Flushing Industrial Park, Parcels 1, 2 and 3

Tax Block 5066, Lots 1001 to 1169 (formerly Lot 9002), Lots 1201 to 1238 (formerly Lots 1 and 100), Lots 1301 to 1579 (formerly Lot 9001), and Lots 1701 to 1932 (formerly Lot 9100), 2001 to 2263 (formerly Lot 9101), and 3001 to 3248 (formerly Lot 9102)

QUEENS, NEW YORK

Periodic Review Report

August 30, 2019 - August 30, 2022

NYSDEC BCP Site Numbers: C241051 (Parcel 1), C241078 (Parcel 2) and C241079 (Parcel 3)

AKRF Project Number: 200270

Prepared for:

Sky View Parc II, L.P. % Shopcore Properties 40-24 College Point Boulevard – Suite B215 Flushing, NY 11354

Prepared by:

AKRF, Inc. 440 Park Avenue South New York, NY 10016

212-696-0670

TABLE OF CONTENTS

P.E. C	ERTIFICATION	iii
EXEC	UTIVE SUMMARY	iv
1.0	INTRODUCTION	1
2.0	BACKGROUND	2
2.1	SITE DESCRIPTION	
2.2	REMEDIAL INVESTIGATION FINDINGS	2
2	2.2.1 Geology and Hydrogeology	
2	2.2.2 Nature and Extent of Contamination Prior to Remediation	3
2.3	SITE REMEDIATION	4
2	2.3.1 Contaminated Materials Removal	4
2	2.3.2 Engineering Controls	4
2	2.3.3 Institutional Controls	
3.0	CONSTRUCTION ACTIVITIES	
3.1	PERMITTING AND APPROVALS	7
3.2	SOIL DISTURBANCE	
3.1	WASTE CHARACTERIZATION	9
3.2	HEALTH AND SAFETY MONITORING	
3.3	SEDIMENT AND EROSION CONTROL MEASURES	10
4.0	SITE COVER OPERATION AND MAINTENANCE	10
4.1	SITE COVER ALTERATIONS	10
4.2	SITE COVER INSPECTION	
5.0	VAPOR MITIGATION SYSTEM OPERATION AND MAINTENANCE	10
5.1	VAPOR MITIGATION BACKGROUND	10
5.2	VAPOR SYSTEM MODIFICATION	
5.3	VAPOR SYSTEM INSPECTIONS AND MAINTENANCE	11
6.0	MONITORING	12
6.1	ENGINEERING CONTROL SYSTEM MONITORING	12
6.2	SITE-WIDE INSPECTION	
7.0	INSTITUTIONAL AND ENGINEERING CONTROL COMPLIANCE	12
8.0	CONCLUSIONS	13

FIGURES

Figure 1	Project Site Location
Figure 2	Site Plan
Figure 3	Proposed Backup Generator and Geotechnical Soil Boring Location Plan
Figure 4	Current Site Cover (July 25, 2022)

APPENDICES

Appendix A	NYSDEC SPDES Permit Closure Documentation
Appendix B	Proposed Backup Generator Plans and Geotechnical Investigation Documentation
Appendix C	Site Cover Inspection Forms and Photographs (September 2020 to September 2022)
Appendix D	Site-Wide Inspection Forms
Appendix E	Institutional and Engineering Control Certification Forms

P.E. CERTIFICATION

I, Michelle Lapin, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the 2022 Revised Site Management Plan protocols, and I certify that the documentation of site management activities is accurately presented in the 2019-2022 Periodic Review Report for Flushing Industrial Park, Parcel 1 (BCP Site No. C241051), Parcel 2 (BCP Site No. C241078), and Parcel 3 (BCP Site No. C241079).

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- a) The institutional control and engineering control employed at this site are unchanged from the date the control was put in place, or last approved by the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER), with any exceptions cited in this Periodic Review Report;
- b) Nothing has occurred that would impair the ability of such control to protect public health and the environment;
- c) Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control; and
- d) Access to the site will continue to be provided to NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.

TE OF NEW LOOP & BELLE LAS OF SECONDARY AS A SHARE WAS A SHARE WAS

NYS Professional Engineer #073934-1 Date

9-29-22

Sidn

EXECUTIVE SUMMARY

This Periodic Review Report (PRR) documents pertinent post-remediation activities between August 30, 2019 and August 30, 2022 at: Flushing Industrial Park (Eastern), Parcel 1 (BCP Site No. C241051); Flushing Industrial Park (Western), Parcel 2 (BCP Site No. C241078); and Flushing Industrial Park (Western Waterfront), Parcel 3 (BCP Site No. C241079). These three Parcels comprise approximately 13.3 acres located on the northwestern corner of College Point Boulevard and 40th Road in Flushing, Queens, New York (collectively, the "Property").

Historically, the Property contained several transformers, gasoline fueling facilities, an equipment repair area and a paint storage house. Consolidated Edison (the previous Property owner), historical maps and NYSDEC records indicated underground storage tanks (USTs) and aboveground storage tanks (ASTs) storing gasoline, diesel, insulating oil, kerosene, spent motor oil and heating oil. Multiple investigations were performed on the Property between 1989 and 2005 to identify and further evaluate soil and groundwater contamination. The soil and groundwater contamination appeared to be related to a combination of sources, including: spills/leaks from historical storage and repair of equipment [including numerous electrical transformers which likely contained polychlorinated biphenyls (PCBs)]; spills/leaks from ASTs, USTs and fueling operations; transport of contaminants by the tidally influenced water table; and some components in historical fill.

Remedial activities performed in 2006 and 2007 included the removal of contaminated materials and structures (including soil, light non-aqueous phase liquid (LNAPL), ASTs and USTs, drainage structures and geophysical anomalies, as needed). The remedy also included installation of a site cover (consisting of concrete, asphalt or 2 feet of clean fill) across the site and installation of a vapor mitigation system (consisting of a vapor barrier and sub-slab depressurization system) beneath the portion of the Parcel 2 structure with retail use on the ground floor. An Environmental Easement was filed to prevent future exposure to any residual contamination remaining. In December 2007, Final Engineering Reports (FERs) and Site Management Plans (SMPs) were submitted and NYSDEC granted Certificates of Completion for Parcels 1, 2 and 3.

The SMPs were revised in April 2013 to reflect NYSDEC-approved modifications to the groundwater monitoring (reducing sampling parameters to PCBs only and reducing frequency to twice per year). On April 30, 2014, NYSDEC approved AKRF's request to permanently convert the active SSDS to passive operation and discontinue SSDS effluent sampling; the SMP for Parcel 2 was revised accordingly and a draft was submitted for NYSDEC approval in May 2014. NYSDEC subsequently approved the reduction of groundwater sampling from a semi-annual to annual basis in November 2015. One round of annual groundwater monitoring was conducted in April 2016 prior to construction activities conducted between approximately November 2016 and May 2018 that included installation of underground utilities, the construction of the Sky View Parc (SVP) West Entrance Pavilion on the southern portions of Parcels 1 and 2, and the construction of the waterfront esplanade with upland connections on Parcel 3. Due to the extensive ground disturbance required during this construction, many of the groundwater monitoring wells were either destroyed and/or covered with staged construction materials, leaving only five accessible monitoring wells. Therefore, groundwater sampling was not conducted in 2017 (with the approval from NYSDEC).

Following the completion of construction in May 2018, NYSDEC approved the discontinuation of sampling of nine well locations (MW-30R4, MW-33R2, MW-35R, MW-36R2, MW-39R, MW-40R2, MW-41R2, MW-42R, and MW-43R3) that had shown no, or at most sporadic, detections of PCBs above the Class GA Standard, but required annual sampling of six newly repaired or replaced wells (MW-28R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2) and one existing well (MW-29R5) in 2018 and annually thereafter.

Between May 21 and June 4, 2018, groundwater samples were collected from the five newly installed and two existing wells. The analytical data from the May 2018 sampling indicated generally decreasing PCB levels compared to the previous sampling. Based on the May/June 2018 groundwater analytical results, AKRF requested discontinuation of groundwater monitoring in April 2019, with the remaining wells being decommissioned in accordance with NYSDEC CP-43 protocol.

On May 10, 2019, NYSDEC approved AKRF's request to discontinue groundwater sampling. On May 21, 2019, the remainder of the post-remediation monitoring wells, including MW-28R5, MW-29R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2, were abandoned in accordance with NYSDEC CP-43 protocol. The May 2019 NYSDEC approval to discontinue groundwater sampling and abandonment of the remainder of the post-remediation monitoring wells was documented in the Revised April 2021 SMPs.

On October 13, 2020, AKRF notified NYSDEC via email that Shopcore Properties planned to conduct a geotechnical investigation prior to installing two backup generators adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. The geotechnical investigation was required for the backup generator foundations. Construction of the backup generators will include removal of the asphalt cover, excavation to approximately 2 to 4 feet below grade into previously-placed backfill [Residual Management Zone (RMZ) A soil], and removal of approximately 100 cubic yards of RMZ A soil for off-site disposal at an appropriate receiving facility. On November 16, 2020, AKRF performed health and safety air monitoring and oversight during the geotechnical investigation performed by Grant Engineering of New York, New York (Shopcore Properties' geotechnical engineer). Following completion of a geophysical survey, two soil borings, identified as SB-1 and SB-2, were advanced adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. Due to conflicts with underground utilities at the SB-1 soil boring location, an additional soil boring (SB-3) was advanced slightly west of soil boring location SB-1 on May 28, 2021. During the drilling activities, groundwater was encountered at approximately 7 to 8 feet below grade. A slight petroleum-like odor, but no sheen, was observed at the groundwater interface at soil boring locations SB-1 and SB-2 at depths ranging from 8 to 14 feet below grade. No petroleum-like odor or sheen was observed at soil boring location SB-3. Low level photoionization detector (PID) readings were detected on soil during the drilling activities [maximum PID reading of 12.6 parts per million (ppm)]. The geotechnical soil borings were advanced to approximately 37 feet below grade. The soil cuttings were containerized in 55-gallon drums pending completion of the back-up generator installation and off-site disposal at an appropriate receiving facility. On November 16, 2020, AKRF collected two waste characterization samples from the soil drums generated during the geotechnical investigation analysis of typical New Jersey waste disposal criteria. The backup generator installation has been on hold since May 2021. As such, AKRF will resample the soil drums in September 2022 and arrange for off-site disposal at an appropriate waste disposal receiving facility in October 2022.

No soil disturbance activities were performed on Parcel 1 during the reporting period. If subsurface activities are performed on the Property in the future, AKRF will perform oversight and monitoring in accordance with the NYSDEC-approved SMPs.

The April 2021 SMPs, with the NYSDEC-approved modification related to SSDS operation, the discontinuation of groundwater sampling and abandonment of the remainder of the post-remediation monitoring wells, were complied with for the period of August 30, 2019 through August 30, 2022. Periodic inspections, including annual site-wide and site cover inspections, were performed annually during the reporting period to document conditions at the Property. The remedy remains effective and protective of human health and the environment with continued implementation of the Revised SMPs, including the

annual site-wide and site cover inspections, and the institutional and engineering control certifications, which will be documented in future PRRs.

1.0 INTRODUCTION

This Periodic Review Report (PRR) documents pertinent post-remediation activities between August 30, 2019 and August 30, 2022 at: Flushing Industrial Park (Eastern), Parcel 1 (BCP Site No. C241051); Flushing Industrial Park (Western), Parcel 2 (BCP Site No. C241078); and Flushing Industrial Park (Western Waterfront), Parcel 3 (BCP Site No. C241079). These three Parcels comprise approximately 13.3 acres located on the northwestern corner of College Point Boulevard and 40th Road in Flushing, Queens, New York (collectively, the Property). The Property location is shown on Figure 1.

Remedial activities were completed on Parcels 1, 2 and 3 between February 2006 and December 2007 under the New York State Department of Environmental Conservation's (NYSDEC) Brownfield Cleanup Program (BCP). Brownfield Cleanup Agreements (BCAs) were executed in December 2004 and amended BCAs were executed in June 2005, December 2006, April 2007 and November 2007. Remedial work was performed in accordance with NYSDEC-approved work plans. The remediation was documented in three Parcel-specific Final Engineering Reports (FERs) dated December 2007, and on-going site management requirements were specified in three Site Management Plans (SMPs), submitted with the FERs. NYSDEC issued Certificates of Completion for Parcels 1, 2 and 3 in December 2007. The SMPs were subsequently revised in April 2013 to reflect an NYSDEC-approved modification to groundwater monitoring. On April 30, 2014, NYSDEC approved allowing permanent operation as a passive SSDS and discontinuing SSDS effluent sampling, as outlined in Section 5.0 of this PRR. Updated procedures for operating and maintaining the sub-slab depressurization system were documented in the May 2014 SMP. On November 10, 2015, NYSDEC approved the reduction of groundwater sampling from a semi-annual to annual basis; the reduction in sampling was documented in the Revised SMPs. Due to construction on Parcels 2 and 3 between 2016 and 2018, AKRF submitted a request to the NYSDEC to delay groundwater sampling in a letter dated April 24, 2017. The NYSDEC approved AKRF's request to delay groundwater sampling until April 2018 in a letter dated May 9, 2017. However, since construction was still occurring, AKRF submitted a request on April 23, 2018 to further delay the sampling (until the Summer of 2018) and eliminate sampling of nine wells (MW-30R4, MW-33R2, MW-35R, MW-36R2, MW-39R, MW-40R2, MW-41R2, MW-42R, and 43R3) that have shown no, or at most sporadic, detections of PCBs above the Class GA Standard and sample six newly repaired or replaced wells (MW-28R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2) and one existing well (MW-29R5). On May 4, 2018, NYSDEC approved this request, but indicated that any remaining wells not needed for monitoring could be decommissioned in accordance with NYSDEC Commissioners Policy 43.

Between May 21 and June 4, 2018, groundwater samples were collected from the seven wells (MW-28R5, MW-29R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2). The analytical data from the May 2018 sampling indicated generally decreasing PCB levels compared to the previous sampling. In January 2007, soon after the majority of remedial excavation was complete, PCBs above the Class GA Standard were found in 12 of 16 wells; exceedances were detected in only 4 wells in May/June 2018. Based on the May/June 2018 groundwater analytical results, which revealed continued decreasing levels of residual PCB contamination with at most minor exceedances of the NYSDEC Class GA (Drinking Water) Ambient Water Quality Standard for total PCBs, AKRF requested discontinuation of groundwater monitoring in April 2019, with the remaining wells being decommissioned in accordance with NYSDEC CP-43 protocol. On May 10, 2019, NYSDEC approved AKRF's request to discontinue groundwater sampling. On May 21, 2019, the remainder of the post-remediation monitoring wells, including MW-28R5, MW-29R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2, were abandoned in accordance with NYSDEC CP-43 protocol. The May 2019 NYSDEC approval to discontinue groundwater sampling and the abandonment of the remainder of the post-remediation monitoring wells were documented in the Revised April 2021 SMPs, which were approved by NYSDEC on April 23, 2021.

The purpose of this PRR is to document ongoing site management activities associated with Engineering and Institutional Controls for the Property, and to certify that those controls are being implemented in accordance with the SMPs. The SMPs provide detailed descriptions of all procedures required to manage known and potential residual contamination.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Property is bounded by Roosevelt Avenue to the north, College Point Boulevard to the east, 40th Road to the south, and the Flushing River to the west (see Figure 2). The Property is located in the County of Queens, New York and at the time of the FER, the Property was identified as Block 5066, Lots 1, 100, 9001, 9002 and 9100. The Property is currently identified as Block 5066, Lots 1001 to 1169, 1201 to 1238, 1301 to 1579, and 9100.

In 2009, Lots 1 and 100 (the ground lots) were converted to condominium Lots 1201 to 1205, the complex boundaries of which include discontinuous and shared areas. In addition, residential condominium Lots 1001 through 1169 (former Lot 9002—Tower 3) were created in 2009 for the residential towers located above the retail structures. In 2010, residential condominium Lots 1301 through 1579 (former Lot 9001—Towers 1 and 2) were created. In 2015, Lot 1206 was subdivided into Lots 1206 to 1238. Lot 9100 remains for Towers 6, 7, and 8 atop the western retail building. No ownership changes were recorded for the Property during the Reporting Period.

Occupancy of portions of the retail and residential spaces began in 2010. The eastern two-thirds of the development consist of open or actively-vented garage space on the ground (lowest) level. The retail and parking structures cover the majority of Parcels 1 and 2, with residential towers (potentially including office space and/or community facilities) above these structures, starting at the fifth floor. Towers 6, 7, and 8 (designated as Lot 9100) were constructed under the current zoning over the western retail building on Parcel 2. This development also includes construction of the Sky View Parc (SVP) West Entrance Pavilion in 2018 on the southern portions of Parcels 1 and 2. Construction of the waterfront esplanade, which includes both landscaped and paved areas with upland connections on Parcel 3, was completed in the Summer of 2018. A site plan showing general development is provided as Figure 2.

2.2 REMEDIAL INVESTIGATION FINDINGS

2.2.1 Geology and Hydrogeology

Results from the remedial and geotechnical investigations conducted prior to remediation indicated that the top 6 to 16 feet of soil generally consisted of miscellaneous fill. The fill was variable, ranging from silty clay to sand with anthropogenic materials including brick, ash and cinders. The fill was underlain at some locations by a layer of organic silt, clay and peat up to about 30 feet thick near the Flushing River, and thinning out towards the east, ending about 200 to 300 feet from College Point Boulevard. A stiff silty clay/clayey silt stratum was occasionally encountered beneath the soft clayey soils. Occasional layers of sand, gravel, cobbles and boulders were interspersed in these strata. Below the fill and organic deposits was a layer of sand 30 to 60 feet thick, consisting of fine to coarse sand with varying percentages of silt and gravel. A stiff clay or silty clay stratum was encountered beneath the sand at a depth of 35 to 70 feet below grade (elevations -30 to -60 feet Queens Borough Datum).

Groundwater studies performed on the Property and in surrounding areas before remediation indicated a general groundwater flow direction towards the west and northwest, which appeared to be tidally influenced. Groundwater in the southern portion of the Property was locally influenced by a New York City Department of Environmental Protection (NYCDEP) sewer pump house located in this area. As part of remediation, interlocking bulkhead sheeting was installed at the western boundary of Parcel 3 and along segments of the western and southern Property boundaries. This sheeting appears to be limiting the groundwater flow in this area of the Property, based on measurements in monitoring wells installed before and after remediation excavation. Post-remediation water levels continue to fluctuate, due in part to tidal influence, rain events, and the interlocking sheeting.

2.2.2 Nature and Extent of Contamination Prior to Remediation

Historically, the Property contained several transformers, gasoline fueling facilities, an equipment repair area and a paint storage house. Consolidated Edison (a previous Property owner) records, historical maps and NYSDEC records indicated underground storage tanks (USTs) and aboveground storage tanks (ASTs) storing gasoline, diesel, insulating oil, kerosene, spent motor oil and heating oil. Multiple investigations were performed on the Property between 1989 and 2005 to identify and further evaluate soil and groundwater contamination.

Pre-Remedial Soil Contamination

Subsurface investigations identified the most significant contaminant of concern in soil to be polychlorinated biphenyls (PCBs); however, elevated levels of volatile organic compounds (VOCs) (including benzene, sec-butylbenzene, chlorobenzene, ethylbenzene, naphthalene, and xylenes); semivolatile organic compounds (SVOCs); pesticides (including delta-BHC, dieldrin, 4,4-DDD, 4,4-DDE, 4,4-DDT, endosulfan sulfate, endrin); and metals (including arsenic, cadmium, lead and mercury) were also found. The laboratory analytical data revealed that elevated PCB concentrations were generally more prevalent in Parcels 2 and 3. In general, PCB concentrations were highest at or above the water table; however, one area on the south side of Parcels 2 and 3 was identified with concentrations of PCBs above 50 parts per million (ppm) extending below the water table.

Pre-Remedial Groundwater Contamination

PCB-containing light non-aqueous phase liquid (LNAPL) was identified floating on the water table in three monitoring wells on Parcels 2 and 3. Elevated levels of VOCs, SVOCs, PCBs, pesticides, and metals (arsenic, barium, cadmium, iron, lead, magnesium, manganese, selenium and sodium) were found in the groundwater samples.

The NYSDEC Class GA Ambient Water Quality Standards were exceeded in groundwater samples for total and dissolved PCBs, pesticides (aldrin, alpha-chlordane, dieldrin, 4,4-DDD and endrin), VOCs (acetone, benzene, chlorobenzene, toluene and vinyl chloride), SVOCs (1,3-dichlorobenzene), and total and dissolved TAL metals (arsenic, barium, cadmium, iron, lead, magnesium, manganese, selenium and sodium). The elevated concentrations of PCBs, pesticides, VOCs and SVOCs were identified in isolated areas, but the Class GA standard exceedances for metals were identified across the Property.

2.3 SITE REMEDIATION

The remediation was conducted in accordance with the NYSDEC-approved Interim Remedial Measure Work Plan (IRMWP) and Remedial Action Work Plans (RAWPs), including all addenda and modifications.

2.3.1 Contaminated Materials Removal

Based on the results of initial subsurface investigations, soil Site-Specific Action Levels (SSALs) were established for the protection of human health and the environment, considering the contemplated use and anticipated institutional and engineering controls. The SSALs were as follows:

Soil Site-Specific Action Levels

Parameter	Criterion					
Individual Volatile Organic Compounds (VOCs)	TAGM 4046 RSCO					
Total Semivolatile Organic Compounds (SVOCs)	100 ppm					
Total Polychlorinated Biphenyls (PCBs)	10 ppm					
Individual Pesticides	1 ppm or TAGM 4046 RSCO, if higher					
Arsenic	24 ppm					
Cadmium	10 ppm					
Lead	500 ppm					
Mercury	4 ppm					
Silver	100 ppm					
Cyanide	Hazardous Waste Reactivity Criterion					
Notes: TAGM 4046 RSCO – Technical and Administrative Guidance Memorandum #4046 Recommended Soil Cleanup Objectives, January 24, 1994 ppm – parts per million						

Contaminated materials removal included: the excavation of soil with concentrations greater than the established SSALs and/or TAGM 4046 RSCOs (the regulatory standard used at the time) above (and to the extent practicable, below) the water table; removal of LNAPL to the extent practicable; removal of ASTs and USTs; investigation and removal of drainage structures; and investigation of geophysical anomalies. Excavation and offsite disposal of contaminated soil was performed from February 2006 to November 2007.

2.3.2 Engineering Controls

Engineering controls were installed at the Property as part of the remedial action to prevent exposure to residual subsurface contamination. The engineering controls, which consist of a site cover and a sub-slab vapor mitigation system, are described in more detail below.

Site Cover

Following soil removal activities, a composite cover system was installed over the Property to prevent direct exposure to underlying soil. At the time that the FERs were submitted, the site cover consisted of concrete or asphalt.

Vapor Mitigation System

No vapor barrier was required for Parcels 1 and 3. The remedial action required a vapor mitigation system only for the portion of the development with retail use on the lowest level (i.e., the western retail building located on Parcel 2). Exposure to potential residual vapors there was minimized by the sub-slab vapor mitigation system installed beneath the building. The mitigation system consisted of a network of PVC sub-slab depressurization piping placed beneath a vapor barrier with in-line fans (no longer active) venting extracted vapors above the roof of the parking garage. During subsequent building construction in 2008-2009, repairs were made to the geomembrane with Liquid Boot and an additional layer of waterproofing manufactured by Laurenco Systems was added (above the original geomembrane, but beneath the building slab). During the 2016 reporting period, the SSDS riser pipes were extended into newly constructed pipe enclosures atop the northern and southern stairwell bulkheads, which were equipped with louvers to vent the passive SSDS system.

2.3.3 Institutional Controls

Institutional controls incorporated into the remedy include an environmental easement to prohibit certain on-site uses, and ensure implementation of the Parcel-specific SMPs during future site use. These institutional controls are described in more detail below.

Environmental Easement

Environmental easements were recorded in December 2007 for each of the three Parcels comprising the Property. The property deed and all subsequent instruments of conveyance will contain language indicating that the Property is subject to this environmental easement. The environmental easement includes the following site use restrictions:

- Single family housing, vegetable gardens and farming are prohibited;
- A school or day care facility is prohibited;
- Use of the site groundwater is prohibited without treatment rendering it safe for its intended purpose;
- All future activities that will disturb Residual Management Zones (i.e., penetrate through the site cover into the underlying soil) are prohibited unless they are conducted in accordance with the SMPs;
- The Property may be used for Restricted Residential use, as defined in 6 NYCRR 375-1.8(g)(2)(ii), provided that the long-term Engineering and Institutional Controls included in the SMPs remain in use;
- The Property may not be used for a more restricted level of use, such as unrestricted residential use, nor may the parking areas be converted to other enclosed purposes; and
- The easement requires annual submission of a written certification that: (1) controls are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC and NYSDOH; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMPs.

Site Management Plan

The environmental easement requires compliance with three SMPs that were prepared to describe procedures and protocols for post-remediation management of the three Parcels. The SMPs each include four plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for implementation of the remedial cover, sub-slab venting system (Parcel 2 only), and the groundwater monitoring system; and (4) a Site Management Reporting Plan for submittal of data, information, recommendations, and certifications to NYSDEC. The Engineering and Institutional Control Plan portion of each SMP includes detailed procedures for handling residual onsite contamination during future soil disturbance activities.

In February 2013, NYSDEC approved a request for reduction in the list of groundwater analytical parameters (to total PCBs only) and in the sampling frequency (from quarterly to semi-annually). The change in groundwater sampling protocol was detailed in Revised SMPs, dated April 2013, which included changes to the SMP text, Quality Assurance Project Plan (QAPP) appendix, and Figure 13 - Post-Remediation Monitoring Well Plan. As requested by NYSDEC in their April 8, 2013 approval letter, the changed portions of the documents were submitted to NYSDEC and the document repository at the Queens Public Library. AKRF's request to permanently convert the active SSDS to passive operation and discontinue SSDS effluent sampling was approved by NYSDEC, in consultation with NYSDOH, on April 30, 2014. Accordingly, a draft Revised SMP for Parcel 2 was submitted for NYSDEC approval in May 2014. The NYSDEC approved the reduction of groundwater sampling from a semi-annual to annual basis in a telephone conversation with AKRF on November 10, 2015. Due to construction on Parcels 2 and 3 between 2016 and 2017, AKRF submitted a request to the NYSDEC to delay groundwater sampling until April 2018 in a letter dated April 24, 2017. The NYSDEC approved this request in a letter dated May 9, 2017. However, since construction was still occurring, AKRF submitted a request on April 23, 2018 to further delay the sampling (until Summer 2018) and to eliminate sampling of nine wells (MW-30R4, MW-33R2, MW-35R, MW-36R2, MW-39R, MW-40R2, MW-41R2, MW-42R, and 43R3) that have shown no or at most sporadic detections of PCBs above the Class GA Standard and sample six newly installed and one existing well on an annual basis (MW-28R5, M 29R5, MW-31R, MW-32R, MW-34R2, MW-37R, and MW38R). On May 4, 2018, NYSDEC approved this request but indicated that any unneeded wells should be decommissioned in accordance with NYSDEC Commissioners Policy 43. Based on the May/June 2018 groundwater analytical results, which revealed continued decreasing levels of residual PCB contamination with at most minor exceedances of the NYSDEC Class GA (Drinking Water) Ambient Water Quality Standard for total PCBs, AKRF requested discontinuation of groundwater monitoring in April 2019 with the remaining wells being decommissioned in accordance with NYSDEC CP-43 protocol. On May 10, 2019, NYSDEC approved AKRF's request to discontinue groundwater sampling. On May 21, 2019, the remainder of the post-remediation monitoring wells, including MW-28R5, MW-29R5, MW-31R2, MW-32R2, MW-34R3, MW-37R2, and MW-38R2, were abandoned in accordance with NYSDEC CP-43 protocol. The May 2019 NYSDEC approval to discontinue groundwater sampling and the abandonment of the remainder of the post-remediation monitoring wells were documented in the Revised April 2021 SMPs.

3.0 CONSTRUCTION ACTIVITIES

The SMP established the following three Residual Management Zones (RMZs):

- RMZ A refers to previously placed backfill documented to meet SSALs (see Section 2.3.1). Excavated material from this zone that did not exhibit evidence of contamination was reused onsite as subsurface fill beneath the restored cover without additional sampling.
- RMZ B is material where previous endpoint sampling indicated that the material met the SSALs.
 Whenever this material was excavated, additional analyses were performed to confirm that the
 material met SSALs prior to its reuse on-site as backfill. If the excavated material exhibited
 evidence of contamination (i.e., odor, staining, or elevated photoionization detector (PID) readings)
 or if analytical results indicated exceedance of the SSALs, then the material was disposed of offsite.
- RMZ C is the material where endpoint sampling indicated concentrations greater than the SSALs. Excavated soil in the vicinity of this known contamination was disposed of off-site.

A geotechnical investigation was performed in November 2020 and May 2021 for the proposed installation of two backup generators adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. No other soil disturbance activities were performed on the Property during the reporting period.

3.1 PERMITTING AND APPROVALS

Certain Property lots (not lots that are elevated above the ground) have an "E" designation for hazardous materials, which requires New York City Office of Environmental Remediation (NYCOER) approval prior to NYC Department of Buildings (NYCDOB) issuance of certain types of permits and Certificates of Occupancy. Note that prior to 2010, "E" designation issues were managed by the NYC Department of Environmental Protection (NYCDEP). NYCDEP acknowledged in a letter dated August 4, 2008 that remediation and the accompanying institutional and engineering controls under the BCP adequately addressed the "E" designation requirements and allowed for all permits to be issued by NYCDOB up through Temporary Certificates of Occupancy for non-residential spaces (note all ground level spaces are non-residential). The August 4, 2008 NYCDEP correspondence was amended by NYCOER on January 21, 2010 with a Notice of No Objection to retail Temporary Certificates of Occupancy. NYCOER approved the issuance of residential Certificates of Occupancy in Notices of Satisfaction dated May 27, 2010 and October 22, 2010. Copies of pertinent NYCDEP and NYCOER correspondence were provided as part of previous document submittals, including the 2010 Site Management Report, dated March 2011. Building permits were issued during the 2017 reporting period related to the garage cover, green roof, and newly constructed SSDS pipe enclosures on Parcels 1 and 2.

AKRF prepared a Stormwater Pollution Prevention Plan (SWPPP) in 2006 to gain coverage under the Stormwater General Permit for activities related to the remediation at the Property, with CE Flushing LLC as the owner/operator under the NSDEC State Pollutant Discharge Elimination System (SPDES) General Permit ID number NYR101661. The permit coverage was transferred from CE Flushing LLC to Flushing Town Center III LLP (SPDES ID Number NYR10N486) in 2007 and was left open during construction of the SVP West Entrance Pavilion. In September 2021, a Notice of Termination (NOT) for SPDES Permit ID Number NYR10N486 was submitted to NYSDEC and the permit was closed by NYSDEC via email on October 7, 2021. No other permits or approvals were issued related to certificate of occupancy changes for this reporting period.

The NOT for SPDES Permit ID Number NYR10N486 and the NYSDEC October 7, 2021 SPDES permit closure email are included in Appendix A.

3.2 SOIL DISTURBANCE

On October 13, 2020, AKRF notified NYSDEC via email that Shopcore Properties planned to conduct a geotechnical investigation prior to installing two backup generators adjacent on the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. The geotechnical investigation was required for the backup generator foundations. Construction of the backup generators will include removal of the asphalt cover, excavation to approximately 2 to 4 feet below grade into previously placed RMZ A soil, and removal of approximately 100 cubic yards of RMZ A soil for off-site disposal at an appropriate receiving facility.

On November 16, 2020, AKRF performed health and safety air monitoring and oversight during the geotechnical investigation performed by Grant Engineering of New York, New York (Shopcore Properties' geotechnical engineer). Prior to advancing the geotechnical soil borings, Accuscan GPR, Corp. of Forest Hills, New York performed a geophysical survey to clear the soil boring locations using ground penetrating radar (GPR).

Following the geophysical survey, Tri-State Drilling Tech, Inc. (Tri-State) of Garden City, New York advanced geotechnical soil borings SB-1 and SB-2 adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively, using a track-mounted Geoprobe Model 7822 DT drill rig equipped with an automatic hammer. Soil samples were obtained in the borings using a 2-inch outside diameter, 2-foot long stainless steel split spoon sampler for a depth of 24 inches with repeated blows of a 140-pound hammer free-falling 30 inches (standard penetration test). Due to conflicts with underground utilities at the SB-1 soil boring location, an additional soil boring (SB-3)was advanced slightly west of soil boring location SB-1 on May 28, 2021. All of the soil borings were advanced to approximately 37 feet below grade. The completed soil borings were backfilled with hydrated bentonite and sealed at grade with asphalt.

At each boring location, a Grant Engineering geotechnical engineer and an AKRF environmental professional performed oversight during drilling operations and documented subsurface conditions. Soil generally consisted of a fill layer in the shallow subsurface (sand with varying amounts of gravel, silt, brick and concrete ranging in depths from approximately 4 to 6 feet below grade). A brown fibrous peat layer was observed in the soil borings at depths ranging from approximately 11 to 15 feet below grade. The peat layer was underlain by a layer of till consisting of sand and gravel with varying amounts of silt and clay to approximately 37 feet below grade (the geotechnical boring termination depth). Groundwater was encountered at approximately 7 to 8 feet below grade.

The soil samples were screened with a photoionization detector (PID), which measures relative concentrations of VOCs and was calibrated at the start of the workday with 100 parts per million (ppm) isobutylene. PID readings ranged from none detected (ND) to a maximum reading of 12.6 ppm at soil boring location SB-3 from 12 to 14 feet below grade. A slight petroleum-like odor, but no sheen, was observed at the groundwater interface at soil boring locations SB-1 and SB-2 at depths ranging from 8 to 14 feet below grade (but no PID readings at these locations). No petroleum-like odors or sheen were observed at soil boring location SB-3.

During the geotechnical drilling activities, the soil cuttings were containerized in 55-gallon drums pending completion of the back-up generator installation and off-site disposal at an appropriate receiving facility; however, the backup generator installation has been on hold since May 2021. If

the backup generator work re-starts, AKRF will notify the NYSDEC and OER in advance, in accordance with the Revised SMPs.

The soil boring logs, air monitoring logs, and the proposed backup generator installation plans are provided in Appendix B. The geotechnical soil boring and proposed backup generator locations on Parcels 2 and 3 are shown on Figure 3.

3.1 WASTE CHARACTERIZATION

On November 16, 2020, AKRF collected two waste characterization samples from two 55-gallon drums containing the soil cuttings generated during the geotechnical investigation. The samples [SB1_SB2(0-15) and SB1_SB2(0-37)] were collected by splitting and compositing the upper and lower vertical horizons of each soil boring (e.g., one sample from 0-15 feet and one from 15-37 feet below grade) for analysis of typical New Jersey waste disposal parameters, including, VOCs plus 10 tentatively identified compounds (TICs) by EPA Method 8260, SVOCs plus 20 TICs by EPA Method 8270, total Target Analyte List (TAL) metals, Toxicity Characteristic Leaching Procedure (TCLP) eight RCRA metals plus copper, nickel and zinc, PCBs by EPA Method 8082, pesticides by EPA 8081, total sulfur and cyanide, Extractable Petroleum Hydrocarbon (EPH), hexavalent and trivalent chromium, ignitability, corrosivity and reactivity, paint filter by EPA Method 9095, and total petroleum hydrocarbons (TPH) using Method 8015 for diesel range organics (DRO). The waste characterization samples were analyzed by Test America in Edison, New Jersey, a NYSDOH Environmental Laboratory Accreditation Procedure (ELAP)-certified laboratory.

The backup generator installation has been on hold since May 2021. AKRF will resample the soil drums in September 2022 and arrange for off-site disposal at the appropriate waste disposal receiving facility. AKRF will include details of the sampling and disposal procedures in the next PRR in 2025.

The laboratory report for the soil waste characterization samples collected on November 16, 2020 is provided in Appendix C.

3.2 HEALTH AND SAFETY MONITORING

The Health and Safety Plan (HASP), a component of each SMP, includes requirements for personnel training, protocols for work zone air monitoring and community air monitoring, designated personal protection equipment, and decontamination procedures. The HASP also includes a community air monitoring plan (CAMP), which establishes protocols for VOC and particulate air monitoring to be conducted at the Property perimeter if work zone perimeter concentrations approach the applicable community action levels.

The HASP, including the community air monitoring protocol, was compiled for invasive remedial work performed on the Property. VOC concentrations were monitored with a PID, and respirable particulate matter was monitored using a MiniRAE 3000 PID and a SidePak™ Personal Aerosol Monitor AM510. No remediation work zone or community air monitoring exceedances were noted above the 15-minute time-weighted average (TWA) action levels specified in the HASP through the full duration of activities performed under the SMP. AKRF performed health and safety work zone air monitoring drilling activities for during the geotechnical investigation for the backup generators. No VOC or particulate readings exceeded the action levels in the HASP. During the geotechnical investigation in 2020 and 2021, field personnel followed the HASP protocol using modified Level D PPE, including nitrile gloves and safety glasses.

Copies of the air monitoring logs from the geotechnical investigation are provided in Appendix C.

3.3 SEDIMENT AND EROSION CONTROL MEASURES

Sediment and erosion control measures were implemented in accordance with the SMPs. Typical measures to limit the potential for erosion and migration of soil included the immediate recovery of soil cuttings that were generated during the geotechnical drilling activities and containerization of the soil cuttings in DOT-approved 55-gallon drums. The sewer inlets were protected and dust control measures were implemented in accordance with the SMPs.

4.0 SITE COVER OPERATION AND MAINTENANCE

Exposure to residual contaminated soil/fill is prevented by an engineered composite cover system. This composite cover system is composed of asphalt or concrete.

4.1 SITE COVER ALTERATIONS

No alterations were made to the site cover during the reporting period. The site cover in place at the time of the FER submission consisted of concrete building slabs and pile caps, and asphalt. During the 2019-2022 reporting period, the site cover was penetrated during the geotechnical drilling activities on Parcels 2 and 3; however, the borings were backfilled with hydrated bentonite and repaired at grade with asphalt. All disturbance of the composite cover system and underlying residual soil was performed in accordance with the SMPs, as discussed in Section 3.0.

4.2 SITE COVER INSPECTION

In accordance with the Revised April 2021 SMPs, AKRF inspected the entire site cover (within and outside of the buildings) on September 4, 2020, May 28, 2021, and July 25, 2022. The inspections consisted of observing the asphalt/concrete for holes, cracking, or other signs of damage. The inspection found all that areas were intact, with minimal signs of cracking or damage on the three parcels, with no apparent breaches observed of the site cover or areas with greater than 25% of the surface cracked/damaged. In some areas, observation of the cover was obscured by parked vehicles or equipment; however, based on information from the Property owner representatives and AKRF's observation of the Property throughout the years, the cover was expected to be essentially intact in these areas. The site cover inspection forms and photographs taken during the September 4, 2020, May 28, 2021, and July 25, 2022 inspections are provided in Appendix C. The site cover conditions observed during the inspection are depicted on Figure 4.

5.0 VAPOR MITIGATION SYSTEM OPERATION AND MAINTENANCE

5.1 VAPOR MITIGATION BACKGROUND

The vapor mitigation system design and installation oversight were conducted by Langan Engineering and Environmental Services, Inc. (Langan) of Elmwood Park, New Jersey. The subslab depressurization system (SSDS) was installed and operational in November 2007, as documented in Langan's Engineering Controls (EC) Completion Report, dated November 28, 2007, which was presented with the FER. As permitted by the SMP, prior to initial building occupancy, operation of the sub-slab depressurization system was temporarily suspended during construction. From December 2007 to January 2010, the vapor mitigation system was out of service while construction continued on the western retail building.

In January 2010, the sub-slab depressurization system was reactivated prior to building occupancy. Langan conducted confirmation testing of the SSDS while in active operation on January 20, 2010 and concluded that the SSDS was operating effectively. As outlined in Langan's Soil Vapor

Mitigation System Activation Status Memorandum dated January 22, 2010, the vapor mitigation measures have been modified since the submittal of the EC Completion Report and initial certification. These modifications included:

- The extension of the exhaust stacks to six stories above ground level;
- The addition of a second in-line fan to each stack on the 4th floor near the top of each stack;
- The reinstallation of the vapor barrier in the northern half of the western retail building footprint;
- The installation of a waterproofing course of Liquid Boot (a secondary vapor barrier) to the underside of the western retail building slab; and
- Modifications to the number and locations of clean-outs and sampling ports (SP).

Langan reported in a memorandum dated January 31, 2011 that no additional modifications were made to the SSDS since the January 2010 activation and certification. Vacuum measurements collected below the in-line fans were all in acceptable range during Langan's routine inspections conducted in 2011. Measurable vacuum/pressure was documented at each of the accessible endpoint cleanout points of the SSDS during the 2011 inspection, which indicated that the SSDS has maintained negative pressure in the gravel beneath the vapor barrier.

5.2 VAPOR SYSTEM MODIFICATION

Between February 2010 and April 2013, 13 rounds of vapor sampling were conducted from the 8 sampling ports below the 4th floor fans. During sampling, the 1st floor fans remained running but the 4th floor fans were temporarily turned off so there was no vacuum on the sampling port. One ambient air sample was collected during each round from the central portion of the building's roof to assess background concentrations. All 13 rounds of SSDS sampling showed no compounds exceeding the NYSDEC SGCs or NYSDOH AGVs. Although trace levels of methane (0.2% or lower) were detected in three of the eight vapor collection lines, methane has not been detected since February 2011 and, in any event, the highest detected level was 25 times lower than the methane lower explosive limit of 5%. Notwithstanding these low level detections of VOCs and methane in the exhaust stacks, the potential for vapor intrusion into the building is further mitigated by the presence of two vapor barriers.

The 13 rounds of SSDS sampling during active operation generally showed decreasing trends and low VOC and methane concentrations in the SSDS piping. Therefore, in a July 11, 2013 correspondence, AKRF requested a modification to temporarily shut off the SSDS fans to evaluate exhaust and indoor air VOC concentrations with the system in passive mode. In August 2013, NYSDEC and NYSDOH approved AKRF's work plan for SSDS modification and the SSDS was put into passive mode in September 2013 by turning off the fans. Three rounds of sub-slab and indoor air sampling were performed while the fans were off to evaluate building conditions. On April 30, 2014, NYSDEC, in consultation with NYSDOH, approved AKRF's request to permanently convert the active SSDS to passive operation and discontinue SSDS effluent sampling. A copy of NYSDEC's approval letter for this modification was included in the 2014 Periodic Review Report.

5.3 VAPOR SYSTEM INSPECTIONS AND MAINTENANCE

The SSDS has been operated in a passive mode since 2014, in accordance with the NYSDEC-approved conversion of the system to passive operation. Visual inspection of the above-ground portions of the system was conducted during the September 8, 2022 site-wide inspection. The

passive SSDS venting was redirected as construction atop the western retail podium continued with the expansion of the northern and southern stairwell bulkheads from the 3rd to the 4th floors, respectively. The 4th floor fans were left in place and the SSDS riser pipes were extended through the stairwell bulkhead roofs. The previous SSDS riser pipes in the northern stairwell bulkhead were manifolded on the 3rd floor, then extended with one 6-inch pipe to discharge to the top of the new 4th floor stairwell bulkhead (this configuration only pertained to the SSDS riser pipes in the northern bulkhead). The SSDS riser pipes were extended into newly constructed pipe enclosures (a.k.a. "doghouses") atop the northern and southern stairwell bulkheads during construction of the Towers 6, 7, and 8. Each pipe enclosure was equipped with louvers to vent the passive SSDS system. AKRF confirmed that the SSDS louver design and installation was performed in accordance with the manufacturer's specifications. These changes do not affect the functioning of the passive SSDS.

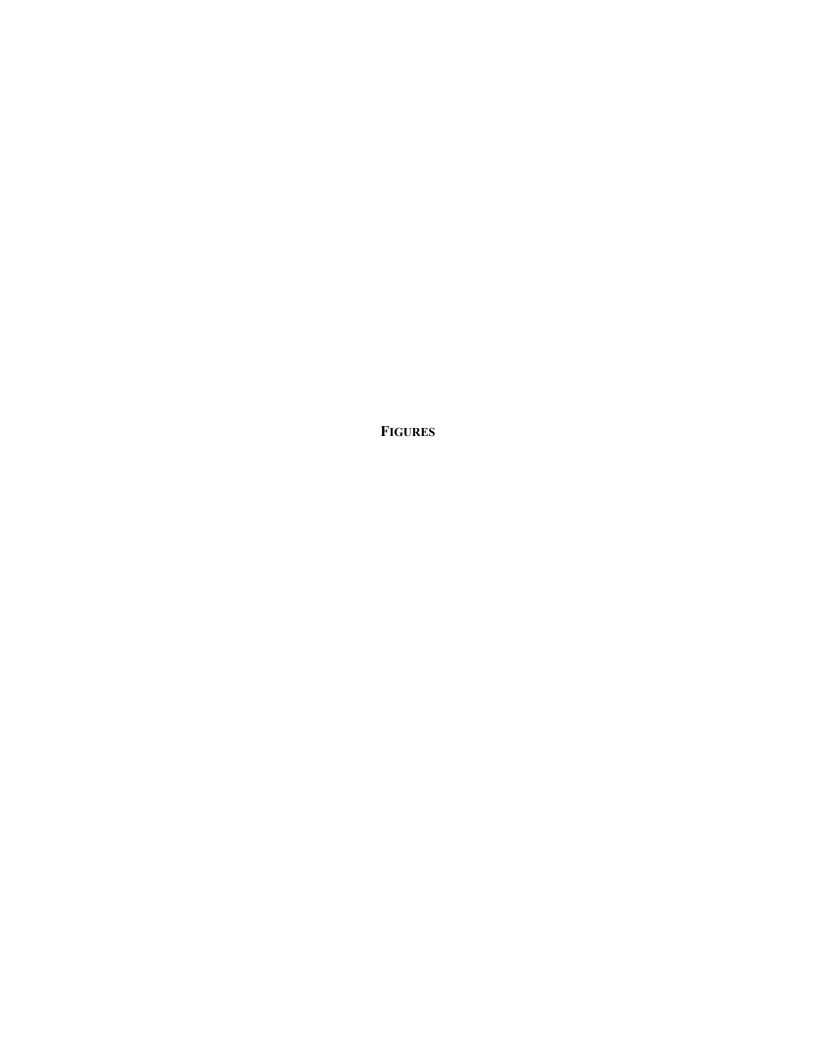
6.0 MONITORING

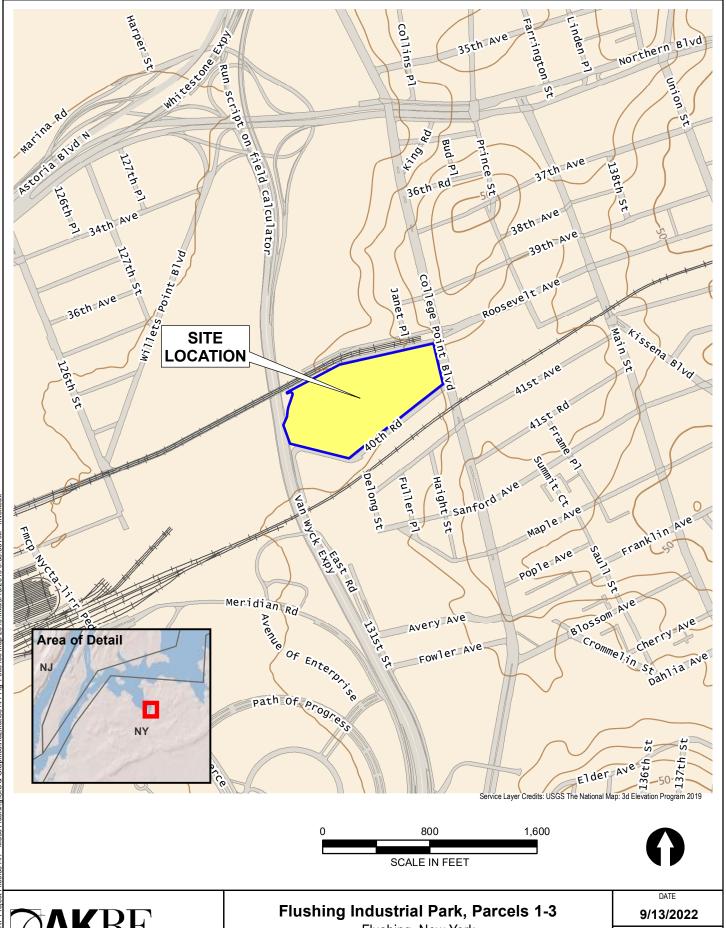
6.1 ENGINEERING CONTROL SYSTEM MONITORING

Engineering control system monitoring included the site cover inspection discussed in Section 4.2. In accordance with NYSDEC's approval letter dated April 30, 2014, the active SSDS was permanently converted to passive mode (by turning the fans off) and SSDS effluent sampling was discontinued. No vapor samples were collected during the reporting period.

6.2 SITE-WIDE INSPECTION

The site-wide inspection, conducted along with the site cover inspection on September 4, 2020, May 28, 2021, and July 25, 2022, confirmed that the remedy remains in-place and is effective and protective of human health and the environment with continued implementation of the SMPs. The Site-Wide Inspection Forms are included in Appendix D and discussions of pertinent issues are provided in this PRR.


7.0 INSTITUTIONAL AND ENGINEERING CONTROL COMPLIANCE

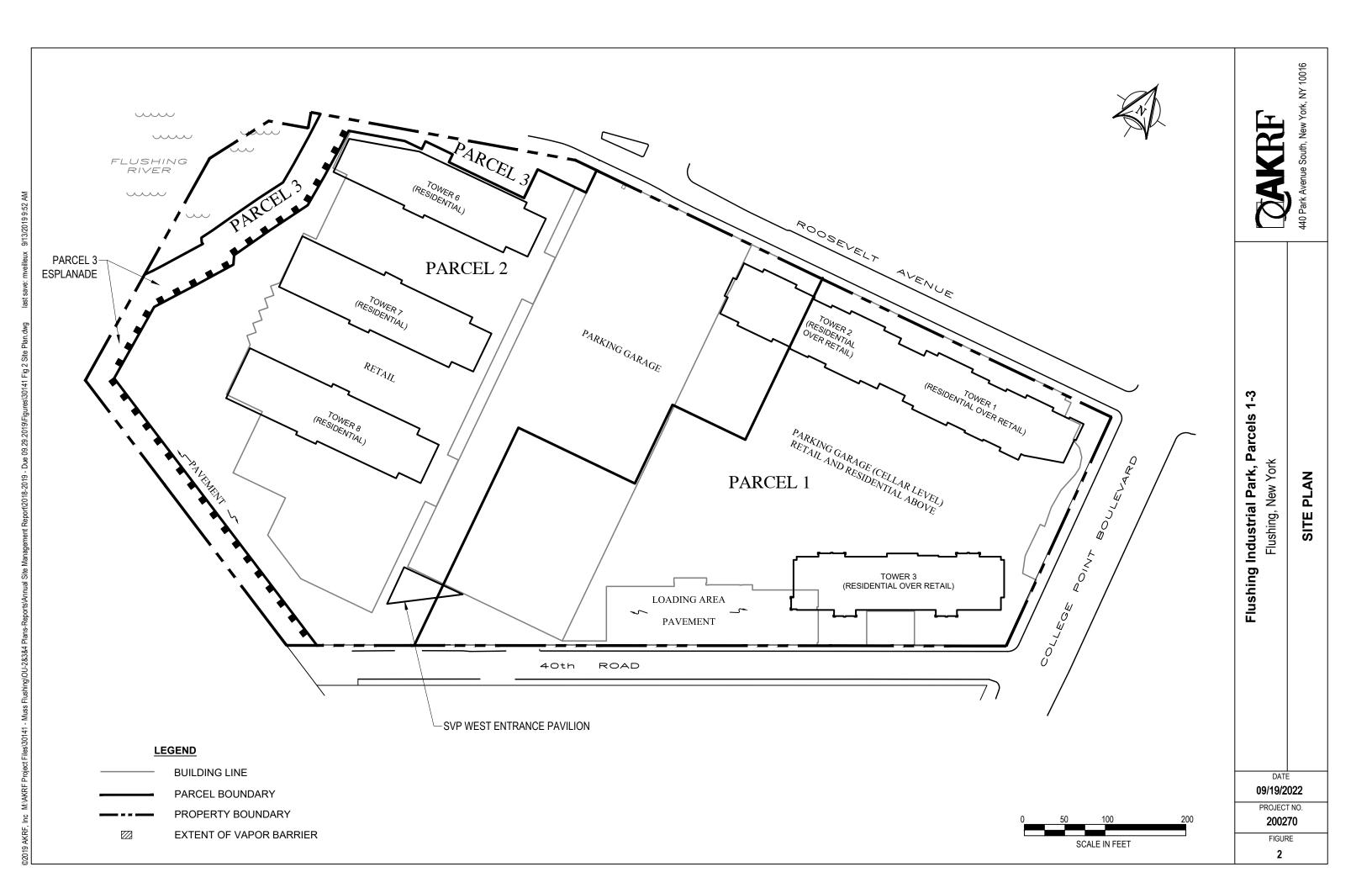

An IC/EC Certification Form was completed for each of the three Parcels based on results from the site monitoring and inspections described in this PRR. Copies of the forms are provided as Appendix E. Engineering and institutional controls implemented as part of the remedial action are described in Sections 2.3.2 and 2.3.3, respectively.

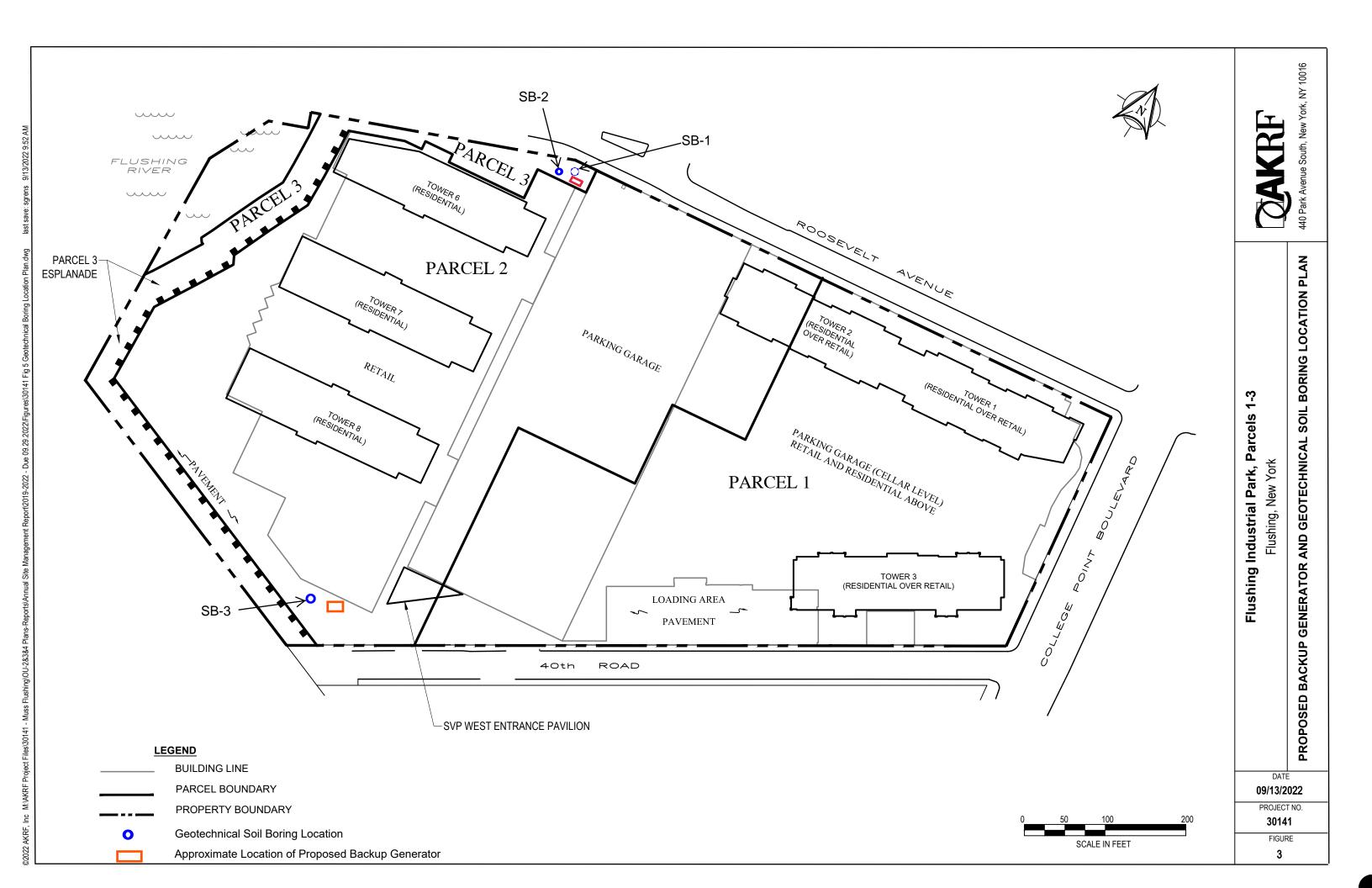
8.0 CONCLUSIONS

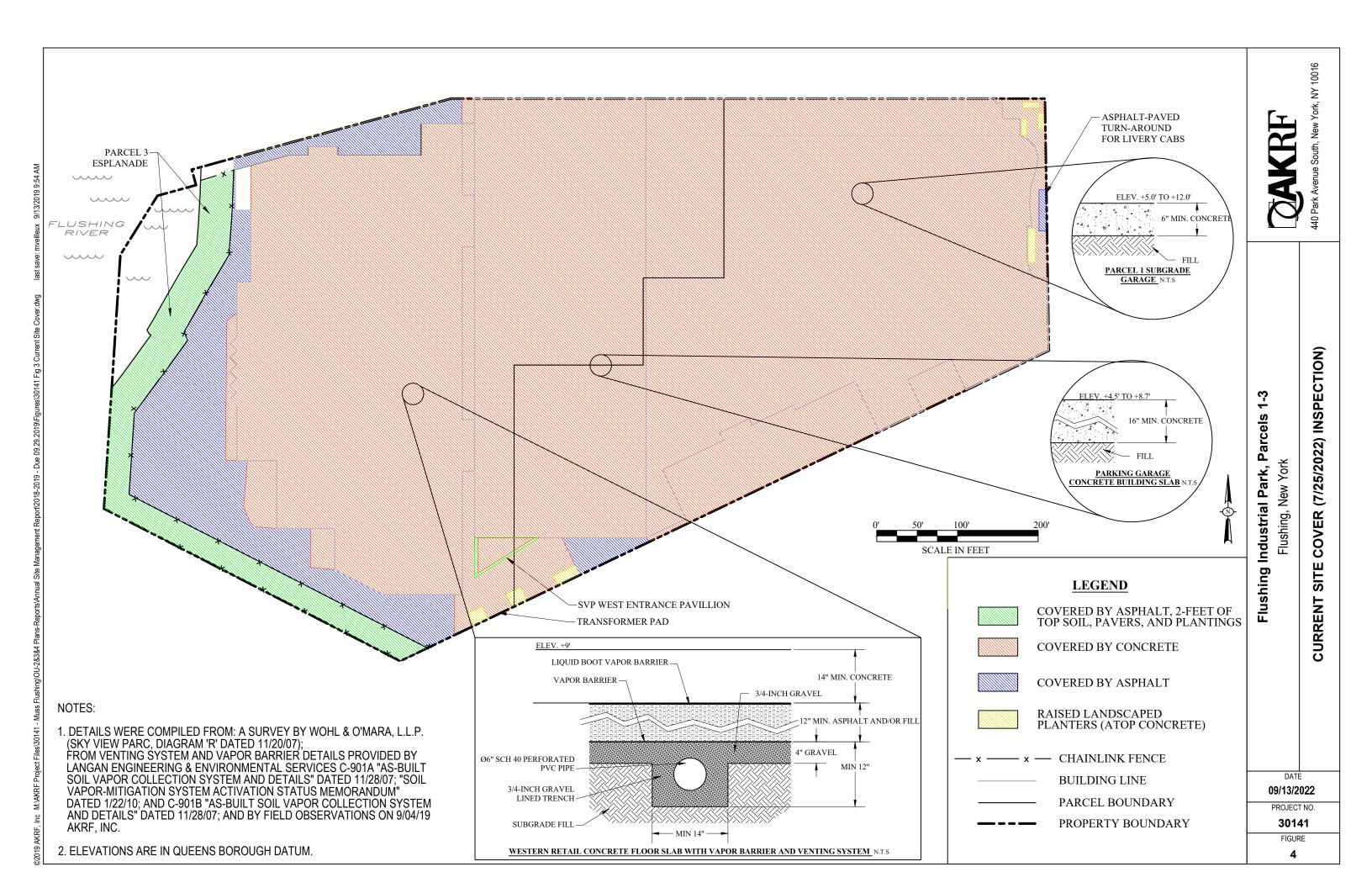
Based on the inspections and data evaluation summarized in this report, the following conclusions were developed:

- The observable portions of the permanent site cover were present and in good condition throughout the Property.
- The SSDS fans were off and the SSDS riser piping remained in-place for passive venting during the reporting period.
- On November 16, 2020, AKRF performed health and safety air monitoring and oversight during the geotechnical investigation performed by Grant Engineering, (Shopcore Properties' geotechnical engineer). Following completion of a geophysical survey, two soil borings, identified as SB-1 and SB-2, were advanced adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. Due to conflicts with underground utilities at the SB-1 soil boring location, an additional soil boring (SB-3) was advanced slightly west of soil boring location SB-1 on May 28, 2021. During the drilling activities, groundwater was encountered at approximately 7 to 8 feet below grade. A slight petroleum-like odor, but no sheen, was observed at the groundwater interface at soil borings SB-1 and SB-2 at depths ranging from 8 to 14 feet below grade. No petroleum-like odors or sheen were observed at soil boring SB-3. Low level PID readings were detected on soil during the drilling activities [maximum PID reading of 12.6 parts per million (ppm)]. The geotechnical soil borings were advanced to approximately 37 feet below grade. The soil cuttings were containerized in 55-gallon drums pending completion of the back-up generator installation and off-site disposal at an appropriate receiving facility. On November 16, 2020, AKRF collected two waste characterization samples from the soil drums generated during the geotechnical investigation. The samples were analyzed for typical New Jersey waste disposal criteria. The backup generator installation has been on hold since May 2021. As such, AKRF will resample the soil drums in September 2022 and arrange for off-site disposal at an appropriate waste disposal receiving facility in October 2022.
- In September 2021, a Notice of Termination (NOT) for SPDES Permit ID Number NYR10N486 was submitted to NYSDEC and the permit was closed by NYSDEC via email on October 7, 2021.
- NYSDEC approved AKRF's Revised SMPs in April 2021.
- The remedy remains effective and protective of human health and the environment with continued implementation of the Revised SMPs (with the NYSDEC-approved modifications related to SSDS operation, discontinuation of groundwater sampling, and the abandonment of the post-remediation monitoring wells), and the institutional and engineering control certifications, which will be documented in future PRRs.

440 Park Avenue South, New York, NY 10016


Flushing, New York


PROJECT SITE LOCATION


PROJECT NO.

200270

FIGURE 1

APPENDIX A NYSDEC SPDES PERMIT CLOSURE DOCUMENTATION

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor

Albany, New York 12233-3505

(NOTE: Submit completed form to address above)

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity

under the SPDES General Fermit for Construction Activity							
Please indicate your permit identification number: NYR 1 0 N 4 8 6							
I. Owner or Operator Information							
1. Owner/Operator Name: Flushing Town Center III, LP	1. Owner/Operator Name: Flushing Town Center III, LP						
2. Street Address: 144-74 Northern Boulevard							
3. City/State/Zip: Flushing, NY 11354							
4. Contact Person: Stephen Liberty	4a.Telephone: (718) 683-0593						
5. Contact Person E-Mail: sliberty@skyviewcompanies.com							
II. Project Site Information							
5. Project/Site Name: Flushing Town Center							
6. Street Address: 40-22 College Point Boulevard							
7. City/Zip: Flushing, NY 11354							
8. County: Queens	٨						
III. Reason for Termination							
9a. XAII disturbed areas have achieved final stabilization in accordance with the general permit and SWPPP. *Date final stabilization completed (month/year):May 2018							
9b. ☐ Permit coverage has been transferred to new owner/operator. Indicate new owner/operator's permit identification number: NYR							
9c. □ Other (Explain on Page 2)							
IV. Final Site Information:							
10a. Did this construction activity require the development of a SWPPP that includes post-construction stormwater management practices? ▼ yes □ no (If no, go to question 10f.)							
10b. Have all post-construction stormwater management practices included in the final SWPPP been constructed? X yes □ no (If no, explain on Page 2)							
10c. Identify the entity responsible for long-term operation and maintenance of practice(s)?							
Shopcore Properties							

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued 10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? X yes \square no 10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s): ☐ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality. ☐ Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s). X For post-construction stormwater management practices that are privately owned, the deed of record has been modified to include a deed covenant that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. ☐ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, college, university), or government agency or authority, policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. 10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within 13.3 (acres) the disturbance area? _ 11. Is this project subject to the requirements of a regulated, traditional land use control MS4? □ yes ☑ no (If Yes, complete section VI - "MS4 Acceptance" statement V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable) VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage) I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time. Printed Name: Title/Position: Date: Signature:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:						
I hereby certify that all disturbed areas have achieved final stabilization as defined general permit, and that all temporary, structural erosion and sediment control me Furthermore, I understand that certifying false, incorrect or inaccurate information permit and the laws of the State of New York and could subject me to criminal, proceedings.	easures have been removed. on is a violation of the referenced					
Printed Name: George Derrick P.E.						
Title/Position: Engineer of Record	1					
Signature: Service Berrick	Date: 1 Sept 21					
VIII. Qualified inspector Certification - Post-construction Stormwater Man	nagement Practice(s):					
I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.						
Printed Name: George Derrick RE						
Title/Position: Engineer of Record						
Signature: Foren E. Derrick	Date: 1 Sept 21					
IX. Owner or Operator Certification	<u> </u>					
I hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.						
Printed Name:						
Title/Position:						
Signature:	Date:					

(NYS DEC Notice of Termination - January 2010)

Stephen Grens

From: Jamison, Cheri (DEC) <cheri.jamison@dec.ny.gov>

Sent: Thursday, October 7, 2021 8:02 AM

To: Stephen Liberty

Subject: NYR10N486 Flushing Town Center

The referenced permit has been terminated. You will not receive a letter. This email will serve as confirmation.

Thank you,

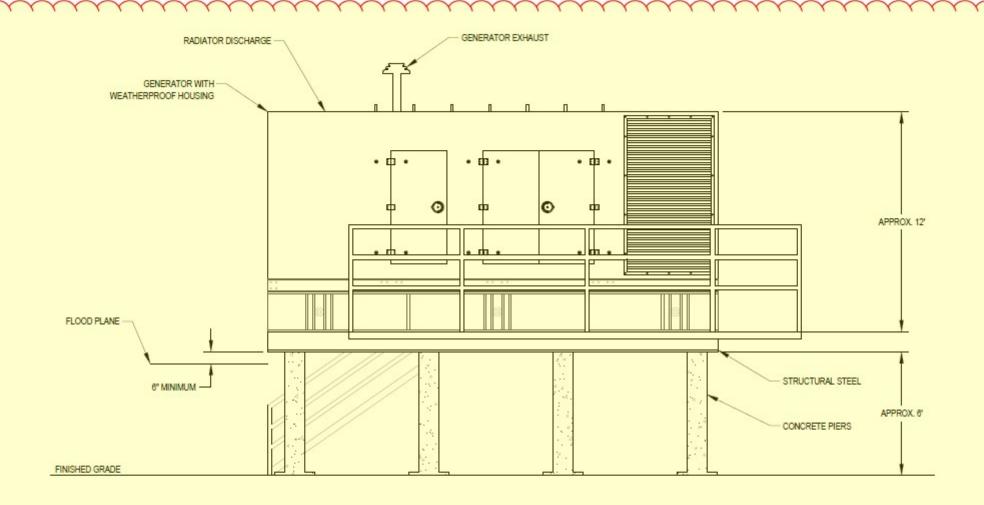
Cheri Jamison

Senior Administrative Analyst, Division of Water

New York State Department of Environmental Conservation

625 Broadway, Albany, NY 12233


P: (518) 402-8210 | F: (518) 402-9029 | cheri.jamison@dec.ny.gov


www.dec.ny.gov | FF | | |

DETAIL NOTES

- 1. WORK PLATFORM, STAIRS AND RAILINGS SHALL BE DESIGNED TO OSHA STANDARDS.
- STRUCTURAL STEEL AND CONCRETE PIERS SHALL BE DESIGNED BY A LICENSED STRUCTURAL ENGINEER UNDER CONTRACT TO THE ELECTRICAL CONTRACTOR.

2	GENERATOR ELEVATION			
E004	SCALE: NONE			

SOIL BORING LOG			ING LOG	Flushing Industrail Park Queens,		Soil Bo	Soil Boring ID:		CD 1		
Joil Boiling Log				AKRF Project Number: 200358		Sheet	Sheet 1 of 2		SB-1		
	PAK RF			·		Drilling					
		N	KF	Sampling Method:	2-ft. Split Spoon Tri-State	Start Time	: 09:20	Finish Time: 11:45			
	440 Park	Λνοριιο	South 7 th Floor	Driller: Weather:	50 °F,						
	440 Park Avenue South, 7 th Floor New York, NY 10016			Logged By:	S.Grens	— Date: 11/16	Date: 11/16/2020				
Depth (feet)	Blow Counts	Recovery (Inches)	s	Surface Condition	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis		
	0		Top 2": ASPHALT.			ND	Dry	ND	ND		
11	7 10	14	Bottom 12: Mediur	Bottom 12: Medium dense, brown fine SAND, some fine Gravel, trace Concrete Fragments (FILL).			Dry	ND	ND		
2	10		5							ļ	
34	10 14 50/12"	0	redrilled.	e concrete. Oπ-se	t boring 5' north and						
	41		l '	prown SAND and	SILT, some fine Gravel,	ND	Dry	ND	ND	1	
<u>-5</u> -	32 19 14	18	trace Brick (FILL).	race Brick (FILL).				ND	ND		
٣	9		Dense dark brown	SAND and SILT	some fine Gravel trace	ND	Dry	ND	ND		
7	7 6	3	Brick.	Dense, dark brown SAND and SILT, some fine Gravel, trace Brick.				ND	ND	SB1_SB2(0-15)	
8	6						Dry] - ` ′	
	2		Loose, dark brown	/gray SILT.		Slight Petroleum-	Wet	0.1	ND		
10	3 2 2	24					Wet	0.2	ND		
11	1 0		Top 12": Very loos Bottom 12": Brown			ND	Wet	ND	ND		
12	1	24				ND	Wet	1.4	ND		
	0			e, dark brown SAI	ND and SILT, little fine	Organic	Wet	0.2	ND		
13	0 1 1	24	Gravel. Bottom 12": Brown	Organic	Wet	0.1	ND				
- 	1		No recovery.				 	 	 	1	
15	2	0	1.13 1330 VOI y.								
16	2										
	0		Very loose, gray C	LAY, trace Silt, br	own fibrous PEAT.	Organic	Wet	ND	ND		
17	0	24						0.1	ND	SB1_SB2(15-37)	
18	0		Von/10000 2	I AV ord OUT		0	14/54	NID	NID		
19	0 0		Very loose, gray C	LAY and SILT.		Organic	Wet	ND	ND		
20	0	24				Organic	Wet	ND	ND		
Notes	Soil sa	mple a	nalyzed for NJ wa	ste disposal requ	iirements.	-	_	-	-		

Groundwater encountered at approximately 8 feet below grade during soil boring installation.

End of soil boring at 37 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueou

ND = not detected

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SOIL BORING LOG			ING L OG	Flushing Indust	Soil Boring ID:			SB 1		
3	OIL	DUK	ING LOG	AKRF Proj	Sheet 1 of 2		SB-1			
	X- /\		DT	Drilling Method:	Hollow Stem Auger	Drilling				
	CAKRF			Sampling Method: Driller:	2-ft. Split Spoon	Start Time: 09:20			Finish Time: 11:45	
	440 Park Avenue South, 7 th Floor			Weather:	50 °F,	Date: 11/16/2020				
	New York, NY 10016			Logged By:	S.Grens	Date. 11/	0/2020			•
Depth (feet)	Blow Counts	Recovery (Inches)	5	Surface Condition: Asphalt			Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
	11		Very loose, gray C	CLAY and SILT.		Organic	Wet	ND	ND	
2 <u>1</u> - 22	2 1 2	24				Organic	Wet	0.1	ND	
_ 23										
24										
25	0		Very loose, gray C	CLAY and SILT.		Organic	Wet	ND	ND	
26 27	0 2 1	24				Organic	Wet	ND	ND	
_ 28 _										SB1_SB2(15-37)
_ 29 _ 30										JOB 1_OB2(10-07)
24	10			se, gray CLAY and		ND	Wet	ND	ND]
- 31 32	12 9 13	24	Bottom 12": Dens	e, drown sand, III	tle Silt, trace fine Gravel.	ND	Wet	ND	ND	
33										
34 35										
35	15		Very dense, brown	n SAND, little Silt, i	trace fine Gravel.	ND	Wet	ND	ND	
_ 36 _	17 19	12	, , , , , , , , , , , , , , , , , , ,	. ,		ND	Wet	ND	ND	
37	19					טאו	vvet	טאו	חאו	
_ 38 _			End of boring at 3	7 feet below grade						
_ 39 _										
40 Notes:	Soil s	ample	analyzed for NJ w	aste disposal red	quirements.					

Notes: Soil sample analyzed for NJ waste disposal requirements.

Groundwater encountered at approximately 8 feet below grade during soil boring installation.

environmental purposes only.

Flushing Industrail Park Soil Boring ID: SB-2 **SOIL BORING LOG** Queens, NY AKRF Project Number: 200358 Sheet 1 of 2 Drilling Method: Hollow Stem Auger Drilling PAKRE 2-ft. Split Spoon Sampling Method: Start Time: 11:50 Finish Time: 13:30 Driller: Tri-State Weather: 50 °F, 440 Park Avenue South, 7th Floor Date: 11/16/2020 New York, NY 10016 Logged By: S.Grens **Blow Counts** (feet) PID (ppm) Soil Samples Moisture Odor **Surface Condition: Asphalt** Collected for Depth (Laboratory Analysis 16 Top 2": ASPHALT. ND Dry ND ND 1 8 Bottom 12:Dense, dark brown SAND, some Silt, trace fine 8 7 Gravel, Brick (FILL). ND Drv ND ND 2 8 6 Loose, brown SAND little Silt, trace Gravel (FILL). ND Dry ND ND 3 4 6 1 ND Dry ND ND 4 2 Very loose, brown SAND, some Silt, trace fine Gravel (FILL). ND Dry ND 2 5 6 ND ND ND 1 Dry 6 2 2 Dense, brown SILT and SAND, trace fine Gravel. ND Dry 0.1 ND 6 7 6 ND 0.2 8 Dry ND SB1_SB2(0-15) 8 11 13 Dense, dark brown SAND, some Silt, little fine Gravel. Wet ND ND ND 13 20 11 ND Wet ND 10 10 Loose, brown SAND and SILT, little Gravel. Wet ND ND 4 Slight 11 6 Petroleum-10 6 Like at 11 Wet 0.4 ND 12 3 Top 22": Loose, dark brown SAND, some Silt, little Gravel. 0.4 ND 5 Slight Wet 5 Bottom 2": Brown fibrous PEAT. Petroleum-13 2 0.2 ND Like Wet 14 2 Very loose, brown fibrous PEAT. Organic Wet 1.2 ND 15 1 12 Wet 2.4 ND 1 Organic 16 1 0 Top 3": Brown fibrous PEAT. Organic Wet 1.4 ND 17 0 Bottom 17": Gray CLAY, some Silt. 20 0 Wet 2.2 Organic ND SB1_SB2(15-37) 18 0 0 Top 12": Brown fibrous PEAT. Organic Wet 0.2 ND 19 Bottom 12": Gray CLAY, some Silt. 1 24 0 Organic Wet 0.1 ND

Notes: Soil sample analyzed for NJ waste disposal requirements.

Groundwater encountered at approximately 8 feet below grade during soil boring installation.

End of soil boring at 37 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

Flushing Industrail Park Queens. Soil Boring ID: SB-2 **SOIL BORING LOG AKRF Project Number: 200358** Sheet 1 of 2 Drilling Method: Hollow Stem Auger Drilling CAKRE 2-ft. Split Spoon Sampling Method: Start Time: 11:50 Finish Time: 13:30 Tri-State Driller: 440 Park Avenue South, 7th Floor 50 °F, Weather: Date: 11/16/2020 New York, NY 10016 S.Grens ogged By: **Blow Counts** Depth (feet) PID (ppm) Recovery (Inches) Moisture Soil Samples ogo **Surface Condition: Asphalt** Collected for Laboratory Analysis 21 22 23 24 25 Very loose, gray CLAY, little Silt. ND Wet ND ND 0 26 16 1 ND Wet ND ND 27 0 28 SB1_SB2(15-37) 29 30 8 Dense, brown/gray SAND, some Silt, trace Sea Shells, Clay. ND Wet ND ND 31 14 3 13 ND Wet ND ND 32 12 33 34 35 Very dense, brown/gray, SAND, trace Silt. ND Wet ND ND 18 36 16 4 ND Wet ND ND 21 37 18 38 End of boring at 37 feet below grade. 39

Notes: Soil sample analyzed for NJ waste disposal requirements.

Groundwater encountered at approximately 8 feet below grade during soil boring installation.

End of soil boring at 37 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

Flushing Industrail Park Soil Boring ID: **SB-3 SOIL BORING LOG** Queens, NY AKRF Project Number: 200358 Sheet 1 of 2 Hollow Stem Auger Drilling Drilling Method: **CAK**RF 2-ft. Split Spoon Sampling Method: Start Time: 08:45 Finish Time: 10:45 Tri-State Driller: 440 Park Avenue South, 7th Floor Weather: 60 °F. Date: 5/8/2021 New York, NY 10016 Logged By: S.Grens Counts Recovery (Inches) (mdd) Soil Samples Surface Condition: Asphalt Collected for Depth (Blow 윤 Laboratory Analysis Top 2": ASPHALT. ND ND ND 10 Dry Bottom 12: Medium dense, brown fine SAND, some Silt, 14 12 little Gravel (FILL). ND ND ND Dry 2 25 27 Dense, dark brown SILT, little Sand, trace fine Gravel (FILL). ND ND ND Dry 3 20 20 19 ND Dry ND ND 18 Medium dense, dark brown SAND, some SILT, 7 ND Dry ND ND little Gravel, trace Brick, Coal Slag (FILL). 5 6 16 5 ND Dry ND ND 6 5 5 Top 6": Medium dense, dark brown SILT, trace Sand, Brick, ND Dry ND ND 7 Coal Slag (FILL). 7 12 Bottom 6": Brown SILT, trace fine Gravel, Sea Shells. 8 Organic Wet ND ND 8 6 2 No recovery. 3 0 2 10 3 4 No recovery. 11 4 0 3 12 3 2 Top 8": Very loose, dark brown SAND and SILT. ND ND Bottom 8": Very loose, brown fibrous PEAT. 13 1 16 Wet 12.6 ND Organic 1 14 1 2 No recovery. 15 1 0 2 16 1 0 No recovery. 17 1 0 0 18 0 0 Very loose, gray CLAY and SILT. 7.2 ND Organic Wet 19 0 24 Wet ND 0 Organic 42

Notes: No soil samples were collected. Soil cuttings were added to 55-gallon soil drums generated on 11/16/2020. Groundwater encountered at approximately 7 feet below grade during soil boring installation.

End of soil boring at 37 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

Flushing Industrail Park Soil Boring ID: **SB-3 SOIL BORING LOG** Queens, NY Sheet 1 of 2 AKRF Project Number: 200358 Hollow Stem Auger Drilling Method: Drilling PAKRE 2-ft. Split Spoon Sampling Method: Start Time: 08:45 Finish Time: 10:45 Tri-State Driller: Weather: 60 °F, 440 Park Avenue South, 7th Floor Date: 5/8/2021 New York, NY 10016 Logged By: S.Grens **Blow Counts** Depth (feet) PID (ppm) Recovery (Inches) Moisture Soil Samples ogo **Surface Condition: Asphalt** Collected for Laboratory Analysis Organic ND 0 Very loose, gray CLAY and SILT. Wet ND 21 1 24 1 Organic Wet 1.4 ND 22 3 23 24 25 2 Very loose, gray Clay and Silt. Wet 0.3 ND Organic 3 26 24 2 Organic Wet 0.1 ND 27 3 28 29 30 Top 21": Medium dense, dark brown SAND, trace Silt. 0.2 ND Organic Wet 10 Bottom 3": Brown SAND, trace Silt. 31 12 24 Organic 0.4 ND 11 32 12 33 34 35 Dense, brown SAND, little Silt, trace fine Gravel. ND ND 13 ND Wet 15 36 8 16 ND Wet ND ND 37 16 38 End of boring at 37 feet below grade. 39

Notes: No soil samples were collected. Soil cuttings were added to 55-gallon soil drums generated on 11/16/2020.

Groundwater encountered at approximately 7 feet below grade during soil boring installation.

End of soil boring at 37 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

AKRF, Inc.	V S Carte	1 510) = \ O.Y	SI	Air Monitoring Log
	Geotech burn			lient:	Logged By: 5. (5785) Job No: 200358-0002
Weather: (Clear 46-50)°F	Wind Direction:	West	Wind Speed: ~12mpl
TIME	LOCATION	PID (ppm)	DUST (mg/m³)	ODORS	COMMENTS (activity; work zone, upwind or downwind)
0920	Southside B)s	0.1	0.002		BACKGROUND -Upwind
0920		ND	0.004		Bookgrond-Dannind
0921		ND	0.012		Bachgroud - Work Zone
6940		ND	0.009		upmind (vw)
1000		0.1	0.011		Downwind (Dw)
1020		ND	0.006		WZ
1040		MD	6.004		WZ
1110	7	N0	0.014		wZ
11:50	Northside 1355	CN	0.017		Buchgrand Upund
11:51	1	ND	0.009		Buchgrand Upwird Buchgrand DW
11:51		ND	0.014		Bachgrand WZ
12:70		ND	0.022		WZ
12:50		no	0.000		WZ
12:51		0.1	0.017		Dw
13:20		NO	0.023		UP
13:30	V	ND	0.005		WZ, -Stop Drilling
		De			
		0.			

Work	Work Zone Action Levels					
PID	DUST					
<5 ppm: Level D	<0.150 mg/m ³ above					
Between 5 ppm and 50 ppm: level C	background in breathing zone: level D					
>50 ppm: STOP	>0.150 mg/m³ above background in breathing zone: Dust suppression					

Communit	y (Perimeter) Action Levels
PID	DUST
>5 ppm above background: vapor suppression	>0.1 mg/m ³ above background: dust suppression
>25 ppm above background: STOP	>0.15 mg/m ³ above background: STOP

AKRF, Inc.					Air N	Monitoring Log
Project:	Flushing Industrial Pari			Client: Shopcore		Date: 5/22/2021
Work Activity:	Getoech Boring Installa	tion for Backup	Generator		Logged By: S	
Marshan	1.00	-		1.0	Job No: 200358	
Weather:	TIME LOCATION PID DUST ODORS COMMENTS (a)		tivity; work zone, upwind or			
TIME	LOCATION	(ppm)	(mg/m³)	ODORS		downwind)
0845	B-3	ND	0.015	None	BACKGROUND	- Paul 2 - N. of BJS
09:w		M	0.013	Nur		
05:15		0.1	0.026	rune		
09:30		NO	0.015	Num		
09:45		20	0.004	Noe		
(0:0)		NO	0.006			
10:15		ND	0.011	Nap		1
10:30	1	(u)	0.015		-In	ch Receirs 3.
10:45		NO	0.004	Line	Dulle	such frilly 28-3
11:00		ND	0.007	Nove	- Cre t	ED .
	1	100	0.004		-	<u> </u>
						-
			1			
				1		
				-		

Work Zone Action Levels						
PID	DUST					
<5 ppes: Level D	<0.150 mg/m ³ above					
Between 5 ppen and 50 ppen: level C	background in breathing zone: level D					
>50 ppm: STOP	>0.150 mg/m² above background in breathing zone: Dust suppression					

PID	DUST
>5 ppm above background: vapor suppression	>0.1 aug/m above background: dust suppression
>25 ppm above background: STOP	>0.15 mg/m ³ above background: STOP

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-222909-1

Client Project/Site: Flushing Industrial Park

For:

AKRF Inc 34 South Broadway Suite 314 White Plains, New York 10601

Attn: Stephen Grens

helissa Haas

Authorized for release by: 11/23/2020 11:23:39 AM

Melissa Haas, Senior Project Manager (203)308-0880

Melissa.Haas@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Flushing Industrial Park

Laboratory Job ID: 460-222909-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

١,

helissa Haas

6

Melissa Haas Senior Project Manager 11/23/2020 11:23:39 AM

9

9

44

12

4 4

Client: AKRF Inc Project/Site: Flushing Industrial Park Laboratory Job ID: 460-222909-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	11
Client Sample Results	14
Surrogate Summary	27
QC Sample Results	30
QC Association Summary	66
Lab Chronicle	73
Certification Summary	76
Method Summary	77
Sample Summary	78
Chain of Custody	79
Receipt Checklists	81

4

6

8

9

11

12

14

Definitions/Glossary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Qualifiers

GC/MS VOA

 Qualifier
 Qualifier Description

 J
 Indicates an estimated value.

 U
 Analyzed for but not detected.

GC/MS VOA TICs

Qualifier Description

J Indicates an estimated value.

GC/MS Semi VOA

Qualifier Qualifier Description

* MS or MSD is outside acceptance limits.

* Duplicate RPD exceeds control limits

J Indicates an estimated value.

U Analyzed for but not detected.

GC/MS Semi VOA TICs

Qualifier Qualifier Description

A The tentatively identified compound is a suspected aldol-condensation product.

J Indicates an estimated value.

N This flag indicates the presumptive evidence of a compound.

GC VOA

Qualifier Qualifier Description

U Analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

* Surrogate is outside acceptance limits.

* ISTD response or retention time outside acceptable limits

* MS or MSD is outside acceptance limits.

U Analyzed for but not detected.

Metals

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

B Compound was found in the blank and sample.

J Sample result is greater than the MDL but below the CRDL

N Spiked sample recovery is not within control limits.

U Indicates analyzed for but not detected.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

J Sample result is greater than the MDL but below the CRDL

N Spiked sample recovery is not within control limits.

U Indicates analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

Eurofins TestAmerica, Edison

Page 4 of 81 11/23/2020

_

3

А

5

6

9

4 4

12

13

Definitions/Glossary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
_OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
₹L	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Edison

11/23/2020

Client: AKRF Inc

Job ID: 460-222909-1 Project/Site: Flushing Industrial Park

Job ID: 460-222909-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: AKRF Inc

Project: Flushing Industrial Park

Report Number: 460-222909-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/16/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.7 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples SB1 SB2(0-15) (460-222909-1) and SB1 SB2(15-37) (460-222909-2) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were prepared on 11/17/2020 and analyzed on 11/20/2020.

The continuing calibration verification (CCV) associated with batch 460-741026 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples SB1 SB2(0-15) (460-222909-1) and SB1 SB2(15-37) (460-222909-2) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 11/17/2020 and analyzed on 11/18/2020.

The continuing calibration verification (CCV) analyzed in batch 460-740687 was outside the method criteria for the following analyte(s): 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2-Nitrophenol and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Several analytes failed the recovery criteria low for the MS of sample 460-222910-1 in batch 460-740687.

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Job ID: 460-222909-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Several analytes failed the recovery criteria low for the MSD of sample 460-222910-1 in batch 460-740687. 3,3'-Dichlorobenzidine, 4-Chloroaniline and Atrazine exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

GASOLINE RANGE ORGANICS

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for gasoline range organics in accordance with EPA SW-846 Method 8015D - GRO. The samples were prepared and analyzed on 11/18/2020.

No difficulties were encountered during the GRO analysis.

All quality control parameters were within the acceptance limits.

DIESEL RANGE ORGANICS

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for diesel range organics in accordance with EPA SW-846 Method 8015D - DRO. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

The following samples were diluted due to abundance of target analytes: SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

o-Terphenyl failed the surrogate recovery criteria low for SB1_SB2(0-15) (460-222909-1). o-Terphenyl failed the surrogate recovery criteria low for SB1_SB2(15-37) (460-222909-2). Refer to the QC report for details.

No other difficulties were encountered during the DRO analysis.

All other quality control parameters were within the acceptance limits.

PESTICIDES

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

Internal standard (ISTD) response for the following sample exceeded the control limit on primary column Rtx-CLP Pest 2 and Rtx-CLPesticides: SB1_SB2(15-37) (460-222909-2). As such, the sample results associated with this ISTD were reported from the other column, which met ISTD acceptance criteria.

The Tetrachloro-m-xylene and DCB Decachlorobiphenyl surrogate recoveries for the following sample was outside acceptance limits on the primary column due to matrix interference: SB1_SB2(15-37) (460-222909-2). The recovery is within acceptance limits on the other column, indicating that the extraction process was in control. The sample are non detected for analytes. The data have been qualified and reported. SB1_SB2(15-37) (460-222909-2)

Aldrin failed the recovery criteria low for the MSD of sample 460-222916-1 in batch 460-741016.

Refer to the QC report for details.

No other difficulties were encountered during the Pesticides analysis.

All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

3

4

5

6

0

9

10

12

13

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Job ID: 460-222909-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082A. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

The continuing calibration verification (CCVIS) for AR1016 peak # 6 was outside control limits on the primary column. (CCVIS 460-741035/2)

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH)

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for extractable petroleum hydrocarbons (EPH) in accordance with NJDEP EPH. The samples were prepared on 11/17/2020 and analyzed on 11/19/2020.

The following samples were diluted to bring the concentration of target analytes within the calibration range: SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) at 2.0 and 10.0. Elevated reporting limits (RLs) are provided.

No difficulties were encountered during the NJEPH analysis.

All quality control parameters were within the acceptance limits.

TCLP METALS

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for TCLP metals in accordance with 6010D. The samples were leached on 11/17/2020, and prepared and analyzed on 11/18/2020.

The leachate blank for preparation batch 460-740609 and analytical batch 460-740839 contained Zinc above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

No other difficulties were encountered during the TCLP metals analysis.

All other quality control parameters were within the acceptance limits.

TOTAL METALS (ICP)

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for Total Metals (ICP) in accordance with EPA SW-846 Methods 6010D. The samples were prepared and analyzed on 11/18/2020.

Antimony and Calcium failed the recovery criteria low for the MS of sample 460-222914-1 in batch 460-740839. Aluminum, Iron and Manganese failed the recovery criteria high.

Sodium exceeded the RPD limit for the duplicate of sample 460-222914-1.

Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP) analysis.

All other quality control parameters were within the acceptance limits.

HEXAVALENT CHROMIUM

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for hexavalent chromium in accordance with EPA SW-846 Method 7196A. The samples were prepared on 11/19/2020 and analyzed on 11/20/2020.

No difficulties were encountered during the hexchrome Cr6 analysis.

All quality control parameters were within the acceptance limits.

4

5

6

8

9

11

12

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Job ID: 460-222909-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

TCLP MERCURY

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 11/17/2020, and prepared and analyzed on 11/18/2020.

No difficulties were encountered during the TCLP Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 11/18/2020.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

IGNITABILITY

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for Ignitability in accordance with EPA SW-846 Method 1030. The samples were analyzed on 11/20/2020.

No difficulties were encountered during the Ignitability analysis.

All quality control parameters were within the acceptance limits.

TRIVALENT CHROMIUM

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for trivalent chromium in accordance with EPA SW-846 7196A_CR3 by Calculation. The samples were analyzed on 11/18/2020.

No difficulties were encountered during the cr3 analysis.

All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 11/21/2020.

Cyanide, Total failed the recovery criteria high for the MS of sample 460-222682-3 in batch 460-741744.

Cyanide, Total failed the recovery criteria high for the MSD of sample 460-222682-3 in batch 460-741744.

Refer to the QC report for details.

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

REACTIVE CYANIDE

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for reactive cyanide in accordance with EPA SW-846 Method 7.3.3/9014. The samples were prepared and analyzed on 11/20/2020.

No difficulties were encountered during the reactive cyanide analysis.

All quality control parameters were within the acceptance limits.

-5

4

5

7

8

10

11

14

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Job ID: 460-222909-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

REACTIVE SULFIDE

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for reactive sulfide in accordance with EPA SW-846 Method 7.3.4/9034. The samples were prepared and analyzed on 11/20/2020.

No difficulties were encountered during the reactive sulfide analysis.

All quality control parameters were within the acceptance limits.

CORROSIVITY (PH)

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 11/20/2020.

No difficulties were encountered during the corrosivity (pH) analysis.

All quality control parameters were within the acceptance limits.

PAINT FILTER

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for Paint Filter in accordance with EPA SW-846 Method 9095B. The samples were analyzed on 11/18/2020.

No difficulties were encountered during the Free Liquids analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples SB1_SB2(0-15) (460-222909-1) and SB1_SB2(15-37) (460-222909-2) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 11/19/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

3

7

5

0

10

12

13

14

Detection Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Typ
Acetone	0.013		0.0068	0.0064	mg/Kg	1	₩	8260D	Total/NA
Carbon disulfide	0.0016		0.0011	0.00030	mg/Kg	1	₩	8260D	Total/NA
Tetrachloroethene	0.00040	J	0.0011	0.00034	mg/Kg	1	☼	8260D	Total/NA
2-Methylnaphthalene	0.026	J	0.36	0.010	mg/Kg	1	₽	8270E	Total/NA
Acenaphthene	0.033	J	0.36	0.010	mg/Kg	1	₩	8270E	Total/NA
Acenaphthylene	0.022	J	0.36	0.0036	mg/Kg	1	₩	8270E	Total/NA
Anthracene	0.097	J	0.36	0.011	mg/Kg	1	☼	8270E	Total/NA
Benzo[a]anthracene	0.31		0.036	0.012	mg/Kg	1	₩	8270E	Total/NA
Benzo[a]pyrene	0.33		0.036	0.0095	mg/Kg	1	₩	8270E	Total/NA
Benzo[b]fluoranthene	0.44		0.036	0.0093	mg/Kg	1	☼	8270E	Total/NA
Benzo[g,h,i]perylene	0.16	J	0.36	0.011	mg/Kg	1	₽	8270E	Total/NA
Benzo[k]fluoranthene	0.14		0.036	0.0070	mg/Kg	1	₽	8270E	Total/NA
Bis(2-ethylhexyl) phthalate	0.26	J	0.36	0.019	mg/Kg	1	₩.	8270E	Total/NA
Butyl benzyl phthalate	0.021	J	0.36	0.017	mg/Kg	1	₩	8270E	Total/NA
Carbazole	0.027	J	0.36	0.014	mg/Kg	1	₩	8270E	Total/NA
Chrysene	0.30	J	0.36	0.0060		1		8270E	Total/NA
Dibenz(a,h)anthracene	0.045		0.036		mg/Kg	1	₩	8270E	Total/NA
Dibenzofuran	0.029	J	0.36	0.0050	0 0	1	₩	8270E	Total/NA
Fluoranthene	0.59		0.36	0.012	mg/Kg	1	 .;;	8270E	Total/NA
Fluorene	0.036	J	0.36	0.0049	mg/Kg	1	₽	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	0.16		0.036	0.014		1	₩	8270E	Total/NA
Naphthalene	0.034		0.36	0.0062				8270E	Total/NA
Phenanthrene	0.32	J	0.36	0.0063	mg/Kg	1	₽	8270E	Total/NA
Pyrene	0.50		0.36	0.0089	mg/Kg	1	₩	8270E	Total/NA
GRO	2.8		2.6	2.6	mg/Kg	50	. ∵. ;;	8015D	Total/NA
C10-C44	2400		190	18	mg/Kg	20	₩	8015D	Total/NA
Aroclor 1260	0.39		0.072	0.0099	mg/Kg	1	₩	8082A	Total/NA
Polychlorinated biphenyls, Total	0.39		0.072	0.0099	mg/Kg	 1	. ∵. ∵	8082A	Total/NA
Total EPH (C9-C40)	860		4.3	4.3	mg/Kg	2	₩	NJDEP EPH	Total/NA
Aluminum	6030		40.1	5.7	mg/Kg	2	₩	6010D	Total/NA
Sulfur	1380		40.1		mg/Kg		. ∵. ;;;	6010D	Total/NA
Arsenic	3.3		3.0		mg/Kg	2	☼	6010D	Total/NA
Barium	80.1		40.1	3.9			☼	6010D	Total/NA
Cadmium	0.23		0.80	0.069	mg/Kg	2		6010D	Total/NA
Calcium	36200	3	1000	74.0	mg/Kg	2	₩	6010D	Total/NA
Chromium	23.2		2.0		mg/Kg			6010D	Total/NA
Cobalt	11.2		10.0		mg/Kg			6010D	Total/NA
Copper	30.4		5.0		mg/Kg	2		6010D	Total/NA
Iron	14600		30.0		mg/Kg			6010D	Total/NA
Lead	38.4		2.0		mg/Kg			6010D	Total/NA
Magnesium	15300		1000		mg/Kg			6010D	Total/NA
Manganese	173		3.0		mg/Kg			6010D	Total/NA
Nickel	16.5		8.0					6010D	Total/NA
	2380				mg/Kg			6010D	Total/NA
Potassium Selenium	0.75	1	1000 4.0		mg/Kg			6010D 6010D	
					mg/Kg				Total/NA
Sodium	271	J	1000	87.1	0 0			6010D	Total/NA
Vanadium	38.5		10.0	0.93	0 0			6010D	Total/NA
Zinc	71.5		6.0	1.1			.₩	6010D	Total/NA
Barium	460		1000		ug/L	5		6010D	TCLP
Lead	15.1		50.0		ug/L	5		6010D	TCLP
Nickel	27.9	J	200	20.6	ug/L	5		6010D	TCLP

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3

0

10

12

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15) (Continued)

Lab Sample ID: 460-222909-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	259	В	150	6.1	ug/L	5	_	6010D	TCLP
Mercury	0.028		0.017	0.0041	mg/Kg	1	⊅	7471B	Total/NA
Cr (III)	23.2		2.0	2.0	mg/Kg	1		7196A	Total/NA
Cyanide, Total	0.20	J	0.23	0.12	mg/Kg	1	₩	9012B	Total/NA
рН	9.7	HF			SU	1		9045D	Total/NA
Temperature	22.4	HF			Degrees C	1		9045D	Total/NA
Corrosivity	9.7	HF			SU	1		9045D	Total/NA

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Typ
Acetone	0.011		0.0059	0.0056	mg/Kg	1	☼	8260D	Total/NA
Carbon disulfide	0.00091	J	0.00098	0.00026	mg/Kg	1	₩	8260D	Total/NA
Tetrachloroethene	0.00042	J	0.00098	0.00030	mg/Kg	1	₩	8260D	Total/NA
2-Methylnaphthalene	0.041	J	0.39	0.011	mg/Kg	1	☼	8270E	Total/NA
4-Methylphenol	0.22	J	0.39	0.024	mg/Kg	1	₩	8270E	Total/NA
Acenaphthene	0.073	J	0.39	0.011	mg/Kg	1	₩	8270E	Total/NA
Acenaphthylene	0.032	J	0.39	0.0039	mg/Kg	1	☼	8270E	Total/NA
Anthracene	0.46		0.39	0.012	mg/Kg	1	₩	8270E	Total/NA
Benzo[a]anthracene	2.2		0.039	0.014	mg/Kg	1	₽	8270E	Total/NA
Benzo[a]pyrene	2.1		0.039	0.010	mg/Kg	1	₩.	8270E	Total/NA
Benzo[b]fluoranthene	2.5		0.039	0.010	mg/Kg	1	₽	8270E	Total/NA
Benzo[g,h,i]perylene	0.76		0.39	0.011	mg/Kg	1	₩	8270E	Total/NA
Benzo[k]fluoranthene	0.98		0.039	0.0076		1	₩.	8270E	Total/NA
Bis(2-ethylhexyl) phthalate	0.048	J	0.39	0.021	mg/Kg	1	₽	8270E	Total/NA
Butyl benzyl phthalate	0.058	J	0.39	0.018	mg/Kg	1	₽	8270E	Total/NA
Carbazole	0.085	J	0.39		mg/Kg	1		8270E	Total/NA
Chrysene	1.8		0.39	0.0066		1	₽	8270E	Total/NA
Dibenz(a,h)anthracene	0.28		0.039	0.017	0 0	1	₽	8270E	Total/NA
Dibenzofuran	0.059		0.39	0.0055		1		8270E	Total/NA
Fluoranthene	4.3		0.39		mg/Kg	1	₩	8270E	Total/NA
Fluorene	0.094	J	0.39	0.0053	mg/Kg	1	₽	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	0.97		0.039	0.015	mg/Kg	1		8270E	Total/NA
Naphthalene	0.080	J	0.39	0.0067		1	₩	8270E	Total/NA
Phenanthrene	0.74		0.39	0.0068	mg/Kg	1	₩	8270E	Total/NA
Pyrene	3.5		0.39	0.0096	mg/Kg			8270E	Total/NA
C10-C44	2700		200		mg/Kg	20	₩	8015D	Total/NA
Aroclor 1260	0.81		0.079	0.011	mg/Kg	1		8082A	Total/NA
Polychlorinated biphenyls, Total	0.81		0.079	0.011	mg/Kg			8082A	Total/NA
Total EPH (C9-C40)	1800		23	23	mg/Kg	10	.;;	NJDEP EPH	Total/NA
Aluminum	9090		44.3	6.3	mg/Kg	2		6010D	Total/NA
Sulfur	1950		44.3			2		6010D	Total/NA
Arsenic	3.8		3.3	0.68	mg/Kg	2		6010D	Total/NA
Barium	143		44.3		mg/Kg		₩	6010D	Total/NA
Cadmium	0.24	_.	0.89		mg/Kg		. ∵. ⇔	6010D	Total/NA
Calcium	22900	J	1110	81.8	mg/Kg	2		6010D	Total/NA
Chromium	32.6		2.2	1.6	mg/Kg	2		6010D	Total/NA
Cobalt	8.0		11.1	0.61	mg/Kg		. ₩ ₩	6010D	Total/NA
	34.4	J	5.5		0 0	2		6010D	Total/NA
Copper					mg/Kg				
Iron Lead	19300		33.2	22.8	mg/Kg mg/Kg	2		6010D 6010D	Total/NA Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

11/23/2020

Page 12 of 81

6

3

5

_

8

10

12

Detection Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37) (Continued)

Lab Sample ID: 460-222909-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	10700		1110	74.9	mg/Kg	2	₩	6010D	Total/NA
Manganese	239		3.3	0.25	mg/Kg	2	₽	6010D	Total/NA
Nickel	20.3		8.9	0.58	mg/Kg	2	₽	6010D	Total/NA
Potassium	3340		1110	67.9	mg/Kg	2	₽	6010D	Total/NA
Sodium	437	J	1110	96.3	mg/Kg	2	₽	6010D	Total/NA
Vanadium	39.5		11.1	1.0	mg/Kg	2	₽	6010D	Total/NA
Zinc	94.7		6.6	1.2	mg/Kg	2	₩	6010D	Total/NA
Barium	589	J	1000	66.0	ug/L	5		6010D	TCLP
Cadmium	2.8	J	20.0	1.6	ug/L	5		6010D	TCLP
Lead	115		50.0	11.8	ug/L	5		6010D	TCLP
Nickel	38.4	J	200	20.6	ug/L	5		6010D	TCLP
Zinc	786	В	150	6.1	ug/L	5		6010D	TCLP
Mercury	0.16		0.019	0.0045	mg/Kg	1	₽	7471B	Total/NA
Cr (III)	32.6		2.0	2.0	mg/Kg	1		7196A	Total/NA
Cyanide, Total	0.17	J	0.26	0.13	mg/Kg	1	₽	9012B	Total/NA
pH	9.4	HF			SU	1		9045D	Total/NA
Temperature	22.4	HF			Degrees C	1		9045D	Total/NA
Corrosivity	9.4	HF			SU	1		9045D	Total/NA

9

10

11

13

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1 Date Collected: 11/16/20 13:30 **Matrix: Solid** Date Received: 11/16/20 18:00

Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	0.0011	U	0.0011	0.00026	mg/Kg	— <u></u>	11/17/20 21:54	11/20/20 12:01	
1,1,2,2-Tetrachloroethane	0.0011	U	0.0011	0.00024	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0011	U	0.0011	0.00034	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,1,2-Trichloroethane	0.0011	U	0.0011	0.00020	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,1-Dichloroethane	0.0011	U	0.0011	0.00023	mg/Kg	₽	11/17/20 21:54	11/20/20 12:01	
1,1-Dichloroethene	0.0011	U	0.0011	0.00025	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,2,3-Trichlorobenzene	0.0011	U	0.0011	0.00020	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,2,4-Trichlorobenzene	0.0011	U	0.0011	0.00040	mg/Kg	₽	11/17/20 21:54	11/20/20 12:01	
1,2-Dibromo-3-Chloropropane	0.0011	U	0.0011	0.00052	mg/Kg	₽	11/17/20 21:54	11/20/20 12:01	
1,2-Dichlorobenzene	0.0011	U	0.0011	0.00041	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,2-Dichloroethane	0.0011	U	0.0011	0.00033	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
1,2-Dichloropropane	0.0011	U	0.0011	0.00048		₩	11/17/20 21:54	11/20/20 12:01	
1,3-Dichlorobenzene	0.0011	U	0.0011	0.00041	mg/Kg		11/17/20 21:54	11/20/20 12:01	
1,4-Dichlorobenzene	0.0011	U	0.0011	0.00025	0 0	₩	11/17/20 21:54	11/20/20 12:01	
1,4-Dioxane	0.023		0.023		mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
2-Butanone (MEK)	0.0056	U	0.0056	0.00041		∴	11/17/20 21:54	11/20/20 12:01	
2-Hexanone	0.0056	U	0.0056	0.0019		⊅	11/17/20 21:54	11/20/20 12:01	
1-Methyl-2-pentanone (MIBK)	0.0056		0.0056	0.0018		⊅	11/17/20 21:54	11/20/20 12:01	
Acetone	0.013		0.0068	0.0064		∷ ☆	11/17/20 21:54	11/20/20 12:01	
Acrolein	0.11	U	0.11		mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
Acrylonitrile	0.011		0.011	0.0055		.∵	11/17/20 21:54	11/20/20 12:01	
Benzene	0.0011		0.0011	0.00029			11/17/20 21:54	11/20/20 12:01	
Bromoform	0.0011		0.0011	0.00048	0 0		11/17/20 21:54	11/20/20 12:01	
Bromomethane	0.0011		0.0011	0.0011	0 0		11/17/20 21:54	11/20/20 12:01	
Carbon disulfide	0.0016		0.0011	0.00030			11/17/20 21:54	11/20/20 12:01	
Carbon tetrachloride	0.0010	11	0.0011	0.00044		~ ☆	11/17/20 21:54	11/20/20 12:01	
Chlorobenzene	0.0011		0.0011	0.00020	0 0	₩	11/17/20 21:54	11/20/20 12:01	
Chlorobromomethane	0.0011		0.0011	0.00032			11/17/20 21:54	11/20/20 12:01	
Chlorodibromomethane	0.0011		0.0011	0.00032		₩	11/17/20 21:54	11/20/20 12:01	
Chloroethane	0.0011		0.0011	0.00022	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
Chloroform	0.0011		0.0011	0.00039	mg/Kg		11/17/20 21:54	11/20/20 12:01	
Chloromethane	0.0011		0.0011		mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	
	0.0011		0.0011	0.00049			11/17/20 21:54	11/20/20 12:01	
cis-1,2-Dichloroethene					mg/Kg		11/17/20 21:54	11/20/20 12:01	
cis-1,3-Dichloropropene	0.0011		0.0011	0.00031 0.00025	mg/Kg	# #	11/17/20 21:54		
Cyclohexane	0.0011		0.0011			☆		11/20/20 12:01	
Dichlorobromomethane	0.0011		0.0011	0.00029		<u></u> .	11/17/20 21:54	11/20/20 12:01	
Dichlorodifluoromethane	0.0011		0.0011	0.00038		Đ.	11/17/20 21:54	11/20/20 12:01	
Ethylbenzene	0.0011		0.0011	0.00022		*	11/17/20 21:54	11/20/20 12:01	
Ethylene Dibromide	0.0011		0.0011	0.00020		<u>.</u> .	11/17/20 21:54	11/20/20 12:01	
sopropylbenzene	0.0011		0.0011	0.00032		*	11/17/20 21:54	11/20/20 12:01	
Methyl acetate	0.0056		0.0056	0.0048		₩	11/17/20 21:54	11/20/20 12:01	
Methyl tert-butyl ether	0.0011		0.0011	0.00058		☆	11/17/20 21:54	11/20/20 12:01	
Methylcyclohexane	0.0011		0.0011	0.00056		☼	11/17/20 21:54	11/20/20 12:01	
Methylene Chloride	0.0011		0.0011	0.0013		₩	11/17/20 21:54	11/20/20 12:01	
n-Xylene & p-Xylene	0.0011		0.0011	0.00020			11/17/20 21:54	11/20/20 12:01	
p-Xylene	0.0011		0.0011	0.00022		₩	11/17/20 21:54	11/20/20 12:01	
Styrene	0.0011		0.0011	0.00031		₩	11/17/20 21:54	11/20/20 12:01	
ГВА	0.011	U	0.011	0.0088	mg/Kg	☼	11/17/20 21:54	11/20/20 12:01	

Eurofins TestAmerica, Edison

11/23/2020

Page 14 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15) Lab Sample ID: 460-222909-1

Date Collected: 11/16/20 13:30 **Matrix: Solid** Date Received: 11/16/20 18:00 Percent Solids: 92.5

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.0011	U	0.0011		0.00026	mg/Kg		11/17/20 21:54	11/20/20 12:01	1
trans-1,2-Dichloroethene	0.0011	U	0.0011		0.00028	mg/Kg	₽	11/17/20 21:54	11/20/20 12:01	1
trans-1,3-Dichloropropene	0.0011	U	0.0011		0.00030	mg/Kg	₽	11/17/20 21:54	11/20/20 12:01	1
Trichloroethene	0.0011	U	0.0011		0.00036	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	1
Trichlorofluoromethane	0.0011	U	0.0011		0.00046	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	1
Vinyl chloride	0.0011	U	0.0011		0.00062	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	1
Xylenes, Total	0.0023	U	0.0023		0.00072	mg/Kg	₩	11/17/20 21:54	11/20/20 12:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	0.0075	J	mg/Kg	₩	14.	09		11/17/20 21:54	11/20/20 12:01	1
Unknown	0.0069	J	mg/Kg	₽	14.	77		11/17/20 21:54	11/20/20 12:01	1
					11	00		11/17/20 21:51	11/20/20 12:01	1
Unknown	0.011	J	mg/Kg	₩	14.	93		11/17/20 21:54	11/20/20 12.01	,
Surrogate Surrogate	0.011 %Recovery		mg/Kg Limits	₽	14.	93		Prepared	Analyzed	Dil Fac
				₽	14.	93				,
Surrogate	%Recovery		Limits	₽	14.	93		Prepared	Analyzed	,
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery	Qualifier	Limits 77 - 145	₽	14.	93		Prepared 11/17/20 21:54	Analyzed 11/20/20 12:01 11/20/20 12:01	,

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.36	U	0.36	0.0047	mg/Kg	☆	11/17/20 17:33	11/18/20 07:41	1
1,2,4,5-Tetrachlorobenzene	0.36	U	0.36	0.011	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
1,2-Diphenylhydrazine	0.36	U	0.36	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,2'-oxybis[1-chloropropane]	0.36	U	0.36	0.0065	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
2,3,4,6-Tetrachlorophenol	0.36	U	0.36	0.024	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,4,5-Trichlorophenol	0.36	U	0.36	0.036	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,4,6-Trichlorophenol	0.14	U	0.14	0.046	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
2,4-Dichlorophenol	0.14	U	0.14	0.023	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,4-Dimethylphenol	0.36	U	0.36	0.016	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,4-Dinitrophenol	0.29	U	0.29	0.18	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,4-Dinitrotoluene	0.072	U	0.072	0.039	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2,6-Dinitrotoluene	0.072	U	0.072	0.026	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Chloronaphthalene	0.36	U	0.36	0.017	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Chlorophenol	0.36	U	0.36	0.013	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Methylnaphthalene	0.026	J	0.36	0.010	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Methylphenol	0.36	U	0.36	0.013	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Nitroaniline	0.36	U	0.36	0.013	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
2-Nitrophenol	0.36	U	0.36	0.036	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
3,3'-Dichlorobenzidine	0.14	U	0.14	0.054	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
3-Nitroaniline	0.36	U	0.36	0.040	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4,6-Dinitro-2-methylphenol	0.29	U	0.29	0.15	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Bromophenyl phenyl ether	0.36	U	0.36	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Chloro-3-methylphenol	0.36	U	0.36	0.020	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Chloroaniline	0.36	U	0.36	0.063	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Chlorophenyl phenyl ether	0.36	U	0.36	0.013	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Methylphenol	0.36	U	0.36	0.022	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Nitroaniline	0.36	U	0.36	0.041	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
4-Nitrophenol	0.72	U	0.72	0.058	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Acenaphthene	0.033	J	0.36	0.010	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1

Eurofins TestAmerica, Edison

Page 15 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1

Date Collected: 11/16/20 13:30

Matrix: Solid

Date Received: 11/16/20 18:00

Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MIDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	0.022	J	0.36	0.0036	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	
Acetophenone	0.36	U	0.36	0.018	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Anthracene	0.097	J	0.36	0.011	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Atrazine	0.14	U	0.14	0.021	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
Benzaldehyde	0.36	U	0.36	0.059	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Benzidine	0.36	U	0.36	0.035	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Benzo[a]anthracene	0.31		0.036	0.012	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Benzo[a]pyrene	0.33		0.036	0.0095	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
Benzo[b]fluoranthene	0.44		0.036	0.0093	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Benzo[g,h,i]perylene	0.16	J	0.36	0.011	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Benzo[k]fluoranthene	0.14		0.036	0.0070	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Bis(2-chloroethoxy)methane	0.36	U	0.36	0.028	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Bis(2-chloroethyl)ether	0.036	U	0.036	0.012	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Bis(2-ethylhexyl) phthalate	0.26	J	0.36	0.019	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
Butyl benzyl phthalate	0.021	J	0.36	0.017	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Caprolactam	0.36	U	0.36	0.056	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
Carbazole	0.027	J	0.36	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Chrysene	0.30	J	0.36	0.0060	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Dibenz(a,h)anthracene	0.045		0.036	0.015	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Dibenzofuran	0.029	J	0.36	0.0050	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
Diethyl phthalate	0.36	U	0.36	0.0052	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Dimethyl phthalate	0.36	U	0.36	0.081	mg/Kg	☼	11/17/20 17:33	11/18/20 07:41	1
Di-n-butyl phthalate	0.36	U	0.36	0.013	mg/Kg		11/17/20 17:33	11/18/20 07:41	1
Di-n-octyl phthalate	0.36	U	0.36	0.019	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Fluoranthene	0.59		0.36	0.012	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Fluorene	0.036	J	0.36	0.0049	mg/Kg		11/17/20 17:33	11/18/20 07:41	1
Hexachlorobenzene	0.036	U	0.036	0.017	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Hexachlorobutadiene	0.072	U	0.072	0.0076	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Hexachlorocyclopentadiene	0.36	U	0.36	0.031	mg/Kg		11/17/20 17:33	11/18/20 07:41	1
Hexachloroethane	0.036	U	0.036	0.012	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Indeno[1,2,3-cd]pyrene	0.16		0.036	0.014	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
Isophorone	0.14	U	0.14	0.10	mg/Kg		11/17/20 17:33	11/18/20 07:41	1
Naphthalene	0.034	J	0.36	0.0062	mg/Kg	≎	11/17/20 17:33	11/18/20 07:41	1
Nitrobenzene	0.036	U	0.036	0.0086	mg/Kg	₽	11/17/20 17:33	11/18/20 07:41	1
N-Nitrosodimethylamine	0.36	U	0.36	0.033	mg/Kg		11/17/20 17:33	11/18/20 07:41	1
N-Nitrosodi-n-propylamine	0.036	U	0.036	0.026	mg/Kg	₩	11/17/20 17:33	11/18/20 07:41	1
N-Nitrosodiphenylamine	0.36		0.36		mg/Kg		11/17/20 17:33		1
Pentachlorophenol	0.29		0.29		mg/Kg			11/18/20 07:41	1
Phenanthrene	0.32		0.36		mg/Kg	₽		11/18/20 07:41	1
Phenol	0.36		0.36		mg/Kg			11/18/20 07:41	1
Pyrene	0.50		0.36		mg/Kg			11/18/20 07:41	1
Pyridine	0.36	U	0.36		mg/Kg	₽		11/18/20 07:41	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	1.1	A J	mg/Kg	#	2.68		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.35	J	mg/Kg	₩	11.81		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.56	J	mg/Kg	₩	12.19		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.72	J	mg/Kg	₩	12.72		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.40	J	mg/Kg	₩	13.35		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.33	J	mg/Kg	₩	13.41		11/17/20 17:33	11/18/20 07:41	1

Eurofins TestAmerica, Edison

Page 16 of 81

2

3

6

8

10

13

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15) Lab Sample ID: 460-222909-1

Date Collected: 11/16/20 13:30 **Matrix: Solid** Date Received: 11/16/20 18:00 Percent Solids: 92.5

ı					
Method: 8270F -	Semivolatile	Organic	Compounds	(GC/MS)	(Continued)

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	0.65	J	mg/Kg	\	13.63		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.97	J	mg/Kg	₩	13.76		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.73	J	mg/Kg	₩	14.19		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.53	J	mg/Kg	≎	14.33		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.40	J	mg/Kg	₩	14.74		11/17/20 17:33	11/18/20 07:41	1
Unknown	0.34	J	mg/Kg	₩	14.82		11/17/20 17:33	11/18/20 07:41	1
Summarata	9/ Decem	Ovalifian	l imita				Dramarad	Amalumad	Dil Foo

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	47	10 - 123	11/17/20 17:33	11/18/20 07:41	1
2-Fluorobiphenyl	46	25 - 104	11/17/20 17:33	11/18/20 07:41	1
2-Fluorophenol (Surr)	51	18 - 106	11/17/20 17:33	11/18/20 07:41	1
Nitrobenzene-d5 (Surr)	49	19 - 105	11/17/20 17:33	11/18/20 07:41	1
Phenol-d5 (Surr)	46	26 - 101	11/17/20 17:33	11/18/20 07:41	1
Terphenyl-d14 (Surr)	45	25 - 127	11/17/20 17:33	11/18/20 07:41	1

Method: 8015D - Gasoli	ne Range Organio	s (GRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GRO	2.8		2.6	2.6	mg/Kg	*	11/18/20 01:01	11/18/20 02:31	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a a a-Trifluorotoluene	115		73 - 150				11/18/20 01:01	11/18/20 02:31	50

Method: 8015D - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C44	2400		190	18	mg/Kg	-	11/18/20 10:19	11/19/20 16:14	20
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	0 *		10 - 150				11/18/20 10:19	11/19/20 16:14	20

Method: 8081B - Organoch	Iorine Pesticid	les (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.0072	U	0.0072	0.0012	mg/Kg	-	11/18/20 09:33	11/19/20 09:30	1
4,4'-DDE	0.0072	U	0.0072	0.00085	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
4,4'-DDT	0.0072	U	0.0072	0.0013	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Aldrin	0.0072	U	0.0072	0.0011	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
alpha-BHC	0.0022	U	0.0022	0.00074	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
cis-Chlordane	0.0072	U	0.0072	0.0011	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
beta-BHC	0.0022	U	0.0022	0.00081	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
Chlordane (technical)	0.072	U	0.072	0.018	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
delta-BHC	0.0022	U	0.0022	0.00044	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
Dieldrin	0.0022	U	0.0022	0.00094	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Endosulfan I	0.0072	U	0.0072	0.0011	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
Endosulfan II	0.0072	U	0.0072	0.0019	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Endosulfan sulfate	0.0072	U	0.0072	0.00091	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
Endrin	0.0072	U	0.0072	0.0010	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
Endrin aldehyde	0.0072	U	0.0072	0.0017	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Endrin ketone	0.0072	U	0.0072	0.0014	mg/Kg	₽	11/18/20 09:33	11/19/20 09:30	1
gamma-BHC (Lindane)	0.0022	U	0.0022	0.00067	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
trans-Chlordane	0.0072	U	0.0072	0.0013	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Heptachlor	0.0072	U	0.0072	0.00085	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1

Page 17 of 81

Eurofins TestAmerica, Edison

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1 Date Collected: 11/16/20 13:30 **Matrix: Solid**

Date Received: 11/16/20 18:00 Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0072	U	0.0072	0.0011	mg/Kg	<u></u>	11/18/20 09:33	11/19/20 09:30	1
Methoxychlor	0.0072	U	0.0072	0.0017	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Toxaphene	0.072	U	0.072	0.026	mg/Kg	₩	11/18/20 09:33	11/19/20 09:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	60		28 - 148				11/18/20 09:33	11/19/20 09:30	1
DCB Decachlorobiphenyl	37		28 - 148				11/18/20 09:33	11/19/20 09:30	1
Tetrachloro-m-xylene	65		34 - 118				11/18/20 09:33	11/19/20 09:30	1
							11/18/20 09:33	11/19/20 09:30	

Method: 8082A - Polychlorinate	ed Biphenyls (PCBs) by Gas Chromatography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.072	U	0.072	0.0096	mg/Kg		11/18/20 09:29	11/19/20 11:04	1
Aroclor 1221	0.072	U	0.072	0.0096	mg/Kg	₽	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1232	0.072	U	0.072	0.0096	mg/Kg	₩	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1242	0.072	U	0.072	0.0096	mg/Kg	₽	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1248	0.072	U	0.072	0.0096	mg/Kg	₩	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1254	0.072	U	0.072	0.0099	mg/Kg	₩	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1260	0.39		0.072	0.0099	mg/Kg	₩	11/18/20 09:29	11/19/20 11:04	1
Aroclor 1268	0.072	U	0.072	0.0099	mg/Kg	≎	11/18/20 09:29	11/19/20 11:04	1
Aroclor-1262	0.072	U	0.072	0.0099	mg/Kg	₩	11/18/20 09:29	11/19/20 11:04	1
Polychlorinated biphenyls, Total	0.39		0.072	0.0099	mg/Kg	≎	11/18/20 09:29	11/19/20 11:04	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	109		10 - 150	11/18/20 09:2	29 11/19/20 11:04	1
DCB Decachlorobiphenyl	102		10 - 150	11/18/20 09:2	29 11/19/20 11:04	1
Tetrachloro-m-xylene	108		58 - 145	11/18/20 09:2	29 11/19/20 11:04	1
Tetrachloro-m-xylene	107		58 - 145	11/18/20 09:2	29 11/19/20 11:04	1

Method: NJDEP EPH - New Jersey Extractable Petroleum Hydrocarbons										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total EPH (C9-C40)	860		4.3	4.3	mg/Kg	-	11/17/20 15:29	11/19/20 14:20	2	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	68		40 - 140				11/17/20 15:29	11/19/20 14:20	2	
1-Chlorooctadecane	64		40 - 140				11/17/20 15:29	11/19/20 14:20	2	

Method: 6010D - Metals Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6030		40.1	5.7	mg/Kg	— <u></u>	11/18/20 03:43	11/18/20 11:52	2
Sulfur	1380		40.1	3.5	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Antimony	4.0	U	4.0	1.2	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Arsenic	3.3		3.0	0.62	mg/Kg		11/18/20 03:43	11/18/20 11:52	2
Barium	80.1		40.1	3.9	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Beryllium	0.40	U	0.40	0.064	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Cadmium	0.23	J	0.80	0.069	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Calcium	36200		1000	74.0	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Chromium	23.2		2.0	1.4	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Cobalt	11.2		10.0	0.55	mg/Kg		11/18/20 03:43	11/18/20 11:52	2
Copper	30.4		5.0	1.3	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2
Iron	14600		30.0	20.6	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	2

Eurofins TestAmerica, Edison

Page 18 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1 Date Collected: 11/16/20 13:30 **Matrix: Solid**

Percent Solids: 92.5 Date Received: 11/16/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	38.4		2.0	0.32	mg/Kg	-	11/18/20 03:43	11/18/20 11:52	
Magnesium	15300		1000	67.8	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Manganese	173		3.0	0.23	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Nickel	16.5		8.0	0.53	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Potassium	2380		1000	61.5	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Selenium	0.75	J	4.0	0.68	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Silver	2.0	U	2.0	1.1	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Sodium	271	J	1000	87.1	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Thallium	4.0	U	4.0	0.62	mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Vanadium	38.5		10.0	0.93	mg/Kg		11/18/20 03:43	11/18/20 11:52	
Zinc	71.5		6.0		mg/Kg	₩	11/18/20 03:43	11/18/20 11:52	
Method: 6010D - Metals (ICP) -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	75.0	U	75.0	16.7	ug/L	_	11/18/20 11:17	11/18/20 20:07	
Barium	460	J	1000	66.0	ug/L		11/18/20 11:17	11/18/20 20:07	
Cadmium	20.0	U	20.0	1.6	ug/L		11/18/20 11:17	11/18/20 20:07	
Chromium	50.0	U	50.0	24.9	ug/L		11/18/20 11:17	11/18/20 20:07	
Copper	125	U	125	34.7	ug/L		11/18/20 11:17	11/18/20 20:07	
.ead	15.1	J	50.0	11.8	ug/L		11/18/20 11:17	11/18/20 20:07	
lickel	27.9	J	200	20.6	ug/L		11/18/20 11:17	11/18/20 20:07	
Selenium	100	U	100	29.4	ug/L		11/18/20 11:17	11/18/20 20:07	
Silver	50.0	U	50.0	28.9	ug/L		11/18/20 11:17	11/18/20 20:07	
Zinc	259	В	150	6.1	ug/L		11/18/20 11:17	11/18/20 20:07	
Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	0.20	U	0.20	0.091	ug/L		11/18/20 13:35	11/18/20 15:53	
Method: 7471B - Mercury (CVA	(A)								
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil F
lercury	0.028		0.017	0.0041	mg/Kg	≎	11/18/20 03:35	11/18/20 08:38	
General Chemistry									
nalyte		Qualifier	RL _		Unit	_ D	Prepared	Analyzed	Dil F
urn Rate	2.20	U	2.20		mm/sec			11/20/20 10:50	
Cr (III)	23.2		2.0		mg/Kg			11/18/20 06:09	
Cr (VI)	2.2		2.2		mg/Kg			11/20/20 13:09	
Cyanide, Total	0.20		0.23		mg/Kg	₩		11/21/20 17:45	
Cyanide, Reactive	25.0		25.0		mg/Kg		11/20/20 15:45	11/20/20 15:50	
Sulfide, Reactive	20.0	U	20.0	20.0	mg/Kg		11/20/20 15:37	11/20/20 15:48	
Н	9.7	HF			SU			11/20/20 13:52	
⁻ emperature	22.4	HF			Degrees C			11/20/20 13:52	
Corrosivity	9.7	HF			SU			11/20/20 13:52	
ree Liquid	0.500	U	0.500	0.500	mL/100g			11/18/20 08:00	
Percent Moisture	7.5		1.0	1.0	%			11/19/20 11:58	
Percent Solids	92.5		1.0	1.0	0/_			11/19/20 11:58	

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Tetrachloroethene

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2 Date Collected: 11/16/20 13:45 Matrix: Solid Date Received: 11/16/20 18:00 Percent Solids: 85.3

Method: 8260D - Volatile Organic Compounds by GC/MS Result Qualifier RL **MDL** Unit Analyte D Prepared Analyzed Dil Fac 11/17/20 21:55 1,1,1-Trichloroethane 0.00098 U 0.00098 0.00023 mg/Kg 11/20/20 12:25 11/20/20 12:25 1,1,2,2-Tetrachloroethane 0.00098 U 0.00098 0.00021 mg/Kg 11/17/20 21:55 1,1,2-Trichloro-1,2,2-trifluoroethane 0.00098 U 0.00098 0.00029 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00017 11/20/20 12:25 1.1.2-Trichloroethane 0.00098 U 0.00098 mg/Kg 11/17/20 21:55 1.1-Dichloroethane 0.00098 U 0.00098 0.00020 mg/Kg 11/17/20 21:55 11/20/20 12:25 1.1-Dichloroethene 0.00098 U 0.00098 0.00022 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,2,3-Trichlorobenzene 0.00098 U 0.00098 0.00018 11/17/20 21:55 11/20/20 12:25 mg/Kg 1.2.4-Trichlorobenzene 0.00098 0.00035 11/17/20 21:55 11/20/20 12:25 0.00098 U mg/Kg 1,2-Dibromo-3-Chloropropane 0.00098 U 0.00098 0.00045 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,2-Dichlorobenzene 0.00098 U 0.00098 0.00035 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,2-Dichloroethane 0.00098 U 0.00098 0.00029 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,2-Dichloropropane 0.00098 U 0.00098 0.00041 ma/Ka 11/17/20 21:55 11/20/20 12:25 1 1,3-Dichlorobenzene 0.00098 U 0.00098 0.00036 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,4-Dichlorobenzene 0.00098 U 0.00098 0.00022 mg/Kg 11/17/20 21:55 11/20/20 12:25 1,4-Dioxane 0.020 0.0090 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.020 U 11/17/20 21:55 11/20/20 12:25 2-Butanone (MEK) 0.0049 U 0.0049 0.00036 mg/Kg 11/17/20 21:55 2-Hexanone 0.0049 U 0.0049 0.0017 mg/Kg 11/20/20 12:25 4-Methyl-2-pentanone (MIBK) 0.0049 0.0049 0.0015 mg/Kg 11/17/20 21:55 11/20/20 12:25 11/20/20 12:25 0.0059 0.0056 mg/Kg 11/17/20 21:55 **Acetone** 0.011 mg/Kg Acrolein 0.098 U 0.098 0.027 11/17/20 21:55 11/20/20 12:25 Acrylonitrile 0.0098 U 0.0098 0.0048 mg/Kg 11/17/20 21:55 11/20/20 12:25 Benzene 0.00098 U 0.00098 0.00025 mg/Kg 11/17/20 21:55 11/20/20 12:25 Bromoform 0.00098 U 0.00098 0.00042 11/17/20 21:55 11/20/20 12:25 mg/Kg Bromomethane 0.00098 U 0.00098 0.00098 mg/Kg 11/17/20 21:55 11/20/20 12:25 Carbon disulfide 0.00091 J 0.00098 0.00026 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00038 11/17/20 21:55 11/20/20 12:25 Carbon tetrachloride 0.00098 U 0.00098 mg/Kg Chlorobenzene 0.00098 U 0.00098 0.00017 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00027 11/17/20 21:55 11/20/20 12:25 Chlorobromomethane 0.00098 U 0.00098 mg/Kg 0.00019 11/20/20 12:25 Chlorodibromomethane 0.00098 U 0.00098 mg/Kg 11/17/20 21:55 Chloroethane 0.00098 0.00051 11/20/20 12:25 0.00098 U mg/Kg 11/17/20 21:55 Chloroform 0.00098 U 0.00098 0.00095 mg/Kg 11/17/20 21:55 11/20/20 12:25 Chloromethane 0.00098 0.00043 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00098 U cis-1.2-Dichloroethene 0.00098 U 0.00098 0.00035 mg/Kg 11/17/20 21:55 11/20/20 12:25 11/17/20 21:55 11/20/20 12:25 cis-1,3-Dichloropropene 0.00098 U 0.00098 0.00027 mg/Kg Cyclohexane 0.00098 U 0.00098 0.00022 mg/Kg 11/17/20 21:55 11/20/20 12:25 Dichlorobromomethane 0.00098 U 0.00098 0.00025 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00033 Dichlorodifluoromethane 0.00098 U 0.00098 mg/Kg 11/17/20 21:55 11/20/20 12:25 Ethylbenzene 0.00098 U 0.00098 0.00019 mg/Kg 11/17/20 21:55 11/20/20 12:25 Ethylene Dibromide 0.00018 mg/Kg 11/20/20 12:25 0.00098 U 0.00098 11/17/20 21:55 Isopropylbenzene 0.00098 U 0.00098 0.00028 mg/Kg 11/17/20 21:55 11/20/20 12:25 Methyl acetate 0.0049 U 0.0049 0.0042 mg/Kg 11/17/20 21:55 11/20/20 12:25 Methyl tert-butyl ether 0.00098 U 0.00098 0.00050 mg/Kg 11/17/20 21:55 11/20/20 12:25 0.00049 11/17/20 21:55 11/20/20 12:25 Methylcyclohexane 0.00098 U 0.00098 mg/Kg Methylene Chloride 0.00098 U 0.00098 0.0011 11/17/20 21:55 11/20/20 12:25 mg/Kg 0.00098 11/17/20 21:55 11/20/20 12:25 m-Xylene & p-Xylene 0.00098 U 0.00017 mg/Kg o-Xylene 0.00098 U 0.00098 0.00019 mg/Kg 11/17/20 21:55 11/20/20 12:25 Styrene 0.00098 0.00027 mg/Kg 11/20/20 12:25 0.00098 U 11/17/20 21:55 TBA 0.0098 U 0.0098 0.0077 mg/Kg ₩ 11/17/20 21:55 11/20/20 12:25

Eurofins TestAmerica, Edison

11/23/2020

11/20/20 12:25

11/17/20 21:55

0.00098

0.00042 J

0.00030 mg/Kg

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2 Date Collected: 11/16/20 13:45 **Matrix: Solid**

Percent Solids: 85.3 Date Received: 11/16/20 18:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.00098	U	0.00098	0	0.00023	mg/Kg		11/17/20 21:55	11/20/20 12:25	1
trans-1,2-Dichloroethene	0.00098	U	0.00098	0	.00024	mg/Kg	₩	11/17/20 21:55	11/20/20 12:25	1
trans-1,3-Dichloropropene	0.00098	U	0.00098	0	.00026	mg/Kg	₽	11/17/20 21:55	11/20/20 12:25	1
Trichloroethene	0.00098	U	0.00098	0	.00031	mg/Kg	₩	11/17/20 21:55	11/20/20 12:25	1
Trichlorofluoromethane	0.00098	U	0.00098	0	.00040	mg/Kg	₩	11/17/20 21:55	11/20/20 12:25	1
Vinyl chloride	0.00098	U	0.00098	0	.00053	mg/Kg	₽	11/17/20 21:55	11/20/20 12:25	1
Xylenes, Total	0.0020	U	0.0020	0	.00063	mg/Kg	₽	11/17/20 21:55	11/20/20 12:25	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		mg/Kg	-				11/17/20 21:55	11/20/20 12:25	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	-	77 - 145					11/17/20 21:55	11/20/20 12:25	1
4-Bromofluorobenzene	104		79 - 125					11/17/20 21:55	11/20/20 12:25	1
Dibromofluoromethane (Surr)	112		48 - 150					11/17/20 21:55	11/20/20 12:25	1
Toluene-d8 (Surr)	102		80 - 120					11/17/20 21:55	11/20/20 12:25	1

Toluene-d8 (Surr)	102		80 - 120				11/17/20 21:55	11/20/20 12:25	1
Method: 8270E - Semivolatil	_	•	(GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.39	U	0.39	0.0052	mg/Kg	☆	11/17/20 17:33	11/18/20 08:05	1
1,2,4,5-Tetrachlorobenzene	0.39	U	0.39	0.012	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
1,2-Diphenylhydrazine	0.39	U	0.39	0.015	mg/Kg	☼	11/17/20 17:33	11/18/20 08:05	1
2,2'-oxybis[1-chloropropane]	0.39	U	0.39	0.0070	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,3,4,6-Tetrachlorophenol	0.39	U	0.39	0.026	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4,5-Trichlorophenol	0.39	U	0.39	0.040	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4,6-Trichlorophenol	0.16	U	0.16	0.050	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4-Dichlorophenol	0.16	U	0.16	0.025	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4-Dimethylphenol	0.39	U	0.39	0.017	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4-Dinitrophenol	0.31	U	0.31	0.19	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,4-Dinitrotoluene	0.079	U	0.079	0.042	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2,6-Dinitrotoluene	0.079	U	0.079	0.028	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Chloronaphthalene	0.39	U	0.39	0.018	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Chlorophenol	0.39	U	0.39	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Methylnaphthalene	0.041	J	0.39	0.011	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Methylphenol	0.39	U	0.39	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Nitroaniline	0.39	U	0.39	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
2-Nitrophenol	0.39	U	0.39	0.039	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
3,3'-Dichlorobenzidine	0.16	U	0.16	0.059	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
3-Nitroaniline	0.39	U	0.39	0.044	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4,6-Dinitro-2-methylphenol	0.31	U	0.31	0.16	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Bromophenyl phenyl ether	0.39	U	0.39	0.015	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Chloro-3-methylphenol	0.39	U	0.39	0.022	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Chloroaniline	0.39	U	0.39	0.069	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Chlorophenyl phenyl ether	0.39	U	0.39	0.014	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Methylphenol	0.22	J	0.39	0.024	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Nitroaniline	0.39	U	0.39	0.045	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
4-Nitrophenol	0.79	U	0.79	0.063	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
Acenaphthene	0.073	J	0.39	0.011	mg/Kg	☼	11/17/20 17:33	11/18/20 08:05	1
Acenaphthylene	0.032		0.39	0.0039	mg/Kg	₩	11/17/20 17:33	11/18/20 08:05	1
Acetophenone	0.39	U	0.39	0.019	mg/Kg	☼	11/17/20 17:33	11/18/20 08:05	1

Eurofins TestAmerica, Edison

Page 21 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37) Lab Sample ID: 460-222909-2

Date Collected: 11/16/20 13:45 Matrix: Solid Date Received: 11/16/20 18:00 Percent Solids: 85.3

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) **MDL** Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Anthracene 0.46 0.39 0.012 mg/Kg 11/17/20 17:33 11/18/20 08:05 Atrazine 0.16 U 0.16 0.023 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzaldehyde 0.39 U 0.39 0.064 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzidine 0.39 U 0.39 0.038 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.039 0.014 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzo[a]anthracene 2.2 0.039 0.010 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzo[a]pyrene 2.1 0.039 0.010 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzo[b]fluoranthene 2.5 0.39 0.011 mg/Kg 11/17/20 17:33 11/18/20 08:05 Benzo[g,h,i]perylene 0.76 Benzo[k]fluoranthene 0.98 0.039 0.0076 mg/Kg 11/17/20 17:33 11/18/20 08:05 Bis(2-chloroethoxy)methane 0.39 U 0.39 0.030 mg/Kg 11/17/20 17:33 11/18/20 08:05 Bis(2-chloroethyl)ether 0.039 U 0.039 0.014 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.021 mg/Kg 0.39 11/17/20 17:33 11/18/20 08:05 Bis(2-ethylhexyl) phthalate 0.048 J **Butyl benzyl phthalate** 0.058 0.39 0.018 mg/Kg 11/17/20 17:33 11/18/20 08:05 Caprolactam 0.39 U 0.39 0.060 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.39 0.015 mg/Kg 11/17/20 17:33 11/18/20 08:05 Carbazole 0.085 J 0.0066 Chrysene 1.8 0.39 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.039 0.017 mg/Kg 11/17/20 17:33 11/18/20 08:05 Dibenz(a,h)anthracene 0.28 0.39 0.0055 mg/Kg 11/17/20 17:33 11/18/20 08:05 Dibenzofuran 0.059 Diethyl phthalate 0.39 U 0.39 0.0056 mg/Kg 11/17/20 17:33 11/18/20 08:05 Dimethyl phthalate 0.39 U 0.39 880.0 mg/Kg 11/17/20 17:33 11/18/20 08:05 Di-n-butyl phthalate 0.39 U 0.39 0.015 mg/Kg 11/17/20 17:33 11/18/20 08:05 Di-n-octyl phthalate 0.39 U 0.39 0.021 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.39 0.014 mg/Kg 11/17/20 17:33 11/18/20 08:05 **Fluoranthene** 4.3 **Fluorene** 0.094 J 0.39 0.0053 mg/Kg 11/17/20 17:33 11/18/20 08:05 Hexachlorobenzene 0.039 U 0.039 0.018 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.079 0.0083 mg/Kg Hexachlorobutadiene 0.079 U 11/17/20 17:33 11/18/20 08:05 Hexachlorocyclopentadiene 0.39 U 0.39 0.034 mg/Kg 11/17/20 17:33 11/18/20 08:05 Hexachloroethane 0.039 U 0.039 0.013 mg/Kg 11/17/20 17:33 11/18/20 08:05 Indeno[1,2,3-cd]pyrene 0.97 0.039 0.015 mg/Kg 11/17/20 17:33 11/18/20 08:05 11/18/20 08:05 Isophorone 0.16 U 0.16 0.11 mg/Kg 11/17/20 17:33 **Naphthalene** 0.080 J 0.39 0.0067 mg/Kg 11/17/20 17:33 11/18/20 08:05 Nitrobenzene 0.039 U 0.039 0.0093 mg/Kg 11/17/20 17:33 11/18/20 08:05 N-Nitrosodimethylamine 0.39 U 0.39 0.036 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.039 11/17/20 17:33 11/18/20 08:05 N-Nitrosodi-n-propylamine 0.039 U 0.028 mg/Kg N-Nitrosodiphenylamine 0.39 U 0.39 0.032 mg/Kg 11/17/20 17:33 11/18/20 08:05 Pentachlorophenol 0.31 U 0.31 0.080 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.0068 mg/Kg **Phenanthrene** 0.740.39 11/17/20 17:33 11/18/20 08:05 Phenol 0.39 U 0.39 0.014 mg/Kg 11/17/20 17:33 11/18/20 08:05 0.39 0.0096 mg/Kg 11/17/20 17:33 11/18/20 08:05 **Pyrene** 3.5 Pyridine 0.055 mg/Kg 0.39 U 0.39 11/17/20 17:33 11/18/20 08:05

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Aldol condensation product	1.8	A J	mg/Kg	*	2.69		11/17/20 17:33	11/18/20 08:05	1
Dodecane, 2-methyl-8-propyl-	0.35	JN	mg/Kg	₩	7.77	55045-07-3	11/17/20 17:33	11/18/20 08:05	1
Dodecane, 2,6,10-trimethyl-	0.39	JN	mg/Kg	₩	8.02	3891-98-3	11/17/20 17:33	11/18/20 08:05	1
1,4-Methanonaphthalene,1,4-dihydro- 9-((1-methylethylidene)-	0.47	JN	mg/Kg	*	8.30	7350-72-3	11/17/20 17:33	11/18/20 08:05	1
Hexadecane, 2-methyl-	0.50	JN	mg/Kg	₩	8.46	1560-92-5	11/17/20 17:33	11/18/20 08:05	1
Phenanthrene, 2-methyl-	0.43	JN	mg/Kg	₩	9.03	2531-84-2	11/17/20 17:33	11/18/20 08:05	1
4H-Cyclopenta[def]phenanthrene	1.1	JN	mg/Kg		9.10	203-64-5	11/17/20 17:33	11/18/20 08:05	1

Eurofins TestAmerica, Edison

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2 Date Collected: 11/16/20 13:45 **Matrix: Solid**

Date Received: 11/16/20 18:00 Percent Solids: 85.3

Method: 8270E	- Semivolatile	Organic	Compounds	(GC/MS)	(Continued)
---------------	----------------	----------------	-----------	---------	-------------

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	0.42	J	mg/Kg	-	9.23		11/17/20 17:33	11/18/20 08:05	1
9,10-Bis(bromomethyl)anthracene	0.36	JN	mg/Kg	₩	9.29	34373-96-1	11/17/20 17:33	11/18/20 08:05	1
Unknown	0.53	J	mg/Kg	₩	9.43		11/17/20 17:33	11/18/20 08:05	1
di-p-Tolylacetylene	0.62	JN	mg/Kg	₩	9.53	2789-88-0	11/17/20 17:33	11/18/20 08:05	1
Unknown	0.54	J	mg/Kg	₩	9.56		11/17/20 17:33	11/18/20 08:05	1
7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,	0.40	JN	mg/Kg	₩	9.73	473-08-5	11/17/20 17:33	11/18/20 08:05	1
7,8-hexahydro-3H-naphth									
Pyrene, 1-methyl-	0.72	JN	mg/Kg	≎	10.21	2381-21-7	11/17/20 17:33	11/18/20 08:05	1
11H-Benzo[b]fluorene	0.46	JN	mg/Kg	≎	10.27	243-17-4	11/17/20 17:33	11/18/20 08:05	1
Unknown	0.38	J	mg/Kg	₽	10.31		11/17/20 17:33	11/18/20 08:05	1
Unknown PAH	0.51	J	mg/Kg	₩	12.58		11/17/20 17:33	11/18/20 08:05	1
Benzo[e]pyrene	0.98	JN	mg/Kg	₩	12.82	192-97-2	11/17/20 17:33	11/18/20 08:05	1
Unknown	0.41	J	mg/Kg	₩	13.19		11/17/20 17:33	11/18/20 08:05	1
1,2:4,5-Dibenzopyrene	0.36	JN	mg/Kg	₩	16.99	192-65-4	11/17/20 17:33	11/18/20 08:05	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	51	10 - 123	11/17/20 17:33	11/18/20 08:05	1
2-Fluorobiphenyl	48	25 - 104	11/17/20 17:33	11/18/20 08:05	1
2-Fluorophenol (Surr)	56	18 - 106	11/17/20 17:33	11/18/20 08:05	1
Nitrobenzene-d5 (Surr)	53	19 - 105	11/17/20 17:33	11/18/20 08:05	1
Phenol-d5 (Surr)	53	26 - 101	11/17/20 17:33	11/18/20 08:05	1
Terphenyl-d14 (Surr)	46	25 - 127	11/17/20 17:33	11/18/20 08:05	1

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Analyte GRO	Result 2.7	Qualifier U	2.7	MDL 2.7	Unit mg/Kg	<u>D</u>	Prepared 11/18/20 01:01	Analyzed 11/18/20 02:58	Dil Fac 50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	111		73 - 150				11/18/20 01:01	11/18/20 02:58	50

Method: 8015D - Diesel Range	Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C44	2700		200	20	mg/Kg	-	11/18/20 10:19	11/19/20 16:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

o-Terphenyl	0 *	10 - 150	11/18/20 10:19	11/19/20 16:31
Method: 8081B - Organochlorine Pestic	ides (GC)			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.0079	U	0.0079	0.0013	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
4,4'-DDE	0.0079	U	0.0079	0.00093	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
4,4'-DDT	0.0079	U	0.0079	0.0014	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
Aldrin	0.0079	U	0.0079	0.0012	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
alpha-BHC	0.0023	U	0.0023	0.00080	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
cis-Chlordane	0.0079	U	0.0079	0.0012	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
beta-BHC	0.0023	U	0.0023	0.00088	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
Chlordane (technical)	0.079	U	0.079	0.019	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
delta-BHC	0.0023	U	0.0023	0.00048	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
Dieldrin	0.0023	U	0.0023	0.0010	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
Endosulfan I	0.0079	U	0.0079	0.0012	mg/Kg	☆	11/18/20 09:33	11/19/20 09:42	1
Endosulfan II	0.0079	U	0.0079	0.0020	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1

Page 23 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2 Date Collected: 11/16/20 13:45 **Matrix: Solid**

Date Received: 11/16/20 18:00 Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	0.0079	U	0.0079	0.00099	mg/Kg	<u></u>	11/18/20 09:33	11/19/20 09:42	1
Endrin	0.0079	U	0.0079	0.0011	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Endrin aldehyde	0.0079	U	0.0079	0.0019	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Endrin ketone	0.0079	U	0.0079	0.0015	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
gamma-BHC (Lindane)	0.0023	U	0.0023	0.00073	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
trans-Chlordane	0.0079	U	0.0079	0.0014	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Heptachlor	0.0079	U	0.0079	0.00093	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Heptachlor epoxide	0.0079	U	0.0079	0.0012	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Methoxychlor	0.0079	U	0.0079	0.0018	mg/Kg	₩	11/18/20 09:33	11/19/20 09:42	1
Toxaphene	0.079	U	0.079	0.028	mg/Kg	≎	11/18/20 09:33	11/19/20 09:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	75		28 - 148				11/18/20 09:33	11/19/20 09:42	1
DCB Decachlorobiphenyl	17	*	28 - 148				11/18/20 09:33	11/19/20 09:42	1
Tetrachloro-m-xylene	36		34 - 118				11/18/20 09:33	11/19/20 09:42	1
Tetrachloro-m-xylene	474	*	34 - 118				11/18/20 09:33	11/19/20 09:42	1

Method: 8082A - Polychlorinate	ed Bipheny	/Is (PCBs) b	y Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.079	U	0.079	0.010	mg/Kg	-	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1221	0.079	U	0.079	0.010	mg/Kg	☼	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1232	0.079	U	0.079	0.010	mg/Kg	☼	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1242	0.079	U	0.079	0.010	mg/Kg	≎	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1248	0.079	U	0.079	0.010	mg/Kg	☼	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1254	0.079	U	0.079	0.011	mg/Kg	☼	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1260	0.81		0.079	0.011	mg/Kg	₩	11/18/20 09:29	11/19/20 11:20	1
Aroclor 1268	0.079	U	0.079	0.011	mg/Kg	☼	11/18/20 09:29	11/19/20 11:20	1
Aroclor-1262	0.079	U	0.079	0.011	mg/Kg	₩	11/18/20 09:29	11/19/20 11:20	1
Polychlorinated biphenyls, Total	0.81		0.079	0.011	mg/Kg	₩	11/18/20 09:29	11/19/20 11:20	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	97	10 - 150	11/18/20 09:29	11/19/20 11:20	1
DCB Decachlorobiphenyl	98	10 - 150	11/18/20 09:29	11/19/20 11:20	1
Tetrachloro-m-xylene	90	58 - 145	11/18/20 09:29	11/19/20 11:20	1
Tetrachloro-m-xylene	95	58 - 145	11/18/20 09:29	11/19/20 11:20	1

Method: NJDEP EPH - N	lew Jersey Extractable Pet	roleum Hydro	carbons				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total EPH (C9-C40)	1800	23	23 mg/Kg	₩	11/17/20 15:29	11/19/20 14:34	10
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	74	40 - 140			11/17/20 15:29	11/19/20 14:34	10
1-Chlorooctadecane	100	40 - 140			11/17/20 15:29	11/19/20 14:34	10

Method: 6010D - Metals	s (ICP)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9090		44.3	6.3	mg/Kg	<u></u>	11/18/20 03:43	11/18/20 11:56	2
Sulfur	1950		44.3	3.8	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	2
Antimony	4.4 L	J	4.4	1.3	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	2
Arsenic	3.8		3.3	0.68	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	2
Barium	143		44.3	4.3	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	2

Eurofins TestAmerica, Edison

Page 24 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

pН

Temperature

Client Sample ID: SB1_SB2(15-37)

Lab Sample ID: 460-222909-2

Date Collected: 11/16/20 13:45

Date Received: 11/16/20 18:00

Matrix: Solid
Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Beryllium	0.44	U	0.44	0.071	mg/Kg	<u></u>	11/18/20 03:43	11/18/20 11:56	
Cadmium	0.24	J	0.89	0.076	mg/Kg	≎	11/18/20 03:43	11/18/20 11:56	
Calcium	22900		1110		mg/Kg	☆	11/18/20 03:43	11/18/20 11:56	
Chromium	32.6		2.2	1.6	mg/Kg	☆	11/18/20 03:43	11/18/20 11:56	
Cobalt	8.0	J	11.1	0.61	mg/Kg	≎	11/18/20 03:43	11/18/20 11:56	
Copper	34.4		5.5	1.4	mg/Kg	☆	11/18/20 03:43	11/18/20 11:56	
Iron	19300		33.2	22.8	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	
Lead	87.7		2.2	0.36	mg/Kg	☼	11/18/20 03:43	11/18/20 11:56	
Magnesium	10700		1110	74.9	mg/Kg	☼	11/18/20 03:43	11/18/20 11:56	
Manganese	239		3.3	0.25	mg/Kg	☼	11/18/20 03:43	11/18/20 11:56	
Nickel	20.3		8.9	0.58	mg/Kg	≎	11/18/20 03:43	11/18/20 11:56	
Potassium	3340		1110	67.9	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	
Selenium	4.4	U	4.4	0.75	mg/Kg	☼	11/18/20 03:43	11/18/20 11:56	
Silver	2.2	U	2.2	1.2	mg/Kg	≎	11/18/20 03:43	11/18/20 11:56	
Sodium	437	J	1110	96.3	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	
Thallium	4.4	U	4.4		mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	
Vanadium	39.5		11.1	1.0	mg/Kg	≎	11/18/20 03:43	11/18/20 11:56	
Zinc	94.7		6.6	1.2	mg/Kg	₩	11/18/20 03:43	11/18/20 11:56	
Method: 6010D - Metals (ICP) - 1	CL P								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	75.0	U	75.0	16.7	ug/L		11/18/20 11:17	11/18/20 16:42	
Barium	589	J	1000	66.0	ug/L		11/18/20 11:17	11/18/20 16:42	
Cadmium	2.8	J	20.0	1.6	ug/L		11/18/20 11:17	11/18/20 16:42	
Chromium	50.0	U	50.0	24.9	ug/L		11/18/20 11:17	11/18/20 16:42	
Copper	125	U	125	34.7	ug/L		11/18/20 11:17	11/18/20 16:42	
Lead	115		50.0	11.8	ug/L		11/18/20 11:17	11/18/20 16:42	
Nickel	38.4	J	200	20.6	ug/L		11/18/20 11:17	11/18/20 16:42	
Selenium	100	U	100	29.4	ug/L		11/18/20 11:17	11/18/20 16:42	
Silver	50.0	U	50.0	28.9	ug/L		11/18/20 11:17	11/18/20 16:42	
Zinc	786	В	150	6.1	ug/L		11/18/20 11:17	11/18/20 16:42	
Method: 7470A - Mercury (CVAA	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	0.20	U	0.20	0.091	ug/L		11/18/20 13:35	11/18/20 15:54	
Method: 7471B - Mercury (CVA	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	0.16		0.019	0.0045	mg/Kg	*	11/18/20 03:35	11/18/20 08:40	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Burn Rate	2.20	U	2.20	2.20	mm/sec			11/20/20 10:50	
Cr (III)	32.6		2.0	2.0	mg/Kg			11/18/20 06:09	
Cr (VI)	2.4	U	2.4		mg/Kg	₩	11/19/20 17:13	11/20/20 13:09	
Cyanide, Total	0.17	J	0.26		mg/Kg	₽	11/21/20 15:25	11/21/20 17:49	
Cyanide, Reactive	25.0		25.0		mg/Kg		11/20/20 15:45		
Sulfide, Reactive	20.0		20.0	20.0				11/20/20 15:48	

Eurofins TestAmerica, Edison

11/20/20 13:56

11/20/20 13:56

Page 25 of 81

9.4 HF

22.4 HF

SU

Degrees C

2

3

5

8

4.6

11

13

15

restAmenta, Luison

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37) Lab Sample ID: 460-222909-2

Date Collected: 11/16/20 13:45 **Matrix: Solid** Date Received: 11/16/20 18:00

Percent Solids: 85.3

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Corrosivity	9.4	HF			SU			11/20/20 13:56	1
Free Liquid	0.500	U	0.500	0.500	mL/100g			11/18/20 08:05	1
Percent Moisture	14.7		1.0	1.0	%			11/19/20 11:58	1
Percent Solids	85.3		1.0	1.0	%			11/19/20 11:58	1

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-145)	(79-125)	(48-150)	(80-120)
460-222909-1	SB1_SB2(0-15)	119	113	116	105
460-222909-2	SB1_SB2(15-37)	115	104	112	102
LB3 460-740673/1-A	Method Blank	122	123	128	119
LCS 460-741026/3	Lab Control Sample	106	107	109	100
LCS 460-741345/4	Lab Control Sample	117	118	122	117
LCSD 460-741026/4	Lab Control Sample Dup	108	111	111	103
LCSD 460-741345/5	Lab Control Sample Dup	112	123	121	120
MB 460-741026/7	Method Blank	121	117	123	111
MB 460-741345/8	Method Blank	117	120	124	117

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Lin
		TBP	FBP	2FP	NBZ	PHL	TPHL
Lab Sample ID	Client Sample ID	(10-123)	(25-104)	(18-106)	(19-105)	(26-101)	(25-127)
460-222909-1	SB1_SB2(0-15)	47	46	51	49	46	45
460-222909-2	SB1_SB2(15-37)	51	48	56	53	53	46
460-222910-F-1-A MS	Matrix Spike	61	49	43	42	45	61
460-222910-F-1-B MSD	Matrix Spike Duplicate	65	51	50	46	52	60
LCS 460-740615/2-A	Lab Control Sample	93	86	91	91	86	100
MB 460-740615/1-A	Method Blank	96	87	93	92	85	101

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Matrix: Solid Prep Type: Total/NA

		TFT1	
Lab Sample ID	Client Sample ID	(73-150)	
460-222909-1	SB1_SB2(0-15)	115	
460-222909-2	SB1_SB2(15-37)	111	
LCS 460-740543/13	Lab Control Sample	81	
LCSD 460-740543/14	Lab Control Sample Dup	105	
MB 460-740543/17	Method Blank	103	

TFT = a,a,a-Trifluorotoluene

11/23/2020

Page 27 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(10-150)	
460-222909-1	SB1_SB2(0-15)	<u> </u>	
460-222909-2	SB1_SB2(15-37)	0 *	
LCS 460-740831/2-A	Lab Control Sample	125	
LCSD 460-740831/3-A	Lab Control Sample Dup	97	
MB 460-740831/1-A	Method Blank	103	
Surrogate Legend			
OTPH = o-Terphenyl			

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			PE	rcent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(28-148)	(28-148)	(34-118)	(34-118)
460-222909-1	SB1_SB2(0-15)	37	60	65	65
460-222909-2	SB1_SB2(15-37)	17 *	75	474 *	36
460-222916-A-1-E MS	Matrix Spike	66	56	53	50
460-222916-A-1-F MSD	Matrix Spike Duplicate	67	58	52	52
LCS 460-740817/2-A	Lab Control Sample	73	70	74	68
LCSD 460-740817/3-A	Lab Control Sample Dup	73	70	73	66
MB 460-740817/1-A	Method Blank	93	84	87	83

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(58-145)	(58-145)
460-222909-1	SB1_SB2(0-15)	102	109	107	108
460-222909-2	SB1_SB2(15-37)	98	97	95	90
460-222916-A-1-B MS	Matrix Spike	81	75	74	67
460-222916-A-1-C MSD	Matrix Spike Duplicate	86	79	76	69
LCS 460-740815/2-A	Lab Control Sample	92	93	91	87
LCSD 460-740815/3-A	Lab Control Sample Dup	92	94	91	87
MB 460-740815/1-A	Method Blank	103	105	103	98

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: NJDEP EPH - New Jersey Extractable Petroleum Hydrocarbons

Matrix: Solid Prep Type: Total/NA

_			Pe	rcent Surrogate Recovery (Acceptance Limits)
		OTPH1	1COD1	
Lab Sample ID	Client Sample ID	(40-140)	(40-140)	
460-222909-1	SB1_SB2(0-15)	68	64	
460-222909-2	SB1_SB2(15-37)	74	100	

Eurofins TestAmerica, Edison

Page 28 of 81 11/23/2020

2

3

5

7

10

12

Surrogate Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: NJDEP EPH - New Jersey Extractable Petroleum Hydrocarbons (Continued)

Prep Type: Total/NA **Matrix: Solid**

		Percent Surrogate Recovery (Acceptance Limits)						
		OTPH1	1COD1					
Lab Sample ID	Client Sample ID	(40-140)	(40-140)					
460-222922-A-1-A MS	Matrix Spike	64	77					
460-222922-A-1-B MSD	Matrix Spike Duplicate	62	74					
LCS 460-740592/2-A	Lab Control Sample	135	131					
LCSD 460-740592/3-A	Lab Control Sample Dup	135	132					
MB 460-740592/1-A	Method Blank	116	90					
Surrogate Legend								

OTPH = o-Terphenyl

1COD = 1-Chlorooctadecane

Eurofins TestAmerica, Edison

Page 29 of 81

QC Sample Results

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: LB3 460-740673/1-A

Matrix: Solid

TBA

Analysis Batch: 741026

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 740673

Analysis Baton: 741020	LB3	LB3						ricp Baton.	140010
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0010	U	0.0010	0.00023	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,1,2,2-Tetrachloroethane	0.0010	U	0.0010	0.00021	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.0010	0.00030	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,1,2-Trichloroethane	0.0010	U	0.0010	0.00018	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,1-Dichloroethane	0.0010	U	0.0010	0.00021	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,1-Dichloroethene	0.0010	U	0.0010	0.00023	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2,3-Trichlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2,4-Trichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2-Dibromo-3-Chloropropane	0.0010	U	0.0010	0.00046	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2-Dichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2-Dichloroethane	0.0010	U	0.0010	0.00030	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,2-Dichloropropane	0.0010	U	0.0010	0.00042	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,3-Dichlorobenzene	0.0010	U	0.0010	0.00037	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,4-Dichlorobenzene	0.0010	U	0.0010	0.00023	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
1,4-Dioxane	0.020	U	0.020	0.0092	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
2-Butanone (MEK)	0.0050	U	0.0050	0.00037	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
2-Hexanone	0.0050	U	0.0050	0.0017	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
4-Methyl-2-pentanone (MIBK)	0.0050	U	0.0050	0.0016	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Acetone	0.0060	U	0.0060	0.0057	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Acrolein	0.10	U	0.10	0.028	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Acrylonitrile	0.010	U	0.010	0.0049	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Benzene	0.0010	U	0.0010	0.00026	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Bromoform	0.0010	U	0.0010	0.00043	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Bromomethane	0.0010	U	0.0010	0.0010	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Carbon disulfide	0.0010	U	0.0010	0.00027	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Carbon tetrachloride	0.0010	U	0.0010	0.00039	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chlorobromomethane	0.0010	U	0.0010	0.00028	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chlorodibromomethane	0.0010	U	0.0010	0.00019	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chloroethane	0.0010	U	0.0010	0.00052	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chloroform	0.0010	U	0.0010	0.00097	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Chloromethane	0.0010	U	0.0010	0.00044	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
cis-1,2-Dichloroethene	0.0010	U	0.0010	0.00036	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
cis-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Cyclohexane	0.0010	U	0.0010	0.00022	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Dichlorobromomethane	0.0010	U	0.0010	0.00026	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Dichlorodifluoromethane	0.0010	U	0.0010	0.00034	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Ethylbenzene	0.0010	U	0.0010	0.00020	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Ethylene Dibromide	0.0010	U	0.0010	0.00018	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Isopropylbenzene	0.0010	U	0.0010	0.00029			11/17/20 21:52	11/19/20 08:53	1
Methyl acetate	0.0050		0.0050		mg/Kg			11/19/20 08:53	1
Methyl tert-butyl ether	0.0010		0.0010	0.00051			11/17/20 21:52	11/19/20 08:53	1
Methylcyclohexane	0.0010		0.0010	0.00050				11/19/20 08:53	1
Methylene Chloride	0.0010		0.0010		mg/Kg			11/19/20 08:53	1
m-Xylene & p-Xylene	0.0010		0.0010	0.00017				11/19/20 08:53	1
o-Xylene	0.0010		0.0010	0.00019				11/19/20 08:53	1
Styrene	0.0010		0.0010	0.00028				11/19/20 08:53	1
TDA	0.010	11	0.010	0.0070				11/10/20 00:52	4

Eurofins TestAmerica, Edison

11/17/20 21:52 11/19/20 08:53

Page 30 of 81

0.010

0.0078 mg/Kg

0.010 U

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LB3 460-740673/1-A

Matrix: Solid

Analysis Batch: 741026

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740673

	LB3	LB3							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.0010	U	0.0010	0.00031	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Toluene	0.0010	U	0.0010	0.00023	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
trans-1,2-Dichloroethene	0.0010	U	0.0010	0.00025	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
trans-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Trichloroethene	0.0010	U	0.0010	0.00032	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Trichlorofluoromethane	0.0010	U	0.0010	0.00041	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Vinyl chloride	0.0010	U	0.0010	0.00055	mg/Kg		11/17/20 21:52	11/19/20 08:53	1
Xvlenes, Total	0.0020	U	0.0020	0.00064	ma/Ka		11/17/20 21:52	11/19/20 08:53	1

LB3 LB3

Tentatively Identified Compound Est. Result Qualifier Unit RT CAS No. Prepared Analyzed 11/17/20 21:52 11/19/20 08:53 Tentatively Identified Compound None mg/Kg

LB3 LB3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	122	77 - 145	11/17/20 21:52	11/19/20 08:53	1
4-Bromofluorobenzene	123	79 - 125	11/17/20 21:52	11/19/20 08:53	1
Dibromofluoromethane (Surr)	128	48 - 150	11/17/20 21:52	11/19/20 08:53	1
Toluene-d8 (Surr)	119	80 - 120	11/17/20 21:52	11/19/20 08:53	1

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 741026

Matrix: Solid

Lab Sample ID: MB 460-741026/7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0010	U	0.0010	0.00023	mg/Kg			11/19/20 06:53	1
1,1,2,2-Tetrachloroethane	0.0010	U	0.0010	0.00021	mg/Kg			11/19/20 06:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.0010	0.00030	mg/Kg			11/19/20 06:53	1
1,1,2-Trichloroethane	0.0010	U	0.0010	0.00018	mg/Kg			11/19/20 06:53	1
1,1-Dichloroethane	0.0010	U	0.0010	0.00021	mg/Kg			11/19/20 06:53	1
1,1-Dichloroethene	0.0010	U	0.0010	0.00023	mg/Kg			11/19/20 06:53	1
1,2,3-Trichlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg			11/19/20 06:53	1
1,2,4-Trichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg			11/19/20 06:53	1
1,2-Dibromo-3-Chloropropane	0.0010	U	0.0010	0.00046	mg/Kg			11/19/20 06:53	1
1,2-Dichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg			11/19/20 06:53	1
1,2-Dichloroethane	0.0010	U	0.0010	0.00030	mg/Kg			11/19/20 06:53	1
1,2-Dichloropropane	0.0010	U	0.0010	0.00042	mg/Kg			11/19/20 06:53	1
1,3-Dichlorobenzene	0.0010	U	0.0010	0.00037	mg/Kg			11/19/20 06:53	1
1,4-Dichlorobenzene	0.0010	U	0.0010	0.00023	mg/Kg			11/19/20 06:53	1
1,4-Dioxane	0.020	U	0.020	0.0092	mg/Kg			11/19/20 06:53	1
2-Butanone (MEK)	0.0050	U	0.0050	0.00037	mg/Kg			11/19/20 06:53	1
2-Hexanone	0.0050	U	0.0050	0.0017	mg/Kg			11/19/20 06:53	1
4-Methyl-2-pentanone (MIBK)	0.0050	U	0.0050	0.0016	mg/Kg			11/19/20 06:53	1
Acetone	0.0060	U	0.0060	0.0057	mg/Kg			11/19/20 06:53	1
Acrolein	0.10	U	0.10	0.028	mg/Kg			11/19/20 06:53	1
Acrylonitrile	0.010	U	0.010	0.0049	mg/Kg			11/19/20 06:53	1
Benzene	0.0010	U	0.0010	0.00026	mg/Kg			11/19/20 06:53	1
Bromoform	0.0010	U	0.0010	0.00043	mg/Kg			11/19/20 06:53	1
Bromomethane	0.0010	U	0.0010	0.0010	mg/Kg			11/19/20 06:53	1
Carbon disulfide	0.0010	U	0.0010	0.00027	mg/Kg			11/19/20 06:53	1

Eurofins TestAmerica, Edison

Page 31 of 81

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-741026/7

Matrix: Solid

Analysis Batch: 741026

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	М	DL Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	0.0010	U	0.0010	0.000)39 mg/Kg			11/19/20 06:53	1
Chlorobenzene	0.0010	U	0.0010	0.000)18 mg/Kg			11/19/20 06:53	1
Chlorobromomethane	0.0010	U	0.0010	0.000	28 mg/Kg			11/19/20 06:53	1
Chlorodibromomethane	0.0010	U	0.0010	0.000)19 mg/Kg			11/19/20 06:53	1
Chloroethane	0.0010	U	0.0010	0.000)52 mg/Kg			11/19/20 06:53	1
Chloroform	0.0010	U	0.0010	0.000	97 mg/Kg			11/19/20 06:53	1
Chloromethane	0.0010	U	0.0010	0.000)44 mg/Kg			11/19/20 06:53	1
cis-1,2-Dichloroethene	0.0010	U	0.0010	0.000)36 mg/Kg			11/19/20 06:53	1
cis-1,3-Dichloropropene	0.0010	U	0.0010	0.000	27 mg/Kg			11/19/20 06:53	1
Cyclohexane	0.0010	U	0.0010	0.000)22 mg/Kg			11/19/20 06:53	1
Dichlorobromomethane	0.0010	U	0.0010	0.000)26 mg/Kg			11/19/20 06:53	1
Dichlorodifluoromethane	0.0010	U	0.0010	0.000	34 mg/Kg			11/19/20 06:53	1
Ethylbenzene	0.0010	U	0.0010	0.000)20 mg/Kg			11/19/20 06:53	1
Ethylene Dibromide	0.0010	U	0.0010	0.000)18 mg/Kg			11/19/20 06:53	1
Isopropylbenzene	0.0010	U	0.0010	0.000)29 mg/Kg			11/19/20 06:53	1
Methyl acetate	0.0050	U	0.0050	0.00)43 mg/Kg			11/19/20 06:53	1
Methyl tert-butyl ether	0.0010	U	0.0010	0.000)51 mg/Kg			11/19/20 06:53	1
Methylcyclohexane	0.0010	U	0.0010	0.000)50 mg/Kg			11/19/20 06:53	1
Methylene Chloride	0.0010	U	0.0010	0.00)11 mg/Kg			11/19/20 06:53	1
m-Xylene & p-Xylene	0.0010	U	0.0010	0.000)17 mg/Kg			11/19/20 06:53	1
o-Xylene	0.0010	U	0.0010	0.000	19 mg/Kg			11/19/20 06:53	1
Styrene	0.0010	U	0.0010	0.000)28 mg/Kg			11/19/20 06:53	1
TBA	0.010	U	0.010	0.00	78 mg/Kg			11/19/20 06:53	1
Tetrachloroethene	0.0010	U	0.0010	0.000	31 mg/Kg			11/19/20 06:53	1
Toluene	0.0010	U	0.0010	0.000)23 mg/Kg			11/19/20 06:53	1
trans-1,2-Dichloroethene	0.0010	U	0.0010	0.000)25 mg/Kg			11/19/20 06:53	1
trans-1,3-Dichloropropene	0.0010	U	0.0010	0.000)27 mg/Kg			11/19/20 06:53	1
Trichloroethene	0.0010	U	0.0010	0.000)32 mg/Kg			11/19/20 06:53	1
Trichlorofluoromethane	0.0010	U	0.0010	0.000)41 mg/Kg			11/19/20 06:53	1
Vinyl chloride	0.0010	U	0.0010	0.000)55 mg/Kg			11/19/20 06:53	1
Xylenes, Total	0.0020	U	0.0020	0.000)64 mg/Kg			11/19/20 06:53	1
	МВ	МВ							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		mg/Kg					11/19/20 06:53	1
	МВ	MB							

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		77 - 145	-		11/19/20 06:53	1
4-Bromofluorobenzene	117		79 - 125			11/19/20 06:53	1
Dibromofluoromethane (Surr)	123		48 - 150			11/19/20 06:53	1
Toluene-d8 (Surr)	111		80 - 120			11/19/20 06:53	1

Lab Sample ID: LCS 460-741026/3

Matrix: Solid

Analysis Ratch: 741026

Alialysis Dalcii. 141020								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	0.0200	0.0231		mg/Kg		115	78 - 132	
1,1,2,2-Tetrachloroethane	0.0200	0.0176		mg/Kg		88	69 - 123	

Eurofins TestAmerica, Edison

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 32 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-741026/3

Matrix: Solid

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Ethylene Dibromide

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

m-Xylene & p-Xylene

Isopropylbenzene

Methyl acetate

o-Xylene

Styrene

Toluene

TBA

Chloroform

Carbon tetrachloride

Chlorobromomethane

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorobromomethane

Dichlorodifluoromethane

Analysis Batch: 741026

Client Sample ID: Lab Control Sample

117

99

120

106

111

110

102

105

108

102

92

104

102

108

103

103

105

93

103

105

92

101

99

97

114

114

95

mg/Kg

68 - 136

67 - 136

72 - 136

80 - 120

76 - 127

62 - 128

65 - 134

79 - 126

48 - 150

80 - 123

72 - 120

80 - 132

73 - 124

40 - 146

80 - 120

79 - 120

80 - 120

58 - 143

80 - 125

79 - 133

76 - 127

80 - 120

80 - 120

80 - 120

72 - 120

78 - 123

80 - 120

Prep Type: Total/NA

7 , 0.0 1	Spike	LCS I	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0243		mg/Kg		121	78 - 136
ne							
1,1,2-Trichloroethane	0.0200	0.0190		mg/Kg		95	75 - 120
1,1-Dichloroethane	0.0200	0.0194		mg/Kg		97	76 - 129
1,1-Dichloroethene	0.0200	0.0231		mg/Kg		115	77 - 132
1,2,3-Trichlorobenzene	0.0200	0.0211		mg/Kg		105	77 - 120
1,2,4-Trichlorobenzene	0.0200	0.0218		mg/Kg		109	75 - 120
1,2-Dibromo-3-Chloropropane	0.0200	0.0210		mg/Kg		105	60 - 126
1,2-Dichlorobenzene	0.0200	0.0207		mg/Kg		103	80 - 120
1,2-Dichloroethane	0.0200	0.0204		mg/Kg		102	70 - 132
1,2-Dichloropropane	0.0200	0.0183		mg/Kg		92	73 - 124
1,3-Dichlorobenzene	0.0200	0.0204		mg/Kg		102	80 - 120
1,4-Dichlorobenzene	0.0200	0.0200		mg/Kg		100	80 - 120
1,4-Dioxane	0.400	0.435		mg/Kg		109	73 - 136
2-Butanone (MEK)	0.100	0.0968		mg/Kg		97	75 - 120
2-Hexanone	0.100	0.0977		mg/Kg		98	78 - 120
4-Methyl-2-pentanone (MIBK)	0.100	0.104		mg/Kg		104	80 - 122
Acetone	0.100	0.103		mg/Kg		103	63 - 131
Acrolein	0.300	0.412		mg/Kg		137	35 - 150
Acrylonitrile	0.200	0.237		mg/Kg		118	66 - 134
Benzene	0.0200	0.0190		mg/Kg		95	80 - 123
Bromoform	0.0200	0.0228		mg/Kg		114	48 - 142

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0400

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.200

0.0200

0.0200

0.0234

0.0199

0.0240

0.0212

0.0221

0.0219

0.0205

0.0210

0.0215

0.0204

0.0184

0.0208

0.0204

0.0216

0.0207

0.0207

0.0209

0.0373

0.0206

0.0209

0.0183

0.0202

0.0199

0.0195

0.229

0.0228

0.0191

Eurofins TestAmerica, Edison

11/23/2020

Page 33 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-741026/3

Lab Sample ID: LCSD 460-741026/4

Matrix: Solid

Analysis Batch: 741026

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	эріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,2-Dichloroethene	0.0200	0.0213		mg/Kg		107	78 - 128	
trans-1,3-Dichloropropene	0.0200	0.0182		mg/Kg		91	68 - 120	
Trichloroethene	0.0200	0.0198		mg/Kg		99	79 - 120	
Trichlorofluoromethane	0.0200	0.0236		mg/Kg		118	67 - 142	
Vinyl chloride	0.0200	0.0212		mg/Kg		106	56 - 147	
Xylenes, Total	0.0400	0.0401		mg/Kg		100	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		77 - 145
4-Bromofluorobenzene	107		79 - 125
Dibromofluoromethane (Surr)	109		48 - 150
Toluene-d8 (Surr)	100		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 741026						•	
	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0200	0.0229	mg/Kg		78 - 132	1	30
1,1,2,2-Tetrachloroethane	0.0200	0.0183	mg/Kg	92	69 - 123	4	30
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0238	mg/Kg	119	78 - 136	2	30
ne							
1,1,2-Trichloroethane	0.0200	0.0203	mg/Kg	102	75 - 120	7	30
1,1-Dichloroethane	0.0200	0.0206	mg/Kg	103	76 - 129	6	30
1,1-Dichloroethene	0.0200	0.0225	mg/Kg	113	77 - 132	2	30
1,2,3-Trichlorobenzene	0.0200	0.0210	mg/Kg	105	77 - 120	0	30
1,2,4-Trichlorobenzene	0.0200	0.0213	mg/Kg	107	75 - 120	2	30
1,2-Dibromo-3-Chloropropane	0.0200	0.0210	mg/Kg	105	60 - 126	0	30
1,2-Dichlorobenzene	0.0200	0.0212	mg/Kg	106	80 - 120	2	30
1,2-Dichloroethane	0.0200	0.0211	mg/Kg	105	70 - 132	3	30
1,2-Dichloropropane	0.0200	0.0191	mg/Kg	95	73 - 124	4	30
1,3-Dichlorobenzene	0.0200	0.0207	mg/Kg	104	80 - 120	2	30
1,4-Dichlorobenzene	0.0200	0.0201	mg/Kg	100	80 - 120	0	30
1,4-Dioxane	0.400	0.454	mg/Kg	114	73 - 136	4	30
2-Butanone (MEK)	0.100	0.111	mg/Kg	111	75 - 120	14	30
2-Hexanone	0.100	0.109	mg/Kg	109	78 - 120	11	30
4-Methyl-2-pentanone (MIBK)	0.100	0.108	mg/Kg	108	80 - 122	4	30
Acetone	0.100	0.108	mg/Kg	108	63 - 131	4	30
Acrolein	0.300	0.340	mg/Kg	113	35 - 150	19	30
Acrylonitrile	0.200	0.201	mg/Kg	100	66 - 134	16	30
Benzene	0.0200	0.0191	mg/Kg	95	80 - 123	0	30
Bromoform	0.0200	0.0245	mg/Kg	122	48 - 142	7	30
Bromomethane	0.0200	0.0224	mg/Kg	112	68 - 136	4	30
Carbon disulfide	0.0200	0.0196	mg/Kg	98	67 - 136	1	30
Carbon tetrachloride	0.0200	0.0243	mg/Kg	121	72 - 136	1	30
Chlorobenzene	0.0200	0.0213	mg/Kg	106	80 - 120	0	30
Chlorobromomethane	0.0200	0.0225	mg/Kg	113	76 - 127	2	30
Chlorodibromomethane	0.0200	0.0227	mg/Kg	114	62 - 128	4	30
Chloroethane	0.0200	0.0201	mg/Kg	100	65 - 134	2	30
l			5 5				

Eurofins TestAmerica, Edison

Page 34 of 81

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-741026/4

Matrix: Solid

Analysis Batch: 741026

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits	RPD	Limit
Chloroform	0.0200	0.0215	mg/Kg	107	79 - 126	2	30
Chloromethane	0.0200	0.0209	mg/Kg	105	48 - 150	3	30
cis-1,2-Dichloroethene	0.0200	0.0213	mg/Kg	106	80 - 123	4	30
cis-1,3-Dichloropropene	0.0200	0.0196	mg/Kg	98	72 - 120	6	30
Cyclohexane	0.0200	0.0210	mg/Kg	105	80 - 132	1	30
Dichlorobromomethane	0.0200	0.0212	mg/Kg	106	73 - 124	4	30
Dichlorodifluoromethane	0.0200	0.0212	mg/Kg	106	40 - 146	2	30
Ethylbenzene	0.0200	0.0210	mg/Kg	105	80 - 120	1	30
Ethylene Dibromide	0.0200	0.0221	mg/Kg	110	79 - 120	7	30
Isopropylbenzene	0.0200	0.0208	mg/Kg	104	80 - 120	1	30
Methyl acetate	0.0400	0.0394	mg/Kg	99	58 - 143	5	30
Methyl tert-butyl ether	0.0200	0.0216	mg/Kg	108	80 - 125	5	30
Methylcyclohexane	0.0200	0.0206	mg/Kg	103	79 - 133	2	30
Methylene Chloride	0.0200	0.0199	mg/Kg	100	76 - 127	8	30
m-Xylene & p-Xylene	0.0200	0.0205	mg/Kg	103	80 - 120	1	30
o-Xylene	0.0200	0.0201	mg/Kg	100	80 - 120	1	30
Styrene	0.0200	0.0202	mg/Kg	101	80 - 120	3	30
TBA	0.200	0.215	mg/Kg	108	72 - 120	6	30
Tetrachloroethene	0.0200	0.0224	mg/Kg	112	78 - 123	2	30
Toluene	0.0200	0.0194	mg/Kg	97	80 - 120	2	30
trans-1,2-Dichloroethene	0.0200	0.0212	mg/Kg	106	78 - 128	1	30
trans-1,3-Dichloropropene	0.0200	0.0196	mg/Kg	98	68 - 120	8	30
Trichloroethene	0.0200	0.0208	mg/Kg	104	79 - 120	5	30
Trichlorofluoromethane	0.0200	0.0239	mg/Kg	119	67 - 142	1	30
Vinyl chloride	0.0200	0.0210	mg/Kg	105	56 - 147	1	30
Xylenes, Total	0.0400	0.0406	mg/Kg	101	80 - 120	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 145
4-Bromofluorobenzene	111		79 - 125
Dibromofluoromethane (Surr)	111		48 - 150
Toluene-d8 (Surr)	103		80 - 120

Lab Sample ID: MB 460-741345/8

Matrix: Solid

Analysis Batch: 741345

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0010	U	0.0010	0.00023	mg/Kg			11/20/20 11:13	1
1,1,2,2-Tetrachloroethane	0.0010	U	0.0010	0.00021	mg/Kg			11/20/20 11:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.0010	0.00030	mg/Kg			11/20/20 11:13	1
1,1,2-Trichloroethane	0.0010	U	0.0010	0.00018	mg/Kg			11/20/20 11:13	1
1,1-Dichloroethane	0.0010	U	0.0010	0.00021	mg/Kg			11/20/20 11:13	1
1,1-Dichloroethene	0.0010	U	0.0010	0.00023	mg/Kg			11/20/20 11:13	1
1,2,3-Trichlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg			11/20/20 11:13	1
1,2,4-Trichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg			11/20/20 11:13	1
1,2-Dibromo-3-Chloropropane	0.0010	U	0.0010	0.00046	mg/Kg			11/20/20 11:13	1
1,2-Dichlorobenzene	0.0010	U	0.0010	0.00036	mg/Kg			11/20/20 11:13	1

Page 35 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-741345/8

Matrix: Solid

Analysis Batch: 741345

Client Sample ID: Method Blank

Prep	Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.0010	U	0.0010	0.00030	mg/Kg			11/20/20 11:13	1
1,2-Dichloropropane	0.0010	U	0.0010	0.00042				11/20/20 11:13	1
1,3-Dichlorobenzene	0.0010	U	0.0010	0.00037	mg/Kg			11/20/20 11:13	1
1,4-Dichlorobenzene	0.0010	U	0.0010	0.00023	mg/Kg			11/20/20 11:13	1
1,4-Dioxane	0.020	U	0.020	0.0092	mg/Kg			11/20/20 11:13	1
2-Butanone (MEK)	0.0050	U	0.0050	0.00037	mg/Kg			11/20/20 11:13	1
2-Hexanone	0.0050	U	0.0050	0.0017	mg/Kg			11/20/20 11:13	1
4-Methyl-2-pentanone (MIBK)	0.0050	U	0.0050	0.0016	mg/Kg			11/20/20 11:13	1
Acetone	0.0060	U	0.0060	0.0057	mg/Kg			11/20/20 11:13	1
Acrolein	0.10	U	0.10	0.028	mg/Kg			11/20/20 11:13	1
Acrylonitrile	0.010	U	0.010	0.0049	mg/Kg			11/20/20 11:13	1
Benzene	0.0010	U	0.0010	0.00026	mg/Kg			11/20/20 11:13	1
Bromoform	0.0010	U	0.0010	0.00043	mg/Kg			11/20/20 11:13	1
Bromomethane	0.0010	U	0.0010	0.0010	mg/Kg			11/20/20 11:13	1
Carbon disulfide	0.0010	U	0.0010	0.00027	mg/Kg			11/20/20 11:13	1
Carbon tetrachloride	0.0010	U	0.0010	0.00039	mg/Kg			11/20/20 11:13	1
Chlorobenzene	0.0010	U	0.0010	0.00018	mg/Kg			11/20/20 11:13	1
Chlorobromomethane	0.0010	U	0.0010	0.00028	mg/Kg			11/20/20 11:13	1
Chlorodibromomethane	0.0010	U	0.0010	0.00019	mg/Kg			11/20/20 11:13	1
Chloroethane	0.0010	U	0.0010	0.00052	mg/Kg			11/20/20 11:13	1
Chloroform	0.0010	U	0.0010	0.00097	mg/Kg			11/20/20 11:13	1
Chloromethane	0.0010	U	0.0010	0.00044	mg/Kg			11/20/20 11:13	1
cis-1,2-Dichloroethene	0.0010	U	0.0010	0.00036	mg/Kg			11/20/20 11:13	1
cis-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg			11/20/20 11:13	1
Cyclohexane	0.0010	U	0.0010	0.00022	mg/Kg			11/20/20 11:13	1
Dichlorobromomethane	0.0010	U	0.0010	0.00026	mg/Kg			11/20/20 11:13	1
Dichlorodifluoromethane	0.0010	U	0.0010	0.00034	mg/Kg			11/20/20 11:13	1
Ethylbenzene	0.0010	U	0.0010	0.00020	mg/Kg			11/20/20 11:13	1
Ethylene Dibromide	0.0010	U	0.0010	0.00018	mg/Kg			11/20/20 11:13	1
Isopropylbenzene	0.0010	U	0.0010	0.00029	mg/Kg			11/20/20 11:13	1
Methyl acetate	0.0050	U	0.0050	0.0043	mg/Kg			11/20/20 11:13	1
Methyl tert-butyl ether	0.0010	U	0.0010	0.00051	mg/Kg			11/20/20 11:13	1
Methylcyclohexane	0.0010	U	0.0010	0.00050	mg/Kg			11/20/20 11:13	1
Methylene Chloride	0.0010	U	0.0010	0.0011	mg/Kg			11/20/20 11:13	1
m-Xylene & p-Xylene	0.0010	U	0.0010	0.00017	mg/Kg			11/20/20 11:13	1
o-Xylene	0.0010	U	0.0010	0.00019	mg/Kg			11/20/20 11:13	1
Styrene	0.0010	U	0.0010	0.00028	mg/Kg			11/20/20 11:13	1
TBA	0.010	U	0.010	0.0078	mg/Kg			11/20/20 11:13	1
Tetrachloroethene	0.0010	U	0.0010	0.00031	mg/Kg			11/20/20 11:13	1
Toluene	0.0010	U	0.0010	0.00023	mg/Kg			11/20/20 11:13	1
trans-1,2-Dichloroethene	0.0010	U	0.0010	0.00025	mg/Kg			11/20/20 11:13	1
trans-1,3-Dichloropropene	0.0010	U	0.0010	0.00027	mg/Kg			11/20/20 11:13	1
Trichloroethene	0.0010	U	0.0010	0.00032	mg/Kg			11/20/20 11:13	1
Trichlorofluoromethane	0.0010	U	0.0010	0.00041	mg/Kg			11/20/20 11:13	1
Vinyl chloride	0.0010	U	0.0010	0.00055	mg/Kg			11/20/20 11:13	1
Xylenes, Total	0.0020	U	0.0020	0.00064	mg/Kg			11/20/20 11:13	1

Eurofins TestAmerica, Edison

Page 36 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-741345/8

Matrix: Solid

Analysis Batch: 741345

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		mg/Kg					11/20/20 11:13	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		77 - 145					11/20/20 11:13	1
4.5									
4-Bromofluorobenzene	120		79 - 125					11/20/20 11:13	1
4-Bromofluorobenzene Dibromofluoromethane (Surr)	120 124		79 - 125 48 - 150					11/20/20 11:13 11/20/20 11:13	1 1

Lab Sample ID: LCS 460-741345/4

Matrix: Solid

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Chloroform

Carbon tetrachloride

Chlorobromomethane

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Client Sample ID	: Lab Control Sample
	Pren Type: Total/NA

watrix. Solid			Prep Type. Total/NA
Analysis Batch: 741345			
	Spike	LCS LCS	%Rec.

	Бріке	LCS LCS			%Rec.	
Analyte	Added	Result Qual	ifier Unit	D %Rec	Limits	
1,1,1-Trichloroethane	0.0200	0.0212	mg/Kg	106	78 - 132	
1,1,2,2-Tetrachloroethane	0.0200	0.0186	mg/Kg	93	69 - 123	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0219	mg/Kg	110	78 - 136	
ne						
1,1,2-Trichloroethane	0.0200	0.0200	mg/Kg	100	75 - 120	
1,1-Dichloroethane	0.0200	0.0217	mg/Kg	108	76 - 129	
1,1-Dichloroethene	0.0200	0.0225	mg/Kg	113	77 - 132	
1,2,3-Trichlorobenzene	0.0200	0.0198	mg/Kg	99	77 - 120	
1,2,4-Trichlorobenzene	0.0200	0.0196	mg/Kg	98	75 - 120	
1,2-Dibromo-3-Chloropropane	0.0200	0.0210	mg/Kg	105	60 - 126	
1,2-Dichlorobenzene	0.0200	0.0209	mg/Kg	105	80 - 120	
1,2-Dichloroethane	0.0200	0.0209	mg/Kg	104	70 - 132	
1,2-Dichloropropane	0.0200	0.0198	mg/Kg	99	73 - 124	
1,3-Dichlorobenzene	0.0200	0.0196	mg/Kg	98	80 - 120	
1,4-Dichlorobenzene	0.0200	0.0193	mg/Kg	96	80 - 120	
1,4-Dioxane	0.400	0.478	mg/Kg	119	73 - 136	
2-Butanone (MEK)	0.100	0.110	mg/Kg	110	75 - 120	
2-Hexanone	0.100	0.103	mg/Kg	103	78 - 120	
4-Methyl-2-pentanone (MIBK)	0.100	0.110	mg/Kg	110	80 - 122	
Acetone	0.100	0.114	mg/Kg	114	63 - 131	
Acrolein	0.300	0.389	mg/Kg	130	35 - 150	
Acrylonitrile	0.200	0.225	mg/Kg	112	66 - 134	
Benzene	0.0200	0.0204	mg/Kg	102	80 - 123	
Bromoform	0.0200	0.0209	mg/Kg	104	48 - 142	

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0248

0.0208

0.0213

0.0210

0.0230

0.0219

0.0231

0.0219

0.0230

0.0220

0.0204

109 62 - 128 mg/Kg mg/Kg 116 65 - 134 mg/Kg 109 79 - 126 mg/Kg 115 48 - 150 mg/Kg 110 80 - 123

102

124

104

107

105

115

68 - 136

67 - 136

72 - 136

80 - 120

76 - 127

72 - 120

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Eurofins TestAmerica, Edison

Page 37 of 81

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-741345/4

Matrix: Solid

Analysis Batch: 741345

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cyclohexane 0.0200 0.0204 mg/Kg 102 80 - 132 Dichlorobromomethane 0.0200 0.0207 mg/Kg 103 73 - 124Dichlorodifluoromethane 0.0200 0.0210 105 40 - 146 mg/Kg Ethylbenzene 0.0200 0.0207 mg/Kg 103 80 - 120 Ethylene Dibromide 0.0200 0.0203 102 79 - 120 mg/Kg Isopropylbenzene 0.0200 0.0203 mg/Kg 102 80 - 120 Methyl acetate 0.0400 0.0379 mg/Kg 95 58 - 143 0.0200 Methyl tert-butyl ether 0.0221 mg/Kg 111 80 - 125 0.0200 101 Methylcyclohexane 0.0203 mg/Kg 79 - 133 Methylene Chloride 0.0200 108 76 - 127 0.0216 mg/Kg m-Xylene & p-Xylene 0.0200 0.0198 99 80 - 120 mg/Kg 0.0200 101 o-Xylene 0.0202 80 - 120 mg/Kg Styrene 0.0200 0.0196 98 80 - 120 mg/Kg TBA 0.200 72 - 120 0.220 mg/Kg 110 Tetrachloroethene 0.0200 0.0212 mg/Kg 106 78 - 123 Toluene 0.0200 0.0201 100 80 - 120 mg/Kg trans-1,2-Dichloroethene 0.0200 0.0220 mg/Kg 110 78 - 128 trans-1,3-Dichloropropene 0.0200 0.0197 99 68 - 120 mg/Kg Trichloroethene 0.0200 0.0210 mg/Kg 105 79 - 120

0.0200

0.0200

0.0400

0.0229

0.0225

0.0399

mg/Kg

mg/Kg

mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	117		77 - 145
4-Bromofluorobenzene	118		79 - 125
Dibromofluoromethane (Surr)	122		48 - 150
Toluene-d8 (Surr)	117		80 - 120

Lab Sample ID: LCSD 460-741345/5

Matrix: Solid

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Analysis Batch: 741345

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

114

112

100

67 - 142

56 - 147

80 - 120

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0200	0.0218		mg/Kg		109	78 - 132	3	30
1,1,2,2-Tetrachloroethane	0.0200	0.0189		mg/Kg		94	69 - 123	1	30
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0200	0.0239		mg/Kg		119	78 - 136	9	30
ne									
1,1,2-Trichloroethane	0.0200	0.0192		mg/Kg		96	75 - 120	4	30
1,1-Dichloroethane	0.0200	0.0205		mg/Kg		103	76 - 129	6	30
1,1-Dichloroethene	0.0200	0.0234		mg/Kg		117	77 - 132	4	30
1,2,3-Trichlorobenzene	0.0200	0.0215		mg/Kg		108	77 - 120	8	30
1,2,4-Trichlorobenzene	0.0200	0.0229		mg/Kg		115	75 - 120	16	30
1,2-Dibromo-3-Chloropropane	0.0200	0.0191		mg/Kg		96	60 - 126	9	30
1,2-Dichlorobenzene	0.0200	0.0218		mg/Kg		109	80 - 120	4	30
1,2-Dichloroethane	0.0200	0.0185		mg/Kg		93	70 - 132	12	30
1,2-Dichloropropane	0.0200	0.0194		mg/Kg		97	73 - 124	2	30
1,3-Dichlorobenzene	0.0200	0.0216		mg/Kg		108	80 - 120	9	30
1,4-Dichlorobenzene	0.0200	0.0210		mg/Kg		105	80 - 120	9	30

Eurofins TestAmerica, Edison

Page 38 of 81

2

3

6

8

10

12

11

1 1

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-741345/5

Matrix: Solid

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

Trichlorofluoromethane

o-Xylene

Styrene

Toluene

TBA

m-Xylene & p-Xylene

Analysis Batch: 741345

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Allaryolo Batolii 141040	Spike	LCSD LCS	n			%Rec.		RPD
Analyte	Added	Result Qua		D	%Rec	Limits	RPD	Limit
1,4-Dioxane	0.400	0.408	mg/Kg		102	73 - 136	16	30
2-Butanone (MEK)	0.100	0.109	mg/Kg		109	75 - 120	1	30
2-Hexanone	0.100	0.0965	mg/Kg		97	78 - 120	7	30
4-Methyl-2-pentanone (MIBK)	0.100	0.102	mg/Kg		102	80 - 122	7	30
Acetone	0.100	0.0965	mg/Kg		96	63 - 131	17	30
Acrolein	0.300	0.328	mg/Kg		109	35 - 150	17	30
Acrylonitrile	0.200	0.202	mg/Kg		101	66 - 134	11	30
Benzene	0.0200	0.0202	mg/Kg		101	80 - 123	1	30
Bromoform	0.0200	0.0209	mg/Kg		104	48 - 142	0	30
Bromomethane	0.0200	0.0237	mg/Kg		118	68 - 136	5	30
Carbon disulfide	0.0200	0.0225	mg/Kg		112	67 - 136	8	30
Carbon tetrachloride	0.0200	0.0227	mg/Kg		113	72 - 136	6	30
Chlorobenzene	0.0200	0.0214	mg/Kg		107	80 - 120	2	30
Chlorobromomethane	0.0200	0.0214	mg/Kg		107	76 - 127	7	30
Chlorodibromomethane	0.0200	0.0208	mg/Kg		104	62 - 128	5	30
Chloroethane	0.0200	0.0217	mg/Kg		109	65 - 134	6	30
Chloroform	0.0200	0.0207	mg/Kg		104	79 - 126	5	30
Chloromethane	0.0200	0.0234	mg/Kg		117	48 - 150	2	30
cis-1,2-Dichloroethene	0.0200	0.0208	mg/Kg		104	80 - 123	6	30
cis-1,3-Dichloropropene	0.0200	0.0191	mg/Kg		96	72 - 120	6	30
Cyclohexane	0.0200	0.0214	mg/Kg		107	80 - 132	5	30
Dichlorobromomethane	0.0200	0.0199	mg/Kg		100	73 - 124	4	30
Dichlorodifluoromethane	0.0200	0.0246	mg/Kg		123	40 - 146	16	30
Ethylbenzene	0.0200	0.0210	mg/Kg		105	80 - 120	2	30
Ethylene Dibromide	0.0200	0.0202	mg/Kg		101	79 - 120	1	30
Isopropylbenzene	0.0200	0.0216	mg/Kg		108	80 - 120	6	30
Methyl acetate	0.0400	0.0359	mg/Kg		90	58 - 143	5	30

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0400

0.0203

0.0221

0.0197

0.0208

0.0210

0.0200

0.189

0.0232

0.0206

0.0224

0.0191

0.0213

0.0241

0.0226

0.0417

mg/Kg

101

110

99

104

105

100

94

116

103

112

96

107

120

113

104

80 - 125

79 - 133

76 - 127

80 - 120

80 - 120

80 - 120

72 - 120

78 - 123

80 - 120

78 - 128

68 - 120

79 - 120

67 - 142

56 - 147

80 - 120

9

9

2

15

2

2

0

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

LCSD LCSD Qualifier %Recovery Limits 112 77 - 145 123 79 - 125

4-Bromofluorobenzene Dibromofluoromethane (Surr) 121 48 - 150 Toluene-d8 (Surr) 120 80 - 120

Eurofins TestAmerica, Edison

Page 39 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-740615/1-A

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740615

	MB								
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.33		0.33	0.0044			11/17/20 17:33	11/18/20 02:13	1
1,2,4,5-Tetrachlorobenzene	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
1,2-Diphenylhydrazine	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,2'-oxybis[1-chloropropane]	0.33		0.33	0.0060			11/17/20 17:33	11/18/20 02:13	1
2,3,4,6-Tetrachlorophenol	0.33	U	0.33	0.022	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4,5-Trichlorophenol	0.33	U	0.33	0.034	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4,6-Trichlorophenol	0.13	U	0.13	0.042	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4-Dichlorophenol	0.13	U	0.13	0.021	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4-Dimethylphenol	0.33	U	0.33	0.015	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4-Dinitrophenol	0.27	U	0.27	0.16	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,4-Dinitrotoluene	0.067	U	0.067	0.036	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2,6-Dinitrotoluene	0.067	U	0.067	0.024	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Chloronaphthalene	0.33	U	0.33	0.015	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Chlorophenol	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Methylnaphthalene	0.33	U	0.33	0.0093	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Methylphenol	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Nitroaniline	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
2-Nitrophenol	0.33	U	0.33	0.033	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
3,3'-Dichlorobenzidine	0.13	U	0.13	0.050	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
3-Nitroaniline	0.33	U	0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4,6-Dinitro-2-methylphenol	0.27	U	0.27		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Bromophenyl phenyl ether	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Chloro-3-methylphenol	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Chloroaniline	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Chlorophenyl phenyl ether	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Methylphenol	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Nitroaniline	0.33	U	0.33	0.038	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
4-Nitrophenol	0.67		0.67		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Acenaphthene	0.33		0.33	0.0094	0 0		11/17/20 17:33	11/18/20 02:13	1
Acenaphthylene	0.33		0.33	0.0033			11/17/20 17:33	11/18/20 02:13	1
Acetophenone	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Anthracene	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Atrazine	0.13		0.13		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Benzaldehyde	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Benzidine	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Benzo[a]anthracene	0.033		0.033		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Benzo[a]pyrene	0.033		0.033	0.0088			11/17/20 17:33	11/18/20 02:13	
Benzo[b]fluoranthene	0.033		0.033	0.0086			11/17/20 17:33	11/18/20 02:13	1
Benzo[g,h,i]perylene	0.33		0.33	0.0098			11/17/20 17:33	11/18/20 02:13	1
Benzo[k]fluoranthene	0.033		0.033	0.0065			11/17/20 17:33	11/18/20 02:13	· · · · · · · · · · · · · · · · · · ·
Bis(2-chloroethoxy)methane	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Bis(2-chloroethyl)ether	0.033		0.033		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Bis(2-ethylhexyl) phthalate	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	· · · · · · · · · · · · · · · · · · ·
Butyl benzyl phthalate	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Caprolactam	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Carbazole	0.33		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	
Chrysene	0.33		0.33	0.013			11/17/20 17:33	11/18/20 02:13	
Om young	0.033		0.33		mg/Kg		11/17/20 17:33	11/18/20 02:13	1

Eurofins TestAmerica, Edison

Page 40 of 81

2

3

4

6

8

10

12

4 4

4 .

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 460-740615/1-A

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740615

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	0.33	U	0.33	0.0046	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Diethyl phthalate	0.33	U	0.33	0.0048	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Dimethyl phthalate	0.33	U	0.33	0.075	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Di-n-butyl phthalate	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Di-n-octyl phthalate	0.33	U	0.33	0.018	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Fluoranthene	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Fluorene	0.33	U	0.33	0.0045	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Hexachlorobenzene	0.033	U	0.033	0.016	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Hexachlorobutadiene	0.067	U	0.067	0.0070	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Hexachlorocyclopentadiene	0.33	U	0.33	0.029	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Hexachloroethane	0.033	U	0.033	0.011	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Indeno[1,2,3-cd]pyrene	0.033	U	0.033	0.013	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Isophorone	0.13	U	0.13	0.096	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Naphthalene	0.33	U	0.33	0.0057	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Nitrobenzene	0.033	U	0.033	0.0079	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
N-Nitrosodimethylamine	0.33	U	0.33	0.031	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
N-Nitrosodi-n-propylamine	0.033	U	0.033	0.024	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
N-Nitrosodiphenylamine	0.33	U	0.33	0.027	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Pentachlorophenol	0.27	U	0.27	0.068	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Phenanthrene	0.33	U	0.33	0.0058	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Phenol	0.33	U	0.33	0.012	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Pyrene	0.33	U	0.33	0.0082	mg/Kg		11/17/20 17:33	11/18/20 02:13	1
Pyridine	0.33	U	0.33	0.047	mg/Kg		11/17/20 17:33	11/18/20 02:13	1

MB MB Tentatively Identified Compound Est. Result Qualifier Unit CAS No. Prepared Analyzed Dil Fac Aldol condensation product 0.868 A J mg/Kg 2.68 <u>11/17/20 17:33</u> <u>11/18/20 02:13</u> MB MB

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	96		10 - 123	11/17/20 17:33	11/18/20 02:13	1
2-Fluorobiphenyl	87		25 - 104	11/17/20 17:33	11/18/20 02:13	1
2-Fluorophenol (Surr)	93		18 - 106	11/17/20 17:33	11/18/20 02:13	1
Nitrobenzene-d5 (Surr)	92		19 - 105	11/17/20 17:33	11/18/20 02:13	1
Phenol-d5 (Surr)	85		26 - 101	11/17/20 17:33	11/18/20 02:13	1
Terphenyl-d14 (Surr)	101		25 - 127	11/17/20 17:33	11/18/20 02:13	1

Lab Sample ID: LCS 460-740615/2-A

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 740615

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
3.33	3.06		mg/Kg		92	65 - 110	
3.33	3.08		mg/Kg		92	64 - 110	
3.33	3.04		mg/Kg		91	63 - 115	
3.33	2.72		mg/Kg		82	49 - 109	
3.33	2.94		mg/Kg		88	58 - 113	
3.33	3.22		mg/Kg		97	64 - 112	
3.33	3.27		mg/Kg		98	63 - 113	
3.33	3.10		mg/Kg		93	66 - 113	
	Added 3.33 3.33 3.33 3.33 3.33 3.33 3.33	Added Result 3.33 3.06 3.33 3.08 3.33 3.04 3.33 2.72 3.33 2.94 3.33 3.22 3.33 3.27	Added Result Qualifier 3.33 3.06 3.33 3.08 3.33 3.04 3.33 2.72 3.33 2.94 3.33 3.22 3.33 3.27	Added Result Qualifier Unit 3.33 3.06 mg/Kg 3.33 3.08 mg/Kg 3.33 3.04 mg/Kg 3.33 2.72 mg/Kg 3.33 2.94 mg/Kg 3.33 3.22 mg/Kg 3.33 3.27 mg/Kg	Added Result Qualifier Unit D 3.33 3.06 mg/Kg mg/Kg 3.33 3.04 mg/Kg mg/Kg 3.33 2.72 mg/Kg 3.33 2.94 mg/Kg 3.33 3.22 mg/Kg 3.33 3.27 mg/Kg	Added Result Qualifier Unit D %Rec 3.33 3.06 mg/Kg 92 3.33 3.08 mg/Kg 92 3.33 3.04 mg/Kg 91 3.33 2.72 mg/Kg 82 3.33 2.94 mg/Kg 88 3.33 3.22 mg/Kg 97 3.33 3.27 mg/Kg 98	Added Result Qualifier Unit D %Rec Limits 3.33 3.06 mg/Kg 92 65 - 110 3.33 3.08 mg/Kg 92 64 - 110 3.33 3.04 mg/Kg 91 63 - 115 3.33 2.72 mg/Kg 82 49 - 109 3.33 2.94 mg/Kg 88 58 - 113 3.33 3.22 mg/Kg 97 64 - 112 3.33 3.27 mg/Kg 98 63 - 113

Eurofins TestAmerica, Edison

Page 41 of 81

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-740615/2-A

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 740615

Analysis Batch: 740687	Spike	LCS	I CS		Prep Batch: 7406 %Rec.	
Analyte	Added		Qualifier Unit	D %Rec	Limits	
2,4-Dimethylphenol	3.33	3.07	mg/Kg	92	63 - 107	
2,4-Dinitrophenol	6.67	6.65	mg/Kg	100	37 - 125	
2,4-Dinitrotoluene	3.33	3.39	mg/Kg	102	65 - 124	
2,6-Dinitrotoluene	3.33	3.35	mg/Kg	101	67 - 121	
2-Chloronaphthalene	3.33	3.02	mg/Kg	91	65 - 109	
2-Chlorophenol	3.33	3.02	mg/Kg	91	63 - 106	
2-Methylnaphthalene	3.33	2.90	mg/Kg	87	64 - 108	
2-Methylphenol	3.33	2.92	mg/Kg	88	63 - 108	
2-Nitroaniline	3.33	3.35	mg/Kg	100	59 - 119	
2-Nitrophenol	3.33	3.64	mg/Kg	109	64 - 112	
3,3'-Dichlorobenzidine	3.33	1.44	mg/Kg	43	4 - 119	
3-Nitroaniline	3.33	2.24	mg/Kg	67	31 - 102	
4,6-Dinitro-2-methylphenol	6.67	6.53	mg/Kg	98	64 - 129	
4-Bromophenyl phenyl ether	3.33	3.07	mg/Kg	92	67 - 113	
4-Chloro-3-methylphenol	3.33	2.95	mg/Kg	89	66 - 114	
4-Chloroaniline	3.33	1.36	mg/Kg	41	20 - 98	
4-Chlorophenyl phenyl ether	3.33	2.93	mg/Kg	88	66 - 110	
4-Methylphenol	3.33	2.86	mg/Kg	86	61 - 108	
4-Nitroaniline	3.33	2.65	mg/Kg	79	50 - 110	
4-Nitrophenol	6.67	6.15	mg/Kg	92	47 - 123	
Acenaphthene	3.33	2.97	mg/Kg	89	53 - 110	
Acenaphthylene	3.33	3.01	mg/Kg	90	64 - 108	
Acetophenone	3.33	2.69	mg/Kg	81	61 - 103	
Anthracene	3.33	2.95	mg/Kg	89	67 ₋ 114	
Atrazine	1.33	1.57	mg/Kg	118	44 - 145	
Benzaldehyde	1.33	1.46	mg/Kg	109	39 - 113	
Benzidine	3.33	1.84	mg/Kg	55	18 - 97	
Benzo[a]anthracene	3.33	2.78	mg/Kg	83	67 - 115	
Benzo[a]pyrene	3.33	3.28	mg/Kg	98	63 - 108	
Benzo[b]fluoranthene	3.33	3.44	mg/Kg	103	64 - 116	
Benzo[g,h,i]perylene	3.33	3.14	mg/Kg	94	61 - 113	
Benzo[k]fluoranthene	3.33	3.15	mg/Kg	94	67 - 115	
Bis(2-chloroethoxy)methane	3.33	2.83	mg/Kg	85	62 - 107	
Bis(2-chloroethyl)ether	3.33	2.78	mg/Kg	83	60 - 107	
Bis(2-ethylhexyl) phthalate	3.33	3.00	mg/Kg	90	69 - 124	
Butyl benzyl phthalate	3.33	3.18	mg/Kg	96	70 - 123	
Caprolactam	1.33	1.48	mg/Kg	111	59 - 140	
Carbazole	3.33	2.80	mg/Kg	84	64 - 113	
Chrysene	3.33	2.94	mg/Kg	88	71 - 122	
Dibenz(a,h)anthracene	3.33	3.35	mg/Kg	100	66 - 119	
Dibenzofuran	3.33	3.00	mg/Kg	90	65 - 108	
Diethyl phthalate	3.33	2.80	mg/Kg	84	63 - 109	
Dimethyl phthalate	3.33	2.91	mg/Kg	87	65 - 109	
Di-n-butyl phthalate	3.33	2.81	mg/Kg	84	66 - 114	
Di-n-octyl phthalate	3.33	3.38	mg/Kg	101	65 - 122	
Fluoranthene	3.33	2.73	mg/Kg	82	64 - 113	
Fluorene	3.33	2.73	mg/Kg	88	65 - 109	
Hexachlorobenzene	3.33	3.17	mg/Kg	95	70 - 119	
Hexachlorobutadiene				95 97		
I IEAAGIIIOI ODULAUIEI IE	3.33	3.23	mg/Kg	97	62 - 109	

Eurofins TestAmerica, Edison

Page 42 of 81

5

3

4

6

8

3

11

13

Client: AKRF Inc Job ID: 460-222909-1

LCS LCS

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-740615/2-A

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Lab Control Sample

Prep	Type: T	otal/NA
Prep	Batch:	740615
0/ D		

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorocyclopentadiene	3.33	3.13		mg/Kg		94	22 - 124	
Hexachloroethane	3.33	2.84		mg/Kg		85	61 - 102	
Indeno[1,2,3-cd]pyrene	3.33	3.34		mg/Kg		100	62 - 121	
Isophorone	3.33	2.98		mg/Kg		89	63 - 107	
Naphthalene	3.33	2.93		mg/Kg		88	63 - 106	
Nitrobenzene	3.33	3.06		mg/Kg		92	63 - 110	
N-Nitrosodimethylamine	3.33	2.78		mg/Kg		83	52 - 102	
N-Nitrosodi-n-propylamine	3.33	2.63		mg/Kg		79	61 - 108	
N-Nitrosodiphenylamine	3.33	2.96		mg/Kg		89	67 - 113	
Pentachlorophenol	6.67	5.91		mg/Kg		89	44 - 126	
Phenanthrene	3.33	2.92		mg/Kg		88	66 - 112	
Phenol	3.33	2.91		mg/Kg		87	63 - 110	
Pyrene	3.33	3.06		mg/Kg		92	71 - 122	
Pyridine	6.67	4.08		mg/Kg		61	37 - 92	

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	93		10 - 123
2-Fluorobiphenyl	86		25 - 104
2-Fluorophenol (Surr)	91		18 - 106
Nitrobenzene-d5 (Surr)	91		19 - 105
Phenol-d5 (Surr)	86		26 - 101
Terphenyl-d14 (Surr)	100		25 - 127

Lab Sample ID: 460-222910-F-1-A MS

Matrix: Solid

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Analysis Batch: 740687									Prep Batch: 740615
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1'-Biphenyl	0.36	U	3.62	1.94	*	mg/Kg	<u></u>	54	65 - 110
1,2,4,5-Tetrachlorobenzene	0.36	U	3.62	1.89	*	mg/Kg	₩	52	64 - 110
1,2-Diphenylhydrazine	0.36	U	3.62	2.04	*	mg/Kg	₩	56	63 - 115
2,2'-oxybis[1-chloropropane]	0.36	U	3.62	1.35	*	mg/Kg	₩	37	49 - 109
2,3,4,6-Tetrachlorophenol	0.36	U	3.62	2.22		mg/Kg	₩	61	58 - 113
2,4,5-Trichlorophenol	0.36	U	3.62	2.19	*	mg/Kg	₩	60	64 - 112
2,4,6-Trichlorophenol	0.14	U	3.62	2.17	*	mg/Kg	₩	60	63 - 113
2,4-Dichlorophenol	0.14	U	3.62	1.96	*	mg/Kg	₩	54	66 - 113
2,4-Dimethylphenol	0.36	U	3.62	1.89	*	mg/Kg	₩	52	63 - 107
2,4-Dinitrophenol	0.29	U	7.24	4.68		mg/Kg	₩	65	37 - 125
2,4-Dinitrotoluene	0.073	U	3.62	2.28	*	mg/Kg	₩	63	65 - 124
2,6-Dinitrotoluene	0.073	U	3.62	2.24	*	mg/Kg	₩	62	67 - 121
2-Chloronaphthalene	0.36	U	3.62	1.90	*	mg/Kg	₩	53	65 - 109
2-Chlorophenol	0.36	U	3.62	1.59	*	mg/Kg	₩	44	63 - 106
2-Methylnaphthalene	0.10	J	3.62	1.83	*	mg/Kg	₩	48	64 - 108
2-Methylphenol	0.36	U	3.62	1.81	*	mg/Kg	₩	50	63 - 108
2-Nitroaniline	0.36	U	3.62	2.28		mg/Kg	₩	63	59 - 119
2-Nitrophenol	0.36	U	3.62	1.90	*	mg/Kg	≎	52	64 - 112
3,3'-Dichlorobenzidine	0.14	U	3.62	1.32		mg/Kg	≎	36	4 - 119
3-Nitroaniline	0.36	U	3.62	1.89		mg/Kg	₩	52	31 - 102

Eurofins TestAmerica, Edison

Page 43 of 81

Client: AKRF Inc Job ID: 460-222909-1

MS MS

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Lab Sample ID: 460-222910-F-1-A MS

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Prep Batch: 740615 %Rec. Limits

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,6-Dinitro-2-methylphenol	0.29	U	7.24	4.44	*	mg/Kg	₩	61	64 - 129
4-Bromophenyl phenyl ether	0.36	U	3.62	2.02	*	mg/Kg	☆	56	67 - 113
4-Chloro-3-methylphenol	0.36	U	3.62	1.98	*	mg/Kg	≎	55	66 - 114
4-Chloroaniline	0.36	U	3.62	0.773		mg/Kg	≎	21	20 - 98
4-Chlorophenyl phenyl ether	0.36	U	3.62	1.99	*	mg/Kg	≎	55	66 - 110
4-Methylphenol	0.36	U	3.62	1.68	*	mg/Kg	≎	46	61 - 108
4-Nitroaniline	0.36	U	3.62	1.87		mg/Kg	≎	51	50 - 110
4-Nitrophenol	0.73	U	7.24	4.37		mg/Kg	≎	60	47 - 123
Acenaphthene	0.36	U	3.62	1.95		mg/Kg	≎	54	53 - 110
Acenaphthylene	0.36	U	3.62	2.01	*	mg/Kg	≎	55	64 - 108
Acetophenone	0.36	U	3.62	1.47	*	mg/Kg	≎	41	61 - 103
Anthracene	0.36	U	3.62	1.99	*	mg/Kg	₩	55	67 - 114
Atrazine	0.14	U	1.45	0.778		mg/Kg	≎	54	44 - 145
Benzaldehyde	0.36	U	1.45	0.710		mg/Kg	≎	49	39 - 113

Spike

4,6-Dinitro-2-methylphenol	0.29 U	7.24	4.44 *	mg/Kg	-	61	64 - 129
4-Bromophenyl phenyl ether	0.36 U	3.62	2.02 *	mg/Kg	₽	56	67 - 113
4-Chloro-3-methylphenol	0.36 U	3.62	1.98 *	mg/Kg	₽	55	66 - 114
4-Chloroaniline	0.36 U	3.62	0.773	mg/Kg	₩	21	20 - 98
4-Chlorophenyl phenyl ether	0.36 U	3.62	1.99 *	mg/Kg	₩	55	66 - 110
4-Methylphenol	0.36 U	3.62	1.68 *	mg/Kg	₩	46	61 - 108
4-Nitroaniline	0.36 U	3.62	1.87	mg/Kg	₽	51	50 - 110
4-Nitrophenol	0.73 U	7.24	4.37	mg/Kg	₩	60	47 - 123
Acenaphthene	0.36 U	3.62	1.95	mg/Kg	☼	54	53 - 110
Acenaphthylene	0.36 U	3.62	2.01 *	mg/Kg	₩	55	64 - 108
Acetophenone	0.36 U	3.62	1.47 *	mg/Kg	₩	41	61 - 103
Anthracene	0.36 U	3.62	1.99 *	mg/Kg	₩	55	67 - 114
Atrazine	0.14 U	1.45	0.778	mg/Kg	☼	54	44 - 145
Benzaldehyde	0.36 U	1.45	0.710	mg/Kg	₩	49	39 - 113
Benzidine	0.36 U	3.62	0.36 U*	mg/Kg	₩	0	18 - 97
Benzo[a]anthracene	0.016 J	3.62	1.87 *	mg/Kg	₩	51	67 - 115
Benzo[a]pyrene	0.010 J	3.62	2.23 *	mg/Kg	₽	61	63 - 108
Benzo[b]fluoranthene	0.011 J	3.62	2.18 *	mg/Kg	₩	60	64 - 116
Benzo[g,h,i]perylene	0.36 U	3.62	2.19	mg/Kg	☼	61	61 - 113
Benzo[k]fluoranthene	0.036 U	3.62	2.30 *	mg/Kg	₩	63	67 - 115
Bis(2-chloroethoxy)methane	0.36 U	3.62	1.61 *	mg/Kg	₩	44	62 - 107
Bis(2-chloroethyl)ether	0.036 U	3.62	1.38 *	mg/Kg	₽	38	60 - 107
Bis(2-ethylhexyl) phthalate	0.36 U	3.62	2.01 *	mg/Kg	₽	55	69 - 124
Butyl benzyl phthalate	0.36 U	3.62	2.14 *	mg/Kg	₩	59	70 - 123
Caprolactam	0.36 U	1.45	1.06	mg/Kg	₩	73	59 - 140
Carbazole	0.36 U	3.62	1.87 *	mg/Kg	₽	52	64 - 113
Chrysene	0.012 J	3.62	1.97 *	mg/Kg	₩	54	71 - 122
Dibenz(a,h)anthracene	0.036 U	3.62	2.34 *	mg/Kg	₩	65	66 - 119
Dibenzofuran	0.36 U	3.62	2.01 *	mg/Kg	₽	56	65 - 108
Diethyl phthalate	0.36 U	3.62	1.93 *	mg/Kg	₩	53	63 - 109
Dimethyl phthalate	0.36 U	3.62	2.00 *	mg/Kg	☼	55	65 - 109
Di-n-butyl phthalate	0.36 U	3.62	1.94 *	mg/Kg	₽	54	66 - 114
Di-n-octyl phthalate	0.36 U	3.62	2.26 *	mg/Kg	₩	62	65 - 122
Fluoranthene	0.022 J	3.62	1.88 *	mg/Kg	₩	51	64 - 113
Fluorene	0.36 U	3.62	1.96 *	mg/Kg	₽	54	65 - 109
Hexachlorobenzene	0.036 U	3.62	2.04 *	mg/Kg	₩	56	70 - 119
Hexachlorobutadiene	0.073 U	3.62	1.55 *	mg/Kg	₩	43	62 - 109
Hexachlorocyclopentadiene	0.36 U	3.62	1.64	mg/Kg	₽	45	22 - 124
Hexachloroethane	0.036 U	3.62	1.36 *	mg/Kg	₩	38	61 - 102
Indeno[1,2,3-cd]pyrene	0.036 U	3.62	2.38	mg/Kg	₩	66	62 - 121
Isophorone	0.14 U	3.62	1.75 *	mg/Kg	₽	48	63 - 107
Naphthalene	0.095 J	3.62	1.63 *	mg/Kg	₩	42	63 - 106
Nitrobenzene	0.036 U	3.62	1.62 *	mg/Kg	₩	45	63 - 110
N-Nitrosodimethylamine	0.36 U	3.62	1.46 *	mg/Kg	☼	40	52 - 102
N-Nitrosodi-n-propylamine	0.036 U	3.62	1.43 *	mg/Kg	₩	39	61 - 108
N-Nitrosodiphenylamine	0.36 U	3.62	2.02 *	mg/Kg	₩	56	67 - 113
Pentachlorophenol	0.29 U	7.24	4.79	mg/Kg	☼	66	44 - 126
Phenanthrene	0.030 J	3.62	2.02 *	mg/Kg	☼	55	66 - 112
Phenol	0.36 U	3.62	1.61 *	mg/Kg	₽	44	63 - 110

Eurofins TestAmerica, Edison

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-222910-F-1-A MS

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 740615

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Pyrene 0.021 J 3.62 2.10 mg/Kg 57 71 - 122 Pyridine 0.36 U 7.24 0.36 U* mg/Kg 0 37 - 92

MS MS Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol (Surr) 61 10 - 123 2-Fluorobiphenyl 49 25 - 104 2-Fluorophenol (Surr) 18 - 106 43 Nitrobenzene-d5 (Surr) 42 19 - 105 Phenol-d5 (Surr) 45 26 - 101 25 - 127 Terphenyl-d14 (Surr) 61

Client Sample ID: Matrix Spike Duplicate Lab Sample ID: 460-222910-F-1-B MSD

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 740687									Prep Ba	atch: 74	1 0615
	Sample	Sample	Spike	_	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
1,1'-Biphenyl	0.36	U	3.62	2.01		mg/Kg	⇒	55	65 - 110	3	30
1,2,4,5-Tetrachlorobenzene	0.36	U	3.62	1.95	*	mg/Kg	₩	54	64 - 110	3	30
1,2-Diphenylhydrazine	0.36	U	3.62	2.07	*	mg/Kg	☼	57	63 - 115	1	30
2,2'-oxybis[1-chloropropane]	0.36	U	3.62	1.54	*	mg/Kg	₽	42	49 - 109	13	30
2,3,4,6-Tetrachlorophenol	0.36	U	3.62	2.27		mg/Kg	☼	63	58 - 113	2	30
2,4,5-Trichlorophenol	0.36	U	3.62	2.26	*	mg/Kg	☼	62	64 - 112	3	30
2,4,6-Trichlorophenol	0.14	U	3.62	2.23	*	mg/Kg	☼	62	63 - 113	3	30
2,4-Dichlorophenol	0.14	U	3.62	2.11	*	mg/Kg	☼	58	66 - 113	8	30
2,4-Dimethylphenol	0.36	U	3.62	2.00	*	mg/Kg	☼	55	63 - 107	6	30
2,4-Dinitrophenol	0.29	U	7.24	5.17		mg/Kg	∌	71	37 - 125	10	30
2,4-Dinitrotoluene	0.073	U	3.62	2.49		mg/Kg	₩	69	65 - 124	9	30
2,6-Dinitrotoluene	0.073	U	3.62	2.35	*	mg/Kg	₩	65	67 - 121	4	30
2-Chloronaphthalene	0.36	U	3.62	2.01	*	mg/Kg	₩	55	65 - 109	5	30
2-Chlorophenol	0.36	U	3.62	1.83	*	mg/Kg	☼	50	63 - 106	14	30
2-Methylnaphthalene	0.10	J	3.62	2.01	*	mg/Kg	☼	53	64 - 108	10	30
2-Methylphenol	0.36	U	3.62	2.01	*	mg/Kg	₩	55	63 - 108	10	30
2-Nitroaniline	0.36	U	3.62	2.36		mg/Kg	₩	65	59 - 119	4	30
2-Nitrophenol	0.36	U	3.62	2.06	*	mg/Kg	☼	57	64 - 112	8	30
3,3'-Dichlorobenzidine	0.14	U	3.62	1.86	*	mg/Kg	₩	51	4 - 119	34	30
3-Nitroaniline	0.36	U	3.62	2.23		mg/Kg	☼	61	31 - 102	16	30
4,6-Dinitro-2-methylphenol	0.29	U	7.24	4.50	*	mg/Kg	₩	62	64 - 129	2	30
4-Bromophenyl phenyl ether	0.36	U	3.62	2.05	*	mg/Kg	∌	57	67 - 113	1	30
4-Chloro-3-methylphenol	0.36	U	3.62	2.09	*	mg/Kg	☼	58	66 - 114	6	30
4-Chloroaniline	0.36	U	3.62	1.72	*	mg/Kg	₩	48	20 - 98	76	30
4-Chlorophenyl phenyl ether	0.36	U	3.62	2.11	*	mg/Kg	₩	58	66 - 110	6	30
4-Methylphenol	0.36	U	3.62	1.96	*	mg/Kg	₩	54	61 - 108	16	30
4-Nitroaniline	0.36	U	3.62	2.25		mg/Kg	₩	62	50 - 110	18	30
4-Nitrophenol	0.73	U	7.24	4.84		mg/Kg	₩	67	47 - 123	10	30
Acenaphthene	0.36	U	3.62	2.03		mg/Kg	☼	56	53 - 110	4	30
Acenaphthylene	0.36	U	3.62	2.09	*	mg/Kg	₩	58	64 - 108	4	30
Acetophenone	0.36	U	3.62	1.70	*	mg/Kg	☼	47	61 - 103	14	30
Anthracene	0.36	U	3.62	2.08	*	mg/Kg	₩	57	67 - 114	4	30

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-222910-F-1-B MSD

Matrix: Solid

Analysis Batch: 740687

Client Sample ID: Matrix Spike Duplicate

·	Prep Type: Prep Batch	
	%Rec.	RPD

Analyte	-	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Atrazine	0.14	U	1.45	1.11	*	mg/Kg	-	76	44 - 145	35	30
Benzaldehyde	0.36	U	1.45	0.867		mg/Kg	☆	60	39 - 113	20	30
Benzidine	0.36	U	3.62	0.36	U *	mg/Kg	≎	0	18 - 97	NC	30
Benzo[a]anthracene	0.016	J	3.62	1.96	*	mg/Kg	≎	54	67 - 115	5	30
Benzo[a]pyrene	0.010	J	3.62	2.30		mg/Kg	☆	63	63 - 108	3	30
Benzo[b]fluoranthene	0.011	J	3.62	2.45		mg/Kg	≎	67	64 - 116	12	30
Benzo[g,h,i]perylene	0.36	U	3.62	2.28		mg/Kg	≎	63	61 - 113	4	30
Benzo[k]fluoranthene	0.036	U	3.62	2.20	*	mg/Kg	☼	61	67 - 115	4	30
Bis(2-chloroethoxy)methane	0.36	U	3.62	1.79	*	mg/Kg	≎	49	62 - 107	11	30
Bis(2-chloroethyl)ether	0.036	U	3.62	1.51	*	mg/Kg	≎	42	60 - 107	9	30
Bis(2-ethylhexyl) phthalate	0.36	U	3.62	2.11	*	mg/Kg	≎	58	69 - 124	5	30
Butyl benzyl phthalate	0.36	U	3.62	2.16	*	mg/Kg	≎	60	70 - 123	1	30
Caprolactam	0.36	U	1.45	1.29		mg/Kg	≎	89	59 - 140	19	30
Carbazole	0.36	U	3.62	2.03	*	mg/Kg	☼	56	64 - 113	8	30
Chrysene	0.012	J	3.62	2.07	*	mg/Kg	☼	57	71 - 122	5	30
Dibenz(a,h)anthracene	0.036	U	3.62	2.41		mg/Kg	≎	66	66 - 119	3	30
Dibenzofuran	0.36	U	3.62	2.10	*	mg/Kg		58	65 - 108	5	30
Diethyl phthalate	0.36	U	3.62	2.08	*	mg/Kg	₩	57	63 - 109	8	30
Dimethyl phthalate	0.36	U	3.62	2.07	*	mg/Kg	≎	57	65 - 109	4	30
Di-n-butyl phthalate	0.36	U	3.62	2.09	*	mg/Kg	☼	58	66 - 114	8	30
Di-n-octyl phthalate	0.36	U	3.62	2.34		mg/Kg	≎	65	65 - 122	3	30
Fluoranthene	0.022	J	3.62	2.07	*	mg/Kg	☼	56	64 - 113	9	30
Fluorene	0.36	U	3.62	2.06	*	mg/Kg	≎	57	65 - 109	5	30
Hexachlorobenzene	0.036	U	3.62	2.11	*	mg/Kg	≎	58	70 - 119	3	30
Hexachlorobutadiene	0.073	U	3.62	1.69	*	mg/Kg	≎	47	62 - 109	9	30
Hexachlorocyclopentadiene	0.36	U	3.62	1.65		mg/Kg	≎	45	22 - 124	1	30
Hexachloroethane	0.036	U	3.62	1.41	*	mg/Kg	☼	39	61 - 102	4	30
Indeno[1,2,3-cd]pyrene	0.036	U	3.62	2.40		mg/Kg	☼	66	62 - 121	1	30
Isophorone	0.14	U	3.62	1.87	*	mg/Kg	☼	52	63 - 107	7	30
Naphthalene	0.095	J	3.62	1.82	*	mg/Kg	₩	48	63 - 106	11	30
Nitrobenzene	0.036	U	3.62	1.83	*	mg/Kg	☼	51	63 - 110	12	30
N-Nitrosodimethylamine	0.36	U	3.62	1.60	*	mg/Kg	₩	44	52 - 102	9	30
N-Nitrosodi-n-propylamine	0.036	U	3.62	1.68	*	mg/Kg	☼	46	61 - 108	16	30
N-Nitrosodiphenylamine	0.36	U	3.62	2.07	*	mg/Kg	₩	57	67 - 113	3	30
Pentachlorophenol	0.29	U	7.24	4.73		mg/Kg	₽	65	44 - 126	1	30
Phenanthrene	0.030	J	3.62	2.09	*	mg/Kg	₽	57	66 - 112	3	30
Phenol	0.36	U	3.62	1.84	*	mg/Kg	₩	51	63 - 110	13	30
Pyrene	0.021		3.62	2.03		mg/Kg		55	71 - 122	3	30
Pyridine	0.36	U	7.24	0.296	J *	mg/Kg	Ċ	4	37 - 92	NC	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	65		10 - 123
2-Fluorobiphenyl	51		25 - 104
2-Fluorophenol (Surr)	50		18 - 106
Nitrobenzene-d5 (Surr)	46		19 - 105
Phenol-d5 (Surr)	52		26 - 101

60

Terphenyl-d14 (Surr)

Eurofins TestAmerica, Edison

Page 46 of 81

25 - 127

Project/Site: Flushing Industrial Park

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 460-740543/17 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 740543

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared GRO 2.5 11/17/20 19:40 2.5 U 2.5 mg/Kg 50

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac a,a,a-Trifluorotoluene 103 73 - 150 11/17/20 19:40

Lab Sample ID: LCS 460-740543/13 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 740543

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 80 - 120 GRO 20.0 20.9 mg/Kg 105

LCS LCS

Surrogate %Recovery Qualifier Limits 73 - 150 a.a.a-Trifluorotoluene 81

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 460-740543/14

Matrix: Solid

Analysis Batch: 740543

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit **GRO** 20.0 22.0 mg/Kg 110 80 - 120

LCSD LCSD

%Recovery Qualifier Surrogate Limits a,a,a-Trifluorotoluene 105 73 - 150

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 460-740831/1-A

Matrix: Solid

Analysis Batch: 741100 Prep Batch: 740831 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac C10-C44 8.7 U 8.7 0.84 mg/Kg 11/18/20 10:19 11/19/20 10:10

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 103 10 - 150 11/18/20 10:19 11/19/20 10:10

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 460-740831/2-A Matrix: Solid

Analysis Batch: 741100

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits C10-C44 86.7 77.4 mg/Kg 89 63 - 111

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 125 10 - 150

Eurofins TestAmerica, Edison

11/23/2020

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 740831

Client Sample ID: Method Blank

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 460-740831/3-A

Matrix: Solid

Analyte

C10-C44

Analysis Batch: 741100

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740831

%Rec. **RPD**

RPD Limits Limit

LCSD LCSD Spike Added Result Qualifier Unit D %Rec 86.7 59.4 mg/Kg 69 63 - 111 26 30

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 10 - 150 97

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 460-740817/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 741016

Prep Type: Total/NA

Prep Batch: 740817

7 manyolo Batom 1 11010	МВ	МВ						Trop Datom	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.0067	U	0.0067	0.0011	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
4,4'-DDD	0.0067	U	0.0067	0.0011	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
4,4'-DDE	0.0067	U	0.0067	0.00079	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
4,4'-DDE	0.0067	U	0.0067	0.00079	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
4,4'-DDT	0.0067	U	0.0067	0.0012	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
4,4'-DDT	0.0067	U	0.0067	0.0012	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Aldrin	0.0067	U	0.0067	0.0010	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Aldrin	0.0067	U	0.0067	0.0010	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
alpha-BHC	0.0020	U	0.0020	0.00068	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
alpha-BHC	0.0020	U	0.0020	0.00068	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
cis-Chlordane	0.0067	U	0.0067	0.0011	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
cis-Chlordane	0.0067	U	0.0067	0.0011	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
beta-BHC	0.0020	U	0.0020	0.00075	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
beta-BHC	0.0020	U	0.0020	0.00075	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Chlordane (technical)	0.067	U	0.067	0.016	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Chlordane (technical)	0.067	U	0.067	0.016	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
delta-BHC	0.0020	U	0.0020	0.00041	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
delta-BHC	0.0020	U	0.0020	0.00041	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Dieldrin	0.0020	U	0.0020	0.00087	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Dieldrin	0.0020	U	0.0020	0.00087	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan I	0.0067	U	0.0067	0.0010	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan I	0.0067	U	0.0067	0.0010	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan II	0.0067	U	0.0067	0.0017	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan II	0.0067	U	0.0067	0.0017	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan sulfate	0.0067	U	0.0067	0.00084	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endosulfan sulfate	0.0067	U	0.0067	0.00084	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin	0.0067	U	0.0067	0.00096	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin	0.0067	U	0.0067	0.00096	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin aldehyde	0.0067	U	0.0067	0.0016	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin aldehyde	0.0067	U	0.0067	0.0016	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin ketone	0.0067	U	0.0067	0.0013	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
Endrin ketone	0.0067	U	0.0067	0.0013	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
gamma-BHC (Lindane)	0.0020	U	0.0020	0.00062	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
gamma-BHC (Lindane)	0.0020	U	0.0020	0.00062	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
trans-Chlordane	0.0067	U	0.0067	0.0012	mg/Kg		11/18/20 09:33	11/19/20 05:36	1
trans-Chlordane	0.0067	U	0.0067	0.0012	mg/Kg		11/18/20 09:33	11/19/20 05:36	1

Eurofins TestAmerica, Edison

11/23/2020

Page 48 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 460-740817/1-A

Matrix: Solid

Analysis Batch: 741016

Client Sample ID: Method Blank Prep Type: Total/NA

11/19/20 05:36

Prep Batch: 740817

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.0067 Heptachlor U 0.0067 0.00079 mg/Kg 11/18/20 09:33 11/19/20 05:36 Heptachlor 0.0067 0.0067 0.00079 mg/Kg 11/18/20 09:33 11/19/20 05:36 Heptachlor epoxide 0.0067 0.0010 mg/Kg 11/18/20 09:33 11/19/20 05:36 0.0067 U Heptachlor epoxide 0.0067 U 0.0067 0.0010 mg/Kg 11/18/20 09:33 11/19/20 05:36 11/18/20 09:33 11/19/20 05:36 Methoxychlor 0.0067 U 0.0067 0.0015 mg/Kg Methoxychlor 0.0067 U 0.0067 0.0015 mg/Kg 11/18/20 09:33 11/19/20 05:36 0.024 mg/Kg Toxaphene 0.067 U 0.067 11/18/20 09:33 11/19/20 05:36

MB MB

0.067 U

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 84 28 - 148 11/18/20 09:33 11/19/20 05:36 DCB Decachlorobiphenyl 93 28 - 148 11/18/20 09:33 11/19/20 05:36 83 34 - 118 Tetrachloro-m-xylene 11/18/20 09:33 11/19/20 05:36 87 34 - 118 11/18/20 09:33 11/19/20 05:36 Tetrachloro-m-xylene

0.067

0.024 mg/Kg

Lab Sample ID: LCS 460-740817/2-A

Matrix: Solid

Endosulfan sulfate

Endosulfan sulfate

Endrin aldehyde

Endrin aldehyde

Endrin

Endrin

Toxaphene

Client Sample ID: Lab Control Sample

11/18/20 09:33

Prep Type: Total/NA

Analysis Batch: 741016 Prep Batch: 740817 Spike LCS LCS %Rec. Added Result Qualifier Limits **Analyte** Unit D %Rec 4,4'-DDD 0.133 0.123 92 70 - 140 mg/Kg 4,4'-DDD 0.133 0.127 95 mg/Kg 70 - 1400.133 0.122 mg/Kg 91 71 - 137

4,4'-DDE 4,4'-DDE 0.127 95 71 - 137 0.133 mg/Kg 4,4'-DDT 0.133 0.128 mg/Kg 96 63 - 1314,4'-DDT 0.133 0.124 mg/Kg 93 63 - 131Aldrin 92 0.133 0.123 mg/Kg 74 - 140Aldrin 95 0.133 0.126 mg/Kg 74 - 140 96 72 - 142 alpha-BHC 0.133 0.129 mg/Kg alpha-BHC 0.133 0.134 mg/Kg 100 72 - 142 cis-Chlordane 89 70 - 136 0.133 0.119 mg/Kg cis-Chlordane 0.128 96 70 - 136 0.133 mg/Kg beta-BHC 90 0.133 0.120 mg/Kg 65 - 137beta-BHC 0.133 0.132 99 65 - 137 mg/Kg delta-BHC 0.133 0.130 mg/Kg 98 70 - 143 delta-BHC 0.133 0.135 mg/Kg 101 70 - 143 Dieldrin 0.133 0.122 mg/Kg 91 70 - 135 Dieldrin 0.133 98 70 - 135 0.131 mg/Kg Endosulfan I 0.133 0.118 mg/Kg 89 68 - 135Endosulfan I 0.133 0.129 mg/Kg 96 68 - 135 Endosulfan II 0.133 0.128 mg/Kg 96 64 - 130 100 Endosulfan II 0.133 0.133 64 - 130 mg/Kg

0.133

0.133

0.133

0.133

0.133

0.133

0.123

0.130

0.123

0.132

0.117

0.120

Eurofins TestAmerica, Edison

66 - 143

66 - 143

68 - 136

68 - 136

68 - 132

68 - 132

92

97

92

99

88

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Project/Site: Flushing Industrial Park

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-740817/2-A

Matrix: Solid

Analysis Batch: 741016

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 740817 %Rec.

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Endrin ketone	0.133	0.122		mg/Kg		91	60 - 150
Endrin ketone	0.133	0.127		mg/Kg		95	60 - 150
gamma-BHC (Lindane)	0.133	0.128		mg/Kg		96	70 - 134
gamma-BHC (Lindane)	0.133	0.133		mg/Kg		100	70 - 134
trans-Chlordane	0.133	0.121		mg/Kg		91	71 - 137
trans-Chlordane	0.133	0.129		mg/Kg		97	71 - 137
Heptachlor	0.133	0.123		mg/Kg		92	69 - 134
Heptachlor	0.133	0.125		mg/Kg		94	69 - 134
Heptachlor epoxide	0.133	0.120		mg/Kg		90	70 - 135
Heptachlor epoxide	0.133	0.127		mg/Kg		95	70 - 135
Methoxychlor	0.133	0.112		mg/Kg		84	57 ₋ 135
Methoxychlor	0.133	0.106		mg/Kg		80	57 - 135

LCS LCS

Surrogate	%Recovery C	ualifier	Limits
DCB Decachlorobiphenyl	70		28 - 148
DCB Decachlorobiphenyl	73		28 - 148
Tetrachloro-m-xylene	68		34 - 118
Tetrachloro-m-xylene	74		34 - 118

Lab Sample ID: LCSD 460-740817/3-A Client Sample ID: Lab C

Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 740817

Analysis Batch: 741016							Prep Ba	atch: 74	40817
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.133	0.122		mg/Kg		91	70 - 140	1	30
4,4'-DDD	0.133	0.129		mg/Kg		96	70 - 140	1	30
4,4'-DDE	0.133	0.120		mg/Kg		90	71 - 137	1	30
4,4'-DDE	0.133	0.125		mg/Kg		94	71 - 137	1	30
4,4'-DDT	0.133	0.126		mg/Kg		95	63 - 131	1	30
4,4'-DDT	0.133	0.125		mg/Kg		94	63 - 131	1	30
Aldrin	0.133	0.121		mg/Kg		90	74 - 140	2	30
Aldrin	0.133	0.127		mg/Kg		95	74 - 140	1	30
alpha-BHC	0.133	0.124		mg/Kg		93	72 - 142	3	30
alpha-BHC	0.133	0.131		mg/Kg		99	72 - 142	2	30
cis-Chlordane	0.133	0.117		mg/Kg		88	70 - 136	2	30
cis-Chlordane	0.133	0.127		mg/Kg		95	70 - 136	1	30
beta-BHC	0.133	0.118		mg/Kg		89	65 - 137	2	30
beta-BHC	0.133	0.132		mg/Kg		99	65 - 137	0	30
delta-BHC	0.133	0.127		mg/Kg		96	70 - 143	2	30
delta-BHC	0.133	0.134		mg/Kg		100	70 - 143	1	30
Dieldrin	0.133	0.120		mg/Kg		90	70 - 135	1	30
Dieldrin	0.133	0.131		mg/Kg		98	70 - 135	0	30
Endosulfan I	0.133	0.116		mg/Kg		87	68 - 135	2	30
Endosulfan I	0.133	0.127		mg/Kg		95	68 - 135	1	30
Endosulfan II	0.133	0.126		mg/Kg		95	64 - 130	1	30
Endosulfan II	0.133	0.134		mg/Kg		100	64 - 130	0	30
Endosulfan sulfate	0.133	0.121		mg/Kg		91	66 - 143	1	30
Endosulfan sulfate	0.133	0.128		mg/Kg		96	66 - 143	1	30

Eurofins TestAmerica, Edison

Page 50 of 81

5

3

6

8

11

13

14

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-740817/3-A

Matrix: Solid

Analysis Batch: 741016

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740817

Analysis balch: 741016							Prep Da	1 0017	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin	0.133	0.121		mg/Kg		91	68 - 136	1	30
Endrin	0.133	0.133		mg/Kg		100	68 - 136	1	30
Endrin aldehyde	0.133	0.115		mg/Kg		87	68 - 132	1	30
Endrin aldehyde	0.133	0.120		mg/Kg		90	68 - 132	0	30
Endrin ketone	0.133	0.121		mg/Kg		90	60 - 150	1	30
Endrin ketone	0.133	0.125		mg/Kg		93	60 - 150	2	30
gamma-BHC (Lindane)	0.133	0.125		mg/Kg		94	70 - 134	2	30
gamma-BHC (Lindane)	0.133	0.132		mg/Kg		99	70 - 134	0	30
trans-Chlordane	0.133	0.119		mg/Kg		89	71 - 137	2	30
trans-Chlordane	0.133	0.128		mg/Kg		96	71 - 137	0	30
Heptachlor	0.133	0.121		mg/Kg		91	69 - 134	2	30
Heptachlor	0.133	0.126		mg/Kg		94	69 - 134	1	30
Heptachlor epoxide	0.133	0.118		mg/Kg		88	70 - 135	2	30
Heptachlor epoxide	0.133	0.127		mg/Kg		95	70 - 135	0	30
Methoxychlor	0.133	0.111		mg/Kg		83	57 - 135	1	30
Methoxychlor	0.133	0.105		mg/Kg		79	57 - 135	1	30

 LCSD
 LCSD

 %Recovery
 Qualifier
 Limits

 70
 28 - 144

 DCB Decachlorobiphenyl
 70
 28 - 148

 DCB Decachlorobiphenyl
 73
 28 - 148

 Tetrachloro-m-xylene
 66
 34 - 118

 Tetrachloro-m-xylene
 73
 34 - 118

Lab Sample ID: 460-222916-A-1-E MS

Matrix: Solid

Surrogate

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 741016	Sample	Sample	Spike	MS	MS				Prep Batch: 740817 %Rec.
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.016		0.151	0.160		mg/Kg	— <u></u>	95	70 - 140
4,4'-DDD	0.016		0.151	0.167		mg/Kg	☼	100	70 - 140
4,4'-DDE	0.0036	J	0.151	0.130		mg/Kg	≎	84	71 - 137
4,4'-DDE	0.0036	J	0.151	0.138		mg/Kg	☼	90	71 - 137
4,4'-DDT	0.013		0.151	0.135		mg/Kg	☼	81	63 - 131
4,4'-DDT	0.013		0.151	0.132		mg/Kg	≎	79	63 - 131
Aldrin	0.0076	U	0.151	0.107	*	mg/Kg	☼	71	74 - 140
Aldrin	0.0076	U	0.151	0.112		mg/Kg	≎	74	74 - 140
alpha-BHC	0.0023	U	0.151	0.126		mg/Kg	≎	83	72 - 142
alpha-BHC	0.0023	U	0.151	0.130		mg/Kg	☼	86	72 - 142
cis-Chlordane	0.0076	U	0.151	0.126		mg/Kg	☼	83	70 - 136
cis-Chlordane	0.0076	U	0.151	0.134		mg/Kg	☼	89	70 - 136
beta-BHC	0.0023	U	0.151	0.131		mg/Kg	☼	87	65 - 137
beta-BHC	0.0023	U	0.151	0.137		mg/Kg	☼	91	65 - 137
delta-BHC	0.0023	U	0.151	0.137		mg/Kg	☼	91	70 - 143
delta-BHC	0.0023	U	0.151	0.140		mg/Kg	☼	93	70 - 143
Dieldrin	0.0023	U	0.151	0.130		mg/Kg	☼	86	70 - 135
Dieldrin	0.0023	U	0.151	0.137		mg/Kg	☼	91	70 - 135
Endosulfan I	0.0076	U	0.151	0.126		mg/Kg	☼	84	68 - 135
Endosulfan I	0.0076	U	0.151	0.134		mg/Kg	☼	89	68 - 135

Eurofins TestAmerica, Edison

Page 51 of 81

6

3

5

8

46

11

13

14

113

11/23/2020

Spike

Client: AKRF Inc Job ID: 460-222909-1

MS MS

Project/Site: Flushing Industrial Park

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Sample Sample

Lab Sample ID: 460-222916-A-1-E MS

Matrix: Solid

Analysis Batch: 741016

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 740817 %Rec.

									,	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endosulfan II	0.0076	U	0.151	0.135		mg/Kg	<u></u>	89	64 - 130	
Endosulfan II	0.0076	U	0.151	0.139		mg/Kg	☼	92	64 - 130	
Endosulfan sulfate	0.0076	U	0.151	0.119		mg/Kg	☼	79	66 - 143	
Endosulfan sulfate	0.0076	U	0.151	0.124		mg/Kg	☼	82	66 - 143	
Endrin	0.0076	U	0.151	0.132		mg/Kg	☼	88	68 - 136	
Endrin	0.0076	U	0.151	0.142		mg/Kg	☼	95	68 - 136	
Endrin aldehyde	0.0076	U	0.151	0.0980	*	mg/Kg	☼	65	68 - 132	
Endrin aldehyde	0.0076	U	0.151	0.103		mg/Kg	☼	69	68 - 132	
Endrin ketone	0.0076	U	0.151	0.124		mg/Kg	☼	82	60 - 150	
Endrin ketone	0.0076	U	0.151	0.127		mg/Kg	☼	84	60 - 150	
gamma-BHC (Lindane)	0.0023	U	0.151	0.128		mg/Kg	☼	85	70 - 134	
gamma-BHC (Lindane)	0.0023	U	0.151	0.132		mg/Kg	☼	88	70 - 134	
trans-Chlordane	0.0076	U	0.151	0.125		mg/Kg	☼	83	71 - 137	
trans-Chlordane	0.0076	U	0.151	0.132		mg/Kg	₩	88	71 - 137	
Heptachlor	0.0076	U	0.151	0.124		mg/Kg	☼	83	69 - 134	
Heptachlor	0.0076	U	0.151	0.126		mg/Kg	☼	84	69 - 134	
Heptachlor epoxide	0.0076	U	0.151	0.123		mg/Kg	☼	82	70 - 135	
Heptachlor epoxide	0.0076	U	0.151	0.133		mg/Kg	☼	88	70 - 135	
Methoxychlor	0.0076	U	0.151	0.120		mg/Kg	☼	80	57 ₋ 135	
Methoxychlor	0.0076	U	0.151	0.109		mg/Kg	☼	72	57 ₋ 135	

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	56		28 - 148
DCB Decachlorobiphenyl	66		28 - 148
Tetrachloro-m-xylene	50		34 - 118
Tetrachloro-m-xylene	53		34 - 118

Lab Sample ID: 460-222916-A-1-F MSD

Matrix: Solid

Analysis Batch: 741016

Client Sample	ID:	Matrix S	Spike	Dup	licate
		Dron	Typo	· Tot	al/NIA

Prep Batch: 740817

Allalysis Datell. 141010									i icp be	<i>1</i> (0): <i>1</i> -	TOO 17
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.016		0.151	0.159		mg/Kg	*	95	70 - 140	0	30
4,4'-DDD	0.016		0.151	0.171		mg/Kg	☼	103	70 - 140	3	30
4,4'-DDE	0.0036	J	0.151	0.131		mg/Kg	☼	85	71 - 137	1	30
4,4'-DDE	0.0036	J	0.151	0.142		mg/Kg	☼	92	71 - 137	3	30
4,4'-DDT	0.013		0.151	0.133		mg/Kg	☼	80	63 - 131	1	30
4,4'-DDT	0.013		0.151	0.136		mg/Kg	☼	82	63 - 131	3	30
Aldrin	0.0076	U	0.151	0.0874	*	mg/Kg	☼	58	74 - 140	20	30
Aldrin	0.0076	U	0.151	0.0932	*	mg/Kg	☼	62	74 - 140	18	30
alpha-BHC	0.0023	U	0.151	0.123		mg/Kg	☼	82	72 - 142	2	30
alpha-BHC	0.0023	U	0.151	0.129		mg/Kg	☼	86	72 - 142	1	30
cis-Chlordane	0.0076	U	0.151	0.126		mg/Kg	☼	83	70 - 136	0	30
cis-Chlordane	0.0076	U	0.151	0.136		mg/Kg	☼	90	70 - 136	2	30
beta-BHC	0.0023	U	0.151	0.132		mg/Kg	₩	87	65 - 137	1	30
beta-BHC	0.0023	U	0.151	0.138		mg/Kg	☼	91	65 - 137	0	30
delta-BHC	0.0023	U	0.151	0.135		mg/Kg	☼	90	70 - 143	1	30
delta-BHC	0.0023	U	0.151	0.142		mg/Kg	☼	94	70 - 143	1	30
• Control of the cont											

Eurofins TestAmerica, Edison

Page 52 of 81

Project/Site: Flushing Industrial Park

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 460-222916-A-1-F MSD

Matrix: Solid

Analysis Batch: 741016

Client Sample ID: Matrix Spike Duplicate

Prep Type	: Total/NA	
Prep Bato	h: 740817	
0/ 🗖	555	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dieldrin	0.0023	U	0.151	0.130		mg/Kg	-	86	70 - 135	0	30
Dieldrin	0.0023	U	0.151	0.141		mg/Kg	☼	93	70 - 135	2	30
Endosulfan I	0.0076	U	0.151	0.125		mg/Kg	☼	83	68 - 135	1	30
Endosulfan I	0.0076	U	0.151	0.137		mg/Kg	☼	91	68 - 135	2	30
Endosulfan II	0.0076	U	0.151	0.134		mg/Kg	☼	89	64 - 130	1	30
Endosulfan II	0.0076	U	0.151	0.143		mg/Kg	☼	95	64 - 130	3	30
Endosulfan sulfate	0.0076	U	0.151	0.117		mg/Kg	☼	77	66 - 143	2	30
Endosulfan sulfate	0.0076	U	0.151	0.126		mg/Kg	☼	83	66 - 143	2	30
Endrin	0.0076	U	0.151	0.130		mg/Kg	₽	86	68 - 136	2	30
Endrin	0.0076	U	0.151	0.146		mg/Kg	☼	97	68 - 136	2	30
Endrin aldehyde	0.0076	U	0.151	0.0999	*	mg/Kg	☼	66	68 - 132	2	30
Endrin aldehyde	0.0076	U	0.151	0.109		mg/Kg	☼	72	68 - 132	5	30
Endrin ketone	0.0076	U	0.151	0.122		mg/Kg	☼	81	60 - 150	1	30
Endrin ketone	0.0076	U	0.151	0.130		mg/Kg	☼	86	60 - 150	3	30
gamma-BHC (Lindane)	0.0023	U	0.151	0.126		mg/Kg	☼	84	70 - 134	1	30
gamma-BHC (Lindane)	0.0023	U	0.151	0.133		mg/Kg	☼	88	70 - 134	0	30
trans-Chlordane	0.0076	U	0.151	0.126		mg/Kg	☼	84	71 - 137	1	30
trans-Chlordane	0.0076	U	0.151	0.134		mg/Kg	☼	89	71 - 137	1	30
Heptachlor	0.0076	U	0.151	0.121		mg/Kg	☼	81	69 - 134	2	30
Heptachlor	0.0076	U	0.151	0.127		mg/Kg	☼	84	69 - 134	0	30
Heptachlor epoxide	0.0076	U	0.151	0.123		mg/Kg	☼	82	70 - 135	0	30
Heptachlor epoxide	0.0076	U	0.151	0.135		mg/Kg	☼	90	70 - 135	1	30
Methoxychlor	0.0076	U	0.151	0.117		mg/Kg	☼	78	57 - 135	2	30
Methoxychlor	0.0076	U	0.151	0.111		mg/Kg	∌	74	57 - 135	2	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	58		28 - 148
DCB Decachlorobiphenyl	67		28 - 148
Tetrachloro-m-xylene	52		34 - 118
Tetrachloro-m-xvlene	52		34 - 118

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MR MR

Lab Sample ID: MB 460-740815/1-A

Matrix: Solid

Analysis Batch: 741035

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740815

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1016	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1221	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1221	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1232	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1232	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1242	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1242	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1248	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1248	0.067	U	0.067	0.0089	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1254	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1

Eurofins TestAmerica, Edison

Page 53 of 81 11/23/2020

Project/Site: Flushing Industrial Park

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 460-740815/1-A

Matrix: Solid

Analysis Batch: 741035

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740815

•								•	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1254	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1260	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1260	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1268	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor 1268	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor-1262	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Aroclor-1262	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Polychlorinated biphenyls, Total	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1
Polychlorinated biphenyls, Total	0.067	U	0.067	0.0092	mg/Kg		11/18/20 09:29	11/19/20 06:54	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	105	10 - 150	11/18/20 09:29	11/19/20 06:54	1
DCB Decachlorobiphenyl	103	10 - 150	11/18/20 09:29	11/19/20 06:54	1
Tetrachloro-m-xylene	98	58 - 145	11/18/20 09:29	11/19/20 06:54	1
Tetrachloro-m-xylene	103	58 - 145	11/18/20 09:29	11/19/20 06:54	1

Lab Sample ID: LCS 460-740815/2-A

Matrix: Solid

Analysis Batch: 741035

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740815

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Aroclor 1016 0.333 0.280 mg/Kg 84 65 - 133 Aroclor 1016 0.333 0.295 mg/Kg 89 65 - 133 Aroclor 1260 0.333 0.292 mg/Kg 88 71 - 150 Aroclor 1260 0.333 0.277 mg/Kg 83 71 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits	
DCB Decachlorobiphenyl	93		10 - 150	
DCB Decachlorobiphenyl	92		10 - 150	
Tetrachloro-m-xylene	87		58 - 145	
Tetrachloro-m-xylene	91		58 - 145	

Lab Sample ID: LCSD 460-740815/3-A

Matrix: Solid

Analysis Batch: 741035

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 740815

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aroclor 1016	0.333	0.283		mg/Kg		85	65 - 133	1	30	
Aroclor 1016	0.333	0.298		mg/Kg		89	65 - 133	1	30	
Aroclor 1260	0.333	0.295		mg/Kg		89	71 - 150	1	30	
Aroclor 1260	0.333	0.285		mg/Kg		85	71 - 150	3	30	

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
DCB Decachlorobiphenyl	94		10 - 150
DCB Decachlorobiphenyl	92		10 - 150
Tetrachloro-m-xylene	87		58 - 145
Tetrachloro-m-xylene	91		58 - 145

Eurofins TestAmerica, Edison

Page 54 of 81

3

<u>+</u>

6

0

10

14

Project/Site: Flushing Industrial Park

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 460-222916-A-1-B MS

Lab Sample ID: 460-222916-A-1-C MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 741035

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 740815

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aroclor 1016	0.076	U	0.376	0.300		mg/Kg	<u></u>	80	65 - 133
Aroclor 1016	0.076	U	0.376	0.331		mg/Kg	₩	88	65 - 133
Aroclor 1260	0.076	U	0.376	0.325		mg/Kg	☼	86	71 - 150
Aroclor 1260	0.076	U	0.376	0.327		mg/Kg	₩	87	71 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	75		10 - 150
DCB Decachlorobiphenyl	81		10 - 150
Tetrachloro-m-xylene	67		58 - 145
Tetrachloro-m-xvlene	74		58 - 145

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA **Prep Batch: 740815**

Analysis Batch: 741035 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Aroclor 1016 0.376 0.076 U 0.311 mg/Kg ₩ 83 65 - 133 30 Aroclor 1016 0.076 U 0.376 0.342 mg/Kg 91 65 - 133 ₩ 3 30 Aroclor 1260 0.076 U 0.376 0.327 mg/Kg 87 30 ☼ 71 - 150 Aroclor 1260 0.076 U 0.376 0.332 mg/Kg 88 71 - 1502

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	79		10 - 150
DCB Decachlorobiphenyl	86		10 - 150
Tetrachloro-m-xylene	69		58 - 145
Tetrachloro-m-xylene	76		58 - 145

Method: NJDEP EPH - New Jersey Extractable Petroleum Hydrocarbons

MB MB

Lab Sample ID: MB 460-740592/1-A

Matrix: Solid

Analysis Batch: 740843

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740592

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Total EPH (C9-C40) 11/17/20 15:29 11/18/20 12:27 2.0 U 2.0 2.0 mg/Kg

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 11/17/20 15:29 11/18/20 12:27 o-Terphenyl 116 40 - 140 90 40 - 140 11/17/20 15:29 11/18/20 12:27 1-Chlorooctadecane

Lab Sample ID: LCS 460-740592/2-A

Matrix: Solid

Analysis Batch: 740843

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 740592** Spike LCS LCS %Rec.

Added Analyte Result Qualifier Unit %Rec Limits Total EPH (C9-C40) 133 136 mg/Kg 102 40 - 140

Eurofins TestAmerica, Edison

Page 55 of 81

Project/Site: Flushing Industrial Park

Method: NJDEP EPH - New Jersey Extractable Petroleum Hydrocarbons (Continued)

Lab Sample ID: LCS 460-740592/2-A

Matrix: Solid

Analysis Batch: 740843

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740592

 Surrogate
 %Recovery o-Terphenyl
 Qualifier du - 140
 Limits du - 140

 1-Chlorooctadecane
 131
 40 - 140

Lab Sample ID: LCSD 460-740592/3-A Client Sam

Matrix: Solid

Analysis Batch: 740843

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740592

LCSD LCSD RPD %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Total EPH (C9-C40) 133 136 mg/Kg 102 40 - 140 0

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 o-Terphenyl
 135
 40 - 140

 1-Chlorooctadecane
 132
 40 - 140

Lab Sample ID: 460-222922-A-1-A MS

Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 740843

Prep Type: Total/NA 740843 Prep Batch: 740592

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits 180 174 338 89 40 - 140 Total EPH (C9-C40) mg/Kg

MS MS

 Surrogate
 %Recovery
 Qualifier
 Limits

 o-Terphenyl
 64
 40 - 140

 1-Chlorooctadecane
 77
 40 - 140

Lab Sample ID: 460-222922-A-1-B MSD

Matrix: Solid

Analysis Batch: 740843

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Prep Batch: 740592

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Result Qualifier Added Limits RPD Limit Analyte Unit %Rec D Total EPH (C9-C40) 174 40 - 140 180 376 mg/Kg 111 11 25

MSD MSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 o-Terphenyl
 62
 40 - 140

 1-Chlorooctadecane
 74
 40 - 140

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 460-740716/1-A ^2

Matrix: Solid

Analysis Batch: 740839

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740716

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	40.0	U	40.0	5.7	mg/Kg		11/18/20 03:43	11/18/20 11:20	2
Sulfur	40.0	U	40.0	3.5	mg/Kg		11/18/20 03:43	11/18/20 11:20	2
Antimony	4.0	U	4.0	1.2	mg/Kg		11/18/20 03:43	11/18/20 11:20	2
Arsenic	3.0	U	3.0	0.62	mg/Kg		11/18/20 03:43	11/18/20 11:20	2
Barium	40.0	U	40.0	3.9	mg/Kg		11/18/20 03:43	11/18/20 11:20	2

Eurofins TestAmerica, Edison

Page 56 of 81

3

4

6

8

10

19

13

14

Project/Site: Flushing Industrial Park

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 460-740716/1-A ^2

Matrix: Solid

Analysis Batch: 740839

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740716

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Beryllium 0.40 Ū 0.40 0.064 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 Cadmium 0.80 0.80 0.069 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 Calcium 73.9 11/18/20 11:20 2 1000 U 1000 mg/Kg 11/18/20 03:43 2 Chromium 2.0 U 2.0 mg/Kg 11/18/20 03:43 11/18/20 11:20 Cobalt 10.0 U 10.0 11/18/20 03:43 11/18/20 11:20 2 0.55 mg/Kg 2 Copper 5.0 U 5.0 1.3 mg/Kg 11/18/20 03:43 11/18/20 11:20 Iron 30.0 U 30.0 20.6 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 2 Lead 2.0 U 2.0 0.32 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 Magnesium 1000 U 1000 67.7 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 3.0 U 11/18/20 11:20 Manganese 3.0 0.23 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 Nickel 8.0 U 8.0 0.53 mg/Kg 11/18/20 03:43 2 1000 Potassium 1000 U 61.4 mg/Kg 11/18/20 03:43 11/18/20 11:20 Selenium 4.0 U 4.0 0.68 11/18/20 03:43 11/18/20 11:20 2 mg/Kg Silver 2.0 U 2.0 11/18/20 03:43 11/18/20 11:20 2 1.1 mg/Kg Sodium 1000 U 1000 87.0 mg/Kg 11/18/20 03:43 11/18/20 11:20 2 Thallium 4.0 2 4.0 U 0.62 mg/Kg 11/18/20 03:43 11/18/20 11:20

10.0

6.0

364.8

0.93 mg/Kg

1.1 mg/Kg

mg/Kg

Lab Sample ID: LCS 460-740716/25-A ^2

Matrix: Solid

Vanadium

Zinc

Analysis Batch: 740839

Prep Batch: 740716 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Sulfur 400

10.0 U

6.0 U

Lab Sample ID: LCSSRM 460-740716/2-A ^2

Matrix: Solid

Analysis Batch: 740839

Client S	Sample II	D: Lab	Contro	Sample
		Prep	Type:	Total/NA
		Prep	Batch	: 740716

80 - 120

Client Sample ID: Lab Control Sample

11/18/20 11:20

11/18/20 11:20

Prep Type: Total/NA

11/18/20 03:43

11/18/20 03:43

91

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits 8190 Aluminum 7544 mg/Kg 92.1 48.7 - 151. Antimony 110 75.00 mg/Kg 68.2 3.6 - 210. 9 Arsenic 162 163.8 mg/Kg 101.1 82.7 - 117. 9 Barium 140.6 138 mg/Kg 101.9 82.6 - 117. Beryllium 157 165.7 mg/Kg 105.5 82.8 - 117. Cadmium 135 144.5 mg/Kg 107.0 82.2 - 117. 0 Calcium 4790 4934 103.0 81.6 - 118. mg/Kg 2 Chromium 117 123.1 82.0 - 117. mg/Kg 105.2 9 Cobalt 92.6 100.3 mg/Kg 108.3 83.4 - 116. 6 83.2 - 116. Copper 143 146.9 mg/Kg 102.7

Eurofins TestAmerica, Edison

Page 57 of 81

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 460-740716/2-A ^2

Matrix: Solid Analysis Batch: 740839 **Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 740716**

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	15100	13900		mg/Kg		92.0	63.0 - 137.	
							1	
Lead	77.6	79.66		mg/Kg		102.7	83.4 - 116.	
Management						00.7	5	
Magnesium	2320	2290		mg/Kg		98.7	75.9 - 124.	
Manganese	319	331.2		mg/Kg		103 8	82.1 ₋ 118.	
agaeee	0.0	002		9, . 19			2	
Nickel	79.9	87.52		mg/Kg		109.5	82.1 - 117.	
							9	
Potassium	2050	1927		mg/Kg		94.0	70.2 - 129.	
							8	
Selenium	172	178.8		mg/Kg		104.0	79.1 - 120. 9	
Silver	24.7	24.26		mg/Kg		98.2	9 80.6 - 119.	
OIIVOI	27.1	24.20		mg/rtg		00.2	8	
Sodium	137	123.9	J	mg/Kg		90.5	72.1 - 127.	
							7	
Thallium	88.0	96.46		mg/Kg		109.6	80.7 - 119.	
							3	
Vanadium	99.9	99.88		mg/Kg		100	79.0 - 121.	
Zinc	312	339.8		mg/Kg		109.0	1 80.4 - 119.	
ZIIIG	312	339.0		mg/rvg		100.9	6	

Lab Sample ID: 460-222914-B-1-F MS ^2

Matrix: Solid

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 740839	Sample	Sample	Spike	MS	MS				Prep Batch: 740716 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	5160		226	7229	4	mg/Kg	₩	913	75 - 125
Sulfur	641		452	1033		mg/Kg	₩	87	75 - 125
Antimony	4.5	U	56.5	24.56	N	mg/Kg	☼	43	75 - 125
Arsenic	1.9	J	226	211.8		mg/Kg	₩	93	75 - 125
Barium	42.9	J	226	263.7		mg/Kg	₩	98	75 - 125
Beryllium	0.42	J	5.65	5.95		mg/Kg	₩	98	75 - 125
Cadmium	0.22	J	5.65	5.44		mg/Kg	₩	92	75 - 125
Calcium	17800		2260	18750	4	mg/Kg	₩	41	75 - 125
Chromium	10.3		22.6	34.28		mg/Kg	₩	106	75 - 125
Cobalt	5.7	J	56.5	62.27		mg/Kg	₩	100	75 - 125
Copper	11.6		28.3	39.19		mg/Kg	₩	98	75 - 125
Iron	9750		113	11370	4	mg/Kg	₩	1440	75 - 125
Lead	12.9		56.5	67.99		mg/Kg	₩	97	75 - 125
Magnesium	1120	J	2260	3319		mg/Kg	☆	97	75 - 125
Manganese	159		56.5	297.1	N	mg/Kg	☆	244	75 - 125
Nickel	7.2	J	56.5	62.82		mg/Kg	₽	98	75 - 125
Potassium	843	J	2260	2944		mg/Kg	☼	93	75 - 125
Selenium	4.5	U	226	203.1		mg/Kg	☼	90	75 - 125
Silver	2.3	U	5.65	5.24		mg/Kg	₽	93	75 - 125
Sodium	128	J	2260	2275		mg/Kg	☼	95	75 - 125
Thallium	4.5	U	226	215.6		mg/Kg	☼	95	75 - 125
Vanadium	15.5		56.5	70.53		mg/Kg	₽	97	75 ₋ 125

Page 58 of 81

Eurofins TestAmerica, Edison

Project/Site: Flushing Industrial Park

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-222914-B-1-F MS ^2

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 740839 Prep Batch: 740716 Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Zinc 75 - 125 36.7 56.5 92.64 mg/Kg 99

Lab Sample ID: 460-222914-B-1-E DU ^2 **Client Sample ID: Duplicate**

Matrix: Solid Analysis Batch: 740839							Prep Type: Tot Prep Batch: 74	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	5160		4932		mg/Kg	-		20
Sulfur	641		634.5		mg/Kg	≎	1	20
Antimony	4.5	U	4.5	U	mg/Kg	≎	NC	20
Arsenic	1.9	J	1.91	J	mg/Kg	₽	2	20
Barium	42.9	J	42.92	J	mg/Kg	₽	0.05	20
Beryllium	0.42	J	0.408	J	mg/Kg	₽	2	20
Cadmium	0.22	J	0.90	U	mg/Kg	₽	NC	20
Calcium	17800		18600		mg/Kg	₽	4	20
Chromium	10.3		10.38		mg/Kg	₽	1	20
Cobalt	5.7	J	5.44	J	mg/Kg	₽	5	20
Copper	11.6		10.18		mg/Kg	₽	13	20
Iron	9750		9547		mg/Kg	₽	2	20
Lead	12.9		10.62		mg/Kg	₽	20	20
Magnesium	1120	J	1100	J	mg/Kg	₽	2	20
Manganese	159		145.2		mg/Kg	₽	9	20
Nickel	7.2	J	7.85	J	mg/Kg	₽	8	20
Potassium	843	J	802.0	J	mg/Kg	₽	5	20
Selenium	4.5	U	4.5	U	mg/Kg	₩	NC	20
Silver	2.3	U	2.3	U	mg/Kg	₽	NC	20
Sodium	128	J	101.6	J	mg/Kg	₽	23	20
Thallium	4.5	U	4.5	U	mg/Kg	☼	NC	20
Vanadium	15.5		15.86		mg/Kg	₩	3	20

Lab Sample ID: MB 460-740838/1-A

36.7

Matrix: Solid

Zinc

Analysis Batch: 740839

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 740838

mg/Kg

Client Sample ID: Matrix Spike

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
15.0	U	15.0	3.3	ug/L		11/18/20 11:17	11/18/20 17:14	1
200	U	200	13.2	ug/L		11/18/20 11:17	11/18/20 17:14	1
4.0	U	4.0	0.33	ug/L		11/18/20 11:17	11/18/20 17:14	1
10.0	U	10.0	5.0	ug/L		11/18/20 11:17	11/18/20 17:14	1
25.0	U	25.0	6.9	ug/L		11/18/20 11:17	11/18/20 17:14	1
10.0	U	10.0	2.4	ug/L		11/18/20 11:17	11/18/20 17:14	1
40.0	U	40.0	4.1	ug/L		11/18/20 11:17	11/18/20 17:14	1
20.0	U	20.0	5.9	ug/L		11/18/20 11:17	11/18/20 17:14	1
10.0	U	10.0	5.8	ug/L		11/18/20 11:17	11/18/20 17:14	1
30.0	U	30.0	1.2	ug/L		11/18/20 11:17	11/18/20 17:14	1
	Result 15.0 200 4.0 10.0 25.0 10.0 40.0 20.0 10.0	MB MB Result Qualifier 15.0 U 200 U 4.0 U 10.0 U 25.0 U 10.0 U 40.0 U 20.0 U 10.0 U 30.0 U	Result Qualifier RL 15.0 U 15.0 200 U 200 4.0 U 4.0 10.0 U 10.0 25.0 U 25.0 10.0 U 10.0 40.0 U 40.0 20.0 U 20.0 10.0 U 10.0	Result Qualifier RL MDL 15.0 U 15.0 3.3 200 U 200 13.2 4.0 U 4.0 0.33 10.0 U 10.0 5.0 25.0 U 25.0 6.9 10.0 U 10.0 2.4 40.0 U 40.0 4.1 20.0 U 20.0 5.9 10.0 U 10.0 5.8	Result Qualifier RL MDL unit 15.0 U 15.0 3.3 ug/L 200 U 200 13.2 ug/L 4.0 U 4.0 0.33 ug/L 10.0 U 10.0 5.0 ug/L 25.0 U 25.0 6.9 ug/L 10.0 U 10.0 2.4 ug/L 40.0 U 40.0 4.1 ug/L 20.0 U 20.0 5.9 ug/L 10.0 U 10.0 5.8 ug/L	Result Qualifier RL MDL ug/L Unit D 15.0 U 15.0 3.3 ug/L 200 U 200 13.2 ug/L ug/L 4.0 U 4.0 0.33 ug/L ug/L 10.0 U 10.0 5.0 ug/L ug/L 25.0 U 25.0 6.9 ug/L ug/L 40.0 U 40.0 4.1 ug/L ug/L 20.0 U 20.0 5.9 ug/L ug/L 10.0 U 10.0 5.8 ug/L	Result Qualifier RL MDL Unit D Prepared 15.0 U 15.0 3.3 ug/L 11/18/20 11:17 200 U 200 13.2 ug/L 11/18/20 11:17 4.0 U 4.0 0.33 ug/L 11/18/20 11:17 10.0 U 10.0 5.0 ug/L 11/18/20 11:17 25.0 U 25.0 6.9 ug/L 11/18/20 11:17 10.0 U 10.0 2.4 ug/L 11/18/20 11:17 40.0 U 40.0 4.1 ug/L 11/18/20 11:17 20.0 U 20.0 5.9 ug/L 11/18/20 11:17 10.0 U 10.0 5.8 ug/L 11/18/20 11:17	Result Qualifier RL MDL Unit D Prepared Analyzed 15.0 U 15.0 3.3 ug/L 11/18/20 11:17 11/18/20 17:14 200 U 200 13.2 ug/L 11/18/20 11:17 11/18/20 17:14 4.0 U 4.0 0.33 ug/L 11/18/20 11:17 11/18/20 17:14 10.0 U 10.0 5.0 ug/L 11/18/20 11:17 11/18/20 17:14 25.0 U 25.0 6.9 ug/L 11/18/20 11:17 11/18/20 17:14 10.0 U 10.0 2.4 ug/L 11/18/20 11:17 11/18/20 17:14 40.0 U 40.0 4.1 ug/L 11/18/20 11:17 11/18/20 17:14 20.0 U 20.0 5.9 ug/L 11/18/20 11:17 11/18/20 17:14 10.0 U 10.0 5.8 ug/L 11/18/20 11:17 11/18/20 17:14

30.28

Eurofins TestAmerica, Edison

20

Project/Site: Flushing Industrial Park

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 460-740838/2-A ^2

Matrix: Solid

Analysis Batch: 740839

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740838

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
5000	4580		ug/L		92	80 - 120	
10000	9324		ug/L		93	80 - 120	
1000	951.8		ug/L		95	80 - 120	
5000	4768		ug/L		95	80 - 120	
1000	928.0		ug/L		93	80 - 120	
5000	4834		ug/L		97	80 - 120	
1000	965.4		ug/L		97	80 - 120	
1000	910.0		ug/L		91	80 - 120	
500	467.8		ug/L		94	80 - 120	
1000	975.2		ug/L		98	80 - 120	
	5000 10000 10000 1000 5000 1000 5000 1000 1000 5000	Added Result 5000 4580 10000 9324 1000 951.8 5000 4768 1000 928.0 5000 4834 1000 965.4 1000 910.0 500 467.8	Added Result Qualifier 5000 4580 10000 9324 1000 951.8 5000 4768 1000 928.0 5000 4834 1000 965.4 1000 910.0 500 467.8	Added Result Qualifier Unit 5000 4580 ug/L 10000 9324 ug/L 1000 951.8 ug/L 5000 4768 ug/L 1000 928.0 ug/L 5000 4834 ug/L 1000 965.4 ug/L 1000 910.0 ug/L 500 467.8 ug/L	Added Result Qualifier Unit D 5000 4580 ug/L ug/L 10000 9324 ug/L ug/L 1000 951.8 ug/L ug/L 5000 4768 ug/L ug/L 5000 4834 ug/L ug/L 1000 965.4 ug/L ug/L 1000 910.0 ug/L ug/L 500 467.8 ug/L ug/L	Added Result Qualifier Unit D %Rec 5000 4580 ug/L 92 10000 9324 ug/L 93 1000 951.8 ug/L 95 5000 4768 ug/L 95 1000 928.0 ug/L 93 5000 4834 ug/L 97 1000 965.4 ug/L 97 1000 910.0 ug/L 91 500 467.8 ug/L 94	Added Result Qualifier Unit D %Rec Limits 5000 4580 ug/L 92 80 - 120 10000 9324 ug/L 93 80 - 120 1000 951.8 ug/L 95 80 - 120 5000 4768 ug/L 95 80 - 120 1000 928.0 ug/L 93 80 - 120 5000 4834 ug/L 97 80 - 120 1000 965.4 ug/L 97 80 - 120 1000 910.0 ug/L 91 80 - 120 500 467.8 ug/L 94 80 - 120

Lab Sample ID: LB 460-740609/1-B ^5

Matrix: Solid

Analysis Batch: 740839

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 740838

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	75.0	U	75.0	16.7	ug/L		11/18/20 11:17	11/18/20 16:59	5
Barium	1000	U	1000	66.0	ug/L		11/18/20 11:17	11/18/20 16:59	5
Cadmium	20.0	U	20.0	1.6	ug/L		11/18/20 11:17	11/18/20 16:59	5
Chromium	50.0	U	50.0	24.9	ug/L		11/18/20 11:17	11/18/20 16:59	5
Copper	125	U	125	34.7	ug/L		11/18/20 11:17	11/18/20 16:59	5
Lead	50.0	U	50.0	11.8	ug/L		11/18/20 11:17	11/18/20 16:59	5
Nickel	200	U	200	20.6	ug/L		11/18/20 11:17	11/18/20 16:59	5
Selenium	100	U	100	29.4	ug/L		11/18/20 11:17	11/18/20 16:59	5
Silver	50.0	U	50.0	28.9	ug/L		11/18/20 11:17	11/18/20 16:59	5
Zinc	12.42		150	6.1	ua/l		11/18/20 11:17	11/18/20 16:59	5

Lab Sample ID: 460-222909-2 MS Client Sample ID: SB1_SB2(15-37)

Matrix: Solid

Analysis Batch: 740839

Prep Type: TCLP Prep Batch: 740838

Analysis Baton, 140000									1 Top Baton, 140000
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	75.0	U	5000	4808		ug/L		96	75 - 125
Barium	589	J	10000	9920		ug/L		93	75 - 125
Cadmium	2.8	J	1000	955.5		ug/L		95	75 - 125
Chromium	50.0	U	5000	4798		ug/L		96	75 - 125
Copper	125	U	1000	952.0		ug/L		95	75 - 125
Lead	115		5000	4851		ug/L		95	75 - 125
Nickel	38.4	J	1000	994.5		ug/L		96	75 - 125
Selenium	100	U	1000	976.0		ug/L		98	75 - 125
Silver	50.0	U	500	484.1		ug/L		97	75 - 125
7inc	786	В	1000	1807		ua/l		102	75 - 125

Lab Sample ID: 460-222909-2 DU Client Sample ID: SB1_SB2(15-37) Pren Type: TCI P

Matrix: Solid

Watrix. Soliu							Fieb iyb	e.	ICLF
Analysis Batch: 740839							Prep Batch:	74	0838
_	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RF	D	Limit
Arsenic	75.0	U	 75.0	U	ug/L		 	IC	20

Eurofins TestAmerica, Edison

11/23/2020

Page 60 of 81

Project/Site: Flushing Industrial Park

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-222909-2 DU	Client S	Sample ID: SB1_SB2(15-37)
Matrix: Solid		Prep Type: TCLP
Analysis Batch: 740839		Prep Batch: 740838

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Barium	589	J	526.5	J	ug/L			20
Cadmium	2.8	J	2.33	J	ug/L		20	20
Chromium	50.0	U	50.0	U	ug/L		NC	20
Copper	125	U	125	U	ug/L		NC	20
Lead	115		103.3		ug/L		11	20
Nickel	38.4	J	34.41	J	ug/L		11	20
Selenium	100	U	100	U	ug/L		NC	20
Silver	50.0	U	50.0	U	ug/L		NC	20
Zinc	786	В	699.0		ug/L		12	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 460-740859/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Solid

Mercury

Mercury

Analysis Batch: 740890 **Prep Batch: 740859** MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20 U	0.20	0.091 ug/L		11/18/20 13:35	11/18/20 15:34	1

Lab Sample ID: LCS 460-740859/2-A				CI	ient Sai	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 740890							Prep Batch: 740859
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

5.00

LB LB

Lab Sample ID: LB 460-740609/1-C	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: TCLP
Analysis Batch: 740890	Prep Batch: 740859

5.01

ug/L

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac

Mercury	0.20 U	0.20	0.091 ug/L	11/18/20 13:35	11/18/20 15:56	1
_ _ Lab Sample ID: 460-222914-A-	1-H MS			Client Sam	ple ID: Matrix	Spike

Matrix: Solid **Prep Type: TCLP** Analysis Batch: 740890 **Prep Batch: 740859** MS MS %Rec Sample Sample Snike

	oumpic oumpic	Opino	1110 1110				/01100.
Analyte	Result Qualifier	Added	Result Qualifi	er Unit	D	%Rec	Limits
Mercury	0.20 U	5.00	5.16	ug/L		103	75 - 125

Lab Sample ID: 460-222914-A-1-G DU **Client Sample ID: Duplicate Matrix: Solid Prep Type: TCLP**

Analysis Batch: 740890 Prep Batch: 740859 Sample Sample DU DU Analyte Result Qualifier Result Qualifier RPD Limit Unit 0.20 U 0.20 U NC

Eurofins TestAmerica, Edison

11/23/2020

80 - 120

Project/Site: Flushing Industrial Park

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 460-740712/1-A

Matrix: Solid

Analysis Batch: 740835

MB MB

Sample Sample

Sample Sample

Sample Sample

2.20 U

Result Qualifier

MB MB

2.0 U

Result Qualifier

0.017 U

Result Qualifier

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.017 0.0040 mg/Kg 11/18/20 03:35 11/18/20 07:59 Mercury 0.017 U

LCSSRM LCSSRM

MS MS

DU DU

DU DU

2.20 U

Result Qualifier

0.017 U

Result Qualifier

0.0919

Result Qualifier

18.31

Result Qualifier

Unit

Unit

Unit

Unit

mm/sec

mg/Kg

mg/Kg

mg/Kg

Spike

Added

18.4

Spike

Added

0.0856

Lab Sample ID: LCSSRM 460-740712/2-A ^40

Matrix: Solid

Analysis Batch: 740835

Analyte

Mercury

Lab Sample ID: 460-222916-F-1-A MS

Matrix: Solid

Analysis Batch: 740835

Analyte

Lab Sample ID: 460-222916-A-1-A DU

Mercury

Matrix: Solid

Analysis Batch: 740835

Analyte

Result Qualifier 0.017 U Mercury

Method: 1030 - Ignitability, Solids

Lab Sample ID: 460-222795-E-1 DU **Matrix: Solid**

Analysis Batch: 741418

Analyte

Burn Rate

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 460-741203/1-A

Matrix: Solid

Analysis Batch: 741507

Analyte

Cr (VI)

Lab Sample ID: LCSI 460-741203/3-A **Matrix: Solid**

Analysis Batch: 741507

Analyte

Cr (VI)

Added 708

Spike

RL

2.0

LCSI LCSI Result Qualifier 708.9

MDL Unit

0.35 mg/Kg

Unit

mg/Kg

%Rec 100

Prepared

%Rec. Limits 80 - 120

11/19/20 17:13 11/20/20 10:06

Client Sample ID: Lab Control Sample

Eurofins TestAmerica, Edison

Page 62 of 81

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

D %Rec

99.5

%Rec

D

107

%Rec.

Limits

60.9 - 138.

6

Client Sample ID: Matrix Spike

%Rec.

Limits

80 - 120

Client Sample ID: Duplicate

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA **Prep Batch: 740712**

Prep Type: Total/NA

Prep Batch: 740712

Prep Type: Total/NA

Prep Batch: 740712

Prep Type: Total/NA

Prep Batch: 740712

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 741203

Prep Type: Total/NA **Prep Batch: 741203**

RPD

RPD

RPD

Limit

RPD

Limit

Dil Fac

10

Project/Site: Flushing Industrial Park

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: LCSSRM 460-741203/2-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 741507			Prep Batch: 741203
	Snika	LCSSRM LCSSRM	%Rac

MSS MSS

MSI MSI

DU DU

2.3 U

Result Qualifier

MDL Unit

LCSSRM LCSSRM

MS MS

97.92

Result Qualifier

0.12 mg/Kg

Result Qualifier

43.28

894.3

Result Qualifier

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Added Result Qualifier Limits Analyte Unit %Rec Cr (VI) 15.6 14.92 mg/Kg 95.9 84.2 - 114. 5

Spike

Added

45.4

Spike

Added

804

Lab Sample ID: 460-222682-E-3-I MSS

Matrix: Solid

Analysis Batch: 741507

Sample Sample **Analyte** Result Qualifier

Cr (VI) 2.3 U

Lab Sample ID: 460-222682-E-3-J MSI **Matrix: Solid**

Analysis Batch: 741507

Analyte

2.3 U Cr (VI) Lab Sample ID: 460-222682-E-3-H DU

Matrix: Solid

Analysis Batch: 741507

Analyte

2.3 U Cr (VI) Method: 9012B - Cyanide, Total andor Amenable

Sample Sample

Sample Sample

Result Qualifier

MB MB

Result Qualifier

Result Qualifier

Lab Sample ID: MB 460-741697/1-A

Matrix: Solid

Analysis Batch: 741744

Analyte

Cyanide, Total 0.24 U Lab Sample ID: LCSSRM 460-741697/2-A ^20

Matrix: Solid

Analysis Batch: 741744

Analyte

Cyanide, Total

Lab Sample ID: 460-222682-F-3-K MS

Matrix: Solid

Analysis Batch: 741744

Sample Sample Spike Analyte Result Qualifier Cyanide, Total 0.27 U

Added 5.45

6.86 N

RL

0.24

Spike

Added

157

Result Qualifier Unit mg/Kg

%Rec Limits 126

11 - 108

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 741203 %Rec.

Limits 75 - 125

%Rec

%Rec

D

Ö

Prepared

D %Rec

62.4

111

95

Client Sample ID: Matrix Spike

Prep Type: Total/NA **Prep Batch: 741203**

%Rec.

Limits 75 - 125

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 741203

RPD RPD Limit NC 20

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 741697

11/21/20 15:25 11/21/20 17:27

Analyzed

Dil Fac

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 741697 %Rec.

Limits 23.5 - 110. 2

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 741697 %Rec.

Project/Site: Flushing Industrial Park

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: 460-222682-F-3-L MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 741744 **Prep Batch: 741697** Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Result Qualifier Added Limits RPD Limit Analyte Unit D %Rec 0.27 U Cyanide, Total 5.45 6.84 N mg/Kg 125 11 - 108 0 40

Method: 9014 - Cyanide, Reactive

Lab Sample ID: MB 460-741475/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 741481 Prep Batch: 741475** MB MB Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 25.0 25.0 U 11/20/20 15:45 11/20/20 15:50 Cyanide, Reactive 25.0 mg/Kg

Lab Sample ID: LCS 460-741475/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Prep Batch: 741475 Analysis Batch: 741481** LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit ח %Rec Cyanide, Reactive 40.0 25.0 U mg/Kg 12 10 - 100

Lab Sample ID: 460-222938-M-1-E DU **Client Sample ID: Duplicate Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 741481 Prep Batch: 741475 Sample Sample DU DU **RPD** Result Qualifier **RPD** Analyte Result Qualifier Unit Limit Cyanide, Reactive 25.0 U 25.0 U mq/Kq NC 10

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 460-741473/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 741479 Prep Batch: 741473**

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 20.0 mg/Kg Sulfide, Reactive 20.0 U 20.0 11/20/20 15:37 11/20/20 15:48

Lab Sample ID: LCSSRM 460-741473/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 741479 Prep Batch: 741473** Spike LCSSRM LCSSRM %Rec. Added Result Qualifier Unit %Rec Limits 44.9 - 144.

Sulfide, Reactive 62.6 62.07 mg/Kg 99.2 2

Lab Sample ID: 460-222938-M-1-B MS

Matrix: Solid

Analysis Batch: 741479

Prep Batch: 741473 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Sulfide, Reactive 434 64 - 136 16.67 364.7 mg/Kg 84

Eurofins TestAmerica, Edison

11/23/2020

Client Sample ID: Matrix Spike

Prep Type: Total/NA

MSD MSD

357.1

Result Qualifier

Unit

mg/Kg

Spike

Added

434

Project/Site: Flushing Industrial Park

Method: 9034 - Sulfide, Reactive (Continued)

Sample Sample

16.67

Result Qualifier

Lab Sample ID: 460-222938-M-1-C MSD

Matrix: Solid

Analyte

Analysis Batch: 741479

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 741473 %Rec. **RPD**

D %Rec Limits RPD Limit 82 64 - 136 2 10

Method: 9045D - pH

Lab Sample ID: MB 460-741403/2

Matrix: Solid

Sulfide, Reactive

Analysis Batch: 741403

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Result Qualifier RL**MDL** Unit Prepared Analyzed Dil Fac Analyte SU 11/20/20 13:37 рΗ 6.6 24.8 Degrees C Temperature 11/20/20 13:37 Corrosivity 6.6 SU 11/20/20 13:37

Lab Sample ID: LCSSRM 460-741403/3

Matrix: Solid

Analysis Batch: 741403

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 8.2 SU рΗ 8.31 98.9 97.6 - 102. 8.31 82 SU 98.9 97.6 - 102. Corrosivity 4

Lab Sample ID: 460-222909-1 DU

Matrix: Solid

Analysis Batch: 741403

Client Sample ID: SB1_SB2(0-15)

Prep Type: Total/NA

,	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	9.7	HF	9.6		SU	_	0.4	10
Temperature	22.4	HF	22.5		Degrees C		0.4	10
Corrosivity	9.7	HF	9.6		SU		0.4	10

Method: 9095B - Paint Filter

Lab Sample ID: 460-222909-1 DU

Matrix: Solid

Analysis Batch: 740777

Client Sample ID: SB1_SB2(0-15)

Prep Type: Total/NA

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier **RPD** Unit Limit Free Liquid 0.500 U 0.500 U mL/100g

Method: Moisture - Percent Moisture

Lab Sample ID: 460-223028-A-4 DU

Matrix: Solid

Analysis Batch: 741142

Client Sample ID: Duplicate Prep Type: Total/NA

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit Percent Moisture 15.4 15.2 % 0.9 20 Percent Solids 84.6 84.8 % 0.2 20

Eurofins TestAmerica, Edison

Page 65 of 81

11/23/2020

Client: AKRF Inc Job ID: 460-222909-1
Project/Site: Flushing Industrial Park

GC/MS VOA

Prep Batch: 740673

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	5035	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	5035	
LB3 460-740673/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 741026

Lab Sample ID LB3 460-740673/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8260D	Prep Batch 740673
MB 460-741026/7	Method Blank	Total/NA	Solid	8260D	
LCS 460-741026/3	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-741026/4	Lab Control Sample Dup	Total/NA	Solid	8260D	

Analysis Batch: 741345

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 8260D	Prep Batch 740673
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8260D	740673
MB 460-741345/8	Method Blank	Total/NA	Solid	8260D	
LCS 460-741345/4	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-741345/5	Lab Control Sample Dup	Total/NA	Solid	8260D	

GC/MS Semi VOA

Prep Batch: 740615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3546	<u> </u>
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3546	
MB 460-740615/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740615/2-A	Lab Control Sample	Total/NA	Solid	3546	
460-222910-F-1-A MS	Matrix Spike	Total/NA	Solid	3546	
460-222910-F-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	

Analysis Batch: 740687

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	8270E	740615
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8270E	740615
MB 460-740615/1-A	Method Blank	Total/NA	Solid	8270E	740615
LCS 460-740615/2-A	Lab Control Sample	Total/NA	Solid	8270E	740615
460-222910-F-1-A MS	Matrix Spike	Total/NA	Solid	8270E	740615
460-222910-F-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8270E	740615

GC VOA

Analysis Batch: 740543

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 8015D	Prep Batch 740700
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8015D	740700
MB 460-740543/17	Method Blank	Total/NA	Solid	8015D	
LCS 460-740543/13	Lab Control Sample	Total/NA	Solid	8015D	
LCSD 460-740543/14	Lab Control Sample Dup	Total/NA	Solid	8015D	

Prep Batch: 740700

Г					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	5035	

Eurofins TestAmerica, Edison

Page 66 of 81 11/23/2020

_

3

6

7

9

10

12

13

14

QC Association Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

GC VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 740592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3546	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3546	
MB 460-740592/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740592/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-740592/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
460-222922-A-1-A MS	Matrix Spike	Total/NA	Solid	3546	
460-222922-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	

Prep Batch: 740815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3546	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3546	
MB 460-740815/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740815/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-740815/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
460-222916-A-1-B MS	Matrix Spike	Total/NA	Solid	3546	
460-222916-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	

Prep Batch: 740817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3546	_
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3546	
MB 460-740817/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740817/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-740817/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
460-222916-A-1-E MS	Matrix Spike	Total/NA	Solid	3546	
460-222916-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	

Prep Batch: 740831

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3546	
MB 460-740831/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740831/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-740831/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 740843

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 460-740592/1-A	Method Blank	Total/NA	Solid	NJDEP EPH	740592
LCS 460-740592/2-A	Lab Control Sample	Total/NA	Solid	NJDEP EPH	740592
LCSD 460-740592/3-A	Lab Control Sample Dup	Total/NA	Solid	NJDEP EPH	740592
460-222922-A-1-A MS	Matrix Spike	Total/NA	Solid	NJDEP EPH	740592
460-222922-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	NJDEP EPH	740592

Page 67 of 81

Project/Site: Flushing Industrial Park

GC Semi VOA

Analysis Batch: 741016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	8081B	740817
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8081B	740817
MB 460-740817/1-A	Method Blank	Total/NA	Solid	8081B	740817
LCS 460-740817/2-A	Lab Control Sample	Total/NA	Solid	8081B	740817
LCSD 460-740817/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	740817
460-222916-A-1-E MS	Matrix Spike	Total/NA	Solid	8081B	740817
460-222916-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8081B	740817

Analysis Batch: 741035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	8082A	740815
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8082A	740815
MB 460-740815/1-A	Method Blank	Total/NA	Solid	8082A	740815
LCS 460-740815/2-A	Lab Control Sample	Total/NA	Solid	8082A	740815
LCSD 460-740815/3-A	Lab Control Sample Dup	Total/NA	Solid	8082A	740815
460-222916-A-1-B MS	Matrix Spike	Total/NA	Solid	8082A	740815
460-222916-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8082A	740815

Analysis Batch: 741070

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	NJDEP EPH	740592
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	NJDEP EPH	740592

Analysis Batch: 741100

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 8015D	Prep Batch 740831
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	8015D	740831
MB 460-740831/1-A	Method Blank	Total/NA	Solid	8015D	740831
LCS 460-740831/2-A	Lab Control Sample	Total/NA	Solid	8015D	740831
LCSD 460-740831/3-A	Lab Control Sample Dup	Total/NA	Solid	8015D	740831

Metals

Leach Batch: 740609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	TCLP	Solid	1311	
460-222909-2	SB1_SB2(15-37)	TCLP	Solid	1311	
LB 460-740609/1-B ^5	Method Blank	TCLP	Solid	1311	
LB 460-740609/1-C	Method Blank	TCLP	Solid	1311	
460-222909-2 MS	SB1_SB2(15-37)	TCLP	Solid	1311	
460-222914-A-1-H MS	Matrix Spike	TCLP	Solid	1311	
460-222909-2 DU	SB1_SB2(15-37)	TCLP	Solid	1311	
460-222914-A-1-G DU	Duplicate	TCLP	Solid	1311	

Prep Batch: 740712

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 7471B	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7471B	
MB 460-740712/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-740712/2-A ^4	4 Lab Control Sample	Total/NA	Solid	7471B	
460-222916-F-1-A MS	Matrix Spike	Total/NA	Solid	7471B	

Eurofins TestAmerica, Edison

Page 68 of 81 11/23/2020

2

4

_

7

9

10

46

13

14

15

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222916-A-1-A DU	Duplicate	Total/NA	Solid	7471B	

Prep Batch: 740716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3050B	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3050B	
MB 460-740716/1-A ^2	Method Blank	Total/NA	Solid	3050B	
LCS 460-740716/25-A ^2	Lab Control Sample	Total/NA	Solid	3050B	
LCSSRM 460-740716/2-A ^2	Lab Control Sample	Total/NA	Solid	3050B	
460-222914-B-1-F MS ^2	Matrix Spike	Total/NA	Solid	3050B	
460-222914-B-1-E DU ^2	Duplicate	Total/NA	Solid	3050B	

Analysis Batch: 740835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	7471B	740712
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7471B	740712
MB 460-740712/1-A	Method Blank	Total/NA	Solid	7471B	740712
LCSSRM 460-740712/2-A	^4 Lab Control Sample	Total/NA	Solid	7471B	740712
460-222916-F-1-A MS	Matrix Spike	Total/NA	Solid	7471B	740712
460-222916-A-1-A DU	Duplicate	Total/NA	Solid	7471B	740712

Prep Batch: 740838

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	TCLP	Solid	3010A	740609
460-222909-2	SB1_SB2(15-37)	TCLP	Solid	3010A	740609
LB 460-740609/1-B ^5	Method Blank	TCLP	Solid	3010A	740609
MB 460-740838/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 460-740838/2-A ^2	Lab Control Sample	Total/NA	Solid	3010A	
460-222909-2 MS	SB1_SB2(15-37)	TCLP	Solid	3010A	740609
460-222909-2 DU	SB1_SB2(15-37)	TCLP	Solid	3010A	740609

Analysis Batch: 740839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	TCLP	Solid	6010D	740838
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	6010D	740716
460-222909-2	SB1_SB2(15-37)	TCLP	Solid	6010D	740838
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	6010D	740716
LB 460-740609/1-B ^5	Method Blank	TCLP	Solid	6010D	740838
MB 460-740716/1-A ^2	Method Blank	Total/NA	Solid	6010D	740716
MB 460-740838/1-A	Method Blank	Total/NA	Solid	6010D	740838
LCS 460-740716/25-A ^2	Lab Control Sample	Total/NA	Solid	6010D	740716
LCS 460-740838/2-A ^2	Lab Control Sample	Total/NA	Solid	6010D	740838
LCSSRM 460-740716/2-A ^2	Lab Control Sample	Total/NA	Solid	6010D	740716
460-222909-2 MS	SB1_SB2(15-37)	TCLP	Solid	6010D	740838
460-222914-B-1-F MS ^2	Matrix Spike	Total/NA	Solid	6010D	740716
460-222909-2 DU	SB1_SB2(15-37)	TCLP	Solid	6010D	740838
460-222914-B-1-E DU ^2	Duplicate	Total/NA	Solid	6010D	740716

Prep Batch: 740859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	TCLP	Solid	7470A	740609

Page 69 of 81

QC Association Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Metals (Continued)

Prep Batch: 740859 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-2	SB1_SB2(15-37)	TCLP	Solid	7470A	740609
LB 460-740609/1-C	Method Blank	TCLP	Solid	7470A	740609
MB 460-740859/1-A	Method Blank	Total/NA	Solid	7470A	
LCS 460-740859/2-A	Lab Control Sample	Total/NA	Solid	7470A	
460-222914-A-1-H MS	Matrix Spike	TCLP	Solid	7470A	740609
460-222914-A-1-G DU	Duplicate	TCLP	Solid	7470A	740609

Analysis Batch: 740890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	TCLP	Solid	7470A	740859
460-222909-2	SB1_SB2(15-37)	TCLP	Solid	7470A	740859
LB 460-740609/1-C	Method Blank	TCLP	Solid	7470A	740859
MB 460-740859/1-A	Method Blank	Total/NA	Solid	7470A	740859
LCS 460-740859/2-A	Lab Control Sample	Total/NA	Solid	7470A	740859
460-222914-A-1-H MS	Matrix Spike	TCLP	Solid	7470A	740859
460-222914-A-1-G DU	Duplicate	TCLP	Solid	7470A	740859

General Chemistry

Analysis Batch: 740752

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 7196A	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7196A	

Analysis Batch: 740777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9095B	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9095B	
460-222909-1 DU	SB1_SB2(0-15)	Total/NA	Solid	9095B	

Analysis Batch: 741142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	Moisture	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	Moisture	
460-223028-A-4 DU	Duplicate	Total/NA	Solid	Moisture	

Prep Batch: 741203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	3060A	<u> </u>
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	3060A	
MB 460-741203/1-A	Method Blank	Total/NA	Solid	3060A	
LCSI 460-741203/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSSRM 460-741203/2-A	Lab Control Sample	Total/NA	Solid	3060A	
460-222682-E-3-I MSS	Matrix Spike	Total/NA	Solid	3060A	
460-222682-E-3-J MSI	Matrix Spike	Total/NA	Solid	3060A	
460-222682-E-3-H DU	Duplicate	Total/NA	Solid	3060A	

Analysis Batch: 741403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9045D	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9045D	

Eurofins TestAmerica, Edison

Page 70 of 81 11/23/2020

2

Л

5

6

e S

9

10

12

1 A

QC Association Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

General Chemistry (Continued)

Analysis Batch: 741403 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 460-741403/2	Method Blank	Total/NA	Solid	9045D	
LCSSRM 460-741403/3	Lab Control Sample	Total/NA	Solid	9045D	
460-222909-1 DU	SB1_SB2(0-15)	Total/NA	Solid	9045D	

Analysis Batch: 741418

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 1030	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	1030	
460-222795-E-1 DU	Duplicate	Total/NA	Solid	1030	

Prep Batch: 741473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	7.3.4	
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7.3.4	
MB 460-741473/1-A	Method Blank	Total/NA	Solid	7.3.4	
LCSSRM 460-741473/3-A	Lab Control Sample	Total/NA	Solid	7.3.4	
460-222938-M-1-B MS	Matrix Spike	Total/NA	Solid	7.3.4	
460-222938-M-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	7.3.4	

Prep Batch: 741475

Lab Sample ID 460-222909-1	Client Sample ID SB1 SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 7.3.3	Prep Batch
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7.3.3	
MB 460-741475/1-A	Method Blank	Total/NA	Solid	7.3.3	
LCS 460-741475/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
460-222938-M-1-E DU	Duplicate	Total/NA	Solid	7.3.3	

Analysis Batch: 741479

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9034	741473
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9034	741473
MB 460-741473/1-A	Method Blank	Total/NA	Solid	9034	741473
LCSSRM 460-741473/3-A	Lab Control Sample	Total/NA	Solid	9034	741473
460-222938-M-1-B MS	Matrix Spike	Total/NA	Solid	9034	741473
460-222938-M-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	9034	741473

Analysis Batch: 741481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9014	741475
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9014	741475
MB 460-741475/1-A	Method Blank	Total/NA	Solid	9014	741475
LCS 460-741475/2-A	Lab Control Sample	Total/NA	Solid	9014	741475
460-222938-M-1-E DU	Duplicate	Total/NA	Solid	9014	741475

Analysis Batch: 741507

Lab Sample ID 460-222909-1	Client Sample ID SB1_SB2(0-15)	Prep Type Total/NA	Matrix Solid	Method 7196A	Prep Batch 741203
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	7196A	741203
MB 460-741203/1-A	Method Blank	Total/NA	Solid	7196A	741203
LCSI 460-741203/3-A	Lab Control Sample	Total/NA	Solid	7196A	741203
LCSSRM 460-741203/2-A	Lab Control Sample	Total/NA	Solid	7196A	741203

Eurofins TestAmerica, Edison

QC Association Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

General Chemistry (Continued)

Analysis Batch: 741507 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222682-E-3-I MSS	Matrix Spike	Total/NA	Solid	7196A	741203
460-222682-E-3-J MSI	Matrix Spike	Total/NA	Solid	7196A	741203
460-222682-E-3-H DU	Duplicate	Total/NA	Solid	7196A	741203

Prep Batch: 741697

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9012B	<u> </u>
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9012B	
MB 460-741697/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 460-741697/2-A ^	2 Lab Control Sample	Total/NA	Solid	9012B	
460-222682-F-3-K MS	Matrix Spike	Total/NA	Solid	9012B	
460-222682-F-3-L MSD	Matrix Spike Duplicate	Total/NA	Solid	9012B	

Analysis Batch: 741744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222909-1	SB1_SB2(0-15)	Total/NA	Solid	9012B	741697
460-222909-2	SB1_SB2(15-37)	Total/NA	Solid	9012B	741697
MB 460-741697/1-A	Method Blank	Total/NA	Solid	9012B	741697
LCSSRM 460-741697/2-A ^2	Lab Control Sample	Total/NA	Solid	9012B	741697
460-222682-F-3-K MS	Matrix Spike	Total/NA	Solid	9012B	741697
460-222682-F-3-L MSD	Matrix Spike Duplicate	Total/NA	Solid	9012B	741697

3

4

6

9

10

11

14

Lab Chronicle

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Date Received: 11/16/20 18:00

Client Sample ID: SB1_SB2(0-15)

Lab Sample ID: 460-222909-1 Date Collected: 11/16/20 13:30

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			740609	11/17/20 16:00	YAH	TAL EDI
TCLP	Prep	3010A			740838	11/18/20 11:17	IBS	TAL EDI
TCLP	Analysis	6010D		5	740839	11/18/20 20:07	CDC	TAL EDI
TCLP	Leach	1311			740609	11/17/20 16:00	YAH	TAL EDI
TCLP	Prep	7470A			740859	11/18/20 13:35	RBS	TAL EDI
TCLP	Analysis	7470A		1	740890	11/18/20 15:53	RBS	TAL EDI
Total/NA	Analysis	1030		1	741418	11/20/20 10:50	YAH	TAL EDI
Total/NA	Analysis	7196A		1	740752	11/18/20 06:09	TJW	TAL EDI
Total/NA	Prep	7.3.3			741475	11/20/20 15:45	YAH	TAL EDI
Total/NA	Analysis	9014		1	741481	11/20/20 15:50	YAH	TAL EDI
Total/NA	Prep	7.3.4			741473	11/20/20 15:37	YAH	TAL EDI
Total/NA	Analysis	9034		1	741479	11/20/20 15:48	YAH	TAL EDI
Total/NA	Analysis	9045D		1	741403	11/20/20 13:52	AAP	TAL EDI
Total/NA	Analysis	9095B		1	740777	11/18/20 08:00	AAP	TAL EDI
Total/NA	Analysis	Moisture		1	741142	11/19/20 11:58	MMC	TAL EDI

Client Sample ID: SB1_SB2(0-15)

Date Collected: 11/16/20 13:30

Date Received: 11/16/20 18:00

Lab Sample ID: 460-222909-1

Matrix: Solid

Percent Solids: 92.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			740673	11/17/20 21:54	AVM	TAL ED
Total/NA	Analysis	8260D		1	741345	11/20/20 12:01	AAT	TAL ED
Total/NA	Prep	3546			740615	11/17/20 17:33	DMS	TAL ED
Total/NA	Analysis	8270E		1	740687	11/18/20 07:41	MME	TAL ED
Total/NA	Prep	5035			740700	11/18/20 01:01	AVM	TAL ED
Total/NA	Analysis	8015D		50	740543	11/18/20 02:31	EMM	TAL ED
Total/NA	Prep	3546			740831	11/18/20 10:19	FHW	TAL ED
Total/NA	Analysis	8015D		20	741100	11/19/20 16:14	KMH	TAL ED
Total/NA	Prep	3546			740817	11/18/20 09:33	ZXB	TAL ED
Total/NA	Analysis	8081B		1	741016	11/19/20 09:30	FAM	TAL ED
Total/NA	Prep	3546			740815	11/18/20 09:29	ZXB	TAL ED
Total/NA	Analysis	8082A		1	741035	11/19/20 11:04	JHP	TAL ED
Total/NA	Prep	3546			740592	11/17/20 15:29	ABA	TAL ED
Total/NA	Analysis	NJDEP EPH		2	741070	11/19/20 14:20	KMH	TAL ED
Total/NA	Prep	3050B			740716	11/18/20 03:43	GMC	TAL ED
Total/NA	Analysis	6010D		2	740839	11/18/20 11:52	CDC	TAL ED
Total/NA	Prep	7471B			740712	11/18/20 03:35	TJS	TAL ED
Total/NA	Analysis	7471B		1	740835	11/18/20 08:38	TJS	TAL ED
Total/NA	Prep	3060A			741203	11/19/20 17:13	VBG	TAL ED
Total/NA	Analysis	7196A		1	741507	11/20/20 13:09	RPR	TAL ED
Total/NA	Prep	9012B			741697	11/21/20 15:25	MBE	TAL ED
Total/NA	Analysis	9012B		1	741744	11/21/20 17:45	HTV	TAL ED

Lab Chronicle

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Client Sample ID: SB1_SB2(15-37)

Date Collected: 11/16/20 13:45 Date Received: 11/16/20 18:00

Lab Sample ID: 460-222909-2

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			740609	11/17/20 16:00	YAH	TAL EDI
TCLP	Prep	3010A			740838	11/18/20 11:17	IBS	TAL EDI
TCLP	Analysis	6010D		5	740839	11/18/20 16:42	CDC	TAL EDI
TCLP	Leach	1311			740609	11/17/20 16:00	YAH	TAL EDI
TCLP	Prep	7470A			740859	11/18/20 13:35	RBS	TAL EDI
TCLP	Analysis	7470A		1	740890	11/18/20 15:54	RBS	TAL EDI
Total/NA	Analysis	1030		1	741418	11/20/20 10:50	YAH	TAL EDI
Total/NA	Analysis	7196A		1	740752	11/18/20 06:09	TJW	TAL EDI
Total/NA	Prep	7.3.3			741475	11/20/20 15:45	YAH	TAL EDI
Total/NA	Analysis	9014		1	741481	11/20/20 15:50	YAH	TAL EDI
Total/NA	Prep	7.3.4			741473	11/20/20 15:37	YAH	TAL EDI
Total/NA	Analysis	9034		1	741479	11/20/20 15:48	YAH	TAL EDI
Total/NA	Analysis	9045D		1	741403	11/20/20 13:56	AAP	TAL EDI
Total/NA	Analysis	9095B		1	740777	11/18/20 08:05	AAP	TAL EDI
Total/NA	Analysis	Moisture		1	741142	11/19/20 11:58	MMC	TAL EDI

Client Sample ID: SB1_SB2(15-37)

Date Collected: 11/16/20 13:45 Date Received: 11/16/20 18:00

Lab Sample ID: 460-222909-2

Matrix: Solid Percent Solids: 85.3

Jate Receive	a: 11/16/20 1	8:00						Pe	r
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			740673	11/17/20 21:55	AVM	TAL EDI	_
Total/NA	Analysis	8260D		1	741345	11/20/20 12:25	AAT	TAL EDI	
Total/NA	Prep	3546			740615	11/17/20 17:33	DMS	TAL EDI	
Total/NA	Analysis	8270E		1	740687	11/18/20 08:05	MME	TAL EDI	
Total/NA	Prep	5035			740700	11/18/20 01:01	AVM	TAL EDI	
Total/NA	Analysis	8015D		50	740543	11/18/20 02:58	EMM	TAL EDI	
Total/NA	Prep	3546			740831	11/18/20 10:19	FHW	TAL EDI	
Total/NA	Analysis	8015D		20	741100	11/19/20 16:31	KMH	TAL EDI	
Total/NA	Prep	3546			740817	11/18/20 09:33	ZXB	TAL EDI	
Total/NA	Analysis	8081B		1	741016	11/19/20 09:42	FAM	TAL EDI	
Total/NA	Prep	3546			740815	11/18/20 09:29	ZXB	TAL EDI	
Total/NA	Analysis	8082A		1	741035	11/19/20 11:20	JHP	TAL EDI	
Total/NA	Prep	3546			740592	11/17/20 15:29	ABA	TAL EDI	
Total/NA	Analysis	NJDEP EPH		10	741070	11/19/20 14:34	KMH	TAL EDI	
Total/NA	Prep	3050B			740716	11/18/20 03:43	GMC	TAL EDI	
Total/NA	Analysis	6010D		2	740839	11/18/20 11:56	CDC	TAL EDI	
Total/NA	Prep	7471B			740712	11/18/20 03:35	TJS	TAL EDI	
Total/NA	Analysis	7471B		1	740835	11/18/20 08:40	TJS	TAL EDI	
Total/NA	Prep	3060A			741203	11/19/20 17:13	VBG	TAL EDI	
Total/NA	Analysis	7196A		1	741507	11/20/20 13:09	RPR	TAL EDI	
Total/NA	Prep	9012B			741697	11/21/20 15:25	MBE	TAL EDI	
Total/NA	Analysis	9012B		1	741744	11/21/20 17:49	HTV	TAL EDI	

Lab Chronicle

Client: AKRF Inc

Job ID: 460-222909-1 Project/Site: Flushing Industrial Park

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: AKRF Inc Job ID: 460-222909-1

Project/Site: Flushing Industrial Park

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date
ew York		NELAP	11452	04-01-21
The following analyte the agency does not		eport, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
6010D	3050B	Solid	Sulfur	
7196A		Solid	Cr (III)	
7470A	7470A	Solid	Mercury	
8260D	5035	Solid	TBA	
8270E	3546	Solid	1,2,4,5-Tetrachlorobenzene	
8270E	3546	Solid	Nitrobenzene	
9014	7.3.3	Solid	Cyanide, Reactive	
9034	7.3.4	Solid	Sulfide, Reactive	
9045D		Solid	Temperature	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	
NJDEP EPH	3546	Solid	Total EPH (C9-C40)	

16

4

5

7

10

19

IR

Method Summary

Client: AKRF Inc

Project/Site: Flushing Industrial Park

Method **Method Description** Protocol Laboratory 8260D Volatile Organic Compounds by GC/MS SW846 TAL EDI 8270E Semivolatile Organic Compounds (GC/MS) SW846 TAL EDI 8015D Gasoline Range Organics (GRO) (GC) SW846 TAL EDI 8015D Diesel Range Organics (DRO) (GC) SW846 TAL EDI 8081B Organochlorine Pesticides (GC) SW846 TAL EDI Polychlorinated Biphenyls (PCBs) by Gas Chromatography 8082A SW846 TAL EDI New Jersey Extractable Petroleum Hydrocarbons NJDEP NJDEP EPH TAL EDI 6010D Metals (ICP) SW846 TAL EDI 7470A Mercury (CVAA) SW846 TAL EDI 7471B Mercury (CVAA) SW846 TAL EDI 1030 Ignitability, Solids SW846 TAL EDI 7196A Chromium, Hexavalent SW846 TAL EDI 7196A Chromium, Trivalent (Colorimetric) SW846 TAL EDI 9012B Cyanide, Total andor Amenable SW846 TAL EDI 9014 Cyanide, Reactive SW846 TAL EDI 9034 Sulfide. Reactive SW846 TAL EDI 9045D рΗ SW846 TAL EDI 9095B Paint Filter SW846 TAL EDI

Protocol	References:
PIOLOCOL	References.

Moisture

1311

3010A

3050B

3060A

3546

5035

7.3.3

7.3.4

7470A

7471B

9012B

EPA = US Environmental Protection Agency

Percent Moisture

TCLP Extraction

Preparation, Metals

Microwave Extraction

Cyanide, Reactive

Sulfide, Reactive

Preparation, Mercury

Preparation, Mercury

Preparation, Total Metals

Closed System Purge and Trap

Alkaline Digestion (Chromium, Hexavalent)

Cyanide, Total and/or Amenable, Distillation

NJDEP = New Jersey Department of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 460-222909-1

TAL EDI

EPA

SW846

3

4

6

<u>R</u>

9

11

12

14

Sample Summary

Client: AKRF Inc

Project/Site: Flushing Industrial Park

Job ID: 460-222909-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-222909-1	SB1_SB2(0-15)	Solid	11/16/20 13:30	11/16/20 18:00	
460-222909-2	SB1_SB2(15-37)	Solid	11/16/20 13:45	11/16/20 18:00	

4

6

8

9

10

12

13

14

Page 79 of 81

11/23/2020

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Cooler #7: Cooler #8: Cooler #9: (pH<2) TKN Volume of Preservative used (ml): Expiration Date: Phenols Sulfide (pH>9) Receipt Temperature and pH Log (pH<2) Cooler Temperatures ပ္စ EPH or (pH<2) If pH adjustments are required record the information below: ပ္စ (bH 2-9) Pest Cooler #4: Metals Hardness Cooler #6: Cooler #5: (pH<2) pound IR Gun # (pH<2) Nitrate Nitrite (pH<2) S S S (pH<2) 233909 COD Preservative Name/Conc.: Sample No(s). adjusted: Lot # of Preservative(s): ပ္ Ammonia (pH<2) Cooler #1: Cooler #3: Cooler #2: TALS Sample Number Number of Coolers: Job Number:

of

Page

Eurofins TestAmerica Edison

Other

Other

Total

Total Cyanide

ç

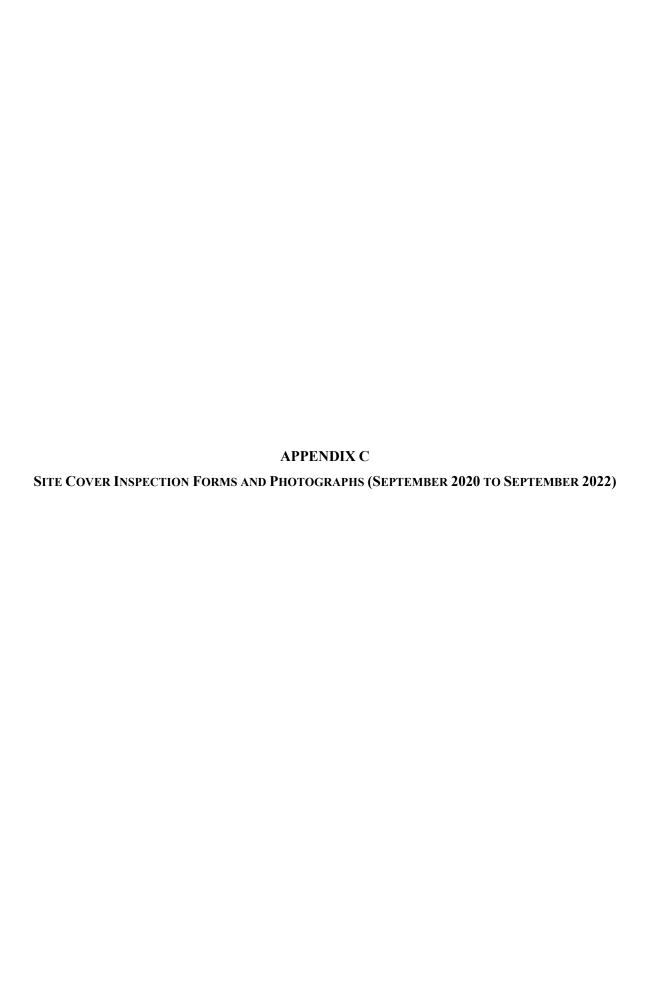
(pH<2)

(pH>12)

(pH<2) TOC

EDS-WI-038, Rev 4.1 10/22/2019

Client: AKRF Inc Job Number: 460-222909-1


Login Number: 222909 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Meyers, Gary

Sreator. Weyers, Gary		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

SITE COVER INSPECTION FORM FLUSHING INDUSTRIAL PARK, PARCELS 1, 2 AND 3 COLLEGE POINT BOULEVARD AND 40TH ROAD, FLUSHING, NEW YORK

Inspector: Steve Grens of AKRF, Inc.	
Date: September 4, 2020	

1. Landscaped areas:

Adequate top soil cover present?

No landscaped areas other than raised concrete planters and the Parcel 3 esplanade (placed on top of pavement site cap).

Signs of erosion?

N/A

Recommended corrective action:

N/A

2. Outdoor paving/sidewalks:

Note any signs of cracking or other damage:

Surficial cracks were noted on the Parcel 2 asphalt-pavement in the western loading dock area and at the entrance to the western retail building parking garage; however, no breaches or areas with greater than 25% surface damage noted. No other signs of significant cracking or damage observed on any of the concrete or asphalt-paved parking areas, loading dock areas, concrete sidewalks

Note any areas where greater than 25% of surface is cracked/damaged:

No areas greater than 25% surface damage were observed.

Recommended corrective action:

No corrective actions are warranted at this time.

3. Lower level retail and garage slabs:

Note any signs of cracking or other damage:

Minor cracks were observed on the concrete floor slab in the residential and retail parking garages.

Note any areas where greater than 25% of surface is cracked/damaged:

No areas greater than 25% surface damage were observed.

Recommended corrective action:

The cracks noted on the concrete floor were minimal. No corrective actions are warranted at this time.

Comments (attach photos/sketches to illustrate any damage noted):

See attached photos of site cover conditions observed during September 4, 2020 inspection.

SITE COVER INSPECTION FORM FLUSHING INDUSTRIAL PARK, PARCELS 1, 2 AND 3 COLLEGE POINT BOULEVARD AND 40TH ROAD, FLUSHING, NEW YORK

Inspector: Steve Grens of AKRF, Inc.
Date: May 28, 2021

1. Landscaped areas:

Adequate top soil cover present?

No landscaped areas other than raised concrete planters and the Parcel 3 esplanade (placed on top of pavement site cap).

Signs of erosion?

N/A

Recommended corrective action:

N/A

2. Outdoor paving/sidewalks:

Note any signs of cracking or other damage:

Surficial cracks were noted on the Parcel 2 asphalt-pavement in the western loading dock area; however, no breaches or areas with greater than 25% surface damage noted. No other signs of significant cracking or damage observed on any of the concrete or asphalt-paved parking areas, loading dock areas, concrete sidewalks.

Note any areas where greater than 25% of surface is cracked/damaged:

No areas greater than 25% surface damage were observed.

Recommended corrective action:

No corrective actions are warranted at this time.

3. Lower level retail and garage slabs:

Note any signs of cracking or other damage:

Minor cracks were observed on the concrete floor slab in the residential and retail parking garages.

Note any areas where greater than 25% of surface is cracked/damaged:

No areas greater than 25% surface damage were observed.

Recommended corrective action:

The cracks noted on the concrete floor were minimal. No corrective actions are warranted at this time.

Comments (attach photos/sketches to illustrate any damage noted):

See attached photos of site cover conditions observed during May 28, 2021 inspection.

SITE COVER INSPECTION FORM FLUSHING INDUSTRIAL PARK, PARCELS 1, 2 AND 3 COLLEGE POINT BOULEVARD AND 40TH ROAD, FLUSHING, NEW YORK

Insp	ector: Steve	Grens of AKRF,	Inc.	
Date	e: July 25, 20	22		

1. Landscaped areas:

Adequate top soil cover present?

No landscaped areas other than raised concrete planters and the Parcel 3 esplanade (placed on top of pavement site cap).

Signs of erosion?

N/A

Recommended corrective action:

N/A

2. Outdoor paving/sidewalks:

Note any signs of cracking or other damage:

Surficial cracks were noted on the Parcel 2 asphalt-pavement in the western loading dock area and at the entrances to the western retail building and residential tower parking garage entrances; however, no breaches or areas with greater than 25% surface damage noted. No other signs of significant cracking or damage observed on any of the concrete or asphalt-paved parking areas, loading dock areas, concrete sidewalks.

Note any areas where greater than 25% of surface is cracked/damaged:

No areas greater than 25% surface damage were observed.

Recommended corrective action:

No corrective actions are warranted at this time.

3. Lower level retail and garage slabs:

Note any signs of cracking or other damage:

Minor cracks were observed on the concrete floor slab in the residential and retail parking garages.

Note any areas where greater than 25% of surface is cracked/damaged:

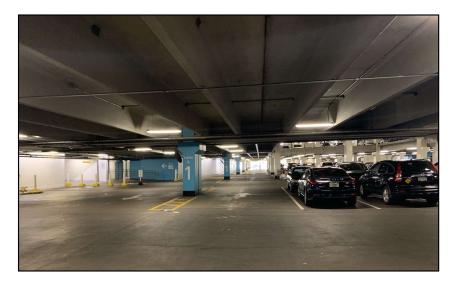
No areas greater than 25% surface damage were observed.

Recommended corrective action:

The cracks noted on the concrete floor were minimal. No corrective actions are warranted at this time.

Comments (attach photos/sketches to illustrate any damage noted):

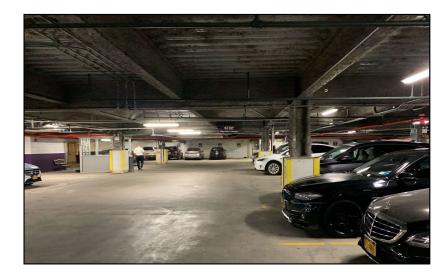
See attached photos of site cover conditions observed during July 25, 2022 inspection.



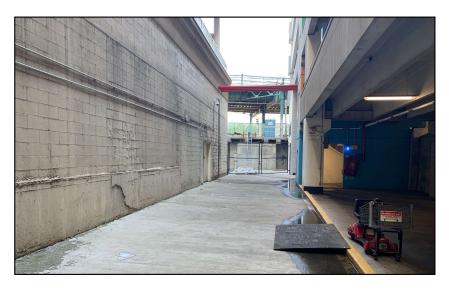
Photograph 1: The asphalt paved loading dock area on the southwestern portion of the Property (Parcels 2 and 3).

Photograph 3: Concrete slab as part of the site cover in the western retail building (Parcel 2).

Photograph 2: The concrete slab in the underground parking garage on the western portion of the Property (Parcel 2).

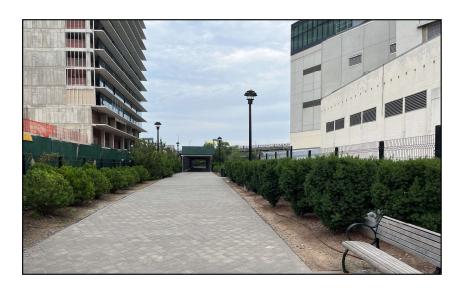


Photograph 4: The SSDS fans and riser piping in the 1st floor southern stairwell of the retail building on the western portion of the Property (Parcel 2).



Photograph 5: The western portion of the Property and the promenade (Parcels 2 and 3).

Photograph 7: The concrete slab as part of the site cover in the ground floor parking garage beneath the eastern retail building (Parcel 1).



Photograph 6: The concrete slab between the retail space and the parking garage on the western portion of the Property (Parcel 2).

Photograph 8: The SSDS fans and riser piping in the 1st floor Northern stairwell of the retail building on the western portion of the Property (Parcel 2).

Photograph 5: The western portion of the Property and the promenade at the 40th Road entrance (Parcels 2 and 3).

Photograph 7: The concrete slab driveway at the SVP West Entrance Pavilion (Parcel 2).

Photograph 6: The asphalt-paved loading dock area on the western portion of the Property (Parcel 2).

Photograph 8: The concrete sidewalk on the eastern portion of the Property along Roosevelt Avenue (Parcel 1).

APPENDIX D SITE-WIDE INSPECTION FORMS

Inspector: Steve Grens of AKRF, Inc.

Date: September 4, 2020

1. Site Use Restrictions

No on-site vegetable gardens? None observed.

No groundwater withdrawal for potable/non-potable use? None.

Restricted residential use maintained? Three residential towers are occupied. The parking garages and commercial/retail areas at grade are also occupied and opened for the public.

2. Site Cap

Note the date that the annual site cap inspection was performed:

September 4, 2020, concurrent with site-wide inspection.

Repairs made as noted during inspection?

No repairs necessary.

3. Soil Management

Note the date(s) of any soil disturbance activities conducted during the past year:

No soil disturbance activities were conducted during the past year.

Proper soil management procedures implemented (cite appropriate close-out reports)?

N/A

4. Groundwater Monitoring

Monitoring being conducted on an annual basis (note the dates of sampling conducted)? Annual groundwater monitoring discontinued in May 2018, er NYSDEC approval.

All on-site monitoring wells in working condition (note any repairs/replacement)?

On-site monitoring wells were abandoned in in accordance with NYSDEC CP-43 protocol in May 2018.

5. Sub-Slab Depressurization System (SSDS) Visual Inspection

Note: As of September 2013, SSDS is passive and fans are intentionally left turned off. If damage noted below, document the location and name of the pipe and recommended corrective actions (or immediate actions taken).

First floor locations (SVCS lines 1A through 8A) in the fire station stairwells north and south of western retail building intact?: The first floor fans were off. No damage was noted to the fans and/or SSDS riser piping.

Fourth floor locations (SVCS lines 1B through 8B) in the fire station stairwells north and south of western retail building intact?: The fourth floor fans were off.

6. Recordkeeping

Check that the following records/reports are being maintained/completed (note report/log dates as appropriate):

- 1) Annual site cap inspection log: The site cover inspection logs are maintained as part of the Annual Periodic Review Reports by AKRF and owner's representative. According to the owner's representative, CDs/DVDs of all reports are maintained in on-site management office.
- 2) Close-out report(s) for soil disturbance activities (including manifests for soil disposal): Reports documenting previous soil disturbance activities are maintained by AKRF and the owner's representative. No soil disturbance occurred during the reporting period.

7. Comments

No further comments

Inspector: Steve Grens of AKRF, Inc.

Date: May 28, 2021

1. Site Use Restrictions

No on-site vegetable gardens? None observed.

No groundwater withdrawal for potable/non-potable use? None.

Restricted residential use maintained? Three residential towers are occupied. The parking garages and commercial/retail areas at grade are also occupied and opened for the public.

2. Site Cap

Note the date that the annual site cap inspection was performed:

May 28, 2021, concurrent with site-wide inspection.

Repairs made as noted during inspection?

No repairs necessary.

3. Soil Management

Note the date(s) of any soil disturbance activities conducted during the past year:

To prepare for the proposed installation of two backup generators, a geotechnical drilling investigation was performed on Novemb er 16, 2020 and May 28, 2021. The geotechnical investigation included the advancement of three soil borings, occurred adjacent to the northern and southern exterior portions of the western retail building on Parcels 3 and 2, respectively. The soil borings were backfilled with hydrated bentonite and finished at grade with asphalt to match the surrounding surface cover.

Proper soil management procedures implemented (cite appropriate close-out reports)? Soil cuttings generated during the geotechnical investigation were containerized in 55-gallon drums and labeled accordingly, pending off-site disposal.

4. Groundwater Monitoring

Monitoring being conducted on an annual basis (note the dates of sampling conducted)?

On-site monitoring wells were abandoned in in accordance with NYSDEC CP-43 protocol in May 2018.

Annual groundwater monitoring discontinued in May 2018, er NYSDEC approval.

All on-site monitoring wells in working condition (note any repairs/replacement)?

5. Sub-Slab Depressurization System (SSDS) Visual Inspection

Note: As of September 2013, SSDS is passive and fans are intentionally left turned off. If damage noted below, document the location and name of the pipe and recommended corrective actions (or immediate actions taken).

First floor locations (SVCS lines 1A through 8A) in the fire station stairwells north and south of western retail building intact?: The first floor fans were off. No damage was noted to the fans and/or SSDS riser piping.

Fourth floor locations (SVCS lines 1B through 8B) in the fire station stairwells north and south of western retail building intact?: The fourth floor fans were off.

6. Recordkeeping

Check that the following records/reports are being maintained/completed (note report/log dates as appropriate):

- 1) Annual site cap inspection log: The site cover inspection logs are maintained as part of the Annual Periodic Review Reports by AKRF and owner's representative. According to the owner's representative, CDs/DVDs of all reports are maintained in on-site management office.
- 2) Close-out report(s) for soil disturbance activities (including manifests for soil disposal): Reports documenting previous soil disturbance activities are maintained by AKRF and the owner's representative. No soil disturbance occurred during the reporting period.

7. Comments

No further comments

Inspector: Steve Grens of AKRF, Inc.

Date: July 25, 2022

1. Site Use Restrictions

No on-site vegetable gardens? None observed.

No groundwater withdrawal for potable/non-potable use? None.

Restricted residential use maintained? Three residential towers are occupied. The parking garages and commercial/retail areas at grade are also occupied and opened for the public.

2. Site Cap

Note the date that the annual site cap inspection was performed:

July 25, 2022, concurrent with site-wide inspection.

Repairs made as noted during inspection?

No repairs necessary.

3. Soil Management

Note the date(s) of any soil disturbance activities conducted during the past year:

No soil disturbance activities were conducted during the past year.

Proper soil management procedures implemented (cite appropriate close-out reports)?

N/A

4. Groundwater Monitoring

Monitoring being conducted on an annual basis (note the dates of sampling conducted)?

Annual groundwater monitoring discontinued in May 2018, er NYSDEC approval.

All on-site monitoring wells in working condition (note any repairs/replacement)?

On-site monitoring wells were abandoned in in accordance with NYSDEC CP-43 protocol in May 2018.

5. Sub-Slab Depressurization System (SSDS) Visual Inspection

 $\label{eq:Note:As of September 2013, SSDS is passive and fans are intentionally left turned off.$

If damage noted below, document the location and name of the pipe and recommended corrective actions (or immediate actions taken).

First floor locations (SVCS lines 1A through 8A) in the fire station stairwells north and south of western retail building intact?: The first floor fans were off. No damage was noted to the fans and/or SSDS riser piping.

Fourth floor locations (SVCS lines 1B through 8B) in the fire station stairwells north and south of western retail building intact?: The fourth floor fans were off.

6. Recordkeeping

Check that the following records/reports are being maintained/completed (note report/log dates as appropriate):

- 1) Annual site cap inspection log: The site cover inspection logs are maintained as part of the Annual Periodic Review Reports by AKRF and owner's representative. According to the owner's representative, CDs/DVDs of all reports are maintained in on-site management office.
- 2) Close-out report(s) for soil disturbance activities (including manifests for soil disposal): Reports documenting previous soil disturbance activities are maintained by AKRF and the owner's representative. No soil disturbance occurred during the reporting period.

7. Comments

No further comments

APPENDIX E INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	Site Details te No. C241051	Box 1						
Si	te Name Flushing Industrial Park (Eastern) Parcel 1							
Sit Cit Co Sit								
Re	eporting Period: August 30, 2019 to August 30, 2022							
		YES	NO					
1.	Is the information above correct?	Χ						
	If NO, include handwritten above or on a separate sheet.							
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X					
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		Χ					
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		Χ					
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form							
5.	Is the site currently undergoing development?		X					
		Box 2						
		YES	NO					
6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	X						
7.	Are all ICs in place and functioning as designed?							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
A	A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
į.	Val 9/21/2	12						
8ig	nature of Owner, Demedial Party or Designated Representative Date							

		Box 2A	
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE NO. C241051		Вох 3	
	Description of Institutional Controls		

<u>Parcel</u>

<u>Owner</u>

5066-1201 portion of

BRE Skyview Retail Owner LLC

Institutional Control

Site Management Plan Ground Water Use Restriction Landuse Restriction Building Use Restriction

Soil Management Plan

Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land

in perpetuity (or until extinguished in accordance with the terms hereof) in order to provide an effective and enforceable means of encouraging the reuse and development of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the

performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of hture uses of the land that are inconsistent with the above-stated purpose.

2. Institutional and Engineering Controls.

A. Site Management Plan. The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated December 2007 ("SMP"). The SMP, which is incorporated into the terms of this Environmental Easement, describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is a fundamental element of the Department's determination that the Controlled Property is and remains safe for a specific use, but not all uses. The Department may approve changes to the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP. Upon notice of not less than thirty (30) days the Department in exercise of its discretion and consistent with applicable law may revise the SMP. The notice shall be a final agency determination. The Grantor and all successors and assigns, assume the burden of performing all of the obligations contained in the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer:
Region 2
New York State Department of
Environmental Conservation
Hunters Point Plaza
47-40 21st Street
Long Island City, NY 11101-5401
or:
Site Control Section
Division of Environmental Remediation
NYS Department of Environmental Conservation
625 Broadway
Albany, New York 12233

- B. The following controls apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person
- enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:
- (i) The Controlled Property may be used for Restricted-Residential use, as defined in 6 NYCRR 375-1.8(g) (2)(ii), as long as the long-term Institutional and Engineering
- controls set forth in the SMP dated December 2007 and any subsequent amendments thereto as may be approved by the Department are employed. Such institutional and
- engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement, and include, but are not limited to the following:
- a. an annual inspection of the Controlled Property will be conducted and an annual certification will be submitted to the Department by a New York State Licensed Professional Engineer, stating that long-term institutional and engineering controls have been properly monitored and maintained, in accordance with the SMP (including documentation of any repairs conducted since the prior certification); and
- b. the use of the groundwater underlying the Controlled Property for any purpose, including but not limited

to, potable, process or irrigation water, is prohibited without the implementation of necessary water quality treatment as determined by the IVew York State Departments of Health and Environmental Conservation; and

- c. any proposed soil excavation or other activities on the property below the composite cover (consisting of asphalt, concrete or a minimum of two (2) feet of clean fill (meeting the Part 375 SCO calculated as the lower of the SCOs for Residential Use and for Protection of Groundwater, or for which specific approval was given by NYSDEC) requires prior notification to NYSDEC, in
- accordance with the SMP, and the excavated soil and construction waste water must be managed, characterized, and properly disposed of in accordance with the SMP; and
- d. single family housing, vegetable gardens, farming, schools and day care facility are prohibited on the Controlled Property; and
- e. all Engineering Controls must be operated and maintained as specified in the SMP; and
- f. data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP; and
- g. on-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells, must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP. Groundwater monitoring was discontinued and monitoring wells were abandoned in May 2019 per NYSDEC-approval.
- C. The Controlled Property may not be used for a less restricted level of use, such as residential use, nor may the parking areas be converted to other enclosed purposes,

without an amendment or the extinguishment of this Environmental Easement.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

5066-1201 portion of

Cover System Subsurface Barriers Alternate Water Supply

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

X

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment:
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

X

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

ignature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C241051

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	at 40-24 Co	Mesc Point Blad, 11354 Idress
am certifying as		(Owner or Remedial Party)
for the Site named in the Site Details : Signature of Owner, Remedial Party, Rendering Certification		9 / 21 /22 Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 440 Pat Au Soth, MY NY 10016, print business address

am certifying as a Professional Engineer for the Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

at 440 Pat Au Soth, MY NY 10016, print business address

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Required to Party, Rendering Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	Site Details C241078	Box 1						
Site Name Flushing Industrial Park (Western) Parcel 2									
Cit Co	e Address: y/Town: Flu unty: Queer e Acreage:	ns							
Reporting Period: August 30, 2019 to August 30, 2022									
			YES	NO					
1.	Is the infor	rmation above correct?	X						
	If NO, inclu	ude handwritten above or on a separate sheet.							
2.		or all of the site property been sold, subdivided, merged, or undergone a mendment during this Reporting Period?		Χ					
3.		been any change of use at the site during this Reporting Period CRR 375-1.11(d))?		X					
4.		federal, state, and/or local permits (e.g., building, discharge) been issued to property during this Reporting Period?		X					
		swered YES to questions 2 thru 4, include documentation or evidence mentation has been previously submitted with this certification form.							
5.	Is the site	currently undergoing development?	Li	X					
			Box 2						
			YES	NO					
6.		ent site use consistent with the use(s) listed below? -Residential, Commercial, and Industrial	Χ						
7.	Are all ICs	s in place and functioning as designed?							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
	1/1	9/21/7	2						
Sig	nature of Ov	wne Remedial Party or Designated Representative Date							

		Box 2A	
0		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		Х
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C241078 Box 3

Description of Institutional Controls

Parcel 5066-1201 portion of

Owner

BRE Skyview Retail Owner LLC

Institutional Control

Site Management Plan Ground Water Use Restriction Landuse Restriction Building Use Restriction

Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land

in perpetuity (or until extinguished in accordance with the terms hereof) in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. Institutional and Engineering Controls.

A. Site Management Plan. The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated December 2007 ("SMP"). The SMP, which is incorporated into the terms of this Environmental Easement, describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is a fundamental element of the Department's determination that the Controlled Property is and remains safe for a specific use, but not all uses. The Department may approve changes to the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP. Upon notice of not less than thirty (30) days the Department in exercise of its discretion and consistent with applicable law may revise the SMP. The notice shall be a final agency determination. The Grantor and all successors and assigns, assume the burden of performing all of the obligations contained in the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer:

Region 2

New York State Department of Environmental Conservation

Hunters Point Plaza

47-40 21 st Street

Long Island City, NY 1 1 101-5401

or:

Site Control Section Division of Environmental Remediation

NYS Department of Environmental Conservation

625 Broadway

Albany, New York 12233

The following controls apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are

enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:

(i) The Controlled Property may be used for Restricted-Residential use, as defined in

6 NYCRR 375-1.8(g)(Z)(ii), as long as the long-term Institutional and Engineering controls set forth in the SMP dated December 2007 and any subsequent amendments thereto as may be approved by the Department are

employed. Such institutional and engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement, and include, but are not limited to the following:

a. an annual inspection of the Controlled Property will be conducted and an annual certification will be submitted to the Department by a New York State Licensed Professional Engineer, stating that long-term institutional and

engineering controls have been properly monitored and maintained, in accordance with the SMP (including documentation of any repairs conducted since the prior certification); and

- b. a soil vapor mitigation system consisting of a vapor barrier and sub-slab depressurization system under the building structure with retail use at grade must be inspected, certified, operated and maintained in accordance with the SMP; and
- c. the use of the groundwater underlying the Controlled Property for any purpose, including but not limited

to, potable, process or irrigation water, is prohibited without the implementation of necessary water quality treatment as determined by the New York State Departments of Health and Environmental Conservation; and

- d. any proposed soil excavation or other activities on the property below the composite cover (consisting of asphalt, concrete or a minimum of two (2) feet of clean fill (meeting the Part 375 SCO calculated as the lower of the SCOs for Residential Use and for Protection of groundwater, or for which specific approval was given by NYSDEC) requires prior notification to NYSDEC, in accordance with the SMP, and the excavated soil and construction waste water must be managed, characterized, and properly disposed of in accordance with the SMP; and
- e. single family housing, vegetable gardens, farming, schools and day care facility are prohibited on the Controlled Property; and
- f. all Engineering Controls must be operated and maintained as specified in the SMP; and
- g. data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP; and
- h. on-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells and soil vapor monitoring points, must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP. Groundwater monitoring was discontinued and monitoring wells were abandoned in May 2019
- C. The Controlled Property may not be used for a less restricted level of use, such as residential use, nor may the parking areas be converted to other enclosed purposes, without an amendment or the extinguishment of this Environmental Easement.

5066-1205 - portion

BRE Skyview Retail Owner, LLC

Site Management Plan Ground Water Use Restriction Landuse Restriction Building Use Restriction

Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land

in perpetuity (or until extinguished in accordance with the terms hereof) in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. Institutional and Engineering Controls.

A. Site Management Plan. The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated December 2007 ("SMP"). The SMP, which is incorporated into the terms of this Environmental Easement, describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns.

The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is a fundamental element of the Department's determination that the Controlled Property is and remains safe for a

specific use, but not all uses. The Department may approve changes to the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP.

Upon notice of not less than thirty (30) days the Department in exercise of its discretion and consistent with applicable law may revise the SMP. The notice shall

be a final agency determination. The Grantor and all successors and assigns, assume the burden of performing all of the obligations contained in the SMP and obtaining an up-to-date version of the SMP from: Regional Remediation Engineer:

Region 2

New York State Department of Environmental Conservation Hunters Point Plaza 47-40 21 st Street Long Island City, NY 1 1 101-5401

or:

Site Control Section Division of Environmental Remediation

NYS Department of Environmental Conservation

625 Broadway

Albany, New York 12233

The following controls apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are

enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:

(i) The Controlled Property may be used for Restricted-Residential use, as defined in

6 NYCRR 375-1.8(g)(Z)(ii), as long as the long-term Institutional and Engineering controls set forth in the SMP dated December 2007 and any subsequent amendments thereto as may be approved by the Department are

employed. Such institutional and engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement, and include, but are not limited to the following:

a. an annual inspection of the Controlled Property will be conducted and an annual certification will be submitted to the Department by a New York State

Licensed Professional Engineer, stating that long-term institutional and engineering controls have been properly monitored and maintained, in accordance with the SMP (including documentation of any repairs conducted since the prior certification); and

- b. a soil vapor mitigation system consisting of a vapor barrier and sub-slab depressurization system under the building structure with retail use at grade must be inspected, certified, operated and maintained in accordance with the SMP; and
- c. the use of the groundwater underlying the Controlled Property for any purpose, including but not limited to, potable, process or irrigation water, is prohibited without the implementation of necessary water quality treatment as determined by the New York State Departments of Health and Environmental Conservation; and
- d. any proposed soil excavation or other activities on the property below the composite cover (consisting of asphalt, concrete or a minimum of two (2) feet of clean fill (meeting the Part 375 SCO calculated as the lower of the SCOs for Residential Use and for Protection of groundwater, or for which specific approval was given by NYSDEC) requires prior notification to NYSDEC, in accordance with the SMP, and the excavated soil and construction waste water must be managed, characterized, and properly disposed of in accordance with

the SMP; and

- e. single family housing, vegetable gardens, farming, schools and day care facility are prohibited on the Controlled Property; and .
- f. all Engineering Controls must be operated and maintained as specified in the SMP; and
- g. data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP; and
- h. on-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells and soil vapor monitoring points, must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.
- C. The Controlled Property may not be used for a less restricted level of use, such as residential use, nor may the parking areas be converted to other enclosed purposes, without an amendment or the extinguishment of this Environmental Easement.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

5066-1201 portion of

Subsurface Barriers Vapor Mitigation Cover System

Alternate Water Supply

5066-1205 - portion

Vapor Mitigation Cover System Subsurface Barriers Alternate Water Supply

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

Х

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

X

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Confrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C241078

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	at 40-24 College Print business address	cint Blud ,11354
am certifying as		(Owner or Remedial Party)
for the Site named in the Site Details S Signature of Owner, Remedial Party, of Rendering Certification		9 / 2 \ / \ \ \ \ Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 440 Pat Au Soth, MY NY 10016, print business address

am certifying as a Professional Engineer for the Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

at 440 Pat Au Soth, MY NY 10016, print business address

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Required to Party, Rendering Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	Site Details C241079	Box 1		
Sit	e Name Fl	ushing Indust. Pk. (Western Waterfront) Parcel 3			
City	e Address: y/Town: Flu unty: Queer e Acreage:	ns			
Re	porting Peri	od: August 30, 2019 to August 30, 2022			
			YES	NO	
1.	Is the infor	mation above correct?	X		
	If NO, inclu	ude handwritten above or on a separate sheet.			
2.		or all of the site property been sold, subdivided, merged, or undergone a mendment during this Reporting Period?	ı	X	
3.		been any change of use at the site during this Reporting Period CRR 375-1.11(d))?		X	
4.		federal, state, and/or local permits (e.g., building, discharge) been issued e property during this Reporting Period?	I	X	
		wered YES to questions 2 thru 4, include documentation or evidence mentation has been previously submitted with this certification form			
5.	Is the site	currently undergoing development?		X	
			Box 2		
			YES	NO	
6.		ent site use consistent with the use(s) listed below? -Residential, Commercial, and Industrial	Χ		
7.	Are all ICs	in place and functioning as designed?	X		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
,	1/1	9/21/	122		
9/4	inature of Ov	wher Remedial Party or Designated Representative Date			

		Box 2A	
0		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		Χ
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	NO. C241079	Вох	c 3
	Description of Institutional Controls		

Parcel Owner Institutional Control

5066-1203 BRE Skyview Parking Owner LLC

Site Management Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction

Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity (or until extinguished in accordance with the terms hereof) in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. Institutional and Engineering Controls.

A. Site Management Plan. The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated November 2007 "SMP"). The SMP, which is incorporated into the terms of this Environmental Easement, describes obligations that Grantor assumes on

behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is a fundamenental element of the Department's determination that the Controlled Property is and remains safe

for a specific use, but not all uses. The Department may approve changes to the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable

statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP. The Grantor and all successors and assigns, assume the burden of performing all of the obligations contained in

the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer:

Region 2

NYSDEC

Hunters Point Plaza

47-40 21 st Street

Long Island City, NY 1 1 101-5401

or:

Site Control Section

Division of Environmental Remediation

NYSDEC

625 Broadway

Albany, New York 12233

- B. The following controls apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns,
- and are enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:
- (i) The Controlled Property may be used for Restricted-Residential use, as defined in 6 NYCRR 375-1.8(g) (2)(ji), as long as the long-term Institutional and Engineering controls set forth in the SMP dated November 2007 and any

subsequent amendments thereto as may be approved by the Department are employed. Such institutional and engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement, and include, but are not limited to the following:

- a. in annual inspection of the Controlled Property will be conducted and an annual certification will be submitted to the Department by a New York State Licensed Professional Engineer, stating that long-tenn institutional and engineering controls have been properly monitored and maintained, in accordance with the SMP (including documentation of any repairs conducted since the prior certification); and
- b. the use of the groundwater underlying the Controlled Property for any purpose, including but not limited to, potable, process or irrigation water,is prohibited without the implementation of necessary water quality treatment as determined by the New York State Departments of Health and Environmental Conservation;
- c. any proposed soil excavation or other activities on the property below the composite cover (consisting of asphalt, concrete or a minimum of two (2)feet of clean fill (meeting the Part 375 Restricted Residential SCOs, or for

which specific approval was given by NY SDEC) requires prior notification to NYSDEC, in accordance with the SMP, and the excavated soil and construction waste water must be managed, characterized, and properly disposed of in accordance with the SMP; and

- d. single family housing, vegetable gardens, farming, schools and day care facility are prohibited on the Controlled Property, and
- e. all Engineering Controls must be operated and maintained as specified in the SMP; and
- f. data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP; and
- g. on-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells, must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP. Groundwater monitoring was discontinued and monitoring wells were abandoned in May 2019 per NYSDEC-approval.
- C. The Controlled Property may not be used for a less restricted level of use, such as residential use without an amendment or the extinguishment of this Environmental Easement.

Box 4

Description of Engineering Controls

Parcel 5066-1203 **Engineering Control**

Cover System

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

X

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment:
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

X

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C241079

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 40-	print business address
am certifying as wner	(Owner or Remedial Party)
for the Site named in the Site Details Section of this Signature of Owner, Remedial Party, or Designated Rendering Certification	9/21/22

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 440 Pat Au Soth, MY NY 10016, print business address

am certifying as a Professional Engineer for the Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

at 440 Pat Au Soth, MY NY 10016, print business address

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Required to Party, Rendering Certification