CE PO: 2016-102

Phase II Environmental Site Assessment

February 23, 2016

Subject Property:

1487-1493 First Avenue & 356 East 78th Street New York, New York

NYC Tax Map Designation: Block 1452; Lot 27, 28, 29, 30 and 31

Prepared for:

BBCN Bank 16 West 32nd Street New York, NY 10001

Report User:

BBCN Bank 16 West 32nd Street New York, NY 10001

CERTIFICATION

Client: BBCN Bank

Project: Phase II Environmental Site Assessment

Location: 1487-1493 First Avenue & 356 East 78th Street, New York, New

York

Cider Key Personnel

<u>Title</u>	Name	<u>Telephone</u>
Project Manager	James Cressy	(631) 365-6118
Sr. Consultant	Wenqing Fang	(631) 790-3338

I certify that this Phase II Environmental Site Assessment (ESA) was performed under my direction and supervision, that I have reviewed and approved the report, and that the methods and procedures employed in the development of the report conform to industry standards, specifically ASTM E1903-11 standard for Phase II Environmental Site Assessment.

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I have developed and performed the all appropriate inquires in conformance with the standards and practices set forth in 40 CFR part 312.

I am responsible for the content of this Phase II ESA, have reviewed its contents and certify that it is accurate to the best of my knowledge and contains all available environmental information and data regarding the property.

James Cress

Qualified Environmental Professional

Wenqing Fang, P.E.

Qualified Environmental Professional

TABLE OF CONTENTS

1	EXE	4	
2	INT	RODUCTION	7
	2.1	Purpose	7
	2.2	Applicable Guidance	7
3	SITI	E BACKGROUND	8
4	REC	COGNIZED ENVIRONMENTAL CONDITIONS	9
5	SCC	OPE OF WORK	10
6	SITI	E-SPECIFIC HEALTH AND SAFETY PLAN	11
7	FIEL	LD INVESTIGATION ACTIVITIES	12
	7.1	REMOTE SENSING SURVEY	12
	7.2	SUBSURFACE SOIL SAMPLING	12
	7.3	SOIL GAS SAMPLING	13
8	SAN	MPLE SELECTION AND FREQUENCY	15
9		SULTS AND EVALUATION	
	9.1	SITE GEOLOGY AND HYDROLOGY	16
	9.2	EVALUATION OF ANALYTICAL RESULTS	16
	9.3	EVALUATION OF RECS	17
10	DIS	CUSSION ON FINDINGS AND RECOMMENDATIONS	18
	10.1	FINDINGS	18
	10.2	RECOMMENDATIONS	18
11	CT A	ATEMENT OF LIMITATION	10
		ANDARD FIELD OPERATION PROCEDURES	
	. SIA 12.1	GPR Procedures	
		HAND AUGER PROCEDURES	
	12.2	SUBSURFACE SOIL SAMPLING PROCEDURES	
	12.3	HEADSPACE ANALYSIS PROCEDURE.	
	12.4	TEMPORARY WELL POINT SAMPLING PROCEDURE	
	12.5	MONITORING WELL DEVELOPMENT AND SAMPLING PROCEDURE	
	12.0	MONITORING WELL DEVELOPMENT AND SAMPLING PROCEDURE	22
13	QU	ALITY ASSURANCE AND QUALITY CONTROL PROCEDURES (QA/QC)	
	13.1	Sampling Personnel	23
	13.2	SAMPLING EQUIPMENT	23
	13.2	2.1 Geoprobe	23
	13.2	2.2 Photo Ionization Detector	23

13.2	2.3	Sample Vessels	23
		PLE DOCUMENTATION	
13.3	8.1	Sample Identification	24
13.3	3.2	Chain-of-Custody Procedures	24
13.3	3.3	Laboratory-Custody Procedures	24

FIGURES

Figure 1: Site Location Map Figure 2: Site Layout Map

Figure 3: Remote Sensing Survey Results

Figure 4: Sampling Location Map

TABLES

Table 1: Selected Samples and Analytical Methods Summary

Table 2: Laboratory Data Summary- Soil

Table 3: Laboratory Data Summary- Fill Material

Table 4: Laboratory Data Summary- Soil Gas

APPENDICES

Appendix A: Soil Boring Logs

Laboratory Analysis Report Appendix B:

LIST OF ACRONYMS

Acronym	Definition
AMSL	Above Mean Sea Level
AOC	Area of Concern
BGS	Below ground surface
CAMP	Community Air Monitoring Plan
COC	Contaminant of Concern
CPP	Citizen Participation Plan
CSM	Conceptual Site Model
DER-10	New York State Department of Environmental Conservation Technical Guide 10
FID	Flame Ionization Detector
GPR	Ground Penetrating Radar
GPS	Global Positioning System
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IRM	Interim Remedial Measure
NAPL	Non-aqueous Phase Liquid
NCDOH	Nassau County Department of Health
NYS DOH ELAP	New York State Department of Health Environmental Laboratory Accreditation Program
NYS DEC	New York State Department of Environmental Conservation
OSHA	Occupational Safety and Health Administration
PID	Photo Ionization Detector
QA/QC	Quality Assurance and Quality Control
QEP	Qualified Environmental Professional
REC	Recognized Environmental Condition
SCO	Soil Cleanup Objective
SOW	Scope of Work
USEPA	United State Environmental Protection Agency
USGS	United State Geological Survey

EXECUTIVE SUMMARY

Cider Environmental (CE), on behalf of BBCN Bank (the "Client"), has completed this Phase II ESA for the property located at 1487-1493 First Avenue & 356 East 78th Street, New York, New York (herein referred to as the "Subject Property").

The goal of this Phase II ESA is to investigate the Recognized Environmental Conditions (RECs) as identified in the Phase I ESA, dated January 21, 2016 prepared by CE. The scope of work (SOW) for this Phase II ESA was developed based on the RECs. A site-specific Health and Safety Plan (HASP) was designed and implemented. No health and/or safety issues were identified during the project.

The following is a breakdown of this assessment performed in regards to RECs.

REC-1: Historic Dry Cleaning Operations

Two lots of the Subject Property (Lot 30, 1493 1st Avenue / 358 East 78th Street; and Lot 28, 1489 1st Avenue) have maintained dyeing and cleaning services from at least 1920 to 2005. A "solvent tank", presumably associated with the dyeing and cleaning services, was depicted on Lot 30 on the historic Sanborn Maps from 1951 to 2005. Dyeing and cleaning services have the potential of using hazardous substance (i.e., chlorinated solvents). No documentation was available regarding the type of solvents used, or the proper handling and disposal of said solvents. In addition, no documentation was available regarding the location (i.e., aboveground vs. underground) or status (i.e., active/abandoned/ removed) of the "solvent tank". This represents a recognized environmental condition (REC).

Three (3) soil gas samples and three (3) soil samples were collected from the close vicinity of the former dry cleaning operations. The laboratory analysis performed on the soil samples did not detect tetrachloroethylene (PCE) or its breakdown products. The laboratory analysis performed on the soil gas samples did detect PCE but at levels below the regulatory guidance values. Accordingly, no further investigative and/or remedial actions are recommended regarding this REC at this point.

REC-2: Potential Abandoned Fuel Oil USTs

The Subject Property has maintained multiple buildings since as early as the 1890s. Multiple fuel oil burner applications were on file with the NYC Building Department. There is potential that abandoned fuel oil UST(s) may exist on the Subject Property. This potential represents a REC.

A remote sensing survey was performed on the accessible portion of the Subject Property in search of any abandoned USTs. One (1) 275-gallon UST of unknown content was detected on Lot 29. Soil boring SB-6 and soil gas port SG-4 were installed in the immediate vicinity of the identified UST. The laboratory analysis performed on soil sample SB-6 [4'-5'] and soil gas sample SG-4 did not detect significant impact from said UST. Accordingly, it is recommended that the detected UST be removed for off-site disposal in accordance with all applicable guidance and regulations.

It should be noted that the remote sensing survey was affected by the presence of large quantity of fill material on the Subject Property. Should any undocumented structures (i.e. underground storage tanks, drywells, cesspools, etc.) be encountered during any future construction activities, they will need to be properly reported and removed in accordance with applicable rules and regulations.

Presence of Urban Fill Material

Urban fill material of unknown origin was observed on the Subject Property during the Phase I ESA. It is recommended that the fill material be sampled and analyzed to evaluate potential impact on future site redevelopment.

One (1) composite fill material sample was collected for laboratory analysis to determine potential impact on the future site redevelopment project. The laboratory analysis performed on the fill material sample detected lead at 67.4 mg/Kg, above the UUSCO (63 mg/Kg) but below the RRSCO (400 mg/Kg). Accordingly, no further investigative and/or remedial actions are recommended regarding this issue at this point.

Based on the survey and analytical results under the scope of this Phase II ESA, it is concluded that:

- A dry cleaning operation related chemical, tetrachloroethylene (PCE), was detected in the soil gas samples collected at the Subject Property, but at levels below the applicable guidance values. Accordingly, it is concluded that the historic on-site dyeing and cleaning services have not significantly impacted the environmental quality of the Subject Property. No further investigative and/or remedial actions are recommended regarding the historic dyeing and cleaning operations on the Subject Property.
- A remote sensing survey identified one (1) 275-gallon UST with unknown content on Lot 29. A limited subsurface investigation determined that the presence of said UST has not significantly impacted the environmental quality of the Subject Property. Accordingly, it is recommended that the detected UST be removed for off-site disposal in accordance with all applicable guidance and regulations.
- The laboratory analysis performed on the fill material sample detected lead above the UUSCO but below the RRSCO. Accordingly, no further investigative and/or remedial actions are recommended. It should be noted that this Phase II ESA does not consist of a full scale waste characterization. For future site redevelopment, additional sampling and laboratory analysis might be required by the disposal facility.

Based on the results of this Phase II ESA, the following further work/activities are recommended:

The detected one (1) 275-gallon UST with unknown content should be removed for off-site disposal in accordance with all applicable guidance and regulations.

INTRODUCTION

Cider Environmental (CE), on behalf of BBCN Bank (the "Client"), has completed this Phase II ESA for the property located at 1487-1493 First Avenue & 356 East 78th Street, New York, New York (herein referred to as the "Subject Property").

2.1 Purpose

The goal of this Phase II ESA is to investigate the Recognized Environmental Conditions (RECs) as identified in the Phase I ESA, dated January 21, 2016 prepared by CE. The scope of work (SOW) for this Phase II ESA was developed based on the RECs. A site-specific Health and Safety Plan (HASP) was designed and implemented. No health and/or safety issues were identified during the project.

2.2 Applicable Guidance

Unless otherwise noted, the Phase II ESA was prepared in accordance with ASTM E 1903-11, Standard Guide for Environmental Site Assessments: Phase II ESA Process. The following documents, issued by state and local regulatory agencies, were also referenced:

- NYSDEC, Division of Environmental Remediation, DER-10 Technical Guidance For Site Investigation and Remediation, dated May 3, 2010
- NYSDEC CP-51 Soil Cleanup Guidance
- ➤ 6 NYCRR Part 375 Subpart 375-6, Remedial Program Soil Cleanup Objectives
- NYSDEC, Technical Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Limitations

SITE BACKGROUND

The Subject Property is located at 1487-1493 First Avenue & 356 East 78th Street, New York, New York. Figure 1 shows the Subject Property location on the United States Geological Survey (USGS) topographic quadrangle map. Figure 2 shows the Subject Property on aerial photo dated 2012. The approximate ground surface elevation is 37 feet above mean sea level (AMSL).

The property consists of five separate contiquous tax lots (27, 28, 29, 30, 31) situated on the southwest corner of East 78th Street and First Avenue, Manhattan. Said tax lots will herein be referenced to as the Subject Property unless noted otherwise. Lots 27 and 31 each maintain one four-story structure. The building maintained on Lot 27 was formerly utilized as a nightclub, law office with residential dwellings above. Currently, one tenant is occupying an apartment, with the remaining apartments/spaces vacant. Said structure is serviced by natural gas fired heating system and NYC sewers. The building maintained on lot 27 maintains residential apartments. Currently, one apartment is occupied with the remaining apartments unoccupied/vacant. Said structure is serviced by a fuel oil fired heating system and NYC sewers. The remaining lots (28, 29, and 30) are unimproved/vacant land with no structures currently maintained on the lots. It should be noted that brick, glass, concrete, etc., typical of urban fill materials, are present on these lots. The Subject Property is bound to the north by East 78th Street and beyond by stores, a dry-cleaning facility with residential apartments above; to the south by a dental facility (first floor) with residential apartments above; to the east by First Avenue and beyond by stores with residential apartments above; and to the west by stores/ restaurants (first floor) with residential apartments above.

RECOGNIZED ENVIRONMENTAL CONDITIONS

The following is a summary of the recognized environmental conditions (RECs) from the Phase I ESA, dated January 21, 2016 prepared by CE.

REC-1: Historic Dry Cleaning Operations

Two lots of the Subject Property (Lot 30, 1493 1st Avenue / 358 East 78th Street; and Lot 28, 1489 1st Avenue) have maintained dyeing and cleaning services from at least 1920 to 2005. A "solvent tank", presumably associated with the dyeing and cleaning services, was depicted on Lot 30 on the historic Sanborn Maps from 1951 to 2005. Dyeing and cleaning services have the potential of using hazardous substance (i.e., chlorinated solvents). No documentation was available regarding the type of solvents used, or the proper handling and disposal of said solvents. In addition, no documentation was available regarding the location (i.e., aboveground vs. underground) or status (i.e., active/abandoned/ removed) of the "solvent tank". This represents a recognized environmental condition (REC). Accordingly, it is recommended that additional subsurface investigation be performed to determine if the historic on-site operations have adversely impacted the environmental quality of the Subject Property.

REC-2: Potential Abandoned Fuel Oil USTs

The Subject Property has maintained multiple buildings since as early as the 1890s. Multiple fuel oil burner applications were on file with the NYC Building Department. There is potential that abandoned fuel oil UST(s) may exist on the Subject Property. This potential represents a REC. Accordingly, it is recommended that a remote sensing survey be performed to determine if there are any abandoned fuel oil UST(s) at the Subject Property. Furthermore, if any abandoned USTs are detected, then it is recommended that additional subsurface investigation be performed to determine if the presence of the abandoned UST(s) has impacted the environmental quality of the Subject Property.

Presence of Urban Fill Material

Urban fill material of unknown origin was observed on the Subject Property during the Phase I ESA. It is recommended that the fill material be sampled and analyzed to evaluate potential impact on future site redevelopment.

SCOPE OF WORK

The scope of work (SOW) for this Phase II ESA was developed based on the RECs as discussed in **Section 4** of this report.

- Conduct public and private utility markout.
- Conduct remote sensing survey by ground penetrating radar (GPR) to locate any active or abandoned underground storage tanks (USTs).
- Install up to six (6) borings to the depth of 20 ft below existing ground (BEG) at selected areas. The soil samples will be field screened utilizing a PID. The soil sample exhibiting the highest PID readings from each boring will be selected for laboratory analysis. Should no elevated PID readings be detected, the deepest samples will be analyzed.
- If urban fill material is encountered, one (1) composite sample will be collected.
- If groundwater is encountered within 20 ft below grade, then two (2) groundwater samples will be collected to substitute two (2) soil samples.
- Install two (2) soil gas sampling ports at selected areas.
- Perform leak check with a tracer compound (helium) prior to collecting soil gas samples.
- Collect two (2) soil gas samples using 6-Liter Summa canisters with 2 hour regulators.
- Up to six (6) soil samples will be analyzed by USEPA Test Method 8260 / 8270 CP-51 for target volatile organic compounds (VOCs) and petroleum product related semi-volatile organic compounds (SVOCs).
- Up to one (1) urban fill material will be analyzed by USEPA Test Method 8260 / 8270 / 6010 / 8081 / 8082 / 8151 for target VOCs, SVOCs, TAL Metals, PCBs, pesticides and herbicides.
- The groundwater samples, if any, will be subject to laboratory analysis via USEPA Test Method 8260 / 8270 CP-51 for target VOCs and petroleum product related SVOCs.
- The soil gas samples will be analyzed by USEPA Test Method TO-15 for target VOCs.
- Prepare a Phase II ESA Report.

During the field implementation, the following revisions were made based on field conditions:

- At the time of this Phase II ESA, the Subject Property was inaccessible for Geoprobe or other earth moving equipment (i.e., a backhoe). Accordingly, soil borings had to be installed manually with a hand auger and air knife. Soil borings were terminated at 15 feet below street level (5 feet below the former basement slab).
- The former basement slab was encountered in Lot 30 at multiple locations during soil boring installation. Accordingly, soil borings could not be installed at Lot 30. One (1) soil gas port SG-4 and one (1) soil boring SB-3 were installed immediately against southern boundary of Lot 30.
- Groundwater was not encountered during this investigation. No groundwater samples were collected.

SITE-SPECIFIC HEALTH AND SAFETY PLAN

Cider Environmental implemented a site-specific Health and Safety Plan (HASP) for Cider Environmental and subcontractor personnel that have participated in the field work performed at the Subject Property.

Personal health and safety precautions were followed in accordance with applicable federal and state law or local equivalents and any requirements imposed by the owner, occupant, or field personnel. In addition to the site-specific HASP, the following activities were performed to further ensure a smooth project without any health and safety incidents:

- Prior to the field work, Cider Environmental called for public utilities markout.
- Cider Environmental hired a third-party line-locating service utilizing ground penetrating radar (GPR) technology to survey the selected areas.
- Daily tailgate safety meeting was held with Cider Environmental and subcontractor personnel.
- All sampling locations were pre-cleared by hand probe and/or air knifing to at least 5 ft BGS.

There were no health and/or safety issues identified during the fieldwork of this Phase II ESA.

FIELD INVESTIGATION ACTIVITIES

On February 12, 2016, Cider Environmental performed field investigation activities on the Subject Property in accordance with the approved SOW as detailed in **Section 5** of this report. Standard field operation procedures can be referenced with Section 12 of this report. Quality assurance and quality control (OA/OC) procedures can be referenced with **Section 13** of this report.

7.1 Remote Sensing Survey

On February 12, 2016, Cider Environmental supervised the remote sensing survey on selected areas of the Subject Property. The survey was performed utilizing a GSSI model SIR-2 ground penetrating radar (GPR) system. The result of the remote sensing survey can be referenced with **Figure 3**.

The accessible portion of the Subject Property was surveyed in search for any abandoned USTs. One (1) 275-gallon UST of unknown content was detected on Lot 29. Soil boring SB-6 and soil gas port SG-4 was installed in the immediate vicinity of the identified UST.

It should be noted that the remote sensing survey was affected by the presence of large quantity of fill material on the Subject Property.

7.2 Subsurface Soil Sampling

On February 12, 2016, Cider Environmental installation soil borings on selected areas of the Subject Property. Due to lack of access for heavy equipment, all boring locations were installed manually with hand auger and air knifed. The locations of the soil borings can be referenced with **Figure 4**.

Headspace analysis was performed on all the soil samples acquired in order to provide precursory data regarding hydrocarbon contamination. Results of the analysis were used to adjust the sampling and analysis program to yield the most accurate and representative results. The results of the field analysis are presented as part of the soil log in **Appendix A**.

All soil samples collected from the Site were subjected to visual inspection to identify any signs of chemical contamination and to classify the sample media. Color classifications were made in accordance with the Munsell Classification System. Gradation classifications were made in accordance with the Unified Soil Classification System. The detailed soil logs are presented in **Appendix A**.

SB-3 was installed immediately to the south of Lot 30 (former dyeing and cleaning operations, where "solvent tank" was depicted on the Sanborn Maps). Due to lack of access for heavy equipment, the

borings were installed manually by air knife and hand auger. The starting elevation is approximately 10 feet below street level. The boring was advanced for approximately 5 feet. The soil appears to be brown sandy clay. No elevated PID readings were encountered. No petrochemical odor or staining was noted.

SB-5 was installed on Lot 28 (former dyeing and cleaning operations). Due to lack of access for heavy equipment, the boring was installed manually by air knife and hand auger. The starting elevation is approximately 10 feet below street level. The boring was advanced for approximately 5 feet. The soil appears to be brown sandy clay. No elevated PID readings were encountered. No petrochemical odor or staining was noted.

SB-6 was installed on Lot 29 in the immediate vicinity of the 275-gallon UST identified during the remote sensing survey. Due to lack of access for heavy equipment, the boring was installed manually by air knife and hand auger. The starting elevation is approximately 10 feet below street level. The boring was advanced for approximately 5 feet. The soil appears to be brown sandy clay. No elevated PID readings were encountered. No petrochemical odor or staining was noted.

It should be noted that soil borings SB-1, SB-2 and SB-4 were slated to be installed within Lots 30/28. However, due to the thick/impenetrable concrete slab (former buildings) the sample acquisition for SB-1, SB-2 and SB-4 were unsuccessful.

One (1) five-point composite fill material sample, identified as COMP-1, was collected for laboratory analysis to determine potential impact on the future site redevelopment project.

7.3 Soil Gas Sampling

On February 12, 2016, Cider Environmental collected three (3) soil gas samples at the Subject Property. All samples were collected in accordance with the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH October 2006).

The soil vapor probe was installed to four feet below existing grade. Samples were collected in Summa canisters which have been certified clean by the laboratory and analyzed by using USEPA Method TO-15. Flow rate of both purging and sampling did not exceed 0.2 L/min. Sampling occurred for the duration of two hours. A sample log sheet was maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after the samples are collected, apparent moisture content of the sampling zone, and chain of custody protocols.

As part of the vapor intrusion evaluation, a tracer gas was used in accordance with NYSDOH protocols to serve as a quality assurance/quality control (QA/QC) device to verify the integrity of the soil vapor probe seal. Helium was used as the tracer gas and a box functioned to keep it in contact with the probe during testing. A portable monitoring device was used to analyze a sample of soil vapor for the tracer prior to sampling. The tracer sample results did not show a significant presence of the tracer. As the conclusion of the sampling round, tracer monitoring was performed a second time to confirm the integrity of the probe seals.

Three (3) soil gas samples, identified as SG-2, SG-3 and SG-4, were collected. SG-2 and SG-3 were collected at Lot 28 (former dyeing and cleaning services). SG-4 was collected immediately to the south of Lot 30 (former dyeing and cleaning operations, where "solvent tank" was depicted on the Sanborn Maps). It should be noted that soil gas sample SG-1 was scheduled to be installed within Lot 30. Due to the thick/impenetrable concrete slab (former building) the sample acquisition for SG-1 was unsuccessful.

The soil gas samples were subject to laboratory analysis via Test Method TO-15 for target volatile organic compounds (VOCs). The sampling locations are shown in **Figure 4**. Field sampling log can be referenced with **Appendix A**.

SAMPLE SELECTION AND FREQUENCY

All soil samples collected were subjected to headspace analysis. The soil sample with the highest headspace analysis reading from each soil boring was selected for laboratory analysis. In the event that no elevated headspace analysis reading was detected, the deepest sample was selected for laboratory analysis.

Table 1 presents a summary list of the samples submitted for laboratory analysis, and a list of the test method applied to each sample.

The soil samples selected for laboratory analysis were containerized in the appropriate vessels, preserved at 4°C in a cooler and transported under proper chain-of-custody procedures to a NYS-DOH certified commercial laboratory for analysis.

The soil gas/indoor air samples were containerized in the laboratory provided, pre-certified 6-L summa canister, and transported under proper chain-of-custody procedures to a NYS-DOH certified commercial laboratory for analysis.

The sample documentation procedures are detailed in **Section 12**.

9 RESULTS AND EVALUATION

9.1 Site Geology and Hydrology

According to the United State Department of Agriculture (USDA) Natural Resources Conservation Service, the soil at the Subject Property is classified as Uh-Urban. Actual soil conditions observed during the Phase II ESA field activities revealed that the subsurface soil consists of brown sandy clay from bottom of former basement slab (10 feet below grade) to 15 feet grade.

Groundwater was not encountered during this Phase II ESA.

9.2 Evaluation of Analytical Results

The laboratory quality assurance / quality control (QA/QC) data summary for each laboratory data set was reviewed. The samples were analyzed within the proper holding time, the samples were properly preserved and the samples arrived at the laboratory in good condition at the proper temperature. A review of the QA/QC analytical data included in the laboratory reports did not reveal any major QA/QC issues.

A summary of the laboratory analytical results versus the applicable guidance values can be referenced with Table 2 through Table 4. The original laboratory analysis report is presented in Appendix B.

The laboratory analysis results of the soil samples were compared against the 6 NYCRR Part 375 Unrestricted Uses Soil Cleanup Objectives (UUSCO). The laboratory analysis results of the fill material sample were compared against both the UUSCO and the 6 NYCRR Part 375 Restricted Residential SCO (RRSCO). The laboratory analysis results of the soil gas samples were compared against the NYSDOH Air Guideline Values.

The laboratory Analysis performed on the soil samples SB-3 [4'-5'], SB-5 [4'-5'] and SB-6 [4'-5'] did not detect any target VOCs or petroleum product related SVOCs.

The laboratory analysis performed on the fill material COMP-1 did not detect any target VOCs, SVOCs, PCBs, herbicides or pesticides. However, lead was detected at 67.4 mg/Kg, above the UUSCO (63 mg/Kg) but below the RRSCO (400 mg/Kg).

The laboratory analysis performed on the soil gas sample SG-2, SG-3 and SG-4 did detect several target VOCs, including tetrachloroethylene (PCE), a dry cleaning related chemical. However, at detected levels were below the NYSDOH Air Guideline Values.

9.3 Evaluation of RECs

The following is a breakdown of this assessment performed in regards to REC, as identified in **Section 4** of this report.

REC-1: Historic Dry Cleaning Operations

Three (3) soil gas samples and three (3) soil samples were collected from the close vicinity of the former dry cleaning operations. The laboratory analysis performed on the soil samples did not detect tetrachloroethylene (PCE) or its breakdown products. The laboratory analysis performed on the soil gas samples did detect PCE but at levels below the regulatory guidance values. Accordingly, no further investigative and/or remedial actions are recommended regarding this REC at this point.

REC-2: Potential Abandoned Fuel Oil USTs

A remote sensing survey was performed on the accessible portion of the Subject Property in search for any abandoned USTs. One (1) 275-gallon UST of unknown content was detected on Lot 29. Soil boring SB-6 and soil gas port SG-4 was installed in the immediate vicinity of the identified UST. The laboratory analysis performed on soil sample SB-6 [4'-5'] and soil gas sample SG-4 did not detect significant impact from said UST. Accordingly, it is recommended that the detected UST be removed for off-site disposal in accordance with all applicable guidance and regulations.

It should be noted that the remote sensing survey was affected by the presence of large quantity of fill material on the Subject Property. Should any undocumented structures (i.e. underground storage tanks, drywells, cesspools, etc.) be encountered during any future construction activities, they will need to be properly reported and removed in accordance with applicable rules and regulations.

Presence of Urban Fill Material

One (1) composite fill material sample was collected for laboratory analysis to determine potential impact on the future site redevelopment project. The laboratory analysis performed on the fill material sample detected lead at 67.4 mg/Kg, above the UUSCO (63 mg/Kg) but below the RRSCO (400 mg/Kg). Accordingly, no further investigative and/or remedial actions are recommended regarding this issue at this point.

10 **DISCUSSION ON FINDINGS AND RECOMMENDATIONS**

Cider Environmental has performed a Phase II ESA, Limited Subsurface Investigation on the Subject Property in accordance with good commercial and customary practice and generally accepted protocols within the consulting industry. The investigation consisted of subsurface survey and sampling to further define the environmental quality of the Subject Property with respect to the recognized environmental condition outlined in **Section 4** of this document.

10.1 **Findings**

Based on the survey and analytical results under the scope of this Phase II ESA, it is concluded that:

- A dry cleaning operation related chemical, tetrachloroethylene (PCE), was detected in the soil gas samples collected at the Subject Property, but at levels below the applicable guidance values. Accordingly, it is concluded that the historic on-site dyeing and cleaning services have not significantly impacted the environmental quality of the Subject Property. No further investigative and/or remedial actions are recommended regarding the historic dyeing and cleaning operations on the Subject Property.
- A remote sensing survey identified one (1) 275-gallon UST with unknown content on Lot 29. A limited subsurface investigation determined that the presence of said UST has not significantly impacted the environmental quality of the Subject Property. Accordingly, it is recommended that the detected UST be removed for off-site disposal in accordance with all applicable guidance and regulations.
- The laboratory analysis performed on the fill material sample detected lead above the UUSCO but below the RRSCO. Accordingly, no further investigative and/or remedial actions are recommended. It should be noted that this Phase II ESA does not consist of a full scale waste characterization. For future site redevelopment, additional sampling and laboratory analysis might be required by the disposal facility.

10.2 Recommendations

Based on the results of this Phase II ESA, the following further work/activities are recommended:

The detected one (1) 275-gallon UST with unknown content should be removed for off-site disposal in accordance with all applicable guidance and regulations.

11 STATEMENT OF LIMITATION

The services described in this document were performed in a manner consistent with the agreement with the client and in accordance with generally accepted professional consulting principles and practices. Opinions and recommendations contained in this document apply to conditions existing at certain locations when services were performed and are intended only for the specific purposes, locations, time frames, and project parameters indicated. Cider Environmental cannot be responsible for the impact of any changes in environmental standards, practices, or regulations after performance of services.

It should be recognized that certain limitations are inherent in the evaluation of subsurface conditions, and that certain conditions may not be detected during an investigation of this type. Due to the dynamic use of some clarifiers and uncertainties associated with subsurface conditions, the findings in the document are valid for one year from the date of this report. The samples collected and used for analysis are considered representative of the locations sampled. However, since soil and groundwater conditions may vary significantly between borings, the work presented in this document does not constitute a comprehensive site assessment.

The analysis and conclusions contained in this report are based on the site conditions, as they existed at the time when samples were obtained at the location and depth obtained. The samples do not represent the entire site. Changes in the information or the data obtained or in the proposed land use could result in changes in the conclusions.

Any use or modification of this document by a third party is expressly prohibited without a written, specific authorization from the client and author(s). Such authorization will require a signed waiver and release agreement.

This document is issued with the understanding that the client, the property owner, or its representative is responsible for ensuring that the information, conclusions and recommendations contained herein are brought to the attention of the appropriate regulatory agencies, as required by law.

12 STANDARD FIELD OPERATION PROCEDURES

12.1 **GPR Procedures**

A GPR system typically consists of a control unit, radar antenna, and display unit. The control unit generates a radar pulse and sends it through a cable to the antenna. The antenna transmits the pulse into the surface. When this energy encounters an interface between two materials of differing dielectric properties, such as reinforcing steel, air, moisture, or the base-course material, a portion of the energy is reflected back to the radar antenna. The received pulse is sent back to the control unit for processing/storage. The display unit (video or chart recorder) presents the data. The reflected energy is received by the transducer, amplified, and recorded. The electromagnetic pulse is repeated at a rapid rate and the resultant stream of radar data produces a continuous record of the subsurface. The radar system creates a linear profile of the materials beneath the antenna pass.

A qualified Cider Environmental technician specified a coordinate system on the planimetric surface of the site to map any subsurface dielectric anomalies detected on the premises. The operator used knowledge of the subsurface soil composition to calibrate the SIR-2 system to site-specific conditions. Factor settings such as range, gain, number of gain points, and scans per unit, were modified to yield the most accurate data to describe the subsurface conditions.

Upon finding a dielectric anomaly, a more spatially specific coordinate system was designed over the area to determine its size, shape and orientation. The data collected during the survey was reviewed by the operator and compared against past experience, technical judgment and prior site knowledge to classify the anomalies.

12.2 Hand Auger Procedures

A stainless steel hand auger was utilized to collect surface samples. The auger consists of a three and half (3½) inch diameter bucket, a three (3) foot long extension rod and "T" handle. The auger was manually twisted in the ground to the desired depth allowing the soil to fill the bucket. Once the bucket was full or the desired depth is achieved, the auger was extracted from the ground and the soil sample was removed from the bucket and placed in a sample vessel for transportation to a certified laboratory.

12.3 Subsurface Soil Sampling Procedures

Prior to the installation of soil borings, a stainless steel hand auger was utilized to hand clear from grade to 5 ft BEG. The auger consists of a 2-inch diameter bucket, a 4 ft long extension rod and "T" handle. The auger is manually twisted in the ground to the desired depth allowing the soil to fill the bucket. Once the bucket is full or the desired depth is achieved, the auger is extracted from the ground and the soil

sample is removed from the bucket and placed in a sample vessel for transportation to a certified laboratory.

The soil probes were installed using a hydraulically powered Geoprobe unit. Mechanized, vehicle mounted soil probe systems apply both static force and hydraulically powered percussion hammers for tool placement. Recovery of large sample volumes was facilitated with a probe-driven sampler. The probedriven sampler consisted of a dual tube sampling system that has an outer tube that remains in the ground while the inner tube is removed along with the non-reactive plastic tube in which the soil sample has been collected. This dual tube sampling system ensures that the soil sample collected is from the selected sampling depth as the probe was advanced. Discrete samples were secured at the desired depths and were contained within a non-reactive plastic sleeve that lined the hollow probe for subsequent inspection and analysis.

Soil samples are collected using a 2 3/8 inch diameter, five (5) foot long probe-driven sampler which is pushed to the desired depth in five (5) foot increments. Each time the probe is pushed a soil sample is collected within a disposal plastic sleeve inserted into the sampler. The plastic is then cut open in order to extract a soil sample for screening and/or analysis.

12.4 Headspace Analysis Procedure

Headspace analysis was performed utilizing a portable Photo Ionization Detection (PID) meter to measure what, if any, hydrocarbon concentrations were present in isolated portions of the secured samples. Headspace analysis was conducted by partially filling a sealable plastic bag with sample aliquot and sealing the top, thereby creating a void. This void is referred to as the sample headspace. To facilitate the detection of any hydrocarbons contained within the sample headspace, the container was agitated for a period of thirty (30) seconds. The probe of the vapor analyzer was then injected into the headspace to measure the hydrocarbon concentrations present. A Photovac Model 2020 Photo Ionization Detection meter was the organic vapor analyzer selected for the headspace analysis.

A PID utilizes the principle of photo ionization for detection and measurement of hydrocarbon compounds. A PID does not respond to all compounds similarly; rather, each compound has its own response factor relative to its calibration. For this investigation, the PID was calibrated using isobutylene. Hydrocarbon relative response factors for a PID calibrated using isobutylene are published by the manufacturer.

12.5 Temporary Well Point Sampling Procedure

The groundwater sampling system used was the Geoprobe Screen Point 15, which is designed to accurately collect grab samples of groundwater. The Screen Point 15 uses a screen with a standard slot size of 0.004 inches that is sealed inside a 1.5-inch ID alloy steel sheath as it is driven to depth. The screen is sealed inside the sheath with Neoprene O-rings that prevent infiltration of formation fluids until the desired depth is attained. When the screen has been driven to the depth of interest in the formation, extension rods are used to hold the screen in position as the driving rods are retracted approximately 4 feet. The 4-foot long sampler sheath forms a seal above the screen as it is retracted. A total of 41.5 inches of slotted screen is placed into contact with the formation. The Screen Point 15 groundwater sampler has a total boring diameter of 1.5 inches, the outside diameter of the screen is 1.0 inch. This provides for a maximum of 0.25 inches between the screen and the natural formation as the sampler sheath is retracted. These conditions approach the ideal for natural formation development, which can be conducted when lower turbidity samples are required.

Each groundwater sample was collected from the sampler utilizing 3/8 inch diameter disposable tubing equipped with a bottom check valve. The tubing extended from the surface down to the sampler. The tubing was oscillated until the process had achieved proper development. The groundwater was then containerized into the appropriate sample vessels for subsequent laboratory analysis.

12.6 Monitoring Well Development and Sampling Procedure

A minimum of three (3) well volumes were purged from each monitoring well prior to the collection of groundwater samples. Field measurements were secured from each monitoring well during the development process to provide data regarding physical groundwater characteristics. The development water was field analyzed for pH, specific conductivity and temperature. Results of the field measurements were utilized to establish steady state conditions within the groundwater aguifer. Purging and sample collection was accomplished using a submersible pump with disposable polyethylene tubing and/or a polyethylene disposable bailer. Aqueous samples were placed in laboratory-provided glassware, packed on ice in shipping containers, and submitted under proper chain-of-custody to the analytical laboratory. Equipment used for groundwater sampling consisted of new, disposable materials, or was properly decontaminated between sample locations. Sampling personnel changed nitrile sampling gloves between each sample location to minimize the potential for sample cross-contamination.

13 QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES (QA/QC)

The following sampling QA/QC protocol is in accordance with the United States Environmental Protection Agency's (USEPA) accepted sampling procedures for hazardous waste streams [Municipal Research Laboratory, 1980, Sampling and Analysis Procedures for Hazardous Material Waste Streams, Office of Emergency and Remedial Response, Cincinnati, Ohio. EPA-600/280-018] and American Society of Testing and Material's (ASTM's) Sampling Procedures.

13.1 Sampling Personnel

The activities associated with the survey, sampling and analysis plan were performed by or under the auspices of a USEPA Office of Emergency and Remedial Response, Certified Sampler for Hazardous Materials. The sample staff (samplers) possessed a minimum of a B.A. Degree in the Earth, Space or Biological Sciences or a B.S. Degree in Engineering. Samplers had a minimum of one (1) year experience in environmental/geological field work. Additionally, all samplers received mandatory forty-hour Occupational Safety and Health Administration (OSHA) training on working with potentially hazardous materials and appropriate Hazard Communication Program and "Right-To-Know" training.

13.2 Sampling Equipment

Separate QA/QC measures were implemented for each of the instruments used in the performance of the SAP.

13.2.1 Geoprobe

Prior to arrival on the Site and between sample locations, the probes were decontaminated by washing them with a detergent (Alconox) and potable water solution and rinsing them with distilled water.

13.2.2 Photo Ionization Detector

Calibration of the PID was conducted prior to sampling using a span gas of known concentration. The PID was a Photovac Micro-Tip, photo ionization detection meter.

13.2.3 Sample Vessels

All sample vessels were "level A" certified decontaminated containers supplied by a New York State Certified Commercial Laboratory. Samples analyzed for hydrocarbons were placed in containers with Teflon lined caps. All samples were preserved by cooling them to a temperature of approximately four degrees Celsius.

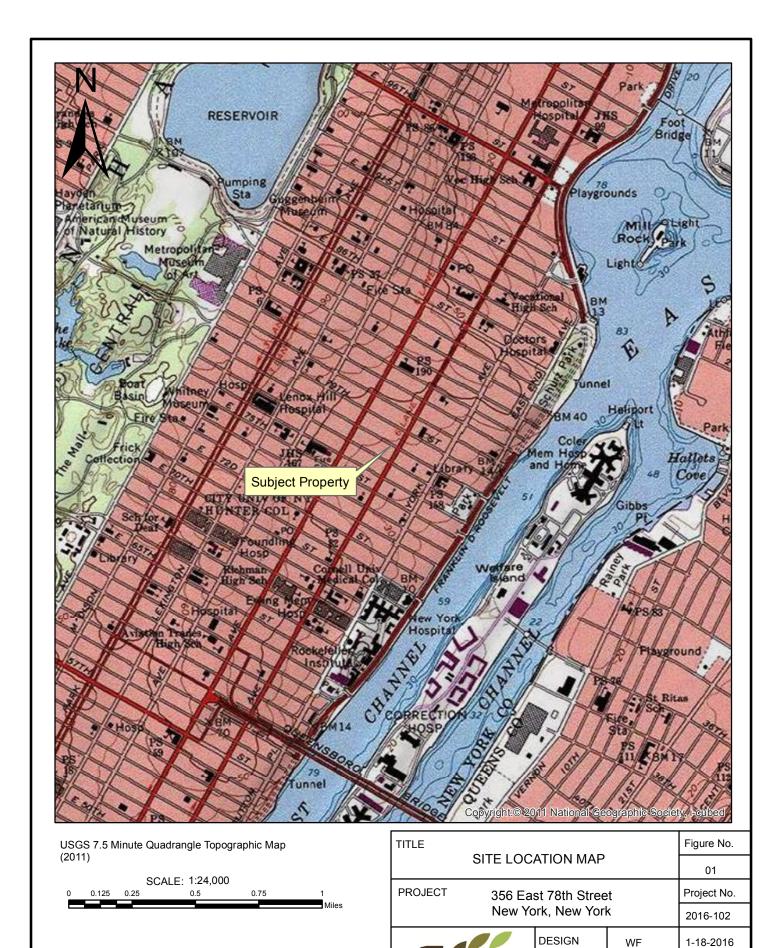
13.3 Sample Documentation

A sample represents physical evidence. An essential part of liability reduction is the proper control of gathered evidence. To establish proper control, the following sample identification and chain-of custody procedures were followed.

13.3.1 Sample Identification

Sample identification was executed by use of a sample tag, log book and chain-of-custody form. Said documentation provided the following information: 1) the project code; 2) the sample laboratory number; 3) the sample preservation; 4) instrument used for source sample grabs; 5) the composite medium used for source sample grabs; 6) the date the sample was secured from the source media; 7) the time the sample was secured from the source media; and 8) the person who secured the sample from the source media.

13.3.2 Chain-of-Custody Procedures


Due to the evidential nature of samples, possession was traceable from the time the samples were collected until they were received by the testing laboratory. A sample was considered under custody if it: was in a person's possession; it was in a person's view, after being in possession; if it was in a person's possession and they locked it up; or, it was in a designated secure area. When transferring custody, the individuals relinquishing and receiving the samples signed, dated and noted the time on the Chain-of-Custody Form.

13.3.3 Laboratory-Custody Procedures

A designated sample custodian accepted custody of the shipped samples and verified that the information on the sample tags matched that on the Chain-of-Custody Records. Pertinent information as to shipment, pick-up, courier, etc., were entered in the "remarks" section. The custodian entered the sample tag data into a bound logbook.

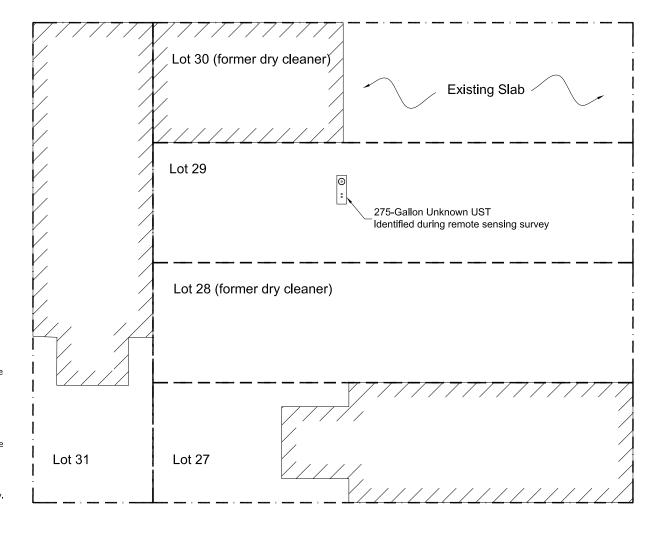
The laboratory custodian used the sample tag number, or assigned a unique laboratory number to each sample tag, and assured that all samples were transferred to the proper analyst or stored in the appropriate source area. The laboratory custodian distributed samples to the appropriate analysts. Laboratory personnel were responsible for the care and custody of samples, from the time they were received, until the sample was exhausted or returned to the sample custodian. All identifying data sheets and laboratory records were retained as part of the permanent documentation. Samples received by the laboratory were retained until after analysis and quality assurance checks were completed.

FIGURES

CHECK

ENVIRONMENTAL

SCALE: 1:1,000									
0	25	50	100	150	200				
					Feet				


TITLE	Figure No.			
	02			
PROJECT	Project No.			
	2016-102			
		DESIGN	WF	1-18-2016
CIDER		CHECK		
ENVIRONME		REVIEW		

Note:

On February 12, 2016, Cider Environmental supervised the remote sensing survey on selected areas of the Subject Property. The survey was performed utilizing a GSSI model SIR-2 ground penetrating radar (GPR) system. The result of the remote sensing survey can be referenced with Figure 3.

The accessible portion of the Subject Property was surveyed in search for any abandoned USTs. One (1) 275-gallon UST of unknown content was detected on Lot 29. Soil boring SB-6 and soil gas port SG-4 was installed in the immediate vicinity of the identified UST.

It should be noted that the remote sensing survey was affected by the presence of large quantity of fill material on the Subject Property.

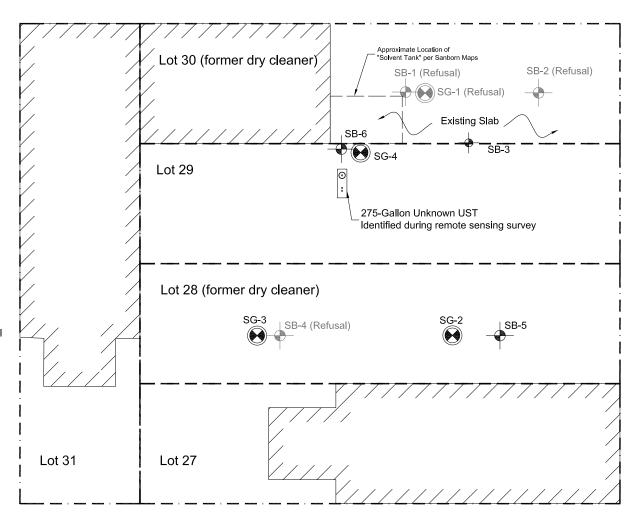
The information included on this graphic representation has been completed from a variety of sources and is subject to change without notice. Clote Enfortnmental makes no representations or warranties, express or implied, as to accuracy, completeness, limelines, or rights to the use of such information. This document is not intended for use as all and survey product nor last indesigned or intended as a construction design document, organic representation is at the sole risk of the party using or misusing the information.

TITLE: Remote Sensing Survey Results

DRAWN BY: REVISED BY: PROJECT No. CHECKED BY: REVISED DATE: 2016-102 APPROVED BY: DATE: 2-4-2016 FIGURE No. FILE NAME:

356 East 78th Street, New York, New York

Scale in Feet


Note:

On February 12, 2016, Cider Environmental installed soil borings on selected areas of the Subject Property. Due to lack of access for heavy equipment, all boring locations were installed manually with hand auger and air knifed

It should be noted that soil borings SB-1. SB-2 and SB-4 were slated to be installed within Lots 30/28. However, due to the thick/impenetrable concrete slab (former buildings) the sample acquisition for SB-1, SB-2 and SB-4 were unsuccessful.

One (1) five-point composite fill material sample, identified as COMP-1, was collected for laboratory analysis to determine potential impact on the future site redevelopment project.

On February 12, 2016, Cider Environmental collected three (3) soil gas samples at the Subject Property. All samples were collected in accordance with the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH October 2006).

Legend

Soil Sampling Point

Air Sampling Point

The information included on this graphic representation The information included on this graphic representation has been complete from a variety of a courses and is subject to change without notice. Clied Environment and the course of the subject to change without notice. Clied Environment implied, as le accuracy, completeness, limelines, or rights to the use of such information. This document Thinglied, and the course of the course DRAV

TITLE: Sampling Location Map

356 East 78th Street, New York, New York

DRAWN BY:	WF	REVISED BY:	PROJECT No.
CHECKED BY:	JC	REVISED DATE:	2016-102
DATE:	2-4-2016	APPROVED BY:	FIGURE No.
SCALE:	1" = 20'	FILE NAME:	04

Scale in Feet

TABLES

Table 1: Selected Samples and Analysis Methods Summary 356 East 78th Street, New York, New York

Sample ID	Matrix	Depth / Location	Date	USEPA Test Method	Target Analytes
SB-3	Soil	4'-5' beneath existing grade	2/12/2016	8260 / 8270 CP-51	VOCs and petroleum related SVOCs
SB-5	Soil	4'-5' beneath existing grade	2/12/2016	8260 / 8270 CP-51	VOCs and petroleum related SVOCs
SB-6	Soil	4'-5' beneath existing grade	2/12/2016	8260 / 8270 CP-51	VOCs and petroleum related SVOCs
Comp-1	Fill Material	NA	2/12/2016	8260 / 8270 / 6010 / 8081 / 8082 / 8151	VOCs, SVOCs, TAL Metals, PCBs, pesticides and herbicides.
SG-2	Soil Vapor	2' beneath existing grade	2/12/2016	TO-15	VOCs
SG-3	Soil Vapor	2' beneath existing grade	2/12/2016	TO-15	VOCs
SG-4	Soil Vapor	2' beneath existing grade	2/12/2016	TO-15	VOCs

Table 2: Laboratory Analysis Results- Soil 356 East 78th Street, New York, New York

	Sample ID		NIVODD 075	SB-3	SB-5	SB-6
Daramotore	Sample Depth	Units	NYCRR 375	4'-5'	4'-5'	4'-5'
Parameters	Collection Date	UTIILS	Unrestricted Use	2/12/2016	2/12/2016	2/12/2016
	CAS		USe	Result	Result	Result
Volatiles By SW8260C						
1,1,1,2-Tetrachloroethane	630-20-6	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,1,1-Trichloroethane	71-55-6	ug/Kg	680	< 4.7	< 4.6	< 4.4
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,1-Dichloroethane	79-00-5 75-34-3	ug/Kg ug/Kg	NA 270	< 4.7 < 4.7	< 4.6 < 4.6	< 4.4 < 4.4
1.1-Dichloroethene	75-34-3	ug/Kg ug/Kg	330	< 4.7	< 4.6	< 4.4
1,1-Dichloropropene	563-58-6	ug/Kg ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2,3-Trichlorobenzene	87-61-6	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2,3-Trichloropropane	96-18-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2,4-Trichlorobenzene	120-82-1	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2,4-Trimethylbenzene	95-63-6	ug/Kg	3600	< 4.7	< 4.6	< 4.4
1,2-Dibromo-3-Chloropropane	96-12-8	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2-Dibromoethane	106-93-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
1,2-Dichlorobenzene	95-50-1	ug/Kg	1100	< 4.7	< 4.6	< 4.4
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2	ug/Kg	20c	< 4.7	< 4.6	< 4.4
1,3,5-Trimethylbenzene	78-87-5	ug/Kg	NA 8400	< 4.7	< 4.6	< 4.4 < 4.4
1,3-Dichlorobenzene	108-67-8 541-73-1	ug/Kg ug/Kg	2400	< 4.7 < 4.7	< 4.6 < 4.6	< 4.4
1,3-Dichloropropane	142-28-9	ug/Kg ug/Kg	2400 NA	< 4.7	< 4.6	< 4.4
1,4-Dichlorobenzene	106-46-7	ug/Kg ug/Kg	1800	< 4.7	< 4.6	< 4.4
2,2-Dichloropropane	594-20-7	ug/Kg	NA	< 4.7	< 4.6	< 4.4
2-Chlorotoluene	95-49-8	ug/Kg	NA	< 4.7	< 4.6	< 4.4
2-Hexanone	591-78-6	ug/Kg	NA	< 24	< 23	< 22
2-Isopropyltoluene	527-84-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
4-Chlorotoluene	106-43-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Methyl Isobutyl Ketone	108-10-1	ug/Kg	NA	< 24	< 23	< 22
Acetone	67-64-1	ug/Kg	50	< 24	< 23	< 22
Acrylonitrile Benzene	107-13-1 71-43-2	ug/Kg ug/Kg	NA 60	< 9.4 < 4.7	< 9.2 < 4.6	< 8.7 < 4.4
Bromobenzene	108-86-1	ug/Kg ug/Kg	NA	< 4.7	< 4.6	< 4.4
Bromochloromethane	74-97-5	ug/Kg ug/Kg	NA NA	< 4.7	< 4.6	< 4.4
Bromodichloromethane	75-27-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Bromoform	75-25-2	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Bromomethane	74-83-9	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Carbon Disulfide	75-15-0	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Carbon Tetrachloride	56-23-5	ug/Kg	760	< 4.7	< 4.6	< 4.4
Chlorobenzene	108-90-7	ug/Kg	1100	< 4.7	< 4.6	< 4.4
Chloroethane	75-00-3	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Chloroform	67-66-3	ug/Kg	370	< 4.7	< 4.6	< 4.4
Chloromethane cis-1,2-Dichloroethene	74-87-3	ug/Kg	NA 250	< 4.7	< 4.6	< 4.4
cis-1,2-Dichloropene	156-59-2 10061-01-5	ug/Kg ug/Kg	250 NA	< 4.7 < 4.7	< 4.6 < 4.6	< 4.4 < 4.4
Chlorodibromomethane	124-48-1	ug/Kg ug/Kg	NA NA	< 4.7	< 4.6	< 4.4
Dibromomethane	74-95-3	ug/Kg ug/Kg	NA NA	< 4.7	< 4.6	< 4.4
Dichlorodifluoromethane	75-71-8	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Ethylbenzene	100-41-4	ug/Kg	1000	< 4.7	< 4.6	< 4.4
Hexachlorobutadiene	87-68-3	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Isopropylbenzene	98-82-8	ug/Kg	NA	< 4.7	< 4.6	< 4.4
m&p-Xylene	179601-23-1	ug/Kg	NA	< 4.7	< 4.6	< 4.4
2-Butanone	78-93-3	ug/Kg	NA	< 24	< 23	< 22
Methyl Tert-Butyl Ether	1634-04-4	ug/Kg	930	< 9.4	< 9.2	< 8.7
Methylene Chloride	75-09-2	ug/Kg	50	< 9.4	< 9.2	< 8.7
Naphthalene n-Butylbenzene	91-20-3 104-51-8	ug/Kg ug/Kg	12000 12000	< 4.7 < 4.7	< 4.6 < 4.6	< 4.4 < 4.4
n-Propylbenzene	103-65-1	ug/Kg ug/Kg	3900	< 4.7	< 4.6	< 4.4
o-Xylene	95-47-6	ug/Kg ug/Kg	NA	< 4.7	< 4.6	< 4.4
p-Isoproplytoluene	99-87-6	ug/Kg ug/Kg	NA	< 4.7	< 4.6	< 4.4
sec-Butylbenzene	135-98-8	ug/Kg	11000	< 4.7	< 4.6	< 4.4
Styrene	100-42-5	ug/Kg	NA	< 4.7	< 4.6	< 4.4
tert-Butylbenzene	98-06-6	ug/Kg	5900	< 4.7	< 4.6	< 4.4
Tetrachloroethene	127-18-4	ug/Kg	1300	< 4.7	< 4.6	< 4.4

Table 2: Laboratory Analysis Results- Soil 356 East 78th Street, New York, New York

	Sample ID		NYCRR 375	SB-3	SB-5	SB-6
Parameters	Sample Depth	Units	Unrestricted	4'-5'	4'-5'	4'-5'
i diameters	Collection Date	Utilits	Use	2/12/2016	2/12/2016	2/12/2016
	CAS		ose	Result	Result	Result
Tetrahydrofuran	109-99-9	ug/Kg	NA	< 9.4	< 9.2	< 8.7
Toluene	108-88-3	ug/Kg	700	< 4.7	< 4.6	< 4.4
Total Xylenes	1330-20-7	ug/Kg	260	< 4.7	< 4.6	< 4.4
trans-1,2-Dichloroethene	156-60-5	ug/Kg	190	< 4.7	< 4.6	< 4.4
trans-1,3-Dichloropropene	10061-02-6	ug/Kg	NA	< 4.7	< 4.6	< 4.4
trans-1,4-dichloro-2-butene	110-57-6	ug/Kg	NA	< 9.4	< 9.2	< 8.7
Trichloroethene	79-01-6	ug/Kg	470	< 4.7	< 4.6	< 4.4
Trichlorofluoromethane	75-69-4	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Trichlorotrifluoroethane	76-13-1	ug/Kg	NA	< 4.7	< 4.6	< 4.4
Vinyl Chloride	75-01-4	ug/Kg	20	< 4.7	< 4.6	< 4.4
Semivolatiles-STARS/CP-51 By SW82	70D					
Acenaphthene	83-32-9	ug/Kg	20000	< 260	< 270	< 260
Acenaphthylene	208-96-8	ug/Kg	100,000a	< 260	< 270	< 260
Anthracene	120-12-7	ug/Kg	100,000a	< 260	< 270	< 260
Benzo-a-Anthracene	56-55-3	ug/Kg	1,000c	< 260	< 270	< 260
Benzo-a-Pyrene	50-32-8	ug/Kg	1,000c	< 260	< 270	< 260
Benzo-b-Fluoranthene	205-99-2	ug/Kg	1,000c	< 260	< 270	< 260
Benzo-g,h,i-Perylene	191-24-2	ug/Kg	100000	< 260	< 270	< 260
Benzo-k-Fluoranthene	207-08-9	ug/Kg	800c	< 260	< 270	< 260
Chrysene	218-01-9	ug/Kg	1,000c	< 260	< 270	< 260
Dibenzo-a,h-Anthracene	53-70-3	ug/Kg	330b	< 260	< 270	< 260
Fluoranthene	206-44-0	ug/Kg	100000	< 260	< 270	< 260
Fluorene	86-73-7	ug/Kg	30000	< 260	< 270	< 260
Indeno(1,2,3-cd)Pyrene	193-39-5	ug/Kg	500c	< 260	< 270	< 260
Naphthalene	91-20-3	ug/Kg	12000	< 260	< 270	< 260
Phenanthrene	85-01-8	ug/Kg	100000	< 260	< 270	< 260
Pyrene	129-00-0	ug/Kg	100000	< 260	< 270	< 260

Notes:

ug/Kg: microgram per kilogram (ppb) mg/Kg: miligram per kilogram (ppm)

Analyte detected

Detected at concentration above 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Table 3: Laboratory Analysis Results- Urban Fill Material 356 East 78th Street, New York, New York

	Sample ID			NYCRR 375	COMP-1	
Parameters	Sample Date	Units	NYCRR 375	Restricted-	2/12/2016	
	CAS		Unrestricted Use	Residential	Result	
Metals, Total						
Aluminum, Al	7429-90-5	mg/Kg	NA	NA	13,400	
Antimony, Sb	7440-36-0	mg/Kg	NA	NA	< 3.8	
Arsenic, As	7440-38-2	mg/Kg	13c	16f	4.5	
Barium, Ba	7440-39-3	mg/Kg	350c	400	91	
Beryllium, Be	7440-41-7 7440-43-9	mg/Kg	7.2 2.5c	72 4.3	0.48	
Cadmium, Cd Calcium, Ca	7440-43-9	mg/Kg mg/Kg	NA	4.3 NA	< 0.38 9,980	
Chromium, Cr	7440-70-2	mg/Kg	NA NA	110	23.6	
Cobalt, Co	7440-47-3	mg/Kg	NA NA	NA	7.59	
Copper, Cu	7440-50-8	mg/kg	50	270	16.5	
Iron, Fe	7439-89-6	mg/Kg	NA NA	NA NA	23,000	
Lead, Pb	7439-92-1	mg/Kg	63c	400	67.4	
Magnesium, Mg	7439-95-4	mg/Kg	NA	NA	3,380	
Manganese, Mn	7439-96-5	mg/Kg	1,600c	2,000f	150	
Mercury, Hg	7439-97-6	mg/Kg	.18c	.81j	0.18	
Nickel, Ni	7440-02-0	mg/Kg	30	310	14.7	
Potassium, K	9/7/7440	mg/Kg	NA	NA	1,500	
Selenium, Se	7782-49-2	mg/Kg	3.9c	180	< 1.5	
Silver, Ag	7440-22-4	mg/Kg	2	180	< 0.38	
Sodium, Na	7440-23-5	mg/Kg	NA	NA	108	
Thallium, Ti	7440-28-0	mg/Kg	NA	NA	< 3.4	
Vanadium, V	7440-62-2	mg/Kg	NA	NA	32.1	
Zinc, Zn	7440-66-6	mg/Kg	109c	10,000d	58.6	
PCBs By SW8082A						
Aroclor 1016	12674-11-2	ug/Kg	NA	NA	< 400	
Aroclor 1221	11104-28-2	ug/Kg	NA NA	NA NA	< 400	
Aroclor 1232	11141-16-5	ug/Kg	NA	NA	< 400	
Aroclor 1242	53469-21-9	ug/Kg	NA	NA	< 400	
Aroclor 1248	12672-29-6	ug/Kg	NA	NA	< 400	
Aroclor 1254	11097-69-1	ug/Kg	NA	NA	< 400	
Aroclor 1260	11096-82-5	ug/Kg	NA	NA	< 400	
Aroclor 1262	37324-23-5	ug/Kg	NA	NA	< 400	
Aroclor 1268	11100-14-4	ug/Kg	NA	NA	< 400	
Volatiles By SW8260C						
1,1,1,2-Tetrachloroethane	630-20-6	ug/Kg	NA	NA	< 5.9	
1,1,1-Trichloroethane	71-55-6	ug/Kg	680	100,000a	< 5.9	
1,1,2,2-Tetrachloroethane	79-34-5	ug/Kg	NA	NA	< 5.9	
1,1,2-Trichloroethane 1,1-Dichloroethane	79-00-5 75-34-3	ug/Kg ug/Kg	NA 270	NA 26000	< 5.9	
1,1-Dichloroethane	75-34-3	ug/Kg ug/Kg	330	100,000a	< 5.9	
1,1-Dichloropropene	563-58-6	ug/Kg ug/Kg	NA	NA	< 5.9 < 5.9	
1,2,3-Trichlorobenzene	87-61-6	ug/Kg ug/Kg	NA NA	NA	< 5.9	
1,2,3-Trichloropropane	96-18-4	ug/Kg	NA	NA	< 5.9	
1,2,4-Trichlorobenzene	120-82-1	ug/Kg	NA	NA	< 5.9	
1,2,4-Trimethylbenzene	95-63-6	ug/Kg	3600	52000	< 5.9	
1,2-Dibromo-3-Chloropropane	96-12-8	ug/Kg	NA	NA	< 5.9	
1,2-Dibromoethane	106-93-4	ug/Kg	NA	NA	< 5.9	
1,2-Dichlorobenzene	95-50-1	ug/Kg	1100	100,000a	< 5.9	
1,2-Dichloroethane	107-06-2	ug/Kg	20c	3100	< 5.9	
1,2-Dichloropropane	78-87-5	ug/Kg	NA	NA	< 5.9	
1,3,5-Trimethylbenzene	108-67-8	ug/Kg	8400	52000	< 5.9	
1,3-Dichlorobenzene	541-73-1	ug/Kg	2400	49000	< 5.9	
1,3-Dichloropropane	142-28-9	ug/Kg	NA 1000	NA 10000	< 5.9	
1,4-Dichlorobenzene	106-46-7	ug/Kg	1800	13000	< 5.9	
2,2-Dichloropropane	594-20-7	ug/Kg	NA	NA	< 5.9	
2-Chlorotoluene	95-49-8	ug/Kg	NA	NA NA	< 5.9	
2-Hexanone	591-78-6	ug/Kg	NA NA	NA NA	< 29	
2-Isopropyltoluene 4-Chlorotoluene	527-84-4	ug/Kg	NA NA	NA NA	< 5.9	
Methyl Isobutyl Ketone	106-43-4 108-10-1	ug/Kg	NA NA	NA NA	< 5.9	
mennyi isobutyi ketone	100-10-1	ug/Kg	INA	INA	< 29	

Table 3: Laboratory Analysis Results- Urban Fill Material 356 East 78th Street, New York, New York

	Comple ID			NYCRR 375	COMP-1
Parameters	Sample ID Sample Date	Units	NYCRR 375	Restricted-	2/12/2016
	CAS		Unrestricted Use	Residential	Result
Acetone	67-64-1	ug/Kg	50	100,000b	< 29
Acrylonitrile	107-13-1	ug/Kg	NA	NA	< 12
Benzene	71-43-2	ug/Kg	60	4800	< 5.9
Bromobenzene	108-86-1	ug/Kg	NA	NA	< 5.9
Bromochloromethane	74-97-5	ug/Kg	NA	NA	< 5.9
Bromodichloromethane	75-27-4	ug/Kg	NA	NA	< 5.9
Bromoform	75-25-2	ug/Kg	NA	NA	< 5.9
Bromomethane	74-83-9	ug/Kg	NA	NA	< 5.9
Carbon Disulfide	75-15-0	ug/Kg	NA	NA	< 5.9
Carbon Tetrachloride	56-23-5	ug/Kg	760	2400	< 5.9
Chlorobenzene Chloroethane	108-90-7 75-00-3	ug/Kg ug/Kg	1100 NA	100,000a NA	< 5.9
Chloroform	67-66-3	ug/Kg ug/Kg	370	49000	< 5.9 < 5.9
Chloromethane	74-87-3	ug/Kg ug/Kg	NA	NA	< 5.9 < 5.9
cis-1,2-Dichloroethene	156-59-2	ug/Kg ug/Kg	250	100,000a	< 5.9
cis-1,3-Dichloropropene	10061-01-5	ug/Kg ug/Kg	NA	NA	< 5.9
Chlorodibromomethane	124-48-1	ug/Kg	NA NA	NA	< 5.9
Dibromomethane	74-95-3	ug/Kg	NA	NA	< 5.9
Dichlorodifluoromethane	75-71-8	ug/Kg	NA	NA	< 5.9
Ethylbenzene	100-41-4	ug/Kg	1000	41000	< 5.9
Hexachlorobutadiene	87-68-3	ug/Kg	NA	NA	< 5.9
Isopropylbenzene	98-82-8	ug/Kg	NA	NA	< 5.9
m&p-Xylene	179601-23-1	ug/Kg	NA	NA	< 5.9
2-Butanone	78-93-3	ug/Kg	NA	100,000a	< 29
Methyl Tert-Butyl Ether	1634-04-4	ug/Kg	930	100,000a	< 12
Methylene Chloride	75-09-2	ug/Kg	50	100,000a	< 12
Naphthalene	91-20-3	ug/Kg	12000	100,000a	< 5.9
n-Butylbenzene	104-51-8	ug/Kg	12000	100,000a	< 5.9
n-Propylbenzene	103-65-1	ug/Kg	3900	100,000a	< 5.9
o-Xylene	95-47-6	ug/Kg	NA	NA	< 5.9
p-Isoproplytoluene	99-87-6	ug/Kg	NA 11000	NA 100,000-	< 5.9
sec-Butylbenzene	135-98-8 100-42-5	ug/Kg	11000 NA	100,000a NA	< 5.9
Styrene tert-Butylbenzene	98-06-6	ug/Kg ug/Kg	5900	100,000a	< 5.9
Tetrachloroethene	127-18-4	ug/Kg ug/Kg	1300	19000	< 5.9 < 5.9
Tetrahydrofuran	109-99-9	ug/Kg ug/Kg	NA	NA	< 12
Toluene	108-88-3	ug/Kg	700	100,000a	< 5.9
Total Xylenes	1330-20-7	ug/Kg	260	100,000a	< 5.9
trans-1,2-Dichloroethene	156-60-5	ug/Kg	190	100,000a	< 5.9
trans-1,3-Dichloropropene	10061-02-6	ug/Kg	NA	NA	< 5.9
trans-1,4-dichloro-2-butene	110-57-6	ug/Kg	NA	NA	< 12
Trichloroethene	79-01-6	ug/Kg	470	21000	< 5.9
Trichlorofluoromethane	75-69-4	ug/Kg	NA	NA	< 5.9
Trichlorotrifluoroethane	76-13-1	ug/Kg	NA	NA	< 5.9
Vinyl Chloride	75-01-4	ug/Kg	20	900	< 5.9
Semivolatiles By SW8270D	05.01.0				
1,2,4,5-Tetrachlorobenzene	95-94-3	ug/Kg	212	A 1 A	< 270
1,2,4-Trichlorobenzene	120-82-1	ug/Kg	NA 1100	NA 100,000a	< 270
1,2-Dichlorobenzene	95-50-1	ug/Kg	1100	100,000a	< 270
1,2- Diphenylhydrazine 1,3-Dichlorobenzene	122-66-7 541-73-1	ug/Kg ug/Kg	NA 2400	NA 49000	< 390
1,4-Dichlorobenzene	106-46-7	ug/Kg ug/Kg	1800	13000	< 270 < 270
2,4,5-Trichlorophenol	95-95-4	ug/Kg ug/Kg	NA	NA	< 270
2,4,6-Trichlorophenol	88-06-2	ug/Kg ug/Kg	NA NA	NA NA	< 270
2,4-Dichlorophenol	120-83-2	ug/Kg	NA	NA	< 270
2,4-Dimethylphenol	105-67-9	ug/Kg	NA	NA	< 270
2,4-Dinitrophenol	51-28-5	ug/Kg	NA	NA	< 390
2,4-Dinitrotoluene	121-14-2	ug/Kg	NA	NA	< 270
2,6-Dinitrotoluene	606-20-2	ug/Kg	NA	NA	< 270
2-Chloronaphthalene	91-58-7	ug/Kg	NA	NA	< 270
2-Chlorophenol	95-57-8	ug/Kg	NA	NA	< 270
2-Methylnaphthalene	91-57-6	ug/Kg	NA	NA	< 270

Table 3: Laboratory Analysis Results- Urban Fill Material 356 East 78th Street, New York, New York

	Sample ID		NYCRR 375	NYCRR 375	COMP-1
Parameters	Sample Date	Units	Unrestricted Use	Restricted-	2/12/2016
	CAS		2001	Residential	Result
2-Methylphenol	95-48-7	ug/Kg	330b	100,000a	< 270
2-Nitroaniline 2-Nitrophenol	88-74-4 88-75-5	ug/Kg ug/Kg	NA NA	NA NA	< 390
3+4 Methylphenol	NA	ug/Kg ug/Kg	NA NA	NA NA	< 270 < 390
3,3-Dichlorobenzidine	91-94-1	ug/Kg ug/Kg	NA NA	NA NA	< 270
3-Nitroaniline	99-09-2	ug/Kg ug/Kg	NA NA	NA NA	< 390
4,6-Dinitro-2-methylphenol	534-52-1	ug/Kg	NA NA	NA NA	< 390
4-Bromophenyl-phenyl ether	101-55-3	ug/Kg	NA NA	NA	< 390
4-Chloro-3-methylphenol	59-50-7	ug/Kg	NA	NA	< 270
4-Chloroaniline	106-47-8	ug/Kg	NA	NA	< 270
4-Chlorophenyl phenyl ether	7005-72-3	ug/Kg	NA	NA	< 270
4-Nitroaniline	100-01-6	ug/Kg	NA	NA	< 620
4-Nitrophenol	100-02-7	ug/Kg	NA	NA	< 270
Acenaphthene	83-32-9	ug/Kg	20000	100,000a	< 270
Acenaphthylene	208-96-8	ug/Kg	100,000a	100,000a	< 270
Acetophenone	98-86-2	ug/Kg	NA	NA	< 270
Aniline	62-53-3	ug/Kg	NA 100,000	100000	< 390
Anthracene	120-12-7	ug/Kg	100,000a	100,000a	< 270
Benzo-a-Anthracene	56-55-3	ug/Kg	1,000c NA	1,000f NA	< 270
Benzidine Benzo-a-Pyrene	92-87-5 50-32-8	ug/Kg ug/Kg	1,000c	1,000f	< 270
Benzo-b-Fluoranthene	205-99-2	ug/Kg ug/Kg	1,000c	1,000f	< 270 < 270
Benzo-g,h,i-Perylene	191-24-2	ug/Kg ug/Kg	100000	100,000a	< 270
Benzo-k-Fluoranthene	207-08-9	ug/Kg ug/Kg	800c	3900	< 270
Benzoic Acid	65-85-0	ug/Kg	NA	NA NA	< 780
Butylbenzylphthalate	85-68-7	ug/Kg	NA	NA	< 270
Bis(2-Chloroethoxy)methane	111-91-1	ug/Kg	NA	NA	< 270
Bis(2-Chloroethyl)ether	111-44-4	ug/Kg	NA	NA	< 390
Bis(2-Chloroisopropyl)ether	39638-32-9	ug/Kg	NA	NA	< 270
Bis(2-Ethylhexyl)Phthalate	117-81-7	ug/Kg	NA	NA	< 270
Carbazole	86-74-8	ug/Kg	NA	NA	< 390
Chrysene	218-01-9	ug/Kg	1,000c	3900	< 270
Dibenzo-a,h-Anthracene	53-70-3	ug/Kg	330b	330e	< 270
Dibenzofuran	132-64-9	ug/Kg	7000	59000	< 270
Diethyl Phthalate	84-66-2	ug/Kg	NA	NA	< 270
Dimethyl Phthalate	131-11-3	ug/Kg	NA NA	NA NA	< 270
Di-n-Butyl Phthalate Di-n-Octyl Phthalate	84-74-2 117-84-0	ug/Kg	NA NA	NA NA	< 270
Fluoranthene	206-44-0	ug/Kg ug/Kg	100000	100,000a	< 270 < 270
Fluorene	86-73-7	ug/Kg ug/Kg	30000	100,000a	< 270
Hexachlorobenzene	118-74-1	ug/Kg ug/Kg	330	1200	< 270
Hexachlorobutadiene	87-68-3	ug/Kg	NA	NA	< 270
Hexachlorocyclopentadiene	77-47-4	ug/Kg	NA	NA	< 270
Hexachloroethane	67-72-1	ug/Kg	NA	NA	< 270
Indeno(1,2,3-cd)Pyrene	193-39-5	ug/Kg	500c	500f	< 270
Isophorone	78-59-1	ug/Kg	NA	NA	< 270
Naphthalene	91-20-3	ug/Kg	12000	100,000a	< 270
Nitrobenzene	98-95-3	ug/Kg	NA	15000	< 270
N-Nitrosodimethylamine	62-75-9	ug/Kg	NA	NA	< 390
N-Nitroso-di-n-Propylamine	621-64-7	ug/Kg	NA	NA	< 270
N-Nitrosodiphenylamine	86-30-6	ug/Kg	NA NA	NA NA	< 390
Pentachloronitrobenzene	82-68-8	ug/Kg	NA 900b	NA 4700	< 390
Pentachlorophenol	87-86-5	ug/Kg	800b	6700	< 390
Phenal Phonal	85-01-8 108-95-2	ug/Kg	100000 330b	100,000a 100,000a	< 270
Phenol Pyrene	129-00-0	ug/Kg ug/Kg	100000	100,000a 100,000a	< 270 < 270
Pyridine	110-86-1	ug/Kg ug/Kg	100000	100,000	< 390
		~9' · 'B			\ 0,0
Chlorinated Herbicides By SW8151A					
2,4,5-T	93-76-5	ug/Kg	NA	NA 100,000	< 49
2,4,5-TP Azcid	93-72-1	ug/Kg	3800	100,000a	< 49
2,4-D	94-75-7	ug/Kg	NA NA	NA NA	< 49
2,4-DB	94-82-6	ug/Kg	NA	NA	< 490

Table 3: Laboratory Analysis Results- Urban Fill Material 356 East 78th Street, New York, New York

Parameters	Sample ID Sample Date CAS	Units	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Residential	COMP-1 2/12/2016 Result
Dalapon	75-99-0	ug/Kg	NA	NA	< 49
Dicamba	1918-00-9	ug/Kg	NA	NA	< 99
Dichloroprop	120-36-5	ug/Kg	NA	NA	< 49
Dinoseb	88-85-7	ug/Kg	NA	NA	< 99

ug/Kg: microgram per kilogram (ppb) mg/Kg: miligram per kilogram (ppm)

Analyte detected

Detected at concentration above 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Detected at concentration above 6 NYCRR Part 375 Restricted Residential Soil Cleanup Objectives

Table 4: Laboratory Analysis Results- Soil Gas 356 East 78th Street, New York, New York

	Sample ID			SG-2	SG-3	SG-4
Parameters	Sample Date	Units	NYSDOH	2/12/2016	2/12/2016	2/12/2016
i di diffictors	CAS	- Offics	Air Guideline Values	Result	Result	Result
Volatiles (TO15) By TO15	UA3			Result	Result	Result
1,1,1,2-Tetrachloroethane	630-20-6	ug/m3		< 1.00	< 1.00	< 1.00
1.1.1-Trichloroethane	71-55-6	ug/m3		< 1.00	< 1.00	< 1.00
1,1,2,2-Tetrachloroethane	79-34-5	ug/m3		< 1.00	< 1.00	< 1.00
1,1,2-Trichloroethane	79-00-5	ug/m3		< 1.00	< 1.00	< 1.00
1,1-Dichloroethane	75-34-3	ug/m3		< 1.00	< 1.00	< 1.00
1,1-Dichloroethene	75-35-4	ug/m3		< 1.00	< 1.00	< 1.00
1,2,4-Trichlorobenzene	120-82-1	ug/m3		< 1.00	< 1.00	< 1.00
1,2,4-Trimethylbenzene	95-63-6	ug/m3		< 1.00	< 1.00	< 1.00
1,2-Dibromoethane(EDB)	106-93-4	ug/m3		< 1.00	< 1.00	< 1.00
1,2-Dichlorobenzene	95-50-1	ug/m3		< 1.00	< 1.00	< 1.00
1,2-Dichloroethane	107-06-2	ug/m3		< 1.00	< 1.00	< 1.00
1,2-Dichloropropane	78-87-5	ug/m3		< 1.00	< 1.00	< 1.00
1,2-Dichlorotetrafluoroethane	76-14-2	ug/m3		< 1.00	< 1.00	< 1.00
1,3,5-Trimethylbenzene	108-67-8	ug/m3		< 1.00	< 1.00	< 1.00
1,3-Butadiene	106-99-0	ug/m3		< 1.00	< 1.00	< 1.00
1,3-Dichlorobenzene	541-73-1	ug/m3		< 1.00	< 1.00	< 1.00
1,4-Dichlorobenzene	106-46-7	ug/m3		< 1.00	< 1.00	< 1.00
1,4-Dioxane	123-91-1	ug/m3		< 1.00	< 1.00	< 1.00
2-Hexanone(MBK)	591-78-6	ug/m3		< 1.00	< 1.00	< 1.00
4-Ethyltoluene	622-96-8	ug/m3		< 1.00	< 1.00	< 1.00
p-Isoproplytoluene	99-87-6	ug/m3		< 1.00	< 1.00	< 1.00
Methyl Isobutyl Ketone	108-10-1	ug/m3		< 1.00	< 1.00	< 1.00
Acetone	67-64-1	ug/m3		3.75	3.61	5.34
Acrylonitrile	107-13-1	ug/m3		< 1.00	< 1.00	< 1.00
Benzene	71-43-2	ug/m3		1.09	< 1.00	1.11
Benzyl chloride	100-44-7	ug/m3		< 1.00	< 1.00	< 1.00
Bromodichloromethane	75-27-4	ug/m3		< 1.00	< 1.00	< 1.00
Bromoform	75-25-2	ug/m3		< 1.00	< 1.00	< 1.00
Bromomethane	74-83-9	ug/m3		< 1.00	< 1.00	< 1.00
Carbon Disulfide	75-15-0	ug/m3		< 1.00	< 1.00	6.41
Carbon Tetrachloride	56-23-5	ug/m3		0.5	0.51	0.52
Chlorobenzene	108-90-7	ug/m3		< 1.00	< 1.00	< 1.00
Chloroethane	75-00-3	ug/m3		< 1.00	< 1.00	< 1.00
Chloroform	67-66-3	ug/m3		< 1.00	< 1.00	< 1.00
Chloromethane	74-87-3	ug/m3		< 1.00	< 1.00	< 1.00
cis-1,2-Dichloroethene	156-59-2	ug/m3		< 1.00	< 1.00	< 1.00
cis-1,3-Dichloropropene	10061-01-5	ug/m3		< 1.00	< 1.00	< 1.00
Cyclohexane	110-82-7	ug/m3		< 1.00	< 1.00	< 1.00
Chlorodibromomethane	124-48-1	ug/m3		< 1.00	< 1.00	< 1.00
Dichlorodifluoromethane	75-71-8	ug/m3		1.9	1.63	2.18
Ethanol	64-17-5	ug/m3		1.66	13	2.9
Ethyl acetate	141-78-6	ug/m3		< 1.00	< 1.00	< 1.00
Ethylbenzene	100-41-4	ug/m3		< 1.00	< 1.00	< 1.00
Heptane	142-82-5	ug/m3		< 1.00	< 1.00	< 1.00
Hexachlorobutadiene	87-68-3	ug/m3		< 1.00	< 1.00	< 1.00
Hexane	110-54-3	ug/m3		< 1.00	< 1.00	< 1.00
Isopropylalcohol	67-63-0	ug/m3		1.11	< 1.00	1.12
Isopropylbenzene	98-82-8	ug/m3		< 1.00	< 1.00	< 1.00
Total Xylenes	179601-23-1	ug/m3		< 1.00	< 1.00	1.26
2-Butanone	78-93-3	ug/m3		< 1.00	< 1.00	< 1.00
Methyl Tert-Butyl Ether	1634-04-4	ug/m3		< 1.00	< 1.00	< 1.00

Table 4: Laboratory Analysis Results- Soil Gas 356 East 78th Street, New York, New York

	Sample ID		NYSDOH	SG-2	SG-3	SG-4
Parameters	Sample Date	Units	Air Guideline Values	2/12/2016	2/12/2016	2/12/2016
	CAS		All Guideline values	Result	Result	Result
Methylene Chloride	75-09-2	ug/m3	60	< 1.00	< 1.00	< 1.00
n-Butylbenzene	104-51-8	ug/m3		< 1.00	2.66	< 1.00
o-Xylene	95-47-6	ug/m3		< 1.00	< 1.00	< 1.00
Propylene	115-07-1	ug/m3		1.23	1.98	1.49
sec-Butylbenzene	135-98-8	ug/m3		< 1.00	< 1.00	< 1.00
Styrene	100-42-5	ug/m3		< 1.00	< 1.00	< 1.00
Tetrachloroethene	127-18-4	ug/m3	100	0.52	0.66	0.59
Tetrahydrofuran	109-99-9	ug/m3		< 1.00	< 1.00	< 1.00
Toluene	108-88-3	ug/m3		< 1.00	2.08	1.49
trans-1,2-Dichloroethene	156-60-5	ug/m3		< 1.00	< 1.00	< 1.00
trans-1,3-Dichloropropene	10061-02-6	ug/m3		< 1.00	< 1.00	< 1.00
Trichloroethene	79-01-6	ug/m3	5	< 0.25	< 0.25	< 0.25
Trichlorofluoromethane	75-69-4	ug/m3		1.47	1.41	1.49
Trichlorotrifluoroethane	76-13-1	ug/m3		< 1.00	< 1.00	< 1.00
Vinyl Chloride	75-01-4	ug/m3		< 0.25	< 0.25	< 0.25

Notes:

ug/m3: microgram per cubic meter

Analyte detected

Detected at concentration above NYSDOH Air Guidance Value

APPENDIX A

Soil Boring Logs

SOIL BORING LOG

		l	E 78th St				
Site Loca	tion:		NYC, NY		Boring No.:	SB-3	
Project #	:		2016-102		-		FIDER
Client:			BBCN		Logged By:	SZ	ENVIRONMENTAL
Installer:			CE		Checked By:	WF	
Method:			Hand Auger		Comments:		ndary between Lot29 and
Date:	_		2/12/2016		Comments.	Lot30	
depth (feet)	PID (ppm)	Sample	Moisture Content	Recovery	Soil Classif	ication	Remarks
	0		Medium Moist		black top	o soil	No odor or staining
— 1 — 	0		Medium Moist		brown sand	dy clay	No odor or staining
2 —	0		Medium Moist	100%			No odor or staining
3 —	0		Medium Moist	7			No odor or staining
- 4 - - 5 -	0		Medium Moist				No odor or staining
_ 5 <u>_</u> _ 6 <u>_</u>					End of Boring @ street le		
8 —							
9 —							
- 10 —							
- 10 - - 11 -							
_ '' _ 12							
_ 12 _ 13							
_							
 15							
_	-						
 17							
- 18 -							
- 19 -	1						
	1						
_	1						
- 22	1						
- 23 -	1						
- 24 -							
- 25 —	1						
	<u> </u> ^F = 1 ₋ 10	107	LITTIE	11 00	1 SOME –	21 250/	AND - 36 - 50 %

SOIL BORING LOG

		I	L 2011 C1		T	T	<u> </u>
Site Loca	tion:		E 78th St NYC, NY		Boring No.:	SB-5	
Project #	:		2016-102		201119 140	35-3	
Client:			BBCN		Logged By:	SZ	ENVIRONMENTAL
Installer:			CE		Checked By:	WF	
Method:			Hand Auger		Comments:	East portation	on of Lot 28
Date:			2/12/2016		Johnnonts.	Last portation	O. LO. 20
depth (feet)	PID (ppm)	Sample	Moisture Content	Recovery	Soil Classific	cation	Remarks
	0		Medium Moist		black top	soil	No odor or staining
1 —	0		Medium Moist		brown sandy	y clay	No odor or staining
_ 2	0		Medium Moist	100%			No odor or staining
3 —	0		Medium Moist	1			No odor or staining
4 —	0		Medium Moist				No odor or staining
5 — - 6 —			Worst		End of Boring @ 5 street lev		
- - -							
- 8 —							
 - 9							
 10							
- - 11 —							
 12							
 13							
 14							
 15							
 16							
 - 17							
- 18 -							
- 19 -							
 20							
 21							
 22							
- 23 -							
- 24 -							
 25							
	F = 1 - 10	07		11 20	 %	4 050/	AND - 36 - 50 %

SOIL BORING LOG

		I	L 2011 C1		T	T	<u> </u>
Site Loca	tion:		E 78th St NYC, NY		Boring No.:	SB-6	
Project #	:		2016-102				FIDED
Client:			BBCN		Logged By:	SZ	ENVIRONMENTAL
Installer:			CE		Checked By:	WF	
Method:			Hand Auger		Comments:	to the east of	of the UST@ Lot29
Date:			2/12/2016				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
depth (feet)	PID (ppm)	Sample	Moisture Content	Recovery	Soil Classific	cation	Remarks
_	0		Medium Moist		black top	soil	No odor or staining
1 —	0		Medium Moist		brown sandy	/ clay	No odor or staining
_ 2	0		Medium Moist	100%			No odor or staining
3 —	0		Medium Moist	1			No odor or staining
4 —	0		Medium Moist				No odor or staining
5 — - 6 —	-		WOIST		End of Boring @ 5 street lev		
7 —							
-							
 - 9 —							
- - 10 —							
 - 11							
- 12 —							
- 13 —							
- 14 —							
_							
- 16 —							
_ 17 —							
- 18 -							
- 19 -							
_ 20 _ _ 21							
-							
- 23 - 							
- 24 - 							
25	^F = 1 - 10	04		11 00)% SOME – 2	1 250/	AND = 36 - 50 %

Subslab Soil Vapor Sample Collection Log SG-2 Sample ID: BBCN Client: **Boring Equipment:** Hand Auger E78th St Sealant: Bontonite Project: Location: NYC, NY **Tubing Information:** 1/4 inch Miscellaneous Project #: 2016-102 Equipment: PID Samplers: ΤZ Subcontractor: Sample Point East part @ Lot 28 Equipment: Location: Moisture Content of Medium Sampling 4ft Sampling Zone: Moist Depth: Date of **Approximate Purge** 2/12/2016 Volume: 40ml Installation:

Instrument Readings:

	Time	Canister Vacuum (a) (inches of	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
Start	9:45	29.5	21	42	0	30.12	N/A
Mid	10:40	18	21	42	0	30.12	N/A
End	11:25	7	21	42	0	30.12	N/A

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	6 L
Canister ID:	19630
Flow Controller ID:	4487
Notes:	

Tracer Test Information (if applicable):

Initial Helium Shroud:	
Final Helium Shroud	
Tracer Test Passed:	Yes

General Observations/Notes:

Unconfined surface, medium moisture sandy clay/clay. A light snow day.							

Approximating One-Well Volume (for purging):

When using 1¼-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

Subslab Soil Vapor Sample Collection Log SG-3 Sample ID: BBCN Client: **Boring Equipment:** Hand Auger E78th St Sealant: Bontonite Project: Location: NYC, NY **Tubing Information:** 1/4 inch Miscellaneous Project #: 2016-102 Equipment: PID Samplers: ΤZ Subcontractor: Sample Point west part @ Lot 28 Equipment: Location: Moisture Content of Medium Sampling 4ft Sampling Zone: Moist Depth: Date of **Approximate Purge** 2/12/2016 Volume: 40ml Installation:

Instrument Readings:

	Time	Canister Vacuum (a) (inches of	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
Start	11:05	30	21	42	0	30.12	N/A
Mid	12:15	17	21	42	0	30.12	N/A
End	13:00	8	21	42	0	30.12	N/A

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	6 L
Canister ID:	19589
Flow Controller ID:	5035
Notes:	

Tracer Test Information (if applicable):

Initial Helium	
Shroud:	
Final Helium	
Shroud:	
Tracer Test Passed:	Yes

General Observations/Notes:

Unconfined surface, medium moisture sandy clay/clay. A light snow day.	

Approximating One-Well Volume (for purging):

When using 1¼-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

Subslab Soil Vapor Sample Collection Log SG-4 Sample ID: BBCN Client: **Boring Equipment:** Hand Auger E78th St Sealant: Bontonite Project: Location: NYC, NY **Tubing Information:** 1/4 inch Miscellaneous Project #: 2016-102 PID **Equipment:** Samplers: ΤZ Subcontractor: Sample Point West part @ Lot 29 Equipment: Location: **Moisture Content of Medium** Sampling 4ft Sampling Zone: Moist Depth: Date of **Approximate Purge** 2/12/2016 40ml Installation: Volume:

Instrument Readings:

	Time	Canister Vacuum (a) (inches of	Temperature (°F or °C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure (inches of Hg)	PID (ppb)
Start	12:10	29	21	42	0	30.12	N/A
Mid	13:00	18	21	42	0	30.12	N/A
End	13:50	7.5	21	42	0	30.12	N/A

⁽a) Record canister information at a minimum at the beginning and end of sampling

SUMMA Canister Information:

Size (circle one):	6 L
Canister ID:	455
Flow Controller ID:	5710
Notes:	

<u>Tracer Test Information (if applicable)</u>:

Initial Helium	
Shroud:	
Final Helium	
Shroud.	
Tracer Test Passed:	Yes

General Observations/Notes:

Unconfined surface, medium moisture sandy clay/clay. A light snow day.	

Approximating One-Well Volume (for purging):

When using 1¼-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

APPENDIX B

Laboratory Analysis Report

Wednesday, February 17, 2016

Attn: Mr. James Cressy Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Project ID:

Sample ID#s: BK65675 - BK65677

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 17, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Sample Information		Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:	TZ	02/12/16	11:25
Location Code:	CIDER-ENV	Received by:	LK	02/15/16	16:52
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

aboratory Data SDG ID: GBK65675 Canister Id: 19630 Phoenix ID: BK65675

Project ID:

Client ID: SG-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/15/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/15/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/15/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/15/16	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/15/16	KCA	1	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/15/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/15/16	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/15/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/15/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/15/16	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/15/16	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	02/15/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/15/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/15/16	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	02/15/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/15/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/15/16	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	02/15/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/15/16	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/15/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/15/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/15/16	KCA	1	
Acetone	1.58	S 0.421	3.75	1.00	02/15/16	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	02/15/16	KCA	1	
Benzene	0.340	0.313	1.09	1.00	02/15/16	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	02/15/16	KCA	1	

Page 1 of 9 Ver 1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	02/15/16	KCA	1	
Bromoform	ND	0.097	ND	1.00	02/15/16	KCA	1	
Bromomethane	ND	0.258	ND	1.00	02/15/16	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	02/15/16	KCA	1	
Carbon Tetrachloride	0.079	0.040	0.50	0.25	02/15/16	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	02/15/16	KCA	1	
Chloroethane	ND	0.379	ND	1.00	02/15/16	KCA	1	
Chloroform	ND	0.205	ND	1.00	02/15/16	KCA	1	
Chloromethane	ND	0.485	ND	1.00	02/15/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/15/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	02/15/16	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	02/15/16	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	02/15/16	KCA	1	
Dichlorodifluoromethane	0.384	0.202	1.90	1.00	02/15/16	KCA	1	
Ethanol	0.883	S 0.531	1.66	1.00	02/15/16	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	02/15/16	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	02/15/16	KCA	1	
Heptane	ND	0.244	ND	1.00	02/15/16	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/15/16	KCA	1	
Hexane	ND	0.284	ND	1.00	02/15/16	KCA	1	
Isopropylalcohol	0.450	S 0.407	1.11	1.00	02/15/16	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	02/15/16	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	02/15/16	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	02/15/16	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/15/16	KCA	1	
Methylene Chloride	ND	0.288	ND	1.00	02/15/16	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	02/15/16	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	02/15/16	KCA	1	
Propylene	0.715	0.581	1.23	1.00	02/15/16	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/15/16	KCA	1	1
Styrene	ND	0.235	ND	1.00	02/15/16	KCA	1	
Tetrachloroethene	0.077	0.037	0.52	0.25	02/15/16	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	02/15/16	KCA	1	1
Toluene	ND	0.266	ND	1.00	02/15/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/15/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	02/15/16	KCA	1	
Trichloroethene	ND	0.047	ND	0.25	02/15/16	KCA	1	
Trichlorofluoromethane	0.262	0.178	1.47	1.00	02/15/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	02/15/16	KCA	1	
Vinyl Chloride	ND	0.098	ND	0.25	02/15/16	KCA	1	
QA/QC Surrogates% Bromofluorobenzene	103	%	103	%	02/15/16	KCA	1	

Page 2 of 9 Ver 1

Phoenix I.D.: BK65675

Project ID: Phoenix I.D.: BK65675

Client ID: SG-2

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 17, 2016

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 3 of 9 Ver 1

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 17, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:	TZ	02/12/16	13:00
Location Code:	CIDER-ENV	Received by:	LK	02/15/16	16:52
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Canister Id: 19589 Laboratory Data SDG ID: GBK65675
Phoenix ID: BK65676

Project ID:

Client ID: SG-3

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/16/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/16/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/16/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/16/16	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/16/16	KCA	1	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/16/16	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/16/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/16/16	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	02/16/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/16/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	02/16/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	02/16/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/16/16	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/16/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/16/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/16/16	KCA	1	
Acetone	1.52	S 0.421	3.61	1.00	02/16/16	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	02/16/16	KCA	1	
Benzene	ND	0.313	ND	1.00	02/16/16	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	02/16/16	KCA	1	

Page 4 of 9 Ver 1

Client ID: SG-3

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	02/16/16	KCA	1	
Bromoform	ND	0.097	ND	1.00	02/16/16	KCA	1	
Bromomethane	ND	0.258	ND	1.00	02/16/16	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	02/16/16	KCA	1	
Carbon Tetrachloride	0.081	0.040	0.51	0.25	02/16/16	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	02/16/16	KCA	1	
Chloroethane	ND	0.379	ND	1.00	02/16/16	KCA	1	
Chloroform	ND	0.205	ND	1.00	02/16/16	KCA	1	
Chloromethane	ND	0.485	ND	1.00	02/16/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	02/16/16	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	02/16/16	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	02/16/16	KCA	1	
Dichlorodifluoromethane	0.330	0.202	1.63	1.00	02/16/16	KCA	1	
Ethanol	6.88	0.531	13.0	1.00	02/16/16	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	02/16/16	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	02/16/16	KCA	1	
Heptane	ND	0.244	ND	1.00	02/16/16	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/16/16	KCA	1	
Hexane	ND	0.284	ND	1.00	02/16/16	KCA	1	
Isopropylalcohol	ND	0.407	ND	1.00	02/16/16	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	02/16/16	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	02/16/16	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/16/16	KCA	1	
Methylene Chloride	ND	0.288	ND	1.00	02/16/16	KCA	1	
n-Butylbenzene	0.485	0.182	2.66	1.00	02/16/16	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	02/16/16	KCA	1	
Propylene	1.15	0.581	1.98	1.00	02/16/16	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/16/16	KCA	1	1
Styrene	ND	0.235	ND	1.00	02/16/16	KCA	1	
Tetrachloroethene	0.098	0.037	0.66	0.25	02/16/16	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	02/16/16	KCA	1	1
Toluene	0.553	0.266	2.08	1.00	02/16/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	02/16/16	KCA	1	
Trichloroethene	ND	0.047	ND	0.25	02/16/16	KCA	1	
Trichlorofluoromethane	0.251	0.178	1.41	1.00	02/16/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	02/16/16	KCA	1	
Vinyl Chloride	ND	0.098	ND	0.25	02/16/16	KCA	1	
<u>QA/QC Surrogates</u>% Bromofluorobenzene	104	%	104	%	02/16/16	KCA	1	

Page 5 of 9 Ver 1

Project ID: Phoenix I.D.: BK65676

Client ID: SG-3

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 17, 2016

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 6 of 9 Ver 1

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 17, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:	TZ	02/12/16	13:50
Location Code:	CIDER-ENV	Received by:	LK	02/15/16	16:52
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Standard

aboratory Data Canister Id: 455

SDG ID: GBK65675 Phoenix ID: BK65677

Project ID:

Client ID: SG-4

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/16/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/16/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/16/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/16/16	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/16/16	KCA	1	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/16/16	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/16/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/16/16	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	02/16/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/16/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	02/16/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/16/16	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	02/16/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/16/16	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/16/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/16/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/16/16	KCA	1	
Acetone	2.25	S 0.421	5.34	1.00	02/16/16	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	02/16/16	KCA	1	
Benzene	0.349	0.313	1.11	1.00	02/16/16	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	02/16/16	KCA	1	

Page 7 of 9 Ver 1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	02/16/16	KCA	1	
Bromoform	ND	0.097	ND	1.00	02/16/16	KCA	1	
Bromomethane	ND	0.258	ND	1.00	02/16/16	KCA	1	
Carbon Disulfide	2.06	0.321	6.41	1.00	02/16/16	KCA	1	
Carbon Tetrachloride	0.082	0.040	0.52	0.25	02/16/16	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	02/16/16	KCA	1	
Chloroethane	ND	0.379	ND	1.00	02/16/16	KCA	1	
Chloroform	ND	0.205	ND	1.00	02/16/16	KCA	1	
Chloromethane	ND	0.485	ND	1.00	02/16/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	02/16/16	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	02/16/16	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	02/16/16	KCA	1	
Dichlorodifluoromethane	0.441	0.202	2.18	1.00	02/16/16	KCA	1	
Ethanol	1.54	S 0.531	2.90	1.00	02/16/16	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	02/16/16	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	02/16/16	KCA	1	
Heptane	ND	0.244	ND	1.00	02/16/16	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/16/16	KCA	1	
Hexane	ND	0.284	ND	1.00	02/16/16	KCA	1	
Isopropylalcohol	0.457	S 0.407	1.12	1.00	02/16/16	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	02/16/16	KCA	1	
m,p-Xylene	0.291	0.230	1.26	1.00	02/16/16	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	02/16/16	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/16/16	KCA	1	
Methylene Chloride	ND	0.288	ND	1.00	02/16/16	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	02/16/16	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	02/16/16	KCA	1	
Propylene	0.869	0.581	1.49	1.00	02/16/16	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/16/16	KCA	1	1
Styrene	ND	0.235	ND	1.00	02/16/16	KCA	1	
Tetrachloroethene	0.087	0.037	0.59	0.25	02/16/16	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	02/16/16	KCA	1	1
Toluene	0.395	0.266	1.49	1.00	02/16/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/16/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	02/16/16	KCA	1	
Trichloroethene	ND	0.047	ND	0.25	02/16/16	KCA	1	
Trichlorofluoromethane	0.265	0.178	1.49	1.00	02/16/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	02/16/16	KCA	1	
Vinyl Chloride	ND	0.098	ND	0.25	02/16/16	KCA	1	
QA/QC Surrogates								
% Bromofluorobenzene	108	%	108	%	02/16/16	KCA	1	

Page 8 of 9 Ver 1

Phoenix I.D.: BK65677

Project ID: Phoenix I.D.: BK65677

Client ID: SG-4

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 17, 2016

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 9 of 9 Ver 1

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBK65675

QA/QC Report

February 17, 2016

QA/QC Data

<i>y</i> ,													
Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 335038 (ppbv), C	C Samı	ole No: E	3K65677	(BK65675	BK65676.	BK6567	7)						
Volatiles				(======================================	, ,		- /						
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	114	ND	ND	ND	ND	NC	70 - 130	20	
1,1,1-Trichloroethane	ND	0.143	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	20	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	20	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	118	ND	ND	ND	ND	NC	70 - 130	20	
1,1-Dichloroethane	ND	0.247	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	20	
1,1-Dichloroethene	ND	0.252	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	20	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	149	ND	ND	ND	ND	NC	70 - 130	20	1
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	121	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	119	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	117	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichloroethane	ND	0.247	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	20	
1,2-dichloropropane	ND	0.216	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	20	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	117	ND	ND	ND	ND	NC	70 - 130	20	
1,3-Butadiene	ND	0.452	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	20	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	122	ND	ND	ND	ND	NC	70 - 130	20	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	120	ND	ND	ND	ND	NC	70 - 130	20	
1,4-Dioxane	ND	0.278	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	20	
2-Hexanone(MBK)	ND	0.244	ND	1.00	116	ND	ND	ND	ND	NC	70 - 130	20	
4-Ethyltoluene	ND	0.204	ND	1.00	121	ND	ND	ND	ND	NC	70 - 130	20	
4-Isopropyltoluene	ND	0.182	ND	1.00	119	ND	ND	ND	ND	NC	70 - 130	20	
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	155	ND	ND	ND	ND	NC	70 - 130	20	1
Acetone	ND	0.421	ND	1.00	94	5.34 S	5.32 S	2.25 S	2.24 S	0.4	70 - 130	20	
Acrylonitrile	ND	0.461	ND	1.00	89	ND	ND	ND	ND	NC	70 - 130	20	
Benzene	ND	0.313	ND	1.00	100	1.11	1.09	0.349	0.340	2.6	70 - 130	20	
Benzyl chloride	ND	0.193	ND	1.00	127	ND	ND	ND	ND	NC	70 - 130	20	
Bromodichloromethane	ND	0.149	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	20	
Bromoform	ND	0.097	ND	1.00	115	ND	ND	ND	ND	NC	70 - 130	20	
Bromomethane	ND	0.257	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	20	
Carbon Disulfide	ND	0.321	ND	1.00	101	6.41	6.16	2.06	1.98	4.0	70 - 130	20	
Carbon Tetrachloride	ND	0.040	ND	0.25	104	0.52	0.52	0.082	0.082	0.0	70 - 130	20	
Chlorobenzene	ND	0.217	ND	1.00	112	ND	ND	ND	ND	NC	70 - 130	20	
Chloroethane	ND	0.379	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	20	
Chloroform	ND	0.205	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	20	
Chloromethane	ND	0.484	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	20	
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	99	ND	ND	ND	ND	NC	70 - 130	20	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	127	ND	ND	ND	ND	NC	70 - 130	20	
Cyclohexane	ND	0.291	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	20	
Dibromochloromethane	ND	0.117	ND	1.00	119	ND	ND	ND	ND	NC	70 - 130	20	
Dichlorodifluoromethane	ND	0.202	ND	1.00	114	2.18	2.03	0.441	0.410	7.3	70 - 130	20	
Ethanol	ND	0.531	ND	1.00	99	2.90 S	2.90 S	1.54 S	1.54 S	0.0	70 - 130	20	

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Ethyl acetate	ND	0.278	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	20	
Ethylbenzene	ND	0.230	ND	1.00	115	ND	ND	ND	ND	NC	70 - 130	20	
Heptane	ND	0.244	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	20	
Hexachlorobutadiene	ND	0.094	ND	1.00	160	ND	ND	ND	ND	NC	70 - 130	20	1
Hexane	ND	0.284	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	20	
Isopropylalcohol	ND	0.407	ND	1.00	109	1.12 S	1.04 S	0.457 S	0.425 S	7.3	70 - 130	20	
Isopropylbenzene	ND	0.204	ND	1.00	116	ND	ND	ND	ND	NC	70 - 130	20	
m,p-Xylene	ND	0.230	ND	1.00	117	1.26	1.20	0.291	0.276	5.3	70 - 130	20	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	20	
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	20	
Methylene Chloride	ND	0.288	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	20	
n-Butylbenzene	ND	0.182	ND	1.00	111	ND	ND	ND	ND	NC	70 - 130	20	
o-Xylene	ND	0.230	ND	1.00	115	ND	ND	ND	ND	NC	70 - 130	20	
Propylene	ND	0.581	ND	1.00	105	1.49	1.51	0.869	0.876	8.0	70 - 130	20	
sec-Butylbenzene	ND	0.182	ND	1.00	114	ND	ND	ND	ND	NC	70 - 130	20	
Styrene	ND	0.235	ND	1.00	116	ND	ND	ND	ND	NC	70 - 130	20	
Tetrachloroethene	ND	0.037	ND	0.25	125	0.59	0.58	0.087	0.086	1.2	70 - 130	20	
Tetrahydrofuran	ND	0.339	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	20	
Toluene	ND	0.266	ND	1.00	121	1.49	1.42	0.395	0.378	4.4	70 - 130	20	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	20	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	127	ND	ND	ND	ND	NC	70 - 130	20	
Trichloroethene	ND	0.047	ND	0.25	105	ND	ND	ND	ND	NC	70 - 130	20	
Trichlorofluoromethane	ND	0.178	ND	1.00	105	1.49	1.47	0.265	0.262	1.1	70 - 130	20	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	20	
Vinyl Chloride	ND	0.098	ND	0.25	102	ND	ND	ND	ND	NC	70 - 130	20	
% Bromofluorobenzene	104	%	104	%	102	108	105	108	105	2.8	70 - 130	20	

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBK65675

February 17, 2016

Wednesday, February 17, 2016

Sample Criteria Exceedences Report

GBK65675 - CIDER-ENV

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Criteria: None

State: NY

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

X Phone #: 631-616-400 Sampling Sampling Sample Pressure at Pressure at Start Time End Time Start Date Start ("Hg) End ("Hg) 30.08. NJ Deliverables 29.5 State where samples collected: 280 ASP CAT B Canister Data Delivery: ☐ Fax #: P.O. # Requested Deliverable: Excel Data Format: 13251 012C 30-8 448741.7845 11:25 1/22 1300 □ MCP PDF Project Name: Time: CHAIN OF CUSTODY RECORD (mL/min) Setting Controller email: greg@phoenixlabs.com AIR ANALYSES Pressure Regulator ("Hg) ID# -LO 5085 800-827-5426 THIS SECTION FOR LAB USE ONLY Canister Canister Pressure (" Hg) Canister Size (L) 00 05%) Canister ID # Sampled by: 19589 Accepted by Invoice to: EGULATORY INFORMATION: Address: 1268 Joh Cho To Client Sample ID lames Chessyl 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 • Fax: 860.645.0823 2 John Env Commande IN PECIAL INSTRUCTIONS, B1013 Relinquished by Phoenix ID # Customer: Report to:

ANALYSES

40

ZI-OI

FO-14

Soil Gas

Grab (G) Composite (C)

Ambient/Indoor Air

Canister

ь

eceived in good working condition and agree to the terms and conditions as listed on the

ack of this document:

Quote Number:

attest that all media released by Phoenix Environmental Laboratories, Inc. have been

GISKey \square

Equis

Other:

equested Criteria

Thursday, February 18, 2016

Attn: Mr. James Cressy Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Project ID: 356 E 78TH ST

Sample ID#s: BK65671 - BK65674

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

February 18, 2016

SDG I.D.: GBK65671

BK65674 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 18, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Sample Information Custody Information Date <u>Time</u>

02/12/16 Matrix: **SOLID** Collected by:

CIDER-ENV Received by: LK **Location Code:** 02/15/16 16:52

Analyzed by: Rush Request: Standard see "By" below

P.O.#: 2016-102 aboratory Data SDG ID: GBK65671

Phoenix ID: BK65671

356 E 78TH ST Project ID:

Client ID: SB-3

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference

Percent Solid	88		%		02/15/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				02/15/16	BJ/CKV	SW3545A
Field Extraction	Completed				02/12/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
2-Hexanone	ND	24	ug/Kg	1	02/16/16	JLI	SW8260C

Page 1 of 15 Ver 1 Project ID: 356 E 78TH ST Phoenix I.D.: BK65671

Client ID: SB-3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	24	ug/Kg	1	02/16/16	JLI	SW8260C
Acetone	ND	24	ug/Kg	1	02/16/16	JLI	SW8260C
Acrylonitrile	ND	9.4	ug/Kg	1	02/16/16	JLI	SW8260C
Benzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Bromobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Bromochloromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Bromoform	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Bromomethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon Disulfide	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Chlorobenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroform	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Chloromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromomethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Ethylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
m&p-Xylene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	24	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.4	ug/Kg	1	02/16/16	JLI	SW8260C
Methylene chloride	ND	9.4	ug/Kg	1	02/16/16	JLI	SW8260C
Naphthalene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
n-Propylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
o-Xylene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Styrene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.4	ug/Kg	1	02/16/16	JLI	SW8260C 1
Toluene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Total Xylenes	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.4	ug/Kg	1	02/16/16	JLI	SW8260C
Trichloroethene	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
Vinyl chloride	ND	4.7	ug/Kg	1	02/16/16	JLI	SW8260C
QA/QC Surrogates		***	~a,a	•		J	
WANGO GUITOGALES							

Page 2 of 15 Ver 1

Project ID: 356 E 78TH ST Phoenix I.D.: BK65671

Client ID: SB-3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% 1,2-dichlorobenzene-d4	93		%	1	02/16/16	JLI	70 - 130 %
% Bromofluorobenzene	90		%	1	02/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	02/16/16	JLI	70 - 130 %
% Toluene-d8	85		%	1	02/16/16	JLI	70 - 130 %
Semivolatiles-STARS/C	:P-51						
Acenaphthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	1	02/16/16	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	02/16/16	DD	30 - 130 %
% Terphenyl-d14	67		%	1	02/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 18, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 18, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Matrix: SOLID Collected by: 02/12/16

Location Code: CIDER-ENV Received by: LK 02/15/16 16:52

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 2016-102 Laboratory Data SDG ID: GBK65671

Phoenix ID: BK65672

Project ID: 356 E 78TH ST

Client ID: SB-5

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	85		%		02/15/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				02/15/16	BJ/CKV	SW3545A
Field Extraction	Completed				02/12/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
2-Hexanone	ND	23	ug/Kg	1	02/16/16	JLI	SW8260C

Page 4 of 15 Ver 1

Project ID: 356 E 78TH ST Phoenix I.D.: BK65672

Client ID: SB-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
	ND	4.6			02/16/16		
2-Isopropyltoluene 4-Chlorotoluene	ND ND	4.6 4.6	ug/Kg ug/Kg	1 1	02/16/16	JLI JLI	SW8260C ¹ SW8260C
4-Methyl-2-pentanone	ND	23	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Acetone	ND	23	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Acrylonitrile	ND	9.2	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Benzene	ND	4.6	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Bromobenzene	ND	4.6	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Bromochloromethane	ND	4.6	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
	ND	4.6	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.6			02/16/16	JLI	SW8260C
Bromoform			ug/Kg	1			
Bromomethane	ND	4.6 4.6	ug/Kg	1	02/16/16	JLI JLI	SW8260C
Carbon Disulfide	ND	4.6 4.6	ug/Kg	1	02/16/16		SW8260C
Carbon tetrachloride	ND		ug/Kg	1	02/16/16	JLI	SW8260C
Chlorobenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroform	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Chloromethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.6	ug/Kg	1	02/16/16	JLI 	SW8260C
cis-1,3-Dichloropropene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.6	ug/Kg	1	02/16/16	JLI 	SW8260C
Dibromomethane	ND	4.6	ug/Kg	1	02/16/16	JLI 	SW8260C
Dichlorodifluoromethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Ethylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
m&p-Xylene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	23	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.2	ug/Kg	1	02/16/16	JLI	SW8260C
Methylene chloride	ND	9.2	ug/Kg	1	02/16/16	JLI	SW8260C
Naphthalene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
n-Propylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
o-Xylene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Styrene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.2	ug/Kg	1	02/16/16	JLI	SW8260C 1
Toluene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Total Xylenes	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.2	ug/Kg	1	02/16/16	JLI	SW8260C
Trichloroethene	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
Vinyl chloride	ND	4.6	ug/Kg	1	02/16/16	JLI	SW8260C
QA/QC Surrogates							

Page 5 of 15 Ver 1

Project ID: 356 E 78TH ST Phoenix I.D.: BK65672

Client ID: SB-5

		RL/									
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference				
% 1,2-dichlorobenzene-d4	93		%	1	02/16/16	JLI	70 - 130 %				
% Bromofluorobenzene	90		%	1	02/16/16	JLI	70 - 130 %				
% Dibromofluoromethane	100		%	1	02/16/16	JLI	70 - 130 %				
% Toluene-d8	86		%	1	02/16/16	JLI	70 - 130 %				
Semivolatiles-STARS/CP-51											
Acenaphthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Acenaphthylene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Benz(a)anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Benzo(a)pyrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Benzo(b)fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Benzo(ghi)perylene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Benzo(k)fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Chrysene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Fluorene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Naphthalene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Phenanthrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
Pyrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D				
QA/QC Surrogates											
% 2-Fluorobiphenyl	69		%	1	02/16/16	DD	30 - 130 %				
% Nitrobenzene-d5	65		%	1	02/16/16	DD	30 - 130 %				
% Terphenyl-d14	78		%	1	02/16/16	DD	30 - 130 %				

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 18, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 18, 2016

FOR: Attn: Mr. James Cressy

Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Matrix: SOLID Collected by: 02/12/16

Location Code: CIDER-ENV Received by: LK 02/15/16 16:52

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 2016-102 Laboratory Data SDG ID: GBK65671

Phoenix ID: BK65673

Project ID: 356 E 78TH ST

Client ID: SB-6

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	86		%		02/15/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				02/15/16	BJ/CKV	SW3545A
Field Extraction	Completed				02/12/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
2-Hexanone	ND	22	ug/Kg	1	02/16/16	JLI	SW8260C

Page 7 of 15 Ver 1

Project ID: 356 E 78TH ST

Client ID: SB-6

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	22	ug/Kg	1	02/16/16	JLI	SW8260C
Acetone	ND	22	ug/Kg	1	02/16/16	JLI	SW8260C
Acrylonitrile	ND	8.7	ug/Kg	1	02/16/16	JLI	SW8260C
Benzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Bromobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Bromochloromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Bromoform	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Bromomethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon Disulfide	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Chlorobenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroform	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Chloromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromomethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Ethylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
m&p-Xylene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	22	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.7	ug/Kg	1	02/16/16	JLI	SW8260C
Methylene chloride	ND	8.7	ug/Kg	1	02/16/16	JLI	SW8260C
Naphthalene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
n-Propylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
o-Xylene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Styrene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.7	ug/Kg	1	02/16/16	JLI	SW8260C 1
Toluene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Total Xylenes	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.7	ug/Kg	1	02/16/16	JLI	SW8260C
Trichloroethene	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
Vinyl chloride	ND	4.4	ug/Kg	1	02/16/16	JLI	SW8260C
QA/QC Surrogates							

Page 8 of 15 Ver 1

Phoenix I.D.: BK65673

Client ID: SB-6

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% 1,2-dichlorobenzene-d4	92		%	1	02/16/16	JLI	70 - 130 %
% Bromofluorobenzene	91		%	1	02/16/16	JLI	70 - 130 %
% Dibromofluoromethane	100		%	1	02/16/16	JLI	70 - 130 %
% Toluene-d8	86		%	1	02/16/16	JLI	70 - 130 %
Semivolatiles-STARS/C	P-51						
Acenaphthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	02/16/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	02/16/16	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	02/16/16	DD	30 - 130 %
% Terphenyl-d14	77		%	1	02/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 18, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 18, 2016

FOR: Attn: Mr. James Cressy
Cider Environmental, LLC
6268 Jericho Turnpike, Suite 12

Commack, NY 11725

Matrix: SOLID Collected by: 02/12/16

Location Code: CIDER-ENV Received by: LK 02/15/16 16:52

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 2016-102 | Laborators / Data | SDG |

Laboratory Data

SDG ID: GBK65671
Phoenix ID: BK65674

Project ID: 356 E 78TH ST

Client ID: COMP-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.38	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Aluminum	13400	57	mg/Kg	10	02/17/16	LK	SW6010C	
Arsenic	4.5	0.8	mg/Kg	1	02/17/16	LK	SW6010C	
Barium	91.0	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Beryllium	0.48	0.30	mg/Kg	1	02/17/16	LK	SW6010C	
Calcium	9980	57	mg/Kg	10	02/17/16	LK	SW6010C	
Cadmium	< 0.38	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Cobalt	7.59	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Chromium	23.6	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Copper	16.5	0.38	mg/kg	1	02/17/16	LK	SW6010C	
Iron	23000	57	mg/Kg	10	02/17/16	LK	SW6010C	
Mercury	0.18	0.03	mg/Kg	1	02/16/16	RS	SW7471B	
Potassium	1500	5.7	mg/Kg	1	02/17/16	LK	SW6010C	
Magnesium	3380	5.7	mg/Kg	1	02/17/16	LK	SW6010C	
Manganese	150	3.8	mg/Kg	10	02/17/16	LK	SW6010C	
Sodium	108	5.7	mg/Kg	1	02/17/16	LK	SW6010C	
Nickel	14.7	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Lead	67.4	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Antimony	< 3.8	3.8	mg/Kg	1	02/17/16	LK	SW6010C	
Selenium	< 1.5	1.5	mg/Kg	1	02/17/16	LK	SW6010C	
Thallium	< 3.4	3.4	mg/Kg	1	02/17/16	LK	SW6010C	
Vanadium	32.1	0.38	mg/Kg	1	02/17/16	LK	SW6010C	
Zinc	58.6	0.38	mg/Kg	1	02/17/16	LK	SW6010C	В
Percent Solid	84		%		02/15/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed				02/15/16	BB/V	SW3545A	
Soil Extraction for Pesticide	Completed				02/15/16	BB/V	SW3545A	
Soil Extraction for SVOA	Completed				02/15/16	BJ/CKV	SW3545A	
Mercury Digestion	Completed				02/16/16	W/W	SW7471B	

Page 10 of 15 Ver 1

Client ID: COMP-1

Client ID. COMP-1							
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
		r QL	Office	Dilution			
Soil Extraction for Herbicide	Completed				02/16/16	Q/D	SW8151A
Total Metals Digest	Completed				02/16/16	G/AG	SW3050B
Field Extraction	Completed				02/12/16		SW5035A
Chlorinated Herbicides	<u>s</u>						
2,4,5-T	ND	49	ug/Kg	10	02/17/16	BB	SW8151A
2,4,5-TP (Silvex)	ND	49	ug/Kg	10	02/17/16	BB	SW8151A
2,4-D	ND	49	ug/Kg	10	02/17/16	BB	SW8151A
2,4-DB	ND	490	ug/Kg	10	02/17/16	BB	SW8151A
Dalapon	ND	49	ug/Kg	10	02/17/16	BB	SW8151A
Dicamba	ND	99	ug/Kg	10	02/17/16	BB	SW8151A
Dichloroprop	ND	49	ug/Kg	10	02/17/16	BB	SW8151A
Dinoseb	ND	99	ug/Kg	10	02/17/16	BB	SW8151A
QA/QC Surrogates							
% DCAA	51		%	10	02/17/16	BB	30 - 150 %
Polychlorinated Biphe	nvls						
PCB-1016	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1221	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1232	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1242	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1248	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1254	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1260	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1262	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
PCB-1268	ND	400	ug/Kg	10	02/16/16	AW	SW8082A
QA/QC Surrogates			29.13				
% DCBP	98		%	10	02/16/16	AW	30 - 150 %
% TCMX	80		%	10	02/16/16	AW	30 - 150 %
Pesticides - Soil							
4,4' -DDD	ND	2.4	ug/Kg	2	02/16/16	CE	SW8081B
4,4' -DDE	ND	2.4	ug/Kg	2	02/16/16	CE	SW8081B
4,4' -DDT	ND	2.4	ug/Kg	2	02/16/16	CE	SW8081B
a-BHC	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
a-Chlordane	ND	4.0	ug/Kg	2	02/16/16	CE	SW8081B
Aldrin	ND	4.0	ug/Kg	2	02/16/16	CE	SW8081B
b-BHC	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Chlordane	ND	40	ug/Kg	2	02/16/16	CE	SW8081B
d-BHC	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Dieldrin	ND	4.0	ug/Kg	2	02/16/16	CE	SW8081B
Endosulfan I	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Endosulfan II	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Endrin	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Endrin aldehyde	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Endrin ketone	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
g-BHC	ND	1.6	ug/Kg	2	02/16/16	CE	SW8081B
g-Chlordane	ND	4.0	ug/Kg	2	02/16/16	CE	SW8081B
Heptachlor	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B

Page 11 of 15 Ver 1

Client ID: COMP-1

Parameter Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Heptachlor epoxide	ND	7.9	ug/Kg	2	02/16/16	CE	SW8081B
Methoxychlor	ND	40	ug/Kg	2	02/16/16	CE	SW8081B
Toxaphene	ND	160	ug/Kg	2	02/16/16	CE	SW8081B
QA/QC Surrogates							
% DCBP	59		%	2	02/16/16	CE	30 - 150 %
% TCMX	67		%	2	02/16/16	CE	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
1,3-Dichlorobenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
1,3-Dichloropropane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
1,4-Dichlorobenzene	ND	5.9	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
2,2-Dichloropropane	ND	5.9	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
2-Chlorotoluene	ND	29	ug/Kg	1	02/16/16	JLI	SW8260C
2-Hexanone	ND	5.9	ug/Kg ug/Kg	1	02/16/16	JLI	SW8260C 1
2-Isopropyltoluene 4-Chlorotoluene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
	ND	29	ug/Kg	1	02/16/16	JLI	SW8260C SW8260C
4-Methyl-2-pentanone	ND	29 29	ug/Kg ug/Kg		02/16/16	JLI	SW8260C SW8260C
Acetone	ND	12		1	02/16/16	JLI	SW8260C SW8260C
Acrylonitrile	ND	5.9	ug/Kg	1 1	02/16/16	JLI	SW8260C SW8260C
Benzene			ug/Kg	•			
Bromobenzene	ND	5.9	ug/Kg	1 1	02/16/16 02/16/16	JLI	SW8260C
Bromochloromethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Bromodichloromethane	ND	5.9	ug/Kg	1		JLI	SW8260C
Bromoform	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Bromomethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon Disulfide	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Carbon tetrachloride	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Chlorobenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Chloroform	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Chloromethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.9	ug/Kg	1	02/16/16	JLI 	SW8260C
cis-1,3-Dichloropropene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C

Page 12 of 15 Ver 1

Client ID: COMP-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Dibromomethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Ethylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Isopropylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
m&p-Xylene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	29	ug/Kg	1	02/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	02/16/16	JLI	SW8260C
Methylene chloride	ND	12	ug/Kg	1	02/16/16	JLI	SW8260C
Naphthalene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
n-Butylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
n-Propylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
o-Xylene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
sec-Butylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Styrene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
tert-Butylbenzene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrachloroethene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	02/16/16	JLI	SW8260C 1
Toluene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Total Xylenes	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	02/16/16	JLI	SW8260C
Trichloroethene	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
Vinyl chloride	ND	5.9	ug/Kg	1	02/16/16	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	93		%	1	02/16/16	JLI	70 - 130 %
% Bromofluorobenzene	90		%	1	02/16/16	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	02/16/16	JLI	70 - 130 %
% Toluene-d8	84		%	1	02/16/16	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2-Chloronaphthalene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D

Page 13 of 15 Ver 1

Client ID: COMP-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2-Methylnaphthalene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
2-Nitroaniline	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
2-Nitrophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
3-Nitroaniline	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
4-Chloroaniline	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
4-Nitroaniline	ND	620	ug/Kg	1	02/16/16	DD	SW8270D
4-Nitrophenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Acenaphthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Acetophenone	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Aniline	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzidine	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Benzoic acid	ND	780	ug/Kg	1	02/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Carbazole	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Dibenzofuran	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Diethyl phthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Dimethylphthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Di-n-butylphthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Di-n-octylphthalate	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Hexachlorobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Hexachlorobutadiene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Hexachloroethane	ND	270	ug/Kg	1	02/16/16	DD	SW8270D SW8270D
	ND	270	ug/Kg	1	02/16/16	DD	SW8270D SW8270D
Indeno(1,2,3-cd)pyrene	ND ND	270 270	ug/Kg ug/Kg	1	02/16/16	DD	SW8270D SW8270D
Isophorone							
Naphthalene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D

Page 14 of 15 Ver 1

Client ID: COMP-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Pentachlorophenol	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Phenol	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	02/16/16	DD	SW8270D
Pyridine	ND	390	ug/Kg	1	02/16/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	78		%	1	02/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	65		%	1	02/16/16	DD	30 - 130 %
% 2-Fluorophenol	53		%	1	02/16/16	DD	30 - 130 %
% Nitrobenzene-d5	64		%	1	02/16/16	DD	30 - 130 %
% Phenol-d5	60		%	1	02/16/16	DD	30 - 130 %
% Terphenyl-d14	67		%	1	02/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 18, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 15 Ver 1

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

30

30

75 - 125

75 - 125

SDG I.D.: GBK65671

QA/QC Report

February 18, 2016

QA/QC Data

% Sample Dup LCS **LCSD** LCS MS **MSD** MS Rec **RPD** Dup Blank **RPD RPD** Limits RΙ Result Result **RPD** % % % % Limits Parameter QA/QC Batch 335012 (mg/kg), QC Sample No: BK65014 (BK65674) Mercury - Soil **BRL** 0.06 0.11 0.09 NC 99.1 91.8 7.6 100 70 - 130 30 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. QA/QC Batch 335081 (mg/kg), QC Sample No: BK65833 (BK65674) ICP Metals - Soil Aluminum BRL 5.0 8450 6810 21.5 95.5 NC 75 - 125 30 Antimony **BRL** 3.3 < 3.7 <3.7 NC 89.4 76.6 75 - 125 30 BRL 0.67 3.3 2.54 NC 92.7 82.2 Arsenic 75 - 125 30 Barium BRL 0.33 85.2 72.0 16.8 93.5 >130 75 - 125 30 m Beryllium BRL 0.27 0.60 0.44 NC 93.6 88.3 75 - 125 30 Cadmium **BRL** 0.33 0.31 0.21 NC 91.5 82.9 75 - 125 30 **BRL** 5.0 12700 7050 57.2 93.6 NC Calcium 75 - 125 30 Chromium **BRL** 0.33 31.8 85.3 24.8 18.0 94.3 75 - 125 30 Cobalt **BRL** 0.33 8.59 6.98 20.7 95.9 86.4 75 - 125 30 **BRL** 0.33 34.3 24.2 34.5 101 93.7 75 - 125 30 Copper Iron **BRL** 5.0 22200 15400 36.2 95.6 NC 75 - 125 30 75 - 125 **BRL** 0.33 97.0 88.1 9.60 96.8 95.5 30 Lead BRL 5.0 5100 2780 58.9 87.6 NC 75 - 125 30 Magnesium 75 - 125 BRL 0.33 376 319 16.4 96.9 101 30 Manganese 0.33 75 - 125 30 Nickel BRL 29.2 21.7 29.5 117 81.5 BRL 5.0 1500 1230 >130 75 - 125 30 Potassium 19.8 106 Selenium **BRL** 1.3 <1.5 <1.5 NC 94.2 76.8 75 - 125 30 NC 93.1 75 - 125 Silver **BRL** 0.33 < 0.37 < 0.37 92.2 30 Sodium **BRL** 5.0 218 206 5.70 104 >130 75 - 125 30 m Thallium BRL 3.0 < 3.3 <3.3 NC 100 90.3 75 - 125 30

BRL

0.38

0.33

0.33

30.0

90.9

25.7

75.3

94.8

101

87.5

90.0

15.4

18.8

Vanadium

Zinc

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

February 18, 2016	QA/QC Data					SDG I.D.: GBK65671					
Parameter	Blank	BIk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 334866 (ug/Kg),	QC Sam	ple No: BK6496	9 2X (BK65674)								
Polychlorinated Biphenyl		•									
PCB-1016	ND	33		93	89	4.4	87	86	1.2	40 - 140	30
PCB-1221	ND	33		, 0	0,		0.			40 - 140	30
PCB-1232	ND	33								40 - 140	30
PCB-1242	ND	33								40 - 140	30
PCB-1248	ND	33								40 - 140	30
PCB-1254	ND	33								40 - 140	30
PCB-1260	ND	33		97	95	2.1	88	86	2.3	40 - 140	30
PCB-1262	ND	33								40 - 140	30
PCB-1268	ND	33								40 - 140	30
% DCBP (Surrogate Rec)	87	%		112	109	2.7	97	99	2.0	30 - 150	30
% TCMX (Surrogate Rec)	72	%		86	83	3.6	77	74	4.0	30 - 150	30
QA/QC Batch 334982 (ug/Kg),	QC Sam	ple No: BK6557	7 2X (BK65674)								
Pesticides - Solid											
4,4' -DDD	ND	1.7		83	93	11.4	87	77	12.2	40 - 140	30
4,4' -DDE	ND	1.7		91	102	11.4	134	127	5.4	40 - 140	30
4,4' -DDT	ND	1.7		94	105	11.1	142	133	6.5	40 - 140	30
a-BHC	ND	1.0		85	98	14.2	78	66	16.7	40 - 140	30
a-Chlordane	ND	3.3		92	103	11.3	90	77	15.6	40 - 140	30
Aldrin	ND	1.0		68	79	15.0	64	53	18.8	40 - 140	30
b-BHC	ND	1.0		81	95	15.9	135	138	2.2	40 - 140	30
Chlordane	ND	33		90	103	13.5	78	68	13.7	40 - 140	30
d-BHC	ND	3.3		56	64	13.3	50	43	15.1	40 - 140	30
Dieldrin	ND	1.0		84	94	11.2	94	75	22.5	40 - 140	30
Endosulfan I	ND	3.3		89	95	6.5	72	60	18.2	40 - 140	30
Endosulfan II	ND	3.3		85	94	10.1	103	91	12.4	40 - 140	30
Endosulfan sulfate	ND	3.3		80	87	8.4	77	70	9.5	40 - 140	30
Endrin	ND	3.3		84	95	12.3	87	78	10.9	40 - 140	30
Endrin aldehyde	ND	3.3		74	92	21.7	72	63	13.3	40 - 140	30
Endrin ketone	ND	3.3		84	92	9.1	65	53	20.3	40 - 140	30
g-BHC	ND	1.0		83	95	13.5	63	52	19.1	40 - 140	30
g-Chlordane	ND	3.3		90	103	13.5	78	68	13.7	40 - 140	30
Heptachlor	ND	3.3		84	96	13.3	84	70	18.2	40 - 140	30
Heptachlor epoxide	ND	3.3		95	107	11.9	88	76	14.6	40 - 140	30
Methoxychlor	ND	3.3		100	99	1.0	64	59	8.1	40 - 140	30
Toxaphene	ND	130		NA	NA	NC	NA	NA	NC	40 - 140	30
% DCBP	83	%		87	91	4.5	77	62	21.6	30 - 150	30
% TCMX	83	%		83	91	9.2	72	60	18.2	30 - 150	30
QA/QC Batch 334983 (ug/kg),	QC Sam _l	ole No: BK6559	5 (BK65674)								
Semivolatiles - Solid											
1,2,4,5-Tetrachlorobenzene	ND	230		59	58	1.7	56	55	1.8	30 - 130	30

Parameter	Blank	BIK RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2,4-Trichlorobenzene	ND	230	56	54	3.6	54	56	3.6	30 - 130	30	
1,2-Dichlorobenzene	ND	180	56	53	5.5	55	55	0.0	30 - 130	30	
1,2-Diphenylhydrazine	ND	230	62	59	5.0	53	53	0.0	30 - 130	30	
1,3-Dichlorobenzene	ND	230	53	50	5.8	50	51	2.0	30 - 130	30	
1,4-Dichlorobenzene	ND	230	53	49	7.8	51	53	3.8	30 - 130	30	
2,4,5-Trichlorophenol	ND	230	69	67	2.9	61	62	1.6	30 - 130	30	
2,4,6-Trichlorophenol	ND	130	70	68	2.9	60	60	0.0	30 - 130	30	
2,4-Dichlorophenol	ND	130	70	68	2.9	62	62	0.0	30 - 130	30	
2,4-Dimethylphenol	ND	230	65	65	0.0	60	60	0.0	30 - 130	30	
2,4-Dinitrophenol	ND	230	25	21	17.4	61	49	21.8	30 - 130	30	1
2,4-Dinitrotoluene	ND	130	72	71	1.4	62	61	1.6	30 - 130	30	
2,6-Dinitrotoluene	ND	130	65	63	3.1	56	56	0.0	30 - 130	30	
2-Chloronaphthalene	ND	230	59	57	3.4	54	54	0.0	30 - 130	30	
2-Chlorophenol	ND	230	63	60	4.9	58	59	1.7	30 - 130	30	
2-Methylnaphthalene	ND	230	62	60	3.3	57	67	16.1	30 - 130	30	
2-Methylphenol (o-cresol)	ND	230	67	69	2.9	65	68	4.5	30 - 130	30	
2-Nitroaniline	ND	330	67	68	1.5	60	57	5.1	30 - 130	30	
2-Nitrophenol	ND	230	63	60	4.9	59	61	3.3	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	230	70	68	2.9	63	64	1.6	30 - 130	30	
3,3'-Dichlorobenzidine	ND	130	57	57	0.0	36	41	13.0	30 - 130	30	
3-Nitroaniline	ND	330	64	62	3.2	55	55	0.0	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	230	52	49	5.9	67	54	21.5	30 - 130	30	
4-Bromophenyl phenyl ether	ND	230	72	73	1.4	62	63	1.6	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	77	74	4.0	67	65	3.0	30 - 130	30	
4-Chloroaniline	ND	230	63	61	3.2	55	54	1.8	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	61	59	3.3	54	53	1.9	30 - 130	30	
4-Nitroaniline	ND	230	72	71	1.4	62	59	5.0	30 - 130	30	
4-Nitrophenol	ND	230	72	71	1.4	62	58	6.7	30 - 130	30	
Acenaphthene	ND	230	65	63	3.1	54	87	46.8	30 - 130	30	r
Acenaphthylene	ND	130	63	62	1.6	59	59	0.0	30 - 130	30	
Acetophenone	ND	230	57	54	5.4	54	55	1.8	30 - 130	30	
Aniline	ND	330	52	49	5.9	48	49	2.1	30 - 130	30	
Anthracene	ND	230	69	70	1.4	52	95	58.5	30 - 130	30	r
Benz(a)anthracene	ND	230	76	75	1.3	43	108	86.1	30 - 130	30	r
Benzidine	ND	330	20	22	9.5	<10	<10	NC	30 - 130	30	l,m
Benzo(a)pyrene	ND	130	67	68	1.5	36	85	81.0	30 - 130	30	r
Benzo(b)fluoranthene	ND	160	72	73	1.4	42	82	64.5	30 - 130	30	r
Benzo(ghi)perylene	ND	230	73	76	4.0	58	72	21.5	30 - 130	30	
Benzo(k)fluoranthene	ND	230	67	65	3.0	37	60	47.4	30 - 130	30	r
Benzoic Acid	ND	330	<10	<10	NC	38	40	5.1	30 - 130	30	1
Benzyl butyl phthalate	ND	230	79	79	0.0	61	60	1.7	30 - 130	30	
Bis(2-chloroethoxy)methane	ND	230	66	64	3.1	57	58	1.7	30 - 130	30	
Bis(2-chloroethyl)ether	ND	130	47	44	6.6	44	44	0.0	30 - 130	30	
Bis(2-chloroisopropyl)ether	ND	230	51	49	4.0	47	48	2.1	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	230	88	87	1.1	66	66	0.0	30 - 130	30	
Carbazole	ND	330	71	71	0.0	55	77	33.3	30 - 130	30	r
Chrysene	ND	230	71	71	0.0	44	108	84.2	30 - 130	30	r
Dibenz(a,h)anthracene	ND	130	70	73	4.2	64	50	24.6	30 - 130	30	
Dibenzofuran	ND	230	64	63	1.6	57	74	26.0	30 - 130	30	
Diethyl phthalate	ND	230	69	67	2.9	60	58	3.4	30 - 130	30	
Dimethylphthalate	ND	230	71	69	2.9	60	59	1.7	30 - 130	30	
Di-n-butylphthalate	ND	230	78	78	0.0	57	53	7.3	30 - 130	30	
Di-n-octylphthalate	ND	230	79	78	1.3	62	64	3.2	30 - 130	30	

QA/QC Data

SDG I.D.: GBK65671

% % **LCSD** LCS **RPD** Blk LCS MS **MSD** MS Rec Blank RL **RPD** % % RPD Limits Limits % % Parameter ND 230 70 71 1.4 31 127 121.5 Fluoranthene 30 - 130 30 ND 230 62 1.6 53 80 40.6 30 - 130 30 Fluorene 63 Hexachlorobenzene ND 130 68 68 0.0 57 56 1.8 30 - 130 30 ND 57 55 30 - 130 30 Hexachlorobutadiene 230 3.6 53 55 3 7 Hexachlorocyclopentadiene ND 230 62 60 3.3 46 38 19.0 30 - 130 30 ND 130 49 46 6.3 45 48 30 - 130 30 Hexachloroethane 6.5 ND 230 71 73 2.8 53 34.4 30 - 130 30 Indeno(1,2,3-cd)pyrene 75 ND 130 60 58 3.4 53 55 3.7 30 - 130 30 Isophorone 30 - 130 Naphthalene ND 230 58 55 5.3 54 82 41.2 30 Nitrobenzene ND 130 59 58 1.7 55 58 5.3 30 - 130 30 N-Nitrosodimethylamine ND 230 42 42 0.0 37 41 10.3 30 - 130 30 ND 59 N-Nitrosodi-n-propylamine 130 60 1.7 55 56 1.8 30 - 130 30 N-Nitrosodiphenylamine ND 130 72 71 1.4 64 63 1.6 30 - 130 30 Pentachloronitrobenzene ND 230 70 69 1.4 56 56 0.0 30 - 130 30 Pentachlorophenol ND 230 67 64 4.6 57 55 3.6 30 - 130 30 Phenanthrene ND 130 65 1.5 32 183 140.5 30 - 130 66 30 m.r ND 230 70 69 1.4 65 Phenol 66 1.5 30 - 130 30 ND 70 70 0.0 113 107.5 Pyrene 230 34 30 - 130 30 ND 28 27 Pyridine 230 28 0.0 29 7.1 30 - 130 30 I,m % 2,4,6-Tribromophenol 48 % 73 71 2.8 61 60 1.7 30 - 130 30 % 59 58 1.7 53 % 2-Fluorobiphenyl 46 54 1.9 30 - 130 30 % 2-Fluorophenol 35 % 56 53 5.5 49 51 4.0 30 - 130 30 58 % Nitrobenzene-d5 44 % 61 5.0 56 57 1.8 30 - 130 30 % Phenol-d5 41 % 62 3.2 56 57 64 1.8 30 - 130 30 % Terphenyl-d14 53 % 69 69 0.0 51 48 30 30 - 130

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 335122 (ug/kg), QC Sample No: BK65609 (BK65671, BK65672, BK65673, BK65674)

Comment:

Volatiles - Solid 1,1,1,2-Tetrachloroethane ND 5.0 104 106 1.9 90 84 6.9 70 - 130 30 1,1,1-Trichloroethane ND 5.0 92 95 3.2 90 83 8.1 70 - 130 30 ND 3.0 112 116 3.5 96 89 7.6 1,1,2,2-Tetrachloroethane 70 - 130 30 1,1,2-Trichloroethane ND 5.0 101 1.0 84 102 88 4.7 70 - 130 30 ND 97 89 1,1-Dichloroethane 5.0 94 3.1 82 8.2 70 - 130 30 1,1-Dichloroethene ND 5.0 103 106 2.9 98 90 8.5 70 - 130 30 1,1-Dichloropropene ND 5.0 98 99 1.0 92 82 11.5 70 - 130 30 1,2,3-Trichlorobenzene ND 5.0 112 115 2.6 67 63 6.2 70 - 130 30 m 1,2,3-Trichloropropane ND 5.0 104 106 1.9 87 84 3.5 70 - 130 30 1,2,4-Trichlorobenzene ND 5.0 115 117 1.7 68 64 6.1 70 - 130 30 1,2,4-Trimethylbenzene ND 1.0 108 111 2.7 85 78 8.6 70 - 130 30 1,2-Dibromo-3-chloropropane ND 5.0 113 116 2.6 84 76 10.0 70 - 130 30 ND 103 105 1.9 87 84 1,2-Dibromoethane 5.0 3.5 70 - 130 30 76 ND 5.0 83 1,2-Dichlorobenzene 115 120 4.3 8.8 70 - 130 30 1,2-Dichloroethane ND 5.0 94 94 0.0 83 77 7.5 70 - 130 30 99 99 89 1,2-Dichloropropane ND 5.0 0.0 83 7.0 70 - 130 30 1,3,5-Trimethylbenzene ND 1.0 107 110 2.8 92 85 7.9 70 - 130 30 75 1,3-Dichlorobenzene ND 5.0 112 116 3.5 80 6.5 70 - 130 30 1,3-Dichloropropane ND 5.0 98 99 1.0 86 82 70 - 130 30 4.8 1,4-Dichlorobenzene ND 5.0 116 119 2.6 82 76 7.6 70 - 130 30 ND 5.0 91 91 0.0 77 70 - 130 2,2-Dichloropropane 84 8.7 30 2-Chlorotoluene ND 5.0 112 115 2.6 91 84 8.0 70 - 130 30

			QA/QC Data	SDG I.D.: GBK65671						71	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
2-Hexanone	ND	25	87	87	0.0	62	60	3.3	70 - 130	30	m
2-Isopropyltoluene	ND	5.0	111	116	4.4	96	86	11.0	70 - 130	30	
4-Chlorotoluene	ND	5.0	109	111	1.8	84	77	8.7	70 - 130	30	
4-Methyl-2-pentanone	ND	25	91	94	3.2	75	73	2.7	70 - 130	30	
Acetone	ND	10	89	93	4.4	64	58	9.8	70 - 130	30	m
Acrylonitrile	ND	5.0	98	96	2.1	75	74	1.3	70 - 130	30	
Benzene	ND	1.0	99	100	1.0	91	84	8.0	70 - 130	30	
Bromobenzene	ND	5.0	117	119	1.7	92	84	9.1	70 - 130	30	
Bromochloromethane	ND	5.0	101	102	1.0	92	87	5.6	70 - 130	30	
Bromodichloromethane	ND	5.0	100	102	2.0	87	82	5.9	70 - 130	30	
Bromoform	ND	5.0	109	112	2.7	85	80	6.1	70 - 130	30	
Bromomethane	ND	5.0	118	119	0.8	101	97	4.0	70 - 130	30	
Carbon Disulfide	ND	5.0	97	100	3.0	88	81	8.3	70 - 130	30	
Carbon tetrachloride	ND	5.0	90	95	5.4	87	79	9.6	70 - 130	30	
Chlorobenzene	ND	5.0	108	110	1.8	90	84	6.9	70 - 130	30	
Chloroethane	ND	5.0	107	110	2.8	98	90	8.5	70 - 130	30	
Chloroform	ND	5.0	93	96	3.2	87	81	7.1	70 - 130	30	
Chloromethane	ND	5.0	101	103	2.0	88	78	12.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	98	101	3.0	90	82	9.3	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	97	99	2.0	81	74	9.0	70 - 130	30	
Dibromochloromethane	ND	3.0	108	110	1.8	89	87	2.3	70 - 130	30	
Dibromomethane	ND	5.0	101	101	0.0	88	83	5.8	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	119	122	2.5	107	96	10.8	70 - 130	30	
Ethylbenzene	ND	1.0	105	106	0.9	93	85	9.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	113	118	4.3	75	62	19.0	70 - 130	30	m
Isopropylbenzene	ND	1.0	107	110	2.8	95	86	9.9	70 - 130	30	
m&p-Xylene	ND	2.0	101	103	2.0	83	77	7.5	70 - 130	30	
Methyl ethyl ketone	ND	5.0	83	87	4.7	67	67	0.0	70 - 130	30	m
Methyl t-butyl ether (MTBE)	ND	1.0	99	101	2.0	89	85	4.6	70 - 130	30	
Methylene chloride	ND	5.0	93	96	3.2	84	79	6.1	70 - 130	30	
Naphthalene	ND	5.0	110	115	4.4	85	81	4.8	70 - 130	30	
n-Butylbenzene	ND	1.0	110	114	3.6	83	73	12.8	70 - 130	30	
n-Propylbenzene	ND	1.0	108	110	1.8	90	81	10.5	70 - 130	30	
o-Xylene	ND	2.0	104	105	1.0	91	84	8.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	112	116	3.5	93	83	11.4	70 - 130	30	
sec-Butylbenzene	ND	1.0	108	112	3.6	93	83	11.4	70 - 130	30	
Styrene	ND	5.0	104	104	0.0	83	77	7.5	70 - 130	30	
tert-Butylbenzene	ND	1.0	105	109	3.7	94	84	11.2	70 - 130	30	
Tetrachloroethene	ND	5.0	106	109	2.8	96	87	9.8	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	92	97	5.3	81	78	3.8	70 - 130	30	
Toluene	ND	1.0	103	105	1.9	92	85	7.9	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	99	103	4.0	93	84	10.2	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	97	99	2.0	73 79	73	7.9	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	106	107	0.9	76	73 73	4.0	70 - 130	30	
Trichloroethene	ND	5.0	102	107	1.9	94	85	10.1	70 - 130	30	
Trichlorofluoromethane	ND	5.0	102	103	2.0	96	86	11.0	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	109	112	2.7	106	94	12.0	70 - 130	30	
Vinyl chloride	ND ND	5.0	109	102	2.7	93	94 84		70 - 130	30	
0/ 1.2 diable releases at 4	ואט	5.0	100	102	2.0	73	00	10.2	70 - 130	30	

97

90

98

98

100

90

101

97

3.0

0.0

3.0

1.0

99

89

95

98

98

90

95

96

1.0 70 - 130

2.1 70 - 130

1.1

0.0

70 - 130

70 - 130

30

30

30

30

% 1,2-dichlorobenzene-d4

% Bromofluorobenzene

% Toluene-d8

% Dibromofluoromethane

85

91

96

85

%

%

%

%

SDG I.D.: GBK65671

%

%

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits		
Comment:												
Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.												
QA/QC Batch 334984 (ug/kg), QC Sample No: BK65641 (BK65671, BK65672, BK65673)												
Polynuclear Aromatic HC - Solid												
Acenaphthene	ND	<u>.</u> 230	53	65	20.3	57	66	14.6	30 - 130	30		
Acenaphthylene	ND	230	50	60	18.2	53	61	14.0	30 - 130	30		
Anthracene	ND	230	59	69	15.6	59	73	21.2	30 - 130	30		
Benz(a)anthracene	ND	230	57	67	16.1	55	68	21.1	30 - 130	30		
Benzo(a)pyrene	ND	230	55	65	16.7	53	65	20.3	30 - 130	30		
Benzo(b)fluoranthene	ND	230	56	67	17.9	62	69	10.7	30 - 130	30		
Benzo(ghi)perylene	ND	230	57	71	21.9	63	77	20.0	30 - 130	30		
Benzo(k)fluoranthene	ND	230	58	69	17.3	62	73	16.3	30 - 130	30		
Chrysene	ND	230	58	68	15.9	58	71	20.2	30 - 130	30		
Dibenz(a,h)anthracene	ND	230	58	71	20.2	64	78	19.7	30 - 130	30		
Fluoranthene	ND	230	57	68	17.6	56	69	20.8	30 - 130	30		
Fluorene	ND	230	53	64	18.8	57	66	14.6	30 - 130	30		
Indeno(1,2,3-cd)pyrene	ND	230	56	70	22.2	63	77	20.0	30 - 130	30		
Naphthalene	ND	230	53	62	15.7	55	63	13.6	30 - 130	30		
Phenanthrene	ND	230	55	67	19.7	55	69	22.6	30 - 130	30		
Pyrene	ND	230	59	70	17.1	56	70	22.2	30 - 130	30		
% 2-Fluorobiphenyl	48	%	49	59	18.5	52	60	14.3	30 - 130	30		
% Nitrobenzene-d5	49	%	49	55	11.5	49	58	16.8	30 - 130	30		
% Terphenyl-d14	59	%	57	69	19.0	55	68	21.1	30 - 130	30		
QA/QC Batch 335067 (ug/Kg), QC Sample No: BK65735 2X (BK65674)												
Chlorinated Herbicides - Solid												
2,4,5-T	ND	8.3	69	67	2.9	82	76	7.6	40 - 140	30		
2,4,5-TP (Silvex)	ND	8.3	69	67	2.9	71	66	7.3	40 - 140	30		
2,4-D	ND	8.3	75	74	1.3	100	87	13.9	40 - 140	30		
2,4-DB	ND	67	65	61	6.3	68	65	4.5	40 - 140	30		
Dalapon	ND	8.3	60	67	11.0	40	35	13.3	40 - 140	30		
Dicamba	ND	17	76	80	5.1	89	82	8.2	40 - 140	30		
Dichloroprop	ND	8.3	69	69	0.0	74	69	7.0	40 - 140	30		
Dinoseb	ND	17	68	65	4.5	74	69	7.0	40 - 140	30		
% DCAA (Surrogate Rec)	57	%	51	50	2.0	57	53	7.3	30 - 150	30		

 $[\]label{eq:local_local_local_local_local} I = This parameter is outside laboratory LCS/LCSD specified recovery limits. \\ m = This parameter is outside laboratory MS/MSD specified recovery limits. \\ r = This parameter is outside laboratory RPD specified recovery limits.$

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

February 18, 2016

Thursday, February 18, 2016

Sample Criteria Exceedences Report

GBK65671 - CIDER-ENV

RL Analysis
SampNo Acode Phoenix Analyte Criteria Units

RESULT R

Criteria: None

State: NY

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

nelac E

NY Temperature Narration

February 18, 2016

SDG I.D.: GBK65671

The samples in this delivery group were received at 6° C. (Note acceptance criteria is above freezing up to 6° C)

Coolant: IPK P ICE NO Temp 6°C Pg of Contact Options:	Project P.O: 70/6 - 10 2 This section MUST be completed with Bottle Quantities.	\$ \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$\\ \bar{\text{\$\langle \text{\$\langle \tx}\$}}}}}}}}}}}}}}}}}}} }} }} } } } }		·
Fax:	Proje	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Solve W	<u> </u>	TAGM 4046 GW TAGM 4046 SOIL TAGM 4046 SOIL Use Soil NY375 Residential Soil Restricted/Residential Commercial Industrial
ODY RECORD 0, Manchester, CT 05040 Fax (860) 645-0823	Crassy		Pe X		1 Day* Res. Criteria 2 Days* Non-Res. Criteria 3 Days* Non-Res. Criteria 5 Days* Non-Res. Criteria 10 Days Cleanup Criteria 10 Days Cleanup Criteria 10 Days Cleanup Criteria 2 Other 3 State where samples were collected:
ST (09	io: Tames to:	17.9	X X X X		4.21 1 Day* 4.21 2 Days* 10 Days* 10 Days* 10 Days* APPLIES State where
NY/NJ CHAIN OF CUS 587 East Middle Turnpike, P.O. Box Email: info@phoenixlabs.com Client Services (8	Project: Report to: Invoice to:	Analy Requ	Sampled X X X X X X X X X X X X X X X X X X X		215110
587 Inc.	Tope Suta	mation - Identification Date: D2/12/ SW=Surface Water WW=Waste Water Se S=Soil SD=Soild W=Wipe	Sample Date Sampled Sa		LAMALA
X matories,	ex pairmers Jeg Cha		Customer Sample Scildentification M M-3 B-3 B-5 B-5		ments or Regulations:
PHOEN	Customer: (100) Address: 6×6	Sampler's Colent Sample - Mormar Signature Amarix Code: DW-Drinking Water GW-Ground Water Street St	PHOENIXUSE CLOONLY SAMPLE #		Comments, Special Requirements or Regulations: