0.29 U	1.5 U	1.7 U	0.3 U	0.31 U	3.3
Methylcyclohexane	NC	3.9 J	0.44 U	0.43 U	0.43 U	0.45 U	0.43 U	0.39 U	940 J	2.2 U	0.39 U	19	180
Benzene	60	49	0.25 U	0.24 U	0.24 U	0.26 U	0.24 U	0.22 U	44	11 J	0.22 U	9.1	880
1,2-Dichloroethane	200	3.7 U	3.8 U	3.7 U	3.7 U	3.9 U	3.7 U	3.3 U	17 U	19 U	3.4 U	3.5 U	38
Trichloroethene	700	0.39 U	0.4 U	0.39 U	0.39 U	0.41 U	0.39 U	0.35 U	1.8 U	2 U	0.35 U	0.37 U	4
1,2-Dichloropropane	NC	0.4 U	0.42 U	0.4 U	0.4 U	0.42 U	0.4 U	0.36 U	1.9 U	2 U	0.37 U	0.39 U	4.1
Bromodichloromethane	NC 1 222	0.4 U	0.42 U	0.4 U	0.4 U	0.42 U	0.4 U	0.36 U	1.8 U	2 U	0.37 U	0.38 U	4.1
4-Methyl-2-Pentanone	1,000	2.9 U	3 U	2.9 U	2.9 U	3 U 0.33 U	2.9 U	2.6 U 0.28 U	13 U	15 U	2.6 U 0.28 U	2.8 U	30 770
Toluene	1,500	1.9 J 0.31 U	0.32 U 0.32 U	0.31 U 0.31 U	0.31 U 0.31 U	0.33 U	0.31 U 0.31 U	0.28 U	1.4 U 1.4 U	1.6 U 1.6 U	0.28 U	1.7 J 0.29 U	3.2
t-1,3-Dichloropropene cis-1,3-Dichloropropene	NC NC	0.31 U	0.32 U 0.24 U	0.31 U	0.31 U	0.32 U	0.31 U	0.28 U	1.4 U	1.6 U	0.28 U	0.29 U	2.4
1,1,2-Trichloroethane	NC NC	0.23 U	0.24 U	0.23 U	0.23 U	0.23 U	0.23 U	0.55 U	2.8 U	3.1 U	0.56 U	0.22 U	6.2
2-Hexanone	NC NC	3.9 U	4 U	3.9 U	3.9 U	4 U	3.9 U	3.5 U	18 U	19 U	3.5 U	3.7 U	39
Dibromochloromethane	NA NA	0.35 U	0.36 U	0.35 U	0.35 U	0.37 U	0.35 U	0.32 U	1.6 U	1.8 U	0.32 U	0.33 U	3.6
1,2-Dibromoethane	NC	0.5 U	0.52 U	0.5 U	0.5 U	0.53 U	0.5 U	0.45 U	2.3 U	2.5 U	0.46 U	0.48 U	5.1
Tetrachloroethene	1,400	0.77 U	0.79 U	0.77 U	0.77 U	0.8 U	0.77 U	0.69 U	3.5 U	4 J	0.7 U	0.73 U	7.8
Chlorobenzene	1,700	0.42 U	0.44 U	0.42 U	0.42 U	0.45 U	0.42 U	0.38 U	2 U	2.1 U	0.39 U	0.4 U	4.3
Ethyl Benzene	5,500	0.3 U	0.31 U	0.3 U	0.3 U	0.32 U	0.3 U	0.27 U	22 J	1.5 U	0.27 U	0.29 U	9100
m/p-Xylenes	1,200	6.1	0.64 U	0.62 U	0.62 U	0.65 U	0.62 U	0.56 U	2.9 U	3.1 U	3.1 J	0.59 U	6.3
o-Xylene	600	3.1 J	0.54 U	0.52 U	0.52 U	0.55 U	0.52 U	0.47 U	2.4 U	2.6 U	1.3 J	0.5 U	1400
Styrene	NC	0.38 U	0.39 U	0.38 U	0.38 U	0.4 U	0.38 U	0.34 U	1.7 U	1.9 U	0.34 U	0.36 U	3.9
Bromoform	NC	0.36 U	0.37 U	0.36 U	0.36 U	0.38 U	0.36 U	0.32 U	1.7 U	1.8 U	0.33 U	0.34 U	3.7
Isopropylbenzene	2,300	2.7 J	0.46 U	0.45 U	0.45 U	0.47 U	0.45 U	0.4 U	370	30 J	0.41 U	1.4 J	1400
1,1,2,2-Tetrachloroethane	600	0.64 U	0.66 U	0.64 U	0.64 U	0.67 U	0.64 U	0.57 U	2.9 U	3.2 U	0.58 U	0.61 U	6.5
1,3-Dichlorobenzene	1,600	0.25 U	0.26 U	0.25 U	0.25 U	0.27 U	0.25 U	0.23 U	1.2 U	1.3 U	0.23 U	0.24 U	2.6
1,4-Dichlorobenzene	8,500	0.42 U	0.44 U	0.42 U	0.42 U	0.44 U	0.42 U	0.38 U	2 U	2.1 U	0.39 U	0.4 U	4.3
1,2-Dichlorobenzene	7,900	0.49 U	0.51 U	0.49 U	0.49 U	0.52 U	0.49 U	0.44 U	2.3 U	2.5 U	0.45 U	0.47 U	5
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	NC 3,400	0.82 U 0.3 U	0.85 U 0.31 U	0.82 U 0.3 U	0.82 U 0.3 U	0.86 U 0.32 U	0.82 U 0.3 U	0.74 U 0.27 U	3.8 U 1.4 U	4.1 U 1.5 U	0.74 U 0.27 U	0.78 U 0.29 U	8.4 3.1
Total Confident Conc. VOC	10,000	171.9	_	_	_	_	55	43	1,376	275	34.4	91.7	13,805
	,								,	-	-	- 1	

	1												
Sample Location		SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-11	SB-11
Sample Interval (Feet bgs)		26 to 28	32 to 34	5 to 6	6 to 8	8 to 10	20 to 22	48 to 50	5 to 6	13 to 15	27 to 29	35 to 37	37 to 39
Sampling Date		09/18/04	09/18/04	09/11/04	09/18/04	09/18/04	09/18/04	09/18/04	09/11/04	09/18/04	09/18/04	09/18/04	09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		29.19	-5.1.9	25/19	-91.9	-55	-39	-59	-9.19	-55	-9.19	-5.1.5	1
													i
Volatile Organic Compounds	TAGM												i
(ug/Kg)	RSCO												
Dichlorodifluoromethane	NC U	1.4 U	1.5 U	47 U	460 U	240 U	15 U	1.5 U	14 U	1.5 U	15 U	1.5 U	1.5 U
Chloromethane	NC U	0.38 U	0.41 U	96 U	950 U	490 U	3.9 U	0.4 U	3.7 U	0.4 U	4.1 U	0.4 U	0.4 U
Vinyl Chloride	200 U NC U	0.27 U	0.29 U	37 U	370 U	190 U	2.8 U	0.29 U	2.6 U	0.28 U	2.9 U	0.28 U	0.28 U 0.85 U
Bromomethane Chloroethane	1,900 U	0.82 U 0.61 U	0.88 U 0.66 U	110 U 120 U	1100 U 1200 U	560 U 630 U	8.4 U 6.2 U	0.86 U 0.64 U	7.9 U 5.8 U	0.85 U 0.63 U	8.8 U 6.6 U	0.85 U 0.63 U	0.85 U 0.63 U
Trichlorofluoromethane	1,900 U		3.1 U	81 U	800 U	410 U	29 U	3 U	27 U	3 U	31 U	0.63 U	0.63 U
1,1,2-Trichlorotrifluoroethane	6,000 U	0.53 U	0.57 U	97 U	960 U	500 U	5.5 U	0.56 U	5.1 U	0.55 U	5.7 U	0.55 U	0.55 U
1.1-Dichloroethene	400 U		0.37 U	45 U	450 U	230 U	2.6 U	0.36 U	2.4 U	0.26 U	2.7 UJ	0.35 U	0.26 U
Acetone	200 U	14 J	10 J	460 U	4600 U	2400 U	89 U	9.1 U	83 U	57 J	120 J	24 J	13 J
Carbon Disulfide	2,700 U	0.12 U	0.13 U	55 U	540 U	280 U	1.2 U	0.12 U	1.1 U	0.12 U	30 J	0.12 U	0.12 U
Methyl tert-butyl Ether	120 U	4.1 J	1.3 J	50 U	500 U	260 U	280	2.2 J	2.5 U	12	540 J	2.9 J	2.8 J
Methyl Acetate	NC U	1.5 U	1.6 U	120 U	1200 U	600 U	15 U	1.6 U	14 U	1.5 U	16 U	1.5 U	1.5 U
Methylene Chloride	100 J	0.79 U	1.6 J	87 U	860 U	450 U	8.1 U	0.83 U	7.6 U	0.82 U	14 J	2.3 J	1.7 J
trans-1,2-Dichloroethene	300 U	0.43 U	0.46 U	72 U	710 U	370 U	4.4 U	0.45 U	4.1 U	0.45 U	4.6 U	0.45 U	0.45 U
1,1-Dichloroethane	200 U	0.41 U	0.44 U	30 U	300 U	150 U	4.2 U	0.43 U	3.9 U	0.43 U	4.4 U	0.43 U	0.43 U
Cyclohexane	NC	0.35 U	0.38 U	52 U	17000 J	13000 J	3.6 U	0.37 U	3.4 U	0.37 U	3.8 U	0.37 U	0.37 U
2-Butanone	300 U	2.6 U	2.8 U	400 U	3900 U	2000 U	27 U	2.8 U	25 U	2.7 U	28 U	2.7 U	2.7 U
Carbon Tetrachloride	600 U	0.35 U	0.37 U	66 U	650 U	340 U	3.5 U	0.36 U	3.3 U	0.36 U	3.7 U	0.36 U	0.36 U
cis-1,2-Dichloroethene	NC U	0.41 U	0.44 U	110 U	1100 U	550 U	4.2 U	0.43 U	3.9 U	0.42 U	4.4 U	0.42 U	0.42 U
Chloroform	300 U	0.28 U	0.3 U	81 U	800 U	410 U	2.8 U	0.29 U	2.6 U	0.29 U	3 U	0.29 U	0.29 U
1,1,1-Trichloroethane	800 U	0.32 U	0.34 U	57 U	570 U	290 U	3.2 U	0.33 U	3 U	0.33 U	3.4 U	0.33 U	0.33 U
Methylcyclohexane	NC	0.41 U	0.44 U	460 J	24000	21000	4.2 U	0.43 U	3.9 U	94	570 J	0.43 U	0.43 U
Benzene	60	6.2	0.25 U	34 U	4600 J	7200	64	0.25 U	2.2 U	1.5 J	26000 D	7.3	0.24 U
1,2-Dichloroethane	200 U	3.6 U	3.8 U	45 U	440 U	230 U	37 U	3.8 U	34 U	3.7 U	38 U	3.7 U	3.7 U
Trichloroethene	700 U	0.37 U	0.4 U	94 U	930 U	480 U	3.8 U	0.39 U	3.6 U	0.39 U	4 U	0.39 U	0.39 U
1,2-Dichloropropane	NC U	0.39 U	0.42 U	45 U	440 U	230 U	4 U	0.41 U	3.7 U	0.4 U	4.2 U	0.4 U	0.4 U
Bromodichloromethane	NC U	0.39 U	0.42 U	49 U	480 U	250 U	4 U	0.41 U	3.7 U	0.4 U	4.2 U	0.4 U	0.4 U
4-Methyl-2-Pentanone	1,000 U	2.8 U	3 U	190 U	1800 U	950 U	29 U	2.9 U	27 U	2.9 U	30 U	2.9 U	2.9 U
Toluene	1,500	0.3 U	0.32 U	2600	74000	37000	33 J	0.32 U	2.9 U	0.31 U	15000 D	3.1 J	0.31 U
t-1,3-Dichloropropene	NC U	0.3 U 0.23 U	0.32 U 0.24 U	60 U 21 U	590 U 210 U	310 U 110 U	3 U 2.3 U	0.31 U 0.24 U	2.8 U 2.2 U	0.31 U 0.23 U	3.2 U 2.4 U	0.31 U 0.23 U	0.31 U 0.23 U
cis-1,3-Dichloropropene 1.1.2-Trichloroethane	NC U	0.23 U	0.24 U	73 U	720 U	370 U	2.3 U	0.24 U	2.2 U 5.6 U	0.23 U 0.61 U	6.3 U	0.23 U 0.61 U	0.23 U 0.61 U
2-Hexanone	NC U	3.7 U	4 U	93 U	920 U	470 U	38 U	3.9 U	36 U	3.9 U	40 U	3.9 U	3.9 U
Dibromochloromethane	NA U	0.34 U	0.36 U	53 U	520 U	270 U	3.5 U	0.35 U	3.2 U	0.35 U	3.6 U	0.35 U	0.35 U
1,2-Dibromoethane	NC U	0.48 U	0.52 U	89 U	880 U	450 U	5.5 U	0.51 U	4.6 U	0.5 U	5.2 U	0.5 U	0.5 U
Tetrachloroethene	1,400 U	0.74 U	0.79 U	46 U	460 U	240 U	7.6 U	0.77 U	7.1 U	0.77 U	7.9 U	0.77 U	0.77 U
Chlorobenzene	1,700 U	0.41 U	0.44 U	52 U	510 U	260 U	4.2 U	0.43 U	3.9 U	0.42 U	4.4 U	0.42 U	0.42 U
Ethyl Benzene	5,500 D		0.31 U	7700	53000	24000	49 J	0.3 U	310	1.9 J	18000 D	0.3 U	1.5 J
m/p-Xylenes	1,200 U	+	0.64 U	38000	250000	92000	190	0.63 U	1500	5.7 J	6.4 UJ	0.62 U	0.62 U
o-Xylene	600 J	3.2 J	0.54 U	18000	100000	35000	86	0.53 U	520	10	11000 D	0.52 U	1.2 J
Styrene	NC U	0.36 U	0.39 U	48 U	480 U	250 U	3.7 U	0.38 U	3.5 U	0.38 U	3.9 U	0.38 U	0.38 U
Bromoform	NC U	0.35 U	0.37 U	35 U	350 U	180 U	3.6 U	0.36 U	3.3 U	0.36 U	3.7 U	0.36 U	0.36 U
Isopropylbenzene	2,300	1.6 J	0.46 U	2200	13000	5600	4.4 U	0.45 U	140	6.3	1100 J	0.45 U	0.45 U
1,1,2,2-Tetrachloroethane	600 U	0.62 U	0.66 U	70 U	690 U	360 U	6.3 U	0.65 U	5.9 U	0.64 U	6.6 U	0.64 U	0.64 U
1,3-Dichlorobenzene	1,600 U	0.25 U	0.26 U	52 U	520 U	270 U	2.5 U	0.26 U	2.3 U	0.25 U	2.6 U	0.25 U	0.25 U
1,4-Dichlorobenzene	8,500 U	0.41 U	0.44 U	54 U	540 U	280 U	4.2 U	0.43 U	3.9 U	0.42 U	4.4 U	0.42 U	0.42 U
1,2-Dichlorobenzene	7,900 U	0.48 U	0.51 U	51 U	510 U	260 U	4.9 U	0.5 U	4.5 U	0.49 U	5.1 U	0.49 U	0.49 U
1,2-Dibromo-3-Chloropropane	NC U	0.79 U	0.85 U	130 U	1300 U	670 U	8.1 U	0.83 U	7.5 U	0.82 U	8.5 U	0.82 U	0.82 U
1,2,4-Trichlorobenzene	3,400 U	0.29 U	0.31 U	40 U	400 U	210 U	3 U	0.3 U	2.8 U	0.3 U	3.1 U	0.3 U	0.3 U
Total Confident Conc. VOC	10,000	40.1	12.9	68,960	535,600	234,800	702	2.2	2,470	188.4	72,374	39.6	20.2

Sample Location		SB-12	SB-12	SB-12	SB-12	SB-12	SB-13	SB-13	SB-13	SB-13	SB-14	SB-14	SB-14
Sample Interval (Feet bgs)		5 to 7	7 to 9	15 to 17	25 to 27	49 to 51	6 to 6.5	25 to 27	25 to 27	27 to 29	4 to 5	11 to 13	17 to 19
Sampling Date		09/11/04	09/11/04	09/11/04	09/12/04	09/12/04	07/12/04	10/10/04	10/10/04	10/10/04	09/11/04	10/03/04	10/03/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		-5,9	-9.1.9	-9.19	-55	9/-19	-3.1.9	-59	-91.9	-9.19	25.19	-9.19	25.19
									Blind				
Volatile Organic Compounds	TAGM								Duplicate				
(ug/Kg)	RSCO												
Dichlorodifluoromethane	NC	1.3 U	1.3 UJ	1.5 U	1.8 U	1.4 U	1.4 U	1.5 U	1.5 U	1.7 U	1.4 U	1.4 U	1.4 U
Chloromethane	NC	0.34 U	0.34 UJ	0.41 U	0.47 U	0.38 U	0.38 U	0.39 U	0.4 U	0.47 U	0.38 U	0.38 U	0.38 U
Vinyl Chloride	200 NC	0.24 U 0.73 U	0.24 UJ 0.74 UJ	0.29 U 0.87 U	0.34 U 1 U	0.27 U 0.82 U	0.27 U 0.8 U	0.28 U 0.84 U	0.28 U 0.85 U	0.33 U	0.27 U	0.27 U 0.81 U	0.27 U 0.8 U
Bromomethane Chloroethane	1,900	0.73 U	0.74 UJ	0.65 U	0.75 U	0.82 U	0.8 U	0.84 U	0.63 U	1 U 0.74 U	0.8 U 0.6 U	0.81 U	0.6 U
Trichlorofluoromethane	1,900 NC	2.5 U	2.6 UJ	3 U	3.5 U	2.9 U	2.8 U	2.9 U	3 U	3.5 U	2.8 U	2.8 U	2.8 U
1,1,2-Trichlorotrifluoroethane	6,000	0.47 U	0.48 UJ	0.57 U	0.66 U	0.53 U	0.52 U	0.55 U	0.55 U	0.65 U	0.52 U	0.53 U	0.52 U
1,1-Dichloroethene	400	0.22 U	0.22 UJ	0.27 U	0.31 U	0.25 U	0.24 U	0.26 U	0.26 U	0.3 U	0.24 U	0.25 U	0.24 U
Acetone	200	19 J	13 J	46 J	25 J	8.7 U	8.5 U	35 BJ	44 BJ	140 BJ	8.5 U	8.6 U	8.5 U
Carbon Disulfide	2,700	1.7 J	3.4 J	0.12 U	0.14 U	0.12 U	1.3 J	4.7 J	0.12 U	7.4 J	1.3 J	0.12 U	0.11 U
Methyl tert-butyl Ether	120	0.24 U	0.24 UJ	2 J	0.33 U	0.27 U	0.26 U	0.27 U	0.28 U	0.32 U	0.26 U	0.26 U	0.26 U
Methyl Acetate	NC	1.3 U	1.3 UJ	1.6 U	1.8 U	1.5 U	1.4 U	1.5 U	1.5 U	1.8 U	1.4 U	1.5 U	1.4 U
Methylene Chloride	100	0.7 U	0.71 UJ	0.84 U	0.97 U	1.2 J	0.77 U	3.9 J	1.5 J	22 J	0.77 U	0.78 U	0.77 U
trans-1,2-Dichloroethene	300	0.38 U	0.39 UJ	0.46 U	0.53 U	0.43 U	0.42 U	0.44 U	0.45 U	0.52 U	0.42 U	0.43 U	0.42 U
1,1-Dichloroethane	200	0.36 U	0.37 UJ	0.44 U	0.5 U	0.41 U	0.4 U	0.42 U	0.43 U	0.5 U	0.4 U	0.41 U	0.4 U
Cyclohexane	NC	0.31 U	0.32 UJ	0.38 U	0.44 U	0.35 U	0.35 U	0.36 U	0.37 U	0.43 U	0.35 U	1.8 J	0.35 U
2-Butanone	300	2.3 U	2.4 UJ	2.8 U	3.2 U	2.6 U	2.6 U	2.7 U	2.7 U	3.2 U	2.6 U	2.6 U	2.6 U
Carbon Tetrachloride	600	0.31 U	0.31 UJ	0.37 U	0.43 U	0.35 U	0.34 U	0.35 U	0.36 U	0.42 U	0.34 U	0.34 U	0.34 U
cis-1,2-Dichloroethene	NC	0.36 U	0.37 UJ	0.43 U	0.5 U	0.41 U	0.4 U	0.42 U	0.42 U	0.5 U	0.4 U	0.4 U	0.4 U
Chloroform	300	0.24 U	0.25 UJ	0.29 U	0.34 U	0.28 U	0.27 U	0.28 U	2.5 J	0.33 U	0.27 U	0.27 U	0.27 U
1,1,1-Trichloroethane	800	0.28 U	0.28 UJ	0.33 U	0.39 U	0.32 U	0.31 U	0.32 U	0.33 U	0.38 U	0.31 U	0.31 U	0.31 U
Methylcyclohexane	NC	0.37 U	0.37 UJ	1.4 J	4.5 J	0.41 U	0.4 U	0.42 U	1.6 J	0.5 U	0.4 U	4.6 J	0.4 U
Benzene	60 200	0.21 U 3.2 U	0.21 UJ 3.2 UJ	18 3.8 U	110 4.4 U	0.23 U 3.6 U	0.23 U 3.5 U	0.24 U 3.7 U	3.8 J 3.7 U	8.8 4.3 U	0.23 U 3.5 U	0.23 U 3.5 U	0.23 U 3.5 U
1,2-Dichloroethane Trichloroethene	700	0.33 U	0.33 UJ	0.4 U	0.46 U	0.37 U	0.36 U	0.38 U	0.39 U	4.3 U 0.45 U	0.36 U	0.37 U	0.36 U
1,2-Dichloropropane	NC	0.35 U	0.35 UJ	0.4 U	0.48 U	0.37 U	0.38 U	0.4 U	0.39 U	0.43 U	0.38 U	0.39 U	0.38 U
Bromodichloromethane	NC NC	0.34 U	0.35 UJ	0.41 U	0.48 U	0.39 U	0.38 U	0.4 U	0.4 U	0.47 U	0.38 U	0.38 U	0.38 U
4-Methyl-2-Pentanone	1,000	2.5 U	2.5 UJ	3 U	3.4 U	2.8 U	2.7 U	2.9 U	2.9 U	3.4 U	2.7 U	2.8 U	2.7 U
Toluene	1,500	0.27 U	1.6 J	8.1	0.37 U	0.3 U	0.29 U	0.31 U	0.31 U	1.9 J	0.29 U	0.3 U	0.29 U
t-1,3-Dichloropropene	NC	0.26 U	0.27 UJ	0.32 U	0.37 U	0.3 U	0.29 U	0.3 U	0.31 U	0.36 U	0.29 U	0.29 U	0.29 U
cis-1,3-Dichloropropene	NC	0.2 U	0.2 UJ	0.24 U	0.28 U	0.23 U	0.22 U	0.23 U	0.23 U	0.27 U	0.22 U	0.22 U	0.22 U
1,1,2-Trichloroethane	NC	0.52 U	0.53 UJ	0.62 U	0.72 U	0.59 U	0.57 U	0.6 U	0.61 U	0.71 U	0.57 U	0.58 U	0.57 U
2-Hexanone	NC	3.3 U	3.3 UJ	3.9 U	4.6 U	3.7 U	3.6 U	3.8 U	3.9 U	4.5 U	3.6 U	3.7 U	3.6 U
Dibromochloromethane	NA	0.3 U	0.3 UJ	0.36 U	0.42 U	0.34 U	0.33 U	0.35 U	0.35 U	0.41 U	0.33 U	0.33 U	0.33 U
1,2-Dibromoethane	NC	0.43 U	0.43 UJ	0.51 U	0.59 U	0.48 U	0.47 U	0.5 U	0.5 U	0.59 U	0.47 U	0.48 U	0.47 U
Tetrachloroethene	1,400	0.65 U	0.66 UJ	0.78 U	0.91 U	0.74 U	0.72 U	0.76 U	0.77 U	0.89 U	0.72 U	0.73 U	0.72 U
Chlorobenzene	1,700	0.36 U	0.37 UJ	0.43 U	0.5 U	0.41 U	0.4 U	0.42 U	0.42 U	0.5 U	0.4 U	0.4 U	0.4 U
Ethyl Benzene	5,500	0.26 U	0.26 UJ	0.31 U	0.36 U	0.29 U	0.28 U	0.3 U	0.3 U	0.35 U	0.28 U	0.29 U	0.28 U
m/p-Xylenes	1,200	0.53 U	4.9 J	0.63 U	4.4 J	0.6 U	0.58 U	0.61 U	0.62 U	5 J	0.58 U	0.59 U	0.58 U
o-Xylene	600	0.45 U	2.2 J	0.53 U	2.6 J	0.5 U	4.4 J	0.51 U	0.52 U	15	4.4 J	0.5 U	0.49 U
Styrene	NC	0.32 U	0.33 UJ	0.39 U	0.45 U	0.36 U	0.36 U	0.37 U	0.38 U	0.44 U	0.36 U	0.36 U	0.36 U
Bromoform	NC 2 200	0.31 U	0.31 UJ	0.37 U 0.46 U	0.43 U	0.35 U 0.43 U	0.34 U	0.36 U 0.44 U	0.36 U	0.42 U 0.52 U	0.34 U	0.34 U 3.1 J	0.34 U 0.42 U
Isopropylbenzene 1,1,2,2-Tetrachloroethane	2,300 600	0.38 U 0.55 U	0.39 UJ 0.55 UJ	0.46 U	0.53 U 0.76 U	0.43 U 0.62 U	0.42 U 0.6 U	0.44 U 0.63 U	0.45 U 0.64 U	0.52 U 0.75 U	0.42 U 0.6 U	0.61 U	0.42 U
1,3-Dichlorobenzene	1,600	0.55 U	0.55 UJ	0.65 U	0.76 U	0.62 U	0.6 U 0.24 U	0.63 U	0.64 U 0.25 U	0.75 U	0.6 U	0.61 U	0.6 U
1,4-Dichlorobenzene	8,500	0.22 U	0.22 UJ	0.43 U	0.5 U	0.23 U	0.24 U	0.42 U	0.42 U	0.3 U	0.24 U	0.24 U	0.24 U
1,2-Dichlorobenzene	7,900	0.42 U	0.43 UJ	0.43 U	0.58 U	0.41 U	0.4 U	0.42 U	0.42 U	0.49 U	0.46 U	0.4 U	0.46 U
1,2-Dibromo-3-Chloropropane	NC	0.7 U	0.71 UJ	0.84 U	0.97 U	0.79 U	0.77 U	0.81 U	0.82 U	0.95 U	0.77 U	0.78 U	0.40 U
1,2,4-Trichlorobenzene	3,400	0.26 U	0.26 UJ	0.31 U	0.36 U	0.29 U	0.28 U	0.3 U	0.3 U	0.35 U	0.28 U	0.29 U	0.28 U
Total Confident Conc. VOC	10,000	20.7	25.1	75.5	146.5	1.2	5.7	43.6	53.4	200.1	5.7	9.5	_
Total Collident Collc. VOC	10,000	20.7	20.1	10.0	140.0	1.2	J. <i>1</i>	43.0	JJ.4	∠UU. I	ა.1	შ.ე	•

						l able 4-12	1			1			
Sample Location		SB-14	SB-15	SB-15	SB-15	SB-15	SB-15	SB-15	SB-18	SB-18	SB-18	SB-53	SB-53
Sample Interval (Feet bgs)		23 to 25	4 to 5	5 to 6	7 to 9	11 to 13	17 to 19	23 to 25	7.3 to 7.9	28.5 to 29	42.5 to 43	6 to 7	8.3 to 9.3
Sampling Date		10/03/04	08/18/04	08/18/04	08/19/04	08/19/04	08/19/04	08/19/04	07/21/04	07/21/04	07/21/04	03/24/05	03/24/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
												1	1
Valatila Organia Compounda	TAGM												
Volatile Organic Compounds (ug/Kg)	RSCO												
Dichlorodifluoromethane	NC	1.8 U	1.4 U	1.4 U	15 U	1.4 U	15 R	20 U	1.5 U	1.5 U	1.9 U	1.6 U	1.5 U
Chloromethane	NC	0.49 U	0.38 U	0.38 U	3.9 U	0.38 U	3.9 R	5.3 U	0.4 U	0.39 U	0.51 U	0.44 U	0.4 U
Vinyl Chloride	200	0.35 U	0.27 U	0.27 U	2.8 U	0.27 U	2.8 R	3.8 U	0.28 U	0.28 U	0.36 U	0.31 U	0.28 U
Bromomethane	NC	1 U	0.81 U	0.8 U	8.3 U	0.82 U	8.3 R	11 U	0.85 U	0.84 U	1.1 U	0.94 U	0.85 U
Chloroethane	1,900	0.77 U	0.6 U	0.6 U	6.2 U	0.61 U	6.2 R	8.5 U	0.63 U	0.62 U	0.81 U	0.7 U	0.63 U
Trichlorofluoromethane	NC	3.6 U	2.8 U	2.8 U	29 U	2.9 U	29 R	40 U	3 U	2.9 U	3.8 U	3.3 U	3 U
1,1,2-Trichlorotrifluoroethane	6,000	0.68 U	0.53 U	0.52 U	5.4 U	0.53 U	5.4 R	7.4 U	0.55 U	0.55 U	0.71 U	0.61 U	0.55 U
1,1-Dichloroethene	400	0.32 U	0.25 U	0.24 U	2.5 U	0.25 U	2.5 R	3.5 U	0.26 U	0.26 U	0.33 U	0.29 U	0.26 U
Acetone	200	28 J	8.6 U	8.5 U	88 U	60 J	88 R	120 R	9 U	25 J	67	9.9 U	27 J
Carbon Disulfide	2,700	3.4 J	0.12 U	0.11 U	1.2 U	3.2 J	1.2 R	42 J	0.12 U	0.12 U	24 J	0.13 U	0.12 U
Methyl tert-butyl Ether	120	0.34 U	0.26 U	0.26 U	2.7 U	0.27 U	2.7 R	3.7 U	0.28 U	0.27 U	0.35 U	0.31 U	0.28 U
Methyl Acetate	NC 400	1.9 U	1.5 U	1.4 U	15 U	1.5 U	15 R	21 U	1.5 U	1.5 U	2 U	1.7 U	1.5 U
Methylene Chloride	100	1 U	0.78 U	0.77 U	35 J	2.7 J	8 R	47 J	3.2 J	8 J	18 J	5.5 J	0.82 U
trans-1,2-Dichloroethene	300	0.55 U	0.43 U 0.41 U	0.42 U 0.4 U	4.4 U	0.43 U 0.41 U	4.4 R 4.2 R	6 U	0.45 U	0.44 U	0.57 U	0.49 U	0.45 U
1,1-Dichloroethane	200 NC	0.52 U 0.45 U	0.41 U 0.35 U	0.4 U 0.35 U	4.2 U 100 J	0.41 U	4.2 R 83 R	5.7 U 4.9 U	0.43 U 0.37 U	0.42 U 4.4 J	0.54 U 0.47 U	0.47 U 0.41 U	0.43 U 0.37 U
Cyclohexane 2-Butanone	300	3.3 U	2.6 U	2.6 U	27 U	2.6 U	27 R	4.9 U	2.7 U	2.7 U	3.5 U	3 U	2.7 U
Carbon Tetrachloride	600	0.44 U	0.34 U	0.34 U	3.5 U	0.35 U	3.5 R	4.8 U	0.36 U	0.35 U	0.46 U	0.4 U	0.36 U
cis-1,2-Dichloroethene	NC	0.52 U	0.4 U	0.4 U	4.1 U	0.41 U	43 R	5.7 U	0.42 U	0.42 U	0.54 U	0.47 U	0.42 U
Chloroform	300	0.35 U	0.27 U	0.4 U	2.8 U	0.41 U	2.8 R	3.8 U	0.42 U	0.42 U	0.36 U	0.32 U	0.42 U
1,1,1-Trichloroethane	800	0.4 U	0.31 U	0.31 U	3.2 U	0.32 U	3.2 R	4.4 U	0.33 U	0.32 U	0.42 U	0.36 U	0.33 U
Methylcyclohexane	NC	0.52 U	0.41 U	28000 DJ	380 J	46 J	220 R	5.7 U	0.43 U	9	0.55 U	0.47 U	0.43 U
Benzene	60	0.3 U	0.23 U	0.23 U	2.4 U	0.23 U	31000 R	790	0.24 U	170	6.6 J	7	0.24 U
1,2-Dichloroethane	200	4.5 U	3.5 U	3.5 U	36 U	3.6 U	36 R	50 U	3.7 U	3.7 U	4.7 U	4.1 U	3.7 U
Trichloroethene	700	0.47 U	0.37 U	0.36 U	3.8 U	0.37 U	3.8 R	5.2 U	0.39 U	0.38 U	0.49 U	0.43 U	0.39 U
1,2-Dichloropropane	NC	0.49 U	0.39 U	0.38 U	3.9 U	0.39 U	3.9 R	5.4 U	0.4 U	0.4 U	0.52 U	0.45 U	0.4 U
Bromodichloromethane	NC	0.49 U	0.38 U	0.38 U	3.9 U	0.39 U	3.9 R	5.4 U	0.4 U	0.4 U	0.51 U	0.44 U	0.4 U
4-Methyl-2-Pentanone	1,000	3.5 U	2.8 U	2.7 U	28 U	2.8 U	28 R	39 U	2.9 U	2.9 U	3.7 U	3.2 U	2.9 U
Toluene	1,500	0.38 U	0.3 U	0.29 U	3 U	0.3 U	99000 R	4.2 U	0.31 U	250 D	2.5 J	6.6 J	0.31 U
t-1,3-Dichloropropene	NC	0.38 U	0.29 U	0.29 U	3 U	0.3 U	3 R	4.1 U	0.31 U	0.3 U	0.39 U	0.34 U	0.31 U
cis-1,3-Dichloropropene	NC	0.29 U	0.22 U	0.22 U	2.3 U	0.23 U	2.3 R	3.1 U	0.23 U	0.23 U	0.3 U	0.26 U	0.23 U
1,1,2-Trichloroethane	NC NC	0.74 U 4.7 U	0.58 U 3.7 U	0.57 U 3.6 U	6 U 38 U	0.59 U 3.7 U	6 R 38 R	8.2 U 52 U	0.61 U 3.9 U	0.6 U 3.8 U	0.78 U 4.9 U	0.67 U	0.61 U 3.9 U
2-Hexanone Dibromochloromethane	NA NA	0.43 U	0.33 U	0.33 U	3.4 U	0.34 U	3.4 R	4.7 U	0.35 U	0.35 U	0.45 U	4.3 U 0.39 U	0.35 U
1,2-Dibromoethane	NC	0.43 U	0.33 U	0.47 U	4.9 U	0.48 U	4.9 R	6.7 U	0.5 U	0.5 U	0.43 U	0.55 U	0.5 U
Tetrachloroethene	1,400	0.93 U	0.48 U	0.47 G	7.5 U	0.48 U	7.5 R	10 U	0.3 U	6.5	3.5 J	0.85 U	0.3 U
Chlorobenzene	1,700	0.52 U	0.73 U	0.72 R	4.1 U	0.41 U	34 R	5.7 U	0.42 U	0.42 U	0.54 U	0.47 U	0.42 U
Ethyl Benzene	5,500	0.37 U	0.29 U	0.28 R	2.9 U	0.29 U	66000 R	460	0.3 U	460 D	4.5 J	0.33 U	0.3 U
m/p-Xylenes	1,200	0.76 U	0.59 U	0.58 R	6 U	0.6 U	120000 R	720	0.62 U	580 D	3.4 J	0.33 U	0.3 U
o-Xylene	600	0.64 U	0.5 U	0.49 R	5.1 U	0.5 U	41000 R	380	0.52 U	330 D	4.2 J	1.8 J	0.52 U
Styrene	NC	0.46 U	0.36 U	0.36 R	3.7 U	0.36 U	3.7 R	5 U	0.38 U	9.9	0.48 U	0.42 U	0.38 U
Bromoform	NC	0.44 U	0.34 U	0.34 R	3.5 U	0.35 U	3.5 R	4.8 U	0.36 U	0.36 U	0.46 U	0.4 U	0.36 U
Isopropylbenzene	2,300	0.54 U	0.43 U	0.42 UJ	4.4 U	4.3 J	3100 R	6 U	0.45 U	220	0.57 U	0.49 U	0.45 U
1,1,2,2-Tetrachloroethane	600	0.78 U	0.61 U	0.6 UJ	6.2 U	0.62 U	6.2 R	8.5 U	0.64 U	0.63 U	0.81 U	0.71 U	0.64 U
1,3-Dichlorobenzene	1,600	0.31 U	0.24 U	0.24 UJ	2.5 U	0.25 U	2.5 R	3.4 U	0.25 U	0.25 U	0.32 U	0.28 U	0.25 U
1,4-Dichlorobenzene	8,500	0.52 U	0.4 U	0.4 UJ	4.1 U	0.41 U	4.1 R	5.7 U	0.42 U	0.42 U	0.54 U	0.47 U	0.42 U
1,2-Dichlorobenzene	7,900	0.6 U	0.47 U	0.46 UJ	4.8 U	0.48 U	4.8 R	6.6 U	0.49 U	0.49 U	0.63 U	0.55 U	0.49 U
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	NC 3,400	1 U 0.37 U	0.78 U 0.29 U	0.77 UJ 0.28 UJ	8 U 2.9 U	0.79 U 0.29 U	8 R 2.9 R	11 U 4 U	0.82 U 0.3 U	0.81 U 0.3 U	1 U 0.38 U	0.9 U 0.33 U	0.82 U 0.3 U
			0.20 0										
Total Confident Conc. VOC	10,000	31.4	-	28,000	515	116.2	360,480	2,439	3.2	702.8	133.7	25.2	27

Sample Location		SB-53	SB-54	SB-54	SB-54	SB-54	SB-55	SB-55	SB-55	SB-55	SB-55		
·													
Sample Interval (Feet bgs)		14 to 15	3 to 4	5 to 6	9 to 10	19 to 21	2 to 3	2 to 3	5 to 6	8 to 9	19 to 20		
Sampling Date		03/24/05	03/23/05	03/24/05	03/24/05	03/24/05	03/23/05	03/23/05	03/25/05	03/25/05	03/25/05		
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg		
		1	1	1	1	1	1	1	1	1	1		
V-1-41- 0	TA 014											Number of	Number of
Volatile Organic Compounds (ug/Kg)	TAGM RSCO							Blind Duplicate				Samples	Detections
Dichlorodifluoromethane	NC	1.4 U	1.5 U	1.3 U	1.4 U	1.4 U	1.5 U	1.5 U	1.3 U	1.4 U	1.5 U	58	0
Chloromethane	NC	0.37 U	0.4 U	0.36 U	0.38 U	0.38 U	0.39 U	0.41 U	0.35 U	0.37 U	0.4 U	58	0
Vinyl Chloride	200	0.26 U	0.29 U	0.25 U	0.27 U	0.27 U	0.28 U	0.29 U	0.25 U	0.26 U	0.29 U	58	0
Bromomethane	NC	0.8 U	0.86 U	0.76 U	0.81 U	0.8 U	0.83 U	0.87 U	0.75 U	0.8 U	0.86 U	58	0
Chloroethane	1,900	0.59 U	0.64 U	0.56 U	0.6 U	0.6 U	0.62 U	0.65 U	0.56 U	0.59 U	0.64 U	58	0
Trichlorofluoromethane	NC	2.8 U	3 U	2.6 U	2.8 U	2.8 U	2.9 U	3 U	2.6 U	2.8 U	3 U	58	0
1,1,2-Trichlorotrifluoroethane	6,000	0.52 U	0.56 U	0.49 U	0.53 U	0.52 U	0.54 U	0.57 U	0.49 U	0.52 U	0.56 U	58	0
1,1-Dichloroethene	400	0.24 U	0.26 U	0.23 U	0.25 U	0.24 U	0.25 U	0.27 U	0.23 U	0.24 U	0.26 U	58	0
Acetone	200	27 J	17 J	34	14 J	18 J	20 J	11 JB	7.9 U	13 J	30 J	58	33
Carbon Disulfide	2,700	0.11 U	0.12 U	0.11 U	0.12 U	0.11 U	0.12 U	0.12 U	0.11 U	0.11 U	0.12 U	58	12
Methyl tert-butyl Ether	120	0.26 U	0.28 U	0.25 U	0.26 U	0.26 U	0.27 U	0.28 U	0.24 U	0.26 U	0.28 U	58	10
Methyl Acetate	NC	1.4 U	1.6 U	1.4 U	1.5 U	1.4 U	1.5 U	1.6 U	1.4 U	1.4 U	1.6 U	58	0
Methylene Chloride	100	0.76 U	2.8 J	3.2 J	2.4 J	1.8 J	5.6 J	11 J	3.1 J	1.8 J	3.2 J	58	31
trans-1,2-Dichloroethene	300	0.42 U	0.45 U	0.4 U	0.43 U	0.42 U	0.44 U	0.46 U	0.39 U	0.42 U	0.45 U	58	0
1,1-Dichloroethane	200	0.4 U	0.43 U	0.38 U	0.41 U	0.4 U	0.42 U	0.44 U	0.38 U	0.4 U	0.43 U	58	
Cyclohexane	NC	0.34 U	0.37 U	0.33 U	0.35 U	0.35 U	0.36 U	0.38 U	0.32 U	0.34 U	0.37 U	58	8
2-Butanone Carbon Tetrachloride	300 600	2.6 U 0.33 U	2.8 U 0.36 U	2.4 U 0.32 U	2.6 U 0.34 U	2.6 U 0.34 U	2.7 U 0.35 U	2.8 U 0.37 U	2.4 U 0.32 U	2.6 U 0.33 U	2.8 U 0.36 U	58 58	0
cis-1,2-Dichloroethene	NC	0.33 U	0.36 U	0.32 U	0.34 U	0.34 U	0.35 U	0.37 U	0.32 U	0.33 U	0.36 U	58	0
Chloroform	300	0.4 U	0.43 U	0.36 U	0.4 U	0.4 U	0.41 U	0.43 U	0.37 U	0.4 U	0.43 U	58	1
1,1,1-Trichloroethane	800	0.3 U	0.33 U	0.29 U	0.27 U	0.21 U	0.32 U	0.33 U	0.29 U	0.27 U	0.33 U	58	0
Methylcyclohexane	NC	0.4 U	0.43 U	0.38 U	0.41 U	0.4 U	0.42 U	0.44 U	0.38 U	0.4 U	0.43 U	58	17
Benzene	60	0.23 U	0.25 U	0.22 U	0.23 U	0.23 U	0.24 U	1.3 J	0.21 U	0.23 U	1.4 J	58	22
1,2-Dichloroethane	200	3.5 U	3.8 U	3.3 U	3.5 U	3.5 U	3.6 U	3.8 U	3.3 U	3.5 U	3.8 U	58	0
Trichloroethene	700	0.36 U	0.39 U	0.34 U	0.37 U	0.36 U	0.38 U	0.4 U	0.34 U	0.36 U	0.39 U	58	0
1,2-Dichloropropane	NC	0.38 U	0.41 U	0.36 U	0.39 U	0.38 U	0.39 U	0.41 U	0.36 U	0.38 U	0.41 U	58	0
Bromodichloromethane	NC	0.37 U	0.41 U	0.36 U	0.38 U	0.38 U	0.39 U	0.41 U	0.35 U	0.37 U	0.41 U	58	0
4-Methyl-2-Pentanone	1,000	2.7 U	2.9 U	2.6 U	2.8 U	2.7 U	2.8 U	3 U	2.6 U	2.7 U	2.9 U	58	0
Toluene	1,500	1.6 J	7.6	2.2 J	0.3 U	0.29 U	8.4	10	0.28 U	0.29 U	0.32 U	58	20
t-1,3-Dichloropropene	NC	0.29 U	0.31 U	0.28 U	0.29 U	0.29 U	0.3 U	0.32 U	0.27 U	0.29 U	0.31 U	58	0
cis-1,3-Dichloropropene	NC	0.22 U	0.24 U	0.21 U	0.22 U	0.22 U	0.23 U	0.24 U	0.21 U	0.22 U	0.24 U	58	0
1,1,2-Trichloroethane	NC	0.57 U	0.62 U	0.54 U	0.58 U	0.57 U	0.6 U	0.62 U	0.54 U	0.57 U	0.62 U	58	0
2-Hexanone	NC NA	3.6 U 0.33 U	3.9 U 0.35 U	3.4 U 0.31 U	3.7 U 0.33 U	3.6 U 0.33 U	3.8 U 0.34 U	3.9 U 0.36 U	3.4 U 0.31 U	3.6 U 0.33 U	3.9 U 0.35 U	58 58	0
Dibromochloromethane 1,2-Dibromoethane	NA NC	0.33 U 0.47 U	0.35 U	0.31 U	0.33 U	0.33 U	0.34 U	0.36 U	0.31 U 0.44 U	0.33 U	0.35 U	58	0
Tetrachloroethene	1,400	0.47 U	5.2 J	1.4 J	0.48 U	0.47 U	0.49 U	0.31 U	0.44 U	0.47 U	0.51 U	58	5
Chlorobenzene	1,700	0.4 U	0.43 U	0.38 U	0.4 U	0.4 U	0.41 U	0.43 U	0.37 U	0.4 U	0.43 U	58	0
Ethyl Benzene	5,500	0.28 U	2 J	4.4 J	0.29 U	0.28 U	2.7 J	3 J	1.3 J	0.28 U	0.3 U	58	19
m/p-Xylenes	1,200	0.28 U	2 J	4.4 J	0.29 U	0.28 U	2.7 J	3 J	1.3 J	0.28 U	0.3 U	58	19
o-Xylene	600	0.49 U	3.8 J	7.9	0.5 U	0.49 U	4.6 J	5.8 J	2.3 J	0.49 U	0.53 U	58	26
Styrene	NC	0.35 U	0.38 U	0.34 U	0.36 U	0.36 U	0.37 U	0.39 U	0.33 U	0.35 U	0.38 U	58	1
Bromoform	NC	0.34 U	0.36 U	0.32 U	0.34 U	0.34 U	0.35 U	0.37 U	0.32 U	0.34 U	0.36 U	58	0
Isopropylbenzene	2,300	0.42 U	0.45 U	2.3 J	0.43 U	0.42 U	7.3	0.46 U	0.39 U	0.42 U	0.45 U	58	17
1,1,2,2-Tetrachloroethane	600	0.59 U	0.65 U	0.57 U	0.61 U	0.6 U	0.62 U	0.65 U	0.56 U	0.59 U	0.65 U	58	0
1,3-Dichlorobenzene	1,600	0.24 U	0.26 U	0.23 U	0.24 U	0.24 U	0.25 U	0.26 U	0.22 U	0.24 U	0.26 U	58	0
1,4-Dichlorobenzene	8,500	0.39 U	0.43 U	0.38 U	0.4 U	0.4 U	0.41 U	0.43 U	0.37 U	0.39 U	0.43 U	58	0
1,2-Dichlorobenzene	7,900	0.46 U	0.5 U	0.44 U	0.47 U	0.46 U	0.48 U	0.5 U	0.44 U	0.46 U	0.5 U	58	0
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	NC 3,400	0.76 U 0.28 U	0.83 U 0.3 U	0.73 U 0.27 U	0.78 U 0.29 U	0.77 U 0.28 U	0.8 U 0.29 U	0.84 U 0.31 U	0.72 U 0.27 U	0.76 U 0.28 U	0.83 U 0.3 U	58 58	0
1,4,4-THICHIOTODENZENE	3,400	U.26 U	0.3 0	U.21 U	0.29 U	U.∠ŏ U	U.29 U	0.31 0	U.21 U	U.26 U	0.3 0	58	0
Total Confident Conc. VOC	10,000	30.4	47.5	67.4	16.4	19.8	61.6	56.1	10.1	14.8	34.6		

Sample Location						
Sample Interval (Feet bgs)						
Sampling Date						
Units						
omis .						
		Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Volatile Organic Compounds	TAGM	Detections	TAGM	Exceedances	Concentration	Concentration
(ug/Kg)	RSCO		Exceedances			
Dichlorodifluoromethane	NC	0%	0	0%	< 1.3	< 460
Chloromethane	NC	0%	0	0%	< 0.34	< 950
Vinyl Chloride	200	0%	0	0%	< 0.24	< 370
Bromomethane	NC	0%	0	0%	< 0.73	< 1,100
Chloroethane	1,900	0%	0	0%	< 0.54	< 1,200
Trichlorofluoromethane	NC	0%	0	0%	< 2.5	< 800
1,1,2-Trichlorotrifluoroethane	6,000	0%	0		< 0.47	< 960
1,1-Dichloroethene	400	0%	0	0%	< 0.22	< 450
Acetone	200	57%	1	2%	< 7.9	< 4,600
Carbon Disulfide	2,700	21%	0	0%	< 0.11	< 540
Methyl tert-butyl Ether	120	17%	2	3%	< 0.24	540
Methyl Acetate	NC 100	0%	0	0%	< 1.3	< 1,200
Methylene Chloride	100	53%		0%	< 0.7	< 860
trans-1,2-Dichloroethene	300 200	0% 0%	0	0% 0%	< 0.38	< 710
1,1-Dichloroethane Cyclohexane	NC	14%	0		< 0.36 < 0.31	< 300 17,000
2-Butanone	300	0%	0	0%	< 2.3	< 3,900
Carbon Tetrachloride	600	0%	0		< 0.31	< 5,900 < 650
cis-1,2-Dichloroethene	NC	0%	0	0%	< 0.36	< 1,100
Chloroform	300	2%	0	0%	< 0.24	< 800
1,1,1-Trichloroethane	800	0%	0	0%	< 0.28	< 570
Methylcyclohexane	NC	29%	0	0%	< 0.37	28,000
Benzene	60	38%	9	16%	< 0.21	26,000
1,2-Dichloroethane	200	0%	0	0%	< 3.2	< 440
Trichloroethene	700	0%	0	0%	< 0.33	< 930
1,2-Dichloropropane	NC	0%	0	0%	< 0.35	< 440
Bromodichloromethane	NC	0%	0	0%	< 0.34	< 480
4-Methyl-2-Pentanone	1,000	0%	0	0%	< 2.5	< 1,800
Toluene	1,500	34%	5	9%	< 0.27	74,000
t-1,3-Dichloropropene	NC	0%	0	0%	< 0.26	< 590
cis-1,3-Dichloropropene	NC	0%	0	0%	< 0.2	< 210
1,1,2-Trichloroethane	NC	0%	0	0%	< 0.52	< 720
2-Hexanone	NC	0%	0	0%	< 3.3	< 920
Dibromochloromethane	NA	0%	0	0%	< 0.3	< 520
1,2-Dibromoethane	NC	0%	0	0%	< 0.43	< 880
Tetrachloroethene	1,400	9%	0		< 0.65	460
Chlorobenzene	1,700	0%	0	0%	< 0.36	< 510
Ethyl Benzene	5,500	33%	6	10%	< 0.26	66,000
m/p-Xylenes	1,200	33%	5	9%	< 0.28	250,000
o-Xylene	600 NC	45% 2%	6	10% 0%	< 0.45 < 0.32	100,000 480
Styrene	NC NC	0%	0	0%		< 350
Bromoform Isopropylbenzene	2,300	29%	3		< 0.31 < 0.38	< 350 13,000
1.1.2.2-Tetrachloroethane	600	29%	0	5% 0%	< 0.38 < 0.55	< 690
1,3-Dichlorobenzene	1.600	0%	0	- 7.0	< 0.22	< 520
1.4-Dichlorobenzene	8,500	0%	0		< 0.36	< 540
1,2-Dichlorobenzene	7,900	0%	0		< 0.42	< 540 < 510
1,2-Dibromo-3-Chloropropane	NC	0%	0	0%	< 0.7	< 1,300
1,2,4-Trichlorobenzene	3,400	0%	0	0%	< 0.26	< 400
	1, ,,	1,1				
Total Confident Conc. VOC	10,000					

					Tau	le 4-13						
Sample Location		TP2	SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-8	SB-8	SB-9	SB-9
Sample Interval (Feet bgs) Sampling Date		10 to 11 09/12/04	6 to 7 07/09/04	17 to 19 08/09/04	27 to 29 08/09/04	43 to 45 08/09/04	6 to 7 07/09/04	4 to 5 07/09/04	11 to 11.5 08/11/04	14.5 to 15 08/11/04	4 to 5 09/12/04	8 to 10 09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic												
Compounds (ug/kg)	TAGM RSCO											
Benzaldehyde	NC	39 U	40 U	39 U	39 U	41 U	38 U	35 U	36 U	39 U	35 U	37 U
Phenol	30 or MDL	16 U	17 U	17 U	16 U	17 U	16 U	15 U	15 U	17 U	15 U	16 U
bis(2-Chloroethyl)ether	NC	19 U	20 U	20 U	19 U	20 U	19 U	17 U	18 U	20 U	18 U	19 U
2-Chlorophenol	800	17 U	18 U	17 U	17 U	18 U	17 U	15 U	16 U	17 U	16 U	16 U
2-Methylphenol	100 or MDL	25 U	26 U	25 U	25 U	26 U	25 U	22 U	23 U	25 U	23 U	24 U
2,2-oxybis(1-Chloropropane)	NC	21 U	22 U	21 U	21 U	22 U	21 U	19 U	20 U	22 U	20 U	20 U
Acetophenone	NC	21 U	21 U	21 U	21 U	22 U	21 U	18 U	19 U	21 U	19 U	20 U
3+4-Methylphenols	900	18 U	19 U	18 U	18 U	19 U	18 U	16 U	17 U	18 U	17 U	17 U
N-Nitroso-di-n-propylamine	NC	17 U	18 U	17 U	17 U	18 U	17 U	16 U	16 U	18 U	16 U	17 U
Hexachloroethane	NC	19 U	19 U	19 U	19 U	20 U	19 U	17 U	17 U	19 U	17 U	18 U
Nitrobenzene	200 or MDL	20 U	21 U	20 U	20 U	21 U	20 U	18 U	19 U	20 U	18 U	19 U
Isophorone	4,400	15 U	15 U	15 U	15 U	15 U	15 U	13 U	14 U	15 U	13 U	14 U
2-Nitrophenol	330 or MDL	16 U	16 U	16 U	16 U	17 U	16 U	14 U	15 U	16 U	14 U	15 U
2,4-Dimethylphenol	NC	21 U	22 U	21 U	21 U	22 U	21 U	19 U	20 U	22 U	20 U	20 U
bis(2-Chloroethoxy)methane	NC	18 U	19 U	18 U	18 U	19 U	18 U	16 U	17 U	18 U	16 U	17 U
2.4-Dichlorophenol	400	14 U	14 U	14 U	14 U	15 U	14 U	12 U	13 U	14 U	13 U	13 U
Naphthalene	13,000	8.6 U	8.8 U	8.6 U	8.6 U	9 U	8.5 U	7.7 U	8 U	8.7 U	7.8 U	44 J
4-Chloroaniline	220 or MDL	150 U	150 U	150 U	150 U	150 U	150 U	130 U	140 U	150 U	130 U	140 U
Hexachlorobutadiene	NC	14 U	14 U	14 U	14 U	15 U	14 U	12 U	13 U	14 U	13 U	13 U
Caprolatam	NC	15 U	15 U	15 U	15 U	15 U	14 U	13 U	13 U	15 U	13 U	14 U
4-Chloro-3-methylphenol	240 or MDL	12 U	12 U	12 U	12 U	12 U	12 U	10 U	11 U	12 U	11 U	11 U
2-Methylnaphthalene	36,400	6.8 U	7 U	6.8 U	6.8 U	7.1 U	6.8 U	280 J	2400 D	120 J	6.2 U	6.5 U
Hexachlorocyclopentadiene	NC	9.9 UJ	10 UJ	9.9 UJ	9.9 UJ	10 UJ	9.9 UJ	8.9 UJ	9.2 UJ	10 UJ	9 UJ	9.5 UJ
2,4,6-Trichlorophenol	NC	14 U	15 U	14 U	14 U	15 U	14 U	13 U	13 U	14 U	13 U	14 U
2,4,5-Trichlorophenol	100	26 U	27 U	26 U	26 U	27 U	26 U	23 U	24 U	26 U	24 U	25 U
1,1-Biphenyl	NC	12 U	12 U	12 U	12 U	12 U	12 U	10 U	11 U	12 U	11 U	11 U
2-Chloronaphthalene	NC	8.2 U	8.5 U	8.3 U	8.2 U	8.6 U	8.2 U	7.4 U	7.6 U	8.3 U	7.5 U	7.9 U
2-Nitroaniline	430 or MDL	14 U	15 U	14 U	14 U	15 U	14 U	13 U	13 U	14 U	13 U	14 U
Dimethylphthalate	2,000	9.4 U	9.7 U	9.5 U	9.4 U	9.9 U	9.4 U	8.4 U	8.7 U	9.5 U	8.6 U	9 U
Acenaphthylene	41,000	12 U	12 U	12 U	12 U	12 U	12 U	11 U	11 U	12 U	44 J	11 U
2,6-Dinitrotoluene	1,000	17 U	17 U	17 U	17 U	18 U	17 U	15 U	16 U	17 U	15 U	16 U
3-Nitroaniline	500 or MDL	64 U	66 U	64 U	64 U	67 U	63 U	57 U	59 U	65 U	58 U	61 U
Acenaphthene	50,000	8.7 U	9 U	8.7 U	8.7 U	9.1 U	8.7 U	7.8 U	8.1 U	8.8 U	78 J	39 J
2,4-Dinitrophenol	200 or MDL	17 U	18 U	17 U	17 U	18 U	17 U	16 U	16 U	18 U	16 U	17 U
4-Nitrophenol	100 or MDL	39 U	40 U	39 U	39 U	40 U	38 U	35 U	36 U	39 U	35 U	37 U
Dibenzofuran	6,200	13 U	13 U	13 U	13 U	14 U	13 U	12 U	12 U	13 U	140 J	12 U
2,4-Dinitrotoluene	1,000	7.9 U	8.1 U	7.9 U	7.9 U	8.3 U	7.8 U	7.1 U	7.3 U	8 U	7.2 U	7.5 U
Diethylphthalate	7,100	12 U	13 U	12 U	12 U	13 U	12 U	11 U	11 U	13 U	11 U	12 U
4-Chlorophenyl-phenylether	NC	9.8 U	10 U	9.8 U	9.8 U	10 U	9.7 U	8.8 U	9.1 U	9.9 U	8.9 U	9.4 U
Fluorene	50,000	11 U	12 U	11 U	11 U	12 U	11 U	10 U	170 J	11 U	170 J	11 U
4-Nitroaniline	NC	31 U	32 U	31 U	31 U	32 U	31 U	28 U	29 U	31 U	28 U	30 U
4,6-Dinitro-2-methylphenol	NC	23 U	24 U	23 U	23 U	24 U	23 U	21 U	21 U	23 U	21 U	22 U
N-Nitrosodiphenylamine	NC	10 U	10 U	10 U	10 U	11 U	10 U	9 U	9.3 U	10 U	9.2 U	9.6 U
4-Bromophenyl-phenylether	NC	10 U	11 U	10 U	10 U	11 U	10 U	9.3 U	9.6 U	11 U	9.5 U	9.9 U
Hexachlorobenzene	410	7.4 U	7.6 U	7.4 U	7.4 U	7.8 U	7.4 U	6.6 U	6.8 U	7.5 U	6.8 U	7.1 U
Atrazine	NC	12 U	12 U	12 U	12 U	13 U	12 U	11 U	11 U	12 U	11 U	12 U
Pentachlorophenol	1000 or MDL	12 U	13 U	12 U	12 U	13 U	12 U	11 U	11 U	12 U	11 U	12 U
Phenanthrene	50,000	8.8 U	9.1 U	8.9 U	8.8 U	9.3 U	8.8 U	62 J	680	61 J	700	250 J
Anthracene	50,000	9.4 U	9.7 U	9.5 U	9.4 U	9.9 U	9.4 U	8.4 U	140 J	9.5 U	49 J	91 J
Carbazole	NC	8.7 U	9 U	8.7 U	8.7 U	9.1 U	8.7 U	7.8 U	8.1 U	8.8 U	8 U	8.3 U

Sample Location		TP2	SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-8	SB-8	SB-9	SB-9
Sample Interval (Feet bgs) Sampling Date		10 to 11 09/12/04	6 to 7 07/09/04	17 to 19 08/09/04	27 to 29 08/09/04	43 to 45 08/09/04	6 to 7 07/09/04	4 to 5 07/09/04	11 to 11.5 08/11/04	14.5 to 15 08/11/04	4 to 5 09/12/04	8 to 10 09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic Compounds (ug/kg)	TAGM RSCO											
Di-n-butylphthalate	8,100	5.2 U	5.4 U	5.3 U	5.3 U	5.5 U	5.2 U	4.7 U	4.9 U	5.3 U	4.8 U	5 U
Fluoranthene	50,000	5.5 U	5.7 U	5.5 U	5.5 U	5.8 U	5.5 U	4.9 U	5.1 U	5.6 U	740	530
Pyrene	50,000	7 U	7.2 U	7.1 U	7 U	7.4 U	7 U	6.3 U	160 J	7.1 U	690	620
Butylbenzylphthalate	50,000	13 U	14 U	13 U	13 U	14 U	13 U	12 U	12 U	13 U	12 U	13 U
3,3-Dichlorobenzidine	NA	63 U	65 U	64 U	63 U	66 U	63 U	57 U	59 U	64 U	58 U	61 U
Benzo(a)anthracene	224 or MDL	6 U	6.1 U	6 U	6 U	6.3 U	5.9 U	5.3 U	5.5 U	6 U	190 J	290 J
Chrysene	400	13 U	13 U	13 U	13 U	13 U	12 U	11 U	12 U	13 U	280 J	260 J
bis(2-Ethylhexyl)phthalate	50,000	66 J	9.3 U	9.1 U	9.1 U	9.5 U	9 U	8.1 U	140 J	49 J	8.3 U	8.7 U
Di-n-octyl phthalate	50,000	9.4 U	9.7 U	9.5 U	9.4 U	9.9 U	9.4 U	8.4 U	8.7 U	9.5 U	8.6 U	9 U
Benzo(b)fluoranthene	1,100	21 U	22 U	21 U	21 U	22 U	21 U	19 U	19 U	21 U	310 J	280 J
Benzo(k)fluoranthene	1,100	13 U	14 U	14 U	13 U	14 U	13 U	12 U	12 U	14 U	160 J	140 J
Benzo(a)pyrene	61 or MDL	6.8 U	7 U	6.8 U	6.8 U	7.1 U	6.8 U	6.1 U	6.3 U	6.9 U	240 J	260 J
Indeno(1,2,3-cd)pyrene	3,200	9.5 U	9.8 U	9.6 U	9.6 U	10 U	9.5 U	8.6 U	8.8 U	9.7 U	100 J	130 J
Dibenz(a,h)anthracene	14 or MDL	12 U	12 U	12 U	12 U	12 U	12 U	10 U	11 U	12 U	11 U	11 U
Benzo(g,h,i)perylene	50,000	17 U	18 U	17 U	17 U	18 U	17 U	15 U	16 U	17 U	110 J	160 J
Total Confident Conc. SVOC	,	66			;	-		342	3,690	230	4,001	3,094
Carcinogenic SVOCs in BaP	Equivalents	ND	ND	ND	ND	ND	ND	ND	ND	ND	304.4	334

T					Table	e 4-13					
Sample Location		SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11
Sample Interval (Feet bgs) Sampling Date		20 to 22 09/18/04	26 to 28 09/18/04	32 to 34 09/18/04	5 to 6 09/11/04	6 to 8 09/18/04	8 to 10 09/18/04	20 to 22 09/18/04	48 to 50 09/18/04	5 to 6 09/11/04	13 to 15 09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	40 U	37 U	40 U	72 U	71 U	370 U	38 U	39 U	36 U	39 U
Phenol	30 or MDL	17 U	16 U	17 U	31 U	30 U	160 U	16 U	17 U	15 U	17 U
bis(2-Chloroethyl)ether	NC	20 U	19 U	20 U	36 U	36 U	190 U	19 U	20 U	18 U	20 U
2-Chlorophenol	800	18 U	16 U	18 U	32 U	32 U	160 U	17 U	17 U	16 U	17 U
2-Methylphenol	100 or MDL	160 J	24 U	26 U	47 U	46 U	240 U	25 U	25 U	23 U	25 U
2,2-oxybis(1-Chloropropane)	NC	22 U	20 U	22 U	40 U	39 U	200 U	21 U	21 U	20 U	21 U
Acetophenone	NC	21 UJ	20 U	21 U	39 U	38 U	200 U	20 U	21 U	19 U	21 U
3+4-Methylphenols	900	130 J	17 U	19 U	34 U	33 U	170 U	18 U	18 U	17 U	18 U
N-Nitroso-di-n-propylamine	NC	18 U	17 U	18 U	33 U	32 U	170 U	17 U	18 U	16 U	18 U
Hexachloroethane	NC	19 U	18 U	20 U	35 U	35 U	180 U	19 U	19 U	17 U	19 U
Nitrobenzene	200 or MDL	21 UJ	19 U	21 U	37 U	37 U	190 U	20 U	20 U	19 U	20 U
Isophorone	4,400	15 UJ	14 U	15 U	27 U	27 U	140 U	15 U	15 U	14 U	15 U
2-Nitrophenol	330 or MDL	16 UJ	15 U	17 U	30 U	29 U	150 U	16 U	16 U	15 U	16 U
2,4-Dimethylphenol	NC	22 UJ	20 U	22 U	40 U	39 U	200 U	21 U	21 U	20 U	21 U
bis(2-Chloroethoxy)methane	NC	19 UJ	17 U	19 U	34 U	33 U	170 U	18 U	18 U	17 U	18 U
2,4-Dichlorophenol	400	14 UJ	13 U	14 U	26 U	26 U	130 U	14 U	14 U	13 U	14 U
Naphthalene	13,000	94000 D	780	75 J	9100 D	9200 D	4000	5600 D	8.6 U	2400	8.6 U
4-Chloroaniline	220 or MDL	150 UJ	140 U	150 U	270 U	270 U	1400 U	140 U	150 U	140 U	150 U
Hexachlorobutadiene	NC	14 UJ	13 U	14 U	26 U	26 U	130 U	14 U	14 U	13 U	14 U
Caprolatam	NC	15 UJ	14 U	15 U	27 U	27 U	140 U	14 U	15 U	14 U	15 U
4-Chloro-3-methylphenol	240 or MDL	12 UJ	11 U	12 U	22 U	22 U	110 U	12 U	12 U	11 U	12 U
2-Methylnaphthalene	36,400	7000 DJ	62 J	7.1 U	9300 D	7100 DJ	2400 J	220 J	6.8 U	2100	6.8 U
Hexachlorocyclopentadiene	NC	10 UJ	9.5 UJ	10 UJ	18 UJ	18 UJ	94 UJ	9.8 UJ	10 UJ	9.2 UJ	10 UJ
2,4,6-Trichlorophenol	NC	15 U	14 U	15 U	27 U	26 U	140 U	14 U	14 U	13 U	14 U
2,4,5-Trichlorophenol	100	27 U	25 U	27 U	49 U	48 U	250 U	26 U	26 U	24 U	26 U
1,1-Biphenyl	NC	880	11 U	12 U	440 J	280 J	110 U	12 U	12 U	11 U	12 U
2-Chloronaphthalene	NC	8.5 U	7.9 U	8.6 U	15 U	15 U	78 U	8.2 U	8.3 U	7.6 U	8.3 U
2-Nitroaniline	430 or MDL	15 U	14 U	15 U	27 U	26 U	140 U	14 U	14 U	13 U	14 U
Dimethylphthalate	2,000	9.7 U	9 U	9.8 U	18 U	17 U	90 U	9.3 U	9.5 U	8.7 U	9.5 U
Acenaphthylene	41,000	290 J	11 U	12 U	22 U	22 U	110 U	12 U	12 U	200 J	12 U
2,6-Dinitrotoluene	1,000	17 U	16 U	18 U	31 U	31 U	160 U	17 U	17 U	16 U	17 U
3-Nitroaniline	500 or MDL	65 U	61 U	66 U	120 U	120 U	610 U	63 U	64 U	59 U	64 U
Acenaphthene	50,000	2500	38 J	9.1 U	990	470 J	83 U	74 J	8.8 U	410	8.8 U
2,4-Dinitrophenol	200 or MDL	18 U	17 U	18 U	33 U	32 U	170 U	17 U	18 U	16 U	18 U
4-Nitrophenol	100 or MDL	40 U	37 U	40 U	72 U	71 U	370 U	38 U	39 U	36 U	39 U
Dibenzofuran	6,200	2600	12 U	14 U	680 J	370 J	120 U	89 J	13 U	680	13 U
2,4-Dinitrotoluene	1,000	8.1 U	7.6 U	8.2 U	15 U	15 U	75 U	7.8 U	7.9 U	7.3 U	7.9 U
Diethylphthalate	7,100	13 U	12 U	13 U	23 U	23 U	120 U	12 U	12 U	12 U	12 U
4-Chlorophenyl-phenylether	NC 50 000	10 U	9.4 U	10 U	18 U	18 U	93 U	9.7 U	9.8 U	9.1 U	9.8 U
Fluorene	50,000	2900	42 J	12 U	1200	680 J	110 U	99 J	11 U	1100	11 U
4-Nitroaniline	NC	32 U	30 U	32 U	58 U	57 U	290 U	31 U	31 U	29 U	31 U
4,6-Dinitro-2-methylphenol	NC	24 U	22 U	24 U	43 U	42 U	220 U	23 U	23 U	21 U	23 U
N-Nitrosodiphenylamine	NC	10 U	9.6 U	10 U	19 U	19 U	96 U	9.9 U	10 U	9.3 U	10 U
4-Bromophenyl-phenylether	NC 140	11 U	10 U	11 U	19 U	19 U	99 U	10 U	10 U	9.6 U	10 U
Hexachlorobenzene	410	7.6 U	7.1 U	7.7 U	14 U	14 U	71 U	7.3 U	7.4 U	6.9 U	7.4 U
Atrazine	NC NC	12 U	12 U	13 U	22 U	22 U	110 U	12 U	12 U	11 U	12 U
Pentachlorophenol	1000 or MDL	13 U	12 U	13 U	23 U	23 U	120 U	12 U	12 U	11 U	12 U
Phenanthrene	50,000	8500 D	140 J	9.2 U	5300	3200	590 J	290 J	8.9 U	4500 D	89 J
Anthracene	50,000	2900 D	56 J	9.8 U	1800	1100	90 U	100 J	9.5 U	1000	9.5 U
Carbazole	NC	1100	8.4 U	9.1 U	640 J	280 J	83 U	100 J	8.8 U	410	8.8 U

Ta	h	ما	4-1	13

Sample Location		SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11
Sample Interval (Feet bgs) Sampling Date		20 to 22 09/18/04	26 to 28 09/18/04	32 to 34 09/18/04	5 to 6 09/11/04	6 to 8 09/18/04	8 to 10 09/18/04	20 to 22 09/18/04	48 to 50 09/18/04	5 to 6 09/11/04	13 to 15 09/18/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	5.4 U	5 U	5.5 U	9.8 U	9.7 U	50 U	5.2 U	5.3 U	4.9 U	5.3 U
Fluoranthene	50,000	5700 D	100 J	5.7 U	5300	3100	650 J	170 J	5.5 U	4300 D	64 J
Pyrene	50,000	5500 D	100 J	7.3 U	6800 D	3600	790 J	170 J	7.1 U	4300 D	73 J
Butylbenzylphthalate	50,000	14 U	13 U	14 U	25 U	24 U	130 U	13 U	13 U	12 U	13 U
3,3-Dichlorobenzidine	NA	65 U	61 U	66 U	120 U	120 U	600 U	63 U	64 U	59 U	64 U
Benzo(a)anthracene	224 or MDL	2900	39 J	6.2 U	2700	1600	57 U	68 J	6 U	2000	6 U
Chrysene	400	2500	50 J	13 U	2300	1200	120 U	75 J	13 U	1800	13 U
bis(2-Ethylhexyl)phthalate	50,000	9.3 U	43 J	74 J	17 U	170 J	86 U	54 J	69 J	8.4 U	78 J
Di-n-octyl phthalate	50,000	9.7 U	9 U	9.8 U	18 U	17 U	90 U	9.3 U	9.5 U	8.7 U	9.5 U
Benzo(b)fluoranthene	1,100	2200	20 U	22 U	2700	1400	500 J	56 J	21 U	2200	21 U
Benzo(k)fluoranthene	1,100	1300 J	13 U	14 U	1200 J	800 J	130 U	13 U	14 U	830 J	14 U
Benzo(a)pyrene	61 or MDL	2000	6.5 U	7.1 U	2400	1200	65 U	49 J	6.8 U	1700	6.8 U
Indeno(1,2,3-cd)pyrene	3,200	440	9.2 U	9.9 U	750	210 J	91 U	9.5 U	9.6 U	740	9.6 U
Dibenz(a,h)anthracene	14 or MDL	95 J	11 U	12 U	120 J	21 U	110 U	11 U	12 U	120 J	12 U
Benzo(g,h,i)perylene	50,000	490	16 U	18 U	1000	370 J	160 U	17 U	17 U	750	17 U
Total Confident Conc. SVOC	500,000	146,085	1,450	149	54,720	36,330	8,930	7,214	69	31,540	304
Carcinogenic SVOCs in BaP	Equivalents	2,687	4.4	ND	3,170	1,541	50	62.2	ND	2,340.3	ND

					Table 4-1	3					
Sample Location		SB-11	SB-11	SB-11	SB-12	SB-12	SB-12	SB-12	SB-12	SB-13	SB-13
Sample Interval (Feet bgs) Sampling Date		27 to 29 09/18/04	35 to 37 09/18/04	37 to 39 09/18/04	5 to 7 09/11/04	7 to 9 09/11/04	15 to 17 09/11/04	25 to 27 09/12/04	49 to 51 09/12/04	6 to 6.5 07/12/04	25 to 27 10/10/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		-3-3	3 3	3. 3	3 3	3 3	3 3	-3-3	3. 3	3 3	3. 3
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	81 U	39 U	39 U	33 U	33 U	39 U	45 U	37 U	38 UJ	38 U
Phenol	30 or MDL	34 U	16 U	17 U	14 U	14 U	17 U	19 U	16 U	16 UJ	16 U
bis(2-Chloroethyl)ether	NC	41 U	19 U	20 U	17 U	17 U	20 U	23 U	19 U	19 UJ	19 U
2-Chlorophenol	800 100 or MDL	36 U 52 U	17 U 25 U	17 U 25 U	15 U 21 U	15 U 22 U	17 U 25 U	20 U 29 U	17 U 24 U	17 UJ 25 UJ	17 U 25 U
2-Methylphenol 2,2-oxybis(1-Chloropropane)	NC	52 U 45 UJ	25 U 21 U	25 U 21 U	18 U	22 U 18 U	25 U 22 U	29 U	24 U 21 U	25 UJ	25 U 21 U
Acetophenone	NC NC	43 UJ	21 U	21 U	18 U	18 U	21 U	24 U	21 U	20 UJ	21 U
3+4-Methylphenols	900	1500	18 U	18 U	16 U	16 U	18 U	21 U	18 U	18 UJ	18 U
N-Nitroso-di-n-propylamine	NC NC	36 U	17 U	18 U	15 U	15 U	18 U	20 U	17 U	17 UJ	17 U
Hexachloroethane	NC NC	39 U	19 U	19 U	16 U	16 U	19 U	22 U	18 U	19 UJ	19 U
Nitrobenzene	200 or MDL	42 UJ	20 U	20 U	17 U	17 U	20 U	24 U	19 U	20 UJ	20 U
Isophorone	4,400	31 UJ	15 U	15 U	13 U	13 U	15 U	17 U	14 U	15 UJ	15 U
2-Nitrophenol	330 or MDL	33 UJ	16 U	16 U	14 U	14 U	16 U	19 U	15 U	16 UJ	16 U
2,4-Dimethylphenol	NC	45 UJ	21 U	21 U	18 U	18 U	22 U	25 U	21 U	21 UJ	21 U
bis(2-Chloroethoxy)methane	NC	38 UJ	18 U	18 U	15 U	16 U	18 U	21 U	17 U	18 UJ	18 U
2,4-Dichlorophenol	400	29 UJ	14 U	14 U	12 U	12 U	14 U	16 U	13 U	14 UJ	14 U
Naphthalene	13,000	1300000 DJ	280 J	8.6 U	7.4 U	48 J	8.7 U	10 U	8.3 U	8.5 UJ	8.5 U
4-Chloroaniline	220 or MDL	300 UJ	150 U	150 U	130 U	130 U	150 U	170 U	140 U	140 UJ	150 U
Hexachlorobutadiene	NC	29 UJ	14 U	14 U	12 U	12 U	14 U	16 U	13 U	14 UJ	14 U
Caprolatam	NC	30 UJ	15 U	15 U	12 U	13 U	15 U	17 U	14 U	14 UJ	14 U
4-Chloro-3-methylphenol	240 or MDL	24 UJ	12 U	12 U	10 U	10 U	12 U	14 U	11 U	12 UJ	12 U
2-Methylnaphthalene	36,400 NC	63000 DJ 21 UJR	6.8 U 9.9 UJ	6.8 U 10 UJ	5.8 U 8.5 UJ	5.9 U 8.6 UJ	6.9 U 10 UJ	8 U 12 UJ	6.6 U 9.6 UJ	6.7 UJ 9.8 UJ	6.8 U 9.8 UJ
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	NC NC	30 U	9.9 UJ 14 U	10 UJ	8.5 UJ 12 U	8.6 UJ 12 U	10 UJ	12 UJ 17 U	9.6 UJ 14 U	9.8 UJ 14 UJ	9.8 UJ 14 U
2,4,5-Trichlorophenol	100	54 U	26 U	26 U	22 U	23 U	27 U	31 U	25 U	26 UJ	26 U
1,1-Biphenyl	NC	7700 D	12 U	12 U	10 U	10 U	12 U	14 U	11 U	12 UJ	12 U
2-Chloronaphthalene	NC NC	17 U	8.2 U	8.3 U	7.1 U	7.1 U	8.4 U	9.7 U	8 U	8.1 UJ	8.2 U
2-Nitroaniline	430 or MDL	30 U	14 U	14 U	12 U	12 U	15 U	17 U	14 U	14 UJ	14 U
Dimethylphthalate	2,000	20 U	9.4 U	9.5 U	8.1 U	8.1 U	9.6 U	11 U	9.1 U	9.3 UJ	9.4 U
Acenaphthylene	41,000	6400	12 U	12 U	10 U	57 J	12 U	14 U	11 U	12 UJ	12 U
2,6-Dinitrotoluene	1,000	35 U	17 U	17 U	14 U	15 U	17 U	20 U	16 U	17 UJ	17 U
3-Nitroaniline	500 or MDL	130 U	64 U	64 U	55 U	55 U	65 U	75 U	62 U	63 UJ	63 U
Acenaphthene	50,000	12000 D	8.7 U	8.8 U	7.5 U	49 J	8.9 U	10 U	8.4 U	8.6 UJ	8.7 U
2,4-Dinitrophenol	200 or MDL	36 U	17 U	18 U	15 U	15 U	18 U	20 U	17 U	17 UJ	17 U
4-Nitrophenol	100 or MDL	80 U	39 U	39 U	33 U	33 R	39 U	45 U	37 U	38 UJ	38 U
Dibenzofuran	6,200	15000 D	13 U	13 U	11 U	70 J	13 U	15 U	13 U	13 UJ	13 U
2,4-Dinitrotoluene	1,000	16 U	7.9 U	7.9 U	6.8 U	6.8 U	8 U	9.2 U	7.6 U	7.8 UJ	7.8 U
Diethylphthalate	7,100 NC	26 U	12 U	12 U	11 U	11 U 8.5 U	13 U	15 U 11 U	12 U 9.5 U	12 UJ 9.7 UJ	12 U 9.7 U
4-Chlorophenyl-phenylether Fluorene	50,000	20 U 18000 D	9.8 U 11 U	9.8 U 11 U	8.4 U 9.6 U	8.5 U 110 J	10 U 11 U	11 U 13 U	9.5 U 11 U	9.7 UJ 11 UJ	9.7 U 11 U
4-Nitroaniline	30,000 NC	64 U	31 U	31 U	27 U	27 U	31 U	36 U	30 U	31 UJ	31 U
4,6-Dinitro-2-methylphenol	NC NC	48 UJ	23 U	23 U	20 U	20 U	23 U	27 U	22 U	23 UJ	23 U
N-Nitrosodiphenylamine	NC NC	21 U	10 U	10 U	8.6 U	8.7 U	10 U	12 U	9.7 U	9.9 UJ	10 U
4-Bromophenyl-phenylether	NC NC	22 U	10 U	10 U	8.9 U	9 U	11 U	12 U	10 U	10 UJ	10 U
Hexachlorobenzene	410	15 U	7.4 U	7.4 U	6.3 U	6.4 U	7.5 U	8.7 U	7.2 U	7.3 UJ	7.4 U
Atrazine	NC	25 U	12 U	12 U	10 U	10 U	12 U	14 U	12 U	12 UJ	12 U
Pentachlorophenol	1000 or MDL	26 U	12 U	12 U	11 U	11 U	13 U	14 U	12 U	12 UJ	12 U
Phenanthrene	50,000	63000 D	8.8 U	8.9 U	80 J	560	9 U	10 U	8.6 U	8.7 UJ	8.8 U
Anthracene	50,000	19000 D	9.4 U	9.5 U	35 J	150 J	9.6 U	11 U	9.1 U	9.3 UJ	9.4 U
Carbazole	NC	6300 D	8.7 U	8.8 U	7.5 U	60 J	8.9 U	10 U	8.4 U	8.6 UJ	8.7 U

Ta	ble	4-	13

Sample Location		SB-11	SB-11	SB-11	SB-12	SB-12	SB-12	SB-12	SB-12	SB-13	SB-13
Sample Interval (Feet bgs) Sampling Date		27 to 29 09/18/04	35 to 37 09/18/04	37 to 39 09/18/04	5 to 7 09/11/04	7 to 9 09/11/04	15 to 17 09/11/04	25 to 27 09/12/04	49 to 51 09/12/04	6 to 6.5 07/12/04	25 to 27 10/10/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	11 U	5.3 U	5.3 U	4.5 U	4.5 U	5.3 U	6.2 U	5.1 U	5.2 UJ	5.2 U
Fluoranthene	50,000	40000 JD	5.5 U	5.5 U	120 J	570	5.6 U	6.4 U	42 J	5.4 UJ	5.5 U
Pyrene	50,000	32000 D	7 U	7.1 U	120 J	430	7.2 U	8.3 U	6.8 U	7 UJ	7 U
Butylbenzylphthalate	50,000	28 U	13 U	13 U	34 J	45 J	13 U	16 U	13 U	13 UJ	13 U
3,3-Dichlorobenzidine	NA	130 U	63 U	64 U	54 U	55 U	65 U	74 U	61 U	63 UJ	63 U
Benzo(a)anthracene	224 or MDL	16000 D	6 U	6 U	52 J	240 J	6.1 U	7 U	5.8 U	5.9 UJ	5.9 U
Chrysene	400	13000 D	13 U	13 U	64 J	200 J	13 U	15 U	12 U	12 UJ	12 U
bis(2-Ethylhexyl)phthalate	50,000	19 U	88 J	9.1 U	390	380	63 J	57 J	42 J	48 J	89 J
Di-n-octyl phthalate	50,000	20 U	9.4 U	9.5 U	8.1 U	140 J	9.6 U	11 U	9.1 U	9.3 UJ	9.4 U
Benzo(b)fluoranthene	1,100	12000 D	21 U	21 U	59 J	240 J	21 U	25 U	20 U	21 UJ	21 U
Benzo(k)fluoranthene	1,100	5200	13 U	14 U	12 U	93 J	14 U	16 U	13 U	13 UJ	13 U
Benzo(a)pyrene	61 or MDL	11000 D	6.8 U	6.8 U	52 J	220 J	6.9 U	8 U	6.6 U	6.7 UJ	6.8 U
Indeno(1,2,3-cd)pyrene	3,200	1900	9.5 U	9.6 U	8.2 U	100 J	9.7 U	11 U	9.3 U	9.4 UJ	9.5 U
Dibenz(a,h)anthracene	14 or MDL	400 J	12 U	12 U	9.9 U	10 U	12 U	14 U	11 U	11 UJ	12 U
Benzo(g,h,i)perylene	50,000	2300 J	17 U	17 U	42 J	120 J	17 U	20 U	17 U	17 UJ	17 U
T. 10 (1) 10 01/00						- 404					
Total Confident Conc. SVOC	,	1,645,700	368	-	1,048	7,484	63	57	84	48	89
Carcinogenic SVOCs in BaP	Equivalents	14,572	ND	ND	63.7	280.9	ND	ND	ND	ND	ND

T					rabie	4-13					
Sample Location		SB-13	SB-13	SB-14	SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15
Sample Interval (Feet bgs) Sampling Date		25 to 27 10/10/04	27 to 29 10/10/04	4 to 5 09/11/04	11 to 13 10/03/04	17 to 19 10/03/04	23 to 25 10/03/04	4 to 5 08/18/04	5 to 6 08/18/04	7 to 9 08/19/04	11 to 13 08/19/04
Units		ug/Kg Blind	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic		Duplicate									
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	39 U	45 U	36 U	37 U	37 U	47 U	37 U	37 U	38 U	37 U
Phenol	30 or MDL	16 U	19 U	16 U	16 U	16 U	20 U	16 U	16 U	16 U	16 U
bis(2-Chloroethyl)ether	NC	19 U	23 U	18 U	18 U	18 U	24 U	19 U	18 U	19 U	19 U
2-Chlorophenol	800	17 U	20 U	16 U	16 U	16 U	21 U	16 U	16 U	17 U	16 U
2-Methylphenol	100 or MDL	25 U	29 U	23 U	24 U	24 U	30 U	24 U	24 U	24 U	24 U
2,2-oxybis(1-Chloropropane)	NC	21 U	25 U	20 U	20 U	20 U	26 U	20 U	20 U	21 U	21 U
Acetophenone	NC	21 U	24 U	19 U	20 U	20 U	25 U	20 U	20 U	20 U	20 U
3+4-Methylphenols	900	18 U	21 U	17 U	17 U	17 U	22 U	17 U	17 U	18 U	17 U
N-Nitroso-di-n-propylamine	NC	17 U	20 U	16 U	17 U	17 U	21 U	17 U	16 U	17 U	17 U
Hexachloroethane	NC	19 U	22 U	18 U	18 U	18 U	23 U	18 U	18 U	18 U	18 U
Nitrobenzene	200 or MDL	20 U	23 U	19 U	19 U	19 U	24 U	19 U	19 U	20 U	19 U
Isophorone	4,400	15 U	17 U	14 U	14 U	14 U	18 U	14 U	14 U	14 U	14 U
2-Nitrophenol	330 or MDL	16 U	19 U	15 U	15 U	15 U	19 U	15 U	15 U	16 U	15 U
2,4-Dimethylphenol	NC	21 U	25 U	20 U	20 U	20 U	26 U	20 U	20 U	21 U	21 U
bis(2-Chloroethoxy)methane	NC	18 U	21 U	17 U	17 U	17 U	22 U	17 U	17 U	18 U	17 U
2,4-Dichlorophenol	400	14 U	16 U	13 U	13 U	13 U	17 U	13 U	13 U	14 U	13 U
Naphthalene	13,000	8.6 U	10 U	520	41 J	8.2 U	10 U	8.2 U	8.1 U	250 J	180 J
4-Chloroaniline	220 or MDL	150 U	170 U	140 U	140 U	140 U	180 U	140 U	140 U	140 U	140 U
Hexachlorobutadiene	NC	14 U	16 U	13 U	13 U	13 U	17 U	13 U	13 U	14 U	13 U
Caprolatam	NC	15 U	17 U	14 U	14 U	14 U	18 U	14 U	14 U	14 U	14 U
4-Chloro-3-methylphenol	240 or MDL	12 U	14 U	11 U	11 U	11 U	14 UJ	11 U	11 U	11 U	11 U
2-Methylnaphthalene	36,400	6.8 U	8 U	220 J	6.5 U	6.5 U	8.3 U	6.5 U	490	160 J	6.5 U
Hexachlorocyclopentadiene	NC	9.9 UJR	12 UJ	9.3 UJ	9.4 UJ	9.4 UJ	12 UJ	9.4 UJ	9.4 UJ	9.7 UJ	9.5 UJ
2,4,6-Trichlorophenol	NC	14 U	17 U	13 U	14 U	14 U	17 U	14 U	14 U	14 U	14 U
2,4,5-Trichlorophenol	100	26 U	31 U	25 U	25 U	25 U	32 U	25 U	25 U	26 U	25 U
1,1-Biphenyl	NC	12 U	14 U	11 U	11 U	11 U	14 U	11 U	11 U	11 U	11 U
2-Chloronaphthalene	NC NC	8.2 U	9.6 U	7.8 U	7.8 U	7.8 U	10 U	7.9 U	7.8 U	8.1 U	7.9 U
2-Nitroaniline	430 or MDL	14 U	17 U	13 U	14 U 9 U	14 U 9 U	17 U	14 U	14 U	14 U	14 U
Dimethylphthalate	2,000	9.4 U	11 U	8.9 U			11 U	9 U	8.9 U	9.2 U	9.1 U
Acenaphthylene	41,000 1,000	12 U 17 U	14 U 20 U	11 U 16 U	11 U 16 U	11 U 16 U	14 U 20 U	11 U 16 U	11 U 16 U	12 U 16 U	11 U 16 U
2,6-Dinitrotoluene 3-Nitroaniline	500 or MDL	64 U	75 U	60 U	61 U	61 U	78 U	61 U	60 U	62 U	61 U
Acenaphthene	50.000 50.000	8.7 U	10 U	320 J	8.3 U	8.3 U	11 U	8.3 U	8.2 U	180 J	94 J
2,4-Dinitrophenol	200 or MDL	17 U	20 U	16 U	17 U	17 U	21 U	17 U	16 U	17 U	17 U
4-Nitrophenol	100 or MDL	39 U	45 U	36 U	37 U	37 U	47 U	37 U	36 U	38 U	37 U
Dibenzofuran	6,200	13 U	15 U	410	12 U	12 U	16 U	12 U	12 U	13 U	100 J
2,4-Dinitrotoluene	1,000	7.9 U	9.2 U	7.4 U	7.5 U	7.5 U	9.6 U	7.5 U	7.5 U	7.7 U	7.6 U
Diethylphthalate	7,100	12 U	15 U	12 U	12 U	12 U	15 U	12 U	12 U	12 U	12 U
4-Chlorophenyl-phenylether	NC NC	9.8 U	11 U	9.2 U	9.3 U	9.3 U	12 U	9.3 U	9.3 U	9.6 U	9.4 U
Fluorene	50,000	11 U	13 U	500	11 U	11 U	14 U	11 U	11 U	56 J	160 J
4-Nitroaniline	NC	31 U	36 U	29 U	29 U	29 U	38 U	29 U	29 U	30 U	30 U
4,6-Dinitro-2-methylphenol	NC	23 U	27 U	22 U	22 U	22 U	28 U	22 U	22 U	22 U	22 U
N-Nitrosodiphenylamine	NC	10 U	12 U	9.4 U	9.5 U	9.5 U	12 U	9.6 U	9.5 U	9.8 U	9.6 U
4-Bromophenyl-phenylether	NC	10 U	12 U	9.8 U	9.9 U	9.9 U	13 U	9.9 U	9.8 U	10 U	10 U
Hexachlorobenzene	410	7.4 U	8.7 U	7 U	7 U	7 U	9 U	7.1 U	7 U	7.2 U	7.1 U
Atrazine	NC	12 U	14 U	11 U	11 U	11 U	15 U	11 U	11 U	12 U	12 U
Pentachlorophenol	1000 or MDL	12 U	14 U	12 U	12 U	12 U	15 U	12 U	12 U	12 U	12 U
Phenanthrene	50,000	8.8 U	10 U	1400	8.4 U	8.4 U	11 U	8.4 U	98 J	130 J	320 J
Anthracene	50,000	9.4 U	11 U	340 J	9 U	9 U	11 U	9 U	8.9 U	64 J	9.1 U
Carbazole	NC	8.7 U	10 U	120 J	8.3 U	8.3 U	11 U	8.3 U	8.2 U	8.5 U	200 J

Table 4-13											
Sample Location		SB-13	SB-13	SB-14	SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15
Sample Interval (Feet bgs) Sampling Date		25 to 27 10/10/04	27 to 29 10/10/04	4 to 5 09/11/04	11 to 13 10/03/04	17 to 19 10/03/04	23 to 25 10/03/04	4 to 5 08/18/04	5 to 6 08/18/04	7 to 9 08/19/04	11 to 13 08/19/04
Units		ug/Kg Blind	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic		Duplicate									
Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	5.2 U	6.1 U	4.9 U	5 U	5 U	6.4 U	5 U	5 U	5.1 U	5 U
Fluoranthene	50,000	5.5 U	6.4 U	1500	5.2 U	5.2 U	6.7 U	5.2 U	82 J	260 J	5.3 U
Pyrene	50,000	7 U	8.2 U	1600	6.7 U	6.7 U	8.6 U	6.7 U	100 J	350 J	6.8 U
Butylbenzylphthalate	50,000	13 U	16 U	12 U	13 U	13 U	16 U	13 U	13 U	13 U	13 U
3,3-Dichlorobenzidine	NA	63 U	74 U	60 U	60 U	60 U	77 U	60 U	60 U	62 U	61 U
Benzo(a)anthracene	224 or MDL	6 U	7 U	1000	5.7 U	5.7 U	7.3 U	5.7 U	50 J	210 J	5.7 U
Chrysene	400	13 U	15 U	1100	12 U	12 U	15 U	12 U	53 J	200 J	12 U
bis(2-Ethylhexyl)phthalate	50,000	45 J	68 J	8.5 U	120 J	8.6 U	11 U	8.6 U	57 J	180 J	100 J
Di-n-octyl phthalate	50,000	9.4 U	11 U	8.9 U	9 U	9 U	11 U	9 U	8.9 U	9.2 U	9.1 U
Benzo(b)fluoranthene	1,100	21 U	25 U	1400	20 U	20 U	26 U	44 J	20 U	220 J	20 U
Benzo(k)fluoranthene	1,100	13 U	16 U	700 J	13 U	13 U	16 U	13 U	51 J	120 J	13 U
Benzo(a)pyrene	61 or MDL	6.8 U	8 U	1300	6.5 U	6.5 U	8.3 U	42 J	50 J	190 J	6.5 U
Indeno(1,2,3-cd)pyrene	3,200	9.5 U	11 U	690	9.1 U	9.1 U	12 U	9.1 U	9 U	63 J	9.2 U
Dibenz(a,h)anthracene	14 or MDL	12 U	14 U	120 J	11 U	11 U	14 U	11 U	11 U	11 U	11 U
Benzo(g,h,i)perylene	50,000	17 U	20 U	750	16 U	16 U	21 U	16 U	16 U	73 J	17 U
Total Confident Conc. SVOC	500,000	45	68	13,990	161	-	-	86	1,031	2,706	1,154
Carcinogenic SVOCs in BaP	Equivalents	ND	ND	1.747	ND	ND	ND	46.4	56	242.5	ND

					l able 4-1						
Sample Location		SB-15	SB-15	SB-18	SB-18	SB-18	SB-53	SB-53	SB-53	SB-54	SB-54
Sample Interval (Feet bgs) Sampling Date		17 to 19 08/19/04	23 to 25 08/19/04	7.3 to 7.9 07/21/04	28.5 to 29 07/21/04	42.5 to 43 07/21/04	6 to 7 03/24/05	8.3 to 9.3 03/24/05	14 to 15 03/24/05	3 to 4 03/23/05	5 to 6 03/24/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
0											
Semivolatile Organic Compounds (ug/kg)	TAGM RSCO										
1 (00)	NC NC	3800 U	51 U	39 U	380 U	49 U	170 U	39 U	36 U	39 U	350 U
Benzaldehyde											
Phenol	30 or MDL	1600 U	22 U	16 U	160 U	21 U	72 U	17 U	15 U	17 U	150 U
bis(2-Chloroethyl)ether	NC	1900 U	25 U	19 U	190 U	25 U	86 U	20 U	18 U	20 U	170 U
2-Chlorophenol	800	1700 U	22 U	17 U	170 U	22 U	75 U	17 U	16 U	17 U	150 U
2-Methylphenol	100 or MDL	2400 U	33 U	25 U	250 U	32 U	110 U	25 U	23 U	25 U	220 U
2,2-oxybis(1-Chloropropane)	NC	2100 U	28 U	21 U	210 U	27 U	94 U	21 U	20 U	22 U	190 U
Acetophenone	NC	2000 U	27 U	21 U	200 U	26 U	91 U	21 U	19 U	21 U	190 U
3+4-Methylphenols	900	1800 U	24 U	18 U	180 U	23 U	80 U	18 U	17 U	18 U	160 U
N-Nitroso-di-n-propylamine	NC	1700 U	23 U	17 U	170 U	22 U	77 U	18 U	16 U	18 U	160 U
Hexachloroethane	NC	1900 U	25 U	19 U	190 U	24 U	83 U	19 U	18 U	19 U	170 U
Nitrobenzene	200 or MDL	2000 U	26 U	20 U	200 U	25 U	88 U	20 U	19 U	20 U	180 U
Isophorone	4,400	1400 U	19 U	15 U	150 U	19 U	65 U	15 U	14 U	15 U	130 U
2-Nitrophenol	330 or MDL	1600 U	21 U	16 U	160 U	20 U	70 U	16 U	15 U	16 U	140 U
2,4-Dimethylphenol	NC	44000	340 J	21 U	210 U	27 U	94 U	21 U	20 U	22 U	190 U
bis(2-Chloroethoxy)methane	NC	1800 U	24 U	18 U	180 U	23 U	79 U	18 U	17 U	18 U	160 U
2,4-Dichlorophenol	400	1400 U	18 U	14 U	140 U	18 U	61 U	14 U	13 U	14 U	120 U
Naphthalene	13,000	4700000 J	32000 D	8.6 U	3300 J	11 U	12000	8.6 U	8 U	90 J	14000
4-Chloroaniline	220 or MDL	14000 U	190 U	150 U	1400 U	190 U	640 U	150 U	140 U	150 U	1300 U
Hexachlorobutadiene	NC	1400 U	18 U	14 U	140 U	18 U	61 U	14 U	13 U	14 U	120 U
Caprolatam	NC	1400 U	19 U	15 U	140 U	18 U	64 U	15 U	14 U	15 U	130 U
4-Chloro-3-methylphenol	240 or MDL	1100 U	15 U	12 U	120 U	15 U	51 U	12 U	11 U	12 U	110 U
2-Methylnaphthalene	36,400	1700000 J	13000 D	6.8 U	1600 J	8.6 U	6400	6.8 U	6.3 U	49 J	11000
Hexachlorocyclopentadiene	NC	970 UJ	13 UJ	9.9 UJ	98 UJ	13 UJ	44 UJ	10 UJ	9.2 UJ	10 UJ	89 UJ
2,4,6-Trichlorophenol	NC	1400 U	19 U	14 U	140 U	18 U	63 U	14 U	13 U	14 U	130 U
2,4,5-Trichlorophenol	100	2600 U	34 U	26 U	260 U	33 U	120 U	26 U	24 U	26 U	230 U
1,1-Biphenyl	NC	1100 U	15 U	12 U	420 J	15 U	1200 J	12 U	11 U	12 U	1200 J
2-Chloronaphthalene	NC	810 U	11 U	8.2 U	82 U	10 U	36 U	8.3 U	7.7 U	8.3 U	74 U
2-Nitroaniline	430 or MDL	1400 U	19 U	14 U	140 U	18 U	63 U	14 U	13 U	14 U	130 U
Dimethylphthalate	2,000	930 U	12 U	9.4 U	94 U	12 U	41 U	9.5 U	8.8 U	9.5 U	85 U
Acenaphthylene	41,000	530000 J	3300	12 U	1400 J	15 U	240 J	12 U	11 U	62 J	110 U
2,6-Dinitrotoluene	1,000	1700 U	22 U	17 U	170 U	21 U	74 U	17 U	16 U	17 U	150 U
3-Nitroaniline	500 or MDL	6300 U	83 U	64 U	630 U	81 U	280 U	64 U	59 U	64 U	570 U
Acenaphthene	50,000	240000 J	2900	8.7 U	1800 J	11 U	5500	8.8 U	8.1 U	52 J	9200
2,4-Dinitrophenol	200 or MDL	1700 U	23 U	17 U	170 U	22 U	77 U	18 U	16 U	18 UJ	160 U
4-Nitrophenol	100 or MDL	33000 J	50 U	39 U	1300 J	49 U	170 U	39 U	36 U	39 U	350 U
Dibenzofuran	6,200	420000 J	3300	13 U	1400 J	17 U	6200	13 U	12 U	52 J	6400
2,4-Dinitrotoluene	1,000	770 U	10 U	7.9 U	78 U	10 U	35 U	7.9 U	7.3 U	7.9 U	71 U
Diethylphthalate	7,100	1200 U	16 U	12 U	120 U	16 U	55 U	12 U	12 U	13 U	110 U
4-Chlorophenyl-phenylether	NC	960 U	13 U	9.8 U	97 U	12 U	43 U	9.8 U	9.1 U	9.9 U	88 U
Fluorene	50,000	830000 J	6900 D	11 U	2900 J	14 U	5800	11 U	10 U	84 J	9100
4-Nitroaniline	NC	3000 U	40 U	31 U	310 U	39 U	140 U	31 U	29 U	31 U	280 U
4,6-Dinitro-2-methylphenol	NC	2200 U	30 U	23 U	230 U	29 U	100 U	23 U	21 U	23 UJ	210 U
N-Nitrosodiphenylamine	NC	980 U	13 U	10 U	99 U	13 U	44 U	10 U	9.3 U	10 U	90 U
4-Bromophenyl-phenylether	NC	1000 U	14 U	10 U	100 U	13 U	46 U	10 U	9.7 U	10 U	93 U
Hexachlorobenzene	410	730 U	9.7 U	7.4 U	73 U	9.4 U	33 U	7.4 U	6.9 U	7.5 U	66 U
Atrazine	NC	1200 U	16 U	12 U	120 U	15 U	53 U	12 U	11 U	12 U	110 U
Pentachlorophenol	1000 or MDL	1200 U	16 U	12 U	120 U	16 U	54 U	12 U	11 U	12 U	110 U
Phenanthrene	50,000	1300000 DJ	11000 DJ	310 J	7800	62 J	42000 D	52 J	8.2 U	1200	61000 D
Anthracene	50,000	610000 J	5000 D	96 J	2500 J	12 U	9600	9.5 U	8.8 U	210 J	17000
Carbazole	NC	190000 J	2100	8.7 U	590 J	11 U	4500	8.8 U	8.1 U	67 J	7500

1400 1 10											
Sample Location		SB-15	SB-15	SB-18	SB-18	SB-18	SB-53	SB-53	SB-53	SB-54	SB-54
Sample Interval (Feet bgs)		17 to 19	23 to 25	7.3 to 7.9	28.5 to 29	42.5 to 43	6 to 7	8.3 to 9.3	14 to 15	3 to 4	5 to 6
Sampling Date		08/19/04	08/19/04	07/21/04	07/21/04	07/21/04	03/24/05	03/24/05	03/24/05	03/23/05	03/24/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	520 U	6.9 U	5.3 U	52 U	6.7 U	23 U	5.3 U	4.9 U	5.3 U	47 U
Fluoranthene	50,000	750000 J	6400 D	390 J	5100	7 U	33000 D	5.5 U	5.1 U	1900 J	48000 D
Pyrene	50,000	830000 J	7600 D	430	5600	8.9 U	26000 D	7.1 U	6.6 U	1600	40000 D
Butylbenzylphthalate	50,000	1300 U	17 U	13 U	130 U	17 U	58 U	13 U	12 U	13 U	120 U
3,3-Dichlorobenzidine	NA	6200 U	83 U	63 U	630 U	80 U	280 U	64 U	59 U	64 U	570 U
Benzo(a)anthracene	224 or MDL	410000 J	3600	210 J	3100 J	7.6 U	12000	6 U	5.6 U	1400	19000
Chrysene	400	360000 J	3000	190 J	2400 J	16 U	10000	13 U	12 U	1100	17000
bis(2-Ethylhexyl)phthalate	50,000	890 U	62 J	72 J	90 U	120 J	40 U	78 J	51 J	9.2 U	82 U
Di-n-octyl phthalate	50,000	930 U	12 U	9.4 U	94 U	12 U	41 U	9.5 U	8.8 U	9.5 U	85 U
Benzo(b)fluoranthene	1,100	290000 J	2300	190 J	2200 J	27 U	12000 DJ	21 U	20 U	1500 J	26000 J
Benzo(k)fluoranthene	1,100	98000 J	1100 J	110 J	1200 J	17 U	4500	14 U	13 U	650	7500
Benzo(a)pyrene	61 or MDL	270000 J	2300	110 J	2000 J	8.6 U	10000	6.8 U	6.3 U	1400 J	18000
Indeno(1,2,3-cd)pyrene	3,200	60000 J	550	89 J	560 J	12 U	2300 J	9.6 U	8.9 U	470 J	3500 J
Dibenz(a,h)anthracene	14 or MDL	17000 J	160 J	12 U	110 U	15 U	560 J	12 U	11 U	140 J	820 J
Benzo(g,h,i)perylene	50,000	67000 J	620	81 J	630 J	22 U	3400	17 U	16 U	630	5100
	<u></u>										
Total Confident Conc. SVOC	500,000	13,749,000	75,532	2,278	47,800	182	207,200	130	51	12,656	321,320
Carcinogenic SVOCs in BaP	Equivalents	367.580	3.146	173.9	2.622	ND	13.335	ND	ND	1.894.5	23.915

					Table	4-13	
Sample Location		SB-54	SB-54	SB-55	SB-56	SB-55	SB-55
Sample Interval (Feet bgs)		9 to 10	19 to 21	2 to 3	2 to 3	5 to 6	8 to 9
Sampling Date		03/24/05	03/24/05	03/23/05	03/23/05	03/25/05	03/25/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic							
Compounds (ug/kg)	TAGM RSCO						
Benzaldehyde	NC	37 U	37 U	150 U	390 U	34 U	36 U
Phenol	30 or MDL	16 U	16 U	64 U	170 U	15 U	15 U
bis(2-Chloroethyl)ether	NC	18 U	18 U	76 U	200 U	17 U	18 U
2-Chlorophenol	800	16 U	16 U	67 U	170 U	15 U	16 U
2-Methylphenol	100 or MDL	24 U	24 U	98 U	250 U	22 U	23 U
2,2-oxybis(1-Chloropropane)	NC	20 U	20 U	84 U	220 U	19 U	20 U
Acetophenone	NC	20 U	20 U	81 U	210 U	18 U	19 U
3+4-Methylphenols	900	17 U	17 U	71 U	180 U	16 U	17 U
N-Nitroso-di-n-propylamine	NC	17 U	17 U	68 U	180 U	15 U	16 U
Hexachloroethane	NC	18 U	18 U	74 U	190 U	17 U	18 U
Nitrobenzene	200 or MDL	19 U	19 U	78 U	200 U	18 U	19 U
Isophorone	4,400	14 U	14 U	57 U	150 U	13 U	14 U
2-Nitrophenol	330 or MDL	15 U	15 U	62 U	160 U	14 U	15 U
2,4-Dimethylphenol	NC	20 U	20 U	84 U	220 U	19 U	20 U
bis(2-Chloroethoxy)methane	NC	17 U	17 U	70 U	180 U	16 U	17 U
2,4-Dichlorophenol	400	13 U	13 U	54 U	140 U	12 U	13 U
Naphthalene	13,000	8.1 U	120 J	4300	23000	470	8 U
4-Chloroaniline	220 or MDL	140 U	140 U	570 U	1500 U	130 U	140 U
Hexachlorobutadiene	NC	13 U	13 U	54 U	140 U	12 U	13 U
Caprolatam	NC	14 U	14 U	57 U	150 U	13 U	14 U
4-Chloro-3-methylphenol	240 or MDL	11 U	11 U	46 U	120 U	10 U	11 U
2-Methylnaphthalene	36,400	6.4 U	72 J	3700	19000	300 J	6.3 U
Hexachlorocyclopentadiene	NC	9.4 UJ	9.4 UJ	39 UJ	100 UJ	8.8 UJ	9.2 UJ
2,4,6-Trichlorophenol	NC	14 U	14 U	56 U	150 U	13 U	13 U
2,4,5-Trichlorophenol	100	25 U	25 U	100 U	270 U	23 U	24 U
1,1-Biphenyl	NC	11 U	11 U	520 J	2600 J	48 J	11 U
2-Chloronaphthalene	NC	7.8 U	7.8 U	32 U	84 U	7.3 U	7.7 U
2-Nitroaniline	430 or MDL	14 U	14 U	56 U	150 U	13 U	13 U
Dimethylphthalate	2,000	8.9 U	8.9 U	37 U	96 U	8.4 U	8.8 U
Acenaphthylene	41,000	11 U	11 U	250 J	120 U	10 U	11 U
2,6-Dinitrotoluene 3-Nitroaniline	1,000 500 or MDL	16 U 60 U	16 U 60 U	66 U 250 U	170 U 650 U	15 U 57 U	16 U 59 U
	500 OF MIDE 50.000	8.3 U	53 J	4100	18000	260 J	8.1 U
Acenaphthene 2,4-Dinitrophenol	200 or MDL	17 U	17 U	4100 68 U	180 U	260 J 15 U	16 U
4-Nitrophenol	100 or MDL	37 U	37 U	150 U	390 U	34 U	36 U
Dibenzofuran	6,200	12 U	37 U	2700	12000	190 J	12 U
2,4-Dinitrotoluene	1,000	7.5 U	7.5 U	2700 31 U	80 U	80 U	80 U
,	7,100	7.5 U	7.5 U	49 U	130 U	11 U	12 U
Diethylphthalate	7,100 NC	9.3 U	9.3 U	38 U	100 U	8.7 U	9.1 U
4-Chlorophenyl-phenylether Fluorene	50,000	9.3 U 11 U	9.3 U 50 J	3600	17000	260 J	9.1 U
4-Nitroaniline	30,000 NC	29 U	29 U	120 U	310 U	27 U	29 U
4,6-Dinitro-2-methylphenol	NC NC	29 U	29 U	90 U	230 U	27 U	29 U
N-Nitrosodiphenylamine	NC NC	9.5 U	9.5 U	39 U	100 U	8.9 U	9.3 U
4-Bromophenyl-phenylether	NC NC	9.5 U	9.8 U	41 U	110 U	9.2 U	9.7 U
Hexachlorobenzene	410	9.8 U 7 U	9.8 U 7 U	41 U 29 U	75 U	9.2 U 6.6 U	9.7 U 6.9 U
Atrazine	NC	7 U	11 U	29 U 47 U	120 U	11 U	6.9 U
Pentachlorophenol	1000 or MDL	11 U	11 U	47 U 48 U	120 U	11 U	11 U
Phenanthrene	50,000	8.4 U	340 J	32000 D	110000 D	2000	63 J
Anthracene	50,000	8.4 U 8.9 U	340 J 83 J	9600	30000 D	390	8.8 U
Carbazole	50,000 NC	8.9 U 8.3 U	83 J 50 J	3800	11000	180 J	8.8 U 8.1 U
Carbazole	NC	0.3 U	5U J	3000	11000	100 J	0.1 U

447

ND

Sample Location		SB-54	SB-54	SB-55	SB-56	SB-55	SB-55
Sample Interval (Feet bgs) Sampling Date		9 to 10 03/24/05	19 to 21 03/24/05	2 to 3 03/23/05	2 to 3 03/23/05	5 to 6 03/25/05	8 to 9 03/25/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic							
Compounds (ug/kg)	TAGM RSCO						
Di-n-butylphthalate	8,100	5 U	5 U	21 U	53 U	4.7 U	4.9 U
Fluoranthene	50,000	5.2 U	260 J	33000 D	86000 D	1500	52 J
Pyrene	50,000	6.7 U	220 J	25000 D	72000 D	1300	52 J
Butylbenzylphthalate	50,000	13 U	13 U	52 U	130 U	12 U	12 U
3,3-Dichlorobenzidine	NA	60 U	60 U	250 U	640 U	56 U	59 U
Benzo(a)anthracene	224 or MDL	5.7 U	120 J	13000 D	30000	610	5.6 U
Chrysene	400	12 U	87 J	12000	26000	440	12 U
bis(2-Ethylhexyl)phthalate	50,000	190 J	53 J	210 J	92 U	160 J	280 J
Di-n-octyl phthalate	50,000	8.9 U	8.9 U	37 U	96 U	8.4 U	8.8 U
Benzo(b)fluoranthene	1,100	20 U	110 J	14000 DL	29000 DJ	550 J	20 U
Benzo(k)fluoranthene	1,100	13 U	41 J	4900	12000	200 J	13 U
Benzo(a)pyrene	61 or MDL	6.4 U	98 J	11000 D	30000	460	6.3 U
Indeno(1,2,3-cd)pyrene	3,200	9 U	45 J	3000 J	5600 J	250 J	8.9 U
Dibenz(a,h)anthracene	14 or MDL	11 U	11 U	510 J	1100 J	46 J	11 U
Benzo(g,h,i)perylene	50,000	16 U	60 J	3800	7800	330 J	16 U

184,780

14,679

542,100

37,940

9,944

653.4

1,900

126.8

190

ND

500,000

Total Confident Conc. SVOC

Carcinogenic SVOCs in BaP Equivalents

Sample Location		SB-55				l able 4-1	10		
· ·									
Sample Interval (Feet bgs)		19 to 20 03/25/05							
Sampling Date									
Units		ug/Kg			- ,		- ,		
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic	TA CM DCCC		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO	00.11		_	201	Exceedances	00/	20	0.000
Benzaldehyde	NC NC	39 U	58	0	0%	0	0%	< 33	< 3,800
Phenol	30 or MDL	17 U	58		0%	0	0%	< 14	< 1,600
bis(2-Chloroethyl)ether	NC	20 U	58	0	0%	•	0%	< 17	< 1,900
2-Chlorophenol	800	17 U	58	0	0%	0	0%	< 15	< 1,700
2-Methylphenol	100 or MDL	25 U 22 U	58 58	0	2% 0%	0	2% 0%	< 21	< 2,400
2,2-oxybis(1-Chloropropane)	NC NC			0	0%	0		< 18	< 2,100
Acetophenone	900	21 U	58		3%	1	0%	< 18	< 2,000
3+4-Methylphenols		18 U	58	2			2%	< 16	< 1,800
N-Nitroso-di-n-propylamine	NC NC	18 U	58	0	0%	0	0%	< 15	< 1,700
Hexachloroethane	NC	19 U	58	0	0%	0	0%	< 16	< 1,900
Nitrobenzene	200 or MDL	20 U	58	0	0%	0	0%	< 17	< 2,000
Isophorone	4,400	15 U	58	0	0%	0	0%	< 13	< 1,400
2-Nitrophenol	330 or MDL	16 U 22 U	58	0 2	0%	0	0%	< 14	< 1,600
2,4-Dimethylphenol	NC		58	0	3%		0%	< 18	44,000
bis(2-Chloroethoxy)methane	NC 100	18 U	58		0%	0	0%	< 15	< 1,800
2,4-Dichlorophenol	400	14 U	58	0	0%	0	0%	< 12	< 1,400
Naphthalene	13,000	8.7 U	58	26	45%	6	10%	< 7.4	4,700,000
4-Chloroaniline	220 or MDL	150 U	58	0	0%	0	0%	< 130	< 14,000
Hexachlorobutadiene	NC	14 U	58	0	0%	0	0%	< 12	< 1,400
Caprolatam	NC	15 U	58	0	0%	0	0%	< 12	< 1,400
4-Chloro-3-methylphenol	240 or MDL	12 U	58	0	0%	0	0%	< 10	< 1,100
2-Methylnaphthalene	36,400	6.9 U	58	24	41%	2	3%	< 5.8	1,700,000
Hexachlorocyclopentadiene	NC NC	10 UJ	58	0	0%	0	0%	< 8.5	< 970
2,4,6-Trichlorophenol	NC 100	14 U	58	0	0% 0%		0% 0%	< 12	< 1,400
2,4,5-Trichlorophenol	100	26 U	58	10		0		< 22	< 2,600
1,1-Biphenyl	NC NC	12 U 8.3 U	58	0	17% 0%	0	0% 0%	< 10 < 7.1	7,700
2-Chloronaphthalene		8.3 U 14 U	58	0	0%	0	0%		< 810
2-Nitroaniline	430 or MDL		58	0	0%	0	0%	< 12	< 1,400 < 930
Dimethylphthalate	2,000	9.5 U	58 58	11		0	2%	< 8.1	
Acenaphthylene 2,6-Dinitrotoluene	41,000	12 U 17 U	58	0	19% 0%	0	2% 0%	< 10 < 14	530,000 < 1,700
3-Nitroaniline	1,000 500 or MDL	64 U	58	0	0%	0	0%	< 14 < 55	
Acenaphthene	50,000	8.8 U	58	23	40%	0	2%	< 55 < 7.5	< 6,300 240,000
2,4-Dinitrophenol	200 or MDL	18 U	58	0	40% 0%	0	2% 0%	< 7.5 < 15	< 1,700
	100 or MDL	39 U	58	2	3%	2	3%	< 33	33.000
4-Nitrophenol Dibenzofuran	6.200	39 U 13 U	58	20	3%	4	3% 7%	< 33 < 11	420.000
2,4-Dinitrotoluene	1,000	400 UD	58	0	0%	0	0%	< 6.8	-,
	7,100	13 U	58	0	0%	0	0%		
Diethylphthalate	7,100 NC			0		0		< 11	< 1,200
4-Chlorophenyl-phenylether Fluorene	50.000	9.9 U 11 U	58 58	23	0% 40%	1	0% 2%	< 8.4	< 960
4-Nitroaniline	50,000 NC	31 U	58	0	40% 0%	0	2% 0%	< 9.6 < 27	830,000 < 3,000
						·			•
4,6-Dinitro-2-methylphenol	NC NC	23 U 10 U	58	0	0% 0%	0	0% 0%	< 20	< 2,200
N-Nitrosodiphenylamine			58		474	•		< 8.6	< 980
4-Bromophenyl-phenylether	NC 410	10 U	58	0	0%	0	0%	< 8.9	< 1,000
Hexachlorobenzene		7.5 U	58	0	0%	0	0%	< 6.3	< 730
Atrazine	NC 1000 or MDI	12 U	58	0	0%	0	0%	< 10	< 1,200
Pentachlorophenol	1000 or MDL	12 U	58		0%	0	0%	< 11	< 1,200
Phenanthrene	50,000	8.9 U	58	34	59%	4	7%	< 8.2	1,300,000
Anthracene	50,000	9.5 U	58	25	43%	1	2%	< 8.4	610,000
Carbazole	NC	8.8 U	58	19	33%	0	0%	< 7.5	190,000

						Table 4			
Sample Location		SB-55							
Sample Interval (Feet bgs) Sampling Date		19 to 20 03/25/05							
Units		ug/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic			Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO					Exceedances			
Di-n-butylphthalate	8,100	5.3 U	58	0	0%	0	0%	< 4.5	< 520
Fluoranthene	50,000	5.5 U	58	29	50%	2	3%	< 4.9	750,000
Pyrene	50,000	7.1 U	58	29	50%	2	3%	< 6.3	830,000
Butylbenzylphthalate	50,000	13 U	58	2	3%	0	0%	< 12	1,300
3,3-Dichlorobenzidine	NA	64 U	58	0	0%	0	0%	< 54	< 6,200
Benzo(a)anthracene	224 or MDL	6 U	58	25	43%	17	29%	< 5.3	410,000
Chrysene	400	13 U	58	25	43%		26%	< 11	360,000
bis(2-Ethylhexyl)phthalate	50,000	180 J	58	34	59%	0	0%	< 8.1	890
Di-n-octyl phthalate	50,000	9.5 U	58	1	2%	0	0%	< 8.1	< 930
Benzo(b)fluoranthene	1,100	21 U	58	25	43%	14	24%	< 19	290,000
Benzo(k)fluoranthene	1,100	14 U	58	22	38%	9	16%	< 12	98,000
Benzo(a)pyrene	61 or MDL	6.9 U	58	25	43%		36%	< 6.1	270,000
Indeno(1,2,3-cd)pyrene	3,200	9.6 U	58	21	36%	3	5%	< 8.2	60,000
Dibenz(a,h)anthracene	14 or MDL	12 U	58	13	22%	13	22%	< 9.9	17,000
Benzo(g,h,i)perylene	50,000	17 U	58	22	38%	1	2%	< 15	67,000
Total Confident Conc. SVOC	500,000	180							
Carcinogenic SVOCs in BaP I	Equivalents	ND							

Sample Location		TP2	SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-8	SB-8	SB-9	SB-9
Sample Interval (Feet bgs)		10 to 11	6 to 7	17 to 19	27 to 29	43 to 45	6 to 7	4 to 5	11 to 11.5	14.5 to 15	4 to 5	8 to 10
Sampling Date		09/12/04	07/09/04	08/09/04	08/09/04	08/09/04	07/09/04	07/09/04	08/11/04	08/11/04	09/12/04	09/18/04
Matrix		SOIL	SOIL	SOIL	SOIL							
Dilution Factor		1	1	1	1	1	1	1	1.0	1.0	1.0	1
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg							
	TAGM											
PP Metals	RSCO											
Antimony	В	0.673 U	0.701 U	0.665 U	0.672 U	0.71 U	0.68 U	0.609 U	0.619 U	0.684 U	0.619 U	0.64 U
Arsenic	12	1.88	3.19	1.11 J	0.283 U	0.299 U	2.61	1.7	0.309 J	0.434 J	1.94 J	1.79
Beryllium	600	0.285 J	0.73	0.524 J	0.37 J	0.634 J	0.621	0.475 J	0.381 J	0.326 J	0.322 J	0.391 J
Cadmium	1	0.055 U	0.482 J	0.054 U	0.055 U	0.058 U	0.379 J	0.244 J	0.662	0.893	0.051 U	0.052 U
Chromium	40	10.9	16.9	13.5	5.32	10.4	15.8	16.5	14.7	26.3	12.6	14.7
Copper	50	11.9	18.2	12.1	6.24	10.1	17	16.2	12.8	8	16	18.1
Lead	500	13.3	16.4	5.86	3.05	9.2	11.7	7.89	11.5	7.28	21.9	14.5 J
Mercury	0.1	0.24 U	0.04 J	0.02	0.01 U	0.01 U	0.03 J	0.02 J	0.02 J	0.01 J	0.22 U	0.11 J
Nickel	25	11.6	16.7	9.81	10.7	13.7	15.5	14.3	12.5	11.7	12.3	16.5
Selenium	3.9	0.54 J	1.1 J	0.37 U	0.373 U	0.395 U	0.656 J	0.408 J	0.344 U	1.05 J	0.606 J	0.525 J
Silver	В	0.126 U	0.131 U	0.124 U	0.125 U	0.132 U	0.127 U	0.113 U	0.116 U	0.183 J	0.116 U	0.119 U
Thallium	В	0.395 U	0.544 J	0.39 U	0.394 U	0.416 U	0.399 J	0.357 J	0.363 U	0.401 U	0.363 U	0.375 U
Zinc	50	29.1	46.6	17.7 J	9.31 J	24 J	41.5	21.7	21.9	31.1	32.1	39.1

Sample Location		TP2	SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-8	SB-8	SB-9	SB-9
Sample Interval (Feet bgs) Sampling Date Units	TAGM RSCO	10 to 11 09/12/04 mg/Kg	6 to 7 07/09/04 mg/Kg	17 to 19 8/9/04 mg/Kg	27 to 29 8/9/04 mg/Kg	43 to 45 8/9/04 mg/Kg	6 to 7 07/09/04 mg/Kg	4 to 5 07/09/04 mg/Kg	11 to 11.5 8/11/04 mg/Kg	14.5 to 15 8/11/04 mg/Kg	4 to 5 09/12/04 mg/Kg	8 to 10 09/18/04 mg/Kg
Cyanide	NC	0.6 U	0.628 U	0.6 U	0.6 U	0.63 U	0.603 U	0.545 U	1.06 J	0.61 UJ	0.55 U	0.57 U
Amenable Cyanide	NC	0.6 U	0.63 U	0.6 U	0.6 U	0.63 U	0.6 U	0.55 U	0.56 UJ	0.61 UJ	0.55 U	0.57 U

Sample Location		SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11
Sample Interval (Feet bgs)		20 to 22	26 to 28	32 to 34	5 to 6	6 to 8	8 to 10	20 to 22	48 to 50	5 to 6	13 to 15	27 to 29
Sampling Date		09/18/04	09/18/04	09/18/04	09/11/04	09/18/04	09/18/04	09/18/04	09/18/04	09/11/04	09/18/04	09/18/04
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1	1	1	1.0	1	1.0	1.0	1.0	1.0	1.0	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM											
PP Metals	RSCO											
Antimony	В	0.694 U	0.657 U	0.688 U	0.632 U	0.623 U	0.649 U	0.661 U	0.691 U	0.625 UJ	1.02 J	1.79 J
Arsenic	12	4.91	1.7	1.53	1.7 J	2.42	4.02	2.47	2.01	3.15 J	1.56	3.85
Beryllium	600	0.289 J	0.475 J	0.251 J	0.281 J	0.255 J	0.25 J	0.21 J	0.457 J	0.374 J	0.302 J	0.32 J
Cadmium	1	0.057 U	0.054 U	0.056 U	0.052 U	0.051 U	0.053 U	0.054 U	0.056 U	0.051 U	0.055 U	0.057 U
Chromium	40	14.9	15.7	16.1	12.4	11.3	10.4	11.6	20.6	14.8	13	12
Copper	50	12.4	16.1	9.37	19.3	26.5	26.5	6.65	18.3	20.3 J	15.2	20.2
Lead	500	677 J	88.6 J	4.31 J	53.6	55.3 J	40.4 J	21.6 J	7.51 J	110 J	15.8 J	1740 J
Mercury	0.1	0.05 J	0.01 J	0.01 UJ	0.22 U	0.09 J	0.07 J	0.01 UJ	0.01 J	0.48 J	0.03 J	0.02 J
Nickel	25	14	16.5	7.86	13.5	11.6	11.5	5.82	26.8	15.3	13.3	12.2
Selenium	3.9	0.565 J	0.527 J	0.383 U	0.838 J	0.347 U	0.653 J	0.368 U	0.384 U	0.878 J	0.387 J	0.389 U
Silver	В	0.129 U	0.123 U	0.128 U	0.118 U	0.116 U	0.121 U	0.123 U	0.129 U	0.117 U	1.46	0.131 U
Thallium	В	0.407 U	0.385 U	0.403 U	0.37 U	0.365 U	0.381 U	0.388 U	0.405 U	0.366 U	0.395 U	0.41 U
Zinc	50	66.9	30.9	11.6	41.5	50.5	50	11.3	33.9	59.5	30.2	69.4

Sample Location		SB-9	SB-9	SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11
Sample Interval (Feet bgs) Sampling Date Units	TAGM RSCO	20 to 22 09/18/04 mg/Kg	26 to 28 09/18/04 mg/Kg	32 to 34 09/18/04 mg/Kg	5 to 6 09/11/04 mg/Kg	6 to 8 09/18/04 mg/Kg	8 to 10 09/18/04 mg/Kg	20 to 22 09/18/04 mg/Kg	48 to 50 09/18/04 mg/Kg	5 to 6 09/11/04 mg/Kg	13 to 15 09/18/04 mg/Kg	27 to 29 09/18/04 mg/Kg
Cyanide	NC	31	0.58 U	0.62 U	0.56 U	0.55 U	0.58 U	2.08	0.61 U	0.55 U	0.6 U	45 R
Amenable Cyanide	NC	10.5	0.58 U	0.62 U	0.56 U	0.55 U	0.58 U	0.59 U	0.61 U	0.55 U	0.6 U	7.9 R

Sample Location		SB-11	SB-11	SB-12	SB-12	SB-12	SB-12	SB-12	SB-13	SB-13	SB-13	SB-13	SB-14
Sample Interval (Feet bgs) Sampling Date Matrix Dilution Factor		35 to 37 09/18/04 SOIL 1.0	37 to 39 09/18/04 SOIL 1	5 to 7 09/11/04 SOIL 1	7 to 9 09/11/04 SOIL 1	15 to 17 09/11/04 SOIL 1	25 to 27 09/12/04 SOIL 1	49 to 51 09/12/04 SOIL 1.0	6 to 6.5 07/12/04 SOIL 1	25 to 27 10/10/04 SOIL 1	25 to 27 10/10/04 SOIL 1	27 to 29 10/10/04 SOIL 1	4 to 5 09/11/04 SOIL 1
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
PP Metals	TAGM RSCO										Blind Duplicate		
Antimony	В	0.672 U	0.664 U	0.581 U	0.584 U	0.692 U	0.783 U	0.658 U	0.668 U	0.654 U	0.675 U	0.794 U	0.643 U
Arsenic	12	2.26	0.295 J	1.83 J	1.55 J	2.63 J	7.78 J	1.03 J	2.85	2.04	1.87	11.4	3.72 J
Beryllium	600	0.43 J	0.214 J	0.185 J	0.149 J	0.341 J	0.496 J	0.171 J	0.505 J	0.477 J	0.394 J	0.606 J	0.309 J
Cadmium	1	0.055 U	0.054 U	0.047 U	0.048 U	0.057 U	0.064 U	0.054 U	1.01	0.053 U	0.055 U	0.065 U	0.053 U
Chromium	40	12.9	7.26	10.7	12	16.2	20.4	14.7	13.6	16.4	15.4	22.6	10.5
Copper	50	13.7	5.42	6.29	7.27	17.9	14.6	16.1	22.5	21.8	22.4	15.3	23.4
Lead	500	13.8 J	5.1 J	54.3	68.6	13.6	18.1	2.63	12.9	5.65	13.9	9.7	184
Mercury	0.1	0.01 UJ	0.01 J	0.2 U	0.2 U	0.24 U	0.28 U	0.23 U	0.02	0.019 R	0.023 R	0.008 R	0.23 J
Nickel	25	12.1	8.47	5.75	4.31	13.6	18.6	11.4	14.9	14.8	15.2	21.7	13.8
Selenium	3.9	1.25 J	0.369 U	0.675 J	0.415 J	0.713 J	1.72	0.366 U	1.01 J	0.364 U	0.375 U	1.22 J	0.896 J
Silver	В	0.125 U	0.124 U	0.108 U	0.109 U	0.654 J	0.146 U	0.123 U	0.48 J	0.122 U	0.126 U	0.281 J	0.12 U
Thallium	В	0.394 U	0.389 U	0.341 U	0.342 U	0.406 U	0.459 U	0.386 U	0.391 U	0.383 U	0.396 U	0.465 U	0.377 U
Zinc	50	23.4	10.1	34.2	40	28.5	51.8	14.9	43.4	25	29.1	57.8	35.5

Sample Location		SB-11	SB-11	SB-12	SB-12	SB-12	SB-12	SB-12	SB-13	SB-13	SB-13	SB-13	SB-14
Sample Interval (Feet bgs) Sampling Date Units	TAGM RSCO	35 to 37 09/18/04 mg/Kg	37 to 39 09/18/04 mg/Kg	5 to 7 09/11/04 mg/Kg	7 to 9 09/11/04 mg/Kg	15 to 17 09/11/04 mg/Kg	25 to 27 09/12/04 mg/Kg	49 to 51 09/12/04 mg/Kg	6 to 6.5 07/12/04 mg/Kg	25 to 27 10/10/04 mg/Kg	25 to 27 10/10/04 mg/Kg Blind Duplicate	27 to 29 10/10/04 mg/Kg	4 to 5 09/11/04 mg/Kg
Cyanide	NC	0.6 U	0.602 U	1.24	0.52 U	0.62 U	0.71 U	0.58 U	0.59 U	0.59 U	0.61 U	0.71 U	0.57 U
Amenable Cyanide	NC	0.6 U	0.6 U	0.52 U	0.52 U	0.62 U	0.71 U	0.58 U	0.59 U	0.59 U	0.61 U	0.71 U	0.57 U

Sample Location		SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15	SB-15	SB-15	SB-18	SB-18	SB-18
Sample Interval (Feet bgs)		11 to 13	17 to 19	23 to 25	4 to 5	5 to 6	7 to 9	11 to 13	17 to 19	23 to 25	7.3 to 7.9	28.5 to 29	42.5 to 43
Sampling Date		10/03/04	10/03/04	10/03/04	08/18/04	08/18/04	08/19/04	08/19/04	08/19/04	08/19/04	07/21/04	07/21/04	07/21/04
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1	1	1.0	1.0	1.0	1	1	1	1.0	1.0	1	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM												
PP Metals	RSCO												
Antimony	В	0.648 U	0.63 U	0.823 U	0.649 U	0.636 U	0.664 U	0.654 U	0.66 U	0.892 U	0.669 U	0.674 U	0.867 U
Arsenic	12	1.49	1.19	6.72	1.33	1.15	1.82	1.04 J	1.33	5.14	2.97	3.86	9.53
Beryllium	600	0.328 J	0.324 J	0.589 J	0.446 J	0.501 J	0.357 J	0.595	0.326 J	0.577 J	0.282 J	0.349 J	0.709 J
Cadmium	1	0.053 U	0.051 U	0.067 U	0.053 U	0.052 U	0.054 U	0.053 U	0.054 U	0.204 J	0.43 J	0.912	2.12
Chromium	40	10.4	10.5	20.9	12.8	16.3	10.8	14	9.47	17.9	13.3	9.27	21.7
Copper	50	14.3	13.1	13.3	20.9	22.3	37.3	21	8.46	12.5	19.2	104	14.8
Lead	500	8.21	5.34	8.72	45.1 J	40	146	17.8	47.6	11.4	39.4	211	15
Mercury	0.1	0.021 R	0.016 R	0.033 R	0.07 J	0.08 J	0.13 J	0.03 J	0.01 J	0.03 J	0.18	0.45	0.02
Nickel	25	9.22	9.07	19.9	19.1	13.9	11.4	15.6	12.3	17.7	9.14	10.6	22.2
Selenium	3.9	1.02 J	0.659 J	1.36 J	1.19	1.14	1.43	0.666 J	0.921 J	1.26 J	0.784 J	1.15 J	1.99
Silver	В	0.121 U	0.286 J	0.154 U	0.121 U	0.119 U	0.124 U	0.122 U	0.123 U	0.234 J	0.125 U	0.257 J	0.553 J
Thallium	В	0.914 J	0.983 J	1.05 J	0.381 U	0.373 U	0.389 U	0.383 U	0.387 U	0.523 U	0.392 U	0.395 U	0.508 U
Zinc	50	20	18.8	52.8	25.1	30.4	29	39.4	21.4	50.1	43.9	105	65.8

Sample Location		SB-14	SB-14	SB-14	SB-15	SB-15	SB-15	SB-15	SB-15	SB-15	SB-18	SB-18	SB-18
Sample Interval (Feet bgs) Sampling Date Units	TAGM	11 to 13 10/03/04 mg/Kg	17 to 19 10/03/04 mg/Kg	23 to 25 10/03/04 mg/Kg	4 to 5 8/18/04 mg/Kg	5 to 6 8/18/04 mg/Kg	7 to 9 8/19/04 mg/Kg	11 to 13 8/19/04 mg/Kg	17 to 19 8/19/04 mg/Kg	23 to 25 8/19/04 mg/Kg	7.3 to 7.9 07/21/04 mg/Kg	28.5 to 29 07/21/04 mg/Kg	42.5 to 43 07/21/04 mg/Kg
	RSCO												
Cyanide	NC	0.58	0.57	0.73	0.58 U	0.57 U	0.59 U	0.58 U	0.59 U	0.8 U	0.6 U	0.6 U	0.77 U
Amenable Cyanide	NC	0.58	0.57	0.73	0.58 U	0.57 U	0.59 U	0.58 U	0.59 U	0.8 U	0.6 U	0.6 U	0.77 U

Sample Location		SB-53	SB-53	SB-53	SB-54	SB-54	SB-54	SB-54	SB-55	SB-55	SB-55	SB-55
Sample Interval (Feet bgs)		6 to 7	8.3 to 9.3	14 to 15	3 to 4	5 to 6	9 to 10	19 to 21	2 to 3	2 to 3	5 to 6	8 to 9
Sampling Date		03/24/05	03/24/05	03/24/05	03/23/05	03/24/05	03/24/05	03/24/05	03/23/05	03/23/05	03/25/05	03/25/05
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1	1	1	1.0	1.0	1	1.0	1.0	1.0	1.0	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM											
PP Metals	RSCO											
Antimony	В	0.733 U	0.668 U	0.636 U	0.685 U	0.987 J	0.647 U	0.638 U	5.62 J	3.33 J	0.6 U	0.626 U
Arsenic	12	96.1	1.7	1.99	12.3	24.6	2.99	0.785 J	25.3	29.5	6.27	1.18
Beryllium	600	0.277 J	0.431 J	0.294 J	0.575 J	0.294 J	0.449 J	0.225 J	0.291 J	0.25 J	0.262 J	0.344 J
Cadmium	1	0.262 J	0.625	0.235 J	0.056 U	0.131 J	0.053 U	0.052 U	0.246 J	0.057 U	0.049 U	0.051 U
Chromium	40	22	14.7	16.6	11.8	15.7	14.5	9.77	14.5	13.9	13.7	11.1
Copper	50	60.1	49.1	34.6	60.6	53	13	9.76	94.5	99.6	25.5	12.2
Lead	500	430	3.9	3.96	123	281	7.59	5.89	486	869	21.8	3.11
Mercury	0.1	0.27	0.007 U	0.013	0.147 J	0.325	0.01 J	0.007 U	0.807	1.1	0.035	0.007 U
Nickel	25	3.49 J	15.1	22.6	11.8	12.7	14.8	8.88	20.9	13.3	9.96	10.7
Selenium	3.9	4.73	0.372 U	0.354 U	0.502 J	1.08	0.36 U	0.354 U	1.12 J	2.07	0.334 U	0.348 U
Silver	В	1.88	0.125 U	0.119 U	0.985 J	0.11 U	0.121 U	0.119 U	4.11	0.129 U	0.112 U	0.117 U
Thallium	В	0.43 UJ	0.392 UJ	0.373 UJ	0.401 UJ	0.377 J	0.379 UJ	1.29 J	0.382 UJ	0.43 J	0.352 UJ	1.62 J
Zinc	50	66.1	124	82	60.6	196	25.2	15	308	424	61.7	39.9

Sample Location		SB-53	SB-53	SB-53	SB-54	SB-54	SB-54	SB-54	SB-55	SB-55	SB-55	SB-55
Sample Interval (Feet bgs) Sampling Date Units	TAGM RSCO	6 to 7 03/24/05 mg/Kg	8.3 to 9.3 03/24/05 mg/Kg	14 to 15 03/24/05 mg/Kg	3 to 4 03/23/05 mg/Kg	5 to 6 03/24/05 mg/Kg	9 to 10 03/24/05 mg/Kg	19 to 21 03/24/05 mg/Kg	2 to 3 03/23/05 mg/Kg	2 to 3 03/23/05 mg/Kg Duplicate	5 to 6 03/25/05 mg/Kg	8 to 9 03/25/05 mg/Kg
Cyanide	NC	160	0.893	0.565 U	2.66 J	38	0.575 U	0.566 U	22	28	1.12	0.561 U
Amenable Cyanide	NC	12.6	0.6 U	0.56 U	0.61 U	2.1	0.57 U	0.57 U	6.9	0.62 U	0.53 U	0.56 U

							17		
Sample Location		SB-55							
Sample Interval (Feet bgs)		19 to 20							
Sampling Date		03/25/05							
Matrix		SOIL							
Dilution Factor		1.0							
Units		mg/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
PP Metals	RSCO					Exceedances			
Antimony	В	0.683 U	58	5	9%	0	0%	< 0.581	5.62
Arsenic	12	1.36	58	56	97%	5	9%	< 0.283	96.1
Beryllium	600	0.357 J	58	58	100%	0	0%	0.149	0.73
Cadmium	1	0.056 U	58	15	26%	2	3%	< 0.047	2.12
Chromium	40	14	58	58	100%	0	0%	5.32	26.3
Copper	50	15.4	58	58	100%	6	10%	5.42	104
Lead	500	21	58	58	100%	3	5%	2.63	1,740
Mercury	0.1	0.029	58	42	72%	11	19%	< 0.007	1.1
Nickel	25	12.8	58	58	100%	1	2%	3.49	26.8
Selenium	3.9	0.38 U	58	38	66%	1	2%	< 0.334	4.73
Silver	В	1.56	58	13	22%	0	0%	< 0.108	4.11
Thallium	В	1.28 J	58	11	19%	0	0%	< 0.341	1.62
Zinc	50	36.7	58	58	100%	18	31%	9.31	424

Sample Location		SB-55								
Sample Interval (Feet bgs) Sampling Date Units		19 to 20 03/25/05 mg/Kg								
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Re	ported	Maximum Reported
	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentra	tion	Concentration
	RSCO					Exceedances				
Cyanide	NC	0.613 U	58	15	26%	0	0%	<	0.52	160
Amenable Cyanide	NC	0.61 U	58	8	14%	0	0%	<	0.52	12.6

Sample Location		SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-9	SB-9	SB-9	SB-9
Sample Interval (Feet bgs)		6 to 7	17 to 19	27 to 29	43 to 45	6 to 7	4 to 5	4 to 5	8 to 10	20 to 22	26 to 28
Sampling Date Units		07/09/04 ug/Kg	08/09/04 ug/Kg	08/09/04 ug/Kg	08/09/04 ug/Kg	07/09/04 ug/Kg	07/09/04 ug/Kg	09/12/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg
Pesticides (ug/Kg)	TAGM RSCO										
alpha-BHC	110	1.4 U	1.3 U	1.3 U	1.4 U	1.3 U	1.2 U	1.2 U	1.3 U	1.4 U	1.3 U
beta-BHC	200	1.4 U	1.2 U	1.3 U	1.3 U	1.4 U	1.3 U				
delta-BHC	300	1.1 U	0.95 U	0.97 U	1 UJ	1.1 UJ	1 UJ				
gamma-BHC	60	1.5 U	1.4 U	1.4 U	1.5 U	1.4 U	1.3 U	1.3 U	1.4 U	1.5 U	1.4 U
Heptachlor	100	1.6 U	1.6 U	1.6 U	1.7 U	1.6 U	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U
Aldrin	41	1.3 U	1.1 U	1.2 U	1.2 U	1.3 U	1.2 U				
Heptachlor epoxide	20	1.6 U	1.5 U	1.5 U	1.6 U	1.5 U	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U
Endosulfan I	900	1.8 U	1.7 U	1.7 U	1.8 U	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.7 U
Dieldrin	44	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U
4,4-DDE	2,100	1.6 U	1.5 U	1.5 U	1.6 U	1.5 U	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U
Endrin	100	2.3 U	2.2 U	2.2 U	2.3 U	2.2 U	2 U	2 U	2.1 U	2.2 U	2.1 U
Endosulfan II	900	1.6 U	1.6 U	1.6 U	1.7 U	1.6 U	1.4 U	1.5 U	1.5 U	1.6 U	1.5 U
4,4-DDD	2,900	1.3 U	1.2 U	1.2 U	1.3 U	1.2 U	1.1 U	1.1 U	1.2 U	1.3 U	1.2 U
Endosulfan Sulfate	NC	1.8 U	1.8 U	1.8 U	1.9 U	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.7 U
4,4-DDT	2100	2.3 U	2.2 U	2.2 U	2.3 U	2.2 U	2 U	2 U	2.1 UJ	2.3 UJ	2.1 UJ
Methoxychlor	NC	1.6 U	1.5 U	1.5 U	1.6 U	1.5 U	1.3 U	1.4 U	1.4 U	1.5 U	1.5 U
Endrin ketone	NC	1.6 U	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U				
Endrin aldehyde	NC	1.9 U	1.8 U	1.8 U	1.9 U	1.8 U	1.6 U	1.7 U	1.8 U	1.9 U	1.8 U
alpha-Chlordane	NC	1.8 U	1.8 U	1.8 U	1.9 U	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.7 U
gamma-Chlordane	540	1.8 U	1.8 U	1.8 U	1.9 U	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.7 U
Toxaphene	NC	3.7 U	3.6 U	3.6 U	3.8 U	3.6 U	3.2 U	3.3 U	3.4 U	3.7 U	3.5 U
Chlordane	540	0.41 U	NR	NR	NR	0.61 U	0.4 U	0.4 U	0.42 U	0.44 U	0.42 U

Sample Location		SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-9	SB-9	SB-9	SB-9
Sample Interval (Feet bgs)		6 to 7	17 to 19	27 to 29	43 to 45	6 to 7	4 to 5	4 to 5	8 to 10	20 to 22	26 to 28
Sampling Date Units		07/09/04 ug/Kg	08/09/04 ug/Kg	08/09/04 ug/Kg	08/09/04 ug/Kg	07/09/04 ug/Kg	07/09/04 ug/Kg	09/12/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg
Herbicides (ug/Kg)	TAGM RSCO	12 P	1.5 U	1.6 U	1.6 U	16 P	14 P	1.4 U	1.5 U	1.6 U	1.5 U
DICHLORPROP	NC NC	1.7 U	3.4 U	3.5 U	3.6 U	1.7 U	1.5 U	3.2 U	3.3 U	3.6 U	3.3 U
2,4-D	500	1.6 J	22 P	5.5 UJ	5.8 U	1.5 J	1.4 J	5.1 U	5.3 U	5.7 U	5.3 U
2,4,5-TP (SILVEX)	700	3.4 U	1.6 U	1.7 U	1.7 U	3.3 U	3 U	1.5 U	1.6 U	1.7 U	1.6 U
2,4,5-T	1900	1.3 U	1.5 U	1.5 U	1.6 U	1.3 U	1.2 U	1.4 U	1.5 U	1.6 U	1.5 U
2,4-DB	NC	1.6 U	3.2 U	3.3 U	3.4 U	1.5 U	1.4 U	3 U	3.1 U	3.4 U	3.2 U
DINOSEB	NC	3.5 U	1.3 U	1.3 U	1.4 U	3.4 U	3.1 U	1.2 U	1.2 U	1.3 U	1.3 U

Sample Location		SB-7	SB-7	SB-7	SB-7	MW-7A	SB-8	SB-9	SB-9	SB-9	SB-9
Sample Interval (Feet bgs) Sampling Date Units		6 to 7 07/09/04 ug/Kg	17 to 19 08/09/04 ug/Kg	27 to 29 08/09/04 ug/Kg	43 to 45 08/09/04 ug/Kg	6 to 7 07/09/04 ug/Kg	4 to 5 07/09/04 ug/Kg	4 to 5 09/12/04 ug/Kg	8 to 10 09/18/04 ug/Kg	20 to 22 09/18/04 ug/Kg	26 to 28 09/18/04 ug/Kg
PCBs (ug/Kg)	TAGM RSCO										
	1,000 (surface) 10.000										
Aroclor-1016	(subsurface)	6.4 UJ	6.2 U	6.2 U	6.5 U	6.2 UJ	5.6 UJ	5.6 U	5.9 U	6.4 U	6 U
	1,000 (surface) 10,000										
Aroclor-1221	(subsurface)	4.4 UJ	4.2 U	4.3 U	4.4 U	4.2 UJ	3.8 UJ	3.8 U	4 U	4.4 U	4.1 U
Aroclor-1232	1,000 (surface) 10,000 (subsurface)	3 UJ	2.9 U	2.9 U	3 U	2.9 UJ	2.6 UJ	2.6 U	2.7 U	3 U	2.8 U
	1,000 (surface) 10,000										
Aroclor-1242	(subsurface) 1,000 (surface) 10.000	3.8 UJ	3.7 U	3.7 U	3.9 U	3.7 UJ	3.3 UJ	3.3 U	3.5 U	3.8 U	3.6 U
Aroclor-1248	(subsurface)	4.5 UJ	4.4 U	4.4 U	4.6 U	4.3 UJ	3.9 UJ	4 U	4.1 U	4.5 U	4.2 U
	1,000 (surface) 10,000										
Aroclor-1254	(subsurface)	1.7 UJ	1.6 U	1.6 U	1.7 U	1.6 UJ	1.4 UJ	1.5 U	1.5 U	1.7 U	1.5 U
Aroclor-1260	1,000 (surface) 10,000 (subsurface)	3.6 UJ	3.5 U	3.5 U	3.7 U	3.5 UJ	3.2 UJ	3.2 U	3.3 U	3.6 U	3.4 U

Sample Location		SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-11
Sample Interval (Feet bgs)		32 to 34	5 to 6	6 to 8	8 to 10	20 to 22	48 to 50	5 to 6	13 to 15	27 to 29	35 to 37
Sampling Date Units		09/18/04 ug/Kg	09/11/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/11/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg
Pesticides (ug/Kg)	TAGM RSCO										
alpha-BHC	110	1.4 U	1.2 U	1.2 U	1.3 U	1.3 U	1.3 U	1.2 U	1.3 U	1.4 U	1.3 U
beta-BHC	200	1.4 U	1.3 U	1.3 U	1.3 U	1.4 U	1.4 U	1.3 U	1.4 U	1.4 U	1.4 U
delta-BHC	300	1.1 UJ	0.98 U	0.98 UJ	1 UJ	1.1 UJ	1.1 UJ	0.97 U	1.1 UJ	1.1 UJ	1.1 UJ
gamma-BHC	60	1.5 U	1.3 U	1.3 U	1.4 U	1.4 U	1.5 U	1.3 U	1.5 U	1.5 U	1.4 U
Heptachlor	100	1.6 U	1.5 U	1.4 U	1.5 U	1.6 U	1.6 U	1.4 U	1.6 U	1.6 U	1.6 U
Aldrin	41	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.3 U	1.3 U
Heptachlor epoxide	20	1.6 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U	1.6 U	1.5 U
Endosulfan I	900	1.8 U	1.6 U	1.6 U	1.7 U	1.7 U	1.8 U	1.6 U	1.8 U	1.8 U	1.8 U
Dieldrin	44	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U	1.3 U	1.2 U
4,4-DDE	2,100	1.6 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U	1.6 U	1.5 U
Endrin	100	2.3 U	2 U	2 U	2.1 U	2.2 U	2.2 U	2 U	2.2 U	2.3 U	2.2 U
Endosulfan II	900	1.6 U	1.5 U	1.5 U	1.5 U	1.6 U	1.6 U	1.5 U	1.6 U	1.6 U	1.6 U
4,4-DDD	2,900	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U	1.3 U	1.2 U
Endosulfan Sulfate	NC	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.8 U	1.6 U	1.8 U	1.8 U	1.8 U
4,4-DDT	2100	2.3 UJ	2 U	2 UJ	2.1 UJ	2.2 UJ	2.2 UJ	2 U	2.2 UJ	2.3 UJ	2.2 UJ
Methoxychlor	NC	1.6 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U	1.4 U	1.5 U	1.6 U	1.5 U
Endrin ketone	NC	1.6 U	1.4 U	1.4 U	1.5 U	1.5 U	1.6 U	1.4 U	1.6 U	1.6 U	1.6 U
Endrin aldehyde	NC	1.9 U	1.7 U	1.7 U	1.7 U	1.8 U	1.8 U	1.7 U	1.8 U	1.9 U	1.8 U
alpha-Chlordane	NC	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.8 U	1.6 U	1.8 U	1.8 U	1.8 U
gamma-Chlordane	540	1.8 U	1.6 U	1.6 U	1.7 U	1.8 U	1.8 U	1.6 U	1.8 U	1.8 U	1.8 U
Toxaphene	NC	3.7 U	3.3 U	3.3 U	3.4 U	3.6 U	3.6 U	3.3 U	3.6 U	3.7 U	3.6 U
Chlordane	540	0.45 U	0.4 U	0.4 U	0.41 U	0.43 U	0.44 U	0.4 U	0.44 U	0.45 U	0.43 U

Sample Location		SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-11
Sample Interval (Feet bgs)		32 to 34	5 to 6	6 to 8	8 to 10	20 to 22	48 to 50	5 to 6	13 to 15	27 to 29	35 to 37
Sampling Date Units		09/18/04 ug/Kg	09/11/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/11/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg	09/18/04 ug/Kg
Herbicides (ug/Kg)	TAGM RSCO	1.6 U	1.5 U	1.4 U	1.5 U	1.5 U	1.6 U	1.4 U	1.6 U	1.6 U	1.6 U
DICHLORPROP	NC NC	3.6 U	3.2 U	3.2 U	3.3 U	3.4 U	3.5 U	3.2 U	3.5 U	3.6 U	3.5 U
2,4-D	500	5.7 U	11 U	5.1 U	5.3 U	5.5 U	5.6 U	5.1 U	5.5 U	5.7 UJ	5.5 U
2,4,5-TP (SILVEX)	700	1.7 U	1.6 U	1.5 U	1.6 U	1.7 U	1.7 U	1.5 U	1.7 U	1.7 U	1.7 U
2,4,5-T	1900	1.6 U	1.4 U	1.4 U	1.5 U	1.5 U	7.7	1.4 U	1.5 U	1.6 U	6.8 PJ
2,4-DB	NC	3.4 U	3.1 U	3 U	3.1 U	3.3 U	3.3 U	3 U	3.3 U	3.4 U	3.3 U
DINOSEB	NC	1.3 U	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U	1.2 U	1.3 U	1.3 U	1.3 U

					Tuble + Te						
Sample Location		SB-9	SB-10	SB-10	SB-10	SB-10	SB-10	SB-11	SB-11	SB-11	SB-11
Sample Interval (Feet bgs) Sampling Date Units		32 to 34 09/18/04 ug/Kg	5 to 6 09/11/04 ug/Kg	6 to 8 09/18/04 ug/Kg	8 to 10 09/18/04 ug/Kg	20 to 22 09/18/04 ug/Kg	48 to 50 09/18/04 ug/Kg	5 to 6 09/11/04 ug/Kg	13 to 15 09/18/04 ug/Kg	27 to 29 09/18/04 ug/Kg	35 to 37 09/18/04 ug/Kg
PCBs (ug/Kg)	TAGM RSCO										
	1,000 (surface) 10.000										
Aroclor-1016	(subsurface)	6.4 U	5.8 U	5.8 U	5.9 U	6.2 U	6.3 U	5.7 U	6.3 U	6.4 U	6.2 U
	1,000 (surface) 10,000										
Aroclor-1221	(subsurface)	4.4 U	3.9 U	3.9 U	4 U	4.2 U	4.3 U	3.9 U	4.3 U	4.4 U	4.2 U
Aroclor-1232	1,000 (surface) 10,000 (subsurface)	3 U	2.7 U	2.7 U	2.7 U	2.8 U	2.9 U	2.6 U	2.9 U	3 U	2.9 U
Aroclor-1242	1,000 (surface) 10,000 (subsurface)	3.8 U	3.4 U	3.4 U	3.5 U	3.6 U	3.7 U	3.4 U		3.8 U	3.7 U
	1,000 (surface) 10,000										
Aroclor-1248	(subsurface)	4.5 U	4.1 U	4 U	4.1 U	4.3 U	4.4 U	4 U	4.4 U	4.5 U	4.3 U
Aroclor-1254	1,000 (surface) 10,000 (subsurface)	1.7 U	1.5 U	1.5 U	1.5 U	1.6 U	1.6 U	1.5 U	1.6 U	1.7 U	1.6 U
A	1,000 (surface) 10,000					0.5.11	0.5.11	0.011	0.5.11	0.011	0.5.11
Aroclor-1260	(subsurface)	16 J	3.3 U	3.3 U	21 PJ	3.5 U	3.5 U	3.2 U	3.5 U	3.6 U	3.5 U

					Table	1 10				
Sample Location		SB-11	SB-14							
Sample Interval (Feet bgs)		37 to 39	4 to 5							
Sampling Date Units		09/18/04 ug/Kg	09/11/04 ug/Kg							
				Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
				Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Pesticides (ug/Kg)	TAGM RSCO			·			Exceedances			
alpha-BHC	110	1.3 U	1.3 U	22	0	0%	0	0%	< 1.2	< 1.4
beta-BHC	200	1.4 U	1.3 U	22	0	0%	0	0%	< 1.2	< 1.4
delta-BHC	300	1.1 UJ	1 U	22	0	0%	0	0%	< 0.95	< 1.1
gamma-BHC	60	1.5 U	1.4 U	22	0	0%	0	0%	< 1.3	< 1.5
Heptachlor	100	1.6 U	1.5 U	22	0	0%	0	0%	< 1.4	< 1.7
Aldrin	41	1.3 U	1.2 U	22	0	0%	0	0%	< 1.1	< 1.3
Heptachlor epoxide	20	1.5 U	1.4 U	22	0	0%	0	0%	< 1.4	< 1.6
Endosulfan I	900	1.8 U	1.7 U	22	0	0%	0	0%	< 1.6	< 1.8
Dieldrin	44	1.2 U	1.1 U	22	0	0%	0	0%	< 1.1	< 1.3
4,4-DDE	2,100	1.5 U	1.4 U	22	0	0%	0	0%	< 1.4	< 1.6
Endrin	100	2.2 U	2.1 U	22	0	0%	0	0%	< 2	< 2.3
Endosulfan II	900	1.6 U	1.5 U	22	0	0%	0	0%	< 1.4	< 1.7
4,4-DDD	2,900	1.2 U	1.2 U	22	0	0%	0	0%	< 1.1	< 1.3
Endosulfan Sulfate	NC	1.8 U	1.7 U	22	0	0%	0	0%	< 1.6	< 1.9
4,4-DDT	2100	2.2 UJ	2.1 U	22	0	0%	0	0%	< 2	< 2.3
Methoxychlor	NC	1.5 U	1.4 U	22	0	0%	0	0%	< 1.3	< 1.6
Endrin ketone	NC	1.6 U	1.5 U	22	0	0%	0	0%	< 1.4	< 1.6
Endrin aldehyde	NC	1.8 U	1.7 U	22	0	0%	0	0%	< 1.6	< 1.9
alpha-Chlordane	NC	1.8 U	1.7 U	22	0	0%	0	0%	< 1.6	< 1.9
gamma-Chlordane	540	1.8 U	1.7 U	22	0	0%	0	0%	< 1.6	< 1.9
Toxaphene	NC	3.6 U	3.4 U	22	0	0%	0	0%	< 3.2	< 3.8
Chlordane	540	0.44 U	0.41 U	19	0	0%	0	0%	< 0.4	< 0.61

Sample Location		SB-11	SB-14							
Sample Interval (Feet bgs)		37 to 39	4 to 5							
Sampling Date Units		09/18/04 ug/Kg	09/11/04 ug/Kg							
				Number of Samples	Number of Detections	Frequency of Detections	Number of TAGM	Frequency of Exceedances	Minimum Reported Concentration	Maximum Reported Concentration
Herbicides (ug/Kg)	TAGM RSCO			·			Exceedances			
DICAMBA	NC	1.5 U	1.5 U	22	3	14%	0	0%	< 1.4	16
DICHLORPROP	NC	3.4 U	3.3 U	22	0	0%	0	0%	< 1.5	< 3.6
2,4-D	500	5.5 U	5.2 UJ	22	4	18%	0	0%	< 1.4	22
2,4,5-TP (SILVEX)	700	1.7 U	1.6 U	22	0	0%	0	0%	< 1.5	< 3.4
2,4,5-T	1900	7.1	1.5 UJ	22	3	14%	0	0%	< 1.2	7.7
2,4-DB	NC	3.3 U	3.1 U	22	0	0%	0	0%	< 1.4	< 3.4
DINOSEB	NC	1.3 U	1.2 U	22	0	0%	0	0%	< 1.2	< 3.5

					Table	4-13				
Sample Location		SB-11	SB-14							
Sample Interval (Feet bgs) Sampling Date Units		37 to 39 09/18/04 ug/Kg	4 to 5 09/11/04 ug/Kg							
PCBs (ug/Kg)	TAGM RSCO			Number of Samples	Number of Detections	Frequency of Detections	Number of TAGM Exceedances	Frequency of Exceedances	Minimum Reported Concentration	Maximum Reported Concentration
Aroclor-1016	1,000 (surface) 10,000 (subsurface)	6.2 U	5.9 U	22	0	0%		0%	< 5.6	< 6.5
	1,000 (surface) 10,000									
Aroclor-1221	(subsurface) 1,000 (surface) 10,000	4.2 U	4 U	22	0	0%	0	0%	< 3.8	< 4.4
Aroclor-1232	(subsurface) 1,000 (surface) 10.000	2.9 U	2.7 U	22	0	0%	0	0%	< 2.6	< 3
Aroclor-1242	(subsurface)	3.7 U	3.5 U	22	0	0%	0	0%	< 3.3	< 3.9
Aroclor-1248	1,000 (surface) 10,000 (subsurface)	4.4 U	4.1 U	22	0	0%	0	0%	< 3.9	< 4.6
	1,000 (surface) 10,000									
Aroclor-1254	(subsurface) 1,000 (surface)	1.6 U	1.5 U	22	0	0%	0	0%	< 1.4	< 1.7
Aroclor-1260	10,000 (subsurface)	3.5 U	3.3 U	22	2	9%	0	0%	< 3.2	21

Summary of Field Work and Observations for Area 3 Former West 18th Street Gas Works Consolidated Edison Companies of New York, Inc. Table 4-16

Boring / Well ID	Date Completed	Boring Depth (ft bgs)	Well Screen Interval	Depth to GW (ft bgs)	Depth to top of Clay (ft bgs)	Field Observations
SB-19	2-May	21	N/A	9	N/A	Refusal at 20' bgs; 9'-11': SI MGP-related odor, N/S; 11'-15': MGP-related odor, N/S, sheen; 17' - 21': strong ammonia-like odor, heavy blk staining, sheen, Max. PID = 8.6 ppm at 17'-19';
\$B-20	2-May	51	N/A	11	17.2	No low perm. Layer, no high PID rdgs, 11' - 15' bgs: SI odor; 41'-43': N/S, sI odor, sI sheen, PID= 0.5ppm; 43' - 45': sI non MGP-related odor, PID= 2.1ppm; 45'-51': N/O, N/S and sI sheen, Max. PID= 1.5ppm
SB-21	. 4-May	23	N/A	11	17	7'-9': Organic odor, N/S and sheen, Max. PID= 8.6ppm; 9'-11': SI organic odor, N/S, Max. PID= 3.0ppm; 13'-15': SI organic odor, N/S;
\$B-22	27-Apr	27	N/A	11	21.9	11'-13' bgs: slight odor, N/S, Max. PID: 4.3 ppm 13'-17' bgs: N/O, N/S, slight sheen, Max. PID: 12.7 ppm at 15'-17' bgs, 17'-19' bgs: slight odor, N/S, slight sheen, Max. PID: 15.2 ppm, 19'-21' bgs: N/O, N/S, Max. PID: 27.3 ppm
SB-23	27-Арг	25	N/A	9	17.5	5'-9': SI odor, N/S, Max. PID= 20ppm. 9' - 17' bgs petroleum-like odor, some staining. Max. PID: 47.0 ppm at 15' - 17' bgs; 17'- 25': SI odor, N/S. Max. PID= 20ppm at 17'-19'
SB-24	31-Aug	86	N/A	5	45	Bedrock at 86' bgs. No odor or staining between bottom of clay and top of bedrock.
MW-24A	26-Apr	16	6 to 16	9	N/A	No odor and some blk staining at 5'-11', Max. PID= 1.5ppm at 5'-7';
MW-24B	24-Apr to 25-Apr	55	45 to 55	9	33-44.5'	5'- 11': N/O, some blk staining, Max. PID= 1.5ppm at 5'-7'; 23' - 33.8' bgs: MGP-related odor. blk staining, visible OM, TM blebs at 29' - 31' bgs. Max. PID: 560 ppm at 25' - 27' bgs. Steel casing set at approx. 33' bgs.
\$B-25	26-Apr	36	N/A	9	33	7'-9': N/O, tr blk staining; 18' - 28' bgs: strong odor/ 18' - 24' bgs: black staining. 32'-34' bgs: slight odor
SB-26	26-Jul	37	N/A	7	32	11'-13' bgs: sewage-like odor, N/S, Max. PiD: 0.2 ppm; 15'-33' bgs: slight MGP-related odor, black staining, 21'-33' bgs visible sheen, 29'-33' bgs visible OLM, Max. PID: 17.4 ppm at 31'-33' bgs.
SB-27	22-Jul	45	N/A	5.5	27 -31 and 41.3'-45	41-43' bgs: SI odor, sheen and N/S. Max. PID: 10.0 ppm at 41' -43' bgs.

Summary of Field Work and Observations for Area 3 Former West 18th Street Gas Works Consolidated Edison Companies of New York, Inc. Table 4-16

Boring / Well ID	Date Completed	Boring Depth (ft bgs)	Well Screen Interval	Depth to GW (ft bgs)	Depth to top of Clay (ft bgs)	Field Observations
SB-47	3-May	19	N/A	10	15	13' - 15' bgs: tr odor and tr blk staining, Max. PIE 0.0 ppm.
SB-48	3-Мау	21	N/A	9	16	9'-13": SI MGP-related odor, N/S, Max. PID = 5.4ppm at 11'-13'; 13' - 16' bgs: strong coal tar odor, sheen, visible OLM and TM, N/S, Max. PII 1,085 ppm at 15' - 16' bgs.
SB-49	_ 28-Apr ·	24	N/A	12	17.9	8' - 18' bgs: very strong odor. Max. PID: 700 pp at 10' - 12' bgs, 18'-20': strong odor, N/S, Max. PID= 5ppm; 20'- 22': SI odor, N/S, Max. PID= 37ppm;
SB-50	27-Apr	33	N/A	11	31	7'-9' bgs: N/O, trace black staining, Max. PID: 4. ppm; 13'-15' bgs: slight odor, N/S; 15'-17' bgs: slight non-MGP-related odor, N/S, Max. PID: 2.0 ppm; 17'-27': N/O, N/S, slight sheen, Max. PID: 6.0 ppm at 21'-23' bgs and 25'-27' bgs.
\$B-51	27-Apr	33	N/A	9	22	11'-13' bgs: N/O, trace black staining, Max. PID: 6.0 ppm; 13'-15' bgs: strong odor and black staining, Max. PID: 84.0 ppm; 17'-25' bgs: stron odor, 19'-23' bgs black staining, Max. PID: 140 ppm at 21'-23' bgs; 25'-27' bgs: slight odor, N/S, Max PID: 4.0 ppm.
SB-52	1-May	35	N/A	9	31.4	7'-9' bgs: slight MGP-related odor, N/S, Max. PII 32.2 ppm; 13'-15' bgs: N/O, trace black staining Max. PID: 0.4 ppm; 15-17' bgs: slight MGP-relat odor, N/S, Max. PID: 0.7 ppm; 23'-25' bgs: solve like odor, black staining, sheen, Max. PID: 12.8 ppm; 25'-31' bgs strong MGP-related odor, black staining, visible OLM, 25'-27' bgs sheen, 27'-31' bgs coal tar.
TP-3	1-May	7.5	N/A	None	None	Coal tar residue observed. Brick Foundation wa
TP-6	2-May	appr. 10	N/A	9'11"	None	Brick wall at guard rail, brick wall foundation in center, block wall (?)

Note: Elevations are reported in feet below ground surface (ff bgs).

Laboratory and Data Validation Qualifiers Former Broadway/Dyckman Street Station Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

						1 able 4-17					
Sample Location		TP-3	TP-6	SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		7.5 to 7.5	9.5 to 9.5	5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	41 to 43	49 to 51
Sampling Date		5/1/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Office		ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.4 U	1.4 U	1.4 U	54 U	1.4 U	1.5 U	1.7 U	1.2 U	1.2 U	1.5 U
Chloromethane	NC	0.38 U	0.38 U	0.38 U	110 U	0.37 U	0.4 U	0.45 U	0.33 U	0.33 U	0.4 U
Vinyl Chloride	200	0.27 U	0.27 U	0.27 U	43 U	0.26 U	0.29 U	0.32 U	0.24 U	0.24 U	0.29 U
Bromomethane	NC	0.81 U	0.8 U	0.8 U	130 U	0.79 U	0.86 U	0.97 U	0.71 U	0.71 U	0.86 U
Chloroethane	1,900	0.6 U	0.6 U	0.6 U	140 U	0.58 U	0.64 U	0.72 U	0.52 U	0.52 U	0.64 U
Trichlorofluoromethane	NC	2.8 U	2.8 U	2.8 U	92 U	2.7 U	3 U	3.4 U	2.5 U	2.5 U	3 U
1,1,2-Trichlorotrifluoroethane	6,000	0.53 U	0.52 U	0.52 U	110 U	0.51 U	0.56 U	0.63 U	0.46 U	0.46 U	0.56 U
1,1-Dichloroethene	400	0.25 U	0.24 U	0.24 U	52 U	0.24 U	0.26 U	0.29 U	0.22 U	0.22 U	0.26 U
Acetone	200	8.6 U	8.5 U	8.5 U	530 U	8.3 U	9.1 U	41 J	7.5 U	7.5 U	9.1 U
Carbon Disulfide	2,700	0.12 U	0.11 U	0.11 U	62 U	0.11 U	0.12 U	0.14 U	0.1 U	0.1 U	0.12 U
Methyl tert-butyl Ether	120	0.26 U	0.26 U	0.26 U	58 U	0.25 U	0.28 U	0.31 U	0.23 U	0.23 U	0.28 U
Methyl Acetate	NC	1.5 U	1.4 U	1.4 U	130 U	1.4 U	1.6 U	1.7 U	1.3 U	1.3 U	1.6 U
Methylene Chloride	100	0.78 U	0.77 U	0.77 U	100 U	0.76 U	0.83 U	0.93 U	0.68 U	0.68 U	0.83 U
trans-1,2-Dichloroethene	300	0.43 U	0.42 U	0.42 U	82 U	0.41 U	0.45 U	0.51 U	0.37 U	0.37 U	0.45 U
1,1-Dichloroethane	200	0.41 U	0.4 U	0.4 U	34 U	0.39 U	0.43 U	0.48 U	0.35 U	0.35 U	0.43 U
Cyclohexane	NC	0.35 U	0.35 U	0.35 U	59 U	0.34 U	0.37 U	0.42 U	0.3 U	0.3 U	0.37 U
2-Butanone	300	2.6 U	2.6 U	2.6 U	450 U	2.5 U	2.8 U	3.1 U	2.3 U	2.3 U	2.8 U
Carbon Tetrachloride	600	0.34 U	0.34 U	0.34 U	75 U	0.33 U	0.36 U	0.41 U	0.3 U	0.3 U	0.36 U
cis-1,2-Dichloroethene	NC	0.4 U	0.4 U	0.4 U	120 U	0.39 U	0.43 U	0.48 U	0.35 U	0.35 U	0.43 U
Chloroform	300	0.27 U	0.27 U	0.27 U	92 U	0.26 U	0.29 U	0.32 U	0.24 U	0.24 U	0.29 U
1,1,1-Trichloroethane	800	0.31 U	0.31 U	0.31 U	65 U	0.3 U	0.33 U	0.37 U	0.27 U	0.27 U	0.33 U
Methylcyclohexane	NC	0.41 U	0.4 U	0.4 U	92 U	0.39 U	0.43 U	0.49 U	0.36 U	0.36 U	0.43 U
Benzene 1,2-Dichloroethane	60 200	0.23 U 3.5 U	0.23 U 3.5 U	0.23 U 3.5 U	7000 51 U	0.22 U 3.4 U	0.25 U 3.8 U	210 4.2 U	0.2 U 3.1 U	0.2 U 3.1 U	0.25 U 3.8 U
Trichloroethene	700	0.37 U	0.36 U	0.36 U	110 U	0.36 U	0.39 U	0.44 U	0.32 U	0.32 U	0.39 U
1,2-Dichloropropane	NC	0.37 U	0.38 U	0.38 U	51 U	0.36 U	0.39 U	0.44 U	0.32 U	0.34 U	0.39 U
Bromodichloromethane	NC NC	0.38 U	0.38 U	0.38 U	56 U	0.37 U	0.41 U	0.46 U	0.34 U	0.34 U	0.41 U
4-Methyl-2-Pentanone	1,000	2.8 U	2.7 U	2.7 U	210 U	2.7 U	2.9 U	3.3 U	2.4 U	2.4 U	2.9 U
Toluene	1,500	0.3 U	0.29 U	0.29 U	3700 J	0.29 U	0.32 U	0.35 U	0.26 U	0.26 U	0.32 U
t-1,3-Dichloropropene	NC	0.29 U	0.29 U	0.29 U	68 U	0.28 U	0.31 U	0.35 U	0.26 U	0.26 U	0.31 U
cis-1,3-Dichloropropene	NC	0.22 U	0.22 U	0.22 U	24 U	0.22 U	0.24 U	0.27 U	0.19 U	0.19 U	0.24 U
1,1,2-Trichloroethane	NC	0.58 U	0.57 U	0.57 U	83 U	0.56 U	0.62 U	0.69 U	0.51 U	0.51 U	0.62 U
2-Hexanone	NC	3.7 U	3.6 U	3.6 U	110 U	3.6 U	3.9 U	4.4 U	3.2 U	3.2 U	3.9 U
Dibromochloromethane	NA	0.33 U	0.33 U	0.33 U	61 U	0.32 U	0.35 U	0.4 U	0.29 U	0.29 U	0.35 U
1,2-Dibromoethane	NC	0.48 U	0.47 U	0.47 U	100 U	0.46 U	0.51 U	0.57 U	0.42 U	0.42 U	0.51 U
Tetrachloroethene	1,400	0.73 U	0.72 U	0.72 U	53 U	0.71 U	0.77 U	0.87 U	0.64 U	0.64 U	0.77 U
Chlorobenzene	1,700	0.4 U	0.4 U	0.4 U	59 U	0.39 U	0.43 U	0.48 U	0.35 U	0.35 U	0.43 U
Ethyl Benzene	5,500	0.29 U	0.28 U	0.28 U	180 J	0.28 U	0.3 U	6.3 J	0.25 U	0.25 U	0.3 U
m/p-Xylenes	1,200	0.59 U	0.58 U	0.58 U	1400 J	0.57 U	0.63 U	0.7 U	0.51 U	0.51 U	0.63 U
o-Xylene	600	0.5 U	0.49 U	0.49 U	470 J	0.48 U	0.53 U	6.7 J	0.43 U	0.43 U	0.53 U
Styrene	NC	0.36 U	0.36 U	0.36 U	55 U	0.35 U	0.38 U	0.43 U	0.31 U	0.31 U	0.38 U
Bromoform	NC	0.34 U	0.34 U	0.34 U	40 U	0.33 U	0.36 U	0.41 U	0.3 U	0.3 U	0.36 U
Isopropylbenzene	2,300	0.43 U	0.42 U	0.42 U	53 U	0.41 U	0.45 R	2.2 J	0.37 U	0.37 U	0.45 U
1,1,2,2-Tetrachloroethane	600	0.61 U	0.6 U	0.6 U	79 U	0.59 U	0.65 U	0.72 U	0.53 U	0.53 U	0.65 U
1,3-Dichlorobenzene	1,600	0.24 U	0.24 U	0.24 U	60 U	0.23 U	0.26 U	0.29 U	0.21 U	0.21 U	0.26 U
1,4-Dichlorobenzene	8,500	0.4 U	0.4 U	0.4 U	62 U	0.39 U	0.43 U	0.48 U	0.35 U	0.35 U	0.43 U
1,2-Dichlorobenzene	7,900	0.47 U	0.46 U	0.46 U	59 U	0.45 U	0.5 U	0.56 U	0.41 U	0.41 U	0.5 U
1,2-Dibromo-3-Chloropropane	NC	0.78 U	0.77 U	0.77 U	150 U	0.75 U	0.83 U	0.93 U	0.68 U	0.68 U	0.83 U
1,2,4-Trichlorobenzene	3,400	0.29 U	0.28 U	0.28 U	46 U	0.28 U	0.3 U	0.34 U	0.25 U	0.25 U	0.3 U
Total Confident Conc. VOC	10,000	ND	ND	ND	12,750	ND	ND	266.2	ND	ND	ND

	т т					Table 4-17					
Sample Location		SB-21	SB-21	SB-21	SB-22	SB-22	SB-22	SB-22	SB-22	SB-23	SB-23
Sample Interval (Feet bgs)		11 to 13	15 to 17	21 to 23	5 to 7	11 to 13	15 to 17	22 to 23	26 to 27	9 to 10	15 to 16
Sampling Date		5/4/04	5/4/04	5/4/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
orme and a second		ug/g	ug/11g	agritg	ug/. (g	ug/. (g	agritg	ug/1.g	497.19	ug/11g	49,119
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.4 U	1.5 U	1.8 U	1.3 U	1.4 U	1.4 U	1.8 U	2 UR	1.4 U	1.5 U
Chloromethane	NC	0.37 U	0.4 U	0.49 U	0.36 U	0.38 U	0.38 U	0.49 U	0.54 UR	0.38 U	0.39 U
Vinyl Chloride	200 NC	0.26 U 0.8 U	0.28 U 0.85 U	0.35 U 1.1 U	0.26 U 0.77 U	0.27 U 0.8 U	0.27 U 0.81 U	0.35 U	0.39 UR	0.27 U	0.28 U
Bromomethane Chloroethane	1,900	0.59 U	0.63 U	0.78 U	0.77 U	0.8 U	0.81 U	1.1 U 0.78 U	1.2 UR 0.86 UR	0.81 U 0.6 U	0.83 U 0.62 U
Trichlorofluoromethane	1,900 NC	2.8 U	3 U	3.7 U	2.7 U	2.8 U	2.8 U	3.7 U	4 UR	2.8 U	2.9 U
1,1,2-Trichlorotrifluoroethane	6,000	0.52 U	0.55 U	0.69 U	0.5 U	0.52 U	0.53 U	0.69 U	0.75 UR	0.53 U	0.54 U
1,1-Dichloroethene	400	0.24 U	0.26 U	0.32 U	0.23 U	0.24 U	0.25 U	0.32 U	0.35 UR	0.25 U	0.25 U
Acetone	200	8.4 U	9 U	11 U	8.1 U	26 J	8.6 U	110	680 UDJ	22 J	46 J
Carbon Disulfide	2,700	0.11 U	0.12 U	0.15 U	0.11 U	2.2 J	0.12 U	4.1 J	80 UDJ	0.12 U	0.12 U
Methyl tert-butyl Ether	120	0.26 U	0.28 U	0.34 U	0.25 U	0.26 U	0.26 U	0.34 U	0.38 UR	0.26 U	30
Methyl Acetate	NC	1.4 U	1.5 U	1.9 U	1.4 U	1.4 U	1.5 U	1.9 U	2.1 UR	1.5 U	1.5 U
Methylene Chloride	100	0.76 U	0.82 U	1 U	0.74 U	0.77 U	0.78 U	1 U	1.1 UR	0.78 U	0.8 U
trans-1,2-Dichloroethene	300	0.42 U	0.45 U	0.55 U	0.4 U	0.42 U	0.43 U	0.55 U	0.61 UR	0.43 U	0.44 U
1,1-Dichloroethane	200	0.4 U	0.43 U	0.53 U	0.38 U	0.4 U	0.41 U	0.53 U	0.58 UR	0.41 U	0.42 U
Cyclohexane	NC	0.34 U	0.37 U	0.46 U	0.33 U	0.35 U	14	8.7	0.5 UR	0.35 U	0.36 U
2-Butanone	300	2.6 U	2.7 U	3.4 U	2.5 U	4.1 J	2.6 U	22 J	580 UDJ	2.6 U	2.7 U
Carbon Tetrachloride	600	0.33 U	0.36 U	0.44 U	0.32 U	0.34 U	0.34 U	0.44 UJ	0.49 UR	0.34 U	0.35 U
cis-1,2-Dichloroethene	NC	0.4 U	0.42 U	0.53 U	0.38 U	0.4 U	0.4 U	0.53 U	0.58 UR	0.4 U	0.41 U
Chloroform	300	0.27 U	0.29 U	0.35 U	0.26 U	0.27 U	0.27 U	0.35 U	0.39 UR	0.27 U	0.28 U
1,1,1-Trichloroethane	800	0.3 U	0.33 U	0.4 U	0.29 U	0.31 U	0.31 U	0.4 U	0.44 UR	0.31 U	0.32 U
Methylcyclohexane	NC	0.4 U	0.43 U	0.53 U	0.39 U	0.4 U	5.8 J	10 J	0.58 UR	19 J	5 J
Benzene	60	0.23 U	0.24 U	30	6.3	7.4	39	880 DJ	8900 DJ	4.4 J	8.4
1,2-Dichloroethane	200	3.5 U	3.7 U	4.6 U	3.3 U	3.5 U	3.5 U	4.6 UJ	5 UR	3.5 U	3.6 U
Trichloroethene	700	0.36 U	0.39 U	0.48 U	0.35 U	0.36 U	0.37 U	0.48 UJ	0.52 UR	0.37 U	0.38 U
1,2-Dichloropropane	NC	0.38 U	0.4 U	0.5 U	0.36 U	0.38 U	0.39 U	0.5 UJ	0.55 UR	0.39 U	0.39 U
Bromodichloromethane	NC 1,000	0.37 U 2.7 U	0.4 U 2.9 U	0.5 U 3.6 U	0.36 U 2.6 U	0.38 U 2.7 U	0.38 U 2.8 U	0.5 UJ 3.6 UJ	0.55 UR 3.9 UR	0.38 U 2.8 U	0.39 U 2.8 U
4-Methyl-2-Pentanone Toluene	1,500	0.29 U	0.31 U	0.39 U	8.2 J	6.1	2.8 0	150 J	53 J	10	2.8 U 5.4 J
t-1,3-Dichloropropene	1,300 NC	0.29 U	0.31 U	0.38 U	0.28 U	0.29 U	0.29 U	0.38 UJ	0.42 UR	0.29 U	0.3 U
cis-1,3-Dichloropropene	NC NC	0.29 U	0.23 U	0.38 U	0.21 U	0.29 U	0.29 U	0.38 UJ	0.42 UR	0.29 U	0.23 U
1,1,2-Trichloroethane	NC	0.57 U	0.61 U	0.76 U	0.55 U	0.57 U	0.58 U	0.76 UJ	0.83 UR	0.58 U	0.25 U
2-Hexanone	NC	3.6 U	3.9 U	4.8 U	3.5 U	3.6 U	3.7 U	4.8 UJ	5.2 UR	3.7 U	3.8 U
Dibromochloromethane	NA	0.33 U	0.35 U	0.43 U	0.32 U	0.33 U	0.33 U	0.43 UJ	0.48 UR	0.33 U	0.34 U
1,2-Dibromoethane	NC	0.47 U	0.5 U	0.62 U	0.45 U	0.47 U	0.48 U	0.62 UJ	0.68 UR	0.48 U	0.49 U
Tetrachloroethene	1,400	0.71 U	0.77 U	0.95 U	0.69 U	0.72 U	0.73 U	0.95 UJ	1 UJ	3.5 J	0.75 U
Chlorobenzene	1,700	0.4 U	0.42 U	0.53 U	0.38 U	0.4 U	0.4 U	0.53 UJ	0.58 UJ	0.4 U	0.41 U
Ethyl Benzene	5,500	0.28 U	0.3 U	99	9.4	4.3 J	39	300 DJ	29 J	38	18
m/p-Xylenes	1,200	0.58 U	0.62 U	75	25	8.3 J	75 J	350 DJ	32 J	160 J	44
o-Xylene	600	0.49 U	0.52 U	160	16	5.7	36	270 DJ	15 J	130	38
Styrene	NC	0.35 U	0.38 U	0.47 U	0.34 U	0.36 U	1.3 J	0.47 UJ	0.51 UJ	0.36 U	0.37 U
Bromoform	NC	0.34 U	0.36 U	0.45 U	0.32 U	0.34 U	0.34 U	0.45 UJ	0.49 UJ	0.34 U	0.35 U
Isopropylbenzene	2,300	0.42 U	0.45 U	23	2.9 J	13	47	230 J	2.7 J	180	68
1,1,2,2-Tetrachloroethane	600	0.59 U	0.64 U	0.79 U	0.57 U	0.6 U	0.61 U	0.79 UJ	0.87 UR	0.61 U	0.62 U
1,3-Dichlorobenzene	1,600	0.24 U	0.25 U	0.31 U	0.23 U	0.24 U	0.24 U	0.31 UJ	0.35 UR	0.24 U	0.25 U
1,4-Dichlorobenzene	8,500	0.39 U	0.42 U	0.52 U	0.38 U	0.4 U	0.4 U	0.52 UJ	0.58 UR	0.4 U	0.41 U
1,2-Dichlorobenzene	7,900	0.46 U	0.49 U	0.61 U	0.44 U	0.46 U	0.47 U	0.61 UJ	0.67 UR	0.47 U	0.48 U
1,2-Dibromo-3-Chloropropane	NC 3,400	0.76 U 0.28 U	0.82 U	1 U	0.74 U 0.27 U	0.77 U 0.28 U	0.78 U	1 UJ	1.1 UR	0.78 U 0.29 U	0.8 U 0.29 U
1,2,4-Trichlorobenzene	3,400	0.28 0	0.3 U	0.37 U	U.21 U	U.28 U	0.29 U	0.37 UJ	0.41 UR	0.29 U	0.29 U
Total Confident Conc. VOC	10,000	ND	ND	387	67.8	77.1	281.1	2,334.8	9,031.7	566.9	262.8

						Table 4-17					
Sample Location		SB-23	SB-23	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-25
Sample Interval (Feet bgs)		17 to 18	24 to 25	5 to 7	7 to 9	25 to 27	33 to 35	33 to 35	53 to 55	82 to 84	7 to 9
Sampling Date		4/27/04	4/27/04	4/24/04	4/24/04	4/24/04	4/24/04	4/24/04	4/24/04	08/30/04	4/26/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
			0 0	0 0	0 0	0 0	0 0	0 0		0 0	0 0
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO							Duplicate			
Dichlorodifluoromethane	NC	2.1 UJ	1.9 UR	1.4 U	1.5 U	15 UJ	1.8 U	1.9 U	1.4 U	1.4 U	1.3 U
Chloromethane	NC	0.55 UJ	0.5 UR	0.38 U	0.4 U	4 UJ	0.49 U	0.5 U	0.38 U	0.38 U	0.36 U
Vinyl Chloride	200	0.39 UJ	0.36 UR	0.27 U	0.29 U	2.9 UJ	0.35 U	0.36 U	0.27 U	0.27 U	0.25 U
Bromomethane	NC	1.2 UJ	1.1 UR	0.81 U	0.86 U	8.6 UJ	1.1 U	1.1 U	0.81 U	0.82 U	0.76 U
Chloroethane	1,900	0.87 UJ	0.8 UR	0.6 U	0.64 U	6.4 UJ	0.78 U	0.8 U	0.6 U	0.61 U	0.56 U
Trichlorofluoromethane	NC	4.1 UJ	3.7 UR	2.8 U	3 U	30 UJ	3.7 U	3.7 U	2.8 U	2.9 U	2.6 U
1,1,2-Trichlorotrifluoroethane	6,000	0.76 UJ	0.7 UR	0.53 U	0.56 U	5.6 UJ	0.69 U	0.7 U	0.53 U	0.53 U	0.49 U
1,1-Dichloroethene	400	0.36 UJ	0.33 UR	0.25 U	0.26 U	2.6 UJ	0.32 U	0.33 U	0.25 U	0.25 U	0.23 U
Acetone	200	56 J	11 UR	8.6 U	9.1 U	91 UJ	11 U	11 U	8.6 U	8.7 U	8 U
Carbon Disulfide	2,700	0.17 UJ	0.15 UR	0.12 U	0.12 U	1.2 UJ	0.15 U	11	0.12 U	0.12 U	0.11 U
Methyl tert-butyl Ether	120	0.38 UJ	0.35 UR	0.26 U	0.28 U	2.8 UJ	0.34 U	0.35 U	0.26 U	0.27 U	0.25 U
Methyl Acetate	NC	2.1 UJ	1.9 UR	1.5 U	1.6 U	16 UJ	1.9 U	1.9 U	1.5 U	1.5 U	1.4 U
Methylene Chloride	100	1.1 UJ	1 UR	0.78 U	0.83 U	8.3 UJ	1 U	1 U	0.78 U	3.3 J	0.73 U
trans-1,2-Dichloroethene	300	0.62 UJ	0.56 UR	0.43 U	0.45 U	4.5 UJ	0.55 U	0.56 U	0.43 U	0.43 U	0.4 U
1,1-Dichloroethane	200	0.59 UJ	0.53 UR	0.41 U	0.43 U	4.3 UJ	0.53 U	0.53 U	0.41 U	0.41 U	0.38 U
Cyclohexane	NC	0.51 UJ	0.46 UR	0.35 U	0.37 U	3.7 UJ	0.46 U	0.46 U	0.35 U	0.35 U	0.33 U
2-Butanone	300	3.8 UJ	3.4 UR	2.6 U	2.8 U	28 UJ	3.4 U	3.4 U	2.6 U	2.6 U	2.4 U
Carbon Tetrachloride	600	0.5 UJ	0.45 UR	0.34 U	0.36 U	3.6 UJ	0.44 U	0.45 U	0.34 U	0.35 U	0.32 U
cis-1,2-Dichloroethene	NC	0.59 UJ	0.53 UR	0.4 U	0.43 U	4.3 UJ	0.53 U	0.53 U	0.4 U	0.41 U	0.38 U
Chloroform	300	0.4 UJ	0.36 UR	0.27 U	0.29 U	2.9 UJ	0.35 U	0.36 U	0.27 U	0.28 U	0.25 U
1,1,1-Trichloroethane	800 NC	0.45 UJ 48 J	0.41 UR 0.54 UR	0.31 U 0.41 U	0.33 U 0.43 U	3.3 UJ 4.3 UJ	0.4 U 0.53 U	0.41 U 0.54 U	0.31 U 0.41 U	0.32 U 0.23 U	0.29 U 6.4
Methylcyclohexane	60	91 J		8.4	0.43 U	70000 D	1600 D	1500 D			31
Benzene 1,2-Dichloroethane	200	5.1 UJ	170 J 4.7 UR	3.5 U	3.8 U	38 UJ	4.6 U	4.7 U	6.6 3.5 U	3.6 U 0.37 U	3.3 U
Trichloroethene	700	0.53 UJ	0.48 UR	0.37 U	0.39 U	3.9 UJ	0.48 U	0.48 U	0.37 U	0.37 U	0.34 U
1,2-Dichloropropane	NC	0.56 UJ	0.51 UR	0.39 U	0.41 U	4.1 UJ	0.5 U	0.51 U	0.39 U	0.39 U	0.34 U
Bromodichloromethane	NC	0.56 UJ	0.5 UR	0.38 U	0.41 U	4.1 UJ	0.5 U	0.5 U	0.38 U	2.8 U	0.36 U
4-Methyl-2-Pentanone	1,000	4 UJ	3.6 UR	2.8 U	2.9 U	29 UJ	3.6 U	3.6 U	2.8 U	0.3 U	2.6 U
Toluene	1,500	26 J	40 J	2.8 J	0.32 U	230000 DJ	350 DJ	210 J	3.5 J	0.3 U	13 J
t-1,3-Dichloropropene	NC	0.43 UJ	0.39 UR	0.29 U	0.31 U	3.1 UJ	0.38 U	0.39 U	0.29 U	0.23 U	0.28 U
cis-1,3-Dichloropropene	NC	0.32 UJ	0.29 UR	0.22 U	0.24 U	2.4 UJ	0.29 U	0.29 U	0.22 U	0.59 U	0.21 U
1,1,2-Trichloroethane	NC	0.84 UJ	0.77 UR	0.58 U	0.62 U	6.2 UJ	0.76 U	0.77 U	0.58 U	3.7 U	0.54 U
2-Hexanone	NC	5.3 UJ	4.8 UR	3.7 U	3.9 U	39 UJ	4.8 U	4.8 U	3.7 U	0.34 U	3.4 U
Dibromochloromethane	NA	0.48 UJ	0.44 UR	0.33 U	0.35 U	3.5 UJ	0.43 U	0.44 U	0.33 U	0.48 U	0.31 U
1,2-Dibromoethane	NC	0.69 UJ	0.63 UR	0.48 U	0.51 U	5.1 UJ	0.62 U	0.63 U	0.48 U	0.74 U	0.45 U
Tetrachloroethene	1,400	1.1 UJ	0.96 UR	0.73 U	0.77 U	7.7 UJ	0.95 U	0.96 U	0.73 U	0.41 U	0.68 U
Chlorobenzene	1,700	0.59 UJ	0.53 UR	0.4 U	0.43 U	920 J	0.53 U	0.53 U	0.4 U	0.29 U	0.38 U
Ethyl Benzene	5,500	790 DJ	490 D	0.29 U	0.3 U	130000 D	1800 D	1500 D	0.29 U	0.6 U	13
m/p-Xylenes	1,200	930 D	530 J	0.59 U	0.63 U	310000 D	2900 D	2700 D	4.7 J	0.5 U	64
o-Xylene	600	1300 DJ	500 D	0.5 U	0.53 U	120000 D	1500 D	1500 D	0.5 U	0.36 U	53
Styrene	NC	0.52 UJ	14 J	0.36 U	0.38 U	3.8 UJ	0.47 U	0.47 U	0.36 U	0.35 U	0.34 U
Bromoform	NC	0.5 UJ	0.45 UR	0.34 U	0.36 U	3.6 UJ	0.45 U	0.45 U	0.34 U	0.43 U	0.32 U
Isopropylbenzene	2,300	760 D	10 J	0.43 U	0.45 U	2100 J	82	150	0.43 U	0.62 U	23
1,1,2,2-Tetrachloroethane	600	0.88 U	0.8 UR	0.61 U	0.65 U	6.5 UJ	0.79 U	0.8 U	0.61 U	0.25 U	0.57 U
1,3-Dichlorobenzene	1,600	0.35 U	0.32 UR	0.24 U	0.26 U	2.6 UJ	0.31 U	0.32 U	0.24 U	0.41 U	0.23 U
1,4-Dichlorobenzene	8,500	0.58 U	0.53 UR	0.4 U	0.43 U	4.3 UJ	0.52 U	0.53 U	0.4 U	0.48 U	0.38 U
1,2-Dichlorobenzene	7,900	0.68 U	0.62 UR	0.47 U	0.5 U	5 UJ	0.61 U	0.62 U	0.47 U	0.79 U	0.44 U
1,2-Dibromo-3-Chloropropane	NC	1.1 U	1 UR	0.78 U	0.83 U	8.3 UJ	1 U	1 U	0.78 U	0.29 U	0.73 U
1,2,4-Trichlorobenzene	3,400	0.42 U	0.38 UR	0.29 U	0.3 U	3 UJ	0.37 U	0.38 U	0.29 U	3.3	0.27 U
Total Confident Conc. VOC	10,000	4,001	1,754	11.2	ND	863,020	8,232	7,571	14.8	3.3	203.4

						Table 4-17					
Sample Location		SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-27
Sample Interval (Feet bgs)		20 to 22	32 to 33	33 to 34	6.5 to 7	31 to 33	35 to 37	5 to 5.5	5.9 to 6.3	40.9 to 41.3	44.5 to 45
Sampling Date		4/26/04	4/26/04	4/26/04	07/08/04	07/26/04	07/27/04	07/09/04	07/22/04	07/22/04	07/22/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
				0 0	0 0	0 0				0 0	0 0
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.4 U	1.6 U	2 UJ	1.5 U	15 U	1.9 U	1.4 UJ	1.6 U	1.5 U	1.8 R
Chloromethane	NC	0.37 U	0.43 U	0.53 UJ	0.4 U	3.9 U	0.5 U	0.38 UJ	0.42 U	0.39 U	0.49 R
Vinyl Chloride	200	0.26 U	0.31 U	0.38 UJ	0.29 U	2.8 U	0.36 U	0.27 UJ	0.3 U	0.28 U	0.35 R
Bromomethane	NC	0.8 U	0.92 U	1.1 UJ	0.86 U	8.4 U	1.1 U	0.8 UJ	0.91 U	0.84 U	1.1 R
Chloroethane	1,900	0.59 U	0.68 U	0.85 UJ	0.64 U	6.2 U	0.8 U	0.6 UJ	0.67 U	0.62 U	0.78 R
Trichlorofluoromethane	NC	2.8 U	3.2 U	4 UJ	3 U	29 U	3.7 U	2.8 UJ	3.2 U	2.9 U	3.7 R
1,1,2-Trichlorotrifluoroethane	6,000	0.52 U	0.6 U	0.74 UJ	0.56 U	5.5 U	0.7 U	0.52 UJ	0.59 U	0.55 U	0.69 R
1,1-Dichloroethene	400	0.24 U	0.28 U	0.35 UJ	0.26 U	2.6 U	0.33 U	0.24 UJ	0.28 U	0.26 U	0.32 R
Acetone	200	8.4 U	9.7 U	160 J	9.1 U	89 U	55 J	53	25 J	8.9 U	11 R
Carbon Disulfide	2,700	0.11 U	0.13 U	0.16 UJ	0.12 U	1.2 U	16 J	0.11 UJ	13 J	6 J	0.15 R
Methyl tert-butyl Ether	120	0.26 U	0.3 U	0.37 UJ	0.28 U	2.7 U	0.35 U	0.26 UJ	0.29 U	0.27 U	0.34 R
Methyl Acetate	NC	1.4 U	1.7 U	2.1 UJ	1.6 U	15 U	1.9 U	1.4 UJ	1.6 U	1.5 U	4.8 J
Methylene Chloride	100	0.76 U	0.88 U	1.1 UJ	3.5 J	8.1 U	1 U	6.6 J	4.6 J	5.1 J	1 R
trans-1,2-Dichloroethene	300	0.42 U	0.48 U	0.6 UJ	0.45 U	4.4 U	0.56 U	0.42 UJ	0.48 U	0.44 U	0.55 R
1,1-Dichloroethane	200	0.4 U	0.46 U	0.57 UJ	0.43 U	4.2 U	0.53 U	0.4 UJ	0.45 U	0.42 U	0.53 R
Cyclohexane	NC	0.34 U	0.4 U	0.49 UJ	0.37 U	3.6 U	0.46 U	0.35 UJ	0.39 U	0.36 U	0.46 R
2-Butanone	300	2.6 U	3 U	3.7 UJ	2.8 U	27 U	3.4 U	2.6 UJ	2.9 U	2.7 U	3.4 R
Carbon Tetrachloride	600	0.33 U	0.39 U	0.48 UJ	0.36 U	3.5 U	0.45 U	0.34 UJ	0.38 U	0.35 U	0.44 R
cis-1,2-Dichloroethene	NC	0.4 U	0.46 U	0.57 UJ	0.43 U	4.2 U	0.53 U	0.4 UJ	0.45 U	0.42 U	0.53 R
Chloroform	300	0.27 U	0.31 U	0.38 UJ	0.29 U	2.8 U	0.36 U	0.27 UJ	0.3 U	0.28 U	0.35 R
1,1,1-Trichloroethane	800	0.3 U	0.35 U	0.44 UJ	0.33 U	3.2 U	0.41 U	0.31 UJ	0.35 U	0.32 U	0.4 R
Methylcyclohexane	NC	0.4 U	9.6	21 J	0.43 U	4.2 U	0.54 U	0.4 UJ	0.46 U	0.42 U	0.53 R
Benzene	60	6000 JD	300 D	5900 D	0.25 U	540	0.31 U	0.23 UJ	0.26 U	14	2700 J
1,2-Dichloroethane	200	3.5 U	4 U	5 UJ	3.8 U	37 U	4.7 U	3.5 UJ	3.9 U	3.7 U	4.6 R
Trichloroethene	700	0.36 U	0.42 U	0.52 UJ	0.39 U	3.8 U	0.48 U	0.36 UJ	0.41 U	0.38 U	0.48 R
1,2-Dichloropropane	NC	0.38 U	0.44 U	0.54 UJ	0.41 U	4 U	0.51 U	0.38 UJ	0.43 U	0.4 U	0.5 R
Bromodichloromethane	NC	0.37 U	0.43 U	0.54 UJ	0.41 U	4 U	0.5 U	0.38 UJ	0.43 U	0.4 U	0.5 R
4-Methyl-2-Pentanone	1,000	2.7 U	3.1 U	3.9 UJ	2.9 U	29 U	3.6 U	2.7 UJ	3.1 U	2.9 U	3.6 R
Toluene	1,500	64 J	38 J	810 DJ	0.32 U	120	0.39 U	0.29 UJ	0.33 U	4.5 J	830 J
t-1,3-Dichloropropene	NC	0.29 U	0.33 U	0.41 UJ	0.31 U	3 U	0.39 U	0.29 UJ	0.33 U	0.3 U	0.38 R
cis-1,3-Dichloropropene	NC	0.22 U	0.25 U	0.31 UJ	0.24 U	2.3 U	0.29 U	0.22 UJ	0.25 U	0.23 U	0.29 R
1,1,2-Trichloroethane	NC	0.57 U	0.66 U	0.82 UJ	0.62 U	6 U	0.77 U 4.8 U	0.57 UJ	0.65 U	0.6 U	0.76 R
2-Hexanone	NC NA	3.6 U	4.2 U 0.38 U	5.2 UJ 0.47 UJ	3.9 U 0.35 U	38 U	4.8 U 0.44 U	3.6 UJ	4.1 U 0.37 U	3.8 U	4.8 R
Dibromochloromethane	NC NC	0.33 U 0.47 U	0.54 U	0.47 UJ	0.35 U 0.51 U	3.5 U 5 U	0.44 U	0.33 UJ 0.47 UJ	0.53 U	0.35 U 0.5 U	0.43 R 0.62 R
1,2-Dibromoethane	1,400	0.47 U	0.54 U	0.67 UJ	0.51 U	7.6 U	0.63 U	6.2 J	7.9	11	0.62 R 0.95 R
Tetrachloroethene	1,400	0.71 U 0.4 U	0.82 U 0.46 U	0.57 UJ	0.77 U 0.43 U	7.6 U 4.2 U	0.96 U 0.53 U	6.2 J 0.4 UJ	7.9 0.45 U	0.42 U	0.95 R 0.53 R
Chlorobenzene	5,500	6300 JD	260 D	9400 D	0.43 U	840	0.38 U	0.4 UJ	1.8 J		
Ethyl Benzene	1,200	8600 JD	52	14000 D	0.3 U	390	0.38 U	0.58 UJ	1.8 J	6.4 12	1500 J 3200 J
m/p-Xylenes o-Xylene	600	5800 JD	160	8800 D	0.53 U	450	0.65 U	0.49 UJ	1.6 J	4.9 J	1100 J
Styrene	NC	0.35 U	0.41 U	0.5 UJ	0.38 U	3.7 U	0.65 U	0.49 UJ	0.4 U	0.37 U	0.47 R
Bromoform	NC NC	0.33 U	0.41 U	0.48 UJ	0.36 U	3.6 U	0.47 U	0.34 UJ	0.4 U	0.36 U	0.47 R
Isopropylbenzene	2,300	71	160	1400 D	0.45 U	200	0.45 U	0.42 UJ	0.38 U 0.47 U	0.36 U 0.44 U	30 J
1,1,2,2-Tetrachloroethane	600	0.59 U	0.69 U	0.85 UJ	0.45 U	6.3 U	0.56 U	0.42 UJ	0.47 U	0.44 U	0.79 R
1,3-Dichlorobenzene	1,600	0.59 U 0.24 U	0.69 U	0.85 UJ	0.65 U	2.5 U	0.8 U	0.6 UJ	0.88 U	0.63 U	0.79 R 0.31 R
1.4-Dichlorobenzene	8,500	0.24 U	0.27 U	0.34 UJ 0.57 UJ	0.26 U	4.2 U	0.53 U	0.24 UJ	0.27 U	0.25 U 0.42 U	0.51 R
1,2-Dichlorobenzene	7,900	0.39 U 0.46 U	0.46 U	0.57 UJ	0.43 U	4.2 U 4.9 U	0.53 U	0.4 UJ	0.45 U	0.42 U 0.49 U	0.52 R 0.61 R
1,2-Dibromo-3-Chloropropane	7,900 NC	0.46 U	0.53 U	1.1 UJ	0.5 U	4.9 U 8.1 U	0.62 U	0.46 UJ 0.77 UJ	0.52 U 0.87 U	0.49 U 0.81 U	0.61 R
1,2,4-Trichlorobenzene	3,400	0.76 U	0.88 U	0.4 UJ	0.83 U	8.1 U	0.38 U	0.77 UJ 0.28 UJ	0.87 U	0.81 U	0.37 R
Total Confident Conc. VOC	10,000	26,835	979.6	40,491	3.5	2,540	71	65.8	55.5	58.8	9,364.8

	1										
Sample Location		SB-47	SB-47	SB-47	SB-48	SB-48	SB-48	SB-49	SB-49	SB-49	SB-49
Sample Interval (Feet bgs)		7 to 9	13 to 15	17 to 19	7 to 9	15 to 16	19 to 21	10 to 12	14 to 15	17 to 18	23 to 24
Sampling Date		5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	4/28/04	4/28/04	4/28/04	4/28/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		3 3	3 3	- 3- 3	3 3	3 3	3 3	3 3	3 3	3. 3	-5-5
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.4 U	1.5 U	1.8 U	1.5 U	58 U	2 U	7.5 U	1.5 R	7.4 R	1.9 U
Chloromethane	NC	0.37 U	0.4 U	0.48 U	0.4 U	120 U	0.53 U	2 U	0.41 R	2 R	0.52 U
Vinyl Chloride	200	0.26 U	0.28 U	0.34 U	0.28 U	46 U	0.38 U	1.4 U	0.29 R	1.4 R	0.37 U
Bromomethane	NC	0.79 U	0.85 U	1 U	0.85 U	140 U	1.1 U	4.3 U	0.87 R	4.2 R	1.1 U
Chloroethane	1,900	0.58 U	0.63 U	0.76 U	0.63 U	150 U	0.85 U	3.2 U	0.65 R	3.1 R	0.82 U
Trichlorofluoromethane	NC	2.7 U	3 U	3.6 U	3 U	100 U	4 U	15 U	3 R	15 R	3.8 U
1,1,2-Trichlorotrifluoroethane	6,000	0.51 U	0.55 U	0.67 U	0.55 U	120 U	0.74 U	2.8 U	0.57 R	2.7 R	0.72 U
1,1-Dichloroethene	400	0.24 U	0.26 U	0.31 U	0.26 U	56 U	0.35 U	1.3 U	0.27 R	1.3 R	0.34 U
Acetone	200	8.3 U	9 U	89 J	50 J	570 U	110 J	120 J	71 J	44 R	130
Carbon Disulfide	2,700	0.11 U	0.12 U	0.15 U	0.12 U	68 U	0.16 U	0.62 U	0.12 R	0.6 R	4.4 J
Methyl tert-butyl Ether	120	0.25 U	0.28 U	14	0.28 U	62 U	0.37 U	1.4 U	0.28 R	1.4 R	0.36 U
Methyl Acetate	NC	1.4 U	1.5 U	1.8 U	1.5 U	140 U	2.1 U	7.8 U	1.6 R	7.6 R	2 U
Methylene Chloride	100	0.76 U	0.82 U	0.99 U	0.82 U	110 U	1.1 U	4.1 U	0.84 R	25 J	1.1 U
trans-1,2-Dichloroethene	300	0.41 U	0.45 U	0.54 U	0.45 U	89 U	0.6 U	2.3 U	0.46 R	2.2 R	0.58 U
1,1-Dichloroethane	200	0.39 U	0.43 U	0.51 U	0.43 U	37 U	0.57 U	2.2 U	0.44 R	2.1 R	0.55 U
Cyclohexane	NC	0.34 U	0.37 U	0.44 U	0.37 U	64 U	0.49 U	1.9 U	0.38 R	650 J	0.48 U
2-Butanone	300 600	2.5 U 0.33 U	2.7 U	3.3 U	2.7 U	490 U	3.7 U 0.48 U	14 U	2.8 R	14 R	22 J 0.47 U
Carbon Tetrachloride			0.36 U	0.43 U	0.36 U	82 U	0.48 U	1.8 U	0.37 R	1.8 U	
cis-1,2-Dichloroethene Chloroform	NC 300	0.39 U 0.26 U	0.42 U 0.29 U	0.51 U 0.34 U	0.42 U 0.29 U	130 U 100 U	0.57 U 0.38 U	2.1 U 1.4 U	0.43 R 0.29 R	2.1 U 1.4 R	0.55 U 0.37 U
	800	0.26 U	0.29 U	0.34 U	0.29 U	71 U	0.38 U 0.44 U	1.4 U	0.29 R 0.33 R	1.4 R	0.37 U 0.42 U
1,1,1-Trichloroethane Methylcyclohexane	NC	0.39 U	0.43 U	0.51 U	0.43 U	100 U	0.44 U	1.7 U	0.33 K	430 J	0.42 U
Benzene	60	0.39 U	0.43 U	1700 D	0.43 U	3400	5300 D	230	1300 J	31000 D	200 D
1,2-Dichloroethane	200	3.4 U	3.7 U	4.5 U	3.7 U	56 U	5 U	19 U	3.8 R	18 U	4.8 U
Trichloroethene	700	0.36 U	0.39 U	0.46 U	0.39 U	120 U	0.52 U	2 U	0.4 R	1.9 U	0.5 U
1,2-Dichloropropane	NC	0.37 U	0.4 U	0.49 U	0.4 U	55 U	0.54 U	2 U	0.41 R	2 U	0.52 U
Bromodichloromethane	NC	0.37 U	0.4 U	0.48 U	0.4 U	60 U	0.54 U	2 U	0.41 R	2 U	0.52 U
4-Methyl-2-Pentanone	1,000	2.7 U	2.9 U	3.5 U	2.9 U	230 U	3.9 U	15 U	3 R	14 U	3.8 U
Toluene	1,500	0.29 U	0.31 U	0.38 U	0.31 U	8500 J	220	6400 DJ	11000 DJ	99000 DJ	12
t-1,3-Dichloropropene	NC	0.28 U	0.31 U	0.37 U	0.31 U	74 U	0.41 U	1.6 U	0.32 R	1.5 U	0.4 U
cis-1,3-Dichloropropene	NC	0.22 U	0.23 U	0.28 U	0.23 U	26 U	0.31 U	1.2 U	0.24 R	1.2 U	0.3 U
1,1,2-Trichloroethane	NC	0.56 U	0.61 U	0.73 U	0.61 U	90 U	0.82 U	3.1 U	0.62 R	3 U	0.79 U
2-Hexanone	NC	3.6 U	3.9 U	4.6 U	3.9 U	110 U	5.2 U	19 U	3.9 R	19 U	5.75 U
Dibromochloromethane	NA	0.32 U	0.35 U	0.42 U	0.35 U	66 U	0.47 U	1.8 U	0.36 R	1.7 U	0.45 U
1,2-Dibromoethane	NC	0.46 U	0.5 U	0.6 U	0.5 U	110 U	0.67 U	2.5 U	0.51 R	2.5 U	0.65 U
Tetrachloroethene	1,400	0.71 U	0.77 U	0.92 U	0.77 U	57 U	1 U	3.9 U	0.78 R	3.8 U	0.99 U
Chlorobenzene	1,700	0.39 U	0.42 U	0.51 U	0.42 U	64 U	0.57 U	2.1 U	0.43 R	2.1 U	0.55 U
Ethyl Benzene	5,500	0.28 U	0.3 U	0.36 U	0.3 U	4900	2200 D	45000 J	5500 J	31000 D	3.2 J
m/p-Xylenes	1,200	0.57 U	0.62 U	0.74 U	0.62 U	12000	3000 D	130000 J	12000 J	100000 J	9.3 J
o-Xylene	600	0.48 U	0.52 U	0.63 U	0.52 U	5000	1600 D	61000 J	4700 J	38000 D	12
Styrene	NC	0.35 U	0.38 U	0.45 U	0.38 U	1100	0.5 U	1.9 U	11 J	1.9 U	0.49 U
Bromoform	NC	0.33 U	0.36 U	0.43 U	0.36 U	44 U	0.48 U	1.8 U	0.37 R	1.8 U	0.47 U
Isopropylbenzene	2,300	0.41 U	0.45 U	0.54 U	0.45 U	480 J	14	920 J	28 J	340 J	0.58 U
1,1,2,2-Tetrachloroethane	600	0.59 U	0.64 U	0.77 U	0.64 U	86 U	0.85 U	3.2 U	0.65 U	3.1 U	0.83 U
1,3-Dichlorobenzene	1,600	0.23 U	0.25 U	0.31 U	0.25 U	65 U	0.34 U	1.3 U	0.26 U	1.3 U	0.33 U
1,4-Dichlorobenzene	8,500	0.39 U	0.42 U	0.51 U	0.42 U	67 U	0.57 U	2.1 U	0.43 U	2.1 U	0.55 U
1,2-Dichlorobenzene	7,900	0.45 U	0.49 U	0.59 U	0.49 U	64 U	0.66 U	2.5 U	0.5 U	2.4 U	0.64 U
1,2-Dibromo-3-Chloropropane	NC	0.75 U	0.82 U	0.98 U	0.82 U	160 U	1.1 U	4.1 U	0.84 U	4 U	1.1 U
1,2,4-Trichlorobenzene	3,400	0.28 U	0.3 U	0.36 U	0.3 U	50 U	0.4 U	1.5 U	0.31 U	1.5 U	0.39 U
Total Confident Conc. VOC	10,000	ND	ND	1,803	50	35,380	12,444	243,860	34,610	300,015	392.9

T											
Sample Location		SB-50	SB-50	SB-50	SB-50	SB-51	SB-51	SB-51	SB-51	SB-52	SB-52
Sample Interval (Feet bgs)		2 to 3	8 to 10	21 to 23	26 to 27	6 to 7	14 to 15	21 to 22	32 to 33	11 to 13	27 to 29
Sampling Date		4/25/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	5/1/04	5/1/04
Units		4/23/04 ug/Kg	4/27/04 ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Office		ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/Ng	ug/Ng	ug/itg	ug/itg	ug/Ng
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.4 U	1.4 U	1.4 U	1.9 U	1.5 U	3 U	7.5 R	1.8 U	1.7 U	250 U
Chloromethane	NC	0.38 U	0.38 U	0.38 U	0.51 U	0.4 U	0.8 U	2 R	0.47 U	0.45 U	500 U
Vinyl Chloride	200	0.27 U	0.27 U	0.27 U	0.36 U	0.28 U	0.57 U	1.4 R	0.34 U	0.32 U	200 U
Bromomethane	NC	0.8 U	0.81 U	0.82 U	1.1 U	0.85 U	1.7 U	4.3 R	1 U	0.97 U	580 U
Chloroethane	1,900	0.6 U	0.6 U	0.61 U	0.81 U	0.63 U	1.3 U	3.2 R	0.75 U	0.72 U	650 U
Trichlorofluoromethane	NC	2.8 U	2.8 U	2.9 U	3.8 U	3 U	5.9 U	15 R	3.5 U	3.4 U	420 U
1,1,2-Trichlorotrifluoroethane	6,000	0.52 U	0.53 U	0.53 U	0.71 U	0.55 U	1.1 U	2.8 R	0.66 U	0.63 U	510 U
1,1-Dichloroethene	400	0.24 U	0.25 U	0.25 U	0.33 U	0.26 U	0.52 U	1.3 R	0.31 U	0.29 U	240 UJ
Acetone	200	8.5 U	46 J	48	110	330	18 U	45 R	100	10 U	2400 U
Carbon Disulfide	2,700	0.11 U	6.9 J	0.12 U	8.4 J	16 J	0.24 U	0.62 R	6.5 J	0.14 U	290 U
Methyl tert-butyl Ether	120	0.26 U	28	0.27 U	0.35 U	0.28 U	0.55 U	1.4 R	0.33 U	0.31 U	260 U
Methyl Acetate	NC	1.4 U	1.5 U	1.5 U	2 U	1.5 U	3.1 U	7.8 R	1.8 U	1.7 U	610 U
Methylene Chloride	100	0.77 U	0.78 U	0.79 U	1 U	1.3 J	1.6 U	4.1 R	1.9 J	0.93 U	460 U
trans-1,2-Dichloroethene	300	0.42 U	0.43 U	0.43 U	0.57 U	0.45 U	0.89 U	2.3 R	0.53 U	0.51 U	380 U
1,1-Dichloroethane	200	0.4 U	0.41 U	0.41 U	0.54 U	0.43 U	0.85 U	2.2 R	0.5 U	0.48 U	160 U
Cyclohexane	NC	0.35 U	0.35 U	0.35 U	3 J	13 J	300 J	88 J	0.44 U	13	270 U
2-Butanone	300	2.6 U	2.6 U	7.5 J	19 J	80	5.5 U	14 R	17 J	3.1 U	2100 U
Carbon Tetrachloride	600	0.34 U	0.34 U	0.35 U	0.46 U	0.36 U	0.72 U	1.8 R	0.43 U	0.41 U	350 U
cis-1,2-Dichloroethene	NC	0.4 U	0.4 U	0.41 U	0.54 U	0.42 U	0.85 U	2.1 R	0.5 U	0.48 U	570 U
Chloroform	300	0.27 U	0.27 U	0.28 U	0.36 U	0.29 U	0.57 U	1.4 R	0.34 U	0.32 U	420 U
1,1,1-Trichloroethane	800	0.31 U	0.31 U	0.32 U	0.42 U	0.33 U	0.65 U	1.7 R	0.39 U	0.37 U	300 U
Methylcyclohexane	NC	0.4 U	0.41 U	0.41 U	6 J	21 J	220 J	160 J	0.51 U	0.49 U	420 U
Benzene	60	25	5 J	17	1400 D	440 D	48000 D	350000 D	270	84 J	26000 J
1,2-Dichloroethane	200	3.5 U	3.5 U	3.6 U	4.7 U	3.7 U	7.4 U	19 R	4.4 U	4.2 U	240 U
Trichloroethene	700	0.36 U	0.37 U	0.37 U	0.49 U	0.39 U	0.77 U	2 R	0.46 U	0.44 U	490 U
1,2-Dichloropropane	NC	0.38 U	0.39 U	0.39 U	0.52 U	0.4 U	0.81 U	2 R	0.48 U	0.46 U	230 U
Bromodichloromethane	NC	0.38 U	0.38 U	0.39 U	0.51 U	0.4 U	0.8 U	2 R	0.48 U	0.46 U	260 U
4-Methyl-2-Pentanone	1,000	2.7 U	2.8 U	2.8 U	3.7 U	2.9 U	5.8 U	15 R	3.4 U	3.3 U	970 U
Toluene	1,500	5.9 J	0.3 U	3.8 J	12	170	17000 DJ	640000 DJ	15	4.8 J	21000 J
t-1,3-Dichloropropene	NC	0.29 U	0.29 U	0.3 U	0.39 U	0.31 U	0.62 U	1.6 R	0.37 U	0.35 U	310 U
cis-1,3-Dichloropropene	NC	0.22 U	0.22 U	0.23 U	0.3 U	0.23 U	0.47 U	1.2 R	0.28 U	0.27 U	110 U
1,1,2-Trichloroethane	NC	0.57 U	0.58 U	0.59 U	0.78 U	0.61 U	1.2 U	3.1 R	0.72 U	0.69 U	380 U
2-Hexanone	NC NA	3.6 U 0.33 U	3.7 U	3.7 U 0.34 U	4.9 U 0.45 U	3.9 U	7.7 U 0.7 U	19 R 1.8 R	4.6 U 0.42 U	4.4 U 0.4 U	480 U 280 U
Dibromochloromethane 1,2-Dibromoethane	NA NC	0.33 U 0.47 U	0.33 U 0.48 U	0.34 U 0.48 U	0.45 U 0.64 U	0.35 U 0.5 U	0.7 U	1.8 K 2.5 R	0.42 U 0.59 U	0.4 U 0.57 U	460 U
Tetrachloroethene	1,400	0.47 U	0.48 U	0.46 U	0.98 U	0.5 U	1.5 U	3.9 R	0.99 U	0.87 U	240 U
Chlorobenzene	1,700	0.72 U	0.73 U	0.74 U	0.54 U	0.77 U	0.85 U	2.1 R	0.91 U	0.87 U	240 U
Ethyl Benzene	5,500	0.4 U	0.4 U	12	88	210	110000 D	480000 D	9.3	0.46 U	33000
m/p-Xylenes	1,200	3.1 J	5.3 J	34 J	75 J	190 J	170000 D	950000 D	9.3 18 J	14	78000
o-Xylene	600	0.49 U	3.7 J	18	89	130	82000 D	370000 D	11	7.4	34000
Styrene	NC	0.49 U	0.36 U	0.36 U	0.48 U	5.3 J	0.75 U	1.9 R	0.45 U	0.43 U	250 U
Bromoform	NC NC	0.34 U	0.34 U	0.35 U	0.46 U	0.36 U	0.73 U	1.8 R	0.43 U	0.43 U	190 U
	2,300	0.34 U	4.9 J	11	14	150 DJ	20000 D	61000 D	0.43 U	10	4900 4900
Isopropylbenzene 1,1,2,2-Tetrachloroethane	600	0.42 U	0.61 U	0.62 U	0.81 U	0.64 UJ	1.3 U	3.2 R	0.53 U 0.76 U	0.72 U	360 U
1,3-Dichlorobenzene	1,600	0.6 U	0.61 U	0.62 U	0.81 U	0.64 UJ 0.25 UJ	0.51 U	3.2 R 1.3 R	0.76 U	0.72 U 0.29 U	270 U
1,4-Dichlorobenzene	8,500	0.24 U	0.24 U	0.23 U	0.54 U	0.42 UJ	0.85 U	2.1 R	0.5 U	0.29 U	280 U
1,2-Dichlorobenzene	7,900	0.4 U	0.4 U	0.41 U	0.63 U	0.42 UJ	0.85 U 0.99 U	2.1 R	0.58 U	0.48 U	270 U
1,2-Dibromo-3-Chloropropane	7,900 NC	0.46 U	0.47 U	0.48 U	0.63 U	0.49 UJ	1.6 U	2.5 K	0.97 U	0.93 U	690 U
1,2,4-Trichlorobenzene	3,400	0.77 U	0.78 U	0.79 U	0.38 U	0.82 UJ	0.6 U	1.5 R	0.36 U	0.93 U	210 U
1,2,7 11011010001126116	5,700	0.20 0	0.23 0	0.23 0	0.55 0	0.5 00	0.0 0	1.5 K	0.50 0	0.54 0	210 0
Total Confident Conc. VOC	10,000	34	99.8	151.3	1,824.4	1,756.6	447,520	2,851,248	448.7	133.2	196,900

							Table 4-17		
Sample Location		SB-52							
Sample Interval (Feet bgs)		33 to 35							
Sampling Date		5/1/04							
Units		ug/Kg							
onito .		ugritg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Volatile Organic Compounds	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
(ug/Kg)	RSCO		· ·			Exceedances			
Dichlorodifluoromethane	NC	1.9 U	61	0	0%	0	0%	< 1.2	< 250
Chloromethane	NC	0.51 U	61	0	0%	0	0%	< 0.33	< 500
Vinyl Chloride	200	0.36 U	61	0	0%	0	0%	< 0.24	< 200
Bromomethane	NC	1.1 U	61	0	0%	0	0%	< 0.71	< 580
Chloroethane	1,900	0.81 U	61	0	0%	0	0%	< 0.52	< 650
Trichlorofluoromethane	NC	3.8 U	61	0	0%	0	0%	< 2.5	< 420
1,1,2-Trichlorotrifluoroethane	6,000	0.71 U	61	0	0%	0	0%	< 0.46	< 510
1,1-Dichloroethene	400	0.33 U	61	0	0%	0	0%	< 0.22	< 240
Acetone	200	99	61	22	36%	1	2%	< 7.5	< 2,400
Carbon Disulfide	2,700	54	61	12	20%	0	0%	< 0.1	< 290
Methyl tert-butyl Ether	120 NC	0.35 U	61	3	5%	0	0%	< 0.23	< 260
Methyl Acetate	NC 100	2 U	61	1	2%	0	0%	< 1.3	< 610
Methylene Chloride trans-1,2-Dichloroethene	100 300	1 U 0.57 U	61 61	8	13% 0%	0	0% 0%	< 0.68 < 0.37	< 460 < 380
1,1-Dichloroethane	200	0.57 U	61	0	0%	0	0%	< 0.37	< 160
Cyclohexane	NC	0.54 U	61	8	13%	0	0%	< 0.35	650
2-Butanone	300	3.5 U	61	7	11%	0	0%	< 2.3	< 2,100
Carbon Tetrachloride	600	0.46 U	61	0	0%	0	0%	< 0.3	< 350
cis-1,2-Dichloroethene	NC	0.54 U	61	0	0%	0	0%	< 0.35	< 570
Chloroform	300	0.36 U	61	0	0%	0	0%	< 0.24	< 420
1,1,1-Trichloroethane	800	0.42 U	61	0	0%	0	0%	< 0.27	< 300
Methylcyclohexane	NC	0.55 U	61	14	23%	0	0%	< 0.23	430
Benzene	60	460 D	61	42	69%	29	48%	< 0.2	350,000
1,2-Dichloroethane	200	4.7 U	61	0	0%	0	0%	< 0.37	< 240
Trichloroethene	700	0.49 U	61	0	0%	0	0%	< 0.32	< 490
1,2-Dichloropropane	NC	0.52 U	61	0	0%	0	0%	< 0.34	< 230
Bromodichloromethane	NC	0.51 U	61	0	0%	0	0%	< 0.33	< 260
4-Methyl-2-Pentanone	1,000	3.7 U	61	0	0%	0	0%	< 0.3	< 970
Toluene	1,500	4.7 J	61	38	62%	9	15%	< 0.26	640,000
t-1,3-Dichloropropene	NC	0.39 U	61	0	0%	0	0%	< 0.23	< 310
cis-1,3-Dichloropropene	NC	0.3 U	61	0	0%	0	0%	< 0.19	< 110
1,1,2-Trichloroethane	NC	0.78 U	61	0	0%	0	0%	< 0.51	< 380
2-Hexanone	NC NA	4.9 U 0.45 U	61 61	0	0% 0%	0	0% 0%	< 0.34 < 0.29	< 480
Dibromochloromethane 1,2-Dibromoethane	NA NC	0.45 U	61	0	0%	0	0%	< 0.29 < 0.42	< 280 < 460
Tetrachloroethene	1,400	0.64 U	61	4	7%	0	0%	< 0.42	< 460 < 240
Chlorobenzene	1,700	0.54 U	61	1	2%	0	0%	< 0.29	920
Ethyl Benzene	5,500	4.5 J	61	37	61%	8	13%	< 0.25	480,000
m/p-Xylenes	1,200	17	61	40	66%	15	25%	< 0.5	950,000
o-Xylene	600	10	61	39	64%	15	25%	< 0.36	370,000
Styrene	NC	0.48 U	61	5	8%	0	0%	< 0.31	1,100
Bromoform	NC	0.46 U	61	0	0%	0	0%	< 0.3	< 190
Isopropylbenzene	2,300	0.57 U	61	33	54%	3	5%	< 0.37	61,000
1,1,2,2-Tetrachloroethane	600	0.81 U	61	0	0%	0	0%	< 0.25	< 360
1,3-Dichlorobenzene	1,600	0.32 U	61	0	0%	0	0%	< 0.21	< 270
1,4-Dichlorobenzene	8,500	0.54 U	61	0	0%	0	0%	< 0.35	< 280
1,2-Dichlorobenzene	7,900	0.63 U	61	0	0%	0		< 0.41	< 270
1,2-Dibromo-3-Chloropropane	NC	1 U	61	0	0%	0	0%	< 0.29	< 690
1,2,4-Trichlorobenzene	3,400	0.38 U	61	1	2%	0	0%	< 0.25	< 210
Total Confident Conc. VOC	10,000	649.2							

						Table 4-18					
Sample Location		TP-3	TP-6	SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		7.5 to 7.5	9.5 to 9.5	5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	41 to 43	49 to 51
Sampling Date		5/1/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	37 U	36 U	370 U	41 U	72 U	78 U	44 U	36 U	37 U	39 U
Phenol	30 or MDL	16 U	16 U	160 U	18 U	930	33 U	19 U	15 U	16 U	17 U
bis(2-Chloroethyl)ether	NC	19 U	18 U	180 U	21 U	36 U	39 U	22 U	18 U	19 U	20 U
2-Chlorophenol	800	16 U	16 U	160 U	18 U	32 U	34 U	19 U	16 U	16 U	17 U
2-Methylphenol	100 or MDL	24 U	24 U	240 U	27 U	420 J	50 U	28 U	23 U	24 U	25 U
2,2-oxybis(1-Chloropropane)	NC	20 U	20 U	200 U	23 U	40 U	43 U	24 U	20 U	21 U	21 U
Acetophenone	NC	20 U	19 U	200 U	22 U	38 U	42 U	23 U	19 U	20 U	21 U
3+4-Methylphenols	900	17 U	17 U	170 U	19 U	710 J	37 U	20 U	17 U	18 U	18 U
N-Nitroso-di-n-propylamine	NC	17 U	16 U	170 U	19 U	32 U	35 U	20 U	16 U	17 U	18 U
Hexachloroethane	NC	18 U	18 U	180 U	20 U	35 U	38 U	21 U	18 U	18 U	19 U
Nitrobenzene	200 or MDL	19 U	19 U	190 U	21 U	37 U	40 U	23 U	19 U	19 U	20 U
Isophorone	4,400	14 U	14 U	140 U	16 U	27 U	30 U	17 U	14 U	14 U	15 U
2-Nitrophenol	330 or MDL	15 U	15 U	150 U	17 U	30 U	32 U	18 U	15 U	15 U	16 U
2,4-Dimethylphenol	NC	180 J	20 U	200 U	23 U	380 J	43 U	24 U	20 U	21 U	21 U
bis(2-Chloroethoxy)methane	NC	17 U	17 U	170 U	19 U	34 U	36 U	20 U	17 U	17 U	18 U
2,4-Dichlorophenol	400	13 U	13 U	130 U	15 U	26 U	28 U	16 U	13 U	13 U	14 U
Naphthalene	13,000	860	430	120000 D	3400	4100	110 J	83 J	1000	88 J	760
4-Chloroaniline	220 or MDL	140 U 13 U	140 U	1400 U	160 U 15 U	270 U 26 U	290 U 28 U	160 U 16 U	140 U 13 U	140 U 13 U	150 U
Hexachlorobutadiene Caprolatam	NC NC	13 U	13 U 14 U	130 U 140 U	16 U	26 U	28 U	16 U	13 U	13 U	14 U 15 U
4-Chloro-3-methylphenol	240 or MDL	14 U	14 U	140 U	13 U	27 U	29 U	13 U	14 U	14 U	12 U
2-Methylnaphthalene	36,400	240 J	77 J	29000	960	1200	14 U	7.7 U	150 J	120 J	150 J
Hexachlorocyclopentadiene	30,400 NC	9.5 UJ	9.3 UJ	94 UJ	11 UJ	18 UJ	20 UJ	11 UJ	9.2 UJ	9.6 UJ	10 U
2,4,6-Trichlorophenol	NC NC	14 U	14 U	140 U	15 U	27 U	29 U	16 U	13 U	14 U	14 U
2,4,5-Trichlorophenol	100	25 U	25 U	250 U	28 U	49 U	53 U	29 U	24 U	25 U	26 U
1,1-Biphenyl	NC	64 J	11 U	5700	170 J	280 J	24 U	13 U	11 U	11 U	12 U
2-Chloronaphthalene	NC	7.9 U	7.8 U	78 U	8.8 U	15 U	17 U	9.3 U	7.7 U	8 U	8.3 U
2-Nitroaniline	430 or MDL	14 U	14 U	140 U	15 U	27 U	29 U	16 U	13 U	14 U	14 U
Dimethylphthalate	2,000	9 U	8.9 U	89 U	10 U	18 U	19 U	11 U	8.8 U	9.1 U	9.5 U
Acenaphthylene	41,000	68 J	11 U	5000	130 J	280 J	24 U	13 U	39 J	11 U	59 J
2,6-Dinitrotoluene	1,000	16 U	16 U	160 U	18 U	31 U	34 U	19 U	16 U	16 U	17 U
3-Nitroaniline	500 or MDL	61 U	60 U	600 U	68 U	120 U	130 U	72 U	59 U	62 U	64 U
Acenaphthene	50,000	57 J	8.2 U	5700	340 J	310 J	18 U	9.8 U	55 J	8.4 U	100 J
2,4-Dinitrophenol	200 or MDL	17 U	16 U	170 U	19 U	32 U	35 U	20 U	16 U	17 U	18 U
4-Nitrophenol	100 or MDL	37 U	36 U	370 U	41 U	72 U	78 U	43 U	36 U	37 U	39 U
Dibenzofuran	6,200	160 J	12 U	13000	250 J	830	26 U	15 U	12 U	13 U	13 U
2,4-Dinitrotoluene	1,000	7.5 U	7.4 U	75 U	8.4 U	15 U	16 U	8.9 U	7.3 U	7.6 U	7.9 U
Diethylphthalate	7,100	40 J	12 U	120 U	13 U	23 U	25 U	14 U	12 U	12 U	12 U
4-Chlorophenyl-phenylether	NC	9.4 U	9.2 U	93 U	10 U	18 U	20 U	11 U	9.1 U	9.5 U	9.8 U
Fluorene	50,000	290 J	11 U	23000	530	1300	23 U	45 J	90 J	96 J	160 J
4-Nitroaniline	NC	30 U	29 U	290 U	33 U	58 U	62 U	35 U	29 U	30 U	31 U
4,6-Dinitro-2-methylphenol	NC	22 U	22 U	220 U	25 U	43 U	46 U	26 U	21 U	22 U	23 U
N-Nitrosodiphenylamine	NC	9.6 U	9.5 U	95 U	11 U	19 U	20 U	11 U	9.3 U	9.7 U	10 U
4-Bromophenyl-phenylether	NC 140	9.9 U	9.8 U	98 U	11 U	19 U	21 U	12 U	9.7 U	10 U	10 U
Hexachlorobenzene	410	7.1 U	7 U	70 U	7.9 U	14 U	15 U	8.3 U	6.9 U	7.2 U	7.4 U
Atrazine	NC NC	12 U	11 U	110 U	13 U	22 U	24 U	14 U	11 U	12 U	12 U
Pentachlorophenol	1000 or MDL	12 U	12 U	120 U	13 U	23 U	25 U	14 U	11 U	12 U	12 U
Phenanthrene	50,000	780	45 J	47000 D	1700	5800	510 J	130 J	530	490	850
Anthracene	50,000	160 J	8.9 U	10000	330 J	1400	110 J	11 U	120 J	100 J	190 J
Carbazole	NC 0.400	120 J	8.2 U	6700	150 J	1400	18 U	9.8 U	54 J	8.4 U	8.8 U
Di-n-butylphthalate	8,100	5 U	5 U	50 U	5.6 U	9.8 U	11 U	5.9 U	4.9 U	53 J	87 J
Fluoranthene	50,000	410	38 J	28000	860	4400	950	79 J	260 J	190 J	330 J

Sample Location		TP-3	TP-6	SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		7.5 to 7.5	9.5 to 9.5	5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	41 to 43	49 to 51
Sampling Date		5/1/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04	5/2/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	400	46 J	28000	870	4900	1000	78 J	300 J	270 J	430
Butylbenzylphthalate	50,000	13 U	12 U	130 U	47 J	25 U	27 U	15 U	39 J	13 U	70 J
3,3-Dichlorobenzidine	NA	61 U	60 U	600 U	68 U	120 U	130 U	71 U	59 U	61 U	64 U
Benzo(a)anthracene	224 or MDL	210 J	5.6 U	14000	420 J	2500	710 J	6.7 U	130 J	100 J	170 J
Chrysene	400	200 J	12 U	11000	370 J	2200	680 J	14 U	120 J	98 J	160 J
bis(2-Ethylhexyl)phthalate	50,000	360 J	350 J	610 J	620	310 J	340 J	400 J	500	500	460
Di-n-octyl phthalate	50,000	9 U	8.9 U	89 U	10 U	18 U	19 U	11 U	8.8 U	9.1 U	9.5 U
Benzo(b)fluoranthene	1,100	130 J	20 U	12000	340 J	2000	880	24 U	92 J	73 J	96 J
Benzo(k)fluoranthene	1,100	77 J	13 U	5600	140 J	670 J	460 J	15 U	44 J	13 U	53 J
Benzo(a)pyrene	61 or MDL	150 J	6.4 U	11000	300 J	420 J	680 J	7.7 U	91 J	69 J	120 J
Indeno(1,2,3-cd)pyrene	3,200	46 J	9 U	1300 J	75 J	380 J	120 J	11 U	8.9 U	9.2 U	9.6 U
Dibenz(a,h)anthracene	14 or MDL	11 U	11 U	850 J	12 U	190 J	23 U	13 U	11 U	11 U	12 U
Benzo(g,h,i)perylene	50,000	62 J	16 U	2100 J	92 J	510 J	180 J	19 U	16 U	17 U	17 U
Total Confident Conc. SVOC	500,000	5,064	986	379,560	12,094	37,820	6,730	815	3,614	2,247	4,245
Carcinogenic SVOCs in BaP	Equivalents	191.4	ND	14,746	388.6	1.126.7	862.4	ND	114.8	87.3	148.7

						Table 4-18					
Sample Location		SB-21	SB-21	SB-21	SB-22	SB-22	SB-22	SB-22	SB-22	SB-23	SB-23
Sample Interval (Feet bgs)		11 to 13	15 to 17	21 to 23	5 to 7	11 to 13	15 to 17	22 to 23	26 to 27	9 to 10	15 to 16
Sampling Date		5/4/04	5/4/04	5/4/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		0 0		0 0	0 0	0 0	0 0	0 0	0 0		0 0
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	36 U	39 U	48 U	70 U	73 U	37 U	48 U	52 U	74 U	190 U
Phenol	30 or MDL	15 U	17 U	20 U	30 U	31 U	16 U	20 U	22 U	31 U	81 U
bis(2-Chloroethyl)ether	NC	18 U	20 U	24 U	35 U	37 U	18 U	24 U	26 U	37 U	95 U
2-Chlorophenol	800	16 U	17 U	21 U	31 U	32 U	16 U	21 U	23 U	33 U	84 U
2-Methylphenol	100 or MDL	23 U	25 U	31 U	45 U	47 U	24 U	31 U	34 U	48 U	120 U
2,2-oxybis(1-Chloropropane)	NC	20 U	22 U	26 U	38 U	40 U	20 U	27 U	29 U	41 U	100 U
Acetophenone	NC	19 U	21 U	26 U	37 U	39 U	20 UJ	26 U	28 U	39 U	100 U
3+4-Methylphenols	900	17 U	18 U	22 U	33 U	34 U	17 U	23 U	25 U	35 U	89 U
N-Nitroso-di-n-propylamine	NC	16 U	18 U	22 U	31 U	33 U	17 U	22 U	24 U	33 U	85 U
Hexachloroethane	NC	17 U	19 U	23 U	34 U	36 U	18 U	23 U	26 U	36 U	92 U
Nitrobenzene	200 or MDL	19 U	20 U	25 U	36 U	38 U	19 UJ	25 U	27 U	38 U	98 U
Isophorone	4,400	14 U	15 U	18 U	26 U	28 U	14 UJ	18 U	20 U	28 U	72 U
2-Nitrophenol	330 or MDL	15 U	16 U	20 U	29 U	30 U	15 UJ	20 U	22 U	30 U	78 U
2,4-Dimethylphenol	NC	20 U	22 U	26 U	38 U	40 U	20 UJ	27 U	29 U	41 U	100 U
bis(2-Chloroethoxy)methane	NC	17 U	18 U	22 U	32 U	34 U	17 UJ	22 U	24 U	34 U	88 U
2,4-Dichlorophenol	400	13 U	14 U	17 U	25 U	26 U	13 UJ	17 U	19 U	26 U	68 U
Naphthalene	13,000	850	180 J	11 U	10000 DJ	16 U	940 J	560 J	12 U	16000 DJ	23000 DJ
4-Chloroaniline	220 or MDL	140 U	150 U	180 U	260 U	280 U	140 UJ	180 U	200 U	280 U	720 U
Hexachlorobutadiene	NC	13 U	14 U	17 U	25 U	26 U	13 UJ	17 U	19 U	26 U	68 U
Caprolatam	NC	14 U	15 U	18 U	26 U	28 U	14 UJ	18 U	20 U	28 U	71 U
4-Chloro-3-methylphenol	240 or MDL	11 U	12 U	14 U	21 U	22 U	11 UJ	15 U	16 U	22 U	57 U
2-Methylnaphthalene	36,400	200 J	57 J	8.4 U	3900 J	400 J	290 J	150 J	9.2 U	4300 JD	11000 JD
Hexachlorocyclopentadiene	NC NC	9.2 UJ	10 UJ 14 U	12 UJ 18 U	18 UJ 26 U	19 UJ 27 U	9.4 UJ 14 U	12 UJ 18 U	13 UJ 19 U	19 UJ	49 UJ 70 U
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	100	13 U 24 U	26 U	32 U	26 U 47 U	50 U	25 U	32 U	35 U	27 U 50 U	130 U
1,1-Biphenyl	NC	47 J	12 U	14 U	710 J	22 U	40 J	51 J	16 U	670 J	1900
2-Chloronaphthalene	NC NC	7.6 U	8.3 U	10 U	7 10 3 15 U	16 U	7.8 U	10 U	11 U	16 U	40 U
2-Nitroaniline	430 or MDL	13 U	14 U	18 U	26 U	27 U	14 U	18 U	19 U	27 U	360 J
Dimethylphthalate	2,000	8.7 U	9.5 U	12 U	17 U	18 U	9 U	12 U	13 U	18 U	46 U
Acenaphthylene	41,000	120 J	12 U	15 U	1500 J	85 J	450	62 J	16 U	690 J	1000 J
2,6-Dinitrotoluene	1,000	16 U	17 U	21 U	30 U	32 U	16 U	21 U	23 U	32 U	83 U
3-Nitroaniline	500 or MDL	59 U	64 U	79 U	110 U	120 U	61 U	79 U	86 U	120 U	310 U
Acenaphthene	50,000	150 J	8.8 U	11 U	1700 J	190 J	810	91 J	12 U	3700 JD	11000
2,4-Dinitrophenol	200 or MDL	16 U	18 U	22 U	31 U	33 U	17 U	22 U	24 U	33 U	85 U
4-Nitrophenol	100 or MDL	36 U	39 U	48 U	69 U	73 U	37 U	48 U	52 U	74 U	190 U
Dibenzofuran	6,200	180 J	13 U	16 U	1700 J	270 J	810	190 J	18 U	3300	5500
2,4-Dinitrotoluene	1,000	7.3 U	7.9 U	9.7 U	14 U	15 U	7.5 U	9.8 U	11 U	15 U	39 U
Diethylphthalate	7,100	54 J	12 U	15 U	22 U	24 U	12 U	15 U	17 U	24 U	61 U
4-Chlorophenyl-phenylether	NC	9.1 U	9.9 U	12 U	18 U	19 U	9.3 U	12 U	13 U	19 U	48 U
Fluorene	50,000	220 J	11 U	14 U	3100 J	710 J	2300 J	410 J	15 U	4900 J	8100 J
4-Nitroaniline	NC	29 U	31 U	38 U	56 U	59 U	29 U	38 U	42 U	59 U	150 U
4,6-Dinitro-2-methylphenol	NC	21 U	23 U	28 U	41 U	43 U	22 U	28 U	31 U	44 U	110 U
N-Nitrosodiphenylamine	NC	9.3 U	10 U	12 U	18 U	19 U	9.5 U	12 U	14 U	19 U	49 U
4-Bromophenyl-phenylether	NC	9.6 U	10 U	13 U	19 U	20 U	9.9 U	13 U	14 U	20 U	51 U
Hexachlorobenzene	410	6.9 U	7.5 U	9.2 U	13 U	14 U	7 U	9.2 U	10 U	14 U	36 U
Atrazine	NC	11 U	12 U	15 U	22 U	23 U	11 U	15 U	16 U	23 U	59 U
Pentachlorophenol	1000 or MDL	11 U	12 U	15 U	22 U	23 U	12 U	15 U	17 U	24 U	60 U
Phenanthrene	50,000	600	110 J	11 U	8900 DJ	5800	9900 D	2000	170 J	16000 D	26000 D
Anthracene	50,000	210 J	9.5 U	12 U	2200 J	350 J	1500	300 J	13 U	3500	5900
Carbazole	NC	140 J	8.8 U	11 U	670 J	150 J	93 J	150 J	12 U	640 J	850 J
Di-n-butylphthalate	8,100	71 J	5.3 U	6.5 U	9.4 U	10 U	5 U	6.5 U	7.1 U	10 U	26 U
Fluoranthene	50,000	480	63 J	6.8 U	4700 J	1200	2900 JD	1100	100 J	4700 JD	14000

Sample Location Sample Interval (Feet bgs) Sampling Date Units		SB-21 11 to 13 5/4/04 ug/Kg	SB-21 15 to 17 5/4/04 ug/Kg	SB-21 21 to 23 5/4/04 ug/Kg	SB-22 5 to 7 4/27/04 ug/Kg	SB-22 11 to 13 4/27/04 ug/Kg	SB-22 15 to 17 4/27/04 ug/Kg	SB-22 22 to 23 4/27/04 ug/Kg	SB-22 26 to 27 4/27/04 ug/Kg	SB-23 9 to 10 4/27/04 ug/Kg	SB-23 15 to 16 4/27/04 ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	460	52 J	8.7 U	5600	1200	2900 JD	980	99 J	4300 JD	11000
Butylbenzylphthalate	50,000	190 J	13 U	16 U	24 U	25 U	13 U	16 U	18 U	25 U	65 U
3,3-Dichlorobenzidine	NA	59 U	64 U	78 U	110 U	120 U	60 U	79 U	86 U	120 U	310 U
Benzo(a)anthracene	224 or MDL	210 J	6 U	7.4 U	3600 J	500 J	2100	450 J	67 J	3100	4400
Chrysene	400	180 J	13 U	15 U	2800	440 J	2000	340 J	17 U	2900	3800
bis(2-Ethylhexyl)phthalate	50,000	1100 B	9.1 U	11 U	230 J	280 J	480	470 J	700	650 J	380 J
Di-n-octyl phthalate	50,000	8.7 U	9.5 U	12 U	17 U	18 U	9 U	12 U	13 U	18 U	46 U
Benzo(b)fluoranthene	1,100	170 J	21 U	26 U	3800 J	230 J	1500	190 J	28 U	2700	3100
Benzo(k)fluoranthene	1,100	73 J	14 U	17 U	1900 J	250 J	890 J	240 J	18 U	2200 J	2300 J
Benzo(a)pyrene	61 or MDL	160 J	6.8 U	8.4 U	3000 J	350 J	1500	290 J	56 J	2700	3100
Indeno(1,2,3-cd)pyrene	3,200	67 J	9.6 U	12 U	360 J	120 J	160 J	99 J	13 U	280 J	350 J
Dibenz(a,h)anthracene	14 or MDL	11 U	12 U	14 U	160 J	22 U	44 J	14 U	16 U	83 J	57 U
Benzo(g,h,i)perylene	50,000	82 J	17 U	21 U	690 J	140 J	230 J	130 J	23 U	470 J	570 J
Total Confident Conc. SVOC	500,000	6,014	462 ND	ND	61,220	12,665	31,837	8,253	1,192	77,783	137,610
Carcinogenic SVOCs in BaP	Equivalents	207.2	ND	ND	3,983	441.9	1,948.9	369.7	62.7	3,442	3,946

						Table 4-18					
Sample Location Sample Interval (Feet bgs) Sampling Date		SB-23 17 to 18 4/27/04	SB-23 24 to 25 4/27/04	SB-24 5 to 7 4/24/04	SB-24 7 to 9 4/24/04	SB-24 25 to 27 4/24/04	SB-24 33 to 35 4/24/04	SB-24 33 to 35 4/24/04	SB-24 53 to 55 4/24/04	SB-24 82 to 84 08/30/04	SB-25 7 to 9 4/26/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	53 U	49 U	370 U	390 U	39 U	47 U	48 U	37 U	37 U	690 U
Phenol	30 or MDL	23 U	21 U	160 U	170 U	17 U	20 U	21 U	16 U	16 U	290 U
bis(2-Chloroethyl)ether	NC NC	27 U	24 U	190 U	200 U	20 U	24 U	24 U	19 U	19 U	350 U
2-Chlorophenol	800	23 U	21 U	160 U	170 U	17 U	21 U	21 U	16 U	17 U	300 U
2-Methylphenol	100 or MDL	34 U	31 U	240 U	250 U	25 U	31 U	31 U	24 U	24 U	440 U
2,2-oxybis(1-Chloropropane)	NC	29 U	27 U	210 U	220 U	22 U	26 U	27 U	20 U	21 U	380 U
Acetophenone	NC	28 U	26 U	200 U	210 U	21 U	25 U	26 U	20 U	20 U	370 U
3+4-Methylphenols	900	25 U	23 U	170 U	180 U	18 U	22 U	23 U	17 U	18 U	320 U
N-Nitroso-di-n-propylamine	NC	24 U	22 U	170 U	180 U	630	21 U	22 U	17 U	17 U	310 U
Hexachloroethane	NC	26 U	24 U	180 U	190 U	110 J	23 U	24 U	18 U	18 U	340 U
Nitrobenzene	200 or MDL	28 U	25 U	190 U	200 U	20 U	25 U	25 U	19 U	19 U	360 U
Isophorone	4,400	20 U	18 U	140 U	150 U	15 U	18 U	18 U	14 U	14 U	260 U
2-Nitrophenol	330 or MDL	22 U	20 U	150 U	160 U	16 U	19 U	20 U	15 U	15 U	280 U
2,4-Dimethylphenol	NC	29 U	27 U	210 U	220 U	41 J	26 U	27 U	20 U	21 U	380 U
bis(2-Chloroethoxy)methane	NC	25 U	23 U	170 U	180 U	18 U	22 U	23 U	17 U	17 U	320 U
2,4-Dichlorophenol	400	19 U	17 U	130 U	140 U	14 U	17 U	17 U	13 U	13 U	250 U
Naphthalene	13,000	8300 DJ	3200 J	730 J	760 J	17000 D	430 J	200 J	66 J	8.3 U	150 U
4-Chloroaniline	220 or MDL	200 U	180 U	1400 U	1500 U	150 U	180 U	180 U	140 U	140 U	2600 U
Hexachlorobutadiene	NC	19 U	17 U	130 U	140 U	14 U	17 U	17 U	13 U	13 U	250 U
Caprolatam	NC	20 U	18 U	140 U	150 U	15 U	18 U	18 U	14 U	14 U	260 U
4-Chloro-3-methylphenol	240 or MDL	16 U	15 U	110 U	120 U	12 U	14 U	15 U	11 U	11 U	210 U
2-Methylnaphthalene	36,400	1400 J	770 J	65 U	69 U	4400 D	130 J	8.5 U	6.5 U	6.6 U	120 U
Hexachlorocyclopentadiene	NC	14 UJ	12 UJ	95 UJ	100 UJ	10 UJ	12 UJ	12 UJ	9.5 UJ	9.6 UJ	180 UJ
2,4,6-Trichlorophenol	NC	20 U	18 U	140 U	150 U	14 U	18 U	18 U	14 U	14 U	250 U
2,4,5-Trichlorophenol	100	36 U	33 U	250 U	260 U	26 U	32 U	33 U	25 U	25 U	460 U
1,1-Biphenyl	NC	120 J	76 J	110 U	120 U	1200	14 U	15 U	11 U	11 U	210 U
2-Chloronaphthalene	NC NC	11 U	10 U	79 U	83 U	8.3 U	10 U	10 U	7.9 U	8 U	150 U
2-Nitroaniline	430 or MDL 2,000	20 U 13 U	18 U 12 U	140 U 91 U	150 U 96 U	14 U 9.5 U	18 U 12 U	18 U 12 U	14 U 9 U	14 U 9.1 U	250 U 170 U
Dimethylphthalate	41,000	76 J	53 J	110 U	450 J	1400	54 J	12 U	11 U	9.1 U	210 U
Acenaphthylene 2,6-Dinitrotoluene	1,000	23 U	21 U	160 U	450 J 170 U	1400 17 U	21 U	21 U	16 U	16 U	300 U
3-Nitroaniline	500 or MDL	88 U	80 U	610 U	650 U	64 U	78 U	80 U	61 U	62 U	1100 U
Acenaphthene	50,000	710	410 J	84 U	590 J	1800	74 J	11 U	8.4 U	8.4 U	150 U
2,4-Dinitrophenol	200 or MDL	24 U	22 U	170 U	180 U	18 U	21 U	22 U	17 U	17 U	310 U
4-Nitrophenol	100 or MDL	53 U	48 U	370 U	390 U	39 U	47 U	48 U	37 U	37 R	690 U
Dibenzofuran	6,200	220 J	140 J	130 U	130 U	3200	76 J	16 U	12 U	13 U	230 U
2,4-Dinitrotoluene	1,000	11 U	9.9 U	76 U	80 U	8 U	9.7 U	9.8 U	7.6 U	7.6 U	140 U
Diethylphthalate	7,100	17 U	16 U	120 U	130 U	13 U	15 U	16 U	12 U	12 U	220 U
4-Chlorophenyl-phenylether	NC	13 U	12 U	94 U	99 U	9.9 U	12 U	12 U	9.4 U	9.5 U	170 U
Fluorene	50,000	510 J	310 J	110 U	1500 J	4400 D	160 J	54 J	11 U	11 U	200 U
4-Nitroaniline	NC	43 U	39 U	300 U	310 U	31 U	38 U	39 U	30 U	30 U	550 U
4,6-Dinitro-2-methylphenol	NC	32 U	29 U	220 U	230 U	23 U	28 U	29 U	22 U	22 U	410 U
N-Nitrosodiphenylamine	NC	14 U	13 U	96 U	100 U	10 U	12 U	13 U	9.6 U	9.7 U	180 U
4-Bromophenyl-phenylether	NC	14 U	13 U	100 U	110 U	10 U	13 U	13 U	10 U	10 U	180 U
Hexachlorobenzene	410	10 U	9.3 U	71 U	75 U	7.5 U	9.1 U	9.3 U	7.1 U	7.2 U	130 U
Atrazine	NC	17 U	15 U	120 U	120 U	12 U	15 U	15 U	12 U	12 U	210 U
Pentachlorophenol	1000 or MDL	17 U	15 U	120 U	120 U	12 U	15 U	15 U	12 U	12 U	220 U
Phenanthrene	50,000	3000	2800	3200 J	5000	12000 D	440 J	180 J	83 J	8.6 U	160 U
Anthracene	50,000	400 J	220 J	540 J	2300 J	2900	100 J	12 U	9 U	9.1 U	170 U
Carbazole	NC	300 J	120 J	84 U	88 U	1100	11 U	11 U	8.4 U	8.4 U	150 U
Di-n-butylphthalate	8,100	7.2 U	6.6 U	50 U	53 U	5.3 U	52 J	6.6 U	5 U	5.1 U	93 U
Fluoranthene	50,000	890	640	3800 J	13000 J	5700 DJ	250 J	98 J	44 J	5.3 U	3000 J

Sample Location Sample Interval (Feet bgs) Sampling Date		SB-23 17 to 18 4/27/04	SB-23 24 to 25 4/27/04	SB-24 5 to 7 4/24/04	SB-24 7 to 9 4/24/04	SB-24 25 to 27 4/24/04	SB-24 33 to 35 4/24/04	SB-24 33 to 35 4/24/04	SB-24 53 to 55 4/24/04	SB-24 82 to 84 08/30/04	SB-25 7 to 9 4/26/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	780	640	6200	14000	6100 D	270 J	100 J	47 J	6.8 U	4800 J
Butylbenzylphthalate	50,000	18 U	17 U	130 U	130 U	13 U	16 U	17 U	13 U	13 U	240 U
3,3-Dichlorobenzidine	NA	87 U	80 U	610 U	640 U	64 U	78 U	79 U	61 U	61 U	1100 U
Benzo(a)anthracene	224 or MDL	380 J	310 J	5400	11000	3000 JD	160 J	57 J	5.7 U	5.8 U	11000
Chrysene	400	290 J	260 J	5500	9100	2900	150 J	16 U	12 U	12 U	11000
bis(2-Ethylhexyl)phthalate	50,000	520 J	600	87 U	92 U	130 J	110 J	190 J	81 J	51 J	160 U
Di-n-octyl phthalate	50,000	13 U	12 U	91 U	96 U	9.5 U	12 U	12 U	9 U	9.1 U	170 U
Benzo(b)fluoranthene	1,100	230 J	170 J	9300	13000	2900	130 J	26 U	20 U	20 U	22000
Benzo(k)fluoranthene	1,100	200 J	130 J	2700 J	6700	1100	67 J	17 U	13 U	13 U	5600 J
Benzo(a)pyrene	61 or MDL	270 J	180 J	8000	16000	2700	140 J	8.5 U	6.5 U	6.6 U	21000
Indeno(1,2,3-cd)pyrene	3,200	85 J	70 J	3000 J	5100 J	400 J	12 UJ	12 UJ	9.2 UJ	9.3 U	5200 J
Dibenz(a,h)anthracene	14 or MDL	16 U	15 U	1300 J	2800 J	280 J	14 U	14 U	11 U	11 U	3100 J
Benzo(g,h,i)perylene	50,000	110 J	68 J	3300 J	5200	460	58 J	21 U	16 U	17 U	6300 J
Total Confident Conc. SVOC	500,000	18,791	11,167	52,970	106,500	75,851	2,851	879	321	51	93,000
Carcinogenic SVOCs in BaP	Equivalents	344.4	238.9	11,152	21,868	3,650	171.2	5.7	ND	ND	28,086

						Table 4-18					
Sample Location		SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-27
Sample Interval (Feet bgs)		20 to 22	32 to 33	33 to 34	6.5 to 7	31 to 33	35 to 37	5 to 5.5	5.9 to 6.3	40.9 to 41.3	44.5 to 45
Sampling Date		4/26/04	4/26/04	4/26/04	07/08/04	07/26/04	07/27/04	07/09/04	07/22/04	07/22/04	07/22/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	72 U	420 U	52 U	39 U	380 U	48 U	73 U	41 U	38 U	48 U
Phenol	30 or MDL	31 U	180 U	22 U	17 U	160 U	21 U	31 U	18 U	16 U	20 U
bis(2-Chloroethyl)ether	NC	36 U	210 U	26 U	20 U	190 U	24 U	37 U	21 U	19 U	24 U
2-Chlorophenol	800	32 U	180 U	23 U	17 U	170 U	21 U	32 U	18 U	17 U	21 U
2-Methylphenol	100 or MDL	47 U	270 U	33 U	25 U	250 U	31 U	47 U	27 U	25 U	31 U
2,2-oxybis(1-Chloropropane)	NC	40 U	230 U	29 U	22 U	210 U	27 U	40 U	23 U	21 U	27 U
Acetophenone	NC	39 U	220 U	28 U	21 U	200 U	26 U	39 U	22 U	20 U	26 U
3+4-Methylphenols	900	34 U	200 U	24 U	18 U	180 U	23 U	280 J	19 U	18 U	23 U
N-Nitroso-di-n-propylamine	NC	33 U	190 U	23 U	18 U	170 U	22 U	33 U	19 U	17 U	22 U
Hexachloroethane	NC	35 U	200 U	25 U	19 U	190 U	24 U	35 U	20 U	19 U	23 U
Nitrobenzene	200 or MDL	38 U	220 U	27 U	20 U	200 U	25 U	38 U	21 U	20 U	25 U
Isophorone	4,400	27 U	160 U	20 U	15 U	150 U	18 U	28 U	16 U	14 U	18 U
2-Nitrophenol	330 or MDL	30 U	170 U	21 U	16 U	160 U	20 U	30 U	17 U	16 U	20 U
2,4-Dimethylphenol	NC	40 U	230 U	78 J	22 U	210 U	27 U	82 J	23 U	21 U	200 J
bis(2-Chloroethoxy)methane	NC	34 U	190 U	24 U	18 U	180 U	23 U	34 U	19 U	18 U	22 U
2,4-Dichlorophenol	400	26 U	150 U	19 U	14 U	140 U	17 U	26 U	15 U	14 U	17 U
Naphthalene	13,000	43000 D	74000 D	5900 DJ	8.7 U	4000	11 U	16 U	9.1 U	180 J	5200 D
4-Chloroaniline	220 or MDL	270 U	26000	200 U	150 U	1400 U	180 U	270 U	160 U	140 U	180 U
Hexachlorobutadiene	NC	26 U	150 U	19 U	14 U	140 U	17 U	26 U	15 U	14 U	17 U
Caprolatam	NC NC	27 U	160 U	20 U	15 U	140 U	18 U	27 U	15 U	14 U	18 U
4-Chloro-3-methylphenol	240 or MDL 36,400	22 U 2400	130 U 13000	16 U 920 J	12 U 6.9 U	120 U 450 J	15 U 8.5 U	22 U 13 U	12 U 7.2 U	12 U 6.7 U	15 U 1800
2-Methylnaphthalene Hexachlorocyclopentadiene	36,400 NC	2400 19 UJ	13000 110 UJ	920 J 13 UJ	6.9 U 10 UJ	98 UJ	12 UJ	13 U 19 UJ	7.2 U 11 UJ	9.8 UJ	12 UJ
2,4,6-Trichlorophenol	NC NC	27 U	150 U	19 U	10 U3	140 U	18 U	27 U	11 UJ	9.6 UJ	12 UJ
2,4,5-Trichlorophenol	100	49 U	280 U	35 U	26 U	260 U	33 U	49 U	28 U	26 U	32 U
1,1-Biphenyl	NC NC	4000	7700	250 J	12 U	120 U	15 U	22 U	12 U	12 U	230 J
2-Chloronaphthalene	NC	15 U	89 U	11 U	8.3 U	82 U	10 U	15 U	8.8 U	8.1 U	10 U
2-Nitroaniline	430 or MDL	27 U	150 U	19 U	14 U	140 U	18 U	27 U	15 U	14 U	18 U
Dimethylphthalate	2,000	18 U	100 U	13 U	9.5 U	94 U	12 U	18 U	10 U	9.3 U	12 U
Acenaphthylene	41,000	1300	5700	230 J	12 U	670 J	15 U	22 U	13 U	12 U	370 J
2,6-Dinitrotoluene	1,000	31 U	180 U	23 U	17 U	170 U	21 U	32 U	18 U	17 U	21 U
3-Nitroaniline	500 or MDL	120 U	690 U	86 U	64 U	630 U	80 U	120 U	68 U	63 U	79 U
Acenaphthene	50,000	4200	10000	360 J	8.8 U	2500 J	11 U	97 J	84 J	8.6 U	270 J
2,4-Dinitrophenol	200 or MDL	33 U	190 U	23 U	18 U	170 U	22 U	33 U	19 U	17 U	22 U
4-Nitrophenol	100 or MDL	72 U	420 U	52 U	39 U	1400 J	48 U	72 U	41 U	38 U	48 U
Dibenzofuran	6,200	6100 D	21000	640 J	13 U	1500 J	16 U	24 U	14 U	13 U	520
2,4-Dinitrotoluene	1,000	15 U	85 U	11 U	8 U	78 U	9.8 U	15 U	8.4 U	7.8 U	9.8 U
Diethylphthalate	7,100	23 U	130 U	17 U	13 U	120 U	16 U	23 U	13 U	12 U	15 U
4-Chlorophenyl-phenylether	NC	18 U	110 U	13 U	9.9 U	97 U	12 U	18 U	10 U	9.6 U	12 U
Fluorene	50,000	11000 D	30000 D	1200 J	11 U	2300 J	14 U	93 J	70 J	50 J	1200 J
4-Nitroaniline	NC	58 U	330 U	41 U	31 U	310 U	39 U	58 U	33 U	30 U	38 U
4,6-Dinitro-2-methylphenol	NC	43 U	250 U	31 U	23 U	230 U	29 U	43 U	24 U	23 U	28 U
N-Nitrosodiphenylamine	NC	19 U	110 U	13 U	10 U	99 U	13 U	19 U	11 U	9.9 U	12 U
4-Bromophenyl-phenylether	NC	19 U	110 U	14 U	10 U	100 U	13 U	20 U	11 U	10 U	13 U
Hexachlorobenzene	410	14 U	80 U	9.9 U	7.5 U	73 U	9.2 U	14 U	7.9 U	7.3 U	9.2 U
Atrazine	NC	23 U	130 U	16 U	12 U	120 U	15 U	23 U	13 U	12 U	15 U
Pentachlorophenol	1000 or MDL	23 U	130 U	17 U	12 U	120 U	15 U	23 U	13 U	12 U	15 U
Phenanthrene	50,000	34000 D	90000 D	2800 J	8.9 U	15000	52 J	1100 J	1100	210 J	3000 D
Anthracene	50,000	3500	20000	660 J	9.5 U	3700 J	12 U	290 J	270 J	70 J	780
Carbazole	NC 0.400	4400	5600	480 J	8.8 U	550 J	11 U	16 U	61 J	8.6 U	280 J
Di-n-butylphthalate	8,100	9.8 U	57 U	7 U	5.3 U	52 U	6.6 U	9.9 U	5.6 U	5.2 U	6.5 U
Fluoranthene	50,000	14000 DJ	45000 DJ	1400 J	5.5 U	11000	6.9 U	2000 J	1600	160 J	2000

Sample Location		SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-27
Sample Interval (Feet bgs)		20 to 22	32 to 33	33 to 34	6.5 to 7	31 to 33	35 to 37	5 to 5.5	5.9 to 6.3	40.9 to 41.3	44.5 to 45
Sampling Date		4/26/04	4/26/04	4/26/04	07/08/04	07/26/04	07/27/04	07/09/04	07/22/04	07/22/04	07/22/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	16000 D	40000 D	1300	7.1 U	9800	8.8 U	2500	1500	190 J	2300
Butylbenzylphthalate	50,000	25 U	140 U	18 U	13 U	130 U	17 U	78 J	14 U	13 U	16 U
3,3-Dichlorobenzidine	NA	120 U	680 U	85 U	64 U	630 U	79 U	120 U	67 U	62 U	79 U
Benzo(a)anthracene	224 or MDL	7300 D	25000	830 J	6 U	7600	7.5 U	1100	680	100 J	1000
Chrysene	400	6600 D	19000	650	13 U	5700	16 U	1300	490	74 J	720
bis(2-Ethylhexyl)phthalate	50,000	120 J	98 U	93 J	340 J	90 U	110 J	17 U	54 J	190 J	390 J
Di-n-octyl phthalate	50,000	18 U	100 U	13 U	9.5 U	94 U	12 U	18 U	10 U	9.3 U	12 U
Benzo(b)fluoranthene	1,100	5800 D	19000	490 J	21 U	7200	26 U	1100	540	92 J	730 J
Benzo(k)fluoranthene	1,100	2300	6500	270 J	14 U	2400 J	17 U	460 J	270 J	13 U	300 J
Benzo(a)pyrene	61 or MDL	5600 D	18000	570	6.9 U	7100	8.5 U	900	500	43 J	610
Indeno(1,2,3-cd)pyrene	3,200	950 J	3700 J	150 J	9.6 U	95 U	12 U	480 J	270 J	9.4 U	71 J
Dibenz(a,h)anthracene	14 or MDL	720	2000 J	16 U	12 U	550 J	14 U	22 U	12 U	11 U	14 U
Benzo(g,h,i)perylene	50,000	1300	3500 J	150 J	17 U	2800 J	21 U	360 J	290 J	17 U	130 J
Total Confident Conc. SVOC	500,000	174,590	484,700	19,421	340	86,220	162	12,138	7,779	1,359	22,101
Carcinogenic SVOCs in BaP	Equivalents	7,814	25,025	726.2	ND	9,211	ND	1,185.6	656.6	62.9	800.3

						Table 4-18					
Sample Location		SB-47	SB-47	SB-47	SB-48	SB-48	SB-48	SB-49	SB-49	SB-49	SB-49
Sample Interval (Feet bgs)		7 to 9	13 to 15	17 to 19	7 to 9	15 to 16	19 to 21	10 to 12	14 to 15	17 to 18	23 to 24
Sampling Date		5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	4/28/04	4/28/04	4/28/04	4/28/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	36 U	77 U	46 U	39 U	89 U	52 U	39 U	39 U	380 U	51 U
Phenol	30 or MDL	15 U	33 U	20 U	16 U	38 U	22 U	17 U	17 U	160 U	22 U
bis(2-Chloroethyl)ether	NC	18 U	39 U	23 U	19 U	45 U	26 U	20 U	20 U	190 U	25 U
2-Chlorophenol	800	16 U	34 U	20 U	17 U	39 U	23 U	17 U	17 U	170 U	22 U
2-Methylphenol	100 or MDL	23 U	50 U	30 U	25 U	57 U	34 U	25 U	25 U	250 U	33 U
2,2-oxybis(1-Chloropropane)	NC	20 U	43 U	26 U	21 U	49 U	29 U	22 U	22 U	210 U	28 U
Acetophenone	NC	19 U	41 U	25 U	21 U	48 U	28 U	21 U	21 U	200 U	27 U
3+4-Methylphenols	900	17 U	36 U	22 U	18 U	42 U	24 U	18 U	18 U	410 J	24 U
N-Nitroso-di-n-propylamine	NC	16 U	35 U	21 U	17 U	40 U	23 U	18 U	18 U	170 U	23 U
Hexachloroethane	NC	17 U	38 U	23 U	19 U	43 U	25 U	19 U	19 U	190 U	25 U
Nitrobenzene	200 or MDL	19 U	40 U	24 U	20 U	46 U	27 U	20 U	20 U	200 U	26 U
Isophorone	4,400	14 U	29 U	18 U	15 U	34 U	20 U	15 U	15 U	140 U	19 U
2-Nitrophenol	330 or MDL	15 U	32 U	19 U	16 U	37 U	21 U	16 U	16 U	160 U	21 U
2,4-Dimethylphenol	NC	20 U	43 U	26 U	21 U	3700	420 J	22 U	130 J	3100 J	370 J
bis(2-Chloroethoxy)methane	NC	17 U	36 U	22 U	18 U	42 U	24 U	18 U	18 U	180 U	24 U
2,4-Dichlorophenol	400	13 U	28 U	17 U	14 U	32 U	19 U	14 U	14 U	140 U	18 U
Naphthalene	13,000	100 J	120 J	10 U	260 J	160000 D	310 J	65000 D	4100 DJ	430000 DJ	9600 J
4-Chloroaniline	220 or MDL	140 U	290 U	170 U	150 U	340 U	200 U	150 U	150 U	1400 U	190 U
Hexachlorobutadiene	NC	13 U	28 U	17 U	14 U	32 U	19 U	14 U	14 U	140 U	18 U
Caprolatam	NC	14 U	29 U	17 U	15 U	34 U	20 U	15 U	15 U	140 U	19 U
4-Chloro-3-methylphenol	240 or MDL	11 U	23 U	14 U	12 U	27 U	16 U	12 U	12 U	110 U	15 U
2-Methylnaphthalene	36,400	62 J	14 U	8.1 U	52 J	22000 D	86 J	24000 D	840	130000 J	3900 J
Hexachlorocyclopentadiene	NC	9.2 UJ	20 UJ	12 UJ	9.9 UJ	23 UJ	13 UJ	10 UJ	10 UJ	97 UJ	13 UJ
2,4,6-Trichlorophenol	NC	13 U	29 U	17 U	14 U	33 U	19 U	15 U	15 U	140 U	19 U
2,4,5-Trichlorophenol	100	24 U	52 U	31 U	26 U	60 U	35 U	27 U	27 U	260 U	34 U
1,1-Biphenyl	NC	11 U	23 U	14 U	12 U	2200	16 U	1400	50 J	9300	240 J
2-Chloronaphthalene	NC	7.6 U	16 U	9.8 U	8.2 U	19 U	11 U	8.4 U	8.4 U	81 U	11 U
2-Nitroaniline	430 or MDL	13 U	29 U	17 U	14 U	33 U	19 U	15 U	15 U	140 U	19 U
Dimethylphthalate	2,000	8.7 U	19 U	11 U	9.4 U	22 U	13 U	9.6 U	9.6 U	93 U	12 U
Acenaphthylene	41,000	11 U	360 J	14 U	12 U	5900	16 U	2700 D	66 J	22000 D	870
2,6-Dinitrotoluene	1,000	16 U	34 U	20 U	17 U	39 U	23 U	17 U	17 U	170 U	22 U
3-Nitroaniline	500 or MDL	59 U	130 U	76 U	63 U	150 U	86 U	65 U	65 U	630 U	83 U
Acenaphthene	50,000	61 J	140 J	10 U	130 J	2900	12 U	6300 D	130 J	9400	240 J
2,4-Dinitrophenol	200 or MDL	16 U	35 U	21 U	17 U	40 U	23 U	18 U	18 U	170 U	23 U
4-Nitrophenol	100 or MDL	36 U	77 U	46 U	38 U	89 U	52 U	39 U	39 U	380 U	50 U
Dibenzofuran	6,200	12 U	82 J	16 U	43 J	4400	18 U	1700	91 J	26000	670
2,4-Dinitrotoluene	1,000	7.3 U	16 U	9.4 U	7.8 U	18 U	11 U	8 U	8 U	77 U	10 U
Diethylphthalate	7,100	12 U	25 U	15 U	12 U	29 U	17 U	13 U	13 U	120 U	16 U
4-Chlorophenyl-phenylether	NC	9.1 U	19 U 22 U	12 U	9.7 U	23 U	13 U	10 U 4900 DJ	10 U	96 U	13 U 1200 J
Fluorene	50,000 NC	10 U 29 U	62 U	13 U 37 U	48 J 31 U	7000	15 U 42 U	4900 DJ 31 U	73 J	25000 DJ	
4-Nitroaniline						71 U 53 U			31 U	300 U	40 U
4,6-Dinitro-2-methylphenol	NC NC	21 U 9.3 U	46 U 20 U	27 U 12 U	23 U 10 U	23 U	31 U 14 U	23 U 10 U	23 U 10 U	230 U 99 U	30 U 13 U
N-Nitrosodiphenylamine	NC NC										
4-Bromophenyl-phenylether	410	9.6 U 6.9 U	21 U 15 U	12 U 8.8 U	10 U 7.4 U	24 U 17 U	14 U 10 U	11 U 7.5 U	11 U 7.5 U	100 U 73 U	14 U 9.7 U
Hexachlorobenzene	410 NC	6.9 U	15 U		7.4 U			7.5 U	7.5 U		
Atrazine				14 U		28 U	16 U			120 U	16 U
Pentachlorophenol	1000 or MDL	11 U	24 U	15 U	12 U	28 U	17 U	13 U 49000 D	13 U	120 U	16 U
Phenanthrene	50,000 50,000	95 J 8.7 U	1500 600 J	11 U 11 U	220 J 96 J	22000 D 4900	140 J 13 U	49000 D 3700 D	500 9.6 U	150000 D 25000	3800 JD 800
Anthracene											
Carbazole	NC 0.100	8.1 U	17 U	10 U	71 J	2000	12 U	1200 J	8.9 U	13000 J	380 J
Di-n-butylphthalate	8,100	4.9 U	10 U	6.3 U	69 J	12 U	7.1 U	5.3 U	5.4 U	52 U	6.9 U
Fluoranthene	50,000	65 J	3400	6.6 U	640	8300 D	65 J	7300 D	58 J	44000 D	1900

Sample Location		SB-47	SB-47	SB-47	SB-48	SB-48	SB-48	SB-49	SB-49	SB-49	SB-49
Sample Interval (Feet bgs)		7 to 9	13 to 15	17 to 19	7 to 9	15 to 16	19 to 21	10 to 12	14 to 15	17 to 18	23 to 24
Sampling Date		5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	5/3/04	4/28/04	4/28/04	4/28/04	4/28/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	71 J	3700	8.4 U	810	7200	61 J	9500 D	60 J	36000 D	1700
Butylbenzylphthalate	50,000	12 U	26 U	16 U	13 U	31 U	18 U	13 U	13 UJ	130 U	17 U
3,3-Dichlorobenzidine	NA	59 U	130 U	76 U	63 U	150 U	85 U	64 U	65 UJ	620 U	83 U
Benzo(a)anthracene	224 or MDL	43 J	2400	7.1 U	910	4100	8 U	3100	6.1 UJ	19000	740
Chrysene	400	44 J	2000	15 U	830	3500	17 U	3000 D	13 UJ	18000	610
bis(2-Ethylhexyl)phthalate	50,000	320 J	390 J	50 J	360 J	200 J	12 U	810	160 J	2100 J	690
Di-n-octyl phthalate	50,000	8.7 U	19 U	11 U	9.4 U	22 U	13 U	9.6 U	9.6 UJ	93 U	12 U
Benzo(b)fluoranthene	1,100	58 J	2100	25 U	610	2600	28 U	2000	21 U	16000	280 J
Benzo(k)fluoranthene	1,100	13 U	790	16 U	320 J	1300	18 U	1400 J	14 U	7000 J	370 J
Benzo(a)pyrene	61 or MDL	46 J	1900	8.1 U	660	2800	9.2 U	2300	6.9 U	14000	450 J
Indeno(1,2,3-cd)pyrene	3,200	8.9 U	220 J	11 U	190 J	960	13 U	250 J	9.7 UJ	1100 J	120 J
Dibenz(a,h)anthracene	14 or MDL	11 U	130 J	14 U	98 J	430 J	16 U	73 J	12 U	440 J	15 U
Benzo(g,h,i)perylene	50,000	16 U	330 J	21 U	240 J	960	23 U	350 J	18 U	2200 J	150 J
Total Confident Conc. SVOC	500,000	965	20,162	50	6,657	269,350	1,082	189,983	6,258	1,003,050	29,095
Carcinogenic SVOCs in BaP	Equivalents	56.5	2,529.9	ND	940.5	4,044	ND	2,952	ND	18,300	573.8

						Table 4-18					
Sample Location Sample Interval (Feet bgs)		SB-50 2 to 3	SB-50 8 to 10	SB-50 21 to 23	SB-50 26 to 27	SB-51 6 to 7	SB-51 14 to 15	SB-51 21 to 22	SB-51 32 to 33	SB-52 11 to 13	SB-52 27 to 29
Sampling Date Units		4/25/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	4/27/04 ug/Kg	5/1/04 ug/Kg	5/1/04 ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	180 U	37 U	38 U	49 U	1900 U	390 U	790 U	46 U	44 U	370 U
Phenol	30 or MDL	77 U	16 U	16 U	21 U	820 U	170 U	340 U	19 U	19 U	160 U
bis(2-Chloroethyl)ether	NC	91 U	19 U	19 U	25 U	970 U	200 U	400 U	23 U	22 U	190 U
2-Chlorophenol	800	80 U	16 U	17 U	22 U	850 U	170 U	350 U	20 U	19 U	170 U
2-Methylphenol	100 or MDL	120 U	24 U	24 U	32 U	1200 U	250 U	510 U	29 U	28 U	240 U
2,2-oxybis(1-Chloropropane)	NC	100 U	20 U	21 U	27 U	1100 U	210 U	440 U	25 U	24 U	210 U
Acetophenone	NC	97 U	20 U	20 U	26 U	1000 U	210 U	420 U	24 U	23 U	200 U
3+4-Methylphenols	900	85 U	17 U	18 U	23 U	910 U	180 U	370 U	21 U	21 U	180 U
N-Nitroso-di-n-propylamine	NC	82 U	17 U	17 U	22 U	870 U	170 U	360 U	21 U	20 U	170 U
Hexachloroethane	NC	89 U	18 U	18 U	24 U	940 U	190 U	380 U	22 U	21 U	180 U
Nitrobenzene	200 or MDL	94 U	19 U	19 U	25 U	1000 U	200 U	410 U	24 U	23 U	190 U
Isophorone	4,400	69 U	14 U	14 U	19 U	730 U	150 U	300 U	17 U	17 U	140 U
2-Nitrophenol	330 or MDL	75 U	15 U	15 U	20 U	790 U	160 U	320 U	19 U	18 U	150 U
2,4-Dimethylphenol	NC	100 U	20 U	21 U	27 U	1100 U	210 U	440 U	25 U	24 U	210 U
bis(2-Chloroethoxy)methane	NC	85 U	17 U	18 U	23 U	900 U	180 U	370 U	21 U	20 U	170 U
2,4-Dichlorophenol	400	65 U	13 U	13 U	18 U	690 U	140 U	280 U	16 U	16 U	130 U
Naphthalene	13,000	360 J	8.2 U	1000 J	11 U	16000 J	160000 DJ	820000 DJ	4300 D	840	250000 D
4-Chloroaniline	220 or MDL	690 U	140 U	140 U	190 U	7300 U	1500 U	3000 U	170 U	170 U	1400 U
Hexachlorobutadiene	NC	65 U	13 U	13 U	18 U	690 U	140 U	280 U	16 U	16 U	130 U
Caprolatam	NC NC	68 U	14 U	14 U	19 U	730 U	150 U	300 U	17 U	17 U	140 U
4-Chloro-3-methylphenol	240 or MDL 36,400	55 U 210 J	11 U	11 U 640 J	15 U 8.6 U	580 U 19000 J	120 U 64000 DJ	240 U 170000 DJ	14 U 2200 J	13 U 110 J	110 U 58000 D
2-Methylnaphthalene	36,400 NC	47 UJ	6.5 U 9.5 UJ	9.6 UJ	13 UJ	500 UJ	99 UJ	200 UJ	12 UJ	110 J	96 UJ
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	NC NC	67 U	9.5 UJ	14 U	18 U	720 U	140 U	290 U	12 UJ	16 U	140 U
2,4,5-Trichlorophenol	100	120 U	25 U	25 U	33 U	1300 U	260 U	530 U	31 U	30 U	250 U
1,1-Biphenyl	NC	200 J	23 U	74 J	15 U	580 U	8000	32000	14 U	13 U	14000
2-Chloronaphthalene	NC NC	39 U	7.9 U	8 U	10 U	410 U	83 U	170 U	9.7 U	9.3 U	80 U
2-Nitroaniline	430 or MDL	67 U	14 U	14 U	18 U	720 U	140 U	290 U	17 U	16 U	140 U
Dimethylphthalate	2,000	44 U	9 U	9.2 U	12 U	470 U	95 U	190 U	11 U	11 U	91 U
Acenaphthylene	41,000	1400 J	11 U	210 J	15 U	590 U	6800	22000	170 J	45 J	10000
2,6-Dinitrotoluene	1,000	79 U	16 U	16 U	21 U	840 U	170 U	340 U	20 U	19 U	160 U
3-Nitroaniline	500 or MDL	300 U	61 U	62 U	81 U	3200 U	640 U	1300 U	75 U	72 U	620 U
Acenaphthene	50,000	470 J	8.3 U	230 J	11 U	2500 J	22000	60000 D	550	410 J	13000
2,4-Dinitrophenol	200 or MDL	82 U	17 U	17 U	22 U	870 U	170 U	360 U	21 U	20 U	170 UJ
4-Nitrophenol	100 or MDL	180 U	37 U	37 U	49 U	1900 U	390 U	790 U	46 U	44 U	370 U
Dibenzofuran	6,200	1400 J	12 U	160 J	17 U	6200 J	20000	50000 D	610	98 J	27000 JD
2,4-Dinitrotoluene	1,000	37 U	7.5 U	7.7 U	10 U	390 U	79 U	160 U	9.3 U	8.9 U	76 U
Diethylphthalate	7,100	58 U	12 U	12 U	16 U	620 U	120 U	250 U	15 U	14 U	120 U
4-Chlorophenyl-phenylether	NC	46 U	9.3 U	9.5 U	12 U	490 U	98 U	200 U	12 U	11 U	95 U
Fluorene	50,000	2200	11 U	530 J	14 U	9400 J	22000 DJ	100000 DJ	1300 J	850	48000 D
4-Nitroaniline	NC	150 U	30 U	30 U	39 U	1500 U	310 U	630 U	37 U	35 U	300 U
4,6-Dinitro-2-methylphenol	NC	110 U	22 U	22 U	29 U	1100 U	230 U	470 U	27 U	26 U	220 UJ
N-Nitrosodiphenylamine	NC	47 U	9.6 U	9.7 U	13 U	500 U	100 U	200 U	12 U	11 U	97 U
4-Bromophenyl-phenylether	NC	49 U	9.9 U	10 U	13 U	520 U	100 U	210 U	12 U	12 U	100 U
Hexachlorobenzene	410	35 U	7.1 U	7.2 U	9.4 U	370 U	74 U	150 U	8.7 U	8.4 U	72 U
Atrazine	NC	57 U	12 U	12 U	15 U	600 U	120 U	250 U	14 U	14 U	120 U
Pentachlorophenol	1000 or MDL	58 U	12 U	12 U	16 U	610 U	120 U	250 U	15 U	14 U	120 U
Phenanthrene	50,000	11000	45 J	2300	93 J	57000	97000 D	250000 D	3500 D	400 J	110000 D
Anthracene	50,000	3300	9 U	420	12 U	9000 J	21000	57000 D	890	98 J	23000
Carbazole	NC	1000 J	8.3 U	90 J	11 U	2800 J	9000 J	34000 J	330 J	67 J	14000
Di-n-butylphthalate	8,100	25 U	5 U	5.1 U	6.7 U	260 U	53 U	110 U	6.2 U	56 J	51 U
Fluoranthene	50,000	14000 J	5.2 U	2300 D	77 J	37000	33000 D	150000 D	2600	200 J	51000 D

Sample Location Sample Interval (Feet bgs) Sampling Date		SB-50 2 to 3 4/25/04	SB-50 8 to 10 4/27/04	SB-50 21 to 23 4/27/04	SB-50 26 to 27 4/27/04	SB-51 6 to 7 4/27/04	SB-51 14 to 15 4/27/04	SB-51 21 to 22 4/27/04	SB-51 32 to 33 4/27/04	SB-52 11 to 13 5/1/04	SB-52 27 to 29 5/1/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic Compounds (ug/kg)	TAGM RSCO										
Pyrene	50,000	13000	77 J	2500	75 J	30000	30000 DJ	130000 D	2100	250 J	55000 D
Butylbenzylphthalate	50,000	62 U	13 U	13 U	17 U	660 U	130 U	270 U	16 U	15 U	130 U
3,3-Dichlorobenzidine	NA	300 U	61 U	62 U	81 U	3200 U	640 U	1300 U	75 U	72 U	610 U
Benzo(a)anthracene	224 or MDL	5900	5.7 U	1100	7.6 U	16000 J	16000	56000	960	220 J	31000
Chrysene	400	5200	12 U	1000	16 U	14000 J	15000	54000	810	200 J	24000
bis(2-Ethylhexyl)phthalate	50,000	43 U	190 J	600	300 J	450 U	490 J	850 J	440 J	330 J	510 J
Di-n-octyl phthalate	50,000	44 U	9 U	9.2 U	12 U	470 U	95 U	190 U	11 U	11 U	91 U
Benzo(b)fluoranthene	1,100	7900	20 U	880	27 U	11000 J	11000	46000	600	280 J	30000
Benzo(k)fluoranthene	1,100	2300	13 U	560 J	17 U	8900 J	9400 J	26000 J	350 J	110 J	8400
Benzo(a)pyrene	61 or MDL	6300	6.5 U	920	8.6 U	14000 J	13000	45000	700	290 J	23000
Indeno(1,2,3-cd)pyrene	3,200	1900 J	9.1 U	110 J	12 U	4000 J	980 J	2800 J	160 J	91 J	2100 J
Dibenz(a,h)anthracene	14 or MDL	760 J	11 U	11 U	15 U	580 U	420 J	1200 J	14 U	13 U	1600 J
Benzo(g,h,i)perylene	50,000	2200	16 U	170 J	22 U	4500 J	2000 J	5900 J	210 J	140 J	3500 UJ
Total Confident Conc. SVOC	500,000	81,000	312	15,794	545	261,300	561,090	2,112,750	22,780	5,085	797,110
Carcinogenic SVOCs in BaP	Equivalents	8,705	ND	1,144.6	ND	17,329	16,462	57,480	883.6	352.2	31,234

Sample Location Sample Interval (Feet bgs) Sampling Date Units Semivolatile Organic Compounds (ug/kg) Benzaldehyde NC Phenol 30 or MDL bis(2-Chloroethyl)ether NC 2-Chlorophenol 30 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols NC Hexachloroethane NC Nitroso-di-n-propylamine NC Nitrobenzene 200 or MDL 2,4-Dimethylphenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC NC Naphthalene 13,000 4-Chloroaniline NC	980 U 420 U 490 U 430 U 540 U 550 U 560 U 570 U 57	Number of Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Number of Detections 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0	Frequency of Detections 0% 2% 0% 0% 0% 0% 5% 2% 5% 2% 2% 0%	Number of TAGM Exceedances 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	Frequency of Exceedanc 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Minimum Reported Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17 < 16	Maximum Reported Concentration < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000 < 910
Sampling Date	5/1/04 ug/Kg 980 U 420 U 490 U 430 U 630 U 530 U 540 U 530 U 460 U 440 U 480 U 510 U 510 U 510 U 510 U 510 U	Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Detections 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Detections 0% 2% 0% 0% 0% 2% 0% 2% 6% 2% 6% 2% 0% 2% 0%	TAGM Exceedances 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of Exceedanc 0% 2% 0% 0% 0% 0% 0% 0% 0%	Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	 < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Sampling Date Units Semivolatile Organic Compounds (ug/kg) TAGM RSCO Benzaldehyde NC Phenol 30 or MDL bis(2-Chloroethyl)ether NC 2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	980 U 420 U 420 U 430 U 630 U 540 U 530 U 460 U 480 U 510 U 370 U 400 U 540 U 460 U	Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Detections 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Detections 0% 2% 0% 0% 0% 2% 0% 2% 6% 2% 6% 2% 0% 2% 0%	TAGM Exceedances 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of Exceedanc 0% 2% 0% 0% 0% 0% 0% 0% 0%	Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	Concentration < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Units Semivolatile Organic Compounds (ug/kg) TAGM RSCO Benzaldehyde NC Phenol 30 or MDL bis(2-Chloroethyl)ether NC 2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 344-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	980 U 420 U 420 U 430 U 630 U 540 U 530 U 460 U 480 U 510 U 370 U 400 U 540 U 460 U	Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Detections 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Detections 0% 2% 0% 0% 0% 2% 0% 2% 6% 2% 6% 2% 0% 2% 0%	TAGM Exceedances 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of Exceedanc 0% 2% 0% 0% 0% 0% 0% 0% 0%	Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	Concentration < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Semivolatile Organic	980 U 420 U 490 U 430 U 630 U 540 U 530 U 460 U 480 U 510 U 370 U 400 U 440 U	Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Detections 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Detections 0% 2% 0% 0% 0% 2% 0% 2% 6% 2% 6% 2% 0% 2% 0%	TAGM Exceedances 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of Exceedanc 0% 2% 0% 0% 0% 0% 0% 0% 0%	Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	Concentration < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Compounds (ug/kg) TAGM RSCO Benzaldehyde NC Phenol 30 or MDL bis(2-Chloroethyl)ether NC 2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	420 U 490 U 430 U 630 U 540 U 530 U 460 U 480 U 480 U 510 U 370 U 400 U 440 U 375 U	Samples 61 61 61 61 61 61 61 61 61 61 61 61 61	Detections 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Detections 0% 2% 0% 0% 0% 2% 0% 2% 6% 2% 6% 2% 0% 2% 0%	TAGM Exceedances 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of Exceedanc 0% 2% 0% 0% 0% 0% 0% 0% 0%	Concentration < 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	Concentration < 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Compounds (ug/kg) TAGM RSCO Benzaldehyde NC Phenol 30 or MDL bisi(2-Chloroethyl)ether NC 2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	420 U 490 U 430 U 630 U 540 U 530 U 460 U 480 U 480 U 510 U 370 U 400 U 440 U 375 U	61 61 61 61 61 61 61 61 61 61 61	0 1 0 0 1 1 0 0 0 3 3 1 1 1 0	0% 2% 0% 0% 0% 0% 0% 5% 5% 2% 2% 0%	Exceedances 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	Exceedanc 0% 2% 0% 0% 2% 0% 0% 0% 0% 0%	< 36 < 15 < 18 < 16 < 23 < 20 < 19 < 17	< 1,900 930 < 970 < 850 1,200 < 1,100 < 1,000
Benzaldehyde	420 U 490 U 430 U 630 U 540 U 530 U 460 U 480 U 480 U 510 U 370 U 400 U 440 U 375 U	61 61 61 61 61 61 61 61 61 61 61	1 0 0 1 1 0 0 0 3 3 1 1 1 0 0	2% 0% 0% 2% 0% 0% 5% 2% 2% 0%	0 1 0 0 1 1 0 0 0 0 0	0% 2% 0% 0% 2% 0% 0% 0%	< 15 < 18 < 16 < 23 < 20 < 19 < 17	930 < 970 < 850 1,200 < 1,100 < 1,000
Phenol 30 or MDL	420 U 490 U 430 U 630 U 540 U 530 U 460 U 480 U 480 U 510 U 370 U 400 U 440 U 375 U	61 61 61 61 61 61 61 61 61 61 61	1 0 0 1 1 0 0 0 3 3 1 1 1 0 0	2% 0% 0% 2% 0% 0% 5% 2% 2% 0%	1 0 0 1 1 0 0 0 0 0	2% 0% 0% 2% 0% 0% 0%	< 15 < 18 < 16 < 23 < 20 < 19 < 17	930 < 970 < 850 1,200 < 1,100 < 1,000
bis(2-Chloroethyl)ether NC 2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	490 U 430 U 630 U 540 U 530 U 460 U 440 U 480 U 510 U 370 U 400 U 460 U	61 61 61 61 61 61 61 61 61 61	0 0 0 1 0 0 3 1 1 0 0	0% 0% 2% 0% 0% 5% 2% 2%	0 0 1 1 0 0 0 0 0	0% 0% 2% 0% 0% 0%	< 18 < 16 < 23 < 20 < 19 < 17	< 970 < 850 1,200 < 1,100 < 1,000
2-Chlorophenol 800 2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	430 U 630 U 540 U 530 U 460 U 440 U 510 U 510 U 370 U 400 U 540 U 460 U	61 61 61 61 61 61 61 61 61 61	0 1 0 0 3 3 1 1 1 0 0	0% 2% 0% 0% 5% 2% 2%	0 1 0 0 0 0 0	0% 2% 0% 0% 0% 0%	< 16 < 23 < 20 < 19 < 17	< 850 1,200 < 1,100 < 1,000
2-Methylphenol 100 or MDL 2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	630 U 540 U 530 U 460 U 440 U 480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61 61 61 61 61	1 0 0 3 1 1 1 0	2% 0% 0% 5% 2% 2%	1 0 0 0 0 0	2% 0% 0% 0% 0%	< 23 < 20 < 19 < 17	1,200 < 1,100 < 1,000
2,2-oxybis(1-Chloropropane) NC Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	540 U 530 U 460 U 440 U 480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61 61 61 61	0 3 1 1 0	0% 0% 5% 2% 2%	0 0 0	0% 0% 0% 0%	< 20 < 19 < 17	< 1,100 < 1,000
Acetophenone NC 3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	530 U 460 U 440 U 480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61 61 61	0 3 1 1 0	0% 5% 2% 2% 0%	0 0 0	0% 0% 0%	< 19 < 17	< 1,000
3+4-Methylphenols 900 N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	460 U 440 U 480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61 61	3 1 1 0 0	5% 2% 2% 0%	0 0 0	0% 0%	< 17	
N-Nitroso-di-n-propylamine NC Hexachloroethane NC Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	440 U 480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61	1 1 0 0	2% 2% 0%	0	0%		
Hexachloroethane	480 U 510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61 61	0	2% 0%	0			
Nitrobenzene 200 or MDL Isophorone 4,400 2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	510 U 370 U 400 U 540 U 460 U 350 U	61 61 61 61	0	0%				870
Isophorone	370 U 400 U 540 U 460 U 350 U	61 61 61	0			0% 0%	< 17	940
2-Nitrophenol 330 or MDL 2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	400 U 540 U 460 U 350 U	61 61		00/	0	0%	< 19	< 1,000
2,4-Dimethylphenol NC bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	540 U 460 U 350 U	61	0	0% 0%	0	0%	< 14 < 15	< 730
bis(2-Chloroethoxy)methane NC 2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	460 U 350 U		11	0,70	0	0%		< 790
2,4-Dichlorophenol 400 Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	350 U	61	0	18% 0%	0	0%		3,700
Naphthalene 13,000 4-Chloroaniline 220 or MDL Hexachlorobutadiene NC							< 17 < 13	< 900
4-Chloroaniline 220 or MDL Hexachlorobutadiene NC	380000 D	61 61	0 49	0% 80%	0 14	0%		< 690
Hexachlorobutadiene NC	3700 U	61	49	80% 2%	14	23% 2%		820,000
			0		0			26,000
	350 U	61	0	0%		0% 0%	< 13	< 690
	370 U	61		0%	0		< 14	< 730
4-Chloro-3-methylphenol 240 or MDL	300 U	61	0	0%	0	0%	< 11	< 580
2-Methylnaphthalene 36,400 Hexachlorocyclopentadiene NC	94000 D	61 61	42 0	69% 0%	5	8% 0%	< 6.5 < 9.2	170,000 < 500
	250 UJ 360 U	61	0	0%	0	0%	< 9.2 < 13	
2,4,6-Trichlorophenol NC 2,4,5-Trichlorophenol 100	660 U	61	0	0%	0	0%		
1.1-Biphenvl NC	45000	61	28	46%	0	0%	< 24 < 11	< 1,300 45.000
2-Chloronaphthalene NC	210 U	61	0	0%	0	0%	< 7.6	< 410
2-Nitroaniline 430 or MDL	360 U	61	1	2%	0	0%	< 13	< 720
Dimethylphthalate 2,000	240 U	61	0	0%	0	0%	< 8.7	< 470
Acenaphthylene 41,000	29000	61	37	61%	0	0%		29,000
2,6-Dinitrotoluene 1,000	430 U	61	0	0%	0	0%	< 11 < 16	< 840
3-Nitroaniline 500 or MDL	1600 U	61	0	0%	0	0%	< 59	< 3,200
Acenaphthene 50,000	38000	61	42	69%	1	2%	< 8.2	60,000
2,4-Dinitrophenol 200 or MDL	440 U	61	0	0%	0	0%	< 16	< 870
4-Nitrophenol 100 or MDL	980 U	61	1	2%	1	2%	< 36	< 1,900
Dibenzofuran 6,200	43000 JD	61	36	59%	7	11%	< 12	50.000
2,4-Dinitrotoluene 1,000	200 U	61	0	0%	0	0%	< 7.3	< 390
Diethylphthalate 7,100	320 U	61	2	3%	0	0%	< 12	620
4-Chlorophenyl-phenylether NC	250 U	61	0	0%	0	0%	< 9.1	< 490
Fluorene 50,000	71000 D	61	44	72%	2	3%	< 10	100,000
4-Nitroaniline NC	790 U	61	0	0%	0	0%	< 29	< 1,500
4,6-Dinitro-2-methylphenol NC	580 U	61	0	0%	0	0%	< 21	< 1,100
N-Nitrosodiphenylamine NC	260 U	61	0	0%	0	0%	< 9.3	< 500
4-Bromophenyl-phenylether NC	260 U	61	0	0%	0	0%	< 9.6	< 520
Hexachlorobenzene 410	190 U	61	0	0%	0	0%	< 6.9	< 370
Atrazine NC	310 U	61	0	0%	0	0%	< 11	< 600
Pentachlorophenol 1000 or MDL	310 U	61	0	0%	0	0%	< 11	< 610
Phenanthrene 50,000	170000 D	61	56	92%	7	11%	< 8.6	250,000
Anthracene 50,000	70000	61	44	72%	2	3%	< 8.7	70,000
Carbazole NC	41000	61	35	57%	0	0%	< 8.1	41.000
Di-n-butylphthalate 8,100	130 U	61	6	10%	0	0%	< 4.9	< 260
Fluoranthene 50,000	80000 D	61	55	90%	3	5%	< 5.2	150,000

Sample Location Sample Interval (Feet bgs)		SB-52 33 to 35 5/1/04							
Sampling Date									
Units		ug/Kg	1						1
			Number of	Number of	Frequency of	Number of	Frequency	Minimum Reported	Maximum Reported
Semivolatile Organic			Samples	Detections	Detections	TAGM	of	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO					Exceedances	Exceedanc		
Pyrene	50,000	83000 D	61	56	92%	3	5%	< 6.8	130,000
Butylbenzylphthalate	50,000	340 U	61	5	8%	0	0%	< 12	< 660
3,3-Dichlorobenzidine	NA	1600 U	61	0	0%	0	0%	< 59	< 3,200
Benzo(a)anthracene	224 or MDL	40000 JD	61	48	79%	37	61%	< 5.6	56,000
Chrysene	400	72000	61	46	75%	33	54%	< 12	72,000
bis(2-Ethylhexyl)phthalate	50,000	230 U	61	49	80%	0	0%	< 9.1	2,100
Di-n-octyl phthalate	50,000	240 U	61	0	0%	0	0%	< 8.7	< 470
Benzo(b)fluoranthene	1,100	24000 JD	61	46	75%	23	38%	< 20	46,000
Benzo(k)fluoranthene	1,100	25000	61	43	70%	19	31%	< 13	26,000
Benzo(a)pyrene	61 or MDL	66000	61	47	77%	44	72%	< 6.4	66,000
Indeno(1,2,3-cd)pyrene	3,200	6000 J	61	39	64%	5	8%	< 8.9	6,000
Dibenz(a,h)anthracene	14 or MDL	4600 J	61	22	36%	20	33%	< 11	4,600
Benzo(g,h,i)perylene	50,000	10000	61	40	66%	0	0%	< 16	10,000
Total Confident Conc. SVOC	500,000	1,391,600							
Carcinogenic SVOCs in BaP E	Equivalents	78,570	•	•	•				

Sample Location		TP-3	TP-6	SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		7.5 to 7.5	9.5 to 9.5	5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	41 to 43	49 to 51
Sampling Date		05/01/04	05/02/04	05/02/04	05/02/04	05/02/04	05/02/04	05/02/04	05/02/04	05/02/04	05/02/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	0.65 U	1.3 J	0.64 U	0.72 U	0.62 U	0.68 U	0.77 U	0.64 U	0.66 U	0.68 U
Arsenic	12	4.8	3.8	1.8	11.1	1.3	1.1 J	5.7	0.98 J	0.89 J	0.46 J
Beryllium	600	0.41 J	0.41 J	0.39 J	0.47 J	0.37 J	0.25 J	0.45 J	0.26 J	0.31 J	0.16 J
Cadmium	1	0.29 J	0.43 J	0.29 J	0.4 J	0.25 J	0.16 J	0.46 J	0.18 J	0.19 J	0.11 J
Chromium	40	10.8	14.3	14.1	9.2	19.5	10.8	19.1	10.5	11	9.3
Copper	50	48.6	26.4	15	39.2	18.4	11.2	13.8	17.3	15.9	10.3
Lead	500	305	677	25.6	482	20	6.9	25.9	4.6	3.9	3.6
Mercury	0.1	0.71	0.61	0.06	0.14	0.02	0.02	0.06	0.01	0.01	0.01
Nickel	25	14.2	13.8	11.9	12.7	13.7	9.9	16.2	12.3	11.3	9.3
Selenium	3.9	0.36 U	0.35 U	0.36 U	0.4 U	0.35 U	0.38 U	0.43 U	0.35 U	0.37 U	0.38 U
Silver	В	0.12 U	0.12 U	0.12 U	0.13 U	0.17 J	0.13 U	0.14 U	0.12 U	0.12 U	0.13 U
Thallium	В	0.38 U	0.37 U	0.87 J	0.42 U	0.37 U	0.51 J	0.45 U	0.37 U	0.39 U	0.4 U
Zinc	50	56.4	57.4	33.8	51.3	33.8	16.9	48.9	20.5	21.1	16.2

Sample Location		TP-3	TP-6	SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs) Sampling Date Units		7.5 to 7.5 5/1/04 mg/Kg	9.5 to 9.5 5/2/04 mg/Kg	5 to 7 5/2/04 mg/Kg	17 to 19 5/2/04 mg/Kg	9 to 11 5/2/04 mg/Kg	13 to 15 5/2/04 mg/Kg	19 to 20 5/2/04 mg/Kg	41 to 43 5/2/04 mg/Kg	41 to 43 5/2/04 mg/Kg	49 to 51 5/2/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	1.42	0.566 U	0.568 U	13.62	3.23	1.12	0.985	0.565 U	0.583 U	0.608 U
Amenable Cyanide	NC	0.69	0.57 U	0.57 U	0.61 U	0.66	0.61 U	0.69 U	0.56 U	0.58 U	0.61 U

Sample Location		SB-21	SB-21	SB-21	SB-22	SB-22	SB-22	SB-22	SB-22	SB-23	SB-23
Sample Interval (Feet bgs)		11 to 13	15 to 17	21 to 23	5 to 7	11 to 13	15 to 17	22 to 23	26 to 27	9 to 10	15 to 16
Sampling Date		05/04/04	05/04/04	05/04/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	0.63 U	0.68 U	0.83 U	0.613 U	0.639 U	0.649 U	0.844 U	0.912 U	1.64 J	0.649 U
Arsenic	12	1.5	0.8 J	1.3 J	37.4	1.65	1.42	7.4	7.94	4.92	1.14 J
Beryllium	600	0.16 J	0.29 J	0.44 J	0.508 J	0.439 J	0.287 J	0.528 J	0.502 J	0.321 J	0.297 J
Cadmium	1	0.08 J	0.08 J	0.23 J	0.832	0.059 J	0.053 U	0.357 J	0.293 J	0.303 J	0.083 J
Chromium	40	9.4	5.7	5.6	14.5 J	17 J	10.9 J	19.9 J	19.7 J	22.3 J	12.2 J
Copper	50	9.3	12.4	3.7	35.6	18.3	13.4	18.2	15.4	35.5	14.4
Lead	500	14.8	8.2	4	154	20.8	12.9	21.9	14.2	285	12
Mercury	0.1	0.11	0.02	0.03	0.16 J	0.02 J	0.05 J	0.04 J	0.03 J	0.32 J	0.06 J
Nickel	25	7.5	5.3	7.6	17.9 J	13.9	11.1	19.1	19.3	10.6	11
Selenium	3.9	0.47 J	0.38 U	0.46 U	0.447 J	0.355 UJ	0.361 UJ	0.609 J	0.859 J	0.4 J	0.361 UJ
Silver	В	0.12 U	0.13 U	0.15 U	0.569 J	0.171 J	0.121 U	0.801 J	0.544 J	0.155 J	0.362 J
Thallium	В	0.37 U	0.4 U	0.49 U	0.48 J	0.375 U	0.706 J	0.495 U	0.535 U	0.38 U	0.38 U
Zinc	50	19.6	16.4	37.8	136 J	26.3 J	21.9 J	53.6 J	55.2 J	84.9 J	30 J

Sample Location		SB-21	SB-21	SB-21	SB-22	SB-22	SB-22	SB-22	SB-22	SB-23	SB-23
Sample Interval (Feet bgs) Sampling Date Units		11 to 13 5/4/04 mg/Kg	15 to 17 5/4/04 mg/Kg	21 to 23 5/4/04 mg/Kg	5 to 7 4/27/04 mg/Kg	11 to 13 4/27/04 mg/Kg	15 to 17 4/27/04 mg/Kg	22 to 23 4/27/04 mg/Kg	26 to 27 4/27/04 mg/Kg	9 to 10 4/27/04 mg/Kg	15 to 16 4/27/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	6.45	0.602 U	0.75 U	0.545 U	0.568 U	0.576 U	0.75 U	0.818 U	0.575 U	0.588 U
Amenable Cyanide	NC	5.8	0.6 U	0.75 U	0.54 U	0.57 U	0.58 U	0.75 U	0.82 U	0.58 U	0.59 U

Sample Location		SB-23	SB-23	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-25
Sample Interval (Feet bgs)		17 to 18	24 to 25	5 to 7	7 to 9	25 to 27	33 to 35	33 to 35	53 to 55	82 to 84	7 to 9
Sampling Date		4/27/04	4/27/04	4/24/04	4/24/04	4/24/04	4/24/04	4/24/04	4/24/04	08/30/04	4/26/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGNA										
DD Matala	TAGM										
PP Metals	RSCO										
Antimony	В		0.849 U	0.649 U	0.681 U	0.683 U	0.842 U	0.843 U	0.648 U	0.658 U	0.603 U
Arsenic	12	10.8	9.22	12.9	9.4	3.65	10	7.85	0.753 J	0.599 J	4.1
Beryllium	600	0.684 J	0.561 J	0.56 J	0.46 J	0.295 J	0.647 J	0.488 J	0.162 J	0.216 J	0.148 J
Cadmium	1	0.424 J	0.348 J	0.324 J	0.166 J	0.101 J	0.404 J	0.259 J	0.053 U	0.054 U	0.267 J
Chromium	40	23.8 J	22.2 J	25 J	12.9 J	16.2 J	25.3	20.5 J	15.5 J	6.89	12 J
Copper	50	23.4	14.7	33.4	25.5	18.4	15.7	13.5	11.1	9.13	37.9
Lead	500	40.1	13.9	271	577	33.6	17.4	12.4	3.75	3.28	32.4
Mercury	0.1	0.14 J	0.04 J	0.42 J	0.24 J	0.03 J	0.03 J	0.04 J	0.02 J	0.01 U	0.06 J
Nickel	25	23	20.8	20.7 J	21 J	13.7 J	23.9 J	19.5 J	7.41 J	7.94	12 J
Selenium	3.9	0.546 J	0.472 UJ	0.681 J	1.16 J	0.38 UJ	0.468 UJ	0.855 J	0.36 UJ	0.623 J	1.03 J
Silver	В	0.666 J	0.511 J	0.946 J	0.628 J	0.176 J	0.782 J	0.219 J	0.121 U	0.123 U	0.156 J
Thallium	В	0.549 U	0.498 U	0.38 U	0.399 U	0.4 U	0.493 U	0.494 U	0.38 U	0.386 U	0.354 U
Zinc	50	65.1 J	58.6 J	55.6 J	36.4 J	30.4 J	65.9 J	52.2 J	11.9 J	14	87.6 J

Sample Location		SB-23	SB-23	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-24	SB-25
Sample Interval (Feet bgs) Sampling Date Units		17 to 18 4/27/04 mg/Kg	24 to 25 4/27/04 mg/Kg	5 to 7 4/24/04 mg/Kg	7 to 9 4/24/04 mg/Kg	25 to 27 4/24/04 mg/Kg	33 to 35 4/24/04 mg/Kg	33 to 35 4/24/04 mg/Kg	53 to 55 4/24/04 mg/Kg	82 to 84 08/30/04 mg/Kg	7 to 9 4/26/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	0.832 U	0.754 U	0.576 U	0.611 U	0.607 U	0.747 U	0.763 U	0.575 U	0.58 U	0.536 U
Amenable Cyanide	NC	0.83 U	0.75 U	0.58 U	0.61 U	0.61 U	0.61 U	0.61 U	0.75 U	0.76 U	0.58 U

Sample Location		SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-27
Sample Interval (Feet bgs)		20 to 22	32 to 33	33 to 34	6.5 to 7	31 to 33	35 to 37	5 to 5.5	5.9 to 6.3	40.9 to 41.3	44.5 to 45
Sampling Date		4/26/04	4/26/04	4/26/04	07/08/04	07/26/04	07/27/04	07/09/04	07/22/04	07/22/04	07/22/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	0.632 U	0.734 U	0.907 U	0.688 U	0.659 U	0.849 U	0.86 J	0.725 U	0.669 U	0.843 U
Arsenic	12	1.76	1.04 J	7.97	1.79	10.6	8.63	7.14	5.45	4.45	9.58
Beryllium	600	0.321 J	0.186 J	0.517 J	0.397 J	0.422 J	0.83	0.391 J	0.335 J	0.416 J	0.738 J
Cadmium	1	0.065 J	0.06 U	0.288 J	0.295 J	0.698	1.8	0.516 J	0.986	1.66	2.02
Chromium	40	14.7 J	10.5 J	19.6 J	12.1	11.5	27.3	18.9	11.4	9.6	23.2
Copper	50	20.4	28.5	17	15.3	51	12.7	74	28.1	22.2	18.6
Lead	500	10.2	58.4	44.6	42.5	222	15.1	327	315	109	64.4
Mercury	0.1	0.03 J	0.03 J	0.1 J	0.16 J	0.34	0.02	41.3 J	0.35	0.2	0.2
Nickel	25	13.1 J	10.2 J	20.3 J	14.2	13.1	21.1	17.7	12	7.6	22.2
Selenium	3.9	0.351 UJ	0.408 UJ	0.591 J	1.14 J	1.24	2.48	0.958 J	1.18 J	0.94 J	2.33
Silver	В	0.521 J	0.137 U	0.467 J	0.43 J	1.01 J	2.04	1.14	0.328 J	0.359 J	0.32 J
Thallium	В	0.37 U	0.43 U	0.531 U	0.403 J	0.387 U	0.498 U	0.369 J	0.425 U	0.392 U	0.494 U
Zinc	50	22.9 J	19.6 J	56.2 J	38	58.5	66.6	218	551	65.1	78.9

Sample Location		SB-25	SB-25	SB-25	SB-26	SB-26	SB-26	SB-27	SB-27	SB-27	SB-27
Sample Interval (Feet bgs) Sampling Date Units		20 to 22 4/26/04 mg/Kg	32 to 33 4/26/04 mg/Kg	33 to 34 4/26/04 mg/Kg	6.5 to 7 07/08/04 mg/Kg	31 to 33 07/26/04 mg/Kg	35 to 37 07/27/04 mg/Kg	5 to 5.5 07/09/04 mg/Kg	5.9 to 6.3 07/22/04 mg/Kg	40.9 to 41.3 07/22/04 mg/Kg	44.5 to 45 07/22/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	0.561 U	0.652 U	0.805 U	0.611 U	4	1.58	0.57 U	0.64 U	0.59 U	0.75 U
Amenable Cyanide	NC	0.58 U	0.54 U	0.56 U	0.65 U	0.81 U	0.61 U	0.6 U	0.75 U	0.57 U	0.64 U

Sample Location		SB-47	SB-47	SB-47	SB-48	SB-48	SB-48	SB-49	SB-49	SB-49	SB-49
Sample Interval (Feet bgs)		7 to 9	13 to 15	17 to 19	7 to 9	15 to 16	19 to 21	10 to 12	14 to 15	17 to 18	23 to 24
Sampling Date		05/03/04	05/03/04	05/03/04	05/03/04	05/03/04	05/03/04	4/28/04	4/28/04	4/28/04	4/28/04
Units		mg/Kg									
	TAGM										
PP Metals	RSCO										
Antimony	В	0.76 J	2.9 J	0.89 J	0.67 U	0.88 J	0.91 U	0.678 U	0.697 U	0.673 U	0.884 U
Arsenic	12	2.9	2.7	9.6	1.7	6	8	2.54	2.88	2.95	7.75
Beryllium	600	0.53 J	0.32 J	0.56 J	0.36 J	0.68 J	0.49 J	0.385 J	0.441 J	0.422 J	0.524 J
Cadmium	1	0.33 J	0.33 J	0.74	0.28 J	0.66 J	0.57 J	0.086 J	0.116 J	0.102 J	0.284 J
Chromium	40	19.1	13.9	20.3	10.9	20.8	17.1	13.1 J	15.2 J	13.4 J	18.7 J
Copper	50	23.3	19	15	14	25.3	14.1	14.4	14.8	13.6	14.7
Lead	500	8.5	24	7.1	48	27.7	8	10.8	14.1	17.6	15.9
Mercury	0.1	0.02	0.03	0.02	0.14	0.04	0.04	0.03 J	0.05 J	0.04 J	0.06 J
Nickel	25	16.6	11.2	20	10.6	19.5	16.3	11.5	12.8	10.9	18.3
Selenium	3.9	0.35 U	0.56 J	0.46 U	0.37 U	0.44 U	0.5 U	0.377 UJ	0.387 UJ	0.413 J	0.491 UJ
Silver	В	0.12 U	0.36 J	0.15 U	0.13 U	0.15 U	0.17 U	0.252 J	0.564 J	0.621 J	0.509 J
Thallium	В	0.37 U	0.4 U	0.48 U	0.39 U	0.46 U	0.53 U	0.397 U	0.408 U	0.395 U	0.518 U
Zinc	50	24	25.4	57.5	30	59.5	49.8	28.6 J	30.9 J	29.9 J	53.9 J

Sample Location		SB-47	SB-47	SB-47	SB-48	SB-48	SB-48	SB-49	SB-49	SB-49	SB-49
Sample Interval (Feet bgs) Sampling Date Units		7 to 9 5/3/04 mg/Kg	13 to 15 5/3/04 mg/Kg	17 to 19 5/3/04 mg/Kg	7 to 9 5/3/04 mg/Kg	15 to 16 5/3/04 mg/Kg	19 to 21 5/3/04 mg/Kg	10 to 12 4/28/04 mg/Kg	14 to 15 4/28/04 mg/Kg	17 to 18 4/28/04 mg/Kg	23 to 24 4/28/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	0.556 U	0.6 U	0.729 U	0.604 U	0.699 U	0.806 U	0.608 U	0.619 U	0.598 U	0.785 U
Amenable Cyanide	NC	0.56 U	0.6 U	0.73 U	0.6 U	0.7 U	0.81 U	0.61 U	0.62 U	0.6 U	0.78 U

Sample Location		SB-50	SB-50	SB-50	SB-50	SB-51	SB-51	SB-51	SB-51	SB-52	SB-52
Sample Interval (Feet bgs)		2 to 3	8 to 10	21 to 23	26 to 27	6 to 7	14 to 15	21 to 22	32 to 33	11 to 13	27 to 29
Sampling Date		4/25/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	4/27/04	05/01/04	05/01/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	0.66 J	0.646 U	0.656 U	0.863 U	0.661 U	0.678 U	0.687 U	0.8 U	2.3 J	0.66 U
Arsenic	12	10.1	2.24	1.84	6.35	6.53	1.89	1.71	6.33	2	1.1 J
Beryllium	600	0.368 J	0.312 J	0.334 J	0.416 J	0.398 J	0.204 J	0.175 J	0.425 J	0.41 J	0.24 J
Cadmium	1	0.307 J	0.053 U	0.055 J	0.183 J	0.879	0.071 J	0.092 J	0.23 J	0.3 J	0.19 J
Chromium	40	15 J	11.4 J	22.5 J	16.8 J	7.69 J	9.47 J	7.8 J	17.1 J	11.9	10.4
Copper	50	46	86.9	20.7	11.3	31.6	32.5	15.4	11.8	22.2	14
Lead	500	280	13.3	12.9	11.2	72.7	12.4	11.1	11.2	112	41
Mercury	0.1	0.85 J	0.03 J	0.02 J	0.03 J	0.27 J	0.04 J	0.04 J	0.05 J	0.22	0.04 J
Nickel	25	12.5 J	10.4	14.4	17.1	8.67	7.38	7.98	16.1	13.4	10.4
Selenium	3.9	0.797 J	0.564 J	0.365 UJ	0.48 UJ	1.44 J	0.377 UJ	0.491 J	0.445 UJ	0.43 U	0.37 U
Silver	В	0.256 J	0.224 J	0.235 J	0.495 J	0.575 J	0.127 U	0.194 J	0.668 J	0.14 U	0.12 U
Thallium	В	0.373 U	0.575 J	0.385 U	0.506 U	0.527 J	0.398 U	0.403 U	0.469 U	0.84 J	0.39 U
Zinc	50	118 J	20.4 J	26.6 J	47.3 J	44.8 J	16.2 J	16.3 J	47.3 J	36.6	20.4

Sample Location		SB-50	SB-50	SB-50	SB-50	SB-51	SB-51	SB-51	SB-51	SB-52	SB-52
Sample Interval (Feet bgs) Sampling Date Units		2 to 3 4/25/04 mg/Kg	8 to 10 4/27/04 mg/Kg	21 to 23 4/27/04 mg/Kg	26 to 27 4/27/04 mg/Kg	6 to 7 4/27/04 mg/Kg	14 to 15 4/27/04 mg/Kg	21 to 22 4/27/04 mg/Kg	32 to 33 4/27/04 mg/Kg	11 to 13 5/1/04 mg/Kg	27 to 29 5/1/04 mg/Kg
	TAGM RSCO										
Cyanide	NC	0.571 U	0.574 U	0.583 U	0.767 U	0.605 U	0.602 U	3.23	0.71 U	0.687 U	0.586 U
Amenable Cyanide	NC	0.57 U	0.57 U	0.58 U	0.77 U	0.6 U	0.6 U	0.61 U	0.71 U	0.69 U	0.59 U

						rable 4-	19		
Sample Location		SB-52							
Sample Interval (Feet bgs)		33 to 35							
Sampling Date		05/01/04							
Units		mg/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
PP Metals	RSCO		·			Exceedances			
Antimony	В	0.87 U	61	9	15%	0	0%	< 0.603	2.9
Arsenic	12	12.1	61	61	100%	3	5%	0.46	37.4
Beryllium	600	0.73 J	61	61	100%	0	0%	0.148	0.83
Cadmium	1	0.82	61	56	92%	3	5%	< 0.053	2.02
Chromium	40	27.5	61	61	100%	0	0%	5.6	27.5
Copper	50	16.9	61	61	100%	3	5%	3.7	86.9
Lead	500	9.8	61	61	100%	2	3%	3.28	677
Mercury	0.1	0.03	61	60	98%	19	31%	< 0.01	41.3
Nickel	25	26.6	61	61	100%	1	2%	5.3	26.6
Selenium	3.9	0.48 U	61	25	41%	0	0%	< 0.35	2.48
Silver	В	0.16 U	61	36	59%		0%	< 0.12	2.04
Thallium	В	0.51 U	61	9	15%	0	0%	< 0.354	0.87
Zinc	50	71.3	61	61	100%	25	41%	11.9	551

Sample Location		SB-52								
Sample Interval (Feet bgs)		33 to 35								
Sampling Date		5/1/04								
Units		mg/Kg								
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Re	ported	Maximum Reported
	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentrat	tion	Concentration
	RSCO					Exceedances				
Cyanide	NC	0.769 U	61	9	15%	0	0%	<	0.536	13.62
Amenable Cyanide	NC	0.77 U	61	3	5%	0	0%	<	0.54	5.80

					Tubio 4 20			
Sample Location		SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	49 to 51
Sampling Date Units		05/02/04 ug/Kg						
Pesticides (ug/Kg)	TAGM RSCO							
alpha-BHC	110	1.3 UJ	1.9 UJ	1.2 UJ	1.4 UJ	1.5 UJ	1.3 UJ	1.4 UJ
beta-BHC	200	1.3 UJ	1.9 UJ	1.2 UJ	1.4 UJ	1.5 UJ	1.3 UJ	1.4 UJ
delta-BHC	300	1 UJ	1.5 UJ	0.97 UJ	1.1 UJ	1.2 UJ	1 UJ	1.1 UJ
gamma-BHC	60	1.4 UJ	2.1 UJ	1.3 UJ	1.5 UJ	1.6 UJ	1.4 UJ	1.5 UJ
Heptachlor	100	1.5 UJ	2.2 UJ	1.4 UJ	1.6 UJ	1.8 UJ	1.5 UJ	1.6 UJ
Aldrin	41	1.2 UJ	1.8 UJ	1.1 UJ	1.3 UJ	1.4 UJ	1.2 UJ	1.3 UJ
Heptachlor epoxide	20	1.4 UJ	2.2 UJ	1.4 UJ	1.5 UJ	1.7 UJ	1.5 UJ	1.6 UJ
Endosulfan I	900	1.7 UJ	2.5 UJ	1.6 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.8 UJ
Dieldrin	44	1.1 UJ	1.7 UJ	1.1 UJ	1.2 UJ	1.3 UJ	1.2 UJ	1.2 UJ
4,4-DDE	2,100	1.5 UJ	2.2 UJ	1.4 UJ	1.6 UJ	1.7 UJ	1.5 UJ	1.6 UJ
Endrin	100	2.1 UJ	3.1 UJ	2 UJ	2.2 UJ	2.4 UJ	2.1 UJ	2.2 UJ
Endosulfan II	900	1.5 UJ	2.2 UJ	1.4 UJ	1.6 UJ	1.8 UJ	1.5 UJ	1.6 UJ
4,4-DDD	2,900	1.2 UJ	1.7 UJ	1.1 UJ	1.2 UJ	1.4 UJ	1.2 UJ	1.2 UJ
Endosulfan Sulfate	NC	1.7 UJ	2.5 UJ	1.6 UJ	1.8 UJ	2 UJ	1.7 UJ	1.8 UJ
4,4-DDT	2100	2.1 UJ	3.1 UJ	2 UJ	2.2 UJ	2.5 UJ	2.1 UJ	2.3 UJ
Methoxychlor	NC	1.4 UJ	2.1 UJ	1.4 UJ	1.5 UJ	1.7 UJ	1.4 UJ	1.5 UJ
Endrin ketone	N/A	1.5 UJ	2.2 UJ	1.4 UJ	1.6 UJ	1.7 UJ	1.5 UJ	1.6 UJ
Endrin aldehyde	NC	1.7 UJ	2.6 UJ	1.7 UJ	1.9 UJ	2 UJ	1.8 UJ	1.9 UJ
alpha-Chlordane	NC	1.7 UJ	2.5 UJ	1.6 UJ	1.8 UJ	2 UJ	1.7 UJ	1.8 UJ
gamma-Chlordane	540	1.7 UJ	2.5 UJ	1.6 UJ	1.8 UJ	2 UJ	1.7 UJ	1.8 UJ
Toxaphene	NC	3.4 UJ	5.1 UJ	3.3 UJ	3.6 UJ	4 UJ	3.4 UJ	3.7 UJ
Chlordane	540	0.41 UJ	0.61 UJ	0.4 UJ	0.44 UJ	0.48 UJ	0.42 UJ	0.44 UJ

Sample Location		SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	49 to 51
Sampling Date Units		05/02/04 ug/Kg						
Herbicides (ug/Kg)	TAGM RSCO							
DICAMBA	NC	1.5 UJ	2.2 UJ	1.4 UJ	1.6 UJ	1.8 UJ		
DICHLORPROP	NC	3.2 UJ	4.8 UJ	3.1 UJ	3.5 UJ	3.9 UJ	3.3 UJ	3.5 UJ
2,4-D	500	5.2 UJ	7.7 UJ	5 UJ	5.6 UJ	6.2 UJ	5.3 UJ	5.5 UJ
2,4,5-TP (SILVEX)	700	1.6 UJ	2.3 UJ	1.5 UJ	1.7 UJ	1.9 UJ	1.6 UJ	1.7 UJ
2,4,5-T	1900	1.4 UJ	2.1 UJ	1.4 UJ	1.6 UJ	1.7 UJ	1.5 UJ	1.5 UJ
2,4-DB	NC	3.1 UJ	4.6 UJ	3 UJ	3.3 UJ	3.7 UJ	3.2 UJ	3.3 UJ
DINOSEB	NC	1.2 UJ	1.8 UJ	1.2 UJ	1.3 UJ	1.5 UJ	1.3 UJ	1.3 UJ

Sample Location		SB-19	SB-19	SB-20	SB-20	SB-20	SB-20	SB-20
Sample Interval (Feet bgs)		5 to 7	17 to 19	9 to 11	13 to 15	19 to 20	41 to 43	49 to 51
Sampling Date Units		05/02/04 ug/Kg						
PCBs (ug/Kg)	TAGM RSCO							
	10,000							
Aroclor-1016	(subsurface)	5.9 U	8.7 U	5.7 U	6.2 U	6.9 U	6 U	6.3 U
Aroclor-1221	10,000 (subsurface)	4 U	6 U	3.9 U	4.2 U	4.7 U	4.1 U	4.3 U
Aroclor-1232	10,000 (subsurface)	2.7 U	4 U	2.6 U	2.9 U	3.2 U	2.8 U	2.9 U
Aroclor-1242	10,000 (subsurface)	3.5 U	5.2 U	3.4 U	3.7 U	4.1 U	3.6 U	3.7 U
Aroclor-1248	10,000 (subsurface)	4.1 U	6.1 U	4 U	4.4 U	4.9 U	4.2 U	4.4 U
	10,000							
Aroclor-1254	(subsurface)	1.5 U	2.3 U	1.5 U	1.6 U	1.8 U	1.6 U	1.6 U
Aroclor-1260	10,000 (subsurface)	3.3 U	4.9 U	3.2 U	3.5 U	3.9 U	3.4 U	3.5 U

					Tabic			
Sample Location								
Sample Interval (Feet bgs)								
Sampling Date Units								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Pesticides (ug/Kg)	TAGM RSCO				Exceedances			
alpha-BHC	110	7	0	0%	0	0%	< 1.2	< 1.9
beta-BHC	200	7	0	0%	0	0%	< 1.2	< 1.9
delta-BHC	300	7	0	0%	0	0%	< 0.97	< 1.5
gamma-BHC	60	7	0	0%	0	0%	< 1.3	< 2.1
Heptachlor	100	7	0	0%	0	0%	< 1.4	< 2.2
Aldrin	41	7	0	0%	0	0%	< 1.1	< 1.8
Heptachlor epoxide	20	7	0	0%	0	0%	< 1.4	< 2.2
Endosulfan I	900	7	0	0%	0		< 1.6	< 2.5
Dieldrin	44	7	0	0%	0	0%	< 1.1	< 1.7
4,4-DDE	2,100	7	0	0%	0	0%	< 1.4	< 2.2
Endrin	100	7	0	0%	0	0%	< 2	< 3.1
Endosulfan II	900	7	0	0%	0	0%	< 1.4	< 2.2
4,4-DDD	2,900	7	0	0%	0	0%	< 1.1	< 1.7
Endosulfan Sulfate	NC	7	0	0%	0		< 1.6	< 2.5
4,4-DDT	2100	7	0	0%	0	0%	< 2	< 3.1
Methoxychlor	NC	7	0	0%	0		< 1.4	< 2.1
Endrin ketone	N/A	7	0	0%	0		< 1.4	< 2.2
Endrin aldehyde	NC	7	0	0%	0	0%	< 1.7	< 2.6
alpha-Chlordane	NC	7	0	0%	0		< 1.6	< 2.5
gamma-Chlordane	540	7	0	0%	0		< 1.6	< 2.5
Toxaphene	NC	7	0	0%	0		< 3.3	< 5.1
Chlordane	540	7	0	0%	0	0%	< 0.4	< 0.61

Sample Location								
Sample Interval (Feet bgs)								
Sampling Date Units								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Herbicides (ug/Kg)	TAGM RSCO				Exceedances			
DICAMBA	NC	7	0	0%	0	0%	< 1.4	< 2.2
DICHLORPROP	NC	7	0	0%	0	0%	< 3.1	< 4.8
2,4-D	500	7	0	0%	0	0%	< 5	< 7.7
2,4,5-TP (SILVEX)	700	7	0	0%	0	0%	< 1.5	< 2.3
2,4,5-T	1900	7	0	0%	0	0%	< 1.4	< 2.1
2,4-DB	NC	7	0	0%	0	0%	< 3	< 4.6
DINOSEB	NC	7	0	0%	0	0%	< 1.2	< 1.8

Sample Location								
Sample Interval (Feet bgs)								
Sampling Date Units								
	T. 0.1. D. 0.0	Number of Samples	Number of Detections	Frequency of Detections	Number of TAGM	Frequency of Exceedances	Minimum Reported Concentration	Maximum Reported Concentration
PCBs (ug/Kg)	TAGM RSCO				Exceedances			
Aroclor-1016	10,000 (subsurface)		0	0%	0	0%	< 5.7	< 8.7
Aroclor-1221	10,000 (subsurface)	7	0	0%	0	0%	< 3.9	< 6
Aroclor-1232	10,000 (subsurface)		0	0%	0	0%	< 2.6	< 4
Aroclor-1242	10,000 (subsurface)		0	0%	0	0%	< 3.4	< 5.2
Aroclor-1248	10,000 (subsurface)		0			0%	< 4	< 6.1
AIUCIUI-1240	(Subsurface) 10,000		0	0%	U	0%	< 4	< 0.1
Aroclor-1254	(subsurface)		0	0%	0	0%	< 1.5	< 2.3
Aroclor-1260	10,000 (subsurface)		0	0%	0	0%	< 3.2	< 4.9

Summary of Field Work and Observations for Area 4 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-21

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
SB-29	7-Nov	50	NA	11	36-39	N/O, N/S, no sheen
MW-29A	7-Nov	20	8' - 18'	11	Not encountered	N/O, N/S, no sheen
\$B-30	30-Oct	86	NA	11	24-28.7'	12'-16': SI petroleum odor, N/S, Max. PID: 8.7 ppm at 12'-14' bgs. 16'-24': MGP-related odor, sheen. 20'-24': Visible OLM and TLM. 22'-24': black staining, Max PID = 1.585 ppm.

Note: Elevations are reported in feet below ground surface (ft bgs).

Laboratory and Data Validation Qualifiers Former Broadway/Dyckman Street Station Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

						e 4-22					
Sample Location Sample Interval (Feet bgs)		SB-29 11 to 13	SB-29 34 to 36	SB-29 38 to 39	SB-29 48 to 50	SB-71 48 to 50	SB-30 10 to 12	SB-30 22-24	SB-30 24 to 26	SB-30 28 to 30	SB-30 84 to 86
Sampling Date Units		11/06/04 ug/Kg	11/07/04 ug/Kg	11/07/04 ug/Kg	11/07/04 ug/Kg	11/07/04 ug/Kg	10/10/04 ug/Kg	10/10/04 ug/Kg	10/10/04 ug/Kg	10/30/04 ug/Kg	10/30/04 ug/Kg
	TAGM					Blind Duplicate					
Volatile Organic Compounds	RSCO										
Dichlorodifluoromethane	NC	1.4 UJ	1.5 U	1.6 U	1.5 U	1.5 U	1.4 U	71 U	8.7 U	1.5 U	1.5 U
Chloromethane	NC	0.38 UJ	0.39 U	0.42 U	0.4 U	0.4 U	0.38 U	140 U	2.3 U	0.4 U	0.41 U
Vinyl Chloride	200	0.27 UJ	0.28 U	0.3 U	0.29 U	0.29 U	0.27 U	57 U	1.7 U	0.28 U	0.29 U
Bromomethane	NC	0.82 UJ	0.83 U	0.9 U	0.86 U	0.86 U	0.82 U	170 U	5 U	0.85 U	0.88 U
Chloroethane	1,900	0.61 UJ	0.62 U	0.66 U	0.64 U	0.64 U	0.61 U	190 U	3.7 U	0.63 U	0.66 U
Trichlorofluoromethane	NC	2.9 UJ	2.9 U	3.1 U	3 U	3 U	2.9 U	120 U	17 U	3 U	3.1 U
1,1,2-Trichlorotrifluoroethane	6,000	0.53 UJ	0.54 U	0.58 U	0.56 U	0.56 U	0.53 U	150 U	3.2 U	0.55 U	0.57 U
1,1-Dichloroethene	400	0.25 UJ	0.25 U	0.27 U	0.26 U	0.26 U	0.25 U	68 U	1.5 U	0.26 U	0.27 U
Acetone	200	8.7 UJ	8.8 U	9.4 U	9.1 U	9.1 U	48 BJ	5300 J	240 BJ	25 J	52 J
Carbon Disulfide	2,700	0.12 UJ	0.12 U	0.13 U	0.12 U	0.12 U	3.3 J	83 U	0.71 U	0.12 U	0.13 U
Methyl tert-butyl Ether	120	0.27 UJ	0.27 U	0.29 U	0.28 U	0.28 U	0.27 U	76 U	1.6 U	0.28 U	0.29 U
Methyl Acetate	NC	1.5 UJ	1.5 U	1.6 U	1.6 U	1.6 U	1.5 U	180 U	9 U	1.5 U	1.6 U
Methylene Chloride	100	7.9 BJ	3.1 JB	3.4 JB	3.5 JB	3.5 JB	2.7 JB	1300 J	33 J	0.82 U	0.85 U
trans-1,2-Dichloroethene	300	0.43 UJ	0.44 U	0.47 U	0.45 U	0.45 U	0.43 U	110 U	2.6 U	0.45 U	0.46 U
1,1-Dichloroethane	200	0.41 UJ	0.42 U	0.45 U	0.43 U	0.43 U	0.41 U	46 U	2.5 U	0.43 U	0.44 U
Cyclohexane	NC	0.35 UJ	0.36 U	0.39 U	0.37 U	0.37 U	0.35 U	78 U	2.1 U	0.37 U	0.38 U
2-Butanone	300	2.6 UJ	2.7 U	2.9 U	2.8 U	2.8 U	2.6 U	600 U	16 U	2.7 U	2.8 U
Carbon Tetrachloride	600	0.35 UJ	0.35 U	0.38 U	0.36 U	0.36 U	0.35 U	100 U	2.1 U	0.36 U	0.37 U
cis-1,2-Dichloroethene	NC	0.41 UJ	0.41 U	0.45 U	0.43 U	0.43 U	0.41 U	160 U	2.5 U	0.42 U	0.44 U
Chloroform	300	1.2 J	0.28 U	0.3 U	0.29 U	0.29 U	0.28 U	120 U	17 J	0.29 U	0.3 U
1,1,1-Trichloroethane	800	0.32 UJ	0.32 U	0.34 U	0.33 U	0.33 U	0.32 U	86 U	1.9 U	0.33 U	0.34 U
Methylcyclohexane	NC	0.41 UJ	0.42 U	0.45 U	0.43 U	0.43 U	0.41 U	120 U	2.5 U	0.43 U	0.44 U
Benzene	60	2 J	0.24 U	0.26 U	0.25 U	0.25 U	12	21000	7100 D	86	0.25 U
1,2-Dichloroethane	200	3.6 UJ	3.6 U	3.9 U	3.8 U	3.8 U	3.6 U	68 U	22 U	3.7 U	3.8 U
Trichloroethene	700	27 J	0.38 U	0.41 U	0.39 U	0.39 U	0.37 U	140 U	2.3 U	0.39 U	0.4 U
1,2-Dichloropropane	NC	0.39 UJ	0.39 U	0.42 U	0.41 U	0.41 U	0.39 U	67 U	2.4 U	0.4 U	0.42 U
Bromodichloromethane	NC	0.39 UJ	0.39 U	0.42 U	0.41 U	0.41 U	0.39 U	74 U	2.3 U	0.4 U	0.42 U
4-Methyl-2-Pentanone	1,000	2.8 UJ	2.8 U	3 U	2.9 U	2.9 U	2.8 U	280 U	17 U	2.9 U	3 U
Toluene	1,500	4.1 J	0.3 U	0.33 U	0.32 U	0.32 U	7.1	81000 D	1900 D	43	0.32 U
t-1,3-Dichloropropene	NC	0.3 UJ	0.3 U	0.32 U	0.31 U	0.31 U	0.3 U	90 U	1.8 U	0.31 U	0.32 U
cis-1,3-Dichloropropene	NC	0.23 UJ	0.23 U	0.25 U	0.24 U	0.24 U	0.23 U	32 U	1.4 U	0.23 U	0.24 U
1,1,2-Trichloroethane	NC	0.59 UJ	0.6 U	0.64 U	0.62 U	0.62 U	0.59 U	110 U	3.6 U	0.61 U	0.63 U
2-Hexanone	NC	3.7 UJ	3.8 U	4 U	3.9 U	3.9 U	3.7 U	140 U	23 U	3.9 U	4 U
Dibromochloromethane	NA	0.34 UJ	0.34 U	0.37 U	0.35 U	0.35 U	0.34 U	80 U	2 U	0.35 U	0.36 U
1,2-Dibromoethane	NC	0.48 UJ	0.49 U	0.53 U	0.51 U	0.51 U	0.48 U	130 U	2.9 U	0.5 U	0.52 U
Tetrachloroethene	1,400	20 J	0.75 U	4.2 J	0.77 U	0.77 U	0.74 U	70 U	4.5 U	0.77 U	0.79 U
Chlorobenzene	1,700	0.41 UJ	0.41 U	0.45 U	0.43 U	0.43 U	0.41 U	78 U	2.5 U	0.42 U	0.44 U
Ethyl Benzene	5,500	0.29 UJ	0.29 U	0.32 U	0.3 U	0.3 U	0.29 U	59000 D	5700 D	55	0.31 U
m/p-Xylenes	1,200	3.4 J	0.6 U	0.65 U	0.63 U	0.63 U	4.7 J	150000 D	11000 D	130	0.64 U
o-Xylene	600	1.2 UJ	0.51 U	0.55 U	0.53 U	0.53 U	7.2	56000 D	4400 D	53	0.54 U
Styrene	NC	0.36 UJ	0.37 U	0.4 U	0.38 U	0.38 U	0.36 U	14000 J	2.2 U	2.1 J	0.39 U
Bromoform	NC	0.35 UJ	0.35 U	0.38 U	0.36 U	0.36 U	0.35 U	53 U	2.1 U	0.36 U	0.37 U
Isopropylbenzene	2,300	0.43 UJ	0.44 U	0.47 U	0.45 U	0.45 U	2.5 J	3300	47	1.1 J	0.46 U
1,1,2,2-Tetrachloroethane	600	0.62 UJ	0.62 U	0.67 U	0.65 U	0.65 U	0.62 U	100 U	3.7 U	0.64 U	0.66 U
1,3-Dichlorobenzene	1,600	0.25 UJ	0.25 U	0.27 U	0.26 U	0.26 U	0.25 U	79 U	1.5 U	0.25 U	0.26 U
1,4-Dichlorobenzene	8,500	0.41 UJ	0.41 U	0.44 U	0.43 U	0.43 U	0.41 U	82 U	2.5 U	0.42 U	0.44 U
1,2-Dichlorobenzene	7,900	0.48 UJ	0.48 U	0.52 U	0.5 U	0.5 U	0.48 U	78 U	2.9 U	0.49 U	0.51 U
1,2-Dibromo-3-Chloropropane	NC	0.79 UJ	0.8 U	0.86 U	0.83 U	0.83 U	0.79 U	200 U	4.8 U	0.82 U	0.85 U
1,2,4-Trichlorobenzene	3,400	0.29 UJ	0.29 U	0.32 U	0.3 U	0.3 U	0.29 U	61 U	1.8 U	0.3 U	0.31 U
Total Confident Conc. VOC	10,000	66.8	3.1	7.6	3.5	3.5	87.5	390,900	30,437	395.2	52

0		SB-66					Table 4-22		
Sample Location		84 to 86							
Sample Interval (Feet bgs)									
Sampling Date		10/30/04							
Units		ug/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM	Blind Duplicate	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Volatile Organic Compounds	RSCO					Exceedances			
Dichlorodifluoromethane	NC	1.5 U	11	0	0%	0	0%	< 1.4	< 71
Chloromethane	NC	0.4 U	11	0	0%	0		< 0.38	< 140
Vinyl Chloride	200	0.29 U	11	0	0%	0	0%	< 0.27	< 57
Bromomethane	NC	0.86 U	11	0	0%	0	0%	< 0.82	< 170
Chloroethane	1,900	0.64 U	11	0	0%	0	0%	< 0.61	< 190
Trichlorofluoromethane	NC 0.000	3 U	11 11	0	0% 0%	0	0% 0%	< 2.9	< 120
1,1,2-Trichlorotrifluoroethane	6,000 400	0.56 U		0	0%	0	0%	< 0.53	< 150
1,1-Dichloroethene Acetone	200	0.26 U 34 J	11 11	6	55%	2	18%	< 0.25 < 8.7	< 68
Carbon Disulfide	2,700	0.12 U	11	1	9%	0		< 0.12	5,300 83
Methyl tert-butyl Ether	120	0.12 U	11	0	0%	0		< 0.12	< 76
Methyl Acetate	NC	0.28 U	11	0	0%	0	0%	< 0.27 < 1.5	< 180
Methylene Chloride	100	0.83 U	11	8	73%	1	9%	< 0.82	1,300
trans-1,2-Dichloroethene	300	0.45 U	11	0	0%	0	0%	< 0.43	< 110
1.1-Dichloroethane	200	0.43 U	11	0	0%	0	0%	< 0.43	< 46
Cyclohexane	NC	0.43 U	11	0	0%	0	0%	< 0.35	< 78
2-Butanone	300	2.8 U	11	0	0%	0	0%	< 2.6	< 600
Carbon Tetrachloride	600	0.36 U	11	0	0%	0	0%	< 0.35	< 100
cis-1.2-Dichloroethene	NC	0.43 U	11	0	0%	0	0%	< 0.41	< 160
Chloroform	300	0.29 U	11	2	18%	0	0%	< 0.28	120
1,1,1-Trichloroethane	800	0.33 U	11	0	0%	0	0%	< 0.32	< 86
Methylcyclohexane	NC	0.43 U	11	0	0%	0	0%	< 0.41	< 120
Benzene	60	0.25 U	11	5	45%	3	27%	< 0.24	21,000
1.2-Dichloroethane	200	3.8 U	11	0	0%	0	0%	< 3.6	< 68
Trichloroethene	700	0.39 U	11	1	9%	0	0%	< 0.37	140
1,2-Dichloropropane	NC	0.41 U	11	0	0%	0	0%	< 0.39	< 67
Bromodichloromethane	NC	0.41 U	11	0	0%	0	0%	< 0.39	< 74
4-Methyl-2-Pentanone	1,000	2.9 U	11	0	0%	0	0%	< 2.8	< 280
Toluene	1,500	0.32 U	11	5	45%	2	18%	< 0.3	81,000
t-1,3-Dichloropropene	NC	0.31 U	11	0	0%	0	0%	< 0.3	< 90
cis-1,3-Dichloropropene	NC	0.24 U	11	0	0%	0	0%	< 0.23	< 32
1,1,2-Trichloroethane	NC	0.62 U	11	0	0%	0	0%	< 0.59	< 110
2-Hexanone	NC	3.9 U	11	0	0%	0	0%	< 3.7	< 140
Dibromochloromethane	NA	0.35 U	11	0	0%	0	0%	< 0.34	< 80
1,2-Dibromoethane	NC	0.51 U	11	0	0%	0		< 0.48	< 130
Tetrachloroethene	1,400	0.77 U	11	2	18%	0	0%	< 0.74	70
Chlorobenzene	1,700	0.43 U	11	0	0%	0		< 0.41	< 78
Ethyl Benzene	5,500	0.3 U	11	3	27%	2	18%	< 0.29	59,000
m/p-Xylenes	1,200	0.63 U	11	5	45%	2	18%	< 0.6	150,000
o-Xylene	600	0.53 U	11	4	36%	2	18%	< 0.51	56,000
Styrene	NC	0.38 U	11	2	18%	0	0%	< 0.36	14,000
Bromoform	NC	0.36 U	11	0	0%	0	0%	< 0.35	< 53
Isopropylbenzene	2,300	0.45 U	11	4	36%	1	9%	< 0.43	3,300
1,1,2,2-Tetrachloroethane	600	0.65 U	11	0	0%	0	0%	< 0.62	< 100
1,3-Dichlorobenzene	1,600	0.26 U	11	0	0%	0	0%	< 0.25	< 79
1,4-Dichlorobenzene	8,500	0.43 U	11	0	0%	0	0%	< 0.41	< 82
1,2-Dichlorobenzene	7,900	0.5 U	11	0	0%	0		< 0.48	< 78
1,2-Dibromo-3-Chloropropane	NC 2.400	0.83 U	11	0	0%	0	0%	< 0.79	< 200
1,2,4-Trichlorobenzene	3,400	0.3 U	11	0	0%	0	0%	< 0.29	< 61
Total Confident Conc. VOC	10,000	34							

						Table 4-23					
Sample Location		SB-29	SB-29	SB-29	SB-29	SB-71	SB-30	SB-30	SB-30	SB-30	SB-30
Sample Interval (Feet bgs)		11 to 13	34 to 36	38 to 39	48 to 50	48 to 50	10 to 12	22-24	24 to 26	28 to 30	84 to 86
Sampling Date		11/06/04	11/07/04	11/07/04	11/07/04	11/07/04	10/10/04	10/10/04	10/10/04	10/30/04	10/30/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
O'IIIO		ugritg	ugritg	ugritg	ugritg	ug/rtg	ug/itg	ugritg	ug/itg	ug/Ng	ugritg
Semivolatile Organic						Blind Duplicate					
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	37 U	38 U	40 U	39 U	39 U	74 U	54 U	45 U	39 U	40 U
Phenol	30 or MDL	16 U	16 U	17 U	17 U	17 U	32 U	23 U	19 U	16 U	17 U
bis(2-Chloroethyl)ether	NC	19 U	19 U	20 U	20 U	20 U	37 U	27 U	23 U	19 U	20 U
2-Chlorophenol	800	17 U	17 U	18 U	17 U	17 U	33 U	24 U	20 U	17 U	18 U
2-Methylphenol	100 or MDL	24 U	24 U	26 U	25 U	25 U	48 U	35 U	29 U	25 U	26 U
2,2-oxybis(1-Chloropropane)	NC	21 U	21 U	22 U	21 U	22 U	41 U	30 U	25 U	21 U	22 U
Acetophenone	NC	20 U	20 U	22 U	21 U	21 U	40 U	29 U	24 U	21 U	21 U
3+4-Methylphenols	900	18 U	18 U	19 U	18 U	18 U	35 U	25 U	21 U	18 U	19 U
N-Nitroso-di-n-propylamine	NC	17 UJ	17 U	18 U	18 U	18 U	34 U	24 U	20 U	17 U	18 U
Hexachloroethane	NC	18 UJ	18 U	20 U	19 U	19 U	36 U	26 U	22 U	19 U	20 U
Nitrobenzene	200 or MDL	19 UJ	20 U	21 U	20 U	20 U	39 U	28 U	24 U	20 U	21 U
Isophorone	4,400	14 UJ	14 U	15 U	15 U	15 U	28 U	21 U	17 U	15 U	15 U
2-Nitrophenol	330 or MDL	15 UJ	16 U	17 U	16 U	16 U	31 U	22 U	19 U	16 U	17 U
2,4-Dimethylphenol	NC	21 UJ	21 U	22 U	21 U	22 U	41 U	910	1900	21 U	22 U
bis(2-Chloroethoxy)methane	NC	17 UJ	18 U	19 U	18 U	18 U	35 U	25 U	21 U	18 U	19 U
2,4-Dichlorophenol	400	13 UJ	14 U	14 U	14 U	14 U	27 U	19 U	16 U	14 U	14 U
Naphthalene	13,000	8.3 UJ	8.4 U	9 U	8.6 U	8.7 U	1200	9600 D	660	63 J	8.9 U
4-Chloroaniline	220 or MDL	140 UJ	140 U	150 U	150 U	150 U	280 U	200 U	170 U	150 U	150 U
Hexachlorobutadiene	NC	13 UJ	14 U	14 U	14 U	14 U	27 U	19 U	16 U	14 U	14 U
Caprolatam	NC	14 UJ	14 U	15 U	15 U	15 U	28 U	20 U	17 U	15 U	15 U
4-Chloro-3-methylphenol	240 or MDL	11 UJ	11 U	12 U	12 U	12 U	23 U	16 U	14 U	12 U	12 U
2-Methylnaphthalene	36,400	47 J	100 J	7.1 U	6.8 U	6.9 U	330 J	2400 J	8 U	6.8 U	7.1 U
Hexachlorocyclopentadiene	NC NC	9.6 UJ 14 UJ	9.7 UJ 14 U	10 UJ 15 U	10 UJ 14 U	10 UJ 14 U	19 UJ 28 U	14 UJ 20 U	12 UJ 17 U	9.9 UJ 14 U	10 UJ 15 U
2,4,6-Trichlorophenol	NC 100	25 UJ	26 U	27 U	26 U	26 U	50 U	37 U	31 U	26 U	27 U
2,4,5-Trichlorophenol 1,1-Biphenyl	NC	25 UJ 11 UJ	26 U	12 U	26 U	26 U	100 J	200 J	14 U	12 U	12 U
2-Chloronaphthalene	NC NC	8 UJ	8.1 U	8.6 U	8.3 U	8.3 U	16 U	12 U	9.7 U	8.2 U	8.6 U
2-Nitroaniline	430 or MDL	14 UJ	14 U	15 U	6.3 U	14 U	28 U	20 U	9.7 U	14 U	15 U
Dimethylphthalate	2,000	9.1 UJ	9.2 U	9.8 U	9.5 U	9.5 U	18 U	13 U	17 U	9.4 U	9.8 U
Acenaphthylene	41,000	9.1 UJ	12 U	12 U	12 U	9.5 U	190 J	720	14 U	12 U	12 U
2,6-Dinitrotoluene	1,000	16 UJ	16 U	18 U	17 U	17 U	32 U	24 U	20 U	17 U	18 U
3-Nitroaniline	500 or MDL	62 UJ	62 U	67 U	64 U	64 U	120 U	89 U	75 U	64 U	66 U
Acenaphthene	50,000	8.4 UJ	8.5 U	9.1 U	8.8 U	8.8 U	1700	200 J	10 U	8.7 U	9.1 U
2,4-Dinitrophenol	200 or MDL	17 UJ	17 U	18 U	18 U	18 U	34 U	24 U	20 U	17 U	18 U
4-Nitrophenol	100 or MDL	37 UJ	38 U	40 U	39 U	39 U	74 U	54 U	45 U	39 U	40 U
Dibenzofuran	6,200	13 UJ	13 U	14 U	13 U	13 U	1300	470 J	15 U	13 U	14 U
2,4-Dinitrotoluene	1,000	7.6 UJ	7.7 U	8.2 U	7.9 U	8 U	15 U	11 U	9.3 U	7.9 U	8.2 U
Diethylphthalate	7,100	12 UJ	12 U	13 U	12 U	13 U	24 U	17 U	15 U	12 U	13 U
4-Chlorophenyl-phenylether	NC	9.5 UJ	9.6 U	10 U	9.8 U	9.9 U	19 U	14 U	11 U	9.8 U	10 U
Fluorene	50,000	11 UJ	11 U	12 U	11 U	11 U	1900 J	830 J	13 U	11 U	12 U
4-Nitroaniline	NC	30 UJ	30 U	32 U	31 U	31 U	60 U	43 U	36 U	31 U	32 U
4,6-Dinitro-2-methylphenol	NC	22 UJ	22 U	24 U	23 U	23 U	44 U	32 U	27 U	23 U	24 U
N-Nitrosodiphenylamine	NC	9.7 UJ	9.8 U	10 U	10 U	10 U	19 U	14 U	12 U	42 J	10 U
4-Bromophenyl-phenylether	NC	10 UJ	10 U	11 U	10 U	10 U	20 U	15 U	12 U	10 U	11 U
Hexachlorobenzene	410	7.2 UJ	7.2 U	7.7 U	7.4 U	7.5 U	14 U	10 U	8.7 U	7.4 U	7.7 U
Atrazine	NC	12 UJ	12 U	13 U	12 U	12 U	23 U	17 U	14 U	12 U	13 U
Pentachlorophenol	1000 or MDL	12 UJ	12 U	13 U	12 U	12 U	24 U	17 U	14 U	12 U	13 U
Phenanthrene	50,000	8.6 UJ	8.6 U	9.2 U	8.9 U	8.9 U	5800 DJ	2100 J	10 U	8.8 U	9.2 U
Anthracene	50,000	9.1 UJ	9.2 U	9.8 U	9.5 U	9.5 U	2000	490 J	11 U	9.4 U	9.8 U
Carbazole	NC	8.4 UJ	8.5 U	9.1 U	8.8 U	8.8 U	17 U	260 J	10 U	8.7 U	9.1 U
Di-n-butylphthalate	8,100	5.1 UJ	5.1 U	5.5 U	5.3 U	5.3 U	10 U	7.3 U	6.2 U	5.3 U	5.5 U

Sample Location		SB-29	SB-29	SB-29	SB-29	SB-71	SB-30	SB-30	SB-30	SB-30	SB-30
Sample Interval (Feet bgs)		11 to 13	34 to 36	38 to 39	48 to 50	48 to 50	10 to 12	22-24	24 to 26	28 to 30	84 to 86
Sampling Date		11/06/04	11/07/04	11/07/04	11/07/04	11/07/04	10/10/04	10/10/04	10/10/04	10/30/04	10/30/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic						Blind Duplicate					
Compounds (ug/kg)	TAGM RSCO					·					
Fluoranthene	50,000	5.3 UJ	5.4 U	5.7 U	5.5 U	5.5 U	5300	720	6.4 U	5.5 U	5.7 U
Pyrene	50,000	6.8 UJ	6.9 U	7.4 U	7.1 U	7.1 U	5200	790	8.3 U	7.1 U	7.3 U
Butylbenzylphthalate	50,000	13 UJ	13 U	14 U	13 U	13 U	26 U	19 U	16 U	13 U	14 U
3,3-Dichlorobenzidine	NA	61 UJ	62 U	66 U	64 U	64 U	120 U	89 U	74 U	63 U	66 U
Benzo(a)anthracene	224 or MDL	5.8 UJ	5.8 U	6.2 U	6 U	6 U	2800	430 J	7 U	6 U	6.2 U
Chrysene	400	12 UJ	12 U	13 U	13 U	13 U	2100	320 J	15 U	13 U	13 U
bis(2-Ethylhexyl)phthalate	50,000	92 J	82 J	61 J	75 J	120 J	210 J	79 J	62 J	47 J	51 J
Di-n-octyl phthalate	50,000	9.1 UJ	9.2 U	9.8 U	9.5 U	9.5 U	18 U	13 U	11 U	9.4 U	9.8 U
Benzo(b)fluoranthene	1,100	20 UJ	21 U	22 U	21 U	21 U	3300	270 J	25 U	21 U	22 U
Benzo(k)fluoranthene	1,100	13 UJ	13 U	14 U	14 U	14 U	1700 J	140 J	16 U	14 U	14 U
Benzo(a)pyrene	61 or MDL	6.6 UJ	6.7 U	7.1 U	6.8 U	6.9 U	3100	280 J	8 U	6.8 U	7.1 U
Indeno(1,2,3-cd)pyrene	3,200	9.3 UJ	9.3 U	10 U	9.6 U	9.6 U	880 J	74 J	11 U	9.6 U	9.9 U
Dibenz(a,h)anthracene	14 or MDL	11 UJ	11 U	12 U	12 U	12 U	170 J	16 U	14 U	12 U	12 U
Benzo(g,h,i)perylene	50,000	17 UJ	17 U	18 U	17 U	17 U	1300	100 J	20 U	17 U	18 U
Total Confident Conc. SVOC Carcinogenic SVOCs in BaP	,	139 ND	182 ND	61 ND	75 ND	120 ND	40,580 4,006	21,683 362	2,622 ND	152 ND	51 ND

							e 4-23		
Sample Location		SB-66							
Sample Interval (Feet bgs)		84 to 86							
Sampling Date		10/30/04							
Units		ug/Kg							
Office		ug/itg							
			Number of	Number of	F=====================================	Number of	Frequency of	Minimum Reported	Maximum Reported
Somiyolotila Organia		Plind Dunlingto		Detections	Frequency of	TAGM	Exceedances	Concentration	Concentration
Semivolatile Organic	TACM DCCO	Blind Duplicate	Samples	Detections	Detections	-	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO	39 U	11	0	0%	Exceedances	0%	< 37	< 74
Benzaldehyde	NC	39 U 17 U	11	0		0	0%		
Phenol bis(2-Chloroethyl)ether	30 or MDL NC	20 U	11	0	0%	0	0%	< 16 < 19	< 32 < 37
2-Chlorophenol	800	20 U	11	0		0	0%	< 19 < 17	< 33
2-Methylphenol	100 or MDL	25 U	11	0		0	0%	< 24	< 48
2,2-oxybis(1-Chloropropane)	NC	25 U	11	0		0	0%	< 24	< 41
Acetophenone	NC NC	21 U	11	0		0	0%	< 20	< 40
3+4-Methylphenols	900	18 U	11	0		0	0%	< 18	
N-Nitroso-di-n-propylamine	NC	18 U	11	0		0	0%	< 17	< 35 < 34
Hexachloroethane	NC NC	19 U	11	0		0	0%	< 18	< 36
Nitrobenzene	200 or MDL	20 U	11	0	* 7 *	0	0%	< 18	< 39
Isophorone	4.400	20 U	11	0		0	0%	< 14	< 28
2-Nitrophenol	330 or MDL	16 U	11	0	4,10	0	0%	< 15	< 31
2,4-Dimethylphenol	NC NC	21 U	11	2	18%	0	0%	< 21	1,900
bis(2-Chloroethoxy)methane	NC	18 U	11	0		0	0%	< 17	< 35
2,4-Dichlorophenol	400	14 U	11	0		0	0%	< 13	< 27
Naphthalene	13.000	8.6 U	11	4	36%	0	0%	< 8.3	9.600
4-Chloroaniline	220 or MDL	150 U	11	0		0	0%	< 140	< 280
Hexachlorobutadiene	NC NC	14 U	11	0		0	0%	< 13	< 27
Caprolatam	NC	15 U	11	0		0	0%	< 14	< 28
4-Chloro-3-methylphenol	240 or MDL	12 U	11	0		0	0%	< 11	< 23
2-Methylnaphthalene	36,400	6.8 U	11	4	36%	0	0%	< 6.8	2,400
Hexachlorocyclopentadiene	NC	10 UJ	11	0	0%	0	0%	< 9.6	< 19
2,4,6-Trichlorophenol	NC	14 U	11	0	0%	0	0%	< 14	< 28
2,4,5-Trichlorophenol	100	26 U	11	0	0%	0	0%	< 25	< 50
1,1-Biphenyl	NC	12 U	11	2	18%	0	0%	< 11	200
2-Chloronaphthalene	NC	8.3 U	11	0	0%	0	0%	< 8	< 16
2-Nitroaniline	430 or MDL	14 U	11	0		0	0%	< 14	< 28
Dimethylphthalate	2,000	9.5 U	11	0		0	0%	< 9.1	< 18
Acenaphthylene	41,000	12 U	11	2	18%	0	0%	< 11	720
2,6-Dinitrotoluene	1,000	17 U	11	0		0	0%	< 16	< 32
3-Nitroaniline	500 or MDL	64 U	11	0	4,10	0	0%	< 62	< 120
Acenaphthene	50,000	8.8 U	11	2	18%	0	0%	< 8.4	1,700
2,4-Dinitrophenol	200 or MDL	18 U	11	0		0	0%	< 17	< 34
4-Nitrophenol	100 or MDL	39 U	11	0	- , ,	0	0%	< 37	< 74
Dibenzofuran	6,200	13 U	11	2	18%	0	0%	< 13	1,300
2,4-Dinitrotoluene	1,000	7.9 U	11	0		0	0%	< 7.6	< 15
Diethylphthalate	7,100	12 U	11	0		0	0%	< 12	< 24
4-Chlorophenyl-phenylether	NC F0 000	9.8 U	11	0		0	0%	< 9.5	< 19
Fluorene	50,000 NC	11 U	11	2	18% 0%	0	0% 0%	< 11 < 30	1,900 < 60
4-Nitroaniline	NC NC	31 U 23 U	11 11	0		0	0%	< 30 < 22	< 60 < 44
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine	NC NC	10 U	11	1	9%	0	0%	< 22 < 9.7	< 44 42
4-Bromophenyl-phenylether	NC NC	10 U	11	0		0	0%	< 9.7 < 10	< 20
Hexachlorobenzene	410	7.4 U	11	0		0	0%	< 7.2	< 14
Atrazine	NC	7.4 U	11	0	4,1	0	0%	< 12	< 23
Pentachlorophenol	1000 or MDL	12 U	11	0		0	0%	< 12	< 24
Phenanthrene	50,000	50 J	11	3	27%	0	0%	< 8.6	5,800
Anthracene	50,000	9.5 U	11	2	18%	0	0%	< 9.1	2,000
Carbazole	NC	8.8 U	11	1	9%	0	0%	< 8.4	260
Di-n-butylphthalate	8,100	5.3 U	11	0		0	0%	< 5.1	< 10
	2,700				0,0		0,0		

							C 4- 23		
Sample Location		SB-66							
Sample Interval (Feet bgs)		84 to 86							
Sampling Date		10/30/04							
Units		ug/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic		Blind Duplicate	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO	,				Exceedances			
Fluoranthene	50,000	5.5 U	11	2	18%	0	0%	< 5.3	5,300
Pyrene	50,000	55 J	11	3	27%	0	0%	< 6.8	5,200
Butylbenzylphthalate	50,000	13 U	11	0	0%	0	0%	< 13	< 26
3,3-Dichlorobenzidine	NA	64 U	11	0	0%	0	0%	< 61	< 120
Benzo(a)anthracene	224 or MDL	6 U	11	2	18%	2	18%	< 5.8	2,800
Chrysene	400	13 U	11	2	18%	1	9%	< 12	2,100
bis(2-Ethylhexyl)phthalate	50,000	59 J	11	11	100%	0	0%	47	210
Di-n-octyl phthalate	50,000	9.5 U	11	0	0%	0	0%	< 9.1	< 18
Benzo(b)fluoranthene	1,100	21 U	11	2	18%	1	9%	< 20	3,300
Benzo(k)fluoranthene	1,100	14 U	11	2	18%	1	9%	< 13	1,700
Benzo(a)pyrene	61 or MDL	6.8 U	11	2	18%	2	18%	< 6.6	3,100
Indeno(1,2,3-cd)pyrene	3,200	9.6 U	11	2	18%	0	0%	< 9.3	880
Dibenz(a,h)anthracene	14 or MDL	12 U	11	1	9%	1	9%	< 11	170
Benzo(g,h,i)perylene	50,000	17 U	11	2	18%	0	0%	< 17	1,300
Total Confident Conc. SVOC Carcinogenic SVOCs in BaP I	500,000 Equivalents	164 ND							

Sample Location		SB-29	SB-29	SB-29	SB-29	SB-71	SB-30	SB-30	SB-30	SB-30	SB-30
Sample Interval (Feet bgs)		11 to 13	34 to 36	38 to 39	48 to 50	48 to 50	10 to 12	22-24	24 to 26	28 to 30	84 to 86
Sampling Date		11/06/04	11/07/04	11/07/04	11/07/04	11/07/04	10/10/04	10/10/04	10/10/04	10/30/04	10/30/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
						Blind					
	TAGM					Duplicate					
PP Metals	RSCO					·					
Antimony	В	0.658 U	0.665 U	0.708 U	0.687 U	0.689 U	0.818 J	0.95 U	0.793 U	0.68 U	0.71 U
Arsenic	12	1.99	0.468 J	2.1	1.53	1.82	2.44	2.67	6.55	2.8	0.78 J
Beryllium	600	0.261 J	0.22 J	0.462 J	0.441 J	0.62	0.36 J	0.568 J	0.601 J	0.31 J	0.41 J
Cadmium	1	0.116 J	0.054 U	0.231 J	0.171 J	0.212 J	0.054 U	0.078 U	0.065 U	0.06 U	0.06 U
Chromium	40	14	13.8	12.5	11.7	15.9	10.2	19.4	18.4	15.5	13.5
Copper	50	20.3	11.4	17.3	9.69 R	14.2	24.7	15.9	11.7	10.4	15.6
Lead	500	15.9	9.19	10.2	8.82 J	12	74.3	3.67	2.78	5.9	6.2
Mercury	0.1	0.02	0.007 U	0.014	0.007 U	0.007 U	0.113 R	0.013 R	0.029 R	0.019	0.007 U
Nickel	25	13.6	18.6	16.8	12.7 R	17	10.9	14.1	17.5	11.1	14.6
Selenium	3.9	0.366 U	0.37 U	0.526 J	0.382 U	0.561 J	0.366 U	0.528 U	0.441 U	1.8 J	1.7 J
Silver	В	1.19	0.945 J	1.93	0.569 J	0.397 J	0.123 U	0.177 U	0.566 J	0.13 U	0.13 U
Thallium	В	0.887 J	0.39 U	0.415 U	0.52 J	0.557 J	0.386 U	0.557 U	0.465 U	0.4 U	0.41 U
Zinc	50	28.5	18.2	31.6	20 R	30.2	57.4	29.4	49	28.5	23.5

Sample Location		SB-29	SB-29	SB-29	SB-29	SB-71	SB-30	SB-30	SB-30	SB-30	SB-30
Sample Interval (Feet bgs)		11 to 13	34 to 36	38 to 39	48 to 50	48 to 50	10 to 12	22-24	24 to 26	28 to 30	84 to 86
Sampling Date		11/6/04	11/7/04	11/7/04	11/7/04	11/7/04	10/10/04	10/10/04	10/10/04	10/30/04	10/30/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
						Blind					
	TAGM					Duplicate					
	RSCO										
Cyanide	NC	0.584 U	0.59 U	0.635 U	0.61 U	0.612 U	0.58 U	0.85 U	0.7 U	0.602 U	0.627 U
Amenable Cyanide	NC	0.58 U	0.59 U	0.64 U	0.61 U	0.61 U	0.58 U	0.85 U	0.7 U	0.6 U	0.63 U

						I able 4				
Sample Location		SB-66								
Sample Interval (Feet bgs)		84 to 86								
Sampling Date		10/30/04								
Units		mg/Kg								
		Blind	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum R	eported
	TAGM	Duplicate	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentra	ation
PP Metals	RSCO	·	•			Exceedances				
Antimony	В	0.69 U	11	1	9%	0	0%	< 0.658	< 0	.95
Arsenic	12	0.97 J	11	11	100%	0	0%	0.468		5.55
Beryllium	600	0.43 J	11	11	100%	0	0%	0.22	0	.62
Cadmium	1	0.06 U	11	4	36%	0	0%	< 0.054		.231
Chromium	40	15.4	11	11	100%	0	0%	10.2		9.4
Copper	50	19.4	11	11	100%	0	0,0	9.69		4.7
Lead	500	7.4	11	11	100%	0	0%	2.78		4.3
Mercury	0.1	0.007 U	11	6	55%	1	9%	< 0.007		.113
Nickel	25	18.7	11	11	100%	0	0%	10.9		8.7
Selenium	3.9	1.5 J	11	5	45%	0	0%	< 0.366		.8
Silver	В	0.13 U	11	6	55%	0	0%	< 0.123		.93
Thallium	В	0.4 U	11	3	27%	0	0%	< 0.386		.887
Zinc	50	31.6	11	11	100%	1	9%	18.2	5	7.4
Sample Location		SB-66								
Sample Interval (Feet bgs)		84 to 86								
Sampling Date		10/30/04								
Units		mg/Kg								
		Blind	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum R	eported
	TAGM	Duplicate	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentra	
	RSCO	-1				Exceedances				
Cyanide	NC	0.613 U	11	0	0%	0	0%	< 0.58	<	0.85
Amenable Cyanide	NC	0.61 U	11	0	0%	0	0%	< 0.58	<	0.85

Summary of Field Work and Observations for Area 5 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-25

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
\$B-31	9-Oct	27	N/A	7.5	21.1'-27	7' - 13' bgs: Si sewage odor. 13' - 21' bgs: Burned wood odor. Max. PID: 3.5 ppm at 7' - 9 bgs.
MW-31A	9-Oct	37	4 to 14	7.5	N/A	7' - 13' bgs: SI sewage odor. Max. PID: 3.5 pp at 7' - 9' bgs.
SB-32	22-May	29	N/A	4.5	23	4.5' 5': Sulfur- like odor and N/S, Max. PID= 1.2ppm at 5'; 6' - 13': sI petroleum-like odor, b staining, tr sheen, organic odor at 9'- 13', Max PID: 3.5 ppm at 11' - 13' bgs; 15' - 21' bgs: tr t staining, sI sheen, slag and coal fragments. M PID: 0.5 ppm at 19' - 21' bgs.
\$B-33	16-May	41	N/A	5	35	5' - 7' bgs: petroleum-like odor, N/S, sheen, M PID: 13.6 ppm at 5'-7' bgs; 9'-11' bgs: N/O, N/ trace sheen, Max. PID: 0.0 ppm; 21'-23' N/O, I blk staining, MGP-related OLM odor and shee shoe, Max. PID= 60.2ppm; 23'-25': SI OLM od N/S, Max. PID= 2.1ppm; 25'-27' bgs: N/O, N/S trace sheen, Max. PID: 6.8 ppm; 27'- 29': Stroi OLM odor, blk staining, Max. PID = 11.4ppm. 31': OLM odor, blk staining and tr sheen, Max. PID= 2.4ppm; 35'- 37': Strong OLM odor in wo N/S, Max. PID= 14.2ppm;
SB-34	10-Aug to 12-Aug	75	N/A	7.5	21-53	19' - 21' bgs: sheen, visible OLM, Max. PID: 8.
MW-34A	22-May	12.5	2 to 12	5	N/A	ppm at 23' - 25' bgs. No odor and no staining.
SB-36	8-May	35	N/A	4.5	28	5' - 9' bgs: petroleum-like odor, blk staining, 7'-bgs visible sheen, Max. PID: 0.2 ppm; 15'-19': organic odor, N/S; 23' - 27' bgs: strong odor (Natural gas-like or organic), Max. PID: 219 pg at 25' - 27' bgs Note: 7 ft of clay, but still high
SB-37				······································	 	headspace in center of clay at 35' bgs.
SB-38	16-May	25	N/A	4.5	17.5	5' - 11' bgs: sheen, strong sewage-like odor 11' - 17' bgs: tr sheen, organic odor. Max. PIE 1.3 ppm at 11' - 13' bgs.
SB-39	21-Jul	27	N/A	8	22.8	5'-7': Organic odor, N/S, PID = 2.0 ppm;
MW-40A	26-Jul	19	5 to 15	6	N/A	1'-19': N/O, N/S, Max. PID = 2.6 ppm at 16'-
SB-40B	28-Jul	, 84	N/A	6	34-43 and 47 84	17'-23': Sweet wood odor, N/S, Max. PID = 0. ppm at 19'-21';

Summary of Field Work and Observations for Area 5 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-25

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
SB-90	4-Nov	6	N/A	Not encountered.	Not encountered.	No odor and no staining. Dry.
SB-91	4-Nov	15	N/A	10	Not encountered.	5' - 8' bgs: Organic odor, N/S. Max. PID = 5.8 ppm.
SB-92	4-Nov	15	N/A	3	Not encountered.	5' bgs: Slight odor, N/S. 9' - 13' bgs: Organic odo N/S. Max. PID = 6.1 ppm.
TP-4	8-May	6	N/A	6	N/A	2' bgs: concrete structure located in center of trench. 3' bgs: Brick structure (ring wall) at western edge of excavation. No odor, no staining

Note: Elevations are reported in feet below ground surface (ft bgs).

SB-92 was completed in the basement of a building, and is approximately 4.5 feet below street level.

Laboratory and Data Validation Qualifiers Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

					18	able 4-26					
Sample Location		TP-4	SB-31	SB-31	SB-31	SB-32	SB-32	SB-32	SB-33	SB-33	SB-33
Sample Interval (Feet bgs)		5 to 6	7.1 to 7.7	21 to 23	25 to 27	4 to 5	11 to 13	21 to 23	4 to 5	11 to 13	13 to 15
Sampling Date		5/8/04	07/12/04	10/09/04	10/09/04	4/25/04	05/22/04	05/22/04	4/25/04	05/16/04	05/16/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		ugrig	ug/. (g	ug/.tg	ug/11g	ug/1.g	ug/rtg	agritg	ug/.tg	ug/g	ug/. (g
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	1.5 U	2 UJ	2.2 U	2 U	1.5 U	1.7 U	1.5 U	1.4 U	1.6 U	1.5 U
Chloromethane	NC	0.39 U	0.53 UJ	8.3 J	0.54 U	0.39 U	0.45 U	0.4 U	0.38 U	0.44 U	0.39 U
Vinyl Chloride	200 NC	0.28 U	0.38 UJ	0.42 U 1.3 U	0.39 U	0.28 U 0.84 U	0.32 U 0.97 U	0.28 U	0.27 U	0.31 U 0.93 U	0.28 U
Bromomethane	1,900	0.83 U	1.1 UJ 0.85 UJ	0.94 U	1.2 U 0.86 U	0.84 U 0.62 U		0.85 U	0.82 U		0.83 U 0.62 U
Chloroethane Trichlorofluoromethana	1,900 NC	0.62 U 2.9 U	0.85 UJ 4 UJ	0.94 U 4.4 U	0.86 U 4 U	0.62 U 2.9 U	0.72 R 3.4 U	0.63 R 3 U	0.61 U 2.9 U	0.69 U 3.2 U	2.9 U
Trichlorofluoromethane	6,000	0.54 U	0.74 UJ	0.82 U	0.75 U	0.55 U	0.63 U	0.55 U	0.53 U	0.6 U	0.54 U
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethene	400	0.54 U	0.74 UJ 0.35 UJ	0.82 U	0.75 U	0.55 U	0.63 U 0.29 U	0.55 U	0.53 U	0.8 U	0.54 U 0.25 U
,	200	8.8 U	12 UJ	170 BJ	170 BJ	8.9 U	48	19 J	8.7 U	9.8 U	8.8 U
Acetone Carbon Disulfide	2,700	0.12 U	0.16 UJ	3.8 J	9.6 J	0.12 U	0.14 U	0.12 U	0.12 U	0.13 U	0.12 U
Methyl tert-butyl Ether	120	0.12 U 0.27 U	0.16 UJ 0.37 UJ	3.8 J 0.41 U	9.6 J 0.38 U	0.12 U 0.27 U	0.14 U 0.31 U	0.12 U 0.28 U	0.12 U 0.27 U	0.13 U	0.12 U 0.27 U
Methyl Acetate	NC	0.27 U 1.5 U	2.1 UJ	0.41 U 2.9 J	0.38 U 2.1 U	0.27 U 1.5 U	0.31 U 1.7 U	0.28 U	0.27 U 1.5 U	0.3 U 1.7 U	1.5 U
Methylene Chloride	100	0.8 U	1.1 UJ	10 J	15 BJ	0.81 U	2.2 J	1.5 J	0.79 U	0.89 U	0.8 U
trans-1,2-Dichloroethene	300	0.8 U	0.6 UJ	0.66 U	0.61 U	0.81 U	0.51 U	0.45 U	0.79 U	0.89 U	0.8 U 0.44 U
1,1-Dichloroethane	200	0.42 U	0.6 UJ	0.63 U	0.58 U	0.44 U	0.48 U	0.43 U	0.43 U	0.49 U	0.44 U
Cyclohexane	NC	0.42 U	0.49 UJ	0.54 U	0.5 U	0.42 U	0.48 U	0.43 U	0.41 U	0.4 U	0.42 U
2-Butanone	300	2.7 U	3.7 UJ	16 J	3.7 U	2.7 U	3.1 U	2.7 U	2.6 U	3 U	2.7 U
Carbon Tetrachloride	600	0.35 U	0.48 UJ	0.53 U	0.49 U	0.35 U	0.41 U	0.36 U	0.35 U	0.39 U	0.35 U
cis-1,2-Dichloroethene	NC	0.41 U	0.57 UJ	0.63 U	0.58 U	0.42 U	0.48 U	0.42 U	0.41 U	0.46 U	0.41 U
Chloroform	300	0.28 U	0.38 UJ	2.5 J	0.39 U	0.42 U	0.32 U	0.29 U	0.28 U	0.40 U	0.28 U
1,1,1-Trichloroethane	800	0.32 U	0.44 UJ	0.48 U	0.44 U	0.32 U	0.37 U	0.33 U	0.32 U	0.36 U	0.32 U
Methylcyclohexane	NC	0.42 U	0.57 UJ	3.7 J	0.58 U	0.42 U	0.49 U	0.43 U	0.41 U	0.47 U	0.42 U
Benzene	60	10	0.33 UJ	190	3.4 J	5 J	0.28 U	0.24 U	4.7 J	0.27 U	0.24 U
1,2-Dichloroethane	200	3.6 U	5 UJ	5.5 U	5 U	3.7 U	4.2 U	3.7 U	3.6 U	4.1 U	3.6 U
Trichloroethene	700	0.38 U	0.52 UJ	0.57 U	0.52 U	0.38 U	0.44 U	0.39 U	0.37 U	0.42 U	0.38 U
1,2-Dichloropropane	NC	0.39 U	0.54 UJ	0.6 U	0.55 U	0.4 U	0.46 U	0.4 U	0.39 U	0.44 U	0.39 U
Bromodichloromethane	NC	0.39 U	0.54 UJ	0.59 U	0.55 U	0.4 U	0.46 U	0.4 U	0.39 U	0.44 U	0.39 U
4-Methyl-2-Pentanone	1,000	2.8 U	3.9 UJ	4.3 U	3.9 U	2.9 U	3.3 U	2.9 U	2.8 U	3.2 U	2.8 U
Toluene	1,500	4.9 J	4.4 J	3.5 J	0.42 U	0.31 U	0.35 U	0.31 U	3.1 J	0.34 U	0.3 U
t-1,3-Dichloropropene	NC	0.3 U	0.41 UJ	0.46 U	0.42 U	0.3 U	0.35 U	0.31 U	0.3 U	0.34 U	0.3 U
cis-1,3-Dichloropropene	NC	0.23 U	0.31 UJ	0.35 U	0.32 U	0.23 U	0.27 U	0.23 U	0.23 U	0.26 U	0.23 U
1,1,2-Trichloroethane	NC	0.6 U	0.82 UJ	0.9 U	0.83 U	0.6 U	0.69 U	0.61 U	0.59 U	0.67 U	0.6 U
2-Hexanone	NC	3.8 U	5.2 UJ	5.7 U	5.2 U	3.8 U	4.4 U	3.9 U	3.7 U	4.2 U	3.8 U
Dibromochloromethane	NA	0.34 U	0.47 UJ	0.52 U	0.48 U	0.35 U	0.4 U	0.35 U	0.34 U	0.38 U	0.34 U
1,2-Dibromoethane	NC	0.49 U	0.67 UJ	0.74 U	0.68 U	0.5 U	0.57 U	0.5 U	0.48 U	0.55 U	0.49 U
Tetrachloroethene	1,400	0.75 U	70 J	1.1 U	1 U	0.76 U	0.87 U	0.77 U	0.74 U	0.84 U	0.75 U
Chlorobenzene	1,700	0.41 U	0.57 UJ	0.63 U	0.58 U	0.42 U	0.48 U	0.42 U	0.41 U	0.46 U	0.41 U
Ethyl Benzene	5,500	0.29 U	2.4 J	1000 D	0.41 U	0.3 U	0.34 U	0.3 U	0.29 U	0.33 U	0.29 U
m/p-Xylenes	1,200	0.6 U	7.3 J	87 J	0.84 U	0.61 U	0.7 U	0.62 U	4.7 J	0.68 U	0.6 U
o-Xylene	600	0.51 U	2.8 J	37	1.9 J	0.51 U	0.59 U	0.52 U	0.5 U	0.57 U	0.51 U
Styrene	NC	0.37 U	0.5 UJ	0.56 U	0.51 U	0.37 U	0.43 U	0.38 U	0.36 U	0.41 U	0.37 U
Bromoform	NC	0.35 U	0.48 UJ	0.53 U	0.49 U	0.36 U	0.41 U	0.36 U	0.35 U	0.39 U	0.35 U
Isopropylbenzene	2,300	0.44 R	0.6 UJ	71	0.61 U	0.44 U	0.51 U	0.45 U	0.43 UJ	0.49 U	0.44 U
1,1,2,2-Tetrachloroethane	600	0.62 U	0.85 UJ	0.94 U	0.87 U	0.63 U	0.72 U	0.64 U	0.62 UJ	0.7 U	0.62 U
1,3-Dichlorobenzene	1,600	0.25 U	0.34 UJ	0.38 U	0.35 U	0.25 U	0.29 U	0.25 U	0.25 UJ	0.28 U	0.25 U
1,4-Dichlorobenzene	8,500	0.41 U	0.57 UJ	0.63 U	0.58 U	0.42 U	0.48 U	0.42 U	0.41 UJ	0.46 U	0.41 U
1,2-Dichlorobenzene	7,900	0.48 U	0.66 UJ	0.73 U	0.67 U	0.49 U	0.56 U	0.49 U	0.48 UJ	0.54 U	0.48 U
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	NC 3,400	0.8 U 0.29 U	1.1 UJ 0.4 UJ	1.2 U 0.45 U	1.1 U 0.41 U	0.81 U 0.3 U	0.93 U 0.34 U	0.82 U 0.3 U	0.79 UJ 0.29 UJ	0.89 U 0.33 U	0.8 U 0.29 U
1,4,7-11101110100001120110	3,400	0.29 0	0.4 UJ	0.45 0	0.41 0	U.S U	U.34 U	0.5 0	0.29 UJ	0.33 0	0.29 0
Total Confident Conc. VOC	10,000	14.9	86.9	1,605.7	199.9	5.0	50.2	20.5	12.5	ND	ND

Sample Location		SB-33	SB-33	SB-34	SB-34	SB-34	SB-34	SB-36	SB-36	SB-36	SB-73
Sample Interval (Feet bgs)		35 to 37	39 to 41	3 to 4	4 to 5	20.5 to 21	28.5 to 29	3 to 4	5 to 7	17 to 19	17 to 19
Sampling Date		05/16/04	05/16/04	5/10/04	5/10/04	08/10/04	08/10/04	4/25/04	5/8/04	5/8/04	5/8/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
oe		ug/.tg	ug/.tg	ug/.vg	ug/.tg	49/149	ug/.tg	ug/.tg	ug/.tg	ug/.tg	Duplicate
											.,
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO										
Dichlorodifluoromethane	NC	2.2 U	1.8 U	1.6 U	8.7 U	1.7 U	2.1 U	1.4 U	17 U	1.6 U	1.7 UJ
Chloromethane	NC	0.59 U	0.49 U	0.42 U	2.3 U	0.46 U	0.57 U	0.38 U	4.6 U	0.42 U	0.46 UJ
Vinyl Chloride	200	0.42 U	0.35 U	0.3 U	1.7 U	0.33 U	0.41 U	0.27 U	3.3 U	0.3 U	0.33 UJ
Bromomethane	NC	1.3 U	1.1 U	0.91 U	5 U	0.98 U	1.2 U	0.82 U	9.8 U	0.91 U	0.98 UJ
Chloroethane	1,900	0.94 U	0.78 U	0.67 U	3.7 U	0.73 U	0.91 U	0.61 U	7.3 U	0.67 U	0.73 UJ
Trichlorofluoromethane	NC	4.4 U	3.7 U	3.2 U	17 U	3.4 U	4.2 U	2.9 U	34 U	3.2 U	3.4 UJ
1,1,2-Trichlorotrifluoroethane	6,000	0.82 U	0.69 U	0.59 U	3.2 U	0.64 U	0.79 U	0.53 U	6.4 U	0.59 U	0.64 UJ
1,1-Dichloroethene	400	0.38 U	0.32 U	0.28 U	1.5 U	0.3 U	0.37 U	0.25 U	3 U	0.28 U	0.3 UJ
Acetone	200	230 J	110 J	240 J	53 U	10 U	130 J	8.7 U	100 U	9.6 U	10 UJ
Carbon Disulfide	2,700	39	33	0.13 U	0.71 U	0.14 U	16	0.12 U	15 J	0.13 U	0.14 UJ
Methyl tert-butyl Ether	120	0.41 U	0.34 U	0.29 U	1.6 U	0.32 U	0.39 U	0.27 U	3.2 U	0.29 U	0.32 UJ
Methyl Acetate	NC	2.3 U	1.9 U	1.6 U	9 U	1.8 U	2.2 U	1.5 U	18 U	1.6 U	1.8 UJ
Methylene Chloride	100	4.1 J	4.4 J	0.87 U	4.8 U	0.94 U	1.2 U	0.79 U	9.4 U	0.87 U	0.94 UJ
trans-1,2-Dichloroethene	300	0.66 U	0.55 U	0.48 U	2.6 U	0.52 U	0.64 U	0.43 U	5.2 U	0.48 U	0.52 UJ
1,1-Dichloroethane	200	0.63 U	0.53 U	0.45 U	2.5 U	0.49 U	0.61 U	0.41 U	4.9 U	0.45 U	0.49 UJ
Cyclohexane	NC	0.54 U	0.46 U	0.39 U	2.1 U	0.42 U	0.53 U	0.35 U	4.2 U	0.39 U	0.42 UJ
2-Butanone	300	22 J	18 J 0.44 U	63 0.38 U	16 U 2.1 U	3.2 U 0.41 U	3.9 U	2.6 U	32 U	2.9 U	3.2 UJ
Carbon Tetrachloride	600	0.53 U				0.41 U	0.51 U	0.35 U 0.41 U	4.1 U 4.9 U	0.38 U	0.41 UJ
cis-1,2-Dichloroethene	NC 300	0.63 U 0.42 U	0.53 U 0.35 U	0.45 U 0.3 U	2.5 U 1.7 U	0.49 U	0.61 U 0.41 U	0.41 U 0.28 U	4.9 U	0.45 U 0.3 U	0.49 UJ 0.33 UJ
Chloroform 1,1,1-Trichloroethane	800	0.42 U	0.35 U	0.3 U	1.7 U	0.33 U	0.41 U	0.28 U	3.8 U	0.3 U	0.38 UJ
Methylcyclohexane	NC	0.48 U	0.4 U	0.35 U	2.5 U	0.38 U	0.47 U	0.32 U 0.41 U	3.8 U 4.9 U	0.35 U	0.49 UJ
Benzene	60	940 D	0.3 U	4.8 J	1.4 U	0.49 U	0.35 U	9.9	2.8 U	5 J	13 J
1,2-Dichloroethane	200	5.5 U	4.6 U	3.9 U	22 U	4.3 U	5.3 U	3.6 U	43 U	3.9 U	4.3 UJ
Trichloroethene	700	0.57 U	0.48 U	0.41 U	2.3 U	0.44 U	0.55 U	0.37 U	4.4 U	0.41 U	0.44 UJ
1,2-Dichloropropane	NC	0.6 U	0.5 U	0.43 U	2.4 U	0.47 U	0.58 U	0.39 U	4.7 U	0.43 U	0.47 UJ
Bromodichloromethane	NC	0.59 U	0.5 U	0.43 U	2.3 U	0.46 U	0.57 U	0.39 U	4.6 U	0.43 U	0.46 UJ
4-Methyl-2-Pentanone	1,000	4.3 U	3.6 U	3.1 U	17 U	3.3 U	4.1 U	2.8 U	33 U	3.1 U	3.3 UJ
Toluene	1,500	13	0.39 U	0.33 U	1.8 U	0.36 U	0.45 U	5.3 J	3.6 U	4.1 J	5.7 J
t-1,3-Dichloropropene	NC	0.46 U	0.38 U	0.33 U	1.8 U	0.36 U	0.44 U	0.3 U	3.6 U	0.33 U	0.36 UJ
cis-1,3-Dichloropropene	NC	0.35 U	0.29 U	0.25 U	1.4 U	0.27 U	0.33 U	0.23 U	2.7 U	0.25 U	0.27 UJ
1,1,2-Trichloroethane	NC	0.9 U	0.76 U	0.65 U	3.6 U	0.7 U	0.87 U	0.59 U	7 U	0.65 U	0.7 UJ
2-Hexanone	NC	5.7 U	11 J	4.1 U	23 U	4.4 U	5.5 U	3.7 U	44 U	4.1 U	4.4 UJ
Dibromochloromethane	NA	0.52 U	0.43 U	0.37 U	2 U	0.4 U	0.5 U	0.34 U	4 U	0.37 U	0.4 UJ
1,2-Dibromoethane	NC	0.74 U	0.62 U	0.53 U	2.9 U	0.58 U	0.72 U	0.48 U	5.8 U	0.53 U	0.58 UJ
Tetrachloroethene	1,400	1.1 U	0.95 U	0.81 U	4.5 U	0.88 U	1.1 U	0.74 U	8.8 U	0.81 U	0.88 UJ
Chlorobenzene	1,700	0.63 U	0.53 U	0.45 U	2.5 U	0.49 U	0.61 U	0.41 U	4.9 U	0.45 U	0.49 UJ
Ethyl Benzene	5,500	100	0.37 U	0.32 U	1.8 U	9.2	0.43 U	0.29 U	3.5 U	0.32 U	0.35 UJ
m/p-Xylenes	1,200	90	0.77 U	0.66 U	3.6 U	12	0.89 U	0.6 U	130	0.66 U	0.71 UJ
o-Xylene	600	50	0.64 U	0.55 U	3 U	16	0.74 U	0.5 U	120	0.55 U	0.6 UJ
Styrene	NC	0.56 U	0.47 U	0.4 U	2.2 U	0.43 U	0.54 U	0.36 U	4.3 U	0.4 U	0.43 UJ
Bromoform	NC	0.53 U	0.45 U	0.38 U	2.1 U	0.42 U	0.52 U	0.35 U	4.2 U	0.38 U	0.42 UJ
Isopropylbenzene	2,300	17	0.55 U	0.47 U	2.6 R	9.8	0.64 U	0.43 U	21 R	0.47 R	0.51 R
1,1,2,2-Tetrachloroethane	600	0.94 U	0.79 U	0.68 U	3.7 U	0.73 U	0.91 U	0.62 U	7.3 U	0.68 U	0.73 R
1,3-Dichlorobenzene	1,600	0.38 U	0.31 U	0.27 U	1.5 U	0.29 U	0.36 U	0.25 U	2.9 U	0.27 U	0.29 R
1,4-Dichlorobenzene	8,500	0.63 U	0.52 U	0.45 U	2.5 U	0.49 U	0.61 U	0.41 U	4.9 U	0.45 U	0.49 R
1,2-Dichlorobenzene	7,900	U	1.5 J	0.52 U	2.9 U	0.57 U	0.71 U	0.48 U	5.7 U	0.52 U	0.57 R
1,2-Dibromo-3-Chloropropane	NC	1.2 U	1 U	0.87 U	4.8 U	0.94 U	1.2 U	0.79 U	9.4 U	0.87 U	0.94 R
1,2,4-Trichlorobenzene	3,400	0.45 U	3.4 J	0.32 U	1.8 U	0.35 U	0.43 U	0.29 U	3.5 U	0.32 U	0.35 R
Total Confident Conc. VOC	10,000	1,505.1	181.3	307.8	ND	47.0	146.0	15.2	286.0	9.1	18.7
·											

						Table 4-26					
Sample Location		SB-36	SB-36	SB-38	SB-38	SB-38	SB-38	SB-39	SB-39	SB-40B	SB-40B
Sample Interval (Feet bgs)		25 to 27	33 to 35	3 to 4	4 to 5	13 to 15	21 to 23	7.5 to 8	22 to 23	33 to 35	35 to 37
Sampling Date		5/8/04	5/8/04	4/25/04	4/25/04	05/16/04	05/16/04	07/21/04	07/21/04	07/27/04	07/27/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		3.3	3	3 3	3 3	3 3	3 3	3 3	3 3	3.3	-3-3
Volatile Organic Compounds	TAGM										
(ug/Kg)	RSCO			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dichlorodifluoromethane	NC	55 U	2 U	1.6 U	1.7 U	1.8 U	2 U	1.5 U	1.7 U	1.5 U	20 U
Chloromethane	NC	110 U	0.53 U	0.44 U	0.45 U	0.49 U	0.53 U	0.41 U	0.47 U	0.41 U	5.3 U
Vinyl Chloride	200	44 U	0.37 U	0.31 U	0.32 U	0.35 U	0.37 U	0.29 U	0.33 U	0.29 U	3.7 U
Bromomethane	NC	130 U	1.1 U	0.94 U	0.96 U	1 U	1.1 U	0.87 U	1 U	0.87 U	11 U
Chloroethane	1,900	150 U	0.83 U	0.7 U	0.71 U	0.77 U	0.83 U	0.65 U	0.74 U	0.65 U	8.3 U
Trichlorofluoromethane	NC	95 U	3.9 U	3.3 U	3.3 U	3.6 U	3.9 U	3 U	3.5 U	3 U	39 U
1,1,2-Trichlorotrifluoroethane	6,000	110 U	0.73 U	0.61 U	0.62 U	0.68 U	0.73 U	0.57 U	0.65 U	0.57 U	7.3 U
1,1-Dichloroethene	400	53 U	0.34 U	0.29 U	0.29 U	0.32 U	0.34 U	0.27 U	0.3 U	0.27 U	3.4 U
Acetone	200	540 U	12 U	9.9 U	10 U	55 J	12 U	100	170	37 J	120 U
Carbon Disulfide	2,700	64 U	0.16 U	0.13 U	0.14 U	1.7 J	0.16 U	61 J	7.9 J	2.8 J	1.6 U
Methyl tert-butyl Ether	120	59 U	0.36 U	0.31 U	0.31 U	0.34 U	0.36 U	0.28 U	0.32 U	0.28 U	3.6 U
Methyl Acetate	NC	140 U	2 U	1.7 U	1.7 U	1.9 U	2 U	1.6 U	1.8 U	1.6 U	20 U
Methylene Chloride	100	100 U	1.1 U	0.91 U	0.92 U	3.7 J	1.1 U	13 J	9.3 J	0.84 U	11 U
trans-1,2-Dichloroethene	300	85 U	0.59 U	0.49 U	0.5 U	0.55 U	0.59 U	0.46 U	0.52 U	0.46 U	5.9 U
1,1-Dichloroethane	200	35 U	0.56 U	0.47 U	0.48 U	0.52 U	0.56 U	0.44 U	0.5 U	0.44 U	5.6 U
Cyclohexane	NC	60 U	0.48 U	0.41 U	0.41 U	0.45 U	0.48 U	0.38 U	0.43 U	0.38 U	4.8 U
2-Butanone	300	470 U	3.6 U	3 U	3.1 U	9.8 J	3.6 U	13 J	3.2 U	2.8 U	36 U
Carbon Tetrachloride	600	77 U	0.47 U	0.4 U	0.4 U	0.44 U	0.47 U	0.37 U	0.42 U	0.37 U	4.7 U
cis-1,2-Dichloroethene	NC	130 U	0.56 U	0.47 U	0.48 U	0.52 U	0.56 U	0.43 U	0.5 U	0.43 U	5.6 U
Chloroform	300	95 U	0.38 U	0.32 U	0.32 U	0.35 U	0.38 U	0.29 U	0.33 U	0.29 U	3.8 U
1,1,1-Trichloroethane	800	67 U	0.43 U	0.36 U	0.37 U	0.4 U	0.43 U	0.33 U	0.38 U	0.33 U	4.3 U
Methylcyclohexane	NC	1000	0.56 U	0.47 U	0.48 U	0.52 U	0.56 U	0.44 U	0.5 U	0.44 U	51 J
Benzene	60	43000 D	2000 D	28	30	2.1 J	7.1 J	0.25 U	0.28 U	0.25 U	290
1,2-Dichloroethane	200	53 U	4.9 U	4.1 U	4.2 U	4.5 U	4.9 U	3.8 U	4.3 U	3.8 U	49 U
Trichloroethene	700	110 U	0.51 U	0.43 U	0.43 U	0.47 U	0.51 U	0.4 U	0.45 U	0.4 U	5.1 U
1,2-Dichloropropane	NC	52 U	0.53 U	0.45 U	0.45 U	0.49 U	0.53 U	0.41 U	0.47 U	0.41 U	5.3 U
Bromodichloromethane	NC	57 U	0.53 U	0.44 U	0.45 U	0.49 U	0.53 U	0.41 U	0.47 U	0.41 U	5.3 U
4-Methyl-2-Pentanone	1,000	220 U	3.8 U	3.2 U	3.2 U	3.5 U	3.8 U	3 U	3.4 U	3 U	38 U
Toluene	1,500	17000	11	17 J	6.4 J	0.38 U	0.41 U	0.32 U	0.36 U	0.32 U	220
t-1,3-Dichloropropene	NC	70 U	0.41 U	0.34 U	0.35 U	0.38 U	0.41 U	0.32 U	0.36 U	0.32 U	4.1 U
cis-1,3-Dichloropropene	NC	25 U	0.31 U	0.26 U	0.26 U	0.29 U	0.31 U	0.24 U	0.27 U	0.24 U	3.1 U
1,1,2-Trichloroethane	NC	85 U	0.8 U	0.67 U	0.68 U	0.74 U	0.8 U	0.62 U	0.71 U	0.62 U	8 U
2-Hexanone	NC	110 U	5.1 U	4.3 U	4.3 U	4.7 U	5.1 U	3.9 U	4.5 U	3.9 U	51 U
Dibromochloromethane	NA	62 U	0.46 U	0.39 U	0.39 U	0.43 U	0.46 U	0.36 U	0.41 U	0.36 U	4.6 U
1,2-Dibromoethane	NC	100 U	0.66 U	0.55 U	0.56 U	0.61 U	0.66 U	0.51 U	0.59 U	0.51 U	6.6 U
Tetrachloroethene	1,400	54 U	1 U	0.85 U	0.86 U	0.93 U	1 U	4.5 J	3.7 J	0.78 U	10 U
Chlorobenzene	1,700	61 U	0.56 U	0.47 U	0.48 U	0.52 U	0.56 U	0.43 U	0.5 U	0.43 U	5.6 U
Ethyl Benzene	5,500	31000	3.7 J	0.33 U	0.34 U	0.37 U	0.4 U	0.31 U	0.35 U	0.31 U	1300 D
m/p-Xylenes	1,200	45000	4.3 J	8.1	0.69 U	0.76 U	0.82 U	0.63 U	0.72 U	0.63 U	4400
o-Xylene	600	16000	0.69 U	0.58 U	0.58 U	0.64 U	0.69 U	0.53 U	0.61 U	0.53 U	2700
Styrene	NC	3300	0.5 U	0.42 U	0.42 U	0.46 U	0.5 U	0.39 U	0.44 U	0.39 U	5 U
Bromoform	NC	41 U	0.47 U	0.4 U	0.4 U	0.44 U	0.47 U	0.37 U	0.42 U	0.37 U	4.7 U
Isopropylbenzene	2,300	1200	0.59 R	0.49 U	0.5 U	0.54 U	0.59 U	0.46 U	0.52 U	0.46 U	690
1,1,2,2-Tetrachloroethane	600	81 U	0.84 UJ	0.71 U	0.71 U	0.78 U	0.84 U	0.65 U	0.75 U	0.65 U	8.4 U
1,3-Dichlorobenzene	1,600	61 U	0.33 UJ	0.28 U	0.29 U	0.31 U	0.33 U	0.26 U	0.3 U	0.26 U	3.3 U
1,4-Dichlorobenzene	8,500	64 U	0.56 UJ	0.47 U	0.47 U	0.52 U	0.56 U	0.43 U	0.49 U	0.43 U	5.6 U
1,2-Dichlorobenzene	7,900	60 U	0.65 UJ	0.55 U	0.55 U	0.6 U	0.65 U	0.5 U	0.58 U	0.5 U	6.5 U
1,2-Dibromo-3-Chloropropane	NC	150 U	1.1 UJ	0.9 U	0.91 U	1 U	1.1 U	0.84 U	0.95 U	0.84 U	11 U
1,2,4-Trichlorobenzene	3,400	47 U	0.4 UJ	0.33 U	0.34 U	0.37 U	0.4 U	0.31 U	0.35 U	0.31 U	4 U
Total Confident Conc. VOC	10,000	157,500	2,019	53.1	36.4	60.8	7.1	191.5	190.9	39.8	8,351

						Table 4-26				
Sample Location		SB-40B	MW-40A	B-90	B-91	B-91	B-91	B-92	B-92	B-92
Sample Interval (Feet bgs)		41 to 43	4 to 5	4 to 5	4 to 5	8 to 11	11 to 15	0 to 1	3	9 to 13
Sampling Date		07/27/04	07/06/04	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
0.111.0		49/119	49/119	ug/1.tg	49.19	49,119	ug/rtg	397.19	ug/11g	ug/.tg
Volatile Organic Compounds	TAGM									
(ug/Kg)	RSCO	ug/Kg	ug/Kg							
Dichlorodifluoromethane	NC	1.8 UJ	1.6 U	4.5 U	4.6 U	5.1 U	5 U	1.1 U	5.8 U	1.3 U
Chloromethane	NC	0.49 UJ	0.42 U	4.5 U	4.5 U	5.1 U	5 U	1.1 U	5.8 U	1.3 U
Vinyl Chloride	200	0.35 UJ	0.3 U	4.3 U	4.4 U	4.9 U	4.8 U	1 U	5.6 U	1.2 U
Bromomethane	NC	1.1 UJ	0.91 U	11 U	11 U	12 U	12 U	2.5 U	14 U	3 U
Chloroethane	1,900	0.78 UJ	0.67 U	11 U	11 U	13 U	13 U	2.6 U	14 U	3.1 U
Trichlorofluoromethane	NC	3.7 UJ	3.2 U	6.6 U	6.6 U	7.4 U	7.3 U	1.5 U	8.4 U	1.8 U
1,1,2-Trichlorotrifluoroethane	6,000	0.69 UJ	0.59 U	3.5 U	3.5 U	4 U	3.9 U	0.82 U	4.5 U	0.98 U
1,1-Dichloroethene	400	0.32 UJ	0.28 U	3 U	3 U	3.4 U	3.4 U	0.71 U	3.9 U	0.84 U
Acetone	200	11 UJ	9.6 U	18 U	18 U	20 U	20 U	4.1 U	23 U	5 U
Carbon Disulfide	2,700	0.15 UJ	0.13 U	1.9 U	2 U	2.2 U	2.2 U	0.45 U	2.5 U	0.54 U
Methyl tert-butyl Ether	120	0.34 UJ	0.29 U	1.9 U	2 U	2.2 U	2.2 U	0.45 U	2.5 U	0.54 U
Methyl Acetate	NC	1.9 UJ	1.6 U	4.6 U	4.6 U	5.1 U	5.1 U	1.1 U	5.8 U	1.3 U
Methylene Chloride	100	1 UJ	3.5 J	9.6 U	9.7 U	11 U	11 U	2.2 U	12 U	2.7 U
trans-1,2-Dichloroethene	300	0.55 UJ	0.48 U	3.4 U	3.4 U	3.8 U	3.8 U	0.79 U	4.3 U	0.94 U
1,1-Dichloroethane	200	0.53 UJ	0.45 U	1.4 U	1.4 U	1.6 U	1.6 U	0.33 U	1.8 U	0.4 U
Cyclohexane	NC	0.46 UJ	0.39 U	1.7 U	1.7 U	1.9 U	1.9 U	0.4 U	2.2 U	0.48 U
2-Butanone	300	3.4 UJ	2.9 U	15 U	15 U	17 U	17 U	3.5 U	19 U	4.2 U
Carbon Tetrachloride	600	0.44 UJ	0.38 U	2.3 U	2.4 U	2.6 U	2.6 U	0.55 U	3 U	0.65 U
cis-1,2-Dichloroethene	NC	0.53 UJ	0.45 U	1.7 U	1.7 U	1.9 U	1.9 U	0.4 U	2.2 U	0.48 U
Chloroform	300	0.35 UJ	0.3 U	1.8 U	1.9 U	2.1 U	2 U	0.43 U	2.4 U	0.51 U
1,1,1-Trichloroethane	800	0.4 UJ	0.35 U	2.2 U	2.2 U	2.5 U	2.5 U	0.52 U	2.8 U	0.62 U
Methylcyclohexane	NC	0.53 UJ	0.46 U	2.2 U	2.2 U	2.5 U	2.5 U	0.52 U	2.8 U	0.62 U
Benzene	60	0.3 UJ	0.26 U	2.1 U	2.1 U	2.4 U	2.3 U	0.49 U	2.7 U	0.59 U
1,2-Dichloroethane	200	4.6 UJ	3.9 U	1.6 U	1.6 U	1.8 U	1.8 U	0.38 U	2.1 U	0.45 U
Trichloroethene	700	0.48 UJ	0.41 U	1.6 U	1.6 U	1.8 U	1.8 U	0.38 U	2.1 U	0.45 U
1,2-Dichloropropane	NC	0.5 UJ	0.43 U	2.1 U	2.1 U	2.4 U	2.3 U	0.49 U	2.7 U	0.58 U
Bromodichloromethane	NC	0.5 UJ	0.43 U	1.8 U	1.8 U	2 U	2 U	0.41 U	2.3 U	0.49 U
4-Methyl-2-Pentanone	1,000	3.6 UJ	3.1 U	10 U	10 U	12 U	12 U	2.4 U	13 U	2.9 U
Toluene	1,500	0.39 UJ	0.33 U	2.1 U	2.2 U	2.4 U	2.4 U	0.5 U	2.7 U	0.6 U
t-1,3-Dichloropropene	NC NC	0.38 UJ	0.33 U	1.9 U	1.9 U 1.8 U	2.2 U	2.1 U	0.45 U 0.41 U	2.5 U	0.53 U
cis-1,3-Dichloropropene	NC NC	0.29 UJ 0.76 UJ	0.25 U 0.65 U	1.7 U 1.5 U	1.6 U	2 U 1.8 U	1.9 U 1.7 U	0.41 U	2.2 U 2 U	0.49 U 0.43 U
1,1,2-Trichloroethane 2-Hexanone	NC NC	4.8 UJ	4.1 U	1.5 U	1.6 U	21 U	21 U	4.4 U	24 U	5.3 U
Dibromochloromethane	NA NA	0.43 UJ	0.37 U	1.2 U	1.2 U	1.4 U	1.4 U	0.28 U	1.6 U	0.34 U
1,2-Dibromoethane	NC NC	0.43 UJ	0.57 U	2.1 U	2.1 U	2.4 U	2.4 U	0.28 U	2.7 U	0.59 U
Tetrachloroethene	1,400	0.95 UJ	0.81 U	3.8 U	3.9 U	4.3 U	4.3 U	0.9 U	4.9 U	1.1 U
Chlorobenzene	1,700	0.53 UJ	0.45 U	1.9 U	1.9 U	2.2 U	2.1 U	0.45 U	2.4 U	0.53 U
Ethyl Benzene	5,500	0.37 UJ	0.32 U	1.9 U	1.9 U	2.1 U	2.1 U	0.44 U	2.4 U	0.52 U
m/p-Xylenes	1,200	0.77 UJ	0.66 U	4.6 U	4.6 U	5.1 U	5.1 U	1.1 U	5.8 U	1.3 U
o-Xylene	600	0.64 UJ	0.55 U	2 U	2 U	2.3 U	2.3 U	0.47 U	2.6 U	0.57 U
Styrene	NC	0.47 UJ	0.4 U	2.4 U	2.4 U	2.7 U	2.7 U	0.57 U	3.1 U	0.68 U
Bromoform	NC	0.45 UJ	0.38 U	1.6 U	1.6 U	1.8 U	1.8 U	0.38 U	2.1 U	0.46 U
Isopropylbenzene	2,300	0.55 R	0.47 U	2.2 U	2.2 U	2.5 U	2.4 U	0.50 U	2.8 U	0.40 U
1,1,2,2-Tetrachloroethane	600	0.79 R	0.68 U	1.6 U	1.7 U	1.9 U	1.8 U	0.38 U	2.1 U	0.46 U
1,3-Dichlorobenzene	1,600	0.31 R	0.27 U	2.9 U	3 U	3.3 U	3.3 U	0.69 U	3.8 U	0.82 U
1,4-Dichlorobenzene	8,500	0.52 R	0.45 U	2.9 U	2.9 U	3.2 U	3.2 U	0.67 U	3.7 U	0.8 U
1,2-Dichlorobenzene	7,900	0.61 R	0.52 U	2 U	2.1 U	2.3 U	2.3 U	0.48 U	2.6 U	0.57 U
1,2-Dibromo-3-Chloropropane	NC	1 R	0.87 U	5 U	5 U	5.6 U	5.5 U	1.2 U	6.4 U	1.4 U
1,2,4-Trichlorobenzene	3,400	0.37 R	0.32 U	3.6 U	3.6 U	4.1 U	4 U	0.84 U	4.6 U	1 U
Total Confident Conc. VOC	10,000	ND	3.5	ND	ND	ND	ND	ND	ND	ND
	,									

Sample Location								
Sample Interval (Feet bgs)								
Sampling Date								
Units								
Units								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Volatile Organic Compounds	TAGM	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
(ug/Kg)	RSCO	Campies	Detections	Detections	Exceedances	LXCCCGarices	Concentration	Concentiation
Dichlorodifluoromethane	NC	39	0	0%	0	0%	< 1.1	< 55
Chloromethane	NC	39	1		0	0%	< 0.38	< 110
Vinyl Chloride	200	39	0		0	0%	< 0.27	< 44
Bromomethane	NC	39	0		0	0%	< 0.82	< 130
Chloroethane	1.900	39	0		0	0%	< 0.61	< 150
Trichlorofluoromethane	NC	39	0		0		< 1.5	< 95
1,1,2-Trichlorotrifluoroethane	6,000	39	0		0	0%	< 0.53	< 110
1,1-Dichloroethene	400	39	0		0	0%	< 0.25	< 53
Acetone	200	39	12	31%	2	5%	< 4.1	< 540
Carbon Disulfide	2,700	39	10	26%	0	0%	< 0.12	< 64
Methyl tert-butyl Ether	120	39	0	0%	0	0%	< 0.27	< 59
Methyl Acetate	NC	39	1	3%	0	0%	< 1.1	< 140
Methylene Chloride	100	39	10	26%	0	0%	< 0.79	< 100
trans-1,2-Dichloroethene	300	39	0	0%	0	0%	< 0.43	< 85
1,1-Dichloroethane	200	39	0	0%	0	0%	< 0.33	< 35
Cyclohexane	NC	39	0	0%	0	0%	< 0.35	< 60
2-Butanone	300	39	6	15%	0	0%	< 2.6	< 470
Carbon Tetrachloride	600	39	0	0%	0	0%	< 0.35	< 77
cis-1,2-Dichloroethene	NC	39	0	0%	0	0%	< 0.4	< 130
Chloroform	300	39	1	3%	0	0%	< 0.28	< 95
1,1,1-Trichloroethane	800	39	0	- ,,	0	0%	< 0.32	< 67
Methylcyclohexane	NC	39	3	8%	0	0%	< 0.41	1,000
Benzene	60	39	17	44%	5	13%	< 0.24	43,000
1,2-Dichloroethane	200	39	0		0	0%	< 0.38	< 53
Trichloroethene	700	39	0		0	0%	< 0.37	< 110
1,2-Dichloropropane	NC	39	0		0	0%	< 0.39	< 52
Bromodichloromethane	NC	39	0		0	0%	< 0.39	< 57
4-Methyl-2-Pentanone	1,000	39	0	- ,,	0	0%	< 2.4	< 220
Toluene	1,500	39	13	33%	1	3%	< 0.3	17,000
t-1,3-Dichloropropene	NC	39	0		0	0%	< 0.3	< 70
cis-1,3-Dichloropropene	NC	39	0		0	0%	< 0.23	< 25
1,1,2-Trichloroethane	NC	39	0		0	0%	< 0.36	< 85
2-Hexanone	NC NA	39	1	3%	0	0%	< 3.7	< 110
Dibromochloromethane	NA NC	39	0		0	0%	< 0.28	< 62
1,2-Dibromoethane	NC 4 400	39 39	0		0	0%	< 0.48	< 100 70
Tetrachloroethene	1,400		3		0	0%	< 0.74	
Chlorobenzene	1,700	39	7		1	0%	< 0.41	< 61
Ethyl Benzene	5,500 1,200	39 39	7 10		1 2	3% 5%	< 0.29	31,000 45,000
m/p-Xylenes	, , , , ,		10		2		< 0.6 < 0.47	-,
o-Xylene Styrono	600	39		21% 3%		5% 0%		16,000
Styrene	NC NC	39 39	1 0		0	0%	< 0.36	3,300
Bromoform	2,300	39	5		0	0%	< 0.35 < 0.43	< 41 1,200
Isopropylbenzene 1,1,2,2-Tetrachloroethane	600	39	0		0	0%	< 0.43	1,200 < 81
1,1,2,2-Tetrachioroethane 1.3-Dichlorobenzene	1.600	39	0	- 70	0	0%	< 0.38 < 0.25	< 81 < 61
1.4-Dichlorobenzene	8,500	39	0		0	0%	< 0.25	< 64
1,4-Dichlorobenzene 1,2-Dichlorobenzene	7,900	39	0		0	0%	< 0.41	< 64 < 60
1,2-Dibromo-3-Chloropropane	7,900 NC	39	0		0	0%	< 0.48	< 60 < 150
1,2,4-Trichlorobenzene	3,400	39	1	3%	0	0%	< 0.79	< 47
1,2,7-1110110100001120110	3,400	39	- '	3%	U	076	₹ 0.23	\ 4 1
Total Confident Conc. VOC	10,000			-				

						Table 4-27					
Sample Location		TP-4	SB-31	SB-31	SB-31	SB-32	SB-32	SB-32	SB-33	SB-33	SB-33
Sample Interval (Feet bgs)		5 to 6	7.1 to 7.7	21 to 23	25 to 27	4 to 5	11 to 13	21 to 23	4 to 5	11 to 13	13 to 15
Sampling Date		5/8/04	07/12/04	10/09/04	10/09/04	4/25/04	05/22/04	05/22/04	4/25/04	5/16/04	5/16/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	38 U	52 UJ	57 U	53 U	77 U	44 U	39 U	38 U	43 U	38 U
Phenol	30 or MDL	16 U	22 UJ	24 U	23 U	33 U	19 U	16 U	16 U	18 U	16 U
bis(2-Chloroethyl)ether	NC	19 U	26 UJ	29 U	27 U	39 U	22 U	19 U	19 U	21 U	19 U
2-Chlorophenol	800	17 U	23 UJ	25 U	23 U	34 U	19 U	17 U	17 U	19 U	17 U
2-Methylphenol	100 or MDL	24 U	34 UJ	37 U	34 U	50 U	28 U	25 U	24 U	27 U	24 U
2,2-oxybis(1-Chloropropane)	NC	21 U	29 UJ	32 U	29 U	42 U	24 U	21 U	21 U	24 U	21 U
Acetophenone	NC	20 U	28 UJ	31 U 27 U	28 U	41 U	23 U	21 U	20 U	23 U	20 U
3+4-Methylphenols	900 NC	18 U 17 U	24 UJ 23 UJ	27 U 26 U	25 U 24 U	36 U 35 U	21 U 20 U	18 U 17 U	18 U 17 U	20 U 19 U	18 U 17 U
N-Nitroso-di-n-propylamine	NC NC	17 U	23 UJ 25 UJ	26 U 28 U	24 U 26 U	35 U 37 U	20 U	17 U	17 U	19 U	17 U
Hexachloroethane	200 or MDL	20 U	25 UJ	30 U	28 U	40 U	21 U	20 U	18 U		
Nitrobenzene	4,400	20 U	27 UJ 20 UJ	30 U 22 U	28 U 20 U	40 U 29 U	23 U 17 U	20 U 15 U	19 U	22 U 16 U	20 U 14 U
Isophorone	330 or MDL	14 U	20 UJ	22 U	20 U	32 U	17 U	16 U	14 U	17 U	14 U
2-Nitrophenol 2,4-Dimethylphenol	NC NC	21 U	21 UJ 29 UJ	32 U	22 U 29 U	32 U 42 U	24 U	21 U	21 U	24 U	21 U
bis(2-Chloroethoxy)methane	NC NC	18 U	29 UJ	27 U	25 U	36 U	20 U	18 U	18 U	20 U	18 U
2,4-Dichlorophenol	400	18 U	24 UJ 19 UJ	27 U	25 U 19 U	27 U	20 U	18 U	18 U	20 U	18 U
Naphthalene	13,000	140 J	440 J	4300	19 U	140 J	180 J	8.6 U	2800 J	9.5 U	8.4 U
4-Chloroaniline	220 or MDL	140 J	200 UJ	220 U	200 U	290 U	170 U	150 U	140 U	160 U	140 U
Hexachlorobutadiene	NC NC	13 U	19 UJ	21 U	19 U	27 U	16 U	130 U	13 U	15 U	14 U
Caprolatam	NC NC	14 U	20 UJ	22 U	20 U	29 U	16 U	15 U	13 U	16 U	14 U
4-Chloro-3-methylphenol	240 or MDL	11 U	16 UJ	17 U	16 U	23 U	13 U	13 U	11 U	13 U	11 U
2-Methylnaphthalene	36,400	65 J	140 J	540 J	9.3 U	14 U	410 J	6.8 U	390 J	7.5 U	6.7 U
Hexachlorocyclopentadiene	NC	9.6 UJ	13 UJ	15 UJ	14 UJ	20 UJ	11 UJ	9.9 UJ	9.6 UJ	11 UJ	9.7 UJ
2,4,6-Trichlorophenol	NC	14 U	19 UJ	21 U	20 U	28 U	16 U	14 U	14 U	16 U	14 U
2,4,5-Trichlorophenol	100	25 U	35 UJ	39 U	36 U	52 U	30 U	26 U	25 U	29 U	26 U
1,1-Biphenyl	NC	11 U	16 UJ	67 J	16 U	23 U	59 J	12 U	280 J	13 U	11 U
2-Chloronaphthalene	NC	8 U	11 UJ	12 U	11 U	16 U	9.3 U	8.2 U	8 U	9.1 U	8.1 U
2-Nitroaniline	430 or MDL	14 U	19 UJ	21 U	20 U	28 U	16 U	14 U	14 U	16 U	14 U
Dimethylphthalate	2,000	9.2 U	13 UJ	14 U	13 U	19 U	11 U	9.4 U	9.2 U	10 U	9.2 U
Acenaphthylene	41,000	130 J	16 UJ	18 U	16 U	23 U	13 U	12 U	330 J	13 U	12 U
2,6-Dinitrotoluene	1,000	16 U	23 UJ	25 U	23 U	33 U	19 U	17 U	16 U	19 U	17 U
3-Nitroaniline	500 or MDL	62 U	86 UJ	94 U	87 U	130 U	72 U	64 U	62 U	70 U	62 U
Acenaphthene	50,000	250 J	110 J	230 J	12 U	17 U	9.9 U	8.7 U	530 J	47 J	190 J
2,4-Dinitrophenol	200 or MDL	17 UJ	23 UJ	26 U	24 U	35 U	20 U	17 U	17 U	19 U	17 U
4-Nitrophenol	100 or MDL	38 U	52 UJ	57 U	53 U	77 U	44 U	39 U	37 U	42 U	38 U
Dibenzofuran	6,200	180 J	17 UJ	110 J	18 U	26 U	15 U	13 U	860 J	14 U	13 U
2,4-Dinitrotoluene	1,000	7.7 U	11 UJ	12 U	11 U	16 U	8.9 U	7.9 U	7.7 U	8.7 U	7.7 U
Diethylphthalate	7,100	12 U	17 UJ	18 U	17 U	25 U	14 U	12 U	12 U	160 J	120 J
4-Chlorophenyl-phenylether	NC	9.5 U	13 UJ	15 U	13 U	19 U	11 U	9.8 U	9.5 U	11 U	9.6 U
Fluorene	50,000	280 J	15 UJ	150 J	15 U	130 J	49 J	11 U	1700 J	12 U	11 U
4-Nitroaniline	NC	30 U	42 UJ	46 U	42 U	61 U	35 U	31 U	30 U	34 U	30 U
4,6-Dinitro-2-methylphenol	NC	22 UJ	31 UJ	34 U	31 U	46 U	26 U	23 U	22 U	25 U	22 U
N-Nitrosodiphenylamine	NC	9.8 U	13 UJ	15 U	14 U	20 U	11 U	10 U	9.7 U	11 U	9.8 U
4-Bromophenyl-phenylether	NC	10 U	14 UJ	15 U	14 U	21 U	12 U	10 U	10 U	11 U	10 U
Hexachlorobenzene	410	7.2 U	10 UJ	11 U	10 U	15 U	8.4 U	7.4 U	7.2 U	8.1 U	7.3 U
Atrazine	NC	12 U	16 UJ	18 U	17 U	24 U	14 U	12 U	12 U	13 U	12 U
Pentachlorophenol	1000 or MDL	12 U	17 UJ	18 U	17 U	24 U	14 U	12 U	12 U	14 U	12 U
Phenanthrene	50,000	3800 D	490 J	140 J	12 U	670 J	210 J	110 J	4900 DJ	61 J	110 J
Anthracene	50,000	760	210 J	14 U	13 U	200 J	49 J	9.4 U	920 J	10 U	58 J
Carbazole	NC	270 J	12 UJ	220 J	12 U	82 J	9.9 U	8.7 U	310 J	9.6 U	8.5 U

Sample Location		TP-4	SB-31	SB-31	SB-31	SB-32	SB-32	SB-32	SB-33	SB-33	SB-33
Sample Interval (Feet bgs) Sampling Date		5 to 6 5/8/04	7.1 to 7.7 07/12/04	21 to 23 10/09/04	25 to 27 10/09/04	4 to 5 4/25/04	11 to 13 05/22/04	21 to 23 05/22/04	4 to 5 4/25/04	11 to 13 5/16/04	13 to 15 5/16/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic	T. 011 B000										
Compounds (ug/kg)	TAGM RSCO	5.4.11	74 111	7011	7011	40.11	4000	00.1	5411	20000 D	000 1
Di-n-butylphthalate	8,100	5.1 U	7.1 UJ	7.8 U	7.2 U	10 U	1600	89 J	5.1 U	39000 D	260 J
Fluoranthene	50,000	5200 D	560 J	8.1 U	7.5 U	740 J	190 J	81 J	2600 J	65 J	120 J
Pyrene	50,000	4100 D	730 J	10 U	9.7 U	690 J	220 J	96 J	2800	71 J	140 J
Butylbenzylphthalate	50,000	13 U	18 UJ	20 U	18 U	26 U	15 U	13 U	13 U	15 U	13 U
3,3-Dichlorobenzidine	NA	62 U	85 UJ	94 U	87 U	130 U	72 U	63 U	62 U	70 U	62 U
Benzo(a)anthracene	224 or MDL	2100	490 J	8.8 U	8.2 U	650 J	200 J	74 J	1700 J	6.6 U	70 J
Chrysene	400	2000	440 J	19 U	17 U	550 J	200 J	73 J	1300	14 U	69 J
bis(2-Ethylhexyl)phthalate	50,000	8.8 U	12 UJ	13 U	150 J	110 J	49 J	9.1 U	170 J	160 J	51 J
Di-n-octyl phthalate	50,000	9.2 U	13 UJ	14 U	13 U	19 U	11 U	9.4 U	9.2 U	10 U	9.2 U
Benzo(b)fluoranthene	1,100	2400 J	430 J	31 U	29 U	740 J	240 J	77 J	1300	23 U	41 J
Benzo(k)fluoranthene	1,100	1200	200 J	20 U	18 U	320 J	100 J	55 J	680	15 U	13 U
Benzo(a)pyrene	61 or MDL	2200	270 J	10 U	9.3 U	770 J	240 J	110 J	1300	7.5 U	50 J
Indeno(1,2,3-cd)pyrene	3,200	690 J	210 J	14 U	13 U	240 J	53 J	56 J	210 J	11 U	9.4 U
Dibenz(a,h)anthracene	14 or MDL	270 J	16 UJ	17 U	16 U	23 U	13 U	12 U	63 J	13 U	11 U
Benzo(g,h,i)perylene	50,000	750 J	190 J	25 U	24 U	310 J	68 J	57 J	310 J	19 U	17 U
Total Confident Conc. SVOC	500,000 Equivalents	26,785 3.021	4,910 389.4	5,757 ND	150 ND	6,342 941.7	4,117 292.3	878 132	25,453 1,703.8	39,564 ND	1,279 61.8

Sample Location Sample Interval (Feet bgs) Sampling Date Units Semivolatile Organic Compounds (ug/kg) Benzaldehyde		SB-33 35 to 37 5/16/04 ug/Kg	SB-33 39 to 41 5/16/04	SB-34 3 to 4	SB-34 4 to 5	SB-34 20.5 to 21	SB-34 28.5 to 29	SB-36	SB-36 5 to 7	SB-36	SB-73
Sampling Date Units Semivolatile Organic Compounds (ug/kg) TA		5/16/04	5/16/04		4 to 5	20 E to 21	20 E to 20	0.4	F 40 7		
Units Semivolatile Organic Compounds (ug/kg) TA				= /4 0 /0 4		20.5 10 21	∠ಠ.၁ เ0 ∠9	3 to 4	5 10 7	17 to 19	17 to 19
Semivolatile Organic Compounds (ug/kg) TA		ug/Kg		5/10/04	5/10/04	08/10/04	08/10/04	4/25/04	5/8/04	5/8/04	5/8/04
Compounds (ug/kg) TA			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Compounds (ug/kg) TA											
Compounds (ug/kg) TA											
(- 3 - 3)	AGM RSCO										5
Benzaidenyde	NC NC	57 U	48 U	41 U	45 U	44 U	55 U	37 U	450 U	41 U	Duplicate 44 U
,	30 or MDL		48 U	41 U	45 U 19 U	44 U 19 U			450 U		19 U
Phenol bis(2-Chloroethyl)ether	NC NC	24 U 29 U	20 U	17 U	19 U 23 U	19 U	24 U 28 U	16 U 19 U	190 U	18 U 21 U	19 U 22 U
2-Chlorophenol	800	25 U	21 U	18 U	20 U	20 U	24 U	19 U	200 U	18 U	20 U
	100 or MDL	37 U	31 U	26 U	20 U	29 U	36 U	24 U	290 U	27 U	20 U
2,2-oxybis(1-Chloropropane)	NC	31 U	26 U	23 U	25 U	25 U	30 U	21 U	250 U	27 U	24 U
Acetophenone	NC	30 U	26 U	22 U	24 U	24 U	29 U	20 U	240 U	22 U	24 U
3+4-Methylphenols	900	27 U	22 U	19 U	21 U	21 U	26 U	18 U	210 U	19 U	21 U
N-Nitroso-di-n-propylamine	NC NC	26 U	22 U	18 U	20 U	20 U	25 U	17 U	200 U	19 U	20 U
Hexachloroethane	NC	28 U	23 U	20 U	22 U	22 U	27 U	18 U	220 U	20 U	22 U
	200 or MDL	30 U	25 U	21 U	24 U	23 U	29 U	19 U	230 U	21 U	23 U
Isophorone	4,400	22 U	18 U	16 U	17 U	17 U	21 U	14 U	170 U	16 U	17 U
	330 or MDL	23 U	20 U	17 U	19 U	18 U	23 U	15 U	180 U	17 U	18 U
2,4-Dimethylphenol	NC	31 U	26 U	23 U	25 U	25 U	30 U	21 U	250 U	23 U	24 U
bis(2-Chloroethoxy)methane	NC	27 U	22 U	19 U	21 U	21 U	26 U	17 U	210 U	19 U	21 U
2,4-Dichlorophenol	400	20 U	17 U	15 U	16 U	16 U	20 U	13 U	160 U	15 U	16 U
Naphthalene	13,000	530 J	11 U	9.1 U	250 J	480	390 J	360 J	3700 J	120 J	9.8 U
	220 or MDL	210 U	180 U	160 U	170 U	170 U	210 U	140 U	1700 U	160 U	170 U
Hexachlorobutadiene	NC	20 U	17 U	15 U	16 U	16 U	20 U	13 U	160 U	15 U	16 U
Caprolatam	NC	21 U	18 U	15 U	17 U	17 U	21 U	14 U	170 U	16 U	17 U
4-Chloro-3-methylphenol 2	240 or MDL	17 U	15 U	12 U	14 U	13 U	17 U	11 U	130 U	12 U	13 U
2-Methylnaphthalene	36,400	64 J	8.4 U	7.2 U	73 J	470	150 J	88 J	9300	7.3 U	7.8 U
Hexachlorocyclopentadiene	NC	15 UJ	12 UJ	11 UJ	12 UJ	11 UJ	14 UJ	9.6 UJ	110 UJ	11 UJ	11 UJ
2,4,6-Trichlorophenol	NC	21 U	18 U	15 U	17 U	16 U	20 U	14 U	160 U	15 U	16 U
2,4,5-Trichlorophenol	100	38 U	32 U	28 U	31 U	30 U	37 U	25 U	300 U	28 U	30 U
1,1-Biphenyl	NC	17 U	15 U	12 U	14 U	13 U	17 U	11 U	920 J	12 U	13 U
2-Chloronaphthalene	NC	12 U	10 U	8.7 U	9.7 U	9.5 U	12 U	8 U	95 U	8.8 U	9.4 U
	430 or MDL	21 U	18 U	15 U	17 U	16 U	20 U	14 U	160 U	15 U	16 U
Dimethylphthalate	2,000	14 U	12 U	10 U	11 U	11 U	13 U	9.1 U	110 U	10 U	11 U
Acenaphthylene	41,000	17 U	15 U	13 U	59 J	14 U	17 U	75 J	140 U	13 U	14 U
2,6-Dinitrotoluene	1,000	25 U	21 U	18 U	20 U	19 U	24 U	16 U	190 U	18 U	19 U
	500 or MDL	94 U	79 U	68 U	75 U	73 U	91 U	62 U	730 U	68 U	73 U
Acenaphthene	50,000	100 J	11 U	9.2 U	110 J	58 J	90 J	400	100 U	9.3 U	10 U
	200 or MDL	26 U	22 U	18 UJ	20 UJ	20 UJ	25 U	17 U	200 UJ	19 UJ	20 UJ
	100 or MDL	57 U	48 U	41 U	45 U	44 U	55 U	37 U	440 U	41 U	44 U
Dibenzofuran	6,200 1,000	65 J 12 U	16 U 9.8 U	14 U 8.4 U	84 J 9.3 U	15 U 9.1 U	19 U 11 U	230 J 7.6 U	150 U 91 U	14 U 8.4 U	15 U 9 U
2,4-Dinitrotoluene	7,100	300 J	9.8 U 200 J	8.4 U	9.3 U 15 U	9.1 U 14 U	11 U	7.6 U	140 U	8.4 U 13 U	14 U
Diethylphthalate	7,100 NC	14 U	200 J 12 U	10 U	15 U	14 U	14 U	9.5 U	140 U	10 U	14 U
4-Chlorophenyl-phenylether	50,000	93 J	12 U	10 U	12 U 170 J	59 J	14 U	420	860 J	48 J	13 U
Fluorene 4-Nitroaniline	50,000 NC	45 U	38 U	33 U	36 U	36 U	44 U	30 U	360 U	33 U	35 U
4,6-Dinitro-2-methylphenol	NC	34 U	28 U	24 UJ	27 UJ	26 UJ	33 U	22 U	260 UJ	24 UJ	26 UJ
N-Nitrosodiphenylamine	NC NC	15 U	12 U	24 0J	12 U	26 UJ	14 U	9.7 U	120 U	24 UJ 11 U	26 UJ 11 U
4-Bromophenyl-phenylether	NC	15 U	12 U	11 U	12 U	12 U	15 U	9.7 U	120 U	11 U	12 U
Hexachlorobenzene	410	15 U	9.2 U	7.9 U	8.7 U	8.5 U	11 U	7.2 U	85 U	7.9 U	8.5 U
Atrazine	NC	18 U	9.2 U	13 U	14 U	14 U	17 U	12 U	140 U	13 U	14 U
	000 or MDL	18 U	15 U	13 U	14 U	14 U	18 U	12 U	140 U	13 U	14 U
Phenanthrene	50.000	450 J	11 U	91 J	680	320 J	320 J	2900	1600 J	230 J	100 J
Anthracene	50,000	140 J	12 U	10 U	240 J	76 J	97 J	780	710 J	49 J	11 U
Carbazole	NC	78 J	11 U	9.2 U	110 J	10 U	12 U	310 J	100 U	9.3 U	10 U

Sample Location		SB-33	SB-33	SB-34	SB-34	SB-34	SB-34	SB-36	SB-36	SB-36	SB-73
Sample Interval (Feet bgs) Sampling Date		35 to 37 5/16/04	39 to 41 5/16/04	3 to 4 5/10/04	4 to 5 5/10/04	20.5 to 21 08/10/04	28.5 to 29 08/10/04	3 to 4 4/25/04	5 to 7 5/8/04	17 to 19 5/8/04	17 to 19 5/8/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										Duplicate
Di-n-butylphthalate	8,100	3100	2200	5.6 U	6.2 U	6 U	7.5 U	5.1 U	60 U	5.6 U	6 U
Fluoranthene	50,000	320 J	6.8 U	140 J	660	210 J	150 J	3000 DJ	5100	340 J	140 J
Pyrene	50,000	280 J	8.7 U	170 J	630	300 J	170 J	3000 D	4200 J	340 J	120 J
Butylbenzylphthalate	50,000	76 J	16 U	14 U	16 U	15 U	19 U	13 U	170000 D	14 U	15 U
3,3-Dichlorobenzidine	NA	93 U	79 U	67 U	75 U	73 U	90 U	61 U	730 U	68 U	73 U
Benzo(a)anthracene	224 or MDL	120 J	7.4 U	160 J	480	270 J	90 J	1900	1700 J	170 J	49 J
Chrysene	400	110 J	16 U	150 J	430 J	270 J	84 J	1800	1700 J	180 J	63 J
bis(2-Ethylhexyl)phthalate	50,000	300 J	160 J	9.6 U	11 U	580	230 J	45 J	100 U	9.7 U	10 U
Di-n-octyl phthalate	50,000	14 U	12 U	10 U	11 U	11 U	13 U	9.1 U	110 U	10 U	11 U
Benzo(b)fluoranthene	1,100	80 J	26 U	150 J	390 J	330 J	30 U	2700	1700 J	160 J	48 J
Benzo(k)fluoranthene	1,100	68 J	17 U	80 J	220 J	130 J	19 U	570	1000 J	120 J	15 U
Benzo(a)pyrene	61 or MDL	97 J	8.4 U	190 J	420 J	280 J	9.7 U	2000	1100 J	170 J	51 J
Indeno(1,2,3-cd)pyrene	3,200	14 U	12 U	92 J	190 J	50 J	14 U	630 J	110 UJ	95 J	11 U.
Dibenz(a,h)anthracene	14 or MDL	17 U	14 U	12 U	73 J	13 UJ	17 U	280 J	130 UJ	12 U	13 U
Benzo(g,h,i)perylene	50,000	25 U	21 U	100 J	200 J	78 J	25 U	670	200 UJ	120 J	20 U.
Total Confident Conc. SVOC	500,000	6,371	2,560	1,323	5,469	3,961	1,871	22,158	203,590	2,142	571
Carcinogenic SVOCs in BaP		118.8	ND	232.5	605.5	349	9.8	2,826.7	1,467	215.5	61.3

						Table 4-27					
Sample Location		SB-36	SB-36	SB-38	SB-38	SB-38	SB-38	SB-39	SB-39	SB-40B	SB-40B
Sample Interval (Feet bgs)		25 to 27	33 to 35	3 to 4	4 to 5	13 to 15	21 to 23	7.5 to 8	22 to 23	33 to 35	35 to 37
Sampling Date		5/8/04	5/8/04	4/25/04	4/25/04	5/16/04	5/16/04	07/21/04	07/21/04	07/27/04	07/27/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC NC	170 U	51 U	85 U	88 U	240 U	51 U	40 U	46 U	40 U	100 U
Phenol	30 or MDL	72 U	22 U	36 U	37 U	100 U	22 U	17 U	19 U	17 U	43 U
bis(2-Chloroethyl)ether	NC NC	85 U	26 U	43 U	44 U	120 U	26 U	20 U	23 U	20 U	51 U
2-Chlorophenol	800	74 U	23 U	38 U	39 U	100 U	22 U	17 U	20 U	17 U	45 U
2-Methylphenol	100 or MDL	110 U	33 U	55 U	56 U	150 U	33 U	25 U	29 U	26 U	66 U
2,2-oxybis(1-Chloropropane)	NC NC	93 U	28 U	47 U	48 U	130 U	28 U	22 U	25 U	22 U	56 U
Acetophenone	NC	90 U	27 U	45 U	47 U	130 U	27 U	21 U	24 U	21 U	54 U
3+4-Methylphenols	900	79 U	24 U	40 U	41 U	110 U	24 U	19 U	21 U	19 U	48 U
N-Nitroso-di-n-propylamine	NC	76 U	23 U	38 U	39 U	110 U	23 U	18 U	21 U	18 U	46 U
Hexachloroethane	NC	82 U	25 U	41 U	43 U	120 U	25 U	19 U	22 U	19 U	50 U
Nitrobenzene	200 or MDL	87 U	27 U	44 U	45 U	120 U	26 U	20 U	24 U	21 U	53 U
Isophorone	4,400	64 U	19 U	32 U	33 U	90 U	19 U	15 U	17 U	15 U	39 U
2-Nitrophenol	330 or MDL	69 U	21 U	35 U	36 U	97 U	21 U	16 U	19 U	16 U	42 U
2,4-Dimethylphenol	NC	320 J	28 U	47 U	48 U	130 U	28 U	22 U	25 U	22 U	56 U
bis(2-Chloroethoxy)methane	NC	79 U	24 U	40 U	41 U	110 U	24 U	18 U	21 U	18 U	47 U
2,4-Dichlorophenol	400	60 U	18 U	30 U	31 U	85 U	18 U	14 U	16 U	14 U	36 U
Naphthalene	13,000	72000 D	520 J	1700	950 J	53 U	86 J	58 J	79 J	8.8 U	15000 D
4-Chloroaniline	220 or MDL	640 U	190 U	320 U	330 U	900 U	190 U	150 U	170 U	150 U	380 U
Hexachlorobutadiene	NC	60 U	18 U	30 U	31 U	85 U	18 U	14 U	16 U	14 U	36 U
Caprolatam	NC	63 U	19 U	32 U	33 U	89 U	19 U	15 U	17 U	15 U	38 U
4-Chloro-3-methylphenol	240 or MDL	51 U	16 U	26 U	26 U	72 U	15 U	12 U	14 U	12 U	31 U
2-Methylnaphthalene	36,400	16000 D	110 J	280 J	280 J	42 U	9 U	7 U	8 U	7 U	6000 D
Hexachlorocyclopentadiene	NC	43 UJ	13 UJ	22 UJ	22 UJ	61 UJ	13 UJ	10 UJ	12 UJ	10 UJ	26 UJ
2,4,6-Trichlorophenol	NC	62 U	19 U	31 U	32 U	88 U	19 U	15 U	17 U	15 U	38 U
2,4,5-Trichlorophenol	100	110 U	35 U	57 U	59 U	160 U	34 U	27 U	31 U	27 U	69 U
1,1-Biphenyl	NC	3000	16 U	150 J	150 J	72 U	15 U	12 U	14 U	12 U	980 J
2-Chloronaphthalene	NC	36 U	11 U	18 U	19 U	50 U	11 U	8.4 U	9.7 U	8.4 U	22 U
2-Nitroaniline	430 or MDL	62 U	19 U	31 U	32 U	88 U	19 U	15 U	17 U	15 U	38 U
Dimethylphthalate	2,000	41 U	13 U	21 U	21 U	58 U	12 U	9.6 U	11 U	9.7 U	25 U
Acenaphthylene	41,000	3200	16 U	480 J	190 J	72 U	16 U	12 U	14 U	12 U	1500
2,6-Dinitrotoluene	1,000	73 U	22 U	37 U	38 U	100 U	22 U	17 U	20 U	17 U	44 U
3-Nitroaniline	500 or MDL	280 U	85 U	140 U	140 U	390 U	84 U	65 U	75 U	65 U	170 U
Acenaphthene	50,000	15000 D	120 J	330 J	260 J	370 J	63 J	8.9 U	150 J	8.9 U	3600
2,4-Dinitrophenol	200 or MDL	76 UJ	23 UJ	38 U	39 U	110 U	23 U	18 UJ	21 U	18 U	46 U
4-Nitrophenol	100 or MDL	170 U	51 U	85 U	87 U	240 U	51 U	39 U	51 J	39 U	100 U
Dibenzofuran	6,200	14000	110 J	460 J	520 J	320 J	17 U	13 U	56 J	13 U	2500
2,4-Dinitrotoluene	1,000	34 U	10 U	200 J	18 U	48 U	10 U	8.1 U	9.3 U	8.1 U	21 U
Diethylphthalate	7,100	54 U	16 U	27 U	28 U	76 U	240 J	13 U	15 U	13 U	33 U
4-Chlorophenyl-phenylether	NC	43 U	13 U	22 U	22 U	60 U	13 U	10 U	12 U	10 U	26 U
Fluorene	50,000	18000 D	140 J	790 J	1100 J	1100 J	15 U	43 J	110 J	11 U	5900
4-Nitroaniline	NC	130 U	41 U	68 U	70 U	190 U	41 U	32 U	36 U	32 U	81 U
4,6-Dinitro-2-methylphenol	NC	100 UJ	30 UJ	50 U	52 U	140 U	30 U	23 UJ	27 U	23 U	60 U
N-Nitrosodiphenylamine	NC	44 U	13 U	22 U	23 U	61 U	13 U	10 U	12 U	10 U	26 U
4-Bromophenyl-phenylether	NC	45 U	14 U	23 U	23 U	64 U	14 U	11 U	12 U	11 U	27 U
Hexachlorobenzene	410	32 U	9.8 U	16 U	17 U	45 U	9.7 U	7.6 U	8.7 U	7.6 U	19 U
Atrazine	NC 4000 MDI	53 U	16 U	27 U	27 U	74 U	16 U	12 U	14 U	12 U	32 U
Pentachlorophenol	1000 or MDL	54 U	16 U	27 U	28 U	75 U	16 U	13 U	14 U	13 U	32 U
Phenanthrene	50,000	77000 D	580	4100	3600 J	9700	420 J	260 J	1100	9 U	17000 DJ
Anthracene	50,000	25000 D	190 J	920	910 J	5300	92 J	110 J	380 J	9.7 U	5000
Carbazole	NC	9800	67 J	380 J	320 J	330 J	11 U	8.9 U	160 J	8.9 U	840 J

Sample Location		SB-36	SB-36	SB-38	SB-38	SB-38	SB-38	SB-39	SB-39	SB-40B	SB-40B
Sample Interval (Feet bgs) Sampling Date		25 to 27 5/8/04	33 to 35 5/8/04	3 to 4 4/25/04	4 to 5 4/25/04	13 to 15 5/16/04	21 to 23 5/16/04	7.5 to 8 07/21/04	22 to 23 07/21/04	33 to 35 07/27/04	35 to 37 07/27/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic											
Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	23 U	7 U	12 U	12 U	32 U	15000 D	5.4 U	6.2 U	5.4 U	14 U
Fluoranthene	50,000	51000 D	400 J	7000 DJ	3400 J	11000	280 J	310 J	1800	5.6 U	7300 D
Pyrene	50,000	37000 D	310 J	6700 D	3100	7700	330 J	360 J	1700	7.2 U	8100 D
Butylbenzylphthalate	50,000	58 U	18 U	29 U	30 U	81 U	57 J	14 U	16 U	14 U	35 U
3,3-Dichlorobenzidine	NA	280 U	84 U	140 U	140 U	390 U	83 U	65 U	75 U	65 U	170 U
Benzo(a)anthracene	224 or MDL	19000 D	170 J	5600	2600 J	5800	290 J	270 J	1700	6.1 U	4800
Chrysene	400	16000 D	140 J	5100	2000	4500	290 J	210 J	1400	13 U	3400
bis(2-Ethylhexyl)phthalate	50,000	200 J	12 U	20 U	110 J	56 U	260 J	130 J	1700	270 J	180 J
Di-n-octyl phthalate	50,000	41 U	13 U	21 U	21 U	58 U	12 U	9.6 U	11 U	9.7 U	25 U
Benzo(b)fluoranthene	1,100	15000 DJ	99 J	9000 D	2600	3100	270 J	290 J	2200	21 U	2700 J
Benzo(k)fluoranthene	1,100	9000	79 J	2600	1400	2000 J	340 J	130 J	1100	14 U	920 J
Benzo(a)pyrene	61 or MDL	14000 D	110 J	6900 D	2400	3500	480 J	280 J	2400	7 U	2700
Indeno(1,2,3-cd)pyrene	3,200	2100 J	13 UJ	2800 J	670 J	1200 J	270 J	9.8 UJ	1100 J	9.8 U	730 J
Dibenz(a,h)anthracene	14 or MDL	1200 J	15 U	1300	150 J	550 J	94 J	12 U	85 J	12 U	180 J
Benzo(g,h,i)perylene	50,000	2700 J	23 UJ	2600	750 J	1000 J	300 J	180 J	1000	18 U	850 J
Total Confident Conc. SVOC	500,000	420,520	3,145	59,390	27,460	57,470	19,162	2,631	18,271	270	90,180
Carcinogenic SVOCs in BaP	,	19,060	139.1	10,017	3,171	5,125	663.3	339.4	3,010	ND	3,746.2

					Table 4-2	7					
Sample Location		SB-40B	MW-40A	B-90	B-91	B-91	B-91	B-92	B-92	B-92	
Sample Interval (Feet bgs)		41 to 43	4 to 5	4 to 5	4 to 5	8 to 11	11 to 15	0 to 1	3	9 to 13	
Sampling Date		07/27/04	07/06/04	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
		0 0		0 0	0 0	0 0	0 0			0 0	
											Number of
Semivolatile Organic											Samples
Compounds (ug/kg)	TAGM RSCO										
Benzaldehyde	NC	48 U	41 U	71 U	140 U	79 U	79 U	82 U	90 U	97 U	39
Phenol	30 or MDL	20 U	17 U	52 U	100 U	58 U	58 U	61 U	66 U	72 U	39
bis(2-Chloroethyl)ether	NC	24 U	21 U	55 U	110 U	61 U	61 U	63 U	69 U	75 U	39
2-Chlorophenol	800	21 U	18 U	55 U	110 U	61 U	61 U	64 U	70 U	76 U	39
2-Methylphenol	100 or MDL	31 U	26 U	57 U	110 U	64 U	64 U	67 U	73 U	79 U	39
2,2-oxybis(1-Chloropropane)	NC	26 U	23 U	56 U	110 U	62 U	62 U	65 U	71 U	76 U	39
Acetophenone	NC	25 U	22 U	51 U	100 U	56 U	56 U	59 U	64 U	69 U	39
3+4-Methylphenols	900	22 U	19 U	55 U	110 U	61 U	61 U	63 U	69 U	75 U	39
N-Nitroso-di-n-propylamine	NC	21 U	18 U	57 U	110 U	64 U	64 U	66 U	73 U	78 U	39
Hexachloroethane	NC	23 U	20 U	59 U	120 U	65 U	65 U	68 U	74 U	80 U	39
Nitrobenzene	200 or MDL	25 U	21 U	75 U	150 U	84 U	84 U	88 U	96 U	100 U	39
Isophorone	4,400	18 U	16 U	52 U	100 U	58 U	58 U	60 U	66 U	71 U	39
2-Nitrophenol	330 or MDL	20 U	17 U	53 U	110 U	59 U	59 U	62 U	67 U	73 U	39
2,4-Dimethylphenol	NC	26 U	23 U	55 U	110 U	61 U	61 U	64 U	70 U	75 U	39
bis(2-Chloroethoxy)methane	NC	22 U	19 U	57 U	110 U	63 U	63 U	66 U	72 U	78 U	39
2,4-Dichlorophenol	400	17 U	15 U	64 U	130 U	71 U	71 U	74 U	81 U	88 U	39
Naphthalene	13,000	110 J	9.1 U	59 U	120 U	66 U	66 U	69 U	75 U	81 U	39
4-Chloroaniline	220 or MDL	180 U	150 U	41 U	82 U	46 U	46 U	48 U	52 U	56 U	39
Hexachlorobutadiene	NC	17 U	15 U	53 U	110 U	59 U	59 U	62 U	67 U	73 U	39
Caprolatam	NC	18 U	15 U	56 U	110 U	62 U	62 U	65 U	70 U	76 U	39
4-Chloro-3-methylphenol	240 or MDL	14 U	12 U	48 U	95 U	53 U	53 U	55 U	61 U	65 U	39
2-Methylnaphthalene	36,400	8.4 U	7.2 U	58 U	120 U	64 U	64 U	67 U	73 U	79 U	39
Hexachlorocyclopentadiene	NC	12 UJ	10 UJ	55 U	110 U	61 U	61 U	64 U	70 U	76 U	39
2,4,6-Trichlorophenol	NC	18 U	15 U	51 U	100 U	56 U	56 U	59 U	64 U	70 U	39
2,4,5-Trichlorophenol	100	32 U	28 U	53 U	110 U	59 U	59 U	61 U	67 U	72 U	39
1,1-Biphenyl	NC	14 U	12 U	57 U	110 U	63 U	63 U	66 U	72 U	78 U	39
2-Chloronaphthalene	NC	10 U	8.7 U	57 U	110 U	64 U	64 U	67 U	73 U	79 U	39
2-Nitroaniline	430 or MDL	18 U	15 U	44 U	88 U	49 U	49 U	51 U	56 U	60 U	39
Dimethylphthalate	2,000	12 U	10 U	56 U	110 U	62 U	62 U	65 U	70 U	76 U	39
Acenaphthylene	41,000	15 U	12 U	56 U	110 U	97 J	62 U	65 U	71 U	77 U	39
2,6-Dinitrotoluene	1,000	21 U	18 U	49 U	98 U	54 U	54 U	57 U	62 U	67 U	39
3-Nitroaniline	500 or MDL	79 U	67 U	45 U	90 U	50 U	50 U	52 U	57 U	62 U	39
Acenaphthene	50,000	11 U	89 J	62 U	120 U	240 J	68 U	71 U	78 U	84 U	39
2,4-Dinitrophenol	200 or MDL	21 U	18 U	300 U	590 U	330 U	330 U	340 U	370 U	410 U	39
4-Nitrophenol	100 or MDL	48 U	41 U	43 U	86 U	48 U	48 U	50 U	54 U	59 U	39
Dibenzofuran	6,200	16 U	71 J	57 U	110 U	120 J	63 U	66 U	72 U	78 U	39
2,4-Dinitrotoluene	1,000	9.7 U	8.3 U	51 U	100 U	56 U	56 U	59 U	64 U	70 U	39
Diethylphthalate	7,100	15 U	13 U	60 U	120 U	66 U	66 U	69 U	76 U	82 U	39
4-Chlorophenyl-phenylether	NC 50 000	12 U	10 U	55 U	110 U	61 U	61 U	63 U	69 U	75 U	39
Fluorene	50,000	14 U	99 J	58 U	120 U	260 J	65 U	68 U	74 U	80 U	39
4-Nitroaniline	NC	38 U	33 U	59 U	120 U	66 U	66 U	69 U	75 U	81 U	39
4,6-Dinitro-2-methylphenol	NC NC	28 U	24 U	67 U	130 U	75 U	74 U	78 U	85 U	92 U	39
N-Nitrosodiphenylamine	NC	12 U	11 U	57 U	110 U	63 U	63 U	66 U	72 U	78 U	39
4-Bromophenyl-phenylether	NC 140	13 U	11 U	52 U	100 U	57 U	57 U	60 U	65 U	71 U	39
Hexachlorobenzene	410	9.1 U	7.8 U	55 U	110 U	61 U	61 U	64 U	70 U	76 U	39
Atrazine	NC 1000 or MDI	15 U	13 U	53 U	110 U	59 U	59 U	61 U	67 U	73 U	39
Pentachlorophenol	1000 or MDL	15 U	13 U	80 U	160 U	89 U	89 U	93 U	100 U	110 U	39 39
Phenanthrene	50,000	82 J 12 U	1100	180 J	270 J	1800	250 J	64 U	70 U	100 J	
Anthracene	50,000		220 J	52 U	100 U	680	110 J	61 U	66 U	71 U	39 39
Carbazole	NC	11 U	120 J	53 U	110 U	200 J	59 U	61 U	67 U	72 U	39

Sample Location		SB-40B	MW-40A	B-90	B-91	B-91	B-91	B-92	B-92	B-92	
Sample Interval (Feet bgs) Sampling Date		41 to 43 07/27/04	4 to 5 07/06/04	4 to 5 11/04/05	4 to 5 11/04/05	8 to 11 11/04/05	11 to 15 11/04/05	0 to 1 11/04/05	3 11/04/05	9 to 13 11/04/05	
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
											Number of
Semivolatile Organic											Samples
Compounds (ug/kg)	TAGM RSCO										
Di-n-butylphthalate	8,100	6.5 U	5.6 U	53 U	110 U	59 U	58 U	61 U	67 U	72 U	39
Fluoranthene	50,000	6.8 U	900	51 U	890	2100	330 J	87 J	92 J	140 J	39
Pyrene	50,000	8.7 U	1000	61 U	970	2000	440	100 J	98 J	190 J	39
Butylbenzylphthalate	50,000	16 U	14 U	56 U	110 U	62 U	62 U	65 U	71 U	77 U	39
3,3-Dichlorobenzidine	NA	78 U	67 U	59 U	120 U	66 U	66 U	69 U	75 U	81 U	39
Benzo(a)anthracene	224 or MDL	7.4 U	400 J	210 J	520 J	1100	320 J	120 J	110 J	150 J	39
Chrysene	400	15 U	450	190 J	470 J	980	300 J	110 J	86 J	130 J	39
bis(2-Ethylhexyl)phthalate	50,000	93 J	9.6 U	66 U	130 U	1400	74 U	77 U	84 U	91 U	39
Di-n-octyl phthalate	50,000	12 U	10 U	59 U	120 U	65 U	65 U	68 U	75 U	81 U	39
Benzo(b)fluoranthene	1,100	26 U	300 J	310 J	910	1200	430	210 J	150 J	220 J	39
Benzo(k)fluoranthene	1,100	17 U	130 J	76 U	150 U	250 J	94 J	88 U	96 U	100 U	39
Benzo(a)pyrene	61 or MDL	8.4 U	280 J	140 J	580 J	940	410	160 J	120 J	210 J	39
Indeno(1,2,3-cd)pyrene	3,200	12 U	240 J	96 J	260 J	320 J	110 J	72 J	56 U	73 J	39
Dibenz(a,h)anthracene	14 or MDL	14 U	12 U	43 U	87 U	130 J	68 J	50 U	55 U	59 U	39 39
Benzo(g,h,i)perylene	50,000	21 U	150 J	130 J	310 J	450	180 J	91 J	72 U	110 J	39
					-			·		·	
Total Confident Conc. SVOC		285	5,549	1,256	5,180	14,267	3,042	950	656	1,323	
Carcinogenic SVOCs in BaP I	Equivalents	ND	379.8	203.5	755.2	1,344.3	567.9	201.3	146.9	255.6	

Sample Location							
Sample Interval (Feet bgs)							
Sampling Date							
Units							
Office							
		N1		Ni makana ata		Minimum Demonted	Marianon Barrata
		Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic	T. 01. D000	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO		201	Exceedances	201	~~	450
Benzaldehyde	NC	0	0%	0	0%	< 37	< 450
Phenol	30 or MDL	0	0%	0	0%	< 16	< 190
bis(2-Chloroethyl)ether	NC	0	0%	0	0%	< 19	< 220
2-Chlorophenol	800	0	0%	0	0%	< 17	< 200
2-Methylphenol	100 or MDL	0	0%	0	0%	< 24	< 290
2,2-oxybis(1-Chloropropane)	NC	0	0%	0	0%	< 21	< 250
Acetophenone	NC	0	0%	0	0%	< 20	< 240
3+4-Methylphenols	900	0	0%	0	0%	< 18	< 210
N-Nitroso-di-n-propylamine	NC	0	0%	0	0%	< 17	< 200
Hexachloroethane	NC	0	0%	0	0%	< 18	< 220
Nitrobenzene	200 or MDL	0	0%	0	0%	< 19	< 230
Isophorone	4,400	0	0%	0	0%	< 14	< 170
2-Nitrophenol	330 or MDL	0	0%	0	0%	< 15	< 180
2,4-Dimethylphenol	NC	1	3%	0	0%	< 21	320
bis(2-Chloroethoxy)methane	NC	0	0%	0	0%	< 17	< 210
2,4-Dichlorophenol	400	0	0%	0	0%	< 13	< 160
Naphthalene	13,000	22	56%	2	5%	< 8.4	72,000
4-Chloroaniline	220 or MDL	0	0%	0	0%	< 41	< 1,700
Hexachlorobutadiene	NC	0	0%	0	0%	< 13	< 160
Caprolatam	NC	0	0%	0	0%	< 14	< 170
4-Chloro-3-methylphenol	240 or MDL	0	0%	0	0%	< 11	< 130
2-Methylnaphthalene	36,400	16	41%	0	0%	< 6.7	16,000
Hexachlorocyclopentadiene	NC	0	0%	0	0%	< 9.6	< 110
2,4,6-Trichlorophenol	NC	0	0%	0	0%	< 14	< 160
2,4,5-Trichlorophenol	100	0	0%	0	0%	< 25	< 300
1,1-Biphenyl	NC	8	21%	0	0%	< 11	3,000
2-Chloronaphthalene	NC	0	0%	0	0%	< 8	< 110
2-Nitroaniline	430 or MDL	0	0%	0	0%	< 14	< 160
Dimethylphthalate	2,000	0	0%	0	0%	< 9.1	< 110
Acenaphthylene	41,000	9	23%	0	0%	< 12	3,200
2,6-Dinitrotoluene	1,000	0	0%	0	0%	< 16	< 190
3-Nitroaniline	500 or MDL	0	0%	0	0%	< 45	< 730
Acenaphthene	50,000	21	54%	0	0%	< 8.7	15,000
2,4-Dinitrophenol	200 or MDL	0	0%	0	0%	< 17	< 590
4-Nitrophenol	100 or MDL	1	3%	0	0%	< 37	< 440
Dibenzofuran	6,200	15	38%	1	3%	< 13	14,000
2,4-Dinitrotoluene	1,000	1	3%	0	0%	< 7.6	200
Diethylphthalate	7,100	5	13%	0	0%	< 12	300
4-Chlorophenyl-phenylether	NC	0	0%	0	0%	< 9.5	< 110
Fluorene	50,000	22	56%	0	0%	< 11	18,000
4-Nitroaniline	NC	0	0%	0	0%	< 30	< 360
4,6-Dinitro-2-methylphenol	NC	0	0%	0	0%	< 22	< 260
N-Nitrosodiphenylamine	NC	0	0%	0	0%	< 9.7	< 120
4-Bromophenyl-phenylether	NC	0	0%	0	0%	< 10	< 120
Hexachlorobenzene	410	0	0%	0	0%	< 7.2	< 110
Atrazine	NC	0	0%	0	0%	< 12	< 140
Pentachlorophenol	1000 or MDL	0	0%	0	0%	< 12	< 160
Phenanthrene	50,000	34	87%	1	3%	< 9	77,000
Anthracene	50,000	25	64%	0	0%	< 9.4	25,000
Carbazole	NC	16	41%	0	0%	< 8.5	9,800

Sample Location							
Sample Interval (Feet bgs) Sampling Date							
Units							
			_				
		Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic		Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO			Exceedances			
Di-n-butylphthalate	8,100	7	18%	2	5%	< 5.1	39,000
Fluoranthene	50,000	33	85%	1	3%	< 5.6	51,000
Pyrene	50,000	33	85%	0	0%	< 7.2	37,000
Butylbenzylphthalate	50,000	3	8%	1	3%	< 13	170,000
3,3-Dichlorobenzidine	NA	0	0%	0	0%	< 59	< 730
Benzo(a)anthracene	224 or MDL	33	85%	20	51%	< 6.1	19,000
Chrysene	400	33	85%	16	41%	< 13	16,000
bis(2-Ethylhexyl)phthalate	50,000	20	51%	0	0%	< 8.8	1,700
Di-n-octyl phthalate	50,000	0	0%	0	0%	< 9.1	< 120
Benzo(b)fluoranthene	1,100	32	82%	11	28%	< 21	15,000
Benzo(k)fluoranthene	1,100	25	64%	5	13%	< 13	9,000
Benzo(a)pyrene	61 or MDL	32	82%	30	77%	< 7	14,000
Indeno(1,2,3-cd)pyrene	3,200	25	64%	0	0%	< 9.4	2,800
Dibenz(a,h)anthracene	14 or MDL	13	33%	13	33%	< 11	1,300
Benzo(g,h,i)perylene	50,000	26	67%	0	0%	< 17	2,700

Total Confident Conc. SVOC 500,000 Carcinogenic SVOCs in BaP Equivalents

Sample Location		TP-4	SB-31	SB-31	SB-31	SB-32	SB-32	SB-32	SB-33	SB-33	SB-33
Sample Interval (Feet bgs)		5 to 6	7.1 to 7.7	21 to 23	25 to 27	4 to 5	11 to 13	21 to 23	4 to 5	11 to 13	13 to 15
Sampling Date		05/08/04	07/12/04	10/09/04	10/09/04	4/25/04	05/22/04	05/22/04	4/25/04	05/16/04	05/16/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	44.1 J	0.905 U	0.988 U	0.921 U	0.667 U	1.2 J	0.69 J	0.652 U	0.75 U	0.85 J
Arsenic	12	8.1	12.5	10.4	8.96	8.65	3.9	4.9	2.51	1.8	1.3
Beryllium	600	0.38 J	0.826	0.767 J	0.787 J	0.333 J	0.4 J	0.38 J	0.251 J	0.29 J	0.23 J
Cadmium	1	0.7	1.69	0.081 U	0.075 U	0.153 J	0.67 J	0.47 J	0.092 J	0.06 U	0.05 U
Chromium	40	16.6 J	32.9	21.9	23.1	11.4 J	15.1 J	13.5	13.6 J	12.1	10
Copper	50	88.7 J	184	19.3	19.6	37.6	23.6	29.5	41.3	46.9	80.4
Lead	500	2000 J	1660	28.5	22.6	382	161 J	174	127	112 J	295 J
Mercury	0.1	1.5	2.3	0.216 R	0.166 R	0.42 J	0.3 J	0.27	1.1 J	0.13 J	0.06 J
Nickel	25	18.6	24.9	21.4	22.6	11.3 J	13.7	15.1	13.2 J	14.5	11.3
Selenium	3.9	0.37 U	3.16	0.549 U	0.512 U	0.445 J	0.43 U	0.38 U	0.363 J	0.41 U	0.37 U
Silver	В	0.17 J	3.73	0.233 J	0.172 U	0.518 J	0.14 U	0.13 U	0.251 J	0.14 U	0.12 U
Thallium	В	0.39 UJ	0.53 U	1.44 J	0.54	0.391 U	0.45 U	0.4 U	0.382 U	0.44 U	0.39 U
Zinc	50	274 J	305	57.7	68	67.5 J	53.1	44.7	60.8 J	91.8	68.3

Sample Location		TP-4	SB-31	SB-31	SB-31	SB-32	SB-32	SB-32	SB-33	SB-33	SB-33
Sample Interval (Feet bgs)		5 to 6	7.1 to 7.7	21 to 23	25 to 27	4 to 5	11 to 13	21 to 23	4 to 5	11 to 13	13 to 15
Sampling Date		5/8/04	07/12/04	10/09/04	10/09/04	4/25/04	05/22/04	05/22/04	4/25/04	5/16/04	5/16/04
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM RSCO										
Cyanide	NC	0.588 U	0.81 U	0.89 U	0.82 U	0.592 U	0.688 U	0.601 U	0.579 U	0.662 U	0.585 L
Amenable Cyanide	NC	0.59 U	0.81 U	0.89 U	0.82 U	0.75 U	0.81 U	0.592 U	0.72 U	0.57 U	0.579 L

SB-34

SB-34

SB-36

SB-36

SB-36

SB-73

Sample Interval (Feet bgs) Sampling Date		35 to 37 05/16/04	39 to 41 05/16/04	3 to 4 05/10/04	4 to 5 05/10/04	20.5 to 21 08/10/04	28.5 to 29 08/10/04	3 to 4 4/25/04	5 to 7 05/08/04	17 to 19 05/08/04	17 to 19 05/08/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM										
PP Metals	RSCO										
Antimony	В	1 U	0.85 U	0.73 UJ	0.8 J	0.787 U	0.963 U	2.81 J	1.7 J	0.72 UJ	0.76 UJ
Arsenic	12	7.8	6.6	6.3	7	1.97	7.51	10.8	5.6	2.4	3.9
Beryllium	600	0.57 J	0.57 J	0.62 J	0.51 J	0.303 J	0.724 J	0.36 J	0.46 J	0.36 J	0.46 J
Cadmium	1	0.08 U	0.07 U	0.38 J	0.42 J	0.064 U	0.749 J	0.781	1.2	0.28 J	0.29 J
Chromium	40	21.2	20.9	19.5 J	16.4 J	10.1	23.4	15.8 J	24.3 J	11.6 J	14.1 J
Copper	50	14.5	11.7	31.7 J	42.4 J	16.1	22.8	102	340 J	22.4 J	25.2 J
Lead	500	23.4 J	10.4 J	167 J	237 J	46.2	30.6	446	147 J	127 J	186 J
Mercury	0.1	0.02 J	0.02 J	0.36	0.51	0.06 J	0.06 J	1.1 J	0.3	1.1 D	0.64
Nickel	25	22.5	20.5	21.1	18.3 U	11.5	23.8	18.6 J	27.8	16	18.2
Selenium	3.9	0.56 U	0.47 U	0.4 U	0.44 U	0.855 J	2.13	1.13 J	0.43 U	0.4 U	0.43 U
Silver	В	0.19 U	0.16 U	0.14 UJ	0.15 UJ	0.147 U	0.18 U	1.11 J	0.14 UJ	0.13 UJ	1.5 J
Thallium	В	0.59 U	0.72 J	0.43 UJ	0.47 UJ	0.462 U	0.564 U	0.385 U	0.45 UJ	0.42 UJ	0.45 UJ
Zinc	50	60.3	60.1	67 J	109 J	33.8	71.2	311 J	220 J	74.3 J	96.1 J
Sample Location		SB-33	SB-33	SB-34	SB-34	SB-34	SB-34	SB-36	SB-36	SB-36	SB-73
Sample Interval (Feet bgs)		35 to 37	39 to 41	3 to 4	4 to 5	20.5 to 21	28.5 to 29	3 to 4	5 to 7	17 to 19	17 to 19
Sampling Date		5/16/04	5/16/04	5/10/04	5/10/04	8/10/04	8/10/04	4/25/04	5/8/04	5/8/04	5/8/04
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM RSCO										
Cyanide	NC	0.899 U	0.752 U	0.645 U	0.707 U	0.7 U	0.86 U	0.583 U	0.692 U	0.639 U	0.693 U
Amenable Cyanide	NC	0.66 U	0.59 U	0.65 U	0.71 U	0.9 U	0.75 U	0.7 U	0.86 U	0.583 U	0.69 U

SB-34

SB-33

Sample Location

SB-33

SB-34

Sample Location		SB-36	SB-36	SB-38	SB-38	SB-38	SB-38	SB-39	SB-39	SB-40B	SB-40B
Sample Interval (Feet bgs) Sampling Date		25 to 27 05/08/04	33 to 35 05/08/04	3 to 4 4/25/04	4 to 5 4/25/04	13 to 15 05/16/04	21 to 23 05/16/04	7.5 to 8 07/21/04	22 to 23 07/21/04	33 to 35 07/27/04	35 to 37 07/27/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
PP Metals	TAGM RSCO										
Antimony	В	3.5 J	0.9 UJ	0.749 U	0.758 U	0.82 U	1.7 J	0.692 U	0.791 U	0.694 U	0.895 U
Arsenic	12	6.2	7.8	6.81	3.88	6	9.1	19.6	24.2	5.71	11.9
Beryllium	600	0.57 J	0.59 J	0.426 J	0.257 J	0.52 J	0.78	0.379 J	0.499 J	0.575 J	1.04
Cadmium	1	0.48 J	0.49 J	0.414 J	0.192 J	0.07 U	0.22 J	1.9	1.75	0.908	2.17
Chromium	40	25.3 J	21 J	15.6 J	12 J	17.4	25.7	14	13.1	15.1	38
Copper	50	36.7 J	12.6 J	65.3	43.6	28.3	42.8	38.7	43.9	28.6	38.9
Lead	500	473 J	11 J	1080	282	147 J	133 J	150	584	154	139
Mercury	0.1	0.7 D	0.03	0.54 J	0.4 J	0.62 J	0.33 J	1.4	0.96	0.38	0.16
Nickel	25	29	20.5	16.9 J	16.4 J	18.4	29.5	12.3	17.8	19.6	26.4
Selenium	3.9	0.41 U	0.5 U	0.521 J	0.421 UJ	0.46 U	0.49 U	1.74	2	1.58	2.38
Silver	В	0.14 UJ	0.17 UJ	0.81 J	0.413 J	0.15 U	0.16 U	1.95	0.811 J	0.913 J	1.44 J
Thallium	В	0.43 UJ	0.53 UJ	0.439 U	0.444 U	0.48 U	0.51 U	0.406 U	0.463 U	0.407 U	0.525 U
Zinc	50	107 J	53.2 J	188 J	132 J	66.6	95.4	76.8	96.3	52.7	84.1

Sample Location		SB-36	SB-36	SB-38	SB-38	SB-38	SB-38	SB-39	SB-39	SB-40B	SB-40B
Sample Interval (Feet bgs)		25 to 27	33 to 35	3 to 4	4 to 5	13 to 15	21 to 23	7.5 to 8	22 to 23	33 to 35	35 to 37
Sampling Date		5/8/04	5/8/04	4/25/04	4/25/04	5/16/04	5/16/04	07/21/04	07/21/04	07/27/04	07/27/04
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor		1.0	1	1.0	1.0	1.0	1.0	1	1.0	1.0	1.0
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM RSCO										
Cyanide	NC	3.26	0.796 U	0.665 U	0.673 U	2.09	2.4	1.35	0.7 U	0.62 U	0.8 U
Amenable Cyanide	NC	0.64 U	0.69 U	0.665 U	0.673 U	0.73 U	0.79 U	0.62 U	0.7 U	0.62 U	0.79 U

Sample Location		SB-40B	MW-40A	B-90	B-91	B-91	B-91	B-92	B-92	B-92
Sample Interval (Feet bgs)		41 to 43	4 to 5	4 to 5	4 to 5	8 to 11	11 to 15	0 to 1	3	9 to 13
Sampling Date		07/27/04	07/06/04	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM									
PP Metals	RSCO									
Antimony	В	0.84 U	1.47 J	0.35 U	0.35 U	0.48 J	3.5 J	0.4 U	0.44 U	0.47 U
Arsenic	12	9.49	12	2.8	1.9	2.1	4.6	5.1	2.2	7.2
Beryllium	600	0.88	0.406 J	0.2 J	0.22 J	0.23 J	0.42 J	0.4 J	0.49 J	0.53 J
Cadmium	1	1.97	0.408 J	0.03 U	0.03 U	0.04 U	0.04 U	0.04 U	0.04 U	0.05 U
Chromium	40	23.1	11.8	16.5	15.3	12.5	16.8	19.2	20	22
Copper	50	14.5	20.6	16.1	16.2	17.1	26.9	54.5	98.7	33.2
Lead	500	15.4	137	27.2	25.6	114	361	349	219	162
Mercury	0.1	0.02	0.21 J	0.103	0.046	0.209	0.273	1.9	1.3	0.608
Nickel	25	23.1	16.3	14.4	34	19.1	16.3	15.7	19.4	21.5
Selenium	3.9	1.58	1.18 J	0.36 U	0.36 U	0.4 U	0.39 U	0.41 U	0.45 U	0.49 U
Silver	В	1.32 J	0.379 J	0.36 J	0.37 J	0.33 J	0.89 J	0.91 J	1.4	1.1 J
Thallium	В	0.493 U	0.413 J	0.55 U	0.56 U	0.63 U	0.61 U	0.64 U	0.7 U	0.76 U
Zinc	50	78.5	81.4	124	47.8	58.8	138	133	172	80.9

Sample Location		SB-40B	MW-40A	B-90	B-91	B-91	B-91	B-92	B-92	B-92
Sample Interval (Feet bgs)		41 to 43	4 to 5	4 to 5	4 to 5	8 to 11	11 to 15	0 to 1	3	9 to 13
Sampling Date		07/27/04	07/06/04	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05	11/04/05
Matrix		SOIL	SOIL							
Dilution Factor		1.0	1.0							
Units		mg/Kg								
	TAGM									
	RSCO									
Cyanide	NC	0.74 U	0.637 U	0.526 U	1.59	0.593 U	0.59 U	0.614 U	0.678 U	0.736 U
Amenable Cyanide	NC	0.75 U	0.64 U	0.53 U	0.53 U	0.59 U	0.59 U	0.61 U	0.68 U	0.74 U

Sample Location								
Sample Interval (Feet bgs)								
Sampling Date								
Units								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TAGM	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
PP Metals	RSCO				Exceedances			
Antimony	В	39	12	31%	0	0%	< 0.35	44.1
Arsenic	12	39	39	100%	3	8%	1.3	24.2
Beryllium	600	39	39	100%	0	0%	0.2	1.04
Cadmium	1	39	24	62%	6	15%	< 0.03	2.17
Chromium	40	39	39	100%	0	0%	10	38
Copper	50	39	39	100%	8	21%	11.7	340
Lead	500	39	39	100%	4	10%	10.4	2,000
Mercury	0.1	39	39	100%	31	79%	0.02	2.3
Nickel	25	39	38	97%	5	13%	< 11.3	34
Selenium	3.9	39	13	33%	0	0%	< 0.36	3.16
Silver	В	39	22	56%	0	0%	< 0.12	3.73
Thallium	В	39	4	10%	0	0%	< 0.382	1.44
Zinc	50	39	39	100%	36	92%	33.8	311

Sample Location								
Sample Interval (Feet bgs)								
Sampling Date								
Matrix								
Dilution Factor								
Units								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reporte
	TAGM	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
	RSCO	-			Exceedances			
Cyanide	NC	39	5	13%	0	0%	< 0.526	3.2
Amenable Cyanide	NC	39	0	0%	0	0%	< 0.530	< 0.9

Summary of Field Work and Observations for Area 6 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-29

Boring / Well ID	Date Completed	Boring Depth (ft bg)	Well Screen Interval	Depth to GW (ft bg)	Depth to top of Clay (ft bg)	Field Observations
SB-43	23-Jul-04	24	NA	7	NA	Wood refusal at 24' bgs, to be moved to Route 9A
SB-43	2-Aug-04	9	NA	7	NA	Wood refusal at 9' bgs, to be moved to Route 9A. Max. 7'-9': PID = 48 ppm max.
SB-44B	2-Aug-04	9	NA	5.8	NA	Refusal at 9' bgs, to be moved to Route 9A. 8'-9': PID = 1,538 ppm max. 6'-9': MGP-related odor.
SB-45	22-Jul-04	37	NA	7.5	31- 37	N/O, N/S, no sheen
SB-46	23-Jul-04	6	NA	5.8	NA	Refusal at 6' bgs, to be moved to Route 9A. N/O, N/S

Note: Elevations are reported in feet below ground surface (ft bgs).

Laboratory and Data Validation Qualifiers Former Broadway/Dyckman Street Station Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

					l able	- -30				
Sample Location Sample Interval (Feet bgs)		B-43 7 to 7.5	SB-43 6 to 8	SB-43 8 to 10	SB-43 23 to 23.5	SB-44 6.0 to 8.0	SB-44 8 to 10	SB-45 7 to 8	SB-45 7 to 7.5	SB-45 31.5 to 32
Sampling Date Units		07/23/04 ug/Kg	08/02/04 ug/Kg	08/02/04 ug/Kg	07/23/04 ug/Kg	08/02/04 ug/Kg	08/02/04 ug/Kg	07/08/04 ug/Kg	07/22/04 ug/Kg	07/22/04 ug/Kg
Volatile Organic Compounds (ug/Kg)										
Dichlorodifluoromethane	NC	1.4 U	1.4 U	1.5 U	1.4 U	1.8 U	46 U	1.5 U	1.4 U	10 U
Chloromethane	NC	0.38 U	0.38 U	0.41 U	0.38 U	0.48 U	95 U	0.4 U	0.38 U	2.7 U
Vinyl Chloride	200	0.27 U	0.27 U	0.29 U	0.27 U	0.34 U	37 U	0.28 U	0.27 U	1.9 U
Bromomethane	NC	0.81 U	0.8 U	0.88 U	0.81 U	1 U	110 U	0.85 U	0.8 U	5.8 U
Chloroethane	1,900	0.6 U	0.6 U	0.66 U	0.6 U	0.76 U	120 U	0.63 U	0.6 U	4.3 U
Trichlorofluoromethane	NC	2.8 U	2.8 U	3.1 U	2.8 U	3.6 U	80 U	3 U	2.8 U	20 U
1,1,2-Trichlorotrifluoroethane	6,000	0.53 U	0.52 U	0.57 U	0.53 U	0.67 U	96 U	0.55 U	0.52 U	3.8 U
1,1-Dichloroethene	400	0.25 U	0.24 U	0.27 U	0.25 U	0.31 U	45 U	0.26 U	0.24 U	1.8 U
Acetone	200	33	8.5 U	9.3 U	33	11 U	3700 J	9 U	8.5 U	210
Carbon Disulfide	2,700	14 J	0.11 U	0.13 U	14 J	0.15 U	54 U	0.12 U	0.11 U	0.83 U
Methyl tert-butyl Ether	120	0.26 U	0.26 U	0.29 U	0.26 U	0.33 U	50 U	0.28 U	0.26 U	1.9 U
Methyl Acetate	NC	1.5 U	1.4 U	1.6 U	1.5 U	1.8 U	120 U	1.5 U	1.4 U	10 U
Methylene Chloride	100	0.78 U	0.77 U	0.85 U	0.78 U	0.99 U	86 U	8.3 J	7.4 J	19 J
trans-1,2-Dichloroethene	300	0.43 U	0.42 U	0.46 U	0.43 U	0.54 U	71 U	0.45 U	0.42 U	3 U
1,1-Dichloroethane	200	0.41 U	0.4 U	0.44 U	0.41 U	0.51 U	30 U	0.43 U	0.4 U	2.9 U
Cyclohexane	NC	0.35 U	0.35 U	0.38 U	0.35 U	0.44 U	51 U	0.37 U	0.35 U	18 J
2-Butanone	300	2.6 U	2.6 U	2.8 U	2.6 U	3.3 U	390 U	2.7 U	2.6 U	53 J
Carbon Tetrachloride	600	0.34 U	0.34 U	0.37 U	0.34 U	0.43 U	65 U	0.36 U	0.34 U	2.4 U
cis-1,2-Dichloroethene	NC	0.4 U	0.4 U	0.44 U	0.4 U	0.51 U	110 U	0.42 U	0.4 U	2.9 U
Chloroform	300	0.27 U	0.27 U	0.3 U	0.27 U	0.34 U	80 U	0.29 U	0.27 U	1.9 U
1,1,1-Trichloroethane	800	0.31 U	0.31 U	0.34 U	0.31 U	0.39 U	57 U	0.33 U	0.31 U	2.2 U
Methylcyclohexane	NC	0.41 U	0.4 U	14	0.41 U	0.51 U	2200 J	0.43 U	0.4 U	73
Benzene	60	2.7 J	0.23 U	0.25 U	2.7 J	0.29 U	33 U	0.24 U	0.23 U	850 D
1,2-Dichloroethane	200	3.5 U	3.5 U	3.8 U	3.5 U	4.5 U	44 U	3.7 U	3.5 U	25 U
Trichloroethene	700	0.37 U	0.36 U	0.4 U	0.37 U	0.46 U	93 U	0.39 U	5.8	2.6 U
1,2-Dichloropropane	NC	0.39 U	0.38 U	0.42 U	0.39 U	0.49 U	44 U	0.4 U	0.38 U	2.7 U
Bromodichloromethane	NC	0.38 U	0.38 U	0.42 U	0.38 U	0.48 U	48 U	0.4 U	0.38 U	2.7 U
4-Methyl-2-Pentanone	1,000	2.8 U	2.7 U	3 U	2.8 U	3.5 U	180 U	2.9 U	2.7 U	20 U
Toluene	1,500	0.3 U	0.29 U	0.32 U	0.3 U	0.38 U	280 J	0.31 U	0.29 U	22 J
t-1,3-Dichloropropene	NC	0.29 U	0.29 U	0.32 U	0.29 U	0.37 U	59 U	0.31 U	0.29 U	2.1 U
cis-1,3-Dichloropropene	NC	0.22 U	0.22 U	0.24 U	0.22 U	0.28 U	21 U	0.23 U	0.22 U	1.6 U
1,1,2-Trichloroethane	NC	0.58 U	0.57 U	0.63 U	0.58 U	0.73 U	72 U	0.61 U	0.57 U	4.1 U
2-Hexanone	NC	3.7 U	3.6 U	4 U	3.7 U	4.6 U	92 U	3.9 U	3.6 U	26 U
Dibromochloromethane	NA	0.33 U	0.33 U	0.36 U	0.33 U	0.42 U	52 U	0.35 U	0.33 U	2.4 U
1,2-Dibromoethane	NC	0.48 U	0.47 U	0.52 U	0.48 U	0.6 U	88 U	0.5 U	0.47 U	3.4 U
Tetrachloroethene	1,400	6.8	3.9 J	5.8 J	6.8	0.92 U	46 U	0.77 U	8.8	11 J
Chlorobenzene	1,700	0.4 U	0.4 U	0.44 U	0.4 U	0.51 U	51 U	0.42 U	0.4 U	2.9 U
Ethyl Benzene	5,500	0.29 U	0.28 U	0.31 U	0.29 U	0.36 U	1900	0.3 U	0.28 U	1400 D
m/p-Xylenes	1,200	2.3 J	10	0.64 U	2.3 J	0.74 U	5900	0.62 U	1.1 J	250
o-Xylene	600	0.5 U	11	2.7 J	0.5 U	0.63 U	5100	0.52 U	0.49 U	1300 D
Styrene	NC	0.36 U	0.36 U	0.39 U	0.36 U	0.45 U	48 U	0.38 U	0.36 U	2.6 U
Bromoform	NC	0.34 U	0.34 U	0.37 U	0.34 U	0.43 U	35 U	0.36 U	0.34 U	2.5 U
Isopropylbenzene	2,300	0.43 U	3.6 J	0.46 U	0.43 U	0.54 U	1000	0.45 U	0.42 U	800
1,1,2,2-Tetrachloroethane	600	0.61 U	0.6 U	0.66 U	0.61 U	0.77 U	69 U	0.64 U	0.6 U	4.3 U
1,3-Dichlorobenzene	1,600	0.24 U	0.24 U	0.26 U	0.24 U	0.31 U	52 U	0.25 U	0.24 U	1.7 U
1,4-Dichlorobenzene	8,500	0.4 U	0.4 U	0.44 U	0.4 U	0.51 U	54 U	0.42 U	0.4 U	2.9 U
1,2-Dichlorobenzene	7,900	0.47 U	0.46 U	0.51 U	0.47 U	0.59 U	51 U	0.49 U	0.46 U	3.4 U
1,2-Dibromo-3-Chloropropane	NC	0.78 U	0.77 U	0.85 U	0.78 U	0.98 U	130 U	0.82 U	0.77 U	5.5 U
1,2,4-Trichlorobenzene	3,400	0.29 U	0.28 U	0.31 U	0.29 U	0.36 U	40 U	0.3 U	0.28 U	2 U
Total Confident Conc. VOC	10,000	56.5	28.5	22.5	58.8	ND	20,080	8.3	23.1	5,006

Sample Location		SB-46							
Sample Interval (Feet bgs)		4.5 to 5.5							
Sampling Date		07/07/04							
Units		ug/Kg							
		3. 3	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Volatile Organic Compounds (ug/Kg)			Samples	Detections	Detections	TAGM Exceedances	Exceedances	Concentration	Concentration
Dichlorodifluoromethane	NC	1.6 U	10	0	0%	0	0%	< 1.4	< 46
Chloromethane	NC	0.42 U	10	0	0%	0	0%	< 0.38	< 95
Vinyl Chloride	200	0.3 U	10	0	0%	0	0%	< 0.27	< 37
Bromomethane	NC	0.91 U	10	0	0%	0	0%	< 0.8	< 110
Chloroethane	1,900	0.67 U	10	0	0%	0	0%	< 0.6	< 120
Trichlorofluoromethane	NC	3.2 U	10	0	0%	0	0%	< 2.8	< 80
1,1,2-Trichlorotrifluoroethane	6,000	0.59 U	10	0	0%	0	0%	< 0.52	< 96
1,1-Dichloroethene	400	0.28 U	10	0	0%	0	0%	< 0.24	< 45
Acetone	200	9.6 U	10	4	40%	2	20%	< 8.5	3,700
Carbon Disulfide	2,700	0.13 U	10	2	20%	0	0%	< 0.11	< 54
Methyl tert-butyl Ether	120	0.29 U	10	0	0%	0	0%	< 0.26	< 50
Methyl Acetate	NC	1.6 U	10	0	0%	0	0%	< 1.4	< 120
Methylene Chloride	100	6.4 J	10	4	40%	0	0%	< 0.77	< 86
trans-1,2-Dichloroethene	300	0.48 U	10	0	0%	0	0%	< 0.42	< 71
1,1-Dichloroethane	200	0.45 U	10	0	0%	0	0%	< 0.4	< 30
Cyclohexane	NC	0.39 U	10	1	10%	0	0%	< 0.35	< 51
2-Butanone	300	2.9 U	10	1	10%	0	0%	< 2.6	< 390
Carbon Tetrachloride	600	0.38 U	10	0	0%	0	0%	< 0.34	< 65
cis-1,2-Dichloroethene	NC	0.45 U	10	0	0%	0	0%	< 0.4	< 110
Chloroform	300	0.3 U	10	0	0%	0	0%	< 0.27	< 80
1,1,1-Trichloroethane	800	0.35 U	10	0	0%	0	0%	< 0.31	< 57
Methylcyclohexane	NC	0.46 U	10	3	30%	0	0%	< 0.4	2,200
Benzene	60	0.26 U	10	3	30%	1	10%	< 0.23	850
1,2-Dichloroethane	200	3.9 U	10	0	0%	0	0%	< 3.5	< 44
Trichloroethene	700	0.41 U	10	1	10%	0	0%	< 0.36	< 93
1,2-Dichloropropane	NC	0.43 U	10	0	0%	0	0%	< 0.38	< 44
Bromodichloromethane	NC	0.43 U	10	0	0%	0	0%	< 0.38	< 48
4-Methyl-2-Pentanone	1,000	3.1 U	10	0	0%	0	0%	< 2.7	< 180
Toluene	1,500	0.33 U	10	2	20%	0	0%	< 0.29	280
t-1,3-Dichloropropene	NC	0.33 U	10	0	0%	0	0%	< 0.29	< 59
cis-1,3-Dichloropropene	NC	0.25 U	10	0	0%	0	0%	< 0.22	< 21
1,1,2-Trichloroethane	NC	0.65 U	10	0	0%	0	0%	< 0.57	< 72
2-Hexanone	NC	4.1 U	10	0	0%	0	0%	< 3.6	< 92
Dibromochloromethane	NA	0.37 U	10	0	0%	0	0%	< 0.33	< 52
1,2-Dibromoethane	NC	0.53 U	10	0	0%	0	0%	< 0.47	< 88
Tetrachloroethene	1,400	0.81 U	10	6	60%	0	0%	< 0.77	< 46
Chlorobenzene	1,700	0.45 U	10	0	0%	0	0%	< 0.4	< 51
Ethyl Benzene	5,500	0.32 U	10	2	20%	0	0%	< 0.28	1,900
m/p-Xylenes	1,200	0.66 U	10	6	60%	1	10%	< 0.62	5,900
o-Xylene	600	0.55 U	10	4	40%	2	20%	< 0.49	5,100
Styrene	NC	0.4 U	10	0	0%	0	0%	< 0.36	< 48
Bromoform	NC	0.38 U	10	0	0%	0	0%	< 0.34	< 35
Isopropylbenzene	2,300	0.47 U	10	3	30%	0	0%	< 0.42	1,000
1,1,2,2-Tetrachloroethane	600	0.68 U	10	0	0%	0	0%	< 0.6	< 69
1,3-Dichlorobenzene	1,600	0.27 U	10	0	0%	0	0%	< 0.24	< 52
1,4-Dichlorobenzene	8,500	0.45 U	10	0	0%	0	0%	< 0.4	< 54
1,2-Dichlorobenzene	7,900	0.52 U	10	0	0%	0	0%	< 0.46	< 51
1,2-Dibromo-3-Chloropropane	NC .	0.87 U	10	0	0%	0	0%	< 0.77	< 130
1,2,4-Trichlorobenzene	3,400	0.32 U	10	0	0%	0	0%	< 0.28	< 40
Total Confident Conc. VOC	10,000	6.4							

					Table 4	-31				
Sample Location Sample Interval (Feet bgs)		B-43 7 to 7.5	SB-43 6 to 8	SB-43 8 to 10	SB-43 23 to 23.5	SB-44 6.0 to 8.0	SB-44 8 to 10	SB-45 7 to 8	SB-45 7 to 7.5	SB-45 31.5 to 32
Sampling Date		07/23/04	8/2/04	8/2/04	07/23/04	08/02/04	08/02/04	07/08/04	07/22/04	07/22/04
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic	T. 0.4 D000									
Compounds (ug/kg)	TAGM RSCO	74.11	700 11	4400 1	20.11	400.11	00.11	77.11	000 11	50.11
Benzaldehyde	NC OO MDI	74 U	730 U	1100 J	39 U	460 U	36 U	77 U	360 U	52 U
Phenol bis(2-Chloroethyl)ether	30 or MDL NC	32 U 37 U	310 U 370 U	340 U 400 U	16 U 19 U	200 U 230 U	15 U 18 U	33 U 39 U	150 U 180 U	22 U 26 U
2-Chlorophenol	800	37 U	320 U	350 U	17 U	210 U	16 U	39 U	160 U	23 U
2-Methylphenol	100 or MDL	48 U	470 U	520 U	25 U	300 U	23 U	50 U	230 U	34 U
2,2-oxybis(1-Chloropropane)	NC NC	41 U	410 U	440 U	21 U	260 U	20 U	43 U	200 U	29 U
Acetophenone	NC	40 U	390 U	430 U	21 U	250 U	19 UJ	41 U	190 U	28 U
3+4-Methylphenols	900	35 U	340 U	380 U	18 U	220 U	17 U	36 U	170 U	25 U
N-Nitroso-di-n-propylamine	NC NC	33 U	330 U	360 U	17 U	210 U	16 U	35 U	160 U	24 U
Hexachloroethane	NC	36 U	360 U	390 U	19 U	230 U	17 U	38 U	180 U	26 U
Nitrobenzene	200 or MDL	38 U	380 U	420 U	20 U	240 U	19 UJ	40 U	190 U	27 U
Isophorone	4,400	28 U	280 U	300 U	15 U	180 U	14 UJ	29 U	140 U	20 U
2-Nitrophenol	330 or MDL	30 U	300 U	330 U	16 U	190 U	15 UJ	32 U	150 U	22 U
2,4-Dimethylphenol	NC	41 U	410 U	440 U	21 U	260 U	20 UJ	43 U	200 U	29 U
bis(2-Chloroethoxy)methane	NC	35 U	340 U	370 U	18 U	220 U	17 UJ	36 U	170 U	24 U
2,4-Dichlorophenol	400	27 U	260 U	290 U	14 U	170 U	13 UJ	28 U	130 U	19 U
Naphthalene	13,000	16 U	1800 J	180 U	47	100 U	610 J	17 U	80 U	2600
4-Chloroaniline	220 or MDL	280 U	2800 U	3000 U	150 U	1800 U	140 UJ	290 U	1400 U	200 U
Hexachlorobutadiene	NC	27 U	260 U	290 U	14 U	170 U	13 UJ	28 U	130 U	19 U
Caprolatam	NC	28 U	280 U	300 U	15 U	170 U	13 UJ	29 U	140 U	20 U
4-Chloro-3-methylphenol	240 or MDL	22 U	220 U	240 U	12 U	140 U	11 UJ	23 U	110 U	16 U
2-Methylnaphthalene	36,400	13 U	5600 J	140 U	6.8 U	82 U	2200 J	14 U	64 U	810
Hexachlorocyclopentadiene	NC	19 UJ	190 UJ	210 UJ	9.9 UJ	120 UJ	9.2 UJ	20 UJ	93 UJ	13 U.
2,4,6-Trichlorophenol	NC	27 U	270 U	300 U	14 U	170 U	13 U	29 U	130 U	19 U
2,4,5-Trichlorophenol	100	50 U	500 U	540 U	26 U	310 U	24 U	52 U	240 U	35 U
1,1-Biphenyl	NC	22 U	220 U	240 U	12 U	140 U	11 U	23 U	110 U	94 J
2-Chloronaphthalene	NC	16 U	160 U	170 U	8.2 U	99 U	7.6 U	16 U	77 U	11 U
2-Nitroaniline	430 or MDL	27 U	270 U	300 U	14 U	170 U	13 U	29 U	130 U	19 U
Dimethylphthalate	2,000	18 U	180 U	200 U	9.4 U	110 U	8.7 U	19 U	88 U	13 U
Acenaphthylene	41,000	23 U	220 U	240 U	12 U	140 U	11 U	24 U	110 U	96 J
2,6-Dinitrotoluene	1,000	32 U	320 U	350 U	17 U	200 U	16 U	34 U	160 U	23 U
3-Nitroaniline	500 or MDL	120 U	1200 U	1300 U	64 U	770 U	59 U	130 U	600 U	87 U
Acenaphthene	50,000	17 U	170 U	180 U	8.7 U	580 J	48 J	17 U	82 U	820
2,4-Dinitrophenol	200 or MDL	33 U	330 U	360 U	17 U	210 U	16 U	35 U	160 U	24 U
4-Nitrophenol	100 or MDL	74 U	730 U	800 U	39 U	460 U	36 U	77 U	360 U	210 J
Dibenzofuran	6,200	25 U 15 U	250 U 150 U	270 U 160 U	13 U 7.9 U	160 U 95 U	12 U 7.3 U	26 U 16 U	120 U 74 U	220 J 11 U
2,4-Dinitrotoluene	1,000 7,100	24 U	240 U	260 U	7.9 U	95 U 150 U	7.3 U 11 U	25 U	120 U	11 U
Diethylphthalate 4-Chlorophenyl-phenylether	7,100 NC	24 U 19 U	240 U 190 U	260 U 200 U	9.8 U	150 U 120 U	9.1 U	25 U 20 U	120 U 92 U	17 U
Fluorene	50,000	77 J	210 U	230 U	9.8 U	120 U	9.1 U 71 J	20 U	110 U	630
4-Nitroaniline	50,000 NC	59 U	590 U	640 U	31 U	370 U	29 U	62 U	290 U	42 U
4,6-Dinitro-2-methylphenol	NC NC	44 U	440 U	470 U	23 U	280 U	29 U	46 U	290 U	31 U
N-Nitrosodiphenylamine	NC NC	19 U	190 U	210 U	10 U	120 U	9.3 U	20 U	94 U	14 U
4-Bromophenyl-phenylether	NC NC	20 U	200 U	210 U	10 U	120 U	9.6 U	20 U	94 U	14 U
Hexachlorobenzene	410	14 U	140 U	150 U	7.4 U	89 U	6.9 U	15 U	69 U	10 U
Atrazine	NC	23 U	230 U	250 U	12 U	140 U	11 U	24 U	110 U	16 U
Pentachlorophenol	1000 or MDL	24 U	230 U	250 U	12 U	150 U	11 U	25 U	120 U	17 U
Phenanthrene	50,000	760	840 J	4300 J	290	3200 J	340 J	760 J	560 J	3700
Anthracene	50,000	240 J	180 U	1300 J	100	1300 J	84 J	19 U	88 U	820
Carbazole	30,000 NC	17 U	170 U	180 U	8.7 U	100 U	8.1 U	17 U	82 U	210 J

Sample Location Sample Interval (Feet bgs)		B-43 7 to 7.5	SB-43 6 to 8	SB-43 8 to 10	SB-43 23 to 23.5	SB-44 6.0 to 8.0	SB-44 8 to 10	SB-45 7 to 8	SB-45 7 to 7.5	SB-45 31.5 to 32
Sampling Date		07/23/04	8/2/04	8/2/04	07/23/04	08/02/04	08/02/04	07/08/04	07/22/04	07/22/04
, ,										
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Semivolatile Organic										
Compounds (ug/kg)	TAGM RSCO									
Fluoranthene	50,000	1200	100 U	7000 J	620	3400 J	290 J	500 J	620 J	1500
Pyrene	50,000	1200	960 J	13000	470	5200	270 J	1000	700 J	1700
Butylbenzylphthalate	50,000	25 U	250 U	270 U	13 U	160 U	12 U	26 U	120 U	18 U
3,3-Dichlorobenzidine	NA	120 U	1200 U	1300 U	63 U	760 U	59 U	130 U	590 U	86 U
Benzo(a)anthracene	224 or MDL	710 J	110 U	3600 J	270	1500 J	110 J	390 J	56 U	740
Chrysene	400	570 J	240 U	3700 J	230	1600 J	110 J	510 J	120 U	650
bis(2-Ethylhexyl)phthalate	50,000	360 J	170 U	980 J	210	1800 J	170 J	18 U	85 U	67 J
Di-n-octyl phthalate	50,000	18 U	180 U	200 U	9.4 U	110 U	8.7 U	19 U	88 U	13 U
Benzo(b)fluoranthene	1,100	750 J	400 R	4100 J	280	1400 J	98 J	240 J	200 U	550
Benzo(k)fluoranthene	1,100	340 J	260 R	2000 J	150	630 J	46 J	140 J	130 U	240 J
Benzo(a)pyrene	61 or MDL	600 J	130 R	3000 J	230	1000 J	71 J	230 J	64 U	530 J
Indeno(1,2,3-cd)pyrene	3,200	210 J	180 U	200 U	45 J	110 U	8.8 U	120 J	89 U	270 J
Dibenz(a,h)anthracene	14 or MDL	22 U	220 R	240 UJ	12 U	140 R	11 U	23 U	110 U	16 U
Benzo(g,h,i)perylene	50,000	230 J	330 R	860 J	67	210 R	16 U	96 J	160 U	250 J
Total Confident Conc. SVOC	,	7,247	9,200	44,940	3,009	21,610	4,518	3,986	1,880	16,707
Carcinogenic SVOCs in BaP	Equivalents	776.1	ND	3,827	293.3	1,312.3	93.4	311.5	ND	694.9

Sample Location		SB-46							
lo '		3D-40							
Sample Interval (Feet bgs)		4.5 to 5.5							
Sampling Date		07/07/04							
Units		ug/Kg							
Offics		ug/Ng							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic			Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO					Exceedances			
Benzaldehyde	NC	41 U	10	1	10%	0	0%	< 36	1,100
Phenol	30 or MDL	18 U	10	0		0	0%	< 15	< 340
bis(2-Chloroethyl)ether	NC	21 U	10	0	0%	0	0%	< 18	< 400
2-Chlorophenol	800	18 U	10	0		0	0%	< 16	< 350
2-Methylphenol	100 or MDL	27 U	10	0		0	0%	< 23	< 520
2,2-oxybis(1-Chloropropane)	NC	23 U	10	0		0	0%	< 20	< 440
Acetophenone	NC	22 U	10	0	0%	0	0%	< 19	< 430
3+4-Methylphenols	900	19 U	10	0	0%	0	0%	< 17	< 380
N-Nitroso-di-n-propylamine	NC	19 U	10	0		0	0%	< 16	< 360
Hexachloroethane	NC	20 U	10	0		0	0%	< 17	< 390
Nitrobenzene	200 or MDL	21 U	10	0		0	0%	< 19	< 420
Isophorone	4,400	16 U	10	0	0%	0	0%	< 14	< 300
2-Nitrophenol	330 or MDL	17 U	10	0	0%	0	0%	< 15	< 330
2,4-Dimethylphenol	NC	23 U	10	0	0%	0	0%	< 20	< 440
bis(2-Chloroethoxy)methane	NC	19 U	10	0	0%	0	0%	< 17	< 370
2,4-Dichlorophenol	400	15 U	10	0	0%	0	0%	< 13	< 290
Naphthalene	13,000	9.2 U	10	4	40%	0	0%	< 9.2	2,600
4-Chloroaniline	220 or MDL	160 U	10	0	0%	0	0%	< 140	< 3,000
Hexachlorobutadiene	NC	15 U	10	0	0%	0	0%	< 13	< 290
Caprolatam	NC	16 U	10	0	0%	0	0%	< 13	< 300
4-Chloro-3-methylphenol	240 or MDL	13 U	10	0	0%	0	0%	< 11	< 240
2-Methylnaphthalene	36,400	7.3 U	10	3	30%	0	0%	< 6.8	5,600
Hexachlorocyclopentadiene	NC	11 UJ	10	0	0%	0	0%	< 9.2	< 210
2,4,6-Trichlorophenol	NC	15 U	10	0	0%	0	0%	< 13	< 300
2,4,5-Trichlorophenol	100	28 U	10	0	0%	0	0%	< 24	< 540
1,1-Biphenyl	NC	13 U	10	1	10%	0	0%	< 11	< 240
2-Chloronaphthalene	NC	8.8 U	10	0	0%	0	0%	< 7.6	< 170
2-Nitroaniline	430 or MDL	15 U	10	0	0%	0	0%	< 13	< 300
Dimethylphthalate	2,000	10 U	10	0	0%	0	0%	< 8.7	< 200
Acenaphthylene	41,000	13 U	10	1	10%	0	0%	< 11	< 240
2,6-Dinitrotoluene	1,000	18 U	10	0	0%	0	0%	< 16	< 350
3-Nitroaniline	500 or MDL	68 U	10	0	0%	0	0%	< 59	< 1,300
Acenaphthene	50,000	9.3 U	10	3	30%	0	0%	< 8.7	820
2,4-Dinitrophenol	200 or MDL	19 U	10	0	0%	0	0%	< 16	< 360
4-Nitrophenol	100 or MDL	41 U	10	1	10%	1	10%	< 36	< 800
Dibenzofuran	6,200	14 U	10	1	10%	0	0%	< 12	< 270
2,4-Dinitrotoluene	1,000	8.4 U	10	0	0%	0	0%	< 7.3	< 160
Diethylphthalate	7,100	13 U	10	0	0%	0	0%	< 11	< 260
4-Chlorophenyl-phenylether	NC	10 U	10	0		0	0%	< 9.1	< 200
Fluorene	50,000	12 U	10	3	30%	0	0%	< 11	630
4-Nitroaniline	NC	33 U	10	0		0	0%	< 29	< 640
4,6-Dinitro-2-methylphenol	NC	25 U	10	0		0	0%	< 21	< 470
N-Nitrosodiphenylamine	NC	11 U	10	0		0	0%	< 9.3	< 210
4-Bromophenyl-phenylether	NC	11 U	10	0	0%	0	0%	< 9.6	< 210
Hexachlorobenzene	410	7.9 U	10	0	- , ,	0	0%	< 6.9	< 150
Atrazine	NC	13 U	10	0		0	0%	< 11	< 250
Pentachlorophenol	1000 or MDL	13 U	10	0		0	0%	< 11	< 250
Phenanthrene	50,000	9.5 U	10	9	90%	0	0%	< 9.5	4,300
Anthracene	50,000	10 U	10	6		0	0%	< 10	1,300
Carbazole	NC	9.3 U	10	1	10%	0	0%	< 8.1	210
	8,100	57 J	10	1	10%	0	0%	< 4.9	< 110

Sample Location Sample Interval (Feet bgs)		SB-46 4.5 to 5.5							
Sampling Date		07/07/04							
Units									
Onits		ug/Kg							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Samiyalatila Organia				Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Semivolatile Organic	TACM DOOG		Samples	Detections	Detections		Exceedances	Concentration	Concentration
Compounds (ug/kg)	TAGM RSCO	5011			200/	Exceedances	201		7.000
Fluoranthene	50,000	5.9 U	10	8		0	0%	< 5.9	7,000
Pyrene	50,000	7.5 U	10	9	90%	0	0%	< 7.5	13,000
Butylbenzylphthalate	50,000	14 U	10	0	0%	0	0%	< 12	< 270
3,3-Dichlorobenzidine	NA	68 U	10	0	0%	0	0%	< 59	< 1,300
Benzo(a)anthracene	224 or MDL	6.4 U	10	7	70%	6	60%	< 6.4	3,600
Chrysene	400	13 U	10	7	70%	5	50%	< 13	3,700
bis(2-Ethylhexyl)phthalate	50,000	100 J	10	7	70%	0	0%	< 18	1,800
Di-n-octyl phthalate	50,000	10 U	10	0	0%	0	0%	< 8.7	< 200
Benzo(b)fluoranthene	1,100	23 U	10	7	70%	2	20%	< 23	4,100
Benzo(k)fluoranthene	1,100	14 U	10	7	70%	1	10%	< 14	2,000
Benzo(a)pyrene	61 or MDL	7.3 U	10	7	70%	7	70%	< 7.3	3,000
Indeno(1,2,3-cd)pyrene	3,200	10 U	10	4	40%	0	0%	< 8.8	270
Dibenz(a,h)anthracene	14 or MDL	12 U	10	0	0%	0	0%	< 11	< 240
Benzo(g,h,i)perylene	50,000	18 U	10	5	50%	0	0%	< 16	860
									•
Total Confident Conc. SVOC	500,000	157							
Carcinogenic SVOCs in BaP I	Equivalents	ND							

Summary of Metals and Cyanide in Subsurface Soil - Area 6 Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-32 B-43 SB-43 SB-43 SB-44 SB-45 SB-45 SB-45

Sample Location		B-43	SB-43	SB-43	SB-43	SB-44	SB-44	SB-45	SB-45	SB-45
Sample Interval (Feet bgs)		7 to 7.5	6 to 8	8 to 10	23 to 23.5	6.0 to 8.0	8 to 10	7 to 8	7 to 7.5	31.5 to 32
Sampling Date		07/23/04	08/02/04	08/02/04	07/23/04	08/02/04	08/02/04	07/22/04	07/08/04	07/22/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM									
PP Metals	RSCO									
Antimony	В	0.645 U	0.643 U	0.694 U	0.678 U	0.621 U	4.1 J	0.641 U	0.67 U	0.929 U
Arsenic	12	4.71	2.4	10.4	2.16	3.52	7.67	15.1	7.99	20.3
Beryllium	600	0.506 J	0.279 J	0.384 J	0.367 J	0.483 J	0.402 J	0.373 J	0.299 J	0.826
Cadmium	1	1.29	1.26	3.24	0.984	0.327 J	1.46	1.79	0.242 J	2.25
Chromium	40	17.4	13.2	30.5	9.62	18.7	18.1	16	13.3	27.3
Copper	50	18.6	39.5	181	13.7	23.8	152	46.8	33.4	73.2
Lead	500	62.1	89.9 J	956 J	149	46.2	831	269	217	206
Mercury	0.1	0.08	0.76 J	9.3 J	0.18	0.16 J	1.3 J	0.76	1.9 J	1.4
Nickel	25	13.5	12.2	19	8.71	12.5	22.5	24.7	20.4	25.8
Selenium	3.9	1.37	0.807 J	2.51	1.17 J	1.13	1.05 J	2.44	0.911 J	2.05
Silver	В	0.239 J	0.352 J	2.38	0.128 J	0.116 U	0.152 U	0.967 J	0.559 J	1.23 J
Thallium	В	0.474 J	0.377 U	0.407 U	0.398 U	0.364 U	0.478 U	0.376 U	0.393 J	0.545 U
Zinc	50	112	108	383	109	63.4	485	147	105	159
Sample Location		B-43	SB-43	SB-43	SB-43	SB-44	SB-44	SB-45	SB-45	SB-45
Sample Interval (Feet bgs)		7 to 7.5	6 to 8	8 to 10	23 to 23.5	6.0 to 8.0	8 to 10	7 to 8	7 to 7.5	31.5 to 32
Sampling Date		07/23/04	07/29/04	08/02/04	07/23/04	8/2/04	8/2/04	07/22/04	07/08/04	07/22/04
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	TAGM									
	RSCO									
Cyanide	NC	0.57 U	0.58 U	0.62 U	0.6 U	0.56 R	0.72 R	0.57 U	0.601 U	0.83 U
Amenable Cyanide	NC	0.57 U	0.58 U	0.62 U	0.6 U	0.56 R	0.72 R	0.57 U	0.6 U	0.83 U

						Table 4-	32			
Sample Location		SB-46								
Sample Interval (Feet bgs)		4.5 to 5.5								
Sampling Date		07/07/04								
Units		mg/Kg								
		•	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Re	eported
	TAGM		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentra	ation
PP Metals	RSCO		·			Exceedances				
Antimony	В	0.71 U	10	1	10%	0	0%	< 0.621	4.	
Arsenic	12	0.946 J	10	10	100%	2	20%	0.946		0.3
Beryllium	600	0.382 J	10	10	100%	0	0%	0.279		.826
Cadmium	1	0.274 J	10	10	100%	6	60%	0.242		.24
Chromium	40	10.7	10	10	100%	0	0%	9.62		0.5
Copper	50	12.1	10	10	100%	3	30%	12.1		81
Lead	500	15.4	10	10	100%	2	20%	15.4		56
Mercury	0.1	0.01 J	10	10	100%	8	80%	0.01		.3
Nickel	25	13.5	10	10	100%	1	10%	8.71		5.8
Selenium	3.9	1.23 J	10	10	100%	0	0%	0.807		.51
Silver	В	0.132 U	10	7	70%	0	0%	< 0.116		.38
Thallium	В	0.416 J	10	3	30%	0	0%	< 0.364		.545
Zinc	50	47.1	10	10	100%	9	90%	47.1	48	85
Sample Location		SB-46								
Sample Interval (Feet bgs)		4.5 to 5.5								
Sampling Date		07/07/04								
Units										
Units		mg/Kg	Niverbanaf	Ni walan af		Niverbanas	Г	Minimum Denested	Maudanua Da	
	TAGM		Number of Samples	Number of Detections	Frequency of Detections	Number of TAGM	Frequency of Exceedances	Minimum Reported Concentration	Maximum Re Concentra	
	RSCO		Samples	Detections	Detections	Exceedances	Exceedances	Concentration	Concentra	auoi i
Cyanide	NC	0.643 U	10	2	20%	0	0%	< 0.56	<	0.83
Amenable Cyanide	NC	0.64 U	10	2	20%	0	0%	< 0.56	<	0.83

Laboratory and Data Validation Qualifiers Former Broadway/Dyckman Street Station Consolidated Edison Company of New York, Inc.

The following qualifiers have been used for the soil and groundwater data in the data tables.

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- D The compound was found at a dilution factor.
- E The analyte exceeded the calibrated range of the instrument for that specific analysis.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- R Data rejected based upon TRC data validation.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed
- NC No criteria listed in the NYSDEC TAGM 4046.
- N/A Not available according to the NYSDEC.

Sample Location	1 7	MW-5A	MW-5B	MW-7A	MW-12A	MW-12B	MW-22A	MW-24A	MW-29A	MW-31A	MW-34A
Sampling Date		10/12/05	10/12/05	10/11/05	10/11/05	10/11/05	10/11/05	10/12/05	10/12/05	10/11/05	10/11/05
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
V-1-41- Oi- Oi-	TOGS										
Volatile Organic Compounds	Class GA	0.05.11	0.47.11	0.17 U	0.17 U	0.17 U	0.47.11	0.47.11	0.17 U	0.17 U	0.47.11
Dichlorodifluoromethane	5	0.85 U 1.7 U	0.17 U 0.34 U								
Chloromethane Vinyl Chloride	3	1.7 U	0.34 U								
Bromomethane	5	2.1 U	0.41 U	0.41 U	0.33 U 0.41 U	0.41 U	0.41 U	0.33 U	0.41 U	0.33 U	0.33 U
Chloroethane	5	4.1 U	0.83 U								
Trichlorofluoromethane	5	1.1 U	0.22 U								
1,1,2-Trichlorotrifluoroethane	NC	6.5 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
1,1-Dichloroethene	5	2.1 U	0.42 U								
Acetone	50	1100	2.3 U	76							
Carbon Disulfide	NC	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Methyl tert-butyl Ether	10	1.4 U	2.3 J	0.28 U	3.9 J	0.28 U	3.9 J	0.28 U	0.28 U	0.28 U	0.28 U
Methyl Acetate	NC	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene Chloride	5	2.1 U	0.43 U								
trans-1,2-Dichloroethene	5	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,1-Dichloroethane	5	1.9 U	0.38 U								
Cyclohexane	NC	1.8 U	0.36 U	0.55 J	0.36 U						
2-Butanone	NC	37 J	1.1 U								
Carbon Tetrachloride	5	5.7 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
cis-1,2-Dichloroethene Chloroform	5	1.5 U 1.7 U	0.29 U 0.33 U	0.29 U 0.33 U	0.29 U 0.33 U	2.9 J 0.33 U	0.29 U 0.33 U	0.29 U 0.33 U	0.7 J 0.33 U	0.29 U 0.33 U	0.29 U 0.33 U
1,1,1-Trichloroethane	5	1.7 U	0.33 U								
Methylcyclohexane	NC	1.0 U	0.34 U	0.32 U	0.34 U	0.32 U					
Benzene	1	85	0.39 U	20	1.2 J	65	0.39 U	19	0.39 U	0.39 U	0.39 U
1,2-Dichloroethane	0.6	1.7 U	0.34 U								
Trichloroethene	5	2.3 U	0.46 U	0.46 U	0.46 U	2.6 J	0.46 U				
1,2-Dichloropropane	1	2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Bromodichloromethane	50	1.7 U	0.33 U								
4-Methyl-2-Pentanone	NC	8.1 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Toluene	5	3.6 J	0.36 U	1 J	0.36 U	0.36 U	0.36 U				
t-1,3-Dichloropropene	0.4	1.6 U	0.32 U								
cis-1,3-Dichloropropene	0.4	1.8 U	0.36 U								
1,1,2-Trichloroethane	5	2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
2-Hexanone	50	8.4 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
Dibromochloromethane	50	1.3 U	0.26 U								
1,2-Dibromoethane	NC F	1.6 U 2.4 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U	0.32 U 0.48 U
Tetrachloroethene Chlorobenzene	5	2.4 U	0.48 U 0.47 U	0.48 U 0.47 U	0.48 U						
Ethyl Benzene	5	2.3 U	0.47 U	6.4	0.47 U	0.47 U	0.47 U				
m/p-Xylenes	5	400	1.2 U	2.1 J	1.2 U	1.2 U	1.2 U				
o-Xylene	5	520	0.46 U	3.6 J	0.46 U	0.46 U	0.46 U				
Styrene	5	2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
Bromoform	50	1.6 U	0.32 U								
Isopropylbenzene	5	2.2 U	0.44 U	2.3 J	0.44 U	0.44 U	0.44 U	2 J	0.44 U	0.44 U	0.44 U
1,1,2,2-Tetrachloroethane	5	1.5 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,3-Dichlorobenzene	3	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	3	2.7 U	0.54 U								
1,2-Dichlorobenzene	3	2.2 U	0.44 U								
1,2-Dibromo-3-Chloropropane	0.04	1.9 U	0.38 U								
1,2,4-Trichlorobenzene	5	2.3 U	0.46 U								
Total Confident Conc. VOC	NC	2,145.6	2.3	22.9	5.1	70.5	3.9	34	1	-	76

Sample Location		MW-40A							
Sampling Date		10/11/05							
Units		ug/L							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
	TOGS		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Volatile Organic Compounds	Class GA					Exceedances			
Dichlorodifluoromethane	5	0.17 U	11	0	0%	0	0%	< 0.17	< 1
Chloromethane	5	0.34 U	11	0		0		< 0.34	< 2
Vinyl Chloride	2	0.33 U	11	0	0%	0	0%	< 0.33	< 2
Bromomethane	5	0.41 U	11	0	0%	0		< 0.41	< 2
Chloroethane	5 5	0.83 U	11 11	0	0% 0%	0	0% 0%	< 0.83	< 4
Trichlorofluoromethane 1,1,2-Trichlorotrifluoroethane	NC	0.22 U 1.3 U	11	0	0%	0	0%	< 0.22 < 1.3	< 1 < 7
1.1-Dichloroethene	5	0.42 U	11	0	0%	0		< 0.42	< 2
Acetone	50	2.3 U	11	2	18%	2	18%	< 2.3	1,100
Carbon Disulfide	NC	0.4 U	11	0	0%	0		< 0.4	< 2
Methyl tert-butyl Ether	10	0.28 U	11	3	27%	0	0%	< 0.28	4
Methyl Acetate	NC	0.2 U	11	0	0%	0		< 0.2	< 1
Methylene Chloride	5	0.43 U	11	0	0%	0	0%	< 0.43	< 2
trans-1,2-Dichloroethene	5	0.4 U	11	0	0%	0	0%	< 0.4	< 2
1,1-Dichloroethane	5	0.38 U	11	0	0%	0	0%	< 0.38	< 2
Cyclohexane	NC	0.36 U	11	1	9%	0	0%	< 0.36	2
2-Butanone	NC	1.1 U	10	0	0%	0	0%	< 1.1	< 37
Carbon Tetrachloride	5	1.1 U	11	0	0%	0		< 1.1	< 6
cis-1,2-Dichloroethene	5	0.29 U	11	2	18%	0	0%	< 0.29	3
Chloroform	7	0.33 U	11	0	0%	0	0%	< 0.33	< 2
1,1,1-Trichloroethane	5	0.32 U	11	0	0%	0	0%	< 0.32	< 2
Methylcyclohexane	NC	0.34 U	11	0	0%	0		< 0.34	< 2
Benzene	1	0.39 U	11	5 0	45% 0%	5 0	45% 0%	< 0.39	85
1,2-Dichloroethane Trichloroethene	0.6 5	0.34 U 0.46 U	11 11	1	9%	0		< 0.34 < 0.46	< 2
1,2-Dichloropropane	1	0.46 U	11	0	0%	0		< 0.46	< 2
Bromodichloromethane	50	0.4 U	11	0	0%	0	0%	< 0.33	< 2
4-Methyl-2-Pentanone	NC	1.6 U	11	0	0%	0		< 1.6	< 8
Toluene	5	0.36 U	11	2	18%	0	0%	< 0.36	4
t-1,3-Dichloropropene	0.4	0.32 U	11	0	0%	0		< 0.32	< 2
cis-1,3-Dichloropropene	0.4	0.36 U	11	0	0%	0	0%	< 0.36	< 2
1,1,2-Trichloroethane	5	0.41 U	11	0	0%	0	0%	< 0.41	< 2
2-Hexanone	50	1.7 U	11	0	0%	0	0%	< 1.7	< 8
Dibromochloromethane	50	0.26 U	11	0	0%	0	0%	< 0.26	< 1
1,2-Dibromoethane	NC	0.32 U	11	0	0%	0	0%	< 0.32	< 2
Tetrachloroethene	5	0.48 U	11	0	0%	0		< 0.48	< 2
Chlorobenzene	5	0.47 U	11	0	0%	0	0%	< 0.47	< 2
Ethyl Benzene	5	0.45 U	11	1	9%	1	9%	< 0.45	6
m/p-Xylenes	5	1.2 U	11	2	18%	1	9%	< 1.2	400
o-Xylene	5	0.46 U	11	2	18%	1	9%	< 0.46	520
Styrene	5	0.41 U	11	0	0%	0	0%	< 0.41	< 2
Bromoform	50	0.32 U	11	0	0%	0		< 0.32	< 2
Isopropylbenzene	5 5	0.44 U 0.3 U	11 11	2	18% 0%	0	0% 0%	< 0.44 < 0.3	2
1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene	3	0.3 U 0.5 U	11	0	0%	0	0%	< 0.3 < 0.5	< 2 < 3
1,4-Dichlorobenzene	3	0.5 U 0.54 U	11	0	0%	0		< 0.5 < 0.54	< 3
1,2-Dichlorobenzene	3	0.54 U	11	0	0%	0	0%	< 0.54 < 0.44	< 2
1,2-Dichloroberizerie	0.04	0.44 U	11	0	0%	0		< 0.38	< 2
1,2,4-Trichlorobenzene	5	0.46 U	11	0	0%	0		< 0.46	< 2
, ,			· · · ·		0,0		0,70		· -
Total Confident Conc. VOC	NC	-							

						Table 4-34					
Sample Location		MW-5A	MW-5B	MW-7A	MW-12A	MW-12B	MW-22A	MW-24A	MW-29A	MW-31A	MW-34A
Sampling Date		10/12/05	10/12/05	10/11/05	10/11/05	10/11/05	10/11/05	10/12/05	10/12/05	10/11/05	10/11/05
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		3	. 3		3		. 3		. 3	. 3	
Semivolatile Organic	TOGS Class										
Compounds (ug/kg)	GA										
Benzaldehyde	NA	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.7 U
Phenol	1	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
bis(2-Chloroethyl)ether	1	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U
2-Chlorophenol	NC	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U
2-Methylphenol	NC	1.5 U	1.5 U	1.5 U	1.6 U	1.5 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U
2,2-oxybis(1-Chloropropane)	NC	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U
Acetophenone	NC	1.2 U	1.3 U	1.3 U	1.3 U	1.2 U	1.3 U	1.2 U	1.3 U	1.3 U	1.2 U
3+4-Methylphenols	NC	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.4 U	1.3 U	1.3 U	1.3 U	1.3 U
N-Nitroso-di-n-propylamine	NC	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Hexachloroethane	5	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Nitrobenzene	0.4	1.6 U	1.6 U	1.6 U	1.7 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Isophorone	50	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2-Nitrophenol	NC	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
2,4-Dimethylphenol	50	500 D	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
bis(2-Chloroethoxy)methane	5	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
2,4-Dichlorophenol	5	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U	1.4 U	1.4 U	1.5 U	1.4 U
Naphthalene	10	170 D	1.4 U	1.4 U	1.5 U	1.4 U	1.4 U	18	1.4 U	1.4 U	11
4-Chloroaniline	5	0.87 U	0.88 U	0.88 U	0.9 U	0.87 U	0.89 U	0.86 U	0.87 U	0.88 U	0.87 U
Hexachlorobutadiene	0.5	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Caprolatam	NC	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
4-Chloro-3-methylphenol	NC	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
2-Methylnaphthalene	NC	16	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	100 D	1.1 U	1.1 U	13
Hexachlorocyclopentadiene	5	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
2,4,6-Trichlorophenol	NC	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U
2,4,5-Trichlorophenol	NC	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U
1,1-Biphenyl	5	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.7 J
2-Chloronaphthalene	10	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
2-Nitroaniline	5	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Dimethylphthalate	50	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
Acenaphthylene	NC	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2,6-Dinitrotoluene	5	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
3-Nitroaniline	5	1 U	1 U	1 U	1.1 U	1 U	1.1 U	1 U	1 U	1 U	1 U
Acenaphthene	20	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	35	1.4 U	2.2 J	1.4 U
2,4-Dinitrophenol	10	3.5 U	3.6 U	3.6 U	3.7 U	3.5 U	3.6 U	3.5 U	3.6 U	3.6 U	3.5 U
4-Nitrophenol	NC	3.1 U	3.2 U	3.2 U	3.3 U	3.1 U	3.2 U	3.1 U	3.1 U	3.2 U	3.1 U
Dibenzofuran	NC	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 U	39	1.3 U	1.3 U	1.3 U
2,4-Dinitrotoluene	5	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U
Diethylphthalate	50	1.3 U	1.4 U	1.4 U	1.4 U	1.3 U	1.4 U	1.3 U	1.3 U	1.4 U	1.3 U
4-Chlorophenyl-phenylether	NC	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Fluorene	50	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	54	1.4 U	1.4 U	1.4 U
4-Nitroaniline	5	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.1 U
4,6-Dinitro-2-methylphenol	NC	1.6 U	1.7 U	1.6 U	1.7 U	1.6 U	1.7 U	1.6 U	1.6 U	1.6 U	1.6 U
N-Nitrosodiphenylamine	50	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 J
4-Bromophenyl-phenylether	NC	1.5 U	1.5 U	1.5 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
Hexachlorobenzene	0.04	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U
Atrazine	7.5	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
Pentachlorophenol	1	1.6 U	1.6 U	1.6 U	1.7 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Phenanthrene	50	1.4 U	1.5 U	1.4 U	1.5 U	1.4 U	1.5 U	36	1.4 U	1.4 U	1.4 U
Anthracene	50	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	11	1.4 U	1.4 U	1.4 U
Carbazole	NC	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	56	1.3 U	1.3 U	1.3 U
Di-n-butylphthalate	50	8.3 JB	1.3 U	9.6 JB	8.5 JB	7.9 JB	8.9 JB	14 B	6.9 JB	12 B	15 B

Sample Location		MW-5A	MW-5B	MW-7A	MW-12A	MW-12B	MW-22A	MW-24A	MW-29A	MW-31A	MW-34A
Sampling Date		10/12/05	10/12/05	10/11/05	10/11/05	10/11/05	10/11/05	10/12/05	10/12/05	10/11/05	10/11/05
Units		ug/L									
Semivolatile Organic	TOGS Class										
Compounds (ug/kg)	GA										
Fluoranthene	50	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	9 J	1.2 U	1.2 U	1.2 U
Pyrene	50	1.5 U	7 J	1.5 U	1.5 U	1.5 U					
Butylbenzylphthalate	5	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.4 U
3,3-Dichlorobenzidine	5	1.1 U	1 U	1.1 U	1.1 U	1.1 U					
Benzo(a)anthracene	0.002	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.1 U
Chrysene	0.002	1.7 U	1.7 U	1.7 U	1.8 U	1.7 U					
bis(2-Ethylhexyl)phthalate	5	2.6 J	1.6 U	1.6 U	1.6 U	1.5 U	1.6 U	4.7 J	1.8 J	1.6 U	1.5 U
Di-n-octyl phthalate	NC	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U					
Benzo(b)fluoranthene	0.002	0.76 U	0.77 U	0.76 U	0.79 U	0.76 U	0.78 U	0.75 U	0.76 U	0.76 U	0.76 U
Benzo(k)fluoranthene	0.002	1.9 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.9 U	1.9 U	1.9 U	1.9 U
Benzo(a)pyrene	NC	1.2 U									
Indeno(1,2,3-cd)pyrene	0.002	0.84 U	0.85 U	0.84 U	0.87 U	0.84 U	0.86 U	0.83 U	0.84 U	0.84 U	0.84 U
Dibenz(a,h)anthracene	NC	0.87 U	0.89 U	0.88 U	0.91 U	0.87 U	0.9 U	0.87 U	0.88 U	0.88 U	0.87 U
Benzo(g,h,i)perylene	NC	1.1 U									
Total Confident Conc. SVOC	NA	317	_	10	9	8	9	372	9	14	42

Sample Location		MW-40A							
Sampling Date		10/11/05							
Units		ug/L							
			Nimakaraf	Number of	Francisco et	Number of	Fragues of	Minimum Reported	Maximum Reported
Semivolatile Organic	TOGS Class		Number of	Number of	Frequency of Detections	TAGM	Frequency of	Concentration	Concentration
ŭ			Samples	Detections	Detections	Exceedances	Exceedances	Concentration	Concentration
Compounds (ug/kg) Benzaldehyde	GA NA	1.7 U	11	0	0%	exceedances 0	0%	< 1.6	< 1.7
Phenol	INA 4	1.7 U	11	0	0%	0	0%	< 1.5	< 1.7
	1	1.5 U	11	0	0%	0	0%	< 1.3 < 1.4	
bis(2-Chloroethyl)ether 2-Chlorophenol	NC	1.5 U	11	0	0%	0	0%	< 1.4	< 1.5 < 1.2
	NC NC		11	0	0%	0	0%		< 1.6
2-Methylphenol 2,2-oxybis(1-Chloropropane)	NC NC	1.5 U 1.2 U	11	0	0%	0	0%	< 1.5 < 1.2	
	NC NC	1.2 U	11	0	0%	0	0%	< 1.2	
Acetophenone				0		0			
3+4-Methylphenols	NC	1.3 U	11	-	0%		0%	< 1.3	< 1.4
N-Nitroso-di-n-propylamine	NC	1.4 U	11	0	0%	0	0%	< 1.4	< 1.5
Hexachloroethane	5	1.2 U	11	0	0%	0	0%	< 1.2	< 1.2
Nitrobenzene	0.4	1.6 U	11	0		0	0%	< 1.6	< 1.7
Isophorone	50	1.3 U	11	0	0%	0	0%	< 1.3	< 1.3
2-Nitrophenol	NC	1.4 U	11	0	0%	0	0%	< 1.4	< 1.4
2,4-Dimethylphenol	50	1.2 U	11	1	9%	1	9%	< 1.2	500
bis(2-Chloroethoxy)methane	5	1.4 U	11	0	0%	0	0%	< 1.4	< 1.4
2,4-Dichlorophenol	5	1.4 U	11	0	0%	0	0%	< 1.4	< 1.5
Naphthalene	10	1.4 U	11	3	27%	3	27%	< 1.4	170
4-Chloroaniline	5	0.87 U	11	0	0%	0	0%	< 0.86	< 0.9
Hexachlorobutadiene	0.5	1.4 U	11	0	0%	0	0%	< 1.4	< 1.4
Caprolatam	NC	1.3 U	11	0	0%	0	0%	< 1.3	< 1.3
4-Chloro-3-methylphenol	NC	1.4 U	11	0	0%	0	0%	< 1.4	< 1.4
2-Methylnaphthalene	NC	1.1 U	11	3	27%	0	0%	< 1.1	100
Hexachlorocyclopentadiene	5	1.2 U	11	0	0%	0	0%	< 1.2	< 1.2
2,4,6-Trichlorophenol	NC	1.2 U	11	0	0%	0	0%	< 1.1	< 1.2
2,4,5-Trichlorophenol	NC	1.2 U	11	0	0%	0	0%	< 1.2	< 1.3
1,1-Biphenyl	5	1.4 U	11	1	9%	0	0%	< 1.4	1.7
2-Chloronaphthalene	10	1.4 U	11	0	0%	0	0%	< 1.4	< 1.5
2-Nitroaniline	5	1.1 U	11	0	0%	0	0%	< 1.1	< 1.1
Dimethylphthalate	50	1.3 U	11	0	0%	0	0%	< 1.3	< 1.3
Acenaphthylene	NC	1.3 U	11	0	0%	0	0%	< 1.3	< 1.4
2,6-Dinitrotoluene	5	1.3 U	11	0	0%	0	0%	< 1.3	< 1.3
3-Nitroaniline	5	1 U	11	0	0%	0	0%	< 1	< 1.1
Acenaphthene	20	1.4 U	11	2	18%	1	9%	< 1.4	35
2,4-Dinitrophenol	10	3.5 U	11	0	0%	0	0%	< 3.5	< 3.7
4-Nitrophenol	NC	3.1 U	11	0	0%	0	0%	< 3.1	< 3.3
Dibenzofuran	NC	1.3 U	11	1	9%	0	0%	< 1.3	39
2.4-Dinitrotoluene	5	1.2 U	11	0	0%	0	0%	< 1.2	< 1.3
Diethylphthalate	50	1.3 U	11	0	0%	0	0%	< 1.3	< 1.4
4-Chlorophenyl-phenylether	NC NC	1.4 U	11	0	0%	0	0%	< 1.4	< 1.4
Fluorene	50	1.4 U	11	1	9%	1	9%	< 1.4	54
4-Nitroaniline	5	1.1 U	11	0	0%	0	0%	< 1.1	< 1.2
4,6-Dinitro-2-methylphenol	NC	1.6 U	11	0	0%	0	0%	< 1.6	< 1.7
N-Nitrosodiphenylamine	50	1.3 U	11	1	9%	0	0%	< 1.3	1.3
4-Bromophenyl-phenylether	NC	1.5 U	11	0	0%	0	0%	< 1.5	< 1.6
Hexachlorobenzene	0.04	1.2 U	11	0	0%	0	0%	< 1.2	< 1.3
Atrazine	7.5	1.2 U	11	0	0%	0	0%	< 1.3	< 1.3
Pentachlorophenol	7.5	1.6 U	11	0	0%	0	0%	< 1.3 < 1.6	< 1.7
	50		11	1	9%	0	0%	< 1.6	< 1.7 36
Phenanthrene		1.4 U		1					
Anthracene	50	1.4 U	11		9%	0	0%	< 1.4	11
Carbazole	NC 50	1.3 U	11	1	9%	0	0%	< 1.3	56
Di-n-butylphthalate	50	10 B	11	10	91%	0	0%	< 1.3	15

							0 + 0+		
Sample Location		MW-40A							
Sampling Date		10/11/05							
Units		ug/L							
			Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported
Semivolatile Organic	TOGS Class		Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration
Compounds (ug/kg)	GA		Campico	Detections	Dotcollono	Exceedances	Exocodanoco	Concontiation	Concentration
		4011	44		00/	LACEEUATICES	00/	4.0	0.0
Fluoranthene	50	1.2 U	11	1	9%	U	0%	< 1.2	9.0
Pyrene	50	1.5 U	11	1	9%	0	0%	< 1.5	7.0
Butylbenzylphthalate	5	1.4 U	11	0	0%	0	0%	< 1.4	< 1.5
3,3-Dichlorobenzidine	5	1.1 U	11	0	0%	0	0%	< 1	< 1.1
Benzo(a)anthracene	0.002	1.1 U	11	0	0%	0	0%	< 1.1	< 1.2
Chrysene	0.002	1.7 U	11	0	0%	0	0%	< 1.7	< 1.8
bis(2-Ethylhexyl)phthalate	5	1.5 U	11	3	27%	0	0%	< 1.5	4.7
Di-n-octyl phthalate	NC	1.3 U	11	0	0%	0	0%	< 1.3	< 1.4
Benzo(b)fluoranthene	0.002	0.76 U	11	0	0%	0	0%	< 0.75	< 0.8
Benzo(k)fluoranthene	0.002	1.9 U	11	0	0%	0	0%	< 1.9	< 2.0
Benzo(a)pyrene	NC	1.2 U	11	0	0%	0	0%	< 1.2	< 1.2
Indeno(1,2,3-cd)pyrene	0.002	0.84 U	11	0	0%	0	0%	< 0.83	< 0.9
Dibenz(a,h)anthracene	NC	0.87 U	11	0	0%	0	0%	< 0.87	< 0.9
Benzo(g,h,i)perylene	NC	1.1 U	11	0	0%	0	0%	< 1.1	< 1.1
Total Confident Conc. SVOC	NA	10							

Sample Location		MW-5A	MW-5B	MW-7A	MW-12A	MW-12B	MW-22A	MW-24A	MW-29A	MW-31A	MW-34A	MW-40A
Sampling Date		10/12/05	10/12/05	10/11/05	10/11/05	10/11/05	10/11/05	10/12/05	10/12/05	10/11/05	10/11/05	10/11/05
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
PP Metals	TOGS Class GA											
Antimony	3	3.2 U	3.4 J	3.2 U	3.2 U	3.2 U	3.2 U	3.2 U	3.2 U	3.2 U	3.2 U	3.2 U
Arsenic	25	27.7	4.2 J	8.2 J	3.3 U	5.8 J	3.3 U	3.3 U	12	3.3 U	7.5 J	3.3 U
Beryllium	3	0.14 J	0.11 J	0.18 J	0.09 U	0.09 U	0.12 J	0.09 U	0.11 J	0.09 U	0.09 U	0.09 U
Cadmium	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Chromium	50	0.34 U	0.34 U	1.2 J	5.2 J	1.7 J	8 J	0.34 U	0.34 U	0.55 J	1.7 J	4.3 J
Copper	200	46.3	3.6 U	8 J	5.9 J	12.7 J	6.3 J	3.6 U	3.6 U	9.6 J	16.9 J	32.2
Lead	25	64.6	2.8 U	3.9 J	2.8 U	2.8 U	2.8 U	5.3	4.1 J	14.6	3.3 J	2.8 U
Mercury	0.7	0.04 J	0.03 U	0.03 U	0.03 U	0.05 J	0.03 U	0.03 U	0.03 U	0.03 U	0.08 J	0.06 J
Nickel	100	1.6 U	1.6 U	1.6 U	1.6 U	12.6 J	1.9 J	1.6 U	1.6 U	4.4 J	2.3 J	2.2 J
Selenium	10	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3.1 J
Silver	50	1.6 U	1.6 U	1.9 J	1.6 U	1.6 U	1.6 U	2.1 J	1.6 U	1.6 U	1.6 U	1.6 U
Thallium	0.5	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	5.2 J	3.1 U	6.2 J	3.1 U	3.1 U	3.1 U
Zinc	2000	2.1 J	0.61 U	8.8 J	0.61 U	8.2 J	0.61 U	0.61 U	0.61 U	46.4	10.5 J	71.4

Sample Location		MW-5A	MW-5B	MW-7A	MW-12A	MW-12B	MW-22A	MW-24A	MW-29A	MW-31A	MW-34A	MW-40A
Sampling Date		10/12/05	10/12/05	10/11/05	10/11/05	10/11/05	10/11/05	10/12/05	10/12/05	10/11/05	10/11/05	10/11/05
Units		mg/l										
	TOGS Class GA											
Cyanide	0.2	1.4	0.01 U	0.01 U	0.013	0.01	0.012	0.048	0.01 U	0.016	0.01 U	0.01 U
Amenable Cyanide	NA	0.14	0.01 U									

Sample Location Sampling Date Units									
Units									
	L								
		Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported	
.	TOGS	Samples	Detections	Detections	TAGM	Exceedances	Concentration	Concentration	
	lass GA	Campioo	20100110110	20100110110	Exceedances	2,0000441.000	0011001111411011	0011001111011011	
Antimony	3	11	1	9%	1	9%	< 3.2	3.4	
Arsenic	25	11	6	55%	1	9%	< 3.3	27.7	
Beryllium	3	11	5	45%	0	0%	< 0.09	0.18	
Cadmium	5	11	0	0%	0	0%	< 0.33	< 0.33	
Chromium	50	11	7	64%	0	0%	< 0.34	8	
Copper	200	11	8	73%	0	0%	< 3.6	46.3	
Lead	25	11	6	55%	1	9%	< 2.8	64.6	
Mercury	0.7	11	4	36%	0	0%	< 0.03	0.08	
Nickel	100	11	5	45%	0	0%	< 1.6	12.6	
Selenium	10	11	1	9%	0	0%	< 3	3.1	
Silver	50	11	2	18%	0	0%	< 1.6	2.1	
Thallium	0.5	11	2	18%	2	18%	< 3.1	6.2	
Zinc	2000	11	6	55%	0	0%	< 0.61	71.4	
<u>.</u>									
Sample Location									
Sampling Date									
Units									
	Ī	Number of	Number of	Frequency of	Number of	Frequency of	Minimum Reported	Maximum Reported	
Т	TOGS	Samples	Detections	Detections	TAGM	Exceedances	Concentration		
Cla	lass GA				Exceedances				
Cyanide	0.2	11	6	55%	1	9%	< 0.01	1.40	
Amenable Cyanide	NA	11	1	9%	0	0%	< 0.01	0.14	

Monitoring Well Construction Details and Groundwater Elevations Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-36

Monitoring Well Location	Ground Elevation (ft MSL)	Elevation of Top of Well (ft MSL)	Depth to Water (ftbtoc)	Groundwater Elevation (ft MSL)	Total Well Depth (ft bgs)	Riser Interval (ft MSL)			Screen Interval (ft MSL)			Sump Interval (ft MSL)		
MW-5A	13.84	13.40	12.77	0.63	19.0	13.40	to	4.40	4.40	to	-5.60	-	ō	-
MW-5B	13.80	13.31	12.47	0.84	42.0	13.31	to	-18.69	-18.69	to	-28.69	-	to	-
MW-7A	9.11	8.42	7.45	0.97	16.5	8.42	to	2.42	2.42	to	-7.58	-7.58	to	-8.08
MW-12A	8.81	7.96	9.15	-1.19	17.0	7.96	to	0.96	0.96	to	-9.04	-	to	-
MW-12B	8.80	8.31	8.34	-0.03	49.0	8.31	to	-28.69	-28.69	to	-38.69	-38.69	to	-40.69
MW-24A	8.66	8.37	8.88	-0.51	16.0	8.37	to	2.37	2.37	to	-7.63	-	to	-
MW-24B	8.66	8.38	8.19	0.19	55.0	8.38	to	-36.62	-36.62	to	-46.62	-	to	_
MW-29A	10,77	9.91	10.53	-0.62	20.0	9.91	to	1.91	1.91	to	-8.09	-8.09	to	-10.09
MW-31A	6.48	5.95	8.96	-3.01	14.0	5.95	to	1.95	1.95	to	-8.05	-	to	-
MW-34A	5.83	5.13	3.33	1.80	12.5	5.13	to	3.13	3.13	to	-6.87	-6.87	to	-7,37
MW-40A	6.96	6.40	4.67	1.73	17.0	6.40	to	1.40	1.40	to	-8.60	~8.60	to	-10.60

Note:

Groundwater elevations are based upon the synoptic water level measurements recorded on October 11, 2005 and survey information.

All monitoring wells were constructed with 2.0-inch I.D. PVC riser pipe and screen material with 0.020-inch screen size openings

ft MSL - Feet above or below Mean Sea Level

ftbtoc - Feet below the top of the well casing

ft bgs - Feet below ground surface

Monitoring Well Construction, sails and Groundwater Elevations Former West 18th Street Gas Works Consolidated Edison Company of New York, Inc. Table 4-36

Summary of Groundwater Field Parameters Recorded prior to the Collection of Groundwater Samples

Well	Date	Time	Gallons Purged	рН	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	T (⁰ C)	Oxidation Reduction Potential (mV)	Turbidity (NTUs)	PID (ppm)	Initial DTW (ft)	Final DTW (ft)
MW-5A	10/12/2005	1413	1.46	6.88	2.26	3.17	20.2	-195	48.8	699	12.77	12.76
								100	40.0	033	. 2.1 (12.10
MW-5B	10/12/2005	1448	5.38	7.43	34	0.8	17.5	-134	31	678	12.47	12.40
MW-7A	10/11/2005	1218	1.46	6.84	8.84	3,31	21.6	-148	22.5	2.8	7 45	0.70
				0.0	0.04	3.31	21.0	- 140	22.5	2.8	7.45	8.78
MW-12A	10/11/2005	1016	3.25	7.13	2.21	3.61	18.4	-187	16.3	1.4	9.15	9.28
MW-12B	10/11/2005	1155	6.35	7.35	0.20	0.5	17.7	-68	220	2.5	004	40.04
					0.20	0.0		-00	320	2.5	8.34	10.01
MW-24A	10/12/2005	1156	3.32	6.80	11.9	2.85	19.9	-205	18.7	2.2	8.88	9.13
MANA COOA	10/10/0005	0070										
MW-29A	10/12/2005	0956	4.41	6.87	3.35	2.86	21.5	-148	17.5	0.6	10.53	10.58
MW-31A	10/11/2005	1504	↑ F.7	0.00								
		1524	2.57	6.90	12.2	3.08	22.1	-322	0	0.1	8.96	9.01
MW-34A	10//11/2005	1510	1.32	6.95	0.16	0.4	23.9	-173	41	13.8	3.33	4.66
											3.33 77875	4.00
MW-40A	10/11/2005	1715	2.47	7.00	2.2	5.1	22.5	155	4	0.3	4.67	5.13

mg/L

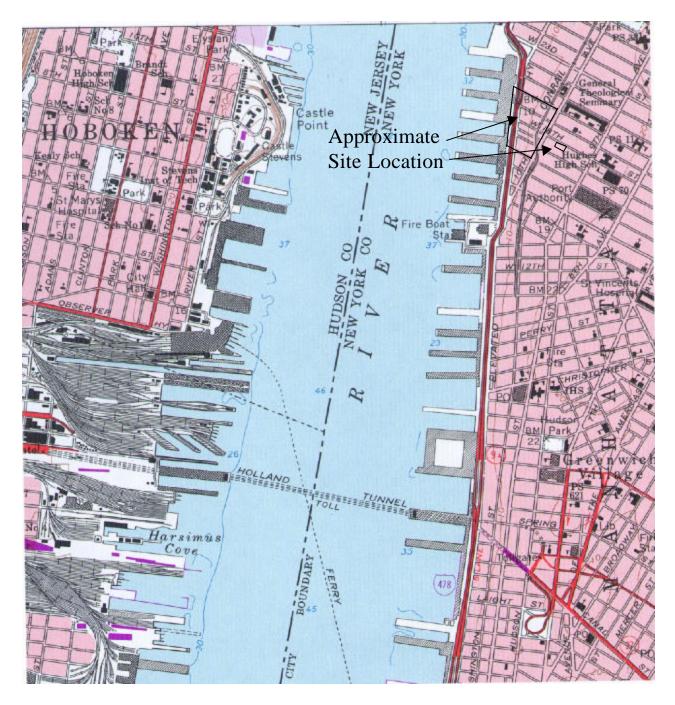
milligrams per liter

°**c** mV

degrees Celsius millivolts

NTUs

nephlometirc turbidity units


ppm

nepniometirc turbidity unit parts per million

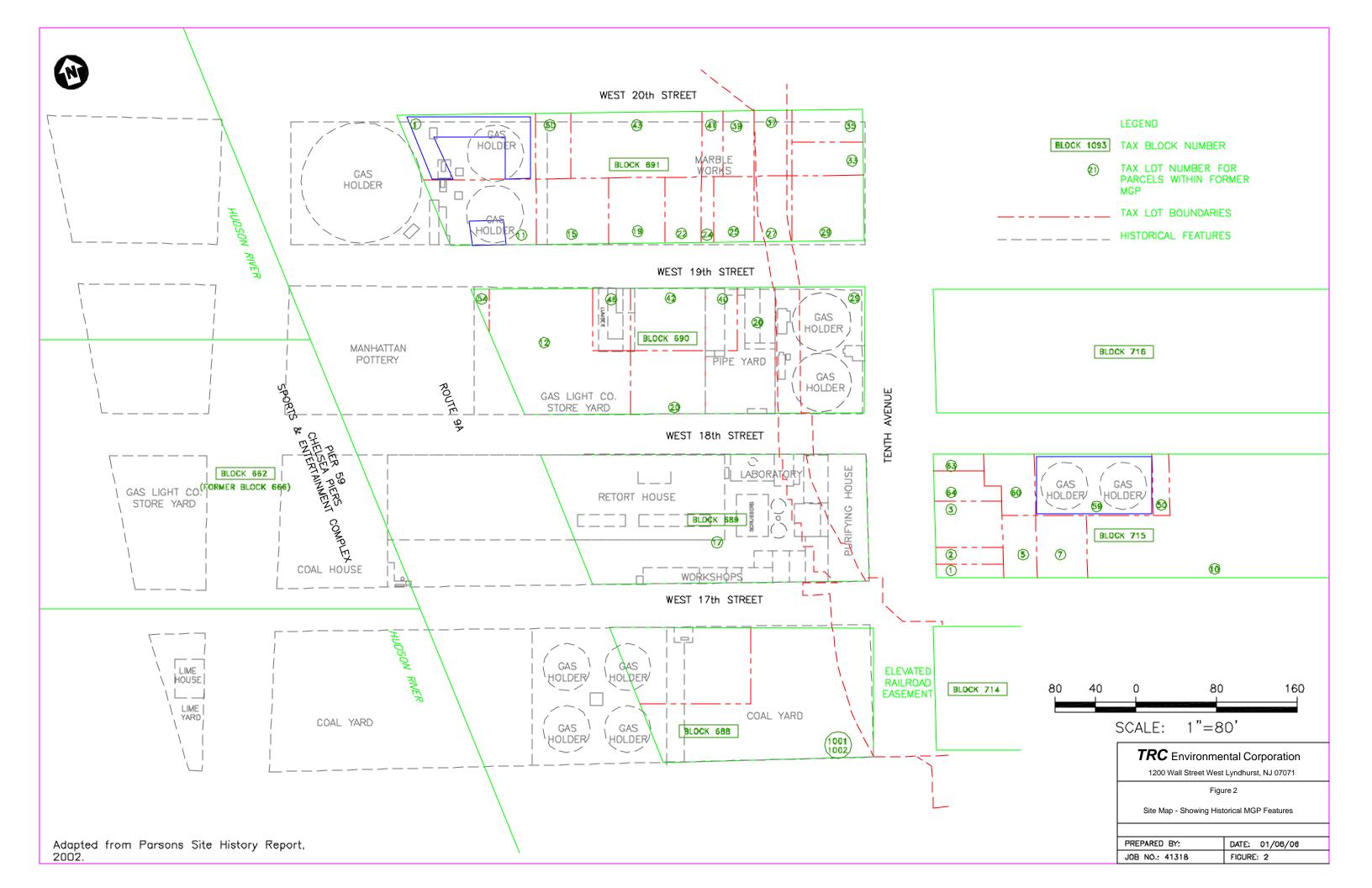
DTW

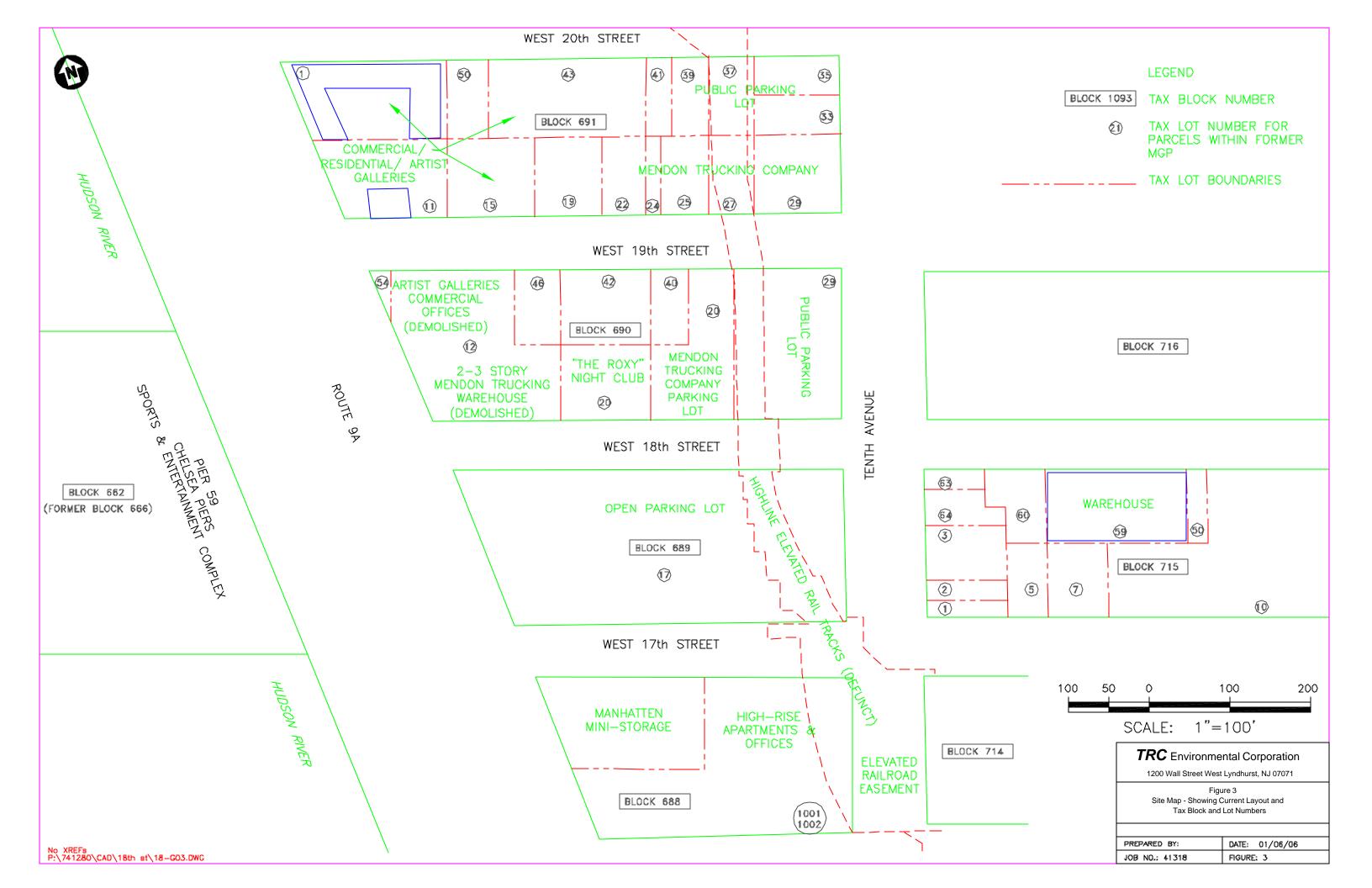
depth to water feet below grade

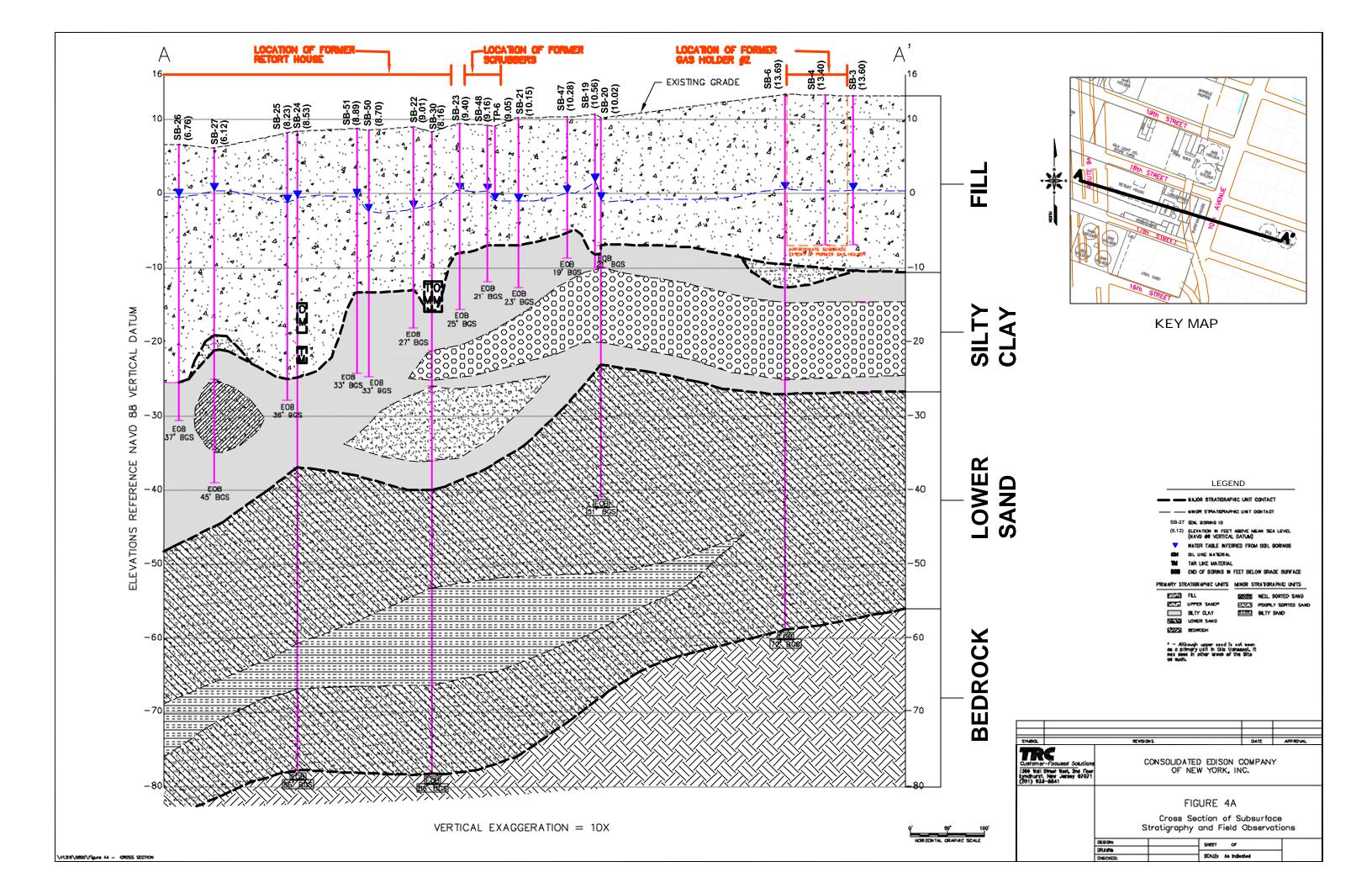
ft

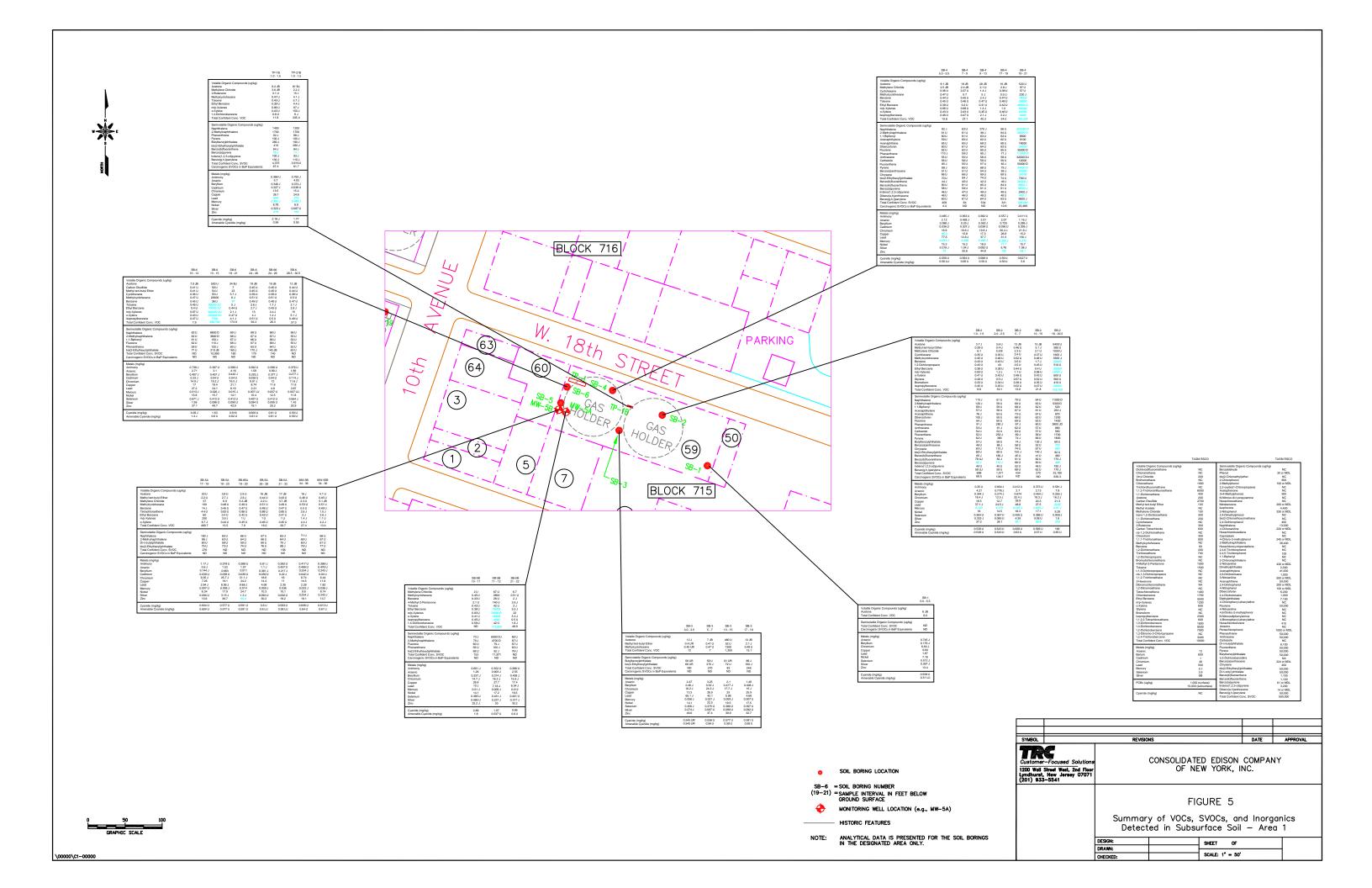
Source: U.S.G.S. 7.5-Minute Quadrangle, Jersey City, NJ (Photorevised 1981)

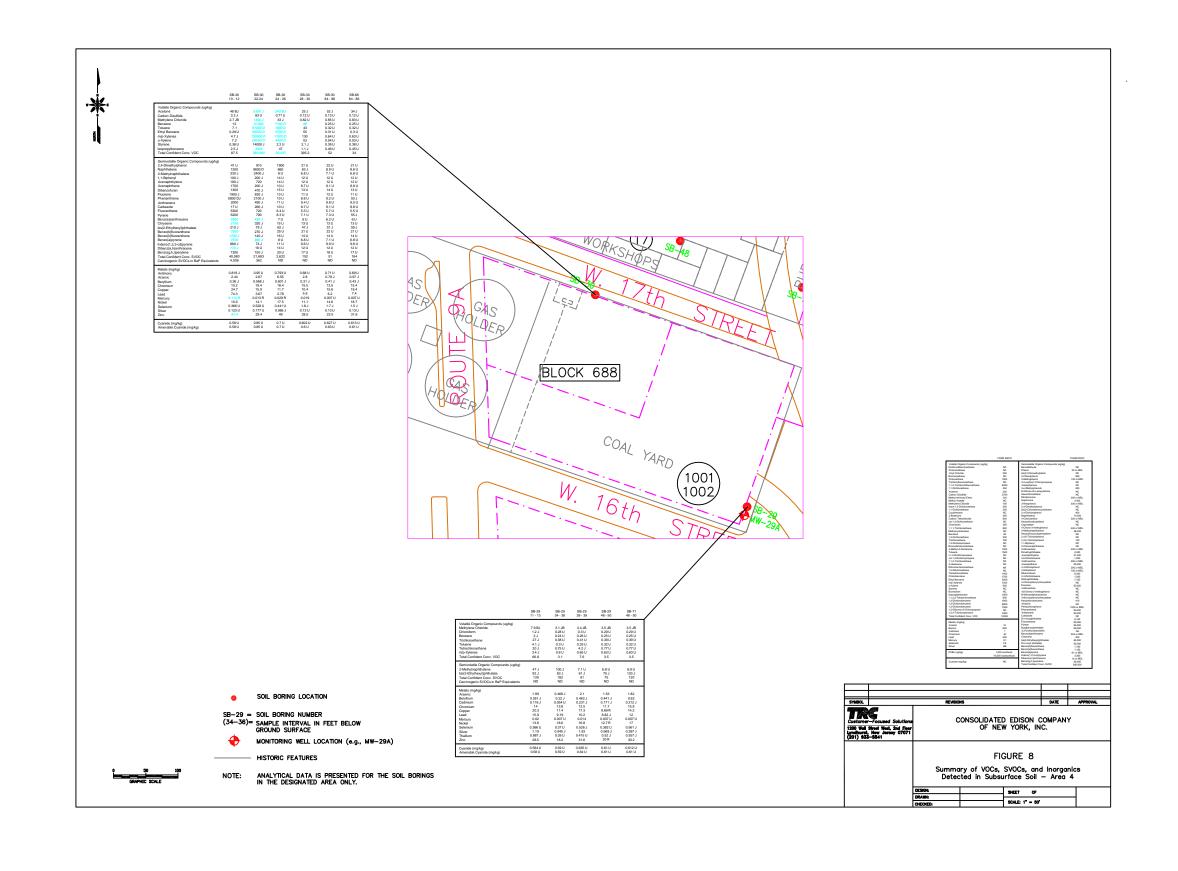
Approximate Scale: 1" = 1,680'

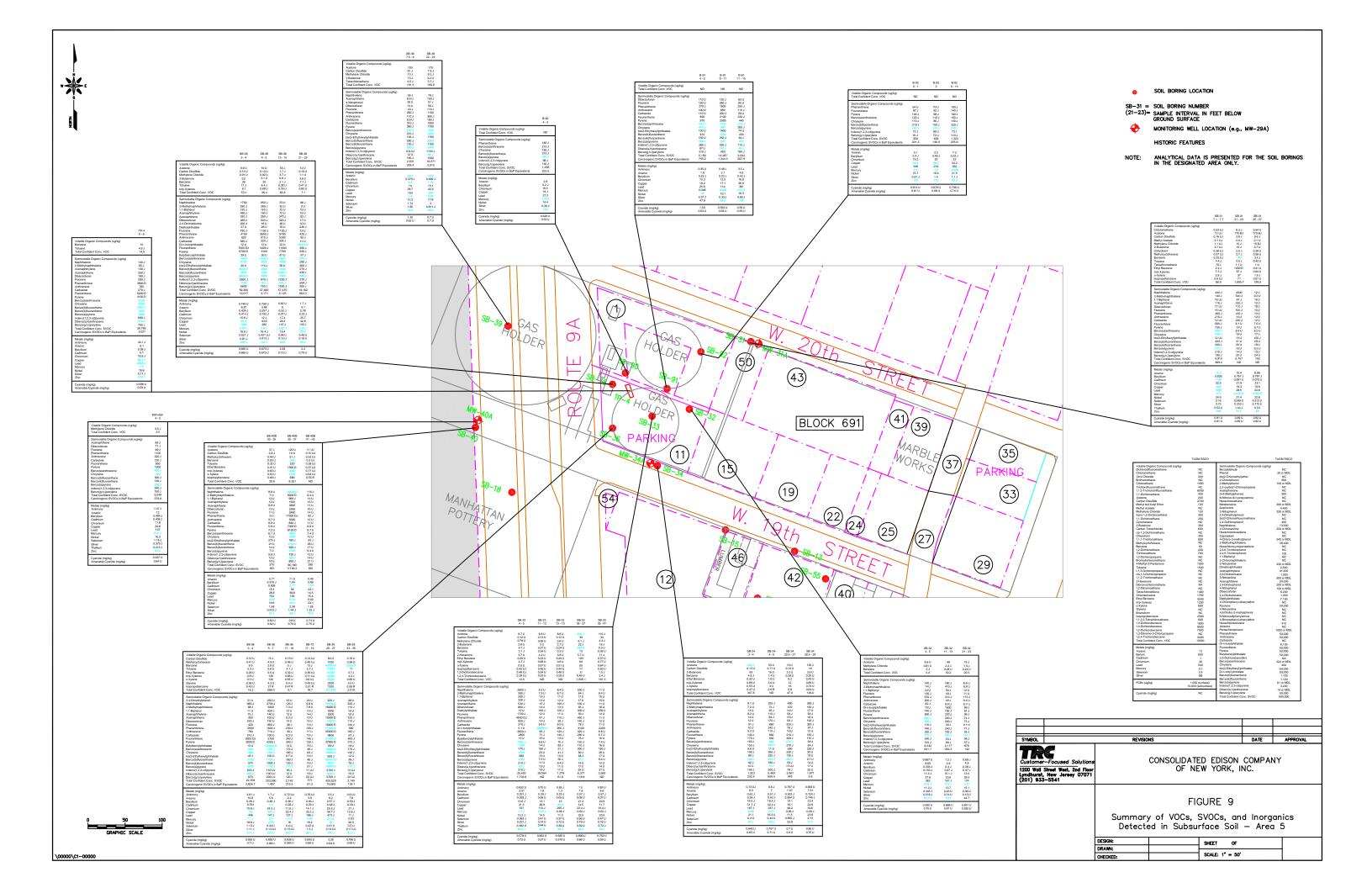


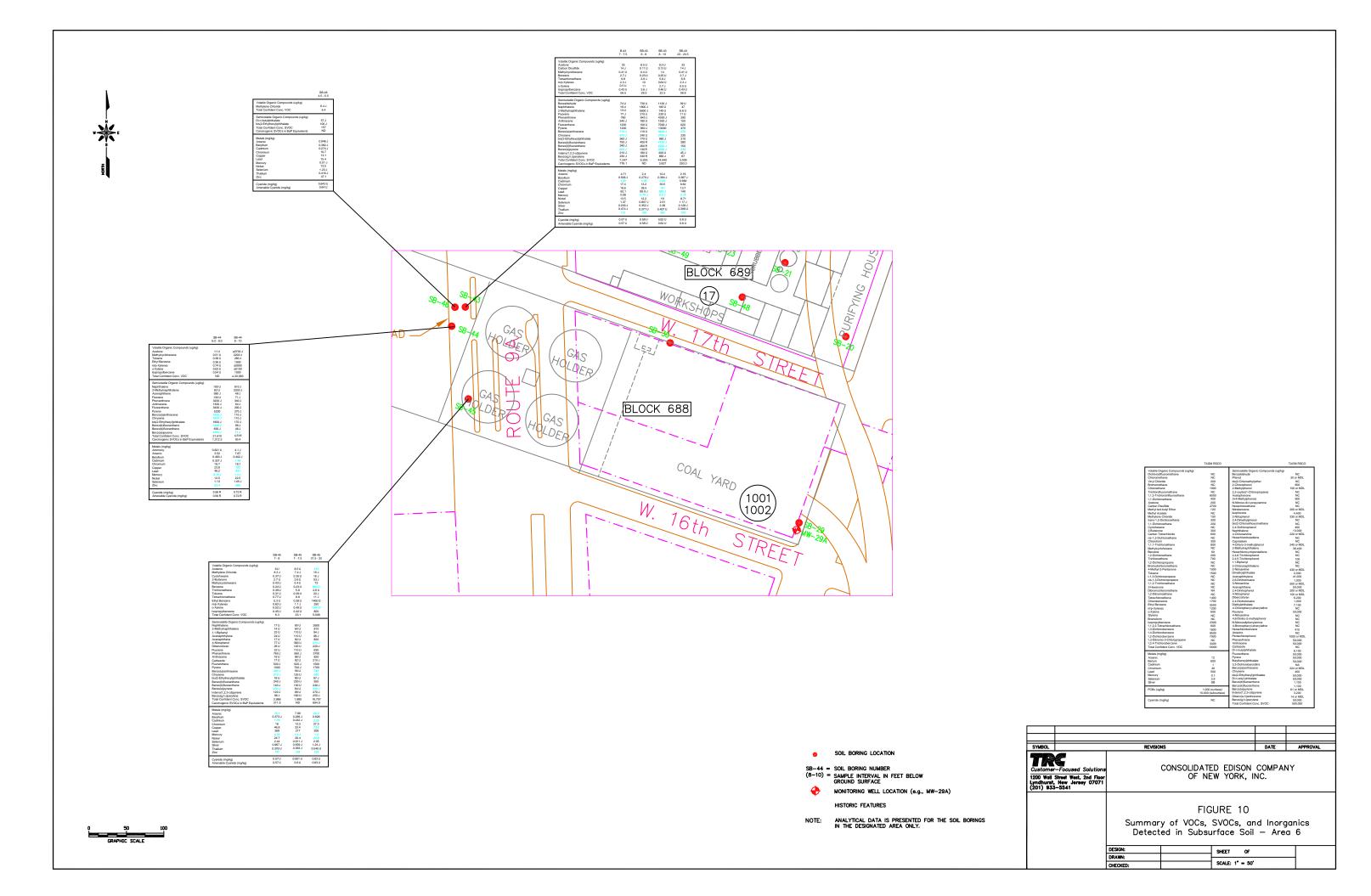

TRC Environmental, Inc. 1200 Wall Street West Lyndhurst, NJ 07071 (201) 933-5541


Figure 1 – Site Location Map

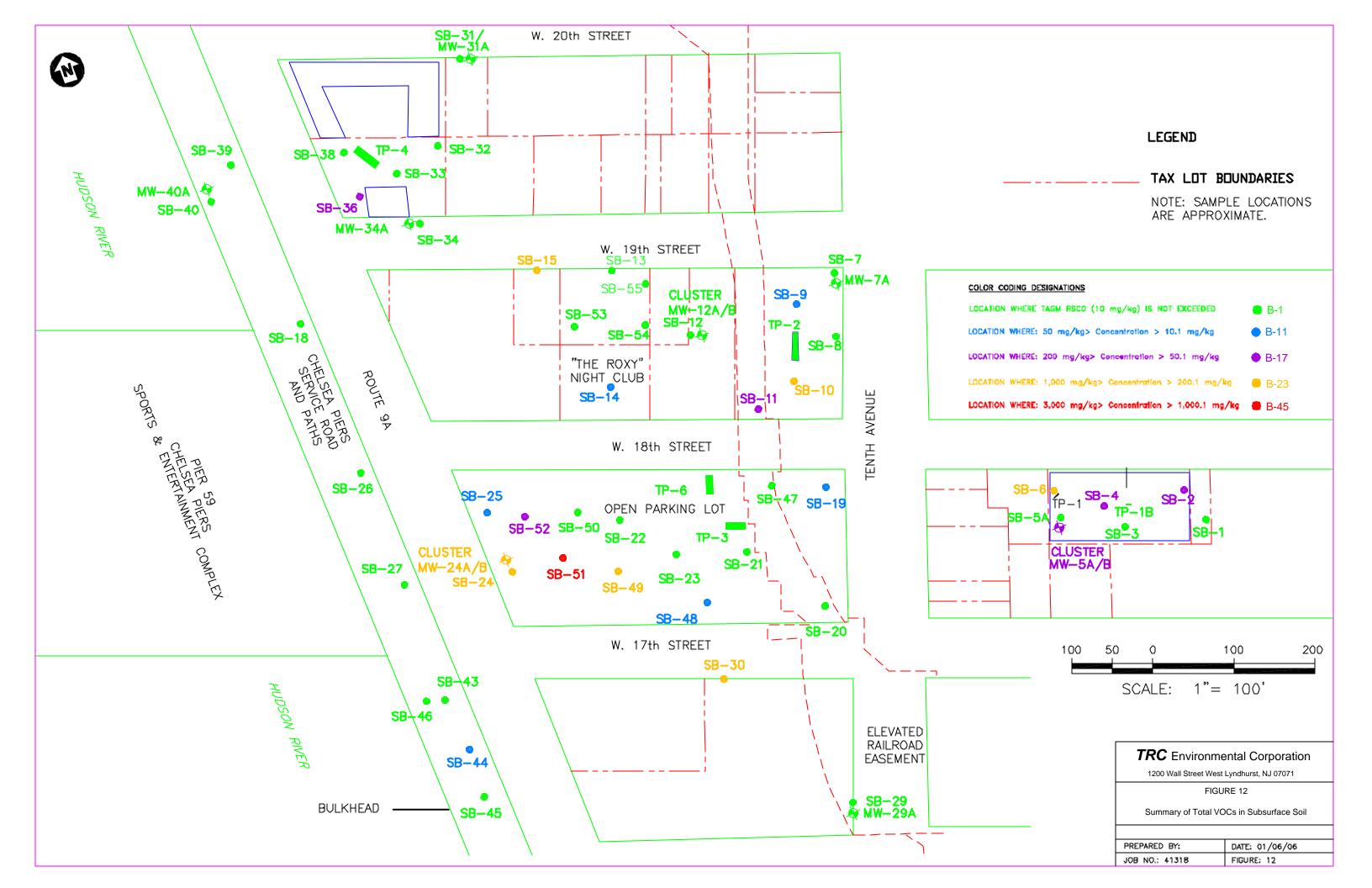

Consolidated Edison Company of New York, Inc.
Former West 18th Street Gas Works
New York, New York
Project No.: 41318-0700-20000

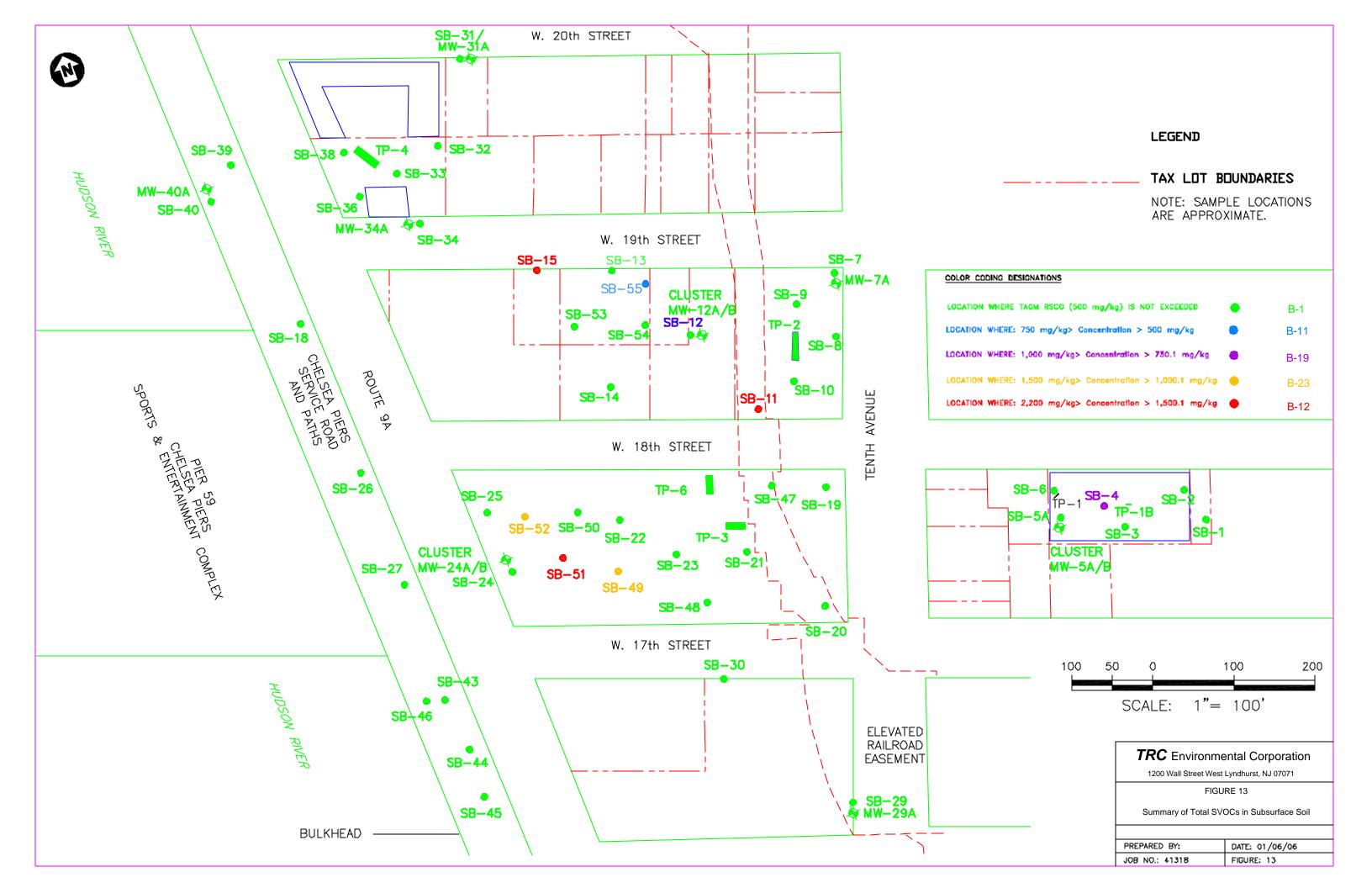


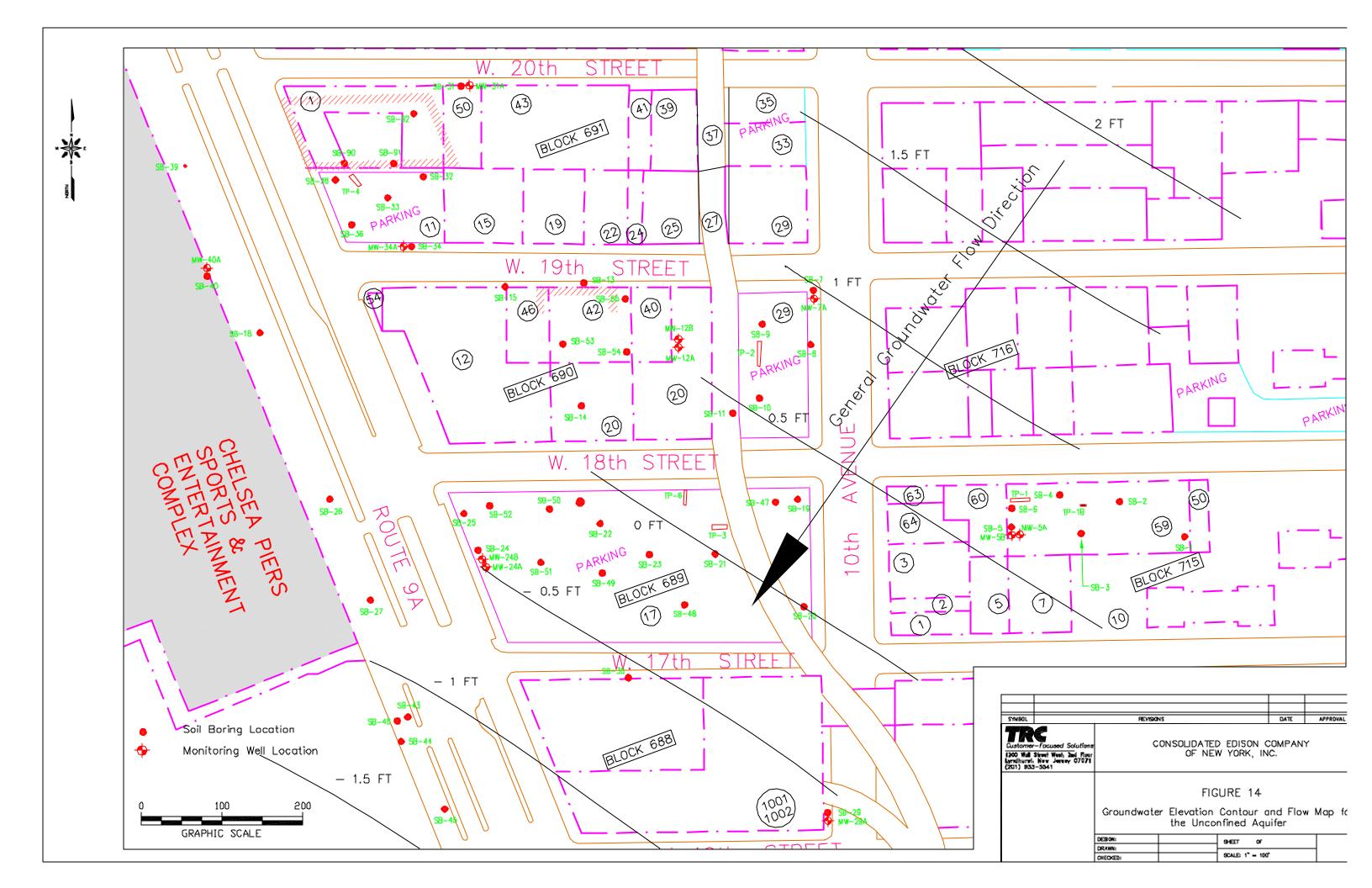












BORING No.: SB-1
BORING LOG
SHEET 1 OF 1

во	RIN	IG	LO	G					SHEET 1 OF 1
			LIEN				PROJECT NO.	AREA OF SITE	
			SCS	Con Edis	son		41318-0700-10000	SE of Former Gas Holder #1	
ADDI Verize			g on \	N 18th St	treet b/w 9	th and		ELEVATION/DATUM 21.97/NAVD 88	
				CTOR vironment	tal, Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL Simo			i obe 20	00			TYPE/SIZE BIT N/A	START DATE 5/14/2005	END DATE 5/14/2005
SAMI	PLER	TY	PE					TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc	rete s	samp	oler				N/A	(feet below ground surface (ft bgs)) 6.5'	N/A
	z	S	AMI	PLES			DESCRIP	TION OF SOILS	REMARKS
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	ОЕРТН	WATER	f-fine m	- medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining
W	8	ĺΝ	R R	PER 6"	DE	M	lt - light dk - dark		N/O = No odors
							0'-0.3': CONCRETE and rebar.		
					↓ 1 -		0.3'-2.0': Fill-Brown f to m SAND, GRA	AVEL, rock fragments, slag and coal	0.3'-2': N/O, N/S
					₫ '		fragments.		PID (headspace) = 3.7 ppm max.
					1				
					4		2.0'-4.0': Fill-Lt brown very f SAND.		2'-3': N/O, N/S
					3 -				PID (headspace) = 2.5 ppm max.
					4				3'-4': N/O, N/S
					4				PID (headspace) = 3.5 ppm max.
					4		4.0'-5.0': Fill-Brown f to m SAND.		4'-5': N/O, N/S
					5 -		Sample collected: W18STMGP-SB2-5	57	PID (headspace) = 1.8 ppm max.
					4		5.0'-6.0': No recovery.		
					-		6.0'-6.5': Hard rock.		
					-				1
					7 -		E.O.B. at 6.5' bgs (I	Refusal due to rock at 6.0' bgs)	
					1				
					1				
					9 -				
					1				
					-				
					1				
					 11 -				
					1				
					1				
					13 -				
					1				
					1				
					L ,,				
					15 -				
					17 -				
					''				
			l						

BORING No.: SB-2
BORING LOG
SHEET 1 OF 2

ВΟ	MIII	ıG	LU	G					SHEET 1 OF 2
JOB							PROJECT NO.	AREA OF SITE	
			SCS	/Con Edis	on		41318-0700-10000	Inside Former Gas Holder #1	
ADDF Verizo			g on '	W 18th St	reet b/w 9	9th and	d 10th Ave	ELEVATION/DATUM 12.98/ NAVD 88	
				CTOR vironment	al, Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Amy Klimek	
DRIL				00			TYPE/SIZE BIT N/A	START DATE 5/6/2005	END DATE 5/6/2005
SAMI		•					HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc							N/A	(feet below ground surface (ft bgs))	13'
	z	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
	O CONSTRUCTION NAMER RECOVERY BROWS FER BLANCTION A FER B. 1- fine pr. 4								(PID, STAINING, ODORS, ETC.)
WELL	ONSTE	NUMBER	ECOVE I FEET	BLOWS	DEРТН	WATER		m - medium c - coarse	N/S = No Staining
_	0	z	≃ ≤	PER 6"			lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors
							0'-0.8': CONCRETE and rebar.		
					L 1 -		0.8'-2.0': Fill-Lt brown-gray f to c SAI	ND, GRAVEL and rock (schist) fragments.	0.8'-2': Strong gasoline-like odor, N/S
							Sample collected: W18STMGP-SB2	-11.5	PID = 22.1 ppm max.
							2.0'-5.0': Fill-Brown f to c SAND, son	ne gravel, rock (schist) fragments,	2'-3': N/O, N/S
					1 .		cobbles, tr silt and br	ick fragments.	PID = 11.8 ppm max.
					- 3 -				3'-4': N/O, N/S
									PID = 8.0 ppm max.
									4'-5': N/O, N/S
					5 -				PID = 5.1 ppm max.
					ŭ		5.0'-5.4': Fill-Dk brown SILT, f SAND	, CLAY and some gravel.	5'-7': N/O, N/S
		1	0.4'				Sample collected: W18STMGP-SB2	-57	PID = 5.7 ppm max.
					_				
					7 -		7.0'-7.4': Fill-Dk brown m SAND, son	ne silty, gravel, cobbles and tr clay.	7'-9': N/O, N/S
		2	0.4'						PID = 1.0 ppm max.
		_	0.4						F16 = 1.0 ppin max.
					9 -				
							9.0'-9.7': Fill-Dk brown-black SILT, f	SAND, some clay, asphalt and gravel.	9'-11': N/O, N/S
		3	0.7'						PID = 1.0 ppm max.
					L_{AA}				
					- 11 -		11.0'-11.9': Fill-Dk brown-black SILT	, f SAND, some cobbles and intermittent clay.	11'-13': N/O, N/S
		4	0.9'						PID = 0.1 ppm max.
					1				
					1				
					13 -		40 01 40 51; 531 DI	40AND same ashbles	401 45h Detrolours at AVO
				-	1		13.0'-13.5': Fill-Dk brown-black SILT Sample collected: W18STMGP-SB2	, f SAND, some cobbles, gravel and asphalt.	13'-15': Petroleum odor, N/S
		5	1.0'				13.5'-14.0': Fill-Dk brown SILT, f SAI		PID = 0.8 ppm max.
								,	
					15 -				
					'Ŭ		15.0'-15.7': Fill-Dk brown SILT, f SAI	ND and some clay.	15'-17': MGP-related odor, N/S
		6	0.7'						PID = 0.5 ppm max.
					1 !				
					17 -		17.0'-17.5': Fill-Dk brown-black SILT	f SAND some clay cophles wood	17'-19': Strong MGP-related odor, N/S
		-	0.51		1		fibers and mica scl		
\perp	1	/	0.5'	<u> </u>			l .		PID = 124 ppm max.

BORING No.: SB-2
BORING LOG
SHEET 2 OF 2

ьо	BORING LOG JOB NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
ADDI	RESS			Con Edis			41318-0700-10000	Inside Former Gas Holder #1 ELEVATION/DATUM	
					reet b/w 9	th an	d 10th Ave	12.98/NAVD 88	
DRIL Fenle	LING v and	CON Nice	NTRA ol Env	CTOR vironmenta	al. Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Amy Klimek	
DRIL	LING	RIG					TYPE/SIZE BIT	START DATE	END DATE
	o Eart			0			N/A	5/6/2005	5/6/2005
	PLER						HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2' disc	-	_				1	N/A	20.5'	13'
	CONSTRUCTION			PLES			DESCRI	PTION OF SOILS	REMARKS
	RUC	œ	RECOVERY IN FEET			~			(PID, STAINING, ODORS, ETC.)
WELL	NST	NUMBER	COV	BLOWS	DEPTH	WATER	f - fine	m - medium c - coarse	
>	2	N	물목	PER 6"	ä	>		tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
					19 -	ŀ			101011 01 1100 1111 1110
		8	0.5'		1		19.0'-19.5': Fill-Black SILT, f SAND, fibers.	some cobbles, tr clay, organic matter and wood	19'-21': Strong MGP-related odor, N/S PID = 19.2 ppm max.
		٥	0.5		ł		Sample collected: W18STMGP-SB2	-1920 5	FID = 19.2 ppm max.
								O.B. at 20.5' bgs	
					21 -		(Refusal due to rocks. Possible	e bottom of Former Gas Holder #2 at 20.5' bgs)	
					23 -	ļ			
					25				
					}				
					25 -	ł			
					ł				
					Ì				
					L				
					27				
					29 -	ŀ			
					1				
					31 -	İ			
					İ				
					33 -				
					33				
					-				
					}				
					35 -	l			
					†				
					†				
					<u> </u>				

BORING No.: SB-3
BORING LOG
SHEET 1 OF 2

IOB	NAME/ CLIENT						BBO IECT NO	AREA OF SITE	
				ı /Con Edis	son		PROJECT NO. 41318-0700-10000	SE of Former Gas Holder #2 and SW o	f Former Gas Holder #1
ADDI	RESS					oth and	d 10th Ave	ELEVATION/DATUM 13.60/NAVD 88	
DRIL	LING	COI	NTRA	CTOR /ironment			DRILLER Kevin Kegel	TRC INSPECTOR Amy Klimek	
DRIL	LING o Eart	RIG					TYPE/SIZE BIT N/A	START DATE 5/6/2005	END DATE 5/6/2005
SAM	PLER	TYI	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc							N/A	(feet below ground surface (ft bgs)) 20'	13'
	ION	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	NOLON STANFILLS AND STANFILLS				ĸ			(PID, STAINING, ODORS, ETC.)	
WELL	CONS	NUMBER	RECO IN FEE	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse tr - trace ttl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.8': CONCRETE and rebar.		
					1.		0.8'-1': Fill-Large (>3'x5' surface area	a) piece of former brick structure with	1'-2': N/O, N/S
					1 -		mortar joints lying horiz		PID = 0.4 ppm max.
					1		1.0'-5.0': Fill-Brown f to m SAND, Itl o	sand, gravel and brick chunks.	
					1				2'-3': N/O, N/S
					- 3 -				PID = 1.0 ppm max.
				.					3'-4': N/O, N/S
				-			Sample collected: W18STMGP-SB3	-33.5	PID = 2.0 ppm max.
									4'-5': N/O, N/S
					5 -				PID = 1.6 ppm max.
					Ĭ			ID, c GRAVEL, some cobbles and rock	5'-7': N/O, N/S
		1	0.7'				rock fragments.		PID = 0.1 ppm max.
							Sample collected: W18STMGP-SB3	-57	
					_				
					7 -				7'-9': N/O, N/S
		2	0.8'						PID = 0.2 ppm max.
					1				
					9 -				
							9.0'-9.25': Fill-Red-brown SILT, f SA 9.25'-10.0': Fill-Brown SILT and f SA		9'-11': N/O, N/S
		3	1.0'	-					PID = 0.1 ppm max.
				<u> </u>					
					11 -				
							11.0'-13.0': Fill-Brown silty CLAY and	I Itl f sand.	11'-13': N/O, N/S
		4	2.0'						PID = 1.6 ppm max.
					13 -				
					13		13.0'-13.8': Fill-Dk brown-gray SILT,	f to m SAND and tr clay.	13'-15': Strong gasoline-like odor, N/S
		5	0.8'				Sample collected: W18STMGP-SB3	-1315	PID = 63.0 ppm max.
					1				
					15 -		15.0'-16.0': Fill-Brown GRAVEL, m S	SAND and tr silt	15'-17': N/O, N/S
			1.0		1		10.0 - 10.0 . T III-BIOWII GRAVEL, M S	WIND GIRL U SIIL	
		6	1.0'	 					PID = 1.5 ppm max.
				 					
					17 -				
							17.0'-18.4': Fill-Brown GRAVEL, f to	c SAND, tr silt and clay.	17'-19': N/O, N/S
		7	1.4'						PID = 0.2 ppm max.

BORING No.: SB-3
BORING LOG
SHEET 2 OF 2

	ORING LOG OB NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
ADDI	RESS	;		Con Ediso		th an	41318-0700-10000 d 10th Ave	Inside Former Gas Holder #1 ELEVATION/DATUM 13.60/NAVD 88	
DRIL	LING	CON	NTRA	CTOR vironmenta			DRILLER Kevin Kegel	TRC INSPECTOR Amy Klimek	
DRIL	LING o Eart	RIG			-		TYPE/SIZE BIT N/A	START DATE 5/6/2005	END DATE 5/6/2005
SAMI	PLER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc	crete s	samp	ler				N/A	(feet below ground surface (ft bgs)) 20.5'	13'
	NOL			PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	Ä	VERY ET		Ŧ	e:			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine It - light dk - dark	m - medium c - coarse tr - trace ttl - little sl - slight	N/S = No Staining N/O = No odors
								4740	
					19 -	ŀ	Sample collected: W18STMGP-SB3 19.0'-20.0': Fill-Brown GRAVEL, f to		19'-20': N/O, N/S
		8	1.0'		Ì		15.5 25.5. TIII-DIOWII GIVAVEE, TIO	o onto, a sin and day.	PID = 2.1 ppm max.
]		E	.O.B. at 20' bgs	
					21 -	ļ			
					1				
					23 -				
					25 -	ŀ			
					İ				
					27 -	ļ			
					29 -	Ī			
					ļ				
					31 -	ŀ			
					ł				
					33 -	ļ			
					33				
					}				
					ł				
					35 -	İ			

BORING No.: SB-4
BORING LOG
SHEET 1 OF 2

ВΟ	17111	U	LU	G					SHEET 1 OF 2
JOB							PROJECT NO.	AREA OF SITE	
			SCS	/Con Edis	son		41318-0700-10000	Inside Former Gas Holder #2	
ADDF Verizo			g on '	W 18th S	treet b/w 9	th and	d 10th Ave	ELEVATION/DATUM 13.40/NAVD 88	
				CTOR vironment	tal, Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL				20			TYPE/SIZE BIT N/A	START DATE 5/5/2005	END DATE 5/5/2005
SAMI		_		-			HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc	rete s	samp	oler				N/A	(feet below ground surface (ft bgs)) 21'	8'
	z	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
_	CONSTRUCTION	BER	RECOVERY IN FEET		Ę	ER			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECC IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine lt - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.8': CONCRETE and rebar.		
					1 -		0.8'-2.0': Fill-Gray f SAND, some m	sand, gravel, tr c sand and rock fragments.	0.8'-2': N/O, N/S
					[']				PID = 3.6 ppm max.
							2.0'-3.0': Fill-Lt brown f to c SAND, s	ome silt, gravel, brick and rock fragments.	2'-3': N/O, N/S
					3 -				PID = 1.4 ppm max.
					Ĭ			some m sand, tr c sand, gravel, rock	3'-4': N/O, N/S
							fragments and cobbl	es.	PID = 1.1 ppm max.
									4'-5': N/O, N/S
					5 -				PID = 0.5 ppm max.
					١		Sample collected: W18STMGP-SB4	l-4.55.5	5'-6.5': N/O, N/S
					-		5.0'-6.5': Fill-Brown f to c SAND, sor brick fragments.	ne silt, gravel, rock (schist) fragments and	6.5'-9': Strong gasoline-like odor, black staining, sheen
		1	2.5'		7 -		6.5'-7.5': Dk gray SILT, f SAND, son rock (schist) fragmer	ne gravel, tr clay, pockets of c sand, and nts.	PID = 5.7 ppm max.
							Sample collected: W18STMGP-SB4	1-79	
		2	0.5'		9 -		9.0'-9.5': Fill-Dk gray f to m SAND, s	ome c sand, tr gravel and pockets of silt.	9'-11': SI gasoline-like odor, N/S, tr sheen PID = 0.9 ppm max.
		3	0.4'		11 -		11.0'-11.4': Fill-Dk gray f to c SAND,	some silt and gravel.	11'-13': SI petroleum odor, tr black staining, tr sheen PID = 4.4 ppm max.
		4	0.5'		13 -		13.0'-13.5': Fill-Dk gray c SAND, sor and tr silt.	me m sand, gravel, rock (schist) fragments	13'-15': Petroleum odor, N/S, sheen PID = 30.5 ppm max.
		5	0.8'		15 -		15.0'-15.8': Fill-Gray-brown f SAND, m to c sand.	some rock (schist) fragments, tr silt and	15'-17': SI MGP-related odor, N/S, sheen PID = 9.8 ppm max.
		7	0.7'		17 -		17.0'-17.7': Fill-Brown f to m SAND, and tr c sand.	SILT, some rock (schist) fragments,	17'-19': MGP-related odor, N/S, sheen PID = 12.9 ppm max.

BORING No.: SB-4
BORING LOG
SHEET 2 OF 2

BO	BORING LOG JOB NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
			SCS/	Con Ediso	on		41318-0700-10000	Inside Former Gas Holder #2	
Veriz		ilding	-		reet b/w 9	th an	d 10th Ave	ELEVATION/DATUM 13.40/NAVD 88	
				CTOR rironmenta	al. Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL	LING o Eart	RIG					TYPE/SIZE BIT	START DATE 5/5/2005	END DATE 5/5/2005
	PLER	•		0			HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2' disc							N/A	(feet below ground surface (ft bgs))	8'
	_			PLES				PTION OF SOILS	REMARKS
	CONSTRUCTION	œ	ERY		_	~			(PID, STAINING, ODORS, ETC.)
WELL	ONST	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine It - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
			Œ =	PERO			it-light dk-dark	u - trace iti - ittie Si - Siigni	N/O = NO Odors
					19 -				
		8	0.6'		'		19.0'-19.6': Fill-Black stained SILT, f	to c SAND, GRAVEL, brick and rock chunks.	19'-21': Very strong MGP-related odor, heavy black staining, visible OLM
		0	0.0		1		Sample collected: W18STMGP-SB4	-1921	PID = 3,124 ppm max.
					21 -				
								E.O.B. at 21' bgs ossible bottom of Former Gas Holder #2 at 21' bgs)	
					1				
					23 -	Ī			
					1				
					25 -	ł			
					27 -				
					1				
					29 -				
					ļ				
					31 -	ł			
					1				
					İ				
					33 -				
					33				
					1				
					t				
					35 -	İ			
]				
					1				
				l					

BORING No.: SB-5
BORING LOG
SHEET 1 OF 2

	B NAME/ CLIENT								
					on		PROJECT NO.	AREA OF SITE	
ADDI			303/	Con Edis	OUL		41318-0700-10000	SW of Former Gas Holder #2 ELEVATION/DATUM	
			g on \	N 18th St	reet b/w 9	th and	d 10th Ave	13.80/NAVD 88	
				CTOR vironment	al, Inc.		DRILLER Scott Yanuck/Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL Geop							TYPE/SIZE BIT N/A	START DATE 5/2/2005	END DATE 6/3/2005
SAM	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
5' & 3	' mac	roco	re sa	mpler			N/A	(feet below ground surface (ft bgs)) 31'	11.5'
	ION	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	ER	VERY :T		<u> </u>	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.2': CONCRETE and rebar.	3	
								me c sand, gravel, Itl silt, brick fragments	0.2'-2': N/O, N/S
					- 1 -		and tr wood fibers.	no o cana, gravor, in oin, prior nagricino	PID = 1.7 ppm max.
					1				o = ppii max.
							2.0'-3.0': Fill-Brown f to c SAND, son	on gravel pobbles tricit and	2'-3': N/O, N/S
					1		brick fragments.	no gravor, pennies, u siit dilu	
					- 3 -		3.0'-4.5': Fill-Brown f to c SAND, GR	AVEL and brick fragments	PID = 1.3 ppm max. 3'-4': N/O, N/S
							Sample collected: W18STMGP-SB5	A-3.44	PID = 1.7 ppm max.
									4'-5': N/O, N/S
					- 5 -			an sampling at 15' bgs. Soil descriptions ion of MW-5B were used for SB-5.	PID = 3.9 ppm max.
							_		5'-6.5': N/O, N/S
		1	0.3'				5.0'-5.3': Fill-Brown SILT, f to m SAN	ID, some c sand, Itl gravel and clay.	5'-10': N/O, N/S
									PID = 28.4 ppm max.
					7 -				
					9 -				
					Ŭ				
							10.0'-10.9': Fill-Lt to dk brown SILT,	f to c SAND, GRAVEL and brick fragments.	10'-11': Strong petroleum-like odor,
		2	1.4'		11				sheen, N/S
					- 11 -		10.9'-11.4': Fill-Lt brown f to c SAND	and GRAVEL.	PID = 387 ppm max.
									11'-15': Very strong petroleum-like odor,
									black staining, sheen
					40				PID = 4,085 ppm max.
					- 13 -				
					1				
					1				
					- 15 -		15.0'-17.5': Wood timbers.		15'-19': Strong petroleum-like odor, sheen
		2	5.01				15.6-17.5. WOOD UNDERS.		black staining on wood, tr NAPL.
		3	5.0'						PID = 198 ppm max.
					17 -				
							17.5'-19.0': Fill-Brown-gray m to c S/		
$\perp \perp$							Sample collected: W18STMGP-SB5	A-1719	

BORING No.: SB-5
BORING LOG
SHEET 2 OF 2

ВО	KIN	IG	LO	G					SHEET 2 OF 2
	NAMI						PROJECT NO.	AREA OF SITE	
	th St N		SCS/	Con Edisc	on		41318-0700-10000	SW of Former Gas Holder #2 ELEVATION/DATUM	
			g on V	V 18th Str	eet b/w 9	th an	d 10th Ave	13.80/NAVD 88	
				CTOR rironmenta	al Inc		DRILLER Scott Yanuck/Kevin Kegel	TRC INSPECTOR Jessica Elliott	
	LING		JI LIIV	TOTTTIETTE	ai, iiio.		TYPE/SIZE BIT	START DATE	END DATE
Geop	robe	6610					N/A	5/2/2005	6/3/2005
SAM	PLER	TYP	E				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
5' & 3	3' mad	roco	re sar	npler			N/A	31'	11.5'
	NO	S	AMI	PLES			DESCR	IPTION OF SOILS	REMARKS
	CONSTRUCTION	١	ΚY						(PID, STAINING, ODORS, ETC.)
=	ISTR	NUMBER	RECOVER) IN FEET		DEPTH	WATER			
WELL	CO	NON	REC IN F	BLOWS PER 6"	JEL	WA	f - fine It - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
					- 19 -				
					19		19.0'-19.6': Fill-Black stained SILT,	f to c SAND, GRAVEL, brick and rock chunks.	19'-20': Tr petroleum-like odor, N/S
							Sample collected: W18STMGP-SB5	5A-1920	PID = 6.8 ppm max.
							20.0'-25.0': ML-Gray silty CLAY and	tr f sand.	20'-25': Very sl petroleum-like odor, N/S
		4	5.0'		- 21 -	ļ			PID = 8.4 ppm max.
					- '				
					- 23 -	ŀ			
					25 -	ŀ			
							26.0'-26.5': SP-Brown c SAND, tr gr	avel and m cand	26'-29': N/O, N/S
		5	1.5'				26.5'-27.5: SM-Brown c SAND, SILT		PID = 8.0 ppm max.
			1.0		27		Sample collected: W18STMGP-SB5		1 15 = 0.0 pp. 11 max.
							campio conocioa. Trico imor osc		-
					29 -	Ī	29.0'-30.5': SP-Brown m SAND.		29'-31': N/O, N/S
		6	1.5'						PID = 5.0 ppm max.
					- 21 -	ļ			
					31 -		ı	E.O.B. at 31' bgs	
							(Heaving sands in casing from 12	2'-31' bgs. Move location over 2' and attempt new	
							SB	-5/MW-5B location)	
					- 33 -	ļ			
					- 35 -	ł			
					l				
				l .			<u>l</u>		J

BORING No.: MW-5A SHEET 1 OF 2

				_					
	NAMI			「 ′Con Edis	on		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Former Gas Holder #2	
ADD	RESS					th and	1 10th Ave	ELEVATION/DATUM 13.84/NAVD 88	
DRIL	LING	CON	NTRA	CTOR vironmenta			DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
DRIL Geop	LING	RIG					TYPE/SIZE BIT N/A	START DATE 5/2/2005	END DATE 5/2/2005
SAM	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
5' ma	croco	re sa	ample	r			N/A	(feet below ground surface (ft bgs)) 22'	11.5'
	ION	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	CONSTRUCTION	ER	VERY ET		Ŧ	H.			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.8': CONCRETE and rebar.		
					- 1 -		0.8'-2.0': Fill-Brown SILT, f SAND, so	me m sand, tr c sand, gravel and cobbles.	0.8'-2': N/O, N/S
					_ , _				PID = 1.7 ppm max.
							2.0'-4.0': Fill-Brown f to c SAND, som	e gravel, cobbles and tr silt.	2'-3': N/O, N/S
					2		Sample collected: W18STMGP-SB56	B-2.53	PID = 0.9 ppm max.
					- 3 -				3'-4': N/O, N/S
									PID = 5.6 ppm max.
							4.0'-4.5': Fill-Brown f to c SAND, som	e gravel, cobbles, tr silt and	4'-5': N/O, N/S
					- 5 -		brick fragments.	PID = 0.9 ppm max.	
					ŭ		5.0'-5.3': Fill-Brown SILT, f to m SANI	D, some c sand, Itl gravel and clay.	5'-10': N/O, N/S
		1	0.3'						PID = 28.4 ppm max.
					- 7 -				
					- 9 -				
	ш								
							10.05.10.05 Fill-1+to all brown CUT-4	to a SAND GRAVEL and brick fragments	10'.11'. Strong notroloum like ader
		2	1.4'				Sample collected: W18STMGP-SB5	to c SAND, GRAVEL and brick fragments.	10'-11': Strong petroleum-like odor, sheen, N/S
		-	1.4		- 11 -		10.9'-11.4': Fill-Lt brown f to c SAND		PID = 387 ppm max.
						_	Sample collected: W18STMGP-SB58		11'-15': Very strong petroleum-like odor,
									black staining, sheen
					- 40				PID = 4,085 ppm max.
					- 13 -				
					- 15 -				15'-20': Very strong petroleum-like odor,
					.0		15.0'-15.1': Fill-Brown-gray SILT, f SA	AND and tr gravel.	N/S, sheen PID = 1,222 ppm max.
		3	0.1'						
									Sand Description China
					- 17 -				Bentonite Chips Concete
									Well Screen
	17 -								wen screen

BORING No.: MW-5A SHEET 2 OF 2

<u> </u>	NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
			SCS/	Con Edisc	on		41318-0700-10000	SW of Former Gas Holder #2	
ADDR			n on l	N/ 10th Ctr	oot b/w 0	th an	d 10th Ave	ELEVATION/DATUM 13.84/NAVD 88	
					eet b/w 9	ın an			
				CTOR vironmenta	al Inc		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
DRILL			,, E.I.	- ITOTIITICITE	ai, iiio.		TYPE/SIZE BIT	START DATE	END DATE
Geopi	robe (6610	DT				N/A	5/2/2005	5/2/2005
SAME							HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
								(feet below ground surface (ft bgs))	
5' mad	croco	re sa	ımple	r			N/A	22'	11.5'
	N	S	AMI	PLES			DESCR	IPTION OF SOILS	REMARKS
	CONSTRUCTION		,		1				
	.R.	æ	RECOVER) IN FEET		۱ ـ	~			(PID, STAINING, ODORS, ETC.)
WELL	NST	NUMBER	RECOVE IN FEET	BLOWS	DEPTH	WATER	f - fino	m - medium c - coarse	N/S = No Staining
\$	00	Ñ	RE(PER 6"	퓜	*	It - light dk - dark	tr-trace Itl-little sl-slight	N/O = No odors
							_	-	18'-22': N/O, N/S
					İ				
-	1				19 -	ł			PID = 1.9 ppm max.
					ļ -				
					Į.				
							20.0'-21.0': Fill-Brown m to c SAND	, tr gravel, silt and brick and concrete fragments.	20'-21': SI petroleum-like odor, N/S, sheen
		4	2.0'		Ī				PID = 55 ppm max.
		·	2.0		21 -	t			
					ł		Sample collected: W18STMGP-SB	DB-2122	21'-22': SI petroleum-like odor, N/S, tr sheen
					ļ				PID = 12.4 ppm max.
					Į.		E.O.B. at 22' bgs (Re	fusal due to brick/concrete at 22' bgs)	
					23 -	İ			
					Ì				
					ł				
					ļ				
					25 -	Į.			
					25 -				
					Ī				
					İ				
					ł				
					27 -	ŀ			
					Ī				
					İ				
					29 -	ł			
					ļ -				
					ļ				
					l				
					31 -	Î			
					ł				
					}				
					ļ				
					L	[
					33 -				
					Ī				
					t				
					ł				
					35 -	ļ			
					33				Sand
									Bentonite Chips
					Ī		Well set at 19' bgs.		Concete
					t		Screen interval from 19.0' to 9.0' bgs	s.	Well Screen
ш	1	Ь			<u> </u>	<u> </u>	L		Beleen

BORING No.: MW-5B SHEET 1 OF 3

	NAME h St N			「 ′Con Edis	on		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Former Gas Holder #2	
ADD	RESS					th and	i 10th Ave	ELEVATION/DATUM 13.80/NAVD 88	
				CTOR vironment	al, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
	LING robe						TYPE/SIZE BIT N/A	START DATE 6/1/2005	END DATE 6/8/2005
SAM	PLER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
5' mad	crocor			discrete	sampler	1	N/A	42'	11.5'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	CONSTRUCTION	NUMBER RECOVERY RECOVERY SMOOTH STATEMENT OF THE MATER MATER							(PID, STAINING, ODORS, ETC.)
WELL	CONS	NOMB	RECO IN FEI	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.8': CONCRETE and rebar.		
								ome m sand, tr c sand, gravel and cobbles.	0.8'-2': N/O, N/S
					- 1 -		0.0 2.0. THE DIOWN CIET, FOR IND., S	one in said, it e said, graver and cobbles.	PID = 1.7 ppm max.
									PID = 1.7 ppm max.
							2.0'-4.0': Fill-Brown f to c SAND, sor	ne gravel, cobbles and tr silt.	2'-3': N/O, N/S
					2		Sample collected: W18STMGP-SB5	6A-3.54	PID = 0.9 ppm max.
					- 3 -				3'-4': N/O, N/S
									PID = 5.6 ppm max.
							4.0'-4.5': Fill-Brown f to c SAND, sor	ne gravel, cobbles, tr silt and	4'-5': N/O, N/S
							brick fragments.	3 ,	PID = 0.9 ppm max.
					- 5 -		5.0'-5.3': Fill-Brown SILT, f to m SAN	ID some c sand Itl gravel and clay	5'-10': N/O, N/S
		1	0.3'				5.5 5.5. THE DIGWIT GILL, I TO IT GA	vo, some e sand, in graver and day.	PID = 28.4 ppm max.
		'	0.3						PID = 26.4 ppm max.
					- 7 -				
					- 9 -				
							10.0'-10.9': Fill-Lt to dk brown SILT,	f to c SAND, GRAVEL and brick fragments.	10'-11': Strong petroleum-like odor,
		2	1.4'		- 11 -				sheen, N/S
					'		10.9'-11.4': Fill-Lt brown f to c SANE	and GRAVEL.	PID = 387 ppm max.
									11'-15': Very strong petroleum-like odor,
									black staining, sheen
					- 10 -				PID = 4,085 ppm max.
					- 13 -				
					4.5				15'-19': Very strong petroleum-like odor,
					- 15 -		15.0'-15.1': Fill-Brown-gray SILT, f S	AND and tr gravel.	N/S, sheen
		3	0.1'				3.,,	<u>-</u>	PID = 1,222 ppm max.
							Begin sampling for MW-5B at 17' bgs	s (2' discrete sampler) in order to	
							determine top of clay interval.	- La analysis in state to	No Backfill/Hole Collapse
					- 17 -		Sample collected: W18STMGP-SB5	5A-1719	Concete
		4	2.0'						Well Screen
		4	∠.U						Secon

BORING No.: MW-5B SHEET 2 OF 3

	D NAME (CLIENT								SHEET Z OF 3
	JOB NAME/ CLIENT W18th St MGP SCS/Con Edison						PROJECT NO. 41318-0700-10000	AREA OF SITE	
ADD	RESS					th an	d 10th Ave	SW of Former Gas Holder #2 ELEVATION/DATUM 13.80/NAVD 88	
DRIL	LING	CON	NTRA	CTOR ironmenta			DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
DRIL	LING	RIG			<u> </u>		TYPE/SIZE BIT N/A	START DATE 5/2/2005	END DATE 5/2/2005
SAM	PLER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
5' mad	crocor	e & 2	2' & 4'	discrete	sampler		N/A	(feet below ground surface (ft bgs)) 42'	11.5'
	NOL	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	CONSTRUCTION	Ä	VERY ET		Ŧ	e:			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVER IN FEET	BLOWS PER 6"	DEPTH	WATER		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
					- 19 -	ŀ	18.5'-19.0': ML-Tan silty CLAY and tr		
		5	2.0'				19.0'-21.0': SM-Brown f to m SAND, Sample collected: W18STMGP-SB5/	* =	19'-21': Sheen
		5	2.0				Sample collected: W18S1WGP-SBS/	4-1920	
					_ 21 -		21.0'-23.0': GW-Brown f to c SAND,	GRAVEL, some silt and intervals of silty clay	
		6	2.0'				interval (varying t	hickness from approximately 0.2'-0.3').	
					- 23 -				
					20			AND, ItI gravel and 0.25' thick interval of silty of sample (24.75'-25.0').	
		7	2.0'				OLAT III BOROIT C	or sample (24.75 -25.6).	
					- 25 -	ł			
					,		26.0'-28.0': SM-Lt brown SILT. f SAN	ID, some clay and m to c sand and gravel.	-
		8	2.0'				, ,	,,,	
					27	Ī	Sample collected: W18STMGP-SB5/	A-2628	
							28.0'-31.0': SM-Brown f SAND, some	e silt, tr m sand and c sand.	28'-32': N/O, N/S
		9	4.0'		- 29 -	ļ			PID = 0.0 ppm max.
					20				
					⁻ 31 ⁻	ł	21 0'-31 3'· MI -Tan eilty CLAV and to	feand	
							31.0'-31.3': ML-Tan silty CLAY and tr 31.3'-36.0': SW-Brown m to c SAND		-
							2.12 30.0. ON BIOWITH TO COAND		32'-36': Very sl non-MGP related odor, N/S
		10	4.0'		_ ^^				PID = 0.0 ppm max.
					- 33 -				
							Sample collected: W18STMGP-MW5	5B-3436	
					- 35 -	ļ			
									No Designation
									No Backfill/Hole Collapse Concete
	36.0'-42.0': Soils were set monito						36.0'-42.0': Soils were not logged, bu set monitoring well MW-5	at 3.25" steel casing was advanced to 42' bgs to B with the screen interval below any clay intervals.	Well Screen
	36.0'-42.0': Soils were not logged set monitoring well M								Wen Scient

BORING LOG

BORING LOG

BORING No.: MW-5B

SHEET 3 OF 3

БО	1711	10		0					SHEET 3 OF 3
JOB							PROJECT NO.	AREA OF SITE	
			SCS	Con Edis	on		41318-0700-10000	SW of Former Gas Holder #2	
ADDI Veriz			g on \	N 18th Sti	reet b/w 9	9th a	nd 10th Ave	ELEVATION/DATUM 13.80/NAVD 88	
				CTOR vironmenta	al, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
DRIL Geop							TYPE/SIZE BIT N/A	START DATE 6/1/2005	END DATE 6/8/2005
SAMI							HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
5' mad	croco			discrete	sampler		N/A	42'	11.5'
	NOI			PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	3ER	RECOVERY IN FEET		Ξ	E			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECC IN FE	BLOWS PER 6"	рертн	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
		ı							
		ı			- 37 -				
		ı							
		ı							
		ı			- 39 -				
		ı							
		ı							
		ı			- 41 -				
		ı							
П							E	E.O.B. at 42' bgs	1
					- 43 -				
					- 45 -				
					70				
					- 47 -				
					4/				
					40				
					- 49 -				
					- 51 -				
									No Backfill/Hole Collapse
					- 53 -		Well set at 42' bgs.		Concete
							Screen interval from 32' to 42' bgs.		Well Screen

BORING No.: SB-6 SHEET 1 OF 4

BO	KIIN	ıG	LU	G					SHEET 1 OF 4
JOB	NAMI	E/ C	LIEN'	Т			PROJECT NO.	AREA OF SITE	
W18t	h St N	ИGР	SCS	/Con Edis	son		41318-0700-10000	NW of Former Gas Holder #2	
	RESS on Bu		g on	W 18th S	treet b/w 9	th and	d 10th Ave	ELEVATION/DATUM 13.69/NAVD 88	
				ACTOR vironment	tal, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
	LING robe						TYPE/SIZE BIT N/A	START DATE 5/12/2005	END DATE 5/13/2005
-	PLER						HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3' & 5'	macı	roco	re sar	mpler with	31/4" ste	el casi	i N/A	(feet below ground surface (ft bgs)) 72'	13'
	ION	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	NUMBER	RECOVERY IN FEET		DEPTH	WATER			(PID, STAINING, ODORS, ETC.)
WELL	03	NON	REC	BLOWS PER 6"	DEF	WA	f - fine lt - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.3': CONCRETE and rebar.		
					- 1 -		0.8'-2.0': Fill-Brown SILT, f SAND an	d tr gravel.	0.3'-2': N/O, N/S
									PID = 4.0 ppm max.
							2.0'-5.0': Fill-Brown f SAND, some si	ilt, gravel and brick fragments.	2'-3': N/O, N/S
					_				PID = 1.7 ppm max.
					- 3 -				3'-4': N/O, N/S
									PID = 1.4 ppm max.
									4'-5': N/O, N/S
					5 -				PID = 2.5 ppm max.
							5.0'-6.7': Fill-Brown SILT, f SAND, tr	m to c sand and gravel.	5'-10': N/O, N/S
									PID = 0.3 ppm max.
		1	1.7'		$L_{\neg} J$				
					7 -				
						_			
					9 -				
							10.0'-11.7': Fill- Brown SILT, f SAND	, some m to c sand and tr gravel.	10'-13': SI petroleum-like odor (stronger
		2	1.7'		11 -		Sample collected: W18STMGP-SB6	i-1012	at tip of sample), tr black staining
] '']				PID (sample sleeve) = 265 ppm max.
									PID (sample tip) = 2,060 ppm max.
					1		12.0! 12.0! (tip of 10! 12! par!-): B-	oun fite a CAND, CII T and some ground	
				 	13 -			own f to c SAND, SILT and some gravel.	
							13.0'-14.4': Fill-Gray-brown SILT, f S		13'-16': Strong petroleum-like odor, some black staining, sheen, tr NAPL
		3	1.4'				Sample collected: W18STMGP-SB6	i-1315	PID = 3,520 ppm max.
									. 15 – 5,626 ррш нах.
					15 -				
] '3				
							16.0'-16.4': Fill-Dk brown SILT, f SAI	ND, tr m sand and rock fragments.	16'-19': SI petroleum-like odor, N/S
		4	0.4		1				PID = 134 ppm max.
			J		17 -				. 15 – 10 г. ррш шах.
					1				
oxdot	1			<u> </u>					

BORING No.: SB-6
BORING LOG
SHEET 2 OF 4

			LO						SHEET 2 OF 4
	NAMI						PROJECT NO.	AREA OF SITE	
			SCS	Con Edis	on		41318-0700-10000	NW of Former Gas Holder #2	
	RESS on Bu		g on \	N 18th St	reet b/w 9	9th a	nd 10th Ave	ELEVATION/DATUM 13.69/NAVD 88	
				CTOR rironment	al, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
	LING						TYPE/SIZE BIT N/A	START DATE 5/12/2005	END DATE 5/13/2005
	IPLER						HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3' & 5	' macı	rocor	e san	npler with	31/4" ste	el ca		72'	13'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
WELL	NSTRUCT	CONSTRUCTION NUMBER RECORSTRUCTION BLOWS BLOWS FEEL FEEL FEEL FEEL FIGHT MA Height dk-darl				ATER	f - fine	m - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining
<u>×</u>	- 8	N	A Z	PER 6"	8	'n	lt - light dk - dark		N/O = No odors
							0'-19.0': 3 1/4" steel casing installed	to 19' bgs. Discrete sampling from 19'-72' bgs.	
					19 -	1		and tr m sand and gravel (2' discrete sampler).	19'-20': N/O, N/S
		_	0.01		i		19.0 -20.9 . TIII-DIOWIT SIET, I SAIND	and triff sand and graver (2 discrete sampler).	
		5	0.8'		ł				PID = 45 ppm max.
					1		Sample collected: W18STMGP-SB6		20'-23': N/O, N/S
		6	2.9'		21 -	ł	20.9'-22.9': Fill-Lt brown f to c SAND		PID = 2.4 ppm max.
					~ '		tr brick fragments	5.	
					1				
					1				
					23 -	ł	00.01.00.41.014.0	T (OAND 31 - 1 - 1 - 1 - 1	
					ł		23.0'-26.1': SM-Brown-dk brown SIL gravel.	T, f SAND, with pockets of m to c sand and tr	23'-27': N/O, N/S
		7	4.0'		l				PID = 0.9 ppm max.
							Sample collected: W18STMGP-SB6	-2426	
					25 -				
					23				
					1		26.1'-28.2': ML-Tan silty CLAY and to	r f sand.	
					1		and to		
					- 27 -	i			27 22 N/2 N/2
					ł				27'-32': N/O, N/S
		8	5.0'		l				PID = 0.0 ppm max.
					l		28.2'-36.0': SP-Brown f to m SAND a	and tr silt.	
					29 -		Sample collected: W18STMGP-SB6	-28.530.5	
					29 -				
					1				
					1				
					l				
					31 -	ł			
					ł				
					l				32'-37': N/O, N/S
									PID = 0.0 ppm max.
		9	5.0'		L 22]			
					- 33 -	1			
					1				
					1				
					ł				
					35 -	ł			
		35 -							
						L			

BORING LOG

BORING LOG

BORING No.: SB-6
SHEET 3 OF 4

_									
	NAME			Con Edis	on		PROJECT NO.	AREA OF SITE NW of Former Gas Holder #2	
ADD			303/	CON EalS	UII		41318-0700-10000	ELEVATION/DATUM	
					reet b/w 9	th a	nd 10th Ave	13.69/NAVD 88	
				CTOR vironment	al, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
DRIL							TYPE/SIZE BIT	START DATE	END DATE 5/12/2005
Geop							N/A HAMMER WEIGHT/DROP	5/12/2005 TOTAL DEPTH	5/13/2005 WATER LEVEL (ft bgs)
				npler with	31/4" ste	el ca		(feet below ground surface (ft bgs))	13'
5 4 5				PLES	J1/→ J16	J1 00		PTION OF SOILS	REMARKS
	CONSTRUCTION								
_	TRU	3ER	OVER'		Ξ	ER			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							36.0'-36.5': SP-Brown very c SAND.		
					- 37 -		36.5'-38.0': SP-Brown f to m SAND.		
					31				
		10	5.0'						
							38.0'-40.0': ML-Tan silty CLAY and to	rfsand.	
					- 39 -				
							40.0'-57.0': SP-Brown f to m SAND a	and tr c sand.	-
					- 41 -				
					41				
									37'-42': N/O, N/S
									PID = 0.0 ppm max.
		11	5.0'		- 43 -				
					- 15 -				
					- 45 -				
					- 47 -				401 471, N/O N/O
		12	5.0'						42'-47': N/O, N/S PID = 0.0 ppm max.
		14	3.0						rib = 0.0 ppiii max.
					40				
					- 49 -				
					- 51 -				
									AT! FO! NIO NIC
									47'-52': N/O, N/S PID = 0.0 ppm max.
		13	5.0'						1 15 = 0.0 рриниах.
					- 53 -				

BORING No.: SB-6 SHEET 4 OF 4

JOB NAME/ CLIENT W18th St MGP SCS/Con Edison							PROJECT NO.	AREA OF SITE	
			SCS/	Con Edis	on		41318-0700-10000	NW of Former Gas Holder #2	
Veriz		ildin			reet b/w 9	th a	nd 10th Ave	ELEVATION/DATUM 13.69/NAVD 88	
				CTOR vironment	al, Inc.		DRILLER Scott Yanuck	TRC INSPECTOR Jessica Elliott	
	LING probe						TYPE/SIZE BIT N/A	START DATE 5/12/2005	END DATE 5/13/2005
SAM	IPLER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3' & 5	5' macr	ocor	e san	npler with	31/4" ste	el ca	N/A	(feet below ground surface (ft bo	g s)) 13'
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	2	/ERY T		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONST	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							, <u>,</u>		
					- 55 -				
					55				
					- 57 -		57.0'-66.7': SW-Brown f to m SAND	and some c sand.	57'-62': N/O, N/S
		14	5.0'						PID = 0.0 ppm max.
			0.0						1.15 = 0.0 pp.11.11.55
					- 50 -				
					- 59 -				
					- 61 -				
									62'-67': N/O, N/S
		15	5.0'		00				PID = 0.0 ppm max.
					- 63 -				
					- 65 -				
							66.7'-67.0': GC-Brown f to very c SA	ND and GRAVEL.	
					- 67 -		67.0'-71.75': GP-Brown m to very c		67'-72': N/O, N/S
		16	5.0'						PID = 0.0 ppm max.
					- 69 -				
					-				
							Sample collected: W18STMGP-SB6	3-7072	
	71 -				71 -		-Sample collected. W1001WGF-3Dt	,,,,,,	
							71.75'-72.0': Refusal-Schist fragmen	its in spoon.	
_								bgs (Refusal due to hard rock).	•

BORING No.: SB-18
SHEET 1 OF 3

BURIN	U		<u> </u>					SHEET 1 OF 3
JOB NAME						PROJECT NO.	AREA OF SITE	
V18th St MO	ЭP	SCS	/Con Ed	lison		41318-0700-10000	Western edge of the Gas Light Co. Sto ELEVATION/DATUM	ore Yard
	esto	one r	oad at C	helsea Pi	ers be	etween 18th and 19th St	6.74/NAVD 88	
DRILLING (ADT	СО	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
ORILLING F ME 75	RIG	ì				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/20/2004	END DATE 7/20/2004
SAMPLER '	ΤY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
" Split Spoo	on					140 lbs./30"	43'	7'
NO _	S	٩М	PLES			DESCRI	PTION OF SOILS	REMARKS
WELL CONSTRUCTION	3ER	RECOVERY IN FEET		Ŧ	ËR			(PID, STAINING, ODORS, ETC.)
CONS	NUMBER	RECC IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine n lt - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
						0.0'-2.0': COBBLESTONE AND C	ONCRETE	
				L 1 -				
				'				
				4				
				3 -				
				-				
				-				
				5 -		Sample collected: W18STMGP-B		
			4	-		5.0'-23.0': Fill-grayish black v f to	c SAND, some silt and ltl to some gravel.	5'-7': N/O, N/S
	1	1.0'	2	-				PID = 0.1 ppm max.
			1			O	22.7.2	
			2	7 -		Sample collected: W18STMGP-B		7'-9': N/O, N/S
	_	0.9'		-		8.0-10.5: Fill-Tr gray clayey SILT.		
	2	0.9	6					PID = 0.1 ppm max.
			2					
			4	9 -				9'-11': N/O, N/S
	3	1.4'	10	1				PID = 0.0 ppm max.
	٥	1.4	3	1				г ID – 0.0 ррш шах.
			3	1				
			4	11 -				11'-13': N/O, N/S
	4	0.1'	1	1				PID = 0.1 ppm max.
$\parallel \parallel \parallel \parallel$			3	1				ppm maxi
			3	1				
			3	13 -		13.0'-21.0': Ltl to some brick fragm	nents, wood fibers and shell fragments.	13'-15': N/O, N/S
	5		5			Ĭ	-	PID = 0.2 ppm max.
			7					
			7	_ , -				
			3	15				15'-17': N/O, N/S
	6	1.6'	2					PID = 0.3 ppm max.
			3					
			3	$\lfloor {}_{\scriptscriptstyle AZ} \rfloor$				
			3	17 -				17'-19': N/O, N/S
	7	1.4'	2					PID = 0.1 ppm max.

BORING LOG

BORING LOG

BORING No.: SB-18

SHEET 2 OF 3

				<u> </u>					SHEET 2 OF 3		
JOB							PROJECT NO.	AREA OF SITE	Coo Light Co. Store Vord		
			SCS	/Con Edi	son		41318-0700-10000	Western edge of the Gas Light Co. Sto	ore Yard		
ADD			.no -	and at Ch	ologo Di	ioro I	naturaan 19th and 10th Ct	ELEVATION/DATUM 6.74/NAVD 88			
					ieisea Pl	G12	between 18th and 19th St				
ADT				ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans			
DRIL		RIG	ì				TYPE/SIZE BIT	START DATE	END DATE		
CME :							3.25" Hollow Stem Auger	7/20/2004	7/20/2004		
SAMI			PE				HAMMER WEIGHT/DROP 140 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs)) 43'	WATER LEVEL (ft bgs)		
2" Spl	п эр										
	TION			PLES			DESCRIF	PTION OF SOILS	REMARKS		
	CONSTRUCTION	ER.	RECOVERY IN FEET		Ξ	监			(PID, STAINING, ODORS, ETC.)		
WELL	CONS	NOME	RECC IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	r - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors		
				4							
				4							
					- 19 -						
				6					19'-21': N/O, N/S		
		8	1.2'	4					PID = 0.0 ppm max.		
				3							
				1							
				2	- 21 -				21'-23': Musty odor N/S		
									21'-23': Musty odor, N/S		
	9 1.4' 6								PID = 1.5 ppm max.		
				5			22.1'-22.5': Wood timbers in nose	of spoon.			
	9 22										
				5	- 23 -		23.0'-25.0': Wood fibers and brick	fragments and trace clay in nose of spoon.	23'-25': Musty odor, N/S		
		40	2.01				and	g and had sidy in nood of spoon.	, ,		
		10	2.0'	8				PID = 1.4 ppm max.			
				8							
				5	- 25 -						
				1	- 25 -		25.0'-29.0': SM-Dark gray SILT, v	f to c SAND and Itl m to c gravel.	25'-27': N/O, N/S		
		11	1.5'	4					PID = 0.1 ppm max.		
									b = o ppii max.		
				3							
				2	- 27 -						
				3	-1				27'-29': SI odor in nose of spoon, N/S		
		12	2.0'	2					PID = 23.8 ppm max.		
				3					1		
							Comple collected: MARCTMOR D	20. 20. 520. 0			
				2	- 29 -		Sample collected: W18STMGP-B0		l		
				3			29.0'-31.0': ML-Gray silty CLAY, tr	shell fragments and small clams.	29'-31': Odor, N/S		
		13	1.5'	2					PID = 23.9 ppm max.		
				1							
				1							
					- 31 -		24 0' 25 0', CM C CUT	a CAND It! f to m grove! to accommission of	241 221. Cloder visible -b N/C		
				3			-	n SAND, ltl, f to m gravel, tr muscovite and	31'-33': SI odor, visible sheen, N/S		
		14	1.4'	1			silty clay in th	e nose of the spoon from 33.0'-35.0' bgs.	PID = 5.2 ppm max.		
				2							
				2	0.0						
				2	- 33 -				33'-35': Odor, visible sheen, N/S		
		45									
		15	1.4'	1					PID = 1.2 ppm max.		
				1							
				2	- 25				j		
				WOH/18"	35		35.0'-43.0': ML-Grayish black silty	CLAY, tr f sand and m gravel.	35'-37': Odor, N/S		
		16	1.5'						•		
\vdash		16	1.5						PID = 3.2 ppm max.		

BORING LOG

BORING LOG

BORING No.: SB-18

SHEET 3 OF 3

	KII								SHEET 3 OF 3
	NAM						PROJECT NO.	AREA OF SITE	
			SCS	S/Con Ed	ison		41318-0700-10000	Western edge of the Gas Light Co. Sto	ore Yard
	RESS cobb		one r	oad at C	helsea Pi	iers	between 18th and 19th St	ELEVATION/DATUM 6.74/NAVD 88	
	LING			ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
	LING	RIC	3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/20/2004	END DATE 7/20/2004
_	IPLER	R TY	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sn	olit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 43'	7'
_ 0		_	ΑМ	PLES		l	•	PTION OF SOILS	REMARKS
	CONSTRUCTION		T T		_	_	J = 001		(PID, STAINING, ODORS, ETC.)
WELL	CONST	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine n It - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				2					
				WOH/12"	- 37 -				37'-39': Odor, N/S
		17	2.0'						PID = 2.2 ppm max.
				2					
				1	- 39 -				
				WOH/12"	33				39'-41': SI odor, N/S
		18	2.0'						PID = 2.5 ppm max.
					- 41 -				41'-43': N/O, N/S
		19							PID = 1.3 ppm max.
		15					Sample collected: W18STMGP-B	08-42.543.0	г ID = 1.3 ppiii max.
					- 43 -		E.	O.B. at 43' bgs.	
					- 45 -				
					70				
					- 47 -				
					- 49 -				
					- 51 -				
					31				
					- 53 -				
				-					

BORING No.: SB-53 SHEET 1 OF 2

БО	יווא	10	LU	G					SHEET 1 OF 2
JOB							PROJECT NO.	AREA OF SITE	
W18t	h St N	ИGР	SCS	Con Edis	on		41318-0700-10000	Northern portion of Former Gas Light C	o. Store Yard
ADDI Johns			ng on	W 19th S	Street b/w	Route	9A and 10th Ave	ELEVATION/DATUM -	
				CTOR vironment	al, Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL				00			TYPE/SIZE BIT N/A	START DATE 3/24/2005	END DATE 3/24/2005
SAM		_					HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
4' lon	g, 2"	mac	rocore	e sampler			N/A	(feet below ground surface (ft bgs)) 26'	8'
	ON	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
٠.	CONSTRUCTION	BER	RECOVERY IN FEET		Ŧ	띪			(PID, STAINING, ODORS, ETC.)
WELL	CON	NUMBER	RECO IN FE	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-1.0': CONCRETE and rebar.		
					1 -				
							1.0'-2.0': Fill-Dk brown to black f to c slag and coal fragmen	SAND, GRAVEL, concrete, wood fibers, nts and black tar.	1'-2': Strong tar odor, some black staining PID = 1.2 ppm max.
							2.0'-4.5': Fill-WOOD FIBERS, Itl f to	c sand, tr gravel, coal fragments and glass.	2'-4.5': Strong tar odor, black staining, dk blue dye on wood and in soil
					- 3 -				PID = 0.0 ppm max.
		1	3.4'						
							4.5'-5.4': Fill-Tan SILT, f to m SAND	and tr gravel	4.5'-6': N/O, N/S
					- 5 -			and a gravon	PID = 0.0 ppm max.
							6.0'-7.0': Fill-Dk brown m to c SAND fragments.	, WOOD FIBERS, tr gravel and tr brick	6'-7': Non-MGP related odor, dk blue staining on wood
					7 -		Sample collected: W18STMGP-SB5	3-67	PID = 0.0 ppm max.
					'		7.0'-8.3': Fill-Tan f SAND and SILT.		7'-10': N/O, N/S
		2	3.3'				8.3'-9.3': Fill-Orange-brown m to c S	AND, tr f sand and gravel.	PID = 0.0 ppm max.
					9 -		Sample collected: W18STMGP-SB5		
					J				
							10.0'-15.0': SP-Gray-brown m to c S	AND and tr silty clay lenses (approximately	10'-14': Sewage-like odor, N/S
					 - 11 -		0.01 feet thick).	, . , , . , , , ,	PID = 0.0 ppm max.
					''				
		3	3.9'						
					- 13 -				
					13				
			_						441401-0
					4.5		Sample collected: W18STMGP-SB5	3-1415	14'-18': Sewage-like odor, N/S PID = 0.0 ppm max.
					- 15 -		15.0'-15.3': SP-Brown f to m SAND,	tr silt, f sand and gravel.	
		4	3.9'	-			15.3'-15.9': SW-Black f to very c SAI		<u>-</u>
							15.9'-17.9': ML-Black and tan silty Cl brick fragments.	LAY, tr f sand.	
					- 17 -				
	17 -								

BORING No.: SB-53 SHEET 2 OF 2

		_	LO	9					SHEET 2 OF 2
	NAME						PROJECT NO.	AREA OF SITE	
		IGP :	SCS/	Con Ediso	on		41318-0700-10000	Northern portion of Former Gas Light Co	o. Store Yard
	RESS son Bu	ıildin	a on 1	W 19th St	treet h/w F	Route	9A and 10th Ave	ELEVATION/DATUM	
			-	CTOR		·ould	DRILLER	TRC INSPECTOR	
Fenle	y and	Nico	l Env	ironmenta	al, Inc.		Kevin Kegel	Jessica Elliott	
DRIL	LING	RIG					TYPE/SIZE BIT	START DATE	END DATE
Simco	Eart	nprol	oe 20	0			N/A	3/24/2005	3/24/2005
	PLER			sampler			HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs)) 26'	WATER LEVEL (ft bgs) 8'
4 ION	g, z r				ı				
	NO	S	AMI	PLES			DESCR	IPTION OF SOILS	REMARKS
_	CONSTRUCTION	NUMBER	RECOVERY IN FEET		E	ER			(PID, STAINING, ODORS, ETC.)
WELL	NO.	N C	REC(BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse k tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
	T	-		TERO				ng. Recovered material not indicative of actual	18'-22': N/O, N/S
					t		soil at this depth intervi		
					19 -	ł	·		PID = 0.0 ppm max.
					+		19.5'-22.0': ML-Dk gray silty CLAY,	tr f sand and shell fragments.	
		5	3.9'		ł		o. me on gray only out it		
					ļ,				
					21 -	1			
					~ '				
							22.0'-26.0': ML-Dk gray silty CLAY,	tr f sand and shell fragments.	22'-26': N/O, N/S
					Ī			PID = 0.0 ppm max.	
					23 -	1			
		6	4.0'		t				
		υ	4.0		ł				
					†				
					25 -	ł			
					ļ				
					1				4
					1		ļ .	E.O.B. at 26' bgs	
					27 -]			
					27 -				
					Ī				
					Ī				
					İ				
					29 -	t			
					ŧ				
					†				
					+				
					31 -	1			
					"				
					1				
					1				
					L				
					33 -	Ī			
					1				
					İ				
					t				
					35 -	ł			
					1				
					1				
					1				

BORING No.: SB-54
BORING LOG
SHEET 1 OF 2

_			LU						SHEET TOF 2
JOB I							PROJECT NO. AREA OF SITE		
			SCS	Con Edis	on		41318-0700-10000	Northern portion of Former Gas Light C	o. Store Yard
ADDF				\\/ 10+b C	troot b/w	Douto	9A and 10th Ave	ELEVATION/DATUM	
					street b/w	Roule		-	
				CTOR vironment	al, Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRILI				00			TYPE/SIZE BIT N/A	START DATE 3/24/2005	END DATE 3/24/2005
SAME	PLER	TYI	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
				e sampler,	/discrete s	sample		(feet below ground surface (ft bgs))	9'
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	2	ERY			~			(PID, STAINING, ODORS, ETC.)
WELL	CONST	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine lt - light dk - dark	N/S = No Staining N/O = No odors	
		_	<u> </u>	FLK		_		tr - trace ltl - little sl - slight	
					ł		0'-0.8': CONCRETE and rebar.		0.8'-1.0': Tar-like odor, black staining
					L 1 -			c SAND, GRAVEL, some cobbles and	PID = 0.6 ppm max.
							slag and coal fragme		1'-2': N/O, tr black staining
						l	1.0'-2.0': Fill-Dk brown to black f to o	SAND, GRAVEL and some cobbles.	PID = 0.7 ppm max.
							2.0'-3.0': Fill-Dk brown to black f to c large chuncks of bric	SAND, GRAVEL, some cobbles and	2'-3': Tar-like odor, tr black staining, black tar covering gravel and cobbles.
					- 3 -			AND, GRAVEL, tr slag and coal fragments.	PID = 1.1 ppm max.
							Sample collected: W18STMGP-SB5		3'-4': Tar-like odor, tr black staining, black tar covering gravel and cobbles.
							4.5'-5.4': Fill-Tan SILT, f to m SAND	and tr gravel	PID = 1.0 ppm max.
					- 5 -		4.0 0.4. This rain old 1, 1 to 111 OAND	and a graver.	5'-6.4': Tr solvent-like odor, N/S
									· ·
							5.0'-6.4': Fill-Dk brown f to c SAND,	-	PID = 31.8 ppm max.
							Sample collected: W18STMGP-SB5	54-56	
		1	3.6'		7 -		6.4'-7.0': Fill-Lt brown f SAND and so	ome silt.	6.4'-9': N/O, N/S
					<i>'</i>		7.0'-8.6': SW-Lt brown-red f to c SAI	ND and GRAVEL.	PID = 0.0 ppm max. at 8.6' bgs
					1				
				-					
					- 9 -	Y			
								O, tr silt, c sand and gravel grading to f to c	9'-13': N/O, N/S
							sand towards botto	m of sample (2' of sluff).	PID = 0.0 ppm max.
							Sample collected: W18STMGP-SB5	64-910	
		2	3.9'] ,.				
					11 -				
					1				
						l			
					13 -				
					١٥		13.0'-15.4': SW-Brown m SAND, sor	me f and c sand and tr gravel (1.5' of sluff).	13'-17': N/O, N/S
									PID = 0.0 ppm max.
					1				
					1				
	3 3.9'				15 -				
					1				
					- 17 -		17.0'-19.4': SW-Brown m SAND, sor	me f and c sand and tr gravel (1.5' of sluff).	17'-21': N/O, N/S
									PID = 0.0 ppm max.
Ш									

BORING No.: SB-54 **BORING LOG** SHEET 2 OF 2

JOB NAME/ CLIENT PROJECT NO.									SHEET Z OF Z
				Con Edisc	nn.		PROJECT NO. 41318-0700-10000	AREA OF SITE Northern portion of Former Gas Light Co	Store Vard
ADDI	RESS							ELEVATION/DATUM	. Store ratu
Johns	son B	uildin	-		reet b/w l	Route	9A and 10th Ave	-	
				CTOR ironmenta	al. Inc.		DRILLER Kevin Kegel	TRC INSPECTOR Jessica Elliott	
DRIL	LING	RIG			,		TYPE/SIZE BIT	START DATE	END DATE
Simo	o Eart	hpro		0			N/A	3/24/2005	3/24/2005
SAMI	PLER	TYP	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
4' lon	g, 2" r	nacr	ocore	sampler/	discrete s	ampl	er N/A	29'	9'
	ON	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION		Υ						
4	STR	NUMBER	RECOVERY IN FEET		₹	WATER			(PID, STAINING, ODORS, ETC.)
WELL	CON	MON	REC IN FE	BLOWS PER 6"	DEPTH	WA	f - fine It - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							3		
		4	3.9'		4.0				
					19 -	Ī	Sample collected: W18STMGP-SB5	64-1921	
					- 21 -]	NOTE: At 21' bgs, switch to discrete	sampling due to soil collapsing in hole.	
					۱ ک		21.0'-24.9': ML-Dk gray silty CLAY, t	tr f sand and shell fragments.	21'-25': N/O, N/S
									PID = 0.0 ppm max.
		5	3.9'		- 23 -	1			
					25 -	1			
							25.0'-29.0': ML-Dk gray silty CLAY, t tip of sample.	r f sand and shell fragments. 4" of silty CLAY	25'-29': N/O, N/S
									PID = 0.0 ppm max.
		6	0.5'						
		0	0.5		27 -	1			
					-				
					29 -	Ī	E	E.O.B. at 29' bgs	
					- 21 -	1			
					31 -				
					- 33 -	1			
					- 35 -	1			
					}				
					}				

BORING No.: SB-55 SHEET 1 OF 2

JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 Northern portion of Former Gas Light Co. Store Yard **ADDRESS** ELEVATION/DATUM Johnson Building on W 19th Street b/w Route 9A and 10th Ave DRILLING CONTRACTOR DRILLER TRC INSPECTOR Fenley and Nicol Environmental, Inc. Kevin Kegel Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE END DATE Simco Earthprobe 200 3/25/2005 3/25/2005 N/A SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 4' long, 2" macrocore sampler/discrete sampler N/A 8.5' DESCRIPTION OF SOILS SAMPLES REMARKS CONSTRUCTION RECOVER (PID, STAINING, ODORS, ETC.) NUMBER IN FEET DEPTH WELL BLOWS f-fine m-medium c-coarse N/S = No Staining PER 6" lt - liaht dk - dark tr - trace Itl - little sl - slight N/O = No odors 0'-0.8'. CONCRETE and rehar 0.8'-2.0': Fill-Dk brown to black f to c SAND, GRAVEL, some cobbles, 0.8'-2': Tar-like odor and pine odor, N/S 1 concrete, slag and coal fragments and wood fibers. PID = 11.8 ppm max. Sample collected: W18STMGP-SB55-23 (collected from 1'-2') 2.0'-4.0': Fill-Dk brown to brown SILT, f to c SAND, tr gravel, cobbles and slag 2'-3': N/O, N/S and coal fragments. PID = 0.5 ppm max. 3 3'-4': N/O, N/S PID = 0.3 ppm max. 4'-5': Tr non-MGP related odor, N/S 4.0'-5.0': Fill-Dk brown f to c SAND, some gravel and tr wood fibers. PID = 0.0 ppm max. 5 5'-8': N/O, N/S 5.0'-6.0': Fill-Red-brown m to c SAND, some gravel, tr silt and brick chunks at 6.0' bgs. 3.0 PID = 0.0 ppm max. Sample collected: W18STMGP-SB55-56 6.0'-7.0': Fill-Lt brown f to c SAND, tr gravel and silt. 7 7.0'-8.6': Fill-Lt brown-red f to c SAND and GRAVEL. 8'-12'- N/O N/S 8.0'-9.9': SP-Orange-brown grading to brown m SAND, tr f and c sand, gravel and silt (2' of sluff). PID = 0.0 ppm max. 9 Sample collected: W18STMGP-SB55-89 3.9 2 11 12.0'-14.0': SP-Brown m SAND, tr f and c sand, gravel and silt (1.9' of sluff). 12'-16': N/O, N/S PID = 0.0 ppm max. 13 3 3.9' 15 16.0'-17.0': SP-Brown m SAND, tr f and c sand, gravel and silt (3' of sluff). 16'18': N/O, N/S 2.0' 4 PID = 2.9 ppm max. 17 -NOTE: At 18' bgs, switch to discrete sampling due to soil collapsing in hole.

BORING No.: SB-55 BORING LOG SHEET 2 OF 2

									SHEET Z OF Z
	NAME						PROJECT NO.	AREA OF SITE	Chara Vand
	th St M	IGP	SUS/	Con Ediso	on		41318-0700-10000	Northern portion of Former Gas Light Co ELEVATION/DATUM	o. Store Yard
		uildin	g on	W 19th St	treet b/w I	Route	e 9A and 10th Ave	-	
				CTOR			DRILLER	TRC INSPECTOR	
	-			rironmenta	ai, Inc.		Kevin Kegel	Jessica Elliott	END DATE
	LING o Eart			0			TYPE/SIZE BIT N/A	START DATE 3/24/2005	END DATE 3/24/2005
	PLER						HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
4' lon	a 2" r	nacr	ocore	sampler/	discrete s	amnl	er N/A	(feet below ground surface (ft bgs)) 29'	8.5'
7 1011	_			PLES	districte s	шпр		PTION OF SOILS	REMARKS
	CONSTRUCTION						DEGOKI	I HOW OF GOILG	KEMAKKO
	RUC	æ	RECOVERY IN FEET		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	INST	NUMBER	00	BLOWS	DEPTH	WATER	f - fine	m - medium c - coarse	N/S = No Staining
>	8	ž	R N	PER 6"	ā	>	lt - light dk - dark	tr - trace ltl - little sl - slight	N/O = No odors
							18.0'-20.0': SP-Gray-brown very f SA	AND and some silty clay.	18'-22': N/O, N/S
					19 -	1	Sample collected: W18STMGP-SB5	5-1920	PID = 1.9 ppm max.
		5	2.0'						
					ļ				
					21 -	ļ			
					~ '				
					ļ		22.0'-25.9': ML-Dk gray silty CLAY, t	r f SAND and shell fragments.	22'-26': N/O, N/S
					23 -	ļ			PID = 0.0 ppm max.
		6	3.9'		ļ				
					ļ				
					25 -	1			
					ļ		26.0'-29.9': ML-Dk gray silty CLAY, t	r f SAND and shell fragments.	26'-30': N/O, N/S
					27 -	ļ			PID = 0.0 ppm max.
					ļ <i></i>				
		7	3.9'		ļ				
					ļ				
					29 -	ł			
									-
					<u> </u>		E	E.O.B. at 30' bgs	
					31 -	ł			
					<u> </u>				
					ł				
					33 -	ł			
				ļ	ł				
				ļ	ł				
				ļ	ł				
					35 -	ł			
					1				
				ļ	ł				
					ł				
					l				

BORING No.: SB-09 SHEET 1 OF 2

JOB NAME/ CLIENT								PROJECT NO.	AREA OF SITE	
	W18th St MGP SCS/Con Edison ADDRESS							41318-0700-10000	Inside the center of Gas Holder #3	EL EVATION DATING
			of	the	outside s	section o	of the 1	0th Ave parking lot between 1	8th and 19th St	ELEVATION/DATUM 12.40/NAVD 88
	ILLIN									
	ADT Sean Miller Doug Martin									
	ILLIN		IG					TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
	MPL	-	·VE)F				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
				_					(feet below ground surface (ft bgs))	, -,
2" S	plit S	_						140 lbs./30"	34'	9'
	9	힏	SA	MI	PLES			DESCRI	PTION OF SOILS	REMARKS
	į	CONSTRUCTION	.	.K						(PID, STAINING, ODORS, ETC.)
Ⅎ		CONSTRU		RECOVERY IN FEET		DEPTH	WATER		_	
WELL	ć			N F	BLOWS PER 6"	DEI	×	f - fine m It - light dk - dark	ı - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
								0.0'-0.5': ASPHALT		
								0.5'-3.0': Fill-Black f to c SAND an	d f GRAVEL.	1'-2': SI petroleum odor, N/S
						- 1 -	1			PID = 50 ppm max.
										2'-3': SI petroleum odor, N/S
			I							PID = 286 ppm max.
						_				3'-4': SI petroleum odor, N/S
						- 3 -	1	3.0'-6.0': Fill-Dk brown f to m SAN	D and f to m GRAVEL.	PID = 96 ppm max.
										4'-5': SI petroleum odor, N/S
								Sample collected: W18STMGP-B0	09-4	PID = 460 ppm max.
								·		5'-6': SI petroleum odor, N/S
						- 5 -				PID = 16 ppm max.
					8			6.0'-8.2': Fill-M gray grading to red	dish tan f to m SAND, some silt, tr sand,	6'-8': N/O, N/S
		1		0.8'	6			mica and wood fil		PID = 0.0 ppm max.
					7	7 -				
					6					
					7			8.2'-10.0': Fill-Dk grayish brown Sl	LT and f SAND.	8'-10': SI petroleum odor, N/S
		2		0.5'	4			·-·· - · · g·/ - · · · · ·		PID = 0.0 ppm max.
		[0.0	5	- 9 -	Ť	Sample collected: W18STMGP-B0	09-810	1 15 = 0.0 pp max.
					9					
					8			10.0'-16.0': Fill-M gray f to c SANI), SILT and tr f gravel.	10'-12': N/O, N/S
		3	l	0.5'	4					PID = 0.0 ppm max.
		1		2.0	3	- 11 -	1			. 15 = 0.0 pp max.
			I		2					
			I		2					12'-14': N/O, N/S
		4		0.6'	3					PID = 0.0 ppm max.
				0.0	3	- 13 -	1			i ib = 0.0 ppii maxi
					3					
		1	I		1					14'-16': N/O. N/S
		5		0.6'	2					PID = 0.0 ppm max.
				J.U	3	- 15 -	1			1 15 = 0.0 ppiii iliax.
			I		4					
			I					16 0'-18 0': Fill M grout SAND CI	LT, GRAVEL and c gravel and rock fragments	16'-18': N/O, N/S
		6		0.5'	6 18			in shoe.	LT, GIVAVEL and C graver and rock fragments	PID = 0.0 ppm max.
		1	1	U.U		- 17 -	1			1-1D = 0.0 ppiii iiiax.
			I		10					
ш					12		Ь	I		

BORING No.: SB-09 SHEET 2 OF 2

	NAM			I T 5/Con Edi	ison			A OF SITE the center of Gas Holder #3	
ADD	RESS	3				the	10th Ave parking lot between 18th ar		ELEVATION/DATUM 12.40/NAVD 88
	LLING			12.16/11/12 00					
DRII	LLING		3	END DATE					
	le B-6		DE	9/18/2004 WATER LEVEL (ft bgs)					
	olit Spo							L DEPTH below ground surface (ft bgs)) 34'	9'
	N O	S	AMI	PLES			DESCRIPTION	N OF SOILS	REMARKS
	CONSTRUCTION	ER	/ERY .T		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m - mediu lt - light dk - dark tr - trac	um c - coarse ce ltl - little sl - slight	N/S = No Staining N/O = No odors
				50/3			18.0'-20.2': Fill-Dk gray f to c SAND, some	silt and tr gravel.	
		8	0.3'		- 19 -				
					13				
									20'-22': N/O, N/S,
		_		14			20.2'-20.3': Block of weathered tan m to c S		PID = 0.0 ppm max.
		9	0.7'	50/3	- 21 -		20.3'-22.0': SW-M brown f to c SAND and S Sample collected: W18STMGP-B09-2022	SILT.	PID (headspace) = 750 ppm max.
							Sample collected. W1631WGF-809-2022		22'-24': SI MGP-related odor, N/S
				14			22.0'-24.0': SP-Olive f SAND, Itl silt, tr c gra	avel and large rock fragment in shoe.	PID = 0.0 ppm max.
		10	0.7'	20	_ 00 _		-		PID (headspace) = 21.7 ppm max.
				50/0	- 23 -				
									24'-26': SI MGP-related odor, N/S
				8			24.0'-28.2': SP-Reddish brown m to c SANI	ID, ItI silt and tr gravel.	PID = 0.0 ppm max.
		11	0.6'	20	- 25 -				PID (headspace) = 28.0 ppm max.
				14					
				30 8					26'-28': SI MGP-related odor from outside of spoon, N/S
		12	1.1	8					PID = 0.0 ppm max.
				10	- 27 -				PID (headspace) = 85 ppm max.
				12			Sample collected: W18STMGP-B09-2628		28'-30': SI MGP-related odor from outside
				6			28.2'-32.3': ML-Reddish brown silty CLAY a	and tr rounded gravel.	of spoon, N/S
		13	0.6'	8	- 29 -				PID = 0.0 ppm max.
				6					PID (headspace) = 100 ppm max.
				9					30'-32': N/O, N/S
		1.4	0.1'	9					PID = 0.0 ppm max.
		14	0.1	18 20	- 31 -				Not enough for headspace reading
				30					32'-34': N/O, N/S
				8			32.3'- 34.0': SW-M brown f to c SAND and		PID = 0.0 ppm max.
		15	1.5'	12	- 33 -				PID (headspace) = 2.9 ppm max.
				10	55		Sample collected: W18STMGP-B09-3234		
				13			E.O.B. at 3-	14' has	
							2.0.b. at 3		
					- 35 -				
						Ь—			·

BORING No.: SB-10 SHEET 1 OF 3

	_							OHEET 1 OF 3
JOB NAM W18th St				ison		PROJECT NO. 41318-0700-10000	AREA OF SITE Inside the center of Gas Holder #4	
ADDRES	SS				f the 1	0th Ave parking lot between 1		ELEVATION/DATUM 11.87/NAVD 88
DRILLIN ADT	G CC	NTR	ACTOR	TRC INSPECTOR Doug Martin				
DRILLING Mobile B-		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
SAMPLE	R TY	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Split Sp	poon					140 lbs./30"	(feet below ground surface (ft bgs)) 50'	9'
N O	S	AMI	PLES			DESCRIF	PTION OF SOILS	REMARKS
WELL	Ä	VERY ET		Ξ	ER			(PID, STAINING, ODORS, ETC.)
WELL	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEРТН	WATER	f - fine m lt - light dk - dark	ı - medium c - coarse tr - trace ttl - little sl - slight	N/S = No Staining N/O = No odors
						0.0'-0.5': ASPHALT		
				- 1 -		0.5'-3.0': Fill-Black f to c SAND and	d f GRAVEL.	1'-2': Petroleum odor, N/S
				'				PID = 120 ppm max.
	1							2'-3': Petroleum odor, N/S
	1							PID = 390 ppm max.
	1			- 3 -				3'-4': Petroleum odor, N/S
	1			J		3.0'-11.0': Fill-Brown f to c SAND,	some silt and gravel and chunks of rock.	PID = 2,386 ppm max.
								4'-5': Petroleum odor, N/S
								PID = 2,862 ppm max.
				- 5 -				5'-6': Petroleum odor, N/S
						Sample collected: W18STMGP-B1	10-5	PID = 2,806 ppm max.
			9					6'-8': Strong gasoline/fuel oil odor, N/S
	1	1.1'	7	_				PID = 1,200 ppm max.
			6	- 7 -				
			6					
	2	0.8'	2					8'-10': Strong gasoline/fuel oil odor, N/S, visible brown product from 8.4'-8.8
	-	0.0	5	- 9 -	•			PID = 1,100 ppm max.
			5					
			3			10.5'-10.6': Blue silt on both sides	of the spoon seam.	10'-12': SI petroleum odor, N/S
	3	1.0'	3	- 11 -				PID = 3.0 ppm max.
	1		6	' '				
	1		10					
	1		7			12.0'-14.0': Fill-Dk grayish brown f	SAND and some silt.	12'-14': SI petroleum odor, N/S
	4	0.7'	9	- 13 -				PID = 0.0 ppm max.
	1		8					
	1		14					
	1		2				f grading to olive black SILT and f SAND.	14'-16': N/O, N/S
	5	0.7'	3	- 15 -		14.5': Holder bottom: Red weathe concrete chunks in spoon.	red brick fragments and large brick and	PID = 10.0 ppm max.
	1		5					
	1		7				· OAND · · · · · · · · · · · · · · · · · · ·	-
	_		7			16.0'-18.0': Fill-Gray to black f to n ltl clay from 16.	n SAND and some silt. Bands of blue SILT and 6'-16.7'.	
	6	0.7	14	- 17 -				PID = 0.0 ppm max.
	1		50/0					
		I						1

BORING No.: SB-10 SHEET 2 OF 3

	NAM h St N			I T i/Con Edi	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE Inside the center of Gas Holder #4	
ADD	RESS	;				f the			ELEVATION/DATUM 11.87/NAVD 88
Southern end of the outside section of the 10th Ave parking lot between 18th and 19th St DRILLING CONTRACTOR DRILLER TRC INSPECTOR									11.57/14/4/2 00
	LING	RIG	;	END DATE					
	e B-6		DE				3.25" Hollow Stem Auger HAMMER WEIGHT/DROP	9/18/2004 TOTAL DEPTH	9/18/2004 WATER LEVEL (ft bgs)
2" Sp							140 lbs./30"	(feet below ground surface (ft bgs)) 50'	9'
			AMI	PLES				PTION OF SOILS	REMARKS
	RUCTI	æ	'ERY T		_	~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f-fine m lt-light dk-dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
								obstruction that was augered through.	
					- 19 -				
									201 221. Classification and N/C
				20			20.0'-24.0': SM-Reddish brown f to	om SAND and ltl to tr silt (increasing with depth	20'-22': SI napthalene odor, N/S PID = 5.7 ppm max.
		8	0.5'	35	- 04 -		Sample collected: W18STMGP-B	·	
				50/.2	- 21 -				
				21					22'-24': SI napthalene odor from 22.0'-22.5', N/S
		9	1.1'	25					PID = 4.0 ppm max.
				31	- 23 -				
				20					24'-26': SI napthalene odor, N/S
				19			24.0'-24.5': ML-Reddish brown silt		PID = 0.0 ppm max.
		10	1.0'	27 26	- 25 -		24.5'-30.6': SW-Reddish brown f to	o c SAND, some silt and tr rock fragments.	
				31					26'-28': SI napthalene odor, N/S
				12					PID = 0.4 ppm max.
		11	0.8'	19	- 27 -				
				27					
				27 9					28'-30': SI napthalene odor, N/S PID = 0.0 ppm max.
		12	0.5'	11					г ID = 0.0 ppiii max.
				16	- 29 -				
				21					30'-32': SI napthalene odor, N/S
				9					PID = 0.0 ppm max.
		13	1.3'	10	- 31 -		30.6'-31.3': GW-F to c SAND, GR.	AVEL and tr silt.	
				14 21					32'-34': SI napthalene odor, N/S
				8			32.0'-36.5': SW-Reddish brown f t	o c SAND, tr silt and f gravel.	PID = 0.0 ppm max.
		14	0.8'	6	- 22 -				
				12	- 33 -				
				11					34'-36': N/O, N/S
		15	0.1'	3					PID = 0.0 ppm max.
		10	U. I	5 9	- 35 -				
				7					

BORING No.: SB-10 SHEET 3 OF 3

_								OHEET 3 OF 3	
JOB W18th				I T 5/Con Edi	son		PROJECT NO. 41318-0700-10000	AREA OF SITE Inside the center of Gas Holder #4	
ADDI	RESS	3				f the	10th Ave parking lot betweer		ELEVATION/DATUM 11.87/NAVD 88
DRIL ADT	LING	CO	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Doug Martin	
DRIL Mobile			•				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
SAM			PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Spl		_	ΔΜΕ	PLES		l	140 lbs./30"	PTION OF SOILS	9' REMARKS
	CTIOI)	11011 01 00120	112
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEРТН	WATER	f-fine m	n - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining
<u>\$</u>	္မ	D	Z Z	PER 6"	DE	×		tr - trace ttl - little st - slight	N/O = No odors
				17					36'-38': N/O, N/S
		16	0.5'	50/0.3	- 37 -				PID = 0.0 ppm max.
									38'-40': N/O, N/S
				5			38.0'-48.6': SM-Reddish brown SII	LT, some f sand and tr mica flecks.	PID = 0.0 ppm max.
		17	1.2'	5	- 39 -				
				5	39				
				5					40'-42': N/O, N/S
		40	4.01	4					PID = 0.0 ppm max.
		18	1.0'	5 21	- 41 -				
				16					42'-44': N/O, N/S
				14					PID = 0.0 ppm max.
		19	1.4'	11	- 43 -				
				16	10				
				16			44.0': Ltl clay in spoon.		44'-46': N/O, N/S
		20	1.3'	17					PID = 0.0 ppm max.
		20	1.0	15	- 45 -				
				18					46'-48': N/O, N/S
				6					PID = 0.0 ppm max.
		21	1.2'	9	- 47 -				
				11					
				11					48'-50': N/O, N/S PID = 0.0 ppm max.
		22	1.0'	17			48.6'-50.0': ML-Dk tan silty CLAY	with bands of f sand and silt. Weathered schist	***
				19	- 49 -		fragments in s	hoe.	
				26			Sample collected: W18STMGP-B	10-4850	
							E.	O.B. at 50' bgs.	
					- 51 -				
					- E0 -				
					- 53 -				

BORING No.: SB-11 SHEET 1 OF 3

JOB							PROJECT NO.	AREA OF SITE	
W18th			SCS	Con Ed	ison		41318-0700-10000	Southwest of Gas Holder #4	ELEVATION/DATUM
			of the	outside	section o	f the 1	0th Ave parking lot between 1	8th and 19th St	11.58/NAVD 88
DRIL ADT	LING	CO	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
DRIL CME-			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
SAM	PLER	R TY	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	lit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)	9'
	Z	S	ΑМІ	PLES			DESCRIF	PTION OF SOILS	REMARKS
	CONSTRUCTION	٦	ERY						(PID, STAINING, ODORS, ETC.)
WELL	NSTE	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f-fine m	ı - medium	N/S = No Staining
>	- S	ž	2 ≥	PER 6"	ā	Š	lt - light dk - dark	tr - trace ltl - little sl - slight	N/O = No odors
							0.0'-0.5': ASPHALT		1'-2': Petroleum odor, N/S
					├ 1 -		0.5'-1.0': Fill-F to c SAND, f GRAV	EL and glass and brick fragments.	PID = 2,000 ppm max.
							1.0'-3.0': Fill-CONCRETE mixture	similar to cinder blocks.	2'-3': Petroleum odor, N/S
									PID = 250 ppm max.
									3'-4': Petroleum odor, N/S
					- 3 -				PID = 200 ppm max.
							3.0'-11.0': Fill-Brown f to c SAND,	some silt and gravel and chunks of rock.	4'-5': Petroleum odor, N/S
									PID = 220 ppm max.
									5'-6': Petroleum odor, N/S
					- 5 -				PID = 160 ppm max.
				1			Sample collected: W18STMGP-B1	11-6	6': PID (headspace) = 2,025 ppm max.
		1	0.2'	1					5'-7': SI petroleum odor, N/S
				1					PID = 16.0 ppm max.
				1	7 -		Not enough to sample		7'-9': Strong petroleum odor and black
		2	0.3'	2	1				staining.
				4	1				PID = 1,114 ppm max.
				6	L、J				
				2	9 -		No recovery, but wood fibers in sho	pe.	
		3	0.0'	WOH					
				1					
				1					
				WOH/16"	11 -			and tr m to c sand, gravel and wood fibers	11'-13': SI organic odor, N/S
		4	0.2'				and mica flecks.		PID = 17.6 ppm max.
				2	13 -				
				2	10		13.0'-23.7': Red brick fragments ar	nd chunks present in spoon.	13'-15': SI organic odor, N/S
		5	0.3'	6					PID = 0.0 ppm max.
				3			Sample collected: W18STMGP-B1	11-1315	
				1	15 -				
				WOH/12"	.		15.0'-17.0': Pockets of green and b	olue silt.	15'-17': SI organic odor, N/S
		6	0.4'						PID = 0.0 ppm max.
				2					
				1	17 -				
				4					17'-19': N/O, N/S
Щ		7	2.0'	6					PID = 0.0 ppm max.

Вυ	L III	NG LUG							SHEET 2 OF 3
JOB							PROJECT NO.	AREA OF SITE	
W18th			SCS	S/Con Ed	ison		41318-0700-10000	Southwest of Gas Holder #4	ELEVATION/DATUM
South	ern e	end o			section o	f the	10th Ave parking lot between		11.58/NAVD 88
DRIL ADT	LING	CO	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
DRIL CME-			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
SAM	PLEF	R TY	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs))	9'
	LCAMDLEC				DESCRI	REMARKS			
	RUCTI	2	ERY			<u>.</u> ا			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		n - medium c - coarse	N/S = No Staining
一	0	z	<u>~</u> ≤	PER 6"	-	_	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors
				12	40				
				5	- 19 -				19'-21': N/O, N/S
		8	2.0'	10	1				PID = 0.4 ppm max.
				12					
				3					
				WOH/12"	21 -				21'-23': SI MGP-related odor, N/S
		9	1.6'						PID = 10.9 ppm max.
				3					
				3					
				42	- 23 -				23'-25': Strong MGP-related odor, black
		10	2.0'	15	1		23 7'-28': Fill-Brown SILT f SAND	some m sand, brick fragments and wood	staining, visible sheen and Oil-Lik Material (OLM).
		10	2.0	10	1			s of c SAND throughout interval from 23.7'-28'.	PID = 962 ppm max.
				15	1				
				20	25 -	ł			25'-27': MGP-related odor, black staining,
					ł				visible sheen, OLM and Tar-Like
		11	2.0'	12	ł				Material (TLM). PID = 376 ppm max.
				7	ł				1 15 = 07 0 pp.11 11163.
				8	27 -				
				- 8	l				27'-29': MGP-related odor, black staining, visible sheen, OLM and TLM.
		12	2.0'	12					PID = 1,036 ppm max.
				8	l			D, pockets of silty clay and wood fibers.	1 15 = 1,000 ppii max.
				14	29 -	l	Sample collected: W18STMGP-B1		
				11	_~		29.3'-31.0': ML-Brown silty CLAY v	vith pockets of f to c sand.	29'-31': SI MGP-related odor, N/S
		13	1.7'	9	l				PID = 48.9 ppm max.
				11	l				
				14	31 -				
				7	Ĭ .				31'-33': SI MGP-related odor, N/S
		14	1.8'	7					PID = 20.8 ppm max.
				14	1				
				18	33 -	l			
					~~		31.0'-35.0': Could not collect a true	sample due to heaving sands in the augers.	
					ļ				
							35.0'-35.5': ML-Brown silty CLAY		
					35 -	l			
				2	33		Sample collected: W18STMGP-B1	1-3537	35'-37': N/O, N/S
		15	0.5'	2					PID = 0.0 ppm max.

BORING No.: SB-11 SHEET 3 OF 3

BO	KII	NAME/ CLIENT							SHEET 3 OF 3
							PROJECT NO.	AREA OF SITE	
			SCS	S/Con Edi	ison		41318-0700-10000	Southwest of Gas Holder #4	
	RESS nern e		of the	outside	section o	f the	10th Ave parking lot betweer	18th and 19th St	ELEVATION/DATUM 11.58/NAVD 88
DRIL ADT		CO	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
	LING LC60		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 9/18/2004	END DATE 9/18/2004
SAM	IPLEF	R TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					140 lbs./30" (reet below ground surface (it bg		9'
	SAMPLES					DESCRI	PTION OF SOILS	REMARKS	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEРТН	WATER	f-fine n It-light dk-dark	n - medium c - coarse tr - trace ttl - little sl - slight	(PID, STAINING, ODORS, ETC.) N/S = No Staining N/O = No odors
	T	_	<u>. </u>	5			it-light uk-uark	u - u ace iu - iitie si - siigiit	NO - NO OUDIS
		16	1.0'	10 4 6 8	- 37 -		37.0'-38.0': SP-Reddish brown f to Sample collected: W18STMGP-B		37'-39': N/O, N/S PID = 0.0 ppm max.
				6	- 39 -				
							E.	O.B. at 39' bgs.	
					- 41 -				
					- 43 -				
					- 45 -				
					- 47 -				
					- 49 -				
					- 51 -				
					- 53 -				
_	_	_							

BORING No.: MW-12A
BORING LOG
SHEET 1 OF 1

<u> </u>	NAME/ CLIENT								SHEELLOFI
							PROJECT NO.	AREA OF SITE	
			SCS	S/Con Ed	lison		41318-0700-10000	West of Gas Holders #3 and #4	
ADD								ELEVATION/DATUM	ELEVATION/DATUM
					covered	garage	e on 10th Ave between 18th a	ind 19th St.	8.81/NAVD 88
DRIL ADT		G CC	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Mike Burke	
DRIL CME-			3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 9/11/2004	END DATE 9/11/2004
SAM			'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	
2" Sp	lit Sp						140 lbs./30"	17'	9.6'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	æ	/ERY T		_	~			(PID, STAINING, ODORS, ETC.)
WELL	SNO	IUMBE	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		n - medium c - coarse	N/S = No Staining N/O = No odors
	T	-	œ =	PER 6	_	_	_	tr - trace Itl - little sl - slight	N/O = NO odors
					4		0.0'-0.5': CONCRETE and rebar.		
					<u> </u>		0.5'-7.5': Mostly red bricks with so	me brown f to c SAND and concrete.	
		l] '				1'-2': N/O, N/S
		L							PID = 0.0 ppm max.
		l			1				2'-3': N/O, N/S
		l			1				
		1			3 -				PID = 0.0 ppm max.
		l							3'-4': N/O, N/S
									PID = 0.0 ppm max.
									4'-5': N/O, N/S
					1				
		1		-	- 5				PID = 0.0 ppm max.
				20			Sample collected: W18STMGP-B	12-57	5'-7': N/O, N/S
		1	0.75'	13					PID = 0.0 ppm max.
				1					
				5					
	1				7 -				
				14	-				7'-9': N/O, N/S
		2	0.5'	12			7.5'-9.3': Fill-Dk brownish gray and	d red c SAND and some f gravel.	PID = 0.2 ppm max.
				9					
				10					
				10	9 -		9.3'-15.2': Fill-Dk grayish frown f S	CAND and some silt and magnet	9'-11': N/O, N/S
					1	_	9.5-15.2. Fill-Dk grayish nown is	SAIND and some siit and m sand.	
		3	0.3'	2	-				PID = 0.0 ppm max.
				3					
				5	ا بدا				
				4	11 -				11'-13': N/O, N/S
		_	4 41		1				
		4	1.1'	1	1				PID = 0.0 ppm max.
				1	4				
				3	12				
				4	13 -				13'-15': N/O, N/S
		5	1.3'	6	1				·
		٥	1.3		1				PID = 1.7 ppm max.
				5	-				
				3	15 -				
				5	15		15.2'-21.0': Fill-Gray f SAND and	SILT grading to gray SILT and Itl f sand.	15'-17': N/O, N/S
		6	1.0'	12]				PID = 1.9 ppm max.
		۱			1				Sand
				8	-				
ш		1		5	17 -				Bentonite Chips
				2	. ' <i>'</i>		Well set at 17' bgs.		Concete
			0.2'	1			Screen interval from 17.0' to 7.0' b	qs.	Well Screen
	-				•	_		v.	•

BORING No.: SB-12/MW-12B
BORING LOG
SHEET 1 OF 3

JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 West of Gas Holders #3 and #4 **ADDRESS** ELEVATION/DATUM In the eastern section of the covered garage on 10th Ave between 18th and 19th St. 8.80/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Tony Palomeque Mike Burke/Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE END DATE CME-LC60 4.25"/3.25" Hollow Stem Auger 9/11/2004 9/12/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 50.75 9 6' **DESCRIPTION OF SOILS REMARKS** SAMPLES CONSTRUCTION (PID. STAINING, ODORS, ETC.) RECOVER NUMBER IN FEET WATER DEPTH MELL BI OWS m - medium f - fine c - coarse N/S = No Staining PFR 6 lt - liaht dk - dark tr - trace Itl - little sl - slight N/O = No odors 0.0'-0.5': CONCRETE and rebar. 0.5'-7.5': Mostly red bricks with some brown f to c SAND and concrete. 1 1'-2': N/O. N/S PID = 0.0 ppm max. 2'-3': N/O, N/S PID = 0.0 ppm max. 3 3'-4': N/O, N/S PID = 0.0 ppm max. 4'-5': N/O. N/S PID = 0.0 ppm max. 5 20 Sample collected: W18STMGP-B12-57 5'-7': N/O, N/S 0.75 PID = 0.0 ppm max. 13 1 5 7 14 7'-9': N/O, N/S 2 0.5 12 7.5'-9.3': Fill-Dk brownish gray and red c SAND and some f gravel. PID = 0.2 ppm max. Sample collected: W18STMGP-B12-79 9 10 9 10 9.3'-15.2': Fill-Dk grayish frown f SAND and some silt and m sand. 9'-11': N/O, N/S 3 0.3 PID = 0.0 ppm max. 3 5 11 4 11'-13': N/O, N/S 1.1 1 PID = 0.0 ppm max. 1 13 4 13'-15': N/O, N/S 5 1.3' 6 PID = 1.7 ppm max. 5 3 15 5 15.2'-21.0': Fill-Gray f SAND and SILT grading to gray SILT and ltl f sand. 15'-17': N/O, N/S 6 1.0 12 PID = 1.9 ppm max. Sand 8 Sample collected: W18STMGP-B12-1517 5 Bentonite Chips 17 Concete 2 Well Screen

BORING LOG BORING No.: SB-12/MW-12B SHEET 2 OF 3

JOB NAME/ CLIENT AREA OF SITE PROJECT NO. West of Gas Holders #3 and #4 W18th St MGP SCS/Con Edison 41318-0700-10000 **ADDRESS** FI EVATION/DATUM In the eastern section of the covered garage on 10th Ave between 18th and 19th St. 8.80/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Tony Palomeque Mike Burke/Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** CME-LC60 4.25"/3.25" Hollow Stem Auger 9/11/2004 9/12/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 50.75 9 6 **DESCRIPTION OF SOILS** REMARKS SAMPLES CONSTRUCTION (PID. STAINING, ODORS, ETC.) RECOVER NUMBER IN FEET WATER **JEPTH** MELL BI OWS f - fine m - medium c - coarse N/S = No Staining PER 6' lt - liaht dk - dark tr - trace ltl - little sl - slight N/O = No odors 2 17'-19': N/O, N/S 2 PID = 1.7 ppm max. 19 2 19'-21': N/O, N/S PID = 1.9 ppm max. 8 1.8 1 1 3 21 WOH 21'-23': N/O, N/S 21.0'-29.9': ML-Dk gray CLAY, tr f sand and shell fragments. 9 2.0' WOH PID = 2.0 ppm max. WOH 0.0'-23.0': 4" steel casing set, grouted and allowed to set overnight before continuing to drill deeper with 3.25" HSA. 23 2 23'-25': N/O, N/S 10 0.1 PID = 0.0 ppm max. 1 2 25 4 25'-27': N/O, N/S 0.75 PID = 0.0 ppm max. 11 8 12 27 22 27'-29': N/O, N/S 12 1.2' 16 PID = 0.0 ppm max. 18 9 29 6 29'-31': N/O, N/S 13 1.0 6 PID = 0.0 ppm max. 11 a 31 WOH 31.0'-33.5': SP-Brownish gray f SAND, tr silt, m to c sand and shell fragments. 31'-33': N/O, N/S 1.1 PID = 0.0 ppm max. 10 32.0'-32.1': GP-F rounded GRAVEL and c SAND. 10 33 3 33'-35': N/O, N/S 15 1.5' 3 PID = 0.0 ppm max Sand 5 Bentonite Chips 35 Concete 14 35.0'-37.0': ML-Dk gray silty CLAY and tr f sand grading to dk brown SILT, tr f san and clay. Well Screen

BORING No.: SB-12/MW-12B SHEET 3 OF 3

JOB NAME/ CLIENT AREA OF SITE PROJECT NO. West of Gas Holders #3 and #4 W18th St MGP SCS/Con Edison 41318-0700-10000 ELEVATION/DATUM **ADDRESS** In the eastern section of the covered garage on 10th Ave between 18th and 19th St. 8.80/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Tony Palomeque Mike Burke/Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** CME-LC60 4.25"/3.25" Hollow Stem Auger 9/11/2004 9/12/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 50.75 9 6 **DESCRIPTION OF SOILS** REMARKS SAMPLES CONSTRUCTION (PID. STAINING, ODORS, ETC.) RECOVER NUMBER WATER IN FEET DEPTH MELL BI OWS f-fine m-medium c-coarse N/S = No Staining PER 6' It - light dk - dark tr - trace ltl - little sl - slight N/O = No odors 13 35'-37': N/O, N/S 6 PID = 0.0 ppm max. 37 6 37.0'-44.7': SW-Brown f to m SAND, some c sand and silt, tr f rounded gravel and 37'-39': N/O, N/S sm pockets of silty clay. 2 0 8 17 PID = 0.0 ppm max. 10 12 39 39'-41': N/O, N/S 10 18 2.0' 13 PID = 0.0 ppm max. 15 14 41 4 41'-43': N/O, N/S 19 2.0 PID = 0.0 ppm max. 7 10 43 12 43'-45': N/O, N/S 20 2.0 8 PID = 0.0 ppm max. 13 12 44.7'-50.5': SW-Red f to c SAND, tr silt and gravel. 45 14 45'-47': N/O, N/S 21 2.0 12 PID = 0.0 ppm max. 16 16 47 47'-49': N/O, N/S 22 1.75 19 PID = 0.0 ppm max. 26 27 49 6 49'-51': N/O, N/S 23 1.75 16 PID = 0.0 ppm max. 24 14 E.O.B. at 50.75' bgs. 51 Sand Well set at 49' bos. Screen Interval from 47.0' to 37.0' bgs with a 2' sump from 49.0' to 37.0' bgs. Bentonite Chips 53 Concete Well Screen

BORING No.: SB-14A SHEET 1 OF 2

	NAM			T /Con Edi	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE West of Gas Holders #3 and	1 #/
ADD	RESS	;				garag	e on 10th Ave between 18th a		ELEVATION/DATUM 8.90/NAVD 88
	LING			ACTOR		5 - 5	DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
	LING -LC60		;				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 10/3/2004	END DATE 10/3/2004
SAM	IPLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface	WATER LEVEL (ft bgs)
2" Sp	lit Spo						140 lbs./30"	25'	11'
	NO.	S	AMF	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	SER	VERY ET		Ξ	ER			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	ı - medium c - coarse tr - trace ltl - little sl - sligh	N/S = No Staining N/O = No odors
							0.0'-0.5': CONCRETE and rebar.		
					- 1 -		0.5'-2.0': Fill-Black SILT, f to c SA	ND and some group!	
					ı i		U.S-Z.U. FIII-BIACK SILT, I to C SA	ND and some graver.	1'-2': Solvent-like odor, N/S
									PID = 244 ppm max.
							2.0'-11.0': Fill-Dk brown SILT, f to tr wood fibers, co	m SAND, some c sand and gravel, obbles and boulders.	
					- 3 -		Fingerprint sample collected: W18	STMCD-R14A-34	PID = 97.1 ppm max. 3'-4': Solvent-like odor, N/S
							ringerprint sample collected. With	31MGF-B14A-34	PID = 96.8 ppm max.
									4'-5': Solvent-like odor, N/S
					_		Sample collected: W18STMGP-B	14-45	PID = 98.6 ppm max.
					- 5 -		·		5'-6': Solvent-like odor, N/S
									PID = N/A
									6'-7': N/O, N/S
					- 7 -				PID = 0.0 ppm max.
				4	′				7'-9': SI petroleum odor, N/S
		1	0.5'	10					PID = 135 ppm max.
				14					
				16	- 9 -				
				8	3				9'-11': SI petroleum odor, N/S
		2	0.7'	14					PID = 39.9 ppm max.
				6					
				9	- 11 -	_			
		_	4.01	1			11.0'-19.0': Fill-Brown f to c SAND	, tr siit, gravel and wood fibers.	11'-13': SI petroleum odor, N/S
		3	1.0'	1			Comple collected: WARCTMOD D	140 4440	PID = 2.6 ppm max.
				1			Sample collected: W18STMGP-B	14A-1113	
				3	- 13 -				13'-15': SI petroleum odor, N/S
		4	2.0'	6					PID = 0.0 ppm max.
		•		5					0.0 ppa
				8					
				8	- 15 -				15'-17': SI petroleum odor, N/S
		5	2.0'	6					PID = 2.1 ppm max.
				3					
				1	17-				
				1	- 17 -		Sample collected: W18STMGP-B	I4A-1719	17'-19': SI petroluem odor, N/S
		6	2.0'	1					PID = 2.3 ppm max.

BORING No.: SB-14A

SHEET 2 OF 2 JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 West of Gas Holders #3 and #4 **ADDRESS** ELEVATION/DATUM In the western section of the covered garage on 10th Ave between 18th and 19th St. 8.90/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Tony Palomeque Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** CME-LC60 3.25" Hollow Stem Auger 10/3/2004 10/3/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" **DESCRIPTION OF SOILS** REMARKS **SAMPLES** CONSTRUCTION RECOVERY IN FEET (PID. STAINING, ODORS, ETC.) NUMBER WATER DEPTH WELL BLOWS N/S = No Staining f - fine m - medium c - coarse

It - light dk - dark tr - trace Itl - little sl - slight PER 6" N/O = No odors 2 2 19 19.0'-27.0': ML-Dk gray silty CLAY, tr f sand and shell fragments. 19'-21': N/O, N/S 2 0 PID = 0.0 ppm max. 1 2 3 21 21'-23': N/O, N/S 8 2.0' 2 PID = 0.0 ppm max. 3 23 1 Sample collected: W18STMGP-B14A-2325 23'-25': N/O, N/S 9 2.0' PID = 0.0 ppm max. 3 2 25 E.O.B. @ 25' bgs. 27 29 31 : 33 . 35

BORING No.: MW-7A SHEET 1 OF 1

	OB NAME/ CLIENT								SHEET FOF T
							PROJECT NO.	AREA OF SITE	
	RES		303	/Con Ed	ison		41318-0700-10000	Northeast of Gas Holder #3 ELEVATION/DATUM	
			ner of	10th Av	e and 19	th St c	on the sidewalk	9.11/NAVD 88	
DRIL ADT		G CC	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
DRIL CME	LING 75	S RIC	3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 8/10/2004	END DATE 8/10/2004
SAM	IPLEF	R TY	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Sp	ooon					140 lbs./30"	(feet below ground surface (ft bgs)	7'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	CONSTRUCTION	띪	RECOVERY IN FEET		Ŧ	æ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMB	RECO IN FEE	BLOWS PER 6"	DEPTH	WATER	f - fine n lt - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
		Ī					0.0'-0.5': CONCRETE		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					1 .				
					1 -		0.5'-5.5': Fill-Dk brown SILT, f to o	SAND, tr gravel and wood fibers.	1'-2': N/O, N/S
		l]				PID = 0.0 ppm max.
					1		2.0': Vertical wood timbers along t	he east side of the boring.	2'-3': N/O, N/S
					1 _				PID = 0.0 ppm max.
		l			- 3 -				3'-4': N/O, N/S
									PID = 0.0 ppm max.
		1							4'-5': N/O, N/S
									PID = 0.0 ppm max.
					- 5 -				5'-6': N/O, N/S
							5.5'-7.0': Fill-Brown SILT, f SAND,	tr m to c sand and gravel	PID = 0.0 ppm max.
							J.J-7.0. TIII-DIOWIT SIET, I SAND	ti iii to c sand and graver.	6'-7': N/O, N/S
							Sample collected: W18STMGP-M	N7A 67	PID = 0.0 ppm max.
				2	7 -	_		W/A-0/	* *
		1	0.0'	3 1			7.0'-9.0': No Recovery.		7'-9': Tr non-MGP related odor, N/S
		'	0.0						PID = 1.3 ppm max.
				2					
				1	9 -				
				1			9.0'-15.5': Fill-Brown and reddish	prown f to c SAND, some silt and tr gravel.	9'-11': Non-MGP related odor, N/S
		2	0.1'	4					PID = 0.4 ppm max.
				8					
				5	11 -				
				1					11'-13': Non-MGP related odor, N/S
		3	0.1'	1					PID = Not Available (N/A)
				2					
				2	13 -				
				1					13'-15': Non-MGP related odor, N/S
		4	0.0'	1					PID = N/A
				3					
				5	15 -				
				2					15'-17': Non-MGP related odor, N/S
		5	0.2'	4					PID = N/A
L				5					Sand
				3	17 -				Bentonite Chips
					''		Well set at 16.5' bgs.	E.O.B. at 17' bgs	Concete
		L					Screen interval from 16.0' to 6.0' b	gs with a 0.5' sump.	Well Screen

BORING No.: SB-07
BORING LOG
SHEET 1 OF 3

BO	KII	NG	L	JG					SHEET 1 OF 3
JOB							PROJECT NO.	AREA OF SITE	
			SCS	Con Ed	ison		41318-0700-10000	Northeast of Gas Holder #3	
ADD South			ner o	f 19th St	and 10th	Ave c	on the sidewalk	9.16/NAVD 88	
DRIL ADT	LING	CC	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL Mobil			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 8/9/2004	END DATE 8/9/2004
SAM	PLEF	R TY	Έ				HAMMER WEIGHT/DROP		WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					(feet below ground surface (ft bgs)) 140 lbs./30" 45.5') 7'
	ON	S	AM	PLES			DESCRI	REMARKS	
	CONSTRUCTION	ä	/ERY		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f-fine n lt-light dk-dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
П	T	_		. 2			0.0'-0.5': CONCRETE	u uuoo iii iiiuo oi ongiii	140 = 110 040.0
					- 1 -		0.5'-5.5': Fill-Dk brown SILT, f to c	SAND, tr gravel and wood fibers.	1'-2': N/O, N/S
									PID = 0.0 ppm max.
					1		2.0': Vertical wood timbers along t	he east side of the boring.	2'-3': N/O, N/S
					1				PID = 0.0 ppm max.
					3 -				3'-4': N/O, N/S
									PID = 0.0 ppm max.
									4'-5': N/O, N/S
					5 -				PID = 0.0 ppm max.
									5'-6': N/O, N/S
							5.5'-7.0': Fill-Brown SILT, f SAND	tr m to c sand and gravel.	PID = 0.0 ppm max.
									6'-7': N/O, N/S
					- 7 -	•	Sample collected: W18STMGP-M	N7A-67	PID = 0.0 ppm max.
				2			7.0'-9.0': No Recovery.		7'-9': N/O, N/S
		1	0.0'	2					PID = 0.0 ppm max.
				2					
				2	- 9 -				
				1	Ĭ		9.0'-15.5': Fill-Brown and reddish	prown f to c SAND, some silt and tr gravel.	9'-11': N/O, N/S
		2	0.5'	1			tr interbedded re	ddish black silt lenses.	PID = 0.0 ppm max.
				3					
				9	11 -				
				4	''				11'-13': N/O, N/S
		3	0.05'	3					PID = 0.0 ppm max.
				3					
				3	$L_{A A} J$				
				3	13 -				13'-15': N/O, N/S
		4	0.05'	3					PID = 0.0 ppm max.
				3					
				10] ,_				
				28	15 -				15'-17': N/O, N/S
		5	0.5'	15	1				PID = 0.0 ppm max.
		ľ		11	1				FF
				19	1				
					17 -		17 0'-10 3': Fill-Prous a SAND	CPAVEL some meand tricond and the	17'-10'- N/O N/S
		_	٠	14	1		17.0'-19.3': Fill-Brown c SAND and and brick fragm	d GRAVEL, some m sand, tr f sand and silt ents.	17'-19': N/O, N/S
		6	0.4'	22			1 19		PID = 0.0 ppm max.

BORING No.: SB-07 SHEET 2 OF 3

JOB NAME/ CLIENT									
	DB NAME/ CLIENT 18th St MGP SCS/Con Edison						PROJECT NO.	AREA OF SITE	
W18th	St N	1GP	SCS	/Con Edi	ison		41318-0700-10000	Northeast of Gas Holder #3	
ADDR								ELEVATION/DATUM	
Southw	vest	corn	er of	19th St	and 10th	Ave	on the sidewalk	9.16/NAVD 88	
DRILL ADT	ING	СО	NTR.	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILL	ING	RIG	;				TYPE/SIZE BIT	START DATE	END DATE
Mobile							3.25" Hollow Stem Auger	8/9/2004	8/9/2004
SAMP	LER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs)	WATER LEVEL (ft bgs)
2" Split	t Spc	on					140 lbs./30"	45.5'	7'
	N O	S	٩MI	PLES			DESCRI	PTION OF SOILS	REMARKS
	RUCTI	~	ERY			~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION NUMBER RECOVERY IN FEET SAMON				ЕРТН	WATER	f-fine m	N/S = No Staining	
>	Ö	z	~ ≤	PER 6"	П	^	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors
				15			Sample collected: W18STMGP-B0	07-1719	
				19					
					- 19 -				
				5					19'-21': SI MGP-related odor, N/S
		7	0.3'	12					PID = 0.0 ppm max.
				14					
				19					
					- 21 -				
				20			21.0'-33.4': Fill-Brown m SAND, tr	c sand and silt.	21'-23': SI MGP-related odor, N/S
		8	0.5'	50/2					PID = 0.4 ppm max.
					- 23 -				
				9				23'-25': SI MGP-related odor, N/S	
		9	0.6'	12					PID = 3.7 ppm max.
				13					
				16	- 25 -				
				5	23				25'-27': SI MGP-related odor, N/S
		10	1.0'	9					PID = 0.4 ppm max.
									1 15 = 0.1 pp max.
				16					
				14	- 27 -				
				12	27 -		Sample collected: W18STMGP-B0	07-2729	27'-29': SI MGP-related odor, N/S
		11	1.2'	19					PID = 0.3 ppm max.
		''	1.4						F 15 = 0.5 ppm max.
				22					
				25	20 -				
				14	- 29 -				29'-31': SI MGP-related odor, N/S
		,	4 75						
		12	1.75'	12					PID = 0.0 ppm max.
				9					
				11	٠.				
				2	31 -		31.0'-30.7': Brick fragments preser	nt in spoon	31'-33': SI MGP-related odor, N/S
							o o oo.r . Dhok hagmenta preser	ороби.	
		13	0.7'	5					PID = 0.0 ppm max.
				12					
				10					
					- 33 -				221 251: SLMOD roleted ada. N/O
				22			33.4'-41.0': ML-Reddish brown SIL	T and some v f to f sand	33'-35': SI MGP-related odor, N/S
		14	0.4'	14					PID = 0.0 ppm max.
				15					
				19					
1 1					- 35 -				
1 1				31		l			35'-37': N/O, N/S
	I	ı		Ü.					

BORING No.: SB-07 SHEET 3 OF 3

TYPE/SIZE BIT 3.25" Hollow Stem Auger 8/9/2004 8/9/2004 8/9/2004 SAMPLER TYPE HAMMER WEIGHT/DROP (feet below ground surface (ft bgs)) " Split Spoon 140 lbs./30" 45.5' TYPE/SIZE BIT 3.25" Hollow Stem Auger 8/9/2004 8/9/2004 WATER LEVEL (ft bgs) 7' SAMPLES DESCRIPTION OF SOILS REMARKS (PID, STAINING, ODORS, ETC.)	<u> </u>	DRING LOG DRINAME/ CLIENT								SHEET 3 OF 3
DODRESS Continued corner of 19th St and 10th Ave on the sidewalk Schemar Schem										
Sample College Sample Sa				SCS	o/Con Ed	ison		41318-0700-10000		
Sean Miller Jossica Elliott Jossica Elliott Stant Date Sign Date S				ner o	f 19th St	and 10th	Ave	on the sidewalk		
Indicate 1	DRIL ADT	LING	CO	NTR	ACTOR			Sean Miller		
SAMPLES 140 Ibs./30° Total Depth Gent below ground surface (if bgs) 7 140 Ibs./30° SAMPLES 140 Ibs./30° SAMPLES 150 Ibs./30° S				3						
Spin Sport				Έ				HAMMER WEIGHT/DROP TOTAL DEPTH		
19	2" Spl	lit Sp	oon					(feet below ground surface (ft bgs		bgs))
37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 41-43': NO, NS PID = 0.0 ppm max. 41-43': NO, NS PID = 0.0 ppm max. 41-45': NO, NS PID = 0.0 ppm max. 43-45': NO, NS PID = 0.0 ppm max. 45-50: Refusal (believed to be Bedrock-Schiat) E.O.B. at 45.5' bgs (Refusal at Bedrock)		ION	S	AM	PLES			DESCRI	REMARKS	
37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 37-39': NO, NS PID = 0.0 ppm max. 41-43': NO, NS PID = 0.0 ppm max. 41-43': NO, NS PID = 0.0 ppm max. 41-45': NO, NS PID = 0.0 ppm max. 43-45': NO, NS PID = 0.0 ppm max. 45-50: Refusal (believed to be Bedrock-Schiat) E.O.B. at 45.5' bgs (Refusal at Bedrock)		TRUC	ER	VERY :T		I	æ			(PID, STAINING, ODORS, ETC.)
16 1.0 85/2 37 - 38 37 - 37 - 38 37 - 39 -	WELL	CONS	NUMB	RECO'IN FEE	BLOWS PER 6"	DEPT	WATE			N/S = No Staining N/O = No odors
18 1.0 85 85.2 39 - 41 - 41.0 45.5': ML-Reddish brown v f SAND and some silt. 41-43': N/O, N/S PID = 0.0 ppm max. 41 - 41.0 45.5': ML-Reddish brown v f SAND and some silt. 41-43': N/O, N/S PID = 0.0 ppm max. 43 - 50/3 45 - 50/								-	-	
16 1.0 85/2						37 -	ł			
39'-41': N/O, N/S PID = 0.0 ppm max. 41'-43': N/O, N/S PID = 0.0 ppm max. 41'-43': N/O, N/S PID = 0.0 ppm max. 41'-43': N/O, N/S PID = 0.0 ppm max. 43'-45': N/O, N/S PID = 0.0 ppm max. 43'-45': N/O, N/S PID = 0.0 ppm max. 43'-45': N/O, N/S PID = 0.0 ppm max. 43'-45': N/O, N/S PID = 0.0 ppm max. 45'-50': Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock)										•
17 1.0 35 50/2 41 - 41 - 41.0-45.5': ML-Reddish brown v f SAND and some silt. 41'-43': N/O, N/S PID = 0.0 ppm max. PID = 0.0 ppm max. 910 = 0.0 pp			16	1.0'	85/2					PID = 0.0 ppm max.
17 1.0 35 50/2 41 - 41 - 41.0-45.5': ML-Reddish brown v f SAND and some silt. 41'-43': N/O, N/S PID = 0.0 ppm max. PID = 0.0 ppm max. 910 = 0.0 pp						- 39 -				
50/2 6					24	"				
18			17	1.0'		1				PID = 0.0 ppm max.
18 0.5 20 43 - 43 - Sample collected: W18STMGP-B07-4345 43'-45': N/O, N/S PID = 0.0 ppm max. Sample collected: W18STMGP-B07-4345 43'-45': N/O, N/S PID = 0.0 ppm max. 45.5: Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock) 47 - 49 - 51 - 51 - 51 - 51 - 51 - 51 - 51 - 5					50/2	ł				
18 0.5 20 50/3 43 - Sample collected: W18STMGP-B07-4345 43'-45': N/O, N/S PID = 0.0 ppm max. 43'-45': N/O, N/S PID = 0.0 ppm max. 45.5: Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock)					-	41 -	1	44 0' 45 5': MI Boddigh brown y f CA	ND and some silt	44' 42': N/O N/S
50/3 43 - 43 - 5: N/O, N/S Sample collected: W18STMGP-B07-4345 43-45: N/O, N/S PID = 0.0 ppm max. 45.5: Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock)			18	0.5'		1		41.0-45.5. INL-Reddistriblowit v 1 3A	IND and some silt.	
19 0.5 20 50/3 45 - 50/0 45 - 47 - 49 - 51 - 51 - 51 - 51 - 51 - 51 - 51 - 5			10	0.0		1				115 = 0.0 рригиах.
Sample collected: W18STMGP-B07-4345 19						42 -				
50/3 50/0 45 - 45 - 45/5': Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock) 47 - 49 - 51 - 51 -					6	43		Sample collected: W18STMGP-B07-	4345	43'-45': N/O, N/S
45 - 45 - 45.5': Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock) 49 - 51 - 51 - 51 - 51 - 51 - 51 - 51 - 5			19	0.5'	20					PID = 0.0 ppm max.
45.5': Refusal (believed to be Bedrock-Schist) E.O.B. at 45.5' bgs (Refusal at Bedrock) 49 -					50/3	l				
E.O.B. at 45.5' bgs (Refusal at Bedrock) 47						45 -	ł			
49 -					50/0	1		·	·	—
- 49 51 -						l		E.O.B. at 45.	o bys (Ketusal at Bedrock)	
- 49 51 -						1				
51 -						F 47 -	1			
51 -]				
51 -										
51 -						49 -				
						ł				
						1				
53 -						51 -	1			
53 -						1				
53 -						1				
						L				
						53]			

BORING No.: SB-08
BORING LOG
SHEET 1 OF 3

	1711	10	<u> </u>	J G					SHEET 1 OF 3
JOB							PROJECT NO.	AREA OF SITE	
ADDI			SCS	S/Con Ed	ison		41318-0700-10000	East of Gas Holders #3 and #4 ELEVATION/DATUM	
			este	rn sidewa	alk betwe	en 18t	h and 19th St	9.97/NAVD 88	
DRIL ADT	LING	CC	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
DRIL			3				TYPE/SIZE BIT	START DATE	END DATE
Mobile			DE.				3.25" Hollow Stem Auger HAMMER WEIGHT/DROP	8/11/2004 TOTAL DEPTH	8/11/2004 WATER LEVEL (ft bgs)
2" Spl			FE				140 lbs./30"	(feet below ground surface (ft bgs)) 45'	7.5'
	z	S	AM	PLES			DESCRII	REMARKS	
	CONSTRUCTION	2	ERY.						(PID, STAINING, ODORS, ETC.)
WELL	ONST	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		n - medium	N/S = No Staining
	0	z	~ ≤	PER 6"		_		tr - trace Itl - little sI - slight	N/O = No odors
							0.0'-0.5': CONCRETE	for a CAND recorded CDAVEL and pieces	
					- 1 -		of glass.	f to c SAND, rounded GRAVEL and pieces	di di Circina di Linda di Nicola di Linda di Circina di Linda di Circina di Linda di Circina di Cir
									1'-2': Strong petroleum odor, N/S, sheen
									PID = 406 ppm max.
									2'-3': Strong petroleum odor, N/S, sheen
					- з -				PID = 97.1 ppm max.
									3'-4': Strong petroleum odor, N/S, sheen
									PID = 96.8 ppm max.
									4'-5': Strong petroleum odor, N/S, sheen
				-	- 5 -		Sample collected: W18STMGP-B0		PID = 98.6 ppm max.
				-			5.0'-9.0': Fill-Grayish brown SILT,	f to c SAND and ltl to tr gravel and cobbles.	5'-6': Strong petroleum odor, N/S, sheen
									PID = 238 ppm max.
					- 7 -				
				8	l ′				7'-9': Petroleum odor, N/S
		1	0.6'	4			į		PID = 26.5 ppm max.
				3					
				3	L				
				3	9 -		9.0'-13.0': Fill-Grayish brown SILT	, f to c SAND and ltl to tr gravel, cobbles and	9'-11': Petroleum odor, N/S
		2	0.2'	4			tr interbedded re	ddish black silt lenses.	PID = 34.7 ppm max.
				12					
				8	1				
				8	11 -		Sample collected: W18STMGP-B	08-11.011.5	11'-13': Petroleum odor, N/S
		3	0.2'	6	1		, , , , , , , , , , , , , , , , , , ,		PID = 61.2 ppm max.
		3	0.2	7	1				1 10 = 01.2 ppiii iiiax.
				7	1				
				11	13 -		13.0'-17.5': Fill-Blackish gray SILT	and f to m SAND	13L15L St patroloum oder triphogra N/C
			0.6		ł		13.0-17.3. FIII-DIAGNISH GRAY SIL	and I to III SAIND	13'-15': SI petroleum odor, tr sheen, N/S
		4	0.8'	6	1				PID = 2.4 ppm max.
				4	1		0	00 44 545 0	
				3	15 -		Sample collected: W18STMGP-B	U8-14.515.U	
				7					15'-17': N/O, N/S
		5	0.2'	12	ł				PID = 0.0 ppm max.
				24					
				17	17 -				
				7	''				17'-19': N/O, N/S
		6	1.3'	12			17.5'- 23.1': Fill-Reddish brown vf	to m SAND, some SILT and tr f gravel.	PID = 0.0 ppm max.

BORING No.: SB-08 SHEET 2 OF 3

	NAM						PROJECT NO.	AREA OF SITE		
	h St N		SCS	/Con Edi	son		41318-0700-10000	East of Gas Holders #3 ELEVATION/DATUM	3 and #4	
10th	Avenu	ie we			lk betwee	en 18	3th and 19th St	9.97/NAVD 88		
DRIL ADT		CO	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans		
	LING le B-6		i				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 8/11/2004		END DATE 8/11/2004
SAM	IPLER	TYI	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH		WATER LEVEL (ft bgs)
2" Sp	olit Spo	oon					140 lbs./30"	(feet below ground su 45'	ırface (ft bgs))	7.5'
	NO	S/	۱M	PLES			DESCRI	TION OF SOILS		REMARKS
	RUCTI	œ	_ ERY		_	~				(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine m lt - light dk - dark	- medium c - coarse	alimba	N/S = No Staining N/O = No odors
Ħ	T	_	<u> </u>	6			it-light uk-dark	tr - trace Itl - little sl -	- slight	N/O = NO OUOIS
				9	- 10 -					
				3	- 19 -					19'-21': N/O, N/S
		7	1.2'	2						PID = 0.0 ppm max.
				3						
				6	- 21 -					
				3						21'-23': N/O, N/S
		8	1.5'	8 5						PID = 0.4 ppm max.
				11						
				2	- 23 -		23.1'-33.0': SM-Reddish brown SII	T and some vf to m sand.		23'-25': N/O, N/S
		9	1.4'	4						PID = 3.7 ppm max.
				6						
				10	- 25 -					
				5	25					25'-27': N/O, N/S
		10	1.0'	5						PID = 0.4 ppm max.
				11						
				10	- 27 -					
				4						27'-29': N/O, N/S
		11	1.7'	9						PID = 2.1 ppm max.
				18						
					- 29 -					29'-31': N/O, N/S
		12	1.7'							PID = 0.0 ppm max.
					- 31 -					
				5	JI					31'-33': N/O, N/S
		13	1.6'	5						PID = 0.0 ppm max.
				9						
				22	- 33 -					
		14	1.4'	16 25			33.0'-34.8': SW-SAND grading fro	n t to c and some silt		33'-35': N/O, N/S PID = 0.0 ppm max.
		14	1.44	50/1						г ю – о.о ppm max.
				55/1			34.8'-45.0': Refusal (believed to be	Bedrock-Schist)		
				50/0	35 -		(- 9		35'-37': N/O, N/S
		15	0.0'							PID = 0.0 ppm max.

BORING No.: SB-08 SHEET 3 OF 3

Ceet below ground surface (ft bgs) 2" Split Spoon			•	_,	JG					SHEET 3 OF 3
ADDRESS SAMPLES SAMP										
10th Avenue western sidewalk between 18th and 19th St 9.97/NAV/D 88				SCS	S/Con Edi	son		41318-0700-10000		
Span Miller Span Miller Start Date Shift Date S	10th <i>A</i>	Avenu	ie w			lk betwe	en 18			
Mobile B-61 3.25" Hollow Stem Auger 8/11/2004 8/11/2014 8/11/2015 8/11/2014		LING	СО	NTR	ACTOR					
No. No. No. No. No. No. No. No. No. No.				}						
SAMPLES DESCRIPTION OF SOILS REMARKS (PID, STAINING, ODORS, E NS = NS = NS = NS = NS = NS = NS = NS				PE					TOTAL DEPTH	WATER LEVEL (ft bgs)
19 0.9 19 0.9	2" Spl	lit Spo	oon					(feet below ground surface (ft bgs		
37-39: NO, NS PID = 0.0 ppm max. 37-39: NO, NS PID = 0.0 ppm max. 41 - 41 - 43 - 43 - 45 - E.O.B. at 45' bgs.		NO	S	ΑM	PLES			DESCRI	PTION OF SOILS	REMARKS
18 1.6 50/1 39 - 37 - 39': N/O, N/S PID = 0.0 ppm max. 17 0.8 PID = 0.0 ppm max. 41 - 41 - 43 - 43 - 45 - E.O.B. at 45' bgs.		RUCT	œ	ERY		_	~			(PID, STAINING, ODORS, ETC.)
16 1.6 501 17 0.8 39-41: N/O, N/S PID = 0.0 ppm max. 41-43: N/O, N/S PID = 0.0 ppm max. 43-45: N/O, N/S PID = 0.0 ppm max. 43-45: N/O, N/S PID = 0.0 ppm max. 45-45: N/O, N/S PID = 0.0 ppm max.	WELL	CONST	NUMBE	RECOV IN FEE	BLOWS PER 6"	DEPTH	WATE			N/S = No Staining N/O = No odors
16 1.6 501 17 0.8 17 0.8 18 0.9 17 0.8 18 0.9 18 18 0.9 18 19 0.9 pm max. 19 0.9										
39-41: NO, NS PID = 0.0 ppm max. 41-43: NO, NS PID = 0.0 ppm max. 43-45: NO, NS PID = 0.0 ppm max. 445 - E.O.B. at 45 bgs.					9	- 37 -				37'-39': N/O, N/S
17 0.8 39-41; N/O, N/S PID = 0.0 ppm max. 41'-43; N/O, N/S PID = 0.0 ppm max. 43'-43; N/O, N/S PID = 0.0 ppm max. 43'-45; N/O, N/S PID = 0.0 ppm max.			16	1.6'	50/1					PID = 0.0 ppm max.
17 0.8 39-41; N/O, N/S PID = 0.0 ppm max. 41'-43; N/O, N/S PID = 0.0 ppm max. 43'-43; N/O, N/S PID = 0.0 ppm max. 43'-45; N/O, N/S PID = 0.0 ppm max.										
17 0.8'					50/2	- 39 -				39'-41': N/O, N/S
18 0.9			17	0.8'						· ·
18 0.9										
19 0.9'						- 11 -				
19 0.9'						71				41'-43': N/O, N/S
43-45: N/O, N/S PID = 0.0 ppm max. E.O.B. at 45' bgs.			18	0.9'						PID = 0.0 ppm max.
43-45: N/O, N/S PID = 0.0 ppm max. E.O.B. at 45' bgs.										
E.O.B. at 45' bgs.						- 43 -	-			
45 - E.O.B. at 45' bgs.										
E.O.B. at 45' bgs.			19	0.9						PID = 0.0 ppm max.
E.O.B. at 45' bgs.										
49 -						- 45 -	•	-	O.B. at 45 has	
49 -								-	O.B. at 40 bys.	
49 -										
49 -										
51 -						- 47 -				
51 -										
51 -										
51 -										
						- 49 -				
53 -						- 51 -				
						- 53 -	1			

BORING No.: SB-13
BORING LOG
SHEET 1 OF 2

ВО		10		, 					SHEET TUF Z
JOB				IT S/Con Ed	licon		PROJECT NO.	AREA OF SITE	
ADD			300	, CON EU	IIJUII		41318-0700-10000	Northwest of Gas Holders #2 and #3. ELEVATION/DATUM	
South	ern s	idev	valk o	on 19th S	St betwee	n 10th	and 11th Ave	6.21/NAVD 88	
DRIL ADT	LING	CO	NTR	ACTOR			DRILLER Lloyd Adams	TRC INSPECTOR Jessica Elliott	
DRILI CME 7		RIC	3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 10/10/2004	END DATE 10/10/2004
SAMI	PLER	R TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	35'	7'
	ION	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
١.	CONSTRUCTION	ER	VERY ET		Ŧ	H.			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.5': CONCRETE	-	
					1		0.5'-5.0': Fill-M brown v f to c SAN	ID and f to c GRAVEL.	
					1 -				1'-2': PID = 4.5 ppm max.
									2'-3': PID = 6.3 ppm max.
					3 -				3'-4': PID = 9.4 ppm max.
									4'-5': PID = 0.7 ppm max.
				2	5 -		5.0'-23.5': Fill-Brown SILT, f to c S	SAND, some gravel, tr clay, brick fragments	5'-7': N/O, N/S
		1	0.2'	3			and wood fibers		PID = 12.2 ppm max.
				3			Samp;le collected: W18STMGP-S	B13-67	
				2	7 -	Y			
				1	'				7'-9': N/O, N/S
		2	2.2'	1					PID = 0.0 ppm max.
				2					
				1	9 -				9'-11': N/O, N/S
		•	0.3'	2	-				
		3	0.3	2					PID = 0.0 ppm max.
				2					
				1	11 -				11'-13': Petroleum odor in shoe, N/S
		4	0.5'	2					PID = 30.3 ppm max. in shoe
		·	0.0	1					. 15 = 55.5 pp
				3	1				
				2	13 -		13': Reddish f to c SAND and som	ne silt in shoe.	13'-15': N/O, N/S
		5	0.9'	2					PID = 0.0 ppm max.
				3					·
				3	L_{Ar}				
				3	15				15'-17': No Recovery
		6	0.0'	1					
				1					
				1	17 -				
				3	''				17'-19': N/O, N/S
		7	1.7'	3					PID = 0.0 ppm max.

BORING No.: SB-13 SHEET 2 OF 2

JOB NAME/ CLIENT						_			OHEET Z OF Z
				I T 5/Con Edi	son		PROJECT NO. 41318-0700-10000	AREA OF SITE Northwest of Gas Holders #2 and #3.	
ADDR	ESS					Oth a	and 11th Ave	ELEVATION/DATUM 6.21/NAVD 88	
DRILL ADT	ING	СО	NTR	ACTOR			DRILLER Lloyd Adams	TRC INSPECTOR Jessica Elliott	
DRILL CME 7		RIG	;				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 10/10/2004	END DATE 10/10/2004
SAMP 2" Split			PE		_		HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs)) 35'	WATER LEVEL (ft bgs)
	Ť		ΑМІ	PLES				PTION OF SOILS	REMARKS
	RUCTIC	2	_ ERY		_	~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f-fine m lt-light dk-dark		N/S = No Staining N/O = No odors
				2			<u> </u>	·	
				2	- 19 -				
			4.01	2					19'-21': N/O, N/S
	8 1.2' 5								PID = 0.0 ppm max.
	10								
	21 -				T 21 T				21'-23': N/O, N/S
		9	1.2'	2					PID = 0.0 ppm max.
				5					
				3	- 23 -		23 5'-24 6' Fill-Paddish brown f S	AND, some silt and tr m to c sand and gravel.	23'-25': N/O, N/S
		10	2.0'	3			25.5-24.6. Fili-Reddish brown f S	החשט, some siit and ti iii to c sand and gravel.	23-25": N/O, N/S PID = 0.0 ppm max.
			0	2					5.5 Fb
				4	- 25 -			SILT, tr c sand and gravel. DK gray silty clay	
				3	20		in the shoe.		25'-27': N/O, N/S
		11	2.0'	4			Sample collected: W18STMGP-SI Duplicate collected: W18STMGP-		PID = 0.0 ppm max.
				3					
				3 WOH/12"	27 -		27'-33': ML-Dk gray silty CLAY, tr	f sand and shell fragments.	27'-29': N/O, N/S
		12	1.0'					-	PID = 0.0 ppm max.
				3			Sample collected: W18STMGP-SI	313-2729	
				2	- 29 -				
			4.5	4					29'-31': N/O, N/S
		13	1.5'	3					PID = 0.0 ppm max.
				4					
				4	- 31 -				31'-33': N/O, N/S
		14	0.0'	5					PID = 0.0 ppm max.
				10					
				2 Void	- 33 -		22 01 25 01 01 01 0	and rounded f CRAVE	22! 25!: N/O N/S
		15	1.7'	Void Void			33.0'-35.0': GW-Gray f to c SAND	and rounded i GRAVEL.	33'-35': N/O, N/S PID = 0.0 ppm max.
				5					5.5 pp
				4	- 35 -				
					35 -		E.	O.B. at 35' bgs.	

BORING No.: SB-15
BORING LOG
SHEET 1 OF 2

				<i>J</i> G					SHEET TUF Z		
JOB							PROJECT NO.	AREA OF SITE			
			SCS	S/Con Ed	lison		41318-0700-10000	Northern section of the Gas Light Co.	Storage Yard		
ADDI		-		40th C	24 144	0:	de I Beliane	ELEVATION/DATUM			
					ot near vv	est Si	de Highway	5.90/NAVD 88			
DRIL ADT	LING	CC	ONTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott			
DRIL Mobile			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 8/19/2004	END DATE 8/19/2004		
SAMI			'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))			
2" Spl	it Spo	oon					140 lbs./30"	25'	7'		
	NOL	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS		
	CONSTRUCTION	SER	RECOVERY IN FEET		E	R			(PID, STAINING, ODORS, ETC.)		
WELL	CONS	NUMBER	RECOVE IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors		
							0.0'-0.5': CONCRETE and rebar.				
					1			CAND come silk service also and and			
					 1 −		0.5 -2.0°: Fill-Brownish black f to c fragments.	SAND, some silt, gravel, slag and coal			
							nagmonic.		1'-2': N/O, N/S		
									PID = 0.0 ppm max.		
							2.0'-4.9': Fill-Reddish brown SILT.	f to m SAND, tr c sand, gravel, cobbles,	2'-3': N/O, N/S		
					1		mica, brick fragm				
					 3 -				PID = 0.0 ppm max.		
					1				3'-4': N/O, N/S		
									PID = 0.0 ppm max.		
							Sample collected: W18STMGP-B	15-45	5': Strong petroleum odor, sheen, visible product and black staining.		
					L 5 -		4.9'-5.0': Fill-Brownish black SILT,	f SAND and tr gravel.	visible product and black staining.		
				3	٦		5.0'-8.0': Fill-Brown SILT, f to c SA	AND, tr gravel and wood fibers.	PID = 1,806 ppm max.		
		1	0.1'	3			Sample collected: W18STMGP-B	15-56	5'-7': Strong petroleum odor, sheen,		
				3			, , , , , , , , , , , , , , , , , , , ,		visible product and black staining.		
				2	l 7 -				PID = 1,852 ppm max.		
		2	1.25	1			Sample collected: W18STMGP-B	15-79	7'-9': Strong petroleum odor, sheen, visible product and black staining.		
				1				r, f to c SAND, some gravel, tr wood fibers, and shell fragments.	PID = 2,364 ppm max.		
				2	9 -				9'-11': Strong petroleum odor, sheen,		
		3	1.0'	2					visible product and black staining.		
				5 2					PID = 848 ppm max.		
				5	11 -		Sample collected: W18STMGP-B	15-1113	11'-13': Strong petroleum odor, sheen,		
		4	0.8'	9					visible product and black staining.		
				3					PID = N/A		
				4	12-						
				3	13 -				13'-15': Strong MGP-related odor, tr		
		5	0.3'	11					TM odor, visible OLM, tr TM,		
		J	0.5	12	1				sheen and black staining.		
				8	1				PID = N/A		
				9	15 -				15'-17': Strong OLM and TM odor,		
		6	1.0'	9]				visible OLM and TM,		
				5					sheen and black staining.		
				5	17 -				PID = 587 ppm max.		
				5	1 ''				17'-19': Strong OLM and TM odor,		
		7	1.5'	7					visible OLM and TM,		

BORING No.: SB-15 SHEET 2 OF 2

В	1111	••							SHEET Z OF Z
	NAM						PROJECT NO.	AREA OF SITE	
			SCS	Con Ed	ison		41318-0700-10000	Northern section of the Gas Light C	Co. Storage Yard
	RESS nern s		valk o	on 19th S	t near W	est :	Side Highway	ELEVATION/DATUM 5.90/NAVD 88	
				ACTOR			DRILLER	TRC INSPECTOR	
ADT							Sean Miller	Jessica Elliott	
DRIL Mobil	LING e B-6		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 8/19/2004	END DATE 8/19/2004
SAM	PLEF	R TY	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bg 25'	(s)) 7'
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	RUCTI	~	ERY						(PID, STAINING, ODORS, ETC.)
WELL	NO SAMPLES O CONTRACTOR OF THE LEGY OF TH				EPTH	VATER	f - fine n	n - medium c - coarse	N/S = No Staining
_	- 					^	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors
				9	ł				sheen and black staining.
				6	19 -				PID = 587 ppm max.
				1			19.0'-25.0': ML-Dk gray silt CLAY,	tr f sand and shell fragments.	19'-21': Strong OLM and TM odor,
	8 1.75' 3								visible OLM and TM,
			l	3					sheen and black staining.
				4	L 24 -				PID = 187 ppm max.
			l	2	21 -				21'-23': N/O, N/S
		9	2.0'	2					PID = 0.0 ppm max.
	3								
	4				1				
				1	23 -		Sample collected: W18STMGP-B1	5-2325	23'-25': N/O, N/S
		10	2.0'	2	i		Dampie concerca. W roo rivior Di	0 2020	PID = 0.0 ppm max.
		10	2.0		ł				PID = 0.0 ppm max.
				3	ł				
				4	25 -	1			
				-			E.	O.B. @ 25' bgs.	
				ļ	l				
					l				
					27 -				
					2'				
			l						
					L				
					29 -				
					1				
					1				
			l		1				
			l		31 -	1			
					l				
					1				
			l	 	ł				
	33			ł					
					~~				
					25 -				
	35								
						L			
	_	$\bot\bot$							

BORING No.: SB-26
SHEET 1 OF 3

во	BORING LOG JOB NAME/ CLIENT								SHEET 1 OF 3
				I T 5/Con Edi:	con		PROJECT NO. 41318-0700-10000	AREA OF SITE East of Chelsea Piers between 17th a	nd 19th St
ADD	RESS	3					41318-0700-10000	ELEVATION/DATUM	ind Total St
				ce Area F ACTOR	Road		DRILLER	6.76/NAVD 88 TRC INSPECTOR	
ADT	LING		MIK	ACTOR			Victor	Jessica Elliott	
DRIL CME-	LING		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/26/2004	END DATE 7/26/2004
	PLEF		Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)	7'
	N	S	ΑМІ	PLES			DESCRIF	PTION OF SOILS	REMARKS
	CONSTRUCTION		₹						(DID STAINING ODODS FTC.)
Ⅎ	ISTR	NUMBER	RECOVERY IN FEET		DEPTH	WATER			(PID, STAINING, ODORS, ETC.)
WELL	Ö	١	REC	BLOWS PER 6"	DE	WA	f - fine m lt - light dk - dark	r - medium c - coarse tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-2.0': CONCRETE, COBBLES	TONES and rebar.	
					- 1 -				
					- 3 -				
					- 5 -				
							Sample collected: W18STMGP-B2	26-6.570	
					- 7 -	V			
				2	,		7.0'-9.2': Fill-Brown SILT and f SA	ND.	7'-9': N/O, N/S
		1	0.1'	1					PID = 0.0 ppm max.
				1					
				2	- 9 -				9'-11': N/O, N/S
		2	0.7'	1			9.2'-9.7': Fill-Brownish black SILT,	f to m SAND, tr c sand, gravel and	PID = 0.2 ppm max.
				1			wood fibers.		
				1	- 11 -				
				1			11.0'-13.0': Fill-Brown SILT, f to m blk organic mate	SAND, some c sand, tr wood fibers and rial.	11'-13': Sewage-like odor, N/S
		3	2.0'	3			, and the second		PID = 0.2 ppm max.
				1					
				WOH	- 13 -		13.0'-15.6': Fill-Grayish brown SIL	T, f to c SAND and tr gravel.	13'-15': N/O, N/S
		4	0.3'	WOH					PID = 0. ppm max.
				1					
				1	- 15 -				
		,	0.01	1	-		15.6'-15.8': Fill-Gray f to c SAND,	GRAVEL and tr silt.	15'-17': SI MGP-related odor, blk staining
		5	0.8'	4					PID = 0.4 ppm max.
				6					
				7	- 17 -		17.0'-19.0': Fill-Dk gray m to c SAf	ND and tr f sand.	17'-19': SI MGP-related odor, N/S
Ш		6	2.0'	7					PID = 1.8 ppm max.

BORING No.: SB-26 SHEET 2 OF 3

BO	RII	٧G	LC	OG			SHEET 2 OF 3			
	NAM						PROJECT NO.	AREA OF SITE		
	h St N		SCS	Con Edi	son		41318-0700-10000	East of Chelsea Piers between 17th ar ELEVATION/DATUM	nd 18th St	
Chels	sea Pi	iers		ce Area F	Road			6.76/NAVD 88		
DRIL ADT		CC	NTR	ACTOR			DRILLER Victor	TRC INSPECTOR Jessica Elliott		
	LING		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/26/2004	END DATE 7/26/2004	
SAM	IPLEF	R TY	'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 37'	7'	
		_	AMI	PLES			DESCRIF	TION OF SOILS	REMARKS	
	CTIC		.۲							
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		ı - medium	(PID, STAINING, ODORS, ETC.) N/S = No Staining	
_	٥	z	∠ ≤	PER 6"	ь	^	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors	
				7						
				8	- 19 -		10.0' 10.7': Fill Dk grov f to a CAN	D, f to c GRAVEL, tr silt and chunks of red brick	40' 24': SLMCD related oder triblicatoining	
		7	0.7'	6			19.0-19.7 . Fill-Dk glay I to C SAN	D, I to C GRAVEL, II SIII and Churiks of fed blick	PID = 0.7 ppm max.	
		,	0.7	4					110 = 0.7 ppii max.	
				2						
				8	- 21 -		21.0'-23.7': Fill-Dk gray m to c SAI	ND, f to m GRAVEL, tr f sand, silt, clay	21'-23': SI MGP-related odor, blk staining	
		8	1.0'	4				and tr brick fragments.	and visible sheen	
				10					PID = 0.6 ppm max.	
				6	-00					
				9	- 23 -	1			23'-25': SI MGP-related odor, blk staining	
		9	0.7'	10					and visible sheen	
				5					PID = 1.1 ppm max.	
				4	- 2F -					
				10	- 25 -		25.0'-25.1': Fill-Dk gray f to c SAN	D and tr silt.	25'-27': SI MGP-related odor, blk staining and visible sheen	
		10	0.1'	10					PID = 0.1 ppm max.	
				8						
				5 2	- 27 -		27.0'-27.1': Fill-Dk gray SILT, f to r	m SAND and trip cond	27'-29': SI MGP-related odor, blk staining	
		11	0.1'	2			27.0-27.1. Fill-Dk glay SiL1, 1 to 1	II SAND and ti c sand.	and visible sheen	
			0.1	4					PID = 0.5 ppm max.	
				9						
				2	- 29 -	1	29.0'-32.0': Fill-Dk gray f to c SAN	D, GRAVEL, tr silt and wood fibers.	29'-31': SI MGP-related odor, blk staining,	
		12	2.0'	1					visible sheen and visible OLM	
				1					PID = 8.4 ppm max.	
				1						
				2	31 -		Sample collected: W18STMGP-B2	26-3133	31'-33': SI MGP-related odor, blk staining,	
		13	2.0'	1					visible sheen and OLM in sand	
				1			32.0'-37.0': ML-Dk gray silty CLAY	, tr f sand and shell fragments.	PID = 17.4 ppm max.	
				2	- 33 -					
				WOH	33				33'-35': N/O, N/S	
		14	2.0'	WOH					PID = 0.2 ppm max.	
				WOH						
				2	- 35 -	l				
				WOH					35'-37': N/O, N/S	
\Box		15	2.0'	WOH			Sample collected: W18STMGP-B2	26-3537	PID = 0.0 ppm max.	

BORING No.: SB-26 BORING LOG SHEET 3 OF 3

	KII								SHEET 3 OF 3
	NAN						PROJECT NO.	AREA OF SITE	4 4 0 t P C t
	th St I		SU	S/Con Ed	ISON		41318-0700-10000	East of Chelsea Piers between 17th an ELEVATION/DATUM	u ioui Sī
			Serv	ice Area	Road			6.76/NAVD 88	
		G CC	NTR	ACTOR			DRILLER	TRC INSPECTOR	
ADT							Victor	Jessica Elliott	
	LLING -LC60		G				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/26/2004	END DATE 7/26/2004
	/PLE		/PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
							140 lbs./30"	(feet below ground surface (ft bgs))	
2 3	olit Sp	_	A B/I	PLES		I		TION OF SOILS	7' REMARKS
	CONSTRUCTION						DESCRIP	- HON OF SOILS	KEWAKKS
	SG.	~	ERY			١			(PID, STAINING, ODORS, ETC.)
WELL	NST	NUMBER	S 13	BI OWE	DEPTH	WATER	f fine m	n - medium c - coarse	N/S = No Staining
×	8	Đ	RE(BLOWS PER 6"	DE	M	lt-light dk-dark	tr - trace ltl - little sl - slight	N/O = No odors
				2					
				4	_ ^7 _				
					- 37 -		E.	O.B. at 37' bgs	
					- 39 -	1			
					- 41 -	1			
					- 43 -	1			
					- 45 -	i			
					- 47 -	1			
					- 49 -	ł			
					- 51 -	ł			
				-					
				-					
					- 53 -	ł			
\Box									

BORING No.: SB-27 SHEET 1 OF 3

JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 South of the Retort House along the Hudson River **ADDRESS** ELEVATION/DATUM In the cobblestone road at the southern end of Chelsea Piers 6.12/NAVD 88 DRILLING CONTRACTOR TRC INSPECTOR DRILLER Sean Miller ADT Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE END DATE Mobile B-61 3.25" Hollow Stem Auger 7/22/2004 7/22/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 5.5' **DESCRIPTION OF SOILS REMARKS SAMPLES** CONSTRUCTION RECOVER (PID. STAINING. ODORS, ETC.) NUMBER IN FEET WELL BLOWS f - fine m - medium c - coarse N/S = No Staining PER 6' lt - liaht dk - dark tr - trace ltl - little sl - slight N/O = No odors 0.0'-2.0': COBBLESTONE AND CONCRETE 1 3 Sample collected: W18STMGP-B27-5.05.5 Sample collected: W18STMGP-B27-5.96.3 5 5.0'-25.0': Fill-Brown SILT, v f to c SAND, brick fragments, wood fibers and 5'-7': N/O, N/S ash from 5.0'-19.0'. 0.1 PID = 0.0 ppm max. Sample collected: W18STMGP-B27-6.06.5 7 7'-9': N/O, N/S 2 0.1 PID = 0.0 ppm max. 3 3 9 3 9'-11': N/O, N/S 3 1.6' PID = 0.0 ppm max. 12 8 11 8 11'-13': N/O, N/S 1.7 6 PID = 0.0 ppm max. 7 7 13 11 13'-15': N/O, N/S 1.4' 6 5 PID = 0.0 ppm max. 4 3 15 15'-17': N/O, N/S 6 0.3 12 PID = 0.4 ppm max. 24 17 17 7 Shell fragments present in fill. 17'-19': N/O, N/S PID = 0.2 ppm max

BORING No.: SB-27 SHEET 2 OF 3

	JOB NAME/ CLIENT V18th St MGP SCS/Con Edison						PROJECT NO. 41318-0700-10000			
ADD	RESS	3				rn er	nd of Chelsea Piers	ELEVATION/DATU 6.12/NAVD 88		44001111101
				ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans		
DRIL	LING e B-6		•				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/22/2004		END DATE 7/22/2004
	PLER		PE				HAMMER WEIGHT/DROP	TOTAL DEPTH		WATER LEVEL (ft bgs)
2" Sp	lit Spo	oon					140 lbs./30"	(feet below ground 45'	d surface (ft bgs))	5.5'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOIL	-S	REMARKS
	CONSTRUCTION	ER	VERY :T		I	œ				(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	r - medium c - coarse tr - trace ltl - little	e sl - slight	N/S = No Staining N/O = No odors
				6						
				9	- 19 -					
				3						19'-21': N/O, N/S
		8	1.2'	2						PID = 0.2 ppm max.
				3 6						
				3	- 21 -		Increase in silt content from 21.0' to	n 25 0'		21'-23': N/O, N/S
		9	1.0'	8			morodoo in oik oorkonk nom 2 no k	20.0.		PID = 0.0 ppm max.
				5						
	11 23				- 22 -					
	23				23					23'-25': N/O, N/S
		10	1.0'	4						PID = 0.0 ppm max.
				6						
				10	- 25 -					
				5			25.0'-27.0': SM-SILT and v f to m	SAND.		25'-27': N/O, N/S
		11	0.3'	5 11						PID = 3.6 ppm max.
				10						
				4	- 27 -		27.0'-31.0': ML-Gray clayey SILT a	and f sand lenses (appro	x. 0.5" thick).	27'-29': N/O, N/S
		12	0.6'	9				(1)	,	PID = 0.0 ppm max.
				8						
				18	- 20 -					
					- 29 -					29'-31': N/O, N/S
		13	1.4'							PID = 0.0 ppm max.
					- 31 -					
		14	1.01	5			31.0'-41.3': SW-F to c SAND, som	e silt, gravel and brick fr	agments.	31'-33': N/O, N/S
		14	1.2'	5 9						PID = 0.0 ppm max.
				22						
				16	- 33 -					33'-35': N/O, N/S
		15	0.3'	25						PID = 0.0 ppm max.
				50/1						
					- 35 -					
				50/0	55					35'-37': N/O, N/S
		16	0.8'							PID = 0.0 ppm max.

BORING No.: SB-27 SHEET 3 OF 3

טכ	KIN	NG	L	JG					SHEET 3 OF 3	
	NAM						PROJECT NO.	AREA OF SITE		
			SCS	Con Edi	ison		41318-0700-10000	South of the Retort House along the Hudson River		
	ORESS e cobb		one r	oad at th	e southe	rn ei	nd of Chelsea Piers	ELEVATION/DATUM 6.12/NAVD 88		
ADT				ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans		
	LLING ile B-6		3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/22/2004	END DATE 7/22/2004	
SAN	/IPLER	R TY	'PΕ				HAMMER WEIGHT/DROP		WATER LEVEL (ft bgs)	
2" Sp	olit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 45'	5.5'	
	ON	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DЕРТН	WATER		n - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining	
5	ŭ	ž	∝≥	PER 6"	Δ	>	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors	
		17	0.5'	9 50/1	- 37 -				37'-39': N/O, N/S PID = 0.0 ppm max.	
		18	0.8'	50/2	- 39 -				39'-41': N/O, N/S PID = 0.0 ppm max.	
		19	1.6'		- 41 -		Sample collected: W18STMGP-B: 41.3'-45.0': ML-Gray silty CLAY.	27-40.941.3	41'-43': SI odor, visible sheen, N/S PID = 10.0 ppm max.	
		20	1.5'	3 6 5	- 43 -		Sample collected: W18STMGP-B.	27-44.545	43'-45': N/O, N/S PID = 12.0 ppm max.	
				»	- 45 -		E	O.B. at 45' bgs		
					- 47 -					
					- 49 -					
					- 51 -					
					- 53 -					

BORING No.: SB-19 SHEET 1 OF 2

BO	RIN	1G	LO	G					SHEET 1 OF 2
	NAM						PROJECT NO.	AREA OF SITE	
_	h St M		SCS/	Con Edis	on		41318-0700-10000	NE corner of DEA Parking Lot	
DEA	Parkin	ng Lo						10.56/NAVD 88	
DRIL ADT		CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	LING ile B-6		i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/2/2004	END DATE 5/2/2004
SAM	IPLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 21'	9'
	Ž	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CTIO								
	STRU	3ER	er Er		Ξ	监			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEРТН	WATER		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
	T	Ė		TERO			0'-0.5': Asphalt	u - trace iti - itite 31 - 3ngnt	14/0 = 140 000/3
							0.5'-1.0': Fill-Dk brown GRAVEL, CC	NCRETE and COBBLES	
					1 -		1.0'-2.0': Fill-Dk brown GRAVEL, CC		1': N/O, N/S, PID = 0.3 ppm max.
							2.0'-3.0': Fill-Dk brown f to c SAND, s	some silt and gravel.	2': N/O, N/S, PID = 0.3 ppm max.
							,		
					- 3 -		3.0'-4.0': Fill-Lt brown f to c SAND, se	ome silt, gravel and tr brick fragments.	3': N/O, N/S, PID = 0.3 ppm max.
									4': N/O, N/S, PID = 0.7 ppm max.
							4.0'-5.0': Fill-Brown f to c SAND and	some gravel.	
				11	- 5 -		5.0': Fill-Lt brown f to c SAND, GRA\	/EL, some silt and cobbles.	5': N/O, N/S, PID = 0.3 ppm max.
		1	0.3'	5			5.0'-5.3': Fill-Brown and tan SILT, f to	o c SAND, tr gravel and brick fragments	5'-7': N/O, N/S
				5			Sample collected: W18STMGP-B19-	57	PID = 0.0 ppm max.
				5	7 -				
				15	, ,		7.0'-9.0': No Recovery: Red brick in s	shoe.	7'-9': N/A
		2	0.0'	22					
				15					
				11	9 -				
				2			9.0'-9.05': Red brick and void space.		9'-11': SI MGP-related odor, N/S
		3	0.05'	1					PID = N/A
				1					
				1	11 -				
				26			11.0'-11.1': Fill-Brown SILT, f to c SA	ND, tr gravel and brick fragments.	11'-13': MGP-related odor, N/S, sheen
		4	0.1'	28					PID = 0.0 ppm max.
				5					
				- 8	13 -				
				16			13.0'-13.5': Fill-Brown f to c silty SAN	ID, GRAVEL, brick fragments and shell fragments.	
		5	0.1'	8					PID = 0.2 ppm max.
				2					
				1	15 -		45 01 45 01 511 0	ID ODAYEL LILL	451 471 11/2 11/2
			4.0'	4	1		15.0'-15.2': Fill-Brown f to c silty SAN shell fragments.	ID, GRAVEL, brick fragments and	15'-17': N/O, N/S
		6	1.0'	2			45 01 40 01. E3I DI		PID = 0.4ppm max.
				1	1		15.2'-16.0': Fill-Dk grayish black (blk) brick fragments.	m to c SAND, tr f sand, silt, gravel and	
				3	17 -		47.0/ 47.0/. Eill Dk groy/blk 4 0.4	ND to found with ground and brink from	17' 10's Strong ammonnia odor ob
		7	0.8'	6 4	1			ND, tr f sand, silt, gravel and brick fragments.	17'-19': Strong ammonnia odor, sheen, heavy blk staining
\perp		′	0.0	4			17.2'-17.8': Fill-Dk gray silty CLAY, f	U III JANU diiu woou iideis.	

BORING No.: SB-19 SHEET 2 OF 2

BO	DRING LOG B NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
	St M	GP S	SCS/0	Con Ediso	n		41318-0700-10000	NE corner of DEA Parking Lot ELEVATION/DATUM	
DEA F		g Lot						10.56/NAVD 88	
DRIL ADT	LING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL Mobil	LING	RIG					TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/2/2004	END DATE 5/2/2004
	AMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH								WATER LEVEL (ft bgs)
2" Sp	lit Spc	on					140 lbs./30"	(feet below ground surface (ft bgs)) 21'	9'
	_		ΑМІ	PLES				IPTION OF SOILS	REMARKS
	UCTI	SAMPLES SAMPLES BLOOMSTRUCTURE WATER WA							(2)2 271111112 2222 2723
Ⅎ	ISTR	NUMBER	RECOVE IN FEET		DEPTH	WATER		_	(PID, STAINING, ODORS, ETC.)
WELL	CO	N	REC IN F	BLOWS PER 6"	DEF	WA	f - fine It - light dk - darl	m - medium c - coarse c tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				2			Sample collected: W18STMGP-B19	-1719	PID = 8.6 ppm max.
				10	L 40 -				
				2	19 -		19.0'-19.4': Fill- Dk grayish blk SILT	, f to c SAND, GRAVEL and some brick fragments.	19'-21': Strong ammonia odor, sl sheen,
		8	0.4'	6					heavy blk staining
				4					PID = 5.6 ppm max.
				2	21 -]			
					21 -		E.O.B. at	21' bgs (Refusal at 21' bgs)	
					23 -	ļ			
					23				
					ļ				
					25 -	1			
					23				
					ļ				
					ļ				
					27 -	1			
					-'				
					ļ				
					ļ				
					29 -	1			
					}				
					}				
					31 -	ł			
					ł				
					ļ				
					33 -	ł			
				ļ	ł				
				ļ	ł				
					35 -	ł			
					}				
					}				
					ł				
				1	1		l		

BORING No.: SB-20 SHEET 1 OF 3

ВО	KIN	IG	LO	G					SHEET 1 OF 3
JOB I							PROJECT NO.	AREA OF SITE	
W18th			SCS/	Con Edis	on		41318-0700-10000	SE corner of DEA Parking Lot ELEVATION/DATUM	
DEA F	arkin	g Lo						10.02/NAVD 88	
DRILI ADT	LING	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/2/2004	END DATE 5/2/2004
SAME	PLER	TYI	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Spl	it Spo	_					140 lbs./30"	51'	11'
	NO	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
=	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DЕРТН	WATER	4.6	an anadian	(PID, STAINING, ODORS, ETC.)
WELL	S	Š	REG F	PER 6"	DEI	WA	It - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.5': Asphalt and subbase.		
					1 -		0.5'-3.0': Fill-Dk gray SILT, f to c SAI	ND and GRAVEL (0.9'-1.2': layer of cobblestone).	
									1': N/O, N/S PID (headspace) = 0.8 ppm max.
									2': N/O, N/S PID (headspace) = 2.1 ppm max.
					3 -		3.0'-5.0': Fill-Lt brown SILT, f to c SA	ND, GRAVEL, tr clay and brick fragments.	3': N/O, N/S PID (headspace) = 0.7 ppm max.
									5': N/O, N/S
					5 -			GRAVEL, tr clay, brick fragments. glass and	PID (headspace) = 1.4 ppm max.
				4]		concrete.		5'-7': N/O, N/S
		1	0.6'	4			5.0'-5.6': Fill/SM-Brown SILT and f to	o c SAND.	PID = 0.0 ppm max.
				4					
				4	7 -				
			1.0'	3			7.0'-8.0': Fill/SM-Tan SILT and f to c	SAND and concrete in shoe.	7'-9': N/O, N/S
		2	1.0	11					PID = 0.0 ppm max.
				8	1 .				
				14	9 -		9.0'-10.0': Fill/SW-Orangish brown f	to c SAND and tr silt.	9'-11': N/O, N/S
		3	1.0'	10			Sample collected: W18STMGP-B20-		PID = 0.0 ppm max.
				6					
				5	11 -	Y			
				2	`		11.0'-11.5': Fill/SM-Brown SILT and	f to m SAND.	11'-13': SI odor, N/S
		4	0.8'	3	-		11.5'-11.8': Fill/SW-Brown f to c SAN	ND and tr gravel.	PID = 0.0 ppm max.
				2	-				
				3	13 -		10.01.40.01. 511/01/15	ID. III	401.451.01.1.1.10
		-	10	1	1		13.0'-13.2': Fill/SW-Brown f to c SAN 13.2'-14.2': Fill/SP-Blk f to m SAND.	ND and tr gravel.	13'-15': SI odor, N/S
		5	1.2'	5	1			1215	PID = 0.2 ppm max.
				5 9	1		Sample collected: W18STMGP-B20-	1010	
				5	15 -		15.0'-15.1': Fill/SW-Brown f to m SA	ND, tr c sand and gravel.	15'-17': N/O, N/S
		6	0.1'	3	1			,	PID = 0.2 ppm max.
				6	1				
				8	L,,				
				4	17 -		17.0'-17.2': Fill/SW-Brown f to m SA	ND, tr c sand and gravel.	17'-19': N/O, N/S
		7	1.2'	5			17.2'-18.2': ML-Gray silty CLAY, tr f	sand and shell fragments.	PID = 0.4 ppm max.

BORING No.: SB-20 SHEET 2 OF 3

	NAMI 1 St M			- Con Edisc	on		PROJECT NO. 41318-0700-10000	AREA OF SITE SE corner of DEA Parking Lot	
	RESS	i						ELEVATION/DATUM 10.02/NAVD 88	
DRIL ADT	LING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	LING le B-6						TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/2/2004	END DATE 5/2/2004
	PLER		PΕ				HAMMER WEIGHT/DROP 140 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs)) 51'	WATER LEVEL (ft bgs)
2 Op		_	AMF	PLES				PTION OF SOILS	REMARKS
	JCTIO		۲۲						(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		n - medium c - coarse	N/S = No Staining
Ĥ		z	∝ ≤	9 PER 6"		_	lt - light dk - dark	tr - trace ltl - little sl - slight	N/O = No odors
				7	_ 10 _				
				7	- 19 -		19.0'-20.0': ML-Gray silty CLAY, tr f s	and and shell fragments.	19'-21': N/O, N/S
		8	1.8'	26			Sample collected: W18STMGP-B20-	1921	PID = 1.1 ppm max.
				25				own c SAND and shell fragments with gray silty,	
				21	- 21 -		f sandy clay in ve		
				7			21.0'-21.5': SC-Intermixed brownish	an f to c SAND and silty CLAY with shell fragments	
		9	1.5'	7					PID = 0.4 ppm max.
				18					
				16	- 23 -	ł	23.0'-23.5': SP-Brown c SAND, tr gra	avel and shell fragments	23'-25': N/O, N/S
		10	0.5'	9			20.0 20.0. Of Blown Control, it git	wer and shell magnifina.	PID = 0.0 ppm max.
		.0	0.0	12					1 15 = 0.0 pp.11 max.
				14	- 25 -				
				28	- 25 -		25.0'-26.0': SP-Grayish brown f to m	SAND with 1" clay lense.	25'-27': N/O, N/S
		11	1.0'	20					PID = 0.2 ppm max.
				16					
				19	- 27 -	ļ			
				9			27.0'-28.0': SP-Olive gray/brown f SA	AND, tr m sand and silt.	27'-29': N/O, N/S
		12	1.0'	7					PID = 0.0 ppm max.
				12 4					
				8	- 29 -	1	29.0'-29.95': SP-Reddish brown m S	AND.	29'-31': N/O, N/S
		13	1.2'	6			29.95'-30.2': SM-Brown SILT and f S		PID = 0.0 ppm max.
				5					
				9	- 31 -				
				8	31		31.0'-33.0': ML-Olive brown SILT and	f tr clay.	31'-33': N/O, N/S
		14	2.0'	19					PID = 0.0 ppm max.
				21					
				26	- 33 -				
				19			33.0'-34.0': GW-Subangular/rounded	f GRAVEL and vc SAND (river-like sediments).	33'-35': N/O, N/S
		15	1.0'	31					PID = 0.0 ppm max.
				24 37					
				17	- 35 -		35.0'-36.0': GW-Subangular/rounded	f GRAVEL and vc SAND (river-like sediments).	35'-37': N/O, N/S
		16	1.0'	15		L		(PID = 0.0 ppm max.
_	_								•

BORING No.: SB-20 SHEET 3 OF 3

DOMINO LOG									SIILLI 3 OI 3
JOB NAME/ CLIENT PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000								AREA OF SITE	
W 16th 5t MGP SCS/Con Edison 41318-0700-10000 ADDRESS DEA Parking Lot								SE corner of DEA Parking Lot ELEVATION/DATUM 10.02/NAV/D.88	
		-		CTOR				10.02/NAVD 88 TRC INSPECTOR	
٩DT				• •			Sean Miller	Jessica Elliott	
	LING le B-6							START DATE 5/2/2004	END DATE 5/2/2004
SAM	PLER	TYP	E					TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 51'	11'
	ON	S	AMI	PLES			DESCRIP	TION OF SOILS	REMARKS
	RUCT	H.	_ ER			~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m It - light dk - dark	- medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				19					
				25	37 -	1			
				13			37.0'-38.0': GW-Subangular/rounded f	GRAVEL and vc SAND (river-like sediments).	37'-39': N/O, N/S
		17	1.0'	14					PID = 0.0 ppm max.
				10					
				14	39 -	İ	39.0'-39.5': GW-Subangular/rounded f	GRAVEL and vc SAND (river-like sediments).	39'-41': N/O, N/S
		18	0.5'	9	Ī		-		PID = 0.0 ppm max.
				10					
				12	41 -	ļ			
				5	•		41.0'-41.5': SP-Brown vc SAND and tr	·	41'-43': N/S, sl odor, sl sheen
		19	2.0'	12			41.5'-43.0': GW-Subangular/rounded f	GRAVEL and vc SAND (river-like sediments).	PID = 0.5 ppm max.
				16			Sample collected: W18STMGP-R20-4:	143 (Duplicate: W18STMGP-B61-4143)	
				25	43 -	İ		GRAVEL and vc SAND (river-like sediments).	43'-45': N/S, sl non MGP-related odor
		20	1.3'	31	Ī		-		PID = 2.1 ppm max.
				50	 				
				2	45 -	ļ			
				14			45.0'-46.2': GW-Subangular/rounded f	GRAVEL and vc SAND (river-like sediments).	45'-47': N/O, N/S and sl sheen
		21	1.2'	17					PID = 0.4 ppm max.
				15 15	t				
				11	47	Ì	47.0'-48.5': GW-Subangular/rounded f	GRAVEL and vc SAND (river-like sediments).	47'-49': N/O, N/S and sl sheen
		22	1.5'	15	[_		PID = 1.5 ppm max.
				13	ļ				
				12	49 -	ļ			
				25				GRAVEL and vc SAND (river-like sediments).	49'-51': N/O, N/S and sl sheen
		23	1.0'	22			Sample collected: W18STMGP-B20-49	951	PID = 0.2 ppm max.
				17					
					51	İ	E.0	O.B. at 51' bgs	
					[
					ļ				
					55 -	1			
					55				
					}				
					}				

BORING LOG BORING No.: SB-21 SHEET 1 OF 2

во	RIN	IG	SHEET 1 OF 2						
	NAM						PROJECT NO.	AREA OF SITE	
W18th			SCS/	Con Edis	on		41318-0700-10000	Middle of DEA Parking Lot ELEVATION/DATUM	
DEA F	Parkin	ıg Lo						10.15/NAVD 88	
DRIL ADT	LING	CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL Mobil			i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/4/2004	END DATE 5/4/2004
SAM	PLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 23'	11'
	N	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION		∑						(PID, STAINING, ODORS, ETC.)
1 3	ISTRI	NUMBER	RECOVERY IN FEET	D. 0140	ОЕРТН	WATER	f-fine r		
WELL	Š	Ň	REG F	BLOWS PER 6"	DEI	W		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
									0-1': N/O, N/S PID (headspace) = 3.5ppm max.
					 1				1-2": N/O, N/S PID (headspace) = 4.5 ppm max.
									2'-3': N/O, N/S PID (headspace) = 2.8 ppm max.
					3 -				3'-4': N/O, N/S PID (headspace) = 2.6 ppm max.
									4'-5': N/O, N/S PID (headspace) = 2.1 ppm max.
				50/2	5 -		No Recovery - Brick and conrete in sh	noe.	5'-7': N/A
		1	0.0'						
					7 -				
		2	0.1'	75/5			7.0'-7.1': Fill/SM-Dk gray SILT, SANI	O, GRAVEL and some rock fragments.	7'-9': Organic odor, N/S and sheen PID = 8.6 ppm max.
		_	0.1						TID = 0.0 ppin max.
					9 -				
				25	9		9.0'-9.3': Fill/SM-Blk SILT, f to m SAN	ND and rock in top of spoon.	9'-11': SI organic odor, N/S
		3	0.3'	50					PID = 3.0 ppm max.
				50/4					
				20	11 -	•	11.0'-11.4': Fill/SM-Brown and blk Sli	T f to m SAND rock fragments and	11'-13': N/O, N/S
		4	0.4'	50			large rock frag		PID = 1.2 ppm max.
				50/3			Sample collected: W18STMGP-B21-	1113	
					13 -				
				16			13.0'-13.9': Fill/SM-Lt brown and gray	/ SILT, f SAND, tr m sand and wood fibers.	13'-15': SI organic odor, N/S
		5	0.9'	20					PID = NA
				16 45					
				50	15 -		15.0'-15.5': Fill/SP-Light brown and g	ray c SAND, tr silt and wood fibers.	15'-17': N/O, N/S
		6	0.5'	48	1		Sample collected: W18STMGP-B21-		PID = N/A
				11					
				18	17 -				
				6	''		17.0'-18.7': ML-Gray silty CLAY and	shell fragments.	17'-19': N/O, N/S
		7	1.7'	3					PID = 0.0 ppm max.

BORING No.: SB-21 SHEET 2 OF 2

									SHEET 2 OF 2	
							PROJECT NO.	AREA OF SITE		
			SCS/	Con Ediso	on		41318-0700-10000	Middle of DEA Parking Lot		
ADDF DEA F			ot					ELEVATION/DATUM 10.15/NAVD 88		
DRILLING CONTRACTOR DRILLER ADT Sean Miller								TRC INSPECTOR Jessica Elliott		
DRIL Mobil			i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/4/2004	END DATE 5/4/2004	
SAMI	PLER	TYI	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)	
2" Sp	lit Spo	oon					140 lbs./30"	23'	11'	
	NO	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	ОЕРТН	WATER	f-fine It-light dk-dark	f-fine m-medium c-coarse		
Ť	T	_		3		Ė	it-light uk-dark	tr - trace Itl - little sl - slight	N/O = No odors	
				5						
				2	19 -		19.0'-19.5': ML-Gray silty CLAY and	shell fragments.	19'-21': N/O, N/S	
		8	0.5'	2	1			-	PID = 2.4 ppm max.	
				4	1					
				3	21 -					
				4			21'-22': ML-Gray silty CLAY and she	Il fragments.	21'-23': N/O, N/S	
		9	1.0'	4			Sample collected: W18STMGP-B21	-2123	PID = 0.0 ppm max.	
				5						
				6	23 -					
							E	E.O.B. at 23' bgs		
					25 -					
				-						
				-	- 27 -					
				-						
					1					
					- 29 -					
					1					
					٠,					
					- 31 -					
					- 33 -					
					ļ					
					- 35 -					

BORING No.: SB-22

BORING LOG								SHEET 1 OF 2		
							PROJECT NO. AREA OF SITE			
ADDF			SCS/	Con Ediso	on		41318-0700-10000 Middle of DEA F ELEVATION/D.			
DEA Parking Lot							8.99/NAVD 88			
DRIL ADT	LING	CO	NTRA	CTOR			DRILLER TRC INSPECTOR Sean Miller Lisa Wasiowich	OR		
DRIL			ì				TYPE/SIZE BIT START DATE		END DATE	
Mobil			DF				4.25" Hollow Stem Auger 4/27/2004		4/27/2004	
SAMI			PE					und surface (ft bgs))	WATER LEVEL (ft bgs)	
2" Sp	lit Spo	_		01.50			140 lbs./30" 27'	011.0	11'	
	NOI	٥	AWI	PLES			DESCRIPTION OF S	OILS	REMARKS	
	RUCI	æ	FRY		_	~			(PID, STAINING, ODORS, ETC.)	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	рертн	WATER	f - fine m - medium c - co	arse	N/S = No Staining	
>	<u>წ</u>	ž	₩ ≥	PER 6"	٥	>	lt - light dk - dark tr - trace ltl - litt	tle sl - slight	N/O = No odors	
							0'-0.5': Asphalt			
					1 -				1': N/O, N/S, PID = 0.3 ppm max.	
					1					
					1				2': N/O, N/S, PID = 0.3 ppm max.	
					ا م					
				31	- 3 -		3.0'-3.3': Fill-Blk f to m SAND and tr f gravel.		3'-5': N/O, N/S	
		1	0.8'	32			3.3'-3.4': Gray crystalline rock.		PID (headspace) = 2.5 ppm max.	
				9			3.4'-3.8': Fill-Brown f to c SAND and tr brick fragments.			
				7	- 5 -					
			0.01	30			5.0'-5.1': Gray crystalline rock.		5'-7': N/O, N/S	
		2	0.3'	50/3			5.1'-5.3': Fill-Brown f to c SAND and tr brick fragments.		PID (headspace) = 8.0 ppm max.	
					1					
				10	7 -		7.0'-7.1': Fill/SW-Blk f to c SAND.		7'-9': N/O, N/S	
		3	0.1'	4					PID (headspace) = 3.5 ppm max.	
				6						
				7	- 9 -					
				5			9.0'-9.5': Fill/SW-Blk f to c SAND, tr f to c gravel and 2" di rock.	ameter tan crystalline	9'-11': N/O, N/S	
		4	0.4'	15			i dom		PID (headspace) = 4.7 ppm max.	
				9						
				15	- 11 -		11.0'-11.3': Fill/SW-Dk brown f to c SAND and tr silt.		11'-13': SI odor, N/S	
		5	0.6'	14			11.3'-11.6': Fill/SW-Dk brown f to m SAND and tr silt.		PID (headspace) = 4.3 ppm max.	
				4			Sample collected: W18STMGP-B22-1113			
				6	- 13 -					
				11	13		13.0'-13.1': Fill/SM-Gray SILT, f to c SAND and rock in she	oe.	13'-15': N/O, N/S and sl sheen	
		6	0.2'	9					PID (headspace) = 5.5 ppm max.	
				7						
				9	15 -		45 01 45 01 5 WOM 0		451 451 11/0 11/0	
		7	0.0'	2			15.0'-15.8': Fill/SM-Gray SILT, f to c SAND and rock in shi	oe.	15'-17': N/O, N/S and sl sheen.	
		ĺ ′	0.8'	9	1		Sample collected: W18STMGP-B22-1517		PID (headspace) = 12.7 ppm max.	
				4						
				1	- 17 -		17.0'-18.8': ML-Gray SILT, f SAND, some clay and tr orga	nic material.	17'-19': N/S and sl odor and sheen	
		8	1.8'	2					PID (headspace) = 15.2 ppm max.	

BORING No.: SB-22 SHEET 2 OF 2

BO	17111	<u> </u>	LU	<u> </u>					SHEET 2 OF 2	
JOB							PROJECT NO.	AREA OF SITE		
								Middle of DEA Parking Lot ELEVATION/DATUM		
	Parkin		t					8.99/NAVD 88		
	LING	CON	ITRA	TRC INSPECTOR						
ADT	1 1815	DI C					Sean Miller	Jessica Elliott	END DATE	
Mobil	LING e B-6	RIG 1					TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/27/2004	END DATE 4/27/2004	
SAMI	PLER	TYP	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Sp	lit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 27'	11'	
		_	ΑМІ	PLES		1		PTION OF SOILS	REMARKS	
	CONSTRUCTION						2200			
	TRU	띪	VER,		I	œ			(PID, STAINING, ODORS, ETC.)	
WELL	ONS	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f - fine	m - medium c - coarse	N/S = No Staining	
>	Ö	z	w ≧			>	lt - light dk - dark	tr - trace ltl - little sl - slight	N/O = No odors	
				3	ł					
				3	19 -	1				
			0.0	1	1		19.0'-19.2': SM-Black SILT and f to c	SAND.	19'-21': N/O, N/S	
		9	0.2'	2	+				PID (headspace) = 27.3 ppm max.	
					ł					
				3	21 -	ł	11.0'-21.9': SM-Black SILT and f to c SAND.		21'-23': N/O, N/S	
		10	1.9'	2	†		21.0-21.9: SM-Black SIL1 and 1 to c 21.9'-22.9': ML- Dk gray silty CLAY a		PID (headspace) = 5.1 ppm max.	
		10	1.5	5	t		21.5-22.5. WE Divigidy Sitty OEAT 6	ind til Sand.	Tib (neadspace) = 3.1 ppii max.	
				7	t		Sample collected: W18STMGP-B22-	2223		
				1	23 -	İ	23.0'-24.8': ML- Dk gray silty CLAY,		23'-25': N/O, N/S	
		11	1.8'	1	t		20.0 24.0 . INC Dix gray Sitty OEAT,	sien nagments and till sand.	PID (headspace) = 7.2 ppm max.	
			1.0	2	1				r is (neadopado) = 7 is ppin max.	
				2	i e					
				3	25 -	1	25.0'-27.0': ML- Dk gray silty CLAY,	shell fragments and tr f sand.	25'-27': N/O, N/S	
		12	2.0'	2	Ī		Sample collected: W18STMGP-B22-2		PID (headspace) = 4.7 ppm max.	
				4	ľ					
				5	L					
					27 -		E	.O.B. at 27' bgs		
					29 -]				
					29					
					ļ					
					1					
					31 -	<u> </u>				
					31					
					33 -	ł				
					1					
					1					
					35 -	ł				
					+					
					}					
					}					

BORING No.: SB-23 SHEET 1 OF 2

BO	RIN	IG	LO	SHEET 1 OF 2					
JOB I							PROJECT NO.	AREA OF SITE	
_			SCS/	Con Edisc	on		41318-0700-10000	Middle of DEA Parking Lot ELEVATION/DATUM	
DEA F	arkin	g Lo			9.40/NAVD 88				
DRIL I ADT	LING	COI	NTRA	CTOR		TRC INSPECTOR Todd Reinold			
DRILI Mobile			i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/27/2004	END DATE 4/27/2004
SAME	PLER	TYF	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 25'	9'
	ON	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEРТН	WATER	f-fine m-medium c-coarse		(PID, STAINING, ODORS, ETC.) N/S = No Staining
<u> </u>	ŏ	ž	žΞ	PER 6"	Δ	>		tr - trace ltl - little sl - slight	N/O = No odors
							0'-0.5': Asphalt and subbase.		
					- 1 -		0.5'-1.0': Fill-Dk brown m to c SAND		
							1.0'-5.0': Fill-Lt brown m to c SAND,	GRAVEL, some brick fragments and tr slag.	
					- 3 -				
				-					
				-					
					- 5 -				
				4			5.0'-5.9': Fill-Gray and red f to c SAN	ID and construction debris.	5'-7': SI odor, N/S
		1	0.9'	6					PID = 3.5 ppm max.
				13					
				8	- 7 -				
				8			7.0'-7.8': Fill-Gray and red f to c SAN	ID and construction debris.	7'-9': SI odor, N/S
		2	0.8'	7					PID = 20.0 ppm max.
				5					
				4	- 9 -				
				2			9.0'-9.8': Fill/SW-Blk f to c SAND.		9'-11': Petroleum odor, some staining.
		3	0.8'	1			Sample collected: W18STMGP-B23	-911	PID = 8.1 ppm max.
				1					
				1	- 11 -				
				2			11.0'-11.1': Fill/SW-Blk f to c SAND.		11'-13': Petroleum odor, some staining.
		4	0.1'	3					PID = 5.7 ppm max.
				2					
				1	- 13 -				
				2			13.0'13.3': Fill/SW-Blk f to c SAND.		13'-15': Petroleum odor, some staining.
		5	0.3'	6					PID = 14.5 ppm max.
				7					
				8	- 15 -				
				1			15'-16.2': Fill/SW-Blk f to c SAND.		15'-17': Petroleum odor, some staining.
		6	1.2'	1			Sample collected: W18STMGP-B23	-1517	PID = 47.0 ppm max.
				1					
				3	- 17 -				
				WOH	''		17.0'-17.5': Fill/SW-F to c SAND and	construction debris.	17'-19': SI odor, N/S
		7	2.0'				17.5'-19.0': ML-Gray silty CLAY.		PID = 20.0 ppm max.

BORING No.: SB-23 SHEET 2 OF 2

			LO					SHEET 2 OF 2
	NAME						PROJECT NO. AREA OF SITE	
	h St M RESS		SCS/C	Con Ediso	n		41318-0700-10000 Middle of DEA Parking Lot ELEVATION/DATUM	
DEA	Parkin	g Lot					9.40/NAVD 88	
DRIL ADT	LING	CON	ITRA	CTOR			DRILLER TRC INSPECTOR Sean Miller Todd Reinold	
DRIL Mobi	LING le B-6	RIG					TYPE/SIZE BIT START DATE 4.25" Hollow Stem Auger 4/27/2004	END DATE 4/27/2004
	PLER		E				HAMMER WEIGHT/DROP TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Spo	oon					(feet below ground surface (ft bgs) 140 lbs./30" 25'	9'
	SAMPLES						DESCRIPTION OF SOILS	REMARKS
	CONSTRUCTION	ER	/ERY T		_	~		(PID, STAINING, ODORS, ETC.)
WELL	CONST	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f-fine m-medium c-coarse lt-light dk-dark tr-trace ltl-little sl-slight	N/S = No Staining N/O = No odors
		_		1 ER 0			Sample collected: W18STMGP-B23-1719	140 = 110 00013
					- 19 -			
				WOH			19.0'-20.0': ML-Gray silty CLAY.	19'-21': SI odor, N/S
		8	1.0'					PID = 5.6 ppm max.
					21 -			
				1	21		21.0'-22.7': ML-Gray silty CLAY.	21'-23': SI odor, N/S
		9	1.7'	1				PID = 2.1 ppm max.
				3				
				1	- 23 -	ļ		
				1			23.0'-25.0': ML-Gray silty CLAY.	23'-25': SI odor, N/S
		10	2.0'	1				PID = 0.0 ppm max.
				1			Sample collected: W18STMGP-B23-2325	
				1	- 25 -	ł	E O P. at 25' kga	
							E.O.B. at 25' bgs	
					27 -	Ī		
					- 29 -	1		
					29			
					31 -	ł		
					33 -	ł		
					35	Ī		

BORING No.: SB-24 SHEET 1 OF 5

БО	1711	••		0					SHEET 1 OF 5
	NAM h St N			Γ Con Edisc	on		PROJECT NO. 41318-0700-10000	AREA OF SITE NW Corner of Parking Lot	
	RESS	;						ELEVATION/DATUM 8.53/NAVD 88	
				CTOR			DRILLER Dennis Mayer	TRC INSPECTOR Jessica Elliott	
DRIL	LING		i				TYPE/SIZE BIT	START DATE	END DATE
	le B-6		PΕ		3.2	25" Ho	HAMMER WEIGHT/DROP	8/19/2004 TOTAL DEPTH	8/31/2004 WATER LEVEL (ft bgs)
2" Sp	lit Spo	on					140 lbs./30"	(feet below ground surface (ft bgs)) 86'	5'
	NO	S	AMI	PLES			DESCRI	IPTION OF SOILS	REMARKS
	RUCTI	~	ERY			~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		m - medium c - coarse c tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
					- 1 -		See Boring Log for MW-24B for Soil Hollow Stem Auger (HSA) to 49' bgs		
					- 3 -				
					_				
					- 5 -				
					- 7 -				
					,				
					- 9 -				
					- 11 -				
					- 13 -				
					_ 4-				
					- 15 -				
					- 17 -				
\vdash		4					l .		l

SHEET 2 OF 5 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 NW Corner of Parking Lot **ADDRESS** ELEVATION/DATUM DEA Parking Lot 8.53/NAVD 88 DRILLING CONTRACTOR TRC INSPECTOR DRILLER ADT Dennis Mayer Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE END DATE Mobile B-61 3.25" Hollow Stem Auger/Mud Rotary 8/19/2004 8/31/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" **DESCRIPTION OF SOILS SAMPLES** REMARKS CONSTRUCTION RECOVERY IN FEET (PID, STAINING, ODORS, ETC.) NUMBER DEPTH WELL BLOWS f - fine m - medium c - coarse N/S = No Staining PER 6" lt - light dk - dark tr - trace ItI - little sI - slight N/O = No odors See Boring Log for MW-24B for Soil Description from 0' to 55' bgs. 19 Hollow Stem Auger (HSA) to 49' bgs. 21 23 25 27 29 31 33 35

BORING No.: SB-24

BORING No.: SB-24 **BORING LOG** SHEET 3 OF 5

ь	KIN	ı	LU	G					SHEET 3 OF 5
	NAM						PROJECT NO.	AREA OF SITE	
	h St M		SCS/	Con Ediso	n		41318-0700-10000	NW Corner of Parking Lot ELEVATION/DATUM	
	Parkin		t					8.53/NAVD 88	
DRII	LING	CON	NTRA	CTOR			DRILLER	TRC INSPECTOR	
ADT							Dennis Mayer	Jessica Elliott	
DRII Mob	LING	RIG 1				3 25	TYPE/SIZE BIT " Hollow Stem Auger/Mud Rotary	START DATE 8/19/2004	END DATE 8/31/2004
	IPLER)F			0.20	HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
			_					(feet below ground surface (ft bgs))	
2" Sp	lit Spo				1	,	140 lbs./30"	86'	5'
	NO.	S	AM	PLES			DESCRIF	PTION OF SOILS	REMARKS
	5		Σ						(PID, STAINING, ODORS, ETC.)
Ⅎ	ISTE	NUMBER	9 H		рертн	WATER			
WELL	CONSTRUCTION	Š	RECOVERY IN FEET	BLOWS PER 6"	DEF	×	f - fine m lt - light dk - dark		N/S = No Staining N/O = No odors
							•		
					Ī		See Boring Log for MW-24B for Soil Descr	iption from 0' to 55' bgs.	
					37 -	Ī	Hollow Stem Auger (HSA) to 49' bgs.	-	
					Ť				
					İ				
					1				
					39 -	1			
					İ				
					İ				
					İ				
					41 -	1			
					•				
					43 -	†			
					•				
					•				
					•				
					45	†			
							45.0'-46.5': ML-Dk gray silty CLAY.		
					†				-
				_	47 -	†	47 01 40 01 00 0		177 481 N/O N/O
		.		6	1		47.0'-48.0': SP-Gray f SAND.		47'-49': N/O, N/S
		1	2.0'	9	†		40.01.40.01.00.00.00		PID = 0.0 ppm max.
					†		48.0'-49.0': SP-Gray m to c SAND.		
				15	49 -	1	Bottom of HSA, Begin Mud Rotary	d CRAVEL some silt and to story	40' 54': N/O N/C and to the
		_		7	ł		49.0'-49.1': GW-Gray f to c SAND, rounde	u GRAVEL, some siit and tr clay.	49'-51': N/O, N/S and tr sheen.
		2	0.1'	3	†				PID = 0.8 ppm max.
				3	†				
				3	51 -	1	E4 OLE4 41: OWIOD C	1 and the late become an a 2000	SALSOL NIO NIO
				15	1		51.0'-51.4': GW/SP-Gray rounded GRAVE	L grading into brown m to c SAND.	51'-53': N/O, N/S
		3	0.4'	20	1				PID = 2.8 ppm max.
				7	†				
				5	53 -	┨			
				9	1		53.0'-53.3': GW-Gray angular GRAVEL ar	d some c sand.	53'-55': N/O, N/S
		4	0.3'	6	1				PID = 1.9 ppm max.
				7	1				
				9		1			

BORING No.: SB-24 **BORING LOG** SHEET 4 OF 5

	NAME/ CLIENT								SHEET 4 OF 3	
							PROJECT NO.	AREA OF SITE		
W18th		GP S	SCS/0	Con Ediso	n		41318-0700-10000	NW Corner of Parking Lot ELEVATION/DATUM		
DEA F	Parkin	-						8.53/NAVD 88		
DRIL I ADT	LING	CON	ITRA	CTOR			DRILLER Dennis Mayer	TRC INSPECTOR Jessica Elliott		
DRILI Mobile						3.25	TYPE/SIZE BIT " Hollow Stem Auger/Mud Rotary	START DATE 8/19/2004	END DATE 8/31/2004	
SAME			E				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Spli	it Spo	on					140 lbs./30"	(feet below ground surface (ft bgs)) 86'	5'	
	NO.	S	АМІ	PLES			DESCRIPT	ION OF SOILS	REMARKS	
	CONSTRUCTION	25	ERY		_	~			(PID, STAINING, ODORS, ETC.)	
WELL	ONST	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f-fine m-	medium c - coarse	N/S = No Staining	
	- 0	Z	<u> </u>	PER 6"	_		lt - light dk - dark t	r - trace ltl - little sl - slight	N/O = No odors	
				9	Ī					
				4	55	Ī	55.0'-55.5': GW-Gray angular GRAVEL and	some c sand.	55'-57': N/O, N/S	
		5	1.5'	3			55.5'-56.5': SP-Reddish brown m to c SAND		PID = 3.9 ppm max.	
				3						
				4	F7 -					
				3	57 -		57.0'-58.2': SP-Reddish brown f SAND with	0.3' reddish brown silty clay lense at 57.5'.	57'-59': N/O, N/S	
		6	1.2'	5	ļ				PID = 0.1 ppm max.	
				7	1					
				15	59 -					
					33		Drilled continuously using mud rotary from 59			
					ļ.		Mud wasn't circulating out of boring, so ADT	attempted to stimulate circulation		
							by drilling continuously.			
					61 -	ļ				
					ł					
					63 -	1				
					ł					
					ł					
					65	1				
					†					
					†					
					1					
					67	İ				
					†					
				17	İ		68.0'-69.0': SW- Brown f to c SAND and som	ne gravel.	68'-70': N/O, N/S	
		7	1.0'	5	1			•	PID = 0.0 ppm max.	
				8	69 -	1				
				10	1					
				7	I		70.0'-71.2': SM-Brown SILT and f SAND.		70'-72': N/O, N/S	
		8	1.2'	5	L _, _]			PID = 0.0 ppm max.	
				4	71 -					
				4						
				3]		72.0'-73.0': SM-Brown SILT and f SAND.		72'-74': N/O, N/S	
		9	1.0'	3					PID = 0.0 ppm max.	

BORING No.: SB-24 **BORING LOG** SHEET 5 OF 5

BO	17111		LU	<u> </u>					SHEET 5 OF 5
	NAM						PROJECT NO.	AREA OF SITE	
			SCS/0	Con Ediso	n		41318-0700-10000	NW Corner of Parking Lot	
	RESS Parkin		t					ELEVATION/DATUM 8.53/NAVD 88	
DRIL ADT	LING	CO	NTRA	CTOR			DRILLER Dennis Mayer	TRC INSPECTOR Jessica Elliott	
DRIL	LING le B-6	RIG				2.05	TYPE/SIZE BIT	START DATE 8/19/2004	END DATE
						3.25	" Hollow Stem Auger/Mud Rotary	** ** **	8/31/2004
	PLER		'E				HAMMER WEIGHT/DROP 140 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs)) 86'	WATER LEVEL (ft bgs)
2 Spi	Split Spoon								
	NOIL						DESCRIP	TION OF SOILS	REMARKS
١.	CONSTRUCTION	Ä	RECOVERY IN FEET		Ŧ	H.			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO IN FEE	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	- medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				3					
				3					
				3	73 -	Ī			
				3	İ				
					ł				
				4			74.0'-75.0': SM-Reddish brown f SAND and	d some silt.	74'-76': N/O, N/S
		10	1.0'	7	75 -	1			PID not working due to heat and humidity
				8	,,,				
				10					
				17			76.0'-77.25': SW-Reddish brown very f to d	SAND, tr silt and pockets of gravel.	76'-78': N/O, N/S
		11	1.25'	15			, , , ,	,	PID not working due to heat and humidity
			1.20		77 -	Ì			1 15 not working due to near and numberly
				17	•				
				17			78.0'-78.5': SW-Reddish brown very f to c	SAND tricilt and packets of gravel	
				16			76.0-76.3. SW-Reddish blown very 1 to C	SAND, II SIII AIIU POCKEIS OI GIAVEI.	78'-80': N/O, N/S
		12	1.0'	18			78.5'-79.0': SP-Gray m to c SAND.		PID = 0.0 ppm max.
				15	79 -	Ī			
				20	Ī				
					Ì		00.01.00.01. OD O		001 001: N/O N/O
				8	•		80.0'-82.0': SP-Gray m to c SAND.		80'-82': N/O, N/S
		13	2.0'	9	81 -	ł			PID = 0.0 ppm max.
				10	"				
				7					
				20			82.0'-83.75': SP-Gray m to c SAND.		82'-84': N/O, N/S
		14	2.0'	22	Ī		· ·		PID = 0.0 ppm max.
				20	83 -	1			
		1			t		00 7FL 0.4 01. OW D		[
		1		19	ł		83.75'-84.0': GW-Reddish angular GRAVE	L and some c sand.	
		1		-	+		Sample Collected: W18STMGP-B24-8284		
					85 -	1	84.0'-86.0': Unable to sample because bor	ing walls would collapse.	
					00				
							86.0': Bedrock		
		1			Ĩ			D.B. at 86' bgs	7
		1	1		Ť				
					87 -	†			
		1		-	+				
					1				
					1				
				L_	L				
					89 -	Ī			
					t				
		1			ł				
		1		-	1				

BORING No.: MW-24A SHEET 1 OF 1

<u> </u>									OHEET TOT T
	OB NAME/ CLIENT /18th St MGP SCS/Con Edison						PROJECT NO. 41318-0700-10000	AREA OF SITE Middle of western border of DEA Parking	
ADDF DEA P	RESS			OII EUISU			71010-0700-10000	ELEVATION/DATUM 8.66/NAVD 88	, 201
DRILI ADT	ING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/26/2004	END DATE 4/26/2004
SAMF			E				HAMMER WEIGHT/DROP 140 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2 Spi	Split Spoon SAMPLES							PTION OF SOILS	REMARKS
	JCTIO						3200		
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		m - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining
\$	ŏ	ž	ΣZ	PER 6"	Δ	>		tr - trace Itl - little sl - slight	N/O = No odors
							0'-0.5': Asphalt and subbase.	heist for an anta	
					- 1 -		0.5'-1.0': Fill-Blk m to c SAND and t 1.0'-3.0': Fill-Brownish gray m to c S		
							brick fragments and t		
					- 3 -				
							3.0'-5.0': Fill-Reddish brown m to c S	SAND and brick fragments.	
					_ 5 _				
							5.0'-6.0': Fill-Dk brown SILT, f to c S concrete and coal fra	AND and GRAVEL, some brick fragments, igments.	5'-7': N/O, some blk staining
-									PID = 1.5 ppm max.
					- 7 -		7.0'-8.2': Fill-Dk brown SILT, SAND	and GRAVEL, some brick fragments,	7'-9': N/O, some blk staining
							concrete and coal fra		PID = 0.4 ppm max.
					- 9 -				
							9.0'-9.6': Fill/SM-Gray/Brown SILT a	nd f to c SAND.	9'-11': N/O, tr blk staining
									PID = 0.0 ppm max.
					- 11 -		11.0'-13.0': Fill/SM-Gray/Brown SILT	and f to c SAND.	11'-13': N.O, N/S
									PID = 0.0 ppm max.
					- 13 -				
							13.0'-13.8': SW-Brown f to c SAND a	and some silt.	13'-15': N/O, N/S
									PID = N/A
					- 15 -		15.0'-16.1': SP-Dk brown v f SAND,	tr silt and organics.	16.0': Well set at 16.0' bgs.
					•		10.0 10.11. OF DR DIOWITY FORIND,	a on and organios.	Screen Interval: 16.0' - 6.0' bgs.
									Sand
					_ 17 _				Bentonite Chips
					- 17 -				Concete
									Well Screen

BORING No.: MW-24B

SHEET 1 OF 3 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 Middle of western border of DEA Parking Lot **ADDRESS** ELEVATION/DATUM DEA Parking Lot 8.66/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Scott Fischer DRILLING RIG TYPE/SIZE BIT START DATE END DATE Mobile B-61 4.25" Hollow Stem Auger 4/24/2004 4/25/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2-3" Split Spoon 140 lbs./30" **SAMPLES DESCRIPTION OF SOILS** REMARKS CONSTRUCTION (PID, STAINING, ODORS, ETC.) RECOVER NUMBER DEPTH WELL BLOWS f - fine m - medium c - coarse N/S = No Staining PFR 6" It - light dk - dark tr - trace ltl - little sl - slight N/O = No odors 0'-0.5': Asphalt 0.5'-1.5': Fill-Dk brown f to c SAND, m GRAVEL, some brick fragments, glass 1 1': N/O, N/S, PID = 0.3 ppm max. and plastic. 1.5'-2.0': Fill-Dk brown f to c SAND, m GRAVEL, some brick fragments, glass and plastic. 2': N/O, N/S, PID = 0.4 ppm max. 2.0': Fill-Lt brown f to c SAND and GRAVEL. 3 3'-5': N/O. N/S. PID = 0.5ppm max. 3.0': Fill-Layer of red brick laid down in place. 3.0'-5.0': Fill-I t brown f to c SAND and GRAVEL 5.0': Fill-Lt brown f to c SAND and GRAVEL and tr slag. 5': N/S, N/O 5 6 5.0': Fill-Lt brown f to c SAND and GRAVEL and tr slag. 5'-7': N/O, some blk staining 1.0 PID = 1.5 ppm max. 7 Sample collected: W18STMGP-B24-57 8 7 3 7.0'-8.2': Fill-Dk brown SILT, f to c SAND and GRAVEL, some brick fragments, 7'-9': N/O, some blk staining concrete and coal fragments. 2 1.2 PID = 0.4 ppm max.4 Sample collected: W18STMGP-B24-79 4 9 9.0'-9.6': Fill/SM-Gray/Brown SILT and f to c SAND. 9'-11': N/O, tr blk staining 3 0.6 PID = 0.0 ppm max. 1 6 11 . 13 11.0'-13.0': Fill/SM-Gray/Brown SILT and f to c SAND. 11'-13': N/O, N/S 2.0' 21 PID = 0.0 ppm max. 6 4 13 1 13.0'-13.8': SW-Brown f to c SAND and some silt. 13'-15': N/O, N/S 0.8 5 PID = N/A 4 15 11 15.0'-16.1': SP-Dk brown v f SAND, tr silt and organics. 15'-17': N/O, N/S 6 1.1' PID = N/A Sand 5 Bentonite Chips q 17 -9 Well Screen

BORING LOG

BORING LOG

BORING No.: MW-24B

SHEET 2 OF 3

RO	ZII	ıG	LU	G					SHEET 2 OF 3
JOB I							PROJECT NO.	AREA OF SITE	
			SCS/	Con Ediso	on		41318-0700-10000	Middle of western border of DEA Parking	g Lot
ADDF DEA F			t					ELEVATION/DATUM 8.66/NAVD 88	
DRILI ADT	LING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/24/2004	END DATE 4/25/2004
SAME	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	55'	9'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
WELL	CONSTRUCTION	NUMBER NUMBER RECOVERY IN FEET SMOOTH			ЕРТН	WATER	f - fine	(PID, STAINING, ODORS, ETC.) N/S = No Staining	
\$	ŏ	ž	ZΖ	PER 6"	٥	>		tr - trace Itl - little sI - slight	N/O = No odors 17'-19': N/O, N/S
							and non-CGRM	ed GRAVEL, some f to c sand and silt, tr organics wood fibers.	
				7	- 19 -		40.01.40.01.01.40.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41.01.41		PID = 0.2 ppm max.
				16			19.0'-19.2': SW-Gray f to c SAND, s	ome silt, tr f to c rounded gravel and organics.	19'-21': N/O, N/S
		8	0.8'	9					PID = 0.1 ppm max.
				6					
				14	- 21 -				
				11			21.0'-21.5': SW-Gray f to c SAND, s	ome f to m rounded gravel, tr silt.	21'-23': N/O, N/S
		9	0.5'	14					PID = 0.1 ppm max.
				15					
				25	- 23 -				_
				16			23.0'-23.6': SP-F SAND, tr silt and w	vood fibers.	23'-25': MGP-related odor, blk staining
		10	0.6'	19					throughout and visible OLM
				9					PID = 5.0 ppm max.
				10	- 25 -				
				37	20		25.0'-26.4': SP-Dk gray f to m SANE	and some silt.	25'-27': MGP-related odor, blk staining
		11	1.4'	21			Sample collected (3" spoon): W18S	TMGP-B24-2527 (MS/MSD collected)	throughout and visible OLM
				22					PID = 560 ppm max.
				18	- 27 -				
				1	21		27.0'-27.5': SP-Gray to brown v f SA	ND and tr silt.	27'-29': SI MGP-related odo, tr blk
		12	0.5'	1					staining, and sheen spots
				1					PID = 6.5 ppm max.
				2	- 20				
				12	- 29 -		29.0'-29.2': SP-Dk gray f SAND and	tr c rounded gravel.	29'-31': MGP-related odor, sheen and
		13	0.2'	16					visible brown TLM blebs
				9					PID = 6.4 ppm max.
				11	١				31'-33': SI MGP-related odor, N/S
				17	- 31 -		31.0'-31.3': SP-Dk gray f SAND.		PID = 4.5 ppm max.
		14	0.3'	11			3.7		,, ,
				3					33'-33.8': SI MGP-related odor and tr
				6					blk staining, PID = 5.4 ppm max.
				4	- 33 -		33.0'-33.8': ML-Dk gray silty CLAY a	and tr vf sand	33.8'-35': N/O, N/S
		15	2.0'	5			- ' '	r to some v f sand, shell fragments and organics.	PID = 0.9 ppm max.
		15	2.0	4			00.0 30.0. IVIL-DR GIAY SIRY CLAY, I	a to some virsanu, snem nagments and organics.	Sand
									Bentonite Chips
				7	- 35 -				Concrete
			١				0.0'-35.0': 4" steel casing set, groute to drill deeper.	d and allowed to set overnight before continuing	The same of the sa
	16 2.0' 5						·		Bentonite Chips

BORING No.: MW-24B SHEET 3 OF 3

	17111									SHEET 3 OF 3	
JOB W18th				Con Ediso	n		PROJECT NO. 41318-0700-10000	AREA OF SITE Middle of western border in D	EA Parking I	ot	
ADDI DEA F	RESS			2.1 23.00				ELEVATION/DATUM 8.66/NAVD 88			
ADT			ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer			
DRIL Mobil							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/24/2004		END DATE 4/25/2004	
SAMI	PLER	TYP	E				HAMMER WEIGHT/DROP	TOTAL DEPTH	(ft l \)	WATER LEVEL (ft bgs)	
2" Sp	lit Spo	oon					140 lbs./30"	(feet below ground surface 55'	(it bgs))	9'	
	Ņ.	S	AMI	PLES			DESCRI	PTION OF SOILS		REMARKS	
	CONSTRUCTION	3ER	RECOVERY IN FEET		E	ER				(PID, STAINING, ODORS, ETC.)	
WELL	CONS	NUMBER	RECC IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine r lt - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight		N/S = No Staining N/O = No odors	
				4			Sample collected: W18STMGP-B24-3	3335 (Duplicate:W18STMGP-B64-33	35)	35'-37': N/O, N/S	
				7	- 37 -	ŀ	35.'-37.0': ML-Dk gray silty CLAY, tr t		d organics.	PID = 0.5 ppm max.	
				1			37.0'-39.0': ML-Dk gray silty CLAY, tr	v f sand and organics.		37'-39': N/O, N/S	
		17	2.0'	1						PID = 0.8 ppm max.	
				3	,						
				1	- 39 -		39.0-41.0': ML-Dk gray silty CLAY, tr	v f sand, organics and intermittent sa	and stringers	39'-41': N/O, N/S	
		18	2.0'	1			oolo 11.0. III. Die gray only o'Erri, a	Tround, organise and intermitent of	and ounigoro.	PID = 0.7 ppm max.	
				2							
				3	_ 44 _						
				4	- 41 -		41.0'-43.0': ML-Dk gray silty CLAY, to		liameter piece	41'-43': N/O, N/S	
		19	2.0'	2			of rounded gneis	S.		PID = 0.3 ppm max.	
				4							
				4	- 43 -						
				3			43.0'-44.5': ML-Dk gray silty CLAY.			43'-45': N/O, N/S	
		20	2.0'	3						PID = 0.0 ppm max.	
				4							
				7	- 45 -		44.5'-45.0': SW-silty CLAY grades to	dk gray f to c SAND, SILT and CLAY	'.	45'-47': N/A	
		21	0	11			45.0'-47.0': No recovery.			45-47 : N/A	
		21	U	13							
				13							
				6	- 47 -		47.0'-48.0': SW-Gray f to c SAND and	d tr silt.		47'-49': N/O, N/S	
		22	1.0'	4						PID = 0.1 ppm max.	
				5							
				10	- 49 -						
				15	43		49.0'-50.5': SW-Brown f to c SAND, s	some silt and f to c rounded gravel.		49'-51': N/O, N/S	
		23	1.5'	31						PID = 0.1 ppm max.	
				32							
				32	- 51 -	}					
		۵.	4 ~:	23			51.0'-52.2': SW-Brown f to c SAND, t	r silt and f to m rounded gravel.		51'-53': N/O, N/S	
		24	1.2'	18						PID = 0.1 ppm max.	
				9	,					53'-55': N/O, N/S, PID = 0.1 ppm max.	
				9	- 53 -		53.0'-54.0': SP-Reddish brown f SAN	ID. tr silt and muscovite		53-55: N/O, N/S, PID = 0.1 ppm max.	
		25	1.0'	5	•		Sample collected: W18STMGP-B24-			Bentonite Chips	
		-		7	'		Well set at 55.0' bgs.			Concrete	
		L		4		L	Screen Interval: 55.0' - 45.0' bgs.		E.O.B. at 55' bgs	Well Screen	
		_					•				

BORING No.: SB-25 SHEET 1 OF 2

			LU	G					SHEET 1 OF 2
JOB							PROJECT NO.	AREA OF SITE	
			SCS/	Con Ediso	on		41318-0700-10000	NW corner of DEA Parking Lot	
ADDF DEA F			t					ELEVATION/DATUM 8.23/NAVD 88	
DRIL I ADT	LING	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Todd Reinold	
DRIL Mobil							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/26/2004	END DATE 4/26/2004
SAMI	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Sp	lit Spo						140 lbs./30"	36'	9'
	CONSTRUCTION NUMBER RECOVERY SAND SHEET SAND SHEET DEPTH						DESCRI	REMARKS	
	TRUCT	ER	RECOVERY IN FEET		ı	ĸ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMB	RECO'	BLOWS PER 6"	DEPTH	WATER	f - fine lt - light dk - dark	m - medium c - coarse c tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.5': Asphalt	3	
					1.		0.5'-1.0': Fill-Dk brown f to c SAND	and f to m GRAVEL.	
					1 -		1.0'-3.0': Fill- Dk brown and gray f to		1': N/O, N/S, PID = 0.2 ppm max.
					l				2': N/O, N/S, PID = 0.1 ppm max.
							3.0'-4.0': Slightly intact red brick laye	er.	
					- 3 -				
				}			4.0'-5.0': Fill-Dk brown and light brown with some coke (light	wn f to c SAND and slag in large rock form	4': N/O, N/S, PID = 1.0 ppm max.
									51 N/O N/O DID . 0 0
				2	- 5 -		5.0'-5.3': Gray and red f to c GRAVE	El and some construction debris	5': N/O, N/S, PID = 0.2 ppm 5'-7': N/S, N/O
			0.3'	2	i		3.0-3.3. Glay and led 1 to C GIVAVE	LE and some constituction debits.	PID = 0.0 ppm max.
		1	0.3	3	1				PID = 0.0 ppm max.
				7	l _				
				8	7 -		7.0'-7.3': Fill-F to c SAND and CON	CRETE.	7'-9': N/O, tr blk staining.
		2	0.3'	50/0			Sample collected: W18STMGP-B25	5-79	Not able to use PID for the rest
									of the boring due to wet weather.
					- 9 -				
				5	ł		9.0'-9.3': Fill-F to c SAND and CON	CRETE.	9'-11': N/O, N/S
		3	0.3	31 8	l		10.01.10.31 Fill Growink blifts - CD	AVEL, f to c SAND and construction debris.	10'-12': N/O, N/S
		4	0.7'	8	1		10.0-10.5. FIII-GRAYISH DIK I TO C GR	AVEL, I IO COAND AND CONSTRUCTION GEORS.	10-12. N/O, N/O
		7	0.7	7	11 -				
				7	1				
				5	1		12.0'-12.4': Fill-Grayish blk f to c SA	ND, some silt and brick fragments.	12'-14': N/O, N/S
		5	0.4'	5	L 42			-	
				6	- 13 -				
				6					
				3			14.0'-14.5': Fill-Grayish blk f to c SA	ND, some silt and brick fragments.	14'-16': N/O, N/S
		6	0.5'	3	- 15 -				
				2	'`				
				8					
				7			16.0'-16.5': Fill/SW-Gray f to c SAN	D and v ltl silt.	16'-18': N/O, N/S
		7	0.5'	10	17 -				
				10	l				
	1			10					

BORING No.: SB-25 SHEET 2 OF 2

SORING LOG									SHEET Z OF Z
JOB NAME/ CLIENT V18th St MGP SCS/Con Edison								AREA OF SITE	
V18th ADDR		ع دو	005/0	on Ediso	n			W corner of DEA Parking Lot ELEVATION/DATUM	
EA P	arking	g Lot						.23/NAVD 88	
	ING	CON	ITRA	CTOR				RC INSPECTOR	
ADT								odd Reinold	
DRILL Mobile								START DATE 1/26/2004	END DATE 4/26/2004
SAMF	LER	TYP	E				HAMMER WEIGHT/DROP T	OTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	on					140 lbs./30"	eet below ground surface (ft bgs))	9'
- Ор.			ΔΜΙ	PLES				TION OF SOILS	REMARKS
	CONSTRUCTION						DEGO!\!!		it 2 titte
	TRUC	딾	RECOVER) IN FEET		I	œ			(PID, STAINING, ODORS, ETC.)
WELL	.SNO	NUMBER	RECOVE IN FEET	BLOWS	DEРТН	WATER		medium c - coarse	N/S = No Staining
	ŏ	ž	₹ ≥	PER 6"	Δ	5	lt - light dk - dark t		N/O = No odors
				9			18.0'-18.8': Fill/SW-Grayish blk f to c SA	ND.	18'-20': Strong odor, some blk staining.
		8	0.8'	9	- 19 -	ł			
				11					
				11 5			20.0'-20.5': Fill/SW-F to c SAND, some f	the e group and M oils	20'-22': Strong odor, some blk staining.
		9	0.5'	8			Sample collected: W18STMGP-B25-202	=	20 -22 : Strong odor, some bik staining.
		9	0.5	6	_ 21 _	ł	Sample collected. W1651WGF-625-202	:2	
				8					
				6			22.0'-22.5': Fill/SW-F to c SAND, some f	to a gravel and Itl cit	22'-24': Strong odor, some blk staining.
		10	0.5'	3			ZZ.O ZZ.O. TIMOW T TO COMMD, SOME T	to e graver and it site.	22 24. Ottong odot, some bik stairing.
		10	0.5	4	- 23 -	ł			
				6					
				1			24.0'-24.7': Fill/SP-V f SAND and tr bark	or roots.	24'-26': Strong odor, N/S
		11	0.7'	2					
				5	- 25 -	1			
				5					
				3			26.0'-27.5': Fill/SM-Gray silt and f to c S/	AND.	26'-28': Strong odor, N/S
		12	1.5'	3	_ 07 -				
				1	27				
				2					
				WOH			28.0'-28.8': Fill-Gray to red f to c SAND,	some brick fragments and roots.	28'-30': N/O, N/S
		13	0.8'	WOH	- 29 -	1			
				WOH	29				
				1					
				WOH			30.0'-30.9': Fill-Gray to red f to c SAND,	some brick fragments and roots.	30'-32': N/O, N/S
		14	0.9'	2	- 31 -	ļ			
				2	0.				
				3					
				4			32.0'-33.0': Fill/GW-F to c GRAVEL and	f to c SAND and some brick fragments.	32'-34': SI odor, N/S
		15	1.5'	1	- 33 -	1	Sample collected: W18STMGP-B25-32		
				2			33.0'-33.5': ML-Gray silty CLAY.		
				2			Sample collected: W18STMGP-B25-33		
				4			34.0'-35.9': ML-Gray silty CLAY.		34'-36': N/O, N/S
		16	1.9'	3	- 35 -	ł			
				2					
				2			5.0	D =4.001 h ==	=
							E.O.	B. at 36' bgs	

BORING No.: SB-47 SHEET 1 OF 2

BOI	ZIIN	G	LU	G					SHEET 1 OF 2
JOB N							PROJECT NO.	AREA OF SITE	
		GP :	SCS/	Con Ediso	on		41318-0700-10000	NE corner of DEA Parking Lot	
ADDR DEA P		g Lo	t					ELEVATION/DATUM 10.28/NAVD 88	
DRILL ADT	ING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILL Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/3/2004	END DATE 5/3/2004
SAMP			PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spli	it Spc	on					140 lbs./30"	(feet below ground surface (ft bgs)) 19'	10'
	N.	S	AMI	PLES			DESCRI	REMARKS	
	CONSTRUCTION	BER	RECOVERY IN FEET		Į.	Ħ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECC IN FE	BLOWS PER 6"	ОЕРТН	WATER	f - fine lt - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.65': Asphalt		
					L ,		0.65'-1.0': Fill-Dk brown SILT, f to c	SAND, GRAVEL and some brick fragments.	
					- 1 -		1.0'-2.0': Fill-Dk brown SILT, f to c \$	SAND, GRAVEL and some brick fragments.	1': N/O, N/S, PID = ND
							2.0'-3.0': Fill-Dk brown SILT, f to c S unburned coal.	SAND, GRAVEL, some brick fragments and	2': N/O, N/S, PID = 0.1 ppm max.
					- 3 -		3.0'-4.0': Fill-Lt brown SILT, f to c SA	AND, GRAVEL and some cobbles.	3': N/O, N/S, PID = 0.1 ppm max.
							4.0'-5.0': Fill-Lt brown SILT, f to c SA unburned coal.	AND, GRAVEL, some cobbles and tr	4': N/O, N/S, PID = 0.2 ppm max.
				8	- 5 -		5.0': Fill-Lt brown SILT, f to c SAND,	, GRAVEL and some cobbles.	5': N/O, N/S, PID = 0.1 ppm max.
		1	0.8'	9			5.0'-5.8': Fill-Brownish tan SILT, f to	c SAND, CONCRETE and GRAVEL.	5'-7': N/O, N/S
				6				PID = 0.2 ppm max.	
				9	7 -		7.0'-7.7': Fill-Brownish tan SILT. f to	c SAND, CONCRETE and GRAVEL.	7'-9': N/O, N/S
		2	0.7'	6			Sample collected: W18STMGP-B47		PID = 0.3 ppm max.
				7					
				10	- 9 -		Q 0'-Q 5'- Fill-Brownish ton SILT fto	c SAND, CONCRETE and GRAVEL.	9'-11': N/O, N/S
		3	0.5'	8			5.0-5.5 . FIII-DIOWIIISII IAII SIL I , I TO	O SAIND, CONCRETE AND GRAVEL.	9-11: N/O, N/S PID = N/A
				6		Ť			
				7	- 11 -				
				6			11.0'-13.0': No Recovery		11'-13': N/A
		4	0.0'	5					
				4	40				
				9	13 -		13.0'-13.9': Fill/SP-Gray c SAND, Gl	RAVEL, tr clay, silt and brick fragments.	13'-15': SI odor and tr blk staining
		5	0.9'	6			Sample collected: W18STMGP-B47	·-1315	PID = 0.0 ppm max.
				6					
				9	15 -				
			1.01	3			15.0'-16.2': ML-Gray silty CLAY, she	Il fragments and tr pebbles.	15'-17': N/O, N/S
		6	1.2'	1					PID = 0.0 ppm max.
				4					
				3	- 17 -		17.0'-18.0': ML-Gray silty CLAY, she	ell fragments and tr pebbles.	17'-19': N/O, N/S
		7	1.0'	1			Sample collected: W18STMGP-B47	-	PID = 0.0 ppm max.

BORING No.: SB-47 SHEET 2 OF 2

ьо	KIN	G	LU	G					SHEET 2 OF 2
	NAME						PROJECT NO.	AREA OF SITE	
		GP S	SCS/0	Con Ediso	n		41318-0700-10000	NE corner of DEA Parking Lot	
DEA F	RESS Parkin	g Lot	t					ELEVATION/DATUM 10.28/NAVD 88	
DRIL				CTOR			DRILLER	TRC INSPECTOR	
ADT							Sean Miller	Jessica Elliott	
DRIL Mobil	LING e B-6	RIG					TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/3/2004	END DATE 5/3/2004
	SAMPLER TYPE						HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
	lit Spo		_				140 lbs./30"	(feet below ground surface (ft bgs))	10'
2 00			A MI	PLES	1			IPTION OF SOILS	REMARKS
	Ę						DESCR	IF HON OF SOILS	KLWAKKS
	CONSTRUCTION	æ	RECOVERY IN FEET		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	NST	NUMBER	SO FE	BLOWS	DEPTH	WATER	f - fine	m - medium c - coarse	N/S = No Staining
>	ខ	N	RE	PER 6"	ä	Š	lt - light dk - dari	tr - trace Itl - little sI - slight	N/O = No odors
				2	ļ		17.0'-18.0': ML-Gray silty CLAY, she	ell fragments and tr pebbles.	
				1	19 -	1	Sample collected: W18STMGP-B47	7-1719	
					19			E.O.B. at 19' bgs	
					ļ				
					21 -	1			
					21				
					Į				
					22 -				
					23 -				
					_ 05 -				
					25 -				
					L				
					27 -				
					Ī				
					Ī				
					Ī				
					29 -	Ī			
					Ī				
					Ī				
					1				
					31 -	İ			
					İ				
					İ				
					İ				
					33 -	Ī			
					İ				
					İ				
					İ				
					35	t			
					ł				
					ł				
					t				
				<u> </u>	<u> </u>				

BORING LOG

BORING LOG

BORING No.: SB-48
SHEET 1 OF 2

BO	KIN	IG	LO	G					SHEET 1 OF 2
	NAM						PROJECT NO.	AREA OF SITE	
	-		SCS/	Con Edis	on		41318-0700-10000	SE area of DEA Parking Lot	
	RESS Parkin		ot					ELEVATION/DATUM 9.16/NAVD 88	
DRIL ADT	LING	СО	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	. LING le B-6		ì				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/3/2004	END DATE 5/3/2004
SAM	PLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
2" Sp	lit Sp	oon					140 lbs./30" 21'		9'
	ON	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
=	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DЕРТН	WATER	A fine	m - medium c - coarse	(PID, STAINING, ODORS, ETC.)
WELL	00	Ñ	R R	PER 6"	DE	W	lt - light dk - dark		N/S = No Staining N/O = No odors
							0'-0.5': Asphalt and subbase.		
					- 1 -		0.5'-1.0': Fill-Dk brown SILT, f to c S tr brick fragments.	AND, GRAVEL, CONCRETE and	44 N/O N/O
							1.9': Intact red brick wall along north	ora side of barehole	1': N/O, N/S PID (headspace) = 3.9 ppm max.
					1		1.0'-2.0': Fill-Dk brown SILT, f ot c S		SI, N/O N/O
							tr brick fragments.	AND, GRAVEL, CONCRETE and	2': N/O, N/S PID (headspace) = 5.4 ppm max.
					- 3 -		3.0'-4.0': Fill-Lt brown SILT, f to c SA	AND, GRAVEL, tr wood fibers and	3': N/O, N/S
							brick fragments.		PID (headspace) = 6.3 ppm max.
								AND, GRAVEL, tr wood fibers and brick	4': N/O, N/S
					5 -		fragments and anoth brick encountered at	ner intact brick wall stepping out 1/2 ft from	PID (headspace) = 6.3 ppm max.
				10			blick chodilicied at	. 1.5 bgs.	5'-7': N/A
		1	0.0'	12			5.0'-7.0': No Recovery		
				11					
				4	7 -		7.0'-8.2': Fill-Brownish tan SILT, f to	m SAND GRAVEL and	7'-9': N/O, N/S
		2	1.2'	4			some brick fragment		PID = 0.0 ppm max.
				2	1		Sample collected: W18STMGP-B48	:-79	
				7	9 -				
				5	9		9.0'-9.4': Fill-Brownish tan SILT, f to	med SAND, GRAVEL and brick fragments.	9'-11': SI MGP-related odor, N/S
		3	1.8'	5			9.4'-10.8': Fill-Gray m to c SAND, G	RAVEL and brick fragments.	PID = 1.8 ppm max.
				9					
				7	11 -				
				2			11.0'-11.4': Fill/SM-Gray sandy SILT	, tr organics and gravel.	11'-13': SI MGP-related odor, N/S and sheen in shoe
		4	0.4'	4	1				PID = 5.4 ppm max.
				5					
				9	13 -		13.0'-13.3': Fill/GM-Gray f sandy SIL	T and GRAVEL.	13'-15': Strong coal tar odor, sheen,
		5	0.3'	4					visible (OLM) and (TM), N/S
				4					PID = 60.5 ppm max.
				6	- 15 -				
				3	ادا		15.0'-16.0': Fill/GM-Dk gray SILT, ft	o c SAND and GRAVEL.	15'-16': Strong coal tar odor, sheen,
		6	2.0'	2			16.0'-17.0': ML-Gray silty CLAY, she	Il fragments and some black organics.	visible (OLM) and (TM), N/S
				2			Sample collected: W18STMGP-B48-	1517	PID = 1,085 ppm max.
				2	17 -				
		_		1			17.0'-19.0': ML-Gray silty CLAY, she	Il fragments and some black organics.	16'-19': N/O, N/S
		7	2.0'	1			1		PID = 14.8 ppm max.

BORING No.: SB-48
BORING LOG
SHEET 2 OF 2

BO	BORING LOG IOB NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
W18th			SCS/	Con Ediso	on		41318-0700-10000	SE area of DEA Parking Lot ELEVATION/DATUM	
DEA F	Parkin	ıg Lo						9.16/NAVD 88	
DRIL ADT	LING	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL Mobil							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/3/2004	END DATE 5/3/2004
SAMI	PLER	TYF	PE				HAMMER WEIGHT/DROP TOTAL DEPTH		WATER LEVEL (ft bgs)
2" Sp	lit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 21'	9'
	z	S	ΑМІ	PLES			DESCRI	REMARKS	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		m - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining N/O = No odors
H		Z	<u> </u>	1		É	it-light dk-dark	tr - trace Itl - little sl - slight	N/O = NO ODORS
				2	4.0				
				2	- 19 -		19.0'-21.0': ML-Gray silty CLAY, she	Il fragments and some black organics.	19'-21': N/O, N/S
		8	2.0'	3					PID = 2.8 ppm max.
				3					
				3	- 21 -				
					21		E	E.O.B. at 21' bgs	
					- 23 -				
					- 25 -				
					07				
					- 27 -				
					- 29 -				
					- 31 -				
					- 33 -				
					- 35 -				
					30				
Ш									

BORING No.: SB-49 SHEET 1 OF 2

BOI	KIN	IG	LO	G					SHEET 1 OF 2
JOB N							PROJECT NO.	AREA OF SITE	
W18th			SCS/	Con Ediso	on		41318-0700-10000	Middle of DEA Parking Lot ELEVATION/DATUM	
DEA P			ot					9.01/NAVD 88	
DRILL ADT	ING	CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Todd Reinold	
DRILL Mobile			i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/28/2004	END DATE 4/28/2004
SAME	LER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 24'	Approx. 12'
	z	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DЕРТН	WATER		n-medium c-coarse tr-trace Itl-little sl-slight	(PID, STAINING, ODORS, ETC.) N/S = No Staining N/O = No odors
Ť		_		FERG			0'-0.5': Asphalt	u - u ace iu - iitie si - siigiit	14/0 = 140 00015
					- 1 -		·	c SAND, GRAVEL, some wood fibers, ents.	1': N/O, N/S
							1.5'-1.6': 0.1' Layer of CONCRETE.		PID (headspace) = 3.8 ppm max.
							1.6'-2.2': Fill-Dk grayish blk SILT, SA	ND, GRAVEL, chunks of wood fibers,	2': N/O, tr blk staining on wood
					3 -		some brick fragments	, slag and tr coal fragments.	PID (headspace) = 8.9 ppm max.
					Ŭ				
									4'-6': N/O, N/S
		1	0.1'	22			4.0'-4.1': Fill-Blk f to c GRAVEL and I	tl silt.	PID = 1.6 ppm max.
		1	0.1	13	- 5 -				
				12					6'-8': N/O, N/S
				12			6.0'-6.2': Fill-Blk f GRAVEL and cons	truction debris.	PID = 0.2 ppm max.
		2	0.2'	50/0	7 -				
					'				
							COLOR END IV. CAND		8'-10': Very strong odor, N/S
		3	0.5'	12			8.0'-8.3': Fill-Red f to c SAND and so 8.3'-8.5': Fill/SW- Blk f to c SAND and		PID = 76.0 ppm max.
		J	0.5	18	- 9 -		6.5 C.S. THIVOVY BIRTIO COMME AIN	a shirty noculates.	
				9					10'-12': Very strong odor, N/S
				1			10.0'-10.6': Fill/SM-Blk SILT, f to c S	AND and shiny floculates.	PID = 700 ppm max.
		4	1.2'	1	- 11 -		10.6'-11.2': Fill/SM-Gray f to c SILT a	and f to c SAND.	
				2			Sample collected: W18STMGP-B49-	1012	
				5 1		•	12.0'-13.9': Fill/SM-Gray f to c SILT a	and fto a SAND	12'-14': Very strong odor, N/S PID = 77.8 ppm max.
		5	1.9'	1			12.0-13.9. Fill/Sivi-Glay 1 to C SIL1 a	IND TO C SAIND.	PID = 11.8 ppill max.
				1	- 13 -				
				1					
				1			14.0'-16.0': Fill/SM-Gray f to c SILT a	and f to c SAND.	14'-16': Very strong odor, N/S
		6	2.0'	1	- 15 -				PID = 75 ppm max.
				1					
				1			40 01 47 01 571/01 7	(401.401.14
		7	2.0'	4			16.0'-17.8': Fill/SM-Brown to gray silt	y 1 to c SAND.	16'-18': Very strong odor, N/S PID = 625 ppm max.
		′	2.0	3	- 17 -		17.8'-17.9': Fill/SW-F to c SAND.		1 15 = 620 ррш шах.
				2			17.9'-18.0': ML-Gray silty CLAY.		
		_	_		_	_			

BORING No.: SB-49
BORING LOG
SHEET 2 OF 2

ВО	JRING LOG								SHEET 2 OF 2
	NAM						PROJECT NO.	AREA OF SITE	
_	h St M RESS		SCS/	Con Ediso	on		41318-0700-10000	Middle of DEA Parking Lot ELEVATION/DATUM	
DEA			t					9.01/NAVD 88	
DRIL ADT	LING	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Todd Reinold	
	LING le B-6						TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/28/2004	END DATE 4/28/2004
	PLER		PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
	plit Spoon						(feet below ground surface (ft bgs)) 140 lbs./30" 24'		Approx. 12'
2 01		_	AMI	PLES			DESCRI	REMARKS	
	CONSTRUCTION				1				
	IRUC	띪	/ER)		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	ONS.	NUMBER	RECOVERY IN FEET	BLOWS	рертн	WATER		m - medium c - coarse	N/S = No Staining
^		z	2 ≥			-	It - light dk - dark Sample collected: W18STMGP-B49	tr - trace Itl - little sl - slight	N/O = No odors
		8	2.0'	1 			18.0'-20.0': ML-Gray silty CLAY and		18'-20': Strong odor, N/S PID = 5 ppm max.
		٥	2.0	2	19 -		16.0-20.0 . IVIL-GIAY SIRY CLAT AND	iii i Sanu.	FID = 5 ppiii max.
				4					
				3	1		20.0'-22.0': ML-Gray silty CLAY and	Itl f sand.	20'-22': SI odor, N/S
		9	2.0'	2	١				PID = 37 ppm max.
				2	- 21 -	1			
				3	1				
				1	1		22.0'-24.0': ML-Gray silty CLAY and	Itl f sand.	22'-24': N/O, N/S
		10	2.0'	1			Sample collected: W18STMGP-B49	-2324	PID = 3.7 ppm max.
				1	- 23 -				
				1]				
							E	.O.B. at 24' bgs	
					25 -				
					- 25 -				
					27 -				
					21				
					29 -	Į.			
					_~				
				-					
				-					
					31 -	ł			
				<u> </u>	l				
					1				
					1				
					- 33 -	ł			
				<u> </u>	1				
					l				
					l				
					35 -	1			
					1				
	1								

BORING No.: SB-50 SHEET 1 OF 2

100							DDG IFOT NO	SHEET FOR 2	
JOB I				r Con Edisc	nn.		PROJECT NO. 41318-0700-10000	AREA OF SITE Northern end in the middle of DEA Park	ing Lot
ADDF			303/	CON LUISC)II		41310-0700-10000	ELEVATION/DATUM	ing Lot
DEA F			t					8.70/NAVD 88	
DRILI ADT	LING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Lisa Wasiowich	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/27/2004	END DATE 4/27/2004
SAME	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 33'	11'
	ION	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	ER	VERY T		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		m - medium c - coarse tr - trace ttl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.5': Asphalt	-	
							0.5'-1.0': Fill-Tan f SAND.		
					- 1 -		1.0'-3.0': Fill-Dark brown/dark gray f	to a SAND	1': N/O, N/S, PID = 1.0 ppm max.
							1.0-5.0 . Till-Dark blowii/dark gray i	IO C SAND.	
									2': N/O, N/S, PID = 1.0 ppm max.
					- 3 -				3': N/O, N/S, PID = 1.0 ppm max.
							3.0': Tan CONCRETE (similar to 0.5	'-1.0').	
									4': N/O, N/S, PID = 1.0 ppm max.
									4. N/O, N/S, PID = 1.0 ppm max.
					- 5 -				
				4	Ŭ		5.0'-5.75': Fill-Blk c SAND, tr brick fr	5'-7': N/S, N/O	
		1	0.75'	2				PID = 4.9 ppm max.	
				2					
				3	_				
				5	- 7 -		7.0'-7.3': Fill-Blk c SAND, tr brick fra	oments and tr asphalt.	7'-9': N/O, tr blk staining
		2	1.3'	6			7.3'-8.3': Fill/SW-Brown f to m SANI		PID = 4.9 ppm max.
		_		7					
				5	- 9 -				
				1/1'			9.0'-9.25': Fill/SW-Brown f to m SAN	ID and tr r gravei.	9'-11': N/O, N/S
		3	0.25'						PID = 0.2 ppm max.
				1					
				1	- 11 -		4		
							11.0'-13.0': NA		11'-13': NA
		4	NA						
					- 13 -				
				3	13		13.0'-13.25: Fill/SW-Grayish brown	m to c SAND and tr f gravel.	13'-15': SI odor, N/S
		5	0.5'	2					PID = NA
				2					
				1					
				2	- 15 -		15.0'-16.5': Fill/SW-Grayish brown n	n to c SAND, tr f gravel and silt	15'-17': SI non-MGP-related odor, N/S
		6	1.5'	1			10.0 10.0. Tilly OV-Graylon brown in	. to o o, and, an graver and one.	PID = 2.0 ppm max.
		U	1.5						110 = 2.0 ppiii iiiax.
				2					
				2	- 17 -				
				1			17.0'-18.4': Fill/SW-Grayish brown n	n to c SAND, tr f gravel and silt.	17'-19': N/O, N/S, sl sheen
									PID = 1.0 ppm max.

BORING No.: SB-50 SHEET 2 OF 2

IOR NAME (CLIENT									SHEET 2 OF 2
JOB NAME/ CLIENT PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000								REA OF SITE	
W18th ADDF DEA F	RESS			JUN EAISO	11		E	orthern end in the middle of DEA Parki :LEVATION/DATUM 70/NAVD 88	ng Lot
		-		CTOR				RC INSPECTOR	
ADT							Sean Miller Lis	sa Wasiowich	
	L ING e B-6							TART DATE /27/2004	END DATE 4/27/2004
SAME	PLER	TYP	E					OTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	lit Spc	on					140 lbs./30"	eet below ground surface (ft bgs)) 33'	11'
	NO	S	AMF	PLES			DESCRIPT	ION OF SOILS	REMARKS
	RUCTI	œ	ERY			~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEРТН	WATER	f-fine m-r lt-light dk-dark tr		N/S = No Staining N/O = No odors
Ī	- 0	z	œ =	6		_	it - light dk - dark tr	- trace ltl - little sl - slight	N/O = No odors
				6	- 19 -				
				2	19		19.0'-20.3': Fill/SW-Grayish brown m to c	SAND, tr f gravel and silt.	19'-21': N/O, N/S, sl sheen
		8	1.3'	2					PID = 1.0 ppm max.
				4					
				2	- 21 -	ļ			
				2			21.0'-22.0': Fill/SW-Grayish brown f to c	SAND and tr gravel.	21'-23': N/S, sl odor, sl sheen
		9	1.0'	2					PID = 6.0 ppm max.
				2					
				2	- 23 -	ł			
		10	0.41	1/2'			23.0'-23.4': Fill/SW- Grayish brown f to c	SAND, tr gravel and silt.	23'-25': N/S, sl odor, sl sheen
		10	0.4'						PID = 1.5 ppm max.
				1/2'	- 25 -	t	25.0'-25.5': Fill/SW- Grayish brown f to c	SAND traravel and silt	25'-27': N/S, sl odor, sl sheen
		11	1.5'	1/2			25.5'-26.5': SM-Dk gray SILT, f SAND, so	. •	PID = 6.0 ppm max.
				2	- 27 -	Ī	27.0'-29.0': SM-Dk gray SILT, f SAND, so	ome clay, tr organics and shell fragments.	27'-29': N/O, N/S
		12	2'	2					PID = 10 ppm max.
				1					
				2	- 29 -	1			
				1	29		29.0'-29.3': SM-Black SILT, f SAND, som	ne clay and rock in shoe.	29'-31': N/O, N/S
		13	0.3'	1					PID = 5.0 ppm max.
				2					
				1	- 31 -	ł			
				WOH			31.0'-31.5': ML-Black f SAND and SILT a	*	31'-33': N/O, N/S
		14	2'	18			31.5'-33.0': ML-Dk gray f SAND and SILT	Γ and some clay.	PID = 1.5 ppm max.
				2	,				
				14	- 33 -	t		3. at 33' bgs	
							E.O.E	s. at so bys	
					35	t			

BORING No.: SB-51

во	BORING LOG JOB NAME/ CLIENT								SHEET 1 OF 2
				T Con Edis	on		PROJECT NO. 41318-0700-10000	AREA OF SITE Middle of the western end of DEA Parkin	ng Lot
ADD	RESS Parkin	;		CON Edio	011			ELEVATION/DATUM 8.89/NAVD 88	ig 201
DRIL ADT	LING	CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Todd Reinold	
	LING le B-6		i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 4/27/2004	END DATE 4/27/2004
_	PLER		PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 33'	Approx. 9'
	N	S	AMI	PLES			DESCRIP	TION OF SOILS	REMARKS
١.	CONSTRUCTION NUMBER RECOVERY SMOTH SMOTH DEPTH WATER				ı	æ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO IN FEE	BLOWS PER 6"	DEPTH	WATER		- medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.5': Asphalt		
					1 -		0.5'-2.5': Fill-Dk gray f to m SAND and	d COBBLES.	1': N/O, N/S, PID = 0.0 ppm max.
							2.5'-4.0': Fill-Dk gray f to m SAND, GF	RAVEL, COBBLES, red bricks and slag.	2': N/O, N/S, PID = 7.0 ppm max.
					- 3 -				3': N/O, N/S, PID = 1.3 ppm max.
							4.0'-5.0': Fill-Dk gray f to m SAND, GF	RAVEL, COBBLES, red bricks and slag.	4': N/O, N/S, PID = 1.4 ppm max.
				6	- 5 -		5.0'-5.25': Fill-F to c SAND.		5'-7': N/S, N/O
		1	0.25'	3			Sample collected: W18STMGP-B51-5	57	PID = 1.0 ppm max.
		2	0.5'	3 4 3	7 -		7.0'-7.5': Fill/SW-Dk blk f to c SAND a	nd tr silt.	7'-9': N/O, N/S PID = 4.8 ppm max.
				3 6	9 -	•			
		3	0.1'	50/3			9.0'-9.1': Fill/SW-Dk blk f to c SAND a	nd tr silt.	9'-11': N/O, N/S PID = 12.5 ppm max.
		4	0.3'	11 14 41	- 11 -		11.0'-11.3': Fil/SW-Blk f to c SAND.		11'-13': N/O, tr blk staining PID = 6.0 ppm max.
		5	0.5'	15 33 13	- 13 -		13.0'-13.5': Fill/SW-Gray f to c SAND, concrete.	some gravel, brick fragments and	13'-15': Strong odor and blk staining PID = 84.0 ppm max.
				17 10 20	15 -		Sample collected: W18STMGP-B51-1 15.0'-15.5': Fill/SW-Gray f to c SAND, concrete.		15'-17': N/O, N/S
		6	0.5'	9 12 8	17 -		concrete.		PID = 8.9 ppm max.
		7	0.1'	20 13	17		17.0'-17.1': Fill/SW-Gray f to c SAND, and rock fragm	c GRAVEL, brick fragments and concrete ents in shoe.	17'-19': Strong odor, N/S PID = 7.6 ppm max.

BORING No.: SB-51 SHEET 2 OF 2

	· \ · · ·	_	LO	G				SHEET 2 OF 2
JOB I				\ F !!			PROJECT NO. AREA OF SITE	
W18th ADDF		ع على	CS/C	on Ediso	n		41318-0700-10000 Middle of the western end of DEA Parkir ELEVATION/DATUM	ng Lot
DEA P		g Lot					8.89/NAVD 88	
DRILI ADT	LING	CON	TRA	CTOR			DRILLER TRC INSPECTOR Sean Miller Todd Reinold	
DRILI Mobile							TYPE/SIZE BIT START DATE 4.25° Hollow Stem Auger 4/27/2004	END DATE 4/27/2004
SAME			F				HAMMER WEIGHT/DROP TOTAL DEPTH	WATER LEVEL (ft bgs)
	lit Spo		-				(feet below ground surface (ft bgs)) 140 lbs./30" 33'	Approx. 9'
	·		АМІ	PLES			DESCRIPTION OF SOILS	REMARKS
	DETIC		≿					
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	DI OMO	DEPTH	WATER	f floor on modium	(PID, STAINING, ODORS, ETC.)
×	Ö	Š	R R	BLOWS PER 6"	DE	W	f - fine m - medium c - coarse It - light dk - dark tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
				15				
				22	19 -	ļ		
				30			19.0'-19.4': Fill/SW-gray to blk f to c SAND and some gravel.	19'-21': Strong odor and blk staining
		8	0.4'	33				PID = 12.8 ppm max.
				50/2			Control of the start WARDTMOD DEA 0400	
				3	21 -	ł	Sample collected: W18STMGP-B51-2123 21.0'-22.0': Fill/SW-gray to blk f to c SAND and some gravel.	21'-23': Strong odor and blk staining
		9	1.7'	18			21.0-22.0. 1 III/3W-gray to bik 1 to C 3AND and some graver.	PID = 140 ppm max.
		3	1.,	5			22.0'-22.7': ML-Gray silty CLAY.	115 = 140 ppii max.
				3			ELIO ELIO : INE GIAJ GIAJ GENTI	
				3	- 23 -	İ	23.0'-24.7': ML- Gray silty CLAY and tr f sand.	23'-25': Strong odor, N/S
		10	1.7'	1				PID = 21.7 ppm max.
				2				
				5				
				1	25	Ī	25.0'-25.9': ML- Gray silty CLAY and tr f sand.	25'-27': N/S, sl odor
		11	0.9'	1				PID = 4.0 ppm max.
				1				
				1	- 27 -			
				4	21		27.0'-27.9': ML- Gray silty CLAY and tr f sand.	27'-29': N/O, N/S
		12	0.9'	9				PID = 3.0 ppm max.
				7				
				7	- 29 -	ļ		
				5	20		29.0'-29.9': ML- Gray silty CLAY and tr f sand.	29'-31': N/O, N/S
		13	0.9'	4				PID = 1.9 ppm max.
				7				
				6	31 -	ł		
				1			31.0'-31.9': ML- Gray silty CLAY and tr f sand.	31'-33': N/O, N/S
		14	0.9'	1				PID = ND
				1			Comple collected: W49CTMCD RE4 2422	
				1	- 33 -	t	Sample collected: W18STMGP-B51-3133 E.O.B. at 33' bgs	
							E.O.D. at 33 bys	
					35	†		

BORING No.: SB-52

во	BORING LOG								SHEET 1 OF 2
	NAM						PROJECT NO.	AREA OF SITE	
_	h St M RESS		SCS/	Con Ediso	on		41318-0700-10000	NW corner of DEA the Parking Lot ELEVATION/DATUM	
	Parkin		ot					8.26/NAVD 88	
DRIL ADT	LING	CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	LING le B-6		ı				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/1/2004	END DATE 5/1/2004
SAM	PLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	olit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 35'	9'
	z	S	ΑM	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION		RΥ						(PID, STAINING, ODORS, ETC.)
Ⅎ	ISTR	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	£ 6	n - medium c - coarse	
WELL	S	ĺΝ	R R	PER 6"	DEI	WA		tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0'-0.5': CONCRETE and asphalt.		
					- 1 -		0.5'-3.1': Fill-Grayish brown SILT, f to brick fragments, cond		1': N/O, N/S, PID = 3.2 ppm max.
							briot riagnorito, corre	and diag.	11. 14.6, 14.6, 11.6 = 6.2 pp. 11. 11.6.1
									01: N/O N/O DID 0.7
					1				2': N/O, N/S, PID = 3.7 ppm max.
					- 3 -		3.1'-3.9': Light tan firestone brick.		3': N/O, N/S, PID = 0.6 ppm max.
							4.0'-5.0': Fill/SW-Dk gray f to c SANI		4': N/O, N/S, PID = 1.3 ppm max.
					5 -		and glass.		
				8	٦		5.0'-5.3': Fill/SW-Dk gray f to c SANI	D, tr brown silt, gravel, brick framents	5'-7': N/S, N/O
		1	0.3'	39			and glass.		PID = 6.1 ppm max.
				50/3					
					- 7 -				
		2	0.2'	50			7.0'-7.2': Fil-Grayish brown SILT, f to brick fragments and		7'-9': SI MGP-related odor, N/S
		2	0.2	50/0	1				PID = 32.2 ppm max.
				39	- 9 -	_	9.0'-9.7': Fill-Grayish brown SILT, f to	o c SAND, GRAVEL, some concrete and	9'-11': N/O, N/S
		3	0.7'	38	1		brick fragments.		PID = 2.2 ppm max.
				23					
				10	11 -				
				12				T, f to c SAND, GRAVEL, some concrete, g, glass and wood fibers.	11'-13': N/O, N/S
		4	0.9'	10					PID = 4.6 ppm max.
				7			Sample collected: W18STMGP-B52	-1113	
				1	- 13 -		13.0'-14.0': Fill-Brown/gray SILT, f to	a SAND CRAVEL and some	13'-15': Tr blk staining, N/O
		5	1.0'	1			brick fragments.	C SAND, GRAVEL and some	PID = 0.4 ppm max.
		ا		3	1				
				7	L 45				
				5	- 15 -		15.0'-15.3': Fill-Brown/gray SILT, f to	c SAND, GRAVEL and some	15'-17': SI MGP-related odor, N/S
		6	0.6'	5			brick fragments.		PID = 0.7 ppm max.
				3					
				7	17 -		16.7'-17': Fill- Dk gray m to c SAND, shell fragments.	GRAVEL,some brick fragments and	
				7			-		17'-19': N/O, N/S
ш		7	1.5'	5			17.0'-18.5': Fill/SP- Dk gray c SAND	and tr gravel.	PID = 1.1 ppm max.

BORING No.: SB-52 SHEET 2 OF 2

BOKING LOO									STILLT 2 OF 2
JOB NAME/ CLIENT PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000								OF SITE	
ADDR	ESS			on Ealso	n		ELEV <i>A</i>	ner of DEA Parking Lot	
DEA P	arkin	_					8.26/NA	VD 88	
DRILL ADT	ING	CON	ITRA	CTOR			DRILLER TRC IN Sean Miller Jessica	ISPECTOR Elliott	
DRILL Mobile							TYPE/SIZE BIT START 4.25" Hollow Stem Auger 5/1/200	T DATE)4	END DATE 5/1/2004
SAMP	LER	TYP	Έ					DEPTH	WATER LEVEL (ft bgs)
2" Spli	t Spo	on					140 lbs./30" (feet be	elow ground surface (ft bgs)) 5'	9'
	NO	S	AMF	PLES			DESCRIPTION	OF SOILS	REMARKS
	CONSTRUCTION	监	/ERY :T		Ŧ	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVER) IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m - mediu lt - light dk - dark tr - trac		N/S = No Staining N/O = No odors
				3			-	-	
				13	- 19 -				
				1	13		19.0'-21.0': Fill/SP-Dk gray c SAND, tr silt, f to r	n SAND, wood fibers, gravel, brick	19'-21': N/O, N/S
		8	2.0'	1			and shell fragments.		PID = 1.5 ppm max.
				3					
				6	21 -	<u> </u>			
				30	- '		21.0'-21.4': Fill/SW-Dk gray f to m SAND, tr c s	and, wood fibers and brick fragments.	21'-23': N/O, N/S
		9	1.0'	35			21.4'-22.0': Fill/SP-Dk gray c SAND, tr wood fib	ers and brick fragments.	PID = 1.6 ppm max.
				50/0					
					- 23 -	ļ			
				6			23.0'-23.8': Fill/SW-Dk gray m to c SAND, tr gra	ivel, wood fibers and shell fragments.	23'-25': Solvent-like odor, blk staining, sheen
		10	0.8'	5					PID = 12.8 ppm max.
				9					
				12	- 25 -	ł			
				12			25.0'-25.9': Fill/SW-Dk gray m to c SAND, tr silt large brick chunks.	, f sand and coal fragments and	25'-27': Strong MGP-related odor, blk staining, sheen, visible OLM
		11	0.9'	13 9			-		PID = 42.2 ppm max.
				6					
				18	27 -	1			
			0.51				27.0'-27.5': Fill/SM-Dk gray SILT, f to c SAND,	r clay and wood fibers.	27'-29': Blk staining, strong MGP- related odor, visible OLM and
		12	0.5'	26			Sample collected: W18STMGP-B52-2729		tr coal tar.
				50/2					PID = 312 ppm max.
				20	29 -	t	29.0'-31.0': Fill/SW-Dk gray m to c SAND, tr f sa	nd, silt and wood fibors	29'-31': Blk staining, strong MGP-
		13	2.0'	35			E.O. G. T. III/GTT-DK gray III to C GAND, II I Sa	, S.K. BIIG WOOD IIJCIS.	related odor, visible OLM and
		13	2.0	19					tr coal tar
				12					PID = 109 ppm max.
				5	31 -	Ť	31.0'31.4': Fill/SW-Dk gray m to c SAND, tr f sa	nd silt and wood fibers.	31'-33': N/O, N/S inside of clay
		14	2.0'	6			31.4-32.0': ML-Dk gray silty CLAY, tr f sand and		PID = 12.4 ppm max.
			-	8			5 . y 2y 22 , a . 3and and	· y · ··	. FF
				10					
				4	33 -	Ī	33.0'-35.0': ML-Dk gray silty CLAY, tr f sand and	d shell fragments.	33'-35': N/O, N/S inside of clay
		15	2.0'	5			Sample collected: W18STMGP-B52-3335	v	PID = 12.4 ppm max.
		-	-	5			,		
				6					
					35	Ī	E.O.B. at 35	i' bgs	1
						-			

BORING LOG

BORING LOG

BORING No.: SB-29/MW-29A
SHEET 1 OF 3

ВО		10		,					SHEELLOFS
JOB							PROJECT NO.	AREA OF SITE	
			SCS	Con Edi	son		41318-0700-10000	South of Former MGP Site	
ADDI			400	04	d 40th A.			ELEVATION/DATUM	
				Street and	d 10th Av	enue		10.77/NAVD 88	
ADT				ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
DRIL CME-			3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 11/6/2004	END DATE 11/7/2004
SAMI	PLER	YTY	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl							140 lbs./30"	(feet below ground surface (ft bgs)) 50'	
	NO	SAMPLES					DESCRI	REMARKS	
	CONSTRUCTION	NUMBER RECOVERY IN FEET IN FEET SMOTH DEPTH WATER				œ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO! N FEE	BLOWS PER 6"	DEPTH	WATER		n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.5': CONCRETE.		100 110 110 110 110 110 110 110 110 110
					 1 -		0.5'-1.5': Fill-Dk gray to black SILT	Γ, f to c SAND and GRAVEL.	0.5'-1.5': N/O, N/S
									PID = 0.0 ppm max.
							1.5'-5.0': Fill-Brown SILT, f to c SA	AND and gravel.	1.5'-3': N/O, N/S
									PID = 0.0 ppm max.
					3 -				at the N/O N/C
									3'-4': N/O, N/S
									PID = 0.0 ppm max.
									4'-5': N/O, N/S
					L				PID = 0.2 ppm max.
				12	5 -		5.0'-5.8': Fill-Brown SILT, f to m S	AND, tr c sand, gravel and cobbles.	5'-7': N/O, N/S
		1	0.8'	5				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PID = 1.0 ppm max.
		'	0.0						г ID = 1.0 ppiii max.
				6					
				7	 7 -				
				11] ′		7.0'-7.1': Fill-Brown SILT, f to c SA	AND and some gravel.	7'-9': N/O, N/S
		2	0.1'	5					PID = 0.1 ppm max.
				7					
				6	9 -				
				5			9.0'-9.7': Fill-Brown m to c SAND,	some f sand, silt and rock fragments.	9'-11': N/O, N/S
		3	0.7'	6					PID = 0.0 ppm max.
				6]				
				6	L.]		
				9	11 -		11.0'-11.2': Fill-Brown SILT, f SAN	ND, Itl m sand, tr c sand and gravel.	11'-13': N/O, N/S
		4	0.6'	13	1			SAND, GRAVEL and some f to m sand.	PID = 0.1 ppm max.
		4	0.0		1		•		1-10 = 0.1 ppiii iiiax.
				13	1		Sample collected: W18STMGP-Si	BZ9-1113	
				12	13-				
				8	l 'Ŭ			SAND, GRAVEL, some cobbles and tr	13'-15': N/O, N/S
		5	0.8'	8			f to m sand and	silt.	PID = 0.0 ppm max.
				8				n to very c SAND, some gravel and tr f sand	1
				7	1		and silt.	, , g	
					15 -		45 01 45 71 014 0	AND	151 171 N/O N/O
				3	1		15.0'-15.7': SW-Orangish brown n and silt.	n to very c SAND, some gravel and tr f sand	15'-17': N/O, N/S
		6	0.7'	6	4		and ont		PID = 0.0 ppm max.
				5	1				Sand
				7	L				Bentonite Chips
				3	17 -		17.0'-18.4': SW-Orangish brown n	n to very c SAND, some gravel and tr f sand	Concete
		7	1 4'	7	1		and silt.	, , , , , , , , , , , , , , , , , , , ,	Well Screen
\vdash		1	1.4				I .		

BORING LOG

BORING LOG

BORING No.: SB-29/MW-29A
SHEET 2 OF 3

ВО	1711	10		<i>-</i>					SHEET 2 OF 3
	NAM						PROJECT NO.	AREA OF SITE	
W18th			SCS	S/Con Edi	ison		41318-0700-10000	South of Former MGP Site ELEVATION/DATUM	
			16th	Street an	d 10th A	venu	ue	10.77/NAVD 88	
DRIL ADT	LING	CO	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott	
DRIL CME-			3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 11/6/2004	END DATE 11/7/2004
	PLER		Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	lit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs) 50'	11'
	NO	S	AM	PLES			DESCRII	PTION OF SOILS	REMARKS
	CTI	~	:ERY						(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f-fine n lt-light dk-dark	n - medium c - coarse tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
				7			g		17'-19': N/O, N/S
				6	4.0				PID = 0.0 ppm max.
				9	- 19 -	1	19.0'-20.0': SW-Brown m to c SAN	ND, GRAVEL and tr f sand and silt.	19'-21': N/O, N/S
		8	1.0'	9					PID = 0.0 ppm max.
				10			20.0': Heaving sands in the auger	. ADT flushed out sands and put a	
				6			center plug in the bottom	of the augers to stop the sands.	
					- 21 -	1	20.0'-25.0': Drill five feet in an atte	empt to drill passed gravelly sands and	
							prevent heaving sar	nds up into auger.	
					-00				
					- 23 -	1			
				4	- 25 -		25.0'-26.0': SP-Brown m SAND, s	ome f sand, tr c sand and gravel. Reddish	25'-27': N/O, N/S
		9	1.0'	4			brown f SAND		PID = 0.0 ppm max.
				5					
				7					
				16	- 27 -	1	27.0'-27.3': SW-Brown f to c SAN	D. GRAVEL, and chunks of rock.	27'-29': N/O, N/S
		10	0.3'	20				. ,	PID = 0.0 ppm max.
		-		25					
				70					
					- 29 -	1			
							30.0'-34.0': Heaving sands are sti	Il a problem, so drill another four feet.	
								, , , , , , , , , , , , , , , , , , , ,	
					31 -	1			
					- 33 -				34'-36': N/O, N/S
									PID = 0.0 ppm max.
				3			34.0'-34.6': SW-Brown f to c SAN	D. tr gravel and silt.	Sand
		11	1.0'	4			34.6'-35.0': SP-Brown C SAND an		Bentonite Chips
			0	4	- 35 -	1	Sample collected: W18STMGP-S		Concete
				8			Campic concolod. W10011W0F-0	020 0.00	Well Screen
			Ь	0		_			

BORING LOG

BORING LOG

BORING No.: SB-29/MW-29A
SHEET 3 OF 3

ВΟ	1711	••		<u> </u>					SHEET 3 OF 3		
JOB I							PROJECT NO.	AREA OF SITE			
			SCS	Con Edi	ison		41318-0700-10000	South of Former MGP Site			
ADDF NW c			16th	Street an	d 10th A	venu	ue	ELEVATION/DATUM 10.77/NAVD 88			
DRIL I ADT	LING	СС	NTR	ACTOR			DRILLER Tony Palomeque	TRC INSPECTOR Jessica Elliott			
DRILI CME-l			3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 11/6/2004 END DATE 11/7/2004 11/7/2004			
SAME			'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)		
2" Spli	t Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 50'	11'		
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS		
	RUCTI	~	ERY						(PID, STAINING, ODORS, ETC.)		
WELL CONSTRUCTION NUMBER RECOVERY IN FEET SMODIA SM			DEPTH	WATER	f-fine n lt-light dk-dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors				
	Ŭ	_		2			36.0'-38.75': ML-Brown SILT and		36'-38': N/O, N/S		
		12	1.75'	3			oo.o oo.ro. me brown oler and	ody.	PID = 0.0 ppm max.		
				5	- 37 -						
				7							
				4			38.0'-39.0': ML-Brown CLAY and	SILT.	38'-40': N/O, N/S		
		13	1.7'	6			Sample collected: W18STMGP-S		PID = 0.0 ppm max.		
				7	- 39 -		39.0'-39.7': SM-Brown very f SAN		1 15 = 0.0 pp.11 max.		
				10			Colo Coli : Cili Bioliii Toly i Cilii				
				3			40.0'-41.0': SM-Brown very f SAN	40'-42': N/O, N/S			
		14	1.0'	6			40.0 41.0. OW Blown very Fortiv	PID = 0.0 ppm max.			
		14	1.0	12	- 41 -				FID = 0.0 ppiii iiiax.		
				125			42.0'-43.7': ML-Brown CLAY and	SILT and some very f sand.	401 441 N/O N/O		
				3					42'-44': N/O, N/S		
		15	1.7'	13	- 43 -				PID = 0.0 ppm max.		
				16							
				16							
				5			44.0'-46.0': SM-Brown very f SAN	D and some silt.	44'-46': N/O, N/S		
		16	2.0'	9	- 45 -				PID = 0.0 ppm max.		
				6							
				15							
				5			46.0'-48.0': SM-Brown very f SAN	D and some silt.	46'-48': N/O, N/S		
		17	2.0'	10	- 47 -				PID = 0.0 ppm max.		
				14							
				23							
				4				D and some silt with increasing silt and towards bottom of spoon.	48'-50': N/O, N/S		
		18	2.0'	10	- 49 -		,	•	PID = 0.0 ppm max.		
				21			Sample collected: W18STMGP-S	B29-4850			
				17			Blind duplicate collected: W18STI				
							E	O.B. at 50' bgs			
				<u> </u>	- 51 -						
					•						
									Sand		
					- 53 -				Bentonite Chips		
					55		Well set at 20' bgs		Concete		
							Screen interval from 8.0' to 18.0' b	gs with a 2' sump from 18.0' to 20.0' bgs	Well Screen		

BORING LOG BORING No.: SB-30
SHEET 1 OF 5

Вυ	IZII	10	<u> </u>	<u> </u>					SHEET 1 OF 5
JOB					:		PROJECT NO.	AREA OF SITE	Milana
W18th			508	Con Ed	ISON		41318-0700-10000	SW of Purifying House and S of Retori	I HOUSE
			twee	n 10th Av	ve and W	est Si	de Highway	8.16/NAVD 88	
DRIL ADT	LING	CC	NTR	ACTOR			DRILLER Lloyd Adams/Dennis Mayer	TRC INSPECTOR Jessica Elliott	
DRIL CME				61	4.2	5" Hol	TYPE/SIZE BIT low Stem Auger/Mud Rotary	START DATE 10/10/2004	END DATE 10/30/2004
SAM								TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 86'	11'
	NO	S	AMI	PLES			DESCRIP	TION OF SOILS	REMARKS
	CONSTRUCTION NUMBER RECOVERY RECOVERY SANDIA							(PID, STAINING, ODORS, ETC.)	
WELL	NSTE	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f-fine m	- medium c - coarse	N/S = No Staining
≥	ပ	ž	₩ ≥	PER 6"	□	*	_	tr - trace Itl - little sl - slight	N/O = No odors
				-			0.0'-0.5': COBBLESTONE road.		
				<u> </u>	- 1 -		0.5'-1.0': ASPHALT and COBBLES 1.0'-2.0': Fill-Dk brown f to c SAND		
								, 2.2. 2 36110 000010.	1'-2': N/O, N/S
							2.0'-6.0': Fill-Dk gray m to c SAND	and tr cobble.	PID = 0.0 ppm max.
							S.o S.c. gray in to o SAND		2'-3': N/O, N/S
				<u> </u>	- 3 -				PID = 0.0 ppm max.
					-				3'-4': N/O, N/S
									PID = 0.0 ppm max.
									4'-5': N/O, N/S
					- 5 -				PID = 0.0 ppm max.
					Ŭ				5'-6': N/O, N/S
									PID = 0.0 ppm max.
				3			6.0'-6.1': Fill-Dk brown SILT, f to c	SAND, some gravel and brick fragments.	6'-8': N/O, N/S
		1	0.1'	2	7 -				PID = 0.2=0 ppm max.
				1	'				
				1					
				1			8.0'-8.3': Fill-Dk brown SILT, f to m		8'-10': N/O, N/S
		2	0.3'	1	9 -		fragments, wood fi	bers and cobble in shoe.	PID = 0.0 ppm max.
				2	9				
				4					
				1				c SAND, GRAVEL, brick fragments and	10'-12': N/O, N/S
		3	0.4'	1	L_{AA}		wood timbers.		PID = 0.0 ppm max.
				1	11 -		Sample collected: W18STMGP-SE	30-1012	
				2					
				2			12.0'-12.7': Fill-Dk brown SILT, f to	c SAND, GRAVEL, brick fragments and	12'-14': SI petroleum odor, N/S
		4	0.7'	3	4.5		wood timbers.		PID = 8.7 ppm max.
				3	13 -				
				3	1				
				2	1		14.0'-14.2': Fill-Dk brown SILT. f to	c SAND, GRAVEL, brick and wood.	14'-16': SI petroleum odor, N/S
		5	0.6'	3	1		14.2'-14.5': Fill-Dk brown SILT, CL		PID = 2.4 ppm max.
				4	15 -		14.5'-14.6': Fill-Reddish brown f to	c SAND, tr silt and gravel.	FF
				4	1				
				1	1		16 0'-16 4': Fill-Reddish brown f to	c SAND, tr silt, gravel and wood fibers.	16'-18': SI MGP-related odor, tr
		6	0.4'	1	1		10.0 -10.4. Till-Neddistribrown TO	o orasz, a siit, gravei allu wood libels.	sheen, N/S
			0.4	2	17 -				PID = 21.0 ppm max.
	L			5					1

BORING No.: SB-30 SHEET 2 OF 5

_									
JOB I W18th				I T 5/Con Edi:	son		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Purifying House and S of Retort	House
ADDF	RESS	3				est S		ELEVATION/DATUM 8.16/NAVD 88	-
ADT				ACTOR			DRILLER Lloyd Adams/Dennis Mayer	TRC INSPECTOR Jessica Elliott	
DRILI CME-				51	4.25	" Ho	TYPE/SIZE BIT llow Stem Auger/Mud Rotary	START DATE 10/10/2004	END DATE 10/30/2004
SAMI 2" Spl			PE					TOTAL DEPTH (feet below ground surface (ft bgs)) 86'	WATER LEVEL (ft bgs)
Z Opi	Ť	_	ΑМІ	PLES				TION OF SOILS	REMARKS
	₽ T T						223611		
	ŢŖ	SER	VER.		Ξ	띪			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark		N/S = No Staining N/O = No odors
				2			18.0'-18.6': Fill-Reddish brown f to	c SAND, tr silt, gravel and wood fibers.	18'-20': SI MGP-related odor, tr
		7	0.9'	6	- 19 -		18.6'-18.9': Fill-Dk brown SILT, f S.	AND, tr m sand, gravel and roots.	sheen, N/S PID = 52.0 ppm max.
				2					г ib = 52.0 ррпі пах.
				2					
			4.0	3			20.0'-21.0': Fill-Reddish brown/brov and red c sand in		20'-22': Strong MGP-related odor, sheen, visible (OLM) and tr
		8	1.0'	5 5	- 21 -				(TLM) blebs in shoe.
				4					PID = 72.9 ppm max.
				3			22.0'-23.0': Fill-Reddish brown/brow	vn f to c SAND and wood fibers.	22'-24': Strong MGP-related odor,
		9	1.0'	5			Sample collected: W18STMGP-SB		sheen, visible (OLM) and
				2	- 23 -		,		(TLM) blebs, black staining
				2					PID = 1,585 ppm max.
				1			24.0'-26.0': ML-Dk gray silty CLAY,	tr f sand and shell fragments.	24'-26': N/O, N/S inside of clay.
		10	2.0'	2	- 25 -		Sample collected: W18STMGP-SB	30-2426	PID = 0.0 ppm max.
				2	25				
				2			26.0'-28.0': ML-Dk gray silty CLAY,	tr f sand and shell fragments.	26'-28': N/O, N/S on inside of clay.
				3			26.0': Set temporary steel casing continuing deeper with mu		PID = 0.0 ppm max.
		11	2.0'	2	- 27 -		Commany deeper with the	y.	
				2					
				3 5			20 01 20 71. MI. C	some a condi groval and to the arrand	201 201- NI/O NI/S
		12	1.4'	4			28.0'-28.7': ML-Gray clayey SIL1, s and shell fragme		28'-30': N/O, N/S PID = 0.0 ppm max.
		12	1.4	8	- 29 -		28.7'-29.4': SP-Reddish brown f to	m SAND, tr c sand, rock fragments and	г ю – о.о ррні ніах.
				9				T lense in bottom of spoon.	
				8			Sample collected: W18STMGP-SB	30-2830	
		13	1.0'	6	- 24 -		30.0'-31.0': SP-Reddish brown f to i	m SAND and tr c sand.	32'-32': N/O, N/S
				10	- 31 -				PID = 0.0 ppm max.
				12					
				5			32.0'-32.8': SP-Reddish brown f to a	m SAND and tr c sand.	32'-34': N/O, N/S
		14	1.1'	7	- 33 -		32.8'-33.1': ML-Tan silty CLAY and	some f sand.	PID = 0.0 ppm max.
				8					
				11					
		45	4.41	11			34.0'-34.3': ML-Tan silty CLAY and		34'-36: N/O, N/S
		15	1.1'	13	- 35 -		34.3'-35.1': SP-Tan f to m SAND ar	na tr siit.	PID = 0.0 ppm max.
				17					
Щ	16								

BORING No.: SB-30
BORING LOG
SHEET 3 OF 5

ВО									SHEET 3 OF 5	
	NAM			I T 5/Con Edi	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Purifying House and S of Retor	t House	
	RES		508	, COIT EQ	JUII		71310-0700-10000	ELEVATION/DATUM		
					e and W	est \$	Side Highway	8.16/NAVD 88		
ADT				ACTOR			DRILLER Lloyd Adams/Dennis Mayer	TRC INSPECTOR Jessica Elliott		
DRIL	LING -75/N			51	4	.25"	TYPE/SIZE BIT Hollow Stem Auger/Mud Rotary	START DATE 10/10/2004	END DATE 10/30/2004	
	PLEF					0	HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 86'	11'	
	CAMPLEC					DESCRIPT	TION OF SOILS	REMARKS		
								(DID STAINING SPORG FTS)		
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining	
	0	z	~ ≥	PER 6"			It - light dk - dark t 36.0'-38.0': SM-Tan SILT and very f SA		N/O = No odors 36'-38': N/O, N/S	
		16	2.0'	7			30.0-36.0. SWI-TAIT SILT AND VERY I SAI	ND.	PID = 0.0 ppm max.	
		10	2.0	11	- 37 -				1 15 = 0.0 ррш шах.	
				26						
				2			38.0'-39.0': SM-Tan f SAND and some s	ilt.	38'-40': N/O, N/S	
		17	1.0'	10	- 39 -				PID = 0.0 ppm max.	
				15	39					
				16						
				10			40.0'-41.4': SM-Tan f SAND and some s	ilt.	40'-42': N/O, N/S	
		18	1.4'	15	- 41 -				PID = 0.0 ppm max.	
				15						
				19			42.0'-43.5': SM-Alternating reddish brow	n f SAND and tan clayey SILT.	42'-44': N/O, N/S	
		19	1.5'	13					PID = 0.0 ppm max.	
				14	- 43 -	1				
				16						
				5			44.0'-45.6': ML-Reddish brown clayey Sl	LT and tr f sand.	44'-46': N/O, N/S	
		20	1.6'	8	- 45 -				PID = 0.0 ppm max.	
				9	73					
				16						
				7		l	46.0'-47.6': ML-Reddish brown clayey Si		46'-48': N/O, N/S	
		21	1.8'	10	- 47 -	ł	47.6'-47.8': SM-Lt brown SILT and very	SAND.	PID = 0.0 ppm max.	
				21						
				10			48.0'-50.0': No Recovery		48'-50': N/O, N/S	
		22	0.0'	7		J			PID = 0.0 ppm max.	
				9	- 49 -					
				15		l				
				6		l	50.0'-51.3': SP-Brown f SAND.		50'-52': N/O, N/S	
		23	1.7'	8	51 -				PID = 0.0 ppm max.	
	51 51.3'-51.7': ML-Tan silty CLAY and tr f sa		and.							
	11					l				
		0.4	4.01	5		l	52.0'-53.0': SP-Grayish brown f SAND w	rith 1/2" tan silty clay lense at 52.5' bgs.	52'-54': N/O, N/S	
		24	1.0'	6 10	- 53 -	ł			PID = 0.0 ppm max.	
				10						
	1			10					1	

BORING LOG

BORING LOG

BORING No.: SB-30
SHEET 4 OF 5

ВО									SHEET 4 OF 5	
	NAM			I T 5/Con Edi	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Purifying House and S of Retor	t House	
ADD	RESS	3						ELEVATION/DATUM	triouse	
					e and W	est S	Side Highway	8.16/NAVD 88		
ADT	LING	CO	NIK	ACTOR			DRILLER Lloyd Adams/Dennis Mayer	TRC INSPECTOR Jessica Elliott		
DRIL CME	LING -75/M			61	4	.25"	TYPE/SIZE BIT Hollow Stem Auger/Mud Rotary	START DATE 10/10/2004	END DATE 10/30/2004	
	PLER			• •		.20	HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Spl	lit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 86'		
			AMI	PLES				TION OF SOILS	REMARKS	
	CONSTRUCTION NUMBER RECOVERY SMOOTH									
=	STR	CONSTRUCT NUMBER RECOVERY IN FEET MODEL			DEPTH	WATER			(PID, STAINING, ODORS, ETC.)	
WELL	N N N P BLOWS			BLOWS PER 6"	DEF	.w	f - fine m - lt - light dk - dark t	medium c - coarse r - trace ltl - little sl - slight	N/S = No Staining N/O = No odors	
				3			54.0'-54.5': SP-Grayish brown f SAND		54'-56': N/O, N/S	
		25	0.5'	5	- 55 -				PID = 0.0 ppm max.	
				9						
				9			56.0'-57.0': SP-Reddish brown f SAND.		56'-58': N/O, N/S	
		26	1.0'	5			50.0-57.0. SF-Reddisir blown i SAND.		PID = 0.0 ppm max.	
				7	- 57 -					
				9						
				2			58.0'-58.6': SP-Reddish brown f SAND.		58'-60': N/O, N/S	
		27	0.6'	5	- 59 -				PID = 0.0 ppm max.	
				8						
				10			60.0'-61.1': SP-Reddish brown f SAND.		60'-62': N/O, N/S	
		28	1.1'	5					PID = 0.0 ppm max.	
				7	61 -					
				8						
				3			62.0'-63.2': ML-Reddish brown and It bro	own silty CLAY and tr f sand.	62'-64': N/O, N/S	
		29	1.4'	3	- 63 -				PID = 0.0 ppm max.	
				7			63.2'-63.4': SM-Reddish brown SILT and	I very f SAND.		
				17			64.0'-65.3': SM-Reddish brown SILT, f S	AND and CLAY.	64'-66': N/O, N/S	
		30	1.3'	6	CE -				PID = 0.0 ppm max.	
				6	- 65 -					
				10						
				5			66.0'-68.0': No Recovery.		66'-68': N/O, N/S	
		31	0.0'	7	- 67 -				PID = 0.0 ppm max.	
				11						
				6			68.0'-68.4': SM-Reddish brown f SAND a	and some silt.	68'-70': N/O, N/S	
		32	0.4'	7	- 69 -				PID = 0.0 ppm max.	
				9	08					
				6						
		22	2.01	3			70.0'-72.0': SM-Reddish brown f SAND a	and some silt.	70'-72': N/O, N/S	
		33	2.0'	3	71 -				PID = 0.0 ppm max.	
				5						
	_	_			_	_	-			

BORING No.: SB-30 SHEET 5 OF 5

Вυ	RIN	١G	L	OG					SHEET 5 OF 5
	NAM h St M			IT 5/Con Edi	son		PROJECT NO. 41318-0700-10000	AREA OF SITE SW of Purifying House and S of Retor	rt House
ADD	RESS	5				est S	Side Highway	ELEVATION/DATUM 8.16/NAVD 88	
				ACTOR	c and w	001	DRILLER Lloyd Adams/Dennis Mayer	TRC INSPECTOR Jessica Elliott	
DRIL				.1		25"	TYPE/SIZE BIT	START DATE	END DATE 10/30/2004
-	PLER			1	4	.25	Hollow Stem Auger/Mud Rotary HAMMER WEIGHT/DROP	10/10/2004 TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl							140 lbs./30"	(feet below ground surface (ft bgs))	
	CAMPLES			PLES				TION OF SOILS	REMARKS
	₽								(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER		medium c - coarse	N/S = No Staining
Í		z	<u> </u>	2		Ĺ	It - light dk - dark t 72.0'-74.0': SM-Reddish brown f SAND a		N/O = No odors 72'-74': N/O, N/S
		34	2.0'	3	- 70 -				PID = 0.0 ppm max.
				5	73 -				
				16					. <u>-</u>
				4			74.0'-75.9': SP-Reddish brown very f SAf	ND and tr silt.	74'-76': N/O, N/S
		35	1.9'	6 10	- 75 -				PID = 0.0 ppm max.
				10					
				4			76.0'-77.5': SP-Reddish brown very f SAf	ND and tr silt.	76'-78': N/O, N/S
		36	1.5'	8	- 77 -				PID = 0.0 ppm max.
				12					
				12			70 01 00 01: CD Daddish basses 112-14 0 A A	ND d to -: it	701 001, N/O N/O
		37	2.0'	7 11			78.0'-80.0': SP-Reddish brown very f SAf	ND and it siit.	78'-80': N/O, N/S PID = 0.0 ppm max.
				14	- 79 -				
				18					
				9			80.0'-82.0': SP-Reddish brown very f SAf	ND and tr silt.	80'-82': N/O, N/S
		38	1.6'	15 15	- 81 -				PID = 0.0 ppm max.
				13					
				17			82.0'-83.5': SP-Reddish brown very f SAN	ND and tr silt.	82'-84': N/O, N/S
		39	1.5'	13	- 83 -				PID = 0.0 ppm max.
				18	00				
				13			94 0' 95 9'- SD Doddich brown yory f SAN	ND and trailt	
		40	2.0'	17			84.0'-85.8': SP-Reddish brown very f SAI Sample collected: W18STMGP-SB30-84		
				16	- 85 -		Blind duplicate collected: W18STMGP-SI	B66-8486	
				33			85.8'-86.0': Weathered Schist.		
							E.O.B. at 86' bgs (Re	efusal due to weathered rock)	
					- 87 -				
	89 -				– <u>8</u> 0 –				
					03				

BORING No.: SB-31
BORING LOG
SHEET 1 OF 2

ВО		10		, 					SHEET TOF 2
JOB W18th				I T 5/Con Ed	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE East of Gas Holder #5	
ADD	RESS	3						ELEVATION/DATUM	
					st betweer	10th	and 11th Ave	6.47/NAVD 88	
ADT	LING	CO	NTR	ACTOR			DRILLER Lloyd Adams	TRC INSPECTOR Jessica Elliott	
DRIL CME-			3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 10/9/2004	END DATE 10/9/2004
SAM	PLER	R TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs 27')) 7.5'
	NO	S	АМІ	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	2	ERY.						(PID, STAINING, ODORS, ETC.)
WELL	NSTE	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f-fine m	ı - medium c - coarse	N/S = No Staining
≥	ខ	ž	₩ Z	PER 6"	□	>	lt - light dk - dark		N/O = No odors
							0.0'-0.5': CONCRETE		
					- ₁ -		0.5'-9.0': Fill-Dk brown SILT, f to c fibers and sewage	SAND, some gravel, brick fragments, wood	
							ilbers and sewage		1'-2': N/O, N/S
									PID = 0.2 ppm max.
									2'-3': N/O, N/S
					- 3 -				PID = 0.2 ppm max.
					٦				3'-4': N/O, N/S
									PID = 0.3 ppm max.
									4'-5': N/O, N/S
					Ĺ╭╷				PID = 0.1 ppm max.
					- 5 -				5'-7': N/O, N/S
									PID = 0.1 ppm max.
					7 -		Sample collected: W18STMGP-B3		
				1		<u> </u>	Sample collected: W18STMGP-B3	31-78	7'-9': SI sewage odor, N/S
		1	0.05'	1					PID = 3.5 ppm max.
				2					
				1	l 9 -				
				1/2.0'	ľ		9.0'-13.1': Fill- Lt gray f SAND, SIL wood fibers.	T, tr m sand, clay, brick fragments and	9'-11': SI sewage odor, N/S
		2	0.8'				wood libers.		PID = 2.1 ppm max.
					11 -				
				1	''				11'-13': SI sewage odor
		3	0.1'	1					PID = 0.6 ppm max. in shoe
				2					
				4	$\lfloor 12 \rfloor$				
				WOH	13 -		13.1'-21.0': Fill-Gray f SAND, tr sil	t, wood timbers and brick fragments.	13'-15': Burned wood odor, N/S
		4	0.6'	5					PID = 0.7 ppm max.
				13					
				7] ,_				
				15	15				15'-17': Burned wood odor, N/S
		5	0.8'	50/5"	1				PID = 0.9 ppm max.
									s ppmman
					1]				
				22	17 -				17'-19': Burned wood odor, N/S
			1.0	23	1				
$ldsymbol{ldsymbol{\sqcup}}$		6	1.0'	50			l .		PID = 2.1 ppm max.

BORING No.: SB-31 SHEET 2 OF 2

	1111	•	L	,					SHEET 2 OF 2
	NAM						PROJECT NO.	AREA OF SITE	
_	RES		508	S/Con Edi	son		41318-0700-10000	East of Gas Holder #5 ELEVATION/DATUM	
			valk c	on 20th S	t betwee	n 10	th and 11th Ave	6.47/NAVD 88	
DRIL ADT		CO	NTR	ACTOR			DRILLER Lloyd Adams	TRC INSPECTOR Jessica Elliott	
	LING		3				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 10/9/2004	END DATE 10/9/2004
	PLEF		'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Sp	lit Spoon						140 lbs./30"	(feet below ground surface (ft bgs)) 27'	7.5'
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	RUCT	2	ERY		_	~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine n lt - light dk - dark	n - medium c - coarse	N/S = No Staining N/O = No odors
É		z	≃ =	17		_	it-light dk-dark	tr - trace Itl - little sl - slight	N/O = No odors
				17					
				17	- 19 -	1			19'-21': Burned wood odor, N/S
		7	0.6'	14					PID = 1.2 ppm max.
				9					
				5	0.4		Sample collected: W18STMGP-B	31-2123	
				1/2.0'	- 21 -		21.1-27.0': ML-Gray silty CLAY, tr		21'-23': N/O, N/S
		8	1.1'						PID = 1.7 ppm max.
					_ 00 _				
				WOH/2'	- 23 -				23'-25': N/O, N/S
		9	2.0'						PID = 2.4 ppm max.
					- 25 -				
				WOH/2'	23		Sample collected: W18STMGP-B	31-2527	25'-27': N/O, N/S
		10	2.0'						PID = 0.0 ppm max.
					- 27 -	Į.			
					21		E.	O.B @ 27' bgs.	
					- 29 -	ł			
					- 31 -	ł			
					- 33 -	ł			
					- 35 -	ł			
ш		ш				_			

BORING No.: MW-31A SHEET 1 OF 1

		_									
	DB NAME/ CLIENT PROJECT NO. 18th St MGP SCS/Con Edison 41318-0700-10000							AREA O East of G	F SITE as Holder	#5	
ADDF	RESS	3				n 10th	and 11th Ave		ION/DAT		
	DRILLING CONTRACTOR DRILLER ADT Lloyd Adams								PECTOR Elliott		
	DRILLING RIG TYPE/SIZE BIT CME-LC60 4.25" Hollow Stem Auger							START I 10/9/200			END DATE 10/9/2004
SAME			Έ				HAMMER WEIGHT/DROP	TOTAL D	EPTH		WATER LEVEL (ft bgs)
2" Spli	t Spo	oon					140 lbs./30"	(feet belo		d surface (ft bgs	
	NOI	S	AMI	PLES			DESCRIF	TION C	F SOIL	.S	REMARKS
	CONSTRUCTION	ER	VERY ET		Į	H.					(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	- medium tr - trace	c - coarse ltl - little	e sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.5': CONCRETE				
							0.5'-9.0': Fill-Dk brown SILT, f to c	SAND, som	e gravel, bri	ck fragments and	
					- 1 -		wood fibers.				1'-2': N/O, N/S
											PID = 0.2 ppm max.
											2'-3': N/O, N/S
											PID = 0.2 ppm max.
					- 3 -						3'-4': N/O, N/S
											PID = 0.3 ppm max.
											4'-5': N/O, N/S
											PID = 0.1 ppm max.
					- 5 -						5'-7': N/O, N/S
											PID = 0.1 ppm max.
											г ID = 0.1 ppiii iiiax.
				1	- 7 -		Sample collected: W18STMGP-B3	01 70			7'-9': SI sewage odor, N/S
		1	0.05'	1		•	Sample collected. W16S1WGF-B	01-70			
		'	0.05	2							PID = 3.5 ppm max.
				1	- 9 -						
				1/2.0'			9.0'-13.1': Fill- Lt gray f SAND, SIL	.I, tr m sand	and clay, b	rick fragments and	9'-11': SI sewage odor, N/S
		2	0.8'				wood fibers.				PID = 2.1 ppm max.
					- 11 -						
				1							11'-13': SI sewage odor
		3	0.1'	1							PID = 0.6 ppm max. in shoe
				2							
				4	- 13 -						
					-						
											14.0': Well set at 14.0' bgs.
											Screen Interval: 14.0'-4.0' bgs.
					15 -						
											Sand
					- 17 -						Bentonite Chips
					17						Concrete
											Well Screen

BORING No.: MW-34A SHEET 1 OF 1

	00					SHEET TOF T
JOB NAME/ CLIE W18th St MGP SC		son		PROJECT NO. 41318-0700-10000	AREA OF SITE South of Gas Holder #6 and north of G	as Light Co. Store Yard
ADDRESS					ELEVATION/DATUM	as Eight Co. Otolo Talu
Northern sidewalk		near We	st Sid	• •	5.83/NAVD 88	
ADT	RACTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer	
DRILLING RIG Mobile B-61				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/22/2004	END DATE 5/22/2004
SAMPLER TYPE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Split Spoon				140 lbs./30"	(feet below ground surface (ft bgs)) 12.5'	5.0'
SAN	PLES			DESCRIF	PTION OF SOILS	REMARKS
WELL CONSTRUCTION NUMBER CONSTRUCTION NUMBER CONSTRUCTION			~			(PID, STAINING, ODORS, ETC.)
WELL CONSTRUC NUMBER RECOVERY	BLOWS	DEРТН	WATER		ı - medium	N/S = No Staining
> 0 z z z	PER 6"	٥	>	It - light dk - dark 0.0'-0.5': CONCRETE	tr - trace Itl - little sI - slight	N/O = No odors
					CAND CDAYEL toward there being	
		- 1 -		fragments and co	SAND, GRAVEL, tr wood fibers, brick al fragments.	1'-2': N/O, N/S
						1-2: N/O, N/S PID = 4.1 ppm max.
						2'-3': SI petroleum odor, N/S
						PID = 0.0 ppm max.
		- 3 -		3.0-7.0': Fill-Dk gray clayev SILT i	f SAND, some m to c sand, some brick	3'-4': N/O, N/S
					s and tr wood fibers.	PID = 0.0 ppm max.
					4'-5': N/O, N/S	
		- 5 +	•	Sample collected: W18STMGP-B3	34-45	PID = 0.0 ppm max.
					5'-6': N/O, N/S	
						PID = 0.5 ppm max.
	\vdash					5'-6': N/O, N/S
	\vdash	- 7 -		7.01.45.01. Ell Dicet et en C'' T	-J CDAVELJ H to account	PID = 0.6 ppm max.
				7.0'-15.0': Fill-Black clayey SILT a	IIU GRAVEL AND ITI TO SOME SAND.	7'-9': N/O, N/S
						PID = 0.0 ppm max.
		- 9 -				9'-11': N/O, N/S
						PID = 0.0 ppm max.
						. 15 – 0.0 ppm max.
		- 11 -				11'-13': N/O, N/S
						PID = 0.0 ppm max.
		- 13 -				
		15				
		13				
						Sand
		- 17 -				Bentonite Chips
		''		Well set at 12.5' bgs.		Concrete
				Screen interval from 12.0' to 2.0' bo	gs with 6" sump from 12.5' to 12.0' bgs.	Well Screen

BORING No.: SB-34 SHEET 1 OF 5

	B NAME/ CLIENT PROJECT NO. 8th St MGP SCS/Con Edison 41318-0700-10000							AREA OF SITE South of Gas Holder #6 and north of	Gas Light Co. Store Yard	
ADD	RESS	3				est Sic	le Highway	ELEVATION/DATUM 5.59/NAVD 88		
	LING			ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans		
DRIL	LING le B-6		}			4 2	TYPE/SIZE BIT 25"/3.25" Hollow Stem Auger	START DATE 8/10/2004	END DATE 8/12/2004	
	IPLEF		PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Sp	olit Spo	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 75' 7.5'		
	NO	S	AMI	PLES			DESCRIF	PTION OF SOILS	REMARKS	
	CONSTRUCTION	ER	/ERY :T		I	œ			(PID, STAINING, ODORS, ETC.)	
WELL	CONS	NUMB	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine m lt - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors	
							0.0'-0.5': CONCRETE	·		
					$\lfloor \ _{\scriptscriptstyle A} \ \rfloor$		0.5'-3.0': Fill-Dk brown SILT, f to c	SAND, GRAVEL, tr wood fibers, brick		
					- 1 -		fragments and co	al fragments.	1'-2': N/O, N/S	
									PID = 4.1 ppm max.	
									2'-3': SI petroleum odor, N/S	
					- 3 -				PID = 0.0 ppm max.	
					3			f SAND, some m to c sand, some brick	3'-4': N/O, N/S	
							and coal fragment	s and tr wood fibers.	PID = 0.0 ppm max.	
									4'-5': N/O, N/S	
					- 5 -		Sample collected: W18STMGP-B3	34-45	PID = 0.0 ppm max.	
					3				5'-6': N/O, N/S	
									PID = 0.5 ppm max.	
									5'-6': N/O, N/S	
					- 7 -				PID = 0.6 ppm max.	
				1	'	V	7.0'-15.0': Fill-Black clayey SILT a	nd GRAVEL and Itl to some sand.	7'-9': N/O, N/S	
		1	0.3'	1					PID = 0.0 ppm max.	
				2						
				2	- 9 -					
				1	Ĭ				9'-11': N/O, N/S	
		2	0.4'	1					PID = 0.0 ppm max.	
				1						
				1	- 11 -					
				2					11'-13': N/O, N/S	
		3	0.3'	1					PID = 0.0 ppm max.	
				1						
				2	13 -				10 15 N/O N/O	
				1					13'-15': N/O, N/S	
		4	0.3'	1					PID = 0.0 ppm max.	
				1						
				2	15 -		45 01 40 01; EIII MA	anno anno III antitio and the face of	45! 47!: N/O N/O	
		_	17	1			115.0-19.0: FIII-M to c SAND, Itl to	some gravel, Itl cobble and brick fragments.	15'-17': N/O, N/S	
		5	1.7'	2					PID = 0.0 ppm max.	
				1						
				3	- 17 -				17/ 10/- N/O N/O	
		_	1.01	WOH					17'-19': N/O, N/S	
ш		6	1.6'	1					PID = 0.0 ppm max.	

BORING No.: SB-34 SHEET 2 OF 5

	NAN			IT S/Con Edi	ison		PROJECT NO. AREA OF SITE 41318-0700-10000 South of Gas Holder #6 and north of G	AREA OF SITE South of Gas Holder #6 and north of Gas Light Co. Store Yard			
ADD	DRES	s				est S	ELEVATION/DATUM ide Highway 5.59/NAVD 88	ao Eigili eo. etele i ala			
DRII	LLING			ACTOR	THOU TY	201 0	DRILLER TRC INSPECTOR				
ADT	LLING	3 RIG	3				Sean Miller Morgan Evans TYPE/SIZE BIT START DATE	END DATE			
	ile B-6		'DE			4.	25"/3.25" Hollow Stem Auger 8/10/2004 HAMMER WEIGHT/DROP TOTAL DEPTH	8/12/2004 WATER LEVEL (ft bgs)			
	olit Sp		PE				(feet below ground surface (ft bgs)) 140 lbs./30" 75'	7.5'			
2 3		_	AMI	PLES			DESCRIPTION OF SOILS	REMARKS			
	CTIO										
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f-fine m-medium c-coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining			
3	- 8	ž	RE	PER 6"	<u> </u>	W	lt-light dk-dark tr-trace ltl-little sl-slight	N/O = No odors			
				2							
				3	- 19 -		19.0'-21.0': Fill-V f to m SAND, some silt and brick fragments.	19'-21': Visible OLM and sheen, N/O, N/S			
		7	1.0'	6				PID = 0.0 ppm max.			
				9							
				12 12	- 21 -		Sample collected: W18STMGP-B34-20.521 21.0'-51.0': ML-Gray silty CLAY, tr f sand, cobbles, shell fragments and tr organic:	241 221. OLM sutside of access N/O N/C			
		8	1.7'	15			21.0-51.0. ML-Gray Siny GLAT, it it sairu, coobles, sheli fragments and it organic	PID = 6.0 ppm max.			
				11							
				11	- 23 -						
				2				23'-25': N/O, N/S			
		9	1.7'	1				PID = 8.2 ppm max.			
				5	- 05 -						
				3	- 25 -		0.0'-25.0': Temporary casing set on 8/10/04, allowed to set overnight and	25'-27': N/O, N/S			
		10	2.0;	5			completed using 3.25" HSA on 8/12/04.	PID = 3.6 ppm max.			
				4				25'-27': N/O, N/S			
				6	- 27 -			27'-29': N/O, N/S			
		11	1.2'	6				PID = 2.1 ppm max.			
				6							
				6 9	- 29 -		Sample collected: W18STMGP-B27-28.529	29'-31': N/O, N/S			
		12	0.1'	50/4				PID = 0.0 ppm max.			
					- 31 -						
		40	2.01	4				31'-33': N/O, N/S			
		13	2.0'	6				PID = 0.0 ppm max.			
				12	- 22 -						
				3	- 33 -			33'-35': N/O, N/S			
		14	2.0'	7			040,044,000	PID = 0.0 ppm max.			
				6 4			34.2'-34.4': Organic peat layer				
				5	- 35 -			35'-37': N/O, N/S			
		15	2.0'	5				PID = 0.0 ppm max.			

BORING No.: SB-34 SHEET 3 OF 5

JOB	NI A BA	E/ C		,			PROJECT NO.	AREA OF	CITE		OHEET 3 OF 3
				/Con Edi	son		41318-0700-10000			er #6 and north of G	as Light Co. Store Yard
ADD	RESS	;				est S	Side Highway	ELEVATIO 5.59/NAVD	N/DATU		
DRIL ADT	LING	СО	NTR	ACTOR			DRILLER Sean Miller	TRC INSPI Morgan Ev			
DRIL Mobile			;			4.	TYPE/SIZE BIT 25"/3.25" Hollow Stem Auger	START DA 8/10/2004	ATE		END DATE 8/12/2004
SAMI	PLEF	TY	PE				HAMMER WEIGHT/DROP	TOTAL DE			WATER LEVEL (ft bgs)
2" Spl	it Spo						140 lbs./30"	75'		d surface (ft bgs))	7.5'
	NOIL	S	AMF	PLES			DESCRI	PTION OF	SOIL	-S	REMARKS
	CONSTRUCTION	Ä	VERY ET		Ξ	监					(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m It - light dk - dark	- medium of tr - trace		sl - slight	N/S = No Staining N/O = No odors
				6			36.0'-36.1': Organic peat layer.				
				11	- 27 -						
				6	- 37 -		37.0': Dimishing amount of shell fr	agments in silt	y clay.		37'-39': N/O, N/S
		16	2.0'	4							PID = 0.0 ppm max.
				6							
				6	00						
				4	- 39 -						39'-41': N/O, N/S
		17	0.1'	12							PID = 0.0 ppm max.
				16							
				10							
				6	- 41 -						41'-43': N/O, N/S
		18	2.0'	4							PID = 0.0 ppm max.
				4							
				8							
				6	- 43 -						43'-45': N/O, N/S
		19	2.0'	8							PID = 0.0 ppm max.
			2.0	9							i ib = oto ppii maxi
				10							
				5	45 -						45'-47': N/O, N/S
		20	2.0'	7							PID = 0.0 ppm max.
		20	2.0	12							1 10 = 0.0 ррпі пах.
				20							
				8	- 47 -						47'-49': N/O, N/S
		21	2.0'	17							PID = 0.0 ppm max.
		21	2.0	24							FID = 0.0 ppin max.
				50/3							
				50/3	- 49 -						49'-51': N/O, N/S
		22	1.0'	35							
		22	1.0	35							PID = 0.0 ppm max.
				50/2							
				9	- 51 -		51.0'-57.0': SM-Lt to medium brow	n SILT and v f	to m SAN	ID.	E4! E3!: N/O N/C
		23	0.2								51'-53': N/O, N/S
		23	0.2	14							PID = 0.0 ppm max.
				12							
				50/1	- 53 -						501 551 N/O N/O
											53'-55': N/O, N/S
		24	1.6'								PID = 0.0 ppm max.

BORING No.: SB-34 SHEET 4 OF 5

							PROJECT NO.	AREA OF SITE	
_	th St N		SCS	S/Con Edi	ison		41318-0700-10000	South of Gas Holder #6 and north of G ELEVATION/DATUM	as Light Co. Store Yard
			valk o	n 19th St	t near W	est S	ide Highway	5.59/NAVD 88	
DRII ADT		CC	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
	LLING		3				TYPE/SIZE BIT	START DATE	END DATE
	le B-6		PF				4.25"/3.25" Hollow Stem Auger HAMMER WEIGHT/DROP	8/10/2004 TOTAL DEPTH	8/12/2004 WATER LEVEL (ft bgs)
	olit Spo		-				140 lbs./30"	(feet below ground surface (ft bgs))	7.5'
2 0			ΑМ	PLES				ION OF SOILS	REMARKS
	CTIO								
بـ	CONSTRUCTION	BER	OVER ET		Ŧ	Ä			(PID, STAINING, ODORS, ETC.)
WELL	CON	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER		nedium c - coarse - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
					- 55 -				
		25	0.01	13					55'-57': N/O, N/S
		25	0.0'	15 18					PID = 0.0 ppm max.
				14					
				5	- 57 -	1	57.0'-59.0': GW-Brown C SAND and v f to	m rounded GRAVEL.	57'-59': N/O, N/S
		26	1.0'	7					PID = 0.0 ppm max.
				10					
				13	- 59 -				
				7	55			AND and f subangular GRAVEL. As depth ravel grade to coarser and more angular grains.	59'-61': N/O, N/S
		27	0.7'	12			ilicieases, salid alid g	naver grade to coarser and more angular grains.	PID = 0.0 ppm max.
				9					
				14	- 61 -	ł			61'-63': N/O, N/S
		28	0.9'	12					PID = 0.0 ppm max.
		20	0.5	6					1 1D = 0.0 ppm max.
				9	-00				
				29	63 -				63'-65': N/O, N/S
		29	0.8'	14					PID = 0.0 ppm max.
				50/3					
					- 65 -				
			l	8					65'-67': N/O, N/S
		30	1.7'	7 10					PID = 0.0 ppm max.
				10					
				5	67 -	1			67'-69': N/O, N/S
		31	1.1'	9					PID = 0.0 ppm max.
				12					
				6	- 69 -				
				15	03				69'-71': N/O, N/S
		32	0.4'	18					PID = 0.0 ppm max.
				18					
				20 15	71 -		71.0'-73.0': SM-V f to f SAND and SILT		71'-73': N/O, N/S
		33	0.4'	15			71.0-73.0: SIM-V 1 (0) SAIND AND SIL I		PID = 0.0 ppm max.
_		JJ	0.4	10		_			1 15 = 0.0 ppiii iliax.

BORING No.: SB-34 BORING LOG

SHEET 5 OF 5 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 South of Gas Holder #6 and north of Gas Light Co. Store Yard ELEVATION/DATUM ADDRESS Northern sidewalk on 19th St near West Side Highway 5.59/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE END DATE 4.25"/3.25" Hollow Stem Auger Mobile B-61 8/10/2004 8/12/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 75' 7.5' **DESCRIPTION OF SOILS** REMARKS **SAMPLES** CONSTRUCTION RECOVERY IN FEET (PID, STAINING, ODORS, ETC.) NUMBER DEPTH WATER MELL **BLOWS** N/S = No Staining f - fine m - medium c - coarse PER 6" It - light dk - dark tr - trace Itl - little sl - slight N/O = No odors 17 14 73 50/3 73.0'-75.0': GW-Angular and subangular f to c GRAVEL. 73'-75': N/O, N/S 34 0.2' $\mathsf{PID} = 0.0 \; \mathsf{ppm} \; \mathsf{max}.$ 75.0': Refusal (believed to be Bedrock-Schist) 75 -E.O.B. at 75.0' bgs (Refusal at Bedrock) 77 79 81 83 -85 -87 89

BORING No.: SB-32 SHEET 1 OF 2

BOI	ZIII	U	LU	G					SHEET 1 OF 2
JOB N	MAN	/ CI	LIEN	Ī			PROJECT NO.	AREA OF SITE	
W18th	St M	GP:	SCS/	Con Ediso	on		41318-0700-10000	NE corner of W 19th St Parking Lot	
ADDR W 19th			ng Lo	it				ELEVATION/DATUM 6.97/NAVD 88	
DRILL ADT	ING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer	
DRILL Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/22/2004	END DATE 5/22/2004
SAMF	LER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Spl	it Spo						140 lbs./30"	29'	4.5'
	NOI			PLES			DESCRI	REMARKS	
١.	CONSTRUCTION	ER	VERY ET		#	R			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCT NUMBER RECOVERY RECOVERY OF 9134 IN FEET TEST SADA NATER WATER				DEPT	WAT	f - fine lt - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.2': CONCRETE.		
					1 -		0.2'-2.0': Fill-Dk to It brown f to c silty brick fragments.	SAND, tr clay, wood fibers, concrete and	
							, and the second		1': N/O, N/S PID (headspace) = 0.5 ppm max.
							 2.0'-3.0': Fill-Dk to lt brown f to c silty brick fragments. 	SAND, tr clay, wood fibers, concrete and	
							_	CAND to along wood fibers, concrete	2': N/O, N/S, PID = 1.2 ppm max.
					- 3 -		brick fragments.	SAND, tr clay, wood fibers, concrete and	3': N/O, N/S
							4.5'-5.0': Fill-Dk gray SILT, f to c SA	ND, GRAVEL, some wood fibers, glass and	.,
							brick fragments.		4.5': Sulfur-like odor and N/S
					- 5 -		Sample collected: W18STMGP-B32	-45	PID = 0.2 ppm max.
		1	1.6'	8			5.0'-6.6': Fill/ML-Dk gray silty CLAY, tr brick fragme		5': Sulfur-like odor and N/S PID (headspace) = 1.2 ppm max.
		'	1.0	2					5'-7': SI petroleum odor, blk staining
				5	L "				PID = 0.3 ppm max.
				6	7 -		7.0'-9.0': No Recovery		
		2	0.0'	6					
				5					
				6	- 9 -				
		_	1.51	4			9.0'-10.5': Fill/ML-Dk gray SILT and tr brick fragm	CLAY, some f to c sand and f gravel, ents and concrete.	9'-11': SI petroleum odor, moderate organic odor and tr blk staining
		3	1.5'	7	1				PID = 1.2 ppm max.
				1					
				4	- 11 -		11.0'-12.5': Fill/ML-Dk gray silty CLA	Y, some f to c sand and m gravel.	11'-13': SI petroleum and organic odor,
		4	1.7'	12			Sample collected: W18STMGP-B32		N/S White substance has sheen
				18			12.5'-12.7': Fill/SW-Reddish brown f		PID = 3.5 ppm max.
				20	13 -		an unidentifia	able white sandy substance.	
				6			13.0'-14.0': Fill/ML-Dk gray silty CLA	Y, some f to c sand and m gravel.	13'-15': N/O, N/S
		5	1.2'	8			440,440, 5,000	ODAVEL 11 11 11 11 11 11 11 11 11 11 11 11 11	PID = 0.4 ppm max.
				9			14.0-14.2': Fill/SW-1 an f to c SAND	, m GRAVEL and tr silt and brick fragments.	
				7	- 15 -		15.0'-16.0': Fill-Tan SILT, f to c SAN	D and GRAVEL, tr gray soil and	15'-17': N/O, blk staining
		6	2.0'	13			white substance (PID = 0.3 ppm max.
				9			16.0'-17.0': Fill-Blk slag and coal fraç	gments and tr brick fragments.	
				20	17 -				
				17	''		17.0'-18.5': Fill-Blk slag and coal fraç	gments and tr brick fragments.	17'-19': N/O, blk staining
	7 1.5' 17 17.0'-18.5': F								PID = 0.4 ppm max.

BORING LOG

BORING LOG

BORING No.: SB-32

SHEET 2 OF 2

BORING LOG									SHEET 2 OF 2
JOB NAME/ CLIENT W18th St MGP SCS/Con Edison							PROJECT NO.	AREA OF SITE	
	h St M RESS		SCS/0	Jon Ediso	n		41318-0700-10000	NE corner of W 19th St Parking Lot ELEVATION/DATUM	
19t	h St P	arkir	•					6.97/NAVD 88	
NDT	LING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer	
RIL	LING	RIG					TYPE/SIZE BIT	START DATE	END DATE
	le B-6°		F				4.25" Hollow Stem Auger HAMMER WEIGHT/DROP	5/22/2004 TOTAL DEPTH	5/22/2004 WATER LEVEL (ft bgs)
	lit Spo		-				140 lbs./30"	(feet below ground surface (ft bgs))	4.5'
, op		_	AMI	PLES	1			IPTION OF SOILS	REMARKS
	CONSTRUCTION								
4	STRL	BER	OVEF EET		Ę	띮			(PID, STAINING, ODORS, ETC.)
WELL	NOON NORTH N					WAT	f - fine It - light dk - dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				13					
				12	19 -	<u> </u>			
				10	'		19.0'-20.0': Fill-Dk gray SILT, f to c : brick fragments.	SAND and GRAVEL and some slag and	19'-21': N/O, blk staining, sl sheen
		8	1.0'	16	}				PID = 0.5 ppm max.
				25 46	1				
				25	21 -	t	21 0'-21 5': Fill-Dk gray SILT f to c	SAND and GRAVEL and some slag and	21'-23': N/O, N/S
		9	1.0'	15	Ì		brick fragments.	SAME and Grave Education and and	PID = 0.4 ppm max.
				25	Ī		21.5-22.0': Fill-Brown SILT, f to c SA		
				30	23 -		Sample collected: W18STMGP-B32	-2123	
				7	23		23.0'-24.8': ML-Dk gray silty CLAY,	23'-25': N/O, N/S	
		10	1.8'	6					PID = 0.0 ppm max.
				12					
				25	25 -	1			
		11	1.2'	10			25.0'-26.2': ML-Dk gray silty CLAY, white shell string	tr f to m sand and f gravel, organic matter and ger at 25.8' bgs.	25'-27': Organic odor, N/S
		11	1.2	7					PID = 0.0 ppm max.
				9					
				4	27	1	27.0'-29.0': ML-Dk gray silty CLAY,	tr vf to f sand, white shells and organic matter.	27'-29': Organic odor, N/S
		12	2.0'	6	İ				PID = 0.0 ppm max.
				13					
				12	29 -	ļ			
								E.O.B. at 29' bgs	
					31 -	t			
					ł				
					Ì				
					33 -	Ī			
]				
					ļ				
					35 -	1			
		Ī	Ī	1	1	1	Ī		1

BORING No.: SB-33 SHEET 1 OF 3

BORING LOG									SHEET 1 OF 3
	NAM						PROJECT NO.	AREA OF SITE	
	h St M		SCS/	Con Ediso	on		41318-0700-10000	Middle of W 19th St Parking Lot ELEVATION/DATUM	
W 19	th St F	Parki						6.50/NAVD 88	
DRIL ADT		CO	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	LING ile B-6		i				TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAM	IPLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Sp	lit Spc	on					140 lbs./30"	(feet below ground surface (ft bgs)) 41'	5'
	NC	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
=	CONSTRUCTION	NOW BEAUTION OF THE COORSE HE STATE OF THE COORSE HE STATE OF THE COORSE It - light dk - dark tr - trace itl - little sl - slight					(PID, STAINING, ODORS, ETC.)		
WELL	Ö	NON	REC	PER 6"	DEI	WA		tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.1': CONCRETE		
					1 -		0.1'-2.0': Fill-Brown f to c silty SAND, slag and tr wood fiber	GRAVEL, tr brick fragments, concrete,	
									1': N/O, N/S PID (headspace) = 0.7 ppm max.
							2.0'-3.0': Fill-Brown f to c silty SAND, slag and tr wood fiber	, GRAVEL, tr brick fragments, concrete, s.	2': N/O, N/S
									PID (headspace) = 1.2 ppm max.
					- 3 -		3.0'-4.0': Fill-Brown f to c silty SAND,	GRAVEL, tr brick fragments, concrete,	3': N/O, N/S, PID = 0.2 ppm max.
							slag and tr wood fiber		PID (headspace) = 1.4 ppm max.
								GRAVEL, tr brick fragments, concrete,	4': N/O, N/S
					5 -	Y	slag and tr wood fiber	S.	PID (headspace) = 0.9 ppm max.
				15	ľ		Sample collected: W18STMGP-B33-	-45	5'-7': Petroleum-like odor, N/S, sheen
		1	0.2'	50			5.0'-5.2': Fill-Brown SILT, f to c SANI wood fibers.	D, GRAVEL and 2" of brick fragments and	PID = 13.6 ppm max.
				54			wood libers.		
				56	7 -				
		2	1.3'	82 16			7.0'-7.3': Fill-Brick fragments, GRAVE		7'-9': N/O, N/S
		2	1.3	10			7.3'-8.3': Fill-Gray f to c SAND, GRA	VEL and brick fragments.	PID = 0.2 ppm max.
				12					
				54	9 -		9.0'-9.8': Fill-Dk gray f to m silty SAN	D and tr gravel.	9'-11': N/O, N/S, tr sheen
		3	0.8'	100/3				•	PID = 0.0 ppm max.
					 - 11				
				4	''		11.0'-12.0': Fill-Dk gray f to c SAND, 1" f sand lense.	tr silt, brick fragments and organics and	11'-13': SI odor, N/S
		4	1.0'	- 8					PID = 0.1 ppm max.
				15	ł		Sample collected: W18STMGP-B33-	-1113	
				13 15	13 -		13 0'-14 1's Fill/SP-Dk grov a SAND	tr silt, f to m sand, gravel, blk organics and	13'-15': N/O, N/S
		5	1.1'	12			brick fragments		PID = 0.0 ppm max.
		Ī		12	1		Sample collected: W18STMGP-B33-	-1315	
				12	15 -				
				11	15 -			tr silt, f to m sand, gravel, blk organics and	15'-17': N/O, N/S
		6	1.5'	22			brick fragment	ts.	PID = 0.0 ppm max.
				11			16.3'-16.5': Fill/SP-V f SAND lense.		
				15	17 -				
				25	ł		17.0'-17.5': Fill/SP-Dk gray f SAND.		17'-19': N/O, N/S
ш		7	1.4'	17			17.5'-18.4': Fill/SW-Dk gray m to c S.	AND, GRAVEL and brick fragmenrs.	PID = 0.0 ppm max.

BORING LOG

BORING LOG

BORING No.: SB-33
SHEET 2 OF 3

	NAME n St M			Γ Con Edisc	on		PROJECT NO. A 41318-0700-10000	REA OF SITE	
ADDI	RESS h St P						E	LEVATION/DATUM 50/NAVD 88	
_				CTOR				RC INSPECTOR sssica Elliott	
	LING le B-6							TART DATE /16/2004	END DATE 5/16/2004
SAM	PLER	TYF	PΕ					OTAL DEPTH eet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Spl	it Spo	on					140 lbs./30"	41'	5'
	NO.	S	AMI	PLES			DESCRIPT	ION OF SOILS	REMARKS
	CONSTRUCTION	3ER	RECOVERY IN FEET		E	띪			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECC IN FE	BLOWS PER 6"	DEPTH	WATER		nedium c - coarse - trace	N/S = No Staining N/O = No odors
				36					
				23	- 19 -				
		8	0.3'	25			19.0'-19.3': Fill/SP-Brownish gray c SANE	O and tr gravel.	19'-21': N/O, N/S
		٥	0.3	37 36					PID = 0.1 ppm max.
				22	- 21 -				
				6	21		21.0'-22.0': Fill/SP-Brownish gray c SANE tr gravel and tr wo		21'-23': N/O, N/S, but in shoe, blk
		9	1.0'	12			tr gravei and tr wo	ood libers in snoe.	staining, MGP-related OLM odor and sheen
				16				PID = 60.2 ppm max.	
				12	- 23 -		23.0'-25.0': Fill/SP-Brownish gray m to c	SAND	23'-25': SI OLM odor, N/S
		10	2.0'	24			20.0 20.0. Tillion Blownian gray in to 0	OARD.	PID = 2.1 ppm max.
				54					
				100/2	- 25 -				
				15			25.0'-27.0': Fill/SP-Brownish gray m to c	SAND.	25'-27': N/O, N/S, tr sheen
		11	2.0'	24					PID = 6.8 ppm max.
				38 36					
				48	- 27 -		27.0'-27.1': Drilling through wood timbers	. Wood timbers, dk gray c SAND, GRAVEL,	27'-29': Strong OLM odor, blk staining
		12	0.1'	36			some brick fragments and		PID = 11.4 ppm max.
				100/1					
					- 29 -				
				100/4			29.0'-31.0': No Recovery. Some wood fit	pers in spoon.	29'-31': OLM odor, blk staining and tr sheen
		13	0.0'						PID = 2.4 ppm max.
				27	- 31 -		31.0'-33.0': No Recovery		
		14	0.0'	10					
				10					
				6	- 33 -		00 01 05 01 N. D		
		15	0.0'	14			33.0'-35.0': No Recovery		
		13	0.0	6					
				6	25 -]
				7	- 35 -		35.0'-37.0': ML-Dk gray silty CLAY with a	lot of wood fibers.	35'-37': Strong OLM odor in wood, N/S
		16	2.0'	6		_	Sample collected: W18STMGP-B33-353	7	PID = 14.2 ppm max.

BORING No.: SB-33 BORING LOG SHEET 3 OF 3

RO	BORING LOG JOB NAME/ CLIENT								SHEET 3 OF 3
							PROJECT NO.	AREA OF SITE	
			SCS/0	Con Edisc	on		41318-0700-10000	Middle of W 19th St Parking Lot	
W 19t	RESS th St P	arkiı	-					ELEVATION/DATUM 6.50/NAVD 88	
DRIL ADT	LING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL Mobi	LING le B-6	RIG 1					TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAM	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Spl	lit Spo	on					140 lbs./30"	(feet below ground surface (ft bgs)) 41'	5'
	NOI	S	AM	PLES			DESCRIP	TION OF SOILS	REMARKS
	RUCT	H.	/ERY		_	œ			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f-fine m- lt-light dk-dark f	medium c - coarse r - trace ttl - little sl - slight	N/S = No Staining N/O = No odors
			<u> </u>	8			it-light uk-uark	ir-trace itt-fittle si-siigiit	N/O = NO OUDIS
				10					
				7	37 -		37.0'-39.0': ML-Dk gray silty CLAY with a lo	of wood fibers.	37'-39': N/O, N/S
		17	2.0'	7	I				PID = 2.4ppm max.
				8	Ī				
				10	1				
				7	39 -	1	39.0'-41.0': ML-Dk gray silty CLAY with a lo	of wood fibers.	39'-41': N/O, N/S
		18	2.0'	7	Ī		Sample collected: W18STMGP-B33-3941		PID = 1.2 ppm max.
			2.0	6	1		Campio concessos. Wice inter- Boo com		1 12 - 112 pp. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				8	Ť				
				- 8	41	ł		D at Miles	
					1		E.O	B. at 41' bgs	
					+				
					ļ				
					43 -	ļ			
					10				
					ļ				
					ļ				
					L				
					45				
					Ī				
					Ī				
					Ť				
					47	ł			
					†				
					1				
					1				
					49 -	ļ			
					1				
					ļ				
					<u> </u>				
					E1 -]			
					51 -	1			
					1				
					Ī				
					Ī				
					55	1			
					†				
					t				
					†				
			l	ĺ	1	ı	I		

BORING No.: SB-36 SHEET 1 OF 2

			LU						SHEET TOF 2
JOB	NAM	E/ CI	IENT				PROJECT NO.	AREA OF SITE	
W18th	St M	IGP :	SCS/	Con Edisc	on		41318-0700-10000	SW corner of W 19th St Parking Lot	
ADD								ELEVATION/DATUM	
W 19t	h St F	Parki	ng Lo	t				6.44/NAVD 88	
DRIL I ADT	LING	CON	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL	LING	RIG					TYPE/SIZE BIT	START DATE	END DATE
Mobil							4.25" Hollow Stem Auger	5/8/2004	5/8/2004
SAMI	PI FR	TYF	F				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Sp			_				140 lbs./30"	(feet below ground surface (ft bgs))	4.5'
	N	S	AMI	PLES			DESCRI	REMARKS	
	CONSTRUCTION	~	яY						(PID, STAINING, ODORS, ETC.)
WELL	NSTF	NUMBER	RECOVERY IN FEET	BLOWS	рертн	WATER	f - fine	N/S = No Staining	
≥ .	្ដ	ž	₩ Z	PER 6"	Δ	8	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors
							0.0'-1.5': CONCRETE		
					- 1 -				
								AND, GRAVEL, and some concrete,	1.5': N/O, N/S
						l	wood fibers and bric	к rragments.	PID (headspace) = 0.5 ppm max.
							2.0'-3.0': Fill-Dk brown SILT, f to c S	AND GRAVEL and come concrete	2': N/O, N/S
						l	wood fibers and bric		PID (headspace) = 0.2 ppm max.
					- 3 -			· ·	, , , , ,
					Ů		3.0'-5.0': Fill-Dk brown SILT, f to c S		3': N/O, N/S, PID = 0.2 ppm max.
							wood fibers and bric	k fragments.	PID (headspace) = 0.2 ppm max.
						•	Sample collected: W18STMGP-B36		
					- 5 -				
				4	- 5 -		5.0'-5.5': Fill-Blk SILT, f to c SAND,	GRAVEL, some concrete, wood fibers	
			0.51	40			and brick fragments.		51-71-5 A. H. H. H. H. H. H. H. H. H. H. H. H. H.
		1	0.5'	10					5'-7': Petroleum-like odor, blk staining
				100/2			Sample collected: W18STMGP-B36	-57	PID = 0.0 ppm max.
					_				
				40	- 7 -		7 O' 7 1's Fill Pile Cil T fac a CAND	GRAVEL, some concrete brick fragments	7'-9': Petroleum-like odor, blk staining
							and wood fibers with		visible sheen
		2	0.1'	100/0			and nood hoore man	oone motal corape.	
									PID = 0.2 ppm max.
						l			
					- 9 -	l			
				25		l	9.0'-10.0': Fill-Gray SILT, f to c SAN		9'-11': N/O, N/S, sl sheen
		3	1.0'	42		l	brick fragments and	u wood libers.	PID = 0.0 ppm max.
				18					
						l			
				9	- 11 -	l			
				2		l	11.0'-13.0': Fill-Gray SILT, f to m SA	ND, tr c sand, gravel and brick fragments.	11'-13": N/O, N/S
		4	2.0'	1		l			PID = 0.0 ppm max.
				6		l			
						l			
				5	- 13 -				
				2		l	13.0'-15.0': Fill/SM-Brownish graySII	LT, f SAND, tr m sand, organics and	13'-15': N/O, N/S
		5	2.0'	2		l	wood fibers.		PID = 0.0 ppm max.
		Ĭ	2.0			l			. 15 – 0.0 рры шах.
				2		l			
		15							
				2	15		15.0'-17.0': Fill/SM-Brown f sandy SI	LT with .25' thick f sand lenses and tr	15'-17': SI organic odor, N/S
		wood fibers							-
		6	2.0'	3					PID = 0.0 ppm max.
				3		l			
			5						
					- 17 -		17 0' 10 0'; Fill/OM Brown f +: 0'	LT with .25' thick f sand lenses and tr	17' 10's Stargania adar N/S
				1		l	17.0'-19.0': Fill/SM-Brown t sandy SI wood fibers.	LT WILLT .25 TRICK I SAND IENSES AND TO	17'-19': SI organic odor, N/S
		7	2.0'	1			wood ribers.		PID = 0.0 ppm max.

BORING No.: SB-36 BORING LOG SHEET 2 OF 2

JOB NAME/ CLIENT									SHEET 2 OF 2
				Con Ediso	ın		PROJECT NO. 41318-0700-10000	AREA OF SITE SW corner of W 19th St Parking Lot	
ADD	RESS th St P							ELEVATION/DATUM 6.44/NAVD 88	
			•	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRIL	LING le B-6	RIG 1					TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/8/2004	END DATE 5/8/2004
SAM	PLER	TYF	E				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Sp	olit Spo						140 lbs./30"	35'	4.5'
	NOIL	S	AMI	PLES			DESCRIPT	TION OF SOILS	REMARKS
_	CONSTRUCTION	BER	RECOVERY IN FEET		E	띪			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVE IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m - lt - light dk - dark t	medium c - coarse r - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				1	1		Sample collected: W18STMGP-B36-1719		
İ				1	19 -	ļ			
							19.0'-21.0': Unable to sample because the a	uger driller passed the interval.	19'-21': N/A
		8	0.0'						
					L				
	3 21			21 -		21.0'-23.0': Fill/SP-Gray f SAND and tr brow		21'-23': N/O, N/S	
	9 2.0' 3			<u> </u>		Tar and gravel in sho	e.	PID = 0.0 ppm max.	
				100/1	<u> </u>				
				100/2	23 -	1	23.0'-23.2': Fill/SP-Gray f SAND and tr brow	n silt and wood fibers in bottom 2" of spoon.	23'-25': Strong natural gas-like or
		10	0.3'				Tar and gravel in sho	decaying odor, N/S	
							23.2'-23.3': Fill/SP-Gray SILT, f SAND and to	r m and c and. Wood fibers in shoe.	PID = 0.0 ppm max.
					25 -	-			
		11	2.0'	3			25.0'-27.0': Fill/SW-Gray SILT, f to m SAND, silty sand, tar and sh		25'-27': Strong natural gas-like or decaying odor, N/S
1			2.0	4			Sample collected: W18STMGP-B36-2527		PID = 219 ppm max.
				5					
				4	27		27.0'-28.0': SP-Dk gray SILT, f SAND, shell	fragments, tar-like viscous material and	27'-29': N/O, N/S
		12	2.0'	3	ļ		wood fibers.		PID = 24.1 ppm max.
				2	<u> </u>		28.0'-29.0': ML-Dk gray silty CLAY and shell	fragments.	
				1	29 -	1	29.0'-30.5': ML-Dk gray silty CLAY and shell	fragments	29'-31': N/O, N/S
		13	1.5'	2	†		25.0 50.0. WILLDIN gray Silty OLAT and Shell	nagmonto.	PID = 0.0 ppm max.
				3					
				3	31 -	1			
				3	ا د		31.0'-33.0': ML-Dk gray silty CLAY and shell	fragments.	31'-33': N/O, N/S
		14	2.0'	2	}				PID = 0.0 ppm max.
				2	 				
	2 33 33.0'-34.7': ML-Dk gray			†	33.0'-34.7': ML-Dk gray silty CLAY and shell	fragments.	33'-35': N/O, N/S		
	15 1.7' 4 Sample collected: W18STMGP-B36-3335					- ' '		PID = 0.0 ppm max.	
	4								
	5 35				1				
	35				E.O.	B. at 35' bgs			
					}				
							l .		

BORING No.: SB-38 SHEET 1 OF 2

ВОІ	ZIIV	U	LO	G					SHEET 1 OF 2
JOB N							PROJECT NO.	AREA OF SITE	
_			SCS/	Con Ediso	on		41318-0700-10000	NW corner of W 19th St Parking Lot	
ADDR W 19th			ng Lo	t				ELEVATION/DATUM 6.82/NAVD 88	
DRILL ADT	ING	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILL Mobile					_		TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAMF	PLER	TYF	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Spl	it Spo	oon					140 lbs./30"	25'	4.6'
	NO	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
-	CONSTRUCTION	NUMBER	RECOVERY IN FEET		ЕРТН	IER			(PID, STAINING, ODORS, ETC.)
WELL	CON	MUN	REC IN FE	BLOWS PER 6"	DEP	WATER		m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-1.5': CONCRETE		
					L 1 -				
							1.5'-2.0': Fill-Brown SILT, f to c SAN brick fragments, tr w	ID, GRAVEL, CONCRETE, some rood fibers and coal fragments.	1.5': N/O, N/S, PID = 0.0 ppm max.
							2.0'-5.0': Fill-Brown SILT, f to c SAN brick fragments, tr w	ID, GRAVEL, CONCRETE, some rood fibers and coal fragments.	
					- 3 -				3': N/O, N/S PID (headspace) = 0.1 ppm max.
						\	Sample collected: W18STMGP-B38	-45	4': N/O, N/S PID (headspace) = 0.3 ppm max.
				10	- 5 -		5.0'-7.0': No Recovery. Brown SILT		
		1	0.0'	15 50/2					5'-7': SI odor, N/S and visible sheen PID = N/A
		2	0.05'	50/5	- 7 -		7.0'-7.05': Fill-Brown SILT, f to c SA in shoe.	ND and GRAVEL and 3" of red brick	7'-9': SI odor, N/S and visible sheen PID = 0.2 ppm max.
		3	0.05'	50/1	- 9 -		9.0'-9.05': Fill-Brown SILT, f to c SA in shoe.	ND and GRAVEL and 3" of red brick	9'-11': Sewage-like odor, N/S and sheen PID = 1.1 ppm max.
		4	0.6'	3 3 3	- 11 -		11.0'-11.6': Fill/SW-Dk grayish blk S tr brick fragme		11'-13': SI organic odor, N/S, tr sheen PID = 1.3ppm max.
		5	2.0'	3 2 2	- 13 -			ILT, f to m SAND, GRAVEL, tr gray clay and tts, brick fragments and tr wood fibers.	13'-15': SI organic odor, N/S, tr sheen PID = 0.2 ppm max.
				3			Sample collected: W18STMGP-B38	-1315	
		6	2.0'	1 3 3	- 15 -			ILT, f to m SAND, GRAVEL, tr gray clay and tts, brick fragments and tr wood fibers.	15'-17': SI organic odor, N/S, tr sheen PID = 0.3 ppm max.
		7	2.0'	3 3 2	- 17 -			ILT, f to m SAND, GRAVEL, tr gray clay and ts, brick fragments and tr wood fibers.	17'-19': N/O, N/S PID = 0.3 ppm max.

BORING No.: SB-38 SHEET 2 OF 2

BO	KIIN	J	LU	G					SHEET 2 OF 2
JOB I							PROJECT NO.	AREA OF SITE	
W18th ADDF			SCS/(Con Ediso	n		41318-0700-10000	NW corner of W 19th St Parking Lot ELEVATION/DATUM	
W 19tl	h St P	arkir	-					6.82/NAVD 88	
DRILI ADT	LING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
	DRILLING RIG TYPE/SIZE BIT START DATE Mobile B-61 4.25" Hollow Stem Auger 5/16/2004								END DATE
							HAMMER WEIGHT/DROP	TOTAL DEPTH	5/16/2004 WATER LEVEL (ft bgs)
3" Spl			_				140 lbs./30"	(feet below ground surface (ft bgs))	4.6'
о ор	_		ΑМІ	PLES				IPTION OF SOILS	REMARKS
	CONSTRUCTION								
بـ	STRU	BER	OVER ET		Ŧ	띪			(PID, STAINING, ODORS, ETC.)
WELL	CON	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine It - light dk - dark	m - medium c - coarse c tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				2					
				4	- 19 -	1	17.5'-19.0': ML-Dk gray silty CLAY.		
				5	19		19.0'-21.0': ML-Dk gray silty CLAY.		19'-21': N/O, N/S
		8	2.0'	4					PID = 0.0 ppm max.
				5 3					
				4	_ 21 _	ł	21.0'-23.0': ML-Dk grav silty CL AV	tr f sand, shell fragments and wood fibers.	21'-23': N/O, N/S
		9	2.0'	4			Sample collected: W18STMGP-B38		PID = 0.0 ppm max.
				5					
				6	- 23 -	ļ			
				10	23			tr f sand, shell fragments and wood fibers.	23'-25': N/O, N/S
		10	2.0'	8			23.3'-24.3': SP-Blk c SAND and tr g		PID = 0.0 ppm max.
				10			24.3'-25.0': SM-Lt brown SILT and f	to c SAND.	
				12	- 25 -	ł		E.O.B. at 25' bgs	
							,	L.O.D. at 20 bgs	
					- 27 -	ļ			
					21				
					- 29 -	ł			
					- 31 -]			
					31				
					- 33 -	1			
					- 25 -				
					35				

BORING No.: SB-32

SHEET 1 OF 2

DUI	7117	0	LU	G					SHEET 1 OF 2	
JOB N							PROJECT NO.	AREA OF SITE		
/V18th		_	SCS/	Con Edis	on		41318-0700-10000	NE corner of W 19th St Parking Lot ELEVATION/DATUM		
N 19th	n St P	arki						6.97/NAVD 88		
DRILLING CONTRACTOR ADT DRILLER Sean Miller Scott Fischer										
DRILLING RIG TYPE/SIZE BIT START DATE Mobile B-61 4.25" Hollow Stem Auger 5/22/2004									END DATE 5/22/2004	
AMF	LER	TYF	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)	
" Spl	it Spo	on					140 lbs./30"	29'	4.5'	
	NO	S	AM	PLES			DESCRI	REMARKS		
	CONSTRUCTION	ER	RECOVERY IN FEET		Ŧ	K.			(PID, STAINING, ODORS, ETC.)	
WELL	CONS	NUMBER	RECO IN FEE	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors	
							0.0'-0.2': CONCRETE.			
					1		0.2'-2.0': Fill-Dk to It brown f to c silty	y SAND, tr clay, wood fibers, concrete and		
					 	1	brick fragments.		1': N/O, N/S	
***************************************	***************************************						2 0'-3 0' Fill-Dk to it brown f to a sith	y SAND, tr clay, wood fibers, concrete and	PID (headspace) = 0.5 ppm max.	
***************************************							brick fragments.	y SAND, it clay, wood libers, condete and	OL NIO NIO DID. 40	
							0.015.01.571.01.1.11		2': N/O, N/S, PID = 1.2 ppm max.	
					 3 -	ł	brick fragments.	y SAND, tr clay, wood fibers, concrete and		
									3': N/O, N/S	
							4.5'-5.0': Fill-Dk gray SILT, f to c SA brick fragments.	ND, GRAVEL, some wood fibers, glass and		
							2.101.7287.7011.0		4.5': Sulfur-like odor and N/S	
					- 5 -	ļ	Sample collected: W18STMGP-B32	2-45	PID = 0.2 ppm max.	
		1	1.6'	8			5.0'-6.6': Fill/ML-Dk gray silty CLAY, tr brick fragme		5': Sulfur-like odor and N/S PID (headspace) = 1.2 ppm max.	
***************************************				2					5'-7': SI petroleum odor, blk staining	
				5					PID = 0.3 ppm max.	
				6	 7 -	İ	7.0'-9.0': No Recovery		PID = 0.3 ppm max.	
		_	0.0'			Ì	7.0-9.0. No Recovery			
***************************************		2	0.0	6						
				5						
***************************************				6	- 9 −					
				4			l .	CLAY, some f to c sand and f gravel,	9'-11': SI petroleum odor, moderate	
		3	1.5'	4]		ti blick tragin	ents and concrete.	organic odor and tr blk staining	
				7					PID = 1.2 ppm max.	
				1	L 11 -					
				4] ''		11.0'-12.5': Fill/ML-Dk gray silty CLA	aY, some f to c sand and m gravel.	11'-13': SI petroleum and organic odor,	
-		4	1.7'	12			Sample collected: W18STMGP-B32	2-1113	N/S White substance has sheen	
-				18			12.5'-12.7': Fill/SW-Reddish brown f	f to c SAND, some f to m gravel and	PID = 3.5 ppm max.	
***************************************				20	L 42		an unidentifia	able white sandy substance.		
***************************************				6	- 13 -		13.0'-14.0': Fill/ML-Dk gray silty CLA	xY, some f to c sand and m gravel.	13'-15': N/O, N/S	
		5	1.2'	8	1			•	PID = 0.4 ppm max.	
				6	1		14.0'-14.2': Fill/SW-Tan f to c SAND	, m GRAVEL and tr silt and brick fragments.	Ppin max.	
***************************************				9	1		The state of the s	, and and shot haghlone,		
***************************************				7	 15 -	1	15 0'-16 0'- Fill-Tan SH T fto a SAN	ID and GRAVEL trigray soil and	15' 17': N/O blk otoioine	
			2~		1		15.0'-16.0': Fill-Tan SILT, f to c SAN white substance		15'-17': N/O, blk staining	
		6	2.0'	13	1			•	PID ≃ 0.3 ppm max.	
				9	1		16.0'-17.0': Fill-Blk slag and coal frag	gments and tr brick fragments.		
				20	- 17 -					
				17			17.0'-18.5': Fill-Blk slag and coal fra	gments and tr brick fragments.	17'-19': N/O, blk staining	
		7	1.5'	17	<u></u>				PID = 0.4 ppm max.	

SHEET 2 OF 2

BOL	ORING LOG B NAME/ CLIENT								SHEET 2 OF 2
							PROJECT NO.	AREA OF SITE	
W18th		GP S	SCS/C	on Edisor	n		41318-0700-10000	NE corner of W 19th St Parking Lot ELEVATION/DATUM	
W 19th		arkir	g Lot					6.97/NAVD 88	
DRILL ADT	ING	CON	TRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Scott Fischer	
DRILL Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/22/2004	END DATE 5/22/2004
SAMP			E				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Spli	t Spc	on					140 lbs./30"	(feet below ground surface (ft bgs)) 29'	4.5'
· ·	— <u> </u>		AM	PLES			DESCR	IPTION OF SOILS	REMARKS
	CONSTRUCTION		≿						
4	STRI	BER	OVEF EET		Ŧ	띮			(PID, STAINING, ODORS, ETC.)
WELL	Ö	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine It - light dk - dark	m - medium c - coarse c tr - trace ItI - little sI - slight	N/S = No Staining N/O = No odors
				13				3	
				12	_ 40 _				
				10	- 19 -			SAND and GRAVEL and some slag and	19'-21': N/O, blk staining, sl sheen
		8	1.0'	16			brick fragments.		PID = 0.5 ppm max.
				25					
				46	21 -				
				25	21		21.0'-21.5': Fill-Dk gray SILT, f to cabrick fragments.	SAND and GRAVEL and some slag and	21'-23': N/O, N/S
		9	1.0'	15			brick tragments.		PID = 0.4 ppm max.
				25			· · · · · · · · · · · · · · · · · · ·	AND and GRAVEL, tr cobbles and gray soil.	
				30	- 23 -	ł	Sample collected: W18STMGP-B32		
				7			23.0'-24.8': ML-Dk gray silty CLAY,	tr f to m sand and f gravel.	23'-25': N/O, N/S
		10	1.8'	6					PID = 0.0 ppm max.
				12					
				25	25 -	ł			
		11	1.2'	10 4			white shell string	tr f to m sand and f gravel, organic matter and ger at 25.8' bgs.	25'-27': Organic odor, N/S
		11	1.2	7					PID = 0.0 ppm max.
				9					
				4	- 27 -	1	27 0'29 0'- MI -Dk gray silty CLAY	tr vf to f sand, white shells and organic matter.	27'-29': Organic odor, N/S
		12	2.0'	6	1		Zino zono: wie zwigray owy oz w,	The reality limits show and organic maker.	PID = 0.0 ppm max.
T. A. C. C. C. C. C. C. C. C. C. C. C. C. C.				13					
				12					
					- 29 -			E.O.B. at 29' bgs	
					31 -				
					"'				

					l				
				-	33 -	-			
		Ì			1				
anna Managana an A					1				
-									
					35 -	1			
					1				
					1				
					1				
	<u> </u>			1		_	I		

BORING No.: SB-33

SHEET 1 OF 3

	••••	_							SHEELLOFS
JOB N							PROJECT NO.	AREA OF SITE	
ADDR			SCS/	Con Edis	on		41318-0700-10000	Middle of W 19th St Parking Lot ELEVATION/DATUM	
W 19th			ng Lo	t				6.50/NAVD 88	
DRILLING CONTRACTOR DRILLER ADT Sean Miller								TRC INSPECTOR Jessica Elliott	
	DRILLING RIG TYPE/SIZE BIT START DATE Mobile B-61 4.25" Hollow Stem Auger 5/16/2004								END DATE 5/16/2004
SAMP	LER	TYF	Έ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Split	Split Spoon						140 lbs./30"	(feet below ground surface (ft bgs)) 41'	5'
	NOI	S	AMI	PLES			DESCRI	PTION OF SOILS	REMARKS
	CONSTRUCTION	H.	VERY :T		ı	æ			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	ОЕРТН	WATER	f-fine i lt-light dk-dark	m - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
							0.0'-0.1': CONCRETE		
					1 .			, GRAVEL, tr brick fragments, concrete,	
					1		slag and tr wood fiber		1': N/O, N/S
					1		2 0'-3 0'- Fill-Brown f to c silty SAND	, GRAVEL, tr brick fragments, concrete,	PID (headspace) = 0.7 ppm max.
					1		slag and tr wood fiber		2': N/O, N/S
					1				PID (headspace) = 1.2 ppm max.
					- 3 -		3 0'-4 0'- Fill-Brown f to c silty SAND	, GRAVEL, tr brick fragments, concrete,	3': N/O, N/S, PID = 0.2 ppm max.
					1		slag and tr wood fibe	· · · · · · · · · · · · · · · · · · ·	PID (headspace) = 1.4 ppm max.
							4 0'-5 0': Fill-Brown f to c silty SAND	, GRAVEL, tr brick fragments, concrete,	4': N/O, N/S
							slag and tr wood fiber		PID (headspace) = 0.9 ppm max.
				15	5 -		Sample collected: W18STMGP-B33	45	El 79. Detectours the edge N/C share
		1	0.2'	50			l '		5'-7': Petroleum-like odor, N/S, sheen
		'	0.2				wood fibers.	D, GRAVEL and 2" of brick fragments and	PID = 13.6 ppm max.
				54					
				56	 7 -				
		_		82	1		7.0'-7.3': Fill-Brick fragments, GRAV		7'-9': N/O, N/S
		2	1.3'	16	1		7.3'-8.3': Fill-Gray f to c SAND, GRA	VEL and brick fragments.	PID = 0.2 ppm max.
				10	1				
				12	- 9				
				54	1		9.0'-9.8': Fill-Dk gray f to m silty SAN	ID and tr gravel.	9'-11': N/O, N/S, tr sheen
		3	0.8'	100/3					PID = 0.0 ppm max.

***************************************					11 -				
***************************************				4			11.0'-12.0': Fill-Dk gray f to c SAND, 1" f sand lense.	tr silt, brick fragments and organics and	11'-13': SI odor, N/S
		4	1.0'	8	1		, i dana landa.		PID = 0.1 ppm max.
***************************************				15	1		Sample collected: W18STMGP-B33	3-1113	
No.				13	- 13 -				
Mercadoriology				15	1		13.0'-14.1': Fill/SP-Dk gray c SAND, brick fragment	tr silt, f to m sand, gravel, blk organics and ts.	13'-15': N/O, N/S
-		5	1.1'	12	-				PID = 0.0 ppm max.
***************************************				12	1		Sample collected: W18STMGP-B33	3-1315	
				12	15 -				
				11	1		15.0'-16.3': Fill/SP-Dk gray c SAND, brick fragmer	tr silt, f to m sand, gravel, blk organics and	15'-17': N/O, N/S
***************************************		6	1.5'	22			Shor haginer	no.	PID = 0.0 ppm max.
***************************************				11			16.3'-16.5': Fill/SP-V f SAND lense.		
				15	 17 -				
				25			17.0'-17.5': Fill/SP-Dk gray f SAND.		17'-19': N/O, N/S
		7	1.4'	17			17.5'-18.4': Fill/SW-Dk gray m to c S	SAND, GRAVEL and brick fragmenrs.	PID = 0.0 ppm max.

BORING No.: SB-33

SHEET 2 OF 3

<u> </u>	7117			<u> </u>					SHEET 2 OF 3
JOB I W18th				Γ Con Edisc	on		PROJECT NO. 41318-0700-10000	AREA OF SITE	
ADDF W 19th			ng Lo	t				ELEVATION/DATUM 6.50/NAVD 88	
DRILI ADT	LING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAME	PLER	TYF	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Spli	plit Spoon						140 lbs./30"	41'	5'
	SAMPLES						DESCRI	PTION OF SOILS	REMARKS
=	CONSTRUCTION	NUMBER	RECOVERY IN FEET		ОЕРТН	WATER			(PID, STAINING, ODORS, ETC.)
WELL	୍ଷ	N	REC IN F	BLOWS PER 6"	DE L	×	f-fine lt-light dk-dark	m - medium c - coarse tr - trace lti - little sl - slight	N/S = No Staining N/O = No odors
				36					
				23	- 19 -				
				25	ł	İ	19.0'-19.3': Fill/SP-Brownish gray c	SAND and tr gravel.	19'-21': N/O, N/S
		8	0.3'	37					PID = 0.1 ppm max.
				36					
				22	21 -	1			
				6				SAND and tr gravel and blk f to c sand and tr wood fibers in shoe.	21'-23': N/O, N/S, but in shoe, blk
****		9	1.0'	12			i gravor and	a nesa nesa meneo.	staining, MGP-related OLM odor and sheen
				16	ł				PID = 60.2 ppm max.
				8	23 -				Г ID = 00.2 ррн нах.
				12			23.0'-25.0': Fill/SP-Brownish gray m	to c SAND.	23'-25': SI OLM odor, N/S
		10	2.0'	24					PID = 2.1 ppm max.
				54					
				100/2	25 -				
				15			25.0'-27.0': Fill/SP-Brownish gray m	to c SAND.	25'-27': N/O, N/S, tr sheen
***************************************		11	2.0'	24	1				PID = 6.8 ppm max.
***************************************				38	1				
***************************************	***************************************			36	L 27 -	1			
***************************************				48] ~'			nbers. Wood timbers, dk gray c SAND, GRAVEL,	27'-29': Strong OLM odor, blk staining
***************************************		12	0.1'	36			some brick fragments	and wood tipers.	PID = 11.4 ppm max.
				100/1	1				
summer summer					- 29 -				
***************************************				100/4	-~		29.0'-31.0': No Recovery. Some wo	ood fibers in spoon.	29'-31': OLM odor, blk staining and
		13	0.0						tr sheen
									PID = 2.4 ppm max.
					- 31 -				
				27]		31.0'-33.0': No Recovery		
		14	0.0'	10]				
•				10	1				
				6	33 -	1			
				14] 33 -		33.0'-35.0': No Recovery		
***************************************		15	0.0'	10					
***				6					
***************************************				6) of -				
				7	35 -		35.0'-37.0': ML-Dk gray silty CLAY v	35'-37': Strong OLM odor in wood, N/S	
		16	2.0'	6		L	Sample collected: W18STMGP-B33	3-3537	PID = 14.2 ppm max.
		_	_						

SHEET 3 OF 3

BO									SHEET 3 OF 3
JOB I W18th				Con Edisc	n		PROJECT NO. 41318-0700-10000	AREA OF SITE Middle of W 19th St Parking Lot	
ADDF W 19th	RESS							ELEVATION/DATUM 6.50/NAVD 88	
DRILL ADT	JNG	COI	NTRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILI Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAME			PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Spli	t Spoon						140 lbs./30"	(feet below ground surface (ft bgs)) 41'	5'
	CONSTRUCTION NUMBER RECOVERY IN FEET SAGO SAGO PEPTH						DESCRI	REMARKS	
بـ ا	STRUC	BER	RECOVERY IN FEET		_ 	E E			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO IN FE	BLOWS PER 6"	DEPTH	WATER	f-fine n lt-light dk-dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				8					
				10 7	37 -		37.0'-39.0': ML-Dk gray silty CLAY with a	lat of wood fit	07/08/14/0
		17	2.0'	7			107.0-09.0. WIL-DK gray sitty CLAT With a	not of wood fibers.	37'-39': N/O, N/S PID = 2.4ppm max.
				8					1 10 – 2.4ррт тах.
91				10	- 39 -				
				7	33		39.0'-41.0': ML-Dk gray silty CLAY with a		39'-41': N/O, N/S
		18	2.0'	7			Sample collected: W18STMGP-B33-3941		PID = 1.2 ppm max.
				6 8					
					41 -		Ε.	O.B. at 41' bgs	-
i upanisti i i i									
91					43 -				

					45 -				
				-					
					- 47 -				
					_ 40 _				
					- 49 -				
					- 51 -				
									'
					- 55 -				
					<u></u>	<u> </u>			.1

BORING No.: SB-36

SHEET 1 OF 2 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 SW corner of W 19th St Parking Lot **ADDRESS ELEVATION/DATUM** W 19th St Parking Lot 6.44/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR Sean Miller Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** Mobile B-61 4.25" Hollow Stem Auger 5/8/2004 5/8/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 3" Split Spoon 140 lbs /30" 35 4.5' **DESCRIPTION OF SOILS SAMPLES REMARKS** CONSTRUCTION RECOVER (PID, STAINING, ODORS, ETC.) NUMBER IN FEET DEPTH WELL **BLOWS** f-fine m-medium c-coarse N/S = No Staining PER 6" lt - light dk - dark tr - trace Itl - little sl - slight N/O = No odors 0.0'-1.5': CONCRETE 1 1.5'-2.0': Fill-Dk brown SILT, f to c SAND, GRAVEL, and some concrete, 1.5': N/O, N/S wood fibers and brick fragments. PID (headspace) = 0.5 ppm max. 2.0'-3.0': Fill-Dk brown SILT, f to c SAND, GRAVEL, and some concrete, 2': N/O, N/S wood fibers and brick fragments. PID (headspace) = 0.2 ppm max. 3 3.0'-5.0': Fill-Dk brown SILT, f to c SAND, GRAVEL, and some concrete, 3': N/O, N/S, PID = 0.2 ppm max. wood fibers and brick fragments. PID (headspace) = 0.2 ppm max. Sample collected: W18STMGP-B36-34 5 5.0'-5.5': Fill-Blk SILT, f to c SAND, GRAVEL, some concrete, wood fibers 4 and brick fragments. 0.5 10 5'-7': Petroleum-like odor, blk staining 100/2 Sample collected: W18STMGP-B36-57 PID = 0.0 ppm max. 7 40 7.0'-7.1': Fill-Blk SILT, f to c SAND, GRAVEL, some concrete brick fragments 7'-9': Petroleum-like odor, blk staining and wood fibers with some metal scraps. visible sheen 2 0 1' 100/0 PID = 0.2 ppm max. 9 25 9.0'-10.0': Fill-Gray SILT, f to c SAND, GRAVEL, some concrete, 9'-11': N/O, N/S, sl sheen brick fragments and tr wood fibers. 3 1.0' 42 PID = 0.0 ppm max. 18 9 11 11.0'-13.0': Fill-Gray SILT, f to m SAND, tr c sand, gravel and brick fragments. 11'-13": N/O, N/S 2.0 PID = 0.0 ppm max. 6 5 13 13.0'-15.0': Fill/SM-Brownish graySILT, f SAND, tr m sand, organics and 2 13'~15' N/O N/S wood fibers 2.0 5 2 PID = 0.0 ppm max. 2 2 15 -2 15.0'-17.0': Fill/SM-Brown f sandy SILT with .25' thick f sand lenses and tr 15'-17': SI organic odor, N/S wood fibers. 6 2 0' 3 PID = 0.0 ppm max. 3 5 17 -1 17.0'-19.0': Fill/SM-Brown f sandy SILT with .25' thick f sand lenses and tr 17'-19': SI organic odor, N/S wood fibers. PID = 0.0 ppm max.

SHEET 2 OF 2 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 SW corner of W 19th St Parking Lot **ADDRESS ELEVATION/DATUM** W 19th St Parking Lot 6.44/NAVD 88 **DRILLING CONTRACTOR** DRILLER TRC INSPECTOR ADT Sean Miller Jessica Elliott DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** Mobile B-61 4.25" Hollow Stem Auger 5/8/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 3" Split Spoon 140 lbs./30" 4.5 **DESCRIPTION OF SOILS SAMPLES REMARKS** CONSTRUCTION (PID, STAINING, ODORS, ETC.) RECOVER NUMBER WATER DEPTH WELL **BLOWS** f - fine m - medium c - coarse N/S = No Staining PER 6" lt - light dk - dark tr - trace ltl - little sl - slight N/O = No odors Sample collected: W18STMGP-B36-1719 1 19 19.0'-21.0': Unable to sample because the auger driller passed the interval. 19'-21': N/A 8 0.0 21 3 21.0'-23.0': Fill/SP-Gray f SAND and tr brown silt and wood fibers in bottom 2" of spoon. 21'-23': N/O, N/S Tar and gravel in shoe. 2.0 PID = 0.0 ppm max. 100/1 23 100/2 23.0'-23.2': Fill/SP-Gray f SAND and tr brown silt and wood fibers in bottom 2" of spoon. 23'-25': Strong natural gas-like or Tar and gravel in shoe. decaying odor, N/S 10 0.3 PID = 0.0 ppm max. 23.2'-23.3': Fill/SP-Gray SILT, f SAND and tr m and c and. Wood fibers in shoe. 25 3 25.0'-27.0': Fill/SW-Gray SILT, f to m SAND, GRAVEL, wood fibers, tr reddish brown 25'-27': Strong natural gas-like or silty sand, tar and shell fragments. decaying odor, N/S 2.0' 3 PID = 219 ppm max. 4 Sample collected: W18STMGP-B36-2527 5 27 4 27.0'-28.0': SP-Dk gray SILT, f SAND, shell fragments, tar-like viscous material and 27'-29': N/O, N/S wood fibers. 12 2.0' 3 PID = 24.1 ppm max. 2 28.0'-29.0': ML-Dk gray silty CLAY and shell fragments. 29 1 29.0'-30.5': ML-Dk gray silty CLAY and shell fragments. 29'-31': N/O, N/S 13 1.5' 2 PID = 0.0 ppm max. 3 3 31 3 31.0'-33.0': ML-Dk gray silty CLAY and shell fragments. 31'-33': N/O. N/S 2.0' PID = 0.0 ppm max. 2 33 4 33.0'-34.7': ML-Dk gray silty CLAY and shell fragments. 33'-35': N/O, N/S 15 1.7 4 Sample collected: W18STMGP-B36-3335 PID = 0.0 ppm max. 4 35 E.O.B. at 35' bgs

BORING No.: SB-38 SHEET 1 OF 2

	IOB NAME/ CLIENT								SHEET 1 OF 2
							PROJECT NO.	AREA OF SITE	
ADDRI		GP :	505/0	Con Edisc	DΠ		41318-0700-10000	NW corner of W 19th St Parking Lot ELEVATION/DATUM	
W 19th		arkii	ng Lo	t				6.82/NAVD 88	
DRILL ADT	ING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILL Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAMP	LER	TYF	E				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
3" Split	t Spc	on					140 lbs./30"	(feet below ground surface (ft bgs)) 25'	4.6'
	Š.	S	AMF	PLES			DESCRI	PTION OF SOILS	REMARKS
-	CONSTRUCTION	NUMBER	RECOVERY IN FEET		Ŧ	ĒR			(PID, STAINING, ODORS, ETC.)
WELL	NOS S	NOM	REC(BLOWS PER 6"	рертн	WATER	1	m - medium c - coarse c tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
				. =., ,			0.0'-1.5': CONCRETE	t ti-trace in-inde 31-3ng/ft	N/O - NO OUDIS
							old har delicated		
					- 1 -		1.5'-2.0': Fill-Brown SILT, f to c SAN brick fragments, tr w	ND, GRAVEL, CONCRETE, some /ood fibers and coal fragments.	1.5': N/O, N/S, PID = 0.0 ppm max.
***************************************							2.0'-5.0': Fill-Brown SILT, f to c SAN brick fragments, tr w	ND, GRAVEL, CONCRETE, some rood fibers and coal fragments.	
***************************************					- 3 -				3': N/O, N/S PID (headspace) = 0.1 ppm max.
***************************************					_		Sample collected: W18STMGP-B38	-45	4': N/O, N/S PID (headspace) = 0.3 ppm max.
				10	- 5 -		5.0'-7.0': No Recovery. Brown SILT	f, f to c SAND and GRAVEL in shoe.	
		1	0.0'	15 50/2					5'-7': SI odor, N/S and visible sheen PID = N/A
		2	0.05	50/5	- 7 -		7.0'-7.05': Fill-Brown SILT, f to c SA in shoe.	.ND and GRAVEL and 3" of red brick	7'-9': SI odor, N/S and visible sheen PID = 0.2 ppm max.
		3	0.05'	50/1	- 9 -		9.0'-9.05': Fill-Brown SILT, f to c SA in shoe.	.ND and GRAVEL and 3" of red brick	9'-11': Sewage-like odor, N/S and sheen PID = 1.1 ppm max.
		4	0.6'	3 3	- 11 -		11.0'-11.6': Fill/SW-Dk grayish blk S tr brick fragme		11'-13': SI organic odor, N/S, tr sheen PID = 1.3ppm max.
***************************************		5	2.0'	3 2 2	- 13 -		shell fragmer	SILT, f to m SAND, GRAVEL, tr gray clay and als, brick fragments and tr wood fibers.	13'-15': SI organic odor, N/S, tr sheen PID = 0.2 ppm max.
***************************************	Į			3			Sample collected: W18STMGP-B38	3-1315	
***************************************		6	2.0'	1 3	- 15 -			ILT, f to m SAND, GRAVEL, tr gray clay and tts, brick fragments and tr wood fibers.	15'-17': SI organic odor, N/S, tr sheen PID = 0.3 ppm max.
		7	2.0'	3 4 3 2	- 17 -			iILT, f to m SAND, GRAVEL, tr gray clay and nts, brick fragments and tr wood fibers.	17'-19': N/O, N/S PID = 0.3 ppm max.

SHEET 2 OF 2

DUI	1111	U	LU	<u> </u>					SHEET 2 OF 2
JOB N							PROJECT NO.	AREA OF SITE	
ADDR			505/0	Con Ediso	<u>n</u>		41318-0700-10000	NW corner of W 19th St Parking Lot ELEVATION/DATUM	
W 19th			ng Lo	t				6.82/NAVD 88	
DRILL ADT	ING	CON	ITRA	CTOR			DRILLER Sean Miller	TRC INSPECTOR Jessica Elliott	
DRILL Mobile							TYPE/SIZE BIT 4.25" Hollow Stem Auger	START DATE 5/16/2004	END DATE 5/16/2004
SAMP			E				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
3" Spli			A BAI	N E0	1	T	140 lbs./30"	25'	4.6'
	NOL			PLES			DESCR	IPTION OF SOILS	REMARKS
-1	CONSTRUCTION	NUMBER	RECOVERY IN FEET		ОЕРТН	WATER			(PID, STAINING, ODORS, ETC.)
WELL	CON	NON	REC IN FI	BLOWS PER 6"	DEF	×	f - fine lt - light dk - dark	m - medium c - coarse c tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
				2					_
				4	- 19 -	-	17.5'-19.0': ML-Dk gray silty CLAY.		
				5	'`		19.0'-21.0': ML-Dk gray silty CLAY.		19'-21': N/O, N/S
		8	2.0'	4					PID = 0.0 ppm max.
				5					
				3	21 -				
				4	~ '		21.0'-23.0': ML-Dk gray silty CLAY,	tr f sand, shell fragments and wood fibers.	21'-23': N/O, N/S
		9	2.0'	4			Sample collected: W18STMGP-B38	3-2123	PID = 0.0 ppm max.
				5]				
				6					
				10	23 -		23.0'-23.3': ML-Dk gray silty CLAY,	tr f sand, shell fragments and wood fibers.	23'-25': N/O, N/S
		10	2.0'	8			23.3'-24.3': SP-Blk c SAND and tr g	ravel.	PID = 0.0 ppm max.
				10]		24.3'-25.0': SM-Lt brown SILT and f	to c SAND.	· · ·
				12	1				
					25 -	1		E.O.B. at 25' bgs	
					1				
					1				
					1				
					27 -	1			
					1				
					1				
					1				
					- 29 -	1			
2.000				<u> </u>	1				
					}				
1					{				
- Indiana	Special Process				31 -	4			
-					ļ				
2417									
					L 33 -				
***************************************					33				
Principle of the Princi									
and the same of									
Taxana and Anna and A					25 -]			
and a second					35 -				

					<u></u>	L			
,				-	•		•		

JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 Inside eastern section of Gas Holder #7 ELEVATION/DATUM ADDRESS In the cobblestone road at Chelsea Piers between 19th and 20th St 6.52/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE END DATE CME 75 3.25" Hollow Stem Auger 7/21/2004 7/21/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" **DESCRIPTION OF SOILS REMARKS** SAMPLES CONSTRUCTION (PID. STAINING, ODORS, ETC.) RECOVER NUMBER WATER IN FEET MELL BI OWS f - fine m - medium c - coarse N/S = No Staining PFR 6 lt - light dk - dark tr - trace ltl - little sl - slight N/O = No odors 0.0'-1.9': COBBLESTONE, CONCRETE and rebar 1 1'-2': N/O, N/S, PID = 0.0 ppm max. 2'-3': N/O, N/S, PID = 0.0 ppm max. 1.9'-5.0': Fill-Brown SILT, f to c SAND, GRAVEL and tr concrete. 3 3'-4': N/O, N/S, PID = 0.0 ppm max. 4'-5': N/O, N/S, PID = 0.0 ppm max. 5 10 5.0'-6.1': Fill-Black f to c SAND, some silt, ltl to some m to c gravel, large wood 5'-7': Organic odor, N/S timbers. 1.1 PID = 2.0 ppm max. 3 2 7 2 7.0'-13.0': Fill-Black v f to c SAND and some f to c gravel. 7'-9': N/O, N/S 2 0.6 1 Sample collected: W18STMGP-B39-7.58.0 PID = 2.0 ppm max. 1 1 9 1 9'-11': N/O, N/S 3 1.2' 3 PID = 1.5 ppm max. 2 4 10.8': Ash cinders. 11 3 11.0'-12.3': Wood fibers, tr organics and shell, brick and ceramic fragments. 11'-13': N/O, N/S 1.3' 3 PID = 0.1 ppm max. 2 4 13 3 13.0'-21.0': Fill-Blackish gray SILT, vf SAND, ltl to some f to c, angular gravel, tr glass, ash cinders and wood fibers. Tr clay at 13.0', but content 5 PID = 1.9 ppm max. increases with depth. 6 7 15 3 15'-17': N/O, N/S 6 6 PID = 0.3 ppm max. 4 17 3 17.0'-21.0': Wood fibers. 17'-19': N/O, N/S PID = 0.2 ppm max

BORING No.: SB-39

SHEET 1 OF 2

BORING No.: SB-39 SHEET 2 OF 2

ВО		10		,					SHEET 2 OF 2
JOB							PROJECT NO.	AREA OF SITE	
			SCS	S/Con Ed	ison		41318-0700-10000	Inside eastern section of Gas Holder	#7
ADDI In the			ne ro	ad at Che	lsea Piers	s betv	veen 19th and 20th St	ELEVATION/DATUM 6.52/NAVD 88	
DRIL ADT	LING	CC	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
DRIL CME		RIC	3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/21/2004	END DATE 7/21/2004
SAM		R TY	'PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
2" Spl	it Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs) 27'	8'
	ION	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS
	RUCT	æ	/ERY		_	~			(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f-fine n lt-light dk-dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors
Ť	0	_	<u> </u>	2			it-light dk-dark	tr - trace Iti - little Si - Silght	N/O = NO odors
				5	- 19 -				
				5	13				19'-21': N/O, N/S
		8	0.8'	5					PID = 0.2 ppm max.
				2	1				
				WOH/3	21 -	1			21'-23': N/O, N/S
		9		3	1				PID = 0.9 ppm max.
				2]				
				3	- 23 -		22.8'-27.0': ML-Gray silty CLAY a	nd micaceous varves.	
				WOH/3	23		Sample collected: W18STMGP-B	39-23.0	23'-25': N/O, N/S
		10		4					PID = 0.7 ppm max.
				2					
					25 -				25'-27': N/O, N/S
		11	1.2'		1				PID = N/A
			1.2		1				110 - 14/1
					27		E.	O.B. at 27' bgs.	
					29 -	ł			
					l				
					1				
					31 -	1			
					1				
					- 33 -				
					~				
					ł				
					ł				
					35 -	ł			
					1				
	_	_				ь			

BORING No.: MW-40A SHEET 1 OF 2

JOB NAME/ CLIENT PROJECT NO. AREA OF SITE 41318-0700-10000 W18th St MGP SCS/Con Edison Southwest of Gas Holder #7 **ADDRESS ELEVATION/DATUM** In the western sidewalk along the cobblestone road at Chelsea Piers 6 96/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans **DRILLING RIG** TYPE/SIZE BIT START DATE END DATE Mobile B-60 3.25" Hollow Stem Auger 7/26/2004 7/26/2004 SAMPLER TYPE HAMMER WEIGHT/DROP WATER LEVEL (ft bgs) **TOTAL DEPTH** (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" **SAMPLES DESCRIPTION OF SOILS** REMARKS CONSTRUCTION RECOVERY IN FEET (PID, STAINING, ODORS, ETC.) NUMBER WATER WELL **BLOWS** f - fine m - medium N/S = No Staining PER 6" lt - light dk - dark tr - trace Itl - little sl - slight N/O = No odors 0.0'-0.5': CONCRETE and rebar 0.5'-2.4': Fill-Bedded angular GRAVEL (approx. 0.1'-0.2' diameter) in 1 f to m sand matrix. 1'-2': N/O, N/S PID = 0.0 ppm max. 2.4': Thick black nylon sheeting beneath the bedded gravel. 2'-3': N/O, N/S 2.4'-5.2': Fill-Medium brown f to m SAND, tr silt, c sand, angular gravel, PID = 0.0 ppm max. 3 brick fragments, coal fragments and roots. 3'-4': N/O, N/S PID = 0.0 ppm max. 4'-5': N/O, N/S Sample collected: W18STMGP-MW40A-45 PID = 0.0 ppm max. 5 5'-6': N/O, N/S PID = 0.0 ppm max.6.0'-12.0': Fill-Medium brown v f to c SAND, some silt, Itl gravel and tr cobbles. 6'-8': N/O, N/S PID = 0.0 ppm max. 7 3 0.0' 2 8'-10': N/O, N/S 1 PID = 0.0 ppm max.9 1 2 0.1 4 8 10'-12': N/O, N/S 5 PID = 0.0 ppm max.11 0.1 3 1 2 12.0'-16.0': No Recovery 13 1 0.0' 3 5 15 16'-18': N/O, N/S 2 16.0'-17.0': Did not sample this interval. 0.2' PID = 2.6 ppm max. 5 4 5 Bentonite Chips 17 Concete 17.0'-19.0': Fill-Medium brown SILT, v f to c SAND, Itl gravel and tr cobbles. Well Screen

BORING No.: MW-40A SHEET 2 OF 2

JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 Southwest of Gas Holder #7 ADDRESS **ELEVATION/DATUM** In the western sidewalk along the cobblestone road at Chelsea Piers 6.96/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** Mobile B-60 3.25" Hollow Stem Auger 7/26/2004 7/26/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 19' 140 lbs./30" **SAMPLES DESCRIPTION OF SOILS REMARKS** CONSTRUCTION RECOVERY IN FEET (PID, STAINING, ODORS, ETC.) NUMBER **BLOWS** f - fine m - medium c - coarse N/S = No Staining PER 6" lt - light dk - dark tr - trace Itl - little sl - slight N/O = No odors 18'-19': N/O, N/S PID = 0.4 ppm max. 19 E.O.B. at 19' bgs 21 23 25 3 1 2 27 1 4 8 5 29 1 2 31 1 3 5 33 4 Sand 5 Bentonite Chips 35 Concete Well set at 17' bgs. Screen interval from 15.0' to 5.0' bgs with a 2.0' sump. Well Screen

BORING No.: SB-40B SHEET 1 OF 5

				JG					SHEET TOF 5
JOB I							PROJECT NO.	AREA OF SITE	
W18th	St N	1GP	SCS	/Con Ed	ison		41318-0700-10000	Southwest of Gas Holder #7	
ADDF								ELEVATION/DATUM	
In the	west	ern :	sidev	alk alon	g the cob	blesto	one road at Chelsea Piers	6.92/NAVD/88	
DRIL I ADT	LING	СО	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
DRILI			;				TYPE/SIZE BIT	START DATE	END DATE
Mobile	B-6	1			4.25	" Holl	ow Stem Auger/Mud Rotary	7/26/2004	7/28/2004
SAME			PE				HAMMER WEIGHT/DROP 145 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs)) 84'	WATER LEVEL (ft bgs)
2" Spli	n Spo			==					
	NOIT			PLES			DESCRI	PTION OF SOILS	REMARKS
_	CONSTRUCTION	SER.	RECOVERY IN FEET		E	ä			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	n - medium c - coarse tr - trace Itl - little sI - slight	N/S = No Staining N/O = No odors
							0.0'-0.5': CONCRETE and rebar		
					1			WEL (approx 0.41.0.21 diameter) in	
					 1 −		0.5'-2.4': Fill-Bedded angular GRA f to m sand matrix	VEL (approx. 0.1'-0.2' diameter) in	
									1'-2': N/O, N/S
									PID = 0.0 ppm max.
							2.4': Thick black nylon sheeting be	eneath the bedded gravel.	2'-3': N/O, N/S
					1 _ 1		2.4'-5.2': Fill-Medium brown f to m	SAND, tr silt, c sand, angular gravel,	PID = 0.0 ppm max.
					3 -			oal fragments and roots.	3'-4': N/O, N/S
									PID = 0.0 ppm max.
							Sample collected: W18STMGP-M\	W40A-45	4'-5': N/O, N/S
					$L_{E}J$				PID = 0.0 ppm max.
					5 -				5'-6': N/O, N/S
		1	0.1'						PID = 0.0 ppm max.
		·	J		1		6.0'-12.0': Fill-Medium brown v f to	c SAND, some silt, ltl gravel and tr cobbles.	6'-8': N/O, N/S
					1				
					7 -				PID = 0.0 ppm max.
				8					
		2	0.1'	4					
				3					8'-10': N/O, N/S
				3	1				
					9 -				PID = 0.0 ppm max.
				3					
		3	1.6'	4					
				12]				10'-12': N/O, N/S
				8	١ , . ا				PID = 0.0 ppm max.
				8	11 7				
		,	4 -		1				
		4	1.7'	6					
				7			12.0'-16.0': No Recovery		
				7	13 -				
				11	13				
		5	1.4'	6					
		_		4	1				
				·	1				
				3	15 -				
				3	'`		15.0'-21.0': Fill-Black SILT, v f to o	c SAND, some gravel and tr clayey silt.	15'-17': N/O, N/S
		6	0.6'	3					PID = 6.0 ppm max.
				4					
				4	1				
					17 -				471401 0
				6					17'-19': Sweet wood odor, N/S
oxdot		7	1.4'	9					PID = 0.3 ppm max.

BORING No.: SB-40B SHEET 2 OF 5

	JINING EGG									
JOB W18th				IT S/Con Edi	son		PROJECT NO. 41318-0700-10000	AREA OF SITE Southwest of Gas Holder #7		
ADD	RESS	3						ELEVATION/DATUM		
				alk along to	ne cobble	ston	e road at Chelsea Piers DRILLER	6.92/NAVD/88 TRC INSPECTOR		
ADT							Sean Miller	Morgan Evans		
DRIL Mobile			3		4.25'	' Ho	TYPE/SIZE BIT Ilow Stem Auger/Mud Rotary	START DATE 7/26/2004	END DATE 7/28/2004	
SAM	PLEF	R TY	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)	
2" Spl	it Spo	oon					145 lbs./30"	(feet below ground surface (ft bgs)) 84'	6'	
	NO	S	AM	PLES			DESCRIF	PTION OF SOILS	REMARKS	
	RUCT	~	ERY			~			(PID, STAINING, ODORS, ETC.)	
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER		- medium c - coarse		
3	<u>წ</u>	ž	Z Z		Δ	8	lt - light dk - dark		N/S = No Staining N/O = No odors	
				10						
				3	- 19 -				19'-21': Sweet wood odor, N/S	
		8	1.8'	3					PID = 0.4 ppm max.	
				7						
				31	- 21 -					
		9	0.9'	5			21.0'-31.0': Fill-V f to c SAND, son	ne silt and gravel.	21'-23': Sweet wood odor, N/S	
		Э	0.9	1 VOID					PID = 0.2 ppm max.	
				1						
				2	- 23 -				23'-25': N/O, N/S	
		10	0.2'	1					PID = 0.5 ppm max.	
				6						
				7	- 25 -				OF OT! NIO NIC	
		11	0.1'	2					25'-27': N/O, N/S PID = 0.1 ppm max.	
				1					pp	
				1	- 27 -					
				N/A	21		27.0': Silt content increasing with o	lepth.	27'-29': N/O, N/S	
		12	1.2'	N/A					PID = 0.1 ppm max.	
				N/A						
				N/A 5	- 29 -		29.0'-31.0': Chunks of slag, shell fi	agments, coal and ash.	29'-31': N/O, N/S	
		13	0.9'	5			, since 2. 2.2.3, 3101111	• ,	PID = 0.3 ppm max.	
				7						
				5	- 31 -					
				5			31.0'-34.0': SM-SILT, v f to c SAN	D, some gravel and tr clayey silt.	31'-33': N/O, N/S	
		14	1.6'	5 7					PID = 0.3 ppm max.	
				7						
				4	- 33 -		Sample collected: W18STMGP-B4	IOB-3335	33'-35': N/O, N/S	
		15	1.8'	6					PID = 0.5 ppm max.	
				5			. , ,	, tr sandy silt and f sand, shell fragments and		
				12	- 35 -		muscovite.			
		40		4			Sample collected: W18STMGP-B4	IOB-3537	35'-37': N/O, N/S	
\Box		16	1.1'	1					PID = 16.4 ppm max.	

BORING No.: SB-40B SHEET 3 OF 5

Lion	OB NAME/ CLIENT						PRO IFOT NO. AREA OF CITE	OTILET 3 OF 3
				II 5/Con Edi	son		PROJECT NO. AREA OF SITE 41318-0700-10000 Southwest of Gas Holder #7	
ADD	RESS	3				ston	ELEVATION/DATUM e road at Chelsea Piers 6.92/NAVD/88	
DRII ADT		CO	NTR	ACTOR			DRILLER TRC INSPECTOR Sean Miller Morgan Evans	
DRIL	LING		•		4.25	' Hol	TYPE/SIZE BIT START DATE low Stem Auger/Mud Rotary 7/26/2004	END DATE 7/28/2004
	IPLEF		PE		20		HAMMER WEIGHT/DROP TOTAL DEPTH	WATER LEVEL (ft bgs)
	Split Spoon						(feet below ground surface 145 lbs./30" 84'	
	NO	S	AMI	PLES			DESCRIPTION OF SOILS	REMARKS
	CONSTRUCTION	3ER	RECOVERY IN FEET		Ξ	ER		(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	RECO IN FE	BLOWS PER 6"	DEPTH	WATER	f - fine m - medium c - coarse It - light dk - dark tr - trace Itl - little sl - slight	N/S = No Staining N/O = No odors
				3				
				2	- 37 -			
				2				37'-39': N/O, N/S
		17	2.0'	3				PID = 2.3 ppm max.
				4				
				5	- 39 -			
				3				39'-41': N/O, N/S
		18	N/A	5				PID = 0.0 ppm max.
				6				
				7 N/A	- 41 -		Sample collected: W18STMGP-B40B-4143	41'-43': N/O, N/S
		19	N/A	N/A			Sample collected: W1851MGP-B40B-4143	
		19	N/A	N/A N/A			0.0'-42.0': Steel casing (4" diameter) set, grouted and allowed to set or	PID = 0.0 ppm max.
				N/A			before continuing to drill deeper.	vernight
				50/3"	- 43 -		43.0'-47.0': SW-V f to c SAND and some silt and gravel.	43'-45': N/O, N/S
		20	2.0'	30/3			43.0-47.0. SVV-V 1 to C SAND and some six and graver.	PID = 0.0 ppm max.
		20	2.0					гі д = 0.0 рр ін шах.
				N/A	- 45 -			45-47': N/O, N/S
		21	N/A	N/A				PID = 0.0 ppm max.
		- 1	14//	N/A				115 = 0.0 ppii max.
				N/A				
				22	- 47 -		47.0'-82.0': ML-Gray silty CLAY.	47'-49': N/O, N/S
		22	2.0'	23				PID = 0.0 ppm max.
				5				
				4				
					- 49 -		49.0'-51.0': Not sampled.	
							·	
				2	- 51 -		51.0'-53.0': Not recorded.	51'-53': N/O, N/S
		23	N/A	2				PID = 0.0 ppm max.
				4				
				5				
					- 53 -		53.0'-57.0': Not sampled.	
						L		

BORING No.: SB-40B SHEET 4 OF 5

ВО	'1 \ 11	10		,				SHEET 4 OF 5		
	NAM						PROJECT NO.	AREA OF SITE		
			SCS	S/Con Edi	son		41318-0700-10000	Southwest of Gas Holder #7		
	RESS weste		idewa	alk along t	ne cobble	ston	e road at Chelsea Piers	ELEVATION/DATUM 6.92/NAVD/88		
				ACTOR			DRILLER	TRC INSPECTOR		
ADT							Sean Miller	Morgan Evans		
	DRILLING RIG Mobile B-61 TYPE/SIZE BIT 4.25" Hollow Stem Auger/Mud Rotary							START DATE	END DATE	
			DE		4.25	HO	low Stem Auger/Mud Rotary	7/26/2004	7/28/2004	
SAIV	IPLEF	CIY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)	
2" Sp	lit Sp	oon					145 lbs./30"	84'	6'	
	z SAMPLES						DESCRI	PTION OF SOILS	REMARKS	
	CONSTRUCTION		Y.							
١.	TRU	ER	RECOVERY IN FEET		Ŧ	æ			(PID, STAINING, ODORS, ETC.)	
WELL	ONS	UME	잂	BLOWS	рертн	WATER		n - medium c - coarse	N/S = No Staining	
-	٥	z	<u>~ ≤</u>	PER 6"		>	lt - light dk - dark	tr - trace ltl - little sl - slight	N/O = No odors	
					- 55 -	ļ				
					00					
					_ 57 _					
				3	- 57 -		57.0'-59.0': Not recorded.		57'-59': N/O, N/S	
		24	N/A	3					PID = 0.0 ppm max.	
				6						
				8	- 59 -	ł				
							59.0'-62.0': Not Sampled.			
					- 61 -					
					01					
				2			62.0'-64.0': ML-Gray silty CLAY ar	nd shell fragments.	62'-64': N/O, N/S	
		25	N/A	4				···	PID = 0.0 ppm max.	
		23	IN/A		63 -	ł			FID = 0.0 μμπ max.	
				3						
				5						
							64.0'-74.0': Not Sampled.			
					- 65 -	l				
					00					
						l				
					67 -	1				
					- 69 -	ł				
					,					
					- 71 -					
						l				
	_								•	

BORING No.: SB-40B SHEET 5 OF 5

ВС			`	SHEET SUF S					
JOB	NAM	E/ C	LIEN	IT			PROJECT NO.	AREA OF SITE	
W181	h St N	ИGР	SCS	Con Edi	son		41318-0700-10000	Southwest of Gas Holder #7	
ADDRESS								ELEVATION/DATUM	
In the	weste	ern si	idewa	ılk along tl	he cobble	ston	e road at Chelsea Piers	6.92/NAVD/88	
		CO	NTR	ACTOR			DRILLER	TRC INSPECTOR	
ADT							Sean Miller	Morgan Evans	
	LING le B-6		ì		4 25'	' Hol	TYPE/SIZE BIT low Stem Auger/Mud Rotary	START DATE 7/26/2004	END DATE 7/28/2004
			DE		7.20	1101	HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)
	SAMPLER TYPE 2" Split Spoon						145 lbs./30"	(feet below ground surface (ft bgs))	6'
	0.44401.50						DESCRIPTION OF SOILS		REMARKS
	CONSTRUCTION		RY						(DID STAINING ODODS FTC.)
WELL	ISTR	ABER	RECOVERY IN FEET	DI OWO	DEРТН	WATER			(PID, STAINING, ODORS, ETC.)
WE	CO	N N	REC IN F	BLOWS PER 6"	DE	WA	f - fine n lt - light dk - dark		N/S = No Staining N/O = No odors
					70 -				
					73 -				
				2			74.0'-76.0': ML-Gray CLAY and S	ILT and shell fragments.	74'-76': N/S, N/O
		26	N/A	1			•	, and the second	PID = 0.0 ppm max.
		20	14//		- 75 -				
				5					
				7					
							76.0'-80.0': Not Sampled.		
					- 77 -				
					- 79 -				
					13				
				7			80.0'-82.0': ML-Gray silty CLAY a	ad shall fragments	80'-82': N/S, N/O
							00.0 -02.0 . IVIL-Glay Silty CLAT al	iu sileli liagilielits.	PID = 0.0 ppm max.
		27	N/A	5	- 81 -				
				4					
				7					
				5			82.0'-84.0': Refusal (Rock fragmer	nts in shoe, possibly Manhattan schist).	82'-84': N/S, N/O
		28	N/A	5				•	PID = 0.0 ppm max.
		_0	,,,		- 83 -				
				7					
				8					1
							E.O.B. at 84	bgs. (Refusal at Bedrock)	
					_ 0.5				
					85 -				
					- 87 -				
					01				
					- 89 -				
Ш									

SHEET 1 OF 1 JOB NAME/ CLIENT PROJECT NO. AREA OF SITE West 18th St MGP SCS/Con Edison 41318-0700-10000 Bayview Correctional Facility ELEVATION/DATUM **ADDRESS** Alley of facility 7.72/NAVD 88 DRILLING CONTRACTOR TRC INSPECTOR DRILLER Zerba Charles Green Samuel Monte DRILLING RIG TYPE/SIZE BIT START DATE END DATE Geoprobe remote unit 11/4/2005 11/4/2005 3' x 2" macrocore SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) Macrocore **DESCRIPTION OF SOILS REMARKS SAMPLES** CONSTRUCTION RECOVERY IN FEET (PID. STAINING. ODORS. ETC.) NUMBER WELL BLOWS N/S = No Staining PER 6" N/O = No odors 0.0'-0.5': CONCRETE . 0.5'-5.0' cleared with Hand Auger. 1 0.5'-1.0': Lt brown f SAND, some c gravel. 0.5'-1.0': N/O, N/S, dry PID = 2.0 ppm max. 1.0'-3.0': Brown f SAND, brick pieces. (fill) 1'-3': N/O, N/S, dry PID = 2.8 ppm max. 3 3.0'-5.0': Brown f SAND, some f gravel, brick pieces. (fill) 3'-5': N/O, N/S, dry PID = 2.9 ppm max. 5 5.0'-6.0': Brown f to c SAND, some clay and brick. Concrete in shoe. 5'-6': N/O, N/S, dry PID = 3.4Boring complete at 6.0'. 7 9 11 13 15 17

BORING No.: SB-90

BORING No.: SB-91
SHEET 1 OF 1

BORING LOG								SHEET 1 OF 1	
JOB					F-0		PROJECT NO.	AREA OF SITE	
ADDI			IGP S	SCS/Con	Edison		41318-0700-10000	Bayview Correctional Facility ELEVATION/DATUM	
Alley									
DRIL Zerba		CO	NTR	ACTOR			DRILLER Charles Green	TRC INSPECTOR Samuel Monte	
DRILLING RIG TYPE/SIZE BIT ST								START DATE	END DATE
Geopi				nit			3' x 2" macrocore	11/4/2005	11/4/2005
SAM	PLEF	R TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs))	WATER LEVEL (ft bgs)
Macro	Macrocore							15'	8-11'
	SAMPLES				DESCRIF	REMARKS			
	CONSTRUCTION NUMBER RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY						(PID, STAINING, ODORS, ETC.)		
WELL	NST	NUMBER	COV	BLOWS	DEPTH	WATER	f-fine m	- medium c - coarse	N/S = No Staining
3	္မ	NΩ	REI	PER 6"	Ö	×		tr - trace ltl - little sl - slight	N/O = No odors
							0.0'-0.8': CONCRETE . 0.8'-5.0' cle	eared with Hand Auger.	
					<u> </u>		0.8'-2.0': Lt to dk brown f to c SANI) some c gravel	
							olo 2.0 . Et to dit blomi i to o o mil	s, some o gravo.	0.8'-1.0': N/O, N/S, dry
									PID = 1.0 ppm max.
					3 -		0.015.01. DL 1		0.015.01. N/O. N/O. Iv
							2.0'-5.0': Dk brown f to c SAND, so	ome c gravei.	2.0'-5.0': N/O, N/S, dry PID = 3.5 ppm max.
									PID = 3.5 ppm max.
					5 -				
							5.0'-8.0': Dk brown f to m SAND, so	ome clay and brick. Brick in shoe.	5.0'-8.0': N/O, N/S, dry
		1	0.5'						PID = 5.8
					7 -				
					L		8.0'-11.0': Brown f to c SAND, trace	e f gravel.	5.0'-8.0': Organic odor, N/S, damp/wet
		2	3'		9 -	_			PID = 3.9
		_				?			
					11 -				
					''				
					-		11.0'-15.0': Brown f to c sand.		11.0'-15.0': N/O, N/S, damp/wet
		3	3'		13 -		Unable to descrete sample through	water column with Remote Georobe.	PID = 0.0
					-				
					-				
					15 -				
				-	1				
					1				
					1				
					17 -				
					1				

BORING No.: SB-92
BORING LOG SHEET 1 OF 1

BORING LOG									SHEET 1 OF 1
	NAN 19th				Edicon		PROJECT NO. 41318-0700-10000	AREA OF SITE Bayview Correctional Facility	
West 18th St MGP SCS/Con Edison ADDRESS							71310-0700-10000	ELEVATION/DATUM	
	r roor						DRILLER	2.02/NAVD 88 TRC INSPECTOR	
DRILLING CONTRACTOR Zerba							Charles Green	Samuel Monte	
	LING robe			nit			TYPE/SIZE BIT 3' x 2" macrocore	START DATE 11/4/2005	END DATE 11/4/2005
	DCOre		PE.				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft b 15'	WATER LEVEL (ft bgs) gs))
		6	AMI	PLES			DESCRIF	REMARKS	
	CONSTRUCTION	ER	RECOVERY IN FEET		_ 	es es			(PID, STAINING, ODORS, ETC.)
WELL	CONS	NUMBER	N FEI	BLOWS PER 6"	DEPTH	WATER	f-fine m lt-light dk-dark	- medium c - coarse tr - trace Itl - little sI - slight	N/S = No Staining N/O = No odors
		Ī	<u> </u>				0.0'-1.2': CONCRETE . 1.2'-5.0' cle		
					L - 1 -		1.2'-2.0': Brown f SAND, some f gr	aval	
					'		1.2-2.0. DIOWILL SAIND, SOME FIGR	2VGI.	0.8'-1.0': N/O, N/S, damp
					1				PID = 5.1 ppm max.
						?			
					- 3 -		3.0": Dk gray f to c SAND, some f	gravel.	3.0': N/O, N/S, wet
									PID = 3.4 ppm max.
					- 5 -	ł	5.0": Dk gray f to c SAND, some f	gravel.	5.0': slight odor, N/S, wet
							olo : Bit gray i to o or into, como i	g.u.o.	PID = 5.7 ppm max.
		1	3'		L 7 -				
							5.0'-9.0': Dk gray clayey SILT, trace	e f sand.	5.0'-8.0': N/O, N/S, wet PID = 5.8
									PID = 5.8
					L				
					9 -				
					l				
							9.0'-13.0': Dk gray clayey SILT, tra	ce f sand	9.0'-13.0': Organic odor, N/S, wet
		2	3'		11 -	1	10.0 . Dr. gray clayey OLI, lid	oo i ouridi	PID = 6.1
		\vdash			13 -				
							13.0'-15.0': No recovery		13.0'-15.0': N/O, N/S, wet
		3	0						PID = 0.0
					15 -				
					15				
					ł				
					17 -	1			
			l		1	l			

BORING No.: SB-43A SHEET 1 OF 2

JOB NAME/ CLIENT										
				I T 5/Con Ed	ison		PROJECT NO. 41318-0700-10000	AREA OF SITE Inside the western edge of former Gas	Holder #10	
ADDRESS Along the river, south of Chelsea Piers and east of the walkway								ELEVATION/DATUM 7.96/NAVD 88		
DRIL ADT	LING	СО	NTR	ACTOR			DRILLER Sean Miller	TRC INSPECTOR Morgan Evans		
DRIL I Mobile			•				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/23/2004	END DATE 7/23/2004	
	SAMPLER TYPE 2" Split Spoon						HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground surface (ft bgs)) 24'	WATER LEVEL (ft bgs)	
_ Op.	044401.50						PTION OF SOILS	REMARKS		
١.	CONSTRUCTION	ER	VERY ET		Į	<u>~</u>			(PID, STAINING, ODORS, ETC.)	
WELL	CONS	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	DEPTH	WATER	f - fine m lt - light dk - dark	- medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors	
							0.0'-0.6': ASPHALT			
					- 1 -		0.6'-1.4': Fill-GRAVEL subbase in I	brown f sand matrix.	1'-2': N/O, N/S	
					'		1.4'-1.8': Intact COBBLESTONE.		PID = 0.0 ppm max.	
							1.8'-2.0': Hard packed tan f SAND.			
							2.0'-2.8': CONCRETE.			
					- 3 -		2.8'-3.7': Fill-Brownish black f to c a glass.	SAND, GRAVEL, chunks of brick and		
							ŭ), some silt and f to m subangular gravel.	3'-4': N/O, N/S	
								,	PID = 0.0 ppm max.	
							4.6'-5.0': Fill-Lt brown f to m SAND	, tr silt and c sand.	4'-5': N/O, N/S	
					- 5 -				PID = 0.0 ppm max.	
									5'-6': N/O, N/S	
									PID = 0.0 ppm max.	
				6	- 7 -		7.0'-8.0': Fill-F to c SAND, some si	It and concrete and brick fragments.		
		1	0.1'	1			Sample collected: W18STMGP-B4	13-77.5	7'-9': N/A	
				1						
				4	- 9 -					
				1	ש		9.0'-15.3': Fill-Lt brown f to c SAND	D, some silt, tr clayey silt, gravel	9'-11': N/A	
		2	1.6'	1			and clam shells.			
				1						
				2	- 11 -					
				1	' '		11.6-15.3': Black brick fragments in	a enoon	11'-13': N/A	
		3	1.2'	1			11.0-13.3. DIAUK DIIUK ITAGMENIS II	ι ορυσι.		
				1						
				1	- 13 -					
				5					13'-15': N/A	
		4	N/A	5						
				5						
				5	- 15 -					
				3					15'-17': N/O, N/S	
		5	0.3'	6					PID = 0.0 ppm max.	
				3						
				4	- 17 -		47 01 00 41 E'II B' 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		47 401 N/O N/O	
		_	NI/A	13			17.0'-22.1': Fill-Black f to c SAND,	some silt and gravel.	17'-19': N/O, N/S	
ш		6	N/A	13					PID = 0.0 ppm max.	

BORING LOG

BORING No.: SB-43A SHEET 2 OF 2

_			, L(SHEET Z OF Z
JOB NAME/ CLIENT PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000								AREA OF SITE	
			SCS	S/Con Ed	ison		41318-0700-10000	Inside the western edge of former Gas	Holder #10
	RES				. 5:			ELEVATION/DATUM	
	_				isea Pier	s an	d east of the walkway	7.96/NAVD 88	
							DRILLER Sean Miller	TRC INSPECTOR Morgan Evans	
	LING		3				TYPE/SIZE BIT	START DATE	END DATE
	le B-6						3.25" Hollow Stem Auger	7/23/2004	7/23/2004
	IPLE		'PΕ				HAMMER WEIGHT/DROP 140 lbs./30"	TOTAL DEPTH (feet below ground surface (ft bgs)) 24'	WATER LEVEL (ft bgs)
2 0		_	AM	PLES				PTION OF SOILS	REMARKS
	CONSTRUCTION	~	:RY						(PID, STAINING, ODORS, ETC.)
WELL	NSTR	NUMBER	RECOVERY IN FEET	BLOWS	DEPTH	WATER	f - fine n	n - medium c - coarse	N/S = No Staining
≥	_ <u> </u>	ž	₩ ≥		□	۸		tr - trace Itl - little sl - slight	N/O = No odors
				50/1'					
					19 -		19.0': Slag in spoon.		
				50/2'			19.0 . Siag III spooti.		19'-21': N/O, N/S
		7	N/A						PID = 0.0 ppm max.
				15	21 -		21.0': Brick fragments in spoon.		21'-23': N/O, N/S
							21.0. Brick fragments in spoon.		·
		8	0.1'	50/3"					PID = 0.0 ppm max.
							22.5'-24.0': Wood timbers.		23'-24': N/O, N/S
				12	23 -		Sample collected: W18STMGP-B	43-2323.5	PID = 0.0 ppm max.
		9	0.7'	50/2"					24': PID = 15.9 ppm max. on wood
			0	00/2			E O P. at 24.0' has	s (Refusal due to wood timbers)	21. 115 = 10.0 ррні нак. он неса
							E.O.B. at 24.0 bgs	s (Relusal due to wood tillibers)	
					25 -				
					27 -				
				1	1				
				-	ł				
					4				
					29 -				
					_ 29				
					1				
					1				
					31 -				
					1				
]				
					33 -				
					1				
				-	1				
					ł				
					35 -				
					33				
	_	•		-	-	•			

BORING LOG

BORING No.: SB-43B SHEET 1 OF 1

Вυ									SHEET 1 OF 1			
JOB							PROJECT NO.	AREA OF SITE	Holdon #4.0			
	W18th St MGP SCS/Con Edison 41318-0700-10000 ADDRESS						41318-0700-10000	Inside the western edge of former Gas Holder #10 ELEVATION/DATUM				
	Along the river, south of Chelsea Piers and east of the walkway 7.96/NAVD 88											
DRIL ADT	LING	CC	CONTRACTOR DRILLER TRC INSPECTOR Sean Miller Morgan Evans									
DRIL Mobile			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE END DATE 8/2/2004 8/2/2004				
SAM			'PΕ				HAMMER WEIGHT/DROP					
2" Spl	lit Sp	_					140 lbs./30"	9'	7'			
	NO.	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS			
	CC	~	Ϋ́						(PID, STAINING, ODORS, ETC.)			
Ⅎ	CONSTRUCTION	NUMBER	RECOVERY IN FEET		рертн	WATER		_				
WELL	SO	Š	R E	BLOWS PER 6"	DEF	×	f - fine n It - light dk - dark	n - medium c - coarse tr - trace ltl - little sl - slight	N/S = No Staining N/O = No odors			
					- 1 -							
					- 3 -							
					- 5 -							
				8			Sample collected: W18STMGP-B	43-68				
		1	0.5'	36		_						
		ı '	0.5	11	- 7 -	_						
				10					7'-9': PID = 48 ppm max.			
				12			Sample collected: W18STMGP-B		7 3. 1 15 = 40 ррш шах.			
				50/3"								
				30/3	- 9 -		E O P at 0	bgs (Refusal due to wood)				
							L.O.B. at 9	bys (iverusal due to wood)				
					- 11 -							
					- 13 -							
					- 15 -							
					- 17 -							

11

13

15

17

BORING No.: SB-44 BORING LOG SHEET 1 OF 1 JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 Southwest of former Gas Holder #10 and northwest of Gas Holder #11 **ADDRESS** ELEVATION/DATUM Along the river, south of Chelsea Piers and east of the walkway 7.61/NAVD 88 DRILLING CONTRACTOR TRC INSPECTOR DRILLER ADT Sean Miller Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE END DATE Mobile B-61 3.25" Hollow Stem Auger 8/2/2004 8/2/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 5.8' **DESCRIPTION OF SOILS REMARKS SAMPLES** CONSTRUCTION (PID. STAINING. ODORS. ETC.) RECOVER NUMBER IN FEET WELL BI OWS f - fine m - medium N/S = No Staining c - coarse PER 6' lt - liaht dk - dark tr - trace ItI - little sI - slight N/O = No odors 0.0'-0.3': ASPHALT 0.3'-2.0': Fill-Angular GRAVEL subbase in brownish gray f to c sand matrix 1 and brick fragments. 1'-2': N/O. N/S PID = 0.0 ppm max.2.0'-4.2': Fill-Lt brown f to c SAND, f angular GRAVEL, cobbles, chunks of 2'-3': N/O, N/S rock and tr brick fragments. PID = 0.0 ppm max. 3 3'-4': N/O, N/S PID = 0.0 ppm max. 4'-5': N/O, N/S 4.2'-5.8': Fill-Gray f SAND and tr silt. PID = 0.0 ppm max. 5 Sample collected: W18STMGP-B46-4.55.5 (SB-44A) 5'-6': N/O, N/S PID = 0.0 ppm max. 6.0'-9.0': Fill-F to c SAND, some silt and f to c angular gravel. 6'-8': MGP-related odor, N/S N/A Sample collected: W18STMGP-B44-68 PID = 35.1 ppm max. 7 Sample collected: W18STMGP-B44-810 8'-9': MGP-related odor, N/S 50/3" PID = 1,538 ppm max. 2 N/A 9 E.O.B. at 9' bgs (Refusal)

BORING No.: SB-45
BORING LOG
SHEET 1 OF 3

JOB NAME/ CLIENT PROJECT NO. AREA OF SITE W18th St MGP SCS/Con Edison 41318-0700-10000 Inside the southern end of Gas Holder #11 **ADDRESS** ELEVATION/DATUM Along the river, south of Chelsea Piers and east of the walkway 8.53/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE **END DATE** Mobile B-61 3.25" Hollow Stem Auger 7/22/2004 7/22/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 7.5' **DESCRIPTION OF SOILS REMARKS** SAMPLES CONSTRUCTION RECOVER (PID. STAINING, ODORS, ETC.) NUMBER WATER IN FEET DEPTH MELL BI OWS f - fine m - medium N/S = No Staining c - coarse PFR 6 lt - liaht dk - dark tr - trace Itl - little sl - slight N/O = No odors 0.0'-0.3': ASPHALT 0.3'-1.0': Fill-Brownish gray m to c SAND, some silt and angular and 0.3'-1': N/O, N/S 1 subangular gravel and brick fragments. PID = 156 ppm max. (high PID 1.0'-1.6': Intact section of an old asphalt road (0.25' thick). rdg due to high humidity levels) 1.6'-2.15': Fill-Brown m to c SAND, angular and subangular GRAVEL, brick. 1.6'-2.15': N/O, N/S 2.15'-3.0': ASPHALT overlying a 0.1' thick layer of tan f to m fill sand. PID = 2.1 ppm max. 3 3.0'-4.2': Lt gray CONCRETE. 4.2': N/O, N/S 4.2'-7.5': Fill-Brown m to c SAND, some gravel, tr silt and brick and coal fragments. PID = 0.0 ppm max. 5 Sample collected: W18STMGP-B45-7.07.5 7 Sample collected: W18STMGP-B45-78 0.6 8 7.5'-13.0': Fill-Medium brown to light brown v f to c SAND, GRAVEL, tr 7.5': N/O. N/S clayey silt and brick fragments. 7 PID = 0.0 ppm max.10 9 14 9'-11': N/O, N/S 2 0.3 8 PID = 0.0 ppm max. 6 4 11 13 11'-13': N/O, N/S 3 0.5' 7 PID = 0.0 ppm max. 5 13 6 13.0'-25.0': Fill-Black f to c SAND, some gravel, brick and shell fragments. 13'-15': N/O, N/S 0.6 11 PID = 0.0 ppm max. 7 2 15 6 15'-17': N/O, N/S 0.2' 9 PID = 0.4 ppm max. 11 13 17 1 17'-19': N/O, N/S PID = 0.2 ppm max

BORING LOG

BORING No.: SB-45 SHEET 2 OF 3

	NAM			T /Con Edi:	son		PROJECT NO. 41318-0700-10000	AREA OF SITE Inside the southern	end of Gas Holder	#11
ADD	ADDRESS Along the river, south of Chelsea Piers and east of the walkway							ELEVATION/DAT		
	DRILLING CONTRACTOR DRILLER							8.53/NAVD 88 TRC INSPECTOR		
	ADT Sean Miller Mo						Sean Miller TYPE/SIZE BIT	Morgan Evans		END DATE
	le B-6						3.25" Hollow Stem Auger	START DATE 7/22/2004		7/22/2004
SAM	IPLER	TY	PE				HAMMER WEIGHT/DROP	TOTAL DEPTH (feet below ground	d surface (ft bas))	WATER LEVEL (ft bgs)
2" Sp	olit Spo						140 lbs./30"	37'		7.5'
	NOI	S	AME	PLES			DESCRI	PTION OF SOIL	_S	REMARKS
	RUC	쏦	/ERY		-	2				(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	рертн	WATER	f - fine n lt - light dk - dark	r - medium c - coarse tr - trace Itl - little	e sl - slight	N/S = No Staining N/O = No odors
Ħ	T	_	E =	1			it-light uk-dark	u - trace iu - iitue	si - siigiit	N/O = NO OUDIS
				1	- 19 -					
				3	19		Tr wood fibers.			19'-21': N/O, N/S
		7	0.2'	9						PID = 0.2 ppm max.
				8						
				8	- 21 -					21'-23': N/O, N/S
		8	0.1'	9						PID = 0.0 ppm max.
				11						
				10	- 22 -					
				10	- 23 -		Tr wood fibers and ash cinders.			23'-25': N/O, N/S
		9	0.5'	10						PID = 0.0 ppm max.
				10						
				5 3	- 25 -		25.0'-29.0': ML-Very soft gray clay	ov SII T		25'-27': N/O, N/S
		10	0.8'	4			25.0-29.0. ML-Very Soft gray clay	ey SIL1.		PID = 3.6 ppm max.
				3						1.2 2.3 FF
				1	- 27 -					
				1	21					27'-29': N/O, N/S
		11	2.0'	1						PID = 0.0 ppm max.
				1						
				5 3	- 29 -		29.0'-31.0': SM-F to c SAND, som	e silt and Itl clavev silt		29'-31': N/O, N/S
		12	0.8'	2			23.0 01.0. 0011 10 0 0/110, 3011	e sin and in diayey sin.		PID = 0.0 ppm max.
				1						
				1	- 31 -					
				5	01		31.0'-37.0': ML-Gray silty CLAY, to		and.	31'-33': N/O, N/S
		13	2.0'	3			Sample collected: W18STMGP-B	45-31.532.0		PID = 0.0 ppm max.
				3						
				3	- 33 -					33'-35': N/O, N/S
		14	2.0'	3						PID = 0.0 ppm max.
				2						
				2	- 35 -					
				2	55					35'-37': N/O, N/S
Ш		15	2.0'	2						PID = 0.0 ppm max.

BORING LOG

BORING No.: SB-45 SHEET 3 OF 3

BO	וואי	NG	L	JG					SHEET 3 OF 3			
JOB							PROJECT NO.	AREA OF SITE				
			SCS	Con Ed	ison		41318-0700-10000	Inside the southern end of Gas Holder #11				
ADD Along			, sou	th of Che	lsea Pier	s an	d east of the walkway	ELEVATION/DATUM ast of the walkway 8.53/NAVD 88				
DRIL ADT	DRILLING CONTRACTOR DRILLER TRC INSPECTOR ADT Sean Miller Morgan Evans											
DRIL Mobil			3				TYPE/SIZE BIT 3.25" Hollow Stem Auger	START DATE 7/22/2004	END DATE 7/22/2004			
SAM	PLE	R TY	PΕ				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL (ft bgs)			
2" Sp	lit Sp	oon					140 lbs./30"	(feet below ground surface (ft bgs)) 37'	7.5'			
	ION	S	AM	PLES			DESCRI	PTION OF SOILS	REMARKS			
WELL	CONSTRUCTION	NUMBER	RECOVERY IN FEET	BLOWS PER 6"	ОЕРТН	WATER		1 - medium c - coarse	(PID, STAINING, ODORS, ETC.) N/S = No Staining			
Ť		z	2 2	2 2		_	lt - light dk - dark	tr - trace Itl - little sl - slight	N/O = No odors			
				2								
					37 -		E	O.B. at 37' bgs				
					- 39 -							
					1							
					١							
					41 -							
					43 -							
					l							
					1							
					45 -							
]							
					47 -							
					1							
				-								
					49 -							
]							
					51 -							
					J '							
					1							
					1							
					- 53 -							
		L	L		<u> </u>	L						
	1	Ь	<u> </u>			Ц						

BORING No.: SB-46 BORING LOG SHEET 1 OF 1 JOB NAME/ CLIENT AREA OF SITE PROJECT NO. W18th St MGP SCS/Con Edison 41318-0700-10000 Southwest of former Gas Holder #10 and northwest of Gas Holder #11 **ADDRESS** ELEVATION/DATUM Along the river, south of Chelsea Piers and east of the walkway 7.70/NAVD 88 DRILLING CONTRACTOR DRILLER TRC INSPECTOR Sean Miller ADT Morgan Evans DRILLING RIG TYPE/SIZE BIT START DATE END DATE Mobile B-61 3.25" Hollow Stem Auger 7/23/2004 7/23/2004 SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH WATER LEVEL (ft bgs) (feet below ground surface (ft bgs)) 2" Split Spoon 140 lbs./30" 5.8 **DESCRIPTION OF SOILS** SAMPLES REMARKS CONSTRUCTION RECOVER (PID. STAINING. ODORS. ETC.) NUMBER IN FEET WELL BLOWS f - fine m - medium c - coarse N/S = No Staining PER 6" lt - light dk - dark tr - trace ItI - little sI - slight N/O = No odors 0.0'-0.3': ASPHALT 0.3'-2.0': Fill-Angular GRAVEL subbase in brownish gray f to c sand matrix 1 and brick fragments. 1'-2': N/O. N/S PID = 0.0 ppm max.2.0'-4.2': Fill-Lt brown f to c SAND, f angular GRAVEL, cobbles, chunks of 2'-3': N/O, N/S rock and tr brick fragments. PID = 0.0 ppm max. 3 3'-4': N/O, N/S PID = 0.0 ppm max. 4'-5': N/O, N/S 4.2'-5.8': Fill-Gray f SAND and tr silt. PID = 0.0 ppm max. 5 Sample collected: W18STMGP-B46-4.55.5 5'-6': N/O, N/S PID = 0.0 ppm max. E.O.B. at 6' bgs (Refusal) 7 9 11 13

15

17

TRC Environmental Corp.							
TEST	PIT LOG	Sheet 1 Of 1					
Client	Test Pit No.						
	TP-1						
Con Edison	Elevation & Datum						
	13.70 NAVD '88						
	TRC Inspector						
g on W 18th Street	Jessica Elliott						
	Date Started/Completed	Completion Status					
	4/27/2005	4/27/2005-Backfilled					
I Environmental	Total Depth (ftbg)	Water Level (ftbg)					
		Obs. Stab.					
	4.2'	N/A					
ion							
	Con Edison g on W 18th Street	TEST PIT LOG					

DEPTH (FT BGS)	WATER	SAMPLE DESCRIPTION	REMARKS (PID/DID, ETC)
0.0'		CONCRETE and rebar (0.0'-0.3')	
1.0'		Intact red brick wall encountered along eastern wall of SB-6 and western wall of TP-1 (Western rick ving wall of Former Gas Holder #2). Brick wall running N-S and approximately 20" wide. excavated along eastern side of wall (interior).	N/O, N/S PID = 1.4 ppm max.
2.0'		1.0'-4.2': Brown-dark brown f to c SAND, GRAVEL, COBBLES, brick fragments and large rock (schist) fragments and chunks.	N/O, N/S PID = 1.1 ppm max.
3.0'			N/O, N/S PID = 1.1 ppm max.
4.0'		E.O.T.P. at 4.2' bgs (2.0' x 2.0')	N/O, N/S PID=1.0 ppm max.
5.0'			

TRC Environme	TRC Environmental Corp.						
	. TEST	PIT LOG	Sheet 1 Of 1				
Project No.	Client	Test Pit No.					
		TP-1B					
41318	Con Edison	Elevation & Datum					
Location		13.24 NAVD '88					
		TRC Inspector					
Verizon Buildin	g on W 18th Street	Jessica Elliott					
Contractor		Date Started/Completed	Completion Status				
		5/4/2005	5/4/2005-Backfilled				
Fenley and Nice	ol Environmental	Total Depth (ftbg)	Water Level (ftbg)				
Excavator			Obs. Stab.				
		3'	N/A				
Manual Excava	tion						
Sampler Type							
Grab							

DEPTH (FT BGS)	WATER	SAMPLE DESCRIPTION	REMARKS (PID/DID, ETC)
0.0'		CONCRETE and rebar (0.0'-0.7') 0.7'-2.0': Fill-Brown SILT, f to c SAND, GRAVEL, some cobbles, brick and rock fragments. Sample collected: W18STMGP-TP1B-1.01.5	Gasoline-like odor, N/S PID = 667 ppm max.
1.0'		1.0': Intact red brick wall (western ring wall of Former Gas Holder #1). Brick wall running N-S and approximately 18" wide. Excavated along eastern side of wall (holder interior). excavated along eastern side of wall (interior).	
2.0'		2.0'-3.0': Brown SILT, f SAND, ltl m to c sand, gravel, brick fragments, wood timbers and rock (schist) fragments.	Gasoline-like odor, black staining on wood timbers PID = 78.2 ppm max.
3.0'		3.0': Large boulders; unable to excavate deeper. E.O.T.P. at 3' bgs (7.5' x 2.0')	Gasoline-like odor, N/S PID = 46.0 ppm max.
4.0'			

TRC Environm	TRC Environmental Corp.							
	TEST F	PIT LOG	Sheet 1 Of 2					
Project No.	Client	Test Pit No.						
		TP-2						
41318	Con Edison	Elevation & Datum						
Location		12.35 NAVD '88	12.35 NAVD '88					
		TRC Inspector						
10th Ave Lot b	/w 18th and 19th St	Jennifer Guido						
Contractor	Operator	Date Started/Completed	Completion Status					
		9/12/2004	9/12/2004-Backfilled					
ADT	Joe (ADT)	Total Depth (ftbg)	Water Level (ftbg)					
Excavator			Obs. Stab.					
		11'	N/A					
Rubbertire Bad	ckhoe-CAT							
Sampler Type								
Grab								

DEPTH			
(FT BGS)	WATER	SAMPLE DESCRIPTION .	REMARKS (PID/DID, ETC)
0.0'		ASPHALT (0.0'-0.5')	
1.0'		Fill-Brownish gray f to c SAND, GRAVEL, some rock (schist) fragments and brick fragments (0.5'-6.0').	SI petroleum odor, N/S
2.0'		Top of an intact red brick wall identified as the top of the southern ring wall for Gas Holder No. 3. encountered along the southern wall of the test pit Brick wall running E-W and bends toward the north. Brick wall continuous to bottom of test pit. An additional test pit (2' x 2') was excavated	SI petroleum odor, N/S
3.0'		Gas Holder No. 3's southern wall. The second wall was not located.	SI petroleum odor, N/S
4.0'			SI petroleum odor, N/S
5.0'			SI petroleum odor, N/S
6.0'		Increase in sand content and decrease in rock fragments (6.0'-10.0').	SI petroleum odor, N/S

IRC Env	ironmenta	al Corp. TEST PI	TLOG	Sheet 2	Of 2
Project N	0.	Client	Test Pit No.	Onoot 2	01 2
-			TP-2		
41318		Con Edison	Elevation & Datum		
Location			12.35 NAVD '88		
404h A	1 -4 1-64	04h am d 404h C4	TRC Inspector		
Contract		8th and 19th St Operator	Jennifer Guido Date Started/Completed	Completio	n Status
Oonii aoi	0 1	Орегию	9/12/2004	9/12/2004-	
ADT		Joe (ADT)	Total Depth (ftbg)	Water Lev	
Excavato	r			Obs.	Stab.
			11'	N/A	
	re Backho	e-CAT			
Sampler Grab	гуре				
DEPTH					
(FT	WATER	SAMPLE	DESCRIPTION	REMARKS	1
BGS)				(PID/DID, E	TC)
7.0'				SI petroleum	odor N/S
7.0				or petroleum	10001, 14/3
				SI petroleum	odor, N/S
8.0'					
				SI petroleum	odor N/S
				Si petroleuri	10001, 14/3
9.0'					
				SI petroleum	odor, N/S
				SI petroleum	odor. N/S
10.0'		Brownish gray f to o	SAND, some gravel, Itl silt,	J. poliolodii	
		tr rock (schist) fragr	nents and brick fragments.		
		Moist.		<u></u>	
		Sample collected: N	W18STMGP-TP2-1011	SI petroleum	odor, N/S
11.0'		Sample collected.	W 1001W0F-1FZ-1011		
		E.O.TP. at	11' bgs. (10' x 2')	1	
12.0'					
12.0					

TRC Environme	TRC Environmental Corp.						
	TEST	PIT LOG	Sheet 1 Of 1				
Project No.	Client	Test Pit No.					
		TP-3					
41318	Con Edison	Elevation & Datum					
Location		9.79 NAVD '88	9.79 NAVD '88				
		TRC Inspector					
W 18th St - DE	A Parking Lot	Bill Jablonski					
Contractor	Operator	Date Started/Completed	Completion Status				
		5/1/2004	5/1/2004-Backfilled				
ADT/CAP	Adrian Ogero	Total Depth (ftbg)	Water Level (ftbg)				
Excavator			Obs. Stab.				
		7.7'	N/A				
Rubbertire Bac	khoe-CAT						
Sampler Type							
Grab							

DEPTH (FT BGS)	WATER	SAMPLE DESCRIPTION	REMARKS (PID/DID, ETC)
0.0'		ASPHALT (0.0'-0.3')	N/O, N/S
0.3'		Fill-Blk m to c SAND and some tan angular gravel (0.3'-2.0').	PID=0.0 ppm max. Tar-like residue on east
2.0'		Fill-Brown m SAND with some angular gravel and brick fragments and whole bricks (2.0'-2.3').	side of TP-3 (1.9'-3.75') N/O, N/S PID=3.2 ppm max.
2.3'		Fill-Brown m SAND. Located structure resembling a fragile brick wall (2.3'-3.8').	N/O, N/S PID=0.0 ppm max.
3.8'		Fill-Lt brown to brown m to c SAND and some angular gravel (3.8'-7.7').	N/O, N/S PID=0.0 ppm max.
5.0'			N/O, N/S PID=0.0 ppm max.
6.0'			N/O, N/S PID=0.0 ppm max.
7.5'		Sample collected: W18STMGP-TP3-7.5	N/O, N/S PID=0.0 ppm max.

		TEST PI	T LOG	Sheet 1 Of 1				
Project No. Client		Client	Test Pit No.					
I			TP-4					
41318 Con Edison		Con Edison	Elevation & Datum					
Location			6.70 NAVD '88					
			TRC Inspector					
W 18th St - W 19th St Parking Lot			Geraldine Tan					
Contract	or	Operator	Date Started/Completed	Completion Status				
			5/8/2004	5/8/2004Backfilled				
ADT/CAP		Adrian Ogero	Total Depth (ftbg)	Water Level (ftbg)				
Excavato	r			Obs. Stab.				
Deale le contin	D I.I	- 047	6'	6'				
	e Backho	e-CAI	4					
Sampler Grab	ıype							
DEPTH								
(FT	WATER	SAMPLE	DESCRIPTION	REMARKS				
BGS)		J	2233	(PID/DID, ETC)				
,								
0.0'		ASPHALT (0.0'-0.5')	N/O, N/S				
0.5'-1.0'		GRAVEL-1" diamet	er	PID (headspace)=6.1 ppm max.				
1.0'-2.0' Fill-Dk brown f to c gravel, brick fragme			SAND, SILT, some f to c	N/O, N/S				
			ents and tr rocks.	PID (headspace)=12.6 ppm max.				
			wide concrete structure					
8' from eastern edge West end of trench-			` ` ,					
			2" diameter metal pipe, tile,	N/O, N/S in pipe				
		brick and tr wood.		PID (headspace)=0.0 ppm max. in pipe				
2.0'-3.0'		Fill-Dk brown f to c	SAND, SILT, some f to c	N/O. N/S				
2.0 0.0		gravel and 9" diame		PID (headspace)=8.6 ppm max.				
		Ŭ		, , , , , ,				
3.0'-4.0'		East end of trench:	Fill-Reddish f to c SAND and	N/O, N/S				
			trench: Fill-Dk brown f to c	PID (headspace)=13.8 ppm max.				
			ragments and cobble. Intact					
		brick wall along wes	stern edge of trench (3' bgs).					
4.0'-5.0'		Foot and of transh	Fill-Reddish f to c SAND.	N/O N/C				
4.0-5.0			et tr gravel and cobble.	N/O, N/S PID (headspace)=3.6 ppm max.				
			SAA, brick wall intact at	(Headspace)=3.0 ppiii max.				
		depth along western						
		'	<u>-</u>					
5.0'-6.0'		East end of trench:	SAA, 1' diameter cobble.	N/O, N/S				
		· ·	V18STMGP-TP4-56/	PID (headspace)=12.0 ppm max.				
		Time: 1215						
6.0'				4				
		1						

TRC Environmental Corp.									
	TEST	PIT LOG	Sheet 1 Of 1						
Project No.	Client	Test Pit No.							
		TP-6							
41318	Con Edison	Elevation & Datum							
Location		9.05 NAVD '88							
ĺ		TRC Inspector							
W 18th St - DE	A Parking Lot	Bill Jablonski	Bill Jablonski						
Contractor	Operator	Date Started/Completed	Completion Status						
		5/2/2004	5/2/2004Backfilled						
ADT/CAP	Adrian Ogero	Total Depth (ftbg)	Water Level (ftbg)						
Excavator			Obs. Stab.						
		9.9'	9.9'						
Rubbertire Bac	khoe-CAT								
Sampler Type		\exists							
Grab									

DEPTH (FT BGS)	WATER	SAMPLE DESCRIPTION .	REMARKS (PID/DID, ETC)
0.0'		ASPHALT (0.0'-0.25')	
0.25'		Fill-Black m to c SAND, some silt, brick fragments and concrete debris (0.25'-0.83').	N/O, N/S PID=0.0 ppm max.
0.83'		Fill-Black m to c SAND, SILT with brown and orange m to c sand and silt (0.83'-3.0'). Large ashlar block encountered at 2.0'-2.5'.	N/O, N/S PID=0.0 ppm max.
2.33'		Intact red brick wall encountered along northern wall of test pit. Brick wall running E-W and excavated along southern side of wall.	N/O, N/S PID=0.0 ppm max.
3.0'		Ashlar block wall encountered in southern end of test pit.	N/O, N/S PID=0.0 ppm max.
4.1'		Fill-Brown and tan m to c SAND, some angular gravel, brick fragments and blocks (3.0'-6.7'). Concrete/mortar mix at 4.1'.	N/O, N/S PID=0.0 ppm max.
5.0'		Second brick wall encountered at 5.0' bgs. Wall is 12' south of northern wall of test pit and aligned parallel to the first brick wall.	N/O, N/S PID=0.0 ppm max.
6.7'		Fill-Brown m to c SAND, some silt, tr angular gravel and tr rounded gravel.	N/O, N/S PID=0.0 ppm max.
9.9'		Sample collected: W18STMGP-TP6-9.5 SAA (fill material) (4.1'-9.9'). Groundwater encountered at 9.9'.	N/O, N/S PID=4.2 ppm max.

Data Assessment Narrative

1.0 Introduction

TRC Quality Assurance (QA) staff reviewed data between February 8 and March 18, 2005. A total of sixteen (16) sample delivery groups (SDGs) were reviewed that include ninety-one (91) field samples, one (1) equipment rinsate blank, and one (1) field duplicate sample. Chemtech in Mountainside, New Jersey generated the analytical data. Table 1 presents a listing of these samples, the dates and times they were collected, analytical methods used to generate data, and associated laboratory identifiers.

2.0 Review Criteria

The data review criteria used for this assessment are the values given in the following United States Environmental Protection Agency, Region II documents:

- Standard Operating Procedure (SOP) Number HW-24, Revision 1, June 1999, Validating Volatile Organic Compounds by SW-846 Method 8260B
- SOP Number HW-22, Revision 2, June 2001, Validating Semivolatile Organic Compounds by SW-846 Method 8270
- SOP Number 23B, Revision 1.0, May 2002, Validating PCB Compounds by SW-846 Method 8082
- SOP Number HW-2, Revision 11, January 1992, Evaluation of Metals Data for the CLP Program

Items reviewed during the assessment process for volatile organic, semivolatile organic, polychlorinated biphenyl (PCB), pesticide, and herbicide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Recoveries and Retention Times
- Laboratory Control Sample (LCS) Results
- Sample Quantitation and Reported Quantitation Limits
- Target Compound Identification

Items reviewed during the assessment process for metals data and cyanide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation

- Initial and Continuing Calibrations
- Detection Limit Standards
- Blanks
- Interference Check Samples
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Duplicate Results
- Serial Dilutions

Qualified sample data are listed Table 2.

3.0 Data Review/Validation Results

Data Completeness

All requirements for full raw data reporting are met for the reported data packages. That is, the data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables, as requested on chain-of-custody forms.

Preservation and Holding Times

Volatile Organic Analytes

Volatile GC/MS analyses of several soil samples occurred more than 10 days after sample collection. The affected samples are presented in Table 3. Most analyses occurred within the method-defined holding time of 14 days but outside the United States Environmental Protection Agency (USEPA) Region II holding time (defined in SOP No. HW-24) of 10 days. Therefore, all positive results in the samples listed in Table 3 are flagged with a "J" qualifier and all non-detected results are flagged with a "UJ" qualifier, as noted in Table 2.

Sample W18STMGP-SB317.17.7 was analyzed 15 days after collection. That is, the analysis occurred outside both the method-defined and USEPA Region II holding times. The extended time between collection and analysis may indicate a low bias for all target analytes. Positive concentrations of toluene, tetrachloroethene, ethylbenzene, m/p-xylenes, and o-xylenes are flagged with "J" qualifiers and all remaining non-detected analytes are flagged with "UJ" qualifiers.

Semivolatile Organic Analytes

Sample W18STMGP-SB317.17.7 was extracted for semivolatile organics analysis 16 days after collection. The method-defined holding time for extraction is 14 days. The extended time between collection and analysis may indicate a low bias for all target analytes. Positive concentrations of naphthalene, 2-methylnaphthalene, acenaphthene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene are

flagged with "J" qualifiers and all remaining non-detected analytes are flagged with "UJ" qualifiers.

Sample W18STMGP-SB136.06.5 was also extracted for semivolatile organics analysis 16 days after collection. The method-defined holding time for extraction is 14 days. The extended time between collection and analysis may indicate a low bias for all target analytes. The positive concentration of bis(2-ethylhexyl)phthalate is flagged with a "J" qualifier and all remaining non-detected analytes are flagged with "UJ" qualifiers.

Metals

All criteria are met.

Cyanide

The holding time for cyanide distillation is 14 days. Distillation was performed for samples W18STMGP-SB44-0810 and W18STMGP-SB44-6.0-8.0 a minimum of 17 days past sample collection. Per USEPA Region II guidelines, cyanide results in the listed samples are flagged with "R" qualifiers.

PCBs

Sample W18STMGP-WCOMP-8-10-04 was extracted for PCB analysis 8 days after collection. The holding time for extraction is 7 days. Since PCBs were not detected, all results for PCBs in sample W18STMGP-WCOMP-8-10-04 are flagged with "UJ" qualifiers.

Pesticides

All criteria are met.

Herbicides

All criteria are met.

GC/MS Tunes

All USEPA Region II criteria are met.

Initial and Continuing Calibrations

Volatile Organic Analytes

The percent relative standard deviation (%RSD) values for several compounds are greater than 15% in the initial calibration analyzed on May 3, 2004 between 18:54 and 20:51. Detected positive results for toluene in samples W18STMGP-B52-2729, W18STMGP-COMP-5-1-04, W18STMGP-B19-1719, W18STMGP-B48-1516, and W18STMGP-B48-1921DL2 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on May 12, 2004 between 20:33 and 22:31. Detected positive results for acetone in

samples W18STMGP-B20-1920, W18STMGP-B47-1719, W18STMGP-B48-79, W18STMGP-B48-1921 are flagged with "J" qualifiers.

The percent difference (%D) value for isopropyl benzene in the continuing calibration analyzed on May 15, 2004 at 15:06 is greater than 90%. Per USEPA Region II requirements, reported results for isopropylbenzene in associated samples W18STMGP-B20-1315, W18STMGP-B47-1719DL, and W18STMGP-B48-1921DL are flagged with "R" qualifiers.

Relative response factors (RRFs) for chloroethane are less than 0.05 in the initial calibration analyzed on June 1, 2004 between 13:15 and 15:50 as well as the continuing calibration analyzed on June 2, 2004 at 11:09. Therefore, reported results for chloroethane in associated samples W18STMGP-B32-1113, W18STMGP-B32-2123, and W18STMGP-B32-2123RE are flagged with "R" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on July 10, 2004 between 14:29 and 16:10. The %D values for several compounds are also greater than 20% in the associated continuing calibration analyzed on July 12, 2004 at 13:11. Detected positive results for methylene chloride in samples W18STMGP-MW40A-45, W18STMGP-B46-4.55.5, W18STMGP-B45-78, W18STMGP-B26-6.57, W18STMGP-B07-67, W18STMGP-B08-45, and W18STMGP-B27-5.05.5 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on July 25, 2004 between 17:35 and 19:13. Detected positive results for carbon disulfide, methylene chloride, and cyclohexane in samples W18STMGP-SB39-7.58.0, W18STMGP-SB39-23.0, W18STMGP-SB18-7.37.9, W18STMGP-SB18-28.529.0, W18STMGP-SB18-42.543.0, W18STMGP-SB45-7.07.5, W18STMGPSB45-31.532.0, W18STMGP-SB136.06.5, W18STMGP-SB27-5.96.3, W18STMGP-SB27.40.941.3, W18STMGP-SB43-7.07.5, and W18STMGP-SB43-23.023.5 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on July 26, 2004 between 03:59 and 05:39. The %D values for several compounds are also greater than 20% in the associated continuing calibration analyzed on July 29, 2004 at 18:03. Detected positive results for acetone and carbon disulfide in samples W18STMGP-SB26-3537 and W18STMGP-SB40B-3335 are flagged with "J" qualifiers.

The %D value for tetrachloroethene in the continuing calibration analyzed on July 28, 2004 at 15:15 is greater than 20%. Positive results for tetrachloroethene in associated samples W18STMGP-SB43-6-8 and W18STMGP-SB43-8-10 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 13, 2004 between 20:12 and 21:53. The detected positive result for acetone in sample W18STMGP-SB34-28.529 is flagged with a "J" qualifier.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 14, 2004 between 12:56 and 14:34. Detected positive results for acetone and methylcyclohexane in sample W18STMGP-SB44-0810 and W18STMGP-B15-56DL are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 25, 2004 between 12:29 and 14:11. The detected positive result for methylene chloride, acetone, and carbon disulfide in samples W18STMGP-B15-79, W18STMGP-B15-1113, and W18STMGP-B15-2325 are flagged with "J" qualifiers.

The %D values for acetone, carbon disulfide, cyclohexane, methylcyclohexane, and isopropylbenzene in the continuing calibration analyzed on August 28, 2004 at 18:31 are greater than 20%. Positive results for these compounds in associated samples W18STMGP-B15-56, W18STMGP-B15-79, W18STMGP-B15-1113, and W18STMGP-B15-1719 are flagged with "J" qualifiers.

The %D value for acetone in the continuing calibration analyzed on August 30, 2004 at 19:07 is greater than 90%. The result for acetone in associated sample W18STMGP-B15-2325 is flagged with an "R" qualifier. The %D value for carbon disulfide is greater than 20% in the listed continuing calibration. The reported concentration of carbon disulfide is flagged with a "J" qualifier in sample W18STMGP-B15-2325.

The %D value for methylcyclohexane is greater than 20% in the continuing calibration analyzed on August 31, 2004 at 00:11. The reported concentration of methylcyclohexane in sample W18STMGP-B15-56DL is flagged with a "J" qualifier.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 1, 2004 between 21:28 and 23:02. The detected positive results for acetone and methylene chloride in samples W18STMGP-B24-8284, W18ST-SB12-5-7, W18ST-SB12-7-9, W18ST-SB12-15-17, W18ST-SB9-4, W18ST-TP2-10-11, W18ST-SB12-25-27 are flagged with "J" qualifiers.

The %D values for acetone and methyl tert-butyl ether are greater than 20% in the continuing calibration analyzed on September 16, 2004 at 23:43. Reported positive concentrations of acetone and methyl tert-butyl ether in samples W18ST-SB12-7-9, W18ST-SB12-15-17, W18ST-SB9-4, W18ST-TP2-10-11, and W18ST-SB12-25-27 are flagged with "J" qualifiers.

Semivolatile Organic Analytes

%D values for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene are greater than 20% in the continuing calibration analyzed on May 14, 2004 at 06:34. Reported positive concentrations

of indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene in sample W18STMGP-B48-1516DL are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on July 9, 2004 between 20:01 and 22:35. The detected positive results for 3+4-methylphenols, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and indeno(1,2,3-cd)pyrene in samples W18STMGP-B45-78, W18STMGP-B27-5.05.5, and W18STMGP-B08-45 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on July 27, 2004 between 16:33 and 20:40. Detected positive results for benzaldehyde and benzo(b)fluoranthene in samples W18STMGP-SB43-6-8, W18STMGP-SB43-8-10, W18STMGP-SB34-20.521, W18STMGP-SB34-20.521RE, W18STMGP-SB44-0810, W18STMGP-SB44-6.0-8.0, and W18STMGP-SB44-6.0-8.0RE are flagged with "J" qualifiers.

%D values for 4-nitrophenol, carbazole, and indeno(1,2,3-cd)pyrene are greater than 20% in the continuing calibration analyzed on July 29, 2004 at 01:40. Reported positive concentrations for these compounds in samples W18STMGP-SB39-23.0, W18STMGP-SB18-7.37.9, W18STMGP-SB18-28.529.0, W18STMGP-SB45-31.532.0, W18STMGP-SB27-5.96.3, W18STMGP-SB43-7.07.5, and W18STMGP-SB43-23.023.5 are flagged with "J" qualifiers.

The %D value for phenanthrene is greater than 20% in the continuing calibration analyzed on July 30, 2004 at 04:09. The reported positive concentration for phenanthrene in sample W18STMGP-SB18-42.543.0 is flagged with a "J" qualifier.

%D values for fluorene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene are greater than 20% in the continuing calibration analyzed on July 31, 2004 at 03:22. Reported positive concentrations for these compounds in sample W18STMGP-SB27.44.545 are flagged with "J" qualifiers.

%D values for carbazole and benzo(b)fluoranthene are greater than 20% in the continuing calibration analyzed on July 31, 2004 at 17:55. Reported positive concentrations for these compounds in sample W18STMGP-SB27.44.545DL are flagged with "J" qualifiers.

%D values for phenanthrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene are greater than 20% in the continuing calibration analyzed on August 8, 2004 at 02:24. Reported positive concentrations for these compounds in samples W18STMGP-SB26-3133, W18STMGP-SB26-3537, W18STMGP-SB40B-3537, W18STMGP-SB40B-3537DL, and W18STMGP-SB40B-4143 are flagged with "J" qualifiers.

The RRF for caprolactam in the continuing calibration analyzed on August 8, 2004 at 12:05 is less than 0.050. Additionally, the %D value for benzo(b)fluoranthene in this continuing calibration analysis is greater than 15%. Per USEPA Region II instruction, non-detected results for caprolactam in associated samples W18STMGP-SB43-6-8RE and W18STMGP-SB43-8-10RE are flagged with "R" qualifiers. Positive results for benzo(b)fluoranthene in these samples are flagged with "J" qualifiers.

The %D for 4-nitrophenol is greater than 90% in the continuing calibration analyzed on August 8, 2004 at 16:51. Per USEPA Region II requirements, the non-detected result for 4-nitrophenol in associated sample W18STMGP-B24-8284 is flagged with an "R" qualifier.

The %D value for bis(2-ethylhexyl)phthalate is greater than 20% in the continuing calibration analyzed on August 14, 2004 at 19:53. The reported positive concentration of bis(2-ethylhexyl)phthalate in sample W18STMGP-SB44-6.0-8.0 is flagged with a "J" qualifier.

%D values for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene are greater than 20% in the continuing calibration analyzed on August 15, 2004 at 13:02. Reported positive concentrations for these compounds in sample W18STMGP-SB34-20.521 are flagged with "J" qualifiers.

The %D for 4-nitrophenol is greater than 90% in the continuing calibration analyzed on August 16, 2004. Per USEPA Region II requirements, the non-detected result for 4-nitrophenol in associated sample W18STMGP-SB44-6.0-8.0RE is flagged with an "R" qualifier.

The %D value for benzo(g,h,i)perylene is greater than 20% in the continuing calibration analyzed on August 18, 2004 at 04:48. The reported positive concentration of benzo(g,h,i)perylene in sample W18STMGP-SB34-20.521RE is flagged with a "J" qualifier.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 25, 2004 between 10:18 and 11:53. Detected positive results for benzo(k)fluoranthene in samples W18STMGP-B15-79, W18STMGP-B15-1719, W18STMGP-B15-2325, W18STMGP-B15-1719DL, W18STMGP-B15-2325DL, W18ST-SB14-5, W18ST-SB11-6, W18ST-SB11-6DL, W18ST-SB10-5, and W18ST-SB10-5DL are flagged with "J" qualifiers.

The %D value for phenanthrene is greater than 20% in the continuing calibration analyzed on August 28, 2004 at 05:16. Reported positive concentrations for phenanthrene in samples W18STMGP-B15-79, W18STMGP-B15-1719, and W18STMGP-B15-2325 are flagged with "J" qualifiers.

The %D value for phenanthrene is greater than 20% in the continuing calibration analyzed on August 28, 2004 at 19:18. Reported positive concentrations of phenanthrene in samples W18STMGP-B15-56 and W18STMGP-B15-1113 are flagged with "J" qualifiers.

The %D value for phenanthrene is greater than 20% in the continuing calibration analyzed on August 31, 2004 at 20:07. Reported positive concentrations for phenanthrene in samples W18STMGP-B15-1719DL, W18STMGP-B15-1719DL2, W18STMGP-B15-2325DL, and W18STMGP-B15-2325DL2 are flagged with "J" qualifiers.

The %RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 5, 2004 between 16:56 and 20:01. The detected positive result for bis(2-ethylhexyl)phthalate in sample W18STMGP-B24-8284 is flagged with a "J" qualifier.

The %D for 4-nitrophenol is greater than 90% in the continuing calibration analyzed on September 16, 2004. Per USEPA Region II requirements, the non-detected result for 4-nitrophenol in associated sample W18ST-SB12-7-9 is flagged with an "R" qualifier. The %RSD for indeno(1,2,3-cd)pyrene in the associated initial calibration (analyzed on September 16, 2004 between 17:31 and 20:30) is greater than 15%. The reported positive concentration of indeno(1,2,3-cd)pyrene in sample W18ST-SB12-7-9 is flagged with a "J" qualifier.

Metals

All criteria are met.

Cyanide

All criteria are met.

PCBs

Response of the calibration verification analysis performed immediately following analyses of the three field samples reported in SDG S3499 is below acceptance criteria. This result could indicate a low bias in results for these three samples. Since PCBs were not detected, reported results in samples W18STMGP-B07-67, W18STMGP-MW7A-67, and W18STMGP-B08-45 are flagged with "UJ" qualifiers.

Pesticides

All criteria are met.

Herbicides

All criteria are met.

Detection Limit Standards

Metals

Recoveries of chromium and lead are high and the recovery of mercury is low in the contract required detection limit (CRDL) standard associated with SDG S2769. Reported concentrations of these analytes in sample W18STMGP-B32-1113 are flagged with "J" qualifiers.

Recovery of selenium is high and recovery of thallium is low in a CDRL standard associated with SDG S3499. Positive concentrations of selenium and thallium are flagged with "J" qualifiers in associated samples W18STMGP-MW40A-45, W18STMGP-B46-4.55.5, W18STMGP-B45-78, W18STMGP-B26-6.57, W18STMGP-B07-67, W18STMGP-MW7A-67, W18STMGP-B08-45, and W18STMGP-B27-5.05.5.

Recoveries of lead and mercury are high in a CRDL standard associated with SDG S3901. Positive concentrations of lead and mercury in samples W18STMGP-SB43-6-8 and W18STMGP-SB43-8-10 are flagged with "J" qualifiers.

The recovery of mercury in the CRDL standard associated with TCLP results reported for SDG S4050 is low. The reported concentration of TCLP mercury in associated sample W18STMGP-COMP-8-9-04 is flagged with a "J" qualifier.

Recovery of mercury in the CRDL standard associated with SDG S4076 is high. The reported concentrations of mercury in associated samples W18STMGP-SB34-20.521, W18STMGP-SB34-28.529, W18STMGP-SB44-0810, and W18STMGP-SB44-6.0-8.0 are flagged with "J" qualifiers.

Recovery of lead in the CRDL standard associated with SDG S4077 is low. The detected concentration of TCLP lead in sample W18STMGP-COMP-8-10-04 is flagged with a "J" qualifier and the non-detected result for TCLP lead in sample W18STMGP-WCOMP-8-10-04 is flagged with a "UJ" qualifier.

Recovery of lead in the CRDL standard associated with SDG S4099 is low. The non-detected results for TCLP lead in associated samples W18STMGP-COMP-8-11-04 and W18STMGP-WCOMP-8-11-04 are flagged with "UJ" qualifiers.

Recovery of lead in the CRDL standard associated with SDG S4126 is low. The detected concentration of TCLP lead in sample W18STMGP-WCOMP-081204 is flagged with a "J" qualifier and the non-detected result for TCLP lead in sample W18STMGP-COMP-081204 is flagged with a "UJ" qualifier.

Recovery of lead in the CRDL standard associated with SDG S4147 is low. The detected concentration of TCLP lead in sample W18STMGP-COMP-072104 is flagged with a "J"

qualifier. Non-detected results for TCLP lead in samples W18STMGP-WCOMP-072104, W18STMGP-COMP-072604, and W18STMGP-COMP-072804 are flagged with "UJ" qualifiers.

Recovery of lead in a CRDL standard associated with SDG S4251 is low. The detected concentration of lead in associated sample W18STMGP-B15-45 is flagged with a "J" qualifier.

Recovery of mercury in the CRDL standard associated with SDG S4251 is low. Reported results for mercury in associated samples W18STMGP-B15-45, W18STMGP-B15-56, W18STMGP-B15-79, W18STMGP-B15-1113, W18STMGP-B15-1719, and W18STMGP-B15-2325 are flagged with "J" qualifiers.

Recovery of lead in the CRDL standard associated with SDG S4506 is low. Non-detected results for TCLP lead in associated samples W18STMGP-WCOMP-83004 and W18STMGP-WCOMP-83104 are flagged with "UJ" qualifiers.

Recovery of arsenic in a CRDL standard associated with SDG 4648 is high. Positive results in samples W18ST-SB12-5-7, W18ST-SB12-7-9, W18ST-SB12-15-17, W18ST-SB14-5, W18ST-SB11-6, W18ST-SB10-5, W18ST-SB9-4, W18ST-TP2-10-11, W18ST-SB12-25-27, and W18STMGP-SB12-4951 are flagged with "J" qualifiers.

Blanks

Equipment Rinsate Blank

Volatile organic compounds were not detected in the equipment rinsate blank identified as W18STMGP-RB-02 indicating adequate sample collection equipment decontamination procedures were used.

Method Blanks - Volatile Organic Analytes

Methylene chloride was detected in the method blank identified as VBLK01 in SDG S3499. This result indicates that reported concentrations of methylene chloride in associated samples include measurement contributions from laboratory sources of contamination. Reported concentrations of methylene chloride in samples W18STMGP-MW40A-45, W18STMGP-B46-4.55.5, W18STMGP-B45-78, W18STMGP-B26-6.57, W18STMGP-B07-67, W18STMGP-B08-45, and W18STMGP-B27-5.05.5 are flagged with "J" qualifiers.

Methylene chloride was detected in the method blank identified as VBLK01 in SDG S3499. This result indicates that reported concentrations of methylene chloride in associated samples include measurement contributions from laboratory sources of contamination. Reported concentrations of methylene chloride in samples W18STMGP-MW40A-45, W18STMGP-B46-4.55.5, W18STMGP-B45-78, W18STMGP-B26-6.57, W18STMGP-B07-67, W18STMGP-B08-45, and W18STMGP-B27-5.05.5 are flagged with "J" qualifiers.

Methylene chloride was detected in the method blank identified as VBLK02 in SDG S3499. This result indicates that reported concentrations of methylene chloride in associated samples include measurement contributions from laboratory sources of contamination. Reported concentrations of methylene chloride in samples W18STMGP-MW7A-67 and W18STMGP-B27-5.05.5 are flagged with "J" qualifiers.

Method Blanks - Semivolatile Organic Analytes

All criteria are met.

Metals

Lead was detected in the extraction batch associated with TCLP metals analyses in SDG S4077. This result may indicate measurement contributions from laboratory sources of contamination in associated samples. The reported positive concentration of TCLP lead in W18STMGP-COMP-8-10-04 is flagged with a "J" qualifier.

Cyanide

All criteria are met.

PCBs

All criteria are met.

Pesticides

All criteria are met.

Herbicides

All criteria are met.

Interference Check Samples

All criteria are met.

Surrogate Recoveries

Volatile Organic Analytes

Recovery of surrogate compound bromofluorobenzene is below USEPA Region II control limits in sample W18STMGP-B32-2123RE. This recovery may indicate a low bias for target analytes. The positive result for acetone is flagged with a "J" qualifier and non-detect results for all other target analytes are flagged with "UJ" qualifiers in this sample.

Recoveries of surrogate compound dibromofluoromethane are below USEPA Region II control limits in sample W18STMGP-B27-5.0.5 and W18STMGP-B27-5.0.5RE. These recoveries may indicate a low bias for target analytes. The positive results for acetone, methylene chloride, and tetrachloroethene are flagged with "J" qualifiers and non-detect results for all other target analytes are flagged with "UJ" qualifiers in both samples.

Recoveries of surrogates dibromofluorobenzene, toluene-d₈, and 4-bromofluorobenzene are greater than control limits in sample W18STMGP-B15-56. The reported positive concentration of methylcyclohexane in this sample is flagged with a "J" qualifier.

Recovery of surrogate 4-bromofluorobenzene is greater than control limits in sample W18STMGP-B15-56DL. The reported positive concentration of methylcyclohexane in this sample is flagged with a "J" qualifier.

Recoveries of surrogates 1,2-dichloroethane-d₄ and toluene-d₈ are greater than USEPA Region II limits in sample W18STMGP-B15-1719. Positive results for cyclohexane, cis-1,2-dichloroethene, methylcyclohexane, benzene, toluene, chlorobenzene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene are flagged with "J" qualifiers.

Recovery of dibromofluoromethane is below control limits in sample W18ST-SB12-7-9. Positive results for acetone, carbon disulfide, toluene, m/p-xylenes, and o-xylene are flagged with "J" qualifiers and the remaining non-detected results are flagged with "UJ" qualifiers. The same low surrogate recovery is exhibited in the re-analysis of this sample; therefore, equivalent qualification of sample results (although only positive results for carbon disulfide are reported for this sample) is made for the re-analysis.

Semivolatile Organic Analytes

Region II limits in sample W18STMGP-B15-1719. Positive results for naphthalene, 2-methylnaphthylene, acenaphthylene, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, carbazole, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "J" qualifiers.

Recoveries of surrogates 2-fluorophenol and phenol-d₅ are greater than control limits in the TCLP analysis of sample W18STMGP-WCOMP-83104. Reported positive concentrations of 2-methylphenols and 3+4-methylphenols in this sample are flagged with "J" qualifiers.

Recoveries of 2-fluorophenol and phenol-d₅ are less than control limits in sample W18ST-SB10-5DL. None of the acid extractable compounds were detected in this sample. Therefore, all acid extractable results are flagged with "UJ" qualifiers.

PCBs

All criteria are met.

Pesticides

All criteria are met.

Herbicides

All criteria are met.

Matrix Spike/Matrix Spike Duplicates

Volatile Organic Analytes

Recoveries of benzene fall below laboratory-defined limits in MS/MSD analyses of sample W18STMGP-B52-1113. Per USEPA Region II guidelines, the reported concentration of benzene in the un-spiked analysis of this sample may be biased low and is flagged with a "J" qualifier.

Recoveries of 1,1-dichloroethene, benzene, and toluene are less than laboratory-defined limits in MS/MSD analyses of sample W18STMGP-B52-2729. Reported concentrations of these compounds in the un-spiked sample may be biased low and are, therefore, flagged with "J" and "UJ" qualifiers.

Semivolatile Organic Analytes

Recoveries of hexachloroethane, 2,4-dimethylphenol, 4-chloroaniline, 4-nitrophenol, 2,4dinitrotoluene, and indeno(1,2,3-cd)pyrene are above laboratory-defined limits in MS/MSD analyses Additionally, sample W18STMGP-B52-2729. hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-2-methylphenol are reported as zero percent in these MS/MSD analyses. Recovery of benzo(g,h,i)perylene is greater than limits in the MS analysis and less than limits in the MSD analysis. Data are not flagged for hexachloroethane, 2,4-dimethylphenol, 4-chloroaniline, 4-nitrophenol, 2,4-dinitrotoluene, and indeno(1,2,3-cd)pyrene since the bias exhibited in the MS/MSD is high and these analytes were not detected in the un-spiked analysis of W18STMGP-B52-2729. Non-detected results for hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-2-methylphenol are flagged with "UJ" qualifiers in the un-spiked analysis of sample W18STMGP-B52-2729. The positive result for benzo(g,h,i)perylene in W18STMGP-B52-2729 is flagged with a "J" qualifier. The biases exhibited in these MS/MSD analyses may affect samples with a similar matrix and/or collected in close proximity to sample W18STMGP-B52-2729.

Recoveries of hexachlorocyclopentadiene, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene are less than laboratoryspecified limits in MS/MSD analyses of sample W18STMGP-SB39-7.5-8.0. Recoveries of benzo(a)anthracene and benzo(b)fluoranthene are greater than control limits in these samples. hexachlorocyclopentadiene, Non-detected results for 2,4-dinitrophenol, 4,6-dinitro-2methylphenol, and indeno(1,2,3-cd)pyrene are flagged with "UJ" qualifiers in sample W18STMGP-SB39-7.58.0. Positive concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are flagged with "J" flags in this sample. The biases exhibited in these MS/MSD analyses may affect samples with a similar matrix and/or collected in close proximity to sample W18STMGP-SB39-7.58.0.

Recoveries of hexachlorocyclopentadiene, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and indeno(1,2,3-cd)pyrene are less than laboratory-defined limits in MS/MSD analyses of sample W18STMGP-SB34-20.521. The detected result for indeno(1,2,3-cd)pyrene is flagged with a "J" qualifier and non-detected results for hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-2-methylphenol are flagged with "UJ" qualifiers in the un-spiked analysis of sample W18STMGP-SB34-20.521. The biases exhibited in these MS/MSD analyses may affect samples with a similar matrix and/or collected in close proximity to sample W18STMGP-SB34-20.521.

Recoveries of 2,4-dimethylphenol, 4-nitrophenol, and 2,4-dinitrotoluene are greater than control limits and the recovery of hexachlorocyclopentadiene is less than laboratory-defined acceptance criteria in MS/MSD analyses of sample W18ST-SB14-5. Results for 2,4-dimethylphenol, 4-nitrophenol, and 2,4-dinitrotoluene are not flagged since the bias in the MS/MSD is high and these analytes were not detected in W18ST-SB14-5. The non-detected result for hexachlorocyclopentadiene in sample W18ST-SB14-5 is flagged with a "UJ" qualifier.

As noted above, four soil samples were analyzed as MS/MSD pairs for semivolatile organic analytes. In each of these analyses, recoveries of hexachlorocyclopentadiene are below laboratory-defined limits. These results are indicative of a potential low bias in all soil samples. Therefore, hexachlorocyclopentadiene results in all soil samples (all non-detected) are flagged with "UJ" qualifiers. Because all associated LCS analyses are within laboratory-specified acceptance criteria, the most likely cause of the low hexachlorocyclopentadiene recoveries is matrix interferences.

Recoveries of hexachlorobenzene are below laboratory-defined limits and recoveries of pyridine are greater than acceptance criteria in the TCLP MS/MSD analyses of sample W18STMGP-COMP-8-10-04. Pyridine results are not qualified since the bias indicated in MS/MSD analyses is high and this compound was not detected in the un-spiked analysis of sample W18STMGP-COMP-8-10-04. The reported non-detected result for hexachlorobenzene in W18STMGP-COMP-8-10-04 is flagged with a "UJ" qualifier.

Recoveries of hexachlorobenzene are below laboratory-defined limits and recoveries of pyridine and 2,4,6-trichlorophenol are greater than acceptance criteria in the TCLP MS/MSD analyses of sample W18STMGP-COMP-072104. Pyridine and 2,4,6-trichlorophenol results are not qualified since the bias indicated in MS/MSD analyses is high and this compound was not detected in the un-spiked analysis of sample W18STMGP-COMP-072104. The reported non-detected result for hexachlorobenzene in W18STMGP-COMP-072104 is flagged with a "UJ" qualifier.

Recoveries of nitrobenzene and hexachlorobutadiene are below laboratory-specified recovery limits in TCLP MS/MSD analyses of sample W18STMGP-COMP-81904. Non-detected results for these compounds are flagged with "UJ" qualifiers in sample W18STMGP-COMP-81904.

Metals

Recovery of mercury is less than laboratory-defined limits in the post-digestion spike performed using sample W18STMGP-B26-6.57. Reported concentration of mercury in associated samples W18STMGP-MW40A-45, W18STMGP-B46-4.55.5, W18STMGP-B45-78, W18STMGP-B26-6.57, W18STMGP-B07-67, W18STMGP-MW7A-67, W18STMGP-B08-45, and W18STMGP-B27-5.05.5 are flagged with "J" qualifiers.

Recoveries of antimony, copper, lead, and mercury are below control limits in MS/MSD analyses of sample W18ST-SB14-5S. These results may indicate a low bias in reported results for these analytes in the un-spiked analysis. Therefore, the non-detected result for antimony is flagged with a "UJ" qualifier and detected results for copper, lead, and mercury are flagged with "J" qualifiers in sample W18ST-SB11-6. The low bias may affect samples with a similar matrix and/or collected in close proximity to sample W18ST-SB11-6.

Cyanide

All criteria are met.

PCBs

Recoveries of both spiked PCB analytes in MS/MSD analyses sample W18ST-SB14-5 are indicative of a high bias in reported results due to matrix interferences. Since the bias is high and target PCB analytes were not detected in the un-spiked sample, data were not qualified.

Pesticides

Recoveries of delta-BHC, gamma-chlordane, alpha-chlordane, 4,4'DDE, and 4,4'DDD in MS/MSD analyses of sample W18ST-SB14-5 are also indicative of a high bias in reported results due to matrix interferences. Again, since the bias is high and target pesticide analytes were not detected in the un-spiked sample, data were not qualified.

Herbicides

Recoveries of 2,4-D and 2,4,5-T are less than laboratory-defined limits in MS/MSD analyses of sample W18ST-SB14-5. These results may indicate a low bias in reported results for these analytes in the un-spiked analysis. Therefore, non-detected results for 2,4-D and 2,4,5-T are flagged with "UJ" qualifiers in sample W18ST-SB14-5. The low bias may affect samples with a similar matrix and/or collected in close proximity to sample W18ST-SB14-5.

Internal Standard Recoveries and Retention Times

Volatile Organic Analytes

Area counts for all internal standard compounds in sample W18STMGP-SB40B-4143 are less than 50% of the count in the associated 12-hour standard and the area count for 1,4-dichlorobenzene-d₄ is less than 25%. These results are indicative of errant quantification of all values associated with target analytes in this sample. Reported non-detected results for isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene are flagged with "R" qualifiers. Reported results for all remaining analytes in this sample (all non-detect) are flagged with "UJ" qualifiers.

Area counts for all internal standard compounds in sample W18STMGP-SB40B-4143RE are less than 50% of the count in the associated 12-hour standard. These results are indicative of errant quantification of all values associated with target analytes in this sample. Reported results for all target analytes in this sample (all non-detect) are flagged with "UJ" qualifiers.

Area counts for all internal standards in sample W18STMGP-SB27.44.545 are less than 25% of the counts in the associated 12-hour standard. Reported positive results for methyl acetate, benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene are flagged with "J" qualifiers and all remaining non-detected analytes are flagged with "R" qualifiers.

Area counts are below acceptance criteria in toxicity characteristic leaching procedure (TCLP) analyses of samples W18STMGP-WCOMP-081204 and W18STMGP-WCOMP-081204RE. Results for vinyl chloride, 1,1dichloroethene, 2-butanone, and chloroform are flagged with "UJ" qualifiers. Results for carbon tetrachloride, benzene, 1,2-dichloroethane, trichloroethene, tetrachloroethene, and chlorobenzene are flagged with "R" qualifiers since the area count for the internal standard associated with these analytes is less than 25% of the 12-hour standard.

The area count for internal standard chlorobenzene-d₅ is less than 25% of the 12-hour standard in sample W18STMGP-B15-56. Associated non-detected results for tetrachloroethene, chlorobenzene, ethylbenzene, m/p-xylenes, o-xylene, styrene, and bromoform are flagged with "R" qualifiers. Recovery of internal standard 1,4-dichlorobenzene-d₄ is less than 50% of that in the 12-hour standard in the same sample. Reported non-detected results for isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "UJ" qualifiers.

The area count for internal standard chlorobenzene-d₅ is greater than 200% of that in the associated 12-hour standard in sample W18STMGP-B15-1719. Reported results of associated

compounds chlorobenzene, ethylbenzene, m/p-xylenes, and o-xylene are flagged with "J" qualifiers. The area count for internal standard 1,4-dichlorobenzene-d₄ is less than 25% that in the associated 12-hour standard in the same sample. Results for isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "R" qualifiers.

Semivolatile Organic Analytes

Area counts for internal standards 1,4-dichlorobenzene-d₄ and perylene-d₁₂ are below acceptance criteria in the analysis of sample W18STMGP-SB27.44.545DL. Results for benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3+4-methylphenols, N-nitroso-di-n-propylamine, hexachloroethane, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "UJ" qualifiers. Positive results for benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene are flagged with "J" qualifiers.

The area counts for internal standard perylene-d₁₂ in samples W18STMGP-SB43-6-8, W18STMGP-SB43-6-8RE, and W18STMGP-SB43-8-10RE are less than 25% of the counts for the associated 12-hour standards. Results for associated target analytes benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "R" qualifiers.

The area count for internal standard perylene-d₁₂ in sample W18STMGP-SB43-8-10 is less than 50% of the associated 12-hour standard. Positive results for benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are flagged with "J" qualifiers and the non-detected result for dibenz(a,h)anthracene is flagged with "UJ" qualifiers.

The area count for internal standard perylene- d_{12} in sample W18STMGP-SB34-20.521 is less than 50% of the associated 12-hour standard. Positive results for benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are flagged with "J" qualifiers and the non-detected result for dibenz(a,h)anthracene is flagged with "UJ" qualifiers. Equivalent results were exhibited in the re-analysis of this sample (W18STMGP-SB34-20.521RE) and equivalent qualification of the resultant data was performed.

The area count for internal standard naphthalene- d_8 in sample W18STMGP-SB44-0810 is less than 50% of the associated 12-hour standard. Positive results for associated target analytes naphthalene and 2-methylnaphthalene are flagged with "J" qualifiers and the non-detected result for acetophenone, nitrobenzene, isophorone, 2-nitrophenol, 2,4-dimethylphenol, bis(2-chloroethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, hexachlorobutadiene, caprolactam, and 4-chloro-3-methylphenol are flagged with "UJ" qualifiers. Equivalent results were exhibited in the re-analysis of this sample (W18STMGP-SB44-0810RE) and equivalent qualification of the resultant data was performed. Recovery of internal standard perylene- d_{12} is also less than

50% of the 12-hour standard in sample W18STMGP-SB44-0810RE; therefore, positive concentrations of benzo(b)fluoranthene and benzo(a)pyrene are flagged with "J" qualifiers and non-detected results for benzo(k)fluoranthene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "UJ" qualifiers.

The area count for internal standard perylene- d_{12} in sample W18STMGP-SB44-6.0-8.0 is less than 25% of the count in the associated 12-hour standard. Results for detected target analytes benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene are flagged with "J" qualifiers and non-detected results for dibenz(a,h)anthracene and benzo(g,h,i)perylene are flagged with "R" qualifiers in sample W18STMGP-SB44-6.0-8.0.

The area count for internal standard perylene- d_{12} in sample W18STMGP-SB44-6.0-8.0RE is less than 50% of the count in the associated 12-hour standard. Results for detected target analytes benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene are flagged with "J" qualifiers and non-detected results for dibenz(a,h)anthracene and benzo(g,h,i)perylene are flagged with "UJ" qualifiers in sample W18STMGP-SB44-6.0-8.0RE.

Laboratory Control Samples

All criteria are met for most methods.

Semivolatile Organic Analytes

Recovery of 4-nitrophenol is greater than laboratory-defined limits in the laboratory control sample (LCS) identified as SLCS01 (PB00340BS) in SDG S4076. Since the bias is high and 4-nitrophenol was not detected in any associated sample, data were not qualified.

Recoveries of pyridine and pentachlorophenol are greater than acceptance criteria in the TCLP LCS identified as SLCS01 (PB00465BS) in SDG S4147. Since the bias is high and these compounds were not detected in any associated sample, data were not qualified.

Sample Quantitation and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. Select target analytes results were reported below the lowest calibration standard level and quantitation limit. These results were qualified as estimated (J) by the laboratory.

Some samples were analyzed at dilutions. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

Herbicides

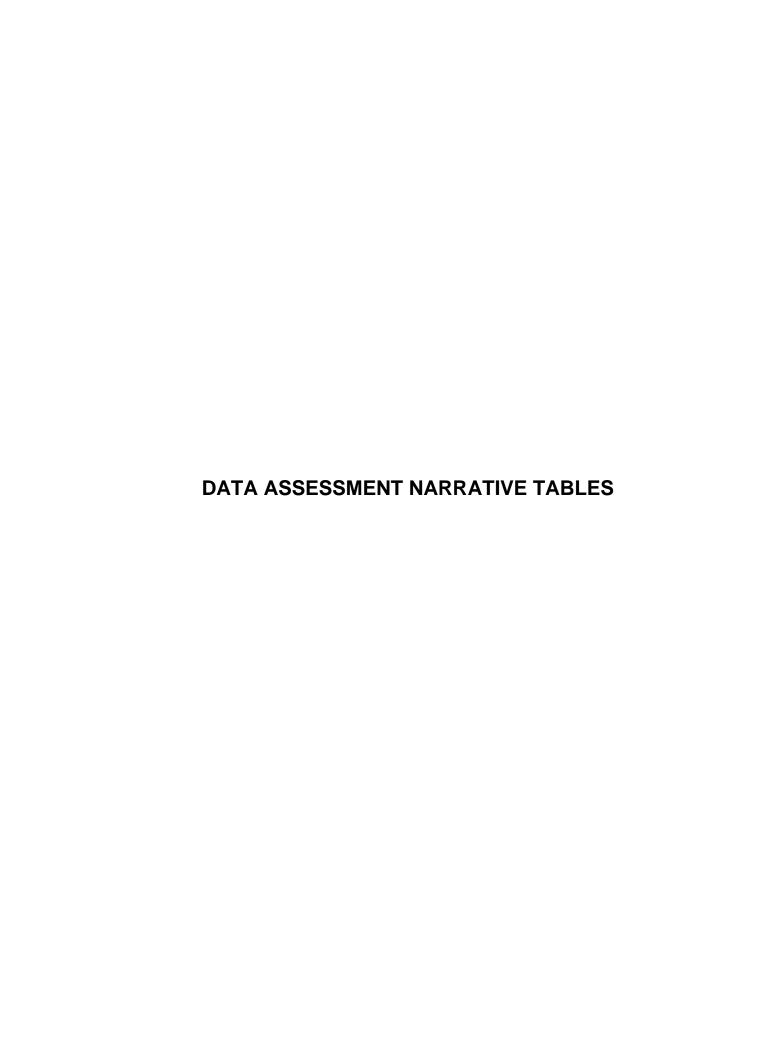
The %D value for concentrations of 2,4-D calculated for responses on the primary and confirmatory columns is greater than specified limits in samples W18STMGP-B07-67,

W18STMGP-MW7A-67, and W18STMGP-B08-45. Reported results for 2,4-D in the listed samples are flagged with "J" qualifiers.

Laboratory Duplicate Results

The reported RPD value for mercury in duplicate analyses of sample W18STMGP-B52-2729 is greater than USEPA Region II limits. This result may be indicative of more variability than targeted for mercury results in this sample. Therefore, the reported concentration of mercury in sample W18STMGP-B52-2729 is flagged with a "J" qualifier.

Serial Dilutions


The %D value for mercury in a serial dilution of sample W18ST-SB14-5 falls outside of control limits. Detected mercury results in associated samples W18ST-SB14-5 and W18ST-SB11-6 are flagged with "J" qualifiers.

Target Compound Identification

All criteria are met.

Other Issues

Sample W18STMGP-B15-1719 was analyzed outside of the method-required 12-hour window that begins with injection of tuning compound bromofluorobenzene. Both positive and non-detected results in this sample are flagged with "R" qualifiers.

Table 1: Samples Reviewed and Associated Analytical Method

		Collection	Collection	on Methods							Lab	
Matrix	Sample ID	Date	Time	Metals	Mercury	Pesticides	PCBs	Herbicides	VOAs	SVOAs	Cyanide	Sample ID
Soil	W18STMGP-B52-1113	5/1/2004	11:20	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-01
Soil	W18STMGP-B52-2729	5/1/2004	14:16	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-02
Soil	W18STMGP-B52-3335	5/1/2004	14:30	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-05
Soil	W18STMGP-TP3-7.5	5/1/2004	12:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-06
Soil	W18STMGP-COMP-5-1-04	5/1/2004	15:10	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-07
Soil	W18STMGP-B19-57	5/2/2004	8:50	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-08
Soil	W18STMGP-B19-1719	5/2/2004	9:20	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-09
Soil	W18STMGP-B20-911	5/2/2004	11:22	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-10
Soil	W18STMGP-TP6-9.5	5/2/2004	12:46	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-11
Soil	W18STMGP-B20-1315	5/2/2004	13:43	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-12
Soil	W18STMGP-B20-1920	5/2/2004	13:45	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-13
Soil	W18STMGP-B20-4143	5/2/2004	14:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-14
Soil	W18STMGP-B61-4143	5/2/2004	14:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-15
Soil	W18STMGP-B20-4951	5/2/2004	14:30	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-16
Soil	W18STMGP-COMP-5-2-04	5/2/2004	15:45	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-17
Soil	W18STMGP-COMP-5-3-04	5/3/2004	14:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-18
Soil	W18STMGP-B47-79	5/3/2004	10:05	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-19
Soil	W18STMGP-B47-1315	5/3/2004	10:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-20
Soil	W18STMGP-B47-1719	5/3/2004	10:20	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-21
Soil	W18STMGP-B48-79	5/3/2004	13:40	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-22
Soil	W18STMGP-B48-1516	5/3/2004	13:50	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-23
Soil	W18STMGP-B48-1921	5/3/2004	14:00	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-24
Soil	W18STMGP-B21-1113	5/4/2004	10:40	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-25
Soil	W18STMGP-B21-1517	5/4/2004	10:50	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-26
Soil	W18STMGP-B21-2123	5/4/2004	11:00	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-27
Soil	W18STMGP-COMP-5-4-04	5/4/2004	11:15	SW6010	SW7471				SW8260	SW8270	SW9012	S2436-28
Water	W18STMGP-RB-02	5/4/2004	12:30	SW6010	SW7470				SW8260	SW8270	SW9012	S2436-29
Soil	W18STMGP-B32-1113	5/22/2004	10:50	SW6010	SW7471		SW8082		SW8260	SW8270	SW9012	S2769-01
Soil	W18STMGP-B32-2123	5/22/2004	11:00	SW6010	SW7471		SW8082		SW8260	SW8270	SW9012	S2769-02
Soil	W18STMGP-MW40A-45	7/6/2004	12:20	SW6010	SW7471				SW8260	SW8270	SW9012	S3499-01

Table 1: Samples Reviewed and Associated Analytical Method (continued)

		Collection	Collection	on Methods							Lab	
Matrix	Sample ID	Date	Time	Metals	Mercury	Pesticides	PCBs	Herbicides	VOAs	SVOAs	Cyanide	Sample ID
Soil	W18STMGP-B46-4.55.5	7/7/2004	10:45	SW6010	SW7471				SW8260	SW8270	SW9012	S3499-02
Soil	W18STMGP-B45-78	7/8/2004	14:15	SW6010	SW7471				SW8260	SW8270	SW9012	S3499-03
Soil	W18STMGP-B26-6.57	7/8/2004	12:30	SW6010	SW7471				SW8260	SW8270	SW9012	S3499-04
Soil	W18STMGP-B07-67	7/9/2004	10:00	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S3499-05
Soil	W18STMGP-MW7A-67	7/9/2004	11:30	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S3499-06
Soil	W18STMGP-B08-45	7/9/2004	13:15	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S3499-07
Soil	W18STMGP-B27-5.05.5	7/9/2004	13:30	SW6010	SW7471				SW8260	SW8270	SW9012	S3499-08
Soil	W18STMGP-SB26-3133	7/26/2004	5:15	SW6010	SW7471				SW8260	SW8270	SW9012	S3835-01
Soil	W18STMGP-SB26-3537	7/27/2004	5:08	SW6010	SW7471				SW8260	SW8270	SW9012	S3835-02
Soil	W18STMGP-SB40B-3335	7/27/2004	3:35	SW6010	SW7471				SW8260	SW8270	SW9012	S3835-03
Soil	W18STMGP-SB40B3537	7/27/2004	4:05	SW6010	SW7471				SW8260	SW8270	SW9012	S3835-04
Soil	W18STMGP-SB40B4143	7/27/2004	4:20	SW6010	SW7471				SW8260	SW8270	SW9012	S3835-05
Soil	W18STMGP-SB39-7.58.0	7/21/2004	1:15	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-01
Soil	W18STMGP-SB39-23.0	7/21/2004	1:30	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-02
Soil	W18STMGP-SB18-7.37.9	7/21/2004	4:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-03
Soil	W18STMGP-SB18-28.529.0	7/21/2004	4:30	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-04
Soil	W18STMGP-SB18-42.543.0	7/21/2004	6:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-05
Soil	W18STMGP-SB45-7.07.5	7/22/2004	1:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-06
Soil	W18STMGP-SB45-31.532.0	7/22/2004	4:50	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-07
Soil	W18STMGP-SB317.17.7	7/12/2004	14:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-08
Soil	W18STMGP-SB136.06.5	7/12/2004	11:15	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-09
Soil	W18STMGP-SB27-596.3	7/22/2004	6:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-10
Soil	W18STMGP-SB27.40.941.3	7/22/2004	6:20	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-11
Soil	W18STMGP-SB27.44.545	7/22/2004	7:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3732-12
Soil	W18STMGP-SB43-7.07.5	7/23/2004	2:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3756-01
Soil	W18STMGP-SB43-23.023.5	7/23/2004	12:45	SW6010	SW7471				SW8260	SW8270	SW9012	S3756-02
Soil	W18STMGP-SB43-6-8	8/2/2004	3:00	SW6010	SW7471				SW8260	SW8270	SW9012	S3901-01
Soil	W18STMGP-SB43-8-10	8/2/2004	3:15	SW6010	SW7471				SW8260	SW8270	SW9012	S3901-02
TCLP	W18STMGP-COMP-8-9-04	8/9/2004	13:50	SW6010	SW7470				SW8260	SW8270		S4050-01
Soil	W18STMGP-COMP-8-9-04	8/9/2004	13:50				SW8082				RCI	S4050-01

Table 1: Samples Reviewed and Associated Analytical Method (continued)

		Collection	Collection	Collection Methods					Lab			
Matrix	Sample ID	Date	Time	Metals	Mercury	Pesticides	PCBs	Herbicides	VOAs	SVOAs	Cyanide	Sample ID
Soil	W18STMGP-SB34-20.521	8/10/2004	10:40	SW6010	SW7471				SW8260	SW8270	SW9012	S4076-01
Soil	W18STMGP-SB34-28.529	8/10/2004	11:00	SW6010	SW7471				SW8260	SW8270	SW9012	S4076-02
Soil	W18STMGP-SB44-0810	8/2/2004	1:00	SW6010	SW7471				SW8260	SW8270	SW9012	S4076-03
Soil	W18STMGP-SB44-6.0-8.0	8/2/2004	0:45	SW6010	SW7471				SW8260	SW8270	SW9012	S4076-04
TCLP	W18STMGP-COMP-8-10-04	8/10/2004	14:50	SW6010	SW7470				SW8260	SW8270		S4077-01
TCLP	W18STMGP-WCOMP-8-10-04	8/10/2004	14:35	SW6010	SW7470				SW8260	SW8270		S4077-02
Soil	W18STMGP-COMP-8-10-04	8/10/2004	14:50				SW8082				RCI	S4077-01
Water	W18STMGP-WCOMP-8-10-04	8/10/2004	14:35				SW8082				RCI	S4077-02
TCLP	W18STMGP-COMP-8-11-04	8/11/2004	13:30	SW6010	SW7470				SW8260	SW8270		S4099-01
TCLP	W18STMGP-WCOMP-8-11-04	8/11/2004	14:00	SW6010	SW7470				SW8260	SW8270	-	S4099-02
Soil	W18STMGP-COMP-8-11-04	8/11/2004	13:30				SW8082				RCI	S4099-01
Water	W18STMGP-WCOMP-8-11-04	8/11/2004	14:00				SW8082				RCI	S4099-02
TCLP	W18STMGP-COMP-8-12-04	8/12/2004	13:45	SW6010	SW7470				SW8260	SW8270		S4126-01
TCLP	W18STMGP-WCOMP-8-12-04	8/12/2004	14:15	SW6010	SW7470				SW8260	SW8270		S4126-02
Soil	W18STMGP-COMP-8-12-04	8/12/2004	13:45				SW8082				RCI	S4126-01
Water	W18STMGP-WCOMP-8-12-04	8/12/2004	14:15				SW8082				RCI	S4126-02
TCLP	W18STMGP-COMP-072104	8/13/2004	10:00	SW6010	SW7470				SW8260	SW8270		S4147-01
TCLP	W18STMGP-WCOMP-072104	8/13/2004	9:00	SW6010	SW7470				SW8260	SW8270		S4147-02
TCLP	W18STMGP-COMP-072604	8/13/2004	10:45	SW6010	SW7470				SW8260	SW8270		S4147-03
TCLP	W18STMGP-COMP-072804	8/13/2004	11:30	SW6010	SW7470				SW8260	SW8270		S4147-04
Soil	W18STMGP-COMP-072104	8/13/2004	10:00				SW8082				RCI	S4147-01
Water	W18STMGP-WCOMP-072104	8/13/2004	9:00				SW8082				RCI	S4147-02
Soil	W18STMGP-COMP-072604	8/13/2004	10:45				SW8082				RCI	S4147-03
Soil	W18STMGP-COMP-072804	8/13/2004	11:30				SW8082				RCI	S4147-04
TCLP	W18STMGP-B15-45	8/18/2004	10:35						SW8260	SW8270		S4251-01
TCLP	W18STMGP-B15-56	8/18/2004	10:38						SW8260			S4251-02
TCLP	W18STMGP-B15-79	8/19/2004	9:11						SW8260			S4251-03
TCLP	W18STMGP-B15-1113	8/19/2004	9:38						SW8260			S4251-04
TCLP	W18STMGP-B15-1719	8/19/2004	10:00						SW8260			S4251-05
TCLP	W18STMGP-B15-2325	8/19/2004	10:20						SW8260			S4251-06

Table 1: Samples Reviewed and Associated Analytical Method (continued)

		Collection	Collection	n Methods					Lab			
Matrix	Sample ID	Date	Time	Metals	Mercury	Pesticides	PCBs	Herbicides	VOAs	SVOAs	Cyanide	Sample ID
TCLP	W18STMGP-COMP-81904A	8/19/2004	11:00	SW6010	SW7470				SW8260			S4251-07
Soil	W18STMGP-B15-45	8/18/2004	10:35	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-01
Soil	W18STMGP-B15-56	8/18/2004	10:38	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-02
Soil	W18STMGP-B15-79	8/19/2004	9:11	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-03
Soil	W18STMGP-B15-1113	8/19/2004	9:38	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-04
Soil	W18STMGP-B15-1719	8/19/2004	10:00	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-05
Soil	W18STMGP-B15-2325	8/19/2004	10:20	SW6010	SW7471				SW8260	SW8270	SW9012	S4251-06
Soil	W18STMGP-COMP-81904A	8/19/2004	11:00						SW8260		RCI	S4251-07
TCLP	W18STMGP-B24-8284	8/30/2004	14:00						SW8260			S4506-01
TCLP	W18STMGP-WCOMP-83004	8/31/2004	10:00	SW6010	SW7470				SW8260	SW8270		S4506-02
TCLP	W18STMGP-WCOMP-83104	8/31/2004	14:21	SW6010	SW7470				SW8260	SW8270		S4506-03
Soil	W18STMGP-B24-8284	8/30/2004	14:00	SW6010	SW7471				SW8260	SW8270	SW9012	S4506-01
Water	W18STMGP-WCOMP-83004	8/31/2004	10:00						SW8260		RCI	S4506-02
Water	W18STMGP-WCOMP-83104	8/31/2004	14:21						SW8260		RCI	S4506-03
Soil	W18ST-SB12-5-7	9/11/2004	10:10	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-01
Soil	W18ST-SB12-7-9	9/11/2004	11:02	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-02
Soil	W18ST-SB12-15-17	9/11/2004	11:52	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-03
Soil	W18ST-SB14-5	9/11/2004	12:46	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S4648-04
Soil	W18ST-SB11-6	9/11/2004	14:30	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S4648-07
Soil	W18ST-SB10-5	9/11/2004	15:50	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S4648-08
Soil	W18ST-SB9-4	9/12/2004	11:00	SW6010	SW7471	SW8081	SW8082	SW8151	SW8260	SW8270	SW9012	S4648-09
Soil	W18ST-TP2-10-11	9/12/2004	10:50	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-10
Soil	W18ST-SB12-25-27	9/12/2004	8:30	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-11
Soil	W18STMGP-SB12-4951	9/12/2004	14:30	SW6010	SW7471				SW8260	SW8270	SW9012	S4648-12

RCI Reactivity (cyanide and sulfide), Corrosivity, Ignitability

SW Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, (U.S. Environmental Protection Agency)

TCLP Toxicity Characteristic Leaching Procedure

⁶⁰¹⁰ Method 6010B – Inductively Coupled Plasma-Atomic Emission Spectrometry

⁷⁴⁷¹ Method 7471A – Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)

⁸⁰⁸¹ Method 8081A – Organochlorine pesticides by Gas Chromatography

Table 1: Samples Reviewed and Associated Analytical Method (continued)

8082	Method 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

- 8151 Method 8151A Chlorinated Herbicides by GC using Methylation or Pentafluorobenzylation Derivatization
- 8260 Method 8260B Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
- 8270 Method 8270C Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
- 9012 Method 9012A Total and Amenable Cyanide (Automated Colorimetric, with Off-Line Distillation)
- -- No data

Table 2: Qualified Analytical Data

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
All Soil Samples	SVOA	Hexachlorocyclopentadiene	UJ	Low recoveries in all MS/MSD analyses.
W18STMGP-B07-67	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-B07-67	Metals	Mercury	J	Low PDS recovery.
W18STMGP-B07-67	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B07-67	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-B07-67	PCBs	Aroclor 1016	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1221	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1232	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1242	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1248	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1254	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	PCBs	Aroclor 1260	UJ	Low ending calibration verification standard.
W18STMGP-B07-67	Herbicides	2,4-D	J	High %D between calculated concentrations on dual columns.
W18STMGP-B08-45	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-B08-45	SVOA	Phenanthrene	J	High initial calibration %RSD.
W18STMGP-B08-45	Metals	Mercury	J	Low PDS recovery.
W18STMGP-B08-45	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B08-45	Metals	Thallium	J	Low CRDL standard recovery.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B08-45	PCBs	Aroclor 1016	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1221	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1232	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1242	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1248	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1254	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	PCBs	Aroclor 1260	UJ	Low ending calibration verification standard.
W18STMGP-B08-45	Herbicides	2,4-D	J	High %D between calculated concentrations on dual columns.
W18STMGP-B15-1113	VOA	Acetone	J	High initial calibration %D. High continuing calibration %D.
W18STMGP-B15-1113	VOA	Carbon disulfide	J	High initial calibration %D. High continuing calibration %D.
W18STMGP-B15-1113	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-B15-1113	VOA	Methylcyclohexane	J	High continuing calibration %D.
W18STMGP-B15-1113	VOA	Isopropylbenzene	J	High continuing calibration %D.
W18STMGP-B15-1113	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-1113	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B15-1719	VOA	Cyclohexane	R	Analyzed outside 12-hour window. High continuing calibration %D. High surrogate recoveries.
W18STMGP-B15-1719	VOA	cis-1,2-Dichloroethene	R	Analyzed outside 12-hour window. High surrogate recoveries.
W18STMGP-B15-1719	VOA	Methylcyclohexane	R	Analyzed outside 12-hour window. High continuing calibration %D. High surrogate recoveries.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B15-1719	VOA	Benzene	R	Analyzed outside 12-hour window. High surrogate recoveries.
W18STMGP-B15-1719	VOA	Toluene	R	Analyzed outside 12-hour window. High surrogate recoveries.
W18STMGP-B15-1719	VOA	Chlorobenzene	R	Analyzed outside 12-hour window. High surrogate recoveries. High internal standard area count.
W18STMGP-B15-1719	VOA	Ethylbenzene	R	Analyzed outside 12-hour window. High surrogate recoveries. High internal standard area count.
W18STMGP-B15-1719	VOA	m/p-Xylenes	R	Analyzed outside 12-hour window. High surrogate recoveries. High internal standard area count.
W18STMGP-B15-1719	VOA	o-Xylene	R	Analyzed outside 12-hour window. High surrogate recoveries. High internal standard area count.
W18STMGP-B15-1719	VOA	Isopropylbenzene	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard. High surrogate recoveries. High continuing calibration %D.
W18STMGP-B15-1719	VOA	1,1,2,2-Tetrachloroethane	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard
W18STMGP-B15-1719	VOA	1,3-Dichlorobenzene	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard
W18STMGP-B15-1719	VOA	1,4-Dichlorobenzene	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard
W18STMGP-B15-1719	VOA	1,2-Dichlorobenzene	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B15-1719	VOA	1,2-Dibromo-3-chloropropane	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard
W18STMGP-B15-1719	VOA	1,2,4-Trichlorobenzene	R	Analyzed outside 12-hour window. Internal standard area count < 25% of 12-hour standard
W18STMGP-B15-1719	VOA	All Non-detected Analytes	R	Analyzed outside 12-hour window.
W18STMGP-B15-1719	SVOA	Naphthalene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	2-Methylnaphthalene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Acenaphthylene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Acenaphthene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Dibenzofuran	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Fluorene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Phenanthrene	J	High continuing calibration %D. High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Anthracene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Carbazole	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Fluoranthene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Pyrene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Benzo(a)anthracene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Chrysene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Benzo(b)fluoranthene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD. High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Benzo(a)pyrene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Indeno(1,2,3-cd)pyrene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Dibenz(a,h)anthracene	J	High surrogate recoveries.
W18STMGP-B15-1719	SVOA	Benzo(g,h,i)perylene	J	High surrogate recoveries.
W18STMGP-B15-1719	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B15-1719DL	SVOA	Benzo(k)fluoranthene	J	High intial calibration %RSD.
W18STMGP-B15-1719DL	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-1719DL2	SVOA	Phenanthrene	J	High continuing calibration %D.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B15-2325	VOA	Acetone	R	Continuing calibration %D is greater than 90%.
W18STMGP-B15-2325	VOA	Methylene chloride	J	High intial calibration %RSD.
W18STMGP-B15-2325	VOA	Carbon disulfide	J	High continuing calibration %D.
W18STMGP-B15-2325	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-2325	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18STMGP-B15-2325	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B15-2325DL	SVOA	Benzo(k)fluoranthene	J	High intial calibration %RSD.
W18STMGP-B15-2325DL	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-2325DL2	SVOA	Benzo(k)fluoranthene	J	High intial calibration %RSD.
W18STMGP-B15-2325DL2	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-45	Metals	Lead	J	Low CRDL standard recovery.
W18STMGP-B15-45	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B15-56	VOA	Methylcyclohexane	J	High continuing calibration %D. High surrogate recoveries.
W18STMGP-B15-56	VOA	Tetrachloroethene	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	Chlorobenzene	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	Ethylbenzene	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	m/p-Xylenes	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	o-Xylene	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	Styrene	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	Bromoform	R	Internal standard area < 25% of the 12-hour standard.
W18STMGP-B15-56	VOA	Isopropylbenzene	UJ	Low internal standard area.
W18STMGP-B15-56	VOA	1,1,2,2-Tetrachloroethane	UJ	Low internal standard area.
W18STMGP-B15-56	VOA	1,3-Dichlorobenzene	UJ	Low internal standard area.
W18STMGP-B15-56	VOA	1,4-Dichlorobenzene	UJ	Low internal standard area.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B15-56	VOA	1,2-Dichlorobenzene	UJ	Low internal standard area.
W18STMGP-B15-56	VOA	1,2-Dibromo-3-chloropropane	UJ	Low internal standard area.
W18STMGP-B15-56	VOA	1,2,4-Trichlorobenzene	UJ	Low internal standard area.
W18STMGP-B15-56	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-56	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B15-56DL	VOA	Methylcyclohexane	J	High surrogate recovery. High initial calibration %RSD. High continuing calibration %D.
W18STMGP-B15-79	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-B15-79	VOA	Cyclohexane	J	High continuing calibration %D.
W18STMGP-B15-79	VOA	Methylcyclohexane	J	High continuing calibration %D.
W18STMGP-B15-79	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-B15-79	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18STMGP-B15-79	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B19-1719	VOA	Toluene	J	High initial calibration %RSD.
W18STMGP-B20-1315	VOA	Isopropylbenzene	R	Continuing calibration %D is greater than 90%.
W18STMGP-B20-1920	VOA	Acetone	J	High initial calibration %RSD.
W18STMGP-B24-8284	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-B24-8284	SVOA	4-Nitrophenol	R	Continuing calibration %D is greater than 90%.
W18STMGP-B24-8284	SVOA	bis(2-Ethylhexyl)phthalate	J	High initial calibration %RSD.
W18STMGP-B26-6.57	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-B26-6.57	Metals	Mercury	J	Low PDS recovery.
W18STMGP-B26-6.57	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B26-6.57	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-B27-5.05.5	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank. Low surrogate recovery.
W18STMGP-B27-5.05.5	VOA	Tetrachloroethene	J	Low surrogate recovery.
W18STMGP-B27-5.05.5	VOA	All Non-Detected Analytes	UJ	Low surrogate recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B27-5.05.5	SVOA	3/4-Methylphenols	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Acenaphthene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Fluorene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Phenanthrene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Anthracene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Fluoranthene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	SVOA	Indeno(1,2,3-cd)pyrene	J	High initial calibration %RSD.
W18STMGP-B27-5.05.5	Metals	Mercury	J	Low PDS recovery.
W18STMGP-B27-5.05.5	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B27-5.05.5	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-B27-5.05.5RE	VOA	Acetone	J	Low surrogate recovery.
W18STMGP-B27-5.05.5RE	VOA	Methylene chloride	J	Detected in method blank. Low surrogate recovery.
W18STMGP-B27-5.05.5RE	VOA	Tetrachloroethene	J	Low surrogate recovery.
W18STMGP-B27-5.05.5RE	VOA	All Non-Detected Analytes	UJ	Low surrogate recovery.
W18STMGP-B32-1113	VOA	Chloroethane	R	Initial calibration and continuing calibration RRFs < 0.05.
W18STMGP-B32-1113	Metals	Chromium	J	High CRDL standard recovery.
W18STMGP-B32-1113	Metals	Lead	J	High CRDL standard recovery.
W18STMGP-B32-1113	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-B32-2123	VOA	Chloroethane	R	Initial calibration and continuing calibration RRFs < 0.05.
W18STMGP-B32-2123RE	VOA	Chloroethane	R	Initial calibration RRF < 0.05.
W18STMGP-B32-2123RE	VOA	Acetone	J	Low surrogate recovery.
W18STMGP-B32-2123RE	VOA	All Non-Detected Analytes	UJ	Low surrogate recovery.
W18STMGP-B45-78	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-B45-78	SVOA	Phenanthrene	J	High initial calibration %RSD.
W18STMGP-B45-78	SVOA	Fluoranthene	J	High initial calibration %RSD.
W18STMGP-B45-78	SVOA	Indeno(1,2,3-cd)pyrene	J	High initial calibration %RSD.
W18STMGP-B45-78	Metals	Mercury	J	Low PDS recovery.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B45-78	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B45-78	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-B46-4.55.5	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-B46-4.55.5	Metals	Mercury	J	Low PDS recovery.
W18STMGP-B46-4.55.5	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-B46-4.55.5	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-B47-1719	VOA	Acetone	J	High initial calibration %RSD.
W18STMGP-B47-1719DL	VOA	Isopropylbenzene	R	Continuing calibration %D is greater than 90%.
W18STMGP-B48-1516	VOA	Toluene	J	High initial calibration %RSD.
W18STMGP-B48-1516DL	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-B48-1516DL	SVOA	Benzo(g,h,i)perylene	J	High continuing calibration %D.
W18STMGP-B48-1921	VOA	Acetone	J	High initial calibration %RSD.
W18STMGP-B48-1921DL	VOA	Isopropylbenzene	R	Continuing calibration %D is greater than 90%.
W18STMGP-B48-1921DL2	VOA	Toluene	J	High initial calibration %RSD.
W18STMGP-B48-79	VOA	Acetone	J	High initial calibration %RSD.
W18STMGP-B52-1113	VOA	Benzene	J	Low MS/MSD recoveries.
W18STMGP-B52-2729	VOA	1,1-Dichloroethene	UJ	Low MS/MSD recoveries.
W18STMGP-B52-2729	VOA	Benzene	J	Low MS/MSD recoveries.
W18STMGP-B52-2729	VOA	Toluene	J	Low MS/MSD recoveries. High initial calibration %RSD.
W18STMGP-B52-2729	Metals	Mercury	J	High laboratory duplicate RPD.
W18STMGP-B52-2729	SVOA	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B52-2729	SVOA	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B52-2729	SVOA	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B52-2729	SVOA	Benzo(g,h,i)perylene	UJ	Low and high MS/MSD recoveries.
W18STMGP-COMP-5-1-04	VOA	Toluene	J	High initial calibration %RSD.
W18STMGP-COMP-072104		Hexachlorobenzene	UJ	Low MS/MSD recoveries.
W18STMGP-COMP-072104	TCLP Metals		J	Low CRDL standard recovery.
W18STMGP-COMP-072604	TCLP Metals	Lead	UJ	Low CRDL standard recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-COMP-072804	TCLP Metals		UJ	Low CRDL standard recovery.
W18STMGP-COMP-8-10-04	TCLP Metals	Lead	J	Detected in extraction batch. Low CRDL standard recovery.
W18STMGP-COMP-8-10-04	TCLP SVOA	Hexachlorobenzene	UJ	Low MS/MSD recoveries.
W18STMGP-COMP-8-11-04	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-COMP-8-12-04	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-COMP-81904A	TCLP SVOA	Nitrobenzene	UJ	Low MS/MSD recoveries.
W18STMGP-COMP-81904A	TCLP SVOA	Hexachlorobutadiene	UJ	Low MS/MSD recoveries.
W18STMGP-COMP-8-9-04	TCLP Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-MW40A-45	VOA	Methylene chloride	J	High initial calibration %RSD. High continuing calibration %D. Detected in method blank.
W18STMGP-MW40A-45	Metals	Mercury	J	Low PDS recovery.
W18STMGP-MW40A-45	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-MW40A-45	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-MW7A-67	VOA	Methylene chloride	J	Detected in method blank.
W18STMGP-MW7A-67	Metals	Mercury	J	Low PDS recovery.
W18STMGP-MW7A-67	Metals	Selenium	J	High CRDL standard recovery.
W18STMGP-MW7A-67	Metals	Thallium	J	Low CRDL standard recovery.
W18STMGP-MW7A-67	PCBs	Aroclor 1016	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1221	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1232	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1242	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1248	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1254	UJ	Low ending calibration verification standard.
W18STMGP-MW7A-67	PCBs	Aroclor 1260	UJ	Low ending calibration verification standard.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-MW7A-67	Herbicides	2,4-D	J	High %D between calculated concentrations on dual columns.
W18STMGP-SB12-4951	Metals	Arsenic	J	High CRDL standard recovery.
W18STMGP-SB136.06.5	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB136.06.5	SVOA	bis(2-Ethylhexyl)phthalate	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB136.06.5	SVOA	All Non-Detected Analytes	UJ	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB18-28.529.0	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB18-28.529.0	VOA	Cyclohexane	J	High initial calibration %RSD.
W18STMGP-SB18-28.529.0	SVOA	4-Nitrophenol	J	High continuing calibration %D.
W18STMGP-SB18-28.529.0	SVOA	Carbazole	J	High continuing calibration %D.
W18STMGP-SB18-28.529.0	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB18-42.543.0	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB18-42.543.0	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB18-42.543.0	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-SB18-7.37.9	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB18-7.37.9	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB26-3133	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-SB26-3133	SVOA	Benzo(b)fluoranthene	J	High continuing calibration %D.
W18STMGP-SB26-3133	SVOA	Dibenz(a,h)anthracene	J	High continuing calibration %D.
W18STMGP-SB26-3537	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18STMGP-SB26-3537	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB26-3537	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-SB27.40.941.3	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB27.40.941.3	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB27.44.545	VOA	Methyl acetate	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	Benzene	J	Internal standard recovery < 25% of 12-hour standard.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB27.44.545	VOA	Toluene	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	Ethylbenzene	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	m/p-Xylenes	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	o-Xylene	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	Isopropylbenzene	J	Internal standard recovery < 25% of 12-hour standard.
W18STMGP-SB27.44.545	VOA	All Non-Detected Analytes	R	All internal standard recoveries < 25% of 12-hour standard.
W18STMGP-SB27.44.545	SVOA	Fluorene	J	High continuing calibration %D.
W18STMGP-SB27.44.545	SVOA	Benzo(b)fluoranthene	J	High continuing calibration %D.
W18STMGP-SB27.44.545	SVOA	Benzo(k)fluoranthene	J	High continuing calibration %D.
W18STMGP-SB27.44.545	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB27.44.545DL	SVOA	Carbazole	J	High continuing calibration %D.
W18STMGP-SB27.44.545DL	SVOA	Benzaldehyde	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Phenol	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	2-Chlorophenol	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	2-Methylphenol	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	2,2-oxybis(1-Chloropropane)	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	3/4-Methylphenols	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Heaxachloroethane	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Benzo(b)fluoranthene	J	High continuing calibration %D. Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-SB27.44.545DL	SVOA	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB27-596.3	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB27-596.3	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB27-596.3	SVOA	Carbazole	J	High continuing calibration %D.
W18STMGP-SB27-596.3	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB317.17.7	VOA	Toluene	J	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	VOA	Tetrachloroethene	J	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	VOA	Ethylbenzene	J	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	VOA	m/p-Xylenes	J	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	VOA	o-Xylenes	J	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	VOA	All Remaining Non-Detected Compounds	UJ	Analyzed 1 day past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Naphthalene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	2-Methylnaphthalene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Acenaphthene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Phenanthrene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Anthracene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Fluoranthene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Pyrene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Benzo(a)anthracene	J	Extracted 2 days past method-defined holding time expiration.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB317.17.7	SVOA	Chrysene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Benzo(b)fluoranthene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Benzo(k)fluoranthene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Benzo(a)pyrene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Indeno(1,2,3-cd)pyrene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	Benzo(g,h,i)perylene	J	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB317.17.7	SVOA	All Non-Detected Analytes	UJ	Extracted 2 days past method-defined holding time expiration.
W18STMGP-SB34-20.521	SVOA	Benzo(b)fluoranthene	J	Low internal standard recovery. High initial calibration %RSD.
W18STMGP-SB34-20.521	SVOA	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-SB34-20.521	SVOA	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-SB34-20.521	SVOA	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-SB34-20.521	SVOA	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-SB34-20.521	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB34-20.521	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D. Low MS/MSD recoveries.
W18STMGP-SB34-20.521	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-SB34-20.521	SVOA	Benzo(g,h,i)perylene	J	Low internal standard recovery. High continuing calibration %D.
W18STMGP-SB34-20.521	Metals	Mercury	J	High CRDL standard recovery.
W18STMGP-SB34-20.521RE	SVOA	Benzo(b)fluoranthene	J	Low internal standard recovery. High initial calibration %RSD.
W18STMGP-SB34-20.521RE	SVOA	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-SB34-20.521RE	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB34-20.521RE	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB34-20.521RE	SVOA	Benzo(g,h,i)perylene	J	Low internal standard recovery. High continuing calibration %D.
W18STMGP-SB34-28.529	VOA	Acetone	J	High initial calibration %RSD.
W18STMGP-SB34-28.529	Metals	Mercury	J	High CRDL standard recovery.
W18STMGP-SB39-23.0	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB39-23.0	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB39-23.0	SVOA	4-Nitrophenol	J	High continuing calibration %D.
W18STMGP-SB39-23.0	SVOA	Carbazole	J	High continuing calibration %D.
W18STMGP-SB39-23.0	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB39-7.58.0	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB39-7.58.0	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB39-7.58.0	SVOA	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	Benzo(a)anthracene	J	High MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	Benzo(a)pyrene	J	Low MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-SB39-7.58.0	SVOA	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-SB40B-3335	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18STMGP-SB40B-3335	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB40B-3537	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-SB40B-3537	SVOA	Benzo(b)fluoranthene	J	High continuing calibration %D.
W18STMGP-SB40B-3537	SVOA	Dibenz(a,h)anthracene	J	High continuing calibration %D.
W18STMGP-SB40B-3537DL	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGPSB40B-3537DL	SVOA	Benzo(b)fluoranthene	J	High continuing calibration %D.
W18STMGP-SB40B-4143	VOA	Isopropylbenzene	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	1,1,2,2-Tetrachloroethane	R	Internal standard response < 25% of 12-hour standard.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB40B-4143	VOA	1,3-Dichlorobenzene	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	1,4-Dichlorobenzene	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	1,2-Dichlorobenzene	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	1,2-Dibromo-3-chloropropane	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	1,2,4-Trichlorobenzene	R	Internal standard response < 25% of 12-hour standard.
W18STMGP-SB40B-4143	VOA	All Remaining Non-Detected Analytes	UJ	Low internal standard response.
W18STMGP-SB40B-4143RE	VOA	All Analytes	UJ	Low internal standard response.
W18STMGP-SB40B-4143	SVOA	Phenanthrene	J	High continuing calibration %D.
W18STMGP-SB43-23.023.5	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB43-23.023.5	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB43-6-8	VOA	Tetrachloroethene	J	High continuing calibration %D.
W18STMGP-SB43-6-8	SVOA	Benzo(b)fluoranthene	R	Internal standard area count < 25% of 12-hour standard. High initial calibration %RSD.
W18STMGP-SB43-6-8	SVOA	Benzo(k)fluoranthene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8	SVOA	Benzo(a)pyrene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8	SVOA	Dibenz(a,h)anthracene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8	SVOA	Benzo(g,h,i)perylene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8	Metals	Lead	J	Low CRDL standard recovery.
W18STMGP-SB43-6-8	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-SB43-6-8RE	SVOA	Caprolactam	R	Continuing calibration RRF < 0.050.
W18STMGP-SB43-6-8RE	SVOA	Benzo(b)fluoranthene	R	Internal standard area count < 25% of 12-hour standard. High continuing calibration %D.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB43-6-8RE	SVOA	Benzo(k)fluoranthene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8RE	SVOA	Benzo(a)pyrene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8RE	SVOA	Dibenz(a,h)anthracene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-6-8RE	SVOA	Benzo(g,h,i)perylene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-7.07.5	VOA	Carbon disulfide	J	High initial calibration %RSD.
W18STMGP-SB43-7.07.5	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.
W18STMGP-SB43-8-10	VOA	Tetrachloroethene	J	High continuing calibration %D.
W18STMGP-SB43-8-10	SVOA	Benzaldehyde	J	High initial calibration %RSD.
W18STMGP-SB43-8-10	SVOA	Benzo(b)fluoranthene	J	Low internal standard recovery. High initial calibration %RSD.
W18STMGP-SB43-8-10	SVOA	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-SB43-8-10	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB43-8-10	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-SB43-8-10	SVOA	Benzo(g,h,i)perylene	J	Low internal standard recovery.
W18STMGP-SB43-8-10	Metals	Lead	J	Low CRDL standard recovery.
W18STMGP-SB43-8-10	Metals	Mercury	J	Low CRDL standard recovery.
W18STMGP-SB43-8-10RE	SVOA	Caprolactam	R	Continuing calibration RRF < 0.050.
W18STMGP-SB43-8-10RE	SVOA	Benzo(b)fluoranthene	R	Internal standard area count < 25% of 12-hour standard. High continuing calibration %D.
W18STMGP-SB43-8-10RE	SVOA	Benzo(k)fluoranthene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-8-10RE	SVOA	Benzo(a)pyrene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-8-10RE	SVOA	Dibenz(a,h)anthracene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB43-8-10RE	SVOA	Benzo(g,h,i)perylene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB44-0810	VOA	Acetone	J	High initial calibration %RSD.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB44-0810	VOA	Methylcyclohexane	J	High initial calibration %RSD.
W18STMGP-SB44-0810	SVOA	Acetophenone	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Nitrobenzene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Isophorone	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	2-Nitrophenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	2,4-Dichlorophenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Naphthalene	J	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	4-Chloroaniline	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Caprolactam	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	4-Chloro-3-methylphenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	2-Methylnaphthalene	J	Low internal standard recovery.
W18STMGP-SB44-0810	SVOA	Benzo(b)fluoranthene	J	High initial calibration %RSD.
W18STMGP-SB44-0810	Metals	Mercury	J	High CRDL standard recovery.
W18STMGP-SB44-0810	Cyanide	Cyanide	R	Holding time exceeded by 3 days.
W18STMGP-SB44-0810	Cyanide	Cyanide-Amenable	R	Holding time exceeded by 4 days.
W18STMGP-SB44-0810RE	SVOA	Acetophenone	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Nitrobenzene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Isophorone	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	2-Nitrophenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	2,4-Dichlorophenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Naphthalene	J	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	4-Chloroaniline	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Caprolactam	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	4-Chloro-3-methylphenol	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	2-Methylnaphthalene	J	Low internal standard recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB44-0810RE	SVOA	Benzo(b)fluoranthene	J	Low internal standard recovery. High initial calibration %RSD.
W18STMGP-SB44-0810RE	SVOA	Benzo(k)fluoranthene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-SB44-0810RE	SVOA	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.
W18STMGP-SB44-6.0-8.0	SVOA	bis(2-Ethylhexyl)phthalate	J	High continuing calibration %D.
W18STMGP-SB44-6.0-8.0	SVOA	Benzo(b)fluoranthene	J	High initial calibration %RSD. Internal standard area < 25% of 12-hour standard.
W18STMGP-SB44-6.0-8.0	SVOA	Benzo(k)fluoranthene	J	Internal standard < 25% of 12-hour standard.
W18STMGP-SB44-6.0-8.0	SVOA	Benzo(a)pyrene	J	Internal standard < 25% of 12-hour standard.
W18STMGP-SB44-6.0-8.0	SVOA	Dibenz(a,h)anthracene	R	Internal standard < 25% of 12-hour standard.
W18STMGP-SB44-6.0-8.0	SVOA	Benzo(g,h,i)perylene	R	Internal standard < 25% of 12-hour standard.
W18STMGP-SB44-6.0-8.0	Metals	Mercury	J	High CRDL standard recovery.
W18STMGP-SB44-6.0-8.0	Cyanide	Cyanide	R	Holding time exceeded by 3 days.
W18STMGP-SB44-6.0-8.0	Cyanide	Cyanide-Amenable	R	Holding time exceeded by 4 days.
W18STMGP-SB44-6.0-8.0RE	SVOA	4-Nitrophenol	R	Continuing calibration %D is greater than 90%.
W18STMGP-SB44-6.0-8.0RE	SVOA	Benzo(b)fluoranthene	J	Low internal standard recovery. High initial calibration %RSD.
W18STMGP-SB44-6.0-8.0RE	SVOA	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-SB44-6.0-8.0RE	SVOA	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-SB44-6.0-8.0RE	SVOA	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-SB44-6.0-8.0RE	SVOA	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.
W18STMGP-SB45-31.532.0	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-SB45-31.532.0	VOA	Cyclohexane	J	High initial calibration %RSD.
W18STMGP-SB45-31.532.0	SVOA	4-Nitrophenol	J	High continuing calibration %D.
W18STMGP-SB45-31.532.0	SVOA	Carbazole	J	High continuing calibration %D.
W18STMGP-SB45-31.532.0	SVOA	Indeno(1,2,3-cd)pyrene	J	High continuing calibration %D.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB45-7.07.5	VOA	Methylene chloride	J	High initial calibration %RSD.
W18STMGP-WCOMP-072104	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-WCOMP-8-10-04	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1016	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1221	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1232	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1242	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1248	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1254	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-10-04	PCBs	Aroclor 1260	UJ	Extracted 1 day past holding time.
W18STMGP-WCOMP-8-11-04	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-WCOMP-8-12-04	TCLP Metals	Lead	J	Low CRDL standard recovery.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Vinyl chloride	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	1,1-Dichloroethene	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	2-Butanone	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Chloroform	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Carbon tetrachloride	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Benzene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	1,2-Dichloroethane	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Trichloroethene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Tetrachloroethene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04	TCLP VOA	Chlorobenzene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.

 Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Vinyl chloride	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	1,1-Dichloroethene	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	2-Butanone	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Chloroform	UJ	Low internal standard area counts. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Carbon tetrachloride	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Benzene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	1,2-Dichloroethane	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Trichloroethene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Tetrachloroethene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-8-12-04RE	TCLP VOA	Chlorobenzene	R	Internal standard area count < 25% of 12-hour standard. Low surrogate recoveries.
W18STMGP-WCOMP-83004	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18STMGP-WCOMP-83104	TCLP SVOA	2-Methylphenol	J	Low surrogate recovery.
W18STMGP-WCOMP-83104	TCLP SVOA	3/4-Methylphenols	J	Low surrogate recovery.
W18STMGP-WCOMP-83104	TCLP Metals	Lead	UJ	Low CRDL standard recovery.
W18ST-SB10-5	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-SB10-5	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB10-5DL	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-SB10-5DL		2-Chlorophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL		2-Methylphenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL		3/4-Methylphenols	UJ	Low surrogate recoveries.
W18ST-SB10-5DL		2-Nitrophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	2,4-Dimethylphenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	2,4-Dichlorophenol	UJ	Low surrogate recoveries.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-SB10-5DL	SVOA	4-Chloro-3-methylphenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	2,4,6-Trichlorophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	2,4,5-Trichlorophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	2,4-Dinitrophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	4-Nitrophenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	4,6-Dinitro-2-methylphenol	UJ	Low surrogate recoveries.
W18ST-SB10-5DL	SVOA	Pentachlorophenol	UJ	Low surrogate recoveries.
W18ST-SB11-6	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-SB11-6	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB11-6	Metals	Antimony	UJ	Low MS/MSD recoveries.
W18ST-SB11-6	Metals	Copper	J	Low MS/MSD recoveries.
W18ST-SB11-6	Metals	Lead	J	Low MS/MSD recoveries.
W18ST-SB11-6	Metals	Mercury	J	Low MS/MSD recoveries. High serial dilution %D.
W18ST-SB11-6DL	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-SB12-15-17	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18ST-SB12-15-17	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB12-25-27	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18ST-SB12-25-27	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB12-5-7	VOA	Acetone	J	High initial calibration %RSD.
W18ST-SB12-5-7	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB12-7-9	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D. Low surrogate recovery.
W18ST-SB12-7-9	VOA	Carbon disulfide	J	Low surrogate recovery.
W18ST-SB12-7-9	VOA	Toluene	J	Low surrogate recovery.
W18ST-SB12-7-9	VOA	m/p-Xylenes	J	Low surrogate recovery.
W18ST-SB12-7-9	VOA	o-Xylene	J	Low surrogate recovery.
W18ST-SB12-7-9	VOA	All Non-Detected Analytes	UJ	Low surrogate recovery.
W18ST-SB12-7-9	SVOA	4-Nitrophenol	R	Initial calibration %RSD > 90%.
W18ST-SB12-7-9	SVOA	Indeno(1,2,3-cd)pyrene	J	High initial calibration %RSD.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-SB12-7-9	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB12-7-9RE	VOA	Carbon disulfide	J	Low surrogate recovery.
W18ST-SB12-7-9RE	VOA	All Non-Detected Analytes	UJ	Low surrogate recovery.
W18ST-SB14-5	SVOA	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18ST-SB14-5	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-SB14-5	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB14-5	Metals	Mercury	J	High serial dilution %D.
W18ST-SB14-5	Herbicides	2,4-D	UJ	Low MS/MSD recoveries.
W18ST-SB14-5	Herbicides	2,4,5-T	UJ	Low MS/MSD recoveries.
W18ST-SB9-4	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18ST-SB9-4	Metals	Arsenic	J	High CRDL standard recovery.
W18ST-SB9-4	SVOA	Benzo(k)fluoranthene	J	High initial calibration %RSD.
W18ST-TP2-10-11	VOA	Acetone	J	High initial calibration %RSD. High continuing calibration %D.
W18ST-TP2-10-11	VOA	Methyl tert-butyl ether	J	High continuing calibration %D.
W18ST-TP2-10-11	Metals	Arsenic	J	High CRDL standard recovery.

Data Qualifier Definitions:

- J Estimated data. The reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.
- R Rejected data.
- U The analyte was not detected.
- UJ The analyte was analyzed for but was not detected above the reported sample quantitation limit. The associated value is an estimate and may be inaccurate or imprecise.

Acronym Definitions:

CRDL	Contract Required Detection Limit	PDS	Post-Digestion Spike
%D	Percent Difference	RPD	Relative Percent Difference
LCS	Laboratory Control Sample	RRF	Relative Response Factor
MS	Matrix Spike	%RSD	Percent Relative Standard Deviation
MSD	Duplicate Matrix Spike	SDG	Sample Delivery Group
SVOA	Semivolatile Organic Analytes	VOA	Volatile Organic Analytes

Table 3: Soil Samples Analyzed for Volatile Organic Analytes More Than 10 Days After Collection

g 1	Days Between Collection
Sample	and Analysis
W18STMGP-B52-1113	12
W18STMGP-B52-2729	14
W18STMGP-B52-3335	12
W18STMGP-B52-3335DL	13
W18STMGP-TP3-7.5	12
W18STMGP-B19-57	11
W18STMGP-B19-1719	13
W18STMGP-B20-911	11
W18STMGP-TP6-9.5	11
W18STMGP-B20-1315	13
W18STMGP-B20-1920	12
W18STMGP-B20-4143	12
W18STMGP-B61-4143	12
W18STMGP-B20-4951	12
W18STMGP-B47-79	11
W18STMGP-B47-1315	11
W18STMGP-B47-1719	11
W18STMGP-B47-1719DL	12
W18STMGP-B48-79	11
W18STMGP-B48-1516	12
W18STMGP-B48-1921	11
W18STMGP-B48-1921DL	12
W18STMGP-B48-1921DL2	12
W18STMGP-B32-1113	11
W18STMGP-B32-2123	11
W18STMGP-B32-2123RE	13
W18STMGPSB317.17.7	15
W18STMGPSB136.06.5	13
W18STMGP-SB44-0810	13
W18STMGP-SB44-6.0-8.0	12
W18STMGP-B15-56DL	13
W18STMGP-B15-1719DL	12
W18STMGP-B15-2325	12
W18STMGP-B24-8284	11
11 10D 1111O1 -D2T-020T	11

Note: All positive results are flagged with "J" qualifiers and all non-detected results are flagged with "UJ" qualifiers in the samples listed in this table. These qualifications are not listed in Table 2.

Data Assessment Narrative

1.0 Introduction

TRC Quality Assurance (QA) staff reviewed data between July 13 and July 26, 2005. Thirteen sample delivery groups (SDGs) were reviewed. A total of one hundred sixteen sample analyses were reviewed. Chemtech in Mountainside, New Jersey generated the analytical data. Table 1 presents a listing of these samples, their collection dates and times, analytical methods used to generate data, and associated laboratory identifiers.

2.0 Review Criteria

The data review criteria used for this assessment are the values given in the following United States Environmental Protection Agency, Region II documents:

- Standard Operating Procedure (SOP) Number HW-24, Revision 1, June 1999, Validating Volatile Organic Compounds by SW-846 Method 8260B
- SOP Number HW-22, Revision 2, June 2001, Validating Semivolatile Organic Compounds by SW-846 Method 8270
- SOP Number 23B, Revision 1.0, May 2002, Validating PCB Compounds by SW-846 Method 8082
- SOP Number HW-2, Revision 11, January 1992, Evaluation of Metals Data for the CLP Program

Items reviewed during the assessment process for volatile organic, semivolatile organic, polychlorinated biphenyl (PCB), pesticide, and herbicide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Recoveries and Retention Times
- Laboratory Control Sample (LCS) Results
- Sample Quantitation and Reported Quantitation Limits
- Target Compound Identification

Items reviewed during the assessment process for metals data and cyanide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Detection Limit Standards

- Blanks
- Interference Check Samples
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Duplicate Results
- Serial Dilutions

Qualified sample data are listed Table 2.

3.0 Data Review/Validation Results

3.1 Data Completeness

All requirements for full raw data reporting are met for the reported data packages. That is, the data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables, as requested on chain-of-custody forms.

3.2 Preservation and Holding Times

3.2.1 Volatile Organic Analyses

Volatile GC/MS analyses of several soil samples occurred more than 10 days after sample collection. The affected samples are presented in Table 3. Most analyses occurred within the method-defined holding time of 14 days but outside the United States Environmental Protection Agency (USEPA) Region II holding time (defined in SOP No. HW-24) of 10 days.

Sample W18STMGP-SB3-3.03.5 was collected on April 29, 2005 and analyzed for volatile organic compounds on May 31, 2005. This translates into 32 days between collection and analysis. Per USEPA Region 2 requirements, the reported concentration of acetone is flagged with a "J" qualifier and all remaining non-detected compounds are flagged with "R" qualifiers.

Sample W18STMGP-SB6-1315DL was collected on May 12, 2005 and analyzed for volatile organic compounds on May 29, 2005. This translates into 17 days between collection and analysis. Per USEPA Region 2 requirements, reported concentrations of methylcyclohexane, benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene, and isopropylbenzene are flagged with "J" qualifiers and all remaining non-detected compounds are flagged with "UJ" qualifiers.

3.2.2 Semivolatile Organic Analyses

All criteria are met.

3.2.3 Cyanide Analyses

Sample W18STMGP-SB4-5.05.5 was collected on May 3, 2005 and analyzed for amenable cyanide on May 18, 2005. The fifteen days between collection and analysis is greater

than USEPA Region 2 holding time of fourteen days. The reported concentration of amenable cyanide in this sample is, therefore, flagged with a "J" qualifier.

Sample W18STMGP-SB5A-2628 was collected on May 3, 2005 and analyzed for amenable cyanide on May 18, 2005. The fifteen days between collection and analysis is greater than USEPA Region 2 holding time of fourteen days. The non-detected result amenable cyanide in this sample is also flagged with a "UJ" qualifier.

Sample W18STMGP-SB1-5.05.5 was collected on May 3, 2005 and analyzed for amenable cyanide on May 18, 2005. The fifteen days between collection and analysis is greater than USEPA Region 2 holding time of fourteen days. The non-detected result amenable cyanide in this sample is also flagged with a "UJ" qualifier.

Sample SB5A(31-33) was collected on May 3, 2005 and analyzed for amenable cyanide on May 18, 2005. The fifteen days between collection and analysis is greater than USEPA Region 2 holding time of fourteen days. The non-detected result amenable cyanide in this sample is also flagged with a "UJ" qualifier.

3.2.4 Pesticide Analyses

All criteria are met.

3.2.5 PCB Analyses

All criteria are met.

3.2.6 Herbicide Analyses

All criteria are met.

3.2.7 Metals Analyses

All criteria are met.

3.3 GC/MS Tunes

All USEPA Region II criteria are met for volatile and semivolatile organic analyses.

3.4 Initial and Continuing Calibrations

3.4.1 Volatile Organic Analyses

Percent relative standard deviation (%RSD) values for several compounds are greater than 15% in the initial calibration analyzed on August 14, 2004 from 18:00 to 20:23. Detected concentrations of methylcyclohexane in sample W18STMGP-SB08-11.011.5 and acetone in sample W18STMGP-SB0814.5-15.0 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 1, 2004 from 21:28 to 23:02. Detected concentrations of acetone and

methylene chloride in samples W18STMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B9-2628, W18STMGP-B9-3234, W18STMGP-B11-1315, W18STMGP-B11-2729, W18STMGP-B11-3739, and W18STMGP-B11-3537 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 10, 2004 from 11:43 to 14:38. Detected concentrations of cyclohexane in samples W18STMGP-B10-68 and W18STMGP-B10-810 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 17, 2004 from 20:19 to 22:18. Detected concentrations of acetone and styrene in sample W18STMGP-B30-2224, W18STMGP-B30-2224DL, and W18STMGP-B30-2426DL are flagged with "J" qualifiers.

Percent difference (%D) values for several analytes in the continuing calibration analyzed on September 27, 2004 at 11:14 are greater than twenty percent. Detected concentrations of acetone and carbon disulfide in samples W18STMGP-B9-810, W18STMGP-B9-2628, W18STMGP-B9-3234, and W18STMGP-B11-1315 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on September 30, 2004 at 05:58 are greater than twenty percent. Detected concentrations of acetone and methyl tert-butyl ether in sample W18STMGP-B11-3537 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on October 4, 2004 from 09:59 to 12:19. Detected concentrations of acetone, carbon disulfide, methyl acetate, methylene chloride, and m/p-xylenes in samples W18STMGP-B14A-2325, W18STMGP-B31-2123, W18STMGP-B30-2426, W18STMGP-B13A-2527, W18STMGP-B13-2527, W18STMGP-B13-2527, W18STMGP-B30-1012, and W18STMGP-SB30-8486 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 7, 2004 at 19:09 are greater than twenty percent. The detected concentration of acetone in sample W18STMGP-B14A-2325 is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on October 14, 2004 at 14:18 are greater than twenty percent. Detected concentrations of acetone, methyl acetate, and methylene chloride in samples W18STMGP-B31-2123, W18STMGP-B30-2426, and W18STMGP-B13A-2527 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 14, 2004 at 20:08 are greater than twenty percent. Detected concentrations of acetone and methylene chloride in sample W18STMGP-B30-2224 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 15, 2004 at 09:55 are greater than twenty percent. Detected concentrations of carbon disulfide and methylene chloride in samples W18STMGP-B13-2527 and W18STMGP-B13-2729 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 15, 2004 at 22:10 are greater than twenty percent. Detected concentrations of acetone in samples W18STMGP-B31-2527, W18STMGP-B30-2224DL, and W18STMGP-B30-2426DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 18, 2004 at 23:31 are greater than twenty percent. Detected concentrations of acetone, methylene chloride, and isopropylbenzene in sample W18STMGP-B30-1012 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on November 7, 2004 at 23:31 are greater than twenty percent. The detected concentration of acetone in sample W18STMGP-SB30-8486 is flagged with a "J" qualifier.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on November 11, 2004 from 20:55 to 22:34. Detected concentrations of acetone and methylene chloride in samples W18STMGP-SB30-2830, W18STMGP-SB66-8486, W18STMGP-SB29-1113, W18STMGP-SB29-3436, W18STMGP-SB29-3839, W18STMGP-SB29-4850, W18STMGP-SB71-4850, and W18STMGP-SB29-1113RE are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on November 12, 2004 at 16:12 are greater than twenty percent. Detected concentrations of acetone in samples W18STMGP-SB66-8486 and W18STMGP-SB30-2830 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on November 19, 2004 at 15:20 are greater than twenty percent. The detected concentration of tetrachloroethene in sample W18STMGP-SB29-1113RE is flagged with a "J" qualifier.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on March 11, 2005 from 16:51 to 19:38. Detected concentrations of methylene chloride in samples W18STMGP-GP1R-67, W18STMGP-GP2-34, W18STMGP-GP2-56, W18STMGP-GP2-910, W18STMGP-GP2-1921, W18STMGP-GP3-23, W18STMGP-GP3-56, W18STMGP-GP3-89, W18STMGP-GP3-1920, and W18STMGP-GP13-23 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on April 20, 2005 from 13:58 to 16:27. Detected concentrations of acetone and methylene chloride in samples W18STMGP-RB-5 and TRIPBLANK are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on April 21, 2005 from 18:29 to 20:33. Detected concentrations of acetone in samples W18STMGP-SB4-5.05.5, W18STMGP-SB5A-2628, W18STMGP-SB1-5.05.5, W18STMGP-TP1B-1.01.5, W18STMGP-TP21B-1.01.5, W18STMGP-TP21B-1.01.5RE, W18STMGP-SB4-79, SB-5A(31-33), W18STMGP-SB3-17-19, W18STMGP-SB2-5-7, W18STMGP-SB2-13-15, W18STMGP-SB4-9-13, W18STMGP-SB4-17-19, W18STMGP-SB3-5-7, W18STMGP-SB6-1012, W18STMGP-SB6-2426, and W18STMGP-SB6-28.530.5 are flagged with "J" qualifiers.

The %D value for acetone in the continuing calibration analyzed on May 10, 2005 at 14:32 is slightly greater than twenty percent. The detected concentration of acetone in sample TRIPBLANK is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on May 11, 2005 at 20:01 are greater than twenty percent. Detected concentrations of acetone in samples W18STMGP-SB5A-2628 and W18STMGP-SB1-5.05.5 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 12, 2005 at 22:19 are greater than twenty percent. Detected concentrations of acetone, methyl tert-butyl ether, and 2-butanone in samples W18STMGP-TP21B-1.01.5, W18STMGP-SB3-17-19, W18STMGP-SB2-5-7, W18STMGP-SB2-13-15, W18STMGP-SB4-9-13, and W18STMGP-SB4-17-19 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 16, 2005 at 14:14 are greater than twenty percent. Detected concentrations of acetone in samples W18STMGP-SB4-5.05.5, W18STMGP-TP1B-1.01.5, W18STMGP-TP21B-1.01.5RE, and SB-5A(31-33) are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 17, 2005 at 03:09 are greater than twenty percent. The detected concentration of acetone in sample W18STMGP-SB3-5-7 is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on May 19, 2005 at 04:10 are greater than twenty percent. The detected concentrations of acetone and methylene chloride in samples W18STMGP-SB3-3.03.5 and W18STMGP-SB4-79 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 19, 2005 at 17:12 are greater than twenty percent. Detected concentrations of acetone in samples W18STMGP-SB6-1012, W18STMGP-SB6-2426, and W18STMGP-SB6-28.530.5 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on May 23, 2005 from 20:06 to 22:11. Detected concentrations of acetone in samples W18STMGP-SB4-79, W18STMGP-SB6-1921, and W18STMGP-SB6-2426 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on May 27, 2005 from 14:58 to 16:36. The detected concentration of ethylbenzene in sample W18STMGP-SB6-1315DL is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on May 31, 2005 at 19:03 are greater than twenty percent. The detected concentration of acetone in sample W18STMGP-SB3-3.03.5 is flagged with a "J" qualifier.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on June 9, 2005 from 18:33 to 20:38. Detected concentrations of acetone and methylene chloride in samples W18STMGP-MW5B-3436 and W18STMGP-MW55B-3436 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on June 13, 2005 at 01:28 are greater than twenty percent. Detected concentrations of acetone and methylene chloride in samples W18STMGP-MW5B-3436 and W18STMGP-MW55B-3436 are flagged with a "J" qualifier.

3.4.2 Semivolatile Organic Analyses

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 11, 2004 from 13:42 to 16:52. The detected concentration of pyrene in sample W18STMGP-SB08-11.011.5 is flagged with a "J" qualifier.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on August 25, 2004 from 10:18 to 11:53. Detected concentrations of benzo(k)fluoranthene in samples W18STMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B10-68, and W18STMGP-B1068DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on September 25, 2004 at 20:22 are greater than twenty percent. Detected concentrations of 2-methylnaphthalene in samples W18STMGP-B9-2022DL, W18STMGP-B9-2022DL2, W18STMGP-B10-68DL,

W18STMGP-B11-2729DL, W18STMGP-B11-2729DL2, and W18STMGP-B11-2729DL3 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on September 27, 2004 from 12:23 to 15:15. Detected concentrations of 2-methylnaphthalene and fluorene in samples W18STMGP-B31-2123, W18STMGP-B30-1012, W18STMGP-B30-1012DL, W18STMGP-B30-2224, and W18STMGP-B30-2224DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 15, 2004 at 15:06 are greater than twenty percent. Detected concentrations of 1,1-biphenyl and dibenzofuran are flagged with "J" qualifiers in sample W18STMGP-B31-2123. Non-detected results for hexachlorocyclopentadiene in samples W18STMGP-B31-2123 and W18STMGP-B13A-2527 are flagged with "R" qualifiers since the %D is greater than 90% in the continuing calibration.

%D values for several analytes in the continuing calibration analyzed on October 16, 2004 at 02:33 are greater than twenty percent. Detected concentrations of 2-methylnaphthalene, phenanthrene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene in samples W18STMGP-B30-1012, W18STMGP-B30-2224 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 17, 2004 at 12:36 are greater than twenty percent. Detected concentrations of dibenzofuran, 2-methylnaphthalene, and acenaphthylene in samples W18STMGP-B30-1012Dl and W18STMGP-B30-2224DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on October 17, 2004 at 23:51 are greater than twenty percent. The detected concentration of bis(2-ethylhexyl)phthalate in sample W18STMGP-SB08-11.011.5DL is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on November 11, 2004 at 18:46 are greater than twenty percent. The detected concentration of bis(2-ethylhexyl)phthalate in sample W18STMGP-RB10-110704 is flagged with a "J" qualifier.

%D values for several analytes in the continuing calibration analyzed on November 14, 2004 at 15:15 are greater than twenty percent. Detected concentrations of bis(2-ethylhexyl)phthalate in samples W18STMGP-SB29-3839, W18STMGP-SB29-4850, and W18STMGP-SB71-4850 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on November 15, 2004 at 02:08 are greater than twenty percent. Detected concentrations of bis(2-

ethylhexyl)phthalate in samples W18STMGP-SB29-1113 and W18STMGP-SB29-3436 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on March 22, 2005 from 15:11 to 17:00. Detected concentrations of benzo(b)fluoranthene in samples W18STMGP-GP1R-67, W18STMGP-GP1R-67DL, W18STMGP-GP2-34, W18STMGP-GP2-56, W18STMGP-GP2-56DL, W18STMGP-GP2-1921, W18STMGP-GP3-23, W18STMGP-GP3-23DL, W18STMGP-GP13-23, W18STMGP-GP13-23DL, and W18STMGP-GP3-56 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on March 29, 2005 at 16:09 are greater than twenty percent. Detected concentrations of benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and dibenz(a,h)anthracene in samples W18STMGP-GP1R-67, W18STMGP-GP1R-67DL, W18STMGP-GP2-34, W18STMGP-GP2-56, W18STMGP-GP2-56DL, W18STMGP-GP3-23, W18STMGP-GP3-23DL, W18STMGP-GP3-23DL, w18STMGP-GP3-23DL, w18STMGP-GP3-256 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on April 22, 2005 from 19:09 to 21:58. Detected concentrations of fluorene in samples W18STMGP-SB5B-1112 and W18STMGP-SB2-1.01.5 are flagged with "J" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on April 26, 2005 from 21:03 to 23:47. Detected concentrations of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(g,h,i)perylene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in samples W18STMGP-SB4-5.05.5, W18STMGP-TP1B-1.01.5, W18STMGP-TP21B-1.01.5, W18STMGP-SB4-1921, W18STMGP-SB4-1921DL, W18STMGP-SB4-1921DL2 are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 11, 2005 at 08:05 are greater than twenty percent and the %D value for 2,2-oxybis(1-chloropropane) is greater than 90%. Detected concentrations of phenanthrene, fluorene, and benzo(b)fluoranthene in samples W18STMGP-SB5B-1112 and W18STMGP-SB2-1.01.5 are flagged with "J" qualifiers. Non-detected concentrations of 2,2-oxybis(1-chloropropane) in samples W18STMGP-SB5B-1112, W18STMGP-SB2-1.01.5, and W18STMGP-SB5A-1719 are flagged with "R" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 11, 2005 at 17:10 are greater than twenty percent. Additionally, the %D value for 4,6-dinitro-2-methylphenol is greater than 90% and its response factor is less than 0.050. Non-detected concentrations of 4,6-dinitro-2-methylphenol in samples W18STMGP-SB6-1012, W18STMGP-

SB6-1315, W18STMGP-SB6-1921, W18STMGP-SB6-2426, and W18STMGP-SB66-2426 are flagged with "R" qualifiers.

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on May 11, 2005 from 17:05 to 19:55. Detected concentrations of naphthalene and fluorene in samples W18STMGP-SB2-1.01.5RE and W18STMGP-SB5B-1112DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 13, 2005 at 16:55 are greater than twenty percent. Detected concentrations of naphthalene in samples W18STMGP-SB2-1.01.5RE and W18STMGP-SB5B-1112DL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibration analyzed on May 13, 2005 at 02:21 are greater than twenty percent. The detected concentration of anthracene in sample W18STMGP-SB2-19-20.5DL is flagged with a "J" qualifier.

The %D value for 4,6-dinitro-2-methylphenol is greater than 90% and the response factor is less than 0.050 in the continuing calibration analyzed on May 16, 2005 at 17:10. Non-detected concentrations of for 4,6-dinitro-2-methylphenol in samples W18STMGP-SB4-79 and W18STMGP-SB4-1921 are flagged with "R" qualifiers. Additionally, because %D values for several other analytes are greater than twenty percent in this continuing calibration, reported concentrations of benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "J" qualifiers in sample W18STMGP-SB4-1921.

%D values for several analytes in the continuing calibration analyzed on May 18, 2005 at 05:46 are greater than twenty percent. Detected concentrations of anthracene in samples W18STMGP-SB4-1921DL and W18STMGP-SB4-1921DL2 are flagged with a "J" qualifier.

3.4.3 Cyanide Analyses

Cyanide recoveries in continuing calibration verification (CCV) analyses bracketing the samples reported in Project Number S4100 are less than USEPA Region 2 limits. The detected concentration of cyanide in sample W18STMGP-SB08-11.011.5 is flagged with a "J" qualifier. Non-detected results for cyanide and cyanide-amenable in samples W18STMGP-SB08-11.011.5 and W18STMGP-SB0814.5-15.0 are flagged with "UJ" qualifiers.

3.4.4 Pesticide Analyses

All criteria are met.

3.4.5 PCB Analyses

All criteria are met.

3.4.6 Herbicide Analyses

All criteria are met.

3.4.7 Metals Analyses

All criteria are met.

3.5.1 Blanks

3.5.1 Volatile Organic Analyses

Acetone (30 μ g/kg) and methylene chloride (3.2 μ g/kg) were detected in the method blank identified as VBLK01 in ChemTech Project Number S4100. Reported concentrations of methylene chloride in associated samples W18STMGP-SB0814.5-15.0 and W18STMGP-SB08-11.011.5 are less than ten times the blank concentration and are flagged with "U" qualifiers. Acetone was not detected in associated field samples; therefore, acetone data were not qualified.

Acetone was detected (35 μ g/kg) in the method blank identified as VBLK01 (VBK1014S2) in Project Number S5156. Reported concentrations acetone in associated samples W18STMGP-B31-2123, W18STMGP-B30-2426, and W18STMGP-B13A-2527 are less than ten times the blank concentration and are flagged with "J" qualifiers.

Acetone was detected (24 μ g/kg) in the method blank identified as VBLK02 (VBK1015S2) in Project Number S5156. Reported concentrations acetone in associated samples W18STMGP-B13-2527 and W18STMGP-B13-2729 are less than ten times the blank concentration and are flagged with "J" qualifiers.

Acetone (23 $\mu g/kg$) and methylene chloride (8.0 $\mu g/kg$) were detected in the method blank identified as VBLK03 in Project Number S5156. Reported concentrations these compounds in associated sample W18STMGP-B31-2527 are less than ten times the blank concentration and are flagged with "J" qualifiers.

Acetone (18 μ g/kg) and methylene chloride (2.0 μ g/kg) were detected in the method blank identified as VBLK04 in Project Number S5156. Reported concentrations these compounds in associated sample W18STMGP-B30-1012 are less than ten times the blank concentration and are flagged with "J" qualifiers.

Methylene chloride was detected (7.9 μ g/kg) in the method blank identified as VBLK01 in Project Number S5635. Reported concentrations of methylene chloride in samples W18STMGP-SB29-1113, W18STMGP-SB29-3436, W18STMGP-SB29-3839, and W18STMGP-SB29-4850 are flagged with "J" qualifiers.

Methylene chloride was detected ($5.2 \,\mu g/kg$) in the method blank identified as VBLK03 in Project Number S5635. Reported concentrations of methylene chloride in samples W18STMGP-SB29-1113RE and W18STMGP-SB71-4850 are flagged with "J" qualifiers.

Acetone was detected (10 $\mu g/kg$) in the method blank identified as VBLK02 in Project Number T2062. The reported concentration of acetone in sample W18STMGP-GP13-23 is flagged with a "J" qualifier.

Acetone was detected (9.1 μ g/kg) in the method blank identified as VBLK01 in Project Number T2708. Reported concentrations of acetone in samples W18STMGP-SB5A-2628 and W18STMGP-SB1-5.05.5 are flagged with "J" qualifiers.

Acetone was detected (8.3 μ g/kg) in the method blank identified as VBLK02 in Project Number T2708. The reported concentration of acetone in sample W18STMGP-TP21B-1.01.5 is flagged with a "J" qualifier.

Acetone (9.2 μ g/kg) and methylene chloride (2.5 μ g/kg) in the method blank identified as VBLK03 in Project Number T2708. Reported concentrations of acetone and methylene chloride in samples SB-5A(31-33), W18STMGP-TP1B-1.01.5, W18STMGP-SB4-5.05.5, W18STMGP-TP21B-1.01.5RE is flagged with a "J" qualifier.

Acetone (20 μ g/kg) and methylene chloride (40 μ g/kg) in the method blank identified as VBLK04 in Project Number T2708. Reported concentrations of these compounds in sample W18STMGP-SB4-79 are flagged with "J" qualifiers.

Methylene chloride was detected (1.3 μ g/L) in the trip blank reported in Project Number T2708. Reported concentrations of methylene chloride in samples W18STMGP-TP1B-1.01.5, W18STMGP-TP21B-1.01.5RE and W18STMGP-SB4-79 are flagged with "J" qualifiers.

Acetone was detected (6.8 μ g/L) in the trip blank reported in Project Number T2708. Reported concentrations of acetone in samples W18STMGP-SB5A-2628, W18STMGP-SB1-5.05.5, W18STMGP-TP1B-1.01.5, W18STMGP-TP21B-1.01.5, W18STMGP-TP21B-1.01.5RE and W18STMGP-SB4-79 are flagged with "J" qualifiers.

Acetone was detected (8.3 μ g/kg) in the method blank identified as VBLK02 in Project Number T2749. Reported concentrations of acetone in samples W18STMGP-SB3-17-19, W18STMGP-SB2-5-7, W18STMGP-SB2-13-15, W18STMGP-SB4-9-13, and W18STMGP-SB4-17-19 are flagged with "J" qualifiers.

Acetone was detected (7.0 μ g/kg) in the method blank identified as VBLK03 in Project Number T2749. The reported concentration of acetone in sample W18STMGP-SB3-5-7 is flagged with a "J" qualifier.

Acetone was detected (11 μ g/kg) in the method blank identified as VBLK01 in Project Number T2823. Reported concentrations of acetone in samples W18STMGP-SB6-1012, W18STMGP-SB6-2426, and W18STMGP-SB6-28.530.5 are flagged with "J" qualifiers.

Acetone was detected (10 μ g/kg) in the method blank identified as VBLK02 in Project Number T2823. Reported concentrations of acetone in samples W18STMGP-SB6-1921 and W18STMGP-SB66-2426 are flagged with "J" qualifiers.

Methylene chloride was detected ($5.1 \,\mu g/kg$) in the method blank identified as VBLK01 in Project Number T3189. The reported concentration of methylene chloride in sample W18STMGP-MW55B-3436 is flagged with a "J" qualifier.

3.5.2 Semivolatile Organic Analyses

bis(2-Ethylhexyl)phthalate was detected (4.1 μ g/kg) in the method blank identified as SBLK01 in Project Number T2062. The reported concentration of bis(2-ethylhexyl)phthalate in sample W18STMGP-RB-32505 is flagged with a "J" qualifier.

bis(2-Ethylhexyl)phthalate was detected (2.4 μ g/kg) in the method blank identified as SBLK01 in Project Number T2823. The reported concentration of bis(2-ethylhexyl)phthalate in sample W18STMGP-RB-5122005 is flagged with a "J" qualifier.

3.5.3 Cyanide Analyses

All criteria are met.

3.5.4 Pesticide Analyses

All criteria are met.

3.5.5 PCB Analyses

All criteria are met.

3.5.6 Herbicide Analyses

All criteria are met.

3.5.7 Metals Analyses

Beryllium was detected in the preparation blank reported in Project Number S4047. The reported concentrations of beryllium in associated samples W18STMGP-B07-1719, W18STMGP-B07-2729, and W18STMGP-B07-4345 are flagged with "J" qualifiers.

Thallium was detected in the preparation blank reported in Project Number S5012. Reported concentrations of thallium in samples W18STMGP-B14A-1113, W18STMGP-B14A-1719, and W18STMGP-B14A-2325 are flagged with "J" qualifiers.

Chromium (0.955 μ g/L) is detected in the equipment rinsate blank reported in Project Number T2708. The reported concentration of chromium in sample W18STMGP-SB1-5.05.5 is less than ten times the equipment blank concentration and is flagged with a "J" qualifier.

3.6 Surrogate Recoveries

3.6.1 Volatile Organic Analyses

Recoveries of surrogate compounds 1,2-dichloroethane-d₄ and toluene-d₈ are greater than USEPA Region II-specified limits in the analysis of sample W18STMGP-B11-2729. Reported concentrations of methyl tert-butyl ether, methylcyclohexane, benzene, toluene, ethylbenzene, oxylene, and isopropylbenzene are flagged with "J" qualifiers in this sample.

Recovery of 4-bromofluorobenzene is less than Region 2 control limits in sample W18STMGP-SB29-1113. Per guidance, recoveries of all non-detected compounds in this sample are flagged with "UJ" qualifiers and detected concentrations of methylene chloride, chloroform, benzene, trichloroethene, toluene, tetrachloroethene, m/p-xylenes, and o-xylene are flagged with "J" qualifiers. Similar data qualification was performed for sample W18STMGP-SB29-1113RE results for the same reason. The compounds flagged with "J" qualifiers (i.e., detected compounds) in sample W18STMGP-SB29-1113RE include methylene chloride, cis-1,2-dichloroethene, chloroform, benzene, trichloroethene, toluene, tetrachloroethene, and m/p-xylenes.

3.6.2 Semivolatile Organic Analyses

All criteria are met.

3.6.3 Pesticide Analyses

All criteria are met.

3.6.4 PCB Analyses

All criteria are met.

3.6.5 PCB Analyses

All criteria are met.

3.7 Matrix Spike/Matrix Spike Duplicates

Data are not qualified based on matrix spike (MS) and duplicate matrix spike (MSD) alone. MS/MSD recoveries were compared with associated LCS data. When LCS recoveries are compliant and MS/MSD recoveries fall outside applicable limits, matrix interferences are confirmed and data are qualified. Analyte specific trends were not evident from MS/MSD recoveries; therefore, data are qualified for the spiked sample only

3.7.1 Volatile Organic Analyses

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Benzene and toluene concentrations in the un-spiked analysis are more than four times the spiking concentration. Therefore, aberrant results for these analytes in the MS/MSD pair are not qualified.
- Recoveries of chlorobenzene are greater than laboratory-defined limits. Since chlorobenzene was not detected in the un-spiked analysis and the bias is high, data are not qualified.
- Recoveries of 1,1-dichloroethene are below laboratory-specified limits. The non-detected result for 1,1-dichloroethene in sample W18STMGP-B11-2729 is flagged a "UJ" qualifier.

Sample W18STMGP-SB29-4850 was analyzed as an MS/MSD pair. Recoveries of 1,1-dichloroethene, benzene, trichloroethene, and toluene are below laboratory-specified limits in the MSD analysis. Data are not qualified since all recoveries are within control limits in the associated MS analysis.

Sample W18STMGP-GP2-34 was analyzed as an MS/MSD pair. Recoveries for all analytes fall within laboratory-derived limits and data are not qualified based on these results.

Sample W18STMGP-TP1B-1.01.5 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

 Recoveries of chlorobenzene are below laboratory-specified limits. The non-detected result for chlorobenzene in sample W18STMGP-TP1B-1.01.5 is flagged a "UJ" qualifier.

Sample W18STMGP-SB6-1012 was analyzed as an MS/MSD pair. Recoveries for all analytes fall within laboratory-derived limits and data are not qualified based on these results.

Sample W18STMGP-MW5B-3436 was analyzed as an MS/MSD pair. Recoveries for all analytes fall within laboratory-derived limits and data are not qualified based on these results.

3.7.2 Semivolatile Organic Analyses

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

• Naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(k)fluoranthene, and benzo(a)pyrene concentrations in the un-spiked

- analysis are more than four times the spiking concentration. Therefore, aberrant results for these analytes in the un-spiked sample are not qualified.
- Recoveries of hexachloroethane, nitrobenzene, isophorone, 2-nitrophenol, and 4-nitrophenol are greater than laboratory-defined limits. Since these compounds were not detected in the un-spiked sample and the bias is high, data are not qualified.
- One of the two recoveries for 2-methylphenol, N-nitosodi-n-propylamine, ³/₄-methylphenols, 2,4-dimethylphenol, bis(2-chloroethoxy)methane, 4-chloroaniline, hexachlorobutadiene, 4-chloro-3-methylphenol, 1,1-biphenyl, N-nitrosodiphenylamine, and benzo(b)fluoranthene are within laboratory limits; therefore data are not qualified for these analytes.
- Both recoveries of 2,2-oxybis(1-chloropropane), 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, carbazole, and benzo(g,h,i)perylene are below laboratory-specified limits. The non-detected result for these analytes in sample W18STMGP-B11-2729 are flagged with "UJ" qualifiers and detected results are flagged with "J" qualifiers.
- Recoveries of 2,4-dichlorophenol in MS/MSD analyses are both greater than and less than laboratory-specified limits. The non-detected result for this compound in sample W18STMGP-B11-2729 is flagged with a "UJ" qualifier.
- Both recoveries of hexachlorobutadiene are zero percent. The non-detected result for hexachlorobutadiene in sample W18STMGP-B11-2729 is flagged with an "R" qualifier.

Sample W18STMGP-B14A-2325 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Recoveries of 2-methylnaphthalene are greater than laboratory-defined limits. Since
 this compound was not detected in the un-spiked sample and the bias is high, data are
 not qualified.
- One of the two recoveries for 2-nitroaniline, 4,6-dinitro-2-methylphenol, and fluoranthene are within laboratory limits; therefore data are not qualified for these analytes.
- Both recoveries of 4-chloro-3-methylphenol are below laboratory-specified limits. The non-detected result for this analyte in sample W18STMGP-B14A-2325 is flagged with a "UJ" qualifier.

Sample W18STMGP-B31-2123 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Recoveries of 2-methylnaphthalene are greater than laboratory-defined limits. The reported concentration of 2-methylnaphthalene in the un-spiked analysis of sample W18STMGP-B31-2123 is flagged with a "J" qualifier
- One of the two recoveries for N-nitrosodiphenylamine, 4-bromophenylphenyl ether, and benzo(a)pyrene are within laboratory limits; therefore data are not qualified for these analytes.

Sample W18STMGP-SB30-8486 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issue was identified:

• Recoveries of 4-nitrophenol are greater than laboratory-defined limits. Because the bias is high and 4-nitrophenol was not detected in the un-spiked sample, data are not qualified. It is also noted that the recovery of 4-nitrophenol is also greater than laboratory-specified limits in the associated LCS analysis.

Sample W18STMGP-SB29-4850 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

• One of the two recoveries for 2,4-dinitrotoluene, di-n-butylphthalate, di-n-octylphthalate, and benzo(k)fluoranthene are within laboratory limits; therefore data are not qualified for these analytes.

Sample W18STMGP-GP2-34 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Recoveries of 2,2-xybis(1-chloropropane), 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol are greater than laboratory-defined limits. Since these compounds were not detected in the un-spiked sample and the bias is high, data are not qualified.
- One of the two recoveries for 4-bromophenylphenyl ether is within laboratory limits; therefore data are not qualified for this analyte.
- Both recoveries of hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-2-methylphenol are below laboratory-specified limits. Non-detected results for these analytes in sample W18STMGP-GP2-34 are flagged with "UJ" qualifiers.
- Both recoveries of indeno(1,2,3-cd)pyrene are below laboratory-specified limits. The detected result for indeno(1,2,3-cd)pyrene in sample W18STMGP-GP2-34 is flagged with a "J" qualifier.
- Both recoveries of acenaphthylene, fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene are greater than laboratory-specified limits. Detected results for these analytes in sample W18STMGP-GP2-34 are flagged with "J" qualifiers.

Sample W18STMGP-SB5B-1011 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- One of the two recoveries for 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol are within laboratory limits; therefore data are not qualified for this analyte.
- Recoveries of 4-nitrophenol are greater than laboratory-defined limits. Since 4-nitrophenol was not detected in the un-spiked sample and the bias is high, data are not qualified.

Sample W18STMGP-TP1B-1.01.5 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Recoveries of hexachloroethane are greater than laboratory-defined limits. Since this
 compound was not detected in the un-spiked sample and the bias is high, data are not
 qualified.
- Both recoveries of hexachlorocyclopentadiene, 2,4,5-trichlorophenol, and acenaphthene are below laboratory-specified limits. Non-detected results for these analytes in sample W18STMGP- TP1B-1.01.5 are flagged with "UJ" qualifiers.

Sample W18STMGP-SB3-13-15 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- One of the two recoveries for 3,3-dichlorobenzidine and benzo(g,h,i)perylene are within laboratory limits; therefore data are not qualified for these analytes.
- Both recoveries of hexachlorocyclopentadiene and butylbenzyl phthalate are less than 10%. Non-detected results for these analytes in sample W18STMGP-SB3-13-15 are flagged with "R" qualifiers.
- Both recoveries of 4,6-dinitro-2-methylphenol and indeno(1,2,3-cd)pyrene are below laboratory-specified limits. The non-detected result these compounds in sample W18STMGP-SB3-13-15 are flagged with "UJ" qualifiers.

Sample W18STMGP-SB6-1012 was analyzed as an MS/MSD pair. Both recoveries of hexachlorocyclopentadiene are less than laboratory-defined limits. Non-detected result for hexachlorocyclopentadiene in sample W18STMGP-SB6-1012 is flagged with a "UJ" qualifier.

3.7.3 Cyanide Analyses

Sample W18STMGP-B11-2729 was analyzed as a MS/MSD pair. Recoveries are greater than 200% in both analyses. Reported concentrations of cyanide and cyanide-amenable are flagged with "R" qualifiers.

Sample W18STMGP-SB6-1012 was analyzed as a matrix spike. Recovery is less than USEPA Region 2 limits in this analysis. The reported concentration of cyanide in sample W18STMGP-SB6-1012 is flagged with a "J" qualifier.

3.7.4 Pesticide Analyses

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, recoveries of delta-BHC are greater than laboratory-defined limits. Since delta-BHC was not detected in the un-spiked analysis of sample W18STMGP-B11-2729, data are not qualified.

3.7.5 PCB Analyses

Sample W18STMGP-B07-1719 was analyzed as an MS/MSD pair. All recoveries are within laboratory-defined control limits and data are not qualified.

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. Recoveries of all spiked analytes are greater than laboratory-specified limits. Since the bias is high and no PCB analytes were detected in the un-spiked analysis of sample W18STMGP-B11-2729, data are not qualified.

3.7.6 Herbicide Analyses

Sample W18STMGP-B07-2729 was analyzed as an MS/MSD pair. While recoveries for most compounds fall within laboratory-derived limits, the following issues were identified:

- Recoveries of 2,4-D are both less than and greater than laboratory-defined limits. Since this compound was not detected in the un-spiked sample, the reported result for 2,4-D is flagged with a "UJ" qualifier.
- One of the two recoveries for 2,4,5-T is within laboratory limits; therefore, data are not qualified for this compound.

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. The following issues were identified:

- Recoveries of 2,4-D are both less than laboratory-defined limits. Since this compound was not detected in the un-spiked sample, the reported result for 2,4-D is flagged with a "UJ" qualifier.
- One of the two recoveries for 2,4,5-TP (Silvex) and 2,4,5-T are within laboratory limits; therefore, data are not qualified for these compounds.

3.7.7 Metals Analyses

Sample W18STMGP-B11-2729 was analyzed as an MS/MSD pair. Recoveries for all analytes fall within laboratory-derived limits and data are not qualified based on these results.

Sample W18STMGP-GP2-34 was analyzed as an MS/MSD pair. The following issues were identified:

- Recoveries of silver are both less than laboratory-defined limits. The reported concentration of silver in the un-spiked sample is flagged with a "J" qualifier.
- Recoveries of mercury are both greater than laboratory-defined limits. The reported concentration of mercury in the un-spiked sample is also flagged with a "J" qualifier.

Sample W18STMGP-SB5B-1011 was analyzed as an MS/MSD pair. Recoveries of both antimony and chromium fall below USEPA Region 2 limits in both the MS/MSD analyses. Reported concentrations of antimony and chromium in the un-spiked analysis of W18STMGP-SB5B-1011 are flagged with "J" qualifiers.

Sample W18STMGP-SB5B-1011 was also analyzed as a post-digestion spike (PDS). Recovery of antimony falls below control limits while recovery of zinc is above limits in this analysis. Reported concentrations of antimony and zinc in the un-spiked analysis of W18STMGP-SB5B-1011 are flagged with "J" qualifiers.

Sample W18STMGP-TP1B-1.01.5 was analyzed as an MS/MSD pair. Recoveries for all analytes fall within laboratory-derived limits in one of these analyses and data are not qualified based on these results.

Sample W18STMGP-SB6-1012 was analyzed as an MS/MSD pair. Recoveries for most analytes fall within laboratory-derived limits Recoveries of antimony and chromium are less than USEPA Region 2 limits and reported concentrations of these analytes in the un-spiked analysis of sample W18STMGP-SB6-1012 are flagged with "J" qualifiers.

Sample W18STMGP-SB6-1012 was also analyzed as a post-digestion spike (PDS). Recovery of antimony falls below control limits in this analysis. The reported concentration of antimony in the un-spiked analysis of W18STMGP-SB6-1012 is flagged with a "J" qualifier.

3.8 Internal Standard Recoveries and Retention Times

3.8.1 Volatile Organic Analyses

The area count for internal standard chlorobenzene-d₅ is more than 200% of the count in the associated 12-hour standard in sample W18STMGP-B9-2022. Reported concentrations of ethylbenzene and o-xylene in this sample are flagged with "J" qualifiers.

The area count for internal standard chlorobenzene-d₅ is more than 200% of the count in the associated 12-hour standard in sample W18STMGP-B11-2729. Reported concentrations of ethylbenzene, m/p-xylenes, and o-xylene in this sample are flagged with "J" qualifiers.

The area count for internal standard 1,4-dichlorobenzene- d_4 is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB29-1113. Reported results for isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene in this sample are flagged with "UJ" qualifiers.

The area count for internal standard chlorobenzene- d_5 is less than 50% of the count in the associated 12-hour standard and the area counts for 1,4-dichlorobenzene- d_4 are less than 25% of the count in the associated 12-hour standard in sample W18STMGP-SB29-1113RE. Reported results for tetrachloroethene and m/p-xylenes are flagged with "J" qualifiers; chlorobenzene, ethylbenzene, styrene, and bromoform are flagged with "UJ" qualifiers; and isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibnomo-3-chloropropane, and 1,2,4-trichlorobenzene in this sample are flagged with "R" qualifiers.

Area counts for all internal standards are less than 50% of the count of associated 12-hour standard area counts in sample W18STMGP-TP21B-1.01.5. Reported results for acetone, methylene chloride, 2-butanone, methylcyclohexane, toluene, ethylbenzene, m/p-xylenes, o-xylene, and 1,4-dichlorobenzene in this sample are flagged with "J" qualifiers and all non-detected compounds are flagged with "UJ" qualifiers.

Area counts for all internal standards are less than 25% of the count of associated 12-hour standard area counts in sample W18STMGP-TP21B-1.01.5RE. Reported results for acetone, methylene chloride, toluene, m/p-xylenes, and o-xylene in this sample are flagged with "J" qualifiers and all non-detected compounds are flagged with "R" qualifiers.

3.8.2 Semivolatile Organic Analyses

The area count for internal standard chrysene-d₁₂ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB0814.5-15.0. The reported concentration of bis(2-ethylhexyl)phthalate in this sample is flagged with a "J" qualifier.

Area counts for internal standard chrysene- d_{12} are less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB08-11.011.5. The reported concentrations of pyrene and bis(2-ethylhexyl)phthalate in this sample are flagged with "J" qualifiers.

The area count for internal standard chrysene-d₁₂ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB08-11.011.5DL. The reported concentration of bis(2-ethylhexyl)phthalate in this sample is flagged with a "J" qualifier.

The area count for internal standard naphthalene-d₈ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-B9-2022. The reported non-detected concentrations of acetophenone, nitrobenzene, isophorone, 2-nitrophenol, 2,4-dimethylphenol, bis(2-chloroethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, hexachlorobutadiene, caprolactam, and 4-chloro-3-methylphenol are flagged with "UJ" qualifiers and reported concentrations of naphthalene and 2-methylnaphthalene are flagged with "J" qualifiers.

The area count for internal standard naphthalene-d₈ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-B11-2729. The reported non-detected concentrations of acetophenone, nitrobenzene, isophorone, 2-nitrophenol, 2,4-dimethylphenol, bis(2-chloroethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, hexachlorobutadiene, caprolactam, and 4-chloro-3-methylphenol are flagged with "UJ" qualifiers and reported concentrations of naphthalene and 2-methylnaphthalene are flagged with "J" qualifiers.

The area count for internal standard naphthalene-d₈ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-B11-2729DL. The reported non-detected concentrations of acetophenone, nitrobenzene, isophorone, 2-nitrophenol, bis(2-chloroethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, hexachlorobutadiene, caprolactam, and 4-chloro-3-methylphenol are flagged with "UJ" qualifiers and reported concentrations of 2,4-dimethylphenol, naphthalene, and 2-methylphenolare flagged with "J" qualifiers.

The area count for internal standard perylene-d₁₂ is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB2-1.01.5. The reported non-detected concentrations of benzo(k)fluoranthene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "UJ" qualifiers and reported concentrations of benzo(b)fluoranthene and benzo(a)pyrene are flagged with "J" qualifiers.

The area count for internal standard perylene-d₁₂ is less than 25% of the count in the associated 12-hour standard in sample W18STMGP-SB2-1.01.5RE. The reported non-detected concentrations of benzo(k)fluoranthene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene are flagged with "R" qualifiers and reported concentrations of benzo(b)fluoranthene and benzo(a)pyrene are flagged with "J" qualifiers.

The area count for internal standard perylene- d_{12} is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB5B-1112DL. The reported non-detected concentrations of benzo(k)fluoranthene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, benzo(b)fluoranthene, and benzo(a)pyrene are flagged with "UJ" qualifiers.

The area count for internal standard perylene- d_{12} is less than 50% of the count in the associated 12-hour standard in sample W18STMGP-SB2-19-20.5DL. The reported non-detected

concentrations of benzo(k)fluoranthene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, benzo(b)fluoranthene, and benzo(a)pyrene are flagged with "UJ" qualifiers.

3.9 Laboratory Control Samples

3.9.1 Volatile Organic Analyses

All criteria are met.

3.9.2 Semivolatile Organic Analyses

The recovery of 4-nitrophenol in the LCS identified as PB02160BS in Project Number S5510 is greater than laboratory-specified limits. Because the bias is high and 4-nitrophenol was not detected in associated field samples, data are not qualified.

The recovery of 4-nitrophenol in the LCS identified as PB02329BS in Project Number S5635 is greater than laboratory-specified limits. Because the bias is high and 4-nitrophenol was not detected in associated field samples, data are not qualified.

Recovery of phenol is less than and bis(2-chloroethyl)ether is greater than laboratory-specified limits in the LCS identified as PB02307BS in Project Number S5635. Because the bias is high and bis(2-chloroethyl)ether was not detected in associated field samples, data are not qualified for this analyte. The reported non-detected result for phenol in associated sample W18STMGP-RB10-110704 is flagged with a "UJ" qualifier.

Recoveries of 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol in the LCS identified as PB04465BS in Project Number T2062 are greater than laboratory-specified limits. Because the bias is high and the listed compounds were not detected in associated field samples, data are not qualified.

Recoveries of phenol and dimethylphthalate fall below laboratory-specified limits in the LCS identified as PB05157BS in Project Number T2635. Reported non-detected concentrations of these analytes in associated sample W18STMGP-RB-522004 are flagged with "UJ" qualifiers.

The recovery of 4-nitrophenol in the LCS identified as PB05168BS in Project Number T2635 is greater than laboratory-specified limits. Because the bias is high and 4-nitrophenol was not detected in associated field samples, data are not qualified.

The recovery of bis(2-chloroethoxy)methane in the LCS identified as PB05262BS in Project Number T2708 is less than laboratory-specified limits. The reported non-detected result for this compound in associated sample W18STMGP-RB-5 is flagged with a "UJ" qualifier.

The recovery of diethylphthalate in the LCS identified as PB05261BS in Project Number T2708 is less than laboratory-specified limits. Reported non-detected results for this compound

in associated samples W18STMGP-SB-4-5.05.5, W18STMGP-SB5A-2628, W18STMGP-TP1B-1.01.5, and W18STMGP-TP21B-1.01.5 are flagged with "UJ" qualifiers.

The recovery of 4-nitrophenol in the LCS identified as PB05372BS in Project Number T2823 is less than laboratory-specified limits. The reported non-detected result for 4-nitrophenol in associated field sample W18STMGP-SB6-28.530.5 is flagged with a "UJ" qualifier.

3.9.3 Cyanide Analyses

All criteria are met.

3.9.4 Pesticide Analyses

Recoveries of delta-BHC and 4,4'DDT are less than laboratory-specified control limits in the LCS associated with Project Number S4785. Since these analytes were not detected in any associated sample, reported results for these compounds in samples W18STMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B9-2628, W18STMGP-B9-3234, W18STMGP-B10-68, W18STMGP-B10-810, W18STMGP-B10-2022, W18STMGP-B10-4850, W18STMGP-B11-1315, W18STMGP-B11-2729, W18STMGP-B11-3537, and W18STMGP-B11-3739 are flagged with "UJ" qualifiers.

3.9.5 PCB Analyses

All criteria are met.

3.9.6 Herbicide Analyses

All criteria are met.

3.9.7 Metals Analyses

The recovery of chromium in the LCS identified as PB05310BS in Project Number T2749 is less than laboratory-specified limits. Reported results for chromium in associated field samples W18STMGP-SB3-5-7, W18STMGP-SB3-13-15, W18STMGP-SB3-17-19, W18STMGP-SB2-5-7, W18STMGP-SB2-13-15, W18STMGP-SB2-19-20.5, W18STMGP-SB4-9-13, and W18STMGP-SB4-17-19 are flagged with "J" qualifiers.

3.10 Sample Quantitation and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted.

Select target analytes results were reported below the lowest calibration standard level and quantitation limit. These results were qualified as estimated (J) by the laboratory.

Some samples were analyzed using diluted extracts. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

3.10.1 Metals Analyses

Recoveries of zinc in detection limit standards reported in Project Number S4047 are greater than USEPA Region 2 limits. Reported concentrations of zinc in associated field samples W18STMGP-B07-1719, W18STMGP-B07-2729, and W18STMGP-B07-4345 are flagged with "J" qualifiers.

Recovery of mercury is high in the contract required detection limit (CRDL) standard associated with Project Number S4100. Reported concentrations of mercury in samples W18STMGP-SB08-11.011.5 and W18STMGP-SB0814.5-15.0 are flagged with "J" qualifiers.

Recovery of mercury is low in the ending CRDL standard associated with Project Number S4785. Reported results for mercury in samples W18THSTMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B9-2628, W18STMGP-B10-68, W18STMGP-B10-810, W18STMGP-B10-4850, W18STMGP-B11-1315, and W18STMGP-B11-2729 are flagged with "J" qualifiers while non-detected results for mercury are flagged with "UJ" qualifiers in samples W18STMGP-B9-3234, W18STMGP-B10-2022, W18STMGP-B11-3537, and W18STMGP-B11-3739.

Recoveries of selenium are high in the beginning CRDL standard associated with Project Number S4785 while recoveries of lead are high in the beginning standard and low in the ending standard. Reported concentrations of these analytes are flagged with "J" qualifiers in samples W18THSTMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B9-2628, W18STMGP-B10-68, W18STMGP-B10-810, W18STMGP-B10-4850, W18STMGP-B11-1315, W18STMGP-B11-2729, W18STMGP-B9-3234, W18STMGP-B10-2022, W18STMGP-B11-3537, and W18STMGP-B11-3739.

Recovery of mercury is less than 50% in the CRDL standard associated with Project Number S5012. Per USEPA Region 2 guidelines, reported results for mercury in samples W18STMGP-B14A-1113, W18STMGP-B14A-1719, and W18STMGP-B14A-2325 are flagged with "R" qualifiers.

Recovery of mercury is less than 50% in the CRDL standard associated with Project Number S5156. Per USEPA Region 2 guidelines, reported results for mercury in samples W18STMGP-B31-2123, W18STMGP-B31-2527, W18STMGP-B30-1012, W18STMGP-B30-2224, W18STMGP-B30-2426, W18STMGP-B13-2527, W18STMGP-B13A-2527, and W18STMGP-B13-2729 are flagged with "R" qualifiers.

Recovery of thallium in the CRDL standard analyzed on October 20, 2004 at 11:24 and associated with Project number S5156 is greater than USEPA Region 2 limits. The associated positive detection of thallium in sample W18STMGP-B31-2123 is flagged with a "J" qualifier.

Recovery of selenium in the CRDL standard analyzed on November 10, 2004 at 10:18 and associated with Project number S5510 is greater than USEPA Region 2 limits. The associated positive detections of selenium in samples W18STMGP-SB30-2830, W18STMGP-SB30-8486, and W18STMGP-SB66-8486 are flagged with "J" qualifiers.

Recovery of mercury in the CRDL standard analyzed on November 18, 2004 at 12:08 and associated with Project number S5635 is less than USEPA Region 2 limits. The associated non-detected result for mercury in sample W18STMGP-RB10-110704 is flagged with a "UJ" qualifier.

Recovery of thallium in the CRDL standard analyzed on March 28, 2005 at 11:28 and associated with Project number T2062 is less than USEPA Region 2 limits. The associated non-detected results for thallium in samples W18STMGP-GP1R-67, W18STMGP-GP1R-8.39.3, W18STMGP-GP1R-1415, W18STMGP-GP2-34, W18STMGP-GP2-910, W18STMGP-GP3-23, W81STMGP-GP3-56, and W18STMGP-RB-32505 are flagged with "UJ" qualifiers while detected thallium results in samples W18STMGP-GP2-56, W18STMGP-GP2-1921, W18STMGP-GP13-23, W18STMGP-GP3-89, and W18STMGP-GP3-1920 are flagged with "J" qualifiers.

Recoveries of chromium, lead, and silver are high in the CRDL standard analyzed on May 16, 2005 at 13:40 and associated with Project Numbers T2635 and T2708. Reported positive concentrations of these analytes are flagged with "J" qualifiers in samples W18STMGP-SB5B-1011, W18STMGP-SB5B-1112, W18STMGP-SB5B-2122, W18STMGP-SB2-1.01.5, W18STMGP-SB2-2.02.5, W18STMGP-SB3-3.03.5, W18STMGP-SB5A-1719, W18STMGP-SB5A-1920, W18STMGP-SB4-1921.

Recovery of selenium in the CRDL standard analyzed on May 10, 2005 at 22:07 and associated with Project number T2708 is less than USEPA Region 2 limits. Associated non-detected results for selenium in samples W18STMGP-SB4-5.05.5, W18STMGP-SB5A-2628, W18STMGP-TP1B-1.01.5, and W18STMGP-TP21B-1.01.5 are flagged with "UJ" qualifiers.

Recovery of mercury in the CRDL standard analyzed on May 11, 2005 at 13:07 and associated with Project number T2635 is greater than USEPA Region 2 limits. The associated concentration for mercury in sample W18STMGP-SB3-3.03.5 is flagged with a "J" qualifier.

Recovery of mercury in the CRDL standard analyzed on May 11, 2005 at 13:40 and associated with Project number T2749 is greater than USEPA Region 2 limits. Associated concentrations of mercury in samples W18STMGP-SB3-5-7, W18STMGP-SB3-13-15, W18STMGP-SB2-5-7, W18STMGP-SB2-13-15, W18STMGP-SB2-19-20.5, W18STMGP-SB4-9-13, and W18STMGP-SB4-17-19 are flagged with "J" qualifiers.

Recovery of mercury in the CRDL standard analyzed on May 18, 2005 at 12:14 and associated with Project number T2708 is less than USEPA Region 2 limits. The associated non-detected result for mercury in sample W18STMGP-SB1-5.05.5 is flagged with a "UJ" qualifier.

Recovery of chromium in the CRDL standard analyzed on May 18, 2005 at 16:32 and associated with Project number T2708 is greater than USEPA Region 2 limits. The associated result for chromium in sample W18STMGP-SB1-5.05.5 is flagged with a "J" qualifier.

Recovery of chromium in the CRDL standard analyzed on May 16, 2005 at 13:40 and associated with Project number T2708 is greater than USEPA Region 2 limits. The associated result for chromium in sample W18STMGP-RB-5 is flagged with a "J" qualifier.

Recovery of mercury in the CRDL standard analyzed on May 19, 2005 at 10:00 and associated with Project number T2823 is greater than USEPA Region 2 limits. The associated concentration of mercury in sample W18STMGP-RB-5122005 is flagged with a "J" qualifier.

Recovery of mercury in the CRDL standard analyzed on May 18, 2005 at 12:14 and associated with Project number T2823 is less than USEPA Region 2 limits. Associated detected concentrations of mercury in samples W18STMGP-SB-6-1012, W18STMGP-SB6-1315, and W18STMGP-SB6-1921 are flagged with "J" qualifiers and non-detected results in samples W18STMGP-SB6-2426, W18STMGP-SB6-2426, and W18STMGP-SB6-28.530.5 are flagged with "UJ" qualifiers.

Recovery of chromium in the CRDL standard analyzed on May 21, 2005 at 11:13 and associated with Project number T2823 is greater than USEPA Region 2 limits. Concentrations of chromium in samples W18STMGP-SB6-1012, W18STMGP-SB6-1315, W18STMGP-SB6-1921, W18STMGP-SB6-2426, W18STMGP-SB6-2426, and W18STMGP-SB6-28.530.5 are flagged with "J" qualifiers.

Recovery of mercury in the CRDL standard analyzed on May 27, 2005 at 14:38 and associated with Project number T2708 is more than USEPA Region 2 limits. Associated detected concentrations of mercury in samples W18STMGP-SB4-5.05.5, W18STMGP-SB5A-2628, W18STMGP-TP1B-1.01.5, and W18STMGP-TP21B-1.01.5 are flagged with "J" qualifiers.

Recovery of mercury in the CRDL standard analyzed on June 13, 2005 at 12:04 and associated with Project number T3189 is greater than USEPA Region 2 limits. Concentrations of mercury in samples W18STMGP-MW5B-3436 and W18STMGP-MW55B-3436 are flagged with "J" qualifiers.

3.11 Target Compound Identification

3.11.1 Volatile Organic Analyses

All criteria are met.

3.11.2 Semivolatile Organic Analyses

All criteria are met.

3.11.3 Cyanide Analyses

All criteria are met.

3.11.4 Pesticide Analyses

The RPD between the chromatographic columns for 2,4,5-T detected in sample W18STMGP-B11-3537 is greater than 40%. Per USEPA Region 2 guidelines, this result is flagged with a "J" qualifier.

3.11.5 PCB Analyses

The %D between the chromatographic columns for Aroclor 1260 detected in sample W18STMGP-B10-810 is greater than 25%. Per USEPA Region 2 guidelines, this result is flagged with a "J" qualifier.

3.11.6 Herbicide Analyses

All criteria are met.

3.11.7 Metals Analyses

The reported percent difference (%D) value for lead is greater than USEPA Region 2 limits in the serial dilution performed using sample W18STMGP-B11-2729. The reported concentrations of lead in associated samples W18THSTMGP-B9-810, W18STMGP-B9-2022, W18STMGP-B9-2628, W18STMGP-B10-68, W18STMGP-B10-810, W18STMGP-B10-4850, W18STMGP-B11-1315, W18STMGP-B11-2729, W18STMGP-B9-3234, W18STMGP-B10-2022, W18STMGP-B11-3537, and W18STMGP-B11-3739 are flagged with "J" qualifiers.

3.12 Other Issues

3.12.1 Cyanide Analyses

Sample W18STMGP-GP2-34 was analyzed as a laboratory duplicate. The reported RPD value associated with these analyses is greater than USEPA Region 2 limits (20%). The reported concentration of cyanide in sample W18STMGP-GP2-34 is flagged with a "J" qualifier.

Sample W18STMGP-TP1B-1.01.5 was analyzed as a laboratory duplicate. The reported RPD value associated with these analyses is greater than USEPA Region 2 limits (20%). The

reported concentration of cyanide in sample W18STMGP-TP1B-1.01.5 is flagged with a "J" qualifier.

Sample W18STMGP-SB6-1012 was analyzed as a laboratory duplicate. Reported RPD values associated with these analyses is greater than USEPA Region 2 limits (20%). Reported concentrations of cyanide and amenable cyanide in sample W18STMGP-SB6-1012 are flagged with "J" qualifiers.

3.12.2 Metals Analyses

Sample W18STMGP-SB29-4850 was analyzed using the serial dilution technique. The %D value for lead is greater than 10% and %D values for copper, nickel, and zinc are greater than 100%. Therefore, the reported concentration of lead is flagged with a "J" qualifier and concentrations of copper, nickel, and zinc are flagged with "R" qualifiers in sample W18STMGP-SB29-4850.

Sample W18STMGP-SB5B-1011 was analyzed as a laboratory duplicate. The reported RPD value for mercury in with these analyses is greater than USEPA Region 2 limits (20%). The reported concentration of mercury in sample W18STMGP- SB5B-1011 is flagged with a "J" qualifier.

Sample W18STMGP-TP1B-1.01.5 was analyzed as a laboratory duplicate. The reported RPD value for mercury in with these analyses is greater than USEPA Region 2 limits (20%). The reported concentration of mercury in sample W18STMGP- TP1B-1.01.5 is flagged with a "J" qualifier.

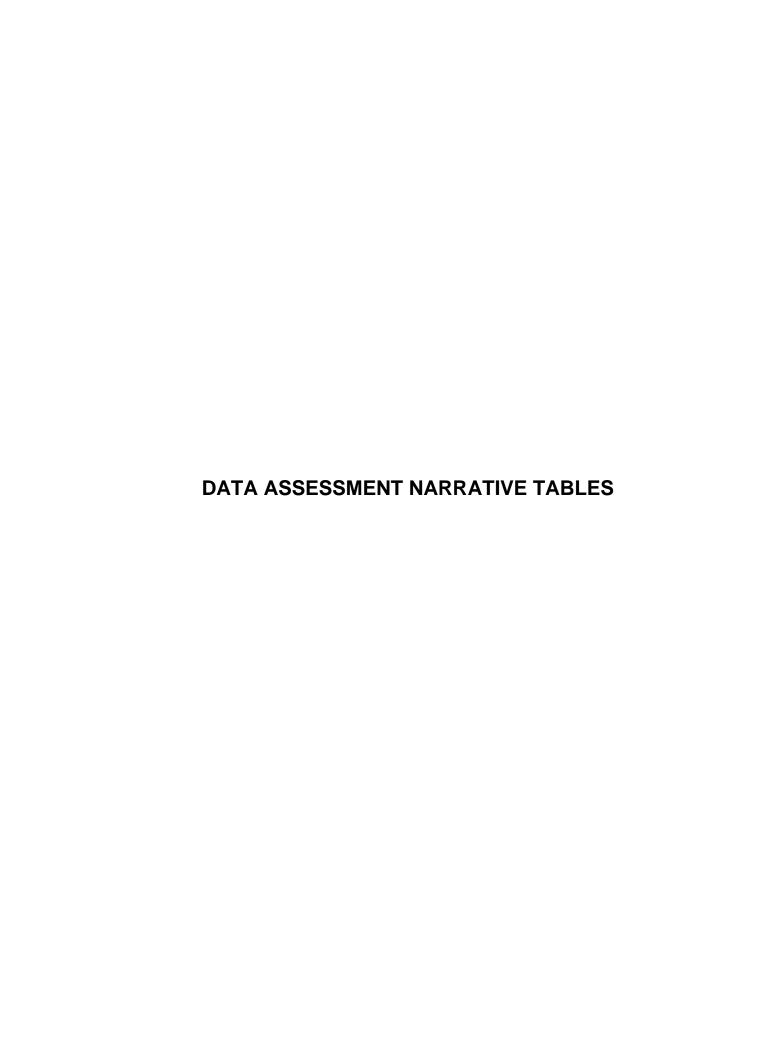


Table 1: Samples Reviewed and Associated Analytical Methods

		Colle	cted									Lab Sample
Matrix	Sample ID	Date	Time				Met	thods				ID ⁻
Soil	W18STMGP-B07-1719	8/9/04	1130	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4047-01
Soil	W18STMGP-B07-2729	8/9/04	1210	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4047-02
Soil	W18STMGP-B07-43-45	8/9/04	1320	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4047-03
Soil	W18STMGP-SB08-11.011.5	8/11/04	1036	SW8260	SW8270	SW9012	2			SW6010	SW7471	S4100-01
Soil	W18STMGP-SB08-11.011.5DL	8/11/04	1036		SW8270							S4100-01DL
Soil	W18STMGP-SB0814.5-15.0	8/11/04	1049	SW8260	SW8270	SW9012	2			SW6010	SW7471	S4100-02
Soil	W18STMGP-SB0814.5-15.0RE	8/11/04	1049		SW8270							S4100-02RE
Soil	W18STMGP-B9-810	9/18/04	1100	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-01
Soil	W18STMGP-B9-2022	9/18/04	1145	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-02
Soil	W18STMGP-B9-2022DL	9/18/04	1145	SW8260	SW8270							S4785-02DL
Soil	W18STMGP-B9-2022DL2	9/18/04	1145		SW8270							S4785-02DL2
Soil	W18STMGP-B9-2628	9/18/04	1215	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-03
Soil	W18STMGP-B9-3234	9/18/04	1230	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-04
Soil	W18STMGP-B10-68	9/18/04	1300	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-05
Soil	W18STMGP-B10-68DL	9/18/04	1300		SW8270							S4785-05DL
Soil	W18STMGP-B10-810	9/18/04	1310	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-06
Soil	W18STMGP-B10-2022	9/18/04	1400	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-07
Soil	W18STMGP-B10-2022DL	9/18/04	1400		SW8270							S4785-07DL
Soil	W18STMGP-B10-4850	9/18/04	1445	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-08
Soil	W18STMGP-B11-1315	9/18/04	1215	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-09
Soil	W18STMGP-B11-2729	9/18/04	1310	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-10
Soil	W18STMGP-B11-2729DL	9/18/04	1310	SW8260	SW8270							S4785-10DL
Soil	W18STMGP-B11-2729DL2	9/18/04	1310		SW8270			-				S4785-10DL2
Soil	W18STMGP-B11-2729DL3	9/18/04	1310		SW8270							S4785-10DL3
Soil	W18STMGP-B11-3537	9/18/04	1715	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-13
Soil	W18STMGP-B11-3739	9/18/04	1730	SW8260	SW8270	SW9012	SW8081	SW8082	SW8151	SW6010	SW7471	S4785-14
Soil	W18STMGP-B14A-1113	10/3/04	1000	SW8260	SW8270	SW9012	2	1		SW6010	SW7471	S5012-01
Soil	W18STMGP-B14A-1719	10/3/04	1050	SW8260	SW8270	SW9012	2			SW6010	SW7471	S5012-02

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

		Collec	cted								Lab Sample
Matrix	Sample ID	Date	Time				Met	hods			ID
Soil	W18STMGP-B14A-2325	10/3/04	1115	SW8260	SW8270	SW9012			 SW6010	SW7471	S5012-03
Soil	W18STMGP-B31-2123	10/9/04	1140	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-06
Soil	W18STMGP-B31-2123DL	10/9/04	1140	SW8260					 		S5156-06DL
Soil	W18STMGP-B31-2527	10/9/04	1200	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-07
Soil	W18STMGP-B30-1012	10/10/04	0950	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-08
Soil	W18STMGP-B30-1012DL	10/10/04	0950		SW8270				 1		S5156-08DL
Soil	W18STMGP-B30-2224	10/10/04	1045	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-09
Soil	W18STMGP-B30-2224DL	10/10/04	1045	SW8260	SW8270				 		S5156-09DL
Soil	W18STMGP-B30-2426	10/10/04	1055	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-10
Soil	W18STMGP-B30-2426DL	10/10/04	1055	SW8260			-		 		S5156-10DL
Soil	W18STMGP-B13-2527	10/10/04	1420	SW8260	SW8270	SW9012	-		 SW6010	SW7471	S5156-11
Soil	W18STMGP-B13A-2527	10/10/04	1420	SW8260	SW8270	SW9012			 SW6010	SW7471	S5156-12
Soil	W18STMGP-B13-2729	10/10/04	1430	SW8260	SW8270	SW9012	-		 SW6010	SW7471	S5156-13
Soil	W18STMGP-SB30-2830	10/30/04	1010	SW8260	SW8270	SW9012			 SW6010	SW7471	S5510-01
Soil	W18STMGP-SB30-8486	10/30/04	1600	SW8260	SW8270	SW9012			 SW6010	SW7471	S5510-02
Soil	W18STMGP-SB66-8486	10/30/04	1600	SW8260	SW8270	SW9012	-		 SW6010	SW7471	S5510-05
Soil	W18STMGP-SB29-1113	11/6/04	0945	SW8260	SW8270	SW9012			 SW6010	SW7471	S5635-01
Soil	W18STMGP-SB29-1113RE	11/6/04	0945	SW8260					 		S5635-01RE
Soil	W18STMGP-SB29-3436	11/7/04	1210	SW8260	SW8270	SW9012			 SW6010	SW7471	S5635-02
Soil	W18STMGP-SB29-3839	11/7/04	1320	SW8260	SW8270	SW9012			 SW6010	SW7471	S5635-03
Soil	W18STMGP-SB29-4850	11/7/04	1420	SW8260	SW8270	SW9012			 SW6010	SW7471	S5635-04
Soil	W18STMGP-SB71-4850	11/7/04	1420	SW8260	SW8270	SW9012			 SW6010	SW7471	S5635-07
Water	W18STMGP-RB10-110704	11/7/04	1500	SW8260	SW8270	SW9012			 SW6010	SW7470	S5635-08
Water	TRIPBLANK	11/7/04		SW8260					 		S5635-09
Soil	W18STMGP-GP1R-67	3/24/05	1030	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-01
Soil	W18STMGP-GP1R-67DL	3/24/05	1030		SW8270				 		T2062-01DL
Soil	W18STMGP-GP1R-8.39.3	3/24/05	1040	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-02
Soil	W18STMGP-GP1R-1415	3/24/05	1100	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-03

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

		Collec	cted								Lab Sample
Matrix	Sample ID	Date	Time				Met	thods			ID
Soil	W18STMGP-GP2-34	3/23/05	1100	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-04
Soil	W18STMGP-GP2-56	3/24/05	1417	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-07
Soil	W18STMGP-GP2-56DL	3/24/05	1417		SW8270				 		T2062-07DL
Soil	W18STMGP-GP2-910	3/24/05	1425	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-08
Soil	W18STMGP-GP2-1921	3/24/05	1530	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-09
Soil	W18STMGP-GP3-23	3/23/05	1130	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-10
Soil	W18STMGP-GP3-23DL	3/23/05	1130		SW8270				 		T2062-10DL
Soil	W18STMGP-GP13-23	3/23/05	1130	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-11
Soil	W18STMGP-GP13-23DL	3/23/05	1130		SW8270				 		T2062-11DL
Soil	W18STMGP-GP3-56	3/25/05	0800	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-12
Soil	W18STMGP-GP3-89	3/25/05	0815	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-13
Soil	W18STMGP-GP3-1920	3/25/05	0930	SW8260	SW8270	SW9012			 SW6010	SW7471	T2062-14
Water	W18STMGP-RB-32505	3/25/05	1020	SW8260	SW8270	SW9012			 SW6010	SW7470	T2062-16
Water	TRIPBLANK	3/25/05		SW8260					 		T2062-17
Soil	W18STMGP-SB5B-1011	5/2/05	1040		SW8270	SW9012			 SW6010	SW7471	T2635-01
Soil	W18STMGP-SB5B-1112	5/2/05	1045		SW8270	SW9012			 SW6010	SW7471	T2635-04
Soil	W18STMGP-SB5B-1112DL	5/2/05	1045		SW8270				 		T2635-04DL
Soil	W18STMGP-SB5B-2122	5/2/05	1145		SW8270	SW9012			 SW6010	SW7471	T2635-05
Soil	W18STMGP-SB2-1.01.5	5/2/05	1130		SW8270	SW9012			 SW6010	SW7471	T2635-06
Soil	W18STMGP-SB2-1.01.5RE	5/2/05	1130		SW8270				 		T2635-06RE
Soil	W18STMGP-SB2-2.02.5	5/2/05	1140		SW8270	SW9012			 SW6010	SW7471	T2635-07
Soil	W18STMGP-SB3-3.03.5	4/29/05	1300	SW8260	SW8270	SW9012			 SW6010	SW7471	T2635-08
Soil	W18STMGP-SB5A-1719	5/2/05	1330		SW8270	SW9012			 SW6010	SW7471	T2635-09
Soil	W18STMGP-SB5A-1920	5/2/05	1340		SW8270	SW9012			 SW6010	SW7471	T2635-10
Soil	W18STMGP-SB85A-1920	5/2/05	1340		SW8270	SW9012			 SW6010	SW7471	T2635-11
Water	W18STMGP-RB-522004	5/2/05	1200		SW8270	SW9012			 SW6010	SW7470	T2635-12
Soil	W18STMGP-SB4-5.05.5	5/3/05	1045	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-01
Soil	W18STMGP-SB5A-2628	5/3/05	1230	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-02

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

		Collec	cted								Lab Sample
Matrix	Sample ID	Date	Time				Met	hods			ID
Soil	W18STMGP-SB1-5.05.5	5/3/05	1410	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-03
Soil	W18STMGP-TP1B-1.01.5	5/4/05	1330	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-04
Soil	W18STMGP-TP21B-1.01.5	5/4/05	1330	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-07
Soil	W18STMGP-TP21B-1.01.5RE	5/4/05	1330	SW8260					 		T2708-07RE
Soil	W18STMGP-SB4-79	5/5/05	1000	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-08
Soil	W18STMGP-SB4-1921	5/5/05	1200	SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-09
Soil	W18STMGP-SB4-1921DL	5/5/05	1200	SW8260	SW8270				 		T2708-09DL
Soil	W18STMGP-SB4-1921DL2	5/5/05	1200		SW8270				 		T2708-09DL2
Water	W18STMGP-RB-5	5/5/05	1110	SW8260	SW8270	SW9012			 SW6010	SW7470	T2708-10
Water	TRIPBLANK	5/5/05		SW8260					 		T2708-11
Soil	SB-5A(31-33)	5/3/05		SW8260	SW8270	SW9012			 SW6010	SW7471	T2708-13
Soil	W18STMGP-SB3-5-7	5/6/05	0945	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-01
Soil	W18STMGP-SB3-13-15	5/6/05	1000	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-02
Soil	W18STMGP-SB3-17-19	5/6/05	1010	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-03
Soil	W18STMGP-SB2-5-7	5/6/05	1137	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-04
Soil	W18STMGP-SB2-1315	5/6/05	1206	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-05
Soil	W18STMGP-SB2-19-20.5	5/6/05	1237	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-06
Soil	W18STMGP-SB2-19-20.5DL	5/6/05	1237		SW8270				 		T2749-06DL
Soil	W18STMGP-SB4-9-13	5/5/05	1300	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-07
Soil	W18STMGP-SB4-17-19	5/5/05	1200	SW8260	SW8270	SW9012			 SW6010	SW7471	T2749-08
Water	TRIPBLANK	5/5/05	0900	SW8260					 		T2749-09
Water	W18STMGP-RB-5122005	5/12/05	0920	SW8260	SW8270	SW9012			 SW6010	SW7470	T2823-01
Soil	W18STMGP-SB6-1012	5/12/05	1020	SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-02
Soil	W18STMGP-SB6-1315	5/12/05	1100	SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-05
Soil	W18STMGP-SB6-1315DL	5/12/05	1100	SW8260	SW8270				 		T2823-05DL
Soil	W18STMGP-SB6-1921	5/12/05	1250	SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-06
Soil	W18STMGP-SB6-2426	5/12/05	1315	SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-07
Soil	W18STMGP-SB66-2426	5/12/05	1315	SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-08

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

		Colle	cted								Lab Sample
Matrix	Sample ID	Date	Time				Met	thods			ID
Water	TRIPBLANKS	5/13/05		SW8260					 		T2823-11
Soil	W18STMGP-SB6-28.530.5	5/12/05		SW8260	SW8270	SW9012			 SW6010	SW7471	T2823-12
Soil	W18STMGP-MW5B-3436	6/7/05	1315	SW8260	SW8270	SW9012			 SW6010	SW7471	T3189-01
Soil	W18STMGP-MW55B-3436	6/7/05	1315	SW8260	SW8270	SW9012			 SW6010	SW7471	T3189-04

SW	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, (U.S. Environmental Protection Agency)
8260	Method 8260B - Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GCMS)
8270	Method 8270C - Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
9012	Method 9012A - Total and Amenable Cyanide (Automated Colorimetric, with Off-Line Distillation)
8081	Method 8081A - Organochlorine Pesticides by Gas Chromatography
8082	Method 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography
8151	Method 8151A - Chlorinated Herbicides by GC using Methylation or Pentafluorobenzylation Derivatization
6010	Method 6010B - Inductively Coupled Plasma-Atomic Emission Spectrometry
7470	Method 7470A – Mercury in Liquid Waste (Manual Cold-Vapor Technique)
7471	Method 7471A – Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)

Table 2: Qualified Analytical Data

Field	Analytical	A 1 4.	Tal	D
Identification	Method	Analyte	Flag	Reason for Qualification
SB-5A(31-33)	8260	Acetone	Ј	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
SB-5A(31-33)	8260	Methylene chloride	J	Detected in method blank.
SB-5A(31-33)	9012	Cyanide-Amenable	UJ	Analyzed 1 day past holding time expiration.
TRIPBLANK	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B07-1719				Detection limit standard recoveries
	6010	Zinc	J	high.
W18STMGP-B07-1719	6010	Beryllium	J	Detected in preparation blank.
W18STMGP-B07-2729	8151	2,4-D	UJ	MS/MSD recoveries both low and high.
W18STMGP-B07-2729	6010	Beryllium	J	Detected in preparation blank.
W18STMGP-B07-2729	6010	Zinc	J	Detection limit standard recoveries high.
W18STMGP-B07-4345	6010	Beryllium	J	Detected in preparation blank.
W18STMGP-B07-4345	6010	Zinc	J	Detection limit standard recoveries high.
W18STMGP-B9-810	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B9-810	8260	Carbon disulfide	J	Continuing calibration %D > 20%.
W18STMGP-B9-810	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B9-810	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-B9-810	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B9-810	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B9-810	7471	Mercury	J	Low CRDL recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B9-810	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B9-810	6010	Selenium	J	High CRDL recovery.
W18STMGP-B9-2022	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B9-2022	8260	Ethylbenzene	J	High internal standard area counts.
W18STMGP-B9-2022	8260	o-Xylene	J	High internal standard area counts.
W18STMGP-B9-2022	8270	Acetophenone	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	Nitrobenzene	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	Isophorone	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	2-Nitrophenol	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	2,4-Dimethylphenol	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	2,4-Dichlorophenol	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	Naphthalene	J	Low internal standard area counts.
W18STMGP-B9-2022	8270	4-Chloroaniline	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	Hexachlorobutadiene	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	Caprolactam	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	4-Chloro-3-methylphenol	UJ	Low internal standard area counts.
W18STMGP-B9-2022	8270	2-Methylnaphthalene	J	Low internal standard area counts.
W18STMGP-B9-2022	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-B9-2022	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B9-2022	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B9-2022	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B9-2022	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B9-2022	6010	Selenium	J	High CRDL recovery.
W18STMGP-B9-2022DL	8270	2-Methylnaphthalene	J	Initial calibration %RSD > 15%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B9-2022DL2	8270	2-Methylnaphthalene	J	Initial calibration %RSD > 15%.
W18STMGP-B9-2628	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B9-2628	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B9-2628	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B9-2628	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B9-2628	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B9-2628	6010	Selenium	J	High CRDL recovery.
W18STMGP-B9-3234	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B9-3234	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B9-3234	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B9-3234	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B9-3234	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-B9-3234	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B10-68	8260	Cyclohexane	J	Initial calibration %RSD > 15%.
W18STMGP-B10-68	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-B10-68	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B10-68	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B10-68	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B10-68	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B10-68DL	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-B10-68DL	8270	2-Methylnaphthalene	J	Initial calibration %RSD > 15%.
W18STMGP-B10-810	8260	Cyclohexane	J	Initial calibration %RSD > 15%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B10-810	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B10-810	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B10-810	8082	Aroclor 1260	J	Dual column %D > 25%.
W18STMGP-B10-810	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B10-810	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B10-810	6010	Selenium	J	High CRDL recovery.
W18STMGP-B10-2022	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B10-2022	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B10-2022	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-B10-2022	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B10-4850	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B10-4850	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B10-4850	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B10-4850	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B11-1315	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B11-1315	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B11-1315	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B11-1315	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B11-1315	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B11-1315	6010	Selenium	J	High CRDL recovery.
W18STMGP-B11-2729	8260	Methyl tert-butyl ether	J	High surrogate recoveries.
W18STMGP-B11-2729	8260	Methylcyclohexane	J	High surrogate recoveries.

Table 2. Qualified Analytical Data (continued)

Field	Analytical			
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-B11-2729	8260	Acetone	J	Initial calibration %RSD > 15%.
W18STMGP-B11-2729	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B11-2729	8260	Benzene	J	High surrogate recoveries.
W18STMGP-B11-2729	8260	Toluene	J	High surrogate recoveries.
W18STMGP-B11-2729	8260	Ethylbenzene	J	High surrogate recoveries. High internal standard area counts.
W18STMGP-B11-2729	8260	m/p-Xylenes	J	High internal standard area counts.
W18STMGP-B11-2729	8260	o-Xylene	J	High surrogate recoveries. High internal standard area counts.
W18STMGP-B11-2729	8260	Isopropylbenzene	J	High surrogate recoveries.
W18STMGP-B11-2729	8260	1,1-Dichloroethene	UJ	Low MS/MSD recoveries.
W18STMGP-B11-2729	8270	2,2-oxybis(1-Chloropropane	UJ	Low MS/MSD recoveries.
W18STMGP-B11-2729	8270	2,4-Dichlorophenol	UJ	Low MS/MSD recoveries. Low internal standard area counts.
W18STMGP-B11-2729	8270	Hexachlorocyclopentadiene	R	MS/MSD recoveries are < 10%.
W18STMGP-B11-2729	8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B11-2729	8270	Carbazole	J	Low MS/MSD recoveries.
W18STMGP-B11-2729	8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-B11-2729	8270	Acetophenone	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	Nitrobenzene	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	Isophorone	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	2-Nitrophenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	2,4-Dimethylphenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	Naphthalene	J	Low internal standard area counts.
W18STMGP-B11-2729	8270	4-Chloroaniline	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	Hexachlorobutadiene	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	Caprolactam	UJ	Low internal standard area counts.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B11-2729	8270	4-Chloro-3-methylphenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729	8270	2-Methylnaphthalene	J	Low internal standard area counts.
W18STMGP-B11-2729	9012	Cyanide	R	MS/MSD recoveries > 200%.
W18STMGP-B11-2729	9012	Cyanide-Amenable	R	MS/MSD recoveries > 200%.
W18STMGP-B11-2729	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B11-2729	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B11-2729	8151	2,4-D	UJ	Low MS/MSD recoveries.
W18STMGP-B11-2729	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B11-2729	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B11-2729DL	8270	Acetophenone	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	Nitrobenzene	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	Isophorone	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	2-Nitrophenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	2,4-Dimethylphenol	J	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	2,4-Dichlorophenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	Naphthalene	J	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	4-Chloroaniline	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	Hexachlorobutadiene	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	Caprolactam	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	4-Chloro-3-methylphenol	UJ	Low internal standard area counts.
W18STMGP-B11-2729DL	8270	2-Methylnaphthalene	J	Low internal standard area counts. Continuing calibration %D > 20%.
W18STMGP-B11-2729DL2	8270	2-Methylnaphthalene	J	Continuing calibration %D > 20%.
W18STMGP-B11-2729DL3	8270	2-Methylnaphthalene	J	Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B11-3537	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B11-3537	8260	Methyl tert-butyl ether	J	Continuing calibration %D > 20%.
W18STMGP-B11-3537	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B11-3537	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B11-3537	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B11-3537	8151	2,4,5-T	J	Dual column %D > 25%.
W18STMGP-B11-3537	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-B11-3537	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B11-3537	6010	Selenium	J	High CRDL recovery.
W18STMGP-B11-3739	8260	Acetone	J	Initial calibration %RSD > 15%.
W18STMGP-B11-3739	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-B11-3739	8081	delta-BHC	UJ	Low LCS recovery.
W18STMGP-B11-3739	8081	4,4'-DDT	UJ	Low LCS recovery.
W18STMGP-B11-3739	7471	Mercury	J	Low CRDL recovery.
W18STMGP-B11-3739	6010	Lead	J	High CRDL recovery. High serial dilution %D.
W18STMGP-B13-2527	8260	Acetone	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-B13-2527	8260	Carbon disulfide	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B13-2527	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B13-2527	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B13-2729	8260	Acetone	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-B13-2729	8260	Carbon disulfide	J	Initial calibration $% RSD > 15\%$. Continuing calibration $% D > 20\%$.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B13-2729	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B13-2729	8260	m/p-Xylenes	J	Initial calibration %RSD > 15%.
W18STMGP-B13-2729	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B13A-2527	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-B13A-2527	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B13A-2527	8270	Hexachlorocyclopentadiene	R	Continuing calibration %D > 90%.
W18STMGP-B13A-2527	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B14A-1113	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B14A-1113	6010	Thallium	J	Detected in method blank.
W18STMGP-B14A-1719	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B14A-1719	6010	Thallium	J	Detected in method blank.
W18STMGP-B14A-2325	8260	Acetone	J	Initial calibration %RSD > 15%.
W18STMGP-B14A-2325	8260	Carbon disulfide	J	Initial calibration %RSD > 15%.
W18STMGP-B14A-2325	8270	4-Chloro-3-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B14A-2325	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B14A-2325	6010	Thallium	J	Detected in method blank.
W18STMGP-B30-1012	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-B30-1012	8260	Carbon disulfide	J	Initial calibration %RSD > 15%.
W18STMGP-B30-1012	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-B30-1012	8260	m/p-Xylenes	J	Initial calibration %RSD > 15%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B30-1012	8260	Isopropylbenzene	J	Continuing calibration $\%D > 20\%$.
W18STMGP-B30-1012	8270	2-Methylnaphthalene	J	Initial calibration $\%RSD > 15\%$. Continuing calibration $\%D > 20\%$.
W18STMGP-B30-1012	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-1012	8270	Phenanthrene	J	Continuing calibration %D > 20%.
W18STMGP-B30-1012	8270	Benzo(k)fluoranthene	J	Continuing calibration %D > 20%.
W18STMGP-B30-1012	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-B30-1012	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B30-1012DL	8270	Dibenzofuran	J	Continuing calibration %D > 20%.
W18STMGP-B30-1012DL	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2224	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B30-2224	8260	Methylene chloride	J	Continuing calibration %D > 20%.
W18STMGP-B30-2224	8260	Styrene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2224	8270	2-Methylnaphthalene	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%.
W18STMGP-B30-2224	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2224	8270	Phenanthrene	J	Continuing calibration %D > 20%.
W18STMGP-B30-2224	8270	Benzo(k)fluoranthene	J	Continuing calibration %D > 20%.
W18STMGP-B30-2224	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-B30-2224	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B30-2224DL	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B30-2224DL	8260	Styrene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2224DL	8270	2-Methylnaphthalene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B30-2224DL	8270	Acenaphthylene	J	Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B30-2224DL	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2426	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-B30-2426	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B30-2426	8260	m/p-Xylenes	J	Initial calibration %RSD > 15%.
W18STMGP-B30-2426	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B30-2426DL	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B31-2123	8260	Acetone	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-B31-2123	8260	Carbon disulfide	J	Initial calibration %RSD > 15%.
W18STMGP-B31-2123	8260	Methyl acetate	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B31-2123	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-B31-2123	8260	m/p-Xylenes	J	Initial calibration %RSD > 15%.
W18STMGP-B31-2123	8270	2-Methylnaphthalene	J	High MS/MSD recoveries. Initial calibration %RSD > 15%.
W18STMGP-B31-2123	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-B31-2123	8270	Hexachlorocyclopentadiene	R	Continuing calibration %D > 90%.
W18STMGP-B31-2123	8270	1,1-Biphenyl	J	Continuing calibration %D > 20%.
W18STMGP-B31-2123	8270	Dibenzofuran	J	Continuing calibration $%D > 20%$.
W18STMGP-B31-2123	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-B31-2123	6010	Thallium	J	High CRDL recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	~
W18STMGP-B31-2527	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-B31-2527	8260	Carbon disulfide	J	Initial calibration %RSD > 15%.
W18STMGP-B31-2527	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-B31-2527	7471	Mercury	R	CRDL recovery < 50%.
W18STMGP-GP1R-8.39.3	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP1R-1415	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP1R-67	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP1R-67	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP1R-67	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP1R-67	8270	Dibenz(a,h)anthracene	J	Continuing calibration %D > 20%.
W18STMGP-GP1R-67	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP1R-67DL	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP1R-67DL	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-34	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP2-34	8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-GP2-34	8270	Acenaphthylene	J	High MS/MSD recoveries.
W18STMGP-GP2-34	8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-GP2-34	8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-GP2-34	8270	Fluoranthene	J	High MS/MSD recoveries.
W18STMGP-GP2-34	8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries. Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP2-34	8270	Benzo(a)pyrene	J	High MS/MSD recoveries.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-GP2-34	8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries. Continuing calibration %D > 20%.
W18STMGP-GP2-34	8270	Dibenz(a,h)anthracene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-34	9012	Cyanide	J	Laboratory duplicate RPD > 20%.
W18STMGP-GP2-34	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP2-34	6010	Mercury	J	High MS/MSD recoveries.
W18STMGP-GP2-34	6010	Silver	J	Low MS/MSD recoveries.
W18STMGP-GP2-56	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP2-56	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP2-56	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-56	8270	Dibenz(a,h)anthracene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-56	6010	Thallium	J	Low CRDL recovery.
W18STMGP-GP2-56DL	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP2-56DL	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-910	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP2-910	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP2-1921	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP2-1921	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP2-1921	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP2-1921	6010	Thallium	J	Low CRDL recovery.
W18STMGP-GP3-23	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP3-23	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP3-23	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-GP3-23	8270	Dibenz(a,h)anthracene	J	Continuing calibration %D > 20%.
W18STMGP-GP3-23	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP3-23DL	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP3-23DL	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP3-56	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP3-56	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP3-56	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration $\%D > 20\%$.
W18STMGP-GP3-56	8270	Dibenz(a,h)anthracene	J	Continuing calibration $\%D > 20\%$.
W18STMGP-GP3-56	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-GP3-89	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP3-89	6010	Thallium	J	Low CRDL recovery.
W18STMGP-GP3-1920	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP3-1920	6010	Thallium	J	Low CRDL recovery.
W18STMGP-GP13-23	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-GP13-23	8260	Acetone	J	Detected in method blank.
W18STMGP-GP13-23	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP13-23	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-GP13-23	8270	Dibenz(a,h)anthracene	J	Continuing calibration %D > 20%.
W18STMGP-GP13-23	6010	Thallium	J	Low CRDL recovery.
W18STMGP-GP13-23DL	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-GP13-23DL	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration $\%D > 20\%$.
W18STMGP-MW5B-3436	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.

Table 2. Qualified Analytical Data (continued)

Identification	Analytical Method	Analyte	***	
		rinaryte	Flag	Reason for Qualification
W18STMGP-MW5B-3436	7471	Mercury	J	High CRDL recovery.
W18STMGP-MW55B-3436	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-MW55B-3436	7471	Mercury	J	High CRDL recovery.
W18STMGP-RB-5	8260	Methylene chloride	J	Initial calibration %RSD > 15%.
W18STMGP-RB-5	8270	bis(2-Chloroethoxy)methane	UJ	Low LCS recovery.
W18STMGP-RB-5	6010	Chromium	J	High CRDL recovery.
W18STMGP-RB-32505	8270	bis(2-Ethylhexyl)phthalate	J	Detected in method blank.
W18STMGP-RB-32505	6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-RB-522004	8270	Phenol	UJ	Low LCS recovery.
W18STMGP-RB-522004	8270	Dimethylphthalate	UJ	Low LCS recovery.
W18STMGP-RB-5122005	8270	bis(2-Ethylhexyl)phthalate	J	Detected in method blank.
W18STMGP-RB-5122005	7470	Mercury	J	High CRDL recovery.
W18STMGP-RB10-110704	8270	Phenol	UJ	Low LCS recovery.
W18STMGP-RB10-110704	8270	bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.
W18STMGP-RB10-110704	7470	Mercury	UJ	Low CRDL recovery.
W18STMGP-SB1-5.05.5	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank. Detected in trip blank.
W18STMGP-SB1-5.05.5	6010	Chromium	J	High CRDL recovery. Detected in equipment rinsate blank.
W18STMGP-SB1-5.05.5	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-SB1-5.05.5	9012	Cyanide-Amenable	UJ	Analyzed 1 day past holding time expiration.
W18STMGP-SB2-1.01.5	8270	2,2-oxybis(1-Chloropropane	R	Continuing calibration %D > 90%.
W18STMGP-SB2-1.01.5	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-SB2-1.01.5	8270	Phenanthrene	J	Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB2-1.01.5	8270	Benzo(b)fluoranthene	J	Low internal standard area counts. Continuing calibration $\%D > 20\%$.
W18STMGP-SB2-1.01.5	8270	Benzo(k)fluoranthene	UJ	Low internal standard area counts.
W18STMGP-SB2-1.01.5	8270	Benzo(a)pyrene	J	Low internal standard area counts.
W18STMGP-SB2-1.01.5	8270	Dibenz(a,h)anthracene	UJ	Low internal standard area counts.
W18STMGP-SB2-1.01.5	8270	Benzo(g,h,i)perylene	UJ	Low internal standard area counts.
W18STMGP-SB2-1.01.5	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-SB2-1.01.5	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB2-1.01.5	6010	Lead	J	High CRDL recovery.
W18STMGP-SB2-1.01.5	6010	Silver	J	High CRDL recovery.
W18STMGP-SB2-1.01.5RE	8270	Napthalene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-SB2-1.01.5RE	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-SB2-1.01.5RE	8270	Benzo(b)fluoranthene	J	Low internal standard area counts.
W18STMGP-SB2-1.01.5RE	8270	Benzo(k)fluoranthene	R	Low internal standard area counts.
W18STMGP-SB2-1.01.5RE	8270	Benzo(a)pyrene	J	Low internal standard area counts.
W18STMGP-SB2-1.01.5RE	8270	Dibenz(a,h)anthracene	R	Low internal standard area counts.
W18STMGP-SB2-1.01.5RE	8270	Benzo(g,h,i)perylene	R	Low internal standard area counts.
W18STMGP-SB2-2.02.5	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB2-2.02.5	6010	Lead	J	High CRDL recovery.
W18STMGP-SB2-5-7	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB2-5-7	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB2-5-7	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB2-13-15	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB2-13-15	8260	Methyl tert-butyl ether	J	Continuing calibration %D >20%.
W18STMGP-SB2-13-15	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB2-13-15	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB2-19-20.5	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB2-19-20.5	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB2-19-20.5DL	8270	Anthracene	J	Continuing calibration %D >20%.
W18STMGP-SB2-19-20.5DL	8270	Benzo(b)fluoranthene	UJ	Low internal standard area counts.
W18STMGP-SB2-19-20.5DL	8270	Benzo(k)fluoranthene	UJ	Low internal standard area counts.
W18STMGP-SB2-19-20.5DL	8270	Benzo(a)pyrene	UJ	Low internal standard area counts.
W18STMGP-SB2-19-20.5DL	8270	Dibenz(a,h)anthracene	UJ	Low internal standard area counts.
W18STMGP-SB2-19-20.5DL	8270	Benzo(g,h,i)perylene	UJ	Low internal standard area counts.
W18STMGP-SB3-3.03.5	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Analyzed 32 days after collection.
W18STMGP-SB3-3.03.5	8260	All Non-Detected Compounds	R	Analyzed 32 days after collection.
W18STMGP-SB3-3.03.5	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB3-3.03.5	6010	Lead	J	High CRDL recovery.
W18STMGP-SB3-3.03.5	6010	Silver	J	High CRDL recovery.
W18STMGP-SB3-3.03.5	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB3-5-7	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB3-5-7	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB3-5-7	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB3-13-15	8270	Hexachlorocyclopentadiene	R	MS/MSD recoveries < 10%.
W18STMGP-SB3-13-15	8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-SB3-13-15	8270	Butylbenzylphthalate	R	MS/MSD recoveries < 10%.
W18STMGP-SB3-13-15	8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB3-13-15	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB3-13-15	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB3-17-19	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB3-17-19	8260	Methyl tert-butyl ether	J	Continuing calibration %D >20%.
W18STMGP-SB3-17-19	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB4-5.05.5	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank.
W18STMGP-SB4-5.05.5	8260	Methylene chloride		Detected in method blank.
W18STMGP-SB4-5.05.5	8270	Diethylphthalate	UJ	Low LCS recovery.
W18STMGP-SB4-5.05.5	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-5.05.5	9012	Cyanide-Amenable	J	Analyzed 1 day past holding time expiration.
W18STMGP-SB4-5.05.5	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB4-5.05.5	6010	Selenium	UJ	Low CRDL recovery.
W18STMGP-SB4-9-13	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank.
W18STMGP-SB4-9-13	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB4-9-13	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB4-17-19	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank.
W18STMGP-SB4-17-19	6010	Chromium	J	Low LCS recovery.
W18STMGP-SB4-17-19	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB4-1921	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $%D > 90\%$ and RRF < 0.050 .

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB4-1921	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%.
W18STMGP-SB4-1921	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921	8270	Benzo(a)pyrene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921	8270	Indeno(1,2,3-cd)pyrene	J	Continuing calibration %D > 20%.
W18STMGP-SB4-1921	8270	Dibenz(a,h)anthracene	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%.
W18STMGP-SB4-1921	8270	Benzo(g,h,i)perylene	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%.
W18STMGP-SB4-1921	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB4-1921	6010	Lead	J	High CRDL recovery.
W18STMGP-SB4-1921	6010	Silver	J	High CRDL recovery.
W18STMGP-SB4-1921DL	8270	Anthracene	J	Continuing calibration %D > 20%.
W18STMGP-SB4-1921DL	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921DL	8270	Benzo(k)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921DL	8270	Benzo(a)pyrene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921DL	8270	Benzo(g,h,i)perylene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-1921DL2	8270	Anthracene	J	Continuing calibration %D > 20%.
W18STMGP-SB4-1921DL2	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-SB4-79	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank. Detected in trip blank.
W18STMGP-SB4-79	8260	Methylene chloride	J	Continuing calibration %D > 20%. Detected in method blank. Detected in equipment rinsate blank.
W18STMGP-SB4-79	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $\%D > 90\%$ and RRF < 0.050 .
W18STMGP-SB4-79	6010	Chromium	J	High CRDL recovery.

Table 2. Qualified Analytical Data (continued)

Field	Analytical			
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB4-79	6010	Lead	J	High CRDL recovery.
W18STMGP-SB4-79	6010	Silver	J	High CRDL recovery.
W18STMGP-SB5A-1719	8270	2,2-oxybis(1-Chloropropane	R	Continuing calibration %D > 90%.
W18STMGP-SB5A-1719	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB5A-1719	6010	Lead	J	High CRDL recovery.
W18STMGP-SB5A-1920	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB5A-1920	6010	Lead	J	High CRDL recovery.
W18STMGP-SB5A-1920	6010	Silver	J	High CRDL recovery.
W18STMGP-SB5A-2628	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank. Detected in trip blank.
W18STMGP-SB5A-2628	8270	Diethylphthalate	UJ	Low LCS recovery.
W18STMGP-SB5A-2628	9012	Cyanide-Amenable	UJ	Analyzed 1 day past holding time expiration.
W18STMGP-SB5A-2628	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB5A-2628	6010	Selenium	UJ	Low CRDL recovery.
W18STMGP-SB5B-1011	6010	Antimony	J	Low MS/MSD recovery. Low PDS recovery.
W18STMGP-SB5B-1011	6010	Chromium	J	High CRDL recovery. Low MS/MSD recovery.
W18STMGP-SB5B-1011	6010	Lead	J	High CRDL recovery.
W18STMGP-SB5B-1011	7471	Mercury	J	High laboratory duplicate RPD.
W18STMGP-SB5B-1011	6010	Zinc	J	High PDS recovery
W18STMGP-SB5B-1112	8270	2,2-oxybis(1-Chloropropane	R	Continuing calibration %D > 90%.
W18STMGP-SB5B-1112	8270	Fluorene	J	Initial calibration %RSD > 15%.
W18STMGP-SB5B-1112	8270	Phenanthrene	J	Continuing calibration $%D > 20\%$.
W18STMGP-SB5B-1112	6010	Chromium	J	High CRDL recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB5B-1112	6010	Lead	J	High CRDL recovery.
W18STMGP-SB5B-1112	6010	Silver	J	High CRDL recovery.
W18STMGP-SB5B-1112DL	8270	Napthalene	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-SB5B-1112DL	8270	Benzo(b)fluoranthene	UJ	Low internal standard area counts.
W18STMGP-SB5B-1112DL	8270	Benzo(k)fluoranthene	UJ	Low internal standard area counts.
W18STMGP-SB5B-1112DL	8270	Benzo(a)pyrene	UJ	Low internal standard area counts.
W18STMGP-SB5B-1112DL	8270	Dibenz(a,h)anthracene	UJ	Low internal standard area counts.
W18STMGP-SB5B-1112DL	8270	Benzo(g,h,i)perylene	UJ	Low internal standard area counts.
W18STMGP-SB5B-2122	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB5B-2122	6010	Lead	J	High CRDL recovery.
W18STMGP-SB5B-2122	6010	Silver	J	High CRDL recovery.
W18STMGP-SB6-1012	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB6-1012	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $%D > 90\%$ and RRF < 0.050 .
W18STMGP-SB6-1012	8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-SB6-1012	9012	Cyanide	J	Low MS recovery. High laboratory duplicate RPD.
W18STMGP-SB6-1012	9012	Amenable Cyanide	J	High laboratory duplicate RPD.
W18STMGP-SB6-1012	6010	Antimony	J	Low MS/MSD recoveries. Low PDS recovery.
W18STMGP-SB6-1012	6010	Chromium	J	High CRDL recovery. Low MS/MSD recoveries.
W18STMGP-SB6-1012	7471	Mercury	J	Low CRDL recovery.
W18STMGP-SB6-1315	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $\%D > 90\%$ and RRF < 0.050 .

Table 2. Qualified Analytical Data (continued)

Field	Analytical			
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB6-1315	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB6-1315	7471	Mercury	J	Low CRDL recovery.
W18STMGP-SB6-1315DL	8260	All Non-Detected Compounds	UJ	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	Methylcyclohexane	J	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	Benzene	J	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	Toluene	J	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	Ethylbenzene	J	Analyzed 17 days after collection. Initial calibration %RSD > 15%.
W18STMGP-SB6-1315DL	8260	m/p-Xylenes	J	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	o-Xylene	J	Analyzed 17 days after collection.
W18STMGP-SB6-1315DL	8260	Isopropylbenzene	J	Analyzed 17 days after collection.
W18STMGP-SB6-1921	8260	Acetone	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB6-1921	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $%D > 90\%$ and RRF < 0.050 .
W18STMGP-SB6-1921	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB6-1921	7471	Mercury	J	Low CRDL recovery.
W18STMGP-SB6-2426	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB6-2426	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $\%D > 90\%$ and RRF < 0.050 .
W18STMGP-SB6-2426	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB6-2426	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-SB6-28.530.5	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank.
W18STMGP-SB6-28.530.5	8270	4-Nitrophenol	UJ	Low LCS recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB6-28.530.5	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB6-28.530.5	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-SB08-11.011.5	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB08-11.011.5	8260	Methylcyclohexane	J	Initial calibration %RSD > 15%.
W18STMGP-SB08-11.011.5	8260	Methylene chloride	U	Detected in method blank.
W18STMGP-SB08-11.011.5	8270	Pyrene	J	Low internal standard area counts. Initial calibration %RSD > 15%.
W18STMGP-SB08-11.011.5	8270	bis(2-Ethylhexyl)phthalate	J	Low internal standard area counts.
W18STMGP-SB08-11.011.5	9012	Cyanide	J	Bracketing CCV recoveries < 85%.
W18STMGP-SB08-11.011.5	9012	Cyanide-Amenable	UJ	Bracketing CCV recoveries < 85%.
W18STMGP-SB08-11.011.5DL	8270	bis(2-Ethylhexyl)phthalate	J	Low internal standard area counts. Continuing calibration $\%D > 20\%$.
W18STMGP-SB0814.5-15.0	8260	Acetone	J	Initial calibration %RSD > 15%.
W18STMGP-SB0814.5-15.0	8260	Methylene chloride	U	Detected in method blank.
W18STMGP-SB0814.5-15.0	8270	bis(2-Ethylhexyl)phthalate	J	Low internal standard area counts.
W18STMGP-SB0814.5-15.0	7471	Mercury	J	High CRDL recovery.
W18STMGP-SB0814.5-15.0	9012	Cyanide	UJ	Bracketing CCV recoveries < 85%.
W18STMGP-SB0814.5-15.0	9012	Cyanide-Amenable	UJ	Bracketing CCV recoveries < 85%.
W18STMGP-SB29-1113	8260	All Non-Detected Compounds	UJ	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Methylene chloride	J	Low surrogate recovery. Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB29-1113	8260	Chloroform	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Benzene	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Trichloroethene	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Toluene	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Tetrachloroethene	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	m/p-Xylenes	J	Low surrogate recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB29-1113	8260	o-Xylene	J	Low surrogate recovery.
W18STMGP-SB29-1113	8260	Isopropylbenzene	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,1,2,2-Tetrachloroethane	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,3-Dichlorobenzene	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,4-Dichlorobenzene	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,2-Dichlorobenzene	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,2-Dibromo-3-chloropropane	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8260	1,2,4-Trichlorobenzene	UJ	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113	8270	Bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.
W18STMGP-SB29-1113RE	8260	All Non-Detected Compounds	UJ	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Methylene chloride	J	Low surrogate recovery. Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB29-1113RE	8260	cis-1,2-Dichloroethene	J	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Chloroform	J	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Benzene	J	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Trichloroethene	J	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Toluene	J	Low surrogate recovery.
W18STMGP-SB29-1113RE	8260	Tetrachloroethene	J	Low surrogate recovery. Low internal standard area counts. Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB29-1113RE	8260	m/p-Xylenes	J	Low surrogate recovery. Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	Chlorobenzene	UJ	Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	Ethylbenzene	UJ	Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	o-Xylene	UJ	Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	Styrene	UJ	Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	Bromoform	UJ	Low internal standard area counts.
W18STMGP-SB29-1113RE	8260	Isopropylbenzene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,1,2,2-Tetrachloroethane	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,3-Dichlorobenzene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,4-Dichlorobenzene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,2-Dichlorobenzene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,2-Dibromo-3-chloropropane	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-1113RE	8260	1,2,4-Trichlorobenzene	R	Internal standard area count < 25% of 12-hour standard.
W18STMGP-SB29-3436	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB29-3436	8270	bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.
W18STMGP-SB29-3839	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB29-3839	8270	bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-SB29-4850	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB29-4850	8270	bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.
W18STMGP-SB29-4850	6010	Copper	R	Serial dilution %D > 100%.
W18STMGP-SB29-4850	6010	Lead	J	Serial dilution %D > 10%.
W18STMGP-SB29-4850	6010	Nickel	R	Serial dilution %D > 100%.
W18STMGP-SB29-4850	6010	Zinc	R	Serial dilution %D > 100%.
W18STMGP-SB30-2830	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-SB30-2830	6010	Selenium	J	High CRDL recovery.
W18STMGP-SB30-8486	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-SB30-8486	6010	Selenium	J	High CRDL recovery.
W18STMGP-SB66-2426	8260	Acetone	J	Detected in method blank.
W18STMGP-SB66-2426	8270	4,6-Dinitro-2-methylphenol	R	Continuing calibration $%D > 90\%$ and RRF < 0.050 .
W18STMGP-SB66-2426	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB66-2426	7471	Mercury	UJ	Low CRDL recovery.
W18STMGP-SB66-8486	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D >20%.
W18STMGP-SB66-8486	6010	Selenium	J	High CRDL recovery.
W18STMGP-SB71-4850	8260	Methylene chloride	J	Initial calibration %RSD > 15%. Detected in method blank.
W18STMGP-SB71-4850	8270	bis(2-Ethylhexyl)phthalate	J	Continuing calibration %D > 20%.
W18STMGP-SB85A-1920	6010	Chromium	J	High CRDL recovery.
W18STMGP-SB85A-1920	6010	Lead	J	High CRDL recovery.
W18STMGP-SB85A-1920	6010	Silver	J	High CRDL recovery.
W18STMGP-TP1B-1.01.5	8260	Chlorobenzene	UJ	Low MS/MSD recoveries.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-TP1B-1.01.5	8260	Acetone	J	Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank. Detected in trip blank.
W18STMGP-TP1B-1.01.5	8260	Methylene chloride	J	Detected in method blank. Detected in equipment rinsate blank.
W18STMGP-TP1B-1.01.5	8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-TP1B-1.01.5	8270	2,4,5-Trichlorophenol	UJ	Low MS/MSD recoveries.
W18STMGP-TP1B-1.01.5	8270	Acenaphthene	UJ	Low MS/MSD recoveries.
W18STMGP-TP1B-1.01.5	8270	Diethylphthalate	UJ	Low LCS recovery.
W18STMGP-TP1B-1.01.5	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-TP1B-1.01.5	8270	Benzo(a)pyrene	J	Initial calibration %RSD > 15%.
W18STMGP-TP1B-1.01.5	8270	Benzo(g,h,i)perylene	J	Initial calibration %RSD > 15%.
W18STMGP-TP1B-1.01.5	8270	Cyanide	J	Laboratory duplicate RPD > 20%.
W18STMGP-TP1B-1.01.5	7471	Mercury	J	High CRDL recovery. High laboratory duplicate RPD.
W18STMGP-TP1B-1.01.5	6010	Selenium	UJ	Low CRDL recovery.
W18STMGP-TP21B-1.01.5	8260	Acetone	J	Low internal standard area counts. Initial calibration %RSD > 15%. Continuing calibration %D > 20%. Detected in method blank. Detected in trip blank.
W18STMGP-TP21B-1.01.5	8260	2-Butanone	J	Continuing calibration %D > 20%.
W18STMGP-TP21B-1.01.5	8260	Methylene chloride	J	Low internal standard area counts. Detected in equipment rinsate blank.
W18STMGP-TP21B-1.01.5	8260	2-Butanone	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	Methylcyclohexane	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	Toluene	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	Ethylbenzene	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	m/p-Xylenes	J	Low internal standard area counts.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-TP21B-1.01.5	8260	o-Xylene	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	1,4-Dichlorobenzene	J	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8260	All Non-Detected Compounds	UJ	Low internal standard area counts.
W18STMGP-TP21B-1.01.5	8270	Diethylphthalate	UJ	Low LCS recovery.
W18STMGP-TP21B-1.01.5	8270	Benzo(b)fluoranthene	J	Initial calibration %RSD > 15%.
W18STMGP-TP21B-1.01.5	8270	Benzo(a)pyrene	J	Initial calibration %RSD > 15%.
W18STMGP-TP21B-1.01.5	8270	Benzo(g,h,i)perylene	J	Initial calibration %RSD > 15%.
W18STMGP-TP21B-1.01.5	7471	Mercury	J	High CRDL recovery.
W18STMGP-TP21B-1.01.5	6010	Selenium	UJ	Low CRDL recovery.
W18STMGP-TP21B-1.01.5RE	8260	Acetone	J	Internal standard area count < 25% of 12-hour standard. Initial calibration %RSD > 15%. Continuing calibration %D >20%. Detected in method blank. Detected in trip blank.
W18STMGP-TP21B-1.01.5RE	8260	Methylene chloride	J	Internal standard area count < 25% of 12-hour standard. Detected in method blank. Detected in equipment rinsate blank.
W18STMGP-TP21B-1.01.5RE	8260	Toluene	J	Internal standard area count < 25% of 12-hour standard.
W18STMGP-TP21B-1.01.5RE	8260	m/p-Xylenes	J	Internal standard area count < 25% of 12-hour standard.
W18STMGP-TP21B-1.01.5RE	8260	o-Xylene	J	Internal standard area count < 25% of 12-hour standard.
W18STMGP-TP21B-1.01.5RE	8260	All Non-Detected Compounds	R	Internal standard area count < 25% of 12-hour standard.

Table 2. Qualified Analytical Data (continued)

Data Qualifier Definitions:

- Estimated data. The reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.
- R Rejected data.
- U The analyte was not detected.
- UJ The analyte was analyzed for but was not detected above the reported sample quantitation limit. The associated value is an estimate and may be inaccurate or imprecise.

Acronym Definitions:

CRDL	Contract Required Detection Limit	PDS	Post-Digestion Spike
%D	Percent Difference	RPD	Relative Percent Difference
LCS	Laboratory Control Sample	RRF	Relative Response Factor
MS	Matrix Spike	%RSD	Percent Relative Standard Deviation
MSD	Duplicate Matrix Spike	SDG	Sample Delivery Group

Table 3: Soil Samples Analyzed for Volatile Organic Analytes
More Than 10 Days After Collection

			Total
Sample	Collected	Analyzed	Days
W18STMGP-B9-2022DL	9/18/2004	9/30/2004	12
W18STMGP-B10-68	9/18/2004	9/30/2004	12
W18STMGP-B10-810	9/18/2004	9/30/2004	12
W18STMGP-B11-2729	9/18/2004	9/29/2004	11
W18STMGP-B11-2729DL	9/18/2004	9/30/2004	12
W18STMGP-B11-3537	9/18/2004	9/30/2004	12
W18STMGP-B11-3739	9/18/2004	9/29/2004	11
W18STMGP-SB30-2830	10/30/2004	11/12/2004	13
W18STMGP-SB66-8486	10/30/2004	11/12/2004	13
W18STMGP-SB29-1113	11/6/2004	11/18/2004	12
W18STMGP-SB29-1113RE	11/6/2004	11/19/2004	13
W18STMGP-SB29-3436	11/7/2004	11/18/2004	11
W18STMGP-SB29-3839	11/7/2004	11/18/2004	11
W18STMGP-SB29-4850	11/7/2004	11/19/2004	12
W18STMGP-SB71-4850	11/7/2004	11/19/2004	12
W18STMGP-SB3-3.03.5	4/29/2005	5/31/2005	32*
W18STMGP-TP1B-1.01.5	5/4/2005	5/17/2005	13
W18STMGP-TP21B-1.01.5RE	5/4/2005	5/17/2005	13
W18STMGP-SB4-79	5/5/2005	5/19/2005	14
W18STMGP-SB4-1921	5/5/2005	5/17/2005	12
W18STMGP-SB4-1921DL	5/5/2005	5/17/2005	12
SB-5A(31-33)	5/3/2005	5/16/2005	13
W18STMGP-SB3-5-7	5/6/2005	5/17/2005	11
W18STMGP-SB3-13-15	5/6/2005	5/17/2005	11
W18STMGP-SB2-19-20.5	5/6/2005	5/17/2005	11
W18STMGP-SB6-1315	5/12/2005	5/26/2005	14
W18STMGP-SB6-1315DL	5/12/2005	5/29/2005	17*
W18STMGP-SB6-1921	5/12/2005	5/24/2005	12
W18STMGP-SB66-2426	5/12/2005	5/24/2005	12

Note: All positive results are flagged with "J" qualifiers and all non-detected results are flagged with "UJ" qualifiers in the samples listed in this table.

Qualifications exceeding only the USEPA Region 2 holding time (i.e., greater than 10 day but less than 15 days) are not listed in Table 2.

^{*} Exceeds method-specified holding time.

West 18th Street Data Usability Summary Report

1.0 Introduction

TRC Quality Assurance (QA) staff reviewed data November 28, 2005. One sample delivery group (SDG) and a total of sixty-four separate sample analyses were reviewed. Chemtech in Mountainside, New Jersey generated the analytical data. Table 1 presents a listing of these samples, their collection dates and times, analytical methods used to generate data, and associated laboratory identifiers.

2.0 Review Criteria

The data review criteria used for this assessment are the values given in the following United States Environmental Protection Agency (USEPA), Region 2 documents:

- Standard Operating Procedure (SOP) Number HW-24, Revision 1, June 1999, Validating Volatile Organic Compounds by SW-846 Method 8260B
- SOP Number HW-22, Revision 2, June 2001, Validating Semivolatile Organic Compounds by SW-846 Method 8270
- SOP Number HW-2, Revision 11, January 1992, Evaluation of Metals Data for the CLP Program

Items reviewed during the assessment process for volatile organic and semivolatile organic data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Recoveries and Retention Times
- Laboratory Control Sample (LCS) Results
- Sample Quantitation and Reported Quantitation Limits
- Target Compound Identification

Items reviewed during the assessment process for metals data and cyanide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Detection Limit Standards
- Blanks
- Interference Check Samples

- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Duplicate Results
- Serial Dilutions

Qualified sample data are listed Table 2.

3.0 Data Review/Validation Results

3.1 Data Completeness

All requirements for full raw data reporting are met for the reported data packages. That is, the data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables, as requested on chain-of-custody forms.

3.2 Preservation and Holding Times

3.2.1 Volatile Organic Analyses

All criteria are met.

3.2.2 Semivolatile Organic Analyses

All criteria are met.

3.2.3 Cyanide Analyses

All criteria are met.

3.2.4 Metals Analyses

All criteria are met.

3.3 GC/MS Tunes

All USEPA Region II criteria are met for volatile and semivolatile organic analyses.

3.4 Initial and Continuing Calibrations

3.4.1 Volatile Organic Analyses

Percent relative standard deviation (%RSD) values for several compounds are greater than 15% in the initial calibration analyzed on October 16, 2005 from 14:44 to 17:11. Detected concentrations of methyl tert-butyl ether in sample MW-12A, MW-22A, and MW-5B as well as acetone in samples MW-34A and MW-5A are flagged with "J" qualifiers.

The percent difference (%D) value for chloroethane in the continuing calibration analyzed on October 16, 2005 at 13:11 is greater than twenty percent. This compound was not detected in any associated field samples and data are not qualified based on this finding.

3.4.2 Semivolatile Organic Analyses

%RSD values for several compounds are greater than 15% in the initial calibration analyzed on October 20, 2005 from 21:55 to 23:36. Detected concentrations of fluoranthene and pyrene in sample MW-24A as well as fluoranthene in sample MW24ADL are flagged with "J" qualifiers.

%D values for several analytes in the continuing calibrations analyzed on October 21, 2005 at 01:15; October 21, 2005 at 14:00; and October 22, 2005 at 01:56 are greater than twenty percent. These analytes are not detected in associated samples and data are not qualified based on these findings.

The non-detected results for 2,4-dinitrophenol in samples MW-24ADL and MW-5ADL are flagged with "R" qualifiers since the %D in the associated continuing calibration analyzed on October 22, 2005 at 22:15 is greater than 90%.

3.4.3 Cyanide Analyses

All criteria are met.

3.4.4 Metals Analyses

All criteria are met.

3.5.1 Blanks

3.5.1 Volatile Organic Analyses

All criteria are met.

3.5.2 Semivolatile Organic Analyses

Di-n-butylphthalate was detected (11 µg/kg) in the method blank associated with Method 8270C analyses. The reported concentrations of di-n-butylphthalate in samples MW-12A, MW-22A, MW-12B, MW-7A, MW-34A, MW-31A, MW-40A, MW-29A, MW-29ARE, MW-24A, MW-24ADL, and MW-5A may include significant measurement contributions from laboratory sources of contamination and are flagged with "J" qualifiers.

3.5.3 Cyanide Analyses

All criteria are met.

3.5.4 Metals Analyses

Copper, nickel, selenium, and thallium were detected in the preparation blank. Reported concentrations of copper in associated samples MW-12A, MW-7A, and MW-5A; copper, nickel, and thallium in sample MW-22A; copper and nickel in samples MW-12B, MW-34A, and MW-31A; copper, nickel, and selenium in sample MW-40A; and thallium in sample MW-29A likely

include significant measurement contributions from laboratory sources of contamination and are flagged with "J" qualifiers.

3.6 Surrogate Recoveries

3.6.1 Volatile Organic Analyses

All criteria are met.

3.6.2 Semivolatile Organic Analyses

Recovery of one acid extractable surrogate is below laboratory-defined control limits in sample MW-12B. Per USEPA Region 2 guidance, data are not qualified since all remaining surrogate recoveries are within acceptance criteria.

Recoveries of two acid extractable surrogate compounds are less than laboratory-specified limits in sample MW-29A. Additionally, one of these recoveries is less than 10%. Per USEPA Region 2 requirements, reported results for phenol, 2-chlorophenol, 2-methylphenol, 3+4-methylphenols, 2-nitrophenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol are flagged with "R" qualifiers in this sample.

Recoveries of two acid extractable surrogate compounds are less than 10% in sample MW-29ARE. Again, reported results for phenol, 2-chlorophenol, 2-methylphenol, 3+4-methylphenols, 2-nitrophenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol are flagged with "R" qualifiers in sample MW-29ARE.

3.7 Matrix Spike/Matrix Spike Duplicates

Data are not qualified based on matrix spike (MS) and duplicate matrix spike (MSD) alone. MS/MSD recoveries were compared with associated LCS data. When LCS recoveries are compliant and MS/MSD recoveries fall outside applicable limits, matrix interferences are confirmed and data are qualified. Analyte specific trends were not evident from MS/MSD recoveries; therefore, data are qualified for the spiked sample only

3.7.1 Volatile Organic Analyses

Sample MW-40A was analyzed as an MS/MSD pair. All criteria are met.

3.7.2 Semivolatile Organic Analyses

Sample MW-40A was analyzed as an MS/MSD pair. Most recoveries fall within laboratory-derived limits; however, recoveries of caprolactam and 4-nitrophenol are less than acceptance criteria. Reported non-detected results for these compounds are flagged with "UJ"

qualifiers in sample MW-40A. As noted in Section 3.9.2 of this evaluation, the recovery of caprolactam is also low in the associated laboratory control sample.

3.7.3 Cyanide Analyses

Sample MW-40A was analyzed as an MS/MSD pair. All criteria are met.

3.7.4 Metals Analyses

Sample MW-40A was analyzed as an MS/MSD pair. All criteria are met.

3.8 Internal Standard Recoveries and Retention Times

3.8.1 Volatile Organic Analyses

All criteria are met.

3.8.2 Semivolatile Organic Analyses

All criteria are met.

3.9 Laboratory Control Samples

3.9.1 Volatile Organic Analyses

All criteria are met.

3.9.2 Semivolatile Organic Analyses

The recovery of caprolactam in the LCS is less than laboratory-specified limits. Reported non-detected results for caprolactam in samples MW-12A, MW-22A, MW-12B, MW-7A, MW-34A, MW-31A, MW-40A, MW-29A, MW-29ARE, MW-24A, MW-24ADL, MW-5A, MW-5ADL, MW-5B, and FIELDBLANK are flagged with "UJ" qualifiers.

3.9.3 Cyanide Analyses

All criteria are met.

3.9.4 Metals Analyses

All criteria are met.

3.10 Sample Quantitation and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted.

Select target analytes results were reported below the lowest calibration standard level and quantitation limit. These results were qualified as estimated (J) by the laboratory.

Some samples were analyzed at dilutions. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

3.10.1 Metals Analyses

Recoveries of mercury and lead are less than USEPA Region 2 limits in the reported detection limit standard. Reported non-detected results for these metals are flagged with "UJ" qualifiers and detected concentrations are flagged with "J" qualifiers in associated field samples MW-12A, MW-22A, MW-12B, MW-7A, MW-34A, MW-31A, MW-40A, MW-29A, MW-24A, MW-5A, MW-5B, and FIELDBLANK .

3.11 Target Compound Identification

3.11.1 Volatile Organic Analyses

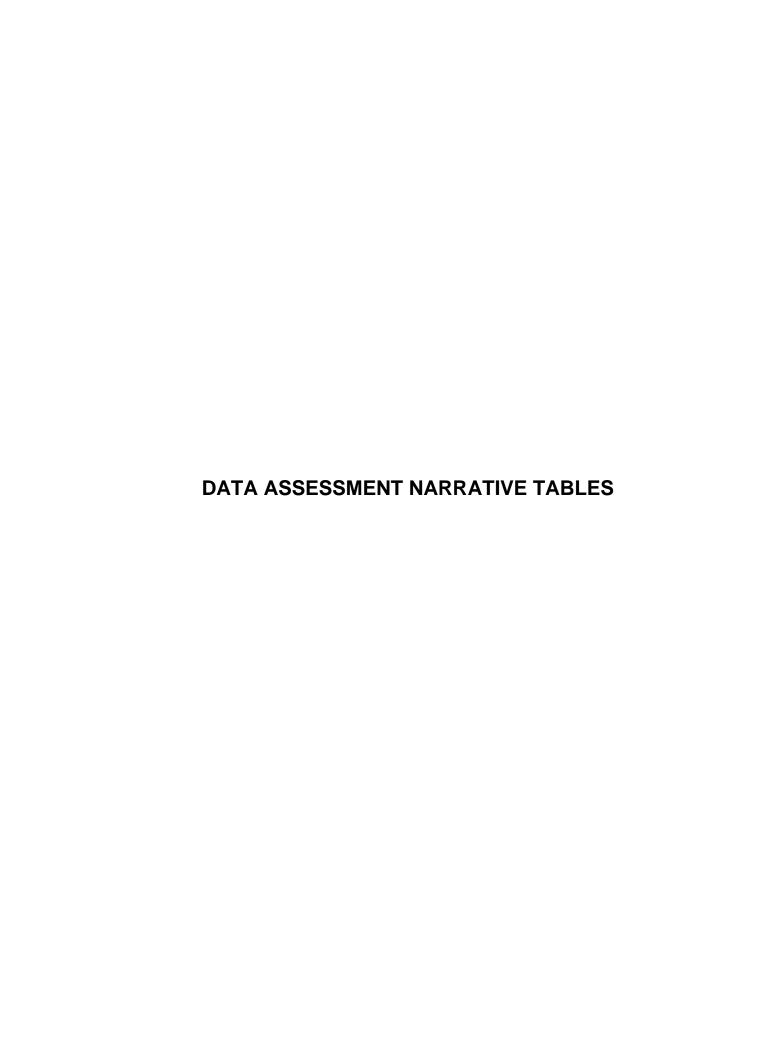
All criteria are met.

3.11.2 Semivolatile Organic Analyses

All criteria are met.

3.11.3 Cyanide Analyses

All criteria are met.


3.11.4 Metals Analyses

The reported percent difference (%D) value for copper and zinc are greater than USEPA Region 2 limits in the serial dilution performed using sample MW-40A. Reported positive concentrations of copper and zinc in associated samples MW-12A, MW-22A, MW-12B, MW-7A, MW-34A, MW-31A, MW-40A, and MW-5A are flagged with "J" qualifiers.

3.12 Other Issues

3.12.1 Metals Analyses

Sample MW-40A was analyzed as a laboratory duplicate. The RPD value for zinc is greater than 10. Therefore, the reported concentrations of zinc are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers in samples MW-12A, MW-22A, MW-12B, MW-7A, MW-34A, MW-31A, MW-40A, MW-29A, MW-24A, MW-5A, MW-5B, and FIELDBLANK.

Table 1: Samples Reviewed and Associated Analytical Methods

		Collected							Lab Sample
Matrix	Sample ID	Date	Time			Methods			ID
Water	MW-12A	10/11/05	10:27	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-01
Water	MW-22A	10/11/05	10:30	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-02
Water	MW-12B	10/11/05	12:00	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-03
Water	MW-7A	10/11/05	12:25	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-04
Water	MW-34A	10/11/05	15:20	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-05
Water	MW-31A	10/11/05	15:30	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-06
Water	TRIPBLANK	10/11/05		SW8260					T5205-07
Water	MW-40A	10/11/05	17:30	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-08
Water	MW-29A	10/12/05	10:02	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-11
Water	MW-29ARE	10/12/05	10:02		SW8270				T5205-11RE
Water	MW-24A	10/12/05	12:05	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-12
Water	MW-24ADL	10/12/05	12:05		SW8270				T5205-12DL
Water	MW-5A	10/12/05	14:32	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-13
Water	MW-5ADL	10/12/05	14:32		SW8270				T5205-13DL
Water	MW-5B	10/12/05	14:55	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-14
Water	FIELDBLANK	10/12/05	15:35	SW8260	SW8270	SW9012	SW6010	SW7470	T5205-15

SW Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, (U.S. Environmental Protection Agency)

8260 Method 8260B - Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GCMS)

8270 Method 8270C - Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

9012 Method 9012A – Total and Amenable Cyanide (Automated Colorimetric, with Off-Line Distillation)

6010 Method 6010B – Inductively Coupled Plasma-Atomic Emission Spectrometry

7470 Method 7470A – Mercury in Liquid Waste (Manual Cold-Vapor Technique)

Table 2: Qualified Analytical Data

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
MW-5A	8260	Acetone	J	Initial calibration %RSD > 15%.
MW-5A	8270	Caprolactam	UJ	Low LCS recovery.
MW-5A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-5A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-5A	6010	Lead	J	Low detection limit standard recovery.
MW-5A	7470	Mercury	J	Low detection limit standard recovery.
MW-5A	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
MW-5ADL	8270	Caprolactam	UJ	Low LCS recovery.
MW-5ADL	8270	2,4-Dinitrophenol	R	Initial calibration %RSD > 90%.
MW-5B	8270	Caprolactam	UJ	Low LCS recovery.
MW-5B	8260	Methyl tert-butyl ether	J	Initial calibration %RSD > 15%.
MW-5B	6010	Lead	UJ	Low detection limit standard recovery.
MW-5B	7470	Mercury	UJ	Low detection limit standard recovery.
MW-5B	6010	Zinc	UJ	High laboratory duplicate RPD.
MW-7A	8270	Caprolactam	UJ	Low LCS recovery.
MW-7A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-7A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-7A	6010	Lead	J	Low detection limit standard recovery.
MW-7A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-7A	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
MW-12A	8260	Methyl tert-butyl ether	J	Initial calibration %RSD > 15%.
MW-12A	8270	Caprolactam	UJ	Low LCS recovery.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
MW-12A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-12A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-12A	6010	Lead	UJ	Low detection limit standard recovery.
MW-12A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-12A	6010	Zinc	UJ	High laboratory duplicate RPD.
MW-12B	8270	Caprolactam	UJ	Low LCS recovery.
MW-12B	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-12B	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-12B	6010	Lead	UJ	Low detection limit standard recovery.
MW-12B	7470	Mercury	J	Low detection limit standard recovery.
MW-12B	6010	Nickel	J	Detected in associated method blank.
MW-12B	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
MW-22A	8260	Methyl tert-butyl ether	J	Initial calibration %RSD > 15%.
MW-22A	8270	Caprolactam	UJ	Low LCS recovery.
MW-22A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-22A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-22A	6010	Lead	UJ	Low detection limit standard recovery.
MW-22A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-22A	6010	Nickel	J	Detected in associated method blank.
MW-22A	6010	Thallium	J	Detected in associated method blank.
MW-22A	6010	Zinc	UJ	High laboratory duplicate RPD.
MW-24A	8270	Caprolactam	UJ	Low LCS recovery.
MW-24A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-24A	8270	Fluoranthene	J	Initial calibration %RSD > 15%.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
MW-24A	8270	Pyrene	J	Initial calibration %RSD > 15%.
MW-24A	6010	Lead	J	Low detection limit standard recovery.
MW-24A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-24A	6010	Zinc	UJ	High laboratory duplicate RPD.
MW-24ADL	8270	Caprolactam	UJ	Low LCS recovery.
MW-24ADL	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-24ADL	8270	Fluoranthene	J	Initial calibration %RSD > 15%.
MW-24ADL	8270	2,4-Dinitrophenol	R	Initial calibration %RSD > 90%.
MW-29A	8270	Phenol	R	Surrogate recovery < 10%.
MW-29A	8270	2-Chlorophenol	R	Surrogate recovery < 10%.
MW-29A	8270	2-Methylphenol	R	Surrogate recovery < 10%.
MW-29A	8270	3+4-Methylphenol	R	Surrogate recovery < 10%.
MW-29A	8270	2-Nitrophenol	R	Surrogate recovery < 10%.
MW-29A	8270	2,4-Dimethylphenol	R	Surrogate recovery < 10%.
MW-29A	8270	2,4-Dichlorophenol	R	Surrogate recovery < 10%.
MW-29A	8270	Caprolactam	UJ	Low LCS recovery.
MW-29A	8270	4-Chloro-3-methylphenol	R	Surrogate recovery < 10%.
MW-29A	8270	2,4,6-Trichlorophenol	R	Surrogate recovery < 10%.
MW-29A	8270	2,4,5-Trichlorophenol	R	Surrogate recovery < 10%.
MW-29A	8270	2,4-Dinitrophenol	R	Surrogate recovery < 10%.
MW-29A	8270	4-Nitrophenol	R	Surrogate recovery < 10%.
MW-29A	8270	4,6-Dinitro-2-methylphenol	R	Surrogate recovery < 10%.
MW-29A	8270	Pentachlorophenol	R	Surrogate recovery < 10%.
MW-29A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-29A	6010	Lead	J	Low detection limit standard recovery.
MW-29A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-29A	6010	Thallium	J	Detected in associated method blank.
MW-29A	6010	Zinc	UJ	High laboratory duplicate RPD.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
MW-29ARE	8270	Phenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2-Chlorophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2-Methylphenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	3+4-Methylphenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2-Nitrophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2,4-Dimethylphenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2,4-Dichlorophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	Caprolactam	UJ	Low LCS recovery.
MW-29ARE	8270	4-Chloro-3-methylphenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2,4,6-Trichlorophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2,4,5-Trichlorophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	2,4-Dinitrophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	4-Nitrophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	4,6-Dinitro-2-methylphenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	Pentachlorophenol	R	Surrogate recovery < 10%.
MW-29ARE	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-31A	8270	Caprolactam	UJ	Low LCS recovery.
MW-31A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-31A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-31A	6010	Lead	J	Low detection limit standard recovery.
MW-31A	7470	Mercury	UJ	Low detection limit standard recovery.
MW-31A	6010	Nickel	J	Detected in associated method blank.
MW-31A	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
MW-34A	8260	Acetone	J	Initial calibration %RSD > 15%.
MW-34A	8270	Caprolactam	UJ	Low LCS recovery.
MW-34A	8270	Di-n-butylphthalate	J	Detected in associated method blank.

Table 2. Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
MW-34A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-34A	6010	Lead	J	Low detection limit standard recovery.
MW-34A	7470	Mercury	J	Low detection limit standard recovery.
MW-34A	6010	Nickel	J	Detected in associated method blank.
MW-34A	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
MW-40A	8270	Caprolactam	UJ	Low MS/MSD recoveries. Low LCS recovery.
MW-40A	8270	4-Nitrophenol	UJ	Low MS/MSD recoveries.
MW-40A	8270	Di-n-butylphthalate	J	Detected in associated method blank.
MW-40A	6010	Copper	J	Detected in associated method blank. High serial dilution %D.
MW-40A	6010	Lead	UJ	Low detection limit standard recovery.
MW-40A	7470	Mercury	J	Low detection limit standard recovery.
MW-40A	6010	Nickel	J	Detected in associated method blank.
MW-40A	6010	Selenium	J	Detected in associated method blank.
MW-40A	6010	Zinc	J	High serial dilution %D. High laboratory duplicate RPD.
FIELDBLANK	8270	Caprolactam	UJ	Low LCS recovery.
FIELDBLANK	6010	Lead	UJ	Low detection limit standard recovery.
FIELDBLANK	7470	Mercury	UJ	Low detection limit standard recovery.
FIELDBLANK	6010	Zinc	UJ	High laboratory duplicate RPD.

Table 2. Qualified Analytical Data (continued)

Data Qualifier Definitions:

- Estimated data. The reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.
- R Rejected data.
- UJ The analyte was analyzed for but was not detected above the reported sample quantitation limit. The associated value is an estimate and may be inaccurate or imprecise.

Acronym Definitions:

CRDL	Contract Required Detection Limit	PDS	Post-Digestion Spike
%D	Percent Difference	RPD	Relative Percent Difference
LCS	Laboratory Control Sample	RRF	Relative Response Factor
MS	Matrix Spike	%RSD	Percent Relative Standard Deviation
MSD	Duplicate Matrix Spike	SDG	Sample Delivery Group

Data Assessment Narrative

1.0 Introduction

TRC Quality Assurance (QA) staff reviewed data on August 18, 19, 20, 25, 26, 27, 30, and 31, 2004 as well as September 1 and 2, 2004. A total of eight sample delivery groups (SDGs) were reviewed that include eighty-one field samples (including field blanks). Chemtech in Mountainside, New Jersey generated the analytical data. Table 1 presents a listing of these samples, the dates and times they were collected, analytical methods used to generate data, and associated laboratory identifiers.

2.0 Review Criteria

The data review criteria used for this assessment are the values given in the following United States Environmental Protection Agency, Region 2 documents:

- Standard Operating Procedure (SOP) Number HW-24, Revision 1, June 1999, Validating Volatile Organic Compounds by SW-846 Method 8260B
- SOP Number HW-22, Revision 2, June 2001, Validating Semivolatile Organic Compounds by SW-846 Method 8270
- SOP Number 23B, Revision 1.0, May 2002, Validating PCB Compounds by SW-846 Method 8082
- SOP Number HW-2, Revision 11, January 1992, Evaluation of Metals Data for the CLP Program

Items reviewed during the assessment process for volatile organic data, semivolatile organic data, and polychlorinated biphenyl (PCB) data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Recoveries and Retention Times
- Laboratory Control Sample (LCS) Results
- Sample Quantitation and Reported Quantitation Limits
- Target Compound Identification

Items reviewed during the assessment process for metals data and cyanide data include (as applicable):

- Data Completeness
- Holding Times and Sample Preservation

- Initial and Continuing Calibrations
- Detection Limit Standards
- Blanks
- Interference Check Samples
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Duplicate Results
- Serial Dilutions

Qualified sample data are listed Table 2.

3.0 Data Review/Validation Results

3.1 Data Completeness

3.1.1 Data Completeness - Volatile Organic Analytes

All requirements for full raw data reporting are met for the reported data packages. That is, the data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables, as requested on chain-of-custody forms.

It is noted that TCLP extraction dates are not reported; however, the laboratory-generated case narratives state "Holding Times met requirements."

3.1.2 Data Completeness – Semivolatile Organic Analytes

The data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables.

It is noted that TCLP extraction dates are not reported; however, the laboratory-generated case narratives state "Holding Times met requirements."

3.1.3 Data Completeness – Polychlorinated Biphenyls, Herbicides, and Pesticides

The data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables.

3.1.4 Data Completeness – Metals

The data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables.

3.1.5 Data Completeness – Cyanide and Other General Chemistry Analyses

The data packages were complete as defined under the requirements for the NYSDEC ASP Category B deliverables.

23.2 Preservation and Holding Times

3.2.1 Preservation and Holding Time – Volatile Organic Analytes

For a majority of volatile analyses, all holding time and sample preservation criteria are met.

Volatile GC/MS analyses of several soil samples occurred more than 10 days after sample collection. These affected samples are presented in Table 3. All analyses occurred within the method-defined holding time of 14 days but outside the USEPA Region II holding time (defined in SOP No. HW-24) of 10 days. Therefore, all positive results in the samples listed in Table 3 are flagged with a "J" qualifier and all non-detected results are flagged with a "UJ" qualifier, as noted in Table 2.

3.2.2 Preservation and Holding Time – Semivolatile Organic Analytes

All criteria are met.

3.2.3 Preservation and Holding Time – Polychlorinated Biphenyls, Herbicides, and Pesticides

Samples W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, and W18ST-COMP-4-28-04 were collected on April 28, 2004. These samples were extracted for PCB analyses on May 13, 2004. The time elapsed between collection and extraction is 15 days. EPA Region II requirements are that soil samples must be extracted within 14 days of collection. Reported concentrations of PCBs in the listed samples are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers.

Samples W18STMGP-B19-57, W18STMGP-B19-1719, W18STMGP-B20-911, W18STMGP-B20-1315, W18STMGP-B20-1920, W18STMGP-B20-4143, W18STMGP-B20-4951 were collected on May 2, 2004. These samples were extracted for herbicide analyses on May 25, 2004. The time elapsed between collection and extraction is 23 days. SW846 Chapter 4 requirements are that soil samples must be extracted within 14 days of collection. Because herbicides were not detected in any field sample, all non-detected results are flagged with "UJ" qualifiers.

Samples W18STMGP-B19-57, W18STMGP-B19-1719, W18STMGP-B20-911, W18STMGP-B20-1315, W18STMGP-B20-1920, W18STMGP-B20-4143, W18STMGP-B20-4951 were collected on May 2, 2004. These samples were extracted for pesticide analyses on May 25, 2004. The time elapsed between collection and extraction is 23 days. SW846 Chapter 4 requirements are that soil samples must be extracted within 14 days of collection. Because pesticides were not detected in any field sample, all non-detected results are flagged with "UJ" qualifiers.

3.2.4 Preservation and Holding Time – Metals

All criteria are met.

3.2.5 Preservation and Holding Time – Cyanide and Other General Chemistry Analyses

All criteria are met.

3.2 GC/MS Tunes

3.2.1 GC/MS Tunes – Volatile Organic Analytes

All USEPA Region II criteria are met.

3.2.2 GC/MS Tunes – Semivolatile Organic Analytes

All USEPA Region II criteria are met.

3.3 Initial and Continuing Calibrations

3.3.1 Initial and Continuing Calibrations – Volatile Organic Analytes

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 6, 2004 from 16:31 to 18:26. Reported concentrations of acetone and toluene in samples W18ST-B25-3334 and W18ST-B25-3334DL are flagged with "J" qualifiers.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 6, 2004 from 16:31 to 18:26. Reported concentrations of toluene in samples W18ST-B23-15 and W18ST-B50-810 are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 11, 2004 at 14:49. Reported concentrations of acetone in samples W18ST-B23-15 and W18ST-B50-810 are flagged with "J" qualifiers.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 3, 2004 from 18:54 to 20:51. Reported concentrations of toluene in samples W18ST-B51-14DL, W18ST-B51-22DL, W18ST-B49-1012DL, W18ST-COMP-4-28-04DL, W18ST-B49-1415DL, and W18ST-B49-1718DL are flagged with "J" qualifiers.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 6, 2004 from 14:37 to 16:33. Reported concentrations of carbon disulfide, cyclohexane, methylcyclohexane, and m-/p-xylenes in samples W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2627, W18ST-B22-2223, W18ST-B23-17, W18ST-B23-24, W18ST-B51-22, W18ST-B51-6, W18ST-B51-14, W18ST-B22-2223DL, W18ST-B23-9, W18ST-B23-17DL, W18ST-B23-24DL, W18ST-B51-6DL, W18ST-B51-33, W18ST-B50-2123, W18ST-B50-2627,

W18ST-B49-1012, W18ST-B49-1415, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04 are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 8, 2004 at 14:49. reported concentrations of methylene chloride, carbon disulfide, and methylcyclohexane in samples W18ST-B23-9, W18ST-B23-17DL, W18ST-B23-24DL, W18ST-B50-2627, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04 are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 15, 2004 at 15:06. The %D value for isopropylbenzene is 215.2 %. Reported concentration of carbon disulfide in sample W18STMGP-B36-57 is flagged with a "J" qualifier. Reported results for isopropylbenzene in samples W18STMGP-B36-57, W18STMGP-B36-1719, W18STMGP-B36-3335DL, W18STMGP-B36-3335DL, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, and W18STMGP-B34-5 are flagged with "R" qualifiers.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 18, 2004 from 16:37 to 18:02. The reported concentration of acetone in sample W18STMGP-B34-3 is flagged with a "J" qualifier.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on May 25, 2004 from 14:33 to 16:13. Reported concentrations of acetone in samples W18STMGP-B38-1315, W18STMGP-B33-3537, W18STMGP-B33-3537DL, and W18STMGP-B33-3941 are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 11, 2004 at 12:00. The reported concentration of carbon disulfide in sample W18ST-B50-810 is flagged with a "J" qualifier.

3.3.2 Initial and Continuing Calibrations – Semivolatile Organic Analytes

The %D value for several analytes in the continuing calibration analyzed on May 4, 2004 at 23:53 are greater than 20%. The reported concentrations of benzo(g,h,i)perylene and dibenz(a,h)anthracene in samples W18ST-B24-2527DL, W18ST-36-34DL, W18ST-COMP-4-27-04DL, and W18ST-B25-2022DL are flagged with "J" qualifiers.

The % RSD values for several analytes are greater than 15% in the initial calibration analyzed on April 30, 2004 from 11:42 to 15:10. Reported concentrations of naphthalene, 2-methylnaphthalene, 1,1-biphenyl, acenaphthylene, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, di-n-butylphthalate, benzo(a)anthracene, and bis(2-ethylhexyl)phthalate in samples W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-3334, W18ST-B33-45, W18ST-B32-45, W18ST-B38-45, W18ST-B22-57,

W18ST-B25-3334DL, W18ST-B33-45DL, and W18ST-B22-57DL are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 4, 2004 at 16:27. The reported concentrations of benzo(g,h,i)perylene in samples W18ST-B33-45DL and W18ST-B22-57DL are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 3, 2004 at 23:40. The reported concentrations of 3-/4-methylphenols, naphthalene, 2-methylnaphthalene, fluorene, carbazole, and benzo(k)fluoranthene in samples W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2223, W18ST-B23-9, W18ST-B23-15, W18ST-B23-17, W18ST-B23-24, W18ST-B51-14, W18ST-B51-22, W18ST-B51-33, W18ST-B50-2123, W18ST-B49-1012, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04 are flagged with "J" qualifiers.

Several %D values are greater than 20% in the continuing calibration analyzed on May 4, 2004 at 18:25. The reported concentrations of fluorene and benzo(k)fluoranthene in samples W18ST-B22-1517DL, W18ST-B23-9DL, W18ST-B23-15DL, W18ST-B51-14DL, W18ST-B51-22DL, W18ST-B51-22DL2, W18ST-B51-33DL, W18ST-B50-2123DL, W18ST-B49-1012DL, W18ST-B49-1012DL2, W18ST-B49-1415, W18ST-B49-1718DL2, W18ST-B49-2324DL, W18ST-COMP-4-28-04DL, W18ST-COMP-4-28-04DL2, W18ST-B51-6, and W18ST-B51-14DL2 are flagged with "J" qualifiers.

The average relative response factor (RRF) for pentachlorophenol is less than 0.050 in the initial calibration analyzed on June 10, 2004 from 16:46 to 19:28. The response factor (RF) for pentachlorophenol in the continuing calibration analyzed on June 11, 2004 at 15:23 is also less than 0.050. Therefore, reported concentrations of TCLP pentachlorophenol in samples W18STMGP-42804A, W18STMGP-42804B, W18STMGP-DECON-52204, and W18STMGP-52204 are flagged with "R" qualifiers.

3.3.3 Initial and Continuing Calibrations – Polychlorinated Biphenyls, Herbicides, and Pesticides

Initial and continuing calibration data are reported for two columns. The criteria to be used to qualify data are:

- Sample data are to be qualified when initial calibration acceptance criteria are not met on both columns
- Sample data are to be qualified when continuing calibration verification limits are not met on both columns

Since criteria are met for all parameters on at least one column for each calibration analysis, PCB and herbicide data were not qualified based on calibration results.

Percent difference values for pesticides 4,4'-DDT and methoxychlor are greater than 20% on both columns in the ending calibration verification analysis. All results in samples reported in SDG S2676 are flagged with "UJ" qualifiers.

3.3.4 Initial and Continuing Calibrations – Metals

All criteria are met.

3.3.5 Initial and Continuing Calibrations – Cyanide and Other General Chemistry Analyses

All criteria are met.

3.4 Detection Limit Standards

3.4.1 Detection Limit Standards – Metals

The percent recovery for mercury in the Contract Required Detection Limit (CRDL) standard analyzed on May 3, 2004 at 09:31 and associated with SDG S2370 is less than 50%. According to EPA Region II requirements, the reported result for mercury in sample W18ST-RB-01 is flagged with an "R" qualifier.

The percent recovery for mercury in the CRDL standard analyzed on May 6, 2004 at 11:28 is greater than acceptance criteria. All positive results for mercury are flagged with "J" qualifiers in samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022, W18ST-B25-3233, W18ST-B25-3334, W18ST-B32-45, W18ST-B38-34, W18ST-B38-45, W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, W18ST-B22-57, W18ST-B24-2527, W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2223, W18ST-B22-2627, W18ST-B23-9, W18ST-B23-15, W18ST-B23-17, W18ST-B23-24, W18ST-B51-6, W18ST-B51-14, W18ST-B51-22, W18ST-B51-33, W18ST-B50-810, W18ST-B50-2123, W18ST-B50-2627, W18ST-B49-1012, W18ST-B49-1415, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04.

The percent recovery for mercury in the CRDL standard analyzed on May 7, 2004 at 11:53 is greater than acceptance criteria. All positive results for mercury are flagged with "J" qualifiers in samples W18ST-B50-23, W18ST-B33-45, and W18ST-B36-34.

Recovery of chromium is greater than EPA Region II limits and recovery of selenium is less than limits in the CRDL standard analyzed on May 10, 2004 at 10:24. All positive results for chromium and selenium are flagged with "J" qualifiers and non-detected results for selenium are flagged with "UJ" qualifiers in samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022, W18ST-B25-3233, W18ST-B25-3334, W18ST-B50-23, W18ST-B33-45, W18ST-B32-45, W18ST-B38-34, W18ST-B36-34, W18ST-B36-34, W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, W18ST-B36-34, W18ST-B36-34, W18ST-COMP-4-24-04, W18ST-COMP-4-27-

B22-57, W18ST-B24-2527, W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2223, W18ST-B22-2627, W18ST-B23-9, W18ST-B23-15, W18ST-B23-17, W18ST-B23-24, W18ST-B51-6, W18ST-B51-14, W18ST-B51-22, W18ST-B51-33, W18ST-B50-810, W18ST-B50-2123, W18ST-B50-2627, W18ST-B49-1012, W18ST-B49-1415, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04.

Recovery of thallium in the CRDL standard analyzed on May 17, 2004 at 10:24 is less than applicable limits. Because thallium was not detected in any associated sample, reported results for thallium in samples W18STMGP-B36-57, W18STMGP-B36-1719, W18STMGP-B36-2527, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, W18STMGP-B34-3, and W18STMGP-B34-5 are flagged with "UJ" qualifiers.

Recovery of mercury in the CRDL standard analyzed on May 20, 2004 at 11:19 is less than applicable limits. Recovery of lead in the CRDL standard analyzed on May 26, 2004 at 19:21 is greater than EPA Region II limits. Since both mercury and lead were detected in all associated samples, reported results are flagged with "J" qualifiers in samples W18STMGP-B38-1315, W18STMGP-B38-1113, W18STMGP-B33-1315, W18STMGP-B33-3941.

Recovery of TCLP mercury in the CRDL standard analyzed on May 20, 2004 at 08:30 is less than EPA Region II limits. The reported non-detected result for TCLP mercury in sample W18STMGP-COMP-5-16-04 is flagged with a "UJ" qualifier.

Recovery of TCLP mercury in the CRDL standard analyzed on May 26, 2004 at 16:27 is greater than EPA Region II limits. Reported concentrations of TCLP mercury in samples W18STMGP-DECON-4-27-04, W18STMGP-DECON-5-8-04, W18STMGP-DECON-5-16-04A, and W18STMGP-DECON-5-16-04B are flagged with "J" qualifiers.

Recovery of TCLP mercury in the CRDL standard analyzed on May 28, 2004 at 09:58 is reported as 300%. The reported concentration of TCLP mercury in samples W18STMGP-DECON-4-26-04 is flagged with an "R" qualifier.

Recovery of TCLP lead in the CRDL standard analyzed on June 14, 2004 at 11:35 is less than EPA Region II limits. Reported concentrations of TCLP lead in samples W18STMGP-42804A, W18STMGP-42804B, W18STMGP-DECON-52204, and W18STMGP-52204 are flagged with "J" qualifier and non-detected results are flagged with "UJ" qualifiers.

3.5 Blanks

3.5.1 Blanks – Volatile Organic Analytes

All criteria were met.

3.5.2 Blanks – Semivolatile Organic Analytes

All criteria were met.

3.5.3 Blanks – Polychlorinated Biphenyls, Herbicides, and Pesticides

All criteria were met.

3.5.4 Blanks – Metals

All criteria were met.

3.5.5 Blanks – Cyanide and Other General Chemistry Analyses

All criteria were met.

3.6 Interference Check Samples

3.6.1 Interference Check Samples – Metals

All criteria were met

3.7 Surrogate Recoveries

3.7.1 Surrogate Recoveries – Volatile Organic Analytes

Recovery of 1,2-dichloroethane-d4 is less than 10% in sample W18ST-B51-22. Therefore, reported concentrations of target analytes are flagged with "J" qualifiers and non-detected analytes are flagged with "R" qualifiers in this analysis.

Recovery of 4-bromofluorobenzene is less than EPA Region II limits in sample W18STMGP-B73-1719RE. Because target analytes were not detected in this sample, all results are flagged with "UJ" qualifiers.

3.7.2 Surrogate Recoveries – Semivolatile Organic Analytes

While some surrogate recoveries fall outside of applicable limits, all USEPA Region II criteria are met and data were not qualified.

3.7.3 Surrogate Recoveries – Polychlorinated Biphenyls, Herbicides, and Pesticides

While some surrogate recoveries fall outside of applicable limits, all USEPA Region II criteria are met and data were not qualified.

3.8 Matrix Spike/Matrix Spike Duplicates

Data were not qualified based on matrix spike (MS) and duplicate matrix spike (MSD) alone. MS/MSD recoveries were compared with associated LCS data. When LCS recoveries are compliant and MS/MSD recoveries fall outside applicable limits, matrix interferences are confirmed and data are qualified. Unless otherwise noted, it is assumed that sample matrices are

sufficiently similar to qualify all field samples within a given SDG when aberrant recoveries are exhibited in MS/MSD analyses performed using a sample from the West 18th Street MGP site.

3.8.1 Matrix Spike/Matrix Spike Duplicates – Volatile Organic Analytes

Recoveries of toluene are greater than laboratory-defined limits in MS analyses of sample W18ST-B24-2527. Detected results for toluene in all soil samples in SDG 2370 are flagged with "J" qualifiers.

Recoveries of 1,1-dichloroethene are lower than laboratory-defined limits in the MS analysis of sample W18ST-B49-1415 and greater than limits in the associated MSD analysis. Because the direction is not confirmed, the aberration may be (at least in part) due to laboratory error. Data were not qualified.

3.8.2 Matrix Spike/Matrix Spike Duplicates – Semivolatile Organic Analytes

Recoveries of fluoranthene and indeno(1,2,3-cd)pyrene are lower than laboratory-defined limits in MS/MSD analyses of sample W18ST-B24-2527. Reported concentrations of the listed analytes are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers in associated samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-2527, W18ST-B24-2527DL, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022DL, W18ST-B25-2022DL, W18ST-B25-3233, W18ST-B25-3233DL, W18ST-B25-3334, W18ST-B25-3334DL, W18ST-B25-3334DL, W18ST-B33-45, W18ST-B33-45, W18ST-B36-34, W18ST-B36-34DL, W18ST-B38-34, W18ST-B38-34DL, W18ST-B38-45, W18ST-B36-34, W18ST-B36-34DL, W18ST-B36

Recoveries of hexachlorocyclopentadiene, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene are less than laboratory-defined limits and recovery of benzo(b)fluoranthene is greater than acceptance criteria in MS/MSD analyses of sample W18STMGP-TP4-56. Reported concentrations of these analytes in samples are flagged with "J" qualifiers (only positive results of benzo(b)fluoranthene are flagged with "J" qualifiers) and non-detected results are flagged with "UJ" qualifiers in associated samples W18STMGP-B36-57, W18STMGP-B36-57DL, W18STMGP-B36-1719, W18STMGP-B36-2527, W18STMGP-B36-2527DL, W18STMGP-B36-2527DL2, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, W18STMGP-TP4-56DL, W18STMGP-B34-3, and W18STMGP-B34-5.

3.8.3 Matrix Spike/Matrix Spike Duplicates – Polychlorinated Biphenyls, Herbicides, and Pesticides

Recoveries of target PCB analytes spiked into sample W18ST-COMP-4-24-04 are greater than laboratory-derived acceptance criteria. The reported concentration of Aroclor 1260 in sample W18ST-COMP-4-24-04 is flagged with a "J" qualifier.

Recoveries of herbicides 2,4-D and 2,4,5-TP fall below laboratory-specified recovery limits in MS/MSD analyses of sample W18STMGP-B20-4951. The reported non-detected results for all samples analyzed for herbicides in SDG S2676 are flagged with "UJ" qualifiers.

Recoveries of pesticides endrin aldehyde and endrin sulfate are less than laboratory-defined recovery limits in MS/MSD analyses of sample W18STMGP-B20-4951. Since these compounds were not detected, reported results for were flagged with "UJ" qualifiers in samples W18STMGP-B19-1719, W18STMGP-B19-57, W18STMGP-B20-911, W18STMGP-B20-1315, W18STMGP-B20-1920, W18STMGP-B20-4143, and W18STMGP-B20-4951.

3.8.4 Matrix Spike/Matrix Spike Duplicates – Metals

Recoveries of zinc are low in the matrix spike performed on sample W18ST-B24-2527. Reported concentrations of zinc in samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022, W18ST-B25-3233, W18ST-B25-3334, W18ST-B50-23, W18ST-B33-45, W18ST-B32-45, W18ST-B38-34, W18ST-B38-34, W18ST-B36-34, W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, W18ST-B22-57, and W18ST-B24-2527 are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers.

The post-digestion spike (PDS) recovery of zinc in sample W18ST-B24-2527 is less than 75%. Reported concentrations of zinc in samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022, W18ST-B25-3233, W18ST-B25-3334, W18ST-B50-23, W18ST-B33-45, W18ST-B32-45, W18ST-B38-34, W18ST-B38-45, W18ST-B36-34, W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, W18ST-B22-57, and W18ST-B24-2527 are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers.

Recoveries of mercury are high in matrix spike analyses performed on sample W18ST-B49-1415. Reported concentrations of mercury in samples W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2223, W18ST-B22-2627, W18ST-B23-9, W18ST-B23-15, W18ST-B23-17, W18ST-B23-24, W18ST-B51-6, W18ST-B51-14, W18ST-B51-22, W18ST-B51-33, W18ST-B50-810, W18ST-B50-2123, W18ST-B50-2627, W18ST-B49-1012, W18ST-B49-1415, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04 are flagged with "J" qualifiers.

Recoveries of antimony, copper, and silver are low in matrix spike analyses performed on sample W18STMGP-TP4-56. Reported concentrations of these analytes in samples WW18STMGP-B36-57, W18STMGP-B36-1719, W18STMGP-B36-2527, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, W18STMGP-B34-3, and W18STMGP-B34-5 are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers.

Recoveries of antimony and copper are low in a PDS analysis performed on sample W18STMGP-TP4-56. Reported concentrations of these analytes in samples WW18STMGP-B36-57, W18STMGP-B36-1719, W18STMGP-B36-2527, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, W18STMGP-B34-3, and W18STMGP-B34-5 are flagged with "J" qualifiers.

Recoveries of TCLP silver are low in the MS analyses performed on sample W18STMGP-COMP-5-16-04. The reported non-detected result for TCLP silver in this sample is flagged with a "UJ" qualifier.

3.8.5 Matrix Spike/Matrix Spike Duplicates – Cyanide and Other General Chemistry Analyses

All criteria were met.

3.9 Internal Standard Recoveries and Retention Times

3.9.1 Internal Standards – Volatile Organic Analytes

Area counts for all internal standards in sample W18ST-B24-2527 are less than 50% the count in the associated 12-hour standard. Reported concentrations of all detected compounds are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers in this sample. It is noted that all internal standard recoveries are within method-defined limits in the ten-fold dilution of this sample.

Area counts for all internal standards in sample W18ST-B25-3334 are less than 50% the count in the associated 12-hour standard. Reported concentrations of all detected compounds are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers in this sample. It is noted that all internal standard recoveries are within method-defined limits in the five-fold dilution of this sample.

Recovery of internal standard 1,4-dichlorobenzene-d₄ in sample W18ST-B33-45 is less than 50% of the recovery in the associated 12-hour standard. All associated compounds in this sample were not detected. Therefore, results for isopropylbenzene, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "UJ" qualifiers.

Recoveries of internal standard compounds 1,4-difluorobenzene, chlorobenzene-d₅, and 1,4-dichlorobenzene-d₄ in sample W18ST-B22-2223 are less than 50% of the recoveries in the associated 12-hour standard. Reported concentrations of benzene, toluene, ethylbenzene, m-/p-xylenes, o-xylene, and isopropylbenzene are flagged with "J" qualifiers. Reported non-detected results for carbon tetrachloride, 1,2,-dichloroethane, trichloroethene, 1,2-dichloropropane, bromodichloromethane, 4-methyl-2-pentanone, trans-1,3-dichloropropene, cis-1,3-dichloropropene, 1,1,2-trichloroethane, 2-hexanone, dibromochloromethane, 1,2-dibromoethane, tetrachloroethene, chlorobenzene, styrene, bromoform, 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "UJ" qualifiers.

Recoveries of all internal standard compounds are less than 50% of that in the associated 12-hour standard in sample W18ST-B22-2223DL. Reported concentrations of acetone, benzene, toluene, ethylbenzene, xylenes, and isopropylbenzene are flagged with "J" qualifiers. All remaining non-detected compounds are flagged with "UJ" qualifiers.

Recovery of internal standard chlorobenzene-d₅ in sample W18ST-B22-2627 is less than 50% of the recovery in the associated 12-hour standard. Recoveries of the remaining three internal standard compounds are less than 25% of those in the associated 12-hour standard. Reported concentrations of acetone, carbon disulfide, 2-butanone, benzene, toluene, ethylbenzene, xylenes, and isopropylbenzene are flagged with "J" qualifiers. Reported non-detected results for tetrachloroethene, chlorobenzene, styrene, and bromoform are flagged with "UJ" qualifiers. All remaining non-detected results are flagged with "R" qualifiers.

Recoveries of all internal standard compounds are less than 25% of that in the associated 12-hour standard in sample W18ST-B23-24. Reported concentrations of benzene, toluene, ethylbenzene, xylenes, styrene, and isopropylbenzene are flagged with "J" qualifiers. All remaining non-detected compounds are flagged with "R" qualifiers.

Recovery of internal standard compound 1,4-dichlorobenzene-d₄ is less than 50% of that in the associated 12-hour standard in sample W18ST-B51-6. The reported concentration of 1,1,2,2-tetrachloroethane is flagged with a "J" qualifier. Non-detected results for the dichlorobenzenes, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "UJ" qualifiers.

Recoveries of internal standard compounds pentafluorobenzene, 1,4-difluorobenzene, and chlorobenzene-d₅ in sample W18ST-23-17 are less than 50% of those in the associated 12-hour standard. Reported concentrations of acetone, methylcyclohexane, benzene, toluene, ethylbenzene, and xylenes are flagged with "J" qualifiers. Reported non-detected for all remaining compounds (except 1,1,2,2-tetrachloroethane, dichlorobenzenes, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene) are flagged with "UJ" qualifiers.

Recoveries of pentafluorobenzene and 1,4-dichlorobenzene-d₄ in sample W18ST-B51-22 are less than 50% of those in the associated 12-hour standard. Reported concentrations of cyclohexane, methylcyclohexane, and isopropylbenzene are flagged with "J" qualifiers. The remaining affected non-detected compounds are flagged with "R" qualifiers based on low surrogate recoveries (see Section 3.7.1).

Recoveries of all internal standard compounds are less than 25% of that in the associated 12-hour standard in sample W18ST-B51-14. Reported concentrations of cyclohexane, methylcyclohexane, benzene, toluene, ethylbenzene, xylenes, and isopropylbenzene are flagged with "J" qualifiers. All remaining non-detected compounds are flagged with "R" qualifiers.

Recoveries of all internal standard compounds are less than 25% of that in the associated 12-hour standard in sample W18ST-COMP-4-28-04. Reported concentrations of methylcyclohexane, benzene, toluene, ethylbenzene, xylenes, styrene, and isopropylbenzene are flagged with "J" qualifiers. All remaining non-detected compounds are flagged with "R" qualifiers.

Recovery of pentafluorobenzene in sample W18ST-B49-1718 is less than 25% of that in the associated 12-hour standard. Recovery of 1,4-dichlorobenzene-d₄ in sample W18ST-B49-1718 is more than 200% of that in the associated 12-hour standard. Reported concentration of methylene chloride, cyclohexane, methylcyclohexane, and isopropylbenzene are flagged with "J" qualifiers. Non-detected analytes associated with internal standard pentafluorobenzene are flagged with "R" qualifiers.

Recoveries of internal standard compounds chlorobenzene-d₅ and 1,4-dichlorobenzene-d₄ in sample W18ST-B49-1012 are more than 200% of that in the associated 12-hour standard. Reported concentrations of ethylbenzene, xylenes, and isopropylbenzene in this sample are flagged with "J" qualifiers.

Recoveries of pentafluorobenzene, 1,4-difluorobenzene, and chlorobenzene-d5 in sample W18ST-B49-1415 are less than 25% of that in the associated 12-hour standard. Recovery of internal standard chlorobenzene-d5 is more than 200% of that in the associated 12-hour standard in this sample. Reported concentrations of acetone, benzene, toluene, ethylbenzene, xylenes, styrene, and isopropylbenzene are flagged with "J" qualifiers. All remaining non-detected results are flagged with "R" qualifiers (except 1,1,2,2-tetrachloroethane, dichlorobenzenes, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene).

Recoveries of all internal standards are below method-defined limits in sample W18STMGP-B73-1719. Recovery of 1,4-dichlorobenzene-d4 is less than 25% of that in the associated 12-hour standard. Reported concentrations of benzene and toluene are flagged with "J" qualifiers. Non-detected results for isopropylbenzene, 1,1,2,2-tetrachloroethane,

dichlorobenzenes, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "R" qualifiers. All remaining non-detected results are flagged with "UJ" qualifiers.

Recovery of 1,4-dichlorobenzene-d4 is below method-defined limits in sample W18STMGP-B36-3335. Non-detected results for isopropylbenzene, 1,1,2,2-tetrachloroethane, dichlorobenzenes, 1,2-dibromo-3-chloropropane, and 1,2,4-trichlorobenzene are flagged with "UJ" qualifiers.

Recoveries of all internal standards are less than 25% of those in the associated 12-hour standard in sample W18STMGP-B73-1719RE. All results in this sample are flagged with "R" qualifiers.

Recoveries of internal standards 1,4-difluorobenzene and chlorobenzene-d5 are below method-defined limits in sample W18STMGP-DECON-4-27-04. Recovery of chlorobenzene-d5 is less than 25% of that in the associated 12-hour standard. The reported concentration of TCLP benzene is flagged with a "J" qualifier. Non-detected results for TCLP carbon tetrachloride, TCLP 1,2-dichloroethane, and TCLP trichloroethene are flagged with "UJ" qualifiers. Non-detected results for tetrachloroethene and chlorobenzene are flagged with "R" qualifiers.

Recoveries of internal standards 1,4-difluorobenzene and chlorobenzene-d5 are below method-defined limits in sample W18STMGP-DECON-5-8-04. The reported concentration of TCLP benzene is flagged with a "J" qualifier. Non-detected results for TCLP carbon tetrachloride, TCLP 1,2-dichloroethane, TCLP trichloroethene, TCLP tetrachloroethene, and TCLP chlorobenzene are flagged with "UJ" qualifiers.

Recoveries of internal standards pentafluorobenzene, 1,4-difluorobenzene, and chlorobenzene-d5 are below method-defined limits in sample W18STMGP-DECON-4-27-04RE. Recovery of chlorobenzene-d5 is less than 25% of that in the associated 12-hour standard. The reported concentration of TCLP benzene is flagged with a "J" qualifier. Non-detected results for TCLP tetrachloroethene and TCLP chlorobenzene are flagged with "R" qualifiers. All remaining non-detected results are flagged with "UJ" qualifiers.

Recoveries of internal standards 1,4-difluorobenzene and chlorobenzene-d5 are below method-defined limits in sample W18STMGP-DECON-5-8-04RE. The reported concentration of TCLP benzene is flagged with a "J" qualifier. Non-detected results for TCLP carbon tetrachloride, TCLP 1,2-dichloroethane, TCLP trichloroethene, TCLP tetrachloroethene, and TCLP chlorobenzene are flagged with "UJ" qualifiers.

3.9.2 Internal Standards – Semivolatile Organic Analytes

The recovery of internal standard perylene- d_{12} is less than method-specified limits in analysis of sample W18ST-B22-57. Reported concentrations of benzo(b)fluoranthene,

benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in this sample are flagged with "J" qualifiers.

The recovery of internal standard naphthylene-d₈ is less than method-specified limits in analysis of sample W18ST-B22-1517. Reported concentrations of naphthalene and 2-methylnaphthalene in this sample are flagged with "J" qualifiers. Non-detected results for acetophenone, nitrobenzene, isophorone, 2-nitrophenol, 2,4-dimethylphenol, bis(2-chloroethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, hexachlorobutadiene, caprolactam, and 4-chloro-3-methylphenol are flagged with "UJ" qualifiers.

With the exception of phenanthrene-d10, all internal standard recoveries in sample W18ST-COMP-4-28-04DL2 are less than method-defined limits. Reported concentrations of naphthalene, 2-methylnaphthalene, acenaphthene, dibenzofuran, fluorene, pyrene, benzo(a)anthracene, chrysene, and benzo(a)pyrene in this sample are flagged with "J" qualifiers. All remaining non-detected results (except those referenced to internal standard phenanthrene-d10) are flagged with "UJ" qualifiers.

Recoveries of internal standards 1,4-dichlorobenzene- d_4 , naphthalene- d_8 , and perylene- d_{12} are below method-defined limits in sample W18ST-B51-22DL2. Reported concentrations of naphthalene, 2-methylnaphthalene, benzo(b)fluoranthene, and benzo(a)pyrene in this sample are flagged with "J" qualifiers. Non-detected results for the remaining compounds referenced to the listed internal standards are flagged with "UJ" qualifiers.

Recoveries of internal standards 1,4-dichlorobenzene- d_4 , naphthalene- d_8 , chrysene- d_{12} , and perylene- d_{12} are below method-defined limits in sample W18ST-B49-1718DL2. Reported concentrations of naphthalene, 2-methylnaphthalene, pyrene, benzo(a)anthracene, chrysene, and benzo(a)pyrene in this sample are flagged with "J" qualifiers. Non-detected results for the remaining compounds referenced to the listed internal standards are flagged with "UJ" qualifiers.

Recoveries of internal standards 1,4-dichlorobenzene- d_4 , naphthalene- d_8 , and chrysene- d_{12} , are below method-defined limits in sample W18ST-B51-14DL2. Reported concentrations of naphthalene, 2-methylnaphthalene, pyrene, benzo(a)anthracene, and chrysene in this sample are flagged with "J" qualifiers. Non-detected results for the remaining compounds referenced to the listed internal standards are flagged with "UJ" qualifiers.

The recovery of internal standard 1,4-dichlorobenzene-d₄ is less than method-specified limits in analysis of sample W18ST-B49-1012DL2. Reported non-detected results benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3-/4-methylphenols, N-nitroso-di-n-propylamine, and hexachloroethane are flagged with "UJ" qualifiers.

The recovery of internal standard 1,4-dichlorobenzene-d₄ is less than method-specified limits in analysis of sample W18ST-COMP-4-28-04DL. Reported non-detected results benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3-/4-methylphenols, N-nitroso-di-n-propylamine, and hexachloroethane are flagged with "UJ" qualifiers.

The recovery of internal standard 1,4-dichlorobenzene-d₄ is less than method-specified limits in analysis of sample W18ST-B51-22DL. Reported non-detected results benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3-/4-methylphenols, N-nitroso-di-n-propylamine, and hexachloroethane are flagged with "UJ" qualifiers.

The recovery of internal standard 1,4-dichlorobenzene-d₄ is less than method-specified limits in analysis of sample W18ST-B49-1718DL. Reported non-detected results benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3-/4-methylphenols, N-nitroso-di-n-propylamine, and hexachloroethane are flagged with "UJ" qualifiers.

The recovery of internal standard chrysene-d₁₂ is less than method-specified limits in analysis of sample W18ST-B49-1415. Reported concentrations of pyrene and bis(2-ethylhexyl) phthalate are flagged with "J" qualifiers in this sample. Reported non-detected results butylbenzyl phthalate, 3,3'-dichlorobenzidine, benzo(a)anthracene, chrysene, di-n-octyl phthalate, and indeno(1,2,3-cd)pyrene are flagged with "UJ" qualifiers.

Recoveries of all internal standards are below method-defined limits in sample W18ST-B49-1415DL. Reported concentrations of detected semivolatile organic compounds in this sample are flagged with "J" qualifiers. Non-detected results for the remaining compounds are flagged with "UJ" qualifiers.

The recovery of internal standard 1,4-dichlorobenzene-d₄ is less than method-specified limits in analysis of sample W18ST-B51-14DL. Reported non-detected results benzaldehyde, phenol, bis(2-chloroethyl)ether, 2-chlorophenol, 2-methylphenol, 2,2-oxybis(1-chloropropane), 3-/4-methylphenols, N-nitroso-di-n-propylamine, and hexachloroethane are flagged with "UJ" qualifiers.

The recovery of internal standard perylene- d_{12} is less than method-specified limits in analysis of sample W18STMGP-B36-57. Reported concentrations of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in this sample are flagged with "J" qualifiers and non-detected results are flagged with "UJ" qualifiers.

3.10 Laboratory Control Samples

3.10.1 Laboratory Control Samples - Volatile Organic Analytes

All criteria are met.

3.10.2 Laboratory Control Samples – Semivolatile Organic Analytes

All criteria were met.

3.10.3 Laboratory Control Samples – Polychlorinated Biphenyls, Herbicides, and Pesticides

All criteria were met.

3.10.4 Laboratory Control Samples – Metals

All criteria were met.

3.10.5 Laboratory Control Samples – Cyanide and Other General Chemistry Analyses

All criteria were met.

3.11 Sample Quantitation and Reported Quantitation Limits

3.11.1 Quantitation Limits – Volatile Organic Analytes

Sample calculations were spot-checked; there were no errors noted.

Select target analytes results were reported below the lowest calibration standard level and quantitation limit. These results were qualified as estimated (J) by the laboratory.

Some samples were analyzed using dilutions. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

Some samples were analyzed using diluted sample amounts. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

3.11.2 Quantitation Limits – Semivolatile Organic Analytes

Sample calculations were spot-checked; there were no errors noted.

Select target analytes results were reported below the lowest calibration standard level and quantitation limit. These results were qualified as estimated (J) by the laboratory.

Some samples were analyzed using diluted extracts. Generally, some target analytes are reported at concentrations within the calibration range in these samples; however, most target analytes are reported as not detected and are associated with elevated reporting limits.

3.11.3 Quantitation Limits – Polychlorinated Biphenyls, Herbicides, and Pesticides Samples did not require dilutions. All criteria were met.

3.9.5 Quantitation Limits – Cyanide and Other General Chemistry Analyses Samples did not require dilutions. All criteria were met.

3.12 Target Compound Identification

3.12.1 Target Compound Identification – Volatile Organic Analytes

All criteria are met.

3.12.2 Target Compound Identification – Semivolatile Organic Analytes

All criteria are met.

3.12.3 Target Compound Identification – Polychlorinated Biphenyls, Herbicides, and Pesticides

All criteria are met.

3.13 Duplicate Results

3.13.1 Duplicate Results – Metals

Relative percent difference (RPD) values for mercury and zinc are greater than 20% in duplicate analyses of sample W18ST-B24-2527.

3.13.2 Duplicate Results – Cyanide and Other General Chemistry Analyses

All criteria were met for laboratory duplicate analyses.

3.14 Serial Dilutions

3.14.1 Serial Dilutions – Metals

Percent difference values for chromium, nickel and zinc in the serial dilution performed using sample W18ST-B24-2527 are greater than 10%. Reported concentrations of chromium, nickel, and zinc in samples W18ST-B24-57, W18ST-B24-79, W18ST-B24-3335, W18ST-B64-3335, W18ST-B24-5355, W18ST-B25-79, W18ST-B25-2022, W18ST-B25-3233, W18ST-B25-3334, W18ST-B50-23, W18ST-B33-45, W18ST-B32-45, W18ST-B38-34, W18ST-B38-34, W18ST-B38-45, W18ST-B36-34, W18ST-COMP-4-24-04, W18ST-COMP-4-27-04, W18ST-B22-57, and W18ST-B24-2527 are flagged with "J" qualifiers.

Percent difference values for mercury and zinc in the serial dilution performed using sample W18ST-B49-1415 are greater than 10%. Reported concentrations of mercury and zinc in samples W18ST-B22-1113, W18ST-B22-1517, W18ST-B22-2223, W18ST-B22-2627, W18ST-B23-9, W18ST-B23-15, W18ST-B23-17, W18ST-B23-24, W18ST-B51-6, W18ST-B51-14, W18ST-B51-22, W18ST-B51-33, W18ST-B50-810, W18ST-B50-2123, W18ST-B50-2627, W18ST-B49-1012, W18ST-B49-1415, W18ST-B49-1718, W18ST-B49-2324, and W18ST-COMP-4-28-04 are flagged with "J" qualifiers.

Percent difference values for antimony, chromium, copper, lead, and zinc in the serial dilution performed using sample W18STMGP-TP4-56 are greater than 10%. Reported concentrations of these analytes in samples WW18STMGP-B36-57, W18STMGP-B36-1719, W18STMGP-B36-2527, W18STMGP-B36-3335, W18STMGP-B73-1719, W18STMGP-TP4-56, W18STMGP-B34-3, and W18STMGP-B34-5 are flagged with "J" qualifiers.

The percent difference value for TCLP lead in the serial dilution performed using sample W18STMGP-COMP-5-16-04 is greater than 10%. The reported concentration of TCLP lead in sample WW18STMGP-COMP-5-16-04 is flagged with a "J" qualifier.

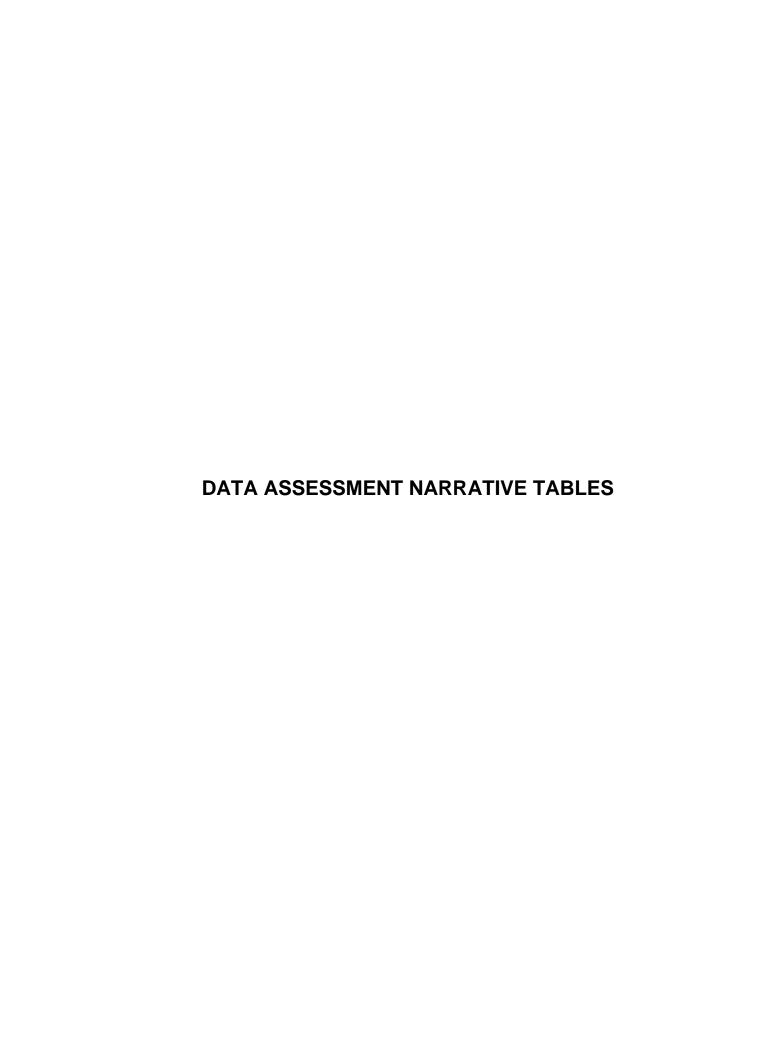


Table 1: Samples Reviewed and Associated Analytical Methods

35.	g I ID	Collection	Collection			3.5				Lab Sample
Matrix	Sample ID	Date	Time			Met	hods			ID
Soil	W18ST-B24-57	4/24/2004	1330	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-01
Soil	W18ST-B24-79	4/24/2004	1335	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-02
Soil	W18ST-B24-2527	4/24/2004	1440	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-03
Soil	W18ST-B24-3335	4/24/2004	1445	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-06
Soil	W18ST-B64-3335	4/24/2004	1600	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-07
Soil	W18ST-B24-5355	4/24/2004	1415	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-08
Soil	W18ST-B25-79	4/26/2004	1047	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-09
Soil	W18ST-B25-2022	4/26/2004	1120	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-10
Soil	W18ST-B25-3233	4/26/2004	1245	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-11
Soil	W18ST-B25-3334	4/26/2004	1250	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-12
Soil	W18ST-B50-23	4/25/2004	1020	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-13
Soil	W18ST-B33-45	4/25/2004	1045	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-14
Soil	W18ST-B32-45	4/25/2004	1230	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-15
Soil	W18ST-B38-34	4/25/2004	1325	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-16
Soil	W18ST-B38-45	4/25/2004	1335	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-17
Soil	W18ST-B36-34	4/25/2004	1620	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-18
Soil	W18ST-COMP-4-24-04	4/28/2004	0930	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-19
Soil	W18ST-COMP-4-27-04	4/28/2004	0945	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-20
Soil	W18ST-RB-01	4/27/2004	1453	SW8260	SW8270		SW9012	SW6010	SW7470	S2370-21
Soil	W18ST-B22-57	4/27/2004	1550	SW8260	SW8270		SW9012	SW6010	SW7471	S2370-22
Soil	W18ST-B22-1113	4/27/2004	1525	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-01
Soil	W18ST-B22-1517	4/27/2004	1620	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-02
Soil	W18ST-B22-2223	4/27/2004	1625	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-03
Soil	W18ST-B22-2627	4/27/2004	1630	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-04
Soil	W18ST-B23-9	4/27/2004	1502	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-05
Soil	W18ST-B23-15	4/27/2004	1525	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-06
Soil	W18ST-B23-17	4/27/2004	1530	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-07

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

Madain	Cl- ID	Collection	Collection			N/L-4	hods			Lab Sample ID
Matrix	Sample ID	Date	Time	~~~~	~~~~	Met		~~~~	~	
Soil	W18ST-B23-24	4/27/2004	1547	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-08
Soil	W18ST-B51-6	4/27/2004	0927	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-09
Soil	W18ST-B51-14	4/27/2004	0947	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-10
Soil	W18ST-B51-22	4/27/2004	1208	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-11
Soil	W18ST-B51-33	4/27/2004	1252	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-12
Soil	W18ST-B50-810	4/27/2004	0930	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-13
Soil	W18ST-B50-2123	4/27/2004	1015	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-14
Soil	W18ST-B50-2627	4/27/2004	1020	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-15
Soil	W18ST-B49-1012	4/28/2004	1400	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-16
Soil	W18ST-B49-1415	4/28/2004	1405	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-17
Soil	W18ST-B49-1718	4/28/2004	1411	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-20
Soil	W18ST-B49-2324	4/28/2004	1420	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-21
Soil	W18ST-COMP-4-28-04	4/28/2004	1446	SW8260	SW8270		SW9012	SW6010	SW7471	S2371-22
Soil	W18STMGP-B36-57	5/8/2004	1020	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-01
Soil	W18STMGP-B36-1719	5/8/2004	1035	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-02
Soil	W18STMGP-B36-2527	5/8/2004	1150	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-03
Soil	W18STMGP-B36-3335	5/8/2004	1200	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-04
Soil	W18STMGP-B73-1719	5/8/2004	1035	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-05
Soil	W18STMGP-TP4-56	5/8/2004	1215	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-06
Soil	W18STMGP-COMP-5-8-04	5/8/2004	1400	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2516-09
Soil	W18STMGP-B34-3	5/10/2004	1200	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-10
Soil	W18STMGP-B34-5	5/10/2004	1215	SW8260	SW8270		SW9012	SW6010	SW7471	S2516-11
Soil	W18ST-COMP-4-24-04	4/28/2004	0930	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-01
Soil	W18ST-COMP-4-27-04	4/28/2004	0945	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-02
Soil	W18ST-COMP-4-28-04	4/28/2004	1446	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-03
Soil	W18STMGP-COMP-5-1-04	5/1/2004	1510	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-04

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

Matrix	Sample ID	Collection Date	Collection Time			Met	hods			Lab Sample ID
Soil	W18STMGP-COMP-5-2-04	5/2/2004	1545	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-05
Soil	W18STMGP-COMP-5-3-04	5/3/2004	1415	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-06
Soil	W18STMGP-COMP-5-4-04	5/4/2004	1115	SW8260 ^a	SW8270 ^a	SW8082	See Note	SW6010 ^a	SW7471 ^a	S2531-07
Soil	W18STMGP-B38-1315	5/16/2004	1030	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-01
Soil	W18STMGP-B38-2123	5/16/2004	1037	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-02
Soil	W18STMGP-B33-1113	5/16/2004	1200	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-03
Soil	W18STMGP-B33-1315	5/16/2004	1210	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-04
Soil	W18STMGP-B33-3537	5/16/2004	1508	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-05
Soil	W18STMGP-B33-3941	5/16/2004	1530	SW8260	SW8270		SW9012	SW6010	SW7471	S2601-06
Soil	W18STMGP-COMP-5-16-04	5/16/2004	1614	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2601-07
Soil	W18STMGP-B19-57	5/2/2004	0850	SW8151	SW8081	SW8082				S2676-01
Soil	W18STMGP-B19-1719	5/2/2004	0920	SW8151	SW8081	SW8082				S2676-02
Soil	W18STMGP-B20-911	5/2/2004	1122	SW8151	SW8081	SW8082				S2676-03
Soil	W18STMGP-B20-1315	5/2/2004	1343	SW8151	SW8081	SW8082				S2676-04
Soil	W18STMGP-B20-1920	5/2/2004	1345	SW8151	SW8081	SW8082				S2676-05
Soil	W18STMGP-B20-4143	5/2/2004	1415	SW8151	SW8081	SW8082				S2676-06
Soil	W18STMGP-B20-4951	5/2/2004	1430	SW8151	SW8081	SW8082				S2676-07
Soil	W18STMGP-DECON-4-26-04	5/21/2004	1230	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-01
Soil	W18STMGP-DECON-4-27-04	5/21/2004	1245	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-02
Soil	W18STMGP-DECON-4-28-04	5/21/2004	1259	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-03
Soil	W18STMGP-DECON-5-8-04	5/21/2004	1330	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-04
Soil	W18STMGP-DECON-5-16-04A	5/21/2004	1345	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-05
Soil	W18STMGP-DECON-5-16-04B	5/21/2004	1356	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2683-06
Soil	W18STMGP-42804A	6/8/2004	1030	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2988-01

Table 1: Samples Reviewed and Associated Analytical Methods (continued)

Matrix	Sample ID	Collection Date	Collection Time			Met	hods			Lab Sample ID
Soil	W18STMGP-42804B	6/8/2004	1045	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2988-02
Soil	W18STMGP-DECON-52204	6/8/2004	1115	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2988-03
Soil	W18STMGP-52204	6/8/2004	1125	SW8260 ^a	SW8270 ^a		See Note	SW6010 ^a	SW7471 ^a	S2988-04

SW	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, (U.S. Environmental Protection Agency)
8081	Method 8081A - Organochlorine Pesticides by Gas Chromatography
8082	Method 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography
8151	Method 8151A - Chlorinated Herbicides by GC using Methylation or Pentafluorobenzylation Derivatization
8260	Method 8260B - Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
8270	Method 8270C - Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
9012	Method 9012A - Total and Amenable Cyanide (Automated Colorimetric, with Off-Line Distillation)
6010	Method 6010B - Inductively Coupled Plasma-Atomic Emission Spectrometry
7471	Method 7471A - Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)
	No data

^a Toxicity characteristic leaching procedure (TCLP) data are reported for this method.

NOTE: Data are reported for corrosivity by Method 9045, ignitability by the method given in Chapter 7 of SW846, reactive sulfide by the method given in Section 7.3.3.2 of Chapter 7 of SW846, and reactive sulfide by the method given in Section 7.3.4.2 of Chapter 7 of SW846.

Table 2: Qualified Analytical Data

Field	Analytical			
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-B19-1719	SW8151	All non-detected herbicides	UJ	Extracted 9 days past holding time
		results.		expiration. Low MS/MSD recoveries.
W18STMGP-B19-1719	SW8081	All non-detected pesticides	UJ	Extracted 9 days past holding time
		results.		expiration.
W18STMGP-B19-1719	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B19-1719	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B19-1719	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B19-1719	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification
				analysis.
W18STMGP-B19-57	SW8151	All non-detected herbicides	UJ	Extracted 9 days past holding time
		results.		expiration. Low MS/MSD recoveries.
W18STMGP-B19-57	SW8081	All non-detected pesticides	UJ	Extracted 9 days past holding time
		results.		expiration.
W18STMGP-B19-57	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B19-57	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B19-57	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification
				analysis.
W18STMGP-B19-57	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-911	SW8151	All non-detected herbicides	UJ	Extracted 9 days past holding time
		results.		expiration. Low MS/MSD recoveries.
W18STMGP-B20-911	SW8081	All non-detected pesticides	UJ	Extracted 9 days past holding time
		results.		expiration.
W18STMGP-B20-911	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B20-911	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B20-911	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification
				analysis.
W18STMGP-B20-911	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification
				analysis.
W18STMGP-B20-1315	SW8151	All non-detected herbicides	UJ	Extracted 9 days past holding time
		results.		expiration. Low MS/MSD recoveries.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B20-1315	SW8081	All non-detected pesticides results.	UJ	Extracted 9 days past holding time expiration.
W18STMGP-B20-1315	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B20-1315	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B20-1315	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-1315	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-1920	SW8151	All non-detected herbicides results.	UJ	Extracted 9 days past holding time expiration. Low MS/MSD recoveries.
W18STMGP-B20-1920	SW8081	All non-detected pesticides results.	UJ	Extracted 9 days past holding time expiration.
W18STMGP-B20-1920	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B20-1920	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B20-1920	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-1920	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-4143	SW8151	All non-detected herbicides results.	UJ	Extracted 9 days past holding time expiration. Low MS/MSD recoveries.
W18STMGP-B20-4143	SW8081	All non-detected pesticides results.	UJ	Extracted 9 days past holding time expiration.
W18STMGP-B20-4143	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B20-4143	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B20-4143	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-4143	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-4951	SW8151	All non-detected herbicides results.	UJ	Extracted 9 days past holding time expiration. Low MS/MSD recoveries.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B20-4951	SW8081	All non-detected pesticides	UJ	Extracted 9 days past holding time
		results.		expiration.
W18STMGP-B20-4951	SW8081	Endrin aldehyde	UJ	Low MS/MSD recoveries.
W18STMGP-B20-4951	SW8081	Endosulfan sulfate	UJ	Low MS/MSD recoveries.
W18STMGP-B20-4951	SW8081	4,4'-DDT	UJ	%D > 20 in ending calibration verification analysis.
W18STMGP-B20-4951	SW8081	Methoxychlor	UJ	%D > 20 in ending calibration verification analysis.
W18ST-B22-1113	SW8260	Carbon disulfide	J	Initial calibration %RSD >15%.
W18ST-B22-1113	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B22-1113	SW6010	Chromium	J	High CRDL recovery.
W18ST-B22-1113	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B22-1113	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B22-1113	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B22-1113	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B22-1113	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B22-1113	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B22-1113	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B22-1517	SW8260	Methylcyclohexane	J	Initial calibration %RSD >15%.
W18ST-B22-1517	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B22-1517	SW6010	Chromium	J	High CRDL recovery.
W18ST-B22-1517	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B22-1517	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B22-1517	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B22-1517	SW8270	Acetophenone	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	Nitrobenzene	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	Isophorone	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B22-1517	SW8270	2-Nitrophenol	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270 SW8270	2,4-Dichlorophenol	UJ	Low internal standard recovery.
		_		
W18ST-B22-1517	SW8270	Naphthalene	J	Low internal standard recovery. Continuing calibration %D >20%.
W18ST-B22-1517	SW8270	4-Chloroaniline	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	Caprolactam	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	4-Chloro-3-methylphenol	UJ	Low internal standard recovery.
W18ST-B22-1517	SW8270	2-Methylnaphthalene	J	Low internal standard recovery.
				Continuing calibration %D >20%.
W18ST-B22-1517	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B22-1517	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B22-1517	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B22-1517DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B22-1517DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B22-2223	SW8260	Carbon disulfide	J	Initial calibration %RSD >15%.
W18ST-B22-2223	SW8260	Methylcyclohexane	J	Initial calibration %RSD >15%.
W18ST-B22-2223	SW8260	Carbon tetrachloride	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Benzene	J	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2-Dichloroethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Trichloroethene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2-Dichloropropane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Bromodichloromethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	4-Methyl-2-pentanone	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Toluene	J	Low internal standard recovery.
W18ST-B22-2223	SW8260	trans-1,3-Dichloropropene	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Elec	Passan for Ovalification
W18ST-B22-2223	SW8260	cis-1,3-Dichloropropene	Flag UJ	Reason for Qualification Low internal standard recovery.
W18ST-B22-2223 W18ST-B22-2223	SW8260	1,1,2-Trichloroethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	2-Hexanone	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Dibromochloromethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2-Dibromoethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Tetrachloroethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Chlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Ethylbenzene	J	Low internal standard recovery.
W18ST-B22-2223 W18ST-B22-2223	SW8260	m-/p-Xylenes	J	Low internal standard recovery. Low internal standard recovery. Initial
W1851-B22-2225	3 W 8200	III-/p-Aylenes	J	calibraton %RSD >15%.
W18ST-B22-2223	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B22-2223	SW8260	Styrene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Bromoform	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	Isopropylbenzene	J	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,1,2,2-Tetrachloroethane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,3-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,4-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2-Dibromo-3-chloropropane	UJ	Low internal standard recovery.
W18ST-B22-2223	SW8260	1,2,4-Trichlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2223	SW6010	Chromium	J	High CRDL recovery.
W18ST-B22-2223	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B22-2223	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B22-2223	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B22-2223	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B22-2223	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B22-2223	SW8270	Fluorene	J	Continuing calibration %D >20%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical	Auralanda	Dia -	December Overliff and in
W18ST-B22-2223	Method SW8270	Analyte Carbazole	Flag J	Reason for Qualification Continuing calibration %D >20%.
W18ST-B22-2223 W18ST-B22-2223	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%. Continuing calibration %D >20%.
W18ST-B22-2223DL	SW8260	` '	J	Low internal standard recovery.
		Acetone	J	
W18ST-B22-2223DL	SW8260	Benzene		Low internal standard recovery.
W18ST-B22-2223DL	SW8260	Toluene	J	Low internal standard recovery.
W18ST-B22-2223DL	SW8260	Ethylbenzene	J	Low internal standard recovery.
W18ST-B22-2223DL	SW8260	m-/p-Xylenes	J	Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B22-2223DL	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B22-2223DL	SW8260	Isopropylbenzene	J	Low internal standard recovery.
W18ST-B22-2223DL	SW8260	All non-detected volatile compounds.	UJ	Low internal standard recovery.
W18ST-B22-2627	SW8260	Acetone	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW8260	Carbon disulfide	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-B22-2627	SW8260	2-Butanone	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW8260	Benzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW8260	Toluene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW8260	Tetrachloroethane	UJ	Low internal standard recovery.
W18ST-B22-2627	SW8260	Chlorobenzene	UJ	Low internal standard recovery.
W18ST-B22-2627	SW8260	Ethylbenzene	J	Low internal standard recovery.
W18ST-B22-2627	SW8260	m-/p-Xylenes	J	Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B22-2627	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B22-2627	SW8260	Styrene	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B22-2627	SW8260	Bromoform	UJ	Low internal standard recovery.
W18ST-B22-2627	SW8260	Isopropylbenzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW8260	All non-detected volatile compounds (except those flagged "UJ")	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B22-2627	SW6010	Chromium	J	High CRDL recovery.
W18ST-B22-2627	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B22-2627	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B22-2627	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B22-57	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B22-57	SW7471	Mercury	J	High CRDL recovery.
W18ST-B22-57	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B22-57	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B22-57	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B22-57	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B22-57	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.

Table 2: Qualified Analytical Data (continued)

Field	Analytical	A a la4 -	Els s	Decree for Overlift and an
Identification W18ST-B22-57	Method SW8270	Analyte bis(2-Ethylhexyl)phthalate	Flag J	Reason for Qualification Initial calibration %RSD >15%.
W18ST-B22-57	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
			-	
W18ST-B22-57	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B22-57	SW8270	Benzo(b)fluoranthene	J	Low internal standard recovery.
W18ST-B22-57	SW8270	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18ST-B22-57	SW8270	Benzo(a)pyrene	J	Low internal standard recovery.
W18ST-B22-57	SW8270	Dibenz(a,h)anthracene	J	Low internal standard recovery.
W18ST-B22-57	SW8270	Benzo(g,h,i)perylene	J	Low internal standard recovery.
W18ST-B22-57DL	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B22-57DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-B22-57DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B22-57DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B23-9	SW8260	Methylcyclohexane	J	Initial calibraton %RSD >15%. Continuing calibration %D >20%.
W18ST-B23-9	SW8260	m-/p-Xylenes	J	Initial calibraton %RSD >15%.
W18ST-B23-9	SW6010	Chromium	J	High CRDL recovery.
W18ST-B23-9	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B23-9	SW6010	Selenium	J	Low CRDL recovery.

Table 2: Qualified Analytical Data (continued)

Field	Analytical	Amalasta	T21	Decree for Overliff and an
Identification W18ST-B23-9	Method SW6010	Analyte Zinc	Flag J	Reason for Qualification Serial dilution %D >10%.
W18ST-B23-9 W18ST-B23-9	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B23-9 W18ST-B23-9	SW8270 SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B23-9 W18ST-B23-9	SW8270	Fluorene	J	Continuing calibration %D >20%.
				_
W18ST-B23-9	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B23-9	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-9DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B23-9DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-15	SW8260	Acetone	J	Initial calibration %RSD >15%. Continuing calibration %D >20%.
W18ST-B23-15	SW6010	Chromium	J	High CRDL recovery.
W18ST-B23-15	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B23-15	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B23-15	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B23-15	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B23-15	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B23-15	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B23-15	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B23-15	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-15DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B23-15DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-17	SW8260	Dichlorodifluoromethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Chloromethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Vinyl chloride	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Bromomethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Chloroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Trichlorofluoromethane	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B23-17	SW8260	1,1,2-Trichlorotrifluoroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	1,1-Dichloroethene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Acetone	J	Low internal standard recovery.
W18ST-B23-17	SW8260	Carbon disulfide	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Methyl tert-butyl ether	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Methyl acetate	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Methylene chloride	UJ	Low internal standard recovery.
W18ST-B23-17 W18ST-B23-17	SW8260	tran-1,2-Dichloroethene	UJ	Low internal standard recovery.
W18ST-B23-17 W18ST-B23-17	SW8260 SW8260	1,1-Dichloroethane	UJ	Low internal standard recovery.
W18ST-B23-17 W18ST-B23-17	SW8260 SW8260	Cyclohexane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260 SW8260	2-Butanone	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Carbon tetrachloride	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	cis-1,2-Dichloroethene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Chloroform	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	1,1,1-Trichloroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Methylcyclohexane	J	Low internal standard recovery.
W18ST-B23-17	SW8260	Benzene	J	Low internal standard recovery.
W18ST-B23-17	SW8260	1,2-Dichloroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Trichloroethene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	1,2-Dichloropropane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Bromodichloromethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	4-Methyl-2-pentanone	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Toluene	J	Low internal standard recovery.
W18ST-B23-17	SW8260	trans-1,3-Dichloropropene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	cis-1,3-Dichloropropene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	1,1,2-Trichloroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	2-Hexanone	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B23-17	SW8260	Dibromochloromethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	1,2-Dibromoethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Tetrachloroethane	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Chlorobenzene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Ethylbenzene	J	Low internal standard recovery.
W18ST-B23-17	SW8260	m-/p-Xylenes	J	Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B23-17	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B23-17	SW8260	Styrene	UJ	Low internal standard recovery.
W18ST-B23-17	SW8260	Bromoform	UJ	Low internal standard recovery.
W18ST-B23-17	SW6010	Chromium	J	High CRDL recovery.
W18ST-B23-17	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B23-17	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B23-17	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B23-17	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B23-17	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B23-17	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B23-17	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B23-17	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-17DL	SW8260	Methylene chloride	J	Continuing calibration %D >20%.
W18ST-B23-17DL	SW8260	Methylcyclohexane	J	Initial calibration %RSD >15%. Continuing calibration %D >20%.
W18ST-B23-17DL	SW8260	m-/p-Xylenes		Initial calibration %RSD >15%.
W18ST-B23-24	SW8260	Benzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B23-24	SW8260	Toluene	J	Internal standard recovery <25% of that in the associated 12-hour standard.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B23-24	SW8260	Ethylbenzene	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B23-24	SW8260	m-/p-Xylenes	J	Internal standard recovery <25% of that in
				the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-B23-24	SW8260	o-Xylenes	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B23-24	SW8260	Styrene	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B23-24	SW8260	Isopropylbenzene	J	Internal standard recovery <25% of that in
W18ST-B23-24	CM0200	All non-detected volatile	R	the associated 12-hour standard.
W1851-B25-24	SW8260	compounds	K	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B23-24	SW6010	Chromium	J	High CRDL recovery.
W18ST-B23-24	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
				>10%. High MS/MSD recoveries.
W18ST-B23-24	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B23-24	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B23-24	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B23-24	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B23-24	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B23-24	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B23-24	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B23-24DL	SW8260	Carbon disulfide	J	Initial calibration %RSD >15%.
				Continuing calibration %D > 20%.
W18ST-B23-24DL	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B24-2527	SW8260	Benzene	J	Low internal standard recovery.
W18ST-B24-2527	SW8260	Toluene	J	High MS/MSD recoveries. Low internal
				standard recovery.
W18ST-B24-2527	SW8260	Chlorobenzene	J	Low internal standard recovery.
W18ST-B24-2527	SW8260	Ethylbenzene	J	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B24-2527	SW8260	m-/p-Xylenes	J	Low internal standard recovery.
W18ST-B24-2527	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B24-2527	SW8260	Isopropylbenzene	J	Low internal standard recovery.
W18ST-B24-2527	SW8260	All non-detected volatile compounds.	UJ	Low internal standard recovery.
W18ST-B24-2527	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B24-2527	SW7471	Mercury	J	High CRDL recovery.
W18ST-B24-2527	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B24-2527	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B24-2527	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B24-2527	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24-2527	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B24-2527DL	SW8260	Toluene	J	High MS/MSD recoveries. Initial calibration %RSD >15%.
W18ST-B24-2527DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-B24-2527DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24-2527DL	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B24-3335	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B24-3335	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B24-3335	SW7471	Mercury	J	High CRDL recovery.
W18ST-B24-3335	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B24-3335	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B24-3335	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B24-3335	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Di-n-butylphthalate	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B24-3335	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B24-3335	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24-3335	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B24-3335DL	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B24-5355	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B24-5355	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B24-5355	SW7471	Mercury	J	High CRDL recovery.
W18ST-B24-5355	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B24-5355	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B24-5355	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B24-5355	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B24-5355	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B24-5355	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B24-5355	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24-5355	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B24-57	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B24-57	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B24-57	SW7471	Mercury	J	High CRDL recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B24-57	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B24-57	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B24-57	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B24-57	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24-57	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B24 79	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B24 79	SW7471	Mercury	J	High CRDL recovery.
W18ST-B24 79	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B24 79	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B24 79	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B24 79	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B24 79	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B25-2022	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B25-2022	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B25-2022	SW7471	Mercury	J	High CRDL recovery.
W18ST-B25-2022	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B25-2022	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B25-2022	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B25-2022	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-2022	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B25-2022DL	SW8270	Dibenz(a,h)anthracene	J	Continuing calibration %D >20%.
W18ST-B25-2022DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-B25-2022DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-2022DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B25-2022DL2	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-2022DL2	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B25-3233	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B25-3233	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B25-3233	SW7471	Mercury	J	High CRDL recovery.
W18ST-B25-3233	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B25-3233	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B25-3233	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B25-3233	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-3233	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B25-3233DL	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B25-3233DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-3233DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B25-3334	SW8260	Acetone	J	Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B25-3334	SW8260	Methylcyclohexane	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	Benzene	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	Toluene	J	High MS/MSD recoveries. Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B25-3334	SW8260	Ethylbenzene	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	m-/p-Xylenes	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	o-Xylene	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	Isopropylbenzene	J	Low internal standard recovery.
W18ST-B25-3334	SW8260	All non-detected volatile compounds.	UJ	Low internal standard recovery.
W18ST-B25-3334	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B25-3334	SW7471	Mercury	J	High CRDL recovery.
W18ST-B25-3334	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B25-3334	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B25-3334	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B25-3334	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B25-3334	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-3334	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B25-3334DL	SW8260	Toluene	J	High MS/MSD recoveries. Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B25-3334DL	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B25-3334DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-3334DL	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B25-3334DL2	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B25-79	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B25-79	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B25-79	SW7471	Mercury	J	High CRDL recovery.
W18ST-B25-79	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B25-79	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B25-79	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B25-79	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B25-79	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B32-45	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B32-45	SW7471	Mercury	J	High CRDL recovery.
W18ST-B32-45	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B32-45	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B32-45	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B32-45	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B32-45	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B32-45	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B32-45	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B32-45	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B32-45	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B32-45	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B33-1113	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B33-1113	SW7471	Mercury	J	Low CRDL recovery.

Table 2: Qualified Analytical Data (continued)

Field	Analytical		T-1	D 0 0 10 11
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-B33-1315	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B33-1315	SW7471	Mercury	J	Low CRDL recovery.
W18STMGP-B33-3537	SW8260	Acetone	J	Initial calibration %RSD >15%.
W18STMGP-B33-3537	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B33-3537	SW7471	Mercury	J	Low CRDL recovery.
W18STMGP-B33-3537DL	SW8260	Acetone	J	Initial calibration %RSD >15%.
W18STMGP-B33-3941	SW8260	Acetone	J	Initial calibration %RSD >15%.
W18STMGP-B33-3941	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B33-3941	SW7471	Mercury	J	Low CRDL recovery.
W18ST-B33-45	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B33-45	SW8260	Isopropylbenzene	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,1,2,2-Tetrachloroethane	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,3-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,4-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,2-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,2-Dibromo-3-chloropropane	UJ	Low internal standard recovery.
W18ST-B33-45	SW8260	1,2,4-Trichlorobenzene	UJ	Low internal standard recovery.
W18ST-B33-45	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B33-45	SW7471	Mercury	J	High CRDL recovery.
W18ST-B33-45	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B33-45	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B33-45	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS
W1100T D22 45	CW0270	NY 1.41 1	т.	recovery. Serial dilution %D >10%.
W18ST-B33-45	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B33-45	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B33-45	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B33-45	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B33-45DL	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B33-45DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-B33-45DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B33-45DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B34-3	SW8260	Acetone	J	Initial calibration %RSD >15%.
W18STMGP-B34-3	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B34-3	SW6010	Antimony	UJ	Low PDS recovery. Serial dilution %D >10%. Low MS/MSD recoveries.
W18STMGP-B34-3	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Daggan for Qualification
W18STMGP-B34-3	SW6010	Silver	UJ	Reason for Qualification Low MS/MSD recoveries.
W18STMGP-B34-3	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B34-3	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B34-3	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B34-3	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B34-3	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B34-3	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B34-3	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B34-3	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B34-3	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-B34-5	SW8260	Isopropylbenzene	R	Continuing calibration %D >90%.
W18STMGP-B34-5	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B34-5	SW6010	Antimony	J	Low PDS recovery. Serial dilution %D >10%. Low MS/MSD recoveries.
W18STMGP-B34-5	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18STMGP-B34-5	SW6010	Silver	UJ	Low MS/MSD recoveries.
W18STMGP-B34-5	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B34-5	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B34-5	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B34-5	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B34-5	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B34-5	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B34-5	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B34-5	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B34-5	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW8260	Isopropylbenzene	R	Continuing calibration %D >90%.
W18STMGP-B36-1719	SW6010	Thallium	UJ	Low CRDL recovery.

Table 2: Qualified Analytical Data (continued)

Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-B36-1719	SW6010	Antimony	UJ	Low PDS recovery. Serial dilution %D
				>10%. Low MS/MSD recoveries.
W18STMGP-B36-1719	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS
				recovery. Serial dilution %D >10%.
W18STMGP-B36-1719	SW6010	Silver	UJ	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B36-1719	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B36-1719	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B36-1719	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B36-1719	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B36-1719	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B36-2527	SW6010	Antimony	J	Low PDS recovery. Serial dilution %D
				>10%. Low MS/MSD recoveries.
W18STMGP-B36-2527	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS
V1100FD 10D D01 050F	GYYYCO1O	0.1	***	recovery. Serial dilution %D >10%.
W18STMGP-B36-2527	SW6010	Silver	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B36-2527	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B36-2527	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B36-2527	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B36-2527	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B36-2527	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B36-2527DL	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B36-2527DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B36-2527DL	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-2527DL2	SW8270	Benzo(g,h,i)perylene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW8260	Isopropylbenzene	R	Low internal standard recovery. Continuing calibration %D >90%.
W18STMGP-B36-3335	SW8260	1,1,2,2-Tetrachloroethane	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW8260	1,3-Dichlorobenzene	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW8260	1,2-Dichlorobenzene	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW8260	1,4-Dichlorobenzene	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW8260	1,2-Dibromo-3-chloropropane	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW8260	1,2,4-Trichlorobenzene	UJ	Low internal standard recovery.
W18STMGP-B36-3335	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B36-3335	SW6010	Antimony	UJ	Low PDS recovery. Serial dilution %D >10%. Low MS/MSD recoveries.
W18STMGP-B36-3335	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18STMGP-B36-3335	SW6010	Silver	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B36-3335	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B36-3335	SW6010	Zinc	J	Serial dilution %D >10%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B36-3335	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B36-3335	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335	SW8270	Benzo(g,h,i)perylene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-3335DL	SW8260	Isopropylbenzene	R	Continuing calibration %D >90%.
W18ST-B36-34	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B36-34	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B36-34	SW7471	Mercury	J	High CRDL recovery.
W18ST-B36-34	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B36-34	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B36-34	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B36-34	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B36-34	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B36-34DL	SW8270	Dibenz(a,h)anthracene	J	Continuing calibration %D >20%.
W18ST-B36-34DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-B36-34DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B36-34DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-B36-57	SW8260	Carbon disulfide	J	Continuing calibration %D >20%.
W18STMGP-B36-57	SW8260	Isopropylbenzene	R	Continuing calibration %D >90%.
W18STMGP-B36-57	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B36-57	SW6010	Antimony	J	Low PDS recovery. Serial dilution %D >10%. Low MS/MSD recoveries.
W18STMGP-B36-57	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18STMGP-B36-57	SW6010	Silver	UJ	Low MS/MSD recoveries.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B36-57	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B36-57	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B36-57	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B36-57	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries. Low internal standard recovery.
W18STMGP-B36-57	SW8270	Benzo(k)fluoranthene	J	Low internal standard recovery.
W18STMGP-B36-57	SW8270	Benzo(a)pyrene	J	Low internal standard recovery.
W18STMGP-B36-57	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57	SW8270	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18STMGP-B36-57	SW8270	Benzo(g,h,i)perylene	UJ	Low MS/MSD recoveries. Low internal standard recovery.
W18STMGP-B36-57DL	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57DL	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57DL	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57DL	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-B36-57DL	SW8270	Benzo(g,h,i)perylene	UJ	Low MS/MSD recoveries.
W18STMGP-B38-1315	SW8260	Acetone	J	Initial calibration %RSD >15%.
W18STMGP-B38-1315	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B38-1315	SW7471	Mercury	J	Low CRDL recovery.
W18STMGP-B38-2123	SW6010	Lead	J	High CRDL recovery.
W18STMGP-B38-2123	SW7471	Mercury	J	Low CRDL recovery.
W18ST-B38-34	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B38-34	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B38-34	SW7471	Mercury	J	High CRDL recovery.
W18ST-B38-34	SW6010	Nickel	J	Serial dilution %D >10%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B38-34	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B38-34	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B38-34	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B38-34	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B38-34DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B38-34DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B38-45	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B38-45	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B38-45	SW7471	Mercury	J	High CRDL recovery.
W18ST-B38-45	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B38-45	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B38-45	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B38-45	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	2-Methylnaphthalene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	1,1-Biphenyl	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Acenaphthylene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Acenaphthene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Dibenzofuran	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Anthracene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B38-45	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B38-45	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B49-1012	SW8260	Methylcyclohexane		Initial calibration %RSD >15%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1012	SW8260	Ethylbenzene	J	High internal standard recovery.
W18ST-B49-1012	SW8260	m-/p-Xylenes	J	High internal standard recovery. Initial calibration %RSD >15%.
W18ST-B49-1012	SW8260	o-Xylene	J	High internal standard recovery.
W18ST-B49-1012	SW8260	Isopropylbenzene	J	High internal standard recovery.
W18ST-B49-1012	SW6010	Chromium	J	High CRDL recovery.
W18ST-B49-1012	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B49-1012	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B49-1012	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B49-1012	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-1012	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B49-1012	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B49-1012DL	SW8260	Toluene	J	Initial calibration %RSD >15%.
W18ST-B49-1012DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-1012DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B49-1012DL2	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B49-1012DL2	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-1415	SW8260	Dichlorodifluoromethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1415	SW8260	Chloromethane	R	Internal standard recovery <25% of that in
.,	2 0 _ 0 0			the associated 12-hour standard.
W18ST-B49-1415	SW8260	Vinyl chloride	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Bromomethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Chloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Trichlorofluoromethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,1,2-Trichlorotrifluoroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,1-Dichloroethene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Acetone	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Carbon disulfide	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Methyl tert-butyl ether	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Methyl acetate	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Methylene chloride	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	tran-1,2-Dichloroethene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,1-Dichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Cyclohexane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	2-Butanone	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1415	SW8260	Carbon tetrachloride	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	cis-1,2-Dichloroethene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Chloroform	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,1,1-Trichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Methylcyclohexane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Benzene	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,2-Dichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Trichloroethene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,2-Dichloropropane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Bromodichloromethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	4-Methyl-2-pentanone	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Toluene	J	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	trans-1,3-Dichloropropene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	cis-1,3-Dichloropropene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,1,2-Trichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	2-Hexanone	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1415	SW8260	Dibromochloromethane	R	Internal standard recovery <25% of that in
W 1051-D47-1415	5 11 0200	Dioromocmoromethane	K	the associated 12-hour standard.
W18ST-B49-1415	SW8260	1,2-Dibromoethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Tetrachloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Chlorobenzene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1415	SW8260	Ethylbenzene	J	Internal standard recovery <25% of that in
			_	the associated 12-hour standard.
W18ST-B49-1415	SW8260	m-/p-Xylenes	J	Internal standard recovery <25% of that in
				the associated 12-hour standard. Initial
	~~~~		_	calibration %RSD >15%.
W18ST-B49-1415	SW8260	o-Xylene	J	Internal standard recovery <25% of that in
W/100TP D 40 1415	G11103 60	G.:		the associated 12-hour standard.
W18ST-B49-1415	SW8260	Styrene	J	Internal standard recovery <25% of that in
W/100F D 40 1415	CMMOSCO	D 6	D.	the associated 12-hour standard.
W18ST-B49-1415	SW8260	Bromoform	R	Internal standard recovery <25% of that in
W18ST-B49-1415	SW8260	Isopropylbenzene	J	the associated 12-hour standard.
				High internal standard recovery.
W18ST-B49-1415	SW6010	Chromium	J	High CRDL recovery.
W18ST-B49-1415	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
				>10%. High MS/MSD recoveries.
W18ST-B49-1415	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B49-1415	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B49-1415	SW8270	Pyrene	J	Low internal standard recovery.
W18ST-B49-1415	SW8270	Butylbenzyl phthalate	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	3,3'-Dichlorobenzidine	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	Benzo(a)anthracene	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	Chrysene	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	bis(2-Ethylhexyl)phthalate	J	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1415	SW8270	Di-n-octyl phthalate	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	* 1	UJ	Low internal standard recovery.
W18ST-B49-1415	SW8270	Indeno(1,2,3-cd)pyrene Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-1415DL	SW8260	Toluene	J	Initial calibration %RSD >15%.
W18ST-B49-1415DL	SW8270	Naphthalene	J	Low internal standard recovery.
		•		
W18ST-B49-1415DL	SW8270	2-Methylnaphthalene	J	Low internal standard recovery.
W18ST-B49-1415DL	SW8270	All non-detected semivolatile organic analytes	UJ	Low internal standard recovery.
W18ST-B49-1718	SW8260	Dichlorodifluoromethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Chloromethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Vinyl chloride	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Bromomethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Chloroethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Trichlorofluoromethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	1,1,2-Trichlorotrifluoroethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	1,1-Dichloroethene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Acetone	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Carbon disulfide	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Methyl tert-butyl ether	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B49-1718	SW8260	Methyl acetate	R	Internal standard recovery <25% of that in the associated 12-hour standard.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1718	SW8260	Methylene chloride	J	Internal standard recovery <25% of that in
	2 0 _ 0 0			the associated 12-hour standard.
				Continuing calibration %D > 20%.
W18ST-B49-1718	SW8260	tran-1,2-Dichloroethene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1718	SW8260	1,1-Dichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1718	SW8260	Cyclohexane	J	Internal standard recovery <25% of that in
W100T D40 1710	CMANAGO	2. D	D	the associated 12-hour standard.
W18ST-B49-1718	SW8260	2-Butanone	R	Internal standard recovery <25% of that in
W18ST-B49-1718	SW8260	cis-1,2-Dichloroethene	R	the associated 12-hour standard.  Internal standard recovery <25% of that in
W 1651-D49-1716	5 W 6200	cis-1,2-Dichioroethelie	K	the associated 12-hour standard.
W18ST-B49-1718	SW8260	Chloroform	R	Internal standard recovery <25% of that in
W 1051 <b>D</b> 49 1710	5 11 0200	Chlorotorm	IX.	the associated 12-hour standard.
W18ST-B49-1718	SW8260	1,1,1-Trichloroethane	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18ST-B49-1718	SW8260	Methylcyclohexane	J	Internal standard recovery <25% of that in
				the associated 12-hour standard. Initial
				calibration %RSD >15%. Continuing
			_	calibration %D <20%.
W18ST-B49-1718	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B49-1718	SW8260	Isopropylbenzene	J	High internal standard recovery.
W18ST-B49-1718	SW6010	Chromium	J	High CRDL recovery.
W18ST-B49-1718	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
				>10%. High MS/MSD recoveries.
W18ST-B49-1718	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B49-1718	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B49-1718	SW8270	3-/4-Methylphenols	J	Continuing calibration %D >20%.
W18ST-B49-1718	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B49-1718	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
		<b>7</b> 1	L	

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1718	SW8270	Fluorene	riag	Continuing calibration %D >20%.
W18ST-B49-1718	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B49-1718	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B49-1718DL	SW8260	Toluene	J	Continuing calibration %D >20%.
W18ST-B49-1718DL	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B49-1718DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-1718DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B49-1718DL2	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	Acetophenone	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	Nitrobenzene	UJ	Low internal standard recovery.
W18ST-B49-1718DL2	SW8270	Isophorone	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

W18ST-B49-1718DL2 SW8270 2,4-Dimethylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Chloroethoxy)methane UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2,4-Dichlorophenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2,4-Dichlorophenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Naphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Caprolactam UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D > 20%. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D > 20%. W18ST-B49-12324 SW8260 M-/p-Xylenes J Initial calibration %RSD > 15%.	Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-1718DL2 SW8270 2,4-Dimethylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Chloroethoxy)methane UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4, Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2, Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2, Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 3,3'-Dichlorobenzidine UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low inter	W18ST-B49-1718DL2		· ·		
W18ST-B49-1718DL2 SW8270 bis(2-Chloroethoxy)methane UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2,4-Dichlorophenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Naphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Caprolactam UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 J-Methylnaphthalene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 J-Methylnaphthalene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 J-Methylnaphthalene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(c)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery.	W18ST-B49-1718DL2	SW8270	•	UJ	
W18ST-B49-1718DL2 SW8270 A_Chlorophenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 A_Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 A_Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene	W18ST-B49-1718DL2	SW8270		UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 A-Chloroaniline UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Caprolactam UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 A-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 A-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low in	W18ST-B49-1718DL2	SW8270		UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Hexachlorobutadiene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D > 20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD > 15%.	W18ST-B49-1718DL2	SW8270		J	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Caprolactam UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 4-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-2324 SW8260 m-/p-Xylenes UJ Initial calibration %RSD >15%. Continuing calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	1	UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 4-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bi-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-2324 SW8260 Carbon disulfide J Initial calibration %RSD >15%. Continuing calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 4-Chloro-3-methylphenol UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 2-Methylnaphthalene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 Carbon disulfide J Initial calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Caprolactam	UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Butylbenzylphthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-2324 SW8260 Carbon disulfide UJ Initial calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270		UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	2-Methylnaphthalene	J	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Pyrene	J	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Benzo(a)anthracene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Chrysene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Butylbenzylphthalate	UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 bis(2-Ethylhexyl)phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	3,3'-Dichlorobenzidine	UJ	Low internal standard recovery.
W18ST-B49-1718DL2 W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery. UJ Low internal standard recovery.	W18ST-B49-1718DL2	SW8270	Benzo(a)anthracene	J	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Di-n-octyl phthalate UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 Carbon disulfide J Initial calibration %RSD >15%. Continuing calibration %RSD >15%. Continuing calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Chrysene	J	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Benzo(b)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(k)fluoranthene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(a)pyrene J Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Indeno(1,2,3-cd)pyrene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Dibenz(a,h)anthracene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Benzo(g,h,i)perylene UJ Low internal standard recovery. W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D >20%. W18ST-B49-2324 SW8260 Carbon disulfide J Initial calibration %RSD >15%. Continuing calibration %RSD >15%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	bis(2-Ethylhexyl)phthalate	UJ	Low internal standard recovery.
W18ST-B49-1718DL2  W18ST-B49-1718DL2  SW8270  Benzo(k)fluoranthene  UJ Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Benzo(a)pyrene  UJ Low internal standard recovery.  UJ Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Dibenz(a,h)anthracene  UJ Low internal standard recovery.  UJ Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Benzo(g,h,i)perylene  UJ Low internal standard recovery.  UJ Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Fluorene  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.  UJ Low internal standard recovery.	W18ST-B49-1718DL2	SW8270	Di-n-octyl phthalate	UJ	Low internal standard recovery.
W18ST-B49-1718DL2  W18ST-B49-1718DL2  SW8270  Benzo(a)pyrene  UJ  Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Dibenz(a,h)anthracene  W18ST-B49-1718DL2  SW8270  Benzo(g,h,i)perylene  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  W18ST-B49-1718DL2  SW8270  Benzo(g,h,i)perylene  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  UJ  Low internal standa	W18ST-B49-1718DL2	SW8270	Benzo(b)fluoranthene	UJ	Low internal standard recovery.
W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-1718DL2  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W19ST-B49-2324  W20ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324  W30ST-B49-2324	W18ST-B49-1718DL2	SW8270	Benzo(k)fluoranthene	UJ	Low internal standard recovery.
W18ST-B49-1718DL2  W18ST-B49-1718DL2  SW8270  Benzo(g,h,i)perylene  W18ST-B49-1718DL2  W18ST-B49-1718DL2  SW8270  Benzo(g,h,i)perylene  UJ  Low internal standard recovery.  UJ  Low internal standard recovery.  J  Continuing calibration %D >20%.  W18ST-B49-2324  SW8260  Carbon disulfide  J  Initial calibration %RSD >15%.  Continuing calibration %D >20%.  W18ST-B49-2324  SW8260  M-/p-Xylenes  J  Initial calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270	Benzo(a)pyrene	J	Low internal standard recovery.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W18ST-B49-1718DL2	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low internal standard recovery.
W18ST-B49-1718DL2  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  W18ST-B49-2324  SW8260  W18ST-B49-2324  SW8260  W18ST-B49-2324  SW8260  M-/p-Xylenes  J Continuing calibration %D >20%.  Continuing calibration %D >20%.  J Initial calibration %RSD >15%.	W18ST-B49-1718DL2	SW8270		UJ	Low internal standard recovery.
W18ST-B49-1718DL2 SW8270 Fluorene J Continuing calibration %D>20%. W18ST-B49-2324 SW8260 Carbon disulfide J Initial calibration %RSD>15%. Continuing calibration %D>20%. W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD>15%.	W18ST-B49-1718DL2	SW8270	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.
W18ST-B49-2324	W18ST-B49-1718DL2	SW8270		J	Continuing calibration %D >20%.
W18ST-B49-2324 SW8260 m-/p-Xylenes J Initial calibration %RSD >15%.	W18ST-B49-2324	SW8260	Carbon disulfide	J	
1 7	W18ST-B49-2324	SW8260	m-/p-Xylenes	J	
	W18ST-B49-2324	SW6010	Chromium	J	High CRDL recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B49-2324	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
		-		>10%. High MS/MSD recoveries.
W18ST-B49-2324	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B49-2324	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B49-2324	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B49-2324	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B49-2324	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B49-2324	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B49-2324	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B49-2324DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B50-810	SW8260	Acetone	J	Initial calibration %RSD >15%. Continuing calibration %D >20%.
W18ST-B50-810	SW8260	Carbon disulfide	J	Continuing calibration %D >20%.
W18ST-B50-810	SW6010	Chromium	J	High CRDL recovery.
W18ST-B50-810	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B50-810	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B50-810	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B50-2123	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B50-2123	SW6010	Chromium	J	High CRDL recovery.
W18ST-B50-2123	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B50-2123	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B50-2123	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B50-2123	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B50-2123	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B50-2123	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B50-2123	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B50-2123	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
	I .	1	1	

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B50-2123DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B50-2123DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B50-23	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B50-23	SW7471	Mercury	J	High CRDL recovery.
W18ST-B50-23	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B50-23	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.
W18ST-B50-23	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B50-23	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B50-23	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B50-23	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-B50-2627	SW8260	Carbon disulfide	J	Initial calibration %RSD >15%. Continuing calibration %D >20%.
W18ST-B50-2627	SW8260	Cyclohexane	J	Initial calibration %RSD >15%.
W18ST-B50-2627	SW8260	Methylcyclohexane	J	Initial calibration %RSD >15%. Continuing calibration %D >20%.
W18ST-B50-2627	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B50-2627	SW6010	Chromium	J	High CRDL recovery.
W18ST-B50-2627	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B50-2627	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B50-2627	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B51-6	SW8260	Carbon disulfide	J	Initial calibration %RSD >15%.
W18ST-B51-6	SW8260	Cyclohexane	J	Initial calibration %RSD >15%.
W18ST-B51-6	SW8260	Methylcyclohexane	J	Initial calibration %RSD >15%.
W18ST-B51-6	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B51-6	SW8260	Isopropylbenzene	J	Low internal standard recovery.
W18ST-B51-6	SW8260	1,1,2,2-Tetrachloroethane	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B51-6	SW8260	1,3-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B51-6	SW8260	1,2-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B51-6	SW8260	1,4-Dichlorobenzene	UJ	Low internal standard recovery.
W18ST-B51-6	SW8260	1,2-Dibromo-3-chloropropane	UJ	Low internal standard recovery.
W18ST-B51-6	SW8260	1,2,4-Trichlorobenzene	UJ	Low internal standard recovery.
W18ST-B51-6	SW6010	Chromium	J	High CRDL recovery.
W18ST-B51-6	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B51-6	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B51-6	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B51-6	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-6	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-6DL	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B51-14	SW8260	Cyclohexane	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-B51-14	SW8260	Methylcyclohexane	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-B51-14	SW8260	Benzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B51-14	SW8260	Toluene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B51-14	SW8260	Ethylbenzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-B51-14	SW8260	m-/p-Xylenes	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-B51-14	SW8260	o-Xylene	J	Internal standard recovery <25% of that in the associated 12-hour standard.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B51-14	SW8260	Isopropylbenzene	J	Internal standard recovery <25% of that in
Widdi Barri	5 11 0200	Isopropyroenzene	3	the associated 12-hour standard.
W18ST-B51-14	SW8260	All non-detected volatile	R	Internal standard recovery <25% of that in
		compounds.		the associated 12-hour standard.
W18ST-B51-14	SW6010	Chromium	J	High CRDL recovery.
W18ST-B51-14	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
W18ST-B51-14	SW6010	Selenium	UJ	>10%. High MS/MSD recoveries.  Low CRDL recovery.
W18ST-B51-14	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B51-14	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B51-14	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B51-14	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-14	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B51-14	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-14DL	SW8260	Toluene	J	Initial calibration %RSD >15%.
W18ST-B51-14DL	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B51-14DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-14DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-14DL2	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field	Analytical			
Identification	Method	Analyte	Flag	Reason for Qualification
W18ST-B51-14DL2	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Acetophenone	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Nitrobenzene	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Isophorone	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2-Nitrophenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2,4-Dichlorophenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Naphthalene	J	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	4-Chloroaniline	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Caprolactam	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	4-Chloro-3-methylphenol	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	2-Methylnaphthalene	J	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Pyrene	J	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Butylbenzylphthalate	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	3,3'-Dichlorobenzidine	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Benzo(a)anthracene	J	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Chrysene	J	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	bis(2-Ethylhexyl)phthalate	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Di-n-octyl phthalate	UJ	Low internal standard recovery.
W18ST-B51-14DL2	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B51-14DL2	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-22	SW8260	Cyclohexane	J	Surrogate recovery < 10%. Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B51-22	SW8260	Methylcyclohexane	J	Surrogate recovery < 10%. Low internal standard recovery. Initial calibration %RSD >15%.
W18ST-B51-22	SW8260	Benzene	J	Surrogate recovery < 10%.
W18ST-B51-22	SW8260	Toluene	J	Surrogate recovery < 10%.
W18ST-B51-22	SW8260	Ethylbenzene	J	Surrogate recovery < 10%.
W18ST-B51-22	SW8260	m-/p-Xylenes	J	Surrogate recovery < 10%. Initial calibration %RSD >15%.
W18ST-B51-22	SW8260	o-Xylene	J	Surrogate recovery < 10%.
W18ST-B51-22	SW8260	Isopropylbenzene	J	Surrogate recovery < 10%. Low internal standard recovery.
W18ST-B51-22	SW8260	All non-detected volatile compounds.	R	Surrogate recovery < 10%.
W18ST-B51-22	SW6010	Chromium	J	High CRDL recovery.
W18ST-B51-22	SW7471	Mercury	J	High CRDL recovery. High MS/MSD recoveries. Serial dilution %D >10%.
W18ST-B51-22	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B51-22	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B51-22	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B51-22	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B51-22	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-22	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B51-22	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-22DL	SW8260	Toluene	J	Initial calibration %RSD >15%.
W18ST-B51-22DL	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	Phenol	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B51-22DL	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B51-22DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-22DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-22DL2	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Acetophenone	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Nitrobenzene	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Isophorone	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2-Nitrophenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2,4-Dichlorophenol	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Naphthalene	J	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	4-Chloroaniline	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Amaluta	Floor	Decree for Ovelification
W18ST-B51-22DL2	SW8270	Analyte Hexachlorobutadiene	<b>Flag</b> UJ	Reason for Qualification  Low internal standard recovery.
W18ST-B51-22DL2	SW8270		UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Caprolactam	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	4-Chloro-3-methylphenol	J	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	2-Methylnaphthalene	J	
		Benzo(b)fluoranthene		Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Benzo(k)fluoranthene	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Benzo(a)pyrene	J	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.
W18ST-B51-22DL2	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-22DL2	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-33	SW8260	Carbon disulfide	J	Initial calibraton %RSD >15%.
W18ST-B51-33	SW8260	m-/p-Xylenes	J	Initial calibration %RSD >15%.
W18ST-B51-33	SW6010	Chromium	J	High CRDL recovery.
W18ST-B51-33	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D >10%. High MS/MSD recoveries.
W18ST-B51-33	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-B51-33	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-B51-33	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-B51-33	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-B51-33	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-33	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-B51-33	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B51-33DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-B51-33DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-B64-3335	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-B64-3335	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-B64-3335	SW7471	Mercury	J	High CRDL recovery.
W18ST-B64-3335	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-B64-3335	SW6010	Selenium	J	Low CRDL recovery.
W18ST-B64-3335	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18ST-B64-3335	SW8270	Naphthalene	J	Initial calibration %RSD >15%.
W18ST-B64-3335	SW8270	Fluorene	J	Initial calibration %RSD >15%.
W18ST-B64-3335	SW8270	Phenanthrene	J	Initial calibration %RSD >15%.
W18ST-B64-3335	SW8270	Benzo(a)anthracene	J	Initial calibration %RSD >15%.
W18ST-B64-3335	SW8270	bis(2-Ethylhexyl)phthalate	J	Initial calibration %RSD >15%.
W18ST-B64-3335	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-B64-3335	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-B64-3335DL	SW8260	Toluene	J	High MS/MSD recoveries.
W18STMGP-B73-1719	SW8260	All non-detected volatile compounds (except those flagged "R").	UJ	Low internal standard recovery.
W18STMGP-B73-1719	SW8260	Benzene	J	Low internal standard recovery.
W18STMGP-B73-1719	SW8260	Toluene	J	Low internal standard recovery.
W18STMGP-B73-1719	SW8260	Isopropylbenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard. Continuing calibration %D >90%.
W18STMGP-B73-1719	SW8260	1,1,2,2-Tetrachloroethane	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-B73-1719	SW8260	1,3-Dichlorobenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-B73-1719	SW8260	1,2-Dichlorobenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-B73-1719	SW8260	1,4-Dichlorobenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-B73-1719	SW8260	1,2-Dibromo-3-chloropropane	R	Internal standard recovery <25% of that in the associated 12-hour standard.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-B73-1719	SW8260	1,2,4-Trichlorobenzene	R	Internal standard recovery <25% of that in
				the associated 12-hour standard.
W18STMGP-B73-1719	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-B73-1719	SW6010	Antimony	UJ	Low PDS recovery. Serial dilution %D
WILDER ACT DEC 1510	CANACOLO			>10%. Low MS/MSD recoveries.
W18STMGP-B73-1719	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS recovery. Serial dilution %D >10%.
W18STMGP-B73-1719	SW6010	Silver	J	Low MS/MSD recoveries.
W18STMGP-B73-1719	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-B73-1719	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-B73-1719	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-B73-1719	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-B73-1719	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-B73-1719	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-B73-1719	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-B73-1719	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18STMGP-B73-1719	SW8270	Benzo(g,h,i)perylene	UJ	Low MS/MSD recoveries.
W18STMGP-B73-1719RE	SW8260	All non-detected volatile compounds.	R	Low surrogate recovery. All internal standard recoveries are <25% of those in the associated 12-hour standard.
W18ST-COMP-4-24-04	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-COMP-4-24-04	SW8082	Aroclor 1016	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-24-04	SW8082	Aroclor 1221	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-24-04	SW8082	Aroclor 1232	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-24-04	SW8082	Aroclor 1242	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-24-04	SW8082	Aroclor 1248	UJ	Extracted 1 day past holding time expiration.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-24-04	SW8082	Aroclor 1254	UJ	Extracted 1 day past holding time
W 1051-COM1 -4-24-04	S W 6062	Arocioi 1234	03	expiration.
W18ST-COMP-4-24-04	SW8082	Aroclor 1260	J	Extracted 1 day past holding time
				expiration. High MS/MSD recoveries.
W18ST-COMP-4-24-04	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D
				>10%.
W18ST-COMP-4-24-04	SW7471	Mercury	J	High CRDL recovery.
W18ST-COMP-4-24-04	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-COMP-4-24-04	SW6010	Selenium	J	Low CRDL recovery.
W18ST-COMP-4-24-04	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS
				recovery. Serial dilution %D >10%.
W18ST-COMP-4-24-04	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-COMP-4-24-04	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low MS/MSD recoveries.
W18ST-COMP-4-24-04DL	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-COMP-4-27-04	SW8260	Toluene	J	High MS/MSD recoveries.
W18ST-COMP-4-27-04	SW8082	Aroclor 1016	UJ	Extracted 1 day past holding time
	~~~~			expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1221	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1232	UJ	Extracted 1 day past holding time
	~~~~			expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1242	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1248	UJ	Extracted 1 day past holding time
				expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1254	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-27-04	SW8082	Aroclor 1260	UJ	Extracted 1 day past holding time
				expiration.
W18ST-COMP-4-27-04	SW6010	Chromium	J	High CRDL recovery. Serial dilution %D >10%.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-27-04	SW7471	Mercury	J	High CRDL recovery.
W18ST-COMP-4-27-04	SW6010	Nickel	J	Serial dilution %D >10%.
W18ST-COMP-4-27-04	SW6010	Selenium	J	Low CRDL recovery.
W18ST-COMP-4-27-04	SW6010	Zinc	J	Low MS/MSD recoveries. Low PDS recovery.
W18ST-COMP-4-27-04	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-COMP-4-27-04	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-COMP-4-27-04DL	SW8270	Dibenz(a,h)anthracene	J	Continuing calibration %D >20%.
W18ST-COMP-4-27-04DL	SW8270	Benzo(g,h,i)perylene	J	Continuing calibration %D >20%.
W18ST-COMP-4-27-04DL	SW8270	Fluoranthene	J	Low MS/MSD recoveries.
W18ST-COMP-4-27-04DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18ST-COMP-4-28-04	SW8260	Methylcyclohexane	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%. Continuing calibration %D <20%.
W18ST-COMP-4-28-04	SW8260	Benzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8260	Toluene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8260	Ethylbenzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8260	m-/p-Xylenes	J	Internal standard recovery <25% of that in the associated 12-hour standard. Initial calibration %RSD >15%.
W18ST-COMP-4-28-04	SW8260	o-Xylene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8260	Styrene	J	Internal standard recovery <25% of that in the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8260	Isopropylbenzene	J	Internal standard recovery <25% of that in the associated 12-hour standard.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-28-04	SW8260	All non-detected volatile	R	Internal standard recovery <25% of that in
. 20 0 .	2110200	compounds.		the associated 12-hour standard.
W18ST-COMP-4-28-04	SW8082	Aroclor 1016	UJ	Extracted 1 day past holding time
				expiration.
W18ST-COMP-4-28-04	SW8082	Aroclor 1221	UJ	Extracted 1 day past holding time
W18ST-COMP-4-28-04	SW8082	Aroclor 1232	UJ	expiration.  Extracted 1 day past holding time
W 1851-COMP-4-28-04	S W 6062	Alociol 1252	OJ.	expiration.
W18ST-COMP-4-28-04	SW8082	Aroclor 1242	UJ	Extracted 1 day past holding time
				expiration.
W18ST-COMP-4-28-04	SW8082	Aroclor 1248	UJ	Extracted 1 day past holding time
	GYYY000 <b>0</b>		***	expiration.
W18ST-COMP-4-28-04	SW8082	Aroclor 1254	UJ	Extracted 1 day past holding time expiration.
W18ST-COMP-4-28-04	SW8082	Aroclor 1260	UJ	Extracted 1 day past holding time
W1051 COM1 4 20 04	5 17 0002	7 HOCIOI 1200	03	expiration.
W18ST-COMP-4-28-04	SW6010	Chromium	J	High CRDL recovery.
W18ST-COMP-4-28-04	SW7471	Mercury	J	High CRDL recovery. Serial dilution %D
				>10%. High MS/MSD recoveries.
W18ST-COMP-4-28-04	SW6010	Selenium	UJ	Low CRDL recovery.
W18ST-COMP-4-28-04	SW6010	Zinc	J	Serial dilution %D >10%.
W18ST-COMP-4-28-04	SW8270	Naphthalene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04	SW8270	2-Methylnaphthalene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04	SW8270	Carbazole	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04DL	SW8260	Toluene	J	Initial calibration %RSD >15%.
W18ST-COMP-4-28-04DL	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
	1		1	<u>-</u>

**Table 2: Qualified Analytical Data (continued)** 

Field	Analytical		T-1	D 0 0 10 11
Identification	Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-28-04DL	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04DL	SW8270	Benzo(k)fluoranthene	J	Continuing calibration %D >20%.
W18ST-COMP-4-28-04DL2	SW8270	Benzaldehyde	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Phenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	bis(2-Chloroethyl)ether	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Chlorophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Methylphenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,2-Oxybis(1-chloropropane)	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Acetophenone	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	3-/4-Methylphenols	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	N-Nitroso-di-n-propylamine	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Hexachloroethane	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Nitrobenzene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Isophorone	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Nitrophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4-Dimethylphenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	bis(2-Chloroethoxy)methane	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4-Dichlorophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Naphthalene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	4-Chloroaniline	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Hexachlorobutadiene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Caprolactam	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-28-04DL2	SW8270	4-Chloro-3-methylphenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Methylnaphthalene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Hexachlorocyclopentadiene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4,6-Trichlorophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4,5-Trichlorophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	1,1-Biphenyl	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Chloronaphthalene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2-Nitroaniline	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Dimethylphthalate	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Acenaphthylene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,6-Dinitrotoluene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	3-Nitroaniline	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Acenaphthene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4-Dinitrophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	4-Nitrophenol	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Dibenofuran	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	2,4-Dinitrotoluene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Diethylphthalate	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	4-Chlorophenyl phenyl ether	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Fluorene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	4-Nitroaniline	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Pyrene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Butylbenzylphthalate	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	3,3'-Dichlorobenzidine	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Benzo(a)anthracene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Chrysene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	bis(2-Ethylhexyl)phthalate	UJ	Low internal standard recovery.

Table 2: Qualified Analytical Data (continued)

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18ST-COMP-4-28-04DL2	SW8270	Di-n-octyl phthalate	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Benzo(b)fluoranthene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Benzo(k)fluoranthene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Benzo(a)pyrene	J	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Indeno(1,2,3-cd)pyrene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Dibenz(a,h)anthracene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Benzo(g,h,i)perylene	UJ	Low internal standard recovery.
W18ST-COMP-4-28-04DL2	SW8270	Fluorene	J	Continuing calibration %D >20%.
W18STMGP-COMP-5-16-04	SW6010	TCLP Silver	UJ	Low MS/MSD recoveries.
W18STMGP-COMP-5-16-04	SW6010	TCLP Lead	J	Serial dilution %D >10%.
W18STMGP-COMP-5-16-04	SW6010	TCLP Mercury	UJ	Low CRDL recovery.
W18STMGP-DECON-4-26-04	SW7470	TCLP Mercury	R	CRDL recovery >150%.
W18STMGP-DECON-4-27-04	SW8260	TCLP Carbon tetrachloride	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04	SW8260	TCLP Benzene	J	Low internal standard recovery.
W18STMGP-DECON-4-27-04	SW8260	TCLP 1,2-Dichloroethane	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04	SW8260	TCLP Trichloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04	SW8260	TCLP Tetrachloroethene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-DECON-4-27-04	SW8260	TCLP Chlorobenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-DECON-4-27-04	SW7470	TCLP Mercury	J	High CRDL recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Vinyl chloride	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP 1,1-Dichloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP 2-Butanone	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Carbon tetrachloride	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Chloroform	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Benzene	J	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP 1,2-Dichloroethane	UJ	Low internal standard recovery.

**Table 2: Qualified Analytical Data (continued)** 

Field Identification	Analytical Method	Analyte	Flag	Reason for Qualification
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Trichloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Tetrachloroethene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-DECON-4-27-04RE	SW8260	TCLP Chlorobenzene	R	Internal standard recovery <25% of that in the associated 12-hour standard.
W18STMGP-DECON-4-28-04	SW7470	TCLP Mercury	J	High CRDL recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP Carbon tetrachloride	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP Benzene	J	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP 1,2-Dichloroethane	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP Trichloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP Tetrachloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW8260	TCLP Chlorobenzene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04	SW7470	TCLP Mercury	J	High CRDL recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP Carbon tetrachloride	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP Benzene	J	Low internal standard recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP 1,2-Dichloroethane	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP Trichloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP Tetrachloroethene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-8-04RE	SW8260	TCLP Chlorobenzene	UJ	Low internal standard recovery.
W18STMGP-DECON-5-16-04A	SW7470	TCLP Mercury	J	High CRDL recovery.
W18STMGP-DECON-5-16-04B	SW7470	TCLP Mercury	J	High CRDL recovery.
W18STMGP-DECON-52204	SW6010	TCLP Lead	UJ	Low CRDL recovery.
W18STMGP-DECON-52204	SW8270	TCLP Pentachlorophenol	R	Initial Calibration RRF and continuing calibration RF <0.050.
W18ST-RB-01	SW6010	Mercury	R	CRDL recovery <50%.
W18STMGP-TP4-56	SW8260	Isopropylbenzene	R	Continuing calibration %D >90%.
W18STMGP-TP4-56	SW6010	Thallium	UJ	Low CRDL recovery.
W18STMGP-TP4-56	SW6010	Antimony	J	Low PDS recovery. Serial dilution %D >10%. Low MS/MSD recoveries.

**Table 2: Qualified Analytical Data (continued)** 

Field	Analytical	A 1 . 4 .	171	Day of Oak Control
Identification	Method	Analyte	Flag	Reason for Qualification
W18STMGP-TP4-56	SW6010	Copper	J	Low MS/MSD recoveries. Low PDS
W18STMGP-TP4-56	SW6010	Silver	J	recovery. Serial dilution %D >10%.  Low MS/MSD recoveries.
W18STMGP-TP4-56	SW6010	Chromium	J	Serial dilution %D >10%.
W18STMGP-TP4-56	SW6010	Lead	J	Serial dilution %D >10%.
W18STMGP-TP4-56	SW6010	Zinc	J	Serial dilution %D >10%.
W18STMGP-TP4-56	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-TP4-56	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-TP4-56	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	Hexachlorocyclopentadiene	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	2,4-Dinitrophenol	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	4,6-Dinitro-2-methylphenol	UJ	Low MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	Benzo(b)fluoranthene	J	High MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	Indeno(1,2,3-cd)pyrene	J	Low MS/MSD recoveries.
W18STMGP-TP4-56DL	SW8270	Benzo(g,h,i)perylene	J	Low MS/MSD recoveries.
W18STMGP-42804A	SW6010	TCLP Lead	J	Low CRDL recovery.
W18STMGP-42804A	SW8270	TCLP Pentachlorophenol	R	Initial Calibration RRF and continuing calibration RF <0.050.
W18STMGP-42804B	SW6010	TCLP Lead	J	Low CRDL recovery.
W18STMGP-42804B	SW8270	TCLP Pentachlorophenol	R	Initial Calibration RRF and continuing calibration RF <0.050.
W18STMGP-52204	SW6010	TCLP Lead	J	Low CRDL recovery.
W18STMGP-52204	SW8270	TCLP Pentachlorophenol	R	Initial Calibration RRF and continuing calibration RF <0.050.

#### **Data Qualifier Definitions:**

J Estimated data. The reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.

#### **Table 2: Qualified Analytical Data (continued)**

U The analyte was not detected.

Post-Digestion Spike

UJ The analyte was analyzed for but was not detected above the reported sample quantitation limit. The associated value is an estimate and may be inaccurate or imprecise.

#### **Acronym Definitions:**

PDS

CRDL	Contract Required Detection Limit	RPD	Relative Percent Difference
%D	Percent Difference	RRF	Relative Response Factor
LCS	Laboratory Control Sample	%RSD	Percent Relative Standard Deviation
MS	Matrix Spike	SDG	Sample Delivery Group
MSD	Duplicate Matrix Spike	TCLP	Toxicity Characteristic Leaching Procedure

Table 3: Soil Samples Analyzed for Volatile Organic Analytes
More Than 10 Days After Collection

Sample	Method	Days Between Collection and Analysis
W18ST-B24-57	SW8260	12
W18ST-B24-79	SW8260	12
W18ST-B24-2527	SW8260	12
W18ST-B24-2527DL	SW8260	13
W18ST-B24-3335	SW8260	13
W18ST-B24-3335DL	SW8260	13
W18ST-B64-3335	SW8260	13
W18ST-B64-3335DL	SW8260	13
W18ST-B64-3335DL2	SW8260	14
W18ST-B24-5355	SW8260	13
W18ST-B25-79	SW8260	11
W18ST-B25-2022 W18ST-B25-2022DL	SW8260 SW8260	11
W18ST-B25-3233	SW8260	11
W18ST-B25-3233DL	SW8260	11
W18ST-B25-3334	SW8260	11
W18ST-B25-3334DL	SW8260	11
W18ST-B25-3334DL2	SW8260	11
W18ST-B50-23	SW8260	12
W18ST-B33-45	SW8260	12
W18ST-B32-45	SW8260	12
W18ST-B38-34	SW8260	12
W18ST-B38-45	SW8260	12
W18ST-B36-34	SW8260	12
W18ST-B22-1113	SW8260	11
W18ST-B22-1517	SW8260	11
W18ST-B22-2223	SW8260	11
W18ST-B22-2223DL	SW8260	11
W18ST-B22-2627	SW8260	11
W18ST-B22-2627DL	SW8260	14
W18ST-B23-9	SW8260	11
W18ST-B23-15	SW8260	14
W18ST-B23-17	SW8260	11
W18ST-B23-17DL	SW8260	11
W18ST-B23-24	SW8260	11

Table 3: Soil Samples Analyzed for Volatile Organic Analytes More Than 10 Days After Collection (continued)

Method	Days Between Collection and Analysis
SW8260	11
SW8260	11
SW8260	11
SW8260	11
SW8260	14
SW8260	11
SW8260	14
SW8260	11
SW8260	14
SW8260	11
SW8260	11
SW8260	14
SW8260	13
SW8260	11
SW8260	13
SW8260	11
	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260

Note: All positive results are flagged with "J" qualifiers and all non-detected results are flagged with "UJ" qualifiers in the samples listed in this table. These qualifications are not listed in Table 2.

Full Analytical Data Reports from the Laboratory are included on the enclosed compact discs.



Area 1 – Test Pit 1



Area 1 – Test Pit 1B

Former West 18th Street Gas Works





Area 1 – Test Pit 1B



Area 2 – Test Pit 2



Former West 18th Street Gas Works



Area 2 – Test Pit 2



Area 2 – Test Pit 2



Former West 18th Street Gas Works



Area 2 – Test Pit 2



Area 3 – Test Pit 3



Former West 18th Street Gas Works



Area 3 – Test Pit 3



Area 3 – Test Pit 3



Former West 18th Street Gas Works



Area 4 – Test Pit 5



Area 4 – Test Pit 5



Former West 18th Street Gas Works



Area 3 – Test Pit 6



Area 3 – Test Pit 6



Former West 18th Street Gas Works



Area 3 – Test Pit 6



Area 3 – Test Pit 6



Former West 18th Street Gas Works

# Remedial Investigation Work Plan For the Former West 18th Street Gas Works Manhattan, New York VCA Site # V00530-2

#### **Prepared For:**

Consolidated Edison Company of New York, Inc. 31-01 20th Avenue Long Island City, NY 11105-2048



#### Prepared By:

TRC Environmental Corporation 1200 Wall Street West Lyndhurst, New Jersey 07071



#### 1 INTRODUCTION

This Remedial Investigation Work Plan (RIWP) was prepared by TRC Environmental Corporation (TRC) on behalf of Consolidated Edison Company of New York, Inc. (Con Edison). It describes the field activities that will be conducted during the remedial investigation of the Former West 18th Street Works Site (the Site, VCA Site # V00530-2) in the Chelsea section of the west side of Manhattan. The former Site, which operated from approximately 1834 to approximately 1914 when the last of the gas holders were demolished, occupied a four-block area bounded by West 16th and West 20th Streets between 10th Avenue and the current bulkhead along the Hudson River. In addition, a small parcel located along the south side of West 18th Street, west of 10th Avenue, contained two gas holders. The plant included the gas works, which was located on the block between West 17th and West 18th Streets, a total of eleven above-ground gas holders previously located on various parcels, and coal storage areas. The former plant site currently contains commercial and industrial businesses that include storage warehouses, office buildings, art galleries, commercial studios and public parking lots. Implementation of the RI will generate analytical data from soil borings and monitoring wells, with which an evaluation of potential environmental impacts related to the former site operations can be completed.

#### 2 PROJECT BACKGROUND

Con Edison has entered into a Voluntary Cleanup Agreement (Index # D2-0003-02-08) (the VCA) with the New York State Department of Conservation (NYSDEC) to investigate and, if necessary, remediate its former MGP sites and manufactured gas holder sites. The former West 18th Street Gas Works is a former manufactured gas plant, the former grounds of which are now owned by third parties.

As an initial site investigation phase, Con Edison conducted a Site Characterization Study (SCS) at the Site from 2003 to 2005. The results of the SCS showed that soil and groundwater quality beneath various areas of the site has been impacted by operations of the former MGP. Based on these findings, and in accordance with the terms of the VCA, Con Edison will conduct a Remedial Investigation (RI) at the site. The work plan presented here in outlines the technical approach to the RI and the procedures and protocols that will be implemented during the investigation.

#### 3 PROJECT OBJECTIVES AND IMPLEMENTATION

This RIWP has been developed based on the West 18th Street Manufactured Gas Plant Site History Report, dated August 2002, prepared by Parsons, the Site Characterization Study Report for the Former West 18th Street Gas Works, dated January 2006, prepared by TRC, and the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (December 2002).

The objectives of the RI are to:

- Delineate the horizontal and vertical extent of MGP-impacted soil and groundwater identified during the Site Characterization Study;
- Determine if soil and or groundwater conditions pose an acute health risk and if so, do these conditions warrant implementation of interim remedial measure; and
- Provide sufficient data with which to develop a proposed Site remediation strategy, if necessary.

The RIWP specifies the number, type and location of samples and the protocols and procedures that will be used during the RI. In brief, the project objectives outlined above will be achieved through:

- Installation of soil borings to further evaluate subsurface conditions, for collection
  and analysis of soil samples, to further delineate subsurface geology, and to further
  delineate the areas of the site containing MGP-affected soil, as identified during the
  SCS.
- Installation of a shallow (i.e., water table) groundwater monitoring wells and shallow/deep groundwater monitoring well clusters.
- Measurement of groundwater elevations to clarify groundwater flow direction, evaluation of the presence of non-aqueous phase liquids (NAPLs) in the subsurface, and collection of groundwater samples from the complete groundwater monitoring well network for laboratory analysis.

Table 1 identifies the anticipated minimum number of soil boring and monitoring well locations. It is Con Edison's objective to maintain flexibility within the RI program, to add or adjust soil boring and/or monitoring well locations based upon additional field observations or analytical data, such that the delineation efforts can be completed in a cost-effective and timely manner. The addition of potential "step-out" borings or monitoring wells to the RI program will be discussed with the NYSDEC and the New York State Department of Health (NYSDOH) prior to

implementation. It is not Con Edison's objective to demonstrate compliance of every constituent with NYSDEC RSCOs. Many of the NYSDEC RSCOs are typically exceeded in urban fill, upon which most of the Site was constructed. The field observations and analytical data will be interpreted and compared with applicable NYSDEC and NYSDOH standards, criteria and guidance values. Provisions in the previously prepared SCS site-specific Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) will be implemented during the RI fieldwork for the protection of all Site workers and the community-at-large. The CAMP was developed based on NYSDOH guidelines and in cooperation with the NYSDEC and NYSDOH. Similarly, field procedures and QA/QC protocols specified in the SCS Field Sampling Plan and the QA/QC Project Plan will also be implemented. A competent, experienced, and professional team that combines the necessary technical, regulatory, and managerial experience on MGP sites will implement the RIWP, HASP, FSP, and QA/QC Project Plan to accomplish the project objectives.

The key activities that will be completed during the RI are listed below.

- Identification and location of subsurface utilities through site reconnaissance, including geophysical surveying;
- Drilling and sampling of soil borings;
- Installation and sampling of groundwater monitoring wells;
- Surveying;
- Analysis of samples by a NYSDOH ELAP-certified laboratory; and
- Evaluation and reporting of results.

The planned field investigation, as described in this RIWP, will be implemented upon approval of the RIWP by NYSDEC and NYSDOH. A project schedule will be provided to the NYSDEC at that time. Although an attempt will be made to perform all field work in one mobilization, it is anticipated that the field work will be implemented during multiple field events as necessary in response to staggered receipt of rights-of-entry by the owners of the various properties that comprise the site, access considerations, receipt of permits, and availability of subcontractors (e.g., drillers, surveyors, etc.).

A Remedial Investigation Report will be generated upon receipt and interpretation of the analytical data. The report will include a description of the following:

1. A Site history summary;

- 2. A description of the physical settings of the Site;
- 3. A technical overview of the RI activities, including a summary of the overall nature of contamination at the Site;
- 4. Findings, conclusions and recommendations;
- 5. Scaled site maps;
- 6. Tabulated analytical data and laboratory analytical reports;
- 7. Soil boring and monitoring well construction logs; and.
- 8. Summary of field observations and measurements;

Interpretation of the data and field observations will be used to:

- Delineate the aerial and vertical extent of residual MGP waste materials/impacts on soil and groundwater identified during the SCS;
- Develop a proposed Site Conceptual Model;
- Update the qualitative exposure assessment, as necessary; and
- Identify the need for, and develop, a proposed Site Remediation Strategy.

The Remedial Investigation Report will be submitted to the NYSDEC and NYSDOH.

SAMPLE ID	LOCATION	RATIONALE/PROVIDE HORIZONTAL VERTICAL DELINEATION IN THE AR OF:		SAMPLE DEPTH(S)	METHOD	ANALYTICAL PARAMETERS	COMPLETION DEPTH
SB-200	West of Block 691, Lot 1, in the parking lane of Route 9A.	SB-38	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-201	West of the parking lot on West 19th Street, in the parking lane of Route 9A.	SB-36 and SB-38	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-202	West of the parking lot on West 19th Street, in the parking lane of Route 9A.	SB-36 and SB-38	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-203	Northern side of 19th Street sidewalk, near western corner of Block 691, Lot 15.	SB-34	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-204	Northern side of 19th Street sidewalk, near eastern corner of Block 691, Lot 15.	SB-15 and SB-13	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-205	Northern side of 19th Street sidewalk, approximate center of Block 691, Lot 29.	SB-9	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-206	West of Block 690, Lot 12, in the right lane of Route 9A.	West of remediation area	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-207	Block 690, Lot 46, towards the northern portion of the property.	SB-15 and SB-13	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-208	Block 690, Lot 20, towards the northwestern portion of the property.	SB-12	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-209	Block 690, Lot 29, under the Highline Elevated Rail Tracks (Defunct)	SB-9 and SB-12	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-210	Southern side of 19th Street sidewalk, abutting Block 690, Lot 29.	SB-9	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-211	West of Block 690, Lot 12, in the parking lane of Route 9A.	West of remediation area	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.

6 1/18/2006

SAMPLE ID	LOCATION	RATIONALE/PROVIDE HORIZONTAL OR VERTICAL DELINEATION IN THE AREA OF:	MATRIX	SAMPLE DEPTH(S)	METHOD	ANALYTICAL PARAMETERS	COMPLETION DEPTH
SB-212	Block 690, Lot 46, in the southern portion of the property.	North and east of the remediation area, and SB-14 and SB-15	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-213	Block 690, Lot 20, northwest portion of property.	East of remediation area, and SB-14	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-214	Block 690, Lot 20, northwest portion of property.	SB-12 and SB-14	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-215	Block 690, Lot 29, west central portion of the property.	SB-9, SB-10 and SB-11	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-216	Chelsea Piers service road, west of Route 9A and Block 690, Lot 12.	SB-18 and SB-26	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-217	West of Block 690, Lot 12, in the southern portion of the parking lane of Route 9A.	West of remediation area	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-218	South of Block 690, Lot 12, in the northern portion of West 18th Street.	South of remediation area, north of SB-25	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-219	Block 690, Lot 20, southwestern portion of property.	East of remediation area, and SB-14	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-220	South of Block 690, Lot 20, in the northern portion of West 18th Street (mid-block).	South of SB-14, southwest of remediation area	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-221	Block 690, Lot 20, south central portion of the property.	SB-11, SB-12 and SB-14	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-222	Block 690, Lot 20, south eastern portion of the property.	SB-11	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-223	South of Block 690, Lot 20, in the northern portion of West 18th Street near 10th Avenue.	South of SB-10 and SB-11	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.

2 of 6 1/18/2006

		RATIONALE/PROVIDE HORIZONTAL OR VERTICAL DELINEATION IN THE AREA				ANALYTICAL	
SAMPLE ID	LOCATION	OF:	MATRIX	SAMPLE DEPTH(S)	METHOD	PARAMETERS	COMPLETION DEPTH
SB-224	Southeast of Block 690, Lot 29, on the sidewalk.	SB-10	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-225	West of Block 689, Lot 17, in the parking lane of Route 9A.	Southwest of remediation area, northwest of SB-25	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.  See Note D.
SB-226	On the southern sidewalk of West 18th Street, north of Block 689, Lot 17 (western side of the lot).	North of SB-25 and south of remediation area, with a focus on DNAPL	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of bedrock, or 100 feet, whichever is encountered first. If a low permeability unit is encountered (minimum 5-foot thickness), a steel casing will be set into the unit. Drilling will commence through the casing (a minimum of 24 hours after casing installation) to the planned terminal drilling depth.
SB-227	On the southern sidewalk of West 18th Street, north of Block 689, Lot 17 (east of SB-226).	North of SB-50 and south of remediation area	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-228	On the southern sidewalk of West 18th Street, north of Block 689, Lot 17 (eastern side of the lot).	North of SB-19 ad SB-47	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-229	On the sidewalk along 10th Avenue, east of Block 689, Lot 17	East of SB-19	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-230	Within the building footprint, northern portion of Block 715, Lot 59.	Slightly upgradient and outside of Gas Holder No. 7; believed to be hydraulically downgradient of Gas Holder No. 6	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-231	Chelsea Piers service road, west of Route 9A and Block 689, Lot 17.	SB-26 and SB-27	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-232	Northwestern portion of Block 689, Lot 17.	Between SB-24 cluster and SB-25, focus on DNAPL	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of bedrock, or 100 feet, whichever is encountered first. If a low permeability unit is encountered (minimum 5-foot thickness), a steel casing will be set into the unit. Drilling will commence through the casing (a minimum of 24 hours after casing installation) to the planned terminal drilling depth.

f 6 1/18/2006

		RATIONALE/PROVIDE HORIZONTAL OR VERTICAL DELINEATION IN THE AREA				ANALYTICAL	
SAMPLE ID	LOCATION	OF:	MATRIX	SAMPLE DEPTH(S)	METHOD	PARAMETERS	COMPLETION DEPTH
MW/SB-233	Western portion of Block 689, Lot 17.	East of SB-24 cluster, focus on DNAPL	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of bedrock, or 100 feet, whichever is encountered first. If a low permeability unit is encountered (minimum 5-foot thickness), a steel casing will be set into the unit. Drilling will commence through the casing (a minimum of 24 hours after casing installation) to the planned terminal drilling depth.
SB-234	Northeastern portion of Block 689, lot 17.	South of SB-19 and SB-47	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-235	Chelsea Piers service road, west of Route 9A and West 17th Street.	South of SB-27, north of SB-43	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-236	Southwestern portion of Block 689, Lot 17.	South of SB-24 cluster, focus on DNAPL	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of bedrock, or 100 feet, whichever is encountered first. If a low permeability unit is encountered (minimum 5-foot thickness), a steel casing will be set into the unit. Drilling will commence through the casing (a minimum of 24 hours after casing installation) to the planned terminal drilling depth.
SB-237	On the northern sidewalk of West 17th Street, southwestern area of Block 689, Lot 17.	Southeast of SB-24 cluster and south of SB 51, focus on DNAPL	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of bedrock, or 100 feet, whichever is encountered first. If a low permeability unis encountered (minimum 5-foot thickness), a steel casing will be set into the unit. Drilling will commence through the casing (a minimum of 24 hours after casing installation) to the planned termina drilling depth.
MW/SB-238	South of Chelsea Piers, west of Route 9A and Block 688, Lot 1001.	East of SB-43, SB-44, SB-45, SB-46 area	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-239	Within Route 9A parking lane, northern area, west of Block 688, Lot 1001.	Unexplored area, vicinity of former Gas Holders (Nos. 8, 9, 10, and 11)	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-240	Within the building footprint, northwestern corner of Block 688, Lot 1001.	Unexplored area, vicinity of former gas holders. West of SB-30, further south of SB-237	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-241	Within the building footprint, central portion of Block 688, Lot 1001.	South of SB-30	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.

6 1/18/2006

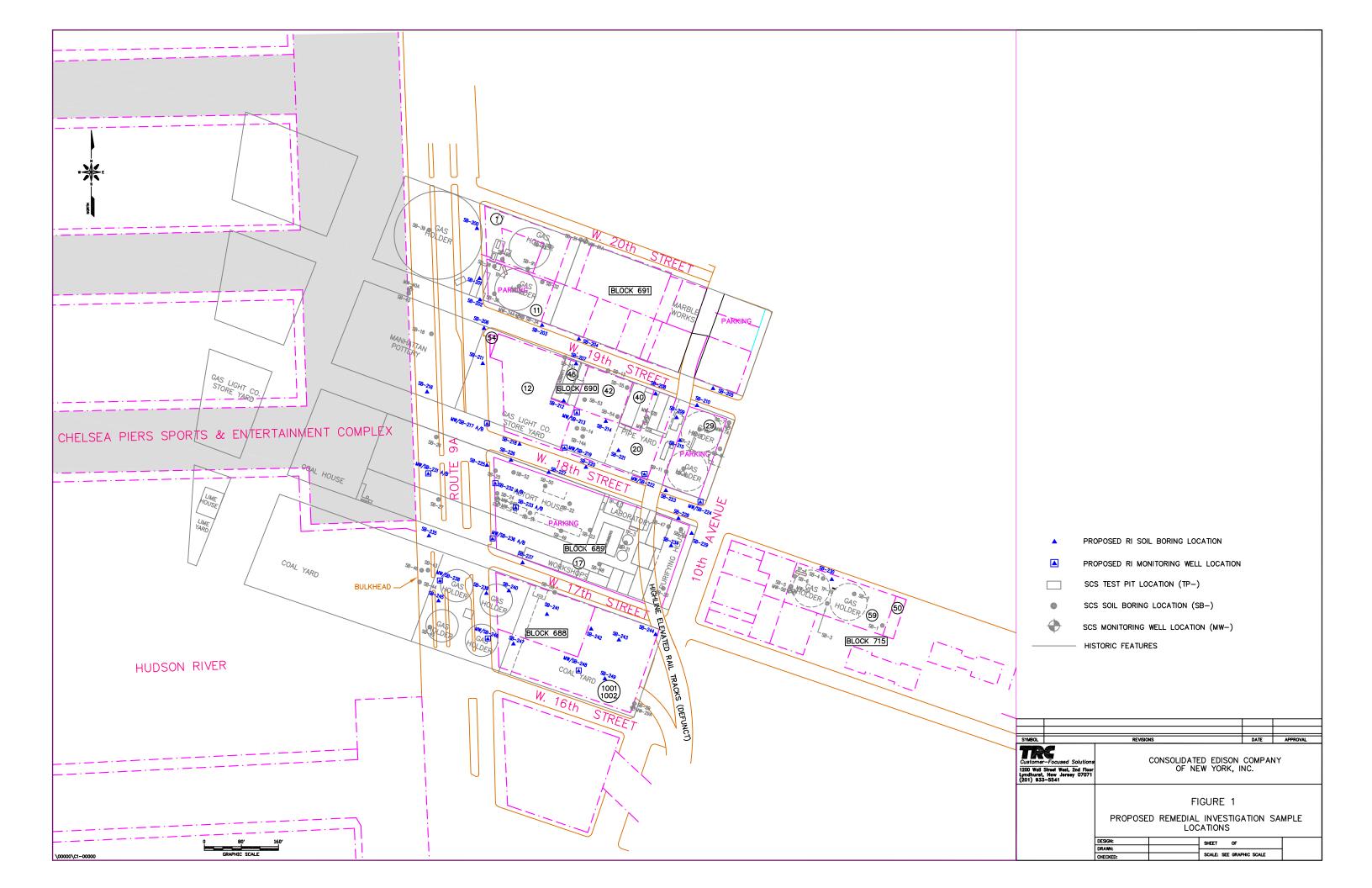
		RATIONALE/PROVIDE HORIZONTAL OR VERTICAL DELINEATION IN THE AREA				ANALYTICAL	
SAMPLE ID	LOCATION	OF:	MATRIX	SAMPLE DEPTH(S)	METHOD	PARAMETERS	COMPLETION DEPTH
SB-242	Within the building footprint, north central portion of Block 688, Lot 1001.	Unexplored area, southeast of SB-30	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-243	Within the building footprint, northeastern portion of Block 688, Lot 1001.	Unexplored area, southeast of SB-30	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-244	Within the building footprint, northeastern portion of Block 688, Lot 1001.	Unexplored area, east of SB-30	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-245	South of Chelsea Piers, west of Route 9A and Block 688, Lot 1001.	Southeast of SB-43, SB-44, SB-45 and SB-46 area	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-246	Within Route 9A parking lane, southern area, west of Block 688, Lot 1001.	Unexplored area, vicinity of former Gas Holders (Nos. 8, 9, 10, and 11)	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-247	Within the building footprint, southwestern area of Block 688, Lot 1001.	Unexplored area, east of former Gas Holders (Nos. 8, 9, 10, and 11)	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
MW/SB-248	Within the building footprint, south central portion of Block 688, Lot 1001.	Unexplored area, east of former Gas Holders (Nos. 8, 9, 10, and 11)	Soil/GW	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.
SB-249	Within the building footprint, southeastern portion of Block 688, Lot 1001.	Unexplored area, east of former Gas Holders (Nos. 8, 9, 10, and 11)	Soil	See Note A.	Hollow Stem Auger and Split-Spoon	TCL VOCs, TCL SVOCs, PP Metals. See Notes B and C.	Top of first low permeability unit (5-foot minimum thickness), top of bedrock, or 50 feet bgs, whichever is encountered first.

#### NOTES:

- A: Up to five (5) soil samples may be collected from each soil boring, dependent upon the field conditions encountered. See Section 3.3.2 of the SCS Report for sampling strategies.
- B: Additional sample parameters may include GC Fingerprint, Diesel Range Organics, and/or Gasoline Range Organics based upon the discretion of the field geologist.
- C: TCL VOCs will be analyzed using Method 8260B. TCL SVOCs will be analyzed using Method 6010B/7000 Series. All referenced methods are taken from the most recent version of USEPA SW-846.

bgs = below ground surface

5 of 6 1/18/2006


TYPE/ID	LOCATION	RATIONALE	MATRIX	SAMPLE DEPTH(S)	METHOD	ANALYTICAL PARAMETERS	COMPLETION DEPTH
MW-213A	Northwestern corner of Block 690, Lot 20.	Identify potential impacts in the fill unit hydraulically downgradient from the MW-12 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0003	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-217A	West of Block 690, Lot 12, in the southern portion of the parking lane of Route 9A.	Identify potential impacts in the fill unit hydraulically downgradient from the remediation area.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-217B	West of Block 690, Lot 12, in the southern portion of the parking lane of Route 9A.	Identify potential impacts in the underlying aquifer hydraulically downgradient from the SB- 24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0002	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation. The monitoring well will be double-cased and installed in a semi-confined or confined aquifer. See Note D.
MW-219A	Southwestern corner of Block 690, Lot 20.	Identify potential impacts in the fill unit hydraulically downgradient from the MW-12 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0004	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-222A	Southeastern corner of Block 690, Lot 20.	Identify potential impacts in the fill unit hydraulically downgradient from former Gas Holders (Nos. 3 and 4).	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0005	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-224A	Southeast of Block 690, Lot 29, on the sidewalk.	Identify potential impacts in the fill unit hydraulically side/upgradient from former Gas Holders (Nos. 3 and 4).	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0006	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-231A	Chelsea Piers service road, west of Route 9A and Block 689, Lot 17.	Identify potential impacts in the fill unit hydraulically downgradient from the remediation area and west of MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-231B	Chelsea Piers service road, west of Route 9A and Block 689, Lot 17.	Identify potential impacts in the underlying aquifer hydraulically sidegradient from the remediation area and west of MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation. The monitoring well will be double-cased and installed in a semi-confined or confined aquifer. See Note D.
MW-232A	Northwestern portion of Block 689, Lot 17.	Identify potential impacts in the fill unit near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-232B	Northwestern portion of Block 689, Lot 17.	Identify potential impacts in the underlying aquifer near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation. The monitoring well will be double-cased and installed in a semi-confined or confined aquifer. See Note D.
MW-233A	Western portion of Block 689, Lot 17.	Identify potential impacts in the fill unit near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-233B	Western portion of Block 689, Lot 17.	Identify potential impacts in the underlying aquifer near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation. The monitoring well will be double-cased and installed in a semi-confined or confined aquifer. See Note D.
MW-236A	Southwestern portion of Block 689, Lot 17.	Identify potential impacts in the fill unit near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-236B	Southwestern portion of Block 689, Lot 17.	Identify potential impacts in the underlying aquifer near MW-24 cluster.	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation. The monitoring well will be double-cased and installed in a semi-confined or confined aquifer. See Note D.
MW-238A	South of Chelsea Piers, west of Route 9A and Block 688, Lot 1001.	Identify groundwater quality in the fill unit in the vicintity of the former Gas Holders (Nos. 8, 9, 10, and 11).	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-246A	Within Route 9A parking lane, southern area, west of Block 688, Lot 1001.	Identify groundwater quality in the fill unit in the vicintity of the former Gas Holders (Nos. 8, 9, 10, and 11).	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.
MW-248A	Within the building footprint, southcentral portion of Block 688, Lot 1001.	Identify groundwater quality in the fill unit in downgradient of SB-30 and sidegradient (east) to the former Gas Holders (Nos. 8, 9, 10, and 11).	Aqueous	Monitoring Well screen mid-point, based upon EPA SOP#: GW 0001	Hollow Stem Auger	TCL VOCs, TCL SVOCs, and PP Metals. See Notes A and B.	TBD during field investigation, but not expected to exceed 25 feet bgs. See Note C.

- A: If LNAPL or DNAPL (measured at a thickness of greater than 1/16-inch), a groundwater sample will not be collected. Instead, a sample of the product will be collected and analyzed for GC Fingerprint, Diesel Range Organics, and/or Gasoline Range Organics based upon the discretion of the field geologist.
- B: TCL VOCs will be analyzed using Method 8260B. TCL SVOCs will be analyzed using Method 8270C. PP Metals will be analyzed using Method 6010B/7000 Series. All referenced methods are taken from the most recent version of USEPA SW-846.
- C: Each well will be constructed using 2-inch diameter polyvinyl chloride (PVC) casing and slotted screen. The screen will be a 20-slot, 10-feet long and installed such that it straddle the water table with 7 feet of screen below and 3 feet above the water table). In addition, each well will include a two-foot long sump for the collection of dense non-aqueous phase liquid (DNAPL), if encountered during drilling.

  D: Each well will be constructed using a steel casing set 2 to 3 feet into the low permeability semi-confining unit (minimum thickness of the unit is 5 feet). A minimum of 24 hours will be allowed for the grout to cure prior to resuming drilling activities. The monitoring well will be constructed of 2-inch diameter PVC casing and slotted screen. The screen will be a 20-slot, 10-feet long, and installed such that the top of the well screen is within 1 foot of the bottom of the low permeability semiconfining or confining unit.

bgs = below ground surface

6 of 6 1/18/2006

