## APPENDIX H BUILDING 8 UST TANK CLOSURE DOCUMENTATION



April 14, 2005 5555107

Mr. Vadim Brevdo, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 47-40 21<sup>st</sup> Street Long Island City, New York 11101-5401

Re:

Building 7 Underground Storage Tank Closure Plan The Shops at Atlas Park Project Glendale, New York NYSDEC BCP Site No. C241045 NYSDEC PBS 2-056103, Spill No. 04-12201 David T. Gockei, P.E., P.P. George E. Derrick, P.E. George P. Kelley, P.E. Michael A. Semeraro, Jr., P.E. Nicholas De Rose, P.G. Andrew J. Ciancia, P.E. George E. Leventis, P.E. Rudolph P. Frizzi, P.E. Ronald A. Fuerst, C.L.A.

Roger A. Archabal, P.E. Gregory L. Biesiadecki, P.E. Gerard M. Coscia, P.F. Colleen Costello, P.G. Michael E. Cotreau, P.F. Gregory M. Elko, P.E. Michael M. Goldstein Cristina M. González, P.E. Sam B. Ishak, M.C.S.E. William G. Lothian, P.E. John J. McElroy, Jr., Ph.D., P.E. John D. Plante, P.E. Alan R. Poeppel, P.E. Joseph E. Romano, P.L.S. Leonard D. Savino, P.E. Steven Ueland, P.E. Gerald J. Zambrella, C.E.M.

Jorge H. Berkowitz, Ph.D. Richard Burrow, P.E. David J. Charette, P.W.S. Steven Ciambruschini, P.G., L.E.P. Daniel D. Disario, P.E. Edward H. Geibert, M.S. Christopher M. Hager, P.E. Joel B. Landes, P.E. Matthew E. Meyer, P.E. R. S. Murali, M.S. Richard R. Steiner, P.E.

#### Dear Vadim:

This letter describes the decommissioning, removal and remediation of the two heating oil underground storage tanks (USTs) located north of Building 29 and south of Building 7 (in the RI Area), as well as our plan for backfill and ultimate close out of the tank area spill file. We previously notified the Department of our intent to remove the tanks in our letter to you dated 7 January 2005. The PBS change-in-status form for the removal was submitted to the PBS office in February, and the tank removal/closure affidavit from the contractor is attached for reference in Attachment A.

The two tanks were removed in February and March, 2005. The tanks are designated UST-1 and UST-2, as shown on the attached figures, and were each 20,000 gallons in capacity. UST-1 was entirely enclosed within a vault with concrete walls and base. UST-2 was found installed in sandy soil backfill atop a concrete slab. Evidence of petroleum releases were apparent around each tank during the removals. A spill was called into the NYSDEC spill hotline as required (Spill No. 04-12201 was assigned, separate from the previous spill number for various petroleum discoveries in the IRM Area).

Based on our findings to date, we are requesting herein an expedited review and concurrence from NYSDEC of our plan to backfill the UST-1 tank vault and UST-2 tank pit. Please note that the UST-2 tank pit sidewalls consist of unsupported soil in the process of slow collapse, which has created unstable and dangerous sidewall conditions. Langan is concerned that these conditions, if left unabated, could lead to undermining of the adjacent structures. We plan to backfill using Category 1 soil excavated from the IRM Area. We understand this is acceptable

New York, NY

under the NYSDEC Part 360 solid waste regulations and request your concurrence. The tank area is located outside of the Track 1 cleanup area (IRM Area).

The remainder of this letter provides the following details:

- Decommissioning, removal and disposal of both tank carcasses.
- <u>UST-1</u> Power washing and inspection of the UST-1 vault, removal of a section of the vault floor containing 2 unlined sumps, and excavation of underlying petroleum-impacted soils followed by end-point soil sample collection.
- <u>UST-2</u> Vacuuming out petroleum-impacted liquid from the top of the UST-2 slab, and excavation of petroleum-impacted soils along the sidewalls of the tank pit.
- Completion of a soil boring and groundwater monitoring well installation directly downgradient of the tank area.
- Plan to backfill the UST-1 vault and UST-2 tank pit.

Upon completion of the work, a formal spill closure report will be submitted to the NYSDEC Spills Office, with copies provided to your office.

#### **BACKGROUND**

#### **UST Status**

The two tanks served Atlas Terminals' heating plant, formerly located in Building 7. Each tank originally contained heating oil, documented on the PBS registration as #6 fuel oil. During the Remedial Investigation geophysical survey, the boundaries of the tanks/vaults and piping were located and marked out in the field. The two (2) tanks were found to be laying end-to-end in an east-west orientation. Figures 1 through 3 illustrate the tank locations with respect to the rest of the Atlas Park site, tank vault dimensions, and section drawings showing the vault construction.

The tanks were drained, thoroughly cleaned, and subsequently exhumed by Earth Technologies Incorporated (ETI) under the supervision of Langan Engineering and Environmental Services, P.C. (Langan). The findings of soil and groundwater sampling conducted during the RI in the tank area is summarized below for reference. The remainder of the report consists of a description of the tank removal, remedial activities completed, end point conditions, and planned activities to close out and backfill each tank area.

#### RI Findings - Soil and Groundwater Around Tank Area

Three (3) soil borings and one (1) groundwater monitoring well were completed previously during the RI in the vicinity of the tank area, including soil borings at B-10 and B-55, and a soil boring and well at B-16 (see attached figures for boring locations):



#### • B-16

There were no indications of petroleum impacts in soil or groundwater during drilling at boring B-16. B-16 is located closest to the tanks, less than 10 feet due south and downgradient of UST-1. There were no TAGM exceedances in either of two soil samples collected at B-16, from 5 to 7 ft bgs, and from 55 to 57 ft bgs from the capillary fringe. The deep soil sample showed low-level detections of SVOCs (typical petroleum constituents) below TAGM levels. However, there were no SVOCs detected in groundwater collected from the monitoring well constructed at this location.

#### B-10

At B-10 located about 10 feet due south and downgradient of UST-2, petroleum-like odors and PID readings were observed during drilling between a depth of 11 to 23 ft bgs. A soil sample was collected from this interval from 19 to 23 ft bgs. Chrysene exceeded its TAGM value, and low levels of benzene, ethylbenzene, and xylenes were also detected but all below their TAGM values in this sample.

#### • B-55

Soil boring B-55 was located between 25 to 30 feet to the north of the tanks, south of Building 7, the former boiler building. Soil samples collected from 0.5 to 4.5 feet bgs exhibited black staining, low PID response, and exceedances of RSCOs for SVOCs, that could be related to former releases of petroleum from the piping in this area. The deeper soil sample, from 8 to 12 ft bgs, showed no apparent impacts and no detections of petroleum constitutents.

#### UST-1

#### Tank Removal

UST-1 was entirely enclosed in a six-sided concrete vault with 8- to 12-inch thick concrete walls and a 6- to 8-inch thick concrete cover and base. The supply, return, and vent piping, and wiring were disconnected from the tank, and it was removed from the vault on February 15, 2005. The tank was placed on the ground on plastic sheeting, and chocked to allow inspection. The tank shell was intact; no pitting, holes or other areas of past leakage were observed. There was staining observed on the outer surface of the tank indicating petroleum had been released in the past from the piping or to the ground around the tank's fill port. The bottom of the vault contained five concrete saddles which served as tank supports.

#### Interior Vault Cleaning and Inspection

Oily sludge and liquid was observed at the base of the vault, which was vacuumed out and disposed off-site by ETI. The interior surfaces of the vault were pressure washed and the rinsate was collected and removed using a vacuum truck. Following vault cleaning, it was evident that the concrete walls surrounding the tank were intact; however, the vault base contained two (2), 2 ft by 2 ft sumps in the southwest and northwest corners (see Figure 2).



Petroleum-impacted materials were hand excavated from each sump as deep as physically possible, to a depth of about 1.5 feet from the top of the slab. The sumps were found to be unlined. There was sandy soil present at the base of each sump exhibiting petroleum odors, low PID readings, and slight sheen but no free product was observed.

#### Soil Excavation

Based on the inspection findings, the contractor was directed to break through the vault floor around the sumps for further exploration and to excavate additional petroleum-impacted soils present. On March 18, 2005, ETI removed a portion of the concrete floor surrounding each sump, and the underlying soil was excavated to the maximum reach of the excavation equipment, approximately 27 feet below surrounding road grade elevation (12 feet below the bottom of the vault).

#### **End-Point Soil Sample Collection and Analysis**

At the end of excavation, one (1) bottom end-point soil sample and four (4) sidewall end-point soil samples were collected from the excavation and tested for the NYSDEC STARS petroleum constituents by Severn Trent Labs. Table 1 presents the results for STARS compounds that exceeded the NYSDEC TAGM 4046 recommended soil cleanup objectives (RSCOs). Attachment C contains the raw laboratory data reports.

#### Analytical Results

There were no STARS volatile organic compounds (VOCs) present in any soil samples above the TAGM 4046 RSCOs, nor was the total VOCs RSCO exceeded.

Three (3) STARS semivolatile organic compounds (SVOCs) were present in two of the soil samples above the RSCOs, specifically benzo(a)anthracene, benzo(a)pyrene, and chrysene. The RSCOs are set as the lower of the concentrations that are protective of human health through the ingestion pathway, and concentrations that are protective of groundwater quality through leaching and downward migration to the water table. The groundwater protection values are the most applicable to the UST-1 data since following remediation the area will be backfilled and paved, thereby preventing any potential exposure to and ingestion of soils left in place. The end-point results for benzo(a)anthracene and benzo(a)pyrene are well below their respective groundwater protection values. Only the chrysene levels exceed its groundwater protection value.

#### Plan for Additional Remediation and Closeout

Additional excavation will be completed at UST-1 to remove the supply and return piping, and vent line leading to Building 7 to the north (see Figure 2). Following removal of the piping and excavation of any petroleum-impacted soils, endpoint soil samples will be collected from the piping runs as per DER-10.



The vault will be left in place and the excavation below the vault floor and the vault itself will be backfilled and compacted with Category 1 soils from the IRM Area. The vault is massive and can not be removed without jeopardizing the structural integrity of Buildings 7 and 29 and potentially the Long Island Rail Road (LIRR) Tracks, shown on Figures 1 through 3. Building 29 is located approximately 15 feet to the south, Building 7 is located within approximately 25-30 feet to the north, and the LIRR property and tracks are located 30 feet to the south of UST-1.

#### UST-2

#### Tank Removal

UST-2 was installed in a sandy soil matrix atop a concave concrete slab. The supply, return, and vent piping, and wiring were disconnected from the tank, and it was removed on March 14, 2005 by ETI. The tank was placed on the ground on plastic sheeting, and chocked to allow inspection. There were numerous areas of pitting and small corrosion holes noted on the top of the tank. Staining was present on the outer surfaces indicating petroleum had been released in the past from the piping or to the ground around the tank's fill port. Petroleum-impacted soils were removed from above the tank around the piping during removal of the tank.

#### Remedial Activities and Inspection of Tank Pit

Following tank removal, petroleum-impacted liquids were found and vacuumed from the top of the tank pad and the tank pit was inspected. A band of visibly petroleum-impacted soils was observed along the lower sidewalls of the tank pit, up to 1.5 feet above the top of the tank pad. ETI proceeded to excavate this layer on the north, south and west sides of the pit for off-site disposal and to attempt to delineate its lateral extent. Before the outer edges of the tank pad could be reached, the excavation became unstable. Further excavation had to be discontinued because it was likely, with any further collapse of sidewalls, that Building 29 to the south would be undermined, and the structural integrity of Building 7 and potentially the LIRR tracks could be jeopardized. We could not collect end point soil samples due to the dangerous conditions; however, several samples of the petroleum-impacted materials were collected from the stockpile for waste disposal purposes. These results are included in Attachment D. Limited tests were run, but show no detectable benzene, toluene, xylene or ethylbenzene, and relatively low total petroleum hydrocarbons (DRO). PID screening of the soils from the excavated layer showed low volatiles, similar to the UST-1 area.

#### Plan for Additional Remediation and Closeout

Additional excavation will be completed at UST-2 to remove the supply and return piping, and vent lines that lead to Building 7. Following removal of the piping and excavation of any petroleum-impacted soils, endpoint soil samples will be collected from the piping runs as per DER-10.

Further excavation of soils containing residuals is not feasible due to proximity and potential danger of collapse of nearby structures, nor is it believed to be warranted as discussed below.



The tank pad will be left in place and the excavation will be backfilled and compacted with Category 1 soils from the IRM Area.

#### SOIL BORING AND GROUNDWATER MONITORING WELL INSTALLATION

A soil boring with monitoring well installation was completed at the location shown on Figures 1 and 3 to investigate soil and groundwater quality downgradient of the tank area, along the estimated groundwater flow direction. The boring log and well completion diagram are provided in Attachment B. The boring was completed about 10 feet off the southwest corner of the UST-2 tank pit. Continuous split-spoon soil samples were collected from grade surface to 16 feet below grade, at 5-foot intervals thereafter, then again continuously at a depth of 50 feet upon reaching the water table depth (55.5 feet).

The soil cores were visually inspected and screened with a PID for indications of petroleum impacts. There was no evidence of petroleum impacts through the entire drilled depth, including the depth of the tank invert, depth where impacts were observed at nearby RI boring B-10 (19 to 23 ft bgs), and the capillary fringe, with the exception of slight odors noted between a depth of 10 and 16 feet bgs (See Boring/Well Log in Attachment B). As such, a soil sample from within this depth interval was collected for confirmation and is being tested for the STARS VOCs and STARS SVOCs. A second soil sample was collected from the capillary fringe, also for confirmation, as per the RI Work Plan. The data are pending and will be forwarded to NYSDEC upon receipt.

The well will be developed and sampled shortly for the STARS VOCs and SVOCs and these data will be forwarded to NYSDEC upon receipt.

#### **SUMMARY AND CONCLUSIONS**

Petroleum-impacted soil lying beneath the source area of the release from UST-1 (the sumps) was excavated to the furthest and deepest extent possible (27 feet bgs) given the limitations imposed by equipment, safety concerns, and potential for damage to existing facilities. Petroleum-impacted soil was also removed to the extent feasible from beneath UST-2, given the same limitations and concerns noted above. A total of approximately 630 tons of petroleum-impacted soils were removed and stockpiled for testing and ultimate off-site disposal. The remedial work, end point sampling, well installation, and waste management and disposal were completed in accordance with the RI and IRM Work Plan.

Based on the data we conclude that there will be no potential risk to either human health or groundwater from the residuals left in the ground for the following reasons:

- Potential impacts to groundwater are negligible because of the great depth to groundwater (over 50 feet).
- Vertical migration through leaching will be negligible because the primary source was removed and the area will be paved to prevent infiltration of precipitation.
- The bottom end point sample from the UST-1 source area (sumps) showed only

chrysene exceeded its TAGM cleanup level.

- No end point samples exceeded the TAGM recommended cleanup objective for total SVOCs (500 ppm).
- The VOCs have the greatest potential for leaching and mobilization to groundwater; however, there were no exceedances of the STARS VOCs in the end point soil samples.
- There were no exceedances of the STARS VOCs or SVOCs in soil or groundwater sampling conducted previously at RI boring B-16, located less than 10 feet south (downgradient) of UST-1.
- There was no evidence of petroleum impacts through the entire drilled depth for a second soil boring and well completed following the tank removals, and located less than 10 feet south (downgradient) of UST-2.
- The residual levels represented by the end point data are relatively low and the particular SVOCs will undergo natural biodegradation and attenuation over time.
- The planned cap (pavement) and implementation of institutional controls will preclude physical exposure to residuals in the ground.

Additionally, because VOCs did not exceed TAGM 4046 and were generally low, vapor infiltration into any of the surrounding structures is not a concern.

Please call if you have any questions. We look forward to your concurrence with the closure plan and backfill plan described herein.

Sincerely,

Langan Engineering and Environmental Services, P.C.

Joel B. Landes, P.E.

Project Manager

Dan Waish, NYSDEC CC:

Dawn Hettrick, NYS Department of Health

Damon Hemmerdinger, Mark Powers - A & Co.

John Rhyner, Jamie Barr - Langan

Alan Kasden, Lee Houck - Plaza Construction

Linda Shaw - Knauf Shaw LLP

U:\Data1\5555107\Office Data\Remdial Action\Correspondance\Bldg 7 UST Vault Closure.doc











TABLE 1
Summary of STARS VOCs and SVOCs Exceedances
UST 1 Area
ATLAS PARK

NOTES:

NYSDEC TAGM Objectives obtained from the New York State Department of Environmental Conservation Technical and Administrative Memorandum # 4046 Document.

Administrative Memorandum # 4046 Document.

NYSDEC exceedances of soil cleanup objectives to protect groundwater are highlighted and in BOLD.

D\* = Dilited sample, # indicates the dilution factor>1.

NA = Not available.

JE Result is an estimated value below the reporting limit or a tentatively identified compound (TIC).

M = Manuelly integrated compound.

ND = Non Detect

## ATTACHMENT A TANK CLOSURE AFFIDAVIT

04/14/2005 00:30



### **AL HAAG & SON**

#### PLUMBING & HEATING INC.

LIC. #10701 + LIC. #836 LIC. #948



MEMBER OF GLENDALD CHAMBER OF COMMERCE

79 69 77th AVENUE

GLENDALE, N.Y. 11385

TEL. (718) 456-1953

April 7, 2005

Fire Department
City of New York
Bureau of Fire Presection

Re: 8000 Cooper Avenue, Glendale, NY 11385

Dear Sir/Madam:

The 20,000 gallon fiel tanks located on the South End of the Atlas Park LLC property at the south of Building 8 and the former Boiler House, have been removed. These (2) tanks are properly identified on NYSDEOPBS Number 2-056103 as Tank Numbers 001 and 002. These tanks were cleaned, pumped and the liquid wastes were properly disposed at the United Oil Recover Facility located at 50 Cross Street, Bridgeport Connections. All ancillary piping was properly capped and/or removed. The tanks were cut up and sent to the M&M surap yard located at 551 New Point Road, Elizabeth, NJ. Currently field is no longer stored in bulk storage tanks on these premises.

Yours muly,

ALLAN HAAG, JR.

Vice President



# ATTACHMENT B B-UST2/MW-UST2 – SOIL BORING LOG AND MONITORING WELL CONSTRUCTION LOG



**B-UST2** Log of Boring Sheet of 3 Project Project No. Atlas Park 5555107 Location Elevation and Datum Glendale, Queens Approx. 0 BPMD Date Started Drilling Agency Date Finished Alpine Environmental 4/7/05 4/7/05 Drilling Equipment Completion Depth Rock Depth Truck Mounted Drill Rig 65 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 4.25" HSA 9 NA Casing Diameter (in) Casing Depth (ft) First Completion 24 HR. Water Level (ft.) NA NA 55.5 Drop (in)NA Drilling Foreman Weight (lbs) Casing Hammer NA NA Steve Butrej Sampler 2" OD Split Spoon Inspecting Engineer Drop (in) In. Sampler Hammer Renee Wong 140 Lb Auto Hammer 140 LB Sample Data Remarks Depth N-Value (Blows/foot) Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 0.0 10 20 30 40 Concrete / Asphalt 17 PID = o ppm. No odors. 1.5' -0.5 Dark Brown to Black Coarse Gravely SAND Recovery. Continuous Split **∞** 1 13: Spoon down to 16'. -2.0 0 2 Brown coarse silty SAND 5 PID= 0 ppm. Moist. No odors. 1.5' Recovery. Slight 8 3 plastic feel. 7 -4.0 0 Brown medium to coarse silty SAND, some mica PID = 0 ppm. Moist. No odors. 1' Recovery. Plastic and plant roots SS S-3 7 5 3 -6.0 6 Brown medium to coarse silty SAND, 1" of black PID = 0 ppm. Moist. No quartz at 6.5' odors. 1.8' Recovery. Slight 22 plastic feel. 6 -8.0 8 Brown medium silty SAND, some coarse SAND 2 PID = 0 ppm. Moist. No odors. 1.8' Recovery. Slight 6 S-5 ន 9 plastic feel. g -10,0 0 10 Brown medium to fine silty SAND 5 PID = 0 ppm. Moist. Slight organic odor at top 1", No 6 -11.0 8目 82 odors below top 1". 1.8' Recovery. Slight plastic feel. Sample collected from 10' -11 Brown coarse gravelly SAND 8 -12.0 0.1 12 Brown medium to coarse SAND, some mica and 12' (Sample ID: quartz B-UST2-10-12-040705) 8 S PID = 0.1 ppm. Moist. No 13 S-7 5 odors. 1.8' Recovery. Slight plastic feel at top 6". 8 -14.0 Brown coarse SAND, some mica and quartz 8 PID = 0 ppm. Moist, Slight organic odor at top 1", No odors below top 1". 1.8' 7 လွ |SB|| 23 15 6 Recovery. Split spoon at 8 every 5' below 16'. -16.0 16 17 18 19



Log of Boring B-UST2 Sheet 2 of 3 Project No. Atlas Park 5555107 Location Elevation and Datum Glendale, Queens Approx. 0 BPMD Sample Data Elev (ft) Remarks Depth N-Value (Blows/foot) Penetr resist BL/6in Sample Description Type (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale 10 20 30 40 20 Brown coarse SAND, some quartz and mica PID = 0 ppm. Moist. No odors. 1.5' Recovery. SS 18 S-9 27 21 47  $\overline{\Diamond}$ White to beige powdery to flaky material (Cobble?) 42 22 23 24 -25.0 25 Brown coarse SAND, some rocks and boulders, SS 118 16 PID = 0 ppm. Moist. No some quartz and olivine? odors. 1.5' Recovery. 45 26 24 24 -27.0 27 28 29 -30.0 30 SS 18 Brown coarse SAND, some rocks and boulders, 16 PID = 0 ppm. Moist. No some quartz and mica odors. 1.5' Recovery. 24 31 24 23 -32.0 32 33 34 -35.0 35 Brown coarse SAND, some boulders, some black 2.2 5 PID = 2.2 ppm at mica spot, mica schist at bottom 1' 0.5 0.5 ppm at surrounding sand. S-12 12 36 Moist. No odors. 8" 15 Recovery. 16 -37.0 37 38 39 -40.0 Brown coarse SAND, some gravel (lighter brown at PID = 0 ppm. Moist. No bottom 1.5'). Black mica schist at bottom 1" odors. 1.8' Recovery. 8 41 13 16 -42.0 42 43



UNDATA1\5555107\GINT\ATLASPARK.GPJ

ENGINEERING & ENVIRONMENTAL SERVICES Log of Boring **B-UST2** Sheet 3 of 3 Project Project No. Atlas Park 5555107 Location Elevation and Datum Glendale, Queens Approx. 0 BPMD Sample Data Casng blws/ ft or Cor. Time Remarks Elev. Depth N-Value Sample Description Penetr. resist BL/6in Type (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 10 20 30 40 SS 18 Brown coarse SAND, some gravel and quartz 6 PID = 0 ppm. Moist, No odors. 46 12 16 47.0 47 48 49 -50.0 0.1 50 Brown coarse sand, some gravel PID = 0.1 ppm. Moist. No odors. 1.5' Recovery. 15 8 51 Continuous split spoon from 23 here down (water table 23 anticipated). -52.0 0,1 52 Brown coarse SAND, some gravel 28 PID = 0.1 ppm. Moist. No odors. 1.5' Recovery. 25 53 26 18 -54.0 0 SS 22 Brown coarse SAND, some gravel 6 PID= 0 ppm. Moist. No odors. 1.8' Recovery. Water table at 55.5'. Sample 12 55 25 13 Ā collected at capillary fringe 16 just above water table -56.0 56 (Sample ID: B-UST2-54-56-040705). Auger down to 66' to begin 57 monitoring well installation. 58 59 60 61 62 63 64 -65.0 65 66 67 68 69



#### **WELL CONSTRUCTION SUMMARY**

#### Well No. MW-UST2

| Project                 | Atlas Park                                            |                                                                                                                                                                          |                                                                 | Project No.                                            | 5555                                                                        | 107                                                                  |                                       |
|-------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| Location                |                                                       |                                                                                                                                                                          |                                                                 | Elevation And                                          |                                                                             |                                                                      |                                       |
| D. 110                  | Glendale, Queens                                      | <u> </u>                                                                                                                                                                 |                                                                 |                                                        | Appr                                                                        | ox. 0 BPMD                                                           |                                       |
| Drilling Agency         | Alpine Environme                                      | ental                                                                                                                                                                    |                                                                 | Date Started                                           | 4/7/2005                                                                    | Date Finished<br>4                                                   | /7/2005                               |
| Drilling Equipment      | Truck Mounted D                                       | Prill Rig                                                                                                                                                                |                                                                 | Driller                                                | Steve                                                                       | Butrej                                                               |                                       |
| Size And Type of Bit    | 4.25" HSA                                             |                                                                                                                                                                          |                                                                 | Inspector                                              | Rene                                                                        | e Wong                                                               |                                       |
| Method of Installation  | screen from 65 feet up to<br>below grade. A bentonite | ced with 4-1/4 inch inside diams<br>s and a filter pack was added a<br>50 feet below grade, and a 15<br>seal was placed from 47.2 to 4<br>ment grout. A locking expandat | is the augers were<br>foot PVC riser pip<br>19.6 feet below gra | e removed. The<br>be. A filter pack of<br>the borehold | well consists of 15 feet<br>of #2 sand was placed<br>a was then tremie grou | of 0.020-inch slot I<br>in the borehole to 4<br>ited to a depth of 0 | PVC well<br>19.6 feet<br>5 foot below |
| Method of Well Developm | nent Not yet completed as of 0                        | 04/12/05.                                                                                                                                                                |                                                                 |                                                        |                                                                             |                                                                      |                                       |
|                         |                                                       |                                                                                                                                                                          |                                                                 |                                                        |                                                                             |                                                                      |                                       |
| Type of Casing PVC      | Diamete<br>2"                                         | r                                                                                                                                                                        | Type of Backf                                                   | ill Material<br>t/Bentonite                            | /Grout                                                                      |                                                                      |                                       |
| Type of Screen          | Diamete                                               | r                                                                                                                                                                        | Type of Seal I                                                  |                                                        | Grout                                                                       |                                                                      |                                       |
| Slotted Screen          |                                                       | •                                                                                                                                                                        | 1 "                                                             | ite chips                                              |                                                                             |                                                                      |                                       |
| Borehole Diameter       |                                                       |                                                                                                                                                                          | Type of Filter<br>Morie #                                       |                                                        |                                                                             |                                                                      |                                       |
| Top of Casing           | Elevation                                             | Depth<br>0' ags                                                                                                                                                          | Well [                                                          | Details                                                | Soil Clas                                                                   | ssification                                                          | Dep<br>(ft)                           |
| Top of Seal             | Elevation                                             | Depth                                                                                                                                                                    |                                                                 | Cover<br>Cement seal                                   | See Boring Log                                                              |                                                                      | 1 (17)                                |
| Top of Filter           | Elevation                                             | Depth<br>49.6' bgs                                                                                                                                                       |                                                                 |                                                        |                                                                             |                                                                      | - 5                                   |
| Top of Screen           | Elevation                                             | Depth<br>50' bgs                                                                                                                                                         |                                                                 |                                                        |                                                                             |                                                                      | - 10                                  |
| Bottom of Filter        | Elevation                                             | Depth<br>65.00' bgs                                                                                                                                                      |                                                                 |                                                        |                                                                             |                                                                      | - 15                                  |
| Bottom of Boring        | Elevation<br>-65.00'                                  | Depth<br>65.00' bgs                                                                                                                                                      |                                                                 | Cement/                                                |                                                                             |                                                                      | _ 20                                  |
| Screen Length           | 15.00'                                                | Slot Size                                                                                                                                                                |                                                                 | Bentonite<br>Grout                                     |                                                                             |                                                                      | <b>– 2</b> 5                          |
|                         | DUNDWATER ELEVAT                                      | IONS (ft)                                                                                                                                                                |                                                                 |                                                        |                                                                             |                                                                      | - 30                                  |
| Elevation               | DTW                                                   | Date                                                                                                                                                                     |                                                                 |                                                        |                                                                             |                                                                      | 35                                    |
| Elevation               | DTW                                                   | Date                                                                                                                                                                     |                                                                 | •                                                      |                                                                             |                                                                      | <b>– 40</b>                           |
| Elevation               | DTW                                                   | Date                                                                                                                                                                     |                                                                 | Bentonite                                              |                                                                             |                                                                      | <b>⊢</b> 45                           |
| Elevation               | DTW                                                   | Date                                                                                                                                                                     | <del>     </del>                                                | seal<br>Sand filter<br>back                            |                                                                             |                                                                      | - 50                                  |
|                         |                                                       |                                                                                                                                                                          |                                                                 |                                                        |                                                                             |                                                                      | <b>⊢</b> 55                           |
| Elevation               | DTW                                                   | Date                                                                                                                                                                     | 1::-1                                                           | PVC Screen<br>Sand Filter                              |                                                                             |                                                                      | 60                                    |

## ATTACHMENT C UST-1 EXCAVATION – END POINT SOIL SAMPLE DATA

| 05                 | Barr                                    |                                                                                                   | DT DATE/TIME TECH             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:04/11/2005    | Jamie Barr                              |                                                                                                   | BATICH                        | 46798<br>46798<br>46798<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date:              | AITN:                                   |                                                                                                   | STIM                          | By/San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                         |                                                                                                   | DILUTION                      | 2.00000<br>2.00000<br>2.000000<br>2.000000<br>2.000000<br>2.000000<br>2.000000<br>2.000000<br>2.000000<br>2.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S                  |                                         | ID: 209184-5<br>: 04/01/2005<br>: 19:15                                                           | 72                            | 0.10<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ST RESUL           | ATLAS                                   | Laboratory Sample ID: 209184-5<br>Date Received: 04/01/200<br>Time Received: 19:15                | TQW                           | 0.10<br>240<br>230<br>230<br>170<br>170<br>180<br>180<br>180<br>160<br>160<br>160<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| M<br>H             | 5555107-ATLAS                           | Lat<br>Tir                                                                                        | O FLAGS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ABORATORY          | PROJECT:                                |                                                                                                   | SAMPLE RESULT C               | ND 590 U 790 |
| Lob Number: 209184 | CUSTOMER: LANGAN ENVIRONMENTAL SERVICES | Customer Sample ID: UST1-BOT-033105 Date Sampled 03/31/2005 Time Sampled 12:00 Sample Matrix Soil | PARAMETIEK/TIEST: DESCRIPTION | \$ Solids, Solid<br>\$ Moisture, Solid<br>Semivolatile Organics<br>Naphthelene, Solid*<br>Acenaphthene, Solid*<br>Acenaphthene, Solid*<br>Phenanthrene, Solid*<br>Anthracene, Solid*<br>Anthracene, Solid*<br>Anthracene, Solid*<br>Berzo(a) anthracene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(a) pyrene, Solid*<br>Berzo(a) pyrene, Solid*<br>Berzo(ghi) perylene, Solid*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | CUSTOMER: LANG                          | Customer<br>Date San<br>Time San<br>Sample M                                                      | TEST METHOD                   | ASTM D-2216<br>8270C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Page 13

| CUSTOMER: LAW                                | L Job Number: 209184  CUSTOMER: LANGAN ENVIRONMENTAL SERVICES                                                                                                                                                                                                                                                                                                                                                 | ABORATORY<br>PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEST RESUL                                | o H                                                                |                                                                                                            | Date:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date:04/11/2005                                                                                                                     |                                                                                                                                          |                                                                                                                                                                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oustone:<br>Date Sar<br>Time Sar<br>Sample R | Oustomer Sample ID: UST1-ESW-033105 Date Sampled: 03/31/2005 Time Sampled: 12:00 Sample Matrix: Soil                                                                                                                                                                                                                                                                                                          | al de la company | Laboratory Sample ID:<br>Date Received    | D: 209184-7<br>04/01/2005<br>19:15                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                   |
| TEST METHOD                                  | PARAMETER //TEST: DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE RESULT Q FLAGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ZQ.                                       | RL                                                                 | NOLLULION                                                                                                  | UNITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BATCH DT                                                                                                                            | DATE/TIME                                                                                                                                | E TECH                                                                                                                                                            |
| ASTM D-2216                                  | % Solids, Solid<br>% Moisture, Solid                                                                                                                                                                                                                                                                                                                                                                          | 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                      | 0.10                                                               | нн                                                                                                         | ं कंग कंग                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46798<br>46798                                                                                                                      | 04/05/05 0000<br>04/05/05 0000                                                                                                           | 1000 rlm                                                                                                                                                          |
| 8270C                                        | Semivolatile Organics Naphthalene, Solid* Acenaphthene, Solid* Fluorane, Solid* Phenanthrene, Solid* Anthracene, Solid* Fluoranthene, Solid* Fluoranthene, Solid* Pyrene, Solid* Berzo(a) anthracene, Solid* Chrysene, Solid* Berzo(b) fluoranthene, Solid* Berzo(b) fluoranthene, Solid* Berzo(c) pyrene, Solid* Indeno(1,2,3-cd) pyrene, Solid* Diberzo(a,h) anthracene, Solid* Berzo(ghi) perylene, Solid* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 R 4 4 R 4 4 4 8 4 4 8 4 4 8 4 4 4 4 4 4 | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000 | \$\frac{1}{2}\text{Sign} \frac{1}{2}\text{Sign} \frac{1}\text{Sign} \frac{1}{2}\text{Sign} \frac{1}{2}\text{Sign} \ | 46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880 | 04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1<br>04/05/05 1 | 1518 dmm |
|                                              | * In Description = Dry Wgt.                                                                                                                                                                                                                                                                                                                                                                                   | Page 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                    |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                   |

Page 14

| 305                | Barr                                    |                                                                                                      | 1 DT DATE/TIME TECH          | 04/05/05 0000 rlm 04/05/05 0000 rlm 04/05/05 1547 dm                                                                                                           |
|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:04/11/2005    | Jamie                                   |                                                                                                      | BATCH                        | 46798<br>46798<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880                                                                                                                                                                                                                                                                                                                   |
| Date               | ATTN:                                   |                                                                                                      | UNITES                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                         |                                                                                                      | DILUTION                     | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                 |
| S E                |                                         | ID: 209184-8<br>: 04/01/2005<br>: 19:15                                                              | RL                           | 380<br>380<br>380<br>380<br>380<br>380<br>380<br>380<br>380<br>380                                                                                                                                                                                                                                                                                                                                                                                                               |
| ST RESUL           | ATLAS                                   | Laboratory Sample ID:<br>Date Received                                                               | TOM                          | 0.10<br>66<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64                                                                                                                                                                                                                                                                                                                                                                                               |
| H                  | 5555107-ATLAS                           | Lea<br>Dat<br>Tir                                                                                    | Q FLAGS                      | ממממממממממממ                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| АВОКАТОКУ          | PROJECT:                                |                                                                                                      | SAMPLE RESULT                | 66666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Job Number: 209184 | CUSTOMER: LANGAN ENVIRONMENTAL SERVICES | Customer Sample ID: UST1-WSW-033105 Date Sampled: 03/31/2005 Time Sampled: 12:00 Sample Matrix: Soil | PARAMETER/ITEST, DESCRIPTION | * Solids, Solid<br>* Moisture, Solid<br>Semivolatile Organics<br>Maphthalene, Solid*<br>Acaraphthene, Solid*<br>Phenanthrane, Solid*<br>Phenanthrane, Solid*<br>Phenanthrane, Solid*<br>Phrame, Solid*<br>Prrene, Solid*<br>Berzo(a) anthracene, Solid*<br>Berzo(b) fluoranthene, Solid*<br>Berzo(k) fluoranthene, Solid*<br>Berzo(k) fluoranthene, Solid*<br>Berzo(k) fluoranthene, Solid*<br>Berzo(c) pyrene, Solid*<br>Berzo(d) pyrene, Solid*<br>Berzo(dhi) perylene, Solid* |
| -                  | CUSTOMER: LANG                          | Customer<br>Date Sam<br>Time Sam<br>Sample M                                                         | TEST METHOD                  | ASTM D-2216                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Page 15

|                    |                                            |                                                                                                    | DATE/TIME TECH               | 04/05/05 0000 rlm 04/05/05 0000 rlm 04/05/05 1646 dmm                                                                                                                                                     |
|--------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:04/11/2005    | Jamie Barr                                 |                                                                                                    | BATCH DT                     | 46798<br>46798<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880<br>46880                                                                                                                                                                                                                                                                                                                          |
| Date:C             | ATTN:                                      |                                                                                                    | SLIM                         | 50 / 50 / 50 / 50 / 50 / 50 / 50 / 50 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                                            |                                                                                                    | DILUTION                     | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                      |
| ស                  |                                            | D: 209184-9<br>: 04/01/2005<br>: 19:15                                                             | RL                           | 0.10<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T RESUL            | CTLAS                                      | Laboratory Sample ID: 209184-9<br>Date Received: 04/01/200<br>Time Received: 19:15                 | MDIL                         | 0.10<br>0.10<br>559<br>444<br>467<br>463<br>388<br>388<br>388<br>388<br>388                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HES                | SS55107-ATLAS                              | Labo<br>Date<br>Time                                                                               | Q FLAGS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ABORATORY          | PROJECT:                                   |                                                                                                    | SAMPLE RESULT                | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Job Number: 209184 | CUSTOVIRR: I LANGAN ENVIRONMENTAL SERVICES | Customer Sample ID: UST1-SSW-033105 Date Sampled 03/31/2005 Time Sampled 12:00 Sample Matrix: Soil | PARAMETIES/TIEST DESCRIPTION | * Solids, Solid * Moisture, Solid Semivolatile Organics Naphthalene, Solid* Acenaphthene, Solid* Fluorene, Solid* Phenanthrene, Solid* Anthracene, Solid* Phrancanthene, Solid* Pyrene, Solid* Benzo(a) anthracene, Solid* Benzo(b) fluoranthene, Solid* Benzo(b) fluoranthene, Solid* Benzo(b) fluoranthene, Solid* Benzo(b) fluoranthene, Solid* Dibenzo(a) pyrene, Solid* Indeno(1,2,3-cd) pyrene, Solid* Benzo(a) phyrene, Solid* Benzo(a) phyrene, Solid* Dibenzo(a, h) anthracene, Solid* Benzo(ghi) perylene, Solid* |
|                    | CUSTOMER: LAN                              | Customes<br>Date Sar<br>Time Sar<br>Sample N                                                       | TEST METHOD                  | ASIM D-2216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

A5311502 UST1-NSW-033105 A05-3115 03/31/2005 STL Connecticut (Langan Projects)
Langan - Atlas
METHOD 8021 - STARS VOLATILE ORGANICS A5311503 UST1-ESW-033105 A05-3115 03/31/2005 A5311501 UST1-BOT-033105 A05-3115 03/31/2005 Lab ID Date: 04/08/2005 Time: 14:11:33 Client ID Job No Sample Date

Rept: AN0326

| Analyte                     | Units | Sample<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit                      |
|-----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--------------------|-----------------|-----------------------------------------|
| Benzene                     | UG/KG | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | ON              | 1.0                | QN              | 10                                      |
| Ethyibenzene                | UG/KG | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | S               | 1.0                | 2               | 10                                      |
| Toluene                     | UG/KG | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:0                | S               | 1.0                | 110             | 10                                      |
| o-Xylene                    | UG/KG | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | S               | 1.0                | Q               | 10                                      |
| m/p-Xylenes                 | UG/KG | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                | 2               | 2.0                | S               | . 20                                    |
| Total Xylenes               | UG/KG | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                | Q.              | 3.0                | 1200            | 30                                      |
| Isopropylbenzene            | UG/KG | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                | 2               | 1.0                | 510             | 10                                      |
| n-Propy[benzene             | UG/KG | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | Q               | 1.0                | 2500            | 10                                      |
| p-Cymene                    | UG/KG | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                | 옾               | 1.0                | 280             | 20                                      |
| 1,2,4-Trimethylbenzene      | UG/KG | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | £               | 1.0                | 1200            | 10                                      |
| 1,3,5-Trimethylbenzene      | UG/KG | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0                | 웆               | 1.0                | 320             | 10                                      |
| n-Butylbenzene              | UG/KG | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -:                 | Ş               | -                  | 1600            | ======================================= |
| sec-Butylbenzene            | UG/KG | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                | 웊               | 1.0                | 1400            | <b>.</b> 2                              |
| tert-Butylbenzene           | UG/KG | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                | Ş               | 1.0                | 2               | <u> </u>                                |
| Methyl-t-Butyl Ether (MTBE) | UG/KG | 운                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                | S               | 0.                 | 2               | 2                                       |
| Naphthalene                 | UG/KG | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0                | 2               | 5.0                | 2600            | 20                                      |
| SURROGATE(S)                |       | The second secon |                    |                 |                    |                 |                                         |
| p-Bromofluorobenzene        | %     | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66-134             | 106             | 66-134             | 112             | 66-134                                  |
| a,a,a-Trifluorotoluene      | ×     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76-127             | 98              | 76-127             | 8               | 76-127                                  |
|                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                    |                 | :<br>:                                  |

000000000000000000

999999999999999

66-134 76-127

107 89

Reporting Limit

Sample Value

A5311505

UST1-SSW-033105 A05-3115 03/31/2005

| No.    | 10                                     |       | UST1-WSW-033105        |                    |                 |                    |                 |                    |                 |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|------------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| Units Sample Reporting Sample Reporting Value Limit Value CG/KG ND 1.0 NA | o<br>e Date                            |       | AUS-3115<br>03/31/2005 | A5511504           |                 |                    |                 |                    |                 |                    |
| UG/KG         ND         1.0         NA           UG/KG         2.4         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         2.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           X         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                                | Units | Sample<br>Value        | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| UG/KG         2.4         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         2.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           K         86         5.0         NA           K         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | el el                                  | UG/KG | Q.                     | 1.0                | NA              |                    | NA              |                    | NA              |                    |
| UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         2.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           K         86         5.0         NA           K         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | penzene                                | UG/KG | 5.4                    | 1.0                | X               |                    | NA.             |                    | AN<br>AN        | -                  |
| UG/KG         ND         1.0         NA           UG/KG         ND         2.0         NA           UG/KG         ND         3.0         NA           UG/KG         ND         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         86         5.0         NA           %         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er.                                    | UG/KG | 2                      | 1.0                | NA              |                    | A.              |                    | NA              |                    |
| UG/KG         ND         2.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           %         98         66-134         NA           %         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ane .                                  | UG/KG | 2                      | 1.0                | NA              |                    | × ×             |                    | NA              |                    |
| UG/KG         ND         3.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rienes                                 | UG/KG | 9                      | 2.0                | NA              |                    | NA              |                    | A N             |                    |
| UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Xylenes                                | UG/KG | 2                      | 3.0                | NA              |                    | NA              |                    | NA              |                    |
| UG/KG         ND         1.0         NA           UG/KG         KJ         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           K         98         66-134         NA           K         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | opylbenzene                            | UG/KG | 9                      | 1.0                | NA              |                    | NA.             |                    | Ā               |                    |
| UG/KG         ND         1.0         NA           UG/KG         4.1         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oy i benzene                           | UG/KG | 2                      | 1.0                | NA              |                    | Ą               |                    | AN<br>AN        |                    |
| UG/KG 4.1 1.0 NA UG/KG ND 1.0 NA UG/KG ND 1.1 NA UG/KG 2.0 1.0 NA UG/KG ND 1.0 NA UG/KG ND 1.0 NA UG/KG ND 5.0 NA  K 86 66-134 NA K 86 76-127 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ine                                    | UG/KG | 2                      | 1.0                | AN              |                    | AN AN           |                    | Ϋ́N             |                    |
| UG/KG         ND         1.0         NA           UG/KG         ND         1.1         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trimethylbenzene                       | UG/KG | 4.1                    | 1.0                | NA              |                    | ą,              |                    | Z Z             |                    |
| UG/KG         ND         1.1         NA           UG/KG         2.0         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -Trimethylbenzene                      | UG/KG | 2                      | 1.0                | NA              |                    | NA.             |                    | AN AN           |                    |
| UG/KG   2.0   1.0   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /lbenzene                              | UG/KG | 2                      | 1:1                | N.              | ,                  | Ψ.N             |                    | đ.              |                    |
| UG/KG         ND         1.0         NA           UG/KG         ND         1.0         NA           UG/KG         ND         5.0         NA           %         98         66-134         NA           %         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıtylbenzene                            | UG/KG | 2.0                    | 1.0                | AN              |                    | 42              |                    | W.              |                    |
| 4TBE) UG/KG ND 1.0 NA 5.0 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lutylbenzene                           | UG/KG | Q                      | 1.0                | AN AN           |                    | 42              |                    | 42              |                    |
| UG/KG         ND         5.0         NA           %         98         66-134         NA           %         86         76-127         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul><li>t-Butyl Ether (MTBE)</li></ul> | UG/KG | ş                      | 0.1                | NA              |                    | , A             |                    | άN.             |                    |
| % 98 66-134 NA<br>% 86 76-127 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alene                                  | UG/KG | Q                      | 5.0                | NA              |                    | NA              |                    | NA              |                    |
| % % 00-134 NA 86 76-127 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | officerohemages                        | 6     | 90                     | / 62 //            |                 |                    |                 |                    |                 |                    |
| % 86 76-127 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 2 2   | 8:                     | +CI -00            | AN              |                    | AX<br>AX        |                    | NA              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rrituorotoluene                        | ×     | 98                     | 76-127             | ×               |                    | ¥               |                    | NA              |                    |

Rept: AN0326

STL Connecticut (Langan Projects) Langan - Atlas METHOD 8021 - STARS VOLATILE ORGANICS

Date: 04/08/2005 Time: 14:11:33

## ATTACHMENT D UST-2 EXCAVATION WASTE CHARACTERIZATION SAMPLE DATA

|                    | 1 f a                                   |                                                                                                      | TECH                       | rlm                                  |                                      |                                                 | Eg.                                          | E E           | ka i                 | dkg                                        | ff.                                               | Į.                                                | dtn                                        | dwh.                                     | ÇM.                                              |
|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------------------|---------------|----------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------|
|                    |                                         |                                                                                                      | DATE/TIME                  | 03/23/05 0000                        |                                      | 03/24/05 2249<br>03/24/05 2249<br>03/24/05 2249 |                                              | 03/24/05 2249 |                      | 03/22/05 1250 dkg                          | 03/24/05 1303 dtn                                 | 03/24/05 1326 dtn                                 | 03/25/05 1418                              | 03/25/05 1147 dwh                        | 03/25/05 1029 dwh                                |
| 2002               | e Barr                                  |                                                                                                      | 占                          | 0,0                                  |                                      | , oo oo                                         |                                              |               |                      |                                            |                                                   |                                                   |                                            |                                          |                                                  |
| Date: 03/29/2005   | . Jamie                                 |                                                                                                      | BATCH                      | 46332                                |                                      | 46438<br>46438<br>46438                         | 46438                                        | 46438         | 46438                | 46247                                      | 46437                                             | 46439                                             | 46467                                      | 46455                                    | 46456                                            |
| Date               | ATTN:                                   |                                                                                                      | STIM                       | de di                                |                                      | . ug .g<br>.g/.kg<br>.g/.kg                     | pa/gn                                        | ug/kg         | ug/Kg                | Pos/Neg                                    | ng/Kg                                             | mg/Kg                                             | * yes/no                                   | mg/Kg                                    | mg/Kg                                            |
|                    |                                         |                                                                                                      | DILUTION                   |                                      |                                      | 2.00000                                         | 2.00000                                      | 2.00000       | 2.00000              |                                            | 1.0                                               |                                                   |                                            | 1.0000                                   |                                                  |
| υ<br>Θ             |                                         | ID: 209079-8<br>: 03/21/2005<br>: 15:20                                                              | 12                         | 0.10                                 | ŭ                                    | 3 68 5<br>3 58 5                                | 32                                           | 32 ?          | ម្ត                  |                                            | 500                                               | 9                                                 | 0.20                                       | 0.048                                    | 273                                              |
| IDSEK L            | ATLAS                                   | Laboratory Sample ID: Date Received: Time Received:                                                  | MDL                        | 0.10                                 | n<br>C                               | . H. 8.                                         | ου<br>                                       | 2.5           | 8.2                  |                                            |                                                   | 12                                                |                                            | 0.014                                    | 21.1                                             |
| E<br>B<br>S        | 5555107-ATLAS                           | Lab<br>Dat<br>Tim                                                                                    | Q FLAGS                    |                                      |                                      |                                                 | >                                            | :             |                      |                                            |                                                   |                                                   |                                            |                                          |                                                  |
| BORATORY           | PROJECT:                                |                                                                                                      | SAMPLE RESULT              | 96.2<br>3.8                          |                                      | 000                                             | 150                                          | 170           | Þ                    | m                                          | <u>D</u>                                          | Þ                                                 |                                            | 0.041 B                                  | 2580                                             |
| I A                |                                         |                                                                                                      | Ø                          |                                      |                                      | 99                                              | 2                                            |               | <u>8</u>             | Neg                                        | 2                                                 | <u>Q</u>                                          | ou                                         |                                          |                                                  |
| Job Number: 209079 | CUSTOWER: LANGAN ENVIRONMENTAL SERVICES | Customer Sample ID: SP-2K-032105(4) Date Sampled: 03/21/2005 Time Sampled: 10:45 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | % Solids, Solid<br>% Moisture, Solid | PCB Analysis<br>Aroclor 1016, Solid* |                                                 | Arctlor 1242, Solid*<br>Arctlor 1248, Solid* | 1254,         | Arcclor 1260, Solid* | Ignitability (solids) Ignitability, Solid* | Reactivity, Cyanide<br>Reactivity, Cyanide, Solid | Reactivity, Sulfide<br>Reactivity, Sulfide, Solid | pH (Soil)<br>Corrosivity (pH Solid), Solid | Mercury (CVAA) Solids<br>Mercury, Solid* | Metals Analysis (ICAP Trace)<br>Aluminum, Solid* |
|                    | CUSTOMER: LAN                           | Custome:<br>Date Sar<br>Time Sar<br>Sample D                                                         | TEST METHOD                | ASTM D-2216                          | 8082                                 |                                                 |                                              |               |                      | 1.030                                      | 9014M                                             | 9034M                                             | 9045C                                      | 7471A                                    | 6010B                                            |

Page 13

|                    |                                         |                                                                                                      | DT DATE/TIME TECH          | 03/25/05 1029 dwh<br>03/25/05 1029 dwh                                                                                                     | 1128<br>1128<br>1128<br>1128                                                                                     | 03/25/05 1211 dwh                             |
|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Date:03/29/2005    | Jamie Barr                              |                                                                                                      | BATCH I                    | 46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456<br>46456                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46374<br>46374<br>46374<br>46374                                                                                 | 46458                                         |
| Date:(             | ATTN:                                   |                                                                                                      | STIM                       | 12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG<br>12/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/Kg<br>ug/Kg<br>ug/Kg                                                                                          | mg/L                                          |
|                    |                                         |                                                                                                      | DILUTION                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00000<br>1.00000<br>1.00000                                                                                    |                                               |
| <b>छ</b><br>E-1    |                                         | .D: 209079-8<br>: 03/21/2005<br>: 15:20                                                              | R                          | 2.1<br>15.8<br>15.3<br>15.3<br>15.3<br>15.3<br>16.9<br>16.9<br>17.0<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ល្យល់លំ<br>ល                                                                                                     | 0.200                                         |
| T RESUL            | ATLAS                                   | Laboratory Sample ID: 209079-8<br>Date Received: 03/21/20<br>Time Received 15:20                     | MOL                        | 1.2<br>0.19<br>0.19<br>12.3<br>12.3<br>0.85<br>10.85<br>0.85<br>0.86<br>0.86<br>2.1<br>1.7<br>2.1<br>2.1<br>2.1<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5<br>1.8<br>1.9<br>7.7                                                                                         | 0.0195                                        |
| E<br>E             | 5555107-ATLAS                           | Lab<br>Dat                                                                                           | O FLAGS                    | 2 * * Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ממממ                                                                                                             | ———<br>————                                   |
| вокатоку           | PROJECT:                                |                                                                                                      | SAMPLE RESULT              | 1.4<br>31.2<br>2640<br>8.4<br>8.4<br>22.1<br>8920<br>1100<br>179<br>285<br>74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                               |
| I<br>A             |                                         |                                                                                                      | 8                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2292                                                                                                             | <u> </u>                                      |
| Job Number: 209079 | CUSTOMER: LANGAN ENVIRONMENTAL SERVICES | Customer Sample ID: SP-2K-032105(4) Date Sampled: 03/21/2005 Time Sampled: 10:45 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | Antimony, Solid* Arsenic, Solid* Berlium, Solid* Berlium, Solid* Cadrium, Solid* Chromium, Solid* Chalt, Solid* Copper, Solid* Iron, Solid* Iron, Solid* Iron, Solid* Iron, Solid* Marganese, Solid* Solid* Solid* Zolid* | Volatile Organics Volatile Organics Berzene, Solid* Toluene, Solid* Ethylberzene, Solid* Xylenes (total), Solid* | Metals Analysis (ICAP Trace)<br>Arsenic, ICLP |
|                    | CUSTOMER: LAN                           | Custome<br>Date Sa<br>Time Sa<br>Sample I                                                            | TEST METHOD                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8260B                                                                                                            | 6010B                                         |

Page 14

|                    |                                         |                                                                                                       | TECH                       | dwh<br>dwh<br>dwh<br>dwh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -Ę                                         |  |
|--------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
|                    |                                         |                                                                                                       | 1511                       | 1211<br>1211<br>1211<br>1211<br>1211<br>1211<br>1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03/25/05 1111 dwh                          |  |
|                    | 1 4                                     | :<br>:                                                                                                | /TIME                      | 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 11                                       |  |
|                    |                                         |                                                                                                       | DATE/TIME                  | 03/25/05<br>03/25/05<br>03/25/05<br>03/25/05<br>03/25/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /25/(                                      |  |
|                    | 1                                       |                                                                                                       | Б                          | 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 63                                       |  |
| 3005               | Bar                                     |                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| Date: 03/29/2005   | Jamie Barr                              | :                                                                                                     | BATCH                      | 46458<br>46458<br>46458<br>46458<br>46458<br>46458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46453                                      |  |
| e: 03              | 1 0.3                                   |                                                                                                       | ω                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| Dat                | ATTN:                                   |                                                                                                       | UNITS                      | mg/L<br>mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                       |  |
|                    |                                         |                                                                                                       | Z                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         |                                                                                                       | DILUTION                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                     |  |
|                    |                                         |                                                                                                       | III                        | нанана                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |  |
|                    |                                         | 005                                                                                                   |                            | 0.0250<br>0.0500<br>0.0500<br>0.0500<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0100                                     |  |
|                    |                                         | 209079-8<br>03/21/2005<br>15:20                                                                       | 꿃                          | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                         |  |
| ຜ                  | 1.54                                    | : 20907<br>: 03/21<br>: 15:20                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| 1                  |                                         | Laboratory Sample ID:<br>Date Received                                                                | 10,54                      | 7 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                         |  |
| ខេត                |                                         | Zd. :                                                                                                 |                            | 0.0037<br>0.0055<br>0.0065<br>0.0150<br>0.0250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00035                                    |  |
| oz.                | Ø                                       | ory 6                                                                                                 | MDL                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o o                                        |  |
| EH<br>Ø            | ATTA                                    | e Re Re                                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| EA<br>EA           | 5555107-ATLAS                           | Lab<br>Dat<br>Tim                                                                                     | FLAGS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    | 555                                     |                                                                                                       | O FL                       | n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                   |  |
| ORY                | PROJECT:                                |                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| ATO                | PRO                                     |                                                                                                       | RESUL                      | 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |  |
| OR                 |                                         |                                                                                                       | SAMPLE RESULT              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| A<br>B             |                                         |                                                                                                       | SAM                        | 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ð                                          |  |
| 니                  |                                         |                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         |                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         |                                                                                                       | 100                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         |                                                                                                       | PTION                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         |                                                                                                       | SCRII                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
|                    |                                         | (4)                                                                                                   | 円<br>円                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (F                                         |  |
|                    | WICE                                    | 32105                                                                                                 | SELL/A                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (CVA                                       |  |
| 670                | L SEF                                   | 2K-03<br>21/20<br>45<br>1                                                                             | PARAMETER/TEST DESCRIPTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cury                                       |  |
| 209                | ENIA                                    | SP-<br>03/<br>10:<br>Soi                                                                              | PARA                       | CLP<br>TCLP<br>TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mer.                                       |  |
| nber:              | RON                                     | Ä                                                                                                     |                            | OF THE TOTAL OF TH | ble,<br>y, T                               |  |
| Job Number: 209079 | ENV                                     | ample<br>ed<br>rix.                                                                                   |                            | Barium, TCLP<br>Cadmium, TCLP<br>Chromium, TCLP<br>Lead, TCLP<br>Selenium, TCLP<br>Silver, TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leachable, Mercury (CVAA)<br>Mercury, TCLP |  |
| J.O.               | CUSTOMER: LANCAN ENVIRONMENTAL SERVICES | Oustcomer Sample ID: SP-2K-032105(4) Date Sampled: 03/21/2005 Time Sampled: 10:45 Sample Matrix: Soil |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | រុន្ត                                      |  |
|                    | R: 1.2                                  | uston<br>ate s<br>ime s<br>ample                                                                      | SITHOL                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                         |  |
|                    | TOME                                    | បដ្ឋ                                                                                                  | TEST METHOD                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7470A                                      |  |
|                    | g                                       |                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |

The Action Levels listed reflect current STL Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

| Sample ID                   | New York TAGM     | SP-2K-032105-1 | SP-2K-032105-2 | SP-2K-032105-3 |
|-----------------------------|-------------------|----------------|----------------|----------------|
| Lab Sample Number           | Rec. Soil         | 617484         | 617485         | 617486         |
| Sampling Date               | Cleanup Objective | 03/21/05       | 03/21/05       | 03/21/05       |
| Matrix                      | Criteria (ug/kg)  | SOLID          | SOLID          | SOLID          |
| Dilution Factor             |                   | 20.0           | 50.0           | 50.0           |
| Units                       |                   | mg/Kg          | mg/Kg          | mg/Kg          |
|                             |                   |                |                |                |
| SEMIVOLATILE COMPOUNDS (GC) |                   |                |                |                |
| TotalDRO                    | NA                | 6720           | 10600          | 11600          |

### Qualifiers

U - The compound was not detected at the indicated concentration.
 J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 The concentration given is an approximate value.
 B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 NR - Not analyzed.

4/12/2005 1:07 PM

### SEVERN TRENT LABORATORIES, INC. PRELIMINARY DATA SUMMARY

| Lot #: A5C230290                                                       |                                     | onnecticut<br>209079<br>umber: 20907 | 9            | Date Reported:       | PAGE<br>3/25/05   |
|------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------|----------------------|-------------------|
| PARAMETER                                                              | RESUL                               | REPORT<br>T LIMIT                    | ING<br>UNITS | ANALYTICAL<br>METHOD |                   |
|                                                                        | 16.                                 | # <u> </u>                           |              | MBINOD               | <del> </del>      |
| Client Sample ID: SP-2J2-<br>Sample #: 001 Date Sa                     | <b>032105(4)</b><br>mpled: 03/21/05 | 10:30 Date                           | Received:    | 03/23/05 Matrix:     | SOLID             |
| Inorganic Analysis                                                     |                                     |                                      |              |                      | Reviewed          |
| Total Organic Halogen                                                  | s ND                                | 30.0                                 | ug/L         | SW846 9020B          |                   |
| Total Residue as<br>Percent Solids                                     | 79.7                                | 10.0                                 | 용            | MCAWW 160.3          | MOD               |
| Client Sample ID: SP-2K-0 Sample #: 002 Date Sample Inorganic Analysis |                                     | 10:45 Date                           | Received:    | 03/23/05 Matrix:     | SOLID<br>Reviewed |
| Total Organic Halogen                                                  | s ND                                | 30.0                                 | ug/L         | SW846 9020B          | Reviewed          |
| Total Residue as<br>Percent Solids                                     | 97.3                                | 10.0                                 | 8            | MCAWW 160.3          | MOD               |
| Client Sample ID: SP-2K-0                                              |                                     | 10:45 Date                           | Received:    | 03/23/05 Matrix:     | SOLID             |
| Inorganic Analysis                                                     |                                     |                                      |              |                      |                   |
| Total Organic Halogens                                                 | s ND                                | 30.0                                 | uq/L         | SW846 9020B          | Reviewed          |
| Total Residue as Percent Solids                                        | 97.1                                | 10.0                                 | 8            | MCAWW 160.3 1        | MOD               |
| Client Sample ID: SP-2K-03 Sample #: 004 Date Sam                      |                                     | 10:45 Date                           | Received:    | 03/23/05 Matrix:     | SOLID             |
| Inorganic Analysis                                                     |                                     |                                      |              |                      | Reviewed          |
| Total Organic Halogens                                                 | 3 ND                                | 30.0                                 | ug/L         | SW846 9020B          | 115710#64         |
| Total Residue as                                                       | 97.4                                | 10.0                                 | *            | MCAWW 160.3 N        | MOD               |
| Percent Solids                                                         |                                     |                                      |              |                      |                   |